Compare commits

...

31 Commits

Author SHA1 Message Date
Ettore Di Giacinto
5309da40b7 Update Dockerfile
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-01-09 08:55:43 +01:00
Ettore Di Giacinto
08b90b4720 Update _index.en.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-01-09 08:50:19 +01:00
LocalAI [bot]
2e890b3838 ⬆️ Update ggerganov/llama.cpp (#1563)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-01-09 08:48:40 +01:00
LocalAI [bot]
06656fc057 ⬆️ Update docs version mudler/LocalAI (#1562)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-01-09 08:48:24 +01:00
LocalAI [bot]
574fa67bdc ⬆️ Update ggerganov/llama.cpp (#1558)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-01-08 00:38:03 +01:00
Ettore Di Giacinto
e19d7226f8 feat: more embedded models, coqui fixes, add model usage and description (#1556)
* feat: add model descriptions and usage

* remove default model gallery

* models: add embeddings and tts

* docs: update table

* docs: updates

* images: cleanup pip cache after install

* images: always run apt-get clean

* ux: improve gRPC connection errors

* ux: improve some messages

* fix: fix coqui when no AudioPath is passed by

* embedded: add more models

* Add usage

* Reorder table
2024-01-08 00:37:02 +01:00
LocalAI [bot]
0843fe6c65 ⬆️ Update docs version mudler/LocalAI (#1557)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-01-07 09:36:21 +01:00
Ettore Di Giacinto
62a02cd1fe deps(conda): use transformers environment with autogptq (#1555) 2024-01-06 15:30:53 +01:00
Ettore Di Giacinto
949da7792d deps(conda): use transformers-env with vllm,exllama(2) (#1554)
* deps(conda): use transformers with vllm

* join vllm, exllama, exllama2, split petals
2024-01-06 13:32:28 +01:00
Ettore Di Giacinto
ce724a7e55 docs: improve getting started (#1553)
* docs: improve getting started

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>

* cleanups

* Use dockerhub links

* Shrink command to minimum

---------

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-01-06 01:04:14 +01:00
LocalAI [bot]
0a06c80801 ⬆️ Update ggerganov/llama.cpp (#1547)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-01-05 23:27:51 +01:00
LocalAI [bot]
edc55ade61 ⬆️ Update docs version mudler/LocalAI (#1546)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
Co-authored-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>
2024-01-05 23:27:30 +01:00
Ettore Di Giacinto
09e5d9007b feat: embedded model configurations, add popular model examples, refactoring (#1532)
* move downloader out

* separate startup functions for preloading configuration files

* docs: add popular model examples

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* shorteners

* Add llava

* Add mistral-openorca

* Better link to build section

* docs: update

* fixup

* Drop code dups

* Minor fixups

* Apply suggestions from code review

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>

* ci: try to cache gRPC build during tests

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* ci: do not build all images for tests, just necessary

* ci: cache gRPC also in release pipeline

* fixes

* Update model_preload_test.go

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-01-05 23:16:33 +01:00
Ettore Di Giacinto
db926896bd Revert "[Refactor]: Core/API Split" (#1550)
Revert "[Refactor]: Core/API Split (#1506)"

This reverts commit ab7b4d5ee9.
2024-01-05 18:04:46 +01:00
Dave
ab7b4d5ee9 [Refactor]: Core/API Split (#1506)
Refactors api folder to core, creates firm split between backend code and api frontend.
2024-01-05 15:34:56 +01:00
Ettore Di Giacinto
bcf02449b3 ci(dockerhub): push images also to dockerhub (#1542)
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-01-04 08:32:29 +01:00
LocalAI [bot]
d48faf35ab ⬆️ Update ggerganov/llama.cpp (#1544)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-01-04 00:08:03 +01:00
Ettore Di Giacinto
583bd28a5c fix(diffusers): add omegaconf dependency (#1540)
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-01-04 00:06:41 +01:00
LocalAI [bot]
7e1d8c489b ⬆️ Update ggerganov/llama.cpp (#1533)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-01-03 08:43:35 +01:00
LocalAI [bot]
de28867374 ⬆️ Update ggerganov/llama.cpp (#1531)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-01-02 00:28:22 +00:00
Ettore Di Giacinto
a1aa6cb7c2 fix(entrypoint): cd to backend dir before start (#1530)
Certain backends as vall-e-x are not meant to be used as a library, so
we want to start the process in the same folder where the backend and
all the assets are fixes #1394
2024-01-01 22:02:48 +01:00
Ettore Di Giacinto
85e2767dca feat: add trimsuffix (#1528) 2024-01-01 14:39:42 +01:00
Ettore Di Giacinto
fd48cb6506 deps(llama.cpp): update and sync grpc server (#1527)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-01-01 14:39:31 +01:00
Ettore Di Giacinto
522659eb59 feat(prepare): allow to specify additional files to download (#1526) 2024-01-01 14:39:13 +01:00
Ettore Di Giacinto
f068efe509 docs(phi-2): add example (#1525) 2024-01-01 10:51:47 +01:00
Ettore Di Giacinto
726fe416bb docs: update hot topics
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-01-01 10:41:39 +01:00
Ettore Di Giacinto
66fa4f1767 feat: share models by url (#1522)
* feat: allow to pass by models via args

* expose it also as an env/arg

* docs: enhancements to build/requirements

* do not display status always

* print download status

* not all mesages are debug
2024-01-01 10:31:03 +01:00
Ettore Di Giacinto
d6565f3b99 Update _index.en.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2023-12-31 10:58:22 +01:00
LocalAI [bot]
27686ff20b ⬆️ Update ggerganov/llama.cpp (#1518)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-31 00:19:08 +00:00
LocalAI [bot]
a8b865022f ⬆️ Update docs version mudler/LocalAI (#1517)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-30 23:50:24 +00:00
Ettore Di Giacinto
c1888a8062 feat(preload): prepare models in galleries (#1515)
Previously if applying models from the gallery API, we didn't actually
allowed remote URLs as models as nothing was actually downloading the
models referenced in the configuration file. Now we call Preload after
we have all the models loaded in memory.
2023-12-30 18:55:18 +01:00
73 changed files with 1227 additions and 613 deletions

86
.github/workflows/image-pr.yml vendored Normal file
View File

@@ -0,0 +1,86 @@
---
name: 'build container images tests'
on:
pull_request:
concurrency:
group: ci-${{ github.head_ref || github.ref }}-${{ github.repository }}
cancel-in-progress: true
jobs:
extras-image-build:
uses: ./.github/workflows/image_build.yml
with:
tag-latest: ${{ matrix.tag-latest }}
tag-suffix: ${{ matrix.tag-suffix }}
ffmpeg: ${{ matrix.ffmpeg }}
image-type: ${{ matrix.image-type }}
build-type: ${{ matrix.build-type }}
cuda-major-version: ${{ matrix.cuda-major-version }}
cuda-minor-version: ${{ matrix.cuda-minor-version }}
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
strategy:
# Pushing with all jobs in parallel
# eats the bandwidth of all the nodes
max-parallel: ${{ github.event_name != 'pull_request' && 2 || 4 }}
matrix:
include:
- build-type: ''
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "1"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda12-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
core-image-build:
uses: ./.github/workflows/image_build.yml
with:
tag-latest: ${{ matrix.tag-latest }}
tag-suffix: ${{ matrix.tag-suffix }}
ffmpeg: ${{ matrix.ffmpeg }}
image-type: ${{ matrix.image-type }}
build-type: ${{ matrix.build-type }}
cuda-major-version: ${{ matrix.cuda-major-version }}
cuda-minor-version: ${{ matrix.cuda-minor-version }}
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
strategy:
matrix:
include:
- build-type: ''
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
runs-on: 'ubuntu-latest'
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "1"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda12-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
runs-on: 'ubuntu-latest'

View File

@@ -2,7 +2,6 @@
name: 'build container images'
on:
pull_request:
push:
branches:
- master
@@ -27,8 +26,10 @@ jobs:
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
secrets:
dockerUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
dockerPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
strategy:
# Pushing with all jobs in parallel
# eats the bandwidth of all the nodes
@@ -107,8 +108,10 @@ jobs:
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
secrets:
dockerUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
dockerPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
strategy:
matrix:
include:

View File

@@ -46,6 +46,10 @@ on:
required: true
dockerPassword:
required: true
quayUsername:
required: true
quayPassword:
required: true
jobs:
reusable_image-build:
runs-on: ${{ inputs.runs-on }}
@@ -100,7 +104,9 @@ jobs:
id: meta
uses: docker/metadata-action@v5
with:
images: quay.io/go-skynet/local-ai
images: |
quay.io/go-skynet/local-ai
localai/localai
tags: |
type=ref,event=branch
type=semver,pattern={{raw}}
@@ -122,10 +128,17 @@ jobs:
if: github.event_name != 'pull_request'
uses: docker/login-action@v3
with:
registry: quay.io
username: ${{ secrets.dockerUsername }}
password: ${{ secrets.dockerPassword }}
- name: Login to DockerHub
if: github.event_name != 'pull_request'
uses: docker/login-action@v3
with:
registry: quay.io
username: ${{ secrets.quayUsername }}
password: ${{ secrets.quayPassword }}
- name: Build and push
uses: docker/build-push-action@v5
with:

View File

@@ -34,10 +34,22 @@ jobs:
sudo apt-get update
sudo apt-get install build-essential ffmpeg
- name: Cache grpc
id: cache-grpc
uses: actions/cache@v3
with:
path: grpc
key: ${{ runner.os }}-grpc
- name: Build grpc
if: steps.cache-grpc.outputs.cache-hit != 'true'
run: |
git clone --recurse-submodules -b v1.58.0 --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
-DgRPC_BUILD_TESTS=OFF \
../.. && sudo make -j12 install
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
-DgRPC_BUILD_TESTS=OFF \
../.. && sudo make -j12
- name: Install gRPC
run: |
cd grpc && cd cmake/build && sudo make -j12 install
- name: Build
id: build

View File

@@ -86,11 +86,22 @@ jobs:
sudo cp -rfv sources/go-piper/piper-phonemize/pi/lib/. /usr/lib/ && \
# Pre-build stable diffusion before we install a newer version of abseil (not compatible with stablediffusion-ncn)
GO_TAGS="stablediffusion tts" GRPC_BACKENDS=backend-assets/grpc/stablediffusion make build
- name: Cache grpc
id: cache-grpc
uses: actions/cache@v3
with:
path: grpc
key: ${{ runner.os }}-grpc
- name: Build grpc
if: steps.cache-grpc.outputs.cache-hit != 'true'
run: |
git clone --recurse-submodules -b v1.58.0 --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
-DgRPC_BUILD_TESTS=OFF \
../.. && sudo make -j12 install
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
-DgRPC_BUILD_TESTS=OFF \
../.. && sudo make -j12
- name: Install gRPC
run: |
cd grpc && cd cmake/build && sudo make -j12 install
- name: Test
run: |
GO_TAGS="stablediffusion tts" make test

View File

@@ -15,7 +15,6 @@ ENV BUILD_TYPE=${BUILD_TYPE}
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,petals:/build/backend/python/petals/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,exllama:/build/backend/python/exllama/run.sh,vall-e-x:/build/backend/python/vall-e-x/run.sh,vllm:/build/backend/python/vllm/run.sh,exllama2:/build/backend/python/exllama2/run.sh,transformers-musicgen:/build/backend/python/transformers-musicgen/run.sh"
ENV GALLERIES='[{"name":"model-gallery", "url":"github:go-skynet/model-gallery/index.yaml"}, {"url": "github:go-skynet/model-gallery/huggingface.yaml","name":"huggingface"}]'
ARG GO_TAGS="stablediffusion tinydream tts"
RUN apt-get update && \
@@ -64,12 +63,12 @@ RUN curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmo
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list && \
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list && \
apt-get update && \
apt-get install -y conda
apt-get install -y conda && apt-get clean
ENV PATH="/root/.cargo/bin:${PATH}"
RUN pip install --upgrade pip
RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
RUN apt-get install -y espeak-ng espeak
RUN apt-get install -y espeak-ng espeak && apt-get clean
###################################
###################################
@@ -127,10 +126,11 @@ ARG CUDA_MAJOR_VERSION=11
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
ENV NVIDIA_REQUIRE_CUDA="cuda>=${CUDA_MAJOR_VERSION}.0"
ENV NVIDIA_VISIBLE_DEVICES=all
ENV PIP_CACHE_PURGE=true
# Add FFmpeg
RUN if [ "${FFMPEG}" = "true" ]; then \
apt-get install -y ffmpeg \
apt-get install -y ffmpeg && apt-get clean \
; fi
WORKDIR /build
@@ -193,6 +193,9 @@ RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/coqui \
; fi
# Make sure the models directory exists
RUN mkdir -p /build/models
# Define the health check command
HEALTHCHECK --interval=1m --timeout=10m --retries=10 \
CMD curl -f $HEALTHCHECK_ENDPOINT || exit 1

View File

@@ -8,7 +8,7 @@ GOLLAMA_VERSION?=aeba71ee842819da681ea537e78846dc75949ac0
GOLLAMA_STABLE_VERSION?=50cee7712066d9e38306eccadcfbb44ea87df4b7
CPPLLAMA_VERSION?=0235b9b571f3cc7d2b8836409a5404b41ce1379c
CPPLLAMA_VERSION?=1fc2f265ff9377a37fd2c61eae9cd813a3491bea
# gpt4all version
GPT4ALL_REPO?=https://github.com/nomic-ai/gpt4all

View File

@@ -20,6 +20,9 @@
</a>
</p>
[<img src="https://img.shields.io/badge/dockerhub-images-important.svg?logo=Docker">](https://hub.docker.com/r/localai/localai)
[<img src="https://img.shields.io/badge/quay.io-images-important.svg?">](https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest)
> :bulb: Get help - [❓FAQ](https://localai.io/faq/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [:speech_balloon: Discord](https://discord.gg/uJAeKSAGDy) [:book: Documentation website](https://localai.io/)
>
> [💻 Quickstart](https://localai.io/basics/getting_started/) [📣 News](https://localai.io/basics/news/) [ 🛫 Examples ](https://github.com/go-skynet/LocalAI/tree/master/examples/) [ 🖼️ Models ](https://localai.io/models/) [ 🚀 Roadmap ](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
@@ -40,6 +43,7 @@
[Roadmap](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
- Start and share models with config file: https://github.com/mudler/LocalAI/pull/1522
- 🐸 Coqui: https://github.com/mudler/LocalAI/pull/1489
- Inline templates: https://github.com/mudler/LocalAI/pull/1452
- Mixtral: https://github.com/mudler/LocalAI/pull/1449

View File

@@ -16,6 +16,7 @@ import (
"github.com/go-skynet/LocalAI/metrics"
"github.com/go-skynet/LocalAI/pkg/assets"
"github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/startup"
"github.com/gofiber/fiber/v2"
"github.com/gofiber/fiber/v2/middleware/cors"
@@ -36,6 +37,8 @@ func Startup(opts ...options.AppOption) (*options.Option, *config.ConfigLoader,
log.Info().Msgf("Starting LocalAI using %d threads, with models path: %s", options.Threads, options.Loader.ModelPath)
log.Info().Msgf("LocalAI version: %s", internal.PrintableVersion())
startup.PreloadModelsConfigurations(options.Loader.ModelPath, options.ModelsURL...)
cl := config.NewConfigLoader()
if err := cl.LoadConfigs(options.Loader.ModelPath); err != nil {
log.Error().Msgf("error loading config files: %s", err.Error())
@@ -51,6 +54,18 @@ func Startup(opts ...options.AppOption) (*options.Option, *config.ConfigLoader,
log.Error().Msgf("error downloading models: %s", err.Error())
}
if options.PreloadJSONModels != "" {
if err := localai.ApplyGalleryFromString(options.Loader.ModelPath, options.PreloadJSONModels, cl, options.Galleries); err != nil {
return nil, nil, err
}
}
if options.PreloadModelsFromPath != "" {
if err := localai.ApplyGalleryFromFile(options.Loader.ModelPath, options.PreloadModelsFromPath, cl, options.Galleries); err != nil {
return nil, nil, err
}
}
if options.Debug {
for _, v := range cl.ListConfigs() {
cfg, _ := cl.GetConfig(v)
@@ -67,18 +82,6 @@ func Startup(opts ...options.AppOption) (*options.Option, *config.ConfigLoader,
}
}
if options.PreloadJSONModels != "" {
if err := localai.ApplyGalleryFromString(options.Loader.ModelPath, options.PreloadJSONModels, cl, options.Galleries); err != nil {
return nil, nil, err
}
}
if options.PreloadModelsFromPath != "" {
if err := localai.ApplyGalleryFromFile(options.Loader.ModelPath, options.PreloadModelsFromPath, cl, options.Galleries); err != nil {
return nil, nil, err
}
}
// turn off any process that was started by GRPC if the context is canceled
go func() {
<-options.Context.Done()

View File

@@ -16,9 +16,9 @@ import (
. "github.com/go-skynet/LocalAI/api"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/metrics"
"github.com/go-skynet/LocalAI/pkg/downloader"
"github.com/go-skynet/LocalAI/pkg/gallery"
"github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/gofiber/fiber/v2"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
@@ -61,7 +61,7 @@ func getModelStatus(url string) (response map[string]interface{}) {
}
func getModels(url string) (response []gallery.GalleryModel) {
utils.GetURI(url, func(url string, i []byte) error {
downloader.GetURI(url, func(url string, i []byte) error {
// Unmarshal YAML data into a struct
return json.Unmarshal(i, &response)
})

View File

@@ -159,6 +159,9 @@ func Finetune(config config.Config, input, prediction string) string {
for _, c := range config.TrimSpace {
prediction = strings.TrimSpace(strings.TrimPrefix(prediction, c))
}
return prediction
for _, c := range config.TrimSuffix {
prediction = strings.TrimSpace(strings.TrimSuffix(prediction, c))
}
return prediction
}

View File

@@ -9,6 +9,7 @@ import (
"strings"
"sync"
"github.com/go-skynet/LocalAI/pkg/downloader"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/rs/zerolog/log"
"gopkg.in/yaml.v3"
@@ -52,6 +53,17 @@ type Config struct {
// CUDA
// Explicitly enable CUDA or not (some backends might need it)
CUDA bool `yaml:"cuda"`
DownloadFiles []File `yaml:"download_files"`
Description string `yaml:"description"`
Usage string `yaml:"usage"`
}
type File struct {
Filename string `yaml:"filename" json:"filename"`
SHA256 string `yaml:"sha256" json:"sha256"`
URI string `yaml:"uri" json:"uri"`
}
type VallE struct {
@@ -103,16 +115,18 @@ type LLMConfig struct {
StopWords []string `yaml:"stopwords"`
Cutstrings []string `yaml:"cutstrings"`
TrimSpace []string `yaml:"trimspace"`
ContextSize int `yaml:"context_size"`
NUMA bool `yaml:"numa"`
LoraAdapter string `yaml:"lora_adapter"`
LoraBase string `yaml:"lora_base"`
LoraScale float32 `yaml:"lora_scale"`
NoMulMatQ bool `yaml:"no_mulmatq"`
DraftModel string `yaml:"draft_model"`
NDraft int32 `yaml:"n_draft"`
Quantization string `yaml:"quantization"`
MMProj string `yaml:"mmproj"`
TrimSuffix []string `yaml:"trimsuffix"`
ContextSize int `yaml:"context_size"`
NUMA bool `yaml:"numa"`
LoraAdapter string `yaml:"lora_adapter"`
LoraBase string `yaml:"lora_base"`
LoraScale float32 `yaml:"lora_scale"`
NoMulMatQ bool `yaml:"no_mulmatq"`
DraftModel string `yaml:"draft_model"`
NDraft int32 `yaml:"n_draft"`
Quantization string `yaml:"quantization"`
MMProj string `yaml:"mmproj"`
RopeScaling string `yaml:"rope_scaling"`
YarnExtFactor float32 `yaml:"yarn_ext_factor"`
@@ -267,26 +281,44 @@ func (cm *ConfigLoader) ListConfigs() []string {
return res
}
// Preload prepare models if they are not local but url or huggingface repositories
func (cm *ConfigLoader) Preload(modelPath string) error {
cm.Lock()
defer cm.Unlock()
status := func(fileName, current, total string, percent float64) {
utils.DisplayDownloadFunction(fileName, current, total, percent)
}
log.Info().Msgf("Preloading models from %s", modelPath)
for i, config := range cm.configs {
modelURL := config.PredictionOptions.Model
modelURL = utils.ConvertURL(modelURL)
// Download files and verify their SHA
for _, file := range config.DownloadFiles {
log.Debug().Msgf("Checking %q exists and matches SHA", file.Filename)
if utils.LooksLikeURL(modelURL) {
if err := utils.VerifyPath(file.Filename, modelPath); err != nil {
return err
}
// Create file path
filePath := filepath.Join(modelPath, file.Filename)
if err := downloader.DownloadFile(file.URI, filePath, file.SHA256, status); err != nil {
return err
}
}
modelURL := config.PredictionOptions.Model
modelURL = downloader.ConvertURL(modelURL)
if downloader.LooksLikeURL(modelURL) {
// md5 of model name
md5Name := utils.MD5(modelURL)
// check if file exists
if _, err := os.Stat(filepath.Join(modelPath, md5Name)); errors.Is(err, os.ErrNotExist) {
err := utils.DownloadFile(modelURL, filepath.Join(modelPath, md5Name), "", func(fileName, current, total string, percent float64) {
log.Info().Msgf("Downloading %s: %s/%s (%.2f%%)", fileName, current, total, percent)
})
err := downloader.DownloadFile(modelURL, filepath.Join(modelPath, md5Name), "", status)
if err != nil {
return err
}
@@ -297,6 +329,15 @@ func (cm *ConfigLoader) Preload(modelPath string) error {
c.PredictionOptions.Model = md5Name
cm.configs[i] = *c
}
if cm.configs[i].Name != "" {
log.Info().Msgf("Model name: %s", cm.configs[i].Name)
}
if cm.configs[i].Description != "" {
log.Info().Msgf("Model description: %s", cm.configs[i].Description)
}
if cm.configs[i].Usage != "" {
log.Info().Msgf("Model usage: \n%s", cm.configs[i].Usage)
}
}
return nil
}

View File

@@ -130,6 +130,12 @@ func (g *galleryApplier) Start(c context.Context, cm *config.ConfigLoader) {
continue
}
err = cm.Preload(g.modelPath)
if err != nil {
updateError(err)
continue
}
g.updateStatus(op.id, &galleryOpStatus{Processed: true, Message: "completed", Progress: 100})
}
}

View File

@@ -40,9 +40,12 @@ type Option struct {
SingleBackend bool
ParallelBackendRequests bool
WatchDogIdle bool
WatchDogBusy bool
WatchDog bool
WatchDogIdle bool
WatchDogBusy bool
WatchDog bool
ModelsURL []string
WatchDogBusyTimeout, WatchDogIdleTimeout time.Duration
}
@@ -63,6 +66,12 @@ func NewOptions(o ...AppOption) *Option {
return opt
}
func WithModelsURL(urls ...string) AppOption {
return func(o *Option) {
o.ModelsURL = urls
}
}
func WithCors(b bool) AppOption {
return func(o *Option) {
o.CORS = b

View File

@@ -26,6 +26,7 @@
#include <mutex>
#include <chrono>
#include <regex>
#include <condition_variable>
#include <grpcpp/ext/proto_server_reflection_plugin.h>
#include <grpcpp/grpcpp.h>
#include <grpcpp/health_check_service_interface.h>
@@ -40,12 +41,15 @@ using backend::HealthMessage;
///// LLAMA.CPP server code below
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
using json = nlohmann::json;
struct server_params
{
std::string hostname = "127.0.0.1";
std::string api_key;
std::string public_path = "examples/server/public";
int32_t port = 8080;
int32_t read_timeout = 600;
@@ -89,7 +93,7 @@ static inline bool is_base64(uint8_t c)
return (isalnum(c) || (c == '+') || (c == '/'));
}
static std::vector<uint8_t> base64_decode(std::string const &encoded_string)
static std::vector<uint8_t> base64_decode(const std::string & encoded_string)
{
int i = 0;
int j = 0;
@@ -216,10 +220,10 @@ struct slot_image
int32_t id;
bool request_encode_image = false;
float* image_embedding = nullptr;
float * image_embedding = nullptr;
int32_t image_tokens = 0;
clip_image_u8 img_data;
clip_image_u8 * img_data;
std::string prefix_prompt; // before of this image
};
@@ -441,15 +445,16 @@ struct llama_client_slot
generated_token_probs.clear();
for (slot_image &img : images)
for (slot_image & img : images)
{
free(img.image_embedding);
delete[] img.img_data.data;
if (img.img_data) {
clip_image_u8_free(img.img_data);
}
img.prefix_prompt = "";
}
images.clear();
// llama_set_rng_seed(ctx, params.seed); in batched the seed matter???????
}
bool has_budget(gpt_params &global_params) {
@@ -550,7 +555,9 @@ struct llama_server_context
std::vector<task_result> queue_results;
std::vector<task_multi> queue_multitasks;
std::mutex mutex_tasks; // also guards id_gen, and queue_multitasks
std::condition_variable condition_tasks;
std::mutex mutex_results;
std::condition_variable condition_results;
~llama_server_context()
{
@@ -769,6 +776,42 @@ struct llama_server_context
slot->prompt = "";
}
slot->sparams.penalty_prompt_tokens.clear();
slot->sparams.use_penalty_prompt_tokens = false;
const auto &penalty_prompt = data.find("penalty_prompt");
if (penalty_prompt != data.end())
{
if (penalty_prompt->is_string())
{
const auto penalty_prompt_string = penalty_prompt->get<std::string>();
auto penalty_tokens = llama_tokenize(model, penalty_prompt_string, false);
slot->sparams.penalty_prompt_tokens.swap(penalty_tokens);
if (slot->params.n_predict > 0)
{
slot->sparams.penalty_prompt_tokens.reserve(slot->sparams.penalty_prompt_tokens.size() + slot->params.n_predict);
}
slot->sparams.use_penalty_prompt_tokens = true;
}
else if (penalty_prompt->is_array())
{
const auto n_tokens = penalty_prompt->size();
slot->sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot->params.n_predict));
const int n_vocab = llama_n_vocab(model);
for (const auto &penalty_token : *penalty_prompt)
{
if (penalty_token.is_number_integer())
{
const auto tok = penalty_token.get<llama_token>();
if (tok >= 0 && tok < n_vocab)
{
slot->sparams.penalty_prompt_tokens.push_back(tok);
}
}
}
slot->sparams.use_penalty_prompt_tokens = true;
}
}
slot->sparams.logit_bias.clear();
if (json_value(data, "ignore_eos", false))
@@ -821,24 +864,17 @@ struct llama_server_context
{
for (const auto &img : *images_data)
{
std::string data_b64 = img["data"].get<std::string>();
const std::vector<uint8_t> image_buffer = base64_decode(img["data"].get<std::string>());
slot_image img_sl;
img_sl.id = img.count("id") != 0 ? img["id"].get<int>() : slot->images.size();
int width, height, channels;
std::vector<uint8_t> image_buffer = base64_decode(data_b64);
data_b64.clear();
auto data = stbi_load_from_memory(image_buffer.data(), image_buffer.size(), &width, &height, &channels, 3);
if (!data) {
img_sl.img_data = clip_image_u8_init();
if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data))
{
LOG_TEE("slot %i - failed to load image [id: %i]\n", slot->id, img_sl.id);
return false;
}
LOG_TEE("slot %i - image loaded [id: %i] resolution (%i x %i)\n", slot->id, img_sl.id, width, height);
img_sl.img_data.nx = width;
img_sl.img_data.ny = height;
img_sl.img_data.size = width * height * 3;
img_sl.img_data.data = new uint8_t[width * height * 3]();
memcpy(img_sl.img_data.data, data, width * height * 3);
stbi_image_free(data);
LOG_TEE("slot %i - loaded image\n", slot->id);
img_sl.request_encode_image = true;
slot->images.push_back(img_sl);
}
@@ -893,6 +929,7 @@ struct llama_server_context
llama_sampling_free(slot->ctx_sampling);
}
slot->ctx_sampling = llama_sampling_init(slot->sparams);
llama_set_rng_seed(ctx, slot->params.seed);
slot->command = LOAD_PROMPT;
all_slots_are_idle = false;
@@ -1000,6 +1037,12 @@ struct llama_server_context
slot.generated_text += token_str;
slot.has_next_token = true;
if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1)
{
// we can change penalty_prompt_tokens because it is always created from scratch each request
slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
}
// check if there is incomplete UTF-8 character at the end
bool incomplete = false;
for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i)
@@ -1106,8 +1149,8 @@ struct llama_server_context
{
continue;
}
clip_image_f32 img_res;
if (!clip_image_preprocess(clp_ctx, &img.img_data, &img_res, /*pad2square =*/ true))
clip_image_f32 * img_res = clip_image_f32_init();
if (!clip_image_preprocess(clp_ctx, img.img_data, img_res, /*pad2square =*/ true))
{
LOG_TEE("Error processing the given image");
clip_free(clp_ctx);
@@ -1122,11 +1165,12 @@ struct llama_server_context
return false;
}
LOG_TEE("slot %i - encoding image [id: %i]\n", slot.id, img.id);
if (!clip_image_encode(clp_ctx, params.n_threads, &img_res, img.image_embedding))
if (!clip_image_encode(clp_ctx, params.n_threads, img_res, img.image_embedding))
{
LOG_TEE("Unable to encode image\n");
return false;
}
clip_image_f32_free(img_res);
img.request_encode_image = false;
}
@@ -1135,7 +1179,7 @@ struct llama_server_context
void send_error(task_server& task, std::string error)
{
std::lock_guard<std::mutex> lock(mutex_results);
std::unique_lock<std::mutex> lock(mutex_results);
task_result res;
res.id = task.id;
res.multitask_id = task.multitask_id;
@@ -1143,6 +1187,7 @@ struct llama_server_context
res.error = true;
res.result_json = { { "content", error } };
queue_results.push_back(res);
condition_results.notify_all();
}
void add_multi_task(int id, std::vector<int>& sub_ids)
@@ -1152,6 +1197,7 @@ struct llama_server_context
multi.id = id;
std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
queue_multitasks.push_back(multi);
condition_tasks.notify_one();
}
void update_multi_task(int multitask_id, int subtask_id, task_result& result)
@@ -1163,6 +1209,7 @@ struct llama_server_context
{
multitask.subtasks_remaining.erase(subtask_id);
multitask.results.push_back(result);
condition_tasks.notify_one();
}
}
}
@@ -1181,7 +1228,7 @@ struct llama_server_context
{"n_ctx", slot.n_ctx},
{"model", params.model_alias},
{"seed", slot.params.seed},
{"temp", slot.sparams.temp},
{"temperature", slot.sparams.temp},
{"top_k", slot.sparams.top_k},
{"top_p", slot.sparams.top_p},
{"min_p", slot.sparams.min_p},
@@ -1191,6 +1238,8 @@ struct llama_server_context
{"repeat_penalty", slot.sparams.penalty_repeat},
{"presence_penalty", slot.sparams.penalty_present},
{"frequency_penalty", slot.sparams.penalty_freq},
{"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
{"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
{"mirostat", slot.sparams.mirostat},
{"mirostat_tau", slot.sparams.mirostat_tau},
{"mirostat_eta", slot.sparams.mirostat_eta},
@@ -1208,7 +1257,7 @@ struct llama_server_context
void send_partial_response(llama_client_slot &slot, completion_token_output tkn)
{
std::lock_guard<std::mutex> lock(mutex_results);
std::unique_lock<std::mutex> lock(mutex_results);
task_result res;
res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
@@ -1244,11 +1293,12 @@ struct llama_server_context
}
queue_results.push_back(res);
condition_results.notify_all();
}
void send_final_response(llama_client_slot &slot)
{
std::lock_guard<std::mutex> lock(mutex_results);
std::unique_lock<std::mutex> lock(mutex_results);
task_result res;
res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
@@ -1304,11 +1354,12 @@ struct llama_server_context
}
queue_results.push_back(res);
condition_results.notify_all();
}
void send_embedding(llama_client_slot &slot)
{
std::lock_guard<std::mutex> lock(mutex_results);
std::unique_lock<std::mutex> lock(mutex_results);
task_result res;
res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
@@ -1336,6 +1387,7 @@ struct llama_server_context
};
}
queue_results.push_back(res);
condition_results.notify_all();
}
int request_completion(json data, bool infill, bool embedding, int multitask_id)
@@ -1359,6 +1411,7 @@ struct llama_server_context
// otherwise, it's a single-prompt task, we actually queue it
queue_tasks.push_back(task);
condition_tasks.notify_one();
return task.id;
}
@@ -1366,13 +1419,10 @@ struct llama_server_context
{
while (true)
{
std::this_thread::sleep_for(std::chrono::microseconds(5));
std::lock_guard<std::mutex> lock(mutex_results);
if (queue_results.empty())
{
continue;
}
std::unique_lock<std::mutex> lock(mutex_results);
condition_results.wait(lock, [&]{
return !queue_results.empty();
});
for (int i = 0; i < (int) queue_results.size(); i++)
{
@@ -1468,12 +1518,13 @@ struct llama_server_context
void request_cancel(int task_id)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
std::unique_lock<std::mutex> lock(mutex_tasks);
task_server task;
task.id = id_gen++;
task.type = CANCEL_TASK;
task.target_id = task_id;
queue_tasks.push_back(task);
condition_tasks.notify_one();
}
int split_multiprompt_task(task_server& multiprompt_task)
@@ -1499,7 +1550,7 @@ struct llama_server_context
void process_tasks()
{
std::lock_guard<std::mutex> lock(mutex_tasks);
std::unique_lock<std::mutex> lock(mutex_tasks);
while (!queue_tasks.empty())
{
task_server task = queue_tasks.front();
@@ -1571,6 +1622,7 @@ struct llama_server_context
std::lock_guard<std::mutex> lock(mutex_results);
queue_results.push_back(aggregate_result);
condition_results.notify_all();
queue_iterator = queue_multitasks.erase(queue_iterator);
}
@@ -1601,8 +1653,10 @@ struct llama_server_context
LOG_TEE("all slots are idle and system prompt is empty, clear the KV cache\n");
kv_cache_clear();
}
// avoid 100% usage of cpu all time
std::this_thread::sleep_for(std::chrono::milliseconds(5));
std::unique_lock<std::mutex> lock(mutex_tasks);
condition_tasks.wait(lock, [&]{
return !queue_tasks.empty();
});
}
for (llama_client_slot &slot : slots)
@@ -1962,28 +2016,35 @@ json oaicompat_completion_params_parse(
llama_params["__oaicompat"] = true;
// Map OpenAI parameters to llama.cpp parameters
//
// For parameters that are defined by the OpenAI documentation (e.g.
// temperature), we explicitly specify OpenAI's intended default; we
// need to do that because sometimes OpenAI disagrees with llama.cpp
//
// https://platform.openai.com/docs/api-reference/chat/create
llama_sampling_params default_sparams;
llama_params["model"] = json_value(body, "model", std::string("uknown"));
llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
llama_params["temperature"] = json_value(body, "temperature", 0.8);
llama_params["top_k"] = json_value(body, "top_k", 40);
llama_params["top_p"] = json_value(body, "top_p", 0.95);
llama_params["temperature"] = json_value(body, "temperature", 0.0);
llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);
llama_params["top_p"] = json_value(body, "top_p", 1.0);
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
llama_params["seed"] = json_value(body, "seed", 0);
llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
llama_params["stream"] = json_value(body, "stream", false);
llama_params["mirostat"] = json_value(body, "mirostat", false);
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", 0.0);
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", 0.0);
llama_params["penalize_nl"] = json_value(body, "penalize_nl", false);
llama_params["typical_p"] = json_value(body, "typical_p", 0.0);
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", 0);
llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat);
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl);
llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p);
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
llama_params["tfs_z"] = json_value(body, "tfs_z", 0.0);
llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z);
if (llama_params.count("grammar") != 0) {
if (body.count("grammar") != 0) {
llama_params["grammar"] = json_value(body, "grammar", json::object());
}

View File

@@ -1,5 +1,4 @@
.PHONY: autogptq
autogptq:
@echo "Creating virtual environment..."
@conda env create --name autogptq --file autogptq.yml
@echo "Virtual environment created."
$(MAKE) -C ../common-env/transformers

View File

@@ -6,7 +6,7 @@
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate autogptq
source activate transformers
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"

View File

@@ -13,3 +13,12 @@ if conda_env_exists "transformers" ; then
else
echo "Virtual environment already exists."
fi
if [ "$PIP_CACHE_PURGE" = true ] ; then
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate transformers
pip cache purge
fi

View File

@@ -45,7 +45,7 @@ dependencies:
- fsspec==2023.6.0
- funcy==2.0
- grpcio==1.59.0
- huggingface-hub==0.16.4
- huggingface-hub
- idna==3.4
- jinja2==3.1.2
- jmespath==1.0.1
@@ -70,7 +70,6 @@ dependencies:
- packaging==23.2
- pandas
- peft==0.5.0
- git+https://github.com/bigscience-workshop/petals
- protobuf==4.24.4
- psutil==5.9.5
- pyarrow==13.0.0
@@ -85,17 +84,16 @@ dependencies:
- scipy==1.11.3
- six==1.16.0
- sympy==1.12
- tokenizers==0.14.0
- torch==2.1.0
- torchaudio==2.1.0
- tokenizers
- torch==2.1.2
- torchaudio==2.1.2
- tqdm==4.66.1
- transformers==4.34.0
- TTS==0.22.0
- triton==2.1.0
- typing-extensions==4.8.0
- tzdata==2023.3
- urllib3==1.26.17
- xxhash==3.4.1
- auto-gptq==0.6.0
- yarl==1.9.2
- soundfile
- langid
@@ -114,4 +112,7 @@ dependencies:
- sudachipy
- sudachidict_core
- vocos
- vllm==0.2.7
- transformers>=4.36.0 # Required for Mixtral.
- xformers==0.0.23.post1
prefix: /opt/conda/envs/transformers

View File

@@ -46,7 +46,7 @@ dependencies:
- fsspec==2023.6.0
- funcy==2.0
- grpcio==1.59.0
- huggingface-hub==0.16.4
- huggingface-hub
- idna==3.4
- jinja2==3.1.2
- jmespath==1.0.1
@@ -59,7 +59,6 @@ dependencies:
- packaging==23.2
- pandas
- peft==0.5.0
- git+https://github.com/bigscience-workshop/petals
- protobuf==4.24.4
- psutil==5.9.5
- pyarrow==13.0.0
@@ -74,14 +73,14 @@ dependencies:
- scipy==1.11.3
- six==1.16.0
- sympy==1.12
- tokenizers==0.14.0
- torch==2.1.0
- torchaudio==2.1.0
- tokenizers
- torch==2.1.2
- torchaudio==2.1.2
- tqdm==4.66.1
- transformers==4.34.0
- triton==2.1.0
- typing-extensions==4.8.0
- tzdata==2023.3
- auto-gptq==0.6.0
- urllib3==1.26.17
- xxhash==3.4.1
- yarl==1.9.2
@@ -102,4 +101,7 @@ dependencies:
- sudachipy
- sudachidict_core
- vocos
- vllm==0.2.7
- transformers>=4.36.0 # Required for Mixtral.
- xformers==0.0.23.post1
prefix: /opt/conda/envs/transformers

View File

@@ -21,7 +21,7 @@ _ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
COQUI_LANGUAGE = os.environ.get('COQUI_LANGUAGE', 'en')
COQUI_LANGUAGE = os.environ.get('COQUI_LANGUAGE', None)
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
@@ -38,6 +38,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
if not torch.cuda.is_available() and request.CUDA:
return backend_pb2.Result(success=False, message="CUDA is not available")
self.AudioPath = None
# List available 🐸TTS models
print(TTS().list_models())
if os.path.isabs(request.AudioPath):

View File

@@ -53,6 +53,7 @@ dependencies:
- nvidia-nccl-cu12==2.18.1
- nvidia-nvjitlink-cu12==12.2.140
- nvidia-nvtx-cu12==12.1.105
- omegaconf
- packaging==23.2
- pillow==10.0.1
- protobuf==4.24.4

View File

@@ -1,8 +1,6 @@
.PHONY: exllama
exllama:
@echo "Creating virtual environment..."
@conda env create --name exllama --file exllama.yml
@echo "Virtual environment created."
$(MAKE) -C ../common-env/transformers
bash install.sh
.PHONY: run

View File

@@ -5,11 +5,15 @@
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate exllama
source activate transformers
echo $CONDA_PREFIX
git clone https://github.com/turboderp/exllama $CONDA_PREFIX/exllama && pushd $CONDA_PREFIX/exllama && pip install -r requirements.txt && popd
cp -rfv $CONDA_PREFIX/exllama/* ./
cp -rfv $CONDA_PREFIX/exllama/* ./
if [ "$PIP_CACHE_PURGE" = true ] ; then
pip cache purge
fi

View File

@@ -6,9 +6,11 @@
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate exllama
source activate transformers
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
cd $DIR
python $DIR/exllama.py $@

View File

@@ -1,8 +1,6 @@
.PHONY: exllama2
exllama2:
@echo "Creating virtual environment..."
@conda env create --name exllama2 --file exllama2.yml
@echo "Virtual environment created."
$(MAKE) -C ../common-env/transformers
bash install.sh
.PHONY: run

View File

@@ -5,10 +5,14 @@
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate exllama2
source activate transformers
echo $CONDA_PREFIX
git clone https://github.com/turboderp/exllamav2 $CONDA_PREFIX/exllamav2 && pushd $CONDA_PREFIX/exllamav2 && pip install -r requirements.txt && popd
cp -rfv $CONDA_PREFIX/exllamav2/* ./
cp -rfv $CONDA_PREFIX/exllamav2/* ./
if [ "$PIP_CACHE_PURGE" = true ] ; then
pip cache purge
fi

View File

@@ -6,9 +6,11 @@
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate exllama2
source activate transformers
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
cd $DIR
python $DIR/exllama2_backend.py $@

View File

@@ -1,6 +1,8 @@
.PHONY: petals
petals:
$(MAKE) -C ../common-env/transformers
@echo "Creating virtual environment..."
@conda env create --name petals --file petals.yml
@echo "Virtual environment created."
.PHONY: run
run:

View File

@@ -5,14 +5,16 @@
export PATH=$PATH:/opt/conda/bin
CONDA_ENV=petals
# Activate conda environment
# if source is available use it, or use conda
#
if [ -f /opt/conda/bin/activate ]; then
source activate transformers
source activate $CONDA_ENV
else
eval "$(conda shell.bash hook)"
conda activate transformers
conda activate $CONDA_ENV
fi
# get the directory where the bash script is located

View File

@@ -3,7 +3,16 @@
## A bash script wrapper that runs the transformers server with conda
# Activate conda environment
source activate transformers
CONDA_ENV=petals
# Activate conda environment
# if source is available use it, or use conda
#
if [ -f /opt/conda/bin/activate ]; then
source activate $CONDA_ENV
else
eval "$(conda shell.bash hook)"
conda activate $CONDA_ENV
fi
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"

View File

@@ -12,4 +12,8 @@ echo $CONDA_PREFIX
git clone https://github.com/Plachtaa/VALL-E-X.git $CONDA_PREFIX/vall-e-x && pushd $CONDA_PREFIX/vall-e-x && git checkout -b build $SHA && pip install -r requirements.txt && popd
cp -rfv $CONDA_PREFIX/vall-e-x/* ./
cp -rfv $CONDA_PREFIX/vall-e-x/* ./
if [ "$PIP_CACHE_PURGE" = true ] ; then
pip cache purge
fi

View File

@@ -10,4 +10,6 @@ source activate transformers
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
cd $DIR
python $DIR/ttsvalle.py $@

View File

@@ -1,8 +1,6 @@
.PHONY: vllm
vllm:
@echo "Creating virtual environment..."
@conda env create --name vllm --file vllm.yml
@echo "Virtual environment created."
$(MAKE) -C ../common-env/transformers
.PHONY: run
run:

View File

@@ -6,7 +6,7 @@
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate vllm
source activate transformers
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"

View File

@@ -3,7 +3,7 @@
## A bash script wrapper that runs the transformers server with conda
# Activate conda environment
source activate vllm
source activate transformers
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"

View File

@@ -1,99 +0,0 @@
name: vllm
channels:
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _openmp_mutex=5.1=1_gnu
- bzip2=1.0.8=h7b6447c_0
- ca-certificates=2023.08.22=h06a4308_0
- ld_impl_linux-64=2.38=h1181459_1
- libffi=3.4.4=h6a678d5_0
- libgcc-ng=11.2.0=h1234567_1
- libgomp=11.2.0=h1234567_1
- libstdcxx-ng=11.2.0=h1234567_1
- libuuid=1.41.5=h5eee18b_0
- ncurses=6.4=h6a678d5_0
- openssl=3.0.11=h7f8727e_2
- pip=23.2.1=py311h06a4308_0
- python=3.11.5=h955ad1f_0
- readline=8.2=h5eee18b_0
- setuptools=68.0.0=py311h06a4308_0
- sqlite=3.41.2=h5eee18b_0
- tk=8.6.12=h1ccaba5_0
- wheel=0.41.2=py311h06a4308_0
- xz=5.4.2=h5eee18b_0
- zlib=1.2.13=h5eee18b_0
- pip:
- aiosignal==1.3.1
- anyio==3.7.1
- attrs==23.1.0
- certifi==2023.7.22
- charset-normalizer==3.3.0
- click==8.1.7
- cmake==3.27.6
- fastapi==0.103.2
- filelock==3.12.4
- frozenlist==1.4.0
- fsspec==2023.9.2
- grpcio==1.59.0
- h11==0.14.0
- httptools==0.6.0
- huggingface-hub==0.17.3
- idna==3.4
- jinja2==3.1.2
- jsonschema==4.19.1
- jsonschema-specifications==2023.7.1
- lit==17.0.2
- markupsafe==2.1.3
- mpmath==1.3.0
- msgpack==1.0.7
- networkx==3.1
- ninja==1.11.1
- numpy==1.26.0
- nvidia-cublas-cu11==11.10.3.66
- nvidia-cuda-cupti-cu11==11.7.101
- nvidia-cuda-nvrtc-cu11==11.7.99
- nvidia-cuda-runtime-cu11==11.7.99
- nvidia-cudnn-cu11==8.5.0.96
- nvidia-cufft-cu11==10.9.0.58
- nvidia-curand-cu11==10.2.10.91
- nvidia-cusolver-cu11==11.4.0.1
- nvidia-cusparse-cu11==11.7.4.91
- nvidia-nccl-cu11==2.14.3
- nvidia-nvtx-cu11==11.7.91
- packaging==23.2
- pandas==2.1.1
- protobuf==4.24.4
- psutil==5.9.5
- pyarrow==13.0.0
- pydantic==1.10.13
- python-dateutil==2.8.2
- python-dotenv==1.0.0
- pytz==2023.3.post1
- pyyaml==6.0.1
- ray==2.7.0
- referencing==0.30.2
- regex==2023.10.3
- requests==2.31.0
- rpds-py==0.10.4
- safetensors==0.4.0
- sentencepiece==0.1.99
- six==1.16.0
- sniffio==1.3.0
- starlette==0.27.0
- sympy==1.12
- tokenizers==0.14.1
- torch==2.0.1
- tqdm==4.66.1
- transformers==4.34.0
- triton==2.0.0
- typing-extensions==4.8.0
- tzdata==2023.3
- urllib3==2.0.6
- uvicorn==0.23.2
- uvloop==0.17.0
- vllm==0.2.0
- watchfiles==0.20.0
- websockets==11.0.3
- xformers==0.0.22
prefix: /opt/conda/envs/vllm

View File

@@ -18,6 +18,9 @@ title = "LocalAI"
</a>
</p>
[<img src="https://img.shields.io/badge/dockerhub-images-important.svg?logo=Docker">](https://hub.docker.com/r/localai/localai)
[<img src="https://img.shields.io/badge/quay.io-images-important.svg?">](https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest)
> 💡 Get help - [❓FAQ](https://localai.io/faq/) [❓How tos](https://localai.io/howtos/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [💭Discord](https://discord.gg/uJAeKSAGDy)
>
> [💻 Quickstart](https://localai.io/basics/getting_started/) [📣 News](https://localai.io/basics/news/) [ 🛫 Examples ](https://github.com/go-skynet/LocalAI/tree/master/examples/) [ 🖼️ Models ](https://localai.io/models/) [ 🚀 Roadmap ](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
@@ -36,10 +39,10 @@ In a nutshell:
- Local, OpenAI drop-in alternative REST API. You own your data.
- NO GPU required. NO Internet access is required either
- Optional, GPU Acceleration is available in `llama.cpp`-compatible LLMs. See also the [build section](https://localai.io/basics/build/index.html).
- Optional, GPU Acceleration is available. See also the [build section](https://localai.io/basics/build/index.html).
- Supports multiple models
- 🏃 Once loaded the first time, it keep models loaded in memory for faster inference
- ⚡ Doesn't shell-out, but uses C++ bindings for a faster inference and better performance.
- ⚡ Doesn't shell-out, but uses bindings for a faster inference and better performance.
LocalAI is focused on making the AI accessible to anyone. Any contribution, feedback and PR is welcome!

View File

@@ -9,7 +9,7 @@ weight = 6
In order to define default prompts, model parameters (such as custom default `top_p` or `top_k`), LocalAI can be configured to serve user-defined models with a set of default parameters and templates.
You can create multiple `yaml` files in the models path or either specify a single YAML configuration file.
In order to configure a model, you can create multiple `yaml` files in the models path or either specify a single YAML configuration file.
Consider the following `models` folder in the `example/chatbot-ui`:
```
@@ -96,6 +96,12 @@ Specifying a `config-file` via CLI allows to declare models in a single file as
See also [chatbot-ui](https://github.com/go-skynet/LocalAI/tree/master/examples/chatbot-ui) as an example on how to use config files.
It is possible to specify a full URL or a short-hand URL to a YAML model configuration file and use it on start with local-ai, for example to use phi-2:
```
local-ai github://mudler/LocalAI/examples/configurations/phi-2.yaml@master
```
### Full config model file reference
```yaml
@@ -359,15 +365,37 @@ docker run --env REBUILD=true localai
docker run --env-file .env localai
```
### Build only a single backend
### CLI parameters
You can control the backends that are built by setting the `GRPC_BACKENDS` environment variable. For instance, to build only the `llama-cpp` backend only:
You can control LocalAI with command line arguments, to specify a binding address, or the number of threads.
```bash
make GRPC_BACKENDS=backend-assets/grpc/llama-cpp build
```
By default, all the backends are built.
| Parameter | Environmental Variable | Default Variable | Description |
| ------------------------------ | ------------------------------- | -------------------------------------------------- | ------------------------------------------------------------------- |
| --f16 | $F16 | false | Enable f16 mode |
| --debug | $DEBUG | false | Enable debug mode |
| --cors | $CORS | false | Enable CORS support |
| --cors-allow-origins value | $CORS_ALLOW_ORIGINS | | Specify origins allowed for CORS |
| --threads value | $THREADS | 4 | Number of threads to use for parallel computation |
| --models-path value | $MODELS_PATH | ./models | Path to the directory containing models used for inferencing |
| --preload-models value | $PRELOAD_MODELS | | List of models to preload in JSON format at startup |
| --preload-models-config value | $PRELOAD_MODELS_CONFIG | | A config with a list of models to apply at startup. Specify the path to a YAML config file |
| --config-file value | $CONFIG_FILE | | Path to the config file |
| --address value | $ADDRESS | :8080 | Specify the bind address for the API server |
| --image-path value | $IMAGE_PATH | | Path to the directory used to store generated images |
| --context-size value | $CONTEXT_SIZE | 512 | Default context size of the model |
| --upload-limit value | $UPLOAD_LIMIT | 15 | Default upload limit in megabytes (audio file upload) |
| --galleries | $GALLERIES | | Allows to set galleries from command line |
|--parallel-requests | $PARALLEL_REQUESTS | false | Enable backends to handle multiple requests in parallel. This is for backends that supports multiple requests in parallel, like llama.cpp or vllm |
| --single-active-backend | $SINGLE_ACTIVE_BACKEND | false | Allow only one backend to be running |
| --api-keys value | $API_KEY | empty | List of API Keys to enable API authentication. When this is set, all the requests must be authenticated with one of these API keys.
| --enable-watchdog-idle | $WATCHDOG_IDLE | false | Enable watchdog for stopping idle backends. This will stop the backends if are in idle state for too long. (default: false) [$WATCHDOG_IDLE]
| --enable-watchdog-busy | $WATCHDOG_BUSY | false | Enable watchdog for stopping busy backends that exceed a defined threshold.|
| --watchdog-busy-timeout value | $WATCHDOG_BUSY_TIMEOUT | 5m | Watchdog timeout. This will restart the backend if it crashes. |
| --watchdog-idle-timeout value | $WATCHDOG_IDLE_TIMEOUT | 15m | Watchdog idle timeout. This will restart the backend if it crashes. |
| --preload-backend-only | $PRELOAD_BACKEND_ONLY | false | If set, the api is NOT launched, and only the preloaded models / backends are started. This is intended for multi-node setups. |
| --external-grpc-backends | EXTERNAL_GRPC_BACKENDS | none | Comma separated list of external gRPC backends to use. Format: `name:host:port` or `name:/path/to/file` |
### Extra backends

View File

@@ -7,16 +7,15 @@ url = '/basics/build/'
+++
### Build locally
### Build
#### Container image
Requirements:
Either Docker/podman, or
- Golang >= 1.21
- Cmake/make
- GCC
- Docker or podman, or a container engine
In order to build the `LocalAI` container image locally you can use `docker`:
In order to build the `LocalAI` container image locally you can use `docker`, for example:
```
# build the image
@@ -24,7 +23,45 @@ docker build -t localai .
docker run localai
```
Or you can build the manually binary with `make`:
#### Locally
In order to build LocalAI locally, you need the following requirements:
- Golang >= 1.21
- Cmake/make
- GCC
- GRPC
To install the dependencies follow the instructions below:
{{< tabs >}}
{{% tab name="Apple" %}}
```bash
brew install abseil cmake go grpc protobuf wget
```
{{% /tab %}}
{{% tab name="Debian" %}}
```bash
apt install protobuf-compiler-grpc libgrpc-dev make cmake
```
{{% /tab %}}
{{% tab name="From source" %}}
Specify `BUILD_GRPC_FOR_BACKEND_LLAMA=true` to build automatically the gRPC dependencies
```bash
make ... BUILD_GRPC_FOR_BACKEND_LLAMA=true build
```
{{% /tab %}}
{{< /tabs >}}
To build LocalAI with `make`:
```
git clone https://github.com/go-skynet/LocalAI
@@ -32,7 +69,7 @@ cd LocalAI
make build
```
To run: `./local-ai`
This should produce the binary `local-ai`
{{% notice note %}}
@@ -54,7 +91,7 @@ docker run --rm -ti -p 8080:8080 -e DEBUG=true -e MODELS_PATH=/models -e THREADS
{{% /notice %}}
### Build on mac
### Example: Build on mac
Building on Mac (M1 or M2) works, but you may need to install some prerequisites using `brew`.
@@ -188,6 +225,24 @@ make BUILD_TYPE=metal build
# Note: only models quantized with q4_0 are supported!
```
### Build only a single backend
You can control the backends that are built by setting the `GRPC_BACKENDS` environment variable. For instance, to build only the `llama-cpp` backend only:
```bash
make GRPC_BACKENDS=backend-assets/grpc/llama-cpp build
```
By default, all the backends are built.
### Specific llama.cpp version
To build with a specific version of llama.cpp, set `CPPLLAMA_VERSION` to the tag or wanted sha:
```
CPPLLAMA_VERSION=<sha> make build
```
### Windows compatibility
Make sure to give enough resources to the running container. See https://github.com/go-skynet/LocalAI/issues/2

View File

@@ -15,11 +15,19 @@ This section contains instruction on how to use LocalAI with GPU acceleration.
For accelleration for AMD or Metal HW there are no specific container images, see the [build]({{%relref "build/#acceleration" %}})
{{% /notice %}}
### CUDA
### CUDA(NVIDIA) acceleration
Requirement: nvidia-container-toolkit (installation instructions [1](https://www.server-world.info/en/note?os=Ubuntu_22.04&p=nvidia&f=2) [2](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html))
To use CUDA, use the images with the `cublas` tag.
To check what CUDA version do you need, you can either run `nvidia-smi` or `nvcc --version`.
Alternatively, you can also check nvidia-smi with docker:
```
docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
```
To use CUDA, use the images with the `cublas` tag, for example.
The image list is on [quay](https://quay.io/repository/go-skynet/local-ai?tab=tags):

View File

@@ -1,4 +1,4 @@
+++
disableToc = false
title = "Getting started"
@@ -6,7 +6,11 @@ weight = 1
url = '/basics/getting_started/'
+++
`LocalAI` is available as a container image and binary. It can be used with docker, podman, kubernetes and any container engine. You can check out all the available images with corresponding tags [here](https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest).
`LocalAI` is available as a container image and binary. It can be used with docker, podman, kubernetes and any container engine.
Container images are published to [quay.io](https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest) and [Dockerhub](https://hub.docker.com/r/localai/localai).
[<img src="https://img.shields.io/badge/dockerhub-images-important.svg?logo=Docker">](https://hub.docker.com/r/localai/localai)
[<img src="https://img.shields.io/badge/quay.io-images-important.svg?">](https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest)
See also our [How to]({{%relref "howtos" %}}) section for end-to-end guided examples curated by the community.
@@ -14,6 +18,8 @@ See also our [How to]({{%relref "howtos" %}}) section for end-to-end guided exam
The easiest way to run LocalAI is by using [`docker compose`](https://docs.docker.com/compose/install/) or with [Docker](https://docs.docker.com/engine/install/) (to build locally, see the [build section]({{%relref "build" %}})).
LocalAI needs at least a model file to work, or a configuration YAML file, or both. You can customize further model defaults and specific settings with a configuration file (see [advanced]({{%relref "advanced" %}})).
{{% notice note %}}
To run with GPU Accelleration, see [GPU acceleration]({{%relref "features/gpu-acceleration" %}}).
{{% /notice %}}
@@ -111,10 +117,108 @@ helm show values go-skynet/local-ai > values.yaml
helm install local-ai go-skynet/local-ai -f values.yaml
```
{{% /tab %}}
{{% tab name="From binary" %}}
LocalAI binary releases are available in [Github](https://github.com/go-skynet/LocalAI/releases).
{{% /tab %}}
{{% tab name="From source" %}}
See the [build section]({{%relref "build" %}}).
{{% /tab %}}
{{< /tabs >}}
### Running Popular models (one-click!)
You can run `local-ai` directly with a model name, and it will download the model and start the API with the model loaded.
> Don't need GPU acceleration? use the CPU images which are lighter and do not have Nvidia dependencies
> To know which version of CUDA do you have available, you can check with `nvidia-smi` or `nvcc --version`
{{< tabs >}}
{{% tab name="CPU-only" %}}
| Model | Category | Docker command |
| --- | --- | --- |
| [phi-2](https://huggingface.co/microsoft/phi-2) | LLM | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core phi-2``` |
| [llava](https://github.com/SkunkworksAI/BakLLaVA) | Multimodal LLM | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core llava``` |
| [mistral-openorca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) | LLM | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core mistral-openorca``` |
| [bert-cpp](https://github.com/skeskinen/bert.cpp) | Embeddings | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core bert-cpp``` |
| all-minilm-l6-v2 | Embeddings | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg all-minilm-l6-v2``` |
| whisper-base | Audio to Text | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core whisper-base``` |
| rhasspy-voice-en-us-amy | Text to Audio | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core rhasspy-voice-en-us-amy``` |
| coqui | Text to Audio | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg coqui``` |
| bark | Text to Audio | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg bark``` |
| vall-e-x | Text to Audio | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg vall-e-x``` |
{{% /tab %}}
{{% tab name="GPU (CUDA 11)" %}}
| Model | Category | Docker command |
| --- | --- | --- |
| [phi-2](https://huggingface.co/microsoft/phi-2) | LLM | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core phi-2``` |
| [llava](https://github.com/SkunkworksAI/BakLLaVA) | Multimodal LLM | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core llava``` |
| [mistral-openorca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) | LLM | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core mistral-openorca``` |
| [bert-cpp](https://github.com/skeskinen/bert.cpp) | Embeddings | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core bert-cpp``` |
| [all-minilm-l6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | Embeddings | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 all-minilm-l6-v2``` |
| whisper-base | Audio to Text | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core whisper-base``` |
| rhasspy-voice-en-us-amy | Text to Audio | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core rhasspy-voice-en-us-amy``` |
| coqui | Text to Audio | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 coqui``` |
| bark | Text to Audio | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 bark``` |
| vall-e-x | Text to Audio | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 vall-e-x``` |
{{% /tab %}}
{{% tab name="GPU (CUDA 12)" %}}
| Model | Category | Docker command |
| --- | --- | --- |
| [phi-2](https://huggingface.co/microsoft/phi-2) | LLM | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core phi-2``` |
| [llava](https://github.com/SkunkworksAI/BakLLaVA) | Multimodal LLM | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core llava``` |
| [mistral-openorca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) | LLM | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core mistral-openorca``` |
| bert-cpp | Embeddings | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core bert-cpp``` |
| all-minilm-l6-v2 | Embeddings | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 all-minilm-l6-v2``` |
| whisper-base | Audio to Text | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core whisper-base``` |
| rhasspy-voice-en-us-amy | Text to Audio | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core rhasspy-voice-en-us-amy``` |
| coqui | Text to Audio | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 coqui``` |
| bark | Text to Audio | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 bark``` |
| vall-e-x | Text to Audio | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 vall-e-x``` |
{{% /tab %}}
{{< /tabs >}}
{{% notice note %}}
LocalAI can be started (either the container image or the binary) with a list of model config files URLs or our short-handed format (e.g. `huggingface://`. `github://`). It works by passing the urls as arguments or environment variable, for example:
```
local-ai github://owner/repo/file.yaml@branch
# Env
MODELS="github://owner/repo/file.yaml@branch,github://owner/repo/file.yaml@branch" local-ai
# Args
local-ai --models github://owner/repo/file.yaml@branch --models github://owner/repo/file.yaml@branch
```
For example, to start localai with phi-2, it's possible for instance to also use a full config file from gists:
```bash
docker run -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core https://gist.githubusercontent.com/mudler/ad601a0488b497b69ec549150d9edd18/raw/a8a8869ef1bb7e3830bf5c0bae29a0cce991ff8d/phi-2.yaml
```
The file should be a valid LocalAI YAML configuration file, for the full syntax see [advanced]({{%relref "advanced" %}}).
{{% /notice %}}
### Container images
LocalAI has a set of images to support CUDA, ffmpeg and 'vanilla' (CPU-only). The image list is on [quay](https://quay.io/repository/go-skynet/local-ai?tab=tags):
@@ -131,6 +235,11 @@ Core Images - Smaller images without predownload python dependencies
{{% /tab %}}
{{% tab name="GPU Images CUDA 11" %}}
Images with Nvidia accelleration support
> If you do not know which version of CUDA do you have available, you can check with `nvidia-smi` or `nvcc --version`
- `master-cublas-cuda11`
- `master-cublas-cuda11-core`
- `{{< version >}}-cublas-cuda11`
@@ -142,6 +251,11 @@ Core Images - Smaller images without predownload python dependencies
{{% /tab %}}
{{% tab name="GPU Images CUDA 12" %}}
Images with Nvidia accelleration support
> If you do not know which version of CUDA do you have available, you can check with `nvidia-smi` or `nvcc --version`
- `master-cublas-cuda12`
- `master-cublas-cuda12-core`
- `{{< version >}}-cublas-cuda12`
@@ -201,212 +315,9 @@ curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/jso
To see other model configurations, see also the example section [here](https://github.com/mudler/LocalAI/tree/master/examples/configurations).
### From binaries
LocalAI binary releases are available in [Github](https://github.com/go-skynet/LocalAI/releases).
You can control LocalAI with command line arguments, to specify a binding address, or the number of threads.
### CLI parameters
| Parameter | Environmental Variable | Default Variable | Description |
| ------------------------------ | ------------------------------- | -------------------------------------------------- | ------------------------------------------------------------------- |
| --f16 | $F16 | false | Enable f16 mode |
| --debug | $DEBUG | false | Enable debug mode |
| --cors | $CORS | false | Enable CORS support |
| --cors-allow-origins value | $CORS_ALLOW_ORIGINS | | Specify origins allowed for CORS |
| --threads value | $THREADS | 4 | Number of threads to use for parallel computation |
| --models-path value | $MODELS_PATH | ./models | Path to the directory containing models used for inferencing |
| --preload-models value | $PRELOAD_MODELS | | List of models to preload in JSON format at startup |
| --preload-models-config value | $PRELOAD_MODELS_CONFIG | | A config with a list of models to apply at startup. Specify the path to a YAML config file |
| --config-file value | $CONFIG_FILE | | Path to the config file |
| --address value | $ADDRESS | :8080 | Specify the bind address for the API server |
| --image-path value | $IMAGE_PATH | | Path to the directory used to store generated images |
| --context-size value | $CONTEXT_SIZE | 512 | Default context size of the model |
| --upload-limit value | $UPLOAD_LIMIT | 15 | Default upload limit in megabytes (audio file upload) |
| --galleries | $GALLERIES | | Allows to set galleries from command line |
|--parallel-requests | $PARALLEL_REQUESTS | false | Enable backends to handle multiple requests in parallel. This is for backends that supports multiple requests in parallel, like llama.cpp or vllm |
| --single-active-backend | $SINGLE_ACTIVE_BACKEND | false | Allow only one backend to be running |
| --api-keys value | $API_KEY | empty | List of API Keys to enable API authentication. When this is set, all the requests must be authenticated with one of these API keys.
| --enable-watchdog-idle | $WATCHDOG_IDLE | false | Enable watchdog for stopping idle backends. This will stop the backends if are in idle state for too long. (default: false) [$WATCHDOG_IDLE]
| --enable-watchdog-busy | $WATCHDOG_BUSY | false | Enable watchdog for stopping busy backends that exceed a defined threshold.|
| --watchdog-busy-timeout value | $WATCHDOG_BUSY_TIMEOUT | 5m | Watchdog timeout. This will restart the backend if it crashes. |
| --watchdog-idle-timeout value | $WATCHDOG_IDLE_TIMEOUT | 15m | Watchdog idle timeout. This will restart the backend if it crashes. |
| --preload-backend-only | $PRELOAD_BACKEND_ONLY | false | If set, the api is NOT launched, and only the preloaded models / backends are started. This is intended for multi-node setups. |
| --external-grpc-backends | EXTERNAL_GRPC_BACKENDS | none | Comma separated list of external gRPC backends to use. Format: `name:host:port` or `name:/path/to/file` |
### Run LocalAI in Kubernetes
LocalAI can be installed inside Kubernetes with helm.
Requirements:
- SSD storage class, or disable `mmap` to load the whole model in memory
<details>
By default, the helm chart will install LocalAI instance using the ggml-gpt4all-j model without persistent storage.
1. Add the helm repo
```bash
helm repo add go-skynet https://go-skynet.github.io/helm-charts/
```
2. Install the helm chart:
```bash
helm repo update
helm install local-ai go-skynet/local-ai -f values.yaml
```
> **Note:** For further configuration options, see the [helm chart repository on GitHub](https://github.com/go-skynet/helm-charts).
### Example values
Deploy a single LocalAI pod with 6GB of persistent storage serving up a `ggml-gpt4all-j` model with custom prompt.
```yaml
### values.yaml
replicaCount: 1
deployment:
image: quay.io/go-skynet/local-ai:latest ##(This is for CPU only, to use GPU change it to a image that supports GPU IE "v2.0.0-cublas-cuda12-core")
env:
threads: 4
context_size: 512
modelsPath: "/models"
resources:
{}
# We usually recommend not to specify default resources and to leave this as a conscious
# choice for the user. This also increases chances charts run on environments with little
# resources, such as Minikube. If you do want to specify resources, uncomment the following
# lines, adjust them as necessary, and remove the curly braces after 'resources:'.
# limits:
# cpu: 100m
# memory: 128Mi
# requests:
# cpu: 100m
# memory: 128Mi
# Prompt templates to include
# Note: the keys of this map will be the names of the prompt template files
promptTemplates:
{}
# ggml-gpt4all-j.tmpl: |
# The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.
# ### Prompt:
# {{.Input}}
# ### Response:
# Models to download at runtime
models:
# Whether to force download models even if they already exist
forceDownload: false
# The list of URLs to download models from
# Note: the name of the file will be the name of the loaded model
list:
- url: "https://gpt4all.io/models/ggml-gpt4all-j.bin"
# basicAuth: base64EncodedCredentials
# Persistent storage for models and prompt templates.
# PVC and HostPath are mutually exclusive. If both are enabled,
# PVC configuration takes precedence. If neither are enabled, ephemeral
# storage is used.
persistence:
pvc:
enabled: false
size: 6Gi
accessModes:
- ReadWriteOnce
annotations: {}
# Optional
storageClass: ~
hostPath:
enabled: false
path: "/models"
service:
type: ClusterIP
port: 80
annotations: {}
# If using an AWS load balancer, you'll need to override the default 60s load balancer idle timeout
# service.beta.kubernetes.io/aws-load-balancer-connection-idle-timeout: "1200"
ingress:
enabled: false
className: ""
annotations:
{}
# kubernetes.io/ingress.class: nginx
# kubernetes.io/tls-acme: "true"
hosts:
- host: chart-example.local
paths:
- path: /
pathType: ImplementationSpecific
tls: []
# - secretName: chart-example-tls
# hosts:
# - chart-example.local
nodeSelector: {}
tolerations: []
affinity: {}
```
</details>
### Build from source
See the [build section]({{%relref "build" %}}).
### Other examples
### Examples
![Screenshot from 2023-04-26 23-59-55](https://user-images.githubusercontent.com/2420543/234715439-98d12e03-d3ce-4f94-ab54-2b256808e05e.png)
To see other examples on how to integrate with other projects for instance for question answering or for using it with chatbot-ui, see: [examples](https://github.com/go-skynet/LocalAI/tree/master/examples/).
### Clients
OpenAI clients are already compatible with LocalAI by overriding the basePath, or the target URL.
## Javascript
<details>
https://github.com/openai/openai-node/
```javascript
import { Configuration, OpenAIApi } from 'openai';
const configuration = new Configuration({
basePath: `http://localhost:8080/v1`
});
const openai = new OpenAIApi(configuration);
```
</details>
## Python
<details>
https://github.com/openai/openai-python
Set the `OPENAI_API_BASE` environment variable, or by code:
```python
import openai
openai.api_base = "http://localhost:8080/v1"
# create a chat completion
chat_completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hello world"}])
# print the completion
print(completion.choices[0].message.content)
```
</details>

View File

@@ -43,15 +43,18 @@ Besides llama based models, LocalAI is compatible also with other architectures.
| [langchain-huggingface](https://github.com/tmc/langchaingo) | Any text generators available on HuggingFace through API | yes | GPT | no | no | N/A |
| [piper](https://github.com/rhasspy/piper) ([binding](https://github.com/mudler/go-piper)) | Any piper onnx model | no | Text to voice | no | no | N/A |
| [falcon](https://github.com/cmp-nct/ggllm.cpp/tree/c12b2d65f732a0d8846db2244e070f0f3e73505c) ([binding](https://github.com/mudler/go-ggllm.cpp)) | Falcon *** | yes | GPT | no | yes | CUDA |
| `huggingface-embeddings` [sentence-transformers](https://github.com/UKPLab/sentence-transformers) | BERT | no | Embeddings only | yes | no | N/A |
| [sentencetransformers](https://github.com/UKPLab/sentence-transformers) | BERT | no | Embeddings only | yes | no | N/A |
| `bark` | bark | no | Audio generation | no | no | yes |
| `AutoGPTQ` | GPTQ | yes | GPT | yes | no | N/A |
| `autogptq` | GPTQ | yes | GPT | yes | no | N/A |
| `exllama` | GPTQ | yes | GPT only | no | no | N/A |
| `diffusers` | SD,... | no | Image generation | no | no | N/A |
| `vall-e-x` | Vall-E | no | Audio generation and Voice cloning | no | no | CPU/CUDA |
| `vllm` | Various GPTs and quantization formats | yes | GPT | no | no | CPU/CUDA |
| `exllama2` | GPTQ | yes | GPT only | no | no | N/A |
| `transformers-musicgen` | | no | Audio generation | no | no | N/A |
| [tinydream](https://github.com/symisc/tiny-dream#tiny-dreaman-embedded-header-only-stable-diffusion-inference-c-librarypixlabiotiny-dream) | stablediffusion | no | Image | no | no | N/A |
| `coqui` | Coqui | no | Audio generation and Voice cloning | no | no | CPU/CUDA |
| `petals` | Various GPTs and quantization formats | yes | GPT | no | no | CPU/CUDA |
Note: any backend name listed above can be used in the `backend` field of the model configuration file (See [the advanced section]({{%relref "advanced" %}})).

View File

@@ -167,11 +167,6 @@ curl -H "Content-Type: application/json" -d @- http://localhost:8080/v1/images/
## img2vid
{{% notice note %}}
Experimental and available only on master builds. See: https://github.com/mudler/LocalAI/pull/1442
{{% /notice %}}
```yaml
name: img2vid
@@ -193,12 +188,6 @@ curl -H "Content-Type: application/json" -X POST -d @- http://localhost:8080/v1/
## txt2vid
{{% notice note %}}
Experimental and available only on master builds. See: https://github.com/mudler/LocalAI/pull/1442
{{% /notice %}}
```yaml
name: txt2vid
parameters:

View File

@@ -1,3 +1,3 @@
{
"version": "v2.3.0"
"version": "v2.5.0"
}

53
embedded/embedded.go Normal file
View File

@@ -0,0 +1,53 @@
package embedded
import (
"embed"
"fmt"
"slices"
"strings"
"github.com/go-skynet/LocalAI/pkg/assets"
"gopkg.in/yaml.v3"
)
var modelShorteners map[string]string
//go:embed model_library.yaml
var modelLibrary []byte
//go:embed models/*
var embeddedModels embed.FS
func ModelShortURL(s string) string {
if _, ok := modelShorteners[s]; ok {
s = modelShorteners[s]
}
return s
}
func init() {
yaml.Unmarshal(modelLibrary, &modelShorteners)
}
// ExistsInModelsLibrary checks if a model exists in the embedded models library
func ExistsInModelsLibrary(s string) bool {
f := fmt.Sprintf("%s.yaml", s)
a := []string{}
for _, j := range assets.ListFiles(embeddedModels) {
a = append(a, strings.TrimPrefix(j, "models/"))
}
return slices.Contains(a, f)
}
// ResolveContent returns the content in the embedded model library
func ResolveContent(s string) ([]byte, error) {
if ExistsInModelsLibrary(s) {
return embeddedModels.ReadFile(fmt.Sprintf("models/%s.yaml", s))
}
return nil, fmt.Errorf("cannot find model %s", s)
}

View File

@@ -0,0 +1,9 @@
###
###
### This file contains the list of models that are available in the library
### The URLs are automatically expanded when local-ai is being called with the key as argument
###
### For models with an entire YAML file to be embededd, put the file inside the `models`
### directory, it will be automatically available with the file name as key (without the .yaml extension)
phi-2: "github://mudler/LocalAI/examples/configurations/phi-2.yaml@master"

View File

@@ -0,0 +1,13 @@
name: all-minilm-l6-v2
backend: sentencetransformers
embeddings: true
parameters:
model: all-MiniLM-L6-v2
usage: |
You can test this model with curl like this:
curl http://localhost:8080/embeddings -X POST -H "Content-Type: application/json" -d '{
"input": "Your text string goes here",
"model": "all-minilm-l6-v2"
}'

View File

@@ -0,0 +1,8 @@
usage: |
bark works without any configuration, to test it, you can run the following curl command:
curl http://localhost:8080/tts -H "Content-Type: application/json" -d '{
"backend": "bark",
"input":"Hello, this is a test!"
}' | aplay
# TODO: This is a placeholder until we manage to pre-load HF/Transformers models

View File

@@ -0,0 +1,23 @@
backend: bert-embeddings
embeddings: true
f16: true
gpu_layers: 90
mmap: true
name: bert-cpp-minilm-v6
parameters:
model: bert-MiniLM-L6-v2q4_0.bin
download_files:
- filename: "bert-MiniLM-L6-v2q4_0.bin"
sha256: "a5a174d8772c8a569faf9f3136c441f2c3855b5bf35ed32274294219533feaad"
uri: "https://huggingface.co/mudler/all-MiniLM-L6-v2/resolve/main/ggml-model-q4_0.bin"
usage: |
You can test this model with curl like this:
curl http://localhost:8080/embeddings -X POST -H "Content-Type: application/json" -d '{
"input": "Your text string goes here",
"model": "bert-cpp-minilm-v6"
}'

View File

@@ -0,0 +1,9 @@
usage: |
coqui works without any configuration, to test it, you can run the following curl command:
curl http://localhost:8080/tts -H "Content-Type: application/json" -d '{
"backend": "coqui",
"model": "tts_models/en/ljspeech/glow-tts",
"input":"Hello, this is a test!"
}'
# TODO: This is a placeholder until we manage to pre-load HF/Transformers models

View File

@@ -0,0 +1,36 @@
backend: llama-cpp
context_size: 4096
f16: true
gpu_layers: 90
mmap: true
name: llava
roles:
user: "USER:"
assistant: "ASSISTANT:"
system: "SYSTEM:"
mmproj: bakllava-mmproj.gguf
parameters:
model: bakllava.gguf
temperature: 0.2
top_k: 40
top_p: 0.95
template:
chat: |
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
{{.Input}}
ASSISTANT:
download_files:
- filename: bakllava.gguf
uri: huggingface://mys/ggml_bakllava-1/ggml-model-q4_k.gguf
- filename: bakllava-mmproj.gguf
uri: huggingface://mys/ggml_bakllava-1/mmproj-model-f16.gguf
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "llava",
"messages": [{"role": "user", "content": [{"type":"text", "text": "What is in the image?"}, {"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }}], "temperature": 0.9}]}'

View File

@@ -0,0 +1,29 @@
name: mistral-openorca
mmap: true
parameters:
model: huggingface://TheBloke/Mistral-7B-OpenOrca-GGUF/mistral-7b-openorca.Q6_K.gguf
temperature: 0.2
top_k: 40
top_p: 0.95
template:
chat_message: |
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "user"}}user{{end}}
{{if .Content}}{{.Content}}{{end}}
<|im_end|>
chat: |
{{.Input}}
<|im_start|>assistant
completion: |
{{.Input}}
context_size: 4096
f16: true
stopwords:
- <|im_end|>
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "mistral-openorca",
"messages": [{"role": "user", "content": "How are you doing?", "temperature": 0.1}]
}'

View File

@@ -0,0 +1,13 @@
name: voice-en-us-amy-low
download_files:
- filename: voice-en-us-amy-low.tar.gz
uri: https://github.com/rhasspy/piper/releases/download/v0.0.2/voice-en-us-amy-low.tar.gz
usage: |
To test if this model works as expected, you can use the following curl command:
curl http://localhost:8080/tts -H "Content-Type: application/json" -d '{
"model":"en-us-amy-low.onnx",
"input": "Hi, this is a test."
}'

View File

@@ -0,0 +1,8 @@
usage: |
Vall-e-x works without any configuration, to test it, you can run the following curl command:
curl http://localhost:8080/tts -H "Content-Type: application/json" -d '{
"backend": "vall-e-x",
"input":"Hello, this is a test!"
}' | aplay
# TODO: This is a placeholder until we manage to pre-load HF/Transformers models

View File

@@ -0,0 +1,18 @@
name: whisper
backend: whisper
parameters:
model: ggml-whisper-base.bin
usage: |
## example audio file
wget --quiet --show-progress -O gb1.ogg https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg
## Send the example audio file to the transcriptions endpoint
curl http://localhost:8080/v1/audio/transcriptions \
-H "Content-Type: multipart/form-data" \
-F file="@$PWD/gb1.ogg" -F model="whisper"
download_files:
- filename: "ggml-whisper-base.bin"
sha256: "60ed5bc3dd14eea856493d334349b405782ddcaf0028d4b5df4088345fba2efe"
uri: "https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.bin"

View File

@@ -67,6 +67,17 @@ curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/jso
```
### Phi-2
```
cp -r examples/configurations/phi-2.yaml models/
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "phi-2",
"messages": [{"role": "user", "content": "How are you doing?", "temperature": 0.1}]
}'
```
### Mixtral
```

View File

@@ -0,0 +1,17 @@
name: phi-2
context_size: 2048
f16: true
gpu_layers: 90
mmap: true
trimsuffix:
- "\n"
parameters:
model: huggingface://TheBloke/phi-2-GGUF/phi-2.Q8_0.gguf
temperature: 0.2
top_k: 40
top_p: 0.95
template:
chat: &template |
Instruct: {{.Input}}
Output:
completion: *template

View File

@@ -99,6 +99,11 @@ func main() {
Usage: "A List of models to apply in JSON at start",
EnvVars: []string{"PRELOAD_MODELS"},
},
&cli.StringFlag{
Name: "models",
Usage: "A List of models URLs configurations.",
EnvVars: []string{"MODELS"},
},
&cli.StringFlag{
Name: "preload-models-config",
Usage: "A List of models to apply at startup. Path to a YAML config file",
@@ -222,6 +227,7 @@ For a list of compatible model, check out: https://localai.io/model-compatibilit
options.WithBackendAssetsOutput(ctx.String("backend-assets-path")),
options.WithUploadLimitMB(ctx.Int("upload-limit")),
options.WithApiKeys(ctx.StringSlice("api-keys")),
options.WithModelsURL(append(ctx.StringSlice("models"), ctx.Args().Slice()...)...),
}
idleWatchDog := ctx.Bool("enable-watchdog-idle")

22
pkg/assets/list.go Normal file
View File

@@ -0,0 +1,22 @@
package assets
import (
"embed"
"io/fs"
)
func ListFiles(content embed.FS) (files []string) {
fs.WalkDir(content, ".", func(path string, d fs.DirEntry, err error) error {
if err != nil {
return err
}
if d.IsDir() {
return nil
}
files = append(files, path)
return nil
})
return
}

View File

@@ -0,0 +1,26 @@
package downloader
import "hash"
type progressWriter struct {
fileName string
total int64
written int64
downloadStatus func(string, string, string, float64)
hash hash.Hash
}
func (pw *progressWriter) Write(p []byte) (n int, err error) {
n, err = pw.hash.Write(p)
pw.written += int64(n)
if pw.total > 0 {
percentage := float64(pw.written) / float64(pw.total) * 100
//log.Debug().Msgf("Downloading %s: %s/%s (%.2f%%)", pw.fileName, formatBytes(pw.written), formatBytes(pw.total), percentage)
pw.downloadStatus(pw.fileName, formatBytes(pw.written), formatBytes(pw.total), percentage)
} else {
pw.downloadStatus(pw.fileName, formatBytes(pw.written), "", 0)
}
return
}

View File

@@ -1,10 +1,9 @@
package utils
package downloader
import (
"crypto/md5"
"crypto/sha256"
"encoding/base64"
"fmt"
"hash"
"io"
"net/http"
"os"
@@ -12,30 +11,20 @@ import (
"strconv"
"strings"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/rs/zerolog/log"
)
const (
githubURI = "github:"
HuggingFacePrefix = "huggingface://"
HTTPPrefix = "http://"
HTTPSPrefix = "https://"
GithubURI = "github:"
GithubURI2 = "github://"
)
func GetURI(url string, f func(url string, i []byte) error) error {
if strings.HasPrefix(url, githubURI) {
parts := strings.Split(url, ":")
repoParts := strings.Split(parts[1], "@")
branch := "main"
if len(repoParts) > 1 {
branch = repoParts[1]
}
repoPath := strings.Split(repoParts[0], "/")
org := repoPath[0]
project := repoPath[1]
projectPath := strings.Join(repoPath[2:], "/")
url = fmt.Sprintf("https://raw.githubusercontent.com/%s/%s/%s/%s", org, project, branch, projectPath)
}
url = ConvertURL(url)
if strings.HasPrefix(url, "file://") {
rawURL := strings.TrimPrefix(url, "file://")
@@ -71,16 +60,47 @@ func GetURI(url string, f func(url string, i []byte) error) error {
return f(url, body)
}
const (
HuggingFacePrefix = "huggingface://"
)
func LooksLikeURL(s string) bool {
return strings.HasPrefix(s, "http://") || strings.HasPrefix(s, "https://") || strings.HasPrefix(s, HuggingFacePrefix)
return strings.HasPrefix(s, HTTPPrefix) ||
strings.HasPrefix(s, HTTPSPrefix) ||
strings.HasPrefix(s, HuggingFacePrefix) ||
strings.HasPrefix(s, GithubURI) ||
strings.HasPrefix(s, GithubURI2)
}
func ConvertURL(s string) string {
switch {
case strings.HasPrefix(s, GithubURI2):
repository := strings.Replace(s, GithubURI2, "", 1)
repoParts := strings.Split(repository, "@")
branch := "main"
if len(repoParts) > 1 {
branch = repoParts[1]
}
repoPath := strings.Split(repoParts[0], "/")
org := repoPath[0]
project := repoPath[1]
projectPath := strings.Join(repoPath[2:], "/")
return fmt.Sprintf("https://raw.githubusercontent.com/%s/%s/%s/%s", org, project, branch, projectPath)
case strings.HasPrefix(s, GithubURI):
parts := strings.Split(s, ":")
repoParts := strings.Split(parts[1], "@")
branch := "main"
if len(repoParts) > 1 {
branch = repoParts[1]
}
repoPath := strings.Split(repoParts[0], "/")
org := repoPath[0]
project := repoPath[1]
projectPath := strings.Join(repoPath[2:], "/")
return fmt.Sprintf("https://raw.githubusercontent.com/%s/%s/%s/%s", org, project, branch, projectPath)
case strings.HasPrefix(s, HuggingFacePrefix):
repository := strings.Replace(s, HuggingFacePrefix, "", 1)
// convert repository to a full URL.
@@ -209,10 +229,10 @@ func DownloadFile(url string, filePath, sha string, downloadStatus func(string,
}
log.Info().Msgf("File %q downloaded and verified", filePath)
if IsArchive(filePath) {
if utils.IsArchive(filePath) {
basePath := filepath.Dir(filePath)
log.Info().Msgf("File %q is an archive, uncompressing to %s", filePath, basePath)
if err := ExtractArchive(filePath, basePath); err != nil {
if err := utils.ExtractArchive(filePath, basePath); err != nil {
log.Debug().Msgf("Failed decompressing %q: %s", filePath, err.Error())
return err
}
@@ -221,32 +241,35 @@ func DownloadFile(url string, filePath, sha string, downloadStatus func(string,
return nil
}
type progressWriter struct {
fileName string
total int64
written int64
downloadStatus func(string, string, string, float64)
hash hash.Hash
}
// this function check if the string is an URL, if it's an URL downloads the image in memory
// encodes it in base64 and returns the base64 string
func GetBase64Image(s string) (string, error) {
if strings.HasPrefix(s, "http") {
// download the image
resp, err := http.Get(s)
if err != nil {
return "", err
}
defer resp.Body.Close()
func (pw *progressWriter) Write(p []byte) (n int, err error) {
n, err = pw.hash.Write(p)
pw.written += int64(n)
// read the image data into memory
data, err := io.ReadAll(resp.Body)
if err != nil {
return "", err
}
if pw.total > 0 {
percentage := float64(pw.written) / float64(pw.total) * 100
//log.Debug().Msgf("Downloading %s: %s/%s (%.2f%%)", pw.fileName, formatBytes(pw.written), formatBytes(pw.total), percentage)
pw.downloadStatus(pw.fileName, formatBytes(pw.written), formatBytes(pw.total), percentage)
} else {
pw.downloadStatus(pw.fileName, formatBytes(pw.written), "", 0)
// encode the image data in base64
encoded := base64.StdEncoding.EncodeToString(data)
// return the base64 string
return encoded, nil
}
return
}
// MD5 of a string
func MD5(s string) string {
return fmt.Sprintf("%x", md5.Sum([]byte(s)))
// if the string instead is prefixed with "data:image/jpeg;base64,", drop it
if strings.HasPrefix(s, "data:image/jpeg;base64,") {
return strings.ReplaceAll(s, "data:image/jpeg;base64,", ""), nil
}
return "", fmt.Errorf("not valid string")
}
func formatBytes(bytes int64) string {

View File

@@ -1,7 +1,7 @@
package utils_test
package downloader_test
import (
. "github.com/go-skynet/LocalAI/pkg/utils"
. "github.com/go-skynet/LocalAI/pkg/downloader"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
)

View File

@@ -6,7 +6,7 @@ import (
"path/filepath"
"strings"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/go-skynet/LocalAI/pkg/downloader"
"github.com/imdario/mergo"
"github.com/rs/zerolog/log"
"gopkg.in/yaml.v2"
@@ -140,7 +140,7 @@ func AvailableGalleryModels(galleries []Gallery, basePath string) ([]*GalleryMod
func findGalleryURLFromReferenceURL(url string) (string, error) {
var refFile string
err := utils.GetURI(url, func(url string, d []byte) error {
err := downloader.GetURI(url, func(url string, d []byte) error {
refFile = string(d)
if len(refFile) == 0 {
return fmt.Errorf("invalid reference file at url %s: %s", url, d)
@@ -163,7 +163,7 @@ func getGalleryModels(gallery Gallery, basePath string) ([]*GalleryModel, error)
}
}
err := utils.GetURI(gallery.URL, func(url string, d []byte) error {
err := downloader.GetURI(gallery.URL, func(url string, d []byte) error {
return yaml.Unmarshal(d, &models)
})
if err != nil {

View File

@@ -1,14 +1,11 @@
package gallery
import (
"crypto/sha256"
"fmt"
"hash"
"io"
"os"
"path/filepath"
"strconv"
"github.com/go-skynet/LocalAI/pkg/downloader"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/imdario/mergo"
"github.com/rs/zerolog/log"
@@ -66,7 +63,7 @@ type PromptTemplate struct {
func GetGalleryConfigFromURL(url string) (Config, error) {
var config Config
err := utils.GetURI(url, func(url string, d []byte) error {
err := downloader.GetURI(url, func(url string, d []byte) error {
return yaml.Unmarshal(d, &config)
})
if err != nil {
@@ -114,7 +111,7 @@ func InstallModel(basePath, nameOverride string, config *Config, configOverrides
// Create file path
filePath := filepath.Join(basePath, file.Filename)
if err := utils.DownloadFile(file.URI, filePath, file.SHA256, downloadStatus); err != nil {
if err := downloader.DownloadFile(file.URI, filePath, file.SHA256, downloadStatus); err != nil {
return err
}
}
@@ -183,54 +180,3 @@ func InstallModel(basePath, nameOverride string, config *Config, configOverrides
return nil
}
type progressWriter struct {
fileName string
total int64
written int64
downloadStatus func(string, string, string, float64)
hash hash.Hash
}
func (pw *progressWriter) Write(p []byte) (n int, err error) {
n, err = pw.hash.Write(p)
pw.written += int64(n)
if pw.total > 0 {
percentage := float64(pw.written) / float64(pw.total) * 100
//log.Debug().Msgf("Downloading %s: %s/%s (%.2f%%)", pw.fileName, formatBytes(pw.written), formatBytes(pw.total), percentage)
pw.downloadStatus(pw.fileName, formatBytes(pw.written), formatBytes(pw.total), percentage)
} else {
pw.downloadStatus(pw.fileName, formatBytes(pw.written), "", 0)
}
return
}
func formatBytes(bytes int64) string {
const unit = 1024
if bytes < unit {
return strconv.FormatInt(bytes, 10) + " B"
}
div, exp := int64(unit), 0
for n := bytes / unit; n >= unit; n /= unit {
div *= unit
exp++
}
return fmt.Sprintf("%.1f %ciB", float64(bytes)/float64(div), "KMGTPE"[exp])
}
func calculateSHA(filePath string) (string, error) {
file, err := os.Open(filePath)
if err != nil {
return "", err
}
defer file.Close()
hash := sha256.New()
if _, err := io.Copy(hash, file); err != nil {
return "", err
}
return fmt.Sprintf("%x", hash.Sum(nil)), nil
}

View File

@@ -50,7 +50,7 @@ func (c *Client) setBusy(v bool) {
c.Unlock()
}
func (c *Client) HealthCheck(ctx context.Context) bool {
func (c *Client) HealthCheck(ctx context.Context) (bool, error) {
if !c.parallel {
c.opMutex.Lock()
defer c.opMutex.Unlock()
@@ -59,8 +59,7 @@ func (c *Client) HealthCheck(ctx context.Context) bool {
defer c.setBusy(false)
conn, err := grpc.Dial(c.address, grpc.WithTransportCredentials(insecure.NewCredentials()))
if err != nil {
fmt.Println(err)
return false
return false, err
}
defer conn.Close()
client := pb.NewBackendClient(conn)
@@ -71,15 +70,14 @@ func (c *Client) HealthCheck(ctx context.Context) bool {
res, err := client.Health(ctx, &pb.HealthMessage{})
if err != nil {
fmt.Println(err)
return false
return false, err
}
if string(res.Message) == "OK" {
return true
return true, nil
}
return false
return false, fmt.Errorf("health check failed: %s", res.Message)
}
func (c *Client) Embeddings(ctx context.Context, in *pb.PredictOptions, opts ...grpc.CallOption) (*pb.EmbeddingResult, error) {

View File

@@ -131,11 +131,15 @@ func (ml *ModelLoader) grpcModel(backend string, o *Options) func(string, string
// Wait for the service to start up
ready := false
for i := 0; i < o.grpcAttempts; i++ {
if client.GRPC(o.parallelRequests, ml.wd).HealthCheck(context.Background()) {
alive, err := client.GRPC(o.parallelRequests, ml.wd).HealthCheck(context.Background())
if alive {
log.Debug().Msgf("GRPC Service Ready")
ready = true
break
}
if err != nil && i == o.grpcAttempts-1 {
log.Error().Msgf("Failed starting/connecting to the gRPC service: %s", err.Error())
}
time.Sleep(time.Duration(o.grpcAttemptsDelay) * time.Second)
}
@@ -176,7 +180,11 @@ func (ml *ModelLoader) resolveAddress(addr ModelAddress, parallel bool) (*grpc.C
func (ml *ModelLoader) BackendLoader(opts ...Option) (client *grpc.Client, err error) {
o := NewOptions(opts...)
log.Info().Msgf("Loading model '%s' with backend %s", o.model, o.backendString)
if o.model != "" {
log.Info().Msgf("Loading model '%s' with backend %s", o.model, o.backendString)
} else {
log.Info().Msgf("Loading model with backend %s", o.backendString)
}
backend := strings.ToLower(o.backendString)
if realBackend, exists := Aliases[backend]; exists {
@@ -239,10 +247,13 @@ func (ml *ModelLoader) GreedyLoader(opts ...Option) (*grpc.Client, error) {
for _, b := range o.externalBackends {
allBackendsToAutoLoad = append(allBackendsToAutoLoad, b)
}
log.Debug().Msgf("Loading model '%s' greedly from all the available backends: %s", o.model, strings.Join(allBackendsToAutoLoad, ", "))
if o.model != "" {
log.Info().Msgf("Trying to load the model '%s' with all the available backends: %s", o.model, strings.Join(allBackendsToAutoLoad, ", "))
}
for _, b := range allBackendsToAutoLoad {
log.Debug().Msgf("[%s] Attempting to load", b)
log.Info().Msgf("[%s] Attempting to load", b)
options := []Option{
WithBackendString(b),
WithModel(o.model),
@@ -257,14 +268,14 @@ func (ml *ModelLoader) GreedyLoader(opts ...Option) (*grpc.Client, error) {
model, modelerr := ml.BackendLoader(options...)
if modelerr == nil && model != nil {
log.Debug().Msgf("[%s] Loads OK", b)
log.Info().Msgf("[%s] Loads OK", b)
return model, nil
} else if modelerr != nil {
err = multierror.Append(err, modelerr)
log.Debug().Msgf("[%s] Fails: %s", b, modelerr.Error())
log.Info().Msgf("[%s] Fails: %s", b, modelerr.Error())
} else if model == nil {
err = multierror.Append(err, fmt.Errorf("backend returned no usable model"))
log.Debug().Msgf("[%s] Fails: %s", b, "backend returned no usable model")
log.Info().Msgf("[%s] Fails: %s", b, "backend returned no usable model")
}
}

View File

@@ -171,9 +171,10 @@ func (ml *ModelLoader) CheckIsLoaded(s string) ModelAddress {
} else {
client = m.GRPC(false, ml.wd)
}
if !client.HealthCheck(context.Background()) {
log.Debug().Msgf("GRPC Model not responding: %s", s)
alive, err := client.HealthCheck(context.Background())
if !alive {
log.Warn().Msgf("GRPC Model not responding: %s", err.Error())
log.Warn().Msgf("Deleting the process in order to recreate it")
if !ml.grpcProcesses[s].IsAlive() {
log.Debug().Msgf("GRPC Process is not responding: %s", s)
// stop and delete the process, this forces to re-load the model and re-create again the service

View File

@@ -0,0 +1,54 @@
package startup
import (
"errors"
"os"
"path/filepath"
"github.com/go-skynet/LocalAI/embedded"
"github.com/go-skynet/LocalAI/pkg/downloader"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/rs/zerolog/log"
)
// PreloadModelsConfigurations will preload models from the given list of URLs
// It will download the model if it is not already present in the model path
// It will also try to resolve if the model is an embedded model YAML configuration
func PreloadModelsConfigurations(modelPath string, models ...string) {
for _, url := range models {
url = embedded.ModelShortURL(url)
switch {
case embedded.ExistsInModelsLibrary(url):
modelYAML, err := embedded.ResolveContent(url)
// If we resolve something, just save it to disk and continue
if err != nil {
log.Error().Msgf("error loading model: %s", err.Error())
continue
}
log.Debug().Msgf("[startup] resolved embedded model: %s", url)
md5Name := utils.MD5(url)
if err := os.WriteFile(filepath.Join(modelPath, md5Name)+".yaml", modelYAML, os.ModePerm); err != nil {
log.Error().Msgf("error loading model: %s", err.Error())
}
case downloader.LooksLikeURL(url):
log.Debug().Msgf("[startup] resolved model to download: %s", url)
// md5 of model name
md5Name := utils.MD5(url)
// check if file exists
if _, err := os.Stat(filepath.Join(modelPath, md5Name)); errors.Is(err, os.ErrNotExist) {
err := downloader.DownloadFile(url, filepath.Join(modelPath, md5Name)+".yaml", "", func(fileName, current, total string, percent float64) {
utils.DisplayDownloadFunction(fileName, current, total, percent)
})
if err != nil {
log.Error().Msgf("error loading model: %s", err.Error())
}
}
default:
log.Warn().Msgf("[startup] failed resolving model '%s'", url)
}
}
}

View File

@@ -0,0 +1,66 @@
package startup_test
import (
"fmt"
"os"
"path/filepath"
. "github.com/go-skynet/LocalAI/pkg/startup"
"github.com/go-skynet/LocalAI/pkg/utils"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
)
var _ = Describe("Preload test", func() {
Context("Preloading from strings", func() {
It("loads from embedded full-urls", func() {
tmpdir, err := os.MkdirTemp("", "")
Expect(err).ToNot(HaveOccurred())
url := "https://raw.githubusercontent.com/mudler/LocalAI/master/examples/configurations/phi-2.yaml"
fileName := fmt.Sprintf("%s.yaml", utils.MD5(url))
PreloadModelsConfigurations(tmpdir, url)
resultFile := filepath.Join(tmpdir, fileName)
content, err := os.ReadFile(resultFile)
Expect(err).ToNot(HaveOccurred())
Expect(string(content)).To(ContainSubstring("name: phi-2"))
})
It("loads from embedded short-urls", func() {
tmpdir, err := os.MkdirTemp("", "")
Expect(err).ToNot(HaveOccurred())
url := "phi-2"
PreloadModelsConfigurations(tmpdir, url)
entry, err := os.ReadDir(tmpdir)
Expect(err).ToNot(HaveOccurred())
Expect(entry).To(HaveLen(1))
resultFile := entry[0].Name()
content, err := os.ReadFile(filepath.Join(tmpdir, resultFile))
Expect(err).ToNot(HaveOccurred())
Expect(string(content)).To(ContainSubstring("name: phi-2"))
})
It("loads from embedded models", func() {
tmpdir, err := os.MkdirTemp("", "")
Expect(err).ToNot(HaveOccurred())
url := "mistral-openorca"
fileName := fmt.Sprintf("%s.yaml", utils.MD5(url))
PreloadModelsConfigurations(tmpdir, url)
resultFile := filepath.Join(tmpdir, fileName)
content, err := os.ReadFile(resultFile)
Expect(err).ToNot(HaveOccurred())
Expect(string(content)).To(ContainSubstring("name: mistral-openorca"))
})
})
})

View File

@@ -0,0 +1,13 @@
package startup_test
import (
"testing"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
)
func TestStartup(t *testing.T) {
RegisterFailHandler(Fail)
RunSpecs(t, "LocalAI startup test")
}

10
pkg/utils/hash.go Normal file
View File

@@ -0,0 +1,10 @@
package utils
import (
"crypto/md5"
"fmt"
)
func MD5(s string) string {
return fmt.Sprintf("%x", md5.Sum([]byte(s)))
}

View File

@@ -29,9 +29,9 @@ func DisplayDownloadFunction(fileName string, current string, total string, perc
}
if total != "" {
log.Debug().Msgf("Downloading %s: %s/%s (%.2f%%) ETA: %s", fileName, current, total, percentage, eta)
log.Info().Msgf("Downloading %s: %s/%s (%.2f%%) ETA: %s", fileName, current, total, percentage, eta)
} else {
log.Debug().Msgf("Downloading: %s", current)
log.Info().Msgf("Downloading: %s", current)
}
}
}