mirror of
https://github.com/mudler/LocalAI.git
synced 2026-02-03 19:22:39 -05:00
Compare commits
103 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
1395e505cd | ||
|
|
42a4c86dca | ||
|
|
c9adc5680c | ||
|
|
08c7b17298 | ||
|
|
5e12382524 | ||
|
|
6cf99527f8 | ||
|
|
3e293f1465 | ||
|
|
0106c58181 | ||
|
|
bd25d8049c | ||
|
|
49cec7fd61 | ||
|
|
d9456f2a23 | ||
|
|
8495750cb8 | ||
|
|
1f501cc1ef | ||
|
|
a922119c41 | ||
|
|
643d85d2cc | ||
|
|
4b1ee0c170 | ||
|
|
3bec467a91 | ||
|
|
600152df23 | ||
|
|
dd84c29a3d | ||
|
|
07468c8786 | ||
|
|
418ba02025 | ||
|
|
abc9360dc6 | ||
|
|
743095b7d8 | ||
|
|
3cf64d1e7e | ||
|
|
e533dcf506 | ||
|
|
eeaf8c7ccd | ||
|
|
7e34dfdae7 | ||
|
|
e4bf51d5bd | ||
|
|
ead61bf9d5 | ||
|
|
b12a205320 | ||
|
|
621541a92f | ||
|
|
ed5734ae25 | ||
|
|
a046dcac5e | ||
|
|
843f93e1ab | ||
|
|
fa9e330fc6 | ||
|
|
b202bfaaa0 | ||
|
|
0eb0ac7dd0 | ||
|
|
d2b83d8357 | ||
|
|
88b65f63d0 | ||
|
|
020ce29cd8 | ||
|
|
801b481beb | ||
|
|
8967ed1601 | ||
|
|
5826fb8e6d | ||
|
|
89351f1a7d | ||
|
|
ae2e4fc2fe | ||
|
|
db199f61da | ||
|
|
44adbd2c75 | ||
|
|
20136ca8b7 | ||
|
|
45d520f913 | ||
|
|
3882130911 | ||
|
|
a6b540737f | ||
|
|
f82065703d | ||
|
|
b423af001d | ||
|
|
b9e77d394b | ||
|
|
57222497ec | ||
|
|
5c5f07c1e7 | ||
|
|
f895d06605 | ||
|
|
bc8f648a91 | ||
|
|
8e57f4df31 | ||
|
|
a08cc5adbb | ||
|
|
595a73fce4 | ||
|
|
dc919e08e8 | ||
|
|
5d1018495f | ||
|
|
ad6fd7a991 | ||
|
|
e022b5959e | ||
|
|
db7f4955a1 | ||
|
|
5c69dd155f | ||
|
|
504f2e8bf4 | ||
|
|
e586dc2924 | ||
|
|
333f918005 | ||
|
|
c8e29033c2 | ||
|
|
d0bd961bde | ||
|
|
006511ee25 | ||
|
|
4ab72146cd | ||
|
|
b60a3fc879 | ||
|
|
a0eeb74957 | ||
|
|
daa0b8741c | ||
|
|
939411300a | ||
|
|
1c312685aa | ||
|
|
316de82f51 | ||
|
|
9068bc5271 | ||
|
|
31a4c9c9d3 | ||
|
|
c1966af2cf | ||
|
|
c665898652 | ||
|
|
f651a660aa | ||
|
|
ba672b51da | ||
|
|
be498c5dd9 | ||
|
|
6e95beccb9 | ||
|
|
c8be839481 | ||
|
|
c7e08813a5 | ||
|
|
d21a6b33ab | ||
|
|
9112cf153e | ||
|
|
3868ac8402 | ||
|
|
3f09010227 | ||
|
|
d6cf82aba3 | ||
|
|
dfe54639b1 | ||
|
|
bc5f5aa538 | ||
|
|
05818e0425 | ||
|
|
7f72a61104 | ||
|
|
8e45d47740 | ||
|
|
71771d1e9b | ||
|
|
aa098e4d0b | ||
|
|
0135e1e3b9 |
@@ -3,3 +3,4 @@ models
|
||||
examples/chatbot-ui/models
|
||||
examples/rwkv/models
|
||||
examples/**/models
|
||||
Dockerfile*
|
||||
31
.editorconfig
Normal file
31
.editorconfig
Normal file
@@ -0,0 +1,31 @@
|
||||
|
||||
root = true
|
||||
|
||||
[*]
|
||||
indent_style = space
|
||||
indent_size = 2
|
||||
end_of_line = lf
|
||||
charset = utf-8
|
||||
trim_trailing_whitespace = true
|
||||
insert_final_newline = true
|
||||
|
||||
[*.go]
|
||||
indent_style = tab
|
||||
|
||||
[Makefile]
|
||||
indent_style = tab
|
||||
|
||||
[*.proto]
|
||||
indent_size = 2
|
||||
|
||||
[*.py]
|
||||
indent_size = 4
|
||||
|
||||
[*.js]
|
||||
indent_size = 2
|
||||
|
||||
[*.yaml]
|
||||
indent_size = 2
|
||||
|
||||
[*.md]
|
||||
trim_trailing_whitespace = false
|
||||
2
.env
2
.env
@@ -18,7 +18,7 @@
|
||||
|
||||
## Default path for models
|
||||
#
|
||||
MODELS_PATH=/models
|
||||
# MODELS_PATH=/models
|
||||
|
||||
## Enable debug mode
|
||||
# DEBUG=true
|
||||
|
||||
12
.github/release.yml
vendored
12
.github/release.yml
vendored
@@ -12,13 +12,23 @@ changelog:
|
||||
- title: "Bug fixes :bug:"
|
||||
labels:
|
||||
- bug
|
||||
- regression
|
||||
- title: Exciting New Features 🎉
|
||||
labels:
|
||||
- Semver-Minor
|
||||
- enhancement
|
||||
- ux
|
||||
- roadmap
|
||||
- title: 🧠 Models
|
||||
labels:
|
||||
- area/ai-model
|
||||
- title: 📖 Documentation and examples
|
||||
labels:
|
||||
- kind/documentation
|
||||
- examples
|
||||
- title: 👒 Dependencies
|
||||
labels:
|
||||
- dependencies
|
||||
- title: Other Changes
|
||||
labels:
|
||||
- "*"
|
||||
- "*"
|
||||
|
||||
12
.github/workflows/image-pr.yml
vendored
12
.github/workflows/image-pr.yml
vendored
@@ -22,6 +22,7 @@ jobs:
|
||||
platforms: ${{ matrix.platforms }}
|
||||
runs-on: ${{ matrix.runs-on }}
|
||||
base-image: ${{ matrix.base-image }}
|
||||
makeflags: "-j3"
|
||||
secrets:
|
||||
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
@@ -59,6 +60,14 @@ jobs:
|
||||
image-type: 'extras'
|
||||
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
|
||||
runs-on: 'arc-runner-set'
|
||||
- build-type: 'sycl_f16'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
|
||||
tag-suffix: 'sycl-f16-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'extras'
|
||||
runs-on: 'arc-runner-set'
|
||||
core-image-build:
|
||||
uses: ./.github/workflows/image_build.yml
|
||||
with:
|
||||
@@ -72,6 +81,7 @@ jobs:
|
||||
platforms: ${{ matrix.platforms }}
|
||||
runs-on: ${{ matrix.runs-on }}
|
||||
base-image: ${{ matrix.base-image }}
|
||||
makeflags: "-j3"
|
||||
secrets:
|
||||
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
@@ -105,4 +115,4 @@ jobs:
|
||||
ffmpeg: 'true'
|
||||
image-type: 'core'
|
||||
runs-on: 'ubuntu-latest'
|
||||
base-image: "ubuntu:22.04"
|
||||
base-image: "ubuntu:22.04"
|
||||
119
.github/workflows/image.yml
vendored
119
.github/workflows/image.yml
vendored
@@ -13,7 +13,7 @@ concurrency:
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
extras-image-build:
|
||||
self-hosted-jobs:
|
||||
uses: ./.github/workflows/image_build.yml
|
||||
with:
|
||||
tag-latest: ${{ matrix.tag-latest }}
|
||||
@@ -26,6 +26,8 @@ jobs:
|
||||
platforms: ${{ matrix.platforms }}
|
||||
runs-on: ${{ matrix.runs-on }}
|
||||
base-image: ${{ matrix.base-image }}
|
||||
aio: ${{ matrix.aio }}
|
||||
makeflags: "-j3"
|
||||
secrets:
|
||||
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
@@ -37,6 +39,7 @@ jobs:
|
||||
max-parallel: ${{ github.event_name != 'pull_request' && 2 || 4 }}
|
||||
matrix:
|
||||
include:
|
||||
# Extra images
|
||||
- build-type: ''
|
||||
#platforms: 'linux/amd64,linux/arm64'
|
||||
platforms: 'linux/amd64'
|
||||
@@ -48,7 +51,7 @@ jobs:
|
||||
base-image: "ubuntu:22.04"
|
||||
- build-type: ''
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-latest: 'auto'
|
||||
tag-suffix: '-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'extras'
|
||||
@@ -78,22 +81,24 @@ jobs:
|
||||
cuda-major-version: "11"
|
||||
cuda-minor-version: "7"
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-latest: 'auto'
|
||||
tag-suffix: '-cublas-cuda11-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'extras'
|
||||
runs-on: 'arc-runner-set'
|
||||
base-image: "ubuntu:22.04"
|
||||
aio: "-aio-gpu-nvidia-cuda-11"
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: "12"
|
||||
cuda-minor-version: "1"
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-latest: 'auto'
|
||||
tag-suffix: '-cublas-cuda12-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'extras'
|
||||
runs-on: 'arc-runner-set'
|
||||
base-image: "ubuntu:22.04"
|
||||
aio: "-aio-gpu-nvidia-cuda-12"
|
||||
- build-type: ''
|
||||
#platforms: 'linux/amd64,linux/arm64'
|
||||
platforms: 'linux/amd64'
|
||||
@@ -105,10 +110,11 @@ jobs:
|
||||
runs-on: 'arc-runner-set'
|
||||
- build-type: 'hipblas'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-latest: 'auto'
|
||||
tag-suffix: '-hipblas-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'extras'
|
||||
aio: "-aio-gpu-hipblas"
|
||||
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
|
||||
runs-on: 'arc-runner-set'
|
||||
- build-type: 'hipblas'
|
||||
@@ -119,51 +125,25 @@ jobs:
|
||||
image-type: 'extras'
|
||||
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
|
||||
runs-on: 'arc-runner-set'
|
||||
core-image-build:
|
||||
uses: ./.github/workflows/image_build.yml
|
||||
with:
|
||||
tag-latest: ${{ matrix.tag-latest }}
|
||||
tag-suffix: ${{ matrix.tag-suffix }}
|
||||
ffmpeg: ${{ matrix.ffmpeg }}
|
||||
image-type: ${{ matrix.image-type }}
|
||||
build-type: ${{ matrix.build-type }}
|
||||
cuda-major-version: ${{ matrix.cuda-major-version }}
|
||||
cuda-minor-version: ${{ matrix.cuda-minor-version }}
|
||||
platforms: ${{ matrix.platforms }}
|
||||
runs-on: ${{ matrix.runs-on }}
|
||||
base-image: ${{ matrix.base-image }}
|
||||
secrets:
|
||||
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
|
||||
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build-type: 'hipblas'
|
||||
- build-type: 'sycl_f16'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-hipblas-ffmpeg-core'
|
||||
tag-latest: 'auto'
|
||||
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
|
||||
tag-suffix: '-sycl-f16-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'core'
|
||||
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
|
||||
image-type: 'extras'
|
||||
runs-on: 'arc-runner-set'
|
||||
- build-type: 'hipblas'
|
||||
aio: "-aio-gpu-intel-f16"
|
||||
- build-type: 'sycl_f32'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-hipblas-core'
|
||||
ffmpeg: 'false'
|
||||
image-type: 'core'
|
||||
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
|
||||
runs-on: 'arc-runner-set'
|
||||
- build-type: ''
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-ffmpeg-core'
|
||||
tag-latest: 'auto'
|
||||
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
|
||||
tag-suffix: '-sycl-f32-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'core'
|
||||
base-image: "ubuntu:22.04"
|
||||
runs-on: 'ubuntu-latest'
|
||||
image-type: 'extras'
|
||||
runs-on: 'arc-runner-set'
|
||||
aio: "-aio-gpu-intel-f32"
|
||||
# Core images
|
||||
- build-type: 'sycl_f16'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
@@ -196,6 +176,55 @@ jobs:
|
||||
ffmpeg: 'true'
|
||||
image-type: 'core'
|
||||
runs-on: 'arc-runner-set'
|
||||
- build-type: 'hipblas'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-hipblas-ffmpeg-core'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'core'
|
||||
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
|
||||
runs-on: 'arc-runner-set'
|
||||
- build-type: 'hipblas'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-hipblas-core'
|
||||
ffmpeg: 'false'
|
||||
image-type: 'core'
|
||||
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
|
||||
runs-on: 'arc-runner-set'
|
||||
|
||||
core-image-build:
|
||||
uses: ./.github/workflows/image_build.yml
|
||||
with:
|
||||
tag-latest: ${{ matrix.tag-latest }}
|
||||
tag-suffix: ${{ matrix.tag-suffix }}
|
||||
ffmpeg: ${{ matrix.ffmpeg }}
|
||||
image-type: ${{ matrix.image-type }}
|
||||
build-type: ${{ matrix.build-type }}
|
||||
cuda-major-version: ${{ matrix.cuda-major-version }}
|
||||
cuda-minor-version: ${{ matrix.cuda-minor-version }}
|
||||
platforms: ${{ matrix.platforms }}
|
||||
runs-on: ${{ matrix.runs-on }}
|
||||
aio: ${{ matrix.aio }}
|
||||
base-image: ${{ matrix.base-image }}
|
||||
makeflags: "-j3"
|
||||
secrets:
|
||||
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
|
||||
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build-type: ''
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'auto'
|
||||
tag-suffix: '-ffmpeg-core'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'core'
|
||||
base-image: "ubuntu:22.04"
|
||||
runs-on: 'ubuntu-latest'
|
||||
aio: "-aio-cpu"
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: "11"
|
||||
cuda-minor-version: "7"
|
||||
|
||||
76
.github/workflows/image_build.yml
vendored
76
.github/workflows/image_build.yml
vendored
@@ -46,6 +46,16 @@ on:
|
||||
required: true
|
||||
default: ''
|
||||
type: string
|
||||
makeflags:
|
||||
description: 'Make Flags'
|
||||
required: false
|
||||
default: ''
|
||||
type: string
|
||||
aio:
|
||||
description: 'AIO Image Name'
|
||||
required: false
|
||||
default: ''
|
||||
type: string
|
||||
secrets:
|
||||
dockerUsername:
|
||||
required: true
|
||||
@@ -124,7 +134,32 @@ jobs:
|
||||
flavor: |
|
||||
latest=${{ inputs.tag-latest }}
|
||||
suffix=${{ inputs.tag-suffix }}
|
||||
|
||||
- name: Docker meta AIO (quay.io)
|
||||
if: inputs.aio != ''
|
||||
id: meta_aio
|
||||
uses: docker/metadata-action@v5
|
||||
with:
|
||||
images: |
|
||||
quay.io/go-skynet/local-ai
|
||||
tags: |
|
||||
type=ref,event=branch
|
||||
type=semver,pattern={{raw}}
|
||||
flavor: |
|
||||
latest=${{ inputs.tag-latest }}
|
||||
suffix=${{ inputs.aio }}
|
||||
- name: Docker meta AIO (dockerhub)
|
||||
if: inputs.aio != ''
|
||||
id: meta_aio_dockerhub
|
||||
uses: docker/metadata-action@v5
|
||||
with:
|
||||
images: |
|
||||
localai/localai
|
||||
tags: |
|
||||
type=ref,event=branch
|
||||
type=semver,pattern={{raw}}
|
||||
flavor: |
|
||||
latest=${{ inputs.tag-latest }}
|
||||
suffix=${{ inputs.aio }}
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@master
|
||||
with:
|
||||
@@ -160,12 +195,51 @@ jobs:
|
||||
FFMPEG=${{ inputs.ffmpeg }}
|
||||
IMAGE_TYPE=${{ inputs.image-type }}
|
||||
BASE_IMAGE=${{ inputs.base-image }}
|
||||
MAKEFLAGS=${{ inputs.makeflags }}
|
||||
context: .
|
||||
file: ./Dockerfile
|
||||
platforms: ${{ inputs.platforms }}
|
||||
push: ${{ github.event_name != 'pull_request' }}
|
||||
tags: ${{ steps.meta.outputs.tags }}
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
-
|
||||
name: Inspect image
|
||||
if: github.event_name != 'pull_request'
|
||||
run: |
|
||||
docker pull localai/localai:${{ steps.meta.outputs.version }}
|
||||
docker image inspect localai/localai:${{ steps.meta.outputs.version }}
|
||||
docker pull quay.io/go-skynet/local-ai:${{ steps.meta.outputs.version }}
|
||||
docker image inspect quay.io/go-skynet/local-ai:${{ steps.meta.outputs.version }}
|
||||
- name: Build and push AIO image
|
||||
if: inputs.aio != ''
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
builder: ${{ steps.buildx.outputs.name }}
|
||||
build-args: |
|
||||
BASE_IMAGE=quay.io/go-skynet/local-ai:${{ steps.meta.outputs.version }}
|
||||
context: .
|
||||
file: ./Dockerfile.aio
|
||||
platforms: ${{ inputs.platforms }}
|
||||
push: ${{ github.event_name != 'pull_request' }}
|
||||
tags: ${{ steps.meta_aio.outputs.tags }}
|
||||
labels: ${{ steps.meta_aio.outputs.labels }}
|
||||
- name: Build and push AIO image (dockerhub)
|
||||
if: inputs.aio != ''
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
builder: ${{ steps.buildx.outputs.name }}
|
||||
build-args: |
|
||||
BASE_IMAGE=localai/localai:${{ steps.meta.outputs.version }}
|
||||
context: .
|
||||
file: ./Dockerfile.aio
|
||||
platforms: ${{ inputs.platforms }}
|
||||
push: ${{ github.event_name != 'pull_request' }}
|
||||
tags: ${{ steps.meta_aio_dockerhub.outputs.tags }}
|
||||
labels: ${{ steps.meta_aio_dockerhub.outputs.labels }}
|
||||
- name: job summary
|
||||
run: |
|
||||
echo "Built image: ${{ steps.meta.outputs.labels }}" >> $GITHUB_STEP_SUMMARY
|
||||
- name: job summary(AIO)
|
||||
if: inputs.aio != ''
|
||||
run: |
|
||||
echo "Built image: ${{ steps.meta_aio.outputs.labels }}" >> $GITHUB_STEP_SUMMARY
|
||||
|
||||
29
.github/workflows/release.yaml
vendored
29
.github/workflows/release.yaml
vendored
@@ -89,6 +89,35 @@ jobs:
|
||||
files: |
|
||||
release/*
|
||||
|
||||
build-stablediffusion:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- uses: actions/setup-go@v4
|
||||
with:
|
||||
go-version: '>=1.21.0'
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get install -y --no-install-recommends libopencv-dev
|
||||
sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
|
||||
- name: Build stablediffusion
|
||||
run: |
|
||||
make backend-assets/grpc/stablediffusion
|
||||
mkdir -p release && cp backend-assets/grpc/stablediffusion release
|
||||
- uses: actions/upload-artifact@v3
|
||||
with:
|
||||
name: stablediffusion
|
||||
path: release/
|
||||
- name: Release
|
||||
uses: softprops/action-gh-release@v1
|
||||
if: startsWith(github.ref, 'refs/tags/')
|
||||
with:
|
||||
files: |
|
||||
release/*
|
||||
|
||||
build-macOS:
|
||||
strategy:
|
||||
matrix:
|
||||
|
||||
64
.github/workflows/test.yml
vendored
64
.github/workflows/test.yml
vendored
@@ -105,9 +105,65 @@ jobs:
|
||||
- name: Test
|
||||
run: |
|
||||
GO_TAGS="stablediffusion tts" make test
|
||||
- name: Setup tmate session if tests fail
|
||||
if: ${{ failure() }}
|
||||
uses: mxschmitt/action-tmate@v3
|
||||
timeout-minutes: 5
|
||||
|
||||
tests-aio-container:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Release space from worker
|
||||
run: |
|
||||
echo "Listing top largest packages"
|
||||
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
|
||||
head -n 30 <<< "${pkgs}"
|
||||
echo
|
||||
df -h
|
||||
echo
|
||||
sudo apt-get remove -y '^llvm-.*|^libllvm.*' || true
|
||||
sudo apt-get remove --auto-remove android-sdk-platform-tools || true
|
||||
sudo apt-get purge --auto-remove android-sdk-platform-tools || true
|
||||
sudo rm -rf /usr/local/lib/android
|
||||
sudo apt-get remove -y '^dotnet-.*|^aspnetcore-.*' || true
|
||||
sudo rm -rf /usr/share/dotnet
|
||||
sudo apt-get remove -y '^mono-.*' || true
|
||||
sudo apt-get remove -y '^ghc-.*' || true
|
||||
sudo apt-get remove -y '.*jdk.*|.*jre.*' || true
|
||||
sudo apt-get remove -y 'php.*' || true
|
||||
sudo apt-get remove -y hhvm powershell firefox monodoc-manual msbuild || true
|
||||
sudo apt-get remove -y '^google-.*' || true
|
||||
sudo apt-get remove -y azure-cli || true
|
||||
sudo apt-get remove -y '^mongo.*-.*|^postgresql-.*|^mysql-.*|^mssql-.*' || true
|
||||
sudo apt-get remove -y '^gfortran-.*' || true
|
||||
sudo apt-get autoremove -y
|
||||
sudo apt-get clean
|
||||
echo
|
||||
echo "Listing top largest packages"
|
||||
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
|
||||
head -n 30 <<< "${pkgs}"
|
||||
echo
|
||||
sudo rm -rfv build || true
|
||||
df -h
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- name: Build images
|
||||
run: |
|
||||
docker build --build-arg FFMPEG=true --build-arg IMAGE_TYPE=core -t local-ai:tests -f Dockerfile .
|
||||
BASE_IMAGE=local-ai:tests DOCKER_AIO_IMAGE=local-ai-aio:test make docker-aio
|
||||
- name: Test
|
||||
run: |
|
||||
LOCALAI_MODELS_DIR=$PWD/models LOCALAI_IMAGE_TAG=test LOCALAI_IMAGE=local-ai-aio \
|
||||
make run-e2e-aio
|
||||
- name: Setup tmate session if tests fail
|
||||
if: ${{ failure() }}
|
||||
uses: mxschmitt/action-tmate@v3
|
||||
timeout-minutes: 5
|
||||
|
||||
tests-apple:
|
||||
runs-on: macOS-latest
|
||||
runs-on: macOS-14
|
||||
strategy:
|
||||
matrix:
|
||||
go-version: ['1.21.x']
|
||||
@@ -130,4 +186,8 @@ jobs:
|
||||
run: |
|
||||
export C_INCLUDE_PATH=/usr/local/include
|
||||
export CPLUS_INCLUDE_PATH=/usr/local/include
|
||||
CMAKE_ARGS="-DLLAMA_F16C=OFF -DLLAMA_AVX512=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF" make test
|
||||
BUILD_TYPE="GITHUB_CI_HAS_BROKEN_METAL" CMAKE_ARGS="-DLLAMA_F16C=OFF -DLLAMA_AVX512=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF" make test
|
||||
- name: Setup tmate session if tests fail
|
||||
if: ${{ failure() }}
|
||||
uses: mxschmitt/action-tmate@v3
|
||||
timeout-minutes: 5
|
||||
4
.gitignore
vendored
4
.gitignore
vendored
@@ -21,6 +21,7 @@ local-ai
|
||||
!charts/*
|
||||
# prevent above rules from omitting the api/localai folder
|
||||
!api/localai
|
||||
!core/**/localai
|
||||
|
||||
# Ignore models
|
||||
models/*
|
||||
@@ -34,6 +35,7 @@ release/
|
||||
.idea
|
||||
|
||||
# Generated during build
|
||||
backend-assets/
|
||||
backend-assets/*
|
||||
!backend-assets/.keep
|
||||
prepare
|
||||
/ggml-metal.metal
|
||||
|
||||
65
Dockerfile
65
Dockerfile
@@ -4,6 +4,8 @@ ARG BASE_IMAGE=ubuntu:22.04
|
||||
# extras or core
|
||||
FROM ${BASE_IMAGE} as requirements-core
|
||||
|
||||
USER root
|
||||
|
||||
ARG GO_VERSION=1.21.7
|
||||
ARG BUILD_TYPE
|
||||
ARG CUDA_MAJOR_VERSION=11
|
||||
@@ -21,7 +23,7 @@ RUN apt-get update && \
|
||||
apt-get install -y ca-certificates curl patch pip cmake git && apt-get clean
|
||||
|
||||
# Install Go
|
||||
RUN curl -L -s https://go.dev/dl/go$GO_VERSION.linux-$TARGETARCH.tar.gz | tar -v -C /usr/local -xz
|
||||
RUN curl -L -s https://go.dev/dl/go$GO_VERSION.linux-$TARGETARCH.tar.gz | tar -C /usr/local -xz
|
||||
ENV PATH $PATH:/usr/local/go/bin
|
||||
|
||||
COPY --chmod=644 custom-ca-certs/* /usr/local/share/ca-certificates/
|
||||
@@ -61,7 +63,9 @@ WORKDIR /build
|
||||
RUN test -n "$TARGETARCH" \
|
||||
|| (echo 'warn: missing $TARGETARCH, either set this `ARG` manually, or run using `docker buildkit`')
|
||||
|
||||
# Extras requirements
|
||||
###################################
|
||||
###################################
|
||||
|
||||
FROM requirements-core as requirements-extras
|
||||
|
||||
RUN curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
|
||||
@@ -79,6 +83,10 @@ RUN pip install --upgrade pip
|
||||
RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
|
||||
RUN apt-get install -y espeak-ng espeak && apt-get clean
|
||||
|
||||
RUN if [ ! -e /usr/bin/python ]; then \
|
||||
ln -s /usr/bin/python3 /usr/bin/python \
|
||||
; fi
|
||||
|
||||
###################################
|
||||
###################################
|
||||
|
||||
@@ -87,8 +95,11 @@ FROM requirements-${IMAGE_TYPE} as builder
|
||||
ARG GO_TAGS="stablediffusion tts"
|
||||
ARG GRPC_BACKENDS
|
||||
ARG BUILD_GRPC=true
|
||||
ARG MAKEFLAGS
|
||||
|
||||
ENV GRPC_BACKENDS=${GRPC_BACKENDS}
|
||||
ENV GO_TAGS=${GO_TAGS}
|
||||
ENV MAKEFLAGS=${MAKEFLAGS}
|
||||
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
|
||||
ENV NVIDIA_REQUIRE_CUDA="cuda>=${CUDA_MAJOR_VERSION}.0"
|
||||
ENV NVIDIA_VISIBLE_DEVICES=all
|
||||
@@ -97,16 +108,24 @@ WORKDIR /build
|
||||
|
||||
COPY . .
|
||||
COPY .git .
|
||||
RUN echo "GO_TAGS: $GO_TAGS"
|
||||
RUN make prepare
|
||||
|
||||
# If we are building with clblas support, we need the libraries for the builds
|
||||
RUN if [ "${BUILD_TYPE}" = "clblas" ]; then \
|
||||
apt-get update && \
|
||||
apt-get install -y libclblast-dev && \
|
||||
apt-get clean \
|
||||
; fi
|
||||
|
||||
# stablediffusion does not tolerate a newer version of abseil, build it first
|
||||
RUN GRPC_BACKENDS=backend-assets/grpc/stablediffusion make build
|
||||
|
||||
RUN if [ "${BUILD_GRPC}" = "true" ]; then \
|
||||
git clone --recurse-submodules -b v1.58.0 --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
|
||||
git clone --recurse-submodules --jobs 4 -b v1.58.0 --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
|
||||
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
|
||||
-DgRPC_BUILD_TESTS=OFF \
|
||||
../.. && make -j12 install \
|
||||
../.. && make install \
|
||||
; fi
|
||||
|
||||
# Rebuild with defaults backends
|
||||
@@ -126,10 +145,12 @@ ARG FFMPEG
|
||||
ARG BUILD_TYPE
|
||||
ARG TARGETARCH
|
||||
ARG IMAGE_TYPE=extras
|
||||
ARG MAKEFLAGS
|
||||
|
||||
ENV BUILD_TYPE=${BUILD_TYPE}
|
||||
ENV REBUILD=false
|
||||
ENV HEALTHCHECK_ENDPOINT=http://localhost:8080/readyz
|
||||
ENV MAKEFLAGS=${MAKEFLAGS}
|
||||
|
||||
ARG CUDA_MAJOR_VERSION=11
|
||||
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
|
||||
@@ -142,6 +163,13 @@ RUN if [ "${FFMPEG}" = "true" ]; then \
|
||||
apt-get install -y ffmpeg && apt-get clean \
|
||||
; fi
|
||||
|
||||
# Add OpenCL
|
||||
RUN if [ "${BUILD_TYPE}" = "clblas" ]; then \
|
||||
apt-get update && \
|
||||
apt-get install -y libclblast1 && \
|
||||
apt-get clean \
|
||||
; fi
|
||||
|
||||
WORKDIR /build
|
||||
|
||||
# we start fresh & re-copy all assets because `make build` does not clean up nicely after itself
|
||||
@@ -166,43 +194,43 @@ COPY --from=builder /build/backend-assets/grpc/stablediffusion ./backend-assets/
|
||||
|
||||
## Duplicated from Makefile to avoid having a big layer that's hard to push
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
PATH=$PATH:/opt/conda/bin make -C backend/python/autogptq \
|
||||
make -C backend/python/autogptq \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
PATH=$PATH:/opt/conda/bin make -C backend/python/bark \
|
||||
make -C backend/python/bark \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
PATH=$PATH:/opt/conda/bin make -C backend/python/diffusers \
|
||||
make -C backend/python/diffusers \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
PATH=$PATH:/opt/conda/bin make -C backend/python/vllm \
|
||||
make -C backend/python/vllm \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
PATH=$PATH:/opt/conda/bin make -C backend/python/mamba \
|
||||
make -C backend/python/mamba \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
PATH=$PATH:/opt/conda/bin make -C backend/python/sentencetransformers \
|
||||
make -C backend/python/sentencetransformers \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
PATH=$PATH:/opt/conda/bin make -C backend/python/transformers \
|
||||
make -C backend/python/transformers \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
PATH=$PATH:/opt/conda/bin make -C backend/python/vall-e-x \
|
||||
make -C backend/python/vall-e-x \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
PATH=$PATH:/opt/conda/bin make -C backend/python/exllama \
|
||||
make -C backend/python/exllama \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
PATH=$PATH:/opt/conda/bin make -C backend/python/exllama2 \
|
||||
make -C backend/python/exllama2 \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
PATH=$PATH:/opt/conda/bin make -C backend/python/petals \
|
||||
make -C backend/python/petals \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
PATH=$PATH:/opt/conda/bin make -C backend/python/transformers-musicgen \
|
||||
make -C backend/python/transformers-musicgen \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
PATH=$PATH:/opt/conda/bin make -C backend/python/coqui \
|
||||
make -C backend/python/coqui \
|
||||
; fi
|
||||
|
||||
# Make sure the models directory exists
|
||||
@@ -211,6 +239,7 @@ RUN mkdir -p /build/models
|
||||
# Define the health check command
|
||||
HEALTHCHECK --interval=1m --timeout=10m --retries=10 \
|
||||
CMD curl -f $HEALTHCHECK_ENDPOINT || exit 1
|
||||
|
||||
|
||||
VOLUME /build/models
|
||||
EXPOSE 8080
|
||||
ENTRYPOINT [ "/build/entrypoint.sh" ]
|
||||
|
||||
8
Dockerfile.aio
Normal file
8
Dockerfile.aio
Normal file
@@ -0,0 +1,8 @@
|
||||
ARG BASE_IMAGE=ubuntu:22.04
|
||||
|
||||
FROM ${BASE_IMAGE}
|
||||
|
||||
RUN apt-get update && apt-get install -y pciutils && apt-get clean
|
||||
|
||||
COPY aio/ /aio
|
||||
ENTRYPOINT [ "/aio/entrypoint.sh" ]
|
||||
338
Makefile
338
Makefile
@@ -4,11 +4,8 @@ GOVET=$(GOCMD) vet
|
||||
BINARY_NAME=local-ai
|
||||
|
||||
# llama.cpp versions
|
||||
GOLLAMA_VERSION?=aeba71ee842819da681ea537e78846dc75949ac0
|
||||
|
||||
GOLLAMA_STABLE_VERSION?=50cee7712066d9e38306eccadcfbb44ea87df4b7
|
||||
|
||||
CPPLLAMA_VERSION?=fd43d66f46ee3b5345fb8a74a252d86ccd34a409
|
||||
GOLLAMA_STABLE_VERSION?=2b57a8ae43e4699d3dc5d1496a1ccd42922993be
|
||||
CPPLLAMA_VERSION?=b06c16ef9f81d84da520232c125d4d8a1d273736
|
||||
|
||||
# gpt4all version
|
||||
GPT4ALL_REPO?=https://github.com/nomic-ai/gpt4all
|
||||
@@ -16,19 +13,19 @@ GPT4ALL_VERSION?=27a8b020c36b0df8f8b82a252d261cda47cf44b8
|
||||
|
||||
# go-rwkv version
|
||||
RWKV_REPO?=https://github.com/donomii/go-rwkv.cpp
|
||||
RWKV_VERSION?=633c5a3485c403cb2520693dc0991a25dace9f0f
|
||||
RWKV_VERSION?=661e7ae26d442f5cfebd2a0881b44e8c55949ec6
|
||||
|
||||
# whisper.cpp version
|
||||
WHISPER_CPP_VERSION?=37a709f6558c6d9783199e2b8cbb136e1c41d346
|
||||
WHISPER_CPP_VERSION?=1558ec5a16cb2b2a0bf54815df1d41f83dc3815b
|
||||
|
||||
# bert.cpp version
|
||||
BERT_VERSION?=6abe312cded14042f6b7c3cd8edf082713334a4d
|
||||
|
||||
# go-piper version
|
||||
PIPER_VERSION?=d6b6275ba037dabdba4a8b65dfdf6b2a73a67f07
|
||||
PIPER_VERSION?=9d0100873a7dbb0824dfea40e8cec70a1b110759
|
||||
|
||||
# stablediffusion version
|
||||
STABLEDIFFUSION_VERSION?=d5d2be8e7e395c2d73ceef61e6fe8d240f2cd831
|
||||
STABLEDIFFUSION_VERSION?=362df9da29f882dbf09ade61972d16a1f53c3485
|
||||
|
||||
# tinydream version
|
||||
TINYDREAM_VERSION?=772a9c0d9aaf768290e63cca3c904fe69faf677a
|
||||
@@ -38,12 +35,15 @@ export STABLE_BUILD_TYPE?=$(BUILD_TYPE)
|
||||
export CMAKE_ARGS?=
|
||||
|
||||
CGO_LDFLAGS?=
|
||||
CGO_LDFLAGS_WHISPER?=
|
||||
CUDA_LIBPATH?=/usr/local/cuda/lib64/
|
||||
GO_TAGS?=
|
||||
BUILD_ID?=git
|
||||
|
||||
TEST_DIR=/tmp/test
|
||||
|
||||
TEST_FLAKES?=5
|
||||
|
||||
RANDOM := $(shell bash -c 'echo $$RANDOM')
|
||||
|
||||
VERSION?=$(shell git describe --always --tags || echo "dev" )
|
||||
@@ -70,7 +70,7 @@ UNAME_S := $(shell uname -s)
|
||||
endif
|
||||
|
||||
ifeq ($(OS),Darwin)
|
||||
CGO_LDFLAGS += -lcblas -framework Accelerate
|
||||
|
||||
ifeq ($(OSX_SIGNING_IDENTITY),)
|
||||
OSX_SIGNING_IDENTITY := $(shell security find-identity -v -p codesigning | grep '"' | head -n 1 | sed -E 's/.*"(.*)"/\1/')
|
||||
endif
|
||||
@@ -81,6 +81,12 @@ ifeq ($(OS),Darwin)
|
||||
# disable metal if on Darwin and any other value is explicitly passed.
|
||||
else ifneq ($(BUILD_TYPE),metal)
|
||||
CMAKE_ARGS+=-DLLAMA_METAL=OFF
|
||||
export LLAMA_NO_ACCELERATE=1
|
||||
endif
|
||||
|
||||
ifeq ($(BUILD_TYPE),metal)
|
||||
# -lcblas removed: it seems to always be listed as a duplicate flag.
|
||||
CGO_LDFLAGS += -framework Accelerate
|
||||
endif
|
||||
endif
|
||||
|
||||
@@ -89,10 +95,12 @@ ifeq ($(BUILD_TYPE),openblas)
|
||||
export WHISPER_OPENBLAS=1
|
||||
endif
|
||||
|
||||
|
||||
ifeq ($(BUILD_TYPE),cublas)
|
||||
CGO_LDFLAGS+=-lcublas -lcudart -L$(CUDA_LIBPATH)
|
||||
export LLAMA_CUBLAS=1
|
||||
export WHISPER_CUBLAS=1
|
||||
CGO_LDFLAGS_WHISPER+=-L$(CUDA_LIBPATH)/stubs/ -lcuda
|
||||
endif
|
||||
|
||||
ifeq ($(BUILD_TYPE),hipblas)
|
||||
@@ -146,15 +154,16 @@ endif
|
||||
|
||||
ALL_GRPC_BACKENDS=backend-assets/grpc/langchain-huggingface
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/bert-embeddings
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-ggml
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/gpt4all
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/rwkv
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/whisper
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/local-store
|
||||
ALL_GRPC_BACKENDS+=$(OPTIONAL_GRPC)
|
||||
|
||||
GRPC_BACKENDS?=$(ALL_GRPC_BACKENDS) $(OPTIONAL_GRPC)
|
||||
TEST_PATHS?=./api/... ./pkg/... ./core/...
|
||||
|
||||
# If empty, then we build all
|
||||
ifeq ($(GRPC_BACKENDS),)
|
||||
@@ -165,40 +174,41 @@ ifeq ($(BUILD_API_ONLY),true)
|
||||
GRPC_BACKENDS=
|
||||
endif
|
||||
|
||||
.PHONY: all test build vendor
|
||||
.PHONY: all test build vendor get-sources prepare-sources prepare
|
||||
|
||||
all: help
|
||||
|
||||
## GPT4ALL
|
||||
sources/gpt4all:
|
||||
git clone --recurse-submodules $(GPT4ALL_REPO) sources/gpt4all
|
||||
cd sources/gpt4all && git checkout -b build $(GPT4ALL_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
## go-piper
|
||||
sources/go-piper:
|
||||
git clone --recurse-submodules https://github.com/mudler/go-piper sources/go-piper
|
||||
cd sources/go-piper && git checkout -b build $(PIPER_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
## BERT embeddings
|
||||
sources/go-bert:
|
||||
git clone --recurse-submodules https://github.com/go-skynet/go-bert.cpp sources/go-bert
|
||||
cd sources/go-bert && git checkout -b build $(BERT_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
## stable diffusion
|
||||
sources/go-stable-diffusion:
|
||||
git clone --recurse-submodules https://github.com/mudler/go-stable-diffusion sources/go-stable-diffusion
|
||||
cd sources/go-stable-diffusion && git checkout -b build $(STABLEDIFFUSION_VERSION) && git submodule update --init --recursive --depth 1
|
||||
sources/go-bert/libgobert.a: sources/go-bert
|
||||
$(MAKE) -C sources/go-bert libgobert.a
|
||||
|
||||
sources/go-stable-diffusion/libstablediffusion.a:
|
||||
$(MAKE) -C sources/go-stable-diffusion libstablediffusion.a
|
||||
## go-llama-ggml
|
||||
sources/go-llama-ggml:
|
||||
git clone --recurse-submodules https://github.com/go-skynet/go-llama.cpp sources/go-llama-ggml
|
||||
cd sources/go-llama-ggml && git checkout -b build $(GOLLAMA_STABLE_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
## tiny-dream
|
||||
sources/go-tiny-dream:
|
||||
git clone --recurse-submodules https://github.com/M0Rf30/go-tiny-dream sources/go-tiny-dream
|
||||
cd sources/go-tiny-dream && git checkout -b build $(TINYDREAM_VERSION) && git submodule update --init --recursive --depth 1
|
||||
sources/go-llama-ggml/libbinding.a: sources/go-llama-ggml
|
||||
$(MAKE) -C sources/go-llama-ggml BUILD_TYPE=$(STABLE_BUILD_TYPE) libbinding.a
|
||||
|
||||
sources/go-tiny-dream/libtinydream.a:
|
||||
$(MAKE) -C sources/go-tiny-dream libtinydream.a
|
||||
## go-piper
|
||||
sources/go-piper:
|
||||
git clone --recurse-submodules https://github.com/mudler/go-piper sources/go-piper
|
||||
cd sources/go-piper && git checkout -b build $(PIPER_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
sources/go-piper/libpiper_binding.a: sources/go-piper
|
||||
$(MAKE) -C sources/go-piper libpiper_binding.a example/main piper.o
|
||||
|
||||
## GPT4ALL
|
||||
sources/gpt4all:
|
||||
git clone --recurse-submodules $(GPT4ALL_REPO) sources/gpt4all
|
||||
cd sources/gpt4all && git checkout -b build $(GPT4ALL_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a: sources/gpt4all
|
||||
$(MAKE) -C sources/gpt4all/gpt4all-bindings/golang/ libgpt4all.a
|
||||
|
||||
## RWKV
|
||||
sources/go-rwkv:
|
||||
@@ -208,23 +218,23 @@ sources/go-rwkv:
|
||||
sources/go-rwkv/librwkv.a: sources/go-rwkv
|
||||
cd sources/go-rwkv && cd rwkv.cpp && cmake . -DRWKV_BUILD_SHARED_LIBRARY=OFF && cmake --build . && cp librwkv.a ..
|
||||
|
||||
sources/go-bert/libgobert.a: sources/go-bert
|
||||
$(MAKE) -C sources/go-bert libgobert.a
|
||||
## stable diffusion
|
||||
sources/go-stable-diffusion:
|
||||
git clone --recurse-submodules https://github.com/mudler/go-stable-diffusion sources/go-stable-diffusion
|
||||
cd sources/go-stable-diffusion && git checkout -b build $(STABLEDIFFUSION_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
backend-assets/gpt4all: sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a
|
||||
mkdir -p backend-assets/gpt4all
|
||||
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.so backend-assets/gpt4all/ || true
|
||||
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.dylib backend-assets/gpt4all/ || true
|
||||
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.dll backend-assets/gpt4all/ || true
|
||||
sources/go-stable-diffusion/libstablediffusion.a: sources/go-stable-diffusion
|
||||
$(MAKE) -C sources/go-stable-diffusion libstablediffusion.a
|
||||
|
||||
backend-assets/espeak-ng-data: sources/go-piper
|
||||
mkdir -p backend-assets/espeak-ng-data
|
||||
$(MAKE) -C sources/go-piper piper.o
|
||||
@cp -rf sources/go-piper/piper-phonemize/pi/share/espeak-ng-data/. backend-assets/espeak-ng-data
|
||||
## tiny-dream
|
||||
sources/go-tiny-dream:
|
||||
git clone --recurse-submodules https://github.com/M0Rf30/go-tiny-dream sources/go-tiny-dream
|
||||
cd sources/go-tiny-dream && git checkout -b build $(TINYDREAM_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a: sources/gpt4all
|
||||
$(MAKE) -C sources/gpt4all/gpt4all-bindings/golang/ libgpt4all.a
|
||||
sources/go-tiny-dream/libtinydream.a: sources/go-tiny-dream
|
||||
$(MAKE) -C sources/go-tiny-dream libtinydream.a
|
||||
|
||||
## whisper
|
||||
sources/whisper.cpp:
|
||||
git clone https://github.com/ggerganov/whisper.cpp.git sources/whisper.cpp
|
||||
cd sources/whisper.cpp && git checkout -b build $(WHISPER_CPP_VERSION) && git submodule update --init --recursive --depth 1
|
||||
@@ -232,47 +242,34 @@ sources/whisper.cpp:
|
||||
sources/whisper.cpp/libwhisper.a: sources/whisper.cpp
|
||||
cd sources/whisper.cpp && make libwhisper.a
|
||||
|
||||
sources/go-llama:
|
||||
git clone --recurse-submodules https://github.com/go-skynet/go-llama.cpp sources/go-llama
|
||||
cd sources/go-llama && git checkout -b build $(GOLLAMA_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
sources/go-llama-ggml:
|
||||
git clone --recurse-submodules https://github.com/go-skynet/go-llama.cpp sources/go-llama-ggml
|
||||
cd sources/go-llama-ggml && git checkout -b build $(GOLLAMA_STABLE_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
sources/go-llama/libbinding.a: sources/go-llama
|
||||
$(MAKE) -C sources/go-llama BUILD_TYPE=$(BUILD_TYPE) libbinding.a
|
||||
|
||||
sources/go-llama-ggml/libbinding.a: sources/go-llama-ggml
|
||||
$(MAKE) -C sources/go-llama-ggml BUILD_TYPE=$(STABLE_BUILD_TYPE) libbinding.a
|
||||
|
||||
sources/go-piper/libpiper_binding.a: sources/go-piper
|
||||
$(MAKE) -C sources/go-piper libpiper_binding.a example/main
|
||||
|
||||
backend/cpp/llama/llama.cpp:
|
||||
LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama llama.cpp
|
||||
|
||||
get-sources: backend/cpp/llama/llama.cpp sources/go-llama sources/go-llama-ggml sources/gpt4all sources/go-piper sources/go-rwkv sources/whisper.cpp sources/go-bert sources/go-stable-diffusion sources/go-tiny-dream
|
||||
touch $@
|
||||
get-sources: sources/go-llama-ggml sources/gpt4all sources/go-piper sources/go-rwkv sources/whisper.cpp sources/go-bert sources/go-stable-diffusion sources/go-tiny-dream
|
||||
|
||||
replace:
|
||||
$(GOCMD) mod edit -replace github.com/nomic-ai/gpt4all/gpt4all-bindings/golang=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang
|
||||
$(GOCMD) mod edit -replace github.com/donomii/go-rwkv.cpp=$(CURDIR)/sources/go-rwkv
|
||||
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp=$(CURDIR)/sources/whisper.cpp
|
||||
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp/bindings/go=$(CURDIR)/sources/whisper.cpp/bindings/go
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/go-bert.cpp=$(CURDIR)/sources/go-bert
|
||||
$(GOCMD) mod edit -replace github.com/mudler/go-stable-diffusion=$(CURDIR)/sources/go-stable-diffusion
|
||||
$(GOCMD) mod edit -replace github.com/M0Rf30/go-tiny-dream=$(CURDIR)/sources/go-tiny-dream
|
||||
$(GOCMD) mod edit -replace github.com/mudler/go-piper=$(CURDIR)/sources/go-piper
|
||||
$(GOCMD) mod edit -replace github.com/mudler/go-stable-diffusion=$(CURDIR)/sources/go-stable-diffusion
|
||||
$(GOCMD) mod edit -replace github.com/nomic-ai/gpt4all/gpt4all-bindings/golang=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang
|
||||
|
||||
dropreplace:
|
||||
$(GOCMD) mod edit -dropreplace github.com/donomii/go-rwkv.cpp
|
||||
$(GOCMD) mod edit -dropreplace github.com/ggerganov/whisper.cpp
|
||||
$(GOCMD) mod edit -dropreplace github.com/ggerganov/whisper.cpp/bindings/go
|
||||
$(GOCMD) mod edit -dropreplace github.com/go-skynet/go-bert.cpp
|
||||
$(GOCMD) mod edit -dropreplace github.com/M0Rf30/go-tiny-dream
|
||||
$(GOCMD) mod edit -dropreplace github.com/mudler/go-piper
|
||||
$(GOCMD) mod edit -dropreplace github.com/mudler/go-stable-diffusion
|
||||
$(GOCMD) mod edit -dropreplace github.com/nomic-ai/gpt4all/gpt4all-bindings/golang
|
||||
|
||||
prepare-sources: get-sources replace
|
||||
$(GOCMD) mod download
|
||||
touch $@
|
||||
|
||||
## GENERIC
|
||||
rebuild: ## Rebuilds the project
|
||||
$(GOCMD) clean -cache
|
||||
$(MAKE) -C sources/go-llama clean
|
||||
$(MAKE) -C sources/go-llama-ggml clean
|
||||
$(MAKE) -C sources/gpt4all/gpt4all-bindings/golang/ clean
|
||||
$(MAKE) -C sources/go-rwkv clean
|
||||
@@ -284,7 +281,6 @@ rebuild: ## Rebuilds the project
|
||||
$(MAKE) build
|
||||
|
||||
prepare: prepare-sources $(OPTIONAL_TARGETS)
|
||||
touch $@
|
||||
|
||||
clean: ## Remove build related file
|
||||
$(GOCMD) clean -cache
|
||||
@@ -295,10 +291,15 @@ clean: ## Remove build related file
|
||||
rm -rf backend-assets
|
||||
$(MAKE) -C backend/cpp/grpc clean
|
||||
$(MAKE) -C backend/cpp/llama clean
|
||||
$(MAKE) dropreplace
|
||||
|
||||
clean-tests:
|
||||
rm -rf test-models
|
||||
rm -rf test-dir
|
||||
rm -rf core/http/backend-assets
|
||||
|
||||
## Build:
|
||||
|
||||
build: backend-assets grpcs prepare ## Build the project
|
||||
build: prepare backend-assets grpcs ## Build the project
|
||||
$(info ${GREEN}I local-ai build info:${RESET})
|
||||
$(info ${GREEN}I BUILD_TYPE: ${YELLOW}$(BUILD_TYPE)${RESET})
|
||||
$(info ${GREEN}I GO_TAGS: ${YELLOW}$(GO_TAGS)${RESET})
|
||||
@@ -316,10 +317,10 @@ osx-signed: build
|
||||
run: prepare ## run local-ai
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" $(GOCMD) run ./
|
||||
|
||||
test-models/testmodel:
|
||||
test-models/testmodel.ggml:
|
||||
mkdir test-models
|
||||
mkdir test-dir
|
||||
wget -q https://huggingface.co/TheBloke/orca_mini_3B-GGML/resolve/main/orca-mini-3b.ggmlv3.q4_0.bin -O test-models/testmodel
|
||||
wget -q https://huggingface.co/TheBloke/orca_mini_3B-GGML/resolve/main/orca-mini-3b.ggmlv3.q4_0.bin -O test-models/testmodel.ggml
|
||||
wget -q https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.en.bin -O test-models/whisper-en
|
||||
wget -q https://huggingface.co/mudler/all-MiniLM-L6-v2/resolve/main/ggml-model-q4_0.bin -O test-models/bert
|
||||
wget -q https://cdn.openai.com/whisper/draft-20220913a/micro-machines.wav -O test-dir/audio.wav
|
||||
@@ -328,15 +329,15 @@ test-models/testmodel:
|
||||
cp tests/models_fixtures/* test-models
|
||||
|
||||
prepare-test: grpcs
|
||||
cp -rf backend-assets api
|
||||
cp -rf backend-assets core/http
|
||||
cp tests/models_fixtures/* test-models
|
||||
|
||||
test: prepare test-models/testmodel grpcs
|
||||
test: prepare test-models/testmodel.ggml grpcs
|
||||
@echo 'Running tests'
|
||||
export GO_TAGS="tts stablediffusion"
|
||||
export GO_TAGS="tts stablediffusion debug"
|
||||
$(MAKE) prepare-test
|
||||
HUGGINGFACE_GRPC=$(abspath ./)/backend/python/sentencetransformers/run.sh TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="!gpt4all && !llama && !llama-gguf" --flake-attempts 5 --fail-fast -v -r ./api ./pkg
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="!gpt4all && !llama && !llama-gguf" --flake-attempts $(TEST_FLAKES) --fail-fast -v -r $(TEST_PATHS)
|
||||
$(MAKE) test-gpt4all
|
||||
$(MAKE) test-llama
|
||||
$(MAKE) test-llama-gguf
|
||||
@@ -353,6 +354,10 @@ run-e2e-image:
|
||||
ls -liah $(abspath ./tests/e2e-fixtures)
|
||||
docker run -p 5390:8080 -e MODELS_PATH=/models -e THREADS=1 -e DEBUG=true -d --rm -v $(TEST_DIR):/models --gpus all --name e2e-tests-$(RANDOM) localai-tests
|
||||
|
||||
run-e2e-aio:
|
||||
@echo 'Running e2e AIO tests'
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts 5 -v -r ./tests/e2e-aio
|
||||
|
||||
test-e2e:
|
||||
@echo 'Running e2e tests'
|
||||
BUILD_TYPE=$(BUILD_TYPE) \
|
||||
@@ -365,23 +370,28 @@ teardown-e2e:
|
||||
|
||||
test-gpt4all: prepare-test
|
||||
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="gpt4all" --flake-attempts 5 -v -r ./api ./pkg
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="gpt4all" --flake-attempts 5 -v -r $(TEST_PATHS)
|
||||
|
||||
test-llama: prepare-test
|
||||
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama" --flake-attempts 5 -v -r ./api ./pkg
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama" --flake-attempts 5 -v -r $(TEST_PATHS)
|
||||
|
||||
test-llama-gguf: prepare-test
|
||||
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama-gguf" --flake-attempts 5 -v -r ./api ./pkg
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama-gguf" --flake-attempts 5 -v -r $(TEST_PATHS)
|
||||
|
||||
test-tts: prepare-test
|
||||
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="tts" --flake-attempts 1 -v -r ./api ./pkg
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="tts" --flake-attempts 1 -v -r $(TEST_PATHS)
|
||||
|
||||
test-stablediffusion: prepare-test
|
||||
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="stablediffusion" --flake-attempts 1 -v -r ./api ./pkg
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="stablediffusion" --flake-attempts 1 -v -r $(TEST_PATHS)
|
||||
|
||||
test-stores: backend-assets/grpc/local-store
|
||||
mkdir -p tests/integration/backend-assets/grpc
|
||||
cp -f backend-assets/grpc/local-store tests/integration/backend-assets/grpc/
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="stores" --flake-attempts 1 -v -r tests/integration
|
||||
|
||||
test-container:
|
||||
docker build --target requirements -t local-ai-test-container .
|
||||
@@ -451,91 +461,94 @@ ifeq ($(BUILD_API_ONLY),true)
|
||||
touch backend-assets/keep
|
||||
endif
|
||||
|
||||
backend-assets/grpc:
|
||||
backend-assets/espeak-ng-data: sources/go-piper sources/go-piper/libpiper_binding.a
|
||||
mkdir -p backend-assets/espeak-ng-data
|
||||
@cp -rf sources/go-piper/piper-phonemize/pi/share/espeak-ng-data/. backend-assets/espeak-ng-data
|
||||
|
||||
backend-assets/gpt4all: sources/gpt4all sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a
|
||||
mkdir -p backend-assets/gpt4all
|
||||
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.so backend-assets/gpt4all/ || true
|
||||
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.dylib backend-assets/gpt4all/ || true
|
||||
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.dll backend-assets/gpt4all/ || true
|
||||
|
||||
backend-assets/grpc: replace
|
||||
mkdir -p backend-assets/grpc
|
||||
|
||||
backend-assets/grpc/llama: backend-assets/grpc sources/go-llama/libbinding.a
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(CURDIR)/sources/go-llama
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-llama LIBRARY_PATH=$(CURDIR)/sources/go-llama \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/llama ./backend/go/llm/llama/
|
||||
# TODO: every binary should have its own folder instead, so can have different implementations
|
||||
ifeq ($(BUILD_TYPE),metal)
|
||||
cp backend/cpp/llama/llama.cpp/ggml-metal.metal backend-assets/grpc/
|
||||
endif
|
||||
|
||||
## BACKEND CPP LLAMA START
|
||||
# Sets the variables in case it has to build the gRPC locally.
|
||||
INSTALLED_PACKAGES=$(CURDIR)/backend/cpp/grpc/installed_packages
|
||||
INSTALLED_LIB_CMAKE=$(INSTALLED_PACKAGES)/lib/cmake
|
||||
ADDED_CMAKE_ARGS=-Dabsl_DIR=${INSTALLED_LIB_CMAKE}/absl \
|
||||
-DProtobuf_DIR=${INSTALLED_LIB_CMAKE}/protobuf \
|
||||
-Dutf8_range_DIR=${INSTALLED_LIB_CMAKE}/utf8_range \
|
||||
-DgRPC_DIR=${INSTALLED_LIB_CMAKE}/grpc \
|
||||
-DCMAKE_CXX_STANDARD_INCLUDE_DIRECTORIES=${INSTALLED_PACKAGES}/include
|
||||
|
||||
backend/cpp/llama/grpc-server:
|
||||
ifdef BUILD_GRPC_FOR_BACKEND_LLAMA
|
||||
$(MAKE) -C backend/cpp/grpc build
|
||||
export _PROTOBUF_PROTOC=${INSTALLED_PACKAGES}/bin/proto && \
|
||||
export _GRPC_CPP_PLUGIN_EXECUTABLE=${INSTALLED_PACKAGES}/bin/grpc_cpp_plugin && \
|
||||
export PATH="${INSTALLED_PACKAGES}/bin:${PATH}" && \
|
||||
CMAKE_ARGS="${CMAKE_ARGS} ${ADDED_CMAKE_ARGS}" LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama grpc-server
|
||||
else
|
||||
echo "BUILD_GRPC_FOR_BACKEND_LLAMA is not defined."
|
||||
LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama grpc-server
|
||||
endif
|
||||
## BACKEND CPP LLAMA END
|
||||
|
||||
##
|
||||
backend-assets/grpc/llama-cpp: backend-assets/grpc backend/cpp/llama/grpc-server
|
||||
cp -rfv backend/cpp/llama/grpc-server backend-assets/grpc/llama-cpp
|
||||
# TODO: every binary should have its own folder instead, so can have different metal implementations
|
||||
ifeq ($(BUILD_TYPE),metal)
|
||||
cp backend/cpp/llama/llama.cpp/build/bin/ggml-metal.metal backend-assets/grpc/
|
||||
endif
|
||||
|
||||
backend-assets/grpc/llama-ggml: backend-assets/grpc sources/go-llama-ggml/libbinding.a
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(CURDIR)/sources/go-llama-ggml
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-llama-ggml LIBRARY_PATH=$(CURDIR)/sources/go-llama-ggml \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/llama-ggml ./backend/go/llm/llama-ggml/
|
||||
|
||||
backend-assets/grpc/gpt4all: backend-assets/grpc backend-assets/gpt4all sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang/ LIBRARY_PATH=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang/ \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/gpt4all ./backend/go/llm/gpt4all/
|
||||
|
||||
backend-assets/grpc/rwkv: backend-assets/grpc sources/go-rwkv/librwkv.a
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-rwkv LIBRARY_PATH=$(CURDIR)/sources/go-rwkv \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/rwkv ./backend/go/llm/rwkv
|
||||
|
||||
backend-assets/grpc/bert-embeddings: backend-assets/grpc sources/go-bert/libgobert.a
|
||||
backend-assets/grpc/bert-embeddings: sources/go-bert sources/go-bert/libgobert.a backend-assets/grpc
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-bert LIBRARY_PATH=$(CURDIR)/sources/go-bert \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/bert-embeddings ./backend/go/llm/bert/
|
||||
|
||||
backend-assets/grpc/gpt4all: sources/gpt4all sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a backend-assets/gpt4all backend-assets/grpc
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang/ LIBRARY_PATH=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang/ \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/gpt4all ./backend/go/llm/gpt4all/
|
||||
|
||||
backend-assets/grpc/langchain-huggingface: backend-assets/grpc
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/langchain-huggingface ./backend/go/llm/langchain/
|
||||
|
||||
backend-assets/grpc/stablediffusion: backend-assets/grpc
|
||||
if [ ! -f backend-assets/grpc/stablediffusion ]; then \
|
||||
$(MAKE) sources/go-stable-diffusion/libstablediffusion.a; \
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-stable-diffusion/ LIBRARY_PATH=$(CURDIR)/sources/go-stable-diffusion/ \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/stablediffusion ./backend/go/image/stablediffusion; \
|
||||
fi
|
||||
backend/cpp/llama/llama.cpp:
|
||||
LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama llama.cpp
|
||||
|
||||
backend-assets/grpc/tinydream: backend-assets/grpc sources/go-tiny-dream/libtinydream.a
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" LIBRARY_PATH=$(CURDIR)/go-tiny-dream \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/tinydream ./backend/go/image/tinydream
|
||||
INSTALLED_PACKAGES=$(CURDIR)/backend/cpp/grpc/installed_packages
|
||||
INSTALLED_LIB_CMAKE=$(INSTALLED_PACKAGES)/lib/cmake
|
||||
ADDED_CMAKE_ARGS=-Dabsl_DIR=${INSTALLED_LIB_CMAKE}/absl \
|
||||
-DProtobuf_DIR=${INSTALLED_LIB_CMAKE}/protobuf \
|
||||
-Dutf8_range_DIR=${INSTALLED_LIB_CMAKE}/utf8_range \
|
||||
-DgRPC_DIR=${INSTALLED_LIB_CMAKE}/grpc \
|
||||
-DCMAKE_CXX_STANDARD_INCLUDE_DIRECTORIES=${INSTALLED_PACKAGES}/include
|
||||
backend/cpp/llama/grpc-server:
|
||||
# Conditionally build grpc for the llama backend to use if needed
|
||||
ifdef BUILD_GRPC_FOR_BACKEND_LLAMA
|
||||
$(MAKE) -C backend/cpp/grpc build
|
||||
_PROTOBUF_PROTOC=${INSTALLED_PACKAGES}/bin/proto \
|
||||
_GRPC_CPP_PLUGIN_EXECUTABLE=${INSTALLED_PACKAGES}/bin/grpc_cpp_plugin \
|
||||
PATH="${INSTALLED_PACKAGES}/bin:${PATH}" \
|
||||
CMAKE_ARGS="${CMAKE_ARGS} ${ADDED_CMAKE_ARGS}" \
|
||||
LLAMA_VERSION=$(CPPLLAMA_VERSION) \
|
||||
$(MAKE) -C backend/cpp/llama grpc-server
|
||||
else
|
||||
echo "BUILD_GRPC_FOR_BACKEND_LLAMA is not defined."
|
||||
LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama grpc-server
|
||||
endif
|
||||
|
||||
backend-assets/grpc/piper: backend-assets/grpc backend-assets/espeak-ng-data sources/go-piper/libpiper_binding.a
|
||||
backend-assets/grpc/llama-cpp: backend-assets/grpc backend/cpp/llama/grpc-server
|
||||
cp -rfv backend/cpp/llama/grpc-server backend-assets/grpc/llama-cpp
|
||||
# TODO: every binary should have its own folder instead, so can have different metal implementations
|
||||
ifeq ($(BUILD_TYPE),metal)
|
||||
cp backend/cpp/llama/llama.cpp/build/bin/default.metallib backend-assets/grpc/
|
||||
endif
|
||||
|
||||
backend-assets/grpc/llama-ggml: sources/go-llama-ggml sources/go-llama-ggml/libbinding.a backend-assets/grpc
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(CURDIR)/sources/go-llama-ggml
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-llama-ggml LIBRARY_PATH=$(CURDIR)/sources/go-llama-ggml \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/llama-ggml ./backend/go/llm/llama-ggml/
|
||||
|
||||
backend-assets/grpc/piper: sources/go-piper sources/go-piper/libpiper_binding.a backend-assets/grpc backend-assets/espeak-ng-data
|
||||
CGO_CXXFLAGS="$(PIPER_CGO_CXXFLAGS)" CGO_LDFLAGS="$(PIPER_CGO_LDFLAGS)" LIBRARY_PATH=$(CURDIR)/sources/go-piper \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/piper ./backend/go/tts/
|
||||
|
||||
backend-assets/grpc/whisper: backend-assets/grpc sources/whisper.cpp/libwhisper.a
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/whisper.cpp LIBRARY_PATH=$(CURDIR)/sources/whisper.cpp \
|
||||
backend-assets/grpc/rwkv: sources/go-rwkv sources/go-rwkv/librwkv.a backend-assets/grpc
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-rwkv LIBRARY_PATH=$(CURDIR)/sources/go-rwkv \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/rwkv ./backend/go/llm/rwkv
|
||||
|
||||
backend-assets/grpc/stablediffusion: sources/go-stable-diffusion sources/go-stable-diffusion/libstablediffusion.a backend-assets/grpc
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-stable-diffusion/ LIBRARY_PATH=$(CURDIR)/sources/go-stable-diffusion/ \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/stablediffusion ./backend/go/image/stablediffusion
|
||||
|
||||
backend-assets/grpc/tinydream: sources/go-tiny-dream sources/go-tiny-dream/libtinydream.a backend-assets/grpc
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" LIBRARY_PATH=$(CURDIR)/go-tiny-dream \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/tinydream ./backend/go/image/tinydream
|
||||
|
||||
backend-assets/grpc/whisper: sources/whisper.cpp sources/whisper.cpp/libwhisper.a backend-assets/grpc
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS) $(CGO_LDFLAGS_WHISPER)" C_INCLUDE_PATH=$(CURDIR)/sources/whisper.cpp LIBRARY_PATH=$(CURDIR)/sources/whisper.cpp \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/whisper ./backend/go/transcribe/
|
||||
|
||||
backend-assets/grpc/local-store: backend-assets/grpc
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/local-store ./backend/go/stores/
|
||||
|
||||
grpcs: prepare $(GRPC_BACKENDS)
|
||||
|
||||
DOCKER_IMAGE?=local-ai
|
||||
DOCKER_AIO_IMAGE?=local-ai-aio
|
||||
IMAGE_TYPE?=core
|
||||
BASE_IMAGE?=ubuntu:22.04
|
||||
|
||||
@@ -546,6 +559,16 @@ docker:
|
||||
--build-arg GO_TAGS=$(GO_TAGS) \
|
||||
--build-arg BUILD_TYPE=$(BUILD_TYPE) \
|
||||
-t $(DOCKER_IMAGE) .
|
||||
|
||||
docker-aio:
|
||||
@echo "Building AIO image with base $(BASE_IMAGE) as $(DOCKER_AIO_IMAGE)"
|
||||
docker build \
|
||||
--build-arg BASE_IMAGE=$(BASE_IMAGE) \
|
||||
-t $(DOCKER_AIO_IMAGE) -f Dockerfile.aio .
|
||||
|
||||
docker-aio-all:
|
||||
$(MAKE) docker-aio DOCKER_AIO_SIZE=cpu
|
||||
$(MAKE) docker-aio DOCKER_AIO_SIZE=cpu
|
||||
|
||||
docker-image-intel:
|
||||
docker build \
|
||||
@@ -553,3 +576,10 @@ docker-image-intel:
|
||||
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
|
||||
--build-arg GO_TAGS="none" \
|
||||
--build-arg BUILD_TYPE=sycl_f32 -t $(DOCKER_IMAGE) .
|
||||
|
||||
docker-image-intel-xpu:
|
||||
docker build \
|
||||
--build-arg BASE_IMAGE=intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04 \
|
||||
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
|
||||
--build-arg GO_TAGS="none" \
|
||||
--build-arg BUILD_TYPE=sycl_f32 -t $(DOCKER_IMAGE) .
|
||||
|
||||
46
README.md
46
README.md
@@ -20,14 +20,14 @@
|
||||
</a>
|
||||
</p>
|
||||
|
||||
[<img src="https://img.shields.io/badge/dockerhub-images-important.svg?logo=Docker">](https://hub.docker.com/r/localai/localai)
|
||||
[<img src="https://img.shields.io/badge/quay.io-images-important.svg?">](https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest)
|
||||
|
||||
> :bulb: Get help - [❓FAQ](https://localai.io/faq/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [:speech_balloon: Discord](https://discord.gg/uJAeKSAGDy) [:book: Documentation website](https://localai.io/)
|
||||
>
|
||||
> [💻 Quickstart](https://localai.io/basics/getting_started/) [📣 News](https://localai.io/basics/news/) [ 🛫 Examples ](https://github.com/go-skynet/LocalAI/tree/master/examples/) [ 🖼️ Models ](https://localai.io/models/) [ 🚀 Roadmap ](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
|
||||
|
||||
[](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml)[](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml)[](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml)[](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml)[](https://artifacthub.io/packages/search?repo=localai)
|
||||
<p align="center">
|
||||
<a href="https://hub.docker.com/r/localai/localai" target="blank">
|
||||
<img src="https://img.shields.io/badge/dockerhub-images-important.svg?logo=Docker" alt="LocalAI Docker hub"/>
|
||||
</a>
|
||||
<a href="https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest" target="blank">
|
||||
<img src="https://img.shields.io/badge/quay.io-images-important.svg?" alt="LocalAI Quay.io"/>
|
||||
</a>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://twitter.com/LocalAI_API" target="blank">
|
||||
@@ -36,20 +36,24 @@
|
||||
<a href="https://discord.gg/uJAeKSAGDy" target="blank">
|
||||
<img src="https://dcbadge.vercel.app/api/server/uJAeKSAGDy?style=flat-square&theme=default-inverted" alt="Join LocalAI Discord Community"/>
|
||||
</a>
|
||||
</p>
|
||||
|
||||
**LocalAI** is the free, Open Source OpenAI alternative. LocalAI act as a drop-in replacement REST API that’s compatible with OpenAI API specifications for local inferencing. It allows you to run LLMs, generate images, audio (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families. Does not require GPU.
|
||||
[](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml)[](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml)[](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml)[](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml)[](https://artifacthub.io/packages/search?repo=localai)
|
||||
|
||||
**LocalAI** is the free, Open Source OpenAI alternative. LocalAI act as a drop-in replacement REST API that’s compatible with OpenAI (Elevenlabs, Anthropic... ) API specifications for local AI inferencing. It allows you to run LLMs, generate images, audio (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families. Does not require GPU.
|
||||
|
||||
## 🔥🔥 Hot topics / Roadmap
|
||||
|
||||
[Roadmap](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
|
||||
|
||||
- Vector store: https://github.com/mudler/LocalAI/pull/1795
|
||||
- All-in-one container image: https://github.com/mudler/LocalAI/issues/1855
|
||||
- Parallel function calling: https://github.com/mudler/LocalAI/pull/1726
|
||||
- Upload file API: https://github.com/mudler/LocalAI/pull/1703
|
||||
- Tools API support: https://github.com/mudler/LocalAI/pull/1715
|
||||
- LLaVa 1.6: https://github.com/mudler/LocalAI/pull/1714
|
||||
- ROCm container images: https://github.com/mudler/LocalAI/pull/1595
|
||||
- Intel GPU support (sycl): https://github.com/mudler/LocalAI/issues/1653
|
||||
- Deprecation of old backends: https://github.com/mudler/LocalAI/issues/1651
|
||||
- Intel GPU support (sycl, transformers, diffusers): https://github.com/mudler/LocalAI/issues/1653
|
||||
- Mamba support: https://github.com/mudler/LocalAI/pull/1589
|
||||
- Start and share models with config file: https://github.com/mudler/LocalAI/pull/1522
|
||||
- 🐸 Coqui: https://github.com/mudler/LocalAI/pull/1489
|
||||
@@ -59,15 +63,21 @@ Hot topics (looking for contributors):
|
||||
- Backends v2: https://github.com/mudler/LocalAI/issues/1126
|
||||
- Improving UX v2: https://github.com/mudler/LocalAI/issues/1373
|
||||
- Assistant API: https://github.com/mudler/LocalAI/issues/1273
|
||||
|
||||
- Moderation endpoint: https://github.com/mudler/LocalAI/issues/999
|
||||
- Vulkan: https://github.com/mudler/LocalAI/issues/1647
|
||||
|
||||
If you want to help and contribute, issues up for grabs: https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3A%22up+for+grabs%22
|
||||
|
||||
## 💻 [Getting started](https://localai.io/basics/getting_started/index.html)
|
||||
|
||||
For a detailed step-by-step introduction, refer to the [Getting Started](https://localai.io/basics/getting_started/index.html) guide. For those in a hurry, here's a straightforward one-liner to launch a LocalAI instance with [phi-2](https://huggingface.co/microsoft/phi-2) using `docker`:
|
||||
For a detailed step-by-step introduction, refer to the [Getting Started](https://localai.io/basics/getting_started/index.html) guide.
|
||||
|
||||
```
|
||||
docker run -ti -p 8080:8080 localai/localai:v2.7.0-ffmpeg-core phi-2
|
||||
For those in a hurry, here's a straightforward one-liner to launch a LocalAI AIO(All-in-one) Image using `docker`:
|
||||
|
||||
```bash
|
||||
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-aio-cpu
|
||||
# or, if you have an Nvidia GPU:
|
||||
# docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-aio-gpu-cuda12
|
||||
```
|
||||
|
||||
## 🚀 [Features](https://localai.io/features/)
|
||||
@@ -97,9 +107,6 @@ WebUIs:
|
||||
|
||||
Model galleries
|
||||
- https://github.com/go-skynet/model-gallery
|
||||
|
||||
UI / Management Programs
|
||||
- [LocalAI Manager](https://io.midori-ai.xyz/howtos/easy-model-installer/)
|
||||
|
||||
Other:
|
||||
- Helm chart https://github.com/go-skynet/helm-charts
|
||||
@@ -110,6 +117,7 @@ Other:
|
||||
- Slack bot https://github.com/mudler/LocalAGI/tree/main/examples/slack
|
||||
- Telegram bot https://github.com/mudler/LocalAI/tree/master/examples/telegram-bot
|
||||
- Examples: https://github.com/mudler/LocalAI/tree/master/examples/
|
||||
|
||||
|
||||
### 🔗 Resources
|
||||
|
||||
@@ -121,6 +129,8 @@ Other:
|
||||
|
||||
## :book: 🎥 [Media, Blogs, Social](https://localai.io/basics/news/#media-blogs-social)
|
||||
|
||||
- [Run LocalAI on AWS EKS with Pulumi](https://www.pulumi.com/ai/answers/tiZMDoZzZV6TLxgDXNBnFE/deploying-helm-charts-on-aws-eks)
|
||||
- [Run LocalAI on AWS](https://staleks.hashnode.dev/installing-localai-on-aws-ec2-instance)
|
||||
- [Create a slackbot for teams and OSS projects that answer to documentation](https://mudler.pm/posts/smart-slackbot-for-teams/)
|
||||
- [LocalAI meets k8sgpt](https://www.youtube.com/watch?v=PKrDNuJ_dfE)
|
||||
- [Question Answering on Documents locally with LangChain, LocalAI, Chroma, and GPT4All](https://mudler.pm/posts/localai-question-answering/)
|
||||
|
||||
42
SECURITY.md
Normal file
42
SECURITY.md
Normal file
@@ -0,0 +1,42 @@
|
||||
# Security Policy
|
||||
|
||||
## Introduction
|
||||
|
||||
At LocalAI, we take the security of our software seriously. We understand the importance of protecting our community from vulnerabilities and are committed to ensuring the safety and security of our users.
|
||||
|
||||
## Supported Versions
|
||||
|
||||
We provide support and updates for certain versions of our software. The following table outlines which versions are currently supported with security updates:
|
||||
|
||||
| Version | Supported |
|
||||
| ------- | ------------------ |
|
||||
| > 2.0 | :white_check_mark: |
|
||||
| < 2.0 | :x: |
|
||||
|
||||
Please ensure that you are using a supported version to receive the latest security updates.
|
||||
|
||||
## Reporting a Vulnerability
|
||||
|
||||
We encourage the responsible disclosure of any security vulnerabilities. If you believe you've found a security issue in our software, we kindly ask you to follow the steps below to report it to us:
|
||||
|
||||
1. **Email Us:** Send an email to [security@localai.io](mailto:security@localai.io) with a detailed report. Please do not disclose the vulnerability publicly or to any third parties before it has been addressed by us.
|
||||
|
||||
2. **Expect a Response:** We aim to acknowledge receipt of vulnerability reports within 48 hours. Our security team will review your report and work closely with you to understand the impact and ensure a thorough investigation.
|
||||
|
||||
3. **Collaboration:** If the vulnerability is accepted, we will work with you and our community to address the issue promptly. We'll keep you informed throughout the resolution process and may request additional information or collaboration.
|
||||
|
||||
4. **Disclosure:** Once the vulnerability has been resolved, we encourage a coordinated disclosure. We believe in transparency and will work with you to ensure that our community is informed in a responsible manner.
|
||||
|
||||
## Use of Third-Party Platforms
|
||||
|
||||
As a Free and Open Source Software (FOSS) organization, we do not offer monetary bounties. However, researchers who wish to report vulnerabilities can also do so via [Huntr](https://huntr.dev/bounties), a platform that recognizes contributions to open source security.
|
||||
|
||||
## Contact
|
||||
|
||||
For any security-related inquiries beyond vulnerability reporting, please contact us at [security@localai.io](mailto:security@localai.io).
|
||||
|
||||
## Acknowledgments
|
||||
|
||||
We appreciate the efforts of those who contribute to the security of our project. Your responsible disclosure is invaluable to the safety and integrity of LocalAI.
|
||||
|
||||
Thank you for helping us keep LocalAI secure.
|
||||
5
aio/cpu/README.md
Normal file
5
aio/cpu/README.md
Normal file
@@ -0,0 +1,5 @@
|
||||
## AIO CPU size
|
||||
|
||||
Use this image with CPU-only.
|
||||
|
||||
Please keep using only C++ backends so the base image is as small as possible (without CUDA, cuDNN, python, etc).
|
||||
18
aio/cpu/embeddings.yaml
Normal file
18
aio/cpu/embeddings.yaml
Normal file
@@ -0,0 +1,18 @@
|
||||
backend: bert-embeddings
|
||||
embeddings: true
|
||||
f16: true
|
||||
|
||||
gpu_layers: 90
|
||||
mmap: true
|
||||
name: text-embedding-ada-002
|
||||
|
||||
parameters:
|
||||
model: huggingface://mudler/all-MiniLM-L6-v2/ggml-model-q4_0.bin
|
||||
|
||||
usage: |
|
||||
You can test this model with curl like this:
|
||||
|
||||
curl http://localhost:8080/embeddings -X POST -H "Content-Type: application/json" -d '{
|
||||
"input": "Your text string goes here",
|
||||
"model": "text-embedding-ada-002"
|
||||
}'
|
||||
53
aio/cpu/image-gen.yaml
Normal file
53
aio/cpu/image-gen.yaml
Normal file
@@ -0,0 +1,53 @@
|
||||
name: stablediffusion
|
||||
backend: stablediffusion
|
||||
parameters:
|
||||
model: stablediffusion_assets
|
||||
|
||||
license: "BSD-3"
|
||||
urls:
|
||||
- https://github.com/EdVince/Stable-Diffusion-NCNN
|
||||
- https://github.com/EdVince/Stable-Diffusion-NCNN/blob/main/LICENSE
|
||||
|
||||
description: |
|
||||
Stable Diffusion in NCNN with c++, supported txt2img and img2img
|
||||
|
||||
download_files:
|
||||
- filename: "stablediffusion_assets/AutoencoderKL-256-256-fp16-opt.param"
|
||||
sha256: "18ca4b66685e21406bcf64c484b3b680b4949900415536d599cc876579c85c82"
|
||||
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/AutoencoderKL-256-256-fp16-opt.param"
|
||||
- filename: "stablediffusion_assets/AutoencoderKL-512-512-fp16-opt.param"
|
||||
sha256: "cf45f63aacf3dbbab0f59ed92a6f2c14d9a1801314631cd3abe91e3c85639a20"
|
||||
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/AutoencoderKL-512-512-fp16-opt.param"
|
||||
- filename: "stablediffusion_assets/AutoencoderKL-base-fp16.param"
|
||||
sha256: "0254a056dce61b0c27dc9ec1b78b53bcf55315c540f55f051eb841aa992701ba"
|
||||
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/AutoencoderKL-base-fp16.param"
|
||||
- filename: "stablediffusion_assets/AutoencoderKL-encoder-512-512-fp16.bin"
|
||||
sha256: "ddcb79a9951b9f91e05e087739ed69da2c1c4ae30ba4168cce350b49d617c9fa"
|
||||
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/AutoencoderKL-encoder-512-512-fp16.bin"
|
||||
- filename: "stablediffusion_assets/AutoencoderKL-fp16.bin"
|
||||
sha256: "f02e71f80e70252734724bbfaed5c4ddd3a8ed7e61bb2175ff5f53099f0e35dd"
|
||||
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/AutoencoderKL-fp16.bin"
|
||||
- filename: "stablediffusion_assets/FrozenCLIPEmbedder-fp16.bin"
|
||||
sha256: "1c9a12f4e1dd1b295a388045f7f28a2352a4d70c3dc96a542189a3dd7051fdd6"
|
||||
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/FrozenCLIPEmbedder-fp16.bin"
|
||||
- filename: "stablediffusion_assets/FrozenCLIPEmbedder-fp16.param"
|
||||
sha256: "471afbe678dd1fd3fe764ef9c6eccaccb0a7d7e601f27b462aa926b20eb368c9"
|
||||
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/FrozenCLIPEmbedder-fp16.param"
|
||||
- filename: "stablediffusion_assets/log_sigmas.bin"
|
||||
sha256: "a2089f8aa4c61f9c200feaec541ab3f5c94233b28deb6d5e8bcd974fa79b68ac"
|
||||
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/raw/main/x86/linux/assets/log_sigmas.bin"
|
||||
- filename: "stablediffusion_assets/UNetModel-256-256-MHA-fp16-opt.param"
|
||||
sha256: "a58c380229f09491776df837b7aa7adffc0a87821dc4708b34535da2e36e3da1"
|
||||
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/UNetModel-256-256-MHA-fp16-opt.param"
|
||||
- filename: "stablediffusion_assets/UNetModel-512-512-MHA-fp16-opt.param"
|
||||
sha256: "f12034067062827bd7f43d1d21888d1f03905401acf6c6eea22be23c259636fa"
|
||||
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/UNetModel-512-512-MHA-fp16-opt.param"
|
||||
- filename: "stablediffusion_assets/UNetModel-base-MHA-fp16.param"
|
||||
sha256: "696f6975de49f4325b53ce32aff81861a6d6c07cd9ce3f0aae2cc405350af38d"
|
||||
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/UNetModel-base-MHA-fp16.param"
|
||||
- filename: "stablediffusion_assets/UNetModel-MHA-fp16.bin"
|
||||
sha256: "d618918d011bfc1f644c0f2a33bf84931bd53b28a98492b0a8ed6f3a818852c3"
|
||||
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/UNetModel-MHA-fp16.bin"
|
||||
- filename: "stablediffusion_assets/vocab.txt"
|
||||
sha256: "e30e57b6f1e47616982ef898d8922be24e535b4fa3d0110477b3a6f02ebbae7d"
|
||||
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/vocab.txt"
|
||||
18
aio/cpu/speech-to-text.yaml
Normal file
18
aio/cpu/speech-to-text.yaml
Normal file
@@ -0,0 +1,18 @@
|
||||
name: whisper-1
|
||||
backend: whisper
|
||||
parameters:
|
||||
model: ggml-whisper-base.bin
|
||||
|
||||
usage: |
|
||||
## example audio file
|
||||
wget --quiet --show-progress -O gb1.ogg https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg
|
||||
|
||||
## Send the example audio file to the transcriptions endpoint
|
||||
curl http://localhost:8080/v1/audio/transcriptions \
|
||||
-H "Content-Type: multipart/form-data" \
|
||||
-F file="@$PWD/gb1.ogg" -F model="whisper-1"
|
||||
|
||||
download_files:
|
||||
- filename: "ggml-whisper-base.bin"
|
||||
sha256: "60ed5bc3dd14eea856493d334349b405782ddcaf0028d4b5df4088345fba2efe"
|
||||
uri: "https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.bin"
|
||||
15
aio/cpu/text-to-speech.yaml
Normal file
15
aio/cpu/text-to-speech.yaml
Normal file
@@ -0,0 +1,15 @@
|
||||
name: tts-1
|
||||
download_files:
|
||||
- filename: voice-en-us-amy-low.tar.gz
|
||||
uri: https://github.com/rhasspy/piper/releases/download/v0.0.2/voice-en-us-amy-low.tar.gz
|
||||
|
||||
parameters:
|
||||
model: en-us-amy-low.onnx
|
||||
|
||||
usage: |
|
||||
To test if this model works as expected, you can use the following curl command:
|
||||
|
||||
curl http://localhost:8080/tts -H "Content-Type: application/json" -d '{
|
||||
"model":"voice-en-us-amy-low",
|
||||
"input": "Hi, this is a test."
|
||||
}'
|
||||
25
aio/cpu/text-to-text.yaml
Normal file
25
aio/cpu/text-to-text.yaml
Normal file
@@ -0,0 +1,25 @@
|
||||
name: gpt-4
|
||||
mmap: true
|
||||
parameters:
|
||||
model: huggingface://l3utterfly/phi-2-layla-v1-chatml-gguf/phi-2-layla-v1-chatml-Q8_0.gguf
|
||||
|
||||
template:
|
||||
chat_message: |
|
||||
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "user"}}user{{end}}
|
||||
{{if .Content}}{{.Content}}{{end}}
|
||||
<|im_end|>
|
||||
chat: |
|
||||
{{.Input}}
|
||||
<|im_start|>assistant
|
||||
completion: |
|
||||
{{.Input}}
|
||||
context_size: 2048
|
||||
f16: true
|
||||
stopwords:
|
||||
- <|im_end|>
|
||||
- <dummy32000>
|
||||
usage: |
|
||||
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
|
||||
"model": "phi-2-chat",
|
||||
"messages": [{"role": "user", "content": "How are you doing?", "temperature": 0.1}]
|
||||
}'
|
||||
40
aio/cpu/vision.yaml
Normal file
40
aio/cpu/vision.yaml
Normal file
@@ -0,0 +1,40 @@
|
||||
backend: llama-cpp
|
||||
context_size: 4096
|
||||
f16: true
|
||||
|
||||
gpu_layers: 90
|
||||
mmap: true
|
||||
name: gpt-4-vision-preview
|
||||
|
||||
roles:
|
||||
user: "USER:"
|
||||
assistant: "ASSISTANT:"
|
||||
system: "SYSTEM:"
|
||||
|
||||
mmproj: bakllava-mmproj.gguf
|
||||
parameters:
|
||||
model: bakllava.gguf
|
||||
temperature: 0.2
|
||||
top_k: 40
|
||||
top_p: 0.95
|
||||
seed: -1
|
||||
mirostat: 2
|
||||
mirostat_eta: 1.0
|
||||
mirostat_tau: 1.0
|
||||
|
||||
template:
|
||||
chat: |
|
||||
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
|
||||
{{.Input}}
|
||||
ASSISTANT:
|
||||
|
||||
download_files:
|
||||
- filename: bakllava.gguf
|
||||
uri: huggingface://mys/ggml_bakllava-1/ggml-model-q4_k.gguf
|
||||
- filename: bakllava-mmproj.gguf
|
||||
uri: huggingface://mys/ggml_bakllava-1/mmproj-model-f16.gguf
|
||||
|
||||
usage: |
|
||||
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
|
||||
"model": "gpt-4-vision-preview",
|
||||
"messages": [{"role": "user", "content": [{"type":"text", "text": "What is in the image?"}, {"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }}], "temperature": 0.9}]}'
|
||||
113
aio/entrypoint.sh
Executable file
113
aio/entrypoint.sh
Executable file
@@ -0,0 +1,113 @@
|
||||
#!/bin/bash
|
||||
|
||||
echo "===> LocalAI All-in-One (AIO) container starting..."
|
||||
|
||||
GPU_ACCELERATION=false
|
||||
GPU_VENDOR=""
|
||||
|
||||
function detect_gpu() {
|
||||
case "$(uname -s)" in
|
||||
Linux)
|
||||
if lspci | grep -E 'VGA|3D' | grep -iq nvidia; then
|
||||
echo "NVIDIA GPU detected"
|
||||
# nvidia-smi should be installed in the container
|
||||
if nvidia-smi; then
|
||||
GPU_ACCELERATION=true
|
||||
GPU_VENDOR=nvidia
|
||||
else
|
||||
echo "NVIDIA GPU detected, but nvidia-smi is not installed. GPU acceleration will not be available."
|
||||
fi
|
||||
elif lspci | grep -E 'VGA|3D' | grep -iq amd; then
|
||||
echo "AMD GPU detected"
|
||||
# Check if ROCm is installed
|
||||
if [ -d /opt/rocm ]; then
|
||||
GPU_ACCELERATION=true
|
||||
GPU_VENDOR=amd
|
||||
else
|
||||
echo "AMD GPU detected, but ROCm is not installed. GPU acceleration will not be available."
|
||||
fi
|
||||
elif lspci | grep -E 'VGA|3D' | grep -iq intel; then
|
||||
echo "Intel GPU detected"
|
||||
if [ -d /opt/intel ]; then
|
||||
GPU_ACCELERATION=true
|
||||
else
|
||||
echo "Intel GPU detected, but Intel GPU drivers are not installed. GPU acceleration will not be available."
|
||||
fi
|
||||
elif lspci | grep -E 'VGA|3D' | grep -iq "Microsoft Corporation Device 008e"; then
|
||||
# We make the assumption this WSL2 cars is NVIDIA, then check for nvidia-smi
|
||||
# Make sure the container was run with `--gpus all` as the only required parameter
|
||||
echo "NVIDIA GPU detected via WSL2"
|
||||
# nvidia-smi should be installed in the container
|
||||
if nvidia-smi; then
|
||||
GPU_ACCELERATION=true
|
||||
GPU_VENDOR=nvidia
|
||||
else
|
||||
echo "NVIDIA GPU detected via WSL2, but nvidia-smi is not installed. GPU acceleration will not be available."
|
||||
fi
|
||||
fi
|
||||
;;
|
||||
Darwin)
|
||||
if system_profiler SPDisplaysDataType | grep -iq 'Metal'; then
|
||||
echo "Apple Metal supported GPU detected"
|
||||
GPU_ACCELERATION=true
|
||||
GPU_VENDOR=apple
|
||||
fi
|
||||
;;
|
||||
esac
|
||||
}
|
||||
|
||||
function detect_gpu_size() {
|
||||
# Attempting to find GPU memory size for NVIDIA GPUs
|
||||
if [ "$GPU_ACCELERATION" = true ] && [ "$GPU_VENDOR" = "nvidia" ]; then
|
||||
echo "NVIDIA GPU detected. Attempting to find memory size..."
|
||||
# Using head -n 1 to get the total memory of the 1st NVIDIA GPU detected.
|
||||
# If handling multiple GPUs is required in the future, this is the place to do it
|
||||
nvidia_sm=$(nvidia-smi --query-gpu=memory.total --format=csv,noheader,nounits | head -n 1)
|
||||
if [ ! -z "$nvidia_sm" ]; then
|
||||
echo "Total GPU Memory: $nvidia_sm MiB"
|
||||
# if bigger than 8GB, use 16GB
|
||||
#if [ "$nvidia_sm" -gt 8192 ]; then
|
||||
# GPU_SIZE=gpu-16g
|
||||
#else
|
||||
GPU_SIZE=gpu-8g
|
||||
#fi
|
||||
else
|
||||
echo "Unable to determine NVIDIA GPU memory size. Falling back to CPU."
|
||||
GPU_SIZE=gpu-8g
|
||||
fi
|
||||
|
||||
# Default to a generic GPU size until we implement GPU size detection for non NVIDIA GPUs
|
||||
elif [ "$GPU_ACCELERATION" = true ]; then
|
||||
echo "Non-NVIDIA GPU detected. Specific GPU memory size detection is not implemented."
|
||||
GPU_SIZE=gpu-8g
|
||||
|
||||
# default to cpu if GPU_SIZE is not set
|
||||
else
|
||||
echo "GPU acceleration is not enabled or supported. Defaulting to CPU."
|
||||
GPU_SIZE=cpu
|
||||
fi
|
||||
}
|
||||
|
||||
function check_vars() {
|
||||
if [ -z "$MODELS" ]; then
|
||||
echo "MODELS environment variable is not set. Please set it to a comma-separated list of model YAML files to load."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ -z "$SIZE" ]; then
|
||||
echo "SIZE environment variable is not set. Please set it to one of the following: cpu, gpu-8g, gpu-16g, apple"
|
||||
exit 1
|
||||
fi
|
||||
}
|
||||
|
||||
detect_gpu
|
||||
detect_gpu_size
|
||||
|
||||
SIZE="${SIZE:-$GPU_SIZE}" # default to cpu
|
||||
export MODELS="${MODELS:-/aio/${SIZE}/embeddings.yaml,/aio/${SIZE}/text-to-speech.yaml,/aio/${SIZE}/image-gen.yaml,/aio/${SIZE}/text-to-text.yaml,/aio/${SIZE}/speech-to-text.yaml,/aio/${SIZE}/vision.yaml}"
|
||||
|
||||
check_vars
|
||||
|
||||
echo "Starting LocalAI with the following models: $MODELS"
|
||||
|
||||
/build/entrypoint.sh "$@"
|
||||
13
aio/gpu-8g/embeddings.yaml
Normal file
13
aio/gpu-8g/embeddings.yaml
Normal file
@@ -0,0 +1,13 @@
|
||||
name: text-embedding-ada-002
|
||||
backend: sentencetransformers
|
||||
embeddings: true
|
||||
parameters:
|
||||
model: all-MiniLM-L6-v2
|
||||
|
||||
usage: |
|
||||
You can test this model with curl like this:
|
||||
|
||||
curl http://localhost:8080/embeddings -X POST -H "Content-Type: application/json" -d '{
|
||||
"input": "Your text string goes here",
|
||||
"model": "text-embedding-ada-002"
|
||||
}'
|
||||
26
aio/gpu-8g/image-gen.yaml
Normal file
26
aio/gpu-8g/image-gen.yaml
Normal file
@@ -0,0 +1,26 @@
|
||||
name: stablediffusion
|
||||
parameters:
|
||||
model: DreamShaper_8_pruned.safetensors
|
||||
backend: diffusers
|
||||
step: 25
|
||||
f16: true
|
||||
|
||||
diffusers:
|
||||
pipeline_type: StableDiffusionPipeline
|
||||
cuda: true
|
||||
enable_parameters: "negative_prompt,num_inference_steps"
|
||||
scheduler_type: "k_dpmpp_2m"
|
||||
|
||||
download_files:
|
||||
- filename: DreamShaper_8_pruned.safetensors
|
||||
uri: huggingface://Lykon/DreamShaper/DreamShaper_8_pruned.safetensors
|
||||
|
||||
usage: |
|
||||
curl http://localhost:8080/v1/images/generations \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"prompt": "<positive prompt>|<negative prompt>",
|
||||
"model": "dreamshaper",
|
||||
"step": 25,
|
||||
"size": "512x512"
|
||||
}'
|
||||
18
aio/gpu-8g/speech-to-text.yaml
Normal file
18
aio/gpu-8g/speech-to-text.yaml
Normal file
@@ -0,0 +1,18 @@
|
||||
name: whisper-1
|
||||
backend: whisper
|
||||
parameters:
|
||||
model: ggml-whisper-base.bin
|
||||
|
||||
usage: |
|
||||
## example audio file
|
||||
wget --quiet --show-progress -O gb1.ogg https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg
|
||||
|
||||
## Send the example audio file to the transcriptions endpoint
|
||||
curl http://localhost:8080/v1/audio/transcriptions \
|
||||
-H "Content-Type: multipart/form-data" \
|
||||
-F file="@$PWD/gb1.ogg" -F model="whisper-1"
|
||||
|
||||
download_files:
|
||||
- filename: "ggml-whisper-base.bin"
|
||||
sha256: "60ed5bc3dd14eea856493d334349b405782ddcaf0028d4b5df4088345fba2efe"
|
||||
uri: "https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.bin"
|
||||
15
aio/gpu-8g/text-to-speech.yaml
Normal file
15
aio/gpu-8g/text-to-speech.yaml
Normal file
@@ -0,0 +1,15 @@
|
||||
name: tts-1
|
||||
download_files:
|
||||
- filename: voice-en-us-amy-low.tar.gz
|
||||
uri: https://github.com/rhasspy/piper/releases/download/v0.0.2/voice-en-us-amy-low.tar.gz
|
||||
|
||||
parameters:
|
||||
model: en-us-amy-low.onnx
|
||||
|
||||
usage: |
|
||||
To test if this model works as expected, you can use the following curl command:
|
||||
|
||||
curl http://localhost:8080/tts -H "Content-Type: application/json" -d '{
|
||||
"model":"tts-1",
|
||||
"input": "Hi, this is a test."
|
||||
}'
|
||||
51
aio/gpu-8g/text-to-text.yaml
Normal file
51
aio/gpu-8g/text-to-text.yaml
Normal file
@@ -0,0 +1,51 @@
|
||||
name: gpt-4
|
||||
mmap: true
|
||||
parameters:
|
||||
model: huggingface://NousResearch/Hermes-2-Pro-Mistral-7B-GGUF/Hermes-2-Pro-Mistral-7B.Q6_K.gguf
|
||||
|
||||
roles:
|
||||
assistant_function_call: assistant
|
||||
function: tool
|
||||
template:
|
||||
chat_message: |
|
||||
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "function"}}{{.Role}}{{else if eq .RoleName "user"}}user{{end}}
|
||||
{{ if eq .RoleName "assistant_function_call" }}<tool_call>{{end}}
|
||||
{{ if eq .RoleName "function" }}<tool_result>{{end}}
|
||||
{{if .Content}}{{.Content}}{{end}}
|
||||
{{if .FunctionCall}}{{toJson .FunctionCall}}{{end}}
|
||||
{{ if eq .RoleName "assistant_function_call" }}</tool_call>{{end}}
|
||||
{{ if eq .RoleName "function" }}</tool_result>{{end}}
|
||||
<|im_end|>
|
||||
# https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B-GGUF#prompt-format-for-function-calling
|
||||
function: |
|
||||
<|im_start|>system
|
||||
You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
|
||||
<tools>
|
||||
{{range .Functions}}
|
||||
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
|
||||
{{end}}
|
||||
</tools>
|
||||
Use the following pydantic model json schema for each tool call you will make:
|
||||
{'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}
|
||||
For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
|
||||
<tool_call>
|
||||
{'arguments': <args-dict>, 'name': <function-name>}
|
||||
</tool_call><|im_end|>
|
||||
{{.Input}}
|
||||
<|im_start|>assistant
|
||||
<tool_call>
|
||||
chat: |
|
||||
{{.Input}}
|
||||
<|im_start|>assistant
|
||||
completion: |
|
||||
{{.Input}}
|
||||
context_size: 4096
|
||||
f16: true
|
||||
stopwords:
|
||||
- <|im_end|>
|
||||
- <dummy32000>
|
||||
usage: |
|
||||
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
|
||||
"model": "gpt-4",
|
||||
"messages": [{"role": "user", "content": "How are you doing?", "temperature": 0.1}]
|
||||
}'
|
||||
37
aio/gpu-8g/vision.yaml
Normal file
37
aio/gpu-8g/vision.yaml
Normal file
@@ -0,0 +1,37 @@
|
||||
backend: llama-cpp
|
||||
context_size: 4096
|
||||
f16: true
|
||||
|
||||
gpu_layers: 90
|
||||
mmap: true
|
||||
name: gpt-4-vision-preview
|
||||
|
||||
roles:
|
||||
user: "USER:"
|
||||
assistant: "ASSISTANT:"
|
||||
system: "SYSTEM:"
|
||||
|
||||
mmproj: llava-v1.6-7b-mmproj-f16.gguf
|
||||
parameters:
|
||||
model: llava-v1.6-mistral-7b.Q5_K_M.gguf
|
||||
temperature: 0.2
|
||||
top_k: 40
|
||||
top_p: 0.95
|
||||
seed: -1
|
||||
|
||||
template:
|
||||
chat: |
|
||||
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
|
||||
{{.Input}}
|
||||
ASSISTANT:
|
||||
|
||||
download_files:
|
||||
- filename: llava-v1.6-mistral-7b.Q5_K_M.gguf
|
||||
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/llava-v1.6-mistral-7b.Q5_K_M.gguf
|
||||
- filename: llava-v1.6-7b-mmproj-f16.gguf
|
||||
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/mmproj-model-f16.gguf
|
||||
|
||||
usage: |
|
||||
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
|
||||
"model": "gpt-4-vision-preview",
|
||||
"messages": [{"role": "user", "content": [{"type":"text", "text": "What is in the image?"}, {"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }}], "temperature": 0.9}]}'
|
||||
@@ -1,162 +0,0 @@
|
||||
package localai
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"strings"
|
||||
|
||||
config "github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/options"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/rs/zerolog/log"
|
||||
|
||||
gopsutil "github.com/shirou/gopsutil/v3/process"
|
||||
)
|
||||
|
||||
type BackendMonitorRequest struct {
|
||||
Model string `json:"model" yaml:"model"`
|
||||
}
|
||||
|
||||
type BackendMonitorResponse struct {
|
||||
MemoryInfo *gopsutil.MemoryInfoStat
|
||||
MemoryPercent float32
|
||||
CPUPercent float64
|
||||
}
|
||||
|
||||
type BackendMonitor struct {
|
||||
configLoader *config.ConfigLoader
|
||||
options *options.Option // Taking options in case we need to inspect ExternalGRPCBackends, though that's out of scope for now, hence the name.
|
||||
}
|
||||
|
||||
func NewBackendMonitor(configLoader *config.ConfigLoader, options *options.Option) BackendMonitor {
|
||||
return BackendMonitor{
|
||||
configLoader: configLoader,
|
||||
options: options,
|
||||
}
|
||||
}
|
||||
|
||||
func (bm *BackendMonitor) SampleLocalBackendProcess(model string) (*BackendMonitorResponse, error) {
|
||||
config, exists := bm.configLoader.GetConfig(model)
|
||||
var backend string
|
||||
if exists {
|
||||
backend = config.Model
|
||||
} else {
|
||||
// Last ditch effort: use it raw, see if a backend happens to match.
|
||||
backend = model
|
||||
}
|
||||
|
||||
if !strings.HasSuffix(backend, ".bin") {
|
||||
backend = fmt.Sprintf("%s.bin", backend)
|
||||
}
|
||||
|
||||
pid, err := bm.options.Loader.GetGRPCPID(backend)
|
||||
|
||||
if err != nil {
|
||||
log.Error().Msgf("model %s : failed to find pid %+v", model, err)
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// Name is slightly frightening but this does _not_ create a new process, rather it looks up an existing process by PID.
|
||||
backendProcess, err := gopsutil.NewProcess(int32(pid))
|
||||
|
||||
if err != nil {
|
||||
log.Error().Msgf("model %s [PID %d] : error getting process info %+v", model, pid, err)
|
||||
return nil, err
|
||||
}
|
||||
|
||||
memInfo, err := backendProcess.MemoryInfo()
|
||||
|
||||
if err != nil {
|
||||
log.Error().Msgf("model %s [PID %d] : error getting memory info %+v", model, pid, err)
|
||||
return nil, err
|
||||
}
|
||||
|
||||
memPercent, err := backendProcess.MemoryPercent()
|
||||
if err != nil {
|
||||
log.Error().Msgf("model %s [PID %d] : error getting memory percent %+v", model, pid, err)
|
||||
return nil, err
|
||||
}
|
||||
|
||||
cpuPercent, err := backendProcess.CPUPercent()
|
||||
if err != nil {
|
||||
log.Error().Msgf("model %s [PID %d] : error getting cpu percent %+v", model, pid, err)
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return &BackendMonitorResponse{
|
||||
MemoryInfo: memInfo,
|
||||
MemoryPercent: memPercent,
|
||||
CPUPercent: cpuPercent,
|
||||
}, nil
|
||||
}
|
||||
|
||||
func (bm BackendMonitor) getModelLoaderIDFromCtx(c *fiber.Ctx) (string, error) {
|
||||
input := new(BackendMonitorRequest)
|
||||
// Get input data from the request body
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
config, exists := bm.configLoader.GetConfig(input.Model)
|
||||
var backendId string
|
||||
if exists {
|
||||
backendId = config.Model
|
||||
} else {
|
||||
// Last ditch effort: use it raw, see if a backend happens to match.
|
||||
backendId = input.Model
|
||||
}
|
||||
|
||||
if !strings.HasSuffix(backendId, ".bin") {
|
||||
backendId = fmt.Sprintf("%s.bin", backendId)
|
||||
}
|
||||
|
||||
return backendId, nil
|
||||
}
|
||||
|
||||
func BackendMonitorEndpoint(bm BackendMonitor) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
|
||||
backendId, err := bm.getModelLoaderIDFromCtx(c)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
model := bm.options.Loader.CheckIsLoaded(backendId)
|
||||
if model == "" {
|
||||
return fmt.Errorf("backend %s is not currently loaded", backendId)
|
||||
}
|
||||
|
||||
status, rpcErr := model.GRPC(false, nil).Status(context.TODO())
|
||||
if rpcErr != nil {
|
||||
log.Warn().Msgf("backend %s experienced an error retrieving status info: %s", backendId, rpcErr.Error())
|
||||
val, slbErr := bm.SampleLocalBackendProcess(backendId)
|
||||
if slbErr != nil {
|
||||
return fmt.Errorf("backend %s experienced an error retrieving status info via rpc: %s, then failed local node process sample: %s", backendId, rpcErr.Error(), slbErr.Error())
|
||||
}
|
||||
return c.JSON(proto.StatusResponse{
|
||||
State: proto.StatusResponse_ERROR,
|
||||
Memory: &proto.MemoryUsageData{
|
||||
Total: val.MemoryInfo.VMS,
|
||||
Breakdown: map[string]uint64{
|
||||
"gopsutil-RSS": val.MemoryInfo.RSS,
|
||||
},
|
||||
},
|
||||
})
|
||||
}
|
||||
|
||||
return c.JSON(status)
|
||||
}
|
||||
}
|
||||
|
||||
func BackendShutdownEndpoint(bm BackendMonitor) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
backendId, err := bm.getModelLoaderIDFromCtx(c)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
return bm.options.Loader.ShutdownModel(backendId)
|
||||
}
|
||||
}
|
||||
@@ -1,326 +0,0 @@
|
||||
package localai
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"os"
|
||||
"slices"
|
||||
"strings"
|
||||
"sync"
|
||||
|
||||
json "github.com/json-iterator/go"
|
||||
"gopkg.in/yaml.v3"
|
||||
|
||||
config "github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/pkg/gallery"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/google/uuid"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
type galleryOp struct {
|
||||
req gallery.GalleryModel
|
||||
id string
|
||||
galleries []gallery.Gallery
|
||||
galleryName string
|
||||
}
|
||||
|
||||
type galleryOpStatus struct {
|
||||
FileName string `json:"file_name"`
|
||||
Error error `json:"error"`
|
||||
Processed bool `json:"processed"`
|
||||
Message string `json:"message"`
|
||||
Progress float64 `json:"progress"`
|
||||
TotalFileSize string `json:"file_size"`
|
||||
DownloadedFileSize string `json:"downloaded_size"`
|
||||
}
|
||||
|
||||
type galleryApplier struct {
|
||||
modelPath string
|
||||
sync.Mutex
|
||||
C chan galleryOp
|
||||
statuses map[string]*galleryOpStatus
|
||||
}
|
||||
|
||||
func NewGalleryService(modelPath string) *galleryApplier {
|
||||
return &galleryApplier{
|
||||
modelPath: modelPath,
|
||||
C: make(chan galleryOp),
|
||||
statuses: make(map[string]*galleryOpStatus),
|
||||
}
|
||||
}
|
||||
|
||||
func prepareModel(modelPath string, req gallery.GalleryModel, cm *config.ConfigLoader, downloadStatus func(string, string, string, float64)) error {
|
||||
|
||||
config, err := gallery.GetGalleryConfigFromURL(req.URL)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
config.Files = append(config.Files, req.AdditionalFiles...)
|
||||
|
||||
return gallery.InstallModel(modelPath, req.Name, &config, req.Overrides, downloadStatus)
|
||||
}
|
||||
|
||||
func (g *galleryApplier) updateStatus(s string, op *galleryOpStatus) {
|
||||
g.Lock()
|
||||
defer g.Unlock()
|
||||
g.statuses[s] = op
|
||||
}
|
||||
|
||||
func (g *galleryApplier) getStatus(s string) *galleryOpStatus {
|
||||
g.Lock()
|
||||
defer g.Unlock()
|
||||
|
||||
return g.statuses[s]
|
||||
}
|
||||
|
||||
func (g *galleryApplier) getAllStatus() map[string]*galleryOpStatus {
|
||||
g.Lock()
|
||||
defer g.Unlock()
|
||||
|
||||
return g.statuses
|
||||
}
|
||||
|
||||
func (g *galleryApplier) Start(c context.Context, cm *config.ConfigLoader) {
|
||||
go func() {
|
||||
for {
|
||||
select {
|
||||
case <-c.Done():
|
||||
return
|
||||
case op := <-g.C:
|
||||
utils.ResetDownloadTimers()
|
||||
|
||||
g.updateStatus(op.id, &galleryOpStatus{Message: "processing", Progress: 0})
|
||||
|
||||
// updates the status with an error
|
||||
updateError := func(e error) {
|
||||
g.updateStatus(op.id, &galleryOpStatus{Error: e, Processed: true, Message: "error: " + e.Error()})
|
||||
}
|
||||
|
||||
// displayDownload displays the download progress
|
||||
progressCallback := func(fileName string, current string, total string, percentage float64) {
|
||||
g.updateStatus(op.id, &galleryOpStatus{Message: "processing", FileName: fileName, Progress: percentage, TotalFileSize: total, DownloadedFileSize: current})
|
||||
utils.DisplayDownloadFunction(fileName, current, total, percentage)
|
||||
}
|
||||
|
||||
var err error
|
||||
// if the request contains a gallery name, we apply the gallery from the gallery list
|
||||
if op.galleryName != "" {
|
||||
if strings.Contains(op.galleryName, "@") {
|
||||
err = gallery.InstallModelFromGallery(op.galleries, op.galleryName, g.modelPath, op.req, progressCallback)
|
||||
} else {
|
||||
err = gallery.InstallModelFromGalleryByName(op.galleries, op.galleryName, g.modelPath, op.req, progressCallback)
|
||||
}
|
||||
} else {
|
||||
err = prepareModel(g.modelPath, op.req, cm, progressCallback)
|
||||
}
|
||||
|
||||
if err != nil {
|
||||
updateError(err)
|
||||
continue
|
||||
}
|
||||
|
||||
// Reload models
|
||||
err = cm.LoadConfigs(g.modelPath)
|
||||
if err != nil {
|
||||
updateError(err)
|
||||
continue
|
||||
}
|
||||
|
||||
err = cm.Preload(g.modelPath)
|
||||
if err != nil {
|
||||
updateError(err)
|
||||
continue
|
||||
}
|
||||
|
||||
g.updateStatus(op.id, &galleryOpStatus{Processed: true, Message: "completed", Progress: 100})
|
||||
}
|
||||
}
|
||||
}()
|
||||
}
|
||||
|
||||
type galleryModel struct {
|
||||
gallery.GalleryModel `yaml:",inline"` // https://github.com/go-yaml/yaml/issues/63
|
||||
ID string `json:"id"`
|
||||
}
|
||||
|
||||
func processRequests(modelPath, s string, cm *config.ConfigLoader, galleries []gallery.Gallery, requests []galleryModel) error {
|
||||
var err error
|
||||
for _, r := range requests {
|
||||
utils.ResetDownloadTimers()
|
||||
if r.ID == "" {
|
||||
err = prepareModel(modelPath, r.GalleryModel, cm, utils.DisplayDownloadFunction)
|
||||
} else {
|
||||
if strings.Contains(r.ID, "@") {
|
||||
err = gallery.InstallModelFromGallery(
|
||||
galleries, r.ID, modelPath, r.GalleryModel, utils.DisplayDownloadFunction)
|
||||
} else {
|
||||
err = gallery.InstallModelFromGalleryByName(
|
||||
galleries, r.ID, modelPath, r.GalleryModel, utils.DisplayDownloadFunction)
|
||||
}
|
||||
}
|
||||
}
|
||||
return err
|
||||
}
|
||||
|
||||
func ApplyGalleryFromFile(modelPath, s string, cm *config.ConfigLoader, galleries []gallery.Gallery) error {
|
||||
dat, err := os.ReadFile(s)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
var requests []galleryModel
|
||||
|
||||
if err := yaml.Unmarshal(dat, &requests); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
return processRequests(modelPath, s, cm, galleries, requests)
|
||||
}
|
||||
|
||||
func ApplyGalleryFromString(modelPath, s string, cm *config.ConfigLoader, galleries []gallery.Gallery) error {
|
||||
var requests []galleryModel
|
||||
err := json.Unmarshal([]byte(s), &requests)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
return processRequests(modelPath, s, cm, galleries, requests)
|
||||
}
|
||||
|
||||
/// Endpoint Service
|
||||
|
||||
type ModelGalleryService struct {
|
||||
galleries []gallery.Gallery
|
||||
modelPath string
|
||||
galleryApplier *galleryApplier
|
||||
}
|
||||
|
||||
type GalleryModel struct {
|
||||
ID string `json:"id"`
|
||||
gallery.GalleryModel
|
||||
}
|
||||
|
||||
func CreateModelGalleryService(galleries []gallery.Gallery, modelPath string, galleryApplier *galleryApplier) ModelGalleryService {
|
||||
return ModelGalleryService{
|
||||
galleries: galleries,
|
||||
modelPath: modelPath,
|
||||
galleryApplier: galleryApplier,
|
||||
}
|
||||
}
|
||||
|
||||
func (mgs *ModelGalleryService) GetOpStatusEndpoint() func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
status := mgs.galleryApplier.getStatus(c.Params("uuid"))
|
||||
if status == nil {
|
||||
return fmt.Errorf("could not find any status for ID")
|
||||
}
|
||||
return c.JSON(status)
|
||||
}
|
||||
}
|
||||
|
||||
func (mgs *ModelGalleryService) GetAllStatusEndpoint() func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
return c.JSON(mgs.galleryApplier.getAllStatus())
|
||||
}
|
||||
}
|
||||
|
||||
func (mgs *ModelGalleryService) ApplyModelGalleryEndpoint() func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
input := new(GalleryModel)
|
||||
// Get input data from the request body
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
uuid, err := uuid.NewUUID()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
mgs.galleryApplier.C <- galleryOp{
|
||||
req: input.GalleryModel,
|
||||
id: uuid.String(),
|
||||
galleryName: input.ID,
|
||||
galleries: mgs.galleries,
|
||||
}
|
||||
return c.JSON(struct {
|
||||
ID string `json:"uuid"`
|
||||
StatusURL string `json:"status"`
|
||||
}{ID: uuid.String(), StatusURL: c.BaseURL() + "/models/jobs/" + uuid.String()})
|
||||
}
|
||||
}
|
||||
|
||||
func (mgs *ModelGalleryService) ListModelFromGalleryEndpoint() func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
log.Debug().Msgf("Listing models from galleries: %+v", mgs.galleries)
|
||||
|
||||
models, err := gallery.AvailableGalleryModels(mgs.galleries, mgs.modelPath)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
log.Debug().Msgf("Models found from galleries: %+v", models)
|
||||
for _, m := range models {
|
||||
log.Debug().Msgf("Model found from galleries: %+v", m)
|
||||
}
|
||||
dat, err := json.Marshal(models)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
return c.Send(dat)
|
||||
}
|
||||
}
|
||||
|
||||
// NOTE: This is different (and much simpler!) than above! This JUST lists the model galleries that have been loaded, not their contents!
|
||||
func (mgs *ModelGalleryService) ListModelGalleriesEndpoint() func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
log.Debug().Msgf("Listing model galleries %+v", mgs.galleries)
|
||||
dat, err := json.Marshal(mgs.galleries)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
return c.Send(dat)
|
||||
}
|
||||
}
|
||||
|
||||
func (mgs *ModelGalleryService) AddModelGalleryEndpoint() func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
input := new(gallery.Gallery)
|
||||
// Get input data from the request body
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
if slices.ContainsFunc(mgs.galleries, func(gallery gallery.Gallery) bool {
|
||||
return gallery.Name == input.Name
|
||||
}) {
|
||||
return fmt.Errorf("%s already exists", input.Name)
|
||||
}
|
||||
dat, err := json.Marshal(mgs.galleries)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
log.Debug().Msgf("Adding %+v to gallery list", *input)
|
||||
mgs.galleries = append(mgs.galleries, *input)
|
||||
return c.Send(dat)
|
||||
}
|
||||
}
|
||||
|
||||
func (mgs *ModelGalleryService) RemoveModelGalleryEndpoint() func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
input := new(gallery.Gallery)
|
||||
// Get input data from the request body
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
if !slices.ContainsFunc(mgs.galleries, func(gallery gallery.Gallery) bool {
|
||||
return gallery.Name == input.Name
|
||||
}) {
|
||||
return fmt.Errorf("%s is not currently registered", input.Name)
|
||||
}
|
||||
mgs.galleries = slices.DeleteFunc(mgs.galleries, func(gallery gallery.Gallery) bool {
|
||||
return gallery.Name == input.Name
|
||||
})
|
||||
return c.Send(nil)
|
||||
}
|
||||
}
|
||||
@@ -18,6 +18,48 @@ service Backend {
|
||||
rpc TTS(TTSRequest) returns (Result) {}
|
||||
rpc TokenizeString(PredictOptions) returns (TokenizationResponse) {}
|
||||
rpc Status(HealthMessage) returns (StatusResponse) {}
|
||||
|
||||
rpc StoresSet(StoresSetOptions) returns (Result) {}
|
||||
rpc StoresDelete(StoresDeleteOptions) returns (Result) {}
|
||||
rpc StoresGet(StoresGetOptions) returns (StoresGetResult) {}
|
||||
rpc StoresFind(StoresFindOptions) returns (StoresFindResult) {}
|
||||
}
|
||||
|
||||
message StoresKey {
|
||||
repeated float Floats = 1;
|
||||
}
|
||||
|
||||
message StoresValue {
|
||||
bytes Bytes = 1;
|
||||
}
|
||||
|
||||
message StoresSetOptions {
|
||||
repeated StoresKey Keys = 1;
|
||||
repeated StoresValue Values = 2;
|
||||
}
|
||||
|
||||
message StoresDeleteOptions {
|
||||
repeated StoresKey Keys = 1;
|
||||
}
|
||||
|
||||
message StoresGetOptions {
|
||||
repeated StoresKey Keys = 1;
|
||||
}
|
||||
|
||||
message StoresGetResult {
|
||||
repeated StoresKey Keys = 1;
|
||||
repeated StoresValue Values = 2;
|
||||
}
|
||||
|
||||
message StoresFindOptions {
|
||||
StoresKey Key = 1;
|
||||
int32 TopK = 2;
|
||||
}
|
||||
|
||||
message StoresFindResult {
|
||||
repeated StoresKey Keys = 1;
|
||||
repeated StoresValue Values = 2;
|
||||
repeated float Similarities = 3;
|
||||
}
|
||||
|
||||
message HealthMessage {}
|
||||
@@ -121,11 +163,16 @@ message ModelOptions {
|
||||
|
||||
bool NoMulMatQ = 37;
|
||||
string DraftModel = 39;
|
||||
|
||||
|
||||
string AudioPath = 38;
|
||||
|
||||
// vllm
|
||||
string Quantization = 40;
|
||||
float GPUMemoryUtilization = 50;
|
||||
bool TrustRemoteCode = 51;
|
||||
bool EnforceEager = 52;
|
||||
int32 SwapSpace = 53;
|
||||
int32 MaxModelLen = 54;
|
||||
|
||||
string MMProj = 41;
|
||||
|
||||
@@ -186,6 +233,7 @@ message TTSRequest {
|
||||
string text = 1;
|
||||
string model = 2;
|
||||
string dst = 3;
|
||||
string voice = 4;
|
||||
}
|
||||
|
||||
message TokenizationResponse {
|
||||
@@ -207,4 +255,4 @@ message StatusResponse {
|
||||
}
|
||||
State state = 1;
|
||||
MemoryUsageData memory = 2;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -48,7 +48,7 @@ $(INSTALLED_PACKAGES): grpc_build
|
||||
|
||||
$(GRPC_REPO):
|
||||
git clone --depth $(GIT_CLONE_DEPTH) -b $(TAG_LIB_GRPC) $(GIT_REPO_LIB_GRPC) $(GRPC_REPO)/grpc
|
||||
cd $(GRPC_REPO)/grpc && git submodule update --init --recursive --depth $(GIT_CLONE_DEPTH)
|
||||
cd $(GRPC_REPO)/grpc && git submodule update --jobs 2 --init --recursive --depth $(GIT_CLONE_DEPTH)
|
||||
|
||||
$(GRPC_BUILD): $(GRPC_REPO)
|
||||
mkdir -p $(GRPC_BUILD)
|
||||
|
||||
@@ -12,12 +12,18 @@ ifeq ($(BUILD_TYPE),cublas)
|
||||
# to CMAKE_ARGS automatically
|
||||
else ifeq ($(BUILD_TYPE),openblas)
|
||||
CMAKE_ARGS+=-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS
|
||||
# If build type is clblast (openCL) we set -DLLAMA_CLBLAST=ON -DCLBlast_DIR=/some/path
|
||||
else ifeq ($(BUILD_TYPE),clblast)
|
||||
# If build type is clblas (openCL) we set -DLLAMA_CLBLAST=ON -DCLBlast_DIR=/some/path
|
||||
else ifeq ($(BUILD_TYPE),clblas)
|
||||
CMAKE_ARGS+=-DLLAMA_CLBLAST=ON -DCLBlast_DIR=/some/path
|
||||
# If it's hipblas we do have also to set CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++
|
||||
else ifeq ($(BUILD_TYPE),hipblas)
|
||||
CMAKE_ARGS+=-DLLAMA_HIPBLAS=ON
|
||||
# If it's OSX, DO NOT embed the metal library - -DLLAMA_METAL_EMBED_LIBRARY=ON requires further investigation
|
||||
# But if it's OSX without metal, disable it here
|
||||
else ifeq ($(OS),darwin)
|
||||
ifneq ($(BUILD_TYPE),metal)
|
||||
CMAKE_ARGS+=-DLLAMA_METAL=OFF
|
||||
endif
|
||||
endif
|
||||
|
||||
ifeq ($(BUILD_TYPE),sycl_f16)
|
||||
@@ -35,7 +41,7 @@ llama.cpp:
|
||||
fi
|
||||
cd llama.cpp && git checkout -b build $(LLAMA_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
llama.cpp/examples/grpc-server:
|
||||
llama.cpp/examples/grpc-server: llama.cpp
|
||||
mkdir -p llama.cpp/examples/grpc-server
|
||||
cp -r $(abspath ./)/CMakeLists.txt llama.cpp/examples/grpc-server/
|
||||
cp -r $(abspath ./)/grpc-server.cpp llama.cpp/examples/grpc-server/
|
||||
|
||||
@@ -58,9 +58,11 @@ struct server_params
|
||||
int32_t read_timeout = 600;
|
||||
int32_t write_timeout = 600;
|
||||
bool slots_endpoint = true;
|
||||
bool metrics_endpoint = false;
|
||||
};
|
||||
|
||||
bool server_verbose = false;
|
||||
bool server_log_json = true;
|
||||
|
||||
static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
|
||||
{
|
||||
@@ -316,12 +318,76 @@ struct llama_client_slot
|
||||
}
|
||||
|
||||
void print_timings() const {
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
|
||||
__func__, t_prompt_processing, num_prompt_tokens_processed, t_prompt_processing / num_prompt_tokens_processed, 1e3 / t_prompt_processing * num_prompt_tokens_processed);
|
||||
LOG_TEE("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
|
||||
__func__, t_token_generation, n_decoded,t_token_generation / n_decoded, 1e3 / t_token_generation * n_decoded);
|
||||
LOG_TEE("%s: total time = %10.2f ms\n", __func__, t_prompt_processing + t_token_generation);
|
||||
char buffer[512];
|
||||
double t_token = t_prompt_processing / num_prompt_tokens_processed;
|
||||
double n_tokens_second = 1e3 / t_prompt_processing * num_prompt_tokens_processed;
|
||||
sprintf(buffer, "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
|
||||
t_prompt_processing, num_prompt_tokens_processed,
|
||||
t_token, n_tokens_second);
|
||||
LOG_INFO(buffer, {
|
||||
{"slot_id", id},
|
||||
{"task_id", task_id},
|
||||
{"t_prompt_processing", t_prompt_processing},
|
||||
{"num_prompt_tokens_processed", num_prompt_tokens_processed},
|
||||
{"t_token", t_token},
|
||||
{"n_tokens_second", n_tokens_second},
|
||||
});
|
||||
|
||||
t_token = t_token_generation / n_decoded;
|
||||
n_tokens_second = 1e3 / t_token_generation * n_decoded;
|
||||
sprintf(buffer, "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)",
|
||||
t_token_generation, n_decoded,
|
||||
t_token, n_tokens_second);
|
||||
LOG_INFO(buffer, {
|
||||
{"slot_id", id},
|
||||
{"task_id", task_id},
|
||||
{"t_token_generation", t_token_generation},
|
||||
{"n_decoded", n_decoded},
|
||||
{"t_token", t_token},
|
||||
{"n_tokens_second", n_tokens_second},
|
||||
});
|
||||
|
||||
sprintf(buffer, " total time = %10.2f ms", t_prompt_processing + t_token_generation);
|
||||
LOG_INFO(buffer, {
|
||||
{"slot_id", id},
|
||||
{"task_id", task_id},
|
||||
{"t_prompt_processing", t_prompt_processing},
|
||||
{"t_token_generation", t_token_generation},
|
||||
{"t_total", t_prompt_processing + t_token_generation},
|
||||
});
|
||||
}
|
||||
};
|
||||
|
||||
struct llama_metrics {
|
||||
uint64_t n_prompt_tokens_processed_total = 0;
|
||||
uint64_t n_tokens_predicted_total = 0;
|
||||
|
||||
uint64_t n_prompt_tokens_processed = 0;
|
||||
uint64_t t_prompt_processing = 0;
|
||||
|
||||
uint64_t n_tokens_predicted = 0;
|
||||
uint64_t t_tokens_generation = 0;
|
||||
|
||||
|
||||
void on_prompt_eval(const llama_client_slot &slot) {
|
||||
n_prompt_tokens_processed_total += slot.num_prompt_tokens_processed;
|
||||
|
||||
n_prompt_tokens_processed += slot.num_prompt_tokens_processed;
|
||||
t_prompt_processing += slot.t_prompt_processing;
|
||||
}
|
||||
|
||||
void on_prediction(const llama_client_slot &slot) {
|
||||
n_tokens_predicted_total += slot.n_decoded;
|
||||
|
||||
n_tokens_predicted += slot.n_decoded;
|
||||
t_tokens_generation += slot.t_token_generation;
|
||||
}
|
||||
|
||||
void reset_bucket() {
|
||||
n_prompt_tokens_processed = 0;
|
||||
t_prompt_processing = 0;
|
||||
n_tokens_predicted = 0;
|
||||
t_tokens_generation = 0;
|
||||
}
|
||||
};
|
||||
|
||||
@@ -359,6 +425,8 @@ struct llama_server_context
|
||||
llama_server_queue queue_tasks;
|
||||
llama_server_response queue_results;
|
||||
|
||||
llama_metrics metrics;
|
||||
|
||||
~llama_server_context()
|
||||
{
|
||||
if (ctx)
|
||||
@@ -378,7 +446,7 @@ struct llama_server_context
|
||||
params = params_;
|
||||
if (!params.mmproj.empty()) {
|
||||
multimodal = true;
|
||||
LOG_TEE("Multi Modal Mode Enabled");
|
||||
LOG_INFO("Multi Modal Mode Enabled", {});
|
||||
clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1);
|
||||
if(clp_ctx == nullptr) {
|
||||
LOG_ERROR("unable to load clip model", {{"model", params.mmproj}});
|
||||
@@ -415,13 +483,23 @@ struct llama_server_context
|
||||
return true;
|
||||
}
|
||||
|
||||
void validate_model_chat_template(server_params & sparams) {
|
||||
llama_chat_message chat[] = {{"user", "test"}};
|
||||
std::vector<char> buf(1);
|
||||
int res = llama_chat_apply_template(model, nullptr, chat, 1, true, buf.data(), buf.size());
|
||||
if (res < 0) {
|
||||
LOG_ERROR("The chat template comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {});
|
||||
sparams.chat_template = "<|im_start|>"; // llama_chat_apply_template only checks if <|im_start|> exist in the template
|
||||
}
|
||||
}
|
||||
|
||||
void initialize() {
|
||||
// create slots
|
||||
all_slots_are_idle = true;
|
||||
|
||||
const int32_t n_ctx_slot = n_ctx / params.n_parallel;
|
||||
|
||||
LOG_TEE("Available slots:\n");
|
||||
LOG_INFO("initializing slots", {{"n_slots", params.n_parallel}});
|
||||
for (int i = 0; i < params.n_parallel; i++)
|
||||
{
|
||||
llama_client_slot slot;
|
||||
@@ -430,7 +508,10 @@ struct llama_server_context
|
||||
slot.n_ctx = n_ctx_slot;
|
||||
slot.n_predict = params.n_predict;
|
||||
|
||||
LOG_TEE(" -> Slot %i - max context: %i\n", slot.id, n_ctx_slot);
|
||||
LOG_INFO("new slot", {
|
||||
{"slot_id", slot.id},
|
||||
{"n_ctx_slot", slot.n_ctx}
|
||||
});
|
||||
|
||||
const int ga_n = params.grp_attn_n;
|
||||
const int ga_w = params.grp_attn_w;
|
||||
@@ -440,7 +521,12 @@ struct llama_server_context
|
||||
GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT
|
||||
//GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
|
||||
//GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
|
||||
LOG_TEE(" -> Slot %i - self-extend: ga_n = %d, ga_w = %d\n", slot.id, ga_n, ga_w);
|
||||
|
||||
LOG_INFO("slot self-extend", {
|
||||
{"slot_id", slot.id},
|
||||
{"ga_n", ga_n},
|
||||
{"ga_w", ga_w}
|
||||
});
|
||||
}
|
||||
|
||||
slot.ga_i = 0;
|
||||
@@ -726,10 +812,16 @@ struct llama_server_context
|
||||
img_sl.img_data = clip_image_u8_init();
|
||||
if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data))
|
||||
{
|
||||
LOG_TEE("slot %i - failed to load image [id: %i]\n", slot->id, img_sl.id);
|
||||
LOG_ERROR("failed to load image", {
|
||||
{"slot_id", slot->id},
|
||||
{"img_sl_id", img_sl.id}
|
||||
});
|
||||
return false;
|
||||
}
|
||||
LOG_TEE("slot %i - loaded image\n", slot->id);
|
||||
LOG_VERBOSE("image loaded", {
|
||||
{"slot_id", slot->id},
|
||||
{"img_sl_id", img_sl.id}
|
||||
});
|
||||
img_sl.request_encode_image = true;
|
||||
slot->images.push_back(img_sl);
|
||||
}
|
||||
@@ -789,7 +881,10 @@ struct llama_server_context
|
||||
|
||||
all_slots_are_idle = false;
|
||||
|
||||
LOG_TEE("slot %i is processing [task id: %i]\n", slot->id, slot->task_id);
|
||||
LOG_INFO("slot is processing task", {
|
||||
{"slot_id", slot->id},
|
||||
{"task_id", slot->task_id},
|
||||
});
|
||||
|
||||
return true;
|
||||
}
|
||||
@@ -814,10 +909,24 @@ struct llama_server_context
|
||||
llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, batch) != 0)
|
||||
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += params.n_batch)
|
||||
{
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return;
|
||||
const int32_t n_tokens = std::min(params.n_batch, (int32_t) (batch.n_tokens - i));
|
||||
llama_batch batch_view = {
|
||||
n_tokens,
|
||||
batch.token + i,
|
||||
nullptr,
|
||||
batch.pos + i,
|
||||
batch.n_seq_id + i,
|
||||
batch.seq_id + i,
|
||||
batch.logits + i,
|
||||
0, 0, 0, // unused
|
||||
};
|
||||
if (llama_decode(ctx, batch_view) != 0)
|
||||
{
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// assign the system KV cache to all parallel sequences
|
||||
@@ -975,7 +1084,7 @@ struct llama_server_context
|
||||
slot.has_next_token = false;
|
||||
}
|
||||
|
||||
if (!slot.cache_tokens.empty() && result.tok == llama_token_eos(model))
|
||||
if (result.tok == llama_token_eos(model))
|
||||
{
|
||||
slot.stopped_eos = true;
|
||||
slot.has_next_token = false;
|
||||
@@ -1351,7 +1460,7 @@ struct llama_server_context
|
||||
if (slot == nullptr)
|
||||
{
|
||||
// if no slot is available, we defer this task for processing later
|
||||
LOG_VERBOSE("no slot is available", {});
|
||||
LOG_VERBOSE("no slot is available", {{"task_id", task.id}});
|
||||
queue_tasks.defer(task);
|
||||
break;
|
||||
}
|
||||
@@ -1425,7 +1534,7 @@ struct llama_server_context
|
||||
bool update_slots() {
|
||||
if (system_need_update)
|
||||
{
|
||||
LOG_TEE("updating system prompt\n");
|
||||
LOG_INFO("updating system prompt", {});
|
||||
update_system_prompt();
|
||||
}
|
||||
|
||||
@@ -1435,12 +1544,13 @@ struct llama_server_context
|
||||
{
|
||||
if (system_prompt.empty() && clean_kv_cache)
|
||||
{
|
||||
LOG_TEE("all slots are idle and system prompt is empty, clear the KV cache\n");
|
||||
LOG_INFO("all slots are idle and system prompt is empty, clear the KV cache", {});
|
||||
kv_cache_clear();
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
LOG_VERBOSE("posting NEXT_RESPONSE", {});
|
||||
task_server task;
|
||||
task.type = TASK_TYPE_NEXT_RESPONSE;
|
||||
task.target_id = -1;
|
||||
@@ -1471,6 +1581,7 @@ struct llama_server_context
|
||||
}
|
||||
|
||||
// decode any currently ongoing sequences
|
||||
LOG_VERBOSE("decoding ongoing sequences", {});
|
||||
for (auto & slot : slots)
|
||||
{
|
||||
// release the slot
|
||||
@@ -1480,7 +1591,15 @@ struct llama_server_context
|
||||
slot.command = NONE;
|
||||
slot.t_last_used = ggml_time_us();
|
||||
|
||||
LOG_TEE("slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size());
|
||||
LOG_INFO("slot released", {
|
||||
{"slot_id", slot.id},
|
||||
{"task_id", slot.task_id},
|
||||
{"n_ctx", n_ctx},
|
||||
{"n_past", slot.n_past},
|
||||
{"n_system_tokens", system_tokens.size()},
|
||||
{"n_cache_tokens", slot.cache_tokens.size()},
|
||||
{"truncated", slot.truncated}
|
||||
});
|
||||
queue_tasks.notify_slot_changed();
|
||||
|
||||
continue;
|
||||
@@ -1607,6 +1726,14 @@ struct llama_server_context
|
||||
}
|
||||
|
||||
slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
|
||||
|
||||
// the last token of the cache is not in the KV cache until the next call to llama_decode
|
||||
// (it was sampled, pushed into the "cache_tokens", but not yet put in the context)
|
||||
if (slot.n_past > 0 && slot.n_past == (int32_t) slot.cache_tokens.size())
|
||||
{
|
||||
slot.n_past -= 1;
|
||||
}
|
||||
|
||||
slot.num_prompt_tokens_processed = slot.num_prompt_tokens - slot.n_past;
|
||||
|
||||
if (slot.ga_n != 1)
|
||||
@@ -1628,7 +1755,12 @@ struct llama_server_context
|
||||
slot.ga_i = ga_i;
|
||||
}
|
||||
|
||||
LOG_TEE("slot %d : in cache: %i tokens | to process: %i tokens\n", slot.id, slot.n_past, slot.num_prompt_tokens_processed);
|
||||
LOG_INFO("slot progression", {
|
||||
{ "slot_id", slot.id },
|
||||
{ "task_id", slot.task_id },
|
||||
{ "n_past", slot.n_past },
|
||||
{ "num_prompt_tokens_processed", slot.num_prompt_tokens_processed }
|
||||
});
|
||||
}
|
||||
|
||||
slot.cache_tokens = prompt_tokens;
|
||||
@@ -1636,7 +1768,10 @@ struct llama_server_context
|
||||
if (slot.n_past == slot.num_prompt_tokens && slot.n_past > 0)
|
||||
{
|
||||
// we have to evaluate at least 1 token to generate logits.
|
||||
LOG_TEE("slot %d : we have to evaluate at least 1 token to generate logits\n", slot.id);
|
||||
LOG_INFO("we have to evaluate at least 1 token to generate logits", {
|
||||
{ "slot_id", slot.id },
|
||||
{ "task_id", slot.task_id }
|
||||
});
|
||||
slot.n_past--;
|
||||
if (slot.ga_i > 0)
|
||||
{
|
||||
@@ -1644,9 +1779,13 @@ struct llama_server_context
|
||||
}
|
||||
}
|
||||
|
||||
LOG_TEE("slot %d : kv cache rm - [%d, end)\n", slot.id, (int) system_tokens.size() + slot.n_past);
|
||||
|
||||
llama_kv_cache_seq_rm(ctx, slot.id, system_tokens.size() + slot.n_past, -1);
|
||||
int p0 = (int) system_tokens.size() + slot.n_past;
|
||||
LOG_INFO("kv cache rm [p0, end)", {
|
||||
{ "slot_id", slot.id },
|
||||
{ "task_id", slot.task_id },
|
||||
{ "p0", p0 }
|
||||
});
|
||||
llama_kv_cache_seq_rm(ctx, slot.id, p0, -1);
|
||||
|
||||
LOG_VERBOSE("prompt ingested", {
|
||||
{"n_past", slot.n_past},
|
||||
@@ -1681,7 +1820,13 @@ struct llama_server_context
|
||||
|
||||
if (has_images && !ingest_images(slot, n_batch))
|
||||
{
|
||||
LOG_TEE("failed processing images\n");
|
||||
LOG_ERROR("failed processing images", {
|
||||
"slot_id", slot.id,
|
||||
"task_id", slot.task_id,
|
||||
});
|
||||
// FIXME @phymbert: to be properly tested
|
||||
// early returning without changing the slot state will block the slot for ever
|
||||
// no one at the moment is checking the return value
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -1723,9 +1868,9 @@ struct llama_server_context
|
||||
LOG_TEE("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
|
||||
LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
|
||||
|
||||
llama_kv_cache_seq_shift(ctx, slot.id, slot.ga_i, slot.n_past_se, ib * bd);
|
||||
llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i, slot.n_past_se, ib * bd);
|
||||
llama_kv_cache_seq_div(ctx, slot.id, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w,slot.ga_n);
|
||||
llama_kv_cache_seq_shift(ctx, slot.id, slot.ga_i + ib * bd + slot.ga_w,slot.n_past_se + ib * bd, dd);
|
||||
llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i + ib * bd + slot.ga_w,slot.n_past_se + ib * bd, dd);
|
||||
|
||||
slot.n_past_se -= bd;
|
||||
|
||||
@@ -1781,7 +1926,7 @@ struct llama_server_context
|
||||
send_embedding(slot);
|
||||
slot.release();
|
||||
slot.i_batch = -1;
|
||||
return true;
|
||||
continue;
|
||||
}
|
||||
|
||||
completion_token_output result;
|
||||
@@ -1794,6 +1939,7 @@ struct llama_server_context
|
||||
{
|
||||
slot.t_start_genereration = ggml_time_us();
|
||||
slot.t_prompt_processing = (slot.t_start_genereration - slot.t_start_process_prompt) / 1e3;
|
||||
metrics.on_prompt_eval(slot);
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
|
||||
@@ -1816,11 +1962,14 @@ struct llama_server_context
|
||||
slot.release();
|
||||
slot.print_timings();
|
||||
send_final_response(slot);
|
||||
metrics.on_prediction(slot);
|
||||
}
|
||||
|
||||
slot.i_batch = -1;
|
||||
}
|
||||
}
|
||||
|
||||
LOG_VERBOSE("slots updated", {});
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -1849,18 +1998,6 @@ static json format_partial_response(
|
||||
return res;
|
||||
}
|
||||
|
||||
static json format_tokenizer_response(const std::vector<llama_token> &tokens)
|
||||
{
|
||||
return json{
|
||||
{"tokens", tokens}};
|
||||
}
|
||||
|
||||
static json format_detokenized_response(std::string content)
|
||||
{
|
||||
return json{
|
||||
{"content", content}};
|
||||
}
|
||||
|
||||
struct token_translator
|
||||
{
|
||||
llama_context * ctx;
|
||||
@@ -2119,9 +2256,9 @@ static void params_parse(const backend::ModelOptions* request,
|
||||
params.use_mmap = request->mmap();
|
||||
params.embedding = request->embeddings();
|
||||
|
||||
if (request->ropescaling() == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
|
||||
else if (request->ropescaling() == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
|
||||
else { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
|
||||
if (request->ropescaling() == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
|
||||
else if (request->ropescaling() == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
|
||||
else { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
|
||||
if ( request->yarnextfactor() != 0.0f ) {
|
||||
params.yarn_ext_factor = request->yarnextfactor();
|
||||
}
|
||||
|
||||
14
backend/go/stores/debug.go
Normal file
14
backend/go/stores/debug.go
Normal file
@@ -0,0 +1,14 @@
|
||||
//go:build debug
|
||||
// +build debug
|
||||
|
||||
package main
|
||||
|
||||
import (
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
func assert(cond bool, msg string) {
|
||||
if !cond {
|
||||
log.Fatal().Stack().Msg(msg)
|
||||
}
|
||||
}
|
||||
26
backend/go/stores/main.go
Normal file
26
backend/go/stores/main.go
Normal file
@@ -0,0 +1,26 @@
|
||||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each store
|
||||
|
||||
import (
|
||||
"flag"
|
||||
"os"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
"github.com/rs/zerolog"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
log.Logger = log.Output(zerolog.ConsoleWriter{Out: os.Stderr})
|
||||
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, NewStore()); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
||||
7
backend/go/stores/production.go
Normal file
7
backend/go/stores/production.go
Normal file
@@ -0,0 +1,7 @@
|
||||
//go:build !debug
|
||||
// +build !debug
|
||||
|
||||
package main
|
||||
|
||||
func assert(cond bool, msg string) {
|
||||
}
|
||||
507
backend/go/stores/store.go
Normal file
507
backend/go/stores/store.go
Normal file
@@ -0,0 +1,507 @@
|
||||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"container/heap"
|
||||
"fmt"
|
||||
"math"
|
||||
"slices"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
type Store struct {
|
||||
base.SingleThread
|
||||
|
||||
// The sorted keys
|
||||
keys [][]float32
|
||||
// The sorted values
|
||||
values [][]byte
|
||||
|
||||
// If for every K it holds that ||k||^2 = 1, then we can use the normalized distance functions
|
||||
// TODO: Should we normalize incoming keys if they are not instead?
|
||||
keysAreNormalized bool
|
||||
// The first key decides the length of the keys
|
||||
keyLen int
|
||||
}
|
||||
|
||||
// TODO: Only used for sorting using Go's builtin implementation. The interfaces are columnar because
|
||||
// that's theoretically best for memory layout and cache locality, but this isn't optimized yet.
|
||||
type Pair struct {
|
||||
Key []float32
|
||||
Value []byte
|
||||
}
|
||||
|
||||
func NewStore() *Store {
|
||||
return &Store{
|
||||
keys: make([][]float32, 0),
|
||||
values: make([][]byte, 0),
|
||||
keysAreNormalized: true,
|
||||
keyLen: -1,
|
||||
}
|
||||
}
|
||||
|
||||
func compareSlices(k1, k2 []float32) int {
|
||||
assert(len(k1) == len(k2), fmt.Sprintf("compareSlices: len(k1) = %d, len(k2) = %d", len(k1), len(k2)))
|
||||
|
||||
return slices.Compare(k1, k2)
|
||||
}
|
||||
|
||||
func hasKey(unsortedSlice [][]float32, target []float32) bool {
|
||||
return slices.ContainsFunc(unsortedSlice, func(k []float32) bool {
|
||||
return compareSlices(k, target) == 0
|
||||
})
|
||||
}
|
||||
|
||||
func findInSortedSlice(sortedSlice [][]float32, target []float32) (int, bool) {
|
||||
return slices.BinarySearchFunc(sortedSlice, target, func(k, t []float32) int {
|
||||
return compareSlices(k, t)
|
||||
})
|
||||
}
|
||||
|
||||
func isSortedPairs(kvs []Pair) bool {
|
||||
for i := 1; i < len(kvs); i++ {
|
||||
if compareSlices(kvs[i-1].Key, kvs[i].Key) > 0 {
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
return true
|
||||
}
|
||||
|
||||
func isSortedKeys(keys [][]float32) bool {
|
||||
for i := 1; i < len(keys); i++ {
|
||||
if compareSlices(keys[i-1], keys[i]) > 0 {
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
return true
|
||||
}
|
||||
|
||||
func sortIntoKeySlicese(keys []*pb.StoresKey) [][]float32 {
|
||||
ks := make([][]float32, len(keys))
|
||||
|
||||
for i, k := range keys {
|
||||
ks[i] = k.Floats
|
||||
}
|
||||
|
||||
slices.SortFunc(ks, compareSlices)
|
||||
|
||||
assert(len(ks) == len(keys), fmt.Sprintf("len(ks) = %d, len(keys) = %d", len(ks), len(keys)))
|
||||
assert(isSortedKeys(ks), "keys are not sorted")
|
||||
|
||||
return ks
|
||||
}
|
||||
|
||||
func (s *Store) Load(opts *pb.ModelOptions) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
// Sort the incoming kvs and merge them with the existing sorted kvs
|
||||
func (s *Store) StoresSet(opts *pb.StoresSetOptions) error {
|
||||
if len(opts.Keys) == 0 {
|
||||
return fmt.Errorf("no keys to add")
|
||||
}
|
||||
|
||||
if len(opts.Keys) != len(opts.Values) {
|
||||
return fmt.Errorf("len(keys) = %d, len(values) = %d", len(opts.Keys), len(opts.Values))
|
||||
}
|
||||
|
||||
if s.keyLen == -1 {
|
||||
s.keyLen = len(opts.Keys[0].Floats)
|
||||
} else {
|
||||
if len(opts.Keys[0].Floats) != s.keyLen {
|
||||
return fmt.Errorf("Try to add key with length %d when existing length is %d", len(opts.Keys[0].Floats), s.keyLen)
|
||||
}
|
||||
}
|
||||
|
||||
kvs := make([]Pair, len(opts.Keys))
|
||||
|
||||
for i, k := range opts.Keys {
|
||||
if s.keysAreNormalized && !isNormalized(k.Floats) {
|
||||
s.keysAreNormalized = false
|
||||
var sample []float32
|
||||
if len(s.keys) > 5 {
|
||||
sample = k.Floats[:5]
|
||||
} else {
|
||||
sample = k.Floats
|
||||
}
|
||||
log.Debug().Msgf("Key is not normalized: %v", sample)
|
||||
}
|
||||
|
||||
kvs[i] = Pair{
|
||||
Key: k.Floats,
|
||||
Value: opts.Values[i].Bytes,
|
||||
}
|
||||
}
|
||||
|
||||
slices.SortFunc(kvs, func(a, b Pair) int {
|
||||
return compareSlices(a.Key, b.Key)
|
||||
})
|
||||
|
||||
assert(len(kvs) == len(opts.Keys), fmt.Sprintf("len(kvs) = %d, len(opts.Keys) = %d", len(kvs), len(opts.Keys)))
|
||||
assert(isSortedPairs(kvs), "keys are not sorted")
|
||||
|
||||
l := len(kvs) + len(s.keys)
|
||||
merge_ks := make([][]float32, 0, l)
|
||||
merge_vs := make([][]byte, 0, l)
|
||||
|
||||
i, j := 0, 0
|
||||
for {
|
||||
if i+j >= l {
|
||||
break
|
||||
}
|
||||
|
||||
if i >= len(kvs) {
|
||||
merge_ks = append(merge_ks, s.keys[j])
|
||||
merge_vs = append(merge_vs, s.values[j])
|
||||
j++
|
||||
continue
|
||||
}
|
||||
|
||||
if j >= len(s.keys) {
|
||||
merge_ks = append(merge_ks, kvs[i].Key)
|
||||
merge_vs = append(merge_vs, kvs[i].Value)
|
||||
i++
|
||||
continue
|
||||
}
|
||||
|
||||
c := compareSlices(kvs[i].Key, s.keys[j])
|
||||
if c < 0 {
|
||||
merge_ks = append(merge_ks, kvs[i].Key)
|
||||
merge_vs = append(merge_vs, kvs[i].Value)
|
||||
i++
|
||||
} else if c > 0 {
|
||||
merge_ks = append(merge_ks, s.keys[j])
|
||||
merge_vs = append(merge_vs, s.values[j])
|
||||
j++
|
||||
} else {
|
||||
merge_ks = append(merge_ks, kvs[i].Key)
|
||||
merge_vs = append(merge_vs, kvs[i].Value)
|
||||
i++
|
||||
j++
|
||||
}
|
||||
}
|
||||
|
||||
assert(len(merge_ks) == l, fmt.Sprintf("len(merge_ks) = %d, l = %d", len(merge_ks), l))
|
||||
assert(isSortedKeys(merge_ks), "merge keys are not sorted")
|
||||
|
||||
s.keys = merge_ks
|
||||
s.values = merge_vs
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (s *Store) StoresDelete(opts *pb.StoresDeleteOptions) error {
|
||||
if len(opts.Keys) == 0 {
|
||||
return fmt.Errorf("no keys to delete")
|
||||
}
|
||||
|
||||
if len(opts.Keys) == 0 {
|
||||
return fmt.Errorf("no keys to add")
|
||||
}
|
||||
|
||||
if s.keyLen == -1 {
|
||||
s.keyLen = len(opts.Keys[0].Floats)
|
||||
} else {
|
||||
if len(opts.Keys[0].Floats) != s.keyLen {
|
||||
return fmt.Errorf("Trying to delete key with length %d when existing length is %d", len(opts.Keys[0].Floats), s.keyLen)
|
||||
}
|
||||
}
|
||||
|
||||
ks := sortIntoKeySlicese(opts.Keys)
|
||||
|
||||
l := len(s.keys) - len(ks)
|
||||
merge_ks := make([][]float32, 0, l)
|
||||
merge_vs := make([][]byte, 0, l)
|
||||
|
||||
tail_ks := s.keys
|
||||
tail_vs := s.values
|
||||
for _, k := range ks {
|
||||
j, found := findInSortedSlice(tail_ks, k)
|
||||
|
||||
if found {
|
||||
merge_ks = append(merge_ks, tail_ks[:j]...)
|
||||
merge_vs = append(merge_vs, tail_vs[:j]...)
|
||||
tail_ks = tail_ks[j+1:]
|
||||
tail_vs = tail_vs[j+1:]
|
||||
} else {
|
||||
assert(!hasKey(s.keys, k), fmt.Sprintf("Key exists, but was not found: t=%d, %v", len(tail_ks), k))
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Delete: found = %v, t = %d, j = %d, len(merge_ks) = %d, len(merge_vs) = %d", found, len(tail_ks), j, len(merge_ks), len(merge_vs))
|
||||
}
|
||||
|
||||
merge_ks = append(merge_ks, tail_ks...)
|
||||
merge_vs = append(merge_vs, tail_vs...)
|
||||
|
||||
assert(len(merge_ks) <= len(s.keys), fmt.Sprintf("len(merge_ks) = %d, len(s.keys) = %d", len(merge_ks), len(s.keys)))
|
||||
|
||||
s.keys = merge_ks
|
||||
s.values = merge_vs
|
||||
|
||||
assert(len(s.keys) >= l, fmt.Sprintf("len(s.keys) = %d, l = %d", len(s.keys), l))
|
||||
assert(isSortedKeys(s.keys), "keys are not sorted")
|
||||
assert(func() bool {
|
||||
for _, k := range ks {
|
||||
if _, found := findInSortedSlice(s.keys, k); found {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}(), "Keys to delete still present")
|
||||
|
||||
if len(s.keys) != l {
|
||||
log.Debug().Msgf("Delete: Some keys not found: len(s.keys) = %d, l = %d", len(s.keys), l)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (s *Store) StoresGet(opts *pb.StoresGetOptions) (pb.StoresGetResult, error) {
|
||||
pbKeys := make([]*pb.StoresKey, 0, len(opts.Keys))
|
||||
pbValues := make([]*pb.StoresValue, 0, len(opts.Keys))
|
||||
ks := sortIntoKeySlicese(opts.Keys)
|
||||
|
||||
if len(s.keys) == 0 {
|
||||
log.Debug().Msgf("Get: No keys in store")
|
||||
}
|
||||
|
||||
if s.keyLen == -1 {
|
||||
s.keyLen = len(opts.Keys[0].Floats)
|
||||
} else {
|
||||
if len(opts.Keys[0].Floats) != s.keyLen {
|
||||
return pb.StoresGetResult{}, fmt.Errorf("Try to get a key with length %d when existing length is %d", len(opts.Keys[0].Floats), s.keyLen)
|
||||
}
|
||||
}
|
||||
|
||||
tail_k := s.keys
|
||||
tail_v := s.values
|
||||
for i, k := range ks {
|
||||
j, found := findInSortedSlice(tail_k, k)
|
||||
|
||||
if found {
|
||||
pbKeys = append(pbKeys, &pb.StoresKey{
|
||||
Floats: k,
|
||||
})
|
||||
pbValues = append(pbValues, &pb.StoresValue{
|
||||
Bytes: tail_v[j],
|
||||
})
|
||||
|
||||
tail_k = tail_k[j+1:]
|
||||
tail_v = tail_v[j+1:]
|
||||
} else {
|
||||
assert(!hasKey(s.keys, k), fmt.Sprintf("Key exists, but was not found: i=%d, %v", i, k))
|
||||
}
|
||||
}
|
||||
|
||||
if len(pbKeys) != len(opts.Keys) {
|
||||
log.Debug().Msgf("Get: Some keys not found: len(pbKeys) = %d, len(opts.Keys) = %d, len(s.Keys) = %d", len(pbKeys), len(opts.Keys), len(s.keys))
|
||||
}
|
||||
|
||||
return pb.StoresGetResult{
|
||||
Keys: pbKeys,
|
||||
Values: pbValues,
|
||||
}, nil
|
||||
}
|
||||
|
||||
func isNormalized(k []float32) bool {
|
||||
var sum float32
|
||||
for _, v := range k {
|
||||
sum += v
|
||||
}
|
||||
|
||||
return sum == 1.0
|
||||
}
|
||||
|
||||
// TODO: This we could replace with handwritten SIMD code
|
||||
func normalizedCosineSimilarity(k1, k2 []float32) float32 {
|
||||
assert(len(k1) == len(k2), fmt.Sprintf("normalizedCosineSimilarity: len(k1) = %d, len(k2) = %d", len(k1), len(k2)))
|
||||
|
||||
var dot float32
|
||||
for i := 0; i < len(k1); i++ {
|
||||
dot += k1[i] * k2[i]
|
||||
}
|
||||
|
||||
assert(dot >= -1 && dot <= 1, fmt.Sprintf("dot = %f", dot))
|
||||
|
||||
// 2.0 * (1.0 - dot) would be the Euclidean distance
|
||||
return dot
|
||||
}
|
||||
|
||||
type PriorityItem struct {
|
||||
Similarity float32
|
||||
Key []float32
|
||||
Value []byte
|
||||
}
|
||||
|
||||
type PriorityQueue []*PriorityItem
|
||||
|
||||
func (pq PriorityQueue) Len() int { return len(pq) }
|
||||
|
||||
func (pq PriorityQueue) Less(i, j int) bool {
|
||||
// Inverted because the most similar should be at the top
|
||||
return pq[i].Similarity < pq[j].Similarity
|
||||
}
|
||||
|
||||
func (pq PriorityQueue) Swap(i, j int) {
|
||||
pq[i], pq[j] = pq[j], pq[i]
|
||||
}
|
||||
|
||||
func (pq *PriorityQueue) Push(x any) {
|
||||
item := x.(*PriorityItem)
|
||||
*pq = append(*pq, item)
|
||||
}
|
||||
|
||||
func (pq *PriorityQueue) Pop() any {
|
||||
old := *pq
|
||||
n := len(old)
|
||||
item := old[n-1]
|
||||
*pq = old[0 : n-1]
|
||||
return item
|
||||
}
|
||||
|
||||
func (s *Store) StoresFindNormalized(opts *pb.StoresFindOptions) (pb.StoresFindResult, error) {
|
||||
tk := opts.Key.Floats
|
||||
top_ks := make(PriorityQueue, 0, int(opts.TopK))
|
||||
heap.Init(&top_ks)
|
||||
|
||||
for i, k := range s.keys {
|
||||
sim := normalizedCosineSimilarity(tk, k)
|
||||
heap.Push(&top_ks, &PriorityItem{
|
||||
Similarity: sim,
|
||||
Key: k,
|
||||
Value: s.values[i],
|
||||
})
|
||||
|
||||
if top_ks.Len() > int(opts.TopK) {
|
||||
heap.Pop(&top_ks)
|
||||
}
|
||||
}
|
||||
|
||||
similarities := make([]float32, top_ks.Len())
|
||||
pbKeys := make([]*pb.StoresKey, top_ks.Len())
|
||||
pbValues := make([]*pb.StoresValue, top_ks.Len())
|
||||
|
||||
for i := top_ks.Len() - 1; i >= 0; i-- {
|
||||
item := heap.Pop(&top_ks).(*PriorityItem)
|
||||
|
||||
similarities[i] = item.Similarity
|
||||
pbKeys[i] = &pb.StoresKey{
|
||||
Floats: item.Key,
|
||||
}
|
||||
pbValues[i] = &pb.StoresValue{
|
||||
Bytes: item.Value,
|
||||
}
|
||||
}
|
||||
|
||||
return pb.StoresFindResult{
|
||||
Keys: pbKeys,
|
||||
Values: pbValues,
|
||||
Similarities: similarities,
|
||||
}, nil
|
||||
}
|
||||
|
||||
func cosineSimilarity(k1, k2 []float32, mag1 float64) float32 {
|
||||
assert(len(k1) == len(k2), fmt.Sprintf("cosineSimilarity: len(k1) = %d, len(k2) = %d", len(k1), len(k2)))
|
||||
|
||||
var dot, mag2 float64
|
||||
for i := 0; i < len(k1); i++ {
|
||||
dot += float64(k1[i] * k2[i])
|
||||
mag2 += float64(k2[i] * k2[i])
|
||||
}
|
||||
|
||||
sim := float32(dot / (mag1 * math.Sqrt(mag2)))
|
||||
|
||||
assert(sim >= -1 && sim <= 1, fmt.Sprintf("sim = %f", sim))
|
||||
|
||||
return sim
|
||||
}
|
||||
|
||||
func (s *Store) StoresFindFallback(opts *pb.StoresFindOptions) (pb.StoresFindResult, error) {
|
||||
tk := opts.Key.Floats
|
||||
top_ks := make(PriorityQueue, 0, int(opts.TopK))
|
||||
heap.Init(&top_ks)
|
||||
|
||||
var mag1 float64
|
||||
for _, v := range tk {
|
||||
mag1 += float64(v * v)
|
||||
}
|
||||
mag1 = math.Sqrt(mag1)
|
||||
|
||||
for i, k := range s.keys {
|
||||
dist := cosineSimilarity(tk, k, mag1)
|
||||
heap.Push(&top_ks, &PriorityItem{
|
||||
Similarity: dist,
|
||||
Key: k,
|
||||
Value: s.values[i],
|
||||
})
|
||||
|
||||
if top_ks.Len() > int(opts.TopK) {
|
||||
heap.Pop(&top_ks)
|
||||
}
|
||||
}
|
||||
|
||||
similarities := make([]float32, top_ks.Len())
|
||||
pbKeys := make([]*pb.StoresKey, top_ks.Len())
|
||||
pbValues := make([]*pb.StoresValue, top_ks.Len())
|
||||
|
||||
for i := top_ks.Len() - 1; i >= 0; i-- {
|
||||
item := heap.Pop(&top_ks).(*PriorityItem)
|
||||
|
||||
similarities[i] = item.Similarity
|
||||
pbKeys[i] = &pb.StoresKey{
|
||||
Floats: item.Key,
|
||||
}
|
||||
pbValues[i] = &pb.StoresValue{
|
||||
Bytes: item.Value,
|
||||
}
|
||||
}
|
||||
|
||||
return pb.StoresFindResult{
|
||||
Keys: pbKeys,
|
||||
Values: pbValues,
|
||||
Similarities: similarities,
|
||||
}, nil
|
||||
}
|
||||
|
||||
func (s *Store) StoresFind(opts *pb.StoresFindOptions) (pb.StoresFindResult, error) {
|
||||
tk := opts.Key.Floats
|
||||
|
||||
if len(tk) != s.keyLen {
|
||||
return pb.StoresFindResult{}, fmt.Errorf("Try to find key with length %d when existing length is %d", len(tk), s.keyLen)
|
||||
}
|
||||
|
||||
if opts.TopK < 1 {
|
||||
return pb.StoresFindResult{}, fmt.Errorf("opts.TopK = %d, must be >= 1", opts.TopK)
|
||||
}
|
||||
|
||||
if s.keyLen == -1 {
|
||||
s.keyLen = len(opts.Key.Floats)
|
||||
} else {
|
||||
if len(opts.Key.Floats) != s.keyLen {
|
||||
return pb.StoresFindResult{}, fmt.Errorf("Try to add key with length %d when existing length is %d", len(opts.Key.Floats), s.keyLen)
|
||||
}
|
||||
}
|
||||
|
||||
if s.keysAreNormalized && isNormalized(tk) {
|
||||
return s.StoresFindNormalized(opts)
|
||||
} else {
|
||||
if s.keysAreNormalized {
|
||||
var sample []float32
|
||||
if len(s.keys) > 5 {
|
||||
sample = tk[:5]
|
||||
} else {
|
||||
sample = tk
|
||||
}
|
||||
log.Debug().Msgf("Trying to compare non-normalized key with normalized keys: %v", sample)
|
||||
}
|
||||
|
||||
return s.StoresFindFallback(opts)
|
||||
}
|
||||
}
|
||||
@@ -11,21 +11,21 @@ import (
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
)
|
||||
|
||||
func sh(c string) (string, error) {
|
||||
cmd := exec.Command("/bin/sh", "-c", c)
|
||||
func runCommand(command []string) (string, error) {
|
||||
cmd := exec.Command(command[0], command[1:]...)
|
||||
cmd.Env = os.Environ()
|
||||
o, err := cmd.CombinedOutput()
|
||||
return string(o), err
|
||||
out, err := cmd.CombinedOutput()
|
||||
return string(out), err
|
||||
}
|
||||
|
||||
// AudioToWav converts audio to wav for transcribe. It bashes out to ffmpeg
|
||||
// AudioToWav converts audio to wav for transcribe.
|
||||
// TODO: use https://github.com/mccoyst/ogg?
|
||||
func audioToWav(src, dst string) error {
|
||||
out, err := sh(fmt.Sprintf("ffmpeg -i %s -format s16le -ar 16000 -ac 1 -acodec pcm_s16le %s", src, dst))
|
||||
command := []string{"ffmpeg", "-i", src, "-format", "s16le", "-ar", "16000", "-ac", "1", "-acodec", "pcm_s16le", dst}
|
||||
out, err := runCommand(command)
|
||||
if err != nil {
|
||||
return fmt.Errorf("error: %w out: %s", err, out)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
|
||||
@@ -33,7 +33,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
model = AutoGPTQForCausalLM.from_quantized(request.Model,
|
||||
model_basename=request.ModelBaseName,
|
||||
use_safetensors=True,
|
||||
trust_remote_code=True,
|
||||
trust_remote_code=request.TrustRemoteCode,
|
||||
device=device,
|
||||
use_triton=request.UseTriton,
|
||||
quantize_config=None)
|
||||
|
||||
@@ -71,7 +71,7 @@ dependencies:
|
||||
- regex==2023.10.3
|
||||
- requests==2.31.0
|
||||
- rouge==1.0.1
|
||||
- safetensors==0.3.3
|
||||
- safetensors>=0.3.3
|
||||
- six==1.16.0
|
||||
- sympy==1.12
|
||||
- tokenizers==0.14.0
|
||||
|
||||
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -8,6 +8,13 @@ ifeq ($(BUILD_TYPE), hipblas)
|
||||
CONDA_ENV_PATH = "transformers-rocm.yml"
|
||||
endif
|
||||
|
||||
# Intel GPU are supposed to have dependencies installed in the main python
|
||||
# environment, so we skip conda installation for SYCL builds.
|
||||
# https://github.com/intel/intel-extension-for-pytorch/issues/538
|
||||
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
|
||||
export SKIP_CONDA=1
|
||||
endif
|
||||
|
||||
.PHONY: transformers
|
||||
transformers:
|
||||
@echo "Installing $(CONDA_ENV_PATH)..."
|
||||
|
||||
@@ -1,24 +1,38 @@
|
||||
#!/bin/bash
|
||||
set -ex
|
||||
|
||||
SKIP_CONDA=${SKIP_CONDA:-0}
|
||||
|
||||
# Check if environment exist
|
||||
conda_env_exists(){
|
||||
! conda list --name "${@}" >/dev/null 2>/dev/null
|
||||
}
|
||||
|
||||
if conda_env_exists "transformers" ; then
|
||||
echo "Creating virtual environment..."
|
||||
conda env create --name transformers --file $1
|
||||
echo "Virtual environment created."
|
||||
else
|
||||
echo "Virtual environment already exists."
|
||||
if [ $SKIP_CONDA -eq 1 ]; then
|
||||
echo "Skipping conda environment installation"
|
||||
else
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
if conda_env_exists "transformers" ; then
|
||||
echo "Creating virtual environment..."
|
||||
conda env create --name transformers --file $1
|
||||
echo "Virtual environment created."
|
||||
else
|
||||
echo "Virtual environment already exists."
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ -d "/opt/intel" ]; then
|
||||
# Intel GPU: If the directory exists, we assume we are using the intel image
|
||||
# (no conda env)
|
||||
# https://github.com/intel/intel-extension-for-pytorch/issues/538
|
||||
pip install intel-extension-for-transformers datasets sentencepiece tiktoken neural_speed
|
||||
fi
|
||||
|
||||
if [ "$PIP_CACHE_PURGE" = true ] ; then
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
|
||||
# Activate conda environment
|
||||
source activate transformers
|
||||
if [ $SKIP_CONDA -eq 0 ]; then
|
||||
# Activate conda environment
|
||||
source activate transformers
|
||||
fi
|
||||
|
||||
pip cache purge
|
||||
fi
|
||||
@@ -30,13 +30,14 @@ dependencies:
|
||||
- async-timeout==4.0.3
|
||||
- attrs==23.1.0
|
||||
- bark==0.1.5
|
||||
- bitsandbytes==0.43.0
|
||||
- boto3==1.28.61
|
||||
- botocore==1.31.61
|
||||
- certifi==2023.7.22
|
||||
- TTS==0.22.0
|
||||
- charset-normalizer==3.3.0
|
||||
- datasets==2.14.5
|
||||
- sentence-transformers==2.2.2
|
||||
- sentence-transformers==2.5.1 # Updated Version
|
||||
- sentencepiece==0.1.99
|
||||
- dill==0.3.7
|
||||
- einops==0.7.0
|
||||
@@ -81,8 +82,8 @@ dependencies:
|
||||
- requests==2.31.0
|
||||
- rouge==1.0.1
|
||||
- s3transfer==0.7.0
|
||||
- safetensors==0.3.3
|
||||
- scipy==1.11.3
|
||||
- safetensors>=0.4.1
|
||||
- scipy==1.12.0 # Updated Version
|
||||
- six==1.16.0
|
||||
- sympy==1.12
|
||||
- tokenizers
|
||||
@@ -113,7 +114,7 @@ dependencies:
|
||||
- sudachipy
|
||||
- sudachidict_core
|
||||
- vocos
|
||||
- vllm==0.2.7
|
||||
- transformers>=4.36.0 # Required for Mixtral.
|
||||
- vllm==0.3.2
|
||||
- transformers>=4.38.2 # Updated Version
|
||||
- xformers==0.0.23.post1
|
||||
prefix: /opt/conda/envs/transformers
|
||||
|
||||
@@ -38,7 +38,7 @@ dependencies:
|
||||
- TTS==0.22.0
|
||||
- charset-normalizer==3.3.0
|
||||
- datasets==2.14.5
|
||||
- sentence-transformers==2.2.2
|
||||
- sentence-transformers==2.5.1 # Updated Version
|
||||
- sentencepiece==0.1.99
|
||||
- dill==0.3.7
|
||||
- einops==0.7.0
|
||||
@@ -71,8 +71,8 @@ dependencies:
|
||||
- requests==2.31.0
|
||||
- rouge==1.0.1
|
||||
- s3transfer==0.7.0
|
||||
- safetensors==0.3.3
|
||||
- scipy==1.11.3
|
||||
- safetensors>=0.4.1
|
||||
- scipy==1.12.0 # Updated Version
|
||||
- six==1.16.0
|
||||
- sympy==1.12
|
||||
- tokenizers
|
||||
@@ -103,7 +103,7 @@ dependencies:
|
||||
- sudachipy
|
||||
- sudachidict_core
|
||||
- vocos
|
||||
- vllm==0.2.7
|
||||
- transformers>=4.36.0 # Required for Mixtral.
|
||||
- vllm==0.3.2
|
||||
- transformers>=4.38.2 # Updated Version
|
||||
- xformers==0.0.23.post1
|
||||
prefix: /opt/conda/envs/transformers
|
||||
|
||||
@@ -36,7 +36,7 @@ dependencies:
|
||||
- TTS==0.22.0
|
||||
- charset-normalizer==3.3.0
|
||||
- datasets==2.14.5
|
||||
- sentence-transformers==2.2.2
|
||||
- sentence-transformers==2.5.1 # Updated Version
|
||||
- sentencepiece==0.1.99
|
||||
- dill==0.3.7
|
||||
- einops==0.7.0
|
||||
@@ -69,8 +69,8 @@ dependencies:
|
||||
- requests==2.31.0
|
||||
- rouge==1.0.1
|
||||
- s3transfer==0.7.0
|
||||
- safetensors==0.3.3
|
||||
- scipy==1.11.3
|
||||
- safetensors>=0.4.1
|
||||
- scipy==1.12.0 # Updated Version
|
||||
- six==1.16.0
|
||||
- sympy==1.12
|
||||
- tokenizers
|
||||
@@ -101,7 +101,7 @@ dependencies:
|
||||
- sudachipy
|
||||
- sudachidict_core
|
||||
- vocos
|
||||
- vllm==0.2.7
|
||||
- transformers>=4.36.0 # Required for Mixtral.
|
||||
- vllm==0.3.2
|
||||
- transformers>=4.38.2 # Updated Version
|
||||
- xformers==0.0.23.post1
|
||||
prefix: /opt/conda/envs/transformers
|
||||
prefix: /opt/conda/envs/transformers
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -4,6 +4,13 @@ ifeq ($(BUILD_TYPE), hipblas)
|
||||
export CONDA_ENV_PATH = "diffusers-rocm.yml"
|
||||
endif
|
||||
|
||||
# Intel GPU are supposed to have dependencies installed in the main python
|
||||
# environment, so we skip conda installation for SYCL builds.
|
||||
# https://github.com/intel/intel-extension-for-pytorch/issues/538
|
||||
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
|
||||
export SKIP_CONDA=1
|
||||
endif
|
||||
|
||||
.PHONY: diffusers
|
||||
diffusers:
|
||||
@echo "Installing $(CONDA_ENV_PATH)..."
|
||||
|
||||
@@ -21,14 +21,15 @@ from diffusers import StableDiffusionXLPipeline, StableDiffusionDepth2ImgPipelin
|
||||
from diffusers import StableDiffusionImg2ImgPipeline, AutoPipelineForText2Image, ControlNetModel, StableVideoDiffusionPipeline
|
||||
from diffusers.pipelines.stable_diffusion import safety_checker
|
||||
from diffusers.utils import load_image,export_to_video
|
||||
from compel import Compel
|
||||
from compel import Compel, ReturnedEmbeddingsType
|
||||
|
||||
from transformers import CLIPTextModel
|
||||
from safetensors.torch import load_file
|
||||
|
||||
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
COMPEL=os.environ.get("COMPEL", "1") == "1"
|
||||
COMPEL=os.environ.get("COMPEL", "0") == "1"
|
||||
XPU=os.environ.get("XPU", "0") == "1"
|
||||
CLIPSKIP=os.environ.get("CLIPSKIP", "1") == "1"
|
||||
SAFETENSORS=os.environ.get("SAFETENSORS", "1") == "1"
|
||||
CHUNK_SIZE=os.environ.get("CHUNK_SIZE", "8")
|
||||
@@ -36,6 +37,10 @@ FPS=os.environ.get("FPS", "7")
|
||||
DISABLE_CPU_OFFLOAD=os.environ.get("DISABLE_CPU_OFFLOAD", "0") == "1"
|
||||
FRAMES=os.environ.get("FRAMES", "64")
|
||||
|
||||
if XPU:
|
||||
import intel_extension_for_pytorch as ipex
|
||||
print(ipex.xpu.get_device_name(0))
|
||||
|
||||
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
||||
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
||||
|
||||
@@ -231,8 +236,13 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
if request.SchedulerType != "":
|
||||
self.pipe.scheduler = get_scheduler(request.SchedulerType, self.pipe.scheduler.config)
|
||||
|
||||
if not self.img2vid:
|
||||
self.compel = Compel(tokenizer=self.pipe.tokenizer, text_encoder=self.pipe.text_encoder)
|
||||
if COMPEL:
|
||||
self.compel = Compel(
|
||||
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2 ],
|
||||
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
|
||||
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
||||
requires_pooled=[False, True]
|
||||
)
|
||||
|
||||
|
||||
if request.ControlNet:
|
||||
@@ -247,6 +257,8 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
self.pipe.to('cuda')
|
||||
if self.controlnet:
|
||||
self.controlnet.to('cuda')
|
||||
if XPU:
|
||||
self.pipe = self.pipe.to("xpu")
|
||||
# Assume directory from request.ModelFile.
|
||||
# Only if request.LoraAdapter it's not an absolute path
|
||||
if request.LoraAdapter and request.ModelFile != "" and not os.path.isabs(request.LoraAdapter) and request.LoraAdapter:
|
||||
@@ -386,8 +398,9 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
|
||||
image = {}
|
||||
if COMPEL:
|
||||
conditioning = self.compel.build_conditioning_tensor(prompt)
|
||||
kwargs["prompt_embeds"]= conditioning
|
||||
conditioning, pooled = self.compel.build_conditioning_tensor(prompt)
|
||||
kwargs["prompt_embeds"] = conditioning
|
||||
kwargs["pooled_prompt_embeds"] = pooled
|
||||
# pass the kwargs dictionary to the self.pipe method
|
||||
image = self.pipe(
|
||||
guidance_scale=self.cfg_scale,
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -1,24 +1,50 @@
|
||||
#!/bin/bash
|
||||
set -ex
|
||||
|
||||
SKIP_CONDA=${SKIP_CONDA:-0}
|
||||
|
||||
# Check if environment exist
|
||||
conda_env_exists(){
|
||||
! conda list --name "${@}" >/dev/null 2>/dev/null
|
||||
}
|
||||
|
||||
if conda_env_exists "diffusers" ; then
|
||||
echo "Creating virtual environment..."
|
||||
conda env create --name diffusers --file $1
|
||||
echo "Virtual environment created."
|
||||
else
|
||||
echo "Virtual environment already exists."
|
||||
if [ $SKIP_CONDA -eq 1 ]; then
|
||||
echo "Skipping conda environment installation"
|
||||
else
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
if conda_env_exists "diffusers" ; then
|
||||
echo "Creating virtual environment..."
|
||||
conda env create --name diffusers --file $1
|
||||
echo "Virtual environment created."
|
||||
else
|
||||
echo "Virtual environment already exists."
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ -d "/opt/intel" ]; then
|
||||
# Intel GPU: If the directory exists, we assume we are using the Intel image
|
||||
# https://github.com/intel/intel-extension-for-pytorch/issues/538
|
||||
pip install torch==2.1.0a0 \
|
||||
torchvision==0.16.0a0 \
|
||||
torchaudio==2.1.0a0 \
|
||||
intel-extension-for-pytorch==2.1.10+xpu \
|
||||
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
|
||||
pip install google-api-python-client \
|
||||
grpcio \
|
||||
grpcio-tools \
|
||||
diffusers==0.24.0 \
|
||||
transformers>=4.25.1 \
|
||||
accelerate \
|
||||
compel==2.0.2 \
|
||||
Pillow
|
||||
fi
|
||||
|
||||
if [ "$PIP_CACHE_PURGE" = true ] ; then
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
|
||||
# Activate conda environment
|
||||
source activate diffusers
|
||||
if [ $SKIP_CONDA -ne 1 ]; then
|
||||
# Activate conda environment
|
||||
source activate diffusers
|
||||
fi
|
||||
|
||||
pip cache purge
|
||||
fi
|
||||
@@ -3,10 +3,15 @@
|
||||
##
|
||||
## A bash script wrapper that runs the diffusers server with conda
|
||||
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
|
||||
# Activate conda environment
|
||||
source activate diffusers
|
||||
if [ -d "/opt/intel" ]; then
|
||||
# Assumes we are using the Intel oneAPI container image
|
||||
# https://github.com/intel/intel-extension-for-pytorch/issues/538
|
||||
export XPU=1
|
||||
else
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
# Activate conda environment
|
||||
source activate diffusers
|
||||
fi
|
||||
|
||||
# get the directory where the bash script is located
|
||||
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
@@ -1,7 +1,8 @@
|
||||
export CONDA_ENV_PATH = "exllama.yml"
|
||||
|
||||
.PHONY: exllama
|
||||
exllama:
|
||||
$(MAKE) -C ../common-env/transformers
|
||||
bash install.sh
|
||||
bash install.sh ${CONDA_ENV_PATH}
|
||||
|
||||
.PHONY: run
|
||||
run:
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -1,14 +1,27 @@
|
||||
#!/bin/bash
|
||||
set -ex
|
||||
|
||||
##
|
||||
## A bash script installs the required dependencies of VALL-E-X and prepares the environment
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
|
||||
# Activate conda environment
|
||||
source activate transformers
|
||||
if [ "$BUILD_TYPE" != "cublas" ]; then
|
||||
echo "[exllama] Attention!!! Nvidia GPU is required - skipping installation"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
echo $CONDA_PREFIX
|
||||
# Check if environment exist
|
||||
conda_env_exists(){
|
||||
! conda list --name "${@}" >/dev/null 2>/dev/null
|
||||
}
|
||||
|
||||
if conda_env_exists "exllama" ; then
|
||||
echo "Creating virtual environment..."
|
||||
conda env create --name exllama --file $1
|
||||
echo "Virtual environment created."
|
||||
else
|
||||
echo "Virtual environment already exists."
|
||||
fi
|
||||
|
||||
source activate exllama
|
||||
|
||||
git clone https://github.com/turboderp/exllama $CONDA_PREFIX/exllama && pushd $CONDA_PREFIX/exllama && pip install -r requirements.txt && popd
|
||||
|
||||
|
||||
@@ -2,11 +2,10 @@
|
||||
|
||||
##
|
||||
## A bash script wrapper that runs the exllama server with conda
|
||||
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
|
||||
# Activate conda environment
|
||||
source activate transformers
|
||||
source activate exllama
|
||||
|
||||
# get the directory where the bash script is located
|
||||
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -2,10 +2,14 @@
|
||||
set -e
|
||||
##
|
||||
## A bash script installs the required dependencies of VALL-E-X and prepares the environment
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
export SHA=c0ddebaaaf8ffd1b3529c2bb654e650bce2f790f
|
||||
|
||||
# Activate conda environment
|
||||
if [ "$BUILD_TYPE" != "cublas" ]; then
|
||||
echo "[exllamav2] Attention!!! Nvidia GPU is required - skipping installation"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
source activate transformers
|
||||
|
||||
echo $CONDA_PREFIX
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -2,13 +2,14 @@
|
||||
set -e
|
||||
##
|
||||
## A bash script installs the required dependencies of VALL-E-X and prepares the environment
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
|
||||
if [ "$BUILD_TYPE" != "cublas" ]; then
|
||||
echo "[mamba] Attention!!! nvcc is required - skipping installation"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
|
||||
# Activate conda environment
|
||||
source activate transformers
|
||||
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
.PHONY: petals
|
||||
petals:
|
||||
@echo "Creating virtual environment..."
|
||||
@conda env create --name petals --file petals.yml
|
||||
bash install.sh "petals.yml"
|
||||
@echo "Virtual environment created."
|
||||
|
||||
.PHONY: run
|
||||
|
||||
File diff suppressed because one or more lines are too long
5
backend/python/petals/install.sh
Normal file
5
backend/python/petals/install.sh
Normal file
@@ -0,0 +1,5 @@
|
||||
#!/bin/bash
|
||||
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
|
||||
conda env create --name petals --file $1
|
||||
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -3,10 +3,16 @@
|
||||
##
|
||||
## A bash script wrapper that runs the transformers server with conda
|
||||
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
|
||||
# Activate conda environment
|
||||
source activate transformers
|
||||
if [ -d "/opt/intel" ]; then
|
||||
# Assumes we are using the Intel oneAPI container image
|
||||
# https://github.com/intel/intel-extension-for-pytorch/issues/538
|
||||
export XPU=1
|
||||
else
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
# Activate conda environment
|
||||
source activate transformers
|
||||
fi
|
||||
|
||||
# get the directory where the bash script is located
|
||||
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
@@ -16,7 +16,15 @@ import backend_pb2_grpc
|
||||
import grpc
|
||||
import torch
|
||||
import torch.cuda
|
||||
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM, set_seed
|
||||
|
||||
XPU=os.environ.get("XPU", "0") == "1"
|
||||
if XPU:
|
||||
import intel_extension_for_pytorch as ipex
|
||||
from intel_extension_for_transformers.transformers.modeling import AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, AutoModel, set_seed
|
||||
else:
|
||||
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM, set_seed, BitsAndBytesConfig
|
||||
|
||||
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
|
||||
@@ -67,22 +75,60 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
A Result object that contains the result of the LoadModel operation.
|
||||
"""
|
||||
model_name = request.Model
|
||||
|
||||
compute = "auto"
|
||||
if request.F16Memory == True:
|
||||
compute=torch.bfloat16
|
||||
|
||||
self.CUDA = request.CUDA
|
||||
|
||||
device_map="cpu"
|
||||
|
||||
quantization = None
|
||||
|
||||
if self.CUDA:
|
||||
if request.Device:
|
||||
device_map=request.Device
|
||||
else:
|
||||
device_map="cuda:0"
|
||||
if request.Quantization == "bnb_4bit":
|
||||
quantization = BitsAndBytesConfig(
|
||||
load_in_4bit = True,
|
||||
bnb_4bit_compute_dtype = compute,
|
||||
bnb_4bit_quant_type = "nf4",
|
||||
bnb_4bit_use_double_quant = True,
|
||||
load_in_8bit = False,
|
||||
)
|
||||
elif request.Quantization == "bnb_8bit":
|
||||
quantization = BitsAndBytesConfig(
|
||||
load_in_4bit=False,
|
||||
bnb_4bit_compute_dtype = None,
|
||||
load_in_8bit=True,
|
||||
)
|
||||
|
||||
|
||||
try:
|
||||
if request.Type == "AutoModelForCausalLM":
|
||||
self.model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
||||
if XPU:
|
||||
if quantization == "xpu_4bit":
|
||||
xpu_4bit = True
|
||||
self.model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=request.TrustRemoteCode,
|
||||
device_map="xpu", load_in_4bit=xpu_4bit)
|
||||
else:
|
||||
self.model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=request.TrustRemoteCode, use_safetensors=True, quantization_config=quantization, device_map=device_map, torch_dtype=compute)
|
||||
else:
|
||||
self.model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
|
||||
self.model = AutoModel.from_pretrained(model_name, trust_remote_code=request.TrustRemoteCode, use_safetensors=True, quantization_config=quantization, device_map=device_map, torch_dtype=compute)
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_safetensors=True)
|
||||
self.XPU = False
|
||||
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
self.CUDA = False
|
||||
|
||||
if request.CUDA or torch.cuda.is_available():
|
||||
if XPU:
|
||||
self.XPU = True
|
||||
try:
|
||||
print("Loading model", model_name, "to CUDA.", file=sys.stderr)
|
||||
self.model = self.model.to("cuda")
|
||||
self.CUDA = True
|
||||
print("Optimizing model", model_name, "to XPU.", file=sys.stderr)
|
||||
self.model = ipex.optimize_transformers(self.model, inplace=True, dtype=torch.float16, device="xpu")
|
||||
except Exception as err:
|
||||
print("Not using CUDA:", err, file=sys.stderr)
|
||||
print("Not using XPU:", err, file=sys.stderr)
|
||||
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
# Implement your logic here for the LoadModel service
|
||||
@@ -109,13 +155,17 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
encoded_input = self.tokenizer(request.Embeddings, padding=True, truncation=True, max_length=max_length, return_tensors="pt")
|
||||
|
||||
# Create word embeddings
|
||||
model_output = self.model(**encoded_input)
|
||||
if self.CUDA:
|
||||
encoded_input = encoded_input.to("cuda")
|
||||
|
||||
with torch.no_grad():
|
||||
model_output = self.model(**encoded_input)
|
||||
|
||||
# Pool to get sentence embeddings; i.e. generate one 1024 vector for the entire sentence
|
||||
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']).detach().numpy()
|
||||
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
||||
print("Calculated embeddings for: " + request.Embeddings, file=sys.stderr)
|
||||
print("Embeddings:", sentence_embeddings, file=sys.stderr)
|
||||
return backend_pb2.EmbeddingResult(embeddings=sentence_embeddings)
|
||||
return backend_pb2.EmbeddingResult(embeddings=sentence_embeddings[0])
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""
|
||||
@@ -139,13 +189,11 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
inputs = self.tokenizer(request.Prompt, return_tensors="pt").input_ids
|
||||
if self.CUDA:
|
||||
inputs = inputs.to("cuda")
|
||||
if XPU:
|
||||
inputs = inputs.to("xpu")
|
||||
|
||||
outputs = self.model.generate(inputs,max_new_tokens=max_tokens, temperature=request.Temperature, top_p=request.TopP)
|
||||
|
||||
generated_text = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
||||
# Remove prompt from response if present
|
||||
if request.Prompt in generated_text:
|
||||
generated_text = generated_text.replace(request.Prompt, "")
|
||||
outputs = self.model.generate(inputs,max_new_tokens=max_tokens, temperature=request.Temperature, top_p=request.TopP, do_sample=True, pad_token_id=self.tokenizer.eos_token_id)
|
||||
generated_text = self.tokenizer.batch_decode(outputs[:, inputs.shape[1]:], skip_special_tokens=True)[0]
|
||||
|
||||
return backend_pb2.Reply(message=bytes(generated_text, encoding='utf-8'))
|
||||
|
||||
|
||||
@@ -1,3 +1,7 @@
|
||||
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
|
||||
export SKIP_CONDA=1
|
||||
endif
|
||||
|
||||
.PHONY: ttsvalle
|
||||
ttsvalle:
|
||||
$(MAKE) -C ../common-env/transformers
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -2,13 +2,16 @@
|
||||
|
||||
##
|
||||
## A bash script installs the required dependencies of VALL-E-X and prepares the environment
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
export SHA=3faaf8ccadb154d63b38070caf518ce9309ea0f4
|
||||
|
||||
# Activate conda environment
|
||||
source activate transformers
|
||||
SKIP_CONDA=${SKIP_CONDA:-0}
|
||||
|
||||
echo $CONDA_PREFIX
|
||||
if [ $SKIP_CONDA -ne 1 ]; then
|
||||
source activate transformers
|
||||
else
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
CONDA_PREFIX=$PWD
|
||||
fi
|
||||
|
||||
git clone https://github.com/Plachtaa/VALL-E-X.git $CONDA_PREFIX/vall-e-x && pushd $CONDA_PREFIX/vall-e-x && git checkout -b build $SHA && popd
|
||||
|
||||
|
||||
@@ -79,7 +79,7 @@ dependencies:
|
||||
- pypinyin==0.49.0
|
||||
- python-multipart==0.0.6
|
||||
- regex==2023.10.3
|
||||
- safetensors==0.4.0
|
||||
- safetensors>=0.4.0
|
||||
- semantic-version==2.10.0
|
||||
- soundfile==0.12.1
|
||||
- starlette==0.27.0
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -1,6 +1,6 @@
|
||||
#!/usr/bin/env python3
|
||||
import asyncio
|
||||
from concurrent import futures
|
||||
import time
|
||||
import argparse
|
||||
import signal
|
||||
import sys
|
||||
@@ -10,7 +10,10 @@ import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.engine.arg_utils import AsyncEngineArgs
|
||||
from vllm.engine.async_llm_engine import AsyncLLMEngine
|
||||
from vllm.sampling_params import SamplingParams
|
||||
from vllm.utils import random_uuid
|
||||
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
|
||||
@@ -79,16 +82,30 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
Returns:
|
||||
backend_pb2.Result: The load model result.
|
||||
"""
|
||||
engine_args = AsyncEngineArgs(
|
||||
model=request.Model,
|
||||
)
|
||||
|
||||
if request.Quantization != "":
|
||||
engine_args.quantization = request.Quantization
|
||||
if request.GPUMemoryUtilization != 0:
|
||||
engine_args.gpu_memory_utilization = request.GPUMemoryUtilization
|
||||
if request.TrustRemoteCode:
|
||||
engine_args.trust_remote_code = request.TrustRemoteCode
|
||||
if request.EnforceEager:
|
||||
engine_args.enforce_eager = request.EnforceEager
|
||||
if request.SwapSpace != 0:
|
||||
engine_args.swap_space = request.SwapSpace
|
||||
if request.MaxModelLen != 0:
|
||||
engine_args.max_model_len = request.MaxModelLen
|
||||
|
||||
try:
|
||||
if request.Quantization != "":
|
||||
self.llm = LLM(model=request.Model, quantization=request.Quantization)
|
||||
else:
|
||||
self.llm = LLM(model=request.Model)
|
||||
self.llm = AsyncLLMEngine.from_engine_args(engine_args)
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||||
|
||||
def Predict(self, request, context):
|
||||
async def Predict(self, request, context):
|
||||
"""
|
||||
Generates text based on the given prompt and sampling parameters.
|
||||
|
||||
@@ -99,24 +116,11 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
Returns:
|
||||
backend_pb2.Reply: The predict result.
|
||||
"""
|
||||
if request.TopP == 0:
|
||||
request.TopP = 0.9
|
||||
gen = self._predict(request, context, streaming=False)
|
||||
res = await gen.__anext__()
|
||||
return res
|
||||
|
||||
max_tokens = 200
|
||||
if request.Tokens > 0:
|
||||
max_tokens = request.Tokens
|
||||
|
||||
sampling_params = SamplingParams(max_tokens=max_tokens, temperature=request.Temperature, top_p=request.TopP)
|
||||
outputs = self.llm.generate([request.Prompt], sampling_params)
|
||||
|
||||
generated_text = outputs[0].outputs[0].text
|
||||
# Remove prompt from response if present
|
||||
if request.Prompt in generated_text:
|
||||
generated_text = generated_text.replace(request.Prompt, "")
|
||||
|
||||
return backend_pb2.Reply(message=bytes(generated_text, encoding='utf-8'))
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
async def PredictStream(self, request, context):
|
||||
"""
|
||||
Generates text based on the given prompt and sampling parameters, and streams the results.
|
||||
|
||||
@@ -127,30 +131,84 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
Returns:
|
||||
backend_pb2.Result: The predict stream result.
|
||||
"""
|
||||
yield self.Predict(request, context)
|
||||
iterations = self._predict(request, context, streaming=True)
|
||||
try:
|
||||
async for iteration in iterations:
|
||||
yield iteration
|
||||
finally:
|
||||
await iterations.aclose()
|
||||
|
||||
def serve(address):
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||||
async def _predict(self, request, context, streaming=False):
|
||||
|
||||
# Build sampling parameters
|
||||
sampling_params = SamplingParams(top_p=0.9, max_tokens=200)
|
||||
if request.TopP != 0:
|
||||
sampling_params.top_p = request.TopP
|
||||
if request.Tokens > 0:
|
||||
sampling_params.max_tokens = request.Tokens
|
||||
if request.Temperature != 0:
|
||||
sampling_params.temperature = request.Temperature
|
||||
if request.TopK != 0:
|
||||
sampling_params.top_k = request.TopK
|
||||
if request.PresencePenalty != 0:
|
||||
sampling_params.presence_penalty = request.PresencePenalty
|
||||
if request.FrequencyPenalty != 0:
|
||||
sampling_params.frequency_penalty = request.FrequencyPenalty
|
||||
if request.StopPrompts:
|
||||
sampling_params.stop = request.StopPrompts
|
||||
if request.IgnoreEOS:
|
||||
sampling_params.ignore_eos = request.IgnoreEOS
|
||||
if request.Seed != 0:
|
||||
sampling_params.seed = request.Seed
|
||||
|
||||
# Generate text
|
||||
request_id = random_uuid()
|
||||
outputs = self.llm.generate(request.Prompt, sampling_params, request_id)
|
||||
|
||||
# Stream the results
|
||||
generated_text = ""
|
||||
try:
|
||||
async for request_output in outputs:
|
||||
iteration_text = request_output.outputs[0].text
|
||||
|
||||
if streaming:
|
||||
# Remove text already sent as vllm concatenates the text from previous yields
|
||||
delta_iteration_text = iteration_text.removeprefix(generated_text)
|
||||
# Send the partial result
|
||||
yield backend_pb2.Reply(message=bytes(delta_iteration_text, encoding='utf-8'))
|
||||
|
||||
# Keep track of text generated
|
||||
generated_text = iteration_text
|
||||
finally:
|
||||
await outputs.aclose()
|
||||
|
||||
# If streaming, we already sent everything
|
||||
if streaming:
|
||||
return
|
||||
|
||||
# Sending the final generated text
|
||||
yield backend_pb2.Reply(message=bytes(generated_text, encoding='utf-8'))
|
||||
|
||||
async def serve(address):
|
||||
# Start asyncio gRPC server
|
||||
server = grpc.aio.server(migration_thread_pool=futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||||
# Add the servicer to the server
|
||||
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||||
# Bind the server to the address
|
||||
server.add_insecure_port(address)
|
||||
server.start()
|
||||
|
||||
# Gracefully shutdown the server on SIGTERM or SIGINT
|
||||
loop = asyncio.get_event_loop()
|
||||
for sig in (signal.SIGINT, signal.SIGTERM):
|
||||
loop.add_signal_handler(
|
||||
sig, lambda: asyncio.ensure_future(server.stop(5))
|
||||
)
|
||||
|
||||
# Start the server
|
||||
await server.start()
|
||||
print("Server started. Listening on: " + address, file=sys.stderr)
|
||||
|
||||
# Define the signal handler function
|
||||
def signal_handler(sig, frame):
|
||||
print("Received termination signal. Shutting down...")
|
||||
server.stop(0)
|
||||
sys.exit(0)
|
||||
|
||||
# Set the signal handlers for SIGINT and SIGTERM
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
|
||||
try:
|
||||
while True:
|
||||
time.sleep(_ONE_DAY_IN_SECONDS)
|
||||
except KeyboardInterrupt:
|
||||
server.stop(0)
|
||||
# Wait for the server to be terminated
|
||||
await server.wait_for_termination()
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||||
@@ -159,4 +217,4 @@ if __name__ == "__main__":
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
serve(args.addr)
|
||||
asyncio.run(serve(args.addr))
|
||||
0
configuration/.keep
Normal file
0
configuration/.keep
Normal file
@@ -3,36 +3,32 @@ package backend
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
config "github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/options"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c config.Config, o *options.Option) (func() ([]float32, error), error) {
|
||||
if !c.Embeddings {
|
||||
return nil, fmt.Errorf("endpoint disabled for this model by API configuration")
|
||||
}
|
||||
func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (func() ([]float32, error), error) {
|
||||
modelFile := backendConfig.Model
|
||||
|
||||
modelFile := c.Model
|
||||
|
||||
grpcOpts := gRPCModelOpts(c)
|
||||
grpcOpts := gRPCModelOpts(backendConfig)
|
||||
|
||||
var inferenceModel interface{}
|
||||
var err error
|
||||
|
||||
opts := modelOpts(c, o, []model.Option{
|
||||
opts := modelOpts(backendConfig, appConfig, []model.Option{
|
||||
model.WithLoadGRPCLoadModelOpts(grpcOpts),
|
||||
model.WithThreads(uint32(c.Threads)),
|
||||
model.WithAssetDir(o.AssetsDestination),
|
||||
model.WithThreads(uint32(*backendConfig.Threads)),
|
||||
model.WithAssetDir(appConfig.AssetsDestination),
|
||||
model.WithModel(modelFile),
|
||||
model.WithContext(o.Context),
|
||||
model.WithContext(appConfig.Context),
|
||||
})
|
||||
|
||||
if c.Backend == "" {
|
||||
if backendConfig.Backend == "" {
|
||||
inferenceModel, err = loader.GreedyLoader(opts...)
|
||||
} else {
|
||||
opts = append(opts, model.WithBackendString(c.Backend))
|
||||
opts = append(opts, model.WithBackendString(backendConfig.Backend))
|
||||
inferenceModel, err = loader.BackendLoader(opts...)
|
||||
}
|
||||
if err != nil {
|
||||
@@ -43,7 +39,7 @@ func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c config.
|
||||
switch model := inferenceModel.(type) {
|
||||
case grpc.Backend:
|
||||
fn = func() ([]float32, error) {
|
||||
predictOptions := gRPCPredictOpts(c, loader.ModelPath)
|
||||
predictOptions := gRPCPredictOpts(backendConfig, loader.ModelPath)
|
||||
if len(tokens) > 0 {
|
||||
embeds := []int32{}
|
||||
|
||||
@@ -52,7 +48,7 @@ func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c config.
|
||||
}
|
||||
predictOptions.EmbeddingTokens = embeds
|
||||
|
||||
res, err := model.Embeddings(o.Context, predictOptions)
|
||||
res, err := model.Embeddings(appConfig.Context, predictOptions)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@@ -61,7 +57,7 @@ func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c config.
|
||||
}
|
||||
predictOptions.Embeddings = s
|
||||
|
||||
res, err := model.Embeddings(o.Context, predictOptions)
|
||||
res, err := model.Embeddings(appConfig.Context, predictOptions)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
@@ -1,34 +1,25 @@
|
||||
package backend
|
||||
|
||||
import (
|
||||
config "github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/options"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, src, dst string, loader *model.ModelLoader, c config.Config, o *options.Option) (func() error, error) {
|
||||
|
||||
opts := modelOpts(c, o, []model.Option{
|
||||
model.WithBackendString(c.Backend),
|
||||
model.WithAssetDir(o.AssetsDestination),
|
||||
model.WithThreads(uint32(c.Threads)),
|
||||
model.WithContext(o.Context),
|
||||
model.WithModel(c.Model),
|
||||
model.WithLoadGRPCLoadModelOpts(&proto.ModelOptions{
|
||||
CUDA: c.CUDA || c.Diffusers.CUDA,
|
||||
SchedulerType: c.Diffusers.SchedulerType,
|
||||
PipelineType: c.Diffusers.PipelineType,
|
||||
CFGScale: c.Diffusers.CFGScale,
|
||||
LoraAdapter: c.LoraAdapter,
|
||||
LoraScale: c.LoraScale,
|
||||
LoraBase: c.LoraBase,
|
||||
IMG2IMG: c.Diffusers.IMG2IMG,
|
||||
CLIPModel: c.Diffusers.ClipModel,
|
||||
CLIPSubfolder: c.Diffusers.ClipSubFolder,
|
||||
CLIPSkip: int32(c.Diffusers.ClipSkip),
|
||||
ControlNet: c.Diffusers.ControlNet,
|
||||
}),
|
||||
func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, src, dst string, loader *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (func() error, error) {
|
||||
threads := backendConfig.Threads
|
||||
if *threads == 0 && appConfig.Threads != 0 {
|
||||
threads = &appConfig.Threads
|
||||
}
|
||||
gRPCOpts := gRPCModelOpts(backendConfig)
|
||||
opts := modelOpts(backendConfig, appConfig, []model.Option{
|
||||
model.WithBackendString(backendConfig.Backend),
|
||||
model.WithAssetDir(appConfig.AssetsDestination),
|
||||
model.WithThreads(uint32(*threads)),
|
||||
model.WithContext(appConfig.Context),
|
||||
model.WithModel(backendConfig.Model),
|
||||
model.WithLoadGRPCLoadModelOpts(gRPCOpts),
|
||||
})
|
||||
|
||||
inferenceModel, err := loader.BackendLoader(
|
||||
@@ -40,19 +31,19 @@ func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negat
|
||||
|
||||
fn := func() error {
|
||||
_, err := inferenceModel.GenerateImage(
|
||||
o.Context,
|
||||
appConfig.Context,
|
||||
&proto.GenerateImageRequest{
|
||||
Height: int32(height),
|
||||
Width: int32(width),
|
||||
Mode: int32(mode),
|
||||
Step: int32(step),
|
||||
Seed: int32(seed),
|
||||
CLIPSkip: int32(c.Diffusers.ClipSkip),
|
||||
CLIPSkip: int32(backendConfig.Diffusers.ClipSkip),
|
||||
PositivePrompt: positive_prompt,
|
||||
NegativePrompt: negative_prompt,
|
||||
Dst: dst,
|
||||
Src: src,
|
||||
EnableParameters: c.Diffusers.EnableParameters,
|
||||
EnableParameters: backendConfig.Diffusers.EnableParameters,
|
||||
})
|
||||
return err
|
||||
}
|
||||
|
||||
@@ -8,8 +8,8 @@ import (
|
||||
"sync"
|
||||
"unicode/utf8"
|
||||
|
||||
config "github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/options"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/gallery"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
@@ -26,9 +26,12 @@ type TokenUsage struct {
|
||||
Completion int
|
||||
}
|
||||
|
||||
func ModelInference(ctx context.Context, s string, images []string, loader *model.ModelLoader, c config.Config, o *options.Option, tokenCallback func(string, TokenUsage) bool) (func() (LLMResponse, error), error) {
|
||||
func ModelInference(ctx context.Context, s string, images []string, loader *model.ModelLoader, c config.BackendConfig, o *config.ApplicationConfig, tokenCallback func(string, TokenUsage) bool) (func() (LLMResponse, error), error) {
|
||||
modelFile := c.Model
|
||||
|
||||
threads := c.Threads
|
||||
if *threads == 0 && o.Threads != 0 {
|
||||
threads = &o.Threads
|
||||
}
|
||||
grpcOpts := gRPCModelOpts(c)
|
||||
|
||||
var inferenceModel grpc.Backend
|
||||
@@ -36,7 +39,7 @@ func ModelInference(ctx context.Context, s string, images []string, loader *mode
|
||||
|
||||
opts := modelOpts(c, o, []model.Option{
|
||||
model.WithLoadGRPCLoadModelOpts(grpcOpts),
|
||||
model.WithThreads(uint32(c.Threads)), // some models uses this to allocate threads during startup
|
||||
model.WithThreads(uint32(*threads)), // some models uses this to allocate threads during startup
|
||||
model.WithAssetDir(o.AssetsDestination),
|
||||
model.WithModel(modelFile),
|
||||
model.WithContext(o.Context),
|
||||
@@ -140,7 +143,7 @@ func ModelInference(ctx context.Context, s string, images []string, loader *mode
|
||||
var cutstrings map[string]*regexp.Regexp = make(map[string]*regexp.Regexp)
|
||||
var mu sync.Mutex = sync.Mutex{}
|
||||
|
||||
func Finetune(config config.Config, input, prediction string) string {
|
||||
func Finetune(config config.BackendConfig, input, prediction string) string {
|
||||
if config.Echo {
|
||||
prediction = input + prediction
|
||||
}
|
||||
|
||||
@@ -4,19 +4,17 @@ import (
|
||||
"os"
|
||||
"path/filepath"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
|
||||
config "github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/options"
|
||||
)
|
||||
|
||||
func modelOpts(c config.Config, o *options.Option, opts []model.Option) []model.Option {
|
||||
if o.SingleBackend {
|
||||
func modelOpts(c config.BackendConfig, so *config.ApplicationConfig, opts []model.Option) []model.Option {
|
||||
if so.SingleBackend {
|
||||
opts = append(opts, model.WithSingleActiveBackend())
|
||||
}
|
||||
|
||||
if o.ParallelBackendRequests {
|
||||
if so.ParallelBackendRequests {
|
||||
opts = append(opts, model.EnableParallelRequests)
|
||||
}
|
||||
|
||||
@@ -28,52 +26,65 @@ func modelOpts(c config.Config, o *options.Option, opts []model.Option) []model.
|
||||
opts = append(opts, model.WithGRPCAttemptsDelay(c.GRPC.AttemptsSleepTime))
|
||||
}
|
||||
|
||||
for k, v := range o.ExternalGRPCBackends {
|
||||
for k, v := range so.ExternalGRPCBackends {
|
||||
opts = append(opts, model.WithExternalBackend(k, v))
|
||||
}
|
||||
|
||||
return opts
|
||||
}
|
||||
|
||||
func gRPCModelOpts(c config.Config) *pb.ModelOptions {
|
||||
func gRPCModelOpts(c config.BackendConfig) *pb.ModelOptions {
|
||||
b := 512
|
||||
if c.Batch != 0 {
|
||||
b = c.Batch
|
||||
}
|
||||
|
||||
return &pb.ModelOptions{
|
||||
ContextSize: int32(c.ContextSize),
|
||||
Seed: int32(c.Seed),
|
||||
NBatch: int32(b),
|
||||
NoMulMatQ: c.NoMulMatQ,
|
||||
CUDA: c.CUDA, // diffusers, transformers
|
||||
DraftModel: c.DraftModel,
|
||||
AudioPath: c.VallE.AudioPath,
|
||||
Quantization: c.Quantization,
|
||||
MMProj: c.MMProj,
|
||||
YarnExtFactor: c.YarnExtFactor,
|
||||
YarnAttnFactor: c.YarnAttnFactor,
|
||||
YarnBetaFast: c.YarnBetaFast,
|
||||
YarnBetaSlow: c.YarnBetaSlow,
|
||||
LoraAdapter: c.LoraAdapter,
|
||||
LoraBase: c.LoraBase,
|
||||
LoraScale: c.LoraScale,
|
||||
NGQA: c.NGQA,
|
||||
RMSNormEps: c.RMSNormEps,
|
||||
F16Memory: c.F16,
|
||||
MLock: c.MMlock,
|
||||
RopeFreqBase: c.RopeFreqBase,
|
||||
RopeScaling: c.RopeScaling,
|
||||
Type: c.ModelType,
|
||||
RopeFreqScale: c.RopeFreqScale,
|
||||
NUMA: c.NUMA,
|
||||
Embeddings: c.Embeddings,
|
||||
LowVRAM: c.LowVRAM,
|
||||
NGPULayers: int32(c.NGPULayers),
|
||||
MMap: c.MMap,
|
||||
MainGPU: c.MainGPU,
|
||||
Threads: int32(c.Threads),
|
||||
TensorSplit: c.TensorSplit,
|
||||
CUDA: c.CUDA || c.Diffusers.CUDA,
|
||||
SchedulerType: c.Diffusers.SchedulerType,
|
||||
PipelineType: c.Diffusers.PipelineType,
|
||||
CFGScale: c.Diffusers.CFGScale,
|
||||
LoraAdapter: c.LoraAdapter,
|
||||
LoraScale: c.LoraScale,
|
||||
F16Memory: *c.F16,
|
||||
LoraBase: c.LoraBase,
|
||||
IMG2IMG: c.Diffusers.IMG2IMG,
|
||||
CLIPModel: c.Diffusers.ClipModel,
|
||||
CLIPSubfolder: c.Diffusers.ClipSubFolder,
|
||||
CLIPSkip: int32(c.Diffusers.ClipSkip),
|
||||
ControlNet: c.Diffusers.ControlNet,
|
||||
ContextSize: int32(*c.ContextSize),
|
||||
Seed: int32(*c.Seed),
|
||||
NBatch: int32(b),
|
||||
NoMulMatQ: c.NoMulMatQ,
|
||||
DraftModel: c.DraftModel,
|
||||
AudioPath: c.VallE.AudioPath,
|
||||
Quantization: c.Quantization,
|
||||
GPUMemoryUtilization: c.GPUMemoryUtilization,
|
||||
TrustRemoteCode: c.TrustRemoteCode,
|
||||
EnforceEager: c.EnforceEager,
|
||||
SwapSpace: int32(c.SwapSpace),
|
||||
MaxModelLen: int32(c.MaxModelLen),
|
||||
MMProj: c.MMProj,
|
||||
YarnExtFactor: c.YarnExtFactor,
|
||||
YarnAttnFactor: c.YarnAttnFactor,
|
||||
YarnBetaFast: c.YarnBetaFast,
|
||||
YarnBetaSlow: c.YarnBetaSlow,
|
||||
NGQA: c.NGQA,
|
||||
RMSNormEps: c.RMSNormEps,
|
||||
MLock: *c.MMlock,
|
||||
RopeFreqBase: c.RopeFreqBase,
|
||||
RopeScaling: c.RopeScaling,
|
||||
Type: c.ModelType,
|
||||
RopeFreqScale: c.RopeFreqScale,
|
||||
NUMA: c.NUMA,
|
||||
Embeddings: c.Embeddings,
|
||||
LowVRAM: *c.LowVRAM,
|
||||
NGPULayers: int32(*c.NGPULayers),
|
||||
MMap: *c.MMap,
|
||||
MainGPU: c.MainGPU,
|
||||
Threads: int32(*c.Threads),
|
||||
TensorSplit: c.TensorSplit,
|
||||
// AutoGPTQ
|
||||
ModelBaseName: c.AutoGPTQ.ModelBaseName,
|
||||
Device: c.AutoGPTQ.Device,
|
||||
@@ -84,43 +95,44 @@ func gRPCModelOpts(c config.Config) *pb.ModelOptions {
|
||||
}
|
||||
}
|
||||
|
||||
func gRPCPredictOpts(c config.Config, modelPath string) *pb.PredictOptions {
|
||||
func gRPCPredictOpts(c config.BackendConfig, modelPath string) *pb.PredictOptions {
|
||||
promptCachePath := ""
|
||||
if c.PromptCachePath != "" {
|
||||
p := filepath.Join(modelPath, c.PromptCachePath)
|
||||
os.MkdirAll(filepath.Dir(p), 0755)
|
||||
promptCachePath = p
|
||||
}
|
||||
|
||||
return &pb.PredictOptions{
|
||||
Temperature: float32(c.Temperature),
|
||||
TopP: float32(c.TopP),
|
||||
Temperature: float32(*c.Temperature),
|
||||
TopP: float32(*c.TopP),
|
||||
NDraft: c.NDraft,
|
||||
TopK: int32(c.TopK),
|
||||
Tokens: int32(c.Maxtokens),
|
||||
Threads: int32(c.Threads),
|
||||
TopK: int32(*c.TopK),
|
||||
Tokens: int32(*c.Maxtokens),
|
||||
Threads: int32(*c.Threads),
|
||||
PromptCacheAll: c.PromptCacheAll,
|
||||
PromptCacheRO: c.PromptCacheRO,
|
||||
PromptCachePath: promptCachePath,
|
||||
F16KV: c.F16,
|
||||
DebugMode: c.Debug,
|
||||
F16KV: *c.F16,
|
||||
DebugMode: *c.Debug,
|
||||
Grammar: c.Grammar,
|
||||
NegativePromptScale: c.NegativePromptScale,
|
||||
RopeFreqBase: c.RopeFreqBase,
|
||||
RopeFreqScale: c.RopeFreqScale,
|
||||
NegativePrompt: c.NegativePrompt,
|
||||
Mirostat: int32(c.LLMConfig.Mirostat),
|
||||
MirostatETA: float32(c.LLMConfig.MirostatETA),
|
||||
MirostatTAU: float32(c.LLMConfig.MirostatTAU),
|
||||
Debug: c.Debug,
|
||||
Mirostat: int32(*c.LLMConfig.Mirostat),
|
||||
MirostatETA: float32(*c.LLMConfig.MirostatETA),
|
||||
MirostatTAU: float32(*c.LLMConfig.MirostatTAU),
|
||||
Debug: *c.Debug,
|
||||
StopPrompts: c.StopWords,
|
||||
Repeat: int32(c.RepeatPenalty),
|
||||
NKeep: int32(c.Keep),
|
||||
Batch: int32(c.Batch),
|
||||
IgnoreEOS: c.IgnoreEOS,
|
||||
Seed: int32(c.Seed),
|
||||
Seed: int32(*c.Seed),
|
||||
FrequencyPenalty: float32(c.FrequencyPenalty),
|
||||
MLock: c.MMlock,
|
||||
MMap: c.MMap,
|
||||
MLock: *c.MMlock,
|
||||
MMap: *c.MMap,
|
||||
MainGPU: c.MainGPU,
|
||||
TensorSplit: c.TensorSplit,
|
||||
TailFreeSamplingZ: float32(c.TFZ),
|
||||
|
||||
23
core/backend/stores.go
Normal file
23
core/backend/stores.go
Normal file
@@ -0,0 +1,23 @@
|
||||
package backend
|
||||
|
||||
import (
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
func StoreBackend(sl *model.ModelLoader, appConfig *config.ApplicationConfig, storeName string) (grpc.Backend, error) {
|
||||
if storeName == "" {
|
||||
storeName = "default"
|
||||
}
|
||||
|
||||
sc := []model.Option{
|
||||
model.WithBackendString(model.LocalStoreBackend),
|
||||
model.WithAssetDir(appConfig.AssetsDestination),
|
||||
model.WithModel(storeName),
|
||||
}
|
||||
|
||||
return sl.BackendLoader(sc...)
|
||||
}
|
||||
|
||||
@@ -4,25 +4,24 @@ import (
|
||||
"context"
|
||||
"fmt"
|
||||
|
||||
config "github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/options"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
func ModelTranscription(audio, language string, loader *model.ModelLoader, c config.Config, o *options.Option) (*schema.Result, error) {
|
||||
func ModelTranscription(audio, language string, ml *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (*schema.Result, error) {
|
||||
|
||||
opts := modelOpts(c, o, []model.Option{
|
||||
opts := modelOpts(backendConfig, appConfig, []model.Option{
|
||||
model.WithBackendString(model.WhisperBackend),
|
||||
model.WithModel(c.Model),
|
||||
model.WithContext(o.Context),
|
||||
model.WithThreads(uint32(c.Threads)),
|
||||
model.WithAssetDir(o.AssetsDestination),
|
||||
model.WithModel(backendConfig.Model),
|
||||
model.WithContext(appConfig.Context),
|
||||
model.WithThreads(uint32(*backendConfig.Threads)),
|
||||
model.WithAssetDir(appConfig.AssetsDestination),
|
||||
})
|
||||
|
||||
whisperModel, err := o.Loader.BackendLoader(opts...)
|
||||
whisperModel, err := ml.BackendLoader(opts...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@@ -34,6 +33,6 @@ func ModelTranscription(audio, language string, loader *model.ModelLoader, c con
|
||||
return whisperModel.AudioTranscription(context.Background(), &proto.TranscriptRequest{
|
||||
Dst: audio,
|
||||
Language: language,
|
||||
Threads: uint32(c.Threads),
|
||||
Threads: uint32(*backendConfig.Threads),
|
||||
})
|
||||
}
|
||||
|
||||
@@ -6,8 +6,8 @@ import (
|
||||
"os"
|
||||
"path/filepath"
|
||||
|
||||
config "github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/options"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
@@ -29,53 +29,59 @@ func generateUniqueFileName(dir, baseName, ext string) string {
|
||||
}
|
||||
}
|
||||
|
||||
func ModelTTS(backend, text, modelFile string, loader *model.ModelLoader, o *options.Option, c config.Config) (string, *proto.Result, error) {
|
||||
func ModelTTS(backend, text, modelFile, voice string, loader *model.ModelLoader, appConfig *config.ApplicationConfig, backendConfig config.BackendConfig) (string, *proto.Result, error) {
|
||||
bb := backend
|
||||
if bb == "" {
|
||||
bb = model.PiperBackend
|
||||
}
|
||||
|
||||
grpcOpts := gRPCModelOpts(c)
|
||||
grpcOpts := gRPCModelOpts(backendConfig)
|
||||
|
||||
opts := modelOpts(config.Config{}, o, []model.Option{
|
||||
opts := modelOpts(config.BackendConfig{}, appConfig, []model.Option{
|
||||
model.WithBackendString(bb),
|
||||
model.WithModel(modelFile),
|
||||
model.WithContext(o.Context),
|
||||
model.WithAssetDir(o.AssetsDestination),
|
||||
model.WithContext(appConfig.Context),
|
||||
model.WithAssetDir(appConfig.AssetsDestination),
|
||||
model.WithLoadGRPCLoadModelOpts(grpcOpts),
|
||||
})
|
||||
piperModel, err := o.Loader.BackendLoader(opts...)
|
||||
ttsModel, err := loader.BackendLoader(opts...)
|
||||
if err != nil {
|
||||
return "", nil, err
|
||||
}
|
||||
|
||||
if piperModel == nil {
|
||||
if ttsModel == nil {
|
||||
return "", nil, fmt.Errorf("could not load piper model")
|
||||
}
|
||||
|
||||
if err := os.MkdirAll(o.AudioDir, 0755); err != nil {
|
||||
if err := os.MkdirAll(appConfig.AudioDir, 0755); err != nil {
|
||||
return "", nil, fmt.Errorf("failed creating audio directory: %s", err)
|
||||
}
|
||||
|
||||
fileName := generateUniqueFileName(o.AudioDir, "piper", ".wav")
|
||||
filePath := filepath.Join(o.AudioDir, fileName)
|
||||
fileName := generateUniqueFileName(appConfig.AudioDir, "tts", ".wav")
|
||||
filePath := filepath.Join(appConfig.AudioDir, fileName)
|
||||
|
||||
// If the model file is not empty, we pass it joined with the model path
|
||||
modelPath := ""
|
||||
if modelFile != "" {
|
||||
if bb != model.TransformersMusicGen {
|
||||
modelPath = filepath.Join(o.Loader.ModelPath, modelFile)
|
||||
if err := utils.VerifyPath(modelPath, o.Loader.ModelPath); err != nil {
|
||||
// If the model file is not empty, we pass it joined with the model path
|
||||
// Checking first that it exists and is not outside ModelPath
|
||||
// TODO: we should actually first check if the modelFile is looking like
|
||||
// a FS path
|
||||
mp := filepath.Join(loader.ModelPath, modelFile)
|
||||
if _, err := os.Stat(mp); err == nil {
|
||||
if err := utils.VerifyPath(mp, appConfig.ModelPath); err != nil {
|
||||
return "", nil, err
|
||||
}
|
||||
modelPath = mp
|
||||
} else {
|
||||
modelPath = modelFile
|
||||
}
|
||||
}
|
||||
|
||||
res, err := piperModel.TTS(context.Background(), &proto.TTSRequest{
|
||||
res, err := ttsModel.TTS(context.Background(), &proto.TTSRequest{
|
||||
Text: text,
|
||||
Model: modelPath,
|
||||
Voice: voice,
|
||||
Dst: filePath,
|
||||
})
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
package options
|
||||
package config
|
||||
|
||||
import (
|
||||
"context"
|
||||
@@ -6,16 +6,14 @@ import (
|
||||
"encoding/json"
|
||||
"time"
|
||||
|
||||
"github.com/go-skynet/LocalAI/metrics"
|
||||
"github.com/go-skynet/LocalAI/pkg/gallery"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
type Option struct {
|
||||
type ApplicationConfig struct {
|
||||
Context context.Context
|
||||
ConfigFile string
|
||||
Loader *model.ModelLoader
|
||||
ModelPath string
|
||||
UploadLimitMB, Threads, ContextSize int
|
||||
F16 bool
|
||||
Debug, DisableMessage bool
|
||||
@@ -27,7 +25,6 @@ type Option struct {
|
||||
PreloadModelsFromPath string
|
||||
CORSAllowOrigins string
|
||||
ApiKeys []string
|
||||
Metrics *metrics.Metrics
|
||||
|
||||
ModelLibraryURL string
|
||||
|
||||
@@ -52,10 +49,10 @@ type Option struct {
|
||||
WatchDogBusyTimeout, WatchDogIdleTimeout time.Duration
|
||||
}
|
||||
|
||||
type AppOption func(*Option)
|
||||
type AppOption func(*ApplicationConfig)
|
||||
|
||||
func NewOptions(o ...AppOption) *Option {
|
||||
opt := &Option{
|
||||
func NewApplicationConfig(o ...AppOption) *ApplicationConfig {
|
||||
opt := &ApplicationConfig{
|
||||
Context: context.Background(),
|
||||
UploadLimitMB: 15,
|
||||
Threads: 1,
|
||||
@@ -70,63 +67,69 @@ func NewOptions(o ...AppOption) *Option {
|
||||
}
|
||||
|
||||
func WithModelsURL(urls ...string) AppOption {
|
||||
return func(o *Option) {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.ModelsURL = urls
|
||||
}
|
||||
}
|
||||
|
||||
func WithModelPath(path string) AppOption {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.ModelPath = path
|
||||
}
|
||||
}
|
||||
|
||||
func WithCors(b bool) AppOption {
|
||||
return func(o *Option) {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.CORS = b
|
||||
}
|
||||
}
|
||||
|
||||
func WithModelLibraryURL(url string) AppOption {
|
||||
return func(o *Option) {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.ModelLibraryURL = url
|
||||
}
|
||||
}
|
||||
|
||||
var EnableWatchDog = func(o *Option) {
|
||||
var EnableWatchDog = func(o *ApplicationConfig) {
|
||||
o.WatchDog = true
|
||||
}
|
||||
|
||||
var EnableWatchDogIdleCheck = func(o *Option) {
|
||||
var EnableWatchDogIdleCheck = func(o *ApplicationConfig) {
|
||||
o.WatchDog = true
|
||||
o.WatchDogIdle = true
|
||||
}
|
||||
|
||||
var EnableWatchDogBusyCheck = func(o *Option) {
|
||||
var EnableWatchDogBusyCheck = func(o *ApplicationConfig) {
|
||||
o.WatchDog = true
|
||||
o.WatchDogBusy = true
|
||||
}
|
||||
|
||||
func SetWatchDogBusyTimeout(t time.Duration) AppOption {
|
||||
return func(o *Option) {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.WatchDogBusyTimeout = t
|
||||
}
|
||||
}
|
||||
|
||||
func SetWatchDogIdleTimeout(t time.Duration) AppOption {
|
||||
return func(o *Option) {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.WatchDogIdleTimeout = t
|
||||
}
|
||||
}
|
||||
|
||||
var EnableSingleBackend = func(o *Option) {
|
||||
var EnableSingleBackend = func(o *ApplicationConfig) {
|
||||
o.SingleBackend = true
|
||||
}
|
||||
|
||||
var EnableParallelBackendRequests = func(o *Option) {
|
||||
var EnableParallelBackendRequests = func(o *ApplicationConfig) {
|
||||
o.ParallelBackendRequests = true
|
||||
}
|
||||
|
||||
var EnableGalleriesAutoload = func(o *Option) {
|
||||
var EnableGalleriesAutoload = func(o *ApplicationConfig) {
|
||||
o.AutoloadGalleries = true
|
||||
}
|
||||
|
||||
func WithExternalBackend(name string, uri string) AppOption {
|
||||
return func(o *Option) {
|
||||
return func(o *ApplicationConfig) {
|
||||
if o.ExternalGRPCBackends == nil {
|
||||
o.ExternalGRPCBackends = make(map[string]string)
|
||||
}
|
||||
@@ -135,27 +138,26 @@ func WithExternalBackend(name string, uri string) AppOption {
|
||||
}
|
||||
|
||||
func WithCorsAllowOrigins(b string) AppOption {
|
||||
return func(o *Option) {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.CORSAllowOrigins = b
|
||||
}
|
||||
}
|
||||
|
||||
func WithBackendAssetsOutput(out string) AppOption {
|
||||
return func(o *Option) {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.AssetsDestination = out
|
||||
}
|
||||
}
|
||||
|
||||
func WithBackendAssets(f embed.FS) AppOption {
|
||||
return func(o *Option) {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.BackendAssets = f
|
||||
}
|
||||
}
|
||||
|
||||
func WithStringGalleries(galls string) AppOption {
|
||||
return func(o *Option) {
|
||||
return func(o *ApplicationConfig) {
|
||||
if galls == "" {
|
||||
log.Debug().Msgf("no galleries to load")
|
||||
o.Galleries = []gallery.Gallery{}
|
||||
return
|
||||
}
|
||||
@@ -168,102 +170,111 @@ func WithStringGalleries(galls string) AppOption {
|
||||
}
|
||||
|
||||
func WithGalleries(galleries []gallery.Gallery) AppOption {
|
||||
return func(o *Option) {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.Galleries = append(o.Galleries, galleries...)
|
||||
}
|
||||
}
|
||||
|
||||
func WithContext(ctx context.Context) AppOption {
|
||||
return func(o *Option) {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.Context = ctx
|
||||
}
|
||||
}
|
||||
|
||||
func WithYAMLConfigPreload(configFile string) AppOption {
|
||||
return func(o *Option) {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.PreloadModelsFromPath = configFile
|
||||
}
|
||||
}
|
||||
|
||||
func WithJSONStringPreload(configFile string) AppOption {
|
||||
return func(o *Option) {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.PreloadJSONModels = configFile
|
||||
}
|
||||
}
|
||||
func WithConfigFile(configFile string) AppOption {
|
||||
return func(o *Option) {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.ConfigFile = configFile
|
||||
}
|
||||
}
|
||||
|
||||
func WithModelLoader(loader *model.ModelLoader) AppOption {
|
||||
return func(o *Option) {
|
||||
o.Loader = loader
|
||||
}
|
||||
}
|
||||
|
||||
func WithUploadLimitMB(limit int) AppOption {
|
||||
return func(o *Option) {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.UploadLimitMB = limit
|
||||
}
|
||||
}
|
||||
|
||||
func WithThreads(threads int) AppOption {
|
||||
return func(o *Option) {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.Threads = threads
|
||||
}
|
||||
}
|
||||
|
||||
func WithContextSize(ctxSize int) AppOption {
|
||||
return func(o *Option) {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.ContextSize = ctxSize
|
||||
}
|
||||
}
|
||||
|
||||
func WithF16(f16 bool) AppOption {
|
||||
return func(o *Option) {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.F16 = f16
|
||||
}
|
||||
}
|
||||
|
||||
func WithDebug(debug bool) AppOption {
|
||||
return func(o *Option) {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.Debug = debug
|
||||
}
|
||||
}
|
||||
|
||||
func WithDisableMessage(disableMessage bool) AppOption {
|
||||
return func(o *Option) {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.DisableMessage = disableMessage
|
||||
}
|
||||
}
|
||||
|
||||
func WithAudioDir(audioDir string) AppOption {
|
||||
return func(o *Option) {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.AudioDir = audioDir
|
||||
}
|
||||
}
|
||||
|
||||
func WithImageDir(imageDir string) AppOption {
|
||||
return func(o *Option) {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.ImageDir = imageDir
|
||||
}
|
||||
}
|
||||
|
||||
func WithUploadDir(uploadDir string) AppOption {
|
||||
return func(o *Option) {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.UploadDir = uploadDir
|
||||
}
|
||||
}
|
||||
|
||||
func WithApiKeys(apiKeys []string) AppOption {
|
||||
return func(o *Option) {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.ApiKeys = apiKeys
|
||||
}
|
||||
}
|
||||
|
||||
func WithMetrics(meter *metrics.Metrics) AppOption {
|
||||
return func(o *Option) {
|
||||
o.Metrics = meter
|
||||
// ToConfigLoaderOptions returns a slice of ConfigLoader Option.
|
||||
// Some options defined at the application level are going to be passed as defaults for
|
||||
// all the configuration for the models.
|
||||
// This includes for instance the context size or the number of threads.
|
||||
// If a model doesn't set configs directly to the config model file
|
||||
// it will use the defaults defined here.
|
||||
func (o *ApplicationConfig) ToConfigLoaderOptions() []ConfigLoaderOption {
|
||||
return []ConfigLoaderOption{
|
||||
LoadOptionContextSize(o.ContextSize),
|
||||
LoadOptionDebug(o.Debug),
|
||||
LoadOptionF16(o.F16),
|
||||
LoadOptionThreads(o.Threads),
|
||||
}
|
||||
}
|
||||
|
||||
// func WithMetrics(meter *metrics.Metrics) AppOption {
|
||||
// return func(o *StartupOptions) {
|
||||
// o.Metrics = meter
|
||||
// }
|
||||
// }
|
||||
@@ -4,24 +4,28 @@ import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"io/fs"
|
||||
"math/rand"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
"sync"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/downloader"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
"github.com/rs/zerolog/log"
|
||||
"gopkg.in/yaml.v3"
|
||||
|
||||
"github.com/charmbracelet/glamour"
|
||||
)
|
||||
|
||||
type Config struct {
|
||||
PredictionOptions `yaml:"parameters"`
|
||||
Name string `yaml:"name"`
|
||||
type BackendConfig struct {
|
||||
schema.PredictionOptions `yaml:"parameters"`
|
||||
Name string `yaml:"name"`
|
||||
|
||||
F16 bool `yaml:"f16"`
|
||||
Threads int `yaml:"threads"`
|
||||
Debug bool `yaml:"debug"`
|
||||
F16 *bool `yaml:"f16"`
|
||||
Threads *int `yaml:"threads"`
|
||||
Debug *bool `yaml:"debug"`
|
||||
Roles map[string]string `yaml:"roles"`
|
||||
Embeddings bool `yaml:"embeddings"`
|
||||
Backend string `yaml:"backend"`
|
||||
@@ -104,29 +108,34 @@ type LLMConfig struct {
|
||||
PromptCachePath string `yaml:"prompt_cache_path"`
|
||||
PromptCacheAll bool `yaml:"prompt_cache_all"`
|
||||
PromptCacheRO bool `yaml:"prompt_cache_ro"`
|
||||
MirostatETA float64 `yaml:"mirostat_eta"`
|
||||
MirostatTAU float64 `yaml:"mirostat_tau"`
|
||||
Mirostat int `yaml:"mirostat"`
|
||||
NGPULayers int `yaml:"gpu_layers"`
|
||||
MMap bool `yaml:"mmap"`
|
||||
MMlock bool `yaml:"mmlock"`
|
||||
LowVRAM bool `yaml:"low_vram"`
|
||||
MirostatETA *float64 `yaml:"mirostat_eta"`
|
||||
MirostatTAU *float64 `yaml:"mirostat_tau"`
|
||||
Mirostat *int `yaml:"mirostat"`
|
||||
NGPULayers *int `yaml:"gpu_layers"`
|
||||
MMap *bool `yaml:"mmap"`
|
||||
MMlock *bool `yaml:"mmlock"`
|
||||
LowVRAM *bool `yaml:"low_vram"`
|
||||
Grammar string `yaml:"grammar"`
|
||||
StopWords []string `yaml:"stopwords"`
|
||||
Cutstrings []string `yaml:"cutstrings"`
|
||||
TrimSpace []string `yaml:"trimspace"`
|
||||
TrimSuffix []string `yaml:"trimsuffix"`
|
||||
|
||||
ContextSize int `yaml:"context_size"`
|
||||
NUMA bool `yaml:"numa"`
|
||||
LoraAdapter string `yaml:"lora_adapter"`
|
||||
LoraBase string `yaml:"lora_base"`
|
||||
LoraScale float32 `yaml:"lora_scale"`
|
||||
NoMulMatQ bool `yaml:"no_mulmatq"`
|
||||
DraftModel string `yaml:"draft_model"`
|
||||
NDraft int32 `yaml:"n_draft"`
|
||||
Quantization string `yaml:"quantization"`
|
||||
MMProj string `yaml:"mmproj"`
|
||||
ContextSize *int `yaml:"context_size"`
|
||||
NUMA bool `yaml:"numa"`
|
||||
LoraAdapter string `yaml:"lora_adapter"`
|
||||
LoraBase string `yaml:"lora_base"`
|
||||
LoraScale float32 `yaml:"lora_scale"`
|
||||
NoMulMatQ bool `yaml:"no_mulmatq"`
|
||||
DraftModel string `yaml:"draft_model"`
|
||||
NDraft int32 `yaml:"n_draft"`
|
||||
Quantization string `yaml:"quantization"`
|
||||
GPUMemoryUtilization float32 `yaml:"gpu_memory_utilization"` // vLLM
|
||||
TrustRemoteCode bool `yaml:"trust_remote_code"` // vLLM
|
||||
EnforceEager bool `yaml:"enforce_eager"` // vLLM
|
||||
SwapSpace int `yaml:"swap_space"` // vLLM
|
||||
MaxModelLen int `yaml:"max_model_len"` // vLLM
|
||||
MMProj string `yaml:"mmproj"`
|
||||
|
||||
RopeScaling string `yaml:"rope_scaling"`
|
||||
ModelType string `yaml:"type"`
|
||||
@@ -159,108 +168,216 @@ type TemplateConfig struct {
|
||||
Functions string `yaml:"function"`
|
||||
}
|
||||
|
||||
type ConfigLoader struct {
|
||||
configs map[string]Config
|
||||
sync.Mutex
|
||||
}
|
||||
|
||||
func (c *Config) SetFunctionCallString(s string) {
|
||||
func (c *BackendConfig) SetFunctionCallString(s string) {
|
||||
c.functionCallString = s
|
||||
}
|
||||
|
||||
func (c *Config) SetFunctionCallNameString(s string) {
|
||||
func (c *BackendConfig) SetFunctionCallNameString(s string) {
|
||||
c.functionCallNameString = s
|
||||
}
|
||||
|
||||
func (c *Config) ShouldUseFunctions() bool {
|
||||
func (c *BackendConfig) ShouldUseFunctions() bool {
|
||||
return ((c.functionCallString != "none" || c.functionCallString == "") || c.ShouldCallSpecificFunction())
|
||||
}
|
||||
|
||||
func (c *Config) ShouldCallSpecificFunction() bool {
|
||||
func (c *BackendConfig) ShouldCallSpecificFunction() bool {
|
||||
return len(c.functionCallNameString) > 0
|
||||
}
|
||||
|
||||
func (c *Config) FunctionToCall() string {
|
||||
func (c *BackendConfig) FunctionToCall() string {
|
||||
return c.functionCallNameString
|
||||
}
|
||||
|
||||
// Load a config file for a model
|
||||
func Load(modelName, modelPath string, cm *ConfigLoader, debug bool, threads, ctx int, f16 bool) (*Config, error) {
|
||||
// Load a config file if present after the model name
|
||||
modelConfig := filepath.Join(modelPath, modelName+".yaml")
|
||||
func (cfg *BackendConfig) SetDefaults(opts ...ConfigLoaderOption) {
|
||||
lo := &LoadOptions{}
|
||||
lo.Apply(opts...)
|
||||
|
||||
var cfg *Config
|
||||
ctx := lo.ctxSize
|
||||
threads := lo.threads
|
||||
f16 := lo.f16
|
||||
debug := lo.debug
|
||||
defaultTopP := 0.7
|
||||
defaultTopK := 80
|
||||
defaultTemp := 0.9
|
||||
defaultMaxTokens := 2048
|
||||
defaultMirostat := 2
|
||||
defaultMirostatTAU := 5.0
|
||||
defaultMirostatETA := 0.1
|
||||
|
||||
defaults := func() {
|
||||
cfg = DefaultConfig(modelName)
|
||||
cfg.ContextSize = ctx
|
||||
cfg.Threads = threads
|
||||
cfg.F16 = f16
|
||||
cfg.Debug = debug
|
||||
// Try to offload all GPU layers (if GPU is found)
|
||||
defaultNGPULayers := 99999999
|
||||
|
||||
trueV := true
|
||||
falseV := false
|
||||
|
||||
if cfg.Seed == nil {
|
||||
// random number generator seed
|
||||
defaultSeed := int(rand.Int31())
|
||||
cfg.Seed = &defaultSeed
|
||||
}
|
||||
|
||||
cfgExisting, exists := cm.GetConfig(modelName)
|
||||
if !exists {
|
||||
if cfg.TopK == nil {
|
||||
cfg.TopK = &defaultTopK
|
||||
}
|
||||
|
||||
if cfg.MMap == nil {
|
||||
// MMap is enabled by default
|
||||
cfg.MMap = &trueV
|
||||
}
|
||||
|
||||
if cfg.MMlock == nil {
|
||||
// MMlock is disabled by default
|
||||
cfg.MMlock = &falseV
|
||||
}
|
||||
|
||||
if cfg.TopP == nil {
|
||||
cfg.TopP = &defaultTopP
|
||||
}
|
||||
if cfg.Temperature == nil {
|
||||
cfg.Temperature = &defaultTemp
|
||||
}
|
||||
|
||||
if cfg.Maxtokens == nil {
|
||||
cfg.Maxtokens = &defaultMaxTokens
|
||||
}
|
||||
|
||||
if cfg.Mirostat == nil {
|
||||
cfg.Mirostat = &defaultMirostat
|
||||
}
|
||||
|
||||
if cfg.MirostatETA == nil {
|
||||
cfg.MirostatETA = &defaultMirostatETA
|
||||
}
|
||||
|
||||
if cfg.MirostatTAU == nil {
|
||||
cfg.MirostatTAU = &defaultMirostatTAU
|
||||
}
|
||||
if cfg.NGPULayers == nil {
|
||||
cfg.NGPULayers = &defaultNGPULayers
|
||||
}
|
||||
|
||||
if cfg.LowVRAM == nil {
|
||||
cfg.LowVRAM = &falseV
|
||||
}
|
||||
|
||||
// Value passed by the top level are treated as default (no implicit defaults)
|
||||
// defaults are set by the user
|
||||
if ctx == 0 {
|
||||
ctx = 1024
|
||||
}
|
||||
|
||||
if cfg.ContextSize == nil {
|
||||
cfg.ContextSize = &ctx
|
||||
}
|
||||
|
||||
if threads == 0 {
|
||||
// Threads can't be 0
|
||||
threads = 4
|
||||
}
|
||||
|
||||
if cfg.Threads == nil {
|
||||
cfg.Threads = &threads
|
||||
}
|
||||
|
||||
if cfg.F16 == nil {
|
||||
cfg.F16 = &f16
|
||||
}
|
||||
|
||||
if cfg.Debug == nil {
|
||||
cfg.Debug = &falseV
|
||||
}
|
||||
|
||||
if debug {
|
||||
cfg.Debug = &trueV
|
||||
}
|
||||
}
|
||||
|
||||
////// Config Loader ////////
|
||||
|
||||
type BackendConfigLoader struct {
|
||||
configs map[string]BackendConfig
|
||||
sync.Mutex
|
||||
}
|
||||
|
||||
type LoadOptions struct {
|
||||
debug bool
|
||||
threads, ctxSize int
|
||||
f16 bool
|
||||
}
|
||||
|
||||
func LoadOptionDebug(debug bool) ConfigLoaderOption {
|
||||
return func(o *LoadOptions) {
|
||||
o.debug = debug
|
||||
}
|
||||
}
|
||||
|
||||
func LoadOptionThreads(threads int) ConfigLoaderOption {
|
||||
return func(o *LoadOptions) {
|
||||
o.threads = threads
|
||||
}
|
||||
}
|
||||
|
||||
func LoadOptionContextSize(ctxSize int) ConfigLoaderOption {
|
||||
return func(o *LoadOptions) {
|
||||
o.ctxSize = ctxSize
|
||||
}
|
||||
}
|
||||
|
||||
func LoadOptionF16(f16 bool) ConfigLoaderOption {
|
||||
return func(o *LoadOptions) {
|
||||
o.f16 = f16
|
||||
}
|
||||
}
|
||||
|
||||
type ConfigLoaderOption func(*LoadOptions)
|
||||
|
||||
func (lo *LoadOptions) Apply(options ...ConfigLoaderOption) {
|
||||
for _, l := range options {
|
||||
l(lo)
|
||||
}
|
||||
}
|
||||
|
||||
// Load a config file for a model
|
||||
func (cl *BackendConfigLoader) LoadBackendConfigFileByName(modelName, modelPath string, opts ...ConfigLoaderOption) (*BackendConfig, error) {
|
||||
|
||||
// Load a config file if present after the model name
|
||||
cfg := &BackendConfig{
|
||||
PredictionOptions: schema.PredictionOptions{
|
||||
Model: modelName,
|
||||
},
|
||||
}
|
||||
|
||||
cfgExisting, exists := cl.GetBackendConfig(modelName)
|
||||
if exists {
|
||||
cfg = &cfgExisting
|
||||
} else {
|
||||
// Try loading a model config file
|
||||
modelConfig := filepath.Join(modelPath, modelName+".yaml")
|
||||
if _, err := os.Stat(modelConfig); err == nil {
|
||||
if err := cm.LoadConfig(modelConfig); err != nil {
|
||||
if err := cl.LoadBackendConfig(
|
||||
modelConfig, opts...,
|
||||
); err != nil {
|
||||
return nil, fmt.Errorf("failed loading model config (%s) %s", modelConfig, err.Error())
|
||||
}
|
||||
cfgExisting, exists = cm.GetConfig(modelName)
|
||||
cfgExisting, exists = cl.GetBackendConfig(modelName)
|
||||
if exists {
|
||||
cfg = &cfgExisting
|
||||
} else {
|
||||
defaults()
|
||||
}
|
||||
} else {
|
||||
defaults()
|
||||
}
|
||||
} else {
|
||||
cfg = &cfgExisting
|
||||
}
|
||||
|
||||
// Set the parameters for the language model prediction
|
||||
//updateConfig(cfg, input)
|
||||
|
||||
// Don't allow 0 as setting
|
||||
if cfg.Threads == 0 {
|
||||
if threads != 0 {
|
||||
cfg.Threads = threads
|
||||
} else {
|
||||
cfg.Threads = 4
|
||||
}
|
||||
}
|
||||
|
||||
// Enforce debug flag if passed from CLI
|
||||
if debug {
|
||||
cfg.Debug = true
|
||||
}
|
||||
cfg.SetDefaults(opts...)
|
||||
|
||||
return cfg, nil
|
||||
}
|
||||
|
||||
func defaultPredictOptions(modelFile string) PredictionOptions {
|
||||
return PredictionOptions{
|
||||
TopP: 0.7,
|
||||
TopK: 80,
|
||||
Maxtokens: 512,
|
||||
Temperature: 0.9,
|
||||
Model: modelFile,
|
||||
func NewBackendConfigLoader() *BackendConfigLoader {
|
||||
return &BackendConfigLoader{
|
||||
configs: make(map[string]BackendConfig),
|
||||
}
|
||||
}
|
||||
|
||||
func DefaultConfig(modelFile string) *Config {
|
||||
return &Config{
|
||||
PredictionOptions: defaultPredictOptions(modelFile),
|
||||
}
|
||||
}
|
||||
|
||||
func NewConfigLoader() *ConfigLoader {
|
||||
return &ConfigLoader{
|
||||
configs: make(map[string]Config),
|
||||
}
|
||||
}
|
||||
func ReadConfigFile(file string) ([]*Config, error) {
|
||||
c := &[]*Config{}
|
||||
func ReadBackendConfigFile(file string, opts ...ConfigLoaderOption) ([]*BackendConfig, error) {
|
||||
c := &[]*BackendConfig{}
|
||||
f, err := os.ReadFile(file)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("cannot read config file: %w", err)
|
||||
@@ -269,11 +386,18 @@ func ReadConfigFile(file string) ([]*Config, error) {
|
||||
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
|
||||
}
|
||||
|
||||
for _, cc := range *c {
|
||||
cc.SetDefaults(opts...)
|
||||
}
|
||||
|
||||
return *c, nil
|
||||
}
|
||||
|
||||
func ReadConfig(file string) (*Config, error) {
|
||||
c := &Config{}
|
||||
func ReadBackendConfig(file string, opts ...ConfigLoaderOption) (*BackendConfig, error) {
|
||||
lo := &LoadOptions{}
|
||||
lo.Apply(opts...)
|
||||
|
||||
c := &BackendConfig{}
|
||||
f, err := os.ReadFile(file)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("cannot read config file: %w", err)
|
||||
@@ -282,13 +406,14 @@ func ReadConfig(file string) (*Config, error) {
|
||||
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
|
||||
}
|
||||
|
||||
c.SetDefaults(opts...)
|
||||
return c, nil
|
||||
}
|
||||
|
||||
func (cm *ConfigLoader) LoadConfigFile(file string) error {
|
||||
func (cm *BackendConfigLoader) LoadBackendConfigFile(file string, opts ...ConfigLoaderOption) error {
|
||||
cm.Lock()
|
||||
defer cm.Unlock()
|
||||
c, err := ReadConfigFile(file)
|
||||
c, err := ReadBackendConfigFile(file, opts...)
|
||||
if err != nil {
|
||||
return fmt.Errorf("cannot load config file: %w", err)
|
||||
}
|
||||
@@ -299,49 +424,49 @@ func (cm *ConfigLoader) LoadConfigFile(file string) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
func (cm *ConfigLoader) LoadConfig(file string) error {
|
||||
cm.Lock()
|
||||
defer cm.Unlock()
|
||||
c, err := ReadConfig(file)
|
||||
func (cl *BackendConfigLoader) LoadBackendConfig(file string, opts ...ConfigLoaderOption) error {
|
||||
cl.Lock()
|
||||
defer cl.Unlock()
|
||||
c, err := ReadBackendConfig(file, opts...)
|
||||
if err != nil {
|
||||
return fmt.Errorf("cannot read config file: %w", err)
|
||||
}
|
||||
|
||||
cm.configs[c.Name] = *c
|
||||
cl.configs[c.Name] = *c
|
||||
return nil
|
||||
}
|
||||
|
||||
func (cm *ConfigLoader) GetConfig(m string) (Config, bool) {
|
||||
cm.Lock()
|
||||
defer cm.Unlock()
|
||||
v, exists := cm.configs[m]
|
||||
func (cl *BackendConfigLoader) GetBackendConfig(m string) (BackendConfig, bool) {
|
||||
cl.Lock()
|
||||
defer cl.Unlock()
|
||||
v, exists := cl.configs[m]
|
||||
return v, exists
|
||||
}
|
||||
|
||||
func (cm *ConfigLoader) GetAllConfigs() []Config {
|
||||
cm.Lock()
|
||||
defer cm.Unlock()
|
||||
var res []Config
|
||||
for _, v := range cm.configs {
|
||||
func (cl *BackendConfigLoader) GetAllBackendConfigs() []BackendConfig {
|
||||
cl.Lock()
|
||||
defer cl.Unlock()
|
||||
var res []BackendConfig
|
||||
for _, v := range cl.configs {
|
||||
res = append(res, v)
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
func (cm *ConfigLoader) ListConfigs() []string {
|
||||
cm.Lock()
|
||||
defer cm.Unlock()
|
||||
func (cl *BackendConfigLoader) ListBackendConfigs() []string {
|
||||
cl.Lock()
|
||||
defer cl.Unlock()
|
||||
var res []string
|
||||
for k := range cm.configs {
|
||||
for k := range cl.configs {
|
||||
res = append(res, k)
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
// Preload prepare models if they are not local but url or huggingface repositories
|
||||
func (cm *ConfigLoader) Preload(modelPath string) error {
|
||||
cm.Lock()
|
||||
defer cm.Unlock()
|
||||
func (cl *BackendConfigLoader) Preload(modelPath string) error {
|
||||
cl.Lock()
|
||||
defer cl.Unlock()
|
||||
|
||||
status := func(fileName, current, total string, percent float64) {
|
||||
utils.DisplayDownloadFunction(fileName, current, total, percent)
|
||||
@@ -349,7 +474,21 @@ func (cm *ConfigLoader) Preload(modelPath string) error {
|
||||
|
||||
log.Info().Msgf("Preloading models from %s", modelPath)
|
||||
|
||||
for i, config := range cm.configs {
|
||||
renderMode := "dark"
|
||||
if os.Getenv("COLOR") != "" {
|
||||
renderMode = os.Getenv("COLOR")
|
||||
}
|
||||
|
||||
glamText := func(t string) {
|
||||
out, err := glamour.Render(t, renderMode)
|
||||
if err == nil && os.Getenv("NO_COLOR") == "" {
|
||||
fmt.Println(out)
|
||||
} else {
|
||||
fmt.Println(t)
|
||||
}
|
||||
}
|
||||
|
||||
for i, config := range cl.configs {
|
||||
|
||||
// Download files and verify their SHA
|
||||
for _, file := range config.DownloadFiles {
|
||||
@@ -381,25 +520,29 @@ func (cm *ConfigLoader) Preload(modelPath string) error {
|
||||
}
|
||||
}
|
||||
|
||||
cc := cm.configs[i]
|
||||
cc := cl.configs[i]
|
||||
c := &cc
|
||||
c.PredictionOptions.Model = md5Name
|
||||
cm.configs[i] = *c
|
||||
cl.configs[i] = *c
|
||||
}
|
||||
if cm.configs[i].Name != "" {
|
||||
log.Info().Msgf("Model name: %s", cm.configs[i].Name)
|
||||
if cl.configs[i].Name != "" {
|
||||
glamText(fmt.Sprintf("**Model name**: _%s_", cl.configs[i].Name))
|
||||
}
|
||||
if cm.configs[i].Description != "" {
|
||||
log.Info().Msgf("Model description: %s", cm.configs[i].Description)
|
||||
if cl.configs[i].Description != "" {
|
||||
//glamText("**Description**")
|
||||
glamText(cl.configs[i].Description)
|
||||
}
|
||||
if cm.configs[i].Usage != "" {
|
||||
log.Info().Msgf("Model usage: \n%s", cm.configs[i].Usage)
|
||||
if cl.configs[i].Usage != "" {
|
||||
//glamText("**Usage**")
|
||||
glamText(cl.configs[i].Usage)
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (cm *ConfigLoader) LoadConfigs(path string) error {
|
||||
// LoadBackendConfigsFromPath reads all the configurations of the models from a path
|
||||
// (non-recursive)
|
||||
func (cm *BackendConfigLoader) LoadBackendConfigsFromPath(path string, opts ...ConfigLoaderOption) error {
|
||||
cm.Lock()
|
||||
defer cm.Unlock()
|
||||
entries, err := os.ReadDir(path)
|
||||
@@ -419,7 +562,7 @@ func (cm *ConfigLoader) LoadConfigs(path string) error {
|
||||
if !strings.Contains(file.Name(), ".yaml") && !strings.Contains(file.Name(), ".yml") {
|
||||
continue
|
||||
}
|
||||
c, err := ReadConfig(filepath.Join(path, file.Name()))
|
||||
c, err := ReadBackendConfig(filepath.Join(path, file.Name()), opts...)
|
||||
if err == nil {
|
||||
cm.configs[c.Name] = *c
|
||||
}
|
||||
@@ -4,8 +4,7 @@ import (
|
||||
"os"
|
||||
|
||||
. "github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/options"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
|
||||
. "github.com/onsi/ginkgo/v2"
|
||||
. "github.com/onsi/gomega"
|
||||
)
|
||||
@@ -19,7 +18,7 @@ var _ = Describe("Test cases for config related functions", func() {
|
||||
Context("Test Read configuration functions", func() {
|
||||
configFile = os.Getenv("CONFIG_FILE")
|
||||
It("Test ReadConfigFile", func() {
|
||||
config, err := ReadConfigFile(configFile)
|
||||
config, err := ReadBackendConfigFile(configFile)
|
||||
Expect(err).To(BeNil())
|
||||
Expect(config).ToNot(BeNil())
|
||||
// two configs in config.yaml
|
||||
@@ -28,29 +27,26 @@ var _ = Describe("Test cases for config related functions", func() {
|
||||
})
|
||||
|
||||
It("Test LoadConfigs", func() {
|
||||
cm := NewConfigLoader()
|
||||
opts := options.NewOptions()
|
||||
modelLoader := model.NewModelLoader(os.Getenv("MODELS_PATH"))
|
||||
options.WithModelLoader(modelLoader)(opts)
|
||||
|
||||
err := cm.LoadConfigs(opts.Loader.ModelPath)
|
||||
cm := NewBackendConfigLoader()
|
||||
opts := NewApplicationConfig()
|
||||
err := cm.LoadBackendConfigsFromPath(opts.ModelPath)
|
||||
Expect(err).To(BeNil())
|
||||
Expect(cm.ListConfigs()).ToNot(BeNil())
|
||||
Expect(cm.ListBackendConfigs()).ToNot(BeNil())
|
||||
|
||||
// config should includes gpt4all models's api.config
|
||||
Expect(cm.ListConfigs()).To(ContainElements("gpt4all"))
|
||||
Expect(cm.ListBackendConfigs()).To(ContainElements("gpt4all"))
|
||||
|
||||
// config should includes gpt2 models's api.config
|
||||
Expect(cm.ListConfigs()).To(ContainElements("gpt4all-2"))
|
||||
Expect(cm.ListBackendConfigs()).To(ContainElements("gpt4all-2"))
|
||||
|
||||
// config should includes text-embedding-ada-002 models's api.config
|
||||
Expect(cm.ListConfigs()).To(ContainElements("text-embedding-ada-002"))
|
||||
Expect(cm.ListBackendConfigs()).To(ContainElements("text-embedding-ada-002"))
|
||||
|
||||
// config should includes rwkv_test models's api.config
|
||||
Expect(cm.ListConfigs()).To(ContainElements("rwkv_test"))
|
||||
Expect(cm.ListBackendConfigs()).To(ContainElements("rwkv_test"))
|
||||
|
||||
// config should includes whisper-1 models's api.config
|
||||
Expect(cm.ListConfigs()).To(ContainElements("whisper-1"))
|
||||
Expect(cm.ListBackendConfigs()).To(ContainElements("whisper-1"))
|
||||
})
|
||||
})
|
||||
})
|
||||
|
||||
251
core/http/api.go
251
core/http/api.go
@@ -3,122 +3,48 @@ package http
|
||||
import (
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"os"
|
||||
"strings"
|
||||
|
||||
"github.com/go-skynet/LocalAI/api/localai"
|
||||
"github.com/go-skynet/LocalAI/api/openai"
|
||||
config "github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/options"
|
||||
"github.com/go-skynet/LocalAI/core/http/endpoints/elevenlabs"
|
||||
"github.com/go-skynet/LocalAI/core/http/endpoints/localai"
|
||||
"github.com/go-skynet/LocalAI/core/http/endpoints/openai"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
"github.com/go-skynet/LocalAI/internal"
|
||||
"github.com/go-skynet/LocalAI/metrics"
|
||||
"github.com/go-skynet/LocalAI/pkg/assets"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/startup"
|
||||
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/gofiber/fiber/v2/middleware/cors"
|
||||
"github.com/gofiber/fiber/v2/middleware/logger"
|
||||
"github.com/gofiber/fiber/v2/middleware/recover"
|
||||
"github.com/rs/zerolog"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
func Startup(opts ...options.AppOption) (*options.Option, *config.ConfigLoader, error) {
|
||||
options := options.NewOptions(opts...)
|
||||
func readAuthHeader(c *fiber.Ctx) string {
|
||||
authHeader := c.Get("Authorization")
|
||||
|
||||
zerolog.SetGlobalLevel(zerolog.InfoLevel)
|
||||
if options.Debug {
|
||||
zerolog.SetGlobalLevel(zerolog.DebugLevel)
|
||||
// elevenlabs
|
||||
xApiKey := c.Get("xi-api-key")
|
||||
if xApiKey != "" {
|
||||
authHeader = "Bearer " + xApiKey
|
||||
}
|
||||
|
||||
log.Info().Msgf("Starting LocalAI using %d threads, with models path: %s", options.Threads, options.Loader.ModelPath)
|
||||
log.Info().Msgf("LocalAI version: %s", internal.PrintableVersion())
|
||||
|
||||
startup.PreloadModelsConfigurations(options.ModelLibraryURL, options.Loader.ModelPath, options.ModelsURL...)
|
||||
|
||||
cl := config.NewConfigLoader()
|
||||
if err := cl.LoadConfigs(options.Loader.ModelPath); err != nil {
|
||||
log.Error().Msgf("error loading config files: %s", err.Error())
|
||||
// anthropic
|
||||
xApiKey = c.Get("x-api-key")
|
||||
if xApiKey != "" {
|
||||
authHeader = "Bearer " + xApiKey
|
||||
}
|
||||
|
||||
if options.ConfigFile != "" {
|
||||
if err := cl.LoadConfigFile(options.ConfigFile); err != nil {
|
||||
log.Error().Msgf("error loading config file: %s", err.Error())
|
||||
}
|
||||
}
|
||||
|
||||
if err := cl.Preload(options.Loader.ModelPath); err != nil {
|
||||
log.Error().Msgf("error downloading models: %s", err.Error())
|
||||
}
|
||||
|
||||
if options.PreloadJSONModels != "" {
|
||||
if err := localai.ApplyGalleryFromString(options.Loader.ModelPath, options.PreloadJSONModels, cl, options.Galleries); err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
}
|
||||
|
||||
if options.PreloadModelsFromPath != "" {
|
||||
if err := localai.ApplyGalleryFromFile(options.Loader.ModelPath, options.PreloadModelsFromPath, cl, options.Galleries); err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
}
|
||||
|
||||
if options.Debug {
|
||||
for _, v := range cl.ListConfigs() {
|
||||
cfg, _ := cl.GetConfig(v)
|
||||
log.Debug().Msgf("Model: %s (config: %+v)", v, cfg)
|
||||
}
|
||||
}
|
||||
|
||||
if options.AssetsDestination != "" {
|
||||
// Extract files from the embedded FS
|
||||
err := assets.ExtractFiles(options.BackendAssets, options.AssetsDestination)
|
||||
log.Debug().Msgf("Extracting backend assets files to %s", options.AssetsDestination)
|
||||
if err != nil {
|
||||
log.Warn().Msgf("Failed extracting backend assets files: %s (might be required for some backends to work properly, like gpt4all)", err)
|
||||
}
|
||||
}
|
||||
|
||||
// turn off any process that was started by GRPC if the context is canceled
|
||||
go func() {
|
||||
<-options.Context.Done()
|
||||
log.Debug().Msgf("Context canceled, shutting down")
|
||||
options.Loader.StopAllGRPC()
|
||||
}()
|
||||
|
||||
if options.WatchDog {
|
||||
wd := model.NewWatchDog(
|
||||
options.Loader,
|
||||
options.WatchDogBusyTimeout,
|
||||
options.WatchDogIdleTimeout,
|
||||
options.WatchDogBusy,
|
||||
options.WatchDogIdle)
|
||||
options.Loader.SetWatchDog(wd)
|
||||
go wd.Run()
|
||||
go func() {
|
||||
<-options.Context.Done()
|
||||
log.Debug().Msgf("Context canceled, shutting down")
|
||||
wd.Shutdown()
|
||||
}()
|
||||
}
|
||||
|
||||
return options, cl, nil
|
||||
return authHeader
|
||||
}
|
||||
|
||||
func App(opts ...options.AppOption) (*fiber.App, error) {
|
||||
|
||||
options, cl, err := Startup(opts...)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed basic startup tasks with error %s", err.Error())
|
||||
}
|
||||
|
||||
func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) (*fiber.App, error) {
|
||||
// Return errors as JSON responses
|
||||
app := fiber.New(fiber.Config{
|
||||
BodyLimit: options.UploadLimitMB * 1024 * 1024, // this is the default limit of 4MB
|
||||
DisableStartupMessage: options.DisableMessage,
|
||||
BodyLimit: appConfig.UploadLimitMB * 1024 * 1024, // this is the default limit of 4MB
|
||||
DisableStartupMessage: appConfig.DisableMessage,
|
||||
// Override default error handler
|
||||
ErrorHandler: func(ctx *fiber.Ctx, err error) error {
|
||||
// Status code defaults to 500
|
||||
@@ -139,7 +65,7 @@ func App(opts ...options.AppOption) (*fiber.App, error) {
|
||||
},
|
||||
})
|
||||
|
||||
if options.Debug {
|
||||
if appConfig.Debug {
|
||||
app.Use(logger.New(logger.Config{
|
||||
Format: "[${ip}]:${port} ${status} - ${method} ${path}\n",
|
||||
}))
|
||||
@@ -147,17 +73,25 @@ func App(opts ...options.AppOption) (*fiber.App, error) {
|
||||
|
||||
// Default middleware config
|
||||
|
||||
if !options.Debug {
|
||||
if !appConfig.Debug {
|
||||
app.Use(recover.New())
|
||||
}
|
||||
|
||||
if options.Metrics != nil {
|
||||
app.Use(metrics.APIMiddleware(options.Metrics))
|
||||
metricsService, err := services.NewLocalAIMetricsService()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if metricsService != nil {
|
||||
app.Use(localai.LocalAIMetricsAPIMiddleware(metricsService))
|
||||
app.Hooks().OnShutdown(func() error {
|
||||
return metricsService.Shutdown()
|
||||
})
|
||||
}
|
||||
|
||||
// Auth middleware checking if API key is valid. If no API key is set, no auth is required.
|
||||
auth := func(c *fiber.Ctx) error {
|
||||
if len(options.ApiKeys) == 0 {
|
||||
if len(appConfig.ApiKeys) == 0 {
|
||||
return c.Next()
|
||||
}
|
||||
|
||||
@@ -172,47 +106,48 @@ func App(opts ...options.AppOption) (*fiber.App, error) {
|
||||
}
|
||||
|
||||
// Add file keys to options.ApiKeys
|
||||
options.ApiKeys = append(options.ApiKeys, fileKeys...)
|
||||
appConfig.ApiKeys = append(appConfig.ApiKeys, fileKeys...)
|
||||
}
|
||||
|
||||
if len(options.ApiKeys) == 0 {
|
||||
if len(appConfig.ApiKeys) == 0 {
|
||||
return c.Next()
|
||||
}
|
||||
|
||||
authHeader := c.Get("Authorization")
|
||||
authHeader := readAuthHeader(c)
|
||||
if authHeader == "" {
|
||||
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Authorization header missing"})
|
||||
}
|
||||
|
||||
// If it's a bearer token
|
||||
authHeaderParts := strings.Split(authHeader, " ")
|
||||
if len(authHeaderParts) != 2 || authHeaderParts[0] != "Bearer" {
|
||||
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Invalid Authorization header format"})
|
||||
}
|
||||
|
||||
apiKey := authHeaderParts[1]
|
||||
for _, key := range options.ApiKeys {
|
||||
for _, key := range appConfig.ApiKeys {
|
||||
if apiKey == key {
|
||||
return c.Next()
|
||||
}
|
||||
}
|
||||
|
||||
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Invalid API key"})
|
||||
|
||||
}
|
||||
|
||||
if options.CORS {
|
||||
if appConfig.CORS {
|
||||
var c func(ctx *fiber.Ctx) error
|
||||
if options.CORSAllowOrigins == "" {
|
||||
if appConfig.CORSAllowOrigins == "" {
|
||||
c = cors.New()
|
||||
} else {
|
||||
c = cors.New(cors.Config{AllowOrigins: options.CORSAllowOrigins})
|
||||
c = cors.New(cors.Config{AllowOrigins: appConfig.CORSAllowOrigins})
|
||||
}
|
||||
|
||||
app.Use(c)
|
||||
}
|
||||
|
||||
// LocalAI API endpoints
|
||||
galleryService := localai.NewGalleryService(options.Loader.ModelPath)
|
||||
galleryService.Start(options.Context, cl)
|
||||
galleryService := services.NewGalleryService(appConfig.ModelPath)
|
||||
galleryService.Start(appConfig.Context, cl)
|
||||
|
||||
app.Get("/version", auth, func(c *fiber.Ctx) error {
|
||||
return c.JSON(struct {
|
||||
@@ -220,69 +155,75 @@ func App(opts ...options.AppOption) (*fiber.App, error) {
|
||||
}{Version: internal.PrintableVersion()})
|
||||
})
|
||||
|
||||
// Make sure directories exists
|
||||
os.MkdirAll(options.ImageDir, 0755)
|
||||
os.MkdirAll(options.AudioDir, 0755)
|
||||
os.MkdirAll(options.UploadDir, 0755)
|
||||
os.MkdirAll(options.Loader.ModelPath, 0755)
|
||||
|
||||
// Load upload json
|
||||
openai.LoadUploadConfig(options.UploadDir)
|
||||
openai.LoadUploadConfig(appConfig.UploadDir)
|
||||
|
||||
modelGalleryService := localai.CreateModelGalleryService(options.Galleries, options.Loader.ModelPath, galleryService)
|
||||
app.Post("/models/apply", auth, modelGalleryService.ApplyModelGalleryEndpoint())
|
||||
app.Get("/models/available", auth, modelGalleryService.ListModelFromGalleryEndpoint())
|
||||
app.Get("/models/galleries", auth, modelGalleryService.ListModelGalleriesEndpoint())
|
||||
app.Post("/models/galleries", auth, modelGalleryService.AddModelGalleryEndpoint())
|
||||
app.Delete("/models/galleries", auth, modelGalleryService.RemoveModelGalleryEndpoint())
|
||||
app.Get("/models/jobs/:uuid", auth, modelGalleryService.GetOpStatusEndpoint())
|
||||
app.Get("/models/jobs", auth, modelGalleryService.GetAllStatusEndpoint())
|
||||
modelGalleryEndpointService := localai.CreateModelGalleryEndpointService(appConfig.Galleries, appConfig.ModelPath, galleryService)
|
||||
app.Post("/models/apply", auth, modelGalleryEndpointService.ApplyModelGalleryEndpoint())
|
||||
app.Get("/models/available", auth, modelGalleryEndpointService.ListModelFromGalleryEndpoint())
|
||||
app.Get("/models/galleries", auth, modelGalleryEndpointService.ListModelGalleriesEndpoint())
|
||||
app.Post("/models/galleries", auth, modelGalleryEndpointService.AddModelGalleryEndpoint())
|
||||
app.Delete("/models/galleries", auth, modelGalleryEndpointService.RemoveModelGalleryEndpoint())
|
||||
app.Get("/models/jobs/:uuid", auth, modelGalleryEndpointService.GetOpStatusEndpoint())
|
||||
app.Get("/models/jobs", auth, modelGalleryEndpointService.GetAllStatusEndpoint())
|
||||
|
||||
app.Post("/tts", auth, localai.TTSEndpoint(cl, ml, appConfig))
|
||||
|
||||
// Elevenlabs
|
||||
app.Post("/v1/text-to-speech/:voice-id", auth, elevenlabs.TTSEndpoint(cl, ml, appConfig))
|
||||
|
||||
// Stores
|
||||
sl := model.NewModelLoader("")
|
||||
app.Post("/stores/set", auth, localai.StoresSetEndpoint(sl, appConfig))
|
||||
app.Post("/stores/delete", auth, localai.StoresDeleteEndpoint(sl, appConfig))
|
||||
app.Post("/stores/get", auth, localai.StoresGetEndpoint(sl, appConfig))
|
||||
app.Post("/stores/find", auth, localai.StoresFindEndpoint(sl, appConfig))
|
||||
|
||||
// openAI compatible API endpoint
|
||||
|
||||
// chat
|
||||
app.Post("/v1/chat/completions", auth, openai.ChatEndpoint(cl, options))
|
||||
app.Post("/chat/completions", auth, openai.ChatEndpoint(cl, options))
|
||||
app.Post("/v1/chat/completions", auth, openai.ChatEndpoint(cl, ml, appConfig))
|
||||
app.Post("/chat/completions", auth, openai.ChatEndpoint(cl, ml, appConfig))
|
||||
|
||||
// edit
|
||||
app.Post("/v1/edits", auth, openai.EditEndpoint(cl, options))
|
||||
app.Post("/edits", auth, openai.EditEndpoint(cl, options))
|
||||
app.Post("/v1/edits", auth, openai.EditEndpoint(cl, ml, appConfig))
|
||||
app.Post("/edits", auth, openai.EditEndpoint(cl, ml, appConfig))
|
||||
|
||||
// files
|
||||
app.Post("/v1/files", auth, openai.UploadFilesEndpoint(cl, options))
|
||||
app.Post("/files", auth, openai.UploadFilesEndpoint(cl, options))
|
||||
app.Get("/v1/files", auth, openai.ListFilesEndpoint(cl, options))
|
||||
app.Get("/files", auth, openai.ListFilesEndpoint(cl, options))
|
||||
app.Get("/v1/files/:file_id", auth, openai.GetFilesEndpoint(cl, options))
|
||||
app.Get("/files/:file_id", auth, openai.GetFilesEndpoint(cl, options))
|
||||
app.Delete("/v1/files/:file_id", auth, openai.DeleteFilesEndpoint(cl, options))
|
||||
app.Delete("/files/:file_id", auth, openai.DeleteFilesEndpoint(cl, options))
|
||||
app.Get("/v1/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(cl, options))
|
||||
app.Get("/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(cl, options))
|
||||
app.Post("/v1/files", auth, openai.UploadFilesEndpoint(cl, appConfig))
|
||||
app.Post("/files", auth, openai.UploadFilesEndpoint(cl, appConfig))
|
||||
app.Get("/v1/files", auth, openai.ListFilesEndpoint(cl, appConfig))
|
||||
app.Get("/files", auth, openai.ListFilesEndpoint(cl, appConfig))
|
||||
app.Get("/v1/files/:file_id", auth, openai.GetFilesEndpoint(cl, appConfig))
|
||||
app.Get("/files/:file_id", auth, openai.GetFilesEndpoint(cl, appConfig))
|
||||
app.Delete("/v1/files/:file_id", auth, openai.DeleteFilesEndpoint(cl, appConfig))
|
||||
app.Delete("/files/:file_id", auth, openai.DeleteFilesEndpoint(cl, appConfig))
|
||||
app.Get("/v1/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(cl, appConfig))
|
||||
app.Get("/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(cl, appConfig))
|
||||
|
||||
// completion
|
||||
app.Post("/v1/completions", auth, openai.CompletionEndpoint(cl, options))
|
||||
app.Post("/completions", auth, openai.CompletionEndpoint(cl, options))
|
||||
app.Post("/v1/engines/:model/completions", auth, openai.CompletionEndpoint(cl, options))
|
||||
app.Post("/v1/completions", auth, openai.CompletionEndpoint(cl, ml, appConfig))
|
||||
app.Post("/completions", auth, openai.CompletionEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/engines/:model/completions", auth, openai.CompletionEndpoint(cl, ml, appConfig))
|
||||
|
||||
// embeddings
|
||||
app.Post("/v1/embeddings", auth, openai.EmbeddingsEndpoint(cl, options))
|
||||
app.Post("/embeddings", auth, openai.EmbeddingsEndpoint(cl, options))
|
||||
app.Post("/v1/engines/:model/embeddings", auth, openai.EmbeddingsEndpoint(cl, options))
|
||||
app.Post("/v1/embeddings", auth, openai.EmbeddingsEndpoint(cl, ml, appConfig))
|
||||
app.Post("/embeddings", auth, openai.EmbeddingsEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/engines/:model/embeddings", auth, openai.EmbeddingsEndpoint(cl, ml, appConfig))
|
||||
|
||||
// audio
|
||||
app.Post("/v1/audio/transcriptions", auth, openai.TranscriptEndpoint(cl, options))
|
||||
app.Post("/tts", auth, localai.TTSEndpoint(cl, options))
|
||||
app.Post("/v1/audio/transcriptions", auth, openai.TranscriptEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/audio/speech", auth, localai.TTSEndpoint(cl, ml, appConfig))
|
||||
|
||||
// images
|
||||
app.Post("/v1/images/generations", auth, openai.ImageEndpoint(cl, options))
|
||||
app.Post("/v1/images/generations", auth, openai.ImageEndpoint(cl, ml, appConfig))
|
||||
|
||||
if options.ImageDir != "" {
|
||||
app.Static("/generated-images", options.ImageDir)
|
||||
if appConfig.ImageDir != "" {
|
||||
app.Static("/generated-images", appConfig.ImageDir)
|
||||
}
|
||||
|
||||
if options.AudioDir != "" {
|
||||
app.Static("/generated-audio", options.AudioDir)
|
||||
if appConfig.AudioDir != "" {
|
||||
app.Static("/generated-audio", appConfig.AudioDir)
|
||||
}
|
||||
|
||||
ok := func(c *fiber.Ctx) error {
|
||||
@@ -294,15 +235,15 @@ func App(opts ...options.AppOption) (*fiber.App, error) {
|
||||
app.Get("/readyz", ok)
|
||||
|
||||
// Experimental Backend Statistics Module
|
||||
backendMonitor := localai.NewBackendMonitor(cl, options) // Split out for now
|
||||
backendMonitor := services.NewBackendMonitor(cl, ml, appConfig) // Split out for now
|
||||
app.Get("/backend/monitor", localai.BackendMonitorEndpoint(backendMonitor))
|
||||
app.Post("/backend/shutdown", localai.BackendShutdownEndpoint(backendMonitor))
|
||||
|
||||
// models
|
||||
app.Get("/v1/models", auth, openai.ListModelsEndpoint(options.Loader, cl))
|
||||
app.Get("/models", auth, openai.ListModelsEndpoint(options.Loader, cl))
|
||||
app.Get("/v1/models", auth, openai.ListModelsEndpoint(cl, ml))
|
||||
app.Get("/models", auth, openai.ListModelsEndpoint(cl, ml))
|
||||
|
||||
app.Get("/metrics", metrics.MetricsHandler())
|
||||
app.Get("/metrics", localai.LocalAIMetricsEndpoint())
|
||||
|
||||
return app, nil
|
||||
}
|
||||
|
||||
@@ -13,9 +13,11 @@ import (
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
. "github.com/go-skynet/LocalAI/core/http"
|
||||
"github.com/go-skynet/LocalAI/core/options"
|
||||
"github.com/go-skynet/LocalAI/metrics"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/core/startup"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/downloader"
|
||||
"github.com/go-skynet/LocalAI/pkg/gallery"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
@@ -121,31 +123,108 @@ func postModelApplyRequest(url string, request modelApplyRequest) (response map[
|
||||
return
|
||||
}
|
||||
|
||||
func postRequestJSON[B any](url string, bodyJson *B) error {
|
||||
payload, err := json.Marshal(bodyJson)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
GinkgoWriter.Printf("POST %s: %s\n", url, string(payload))
|
||||
|
||||
req, err := http.NewRequest("POST", url, bytes.NewBuffer(payload))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
|
||||
client := &http.Client{}
|
||||
resp, err := client.Do(req)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
defer resp.Body.Close()
|
||||
|
||||
body, err := io.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if resp.StatusCode < 200 || resp.StatusCode >= 400 {
|
||||
return fmt.Errorf("unexpected status code: %d, body: %s", resp.StatusCode, string(body))
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func postRequestResponseJSON[B1 any, B2 any](url string, reqJson *B1, respJson *B2) error {
|
||||
payload, err := json.Marshal(reqJson)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
GinkgoWriter.Printf("POST %s: %s\n", url, string(payload))
|
||||
|
||||
req, err := http.NewRequest("POST", url, bytes.NewBuffer(payload))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
|
||||
client := &http.Client{}
|
||||
resp, err := client.Do(req)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
body, err := io.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if resp.StatusCode < 200 || resp.StatusCode >= 400 {
|
||||
return fmt.Errorf("unexpected status code: %d, body: %s", resp.StatusCode, string(body))
|
||||
}
|
||||
|
||||
return json.Unmarshal(body, respJson)
|
||||
}
|
||||
|
||||
//go:embed backend-assets/*
|
||||
var backendAssets embed.FS
|
||||
|
||||
var _ = Describe("API test", func() {
|
||||
|
||||
var app *fiber.App
|
||||
var modelLoader *model.ModelLoader
|
||||
var client *openai.Client
|
||||
var client2 *openaigo.Client
|
||||
var c context.Context
|
||||
var cancel context.CancelFunc
|
||||
var tmpdir string
|
||||
var modelDir string
|
||||
var bcl *config.BackendConfigLoader
|
||||
var ml *model.ModelLoader
|
||||
var applicationConfig *config.ApplicationConfig
|
||||
|
||||
commonOpts := []options.AppOption{
|
||||
options.WithDebug(true),
|
||||
options.WithDisableMessage(true),
|
||||
commonOpts := []config.AppOption{
|
||||
config.WithDebug(true),
|
||||
config.WithDisableMessage(true),
|
||||
}
|
||||
|
||||
Context("API with ephemeral models", func() {
|
||||
BeforeEach(func() {
|
||||
|
||||
BeforeEach(func(sc SpecContext) {
|
||||
var err error
|
||||
tmpdir, err = os.MkdirTemp("", "")
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
modelLoader = model.NewModelLoader(tmpdir)
|
||||
modelDir = filepath.Join(tmpdir, "models")
|
||||
backendAssetsDir := filepath.Join(tmpdir, "backend-assets")
|
||||
err = os.Mkdir(backendAssetsDir, 0755)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
c, cancel = context.WithCancel(context.Background())
|
||||
|
||||
g := []gallery.GalleryModel{
|
||||
@@ -172,16 +251,18 @@ var _ = Describe("API test", func() {
|
||||
},
|
||||
}
|
||||
|
||||
metricsService, err := metrics.SetupMetrics()
|
||||
bcl, ml, applicationConfig, err = startup.Startup(
|
||||
append(commonOpts,
|
||||
config.WithContext(c),
|
||||
config.WithGalleries(galleries),
|
||||
config.WithModelPath(modelDir),
|
||||
config.WithBackendAssets(backendAssets),
|
||||
config.WithBackendAssetsOutput(backendAssetsDir))...)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
app, err = App(
|
||||
append(commonOpts,
|
||||
options.WithMetrics(metricsService),
|
||||
options.WithContext(c),
|
||||
options.WithGalleries(galleries),
|
||||
options.WithModelLoader(modelLoader), options.WithBackendAssets(backendAssets), options.WithBackendAssetsOutput(tmpdir))...)
|
||||
app, err = App(bcl, ml, applicationConfig)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
go app.Listen("127.0.0.1:9090")
|
||||
|
||||
defaultConfig := openai.DefaultConfig("")
|
||||
@@ -198,15 +279,21 @@ var _ = Describe("API test", func() {
|
||||
}, "2m").ShouldNot(HaveOccurred())
|
||||
})
|
||||
|
||||
AfterEach(func() {
|
||||
AfterEach(func(sc SpecContext) {
|
||||
cancel()
|
||||
app.Shutdown()
|
||||
os.RemoveAll(tmpdir)
|
||||
if app != nil {
|
||||
err := app.Shutdown()
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
}
|
||||
err := os.RemoveAll(tmpdir)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
_, err = os.ReadDir(tmpdir)
|
||||
Expect(err).To(HaveOccurred())
|
||||
})
|
||||
|
||||
Context("Applying models", func() {
|
||||
It("applies models from a gallery", func() {
|
||||
|
||||
It("applies models from a gallery", func() {
|
||||
models := getModels("http://127.0.0.1:9090/models/available")
|
||||
Expect(len(models)).To(Equal(2), fmt.Sprint(models))
|
||||
Expect(models[0].Installed).To(BeFalse(), fmt.Sprint(models))
|
||||
@@ -228,10 +315,10 @@ var _ = Describe("API test", func() {
|
||||
}, "360s", "10s").Should(Equal(true))
|
||||
Expect(resp["message"]).ToNot(ContainSubstring("error"))
|
||||
|
||||
dat, err := os.ReadFile(filepath.Join(tmpdir, "bert2.yaml"))
|
||||
dat, err := os.ReadFile(filepath.Join(modelDir, "bert2.yaml"))
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
_, err = os.ReadFile(filepath.Join(tmpdir, "foo.yaml"))
|
||||
_, err = os.ReadFile(filepath.Join(modelDir, "foo.yaml"))
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
content := map[string]interface{}{}
|
||||
@@ -253,6 +340,7 @@ var _ = Describe("API test", func() {
|
||||
}
|
||||
})
|
||||
It("overrides models", func() {
|
||||
|
||||
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
|
||||
URL: "https://raw.githubusercontent.com/go-skynet/model-gallery/main/bert-embeddings.yaml",
|
||||
Name: "bert",
|
||||
@@ -270,7 +358,7 @@ var _ = Describe("API test", func() {
|
||||
return response["processed"].(bool)
|
||||
}, "360s", "10s").Should(Equal(true))
|
||||
|
||||
dat, err := os.ReadFile(filepath.Join(tmpdir, "bert.yaml"))
|
||||
dat, err := os.ReadFile(filepath.Join(modelDir, "bert.yaml"))
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
content := map[string]interface{}{}
|
||||
@@ -294,7 +382,7 @@ var _ = Describe("API test", func() {
|
||||
return response["processed"].(bool)
|
||||
}, "360s", "10s").Should(Equal(true))
|
||||
|
||||
dat, err := os.ReadFile(filepath.Join(tmpdir, "bert.yaml"))
|
||||
dat, err := os.ReadFile(filepath.Join(modelDir, "bert.yaml"))
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
content := map[string]interface{}{}
|
||||
@@ -368,7 +456,7 @@ var _ = Describe("API test", func() {
|
||||
var res map[string]string
|
||||
err = json.Unmarshal([]byte(resp2.Choices[0].Message.FunctionCall.Arguments), &res)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(res["location"]).To(Equal("San Francisco, California, United States"), fmt.Sprint(res))
|
||||
Expect(res["location"]).To(Equal("San Francisco"), fmt.Sprint(res))
|
||||
Expect(res["unit"]).To(Equal("celcius"), fmt.Sprint(res))
|
||||
Expect(string(resp2.Choices[0].FinishReason)).To(Equal("function_call"), fmt.Sprint(resp2.Choices[0].FinishReason))
|
||||
|
||||
@@ -483,8 +571,11 @@ var _ = Describe("API test", func() {
|
||||
var err error
|
||||
tmpdir, err = os.MkdirTemp("", "")
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
modelDir = filepath.Join(tmpdir, "models")
|
||||
backendAssetsDir := filepath.Join(tmpdir, "backend-assets")
|
||||
err = os.Mkdir(backendAssetsDir, 0755)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
modelLoader = model.NewModelLoader(tmpdir)
|
||||
c, cancel = context.WithCancel(context.Background())
|
||||
|
||||
galleries := []gallery.Gallery{
|
||||
@@ -494,21 +585,20 @@ var _ = Describe("API test", func() {
|
||||
},
|
||||
}
|
||||
|
||||
metricsService, err := metrics.SetupMetrics()
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
app, err = App(
|
||||
bcl, ml, applicationConfig, err = startup.Startup(
|
||||
append(commonOpts,
|
||||
options.WithContext(c),
|
||||
options.WithMetrics(metricsService),
|
||||
options.WithAudioDir(tmpdir),
|
||||
options.WithImageDir(tmpdir),
|
||||
options.WithGalleries(galleries),
|
||||
options.WithModelLoader(modelLoader),
|
||||
options.WithBackendAssets(backendAssets),
|
||||
options.WithBackendAssetsOutput(tmpdir))...,
|
||||
config.WithContext(c),
|
||||
config.WithAudioDir(tmpdir),
|
||||
config.WithImageDir(tmpdir),
|
||||
config.WithGalleries(galleries),
|
||||
config.WithModelPath(modelDir),
|
||||
config.WithBackendAssets(backendAssets),
|
||||
config.WithBackendAssetsOutput(tmpdir))...,
|
||||
)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
app, err = App(bcl, ml, applicationConfig)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
go app.Listen("127.0.0.1:9090")
|
||||
|
||||
defaultConfig := openai.DefaultConfig("")
|
||||
@@ -527,8 +617,14 @@ var _ = Describe("API test", func() {
|
||||
|
||||
AfterEach(func() {
|
||||
cancel()
|
||||
app.Shutdown()
|
||||
os.RemoveAll(tmpdir)
|
||||
if app != nil {
|
||||
err := app.Shutdown()
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
}
|
||||
err := os.RemoveAll(tmpdir)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
_, err = os.ReadDir(tmpdir)
|
||||
Expect(err).To(HaveOccurred())
|
||||
})
|
||||
It("installs and is capable to run tts", Label("tts"), func() {
|
||||
if runtime.GOOS != "linux" {
|
||||
@@ -599,20 +695,20 @@ var _ = Describe("API test", func() {
|
||||
|
||||
Context("API query", func() {
|
||||
BeforeEach(func() {
|
||||
modelLoader = model.NewModelLoader(os.Getenv("MODELS_PATH"))
|
||||
modelPath := os.Getenv("MODELS_PATH")
|
||||
c, cancel = context.WithCancel(context.Background())
|
||||
|
||||
metricsService, err := metrics.SetupMetrics()
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
var err error
|
||||
|
||||
app, err = App(
|
||||
bcl, ml, applicationConfig, err = startup.Startup(
|
||||
append(commonOpts,
|
||||
options.WithExternalBackend("huggingface", os.Getenv("HUGGINGFACE_GRPC")),
|
||||
options.WithContext(c),
|
||||
options.WithModelLoader(modelLoader),
|
||||
options.WithMetrics(metricsService),
|
||||
config.WithExternalBackend("huggingface", os.Getenv("HUGGINGFACE_GRPC")),
|
||||
config.WithContext(c),
|
||||
config.WithModelPath(modelPath),
|
||||
)...)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
app, err = App(bcl, ml, applicationConfig)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
go app.Listen("127.0.0.1:9090")
|
||||
|
||||
defaultConfig := openai.DefaultConfig("")
|
||||
@@ -630,22 +726,25 @@ var _ = Describe("API test", func() {
|
||||
})
|
||||
AfterEach(func() {
|
||||
cancel()
|
||||
app.Shutdown()
|
||||
if app != nil {
|
||||
err := app.Shutdown()
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
}
|
||||
})
|
||||
It("returns the models list", func() {
|
||||
models, err := client.ListModels(context.TODO())
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(models.Models)).To(Equal(6)) // If "config.yaml" should be included, this should be 8?
|
||||
})
|
||||
It("can generate completions", func() {
|
||||
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "testmodel", Prompt: testPrompt})
|
||||
It("can generate completions via ggml", func() {
|
||||
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "testmodel.ggml", Prompt: testPrompt})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
Expect(resp.Choices[0].Text).ToNot(BeEmpty())
|
||||
})
|
||||
|
||||
It("can generate chat completions ", func() {
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "testmodel", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: testPrompt}}})
|
||||
It("can generate chat completions via ggml", func() {
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "testmodel.ggml", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: testPrompt}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
|
||||
@@ -807,24 +906,96 @@ var _ = Describe("API test", func() {
|
||||
Expect(tokens).ToNot(Or(Equal(1), Equal(0)))
|
||||
})
|
||||
})
|
||||
|
||||
// See tests/integration/stores_test
|
||||
Context("Stores", Label("stores"), func() {
|
||||
|
||||
It("sets, gets, finds and deletes entries", func() {
|
||||
ks := [][]float32{
|
||||
{0.1, 0.2, 0.3},
|
||||
{0.4, 0.5, 0.6},
|
||||
{0.7, 0.8, 0.9},
|
||||
}
|
||||
vs := []string{
|
||||
"test1",
|
||||
"test2",
|
||||
"test3",
|
||||
}
|
||||
setBody := schema.StoresSet{
|
||||
Keys: ks,
|
||||
Values: vs,
|
||||
}
|
||||
|
||||
url := "http://127.0.0.1:9090/stores/"
|
||||
err := postRequestJSON(url+"set", &setBody)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
getBody := schema.StoresGet{
|
||||
Keys: ks,
|
||||
}
|
||||
var getRespBody schema.StoresGetResponse
|
||||
err = postRequestResponseJSON(url+"get", &getBody, &getRespBody)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(getRespBody.Keys)).To(Equal(len(ks)))
|
||||
|
||||
for i, v := range getRespBody.Keys {
|
||||
if v[0] == 0.1 {
|
||||
Expect(getRespBody.Values[i]).To(Equal("test1"))
|
||||
} else if v[0] == 0.4 {
|
||||
Expect(getRespBody.Values[i]).To(Equal("test2"))
|
||||
} else {
|
||||
Expect(getRespBody.Values[i]).To(Equal("test3"))
|
||||
}
|
||||
}
|
||||
|
||||
deleteBody := schema.StoresDelete{
|
||||
Keys: [][]float32{
|
||||
{0.1, 0.2, 0.3},
|
||||
},
|
||||
}
|
||||
err = postRequestJSON(url+"delete", &deleteBody)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
findBody := schema.StoresFind{
|
||||
Key: []float32{0.1, 0.3, 0.7},
|
||||
Topk: 10,
|
||||
}
|
||||
|
||||
var findRespBody schema.StoresFindResponse
|
||||
err = postRequestResponseJSON(url+"find", &findBody, &findRespBody)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(findRespBody.Keys)).To(Equal(2))
|
||||
|
||||
for i, v := range findRespBody.Keys {
|
||||
if v[0] == 0.4 {
|
||||
Expect(findRespBody.Values[i]).To(Equal("test2"))
|
||||
} else {
|
||||
Expect(findRespBody.Values[i]).To(Equal("test3"))
|
||||
}
|
||||
|
||||
Expect(findRespBody.Similarities[i]).To(BeNumerically(">=", -1))
|
||||
Expect(findRespBody.Similarities[i]).To(BeNumerically("<=", 1))
|
||||
}
|
||||
})
|
||||
})
|
||||
})
|
||||
|
||||
Context("Config file", func() {
|
||||
BeforeEach(func() {
|
||||
modelLoader = model.NewModelLoader(os.Getenv("MODELS_PATH"))
|
||||
modelPath := os.Getenv("MODELS_PATH")
|
||||
c, cancel = context.WithCancel(context.Background())
|
||||
|
||||
metricsService, err := metrics.SetupMetrics()
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
app, err = App(
|
||||
var err error
|
||||
bcl, ml, applicationConfig, err = startup.Startup(
|
||||
append(commonOpts,
|
||||
options.WithContext(c),
|
||||
options.WithMetrics(metricsService),
|
||||
options.WithModelLoader(modelLoader),
|
||||
options.WithConfigFile(os.Getenv("CONFIG_FILE")))...,
|
||||
config.WithContext(c),
|
||||
config.WithModelPath(modelPath),
|
||||
config.WithConfigFile(os.Getenv("CONFIG_FILE")))...,
|
||||
)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
app, err = App(bcl, ml, applicationConfig)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
go app.Listen("127.0.0.1:9090")
|
||||
|
||||
defaultConfig := openai.DefaultConfig("")
|
||||
@@ -840,7 +1011,10 @@ var _ = Describe("API test", func() {
|
||||
})
|
||||
AfterEach(func() {
|
||||
cancel()
|
||||
app.Shutdown()
|
||||
if app != nil {
|
||||
err := app.Shutdown()
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
}
|
||||
})
|
||||
It("can generate chat completions from config file (list1)", func() {
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "list1", Messages: []openai.ChatCompletionMessage{{Role: "user", Content: testPrompt}}})
|
||||
|
||||
55
core/http/endpoints/elevenlabs/tts.go
Normal file
55
core/http/endpoints/elevenlabs/tts.go
Normal file
@@ -0,0 +1,55 @@
|
||||
package elevenlabs
|
||||
|
||||
import (
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
func TTSEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
|
||||
input := new(schema.ElevenLabsTTSRequest)
|
||||
voiceID := c.Params("voice-id")
|
||||
|
||||
// Get input data from the request body
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
modelFile, err := fiberContext.ModelFromContext(c, ml, input.ModelID, false)
|
||||
if err != nil {
|
||||
modelFile = input.ModelID
|
||||
log.Warn().Msgf("Model not found in context: %s", input.ModelID)
|
||||
}
|
||||
|
||||
cfg, err := cl.LoadBackendConfigFileByName(modelFile, appConfig.ModelPath,
|
||||
config.LoadOptionDebug(appConfig.Debug),
|
||||
config.LoadOptionThreads(appConfig.Threads),
|
||||
config.LoadOptionContextSize(appConfig.ContextSize),
|
||||
config.LoadOptionF16(appConfig.F16),
|
||||
)
|
||||
if err != nil {
|
||||
modelFile = input.ModelID
|
||||
log.Warn().Msgf("Model not found in context: %s", input.ModelID)
|
||||
} else {
|
||||
if input.ModelID != "" {
|
||||
modelFile = input.ModelID
|
||||
} else {
|
||||
modelFile = cfg.Model
|
||||
}
|
||||
}
|
||||
log.Debug().Msgf("Request for model: %s", modelFile)
|
||||
|
||||
filePath, _, err := backend.ModelTTS(cfg.Backend, input.Text, modelFile, voiceID, ml, appConfig, *cfg)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
return c.Download(filePath)
|
||||
}
|
||||
}
|
||||
36
core/http/endpoints/localai/backend_monitor.go
Normal file
36
core/http/endpoints/localai/backend_monitor.go
Normal file
@@ -0,0 +1,36 @@
|
||||
package localai
|
||||
|
||||
import (
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
)
|
||||
|
||||
func BackendMonitorEndpoint(bm services.BackendMonitor) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
|
||||
input := new(schema.BackendMonitorRequest)
|
||||
// Get input data from the request body
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
resp, err := bm.CheckAndSample(input.Model)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
return c.JSON(resp)
|
||||
}
|
||||
}
|
||||
|
||||
func BackendShutdownEndpoint(bm services.BackendMonitor) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
input := new(schema.BackendMonitorRequest)
|
||||
// Get input data from the request body
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
return bm.ShutdownModel(input.Model)
|
||||
}
|
||||
}
|
||||
146
core/http/endpoints/localai/gallery.go
Normal file
146
core/http/endpoints/localai/gallery.go
Normal file
@@ -0,0 +1,146 @@
|
||||
package localai
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"slices"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
"github.com/go-skynet/LocalAI/pkg/gallery"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/google/uuid"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
type ModelGalleryEndpointService struct {
|
||||
galleries []gallery.Gallery
|
||||
modelPath string
|
||||
galleryApplier *services.GalleryService
|
||||
}
|
||||
|
||||
type GalleryModel struct {
|
||||
ID string `json:"id"`
|
||||
gallery.GalleryModel
|
||||
}
|
||||
|
||||
func CreateModelGalleryEndpointService(galleries []gallery.Gallery, modelPath string, galleryApplier *services.GalleryService) ModelGalleryEndpointService {
|
||||
return ModelGalleryEndpointService{
|
||||
galleries: galleries,
|
||||
modelPath: modelPath,
|
||||
galleryApplier: galleryApplier,
|
||||
}
|
||||
}
|
||||
|
||||
func (mgs *ModelGalleryEndpointService) GetOpStatusEndpoint() func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
status := mgs.galleryApplier.GetStatus(c.Params("uuid"))
|
||||
if status == nil {
|
||||
return fmt.Errorf("could not find any status for ID")
|
||||
}
|
||||
return c.JSON(status)
|
||||
}
|
||||
}
|
||||
|
||||
func (mgs *ModelGalleryEndpointService) GetAllStatusEndpoint() func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
return c.JSON(mgs.galleryApplier.GetAllStatus())
|
||||
}
|
||||
}
|
||||
|
||||
func (mgs *ModelGalleryEndpointService) ApplyModelGalleryEndpoint() func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
input := new(GalleryModel)
|
||||
// Get input data from the request body
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
uuid, err := uuid.NewUUID()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
mgs.galleryApplier.C <- gallery.GalleryOp{
|
||||
Req: input.GalleryModel,
|
||||
Id: uuid.String(),
|
||||
GalleryName: input.ID,
|
||||
Galleries: mgs.galleries,
|
||||
}
|
||||
return c.JSON(struct {
|
||||
ID string `json:"uuid"`
|
||||
StatusURL string `json:"status"`
|
||||
}{ID: uuid.String(), StatusURL: c.BaseURL() + "/models/jobs/" + uuid.String()})
|
||||
}
|
||||
}
|
||||
|
||||
func (mgs *ModelGalleryEndpointService) ListModelFromGalleryEndpoint() func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
log.Debug().Msgf("Listing models from galleries: %+v", mgs.galleries)
|
||||
|
||||
models, err := gallery.AvailableGalleryModels(mgs.galleries, mgs.modelPath)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
log.Debug().Msgf("Models found from galleries: %+v", models)
|
||||
for _, m := range models {
|
||||
log.Debug().Msgf("Model found from galleries: %+v", m)
|
||||
}
|
||||
dat, err := json.Marshal(models)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
return c.Send(dat)
|
||||
}
|
||||
}
|
||||
|
||||
// NOTE: This is different (and much simpler!) than above! This JUST lists the model galleries that have been loaded, not their contents!
|
||||
func (mgs *ModelGalleryEndpointService) ListModelGalleriesEndpoint() func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
log.Debug().Msgf("Listing model galleries %+v", mgs.galleries)
|
||||
dat, err := json.Marshal(mgs.galleries)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
return c.Send(dat)
|
||||
}
|
||||
}
|
||||
|
||||
func (mgs *ModelGalleryEndpointService) AddModelGalleryEndpoint() func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
input := new(gallery.Gallery)
|
||||
// Get input data from the request body
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
if slices.ContainsFunc(mgs.galleries, func(gallery gallery.Gallery) bool {
|
||||
return gallery.Name == input.Name
|
||||
}) {
|
||||
return fmt.Errorf("%s already exists", input.Name)
|
||||
}
|
||||
dat, err := json.Marshal(mgs.galleries)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
log.Debug().Msgf("Adding %+v to gallery list", *input)
|
||||
mgs.galleries = append(mgs.galleries, *input)
|
||||
return c.Send(dat)
|
||||
}
|
||||
}
|
||||
|
||||
func (mgs *ModelGalleryEndpointService) RemoveModelGalleryEndpoint() func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
input := new(gallery.Gallery)
|
||||
// Get input data from the request body
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
if !slices.ContainsFunc(mgs.galleries, func(gallery gallery.Gallery) bool {
|
||||
return gallery.Name == input.Name
|
||||
}) {
|
||||
return fmt.Errorf("%s is not currently registered", input.Name)
|
||||
}
|
||||
mgs.galleries = slices.DeleteFunc(mgs.galleries, func(gallery gallery.Gallery) bool {
|
||||
return gallery.Name == input.Name
|
||||
})
|
||||
return c.Send(nil)
|
||||
}
|
||||
}
|
||||
43
core/http/endpoints/localai/metrics.go
Normal file
43
core/http/endpoints/localai/metrics.go
Normal file
@@ -0,0 +1,43 @@
|
||||
package localai
|
||||
|
||||
import (
|
||||
"time"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/gofiber/fiber/v2/middleware/adaptor"
|
||||
"github.com/prometheus/client_golang/prometheus/promhttp"
|
||||
)
|
||||
|
||||
func LocalAIMetricsEndpoint() fiber.Handler {
|
||||
|
||||
return adaptor.HTTPHandler(promhttp.Handler())
|
||||
}
|
||||
|
||||
type apiMiddlewareConfig struct {
|
||||
Filter func(c *fiber.Ctx) bool
|
||||
metricsService *services.LocalAIMetricsService
|
||||
}
|
||||
|
||||
func LocalAIMetricsAPIMiddleware(metrics *services.LocalAIMetricsService) fiber.Handler {
|
||||
cfg := apiMiddlewareConfig{
|
||||
metricsService: metrics,
|
||||
Filter: func(c *fiber.Ctx) bool {
|
||||
return c.Path() == "/metrics"
|
||||
},
|
||||
}
|
||||
|
||||
return func(c *fiber.Ctx) error {
|
||||
if cfg.Filter != nil && cfg.Filter(c) {
|
||||
return c.Next()
|
||||
}
|
||||
path := c.Path()
|
||||
method := c.Method()
|
||||
|
||||
start := time.Now()
|
||||
err := c.Next()
|
||||
elapsed := float64(time.Since(start)) / float64(time.Second)
|
||||
cfg.metricsService.ObserveAPICall(method, path, elapsed)
|
||||
return err
|
||||
}
|
||||
}
|
||||
121
core/http/endpoints/localai/stores.go
Normal file
121
core/http/endpoints/localai/stores.go
Normal file
@@ -0,0 +1,121 @@
|
||||
package localai
|
||||
|
||||
import (
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/store"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
)
|
||||
|
||||
func StoresSetEndpoint(sl *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
input := new(schema.StoresSet)
|
||||
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
sb, err := backend.StoreBackend(sl, appConfig, input.Store)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
vals := make([][]byte, len(input.Values))
|
||||
for i, v := range input.Values {
|
||||
vals[i] = []byte(v)
|
||||
}
|
||||
|
||||
err = store.SetCols(c.Context(), sb, input.Keys, vals)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
return c.Send(nil)
|
||||
}
|
||||
}
|
||||
|
||||
func StoresDeleteEndpoint(sl *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
input := new(schema.StoresDelete)
|
||||
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
sb, err := backend.StoreBackend(sl, appConfig, input.Store)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := store.DeleteCols(c.Context(), sb, input.Keys); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
return c.Send(nil)
|
||||
}
|
||||
}
|
||||
|
||||
func StoresGetEndpoint(sl *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
input := new(schema.StoresGet)
|
||||
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
sb, err := backend.StoreBackend(sl, appConfig, input.Store)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
keys, vals, err := store.GetCols(c.Context(), sb, input.Keys)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
res := schema.StoresGetResponse{
|
||||
Keys: keys,
|
||||
Values: make([]string, len(vals)),
|
||||
}
|
||||
|
||||
for i, v := range vals {
|
||||
res.Values[i] = string(v)
|
||||
}
|
||||
|
||||
return c.JSON(res)
|
||||
}
|
||||
}
|
||||
|
||||
func StoresFindEndpoint(sl *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
input := new(schema.StoresFind)
|
||||
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
sb, err := backend.StoreBackend(sl, appConfig, input.Store)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
keys, vals, similarities, err := store.Find(c.Context(), sb, input.Key, input.Topk)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
res := schema.StoresFindResponse{
|
||||
Keys: keys,
|
||||
Values: make([]string, len(vals)),
|
||||
Similarities: similarities,
|
||||
}
|
||||
|
||||
for i, v := range vals {
|
||||
res.Values[i] = string(v)
|
||||
}
|
||||
|
||||
return c.JSON(res)
|
||||
}
|
||||
}
|
||||
@@ -1,37 +1,39 @@
|
||||
package localai
|
||||
|
||||
import (
|
||||
fiberContext "github.com/go-skynet/LocalAI/api/ctx"
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
config "github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/rs/zerolog/log"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/options"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
type TTSRequest struct {
|
||||
Model string `json:"model" yaml:"model"`
|
||||
Input string `json:"input" yaml:"input"`
|
||||
Backend string `json:"backend" yaml:"backend"`
|
||||
}
|
||||
|
||||
func TTSEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx) error {
|
||||
func TTSEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
|
||||
input := new(TTSRequest)
|
||||
input := new(schema.TTSRequest)
|
||||
|
||||
// Get input data from the request body
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
modelFile, err := fiberContext.ModelFromContext(c, o.Loader, input.Model, false)
|
||||
modelFile, err := fiberContext.ModelFromContext(c, ml, input.Model, false)
|
||||
if err != nil {
|
||||
modelFile = input.Model
|
||||
log.Warn().Msgf("Model not found in context: %s", input.Model)
|
||||
}
|
||||
cfg, err := config.Load(modelFile, o.Loader.ModelPath, cm, false, 0, 0, false)
|
||||
|
||||
cfg, err := cl.LoadBackendConfigFileByName(modelFile, appConfig.ModelPath,
|
||||
config.LoadOptionDebug(appConfig.Debug),
|
||||
config.LoadOptionThreads(appConfig.Threads),
|
||||
config.LoadOptionContextSize(appConfig.ContextSize),
|
||||
config.LoadOptionF16(appConfig.F16),
|
||||
)
|
||||
|
||||
if err != nil {
|
||||
modelFile = input.Model
|
||||
log.Warn().Msgf("Model not found in context: %s", input.Model)
|
||||
@@ -44,7 +46,7 @@ func TTSEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
|
||||
cfg.Backend = input.Backend
|
||||
}
|
||||
|
||||
filePath, _, err := backend.ModelTTS(cfg.Backend, input.Input, modelFile, o.Loader, o, *cfg)
|
||||
filePath, _, err := backend.ModelTTS(cfg.Backend, input.Input, modelFile, input.Voice, ml, appConfig, *cfg)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -9,8 +9,7 @@ import (
|
||||
"time"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
config "github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/options"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/grammar"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
@@ -21,12 +20,12 @@ import (
|
||||
"github.com/valyala/fasthttp"
|
||||
)
|
||||
|
||||
func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx) error {
|
||||
func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startupOptions *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
emptyMessage := ""
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
|
||||
process := func(s string, req *schema.OpenAIRequest, config *config.Config, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
|
||||
process := func(s string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
|
||||
initialMessage := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
@@ -36,7 +35,7 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
|
||||
}
|
||||
responses <- initialMessage
|
||||
|
||||
ComputeChoices(req, s, config, o, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
|
||||
ComputeChoices(req, s, config, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
|
||||
resp := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
@@ -55,9 +54,9 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
|
||||
})
|
||||
close(responses)
|
||||
}
|
||||
processTools := func(noAction string, prompt string, req *schema.OpenAIRequest, config *config.Config, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
|
||||
processTools := func(noAction string, prompt string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
|
||||
result := ""
|
||||
_, tokenUsage, _ := ComputeChoices(req, prompt, config, o, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
|
||||
_, tokenUsage, _ := ComputeChoices(req, prompt, config, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
|
||||
result += s
|
||||
// TODO: Change generated BNF grammar to be compliant with the schema so we can
|
||||
// stream the result token by token here.
|
||||
@@ -78,7 +77,7 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
|
||||
}
|
||||
responses <- initialMessage
|
||||
|
||||
result, err := handleQuestion(config, req, o, results[0].arguments, prompt)
|
||||
result, err := handleQuestion(config, req, ml, startupOptions, results[0].arguments, prompt)
|
||||
if err != nil {
|
||||
log.Error().Msgf("error handling question: %s", err.Error())
|
||||
return
|
||||
@@ -154,12 +153,12 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
|
||||
return func(c *fiber.Ctx) error {
|
||||
processFunctions := false
|
||||
funcs := grammar.Functions{}
|
||||
modelFile, input, err := readRequest(c, o, true)
|
||||
modelFile, input, err := readRequest(c, ml, startupOptions, true)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
config, input, err := mergeRequestWithConfig(modelFile, input, cm, o.Loader, o.Debug, o.Threads, o.ContextSize, o.F16)
|
||||
config, input, err := mergeRequestWithConfig(modelFile, input, cl, ml, startupOptions.Debug, startupOptions.Threads, startupOptions.ContextSize, startupOptions.F16)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
@@ -249,10 +248,13 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
|
||||
Role: r,
|
||||
RoleName: role,
|
||||
Content: i.StringContent,
|
||||
FunctionCall: i.FunctionCall,
|
||||
FunctionName: i.Name,
|
||||
LastMessage: messageIndex == (len(input.Messages) - 1),
|
||||
Function: config.Grammar != "" && (messageIndex == (len(input.Messages) - 1)),
|
||||
MessageIndex: messageIndex,
|
||||
}
|
||||
templatedChatMessage, err := o.Loader.EvaluateTemplateForChatMessage(config.TemplateConfig.ChatMessage, chatMessageData)
|
||||
templatedChatMessage, err := ml.EvaluateTemplateForChatMessage(config.TemplateConfig.ChatMessage, chatMessageData)
|
||||
if err != nil {
|
||||
log.Error().Msgf("error processing message %+v using template \"%s\": %v. Skipping!", chatMessageData, config.TemplateConfig.ChatMessage, err)
|
||||
} else {
|
||||
@@ -320,7 +322,7 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
|
||||
templateFile := ""
|
||||
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
if o.Loader.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
|
||||
if ml.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
|
||||
templateFile = config.Model
|
||||
}
|
||||
|
||||
@@ -333,7 +335,7 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
|
||||
}
|
||||
|
||||
if templateFile != "" {
|
||||
templatedInput, err := o.Loader.EvaluateTemplateForPrompt(model.ChatPromptTemplate, templateFile, model.PromptTemplateData{
|
||||
templatedInput, err := ml.EvaluateTemplateForPrompt(model.ChatPromptTemplate, templateFile, model.PromptTemplateData{
|
||||
SystemPrompt: config.SystemPrompt,
|
||||
SuppressSystemPrompt: suppressConfigSystemPrompt,
|
||||
Input: predInput,
|
||||
@@ -357,9 +359,9 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
|
||||
responses := make(chan schema.OpenAIResponse)
|
||||
|
||||
if !processFunctions {
|
||||
go process(predInput, input, config, o.Loader, responses)
|
||||
go process(predInput, input, config, ml, responses)
|
||||
} else {
|
||||
go processTools(noActionName, predInput, input, config, o.Loader, responses)
|
||||
go processTools(noActionName, predInput, input, config, ml, responses)
|
||||
}
|
||||
|
||||
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
|
||||
@@ -413,7 +415,7 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
|
||||
|
||||
// no streaming mode
|
||||
default:
|
||||
result, tokenUsage, err := ComputeChoices(input, predInput, config, o, o.Loader, func(s string, c *[]schema.Choice) {
|
||||
result, tokenUsage, err := ComputeChoices(input, predInput, config, startupOptions, ml, func(s string, c *[]schema.Choice) {
|
||||
if !processFunctions {
|
||||
// no function is called, just reply and use stop as finish reason
|
||||
*c = append(*c, schema.Choice{FinishReason: "stop", Index: 0, Message: &schema.Message{Role: "assistant", Content: &s}})
|
||||
@@ -425,7 +427,7 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
|
||||
|
||||
switch {
|
||||
case noActionsToRun:
|
||||
result, err := handleQuestion(config, input, o, results[0].arguments, predInput)
|
||||
result, err := handleQuestion(config, input, ml, startupOptions, results[0].arguments, predInput)
|
||||
if err != nil {
|
||||
log.Error().Msgf("error handling question: %s", err.Error())
|
||||
return
|
||||
@@ -506,7 +508,7 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
|
||||
}
|
||||
}
|
||||
|
||||
func handleQuestion(config *config.Config, input *schema.OpenAIRequest, o *options.Option, args, prompt string) (string, error) {
|
||||
func handleQuestion(config *config.BackendConfig, input *schema.OpenAIRequest, ml *model.ModelLoader, o *config.ApplicationConfig, args, prompt string) (string, error) {
|
||||
log.Debug().Msgf("nothing to do, computing a reply")
|
||||
|
||||
// If there is a message that the LLM already sends as part of the JSON reply, use it
|
||||
@@ -535,7 +537,7 @@ func handleQuestion(config *config.Config, input *schema.OpenAIRequest, o *optio
|
||||
images = append(images, m.StringImages...)
|
||||
}
|
||||
|
||||
predFunc, err := backend.ModelInference(input.Context, prompt, images, o.Loader, *config, o, nil)
|
||||
predFunc, err := backend.ModelInference(input.Context, prompt, images, ml, *config, o, nil)
|
||||
if err != nil {
|
||||
log.Error().Msgf("inference error: %s", err.Error())
|
||||
return "", err
|
||||
@@ -565,10 +567,20 @@ func parseFunctionCall(llmresult string, multipleResults bool) []funcCallResults
|
||||
log.Debug().Msgf("Function return: %s %+v", s, ss)
|
||||
|
||||
for _, s := range ss {
|
||||
func_name := s["function"]
|
||||
args := s["arguments"]
|
||||
func_name, ok := s["function"]
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
args, ok := s["arguments"]
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
d, _ := json.Marshal(args)
|
||||
results = append(results, funcCallResults{name: func_name.(string), arguments: string(d)})
|
||||
funcName, ok := func_name.(string)
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
results = append(results, funcCallResults{name: funcName, arguments: string(d)})
|
||||
}
|
||||
} else {
|
||||
// As we have to change the result before processing, we can't stream the answer token-by-token (yet?)
|
||||
@@ -579,12 +591,21 @@ func parseFunctionCall(llmresult string, multipleResults bool) []funcCallResults
|
||||
log.Debug().Msgf("Function return: %s %+v", s, ss)
|
||||
|
||||
// The grammar defines the function name as "function", while OpenAI returns "name"
|
||||
func_name := ss["function"]
|
||||
func_name, ok := ss["function"]
|
||||
if !ok {
|
||||
return results
|
||||
}
|
||||
// Similarly, while here arguments is a map[string]interface{}, OpenAI actually want a stringified object
|
||||
args := ss["arguments"] // arguments needs to be a string, but we return an object from the grammar result (TODO: fix)
|
||||
args, ok := ss["arguments"] // arguments needs to be a string, but we return an object from the grammar result (TODO: fix)
|
||||
if !ok {
|
||||
return results
|
||||
}
|
||||
d, _ := json.Marshal(args)
|
||||
|
||||
results = append(results, funcCallResults{name: func_name.(string), arguments: string(d)})
|
||||
funcName, ok := func_name.(string)
|
||||
if !ok {
|
||||
return results
|
||||
}
|
||||
results = append(results, funcCallResults{name: funcName, arguments: string(d)})
|
||||
}
|
||||
|
||||
return results
|
||||
@@ -9,8 +9,8 @@ import (
|
||||
"time"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
config "github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/options"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/grammar"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
@@ -21,12 +21,12 @@ import (
|
||||
)
|
||||
|
||||
// https://platform.openai.com/docs/api-reference/completions
|
||||
func CompletionEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx) error {
|
||||
func CompletionEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
|
||||
process := func(s string, req *schema.OpenAIRequest, config *config.Config, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
|
||||
ComputeChoices(req, s, config, o, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
|
||||
process := func(s string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
|
||||
ComputeChoices(req, s, config, appConfig, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
|
||||
resp := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
@@ -53,14 +53,14 @@ func CompletionEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fibe
|
||||
}
|
||||
|
||||
return func(c *fiber.Ctx) error {
|
||||
modelFile, input, err := readRequest(c, o, true)
|
||||
modelFile, input, err := readRequest(c, ml, appConfig, true)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
log.Debug().Msgf("`input`: %+v", input)
|
||||
|
||||
config, input, err := mergeRequestWithConfig(modelFile, input, cm, o.Loader, o.Debug, o.Threads, o.ContextSize, o.F16)
|
||||
config, input, err := mergeRequestWithConfig(modelFile, input, cl, ml, appConfig.Debug, appConfig.Threads, appConfig.ContextSize, appConfig.F16)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
@@ -84,7 +84,7 @@ func CompletionEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fibe
|
||||
templateFile := ""
|
||||
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
if o.Loader.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
|
||||
if ml.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
|
||||
templateFile = config.Model
|
||||
}
|
||||
|
||||
@@ -100,7 +100,7 @@ func CompletionEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fibe
|
||||
predInput := config.PromptStrings[0]
|
||||
|
||||
if templateFile != "" {
|
||||
templatedInput, err := o.Loader.EvaluateTemplateForPrompt(model.CompletionPromptTemplate, templateFile, model.PromptTemplateData{
|
||||
templatedInput, err := ml.EvaluateTemplateForPrompt(model.CompletionPromptTemplate, templateFile, model.PromptTemplateData{
|
||||
Input: predInput,
|
||||
})
|
||||
if err == nil {
|
||||
@@ -111,7 +111,7 @@ func CompletionEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fibe
|
||||
|
||||
responses := make(chan schema.OpenAIResponse)
|
||||
|
||||
go process(predInput, input, config, o.Loader, responses)
|
||||
go process(predInput, input, config, ml, responses)
|
||||
|
||||
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
|
||||
|
||||
@@ -153,7 +153,7 @@ func CompletionEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fibe
|
||||
for k, i := range config.PromptStrings {
|
||||
if templateFile != "" {
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
templatedInput, err := o.Loader.EvaluateTemplateForPrompt(model.CompletionPromptTemplate, templateFile, model.PromptTemplateData{
|
||||
templatedInput, err := ml.EvaluateTemplateForPrompt(model.CompletionPromptTemplate, templateFile, model.PromptTemplateData{
|
||||
SystemPrompt: config.SystemPrompt,
|
||||
Input: i,
|
||||
})
|
||||
@@ -164,7 +164,7 @@ func CompletionEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fibe
|
||||
}
|
||||
|
||||
r, tokenUsage, err := ComputeChoices(
|
||||
input, i, config, o, o.Loader, func(s string, c *[]schema.Choice) {
|
||||
input, i, config, appConfig, ml, func(s string, c *[]schema.Choice) {
|
||||
*c = append(*c, schema.Choice{Text: s, FinishReason: "stop", Index: k})
|
||||
}, nil)
|
||||
if err != nil {
|
||||
@@ -6,8 +6,8 @@ import (
|
||||
"time"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
config "github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/options"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
@@ -16,14 +16,14 @@ import (
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
func EditEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx) error {
|
||||
func EditEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
modelFile, input, err := readRequest(c, o, true)
|
||||
modelFile, input, err := readRequest(c, ml, appConfig, true)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
config, input, err := mergeRequestWithConfig(modelFile, input, cm, o.Loader, o.Debug, o.Threads, o.ContextSize, o.F16)
|
||||
config, input, err := mergeRequestWithConfig(modelFile, input, cl, ml, appConfig.Debug, appConfig.Threads, appConfig.ContextSize, appConfig.F16)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
@@ -33,7 +33,7 @@ func EditEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
|
||||
templateFile := ""
|
||||
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
if o.Loader.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
|
||||
if ml.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
|
||||
templateFile = config.Model
|
||||
}
|
||||
|
||||
@@ -46,7 +46,7 @@ func EditEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
|
||||
|
||||
for _, i := range config.InputStrings {
|
||||
if templateFile != "" {
|
||||
templatedInput, err := o.Loader.EvaluateTemplateForPrompt(model.EditPromptTemplate, templateFile, model.PromptTemplateData{
|
||||
templatedInput, err := ml.EvaluateTemplateForPrompt(model.EditPromptTemplate, templateFile, model.PromptTemplateData{
|
||||
Input: i,
|
||||
Instruction: input.Instruction,
|
||||
SystemPrompt: config.SystemPrompt,
|
||||
@@ -57,7 +57,7 @@ func EditEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
|
||||
}
|
||||
}
|
||||
|
||||
r, tokenUsage, err := ComputeChoices(input, i, config, o, o.Loader, func(s string, c *[]schema.Choice) {
|
||||
r, tokenUsage, err := ComputeChoices(input, i, config, appConfig, ml, func(s string, c *[]schema.Choice) {
|
||||
*c = append(*c, schema.Choice{Text: s})
|
||||
}, nil)
|
||||
if err != nil {
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user