Compare commits

..

1 Commits

Author SHA1 Message Date
copilot-swe-agent[bot]
1c073f6640 Initial plan 2026-01-10 00:10:07 +00:00
152 changed files with 794 additions and 16457 deletions

View File

@@ -105,32 +105,6 @@ jobs:
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "9"
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-nvidia-cuda-12-qwen-tts'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:24.04"
skip-drivers: 'false'
backend: "qwen-tts"
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "9"
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-nvidia-cuda-12-pocket-tts'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:24.04"
skip-drivers: 'false'
backend: "pocket-tts"
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
@@ -150,7 +124,7 @@ jobs:
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-nvidia-cuda-12-llama-cpp'
runs-on: 'bigger-runner'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:24.04"
skip-drivers: 'false'
backend: "llama-cpp"
@@ -366,32 +340,6 @@ jobs:
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
- build-type: 'cublas'
cuda-major-version: "13"
cuda-minor-version: "0"
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-nvidia-cuda-13-qwen-tts'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:24.04"
skip-drivers: 'false'
backend: "qwen-tts"
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
- build-type: 'cublas'
cuda-major-version: "13"
cuda-minor-version: "0"
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-nvidia-cuda-13-pocket-tts'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:24.04"
skip-drivers: 'false'
backend: "pocket-tts"
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
- build-type: 'cublas'
cuda-major-version: "13"
cuda-minor-version: "0"
@@ -457,32 +405,6 @@ jobs:
backend: "vibevoice"
dockerfile: "./backend/Dockerfile.python"
context: "./"
- build-type: 'l4t'
cuda-major-version: "13"
cuda-minor-version: "0"
platforms: 'linux/arm64'
tag-latest: 'auto'
tag-suffix: '-nvidia-l4t-cuda-13-arm64-qwen-tts'
runs-on: 'ubuntu-24.04-arm'
base-image: "ubuntu:24.04"
skip-drivers: 'false'
ubuntu-version: '2404'
backend: "qwen-tts"
dockerfile: "./backend/Dockerfile.python"
context: "./"
- build-type: 'l4t'
cuda-major-version: "13"
cuda-minor-version: "0"
platforms: 'linux/arm64'
tag-latest: 'auto'
tag-suffix: '-nvidia-l4t-cuda-13-arm64-pocket-tts'
runs-on: 'ubuntu-24.04-arm'
base-image: "ubuntu:24.04"
skip-drivers: 'false'
ubuntu-version: '2404'
backend: "pocket-tts"
dockerfile: "./backend/Dockerfile.python"
context: "./"
- build-type: 'l4t'
cuda-major-version: "13"
cuda-minor-version: "0"
@@ -719,39 +641,13 @@ jobs:
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
- build-type: 'hipblas'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-rocm-hipblas-qwen-tts'
runs-on: 'arc-runner-set'
base-image: "rocm/dev-ubuntu-24.04:6.4.4"
skip-drivers: 'false'
backend: "qwen-tts"
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
- build-type: 'hipblas'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-rocm-hipblas-pocket-tts'
runs-on: 'arc-runner-set'
base-image: "rocm/dev-ubuntu-24.04:6.4.4"
skip-drivers: 'false'
backend: "pocket-tts"
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
- build-type: 'hipblas'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-rocm-hipblas-faster-whisper'
runs-on: 'bigger-runner'
runs-on: 'ubuntu-latest'
base-image: "rocm/dev-ubuntu-24.04:6.4.4"
skip-drivers: 'false'
backend: "faster-whisper"
@@ -764,7 +660,7 @@ jobs:
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-rocm-hipblas-coqui'
runs-on: 'bigger-runner'
runs-on: 'ubuntu-latest'
base-image: "rocm/dev-ubuntu-24.04:6.4.4"
skip-drivers: 'false'
backend: "coqui"
@@ -876,32 +772,6 @@ jobs:
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2204'
- build-type: 'l4t'
cuda-major-version: "12"
cuda-minor-version: "0"
platforms: 'linux/arm64'
tag-latest: 'auto'
tag-suffix: '-nvidia-l4t-qwen-tts'
runs-on: 'ubuntu-24.04-arm'
base-image: "nvcr.io/nvidia/l4t-jetpack:r36.4.0"
skip-drivers: 'true'
backend: "qwen-tts"
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2204'
- build-type: 'l4t'
cuda-major-version: "12"
cuda-minor-version: "0"
platforms: 'linux/arm64'
tag-latest: 'auto'
tag-suffix: '-nvidia-l4t-pocket-tts'
runs-on: 'ubuntu-24.04-arm'
base-image: "nvcr.io/nvidia/l4t-jetpack:r36.4.0"
skip-drivers: 'true'
backend: "pocket-tts"
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2204'
- build-type: 'l4t'
cuda-major-version: "12"
cuda-minor-version: "0"
@@ -955,32 +825,6 @@ jobs:
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
- build-type: 'intel'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-intel-qwen-tts'
runs-on: 'arc-runner-set'
base-image: "intel/oneapi-basekit:2025.3.0-0-devel-ubuntu24.04"
skip-drivers: 'false'
backend: "qwen-tts"
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
- build-type: 'intel'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-intel-pocket-tts'
runs-on: 'arc-runner-set'
base-image: "intel/oneapi-basekit:2025.3.0-0-devel-ubuntu24.04"
skip-drivers: 'false'
backend: "pocket-tts"
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
- build-type: 'intel'
cuda-major-version: ""
cuda-minor-version: ""
@@ -1041,7 +885,7 @@ jobs:
platforms: 'linux/amd64,linux/arm64'
tag-latest: 'auto'
tag-suffix: '-cpu-llama-cpp'
runs-on: 'bigger-runner'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:24.04"
skip-drivers: 'false'
backend: "llama-cpp"
@@ -1067,7 +911,7 @@ jobs:
platforms: 'linux/amd64,linux/arm64'
tag-latest: 'auto'
tag-suffix: '-gpu-vulkan-llama-cpp'
runs-on: 'bigger-runner'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:24.04"
skip-drivers: 'false'
backend: "llama-cpp"
@@ -1408,6 +1252,19 @@ jobs:
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
- build-type: 'l4t'
cuda-major-version: "12"
cuda-minor-version: "0"
platforms: 'linux/arm64'
skip-drivers: 'true'
tag-latest: 'auto'
tag-suffix: '-nvidia-l4t-arm64-neutts'
base-image: "nvcr.io/nvidia/l4t-jetpack:r36.4.0"
runs-on: 'ubuntu-24.04-arm'
backend: "neutts"
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2204'
- build-type: ''
cuda-major-version: ""
cuda-minor-version: ""
@@ -1421,32 +1278,6 @@ jobs:
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
- build-type: ''
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64,linux/arm64'
tag-latest: 'auto'
tag-suffix: '-cpu-qwen-tts'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:24.04"
skip-drivers: 'false'
backend: "qwen-tts"
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
- build-type: ''
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64,linux/arm64'
tag-latest: 'auto'
tag-suffix: '-cpu-pocket-tts'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:24.04"
skip-drivers: 'false'
backend: "pocket-tts"
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
backend-jobs-darwin:
uses: ./.github/workflows/backend_build_darwin.yml
strategy:

View File

@@ -265,42 +265,4 @@ jobs:
- name: Test moonshine
run: |
make --jobs=5 --output-sync=target -C backend/python/moonshine
make --jobs=5 --output-sync=target -C backend/python/moonshine test
tests-pocket-tts:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v6
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
# Install UV
curl -LsSf https://astral.sh/uv/install.sh | sh
pip install --user --no-cache-dir grpcio-tools==1.64.1
- name: Test pocket-tts
run: |
make --jobs=5 --output-sync=target -C backend/python/pocket-tts
make --jobs=5 --output-sync=target -C backend/python/pocket-tts test
tests-qwen-tts:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v6
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
# Install UV
curl -LsSf https://astral.sh/uv/install.sh | sh
pip install --user --no-cache-dir grpcio-tools==1.64.1
- name: Test qwen-tts
run: |
make --jobs=5 --output-sync=target -C backend/python/qwen-tts
make --jobs=5 --output-sync=target -C backend/python/qwen-tts test
make --jobs=5 --output-sync=target -C backend/python/moonshine test

View File

@@ -10,7 +10,7 @@ ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update && \
apt-get install -y --no-install-recommends \
ca-certificates curl wget espeak-ng libgomp1 \
ffmpeg libopenblas0 libopenblas-dev sox && \
ffmpeg libopenblas0 libopenblas-dev && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
@@ -42,22 +42,22 @@ RUN <<EOT bash
ocaml-core ninja-build pkg-config libxml2-dev wayland-protocols python3-jsonschema \
clang-format qtbase5-dev qt6-base-dev libxcb-glx0-dev sudo xz-utils mesa-vulkan-drivers
if [ "amd64" = "$TARGETARCH" ]; then
wget "https://sdk.lunarg.com/sdk/download/1.4.335.0/linux/vulkansdk-linux-x86_64-1.4.335.0.tar.xz" && \
tar -xf vulkansdk-linux-x86_64-1.4.335.0.tar.xz && \
rm vulkansdk-linux-x86_64-1.4.335.0.tar.xz && \
wget "https://sdk.lunarg.com/sdk/download/1.4.328.1/linux/vulkansdk-linux-x86_64-1.4.328.1.tar.xz" && \
tar -xf vulkansdk-linux-x86_64-1.4.328.1.tar.xz && \
rm vulkansdk-linux-x86_64-1.4.328.1.tar.xz && \
mkdir -p /opt/vulkan-sdk && \
mv 1.4.335.0 /opt/vulkan-sdk/ && \
cd /opt/vulkan-sdk/1.4.335.0 && \
mv 1.4.328.1 /opt/vulkan-sdk/ && \
cd /opt/vulkan-sdk/1.4.328.1 && \
./vulkansdk --no-deps --maxjobs \
vulkan-loader \
vulkan-validationlayers \
vulkan-extensionlayer \
vulkan-tools \
shaderc && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/bin/* /usr/bin/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/lib/* /usr/lib/x86_64-linux-gnu/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/include/* /usr/include/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/share/* /usr/share/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/bin/* /usr/bin/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/lib/* /usr/lib/x86_64-linux-gnu/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/include/* /usr/include/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/share/* /usr/share/ && \
rm -rf /opt/vulkan-sdk
fi
if [ "arm64" = "$TARGETARCH" ]; then

View File

@@ -1,5 +1,5 @@
# Disable parallel execution for backend builds
.NOTPARALLEL: backends/diffusers backends/llama-cpp backends/piper backends/stablediffusion-ggml backends/whisper backends/faster-whisper backends/silero-vad backends/local-store backends/huggingface backends/rfdetr backends/kitten-tts backends/kokoro backends/chatterbox backends/llama-cpp-darwin backends/neutts build-darwin-python-backend build-darwin-go-backend backends/mlx backends/diffuser-darwin backends/mlx-vlm backends/mlx-audio backends/stablediffusion-ggml-darwin backends/vllm backends/moonshine backends/pocket-tts backends/qwen-tts
.NOTPARALLEL: backends/diffusers backends/llama-cpp backends/piper backends/stablediffusion-ggml backends/whisper backends/faster-whisper backends/silero-vad backends/local-store backends/huggingface backends/rfdetr backends/kitten-tts backends/kokoro backends/chatterbox backends/llama-cpp-darwin backends/neutts build-darwin-python-backend build-darwin-go-backend backends/mlx backends/diffuser-darwin backends/mlx-vlm backends/mlx-audio backends/stablediffusion-ggml-darwin backends/vllm backends/moonshine
GOCMD=go
GOTEST=$(GOCMD) test
@@ -9,7 +9,7 @@ LAUNCHER_BINARY_NAME=local-ai-launcher
CUDA_MAJOR_VERSION?=13
CUDA_MINOR_VERSION?=0
UBUNTU_VERSION?=2404
UBUNTU_VERSION?=2204
UBUNTU_CODENAME?=noble
GORELEASER?=
@@ -316,8 +316,6 @@ prepare-test-extra: protogen-python
$(MAKE) -C backend/python/vllm
$(MAKE) -C backend/python/vibevoice
$(MAKE) -C backend/python/moonshine
$(MAKE) -C backend/python/pocket-tts
$(MAKE) -C backend/python/qwen-tts
test-extra: prepare-test-extra
$(MAKE) -C backend/python/transformers test
@@ -326,8 +324,6 @@ test-extra: prepare-test-extra
$(MAKE) -C backend/python/vllm test
$(MAKE) -C backend/python/vibevoice test
$(MAKE) -C backend/python/moonshine test
$(MAKE) -C backend/python/pocket-tts test
$(MAKE) -C backend/python/qwen-tts test
DOCKER_IMAGE?=local-ai
DOCKER_AIO_IMAGE?=local-ai-aio
@@ -451,17 +447,17 @@ BACKEND_FASTER_WHISPER = faster-whisper|python|.|false|true
BACKEND_COQUI = coqui|python|.|false|true
BACKEND_BARK = bark|python|.|false|true
BACKEND_EXLLAMA2 = exllama2|python|.|false|true
BACKEND_RFDETR = rfdetr|python|.|false|true
BACKEND_KITTEN_TTS = kitten-tts|python|.|false|true
BACKEND_NEUTTS = neutts|python|.|false|true
BACKEND_KOKORO = kokoro|python|.|false|true
BACKEND_VLLM = vllm|python|.|false|true
BACKEND_DIFFUSERS = diffusers|python|.|--progress=plain|true
BACKEND_CHATTERBOX = chatterbox|python|.|false|true
BACKEND_VIBEVOICE = vibevoice|python|.|--progress=plain|true
BACKEND_MOONSHINE = moonshine|python|.|false|true
BACKEND_POCKET_TTS = pocket-tts|python|.|false|true
BACKEND_QWEN_TTS = qwen-tts|python|.|false|true
# Python backends with ./backend context
BACKEND_RFDETR = rfdetr|python|./backend|false|true
BACKEND_KITTEN_TTS = kitten-tts|python|./backend|false|true
BACKEND_NEUTTS = neutts|python|./backend|false|true
BACKEND_KOKORO = kokoro|python|./backend|false|true
BACKEND_VLLM = vllm|python|./backend|false|true
BACKEND_DIFFUSERS = diffusers|python|./backend|--progress=plain|true
BACKEND_CHATTERBOX = chatterbox|python|./backend|false|true
BACKEND_VIBEVOICE = vibevoice|python|./backend|--progress=plain|true
BACKEND_MOONSHINE = moonshine|python|./backend|false|true
# Helper function to build docker image for a backend
# Usage: $(call docker-build-backend,BACKEND_NAME,DOCKERFILE_TYPE,BUILD_CONTEXT,PROGRESS_FLAG,NEEDS_BACKEND_ARG)
@@ -507,14 +503,12 @@ $(eval $(call generate-docker-build-target,$(BACKEND_DIFFUSERS)))
$(eval $(call generate-docker-build-target,$(BACKEND_CHATTERBOX)))
$(eval $(call generate-docker-build-target,$(BACKEND_VIBEVOICE)))
$(eval $(call generate-docker-build-target,$(BACKEND_MOONSHINE)))
$(eval $(call generate-docker-build-target,$(BACKEND_POCKET_TTS)))
$(eval $(call generate-docker-build-target,$(BACKEND_QWEN_TTS)))
# Pattern rule for docker-save targets
docker-save-%: backend-images
docker save local-ai-backend:$* -o backend-images/$*.tar
docker-build-backends: docker-build-llama-cpp docker-build-rerankers docker-build-vllm docker-build-transformers docker-build-diffusers docker-build-kokoro docker-build-faster-whisper docker-build-coqui docker-build-bark docker-build-chatterbox docker-build-vibevoice docker-build-exllama2 docker-build-moonshine docker-build-pocket-tts docker-build-qwen-tts
docker-build-backends: docker-build-llama-cpp docker-build-rerankers docker-build-vllm docker-build-transformers docker-build-diffusers docker-build-kokoro docker-build-faster-whisper docker-build-coqui docker-build-bark docker-build-chatterbox docker-build-vibevoice docker-build-exllama2 docker-build-moonshine
########################################################
### END Backends

View File

@@ -111,8 +111,6 @@
## 💻 Quickstart
> ⚠️ **Note:** The `install.sh` script is currently experiencing issues due to the heavy changes currently undergoing in LocalAI and may produce broken or misconfigured installations. Please use Docker installation (see below) or manual binary installation until [issue #8032](https://github.com/mudler/LocalAI/issues/8032) is resolved.
Run the installer script:
```bash
@@ -130,7 +128,7 @@ For more installation options, see [Installer Options](https://localai.io/instal
> Note: the DMGs are not signed by Apple as quarantined. See https://github.com/mudler/LocalAI/issues/6268 for a workaround, fix is tracked here: https://github.com/mudler/LocalAI/issues/6244
### Containers (Docker, podman, ...)
Or run with docker:
> **💡 Docker Run vs Docker Start**
>
@@ -139,13 +137,13 @@ For more installation options, see [Installer Options](https://localai.io/instal
>
> If you've already run LocalAI before and want to start it again, use: `docker start -i local-ai`
#### CPU only image:
### CPU only image:
```bash
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest
```
#### NVIDIA GPU Images:
### NVIDIA GPU Images:
```bash
# CUDA 13.0
@@ -162,25 +160,25 @@ docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-nv
docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-nvidia-l4t-arm64-cuda-13
```
#### AMD GPU Images (ROCm):
### AMD GPU Images (ROCm):
```bash
docker run -ti --name local-ai -p 8080:8080 --device=/dev/kfd --device=/dev/dri --group-add=video localai/localai:latest-gpu-hipblas
```
#### Intel GPU Images (oneAPI):
### Intel GPU Images (oneAPI):
```bash
docker run -ti --name local-ai -p 8080:8080 --device=/dev/dri/card1 --device=/dev/dri/renderD128 localai/localai:latest-gpu-intel
```
#### Vulkan GPU Images:
### Vulkan GPU Images:
```bash
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-gpu-vulkan
```
#### AIO Images (pre-downloaded models):
### AIO Images (pre-downloaded models):
```bash
# CPU version
@@ -297,8 +295,6 @@ LocalAI supports a comprehensive range of AI backends with multiple acceleration
| **silero-vad** | Voice Activity Detection | CPU |
| **neutts** | Text-to-speech with voice cloning | CUDA 12/13, ROCm, CPU |
| **vibevoice** | Real-time TTS with voice cloning | CUDA 12/13, ROCm, Intel, CPU |
| **pocket-tts** | Lightweight CPU-based TTS | CUDA 12/13, ROCm, Intel, CPU |
| **qwen-tts** | High-quality TTS with custom voice, voice design, and voice cloning | CUDA 12/13, ROCm, Intel, CPU |
### Image & Video Generation
| Backend | Description | Acceleration Support |
@@ -320,8 +316,8 @@ LocalAI supports a comprehensive range of AI backends with multiple acceleration
|-------------------|-------------------|------------------|
| **NVIDIA CUDA 12** | All CUDA-compatible backends | Nvidia hardware |
| **NVIDIA CUDA 13** | All CUDA-compatible backends | Nvidia hardware |
| **AMD ROCm** | llama.cpp, whisper, vllm, transformers, diffusers, rerankers, coqui, kokoro, bark, neutts, vibevoice, pocket-tts, qwen-tts | AMD Graphics |
| **Intel oneAPI** | llama.cpp, whisper, stablediffusion, vllm, transformers, diffusers, rfdetr, rerankers, exllama2, coqui, kokoro, bark, vibevoice, pocket-tts, qwen-tts | Intel Arc, Intel iGPUs |
| **AMD ROCm** | llama.cpp, whisper, vllm, transformers, diffusers, rerankers, coqui, kokoro, bark, neutts, vibevoice | AMD Graphics |
| **Intel oneAPI** | llama.cpp, whisper, stablediffusion, vllm, transformers, diffusers, rfdetr, rerankers, exllama2, coqui, kokoro, bark, vibevoice | Intel Arc, Intel iGPUs |
| **Apple Metal** | llama.cpp, whisper, diffusers, MLX, MLX-VLM, bark-cpp | Apple M1/M2/M3+ |
| **Vulkan** | llama.cpp, whisper, stablediffusion | Cross-platform GPUs |
| **NVIDIA Jetson (CUDA 12)** | llama.cpp, whisper, stablediffusion, diffusers, rfdetr | ARM64 embedded AI (AGX Orin, etc.) |

View File

@@ -47,22 +47,22 @@ RUN <<EOT bash
ocaml-core ninja-build pkg-config libxml2-dev wayland-protocols python3-jsonschema \
clang-format qtbase5-dev qt6-base-dev libxcb-glx0-dev sudo xz-utils
if [ "amd64" = "$TARGETARCH" ]; then
wget "https://sdk.lunarg.com/sdk/download/1.4.335.0/linux/vulkansdk-linux-x86_64-1.4.335.0.tar.xz" && \
tar -xf vulkansdk-linux-x86_64-1.4.335.0.tar.xz && \
rm vulkansdk-linux-x86_64-1.4.335.0.tar.xz && \
wget "https://sdk.lunarg.com/sdk/download/1.4.328.1/linux/vulkansdk-linux-x86_64-1.4.328.1.tar.xz" && \
tar -xf vulkansdk-linux-x86_64-1.4.328.1.tar.xz && \
rm vulkansdk-linux-x86_64-1.4.328.1.tar.xz && \
mkdir -p /opt/vulkan-sdk && \
mv 1.4.335.0 /opt/vulkan-sdk/ && \
cd /opt/vulkan-sdk/1.4.335.0 && \
mv 1.4.328.1 /opt/vulkan-sdk/ && \
cd /opt/vulkan-sdk/1.4.328.1 && \
./vulkansdk --no-deps --maxjobs \
vulkan-loader \
vulkan-validationlayers \
vulkan-extensionlayer \
vulkan-tools \
shaderc && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/bin/* /usr/bin/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/lib/* /usr/lib/x86_64-linux-gnu/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/include/* /usr/include/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/share/* /usr/share/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/bin/* /usr/bin/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/lib/* /usr/lib/x86_64-linux-gnu/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/include/* /usr/include/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/share/* /usr/share/ && \
rm -rf /opt/vulkan-sdk
fi
if [ "arm64" = "$TARGETARCH" ]; then

View File

@@ -104,22 +104,22 @@ RUN <<EOT bash
ocaml-core ninja-build pkg-config libxml2-dev wayland-protocols python3-jsonschema \
clang-format qtbase5-dev qt6-base-dev libxcb-glx0-dev sudo xz-utils
if [ "amd64" = "$TARGETARCH" ]; then
wget "https://sdk.lunarg.com/sdk/download/1.4.335.0/linux/vulkansdk-linux-x86_64-1.4.335.0.tar.xz" && \
tar -xf vulkansdk-linux-x86_64-1.4.335.0.tar.xz && \
rm vulkansdk-linux-x86_64-1.4.335.0.tar.xz && \
wget "https://sdk.lunarg.com/sdk/download/1.4.328.1/linux/vulkansdk-linux-x86_64-1.4.328.1.tar.xz" && \
tar -xf vulkansdk-linux-x86_64-1.4.328.1.tar.xz && \
rm vulkansdk-linux-x86_64-1.4.328.1.tar.xz && \
mkdir -p /opt/vulkan-sdk && \
mv 1.4.335.0 /opt/vulkan-sdk/ && \
cd /opt/vulkan-sdk/1.4.335.0 && \
mv 1.4.328.1 /opt/vulkan-sdk/ && \
cd /opt/vulkan-sdk/1.4.328.1 && \
./vulkansdk --no-deps --maxjobs \
vulkan-loader \
vulkan-validationlayers \
vulkan-extensionlayer \
vulkan-tools \
shaderc && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/bin/* /usr/bin/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/lib/* /usr/lib/x86_64-linux-gnu/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/include/* /usr/include/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/share/* /usr/share/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/bin/* /usr/bin/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/lib/* /usr/lib/x86_64-linux-gnu/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/include/* /usr/include/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/share/* /usr/share/ && \
rm -rf /opt/vulkan-sdk
fi
if [ "arm64" = "$TARGETARCH" ]; then

View File

@@ -61,22 +61,22 @@ RUN <<EOT bash
ocaml-core ninja-build pkg-config libxml2-dev wayland-protocols python3-jsonschema \
clang-format qtbase5-dev qt6-base-dev libxcb-glx0-dev sudo xz-utils
if [ "amd64" = "$TARGETARCH" ]; then
wget "https://sdk.lunarg.com/sdk/download/1.4.335.0/linux/vulkansdk-linux-x86_64-1.4.335.0.tar.xz" && \
tar -xf vulkansdk-linux-x86_64-1.4.335.0.tar.xz && \
rm vulkansdk-linux-x86_64-1.4.335.0.tar.xz && \
wget "https://sdk.lunarg.com/sdk/download/1.4.328.1/linux/vulkansdk-linux-x86_64-1.4.328.1.tar.xz" && \
tar -xf vulkansdk-linux-x86_64-1.4.328.1.tar.xz && \
rm vulkansdk-linux-x86_64-1.4.328.1.tar.xz && \
mkdir -p /opt/vulkan-sdk && \
mv 1.4.335.0 /opt/vulkan-sdk/ && \
cd /opt/vulkan-sdk/1.4.335.0 && \
mv 1.4.328.1 /opt/vulkan-sdk/ && \
cd /opt/vulkan-sdk/1.4.328.1 && \
./vulkansdk --no-deps --maxjobs \
vulkan-loader \
vulkan-validationlayers \
vulkan-extensionlayer \
vulkan-tools \
shaderc && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/bin/* /usr/bin/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/lib/* /usr/lib/x86_64-linux-gnu/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/include/* /usr/include/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/share/* /usr/share/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/bin/* /usr/bin/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/lib/* /usr/lib/x86_64-linux-gnu/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/include/* /usr/include/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/share/* /usr/share/ && \
rm -rf /opt/vulkan-sdk
fi
if [ "arm64" = "$TARGETARCH" ]; then

View File

@@ -32,8 +32,6 @@ service Backend {
rpc GetMetrics(MetricsRequest) returns (MetricsResponse);
rpc VAD(VADRequest) returns (VADResponse) {}
rpc ModelMetadata(ModelOptions) returns (ModelMetadataResponse) {}
}
// Define the empty request
@@ -412,8 +410,3 @@ message Detection {
message DetectResponse {
repeated Detection Detections = 1;
}
message ModelMetadataResponse {
bool supports_thinking = 1;
string rendered_template = 2; // The rendered chat template with enable_thinking=true (empty if not applicable)
}

View File

@@ -1,5 +1,5 @@
LLAMA_VERSION?=a5eaa1d6a3732bc0f460b02b61c95680bba5a012
LLAMA_VERSION?=593da7fa49503b68f9f01700be9f508f1e528992
LLAMA_REPO?=https://github.com/ggerganov/llama.cpp
CMAKE_ARGS?=

View File

@@ -83,8 +83,8 @@ static void start_llama_server(server_context& ctx_server) {
// print sample chat example to make it clear which template is used
// LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
// common_chat_templates_source(ctx_server.impl->chat_params.tmpls.get()),
// common_chat_format_example(ctx_server.impl->chat_params.tmpls.get(), ctx_server.impl->params_base.use_jinja).c_str(), ctx_server.impl->params_base.default_template_kwargs);
// common_chat_templates_source(ctx_server.impl->chat_templates.get()),
// common_chat_format_example(ctx_server.impl->chat_templates.get(), ctx_server.impl->params_base.use_jinja).c_str(), ctx_server.impl->params_base.default_template_kwargs);
// Keep the chat templates initialized in load_model() so they can be used when UseTokenizerTemplate is enabled
// Templates will only be used conditionally in Predict/PredictStream when UseTokenizerTemplate is true and Messages are provided
@@ -882,7 +882,7 @@ public:
std::string prompt_str;
std::vector<raw_buffer> files; // Declare files early so it's accessible in both branches
// Handle chat templates when UseTokenizerTemplate is enabled and Messages are provided
if (request->usetokenizertemplate() && request->messages_size() > 0 && ctx_server.impl->chat_params.tmpls != nullptr) {
if (request->usetokenizertemplate() && request->messages_size() > 0 && ctx_server.impl->chat_templates != nullptr) {
// Convert proto Messages to JSON format compatible with oaicompat_chat_params_parse
json body_json;
json messages_json = json::array();
@@ -1261,7 +1261,12 @@ public:
// Use the same approach as server.cpp: call oaicompat_chat_params_parse
// This handles all template application, grammar merging, etc. automatically
// Files extracted from multimodal content in messages will be added to the files vector
// chat_params already contains tmpls, allow_image, and allow_audio set during model loading
// Create parser options with current chat_templates to ensure tmpls is not null
oaicompat_parser_options parser_opt = ctx_server.impl->oai_parser_opt;
parser_opt.tmpls = ctx_server.impl->chat_templates.get(); // Ensure tmpls is set to current chat_templates
// Update allow_image and allow_audio based on current mctx state
parser_opt.allow_image = ctx_server.impl->mctx ? mtmd_support_vision(ctx_server.impl->mctx) : false;
parser_opt.allow_audio = ctx_server.impl->mctx ? mtmd_support_audio(ctx_server.impl->mctx) : false;
// Debug: Log tools before template processing
if (body_json.contains("tools")) {
@@ -1307,7 +1312,7 @@ public:
}
}
json parsed_data = oaicompat_chat_params_parse(body_json, ctx_server.impl->chat_params, files);
json parsed_data = oaicompat_chat_params_parse(body_json, parser_opt, files);
// Debug: Log tools after template processing
if (parsed_data.contains("tools")) {
@@ -1360,7 +1365,7 @@ public:
// If not using chat templates, extract files from image_data/audio_data fields
// (If using chat templates, files were already extracted by oaicompat_chat_params_parse)
if (!request->usetokenizertemplate() || request->messages_size() == 0 || ctx_server.impl->chat_params.tmpls == nullptr) {
if (!request->usetokenizertemplate() || request->messages_size() == 0 || ctx_server.impl->chat_templates == nullptr) {
const auto &images_data = data.find("image_data");
if (images_data != data.end() && images_data->is_array())
{
@@ -1588,7 +1593,7 @@ public:
std::string prompt_str;
std::vector<raw_buffer> files; // Declare files early so it's accessible in both branches
// Handle chat templates when UseTokenizerTemplate is enabled and Messages are provided
if (request->usetokenizertemplate() && request->messages_size() > 0 && ctx_server.impl->chat_params.tmpls != nullptr) {
if (request->usetokenizertemplate() && request->messages_size() > 0 && ctx_server.impl->chat_templates != nullptr) {
// Convert proto Messages to JSON format compatible with oaicompat_chat_params_parse
json body_json;
json messages_json = json::array();
@@ -1992,7 +1997,12 @@ public:
// Use the same approach as server.cpp: call oaicompat_chat_params_parse
// This handles all template application, grammar merging, etc. automatically
// Files extracted from multimodal content in messages will be added to the files vector
// chat_params already contains tmpls, allow_image, and allow_audio set during model loading
// Create parser options with current chat_templates to ensure tmpls is not null
oaicompat_parser_options parser_opt = ctx_server.impl->oai_parser_opt;
parser_opt.tmpls = ctx_server.impl->chat_templates.get(); // Ensure tmpls is set to current chat_templates
// Update allow_image and allow_audio based on current mctx state
parser_opt.allow_image = ctx_server.impl->mctx ? mtmd_support_vision(ctx_server.impl->mctx) : false;
parser_opt.allow_audio = ctx_server.impl->mctx ? mtmd_support_audio(ctx_server.impl->mctx) : false;
// Debug: Log tools before template processing
if (body_json.contains("tools")) {
@@ -2038,7 +2048,7 @@ public:
}
}
json parsed_data = oaicompat_chat_params_parse(body_json, ctx_server.impl->chat_params, files);
json parsed_data = oaicompat_chat_params_parse(body_json, parser_opt, files);
// Debug: Log tools after template processing
if (parsed_data.contains("tools")) {
@@ -2091,7 +2101,7 @@ public:
// If not using chat templates, extract files from image_data/audio_data fields
// (If using chat templates, files were already extracted by oaicompat_chat_params_parse)
if (!request->usetokenizertemplate() || request->messages_size() == 0 || ctx_server.impl->chat_params.tmpls == nullptr) {
if (!request->usetokenizertemplate() || request->messages_size() == 0 || ctx_server.impl->chat_templates == nullptr) {
const auto &images_data = data.find("image_data");
if (images_data != data.end() && images_data->is_array())
{
@@ -2476,47 +2486,6 @@ public:
response->set_prompt_tokens_processed(res_metrics->n_prompt_tokens_processed_total);
return grpc::Status::OK;
}
grpc::Status ModelMetadata(ServerContext* /*context*/, const backend::ModelOptions* /*request*/, backend::ModelMetadataResponse* response) override {
// Check if model is loaded
if (params_base.model.path.empty()) {
return grpc::Status(grpc::StatusCode::FAILED_PRECONDITION, "Model not loaded");
}
// Check if chat templates are initialized
if (ctx_server.impl->chat_params.tmpls == nullptr) {
// If templates are not initialized, we can't detect thinking support
// Return false as default
response->set_supports_thinking(false);
response->set_rendered_template("");
return grpc::Status::OK;
}
// Detect thinking support using llama.cpp's function
bool supports_thinking = common_chat_templates_support_enable_thinking(ctx_server.impl->chat_params.tmpls.get());
response->set_supports_thinking(supports_thinking);
// Render the template with enable_thinking=true so Go code can detect thinking tokens
// This allows reusing existing detection functions in Go
std::string rendered_template = "";
if (params_base.use_jinja) {
// Render the template with enable_thinking=true to see what the actual prompt looks like
common_chat_templates_inputs dummy_inputs;
common_chat_msg msg;
msg.role = "user";
msg.content = "test";
dummy_inputs.messages = {msg};
dummy_inputs.enable_thinking = true;
dummy_inputs.use_jinja = params_base.use_jinja;
const auto rendered = common_chat_templates_apply(ctx_server.impl->chat_params.tmpls.get(), dummy_inputs);
rendered_template = rendered.prompt;
}
response->set_rendered_template(rendered_template);
return grpc::Status::OK;
}
};

View File

@@ -8,7 +8,7 @@ JOBS?=$(shell nproc --ignore=1)
# stablediffusion.cpp (ggml)
STABLEDIFFUSION_GGML_REPO?=https://github.com/leejet/stable-diffusion.cpp
STABLEDIFFUSION_GGML_VERSION?=5e4579c11d0678f9765463582d024e58270faa9c
STABLEDIFFUSION_GGML_VERSION?=0e52afc6513cc2dea9a1a017afc4a008d5acf2b0
CMAKE_ARGS+=-DGGML_MAX_NAME=128

View File

@@ -8,7 +8,7 @@ JOBS?=$(shell nproc --ignore=1)
# whisper.cpp version
WHISPER_REPO?=https://github.com/ggml-org/whisper.cpp
WHISPER_CPP_VERSION?=7aa8818647303b567c3a21fe4220b2681988e220
WHISPER_CPP_VERSION?=679bdb53dbcbfb3e42685f50c7ff367949fd4d48
SO_TARGET?=libgowhisper.so
CMAKE_ARGS+=-DBUILD_SHARED_LIBS=OFF

View File

@@ -428,50 +428,6 @@
nvidia-l4t-cuda-12: "nvidia-l4t-vibevoice"
nvidia-l4t-cuda-13: "cuda13-nvidia-l4t-arm64-vibevoice"
icon: https://avatars.githubusercontent.com/u/6154722?s=200&v=4
- &qwen-tts
urls:
- https://github.com/QwenLM/Qwen3-TTS
description: |
Qwen3-TTS is a high-quality text-to-speech model supporting custom voice, voice design, and voice cloning.
tags:
- text-to-speech
- TTS
license: apache-2.0
name: "qwen-tts"
alias: "qwen-tts"
capabilities:
nvidia: "cuda12-qwen-tts"
intel: "intel-qwen-tts"
amd: "rocm-qwen-tts"
nvidia-l4t: "nvidia-l4t-qwen-tts"
default: "cpu-qwen-tts"
nvidia-cuda-13: "cuda13-qwen-tts"
nvidia-cuda-12: "cuda12-qwen-tts"
nvidia-l4t-cuda-12: "nvidia-l4t-qwen-tts"
nvidia-l4t-cuda-13: "cuda13-nvidia-l4t-arm64-qwen-tts"
icon: https://avatars.githubusercontent.com/u/6154722?s=200&v=4
- &pocket-tts
urls:
- https://github.com/kyutai-labs/pocket-tts
description: |
Pocket TTS is a lightweight text-to-speech model designed to run efficiently on CPUs.
tags:
- text-to-speech
- TTS
license: mit
name: "pocket-tts"
alias: "pocket-tts"
capabilities:
nvidia: "cuda12-pocket-tts"
intel: "intel-pocket-tts"
amd: "rocm-pocket-tts"
nvidia-l4t: "nvidia-l4t-pocket-tts"
default: "cpu-pocket-tts"
nvidia-cuda-13: "cuda13-pocket-tts"
nvidia-cuda-12: "cuda12-pocket-tts"
nvidia-l4t-cuda-12: "nvidia-l4t-pocket-tts"
nvidia-l4t-cuda-13: "cuda13-nvidia-l4t-arm64-pocket-tts"
icon: https://avatars.githubusercontent.com/u/6154722?s=200&v=4
- &piper
name: "piper"
uri: "quay.io/go-skynet/local-ai-backends:latest-piper"
@@ -559,14 +515,18 @@
default: "cpu-neutts"
nvidia: "cuda12-neutts"
amd: "rocm-neutts"
nvidia-l4t: "nvidia-l4t-neutts"
nvidia-cuda-12: "cuda12-neutts"
nvidia-l4t-cuda-12: "nvidia-l4t-arm64-neutts"
- !!merge <<: *neutts
name: "neutts-development"
capabilities:
default: "cpu-neutts-development"
nvidia: "cuda12-neutts-development"
amd: "rocm-neutts-development"
nvidia-l4t: "nvidia-l4t-neutts-development"
nvidia-cuda-12: "cuda12-neutts-development"
nvidia-l4t-cuda-12: "nvidia-l4t-arm64-neutts-development"
- !!merge <<: *llamacpp
name: "llama-cpp-development"
capabilities:
@@ -596,6 +556,11 @@
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-rocm-hipblas-neutts"
mirrors:
- localai/localai-backends:latest-gpu-rocm-hipblas-neutts
- !!merge <<: *neutts
name: "nvidia-l4t-arm64-neutts"
uri: "quay.io/go-skynet/local-ai-backends:latest-nvidia-l4t-arm64-neutts"
mirrors:
- localai/localai-backends:latest-nvidia-l4t-arm64-neutts
- !!merge <<: *neutts
name: "cpu-neutts-development"
uri: "quay.io/go-skynet/local-ai-backends:master-cpu-neutts"
@@ -611,6 +576,11 @@
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-rocm-hipblas-neutts"
mirrors:
- localai/localai-backends:master-gpu-rocm-hipblas-neutts
- !!merge <<: *neutts
name: "nvidia-l4t-arm64-neutts-development"
uri: "quay.io/go-skynet/local-ai-backends:master-nvidia-l4t-arm64-neutts"
mirrors:
- localai/localai-backends:master-nvidia-l4t-arm64-neutts
- !!merge <<: *mlx
name: "mlx-development"
uri: "quay.io/go-skynet/local-ai-backends:master-metal-darwin-arm64-mlx"
@@ -1635,169 +1605,3 @@
uri: "quay.io/go-skynet/local-ai-backends:master-nvidia-l4t-cuda-13-arm64-vibevoice"
mirrors:
- localai/localai-backends:master-nvidia-l4t-cuda-13-arm64-vibevoice
## qwen-tts
- !!merge <<: *qwen-tts
name: "qwen-tts-development"
capabilities:
nvidia: "cuda12-qwen-tts-development"
intel: "intel-qwen-tts-development"
amd: "rocm-qwen-tts-development"
nvidia-l4t: "nvidia-l4t-qwen-tts-development"
default: "cpu-qwen-tts-development"
nvidia-cuda-13: "cuda13-qwen-tts-development"
nvidia-cuda-12: "cuda12-qwen-tts-development"
nvidia-l4t-cuda-12: "nvidia-l4t-qwen-tts-development"
nvidia-l4t-cuda-13: "cuda13-nvidia-l4t-arm64-qwen-tts-development"
- !!merge <<: *qwen-tts
name: "cpu-qwen-tts"
uri: "quay.io/go-skynet/local-ai-backends:latest-cpu-qwen-tts"
mirrors:
- localai/localai-backends:latest-cpu-qwen-tts
- !!merge <<: *qwen-tts
name: "cpu-qwen-tts-development"
uri: "quay.io/go-skynet/local-ai-backends:master-cpu-qwen-tts"
mirrors:
- localai/localai-backends:master-cpu-qwen-tts
- !!merge <<: *qwen-tts
name: "cuda12-qwen-tts"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-nvidia-cuda-12-qwen-tts"
mirrors:
- localai/localai-backends:latest-gpu-nvidia-cuda-12-qwen-tts
- !!merge <<: *qwen-tts
name: "cuda12-qwen-tts-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-12-qwen-tts"
mirrors:
- localai/localai-backends:master-gpu-nvidia-cuda-12-qwen-tts
- !!merge <<: *qwen-tts
name: "cuda13-qwen-tts"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-nvidia-cuda-13-qwen-tts"
mirrors:
- localai/localai-backends:latest-gpu-nvidia-cuda-13-qwen-tts
- !!merge <<: *qwen-tts
name: "cuda13-qwen-tts-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-13-qwen-tts"
mirrors:
- localai/localai-backends:master-gpu-nvidia-cuda-13-qwen-tts
- !!merge <<: *qwen-tts
name: "intel-qwen-tts"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-intel-qwen-tts"
mirrors:
- localai/localai-backends:latest-gpu-intel-qwen-tts
- !!merge <<: *qwen-tts
name: "intel-qwen-tts-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-intel-qwen-tts"
mirrors:
- localai/localai-backends:master-gpu-intel-qwen-tts
- !!merge <<: *qwen-tts
name: "rocm-qwen-tts"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-rocm-hipblas-qwen-tts"
mirrors:
- localai/localai-backends:latest-gpu-rocm-hipblas-qwen-tts
- !!merge <<: *qwen-tts
name: "rocm-qwen-tts-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-rocm-hipblas-qwen-tts"
mirrors:
- localai/localai-backends:master-gpu-rocm-hipblas-qwen-tts
- !!merge <<: *qwen-tts
name: "nvidia-l4t-qwen-tts"
uri: "quay.io/go-skynet/local-ai-backends:latest-nvidia-l4t-qwen-tts"
mirrors:
- localai/localai-backends:latest-nvidia-l4t-qwen-tts
- !!merge <<: *qwen-tts
name: "nvidia-l4t-qwen-tts-development"
uri: "quay.io/go-skynet/local-ai-backends:master-nvidia-l4t-qwen-tts"
mirrors:
- localai/localai-backends:master-nvidia-l4t-qwen-tts
- !!merge <<: *qwen-tts
name: "cuda13-nvidia-l4t-arm64-qwen-tts"
uri: "quay.io/go-skynet/local-ai-backends:latest-nvidia-l4t-cuda-13-arm64-qwen-tts"
mirrors:
- localai/localai-backends:latest-nvidia-l4t-cuda-13-arm64-qwen-tts
- !!merge <<: *qwen-tts
name: "cuda13-nvidia-l4t-arm64-qwen-tts-development"
uri: "quay.io/go-skynet/local-ai-backends:master-nvidia-l4t-cuda-13-arm64-qwen-tts"
mirrors:
- localai/localai-backends:master-nvidia-l4t-cuda-13-arm64-qwen-tts
## pocket-tts
- !!merge <<: *pocket-tts
name: "pocket-tts-development"
capabilities:
nvidia: "cuda12-pocket-tts-development"
intel: "intel-pocket-tts-development"
amd: "rocm-pocket-tts-development"
nvidia-l4t: "nvidia-l4t-pocket-tts-development"
default: "cpu-pocket-tts-development"
nvidia-cuda-13: "cuda13-pocket-tts-development"
nvidia-cuda-12: "cuda12-pocket-tts-development"
nvidia-l4t-cuda-12: "nvidia-l4t-pocket-tts-development"
nvidia-l4t-cuda-13: "cuda13-nvidia-l4t-arm64-pocket-tts-development"
- !!merge <<: *pocket-tts
name: "cpu-pocket-tts"
uri: "quay.io/go-skynet/local-ai-backends:latest-cpu-pocket-tts"
mirrors:
- localai/localai-backends:latest-cpu-pocket-tts
- !!merge <<: *pocket-tts
name: "cpu-pocket-tts-development"
uri: "quay.io/go-skynet/local-ai-backends:master-cpu-pocket-tts"
mirrors:
- localai/localai-backends:master-cpu-pocket-tts
- !!merge <<: *pocket-tts
name: "cuda12-pocket-tts"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-nvidia-cuda-12-pocket-tts"
mirrors:
- localai/localai-backends:latest-gpu-nvidia-cuda-12-pocket-tts
- !!merge <<: *pocket-tts
name: "cuda12-pocket-tts-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-12-pocket-tts"
mirrors:
- localai/localai-backends:master-gpu-nvidia-cuda-12-pocket-tts
- !!merge <<: *pocket-tts
name: "cuda13-pocket-tts"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-nvidia-cuda-13-pocket-tts"
mirrors:
- localai/localai-backends:latest-gpu-nvidia-cuda-13-pocket-tts
- !!merge <<: *pocket-tts
name: "cuda13-pocket-tts-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-13-pocket-tts"
mirrors:
- localai/localai-backends:master-gpu-nvidia-cuda-13-pocket-tts
- !!merge <<: *pocket-tts
name: "intel-pocket-tts"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-intel-pocket-tts"
mirrors:
- localai/localai-backends:latest-gpu-intel-pocket-tts
- !!merge <<: *pocket-tts
name: "intel-pocket-tts-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-intel-pocket-tts"
mirrors:
- localai/localai-backends:master-gpu-intel-pocket-tts
- !!merge <<: *pocket-tts
name: "rocm-pocket-tts"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-rocm-hipblas-pocket-tts"
mirrors:
- localai/localai-backends:latest-gpu-rocm-hipblas-pocket-tts
- !!merge <<: *pocket-tts
name: "rocm-pocket-tts-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-rocm-hipblas-pocket-tts"
mirrors:
- localai/localai-backends:master-gpu-rocm-hipblas-pocket-tts
- !!merge <<: *pocket-tts
name: "nvidia-l4t-pocket-tts"
uri: "quay.io/go-skynet/local-ai-backends:latest-nvidia-l4t-pocket-tts"
mirrors:
- localai/localai-backends:latest-nvidia-l4t-pocket-tts
- !!merge <<: *pocket-tts
name: "nvidia-l4t-pocket-tts-development"
uri: "quay.io/go-skynet/local-ai-backends:master-nvidia-l4t-pocket-tts"
mirrors:
- localai/localai-backends:master-nvidia-l4t-pocket-tts
- !!merge <<: *pocket-tts
name: "cuda13-nvidia-l4t-arm64-pocket-tts"
uri: "quay.io/go-skynet/local-ai-backends:latest-nvidia-l4t-cuda-13-arm64-pocket-tts"
mirrors:
- localai/localai-backends:latest-nvidia-l4t-cuda-13-arm64-pocket-tts
- !!merge <<: *pocket-tts
name: "cuda13-nvidia-l4t-arm64-pocket-tts-development"
uri: "quay.io/go-skynet/local-ai-backends:master-nvidia-l4t-cuda-13-arm64-pocket-tts"
mirrors:
- localai/localai-backends:master-nvidia-l4t-cuda-13-arm64-pocket-tts

View File

@@ -1,6 +1,8 @@
--extra-index-url https://download.pytorch.org/whl/xpu
torch
torchaudio
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.8.10+xpu
torch==2.3.1+cxx11.abi
torchaudio==2.3.1+cxx11.abi
oneccl_bind_pt==2.3.100+xpu
optimum[openvino]
setuptools
transformers

View File

@@ -17,9 +17,4 @@ if [ "x${BUILD_PROFILE}" == "xintel" ]; then
fi
EXTRA_PIP_INSTALL_FLAGS+=" --no-build-isolation"
if [ "x${BUILD_PROFILE}" == "xl4t12" ]; then
USE_PIP=true
fi
installRequirements

View File

@@ -1,5 +0,0 @@
# Build dependencies needed for packages installed from source (e.g., git dependencies)
# When using --no-build-isolation, these must be installed in the venv first
wheel
setuptools
packaging

View File

@@ -1,6 +1,7 @@
--extra-index-url https://download.pytorch.org/whl/xpu
torch
torchaudio
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.3.110+xpu
torch==2.3.1+cxx11.abi
torchaudio==2.3.1+cxx11.abi
transformers
numpy>=1.24.0,<1.26.0
# https://github.com/mudler/LocalAI/pull/6240#issuecomment-3329518289

View File

@@ -398,7 +398,7 @@ function runProtogen() {
# NOTE: for BUILD_PROFILE==intel, this function does NOT automatically use the Intel python package index.
# you may want to add the following line to a requirements-intel.txt if you use one:
#
# --index-url https://download.pytorch.org/whl/xpu
# --index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
#
# If you need to add extra flags into the pip install command you can do so by setting the variable EXTRA_PIP_INSTALL_FLAGS
# before calling installRequirements. For example:

View File

@@ -1,4 +1,5 @@
--extra-index-url https://download.pytorch.org/whl/xpu
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.8.10+xpu
torch==2.8.0
oneccl_bind_pt==2.8.0+xpu
optimum[openvino]

View File

@@ -1,6 +1,8 @@
--extra-index-url https://download.pytorch.org/whl/xpu
torch==2.8.0+xpu
torchaudio==2.8.0+xpu
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.3.110+xpu
torch==2.3.1+cxx11.abi
torchaudio==2.3.1+cxx11.abi
oneccl_bind_pt==2.3.100+xpu
optimum[openvino]
setuptools
transformers==4.48.3

View File

@@ -41,10 +41,6 @@ from optimum.quanto import freeze, qfloat8, quantize
from transformers import T5EncoderModel
from safetensors.torch import load_file
# Import LTX-2 specific utilities
from diffusers.pipelines.ltx2.export_utils import encode_video as ltx2_encode_video
from diffusers import LTX2VideoTransformer3DModel, GGUFQuantizationConfig
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
COMPEL = os.environ.get("COMPEL", "0") == "1"
XPU = os.environ.get("XPU", "0") == "1"
@@ -294,104 +290,6 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
pipe.enable_model_cpu_offload()
return pipe
# LTX2ImageToVideoPipeline - needs img2vid flag, CPU offload, and special handling
if pipeline_type == "LTX2ImageToVideoPipeline":
self.img2vid = True
self.ltx2_pipeline = True
# Check if loading from single file (GGUF)
if fromSingleFile and LTX2VideoTransformer3DModel is not None:
_, single_file_ext = os.path.splitext(modelFile)
if single_file_ext == ".gguf":
# Load transformer from single GGUF file with quantization
transformer_kwargs = {}
quantization_config = GGUFQuantizationConfig(compute_dtype=torchType)
transformer_kwargs["quantization_config"] = quantization_config
transformer = LTX2VideoTransformer3DModel.from_single_file(
modelFile,
config=request.Model, # Use request.Model as the config/model_id
subfolder="transformer",
**transformer_kwargs,
)
# Load pipeline with custom transformer
pipe = load_diffusers_pipeline(
class_name="LTX2ImageToVideoPipeline",
model_id=request.Model,
transformer=transformer,
torch_dtype=torchType,
)
else:
# Single file but not GGUF - use standard single file loading
pipe = load_diffusers_pipeline(
class_name="LTX2ImageToVideoPipeline",
model_id=modelFile,
from_single_file=True,
torch_dtype=torchType,
)
else:
# Standard loading from pretrained
pipe = load_diffusers_pipeline(
class_name="LTX2ImageToVideoPipeline",
model_id=request.Model,
torch_dtype=torchType,
variant=variant
)
if not DISABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
return pipe
# LTX2Pipeline - text-to-video pipeline, needs txt2vid flag, CPU offload, and special handling
if pipeline_type == "LTX2Pipeline":
self.txt2vid = True
self.ltx2_pipeline = True
# Check if loading from single file (GGUF)
if fromSingleFile and LTX2VideoTransformer3DModel is not None:
_, single_file_ext = os.path.splitext(modelFile)
if single_file_ext == ".gguf":
# Load transformer from single GGUF file with quantization
transformer_kwargs = {}
quantization_config = GGUFQuantizationConfig(compute_dtype=torchType)
transformer_kwargs["quantization_config"] = quantization_config
transformer = LTX2VideoTransformer3DModel.from_single_file(
modelFile,
config=request.Model, # Use request.Model as the config/model_id
subfolder="transformer",
**transformer_kwargs,
)
# Load pipeline with custom transformer
pipe = load_diffusers_pipeline(
class_name="LTX2Pipeline",
model_id=request.Model,
transformer=transformer,
torch_dtype=torchType,
)
else:
# Single file but not GGUF - use standard single file loading
pipe = load_diffusers_pipeline(
class_name="LTX2Pipeline",
model_id=modelFile,
from_single_file=True,
torch_dtype=torchType,
)
else:
# Standard loading from pretrained
pipe = load_diffusers_pipeline(
class_name="LTX2Pipeline",
model_id=request.Model,
torch_dtype=torchType,
variant=variant
)
if not DISABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
return pipe
# ================================================================
# Dynamic pipeline loading - the default path for most pipelines
# Uses the dynamic loader to instantiate any pipeline by class name
@@ -506,9 +404,6 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
fromSingleFile = request.Model.startswith("http") or request.Model.startswith("/") or local
self.img2vid = False
self.txt2vid = False
self.ltx2_pipeline = False
print(f"LoadModel: PipelineType from request: {request.PipelineType}", file=sys.stderr)
# Load pipeline using dynamic loader
# Special cases that require custom initialization are handled first
@@ -519,8 +414,6 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
torchType=torchType,
variant=variant
)
print(f"LoadModel: After loading - ltx2_pipeline: {self.ltx2_pipeline}, img2vid: {self.img2vid}, txt2vid: {self.txt2vid}, PipelineType: {self.PipelineType}", file=sys.stderr)
if CLIPSKIP and request.CLIPSkip != 0:
self.clip_skip = request.CLIPSkip
@@ -758,20 +651,14 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
try:
prompt = request.prompt
if not prompt:
print(f"GenerateVideo: No prompt provided for video generation.", file=sys.stderr)
return backend_pb2.Result(success=False, message="No prompt provided for video generation")
# Debug: Print raw request values
print(f"GenerateVideo: Raw request values - num_frames: {request.num_frames}, fps: {request.fps}, cfg_scale: {request.cfg_scale}, step: {request.step}", file=sys.stderr)
# Set default values from request or use defaults
num_frames = request.num_frames if request.num_frames > 0 else 81
fps = request.fps if request.fps > 0 else 16
cfg_scale = request.cfg_scale if request.cfg_scale > 0 else 4.0
num_inference_steps = request.step if request.step > 0 else 40
print(f"GenerateVideo: Using values - num_frames: {num_frames}, fps: {fps}, cfg_scale: {cfg_scale}, num_inference_steps: {num_inference_steps}", file=sys.stderr)
# Prepare generation parameters
kwargs = {
"prompt": prompt,
@@ -797,86 +684,9 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
kwargs["end_image"] = load_image(request.end_image)
print(f"Generating video with {kwargs=}", file=sys.stderr)
print(f"GenerateVideo: Pipeline type: {self.PipelineType}, ltx2_pipeline flag: {self.ltx2_pipeline}", file=sys.stderr)
# Generate video frames based on pipeline type
if self.ltx2_pipeline or self.PipelineType in ["LTX2Pipeline", "LTX2ImageToVideoPipeline"]:
# LTX-2 generation with audio (supports both text-to-video and image-to-video)
# Determine if this is text-to-video (no image) or image-to-video (has image)
has_image = bool(request.start_image)
# Remove image-related parameters that might have been added earlier
kwargs.pop("start_image", None)
kwargs.pop("end_image", None)
# LTX2ImageToVideoPipeline uses 'image' parameter for image-to-video
# LTX2Pipeline (text-to-video) doesn't need an image parameter
if has_image:
# Image-to-video: use 'image' parameter
if self.PipelineType == "LTX2ImageToVideoPipeline":
image = load_image(request.start_image)
kwargs["image"] = image
print(f"LTX-2: Using image-to-video mode with image", file=sys.stderr)
else:
# If pipeline type is LTX2Pipeline but we have an image, we can't do image-to-video
return backend_pb2.Result(success=False, message="LTX2Pipeline does not support image-to-video. Use LTX2ImageToVideoPipeline for image-to-video generation.")
else:
# Text-to-video: no image parameter needed
# Ensure no image-related kwargs are present
kwargs.pop("image", None)
print(f"LTX-2: Using text-to-video mode (no image)", file=sys.stderr)
# LTX-2 uses 'frame_rate' instead of 'fps'
frame_rate = float(fps)
kwargs["frame_rate"] = frame_rate
# LTX-2 requires output_type="np" and return_dict=False
kwargs["output_type"] = "np"
kwargs["return_dict"] = False
# Generate video and audio
print(f"LTX-2: Generating with kwargs: {kwargs}", file=sys.stderr)
try:
video, audio = self.pipe(**kwargs)
print(f"LTX-2: Generated video shape: {video.shape}, audio shape: {audio.shape}", file=sys.stderr)
except Exception as e:
print(f"LTX-2: Error during pipe() call: {e}", file=sys.stderr)
traceback.print_exc()
return backend_pb2.Result(success=False, message=f"Error generating video with LTX-2 pipeline: {e}")
# Convert video to uint8 format
video = (video * 255).round().astype("uint8")
video = torch.from_numpy(video)
print(f"LTX-2: Converting video, shape after conversion: {video.shape}", file=sys.stderr)
print(f"LTX-2: Audio sample rate: {self.pipe.vocoder.config.output_sampling_rate}", file=sys.stderr)
print(f"LTX-2: Output path: {request.dst}", file=sys.stderr)
# Use LTX-2's encode_video function which handles audio
try:
ltx2_encode_video(
video[0],
fps=frame_rate,
audio=audio[0].float().cpu(),
audio_sample_rate=self.pipe.vocoder.config.output_sampling_rate,
output_path=request.dst,
)
# Verify file was created and has content
import os
if os.path.exists(request.dst):
file_size = os.path.getsize(request.dst)
print(f"LTX-2: Video file created successfully, size: {file_size} bytes", file=sys.stderr)
if file_size == 0:
return backend_pb2.Result(success=False, message=f"Video file was created but is empty (0 bytes). Check LTX-2 encode_video function.")
else:
return backend_pb2.Result(success=False, message=f"Video file was not created at {request.dst}")
except Exception as e:
print(f"LTX-2: Error encoding video: {e}", file=sys.stderr)
traceback.print_exc()
return backend_pb2.Result(success=False, message=f"Error encoding video: {e}")
return backend_pb2.Result(message="Video generated successfully", success=True)
elif self.PipelineType == "WanPipeline":
if self.PipelineType == "WanPipeline":
# WAN2.2 text-to-video generation
output = self.pipe(**kwargs)
frames = output.frames[0] # WAN2.2 returns frames in this format
@@ -915,23 +725,11 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
output = self.pipe(**kwargs)
frames = output.frames[0]
else:
print(f"GenerateVideo: Pipeline {self.PipelineType} does not match any known video pipeline handler", file=sys.stderr)
return backend_pb2.Result(success=False, message=f"Pipeline {self.PipelineType} does not support video generation")
# Export video (for non-LTX-2 pipelines)
print(f"GenerateVideo: Exporting video to {request.dst} with fps={fps}", file=sys.stderr)
# Export video
export_to_video(frames, request.dst, fps=fps)
# Verify file was created
import os
if os.path.exists(request.dst):
file_size = os.path.getsize(request.dst)
print(f"GenerateVideo: Video file created, size: {file_size} bytes", file=sys.stderr)
if file_size == 0:
return backend_pb2.Result(success=False, message=f"Video file was created but is empty (0 bytes)")
else:
return backend_pb2.Result(success=False, message=f"Video file was not created at {request.dst}")
return backend_pb2.Result(message="Video generated successfully", success=True)
except Exception as err:

View File

@@ -16,10 +16,6 @@ if [ "x${BUILD_PROFILE}" == "xintel" ]; then
EXTRA_PIP_INSTALL_FLAGS+=" --upgrade --index-strategy=unsafe-first-match"
fi
if [ "x${BUILD_PROFILE}" == "xl4t12" ]; then
USE_PIP=true
fi
# Use python 3.12 for l4t
if [ "x${BUILD_PROFILE}" == "xl4t13" ]; then
PYTHON_VERSION="3.12"

View File

@@ -1,6 +1,8 @@
--extra-index-url https://download.pytorch.org/whl/xpu
torch
torchvision
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.3.110+xpu
torch==2.5.1+cxx11.abi
torchvision==0.20.1+cxx11.abi
oneccl_bind_pt==2.8.0+xpu
optimum[openvino]
setuptools
git+https://github.com/huggingface/diffusers

View File

@@ -3,4 +3,3 @@ grpcio==1.76.0
pillow
protobuf
certifi
av

View File

@@ -1,4 +1,6 @@
--extra-index-url https://download.pytorch.org/whl/xpu
torch
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.3.110+xpu
torch==2.3.1+cxx11.abi
oneccl_bind_pt==2.3.100+xpu
optimum[openvino]
faster-whisper

View File

@@ -16,8 +16,4 @@ if [ "x${BUILD_PROFILE}" == "xintel" ]; then
EXTRA_PIP_INSTALL_FLAGS+=" --upgrade --index-strategy=unsafe-first-match"
fi
if [ "x${BUILD_PROFILE}" == "xl4t12" ]; then
USE_PIP=true
fi
installRequirements

View File

@@ -1,6 +1,8 @@
--extra-index-url https://download.pytorch.org/whl/xpu
torch
torchaudio
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.8.10+xpu
torch==2.5.1+cxx11.abi
oneccl_bind_pt==2.8.0+xpu
torchaudio==2.5.1+cxx11.abi
optimum[openvino]
setuptools
transformers==4.48.3

View File

@@ -26,12 +26,6 @@ fi
EXTRA_PIP_INSTALL_FLAGS+=" --no-build-isolation"
if [ "x${BUILD_PROFILE}" == "xl4t12" ]; then
USE_PIP=true
fi
git clone https://github.com/neuphonic/neutts-air neutts-air
cp -rfv neutts-air/neuttsair ./

View File

@@ -1,23 +0,0 @@
.PHONY: pocket-tts
pocket-tts:
bash install.sh
.PHONY: run
run: pocket-tts
@echo "Running pocket-tts..."
bash run.sh
@echo "pocket-tts run."
.PHONY: test
test: pocket-tts
@echo "Testing pocket-tts..."
bash test.sh
@echo "pocket-tts tested."
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__

View File

@@ -1,255 +0,0 @@
#!/usr/bin/env python3
"""
This is an extra gRPC server of LocalAI for Pocket TTS
"""
from concurrent import futures
import time
import argparse
import signal
import sys
import os
import traceback
import scipy.io.wavfile
import backend_pb2
import backend_pb2_grpc
import torch
from pocket_tts import TTSModel
import grpc
def is_float(s):
"""Check if a string can be converted to float."""
try:
float(s)
return True
except ValueError:
return False
def is_int(s):
"""Check if a string can be converted to int."""
try:
int(s)
return True
except ValueError:
return False
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
BackendServicer is the class that implements the gRPC service
"""
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
# Get device
if torch.cuda.is_available():
print("CUDA is available", file=sys.stderr)
device = "cuda"
else:
print("CUDA is not available", file=sys.stderr)
device = "cpu"
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
if mps_available:
device = "mps"
if not torch.cuda.is_available() and request.CUDA:
return backend_pb2.Result(success=False, message="CUDA is not available")
# Normalize potential 'mpx' typo to 'mps'
if device == "mpx":
print("Note: device 'mpx' detected, treating it as 'mps'.", file=sys.stderr)
device = "mps"
# Validate mps availability if requested
if device == "mps" and not torch.backends.mps.is_available():
print("Warning: MPS not available. Falling back to CPU.", file=sys.stderr)
device = "cpu"
self.device = device
options = request.Options
# empty dict
self.options = {}
# The options are a list of strings in this form optname:optvalue
# We are storing all the options in a dict so we can use it later when
# generating the audio
for opt in options:
if ":" not in opt:
continue
key, value = opt.split(":", 1) # Split only on first colon
# if value is a number, convert it to the appropriate type
if is_float(value):
value = float(value)
elif is_int(value):
value = int(value)
elif value.lower() in ["true", "false"]:
value = value.lower() == "true"
self.options[key] = value
# Default voice for caching
self.default_voice_url = self.options.get("default_voice", None)
self._voice_cache = {}
try:
print("Loading Pocket TTS model", file=sys.stderr)
self.tts_model = TTSModel.load_model()
print(f"Model loaded successfully. Sample rate: {self.tts_model.sample_rate}", file=sys.stderr)
# Pre-load default voice if specified
if self.default_voice_url:
try:
print(f"Pre-loading default voice: {self.default_voice_url}", file=sys.stderr)
voice_state = self.tts_model.get_state_for_audio_prompt(self.default_voice_url)
self._voice_cache[self.default_voice_url] = voice_state
print("Default voice loaded successfully", file=sys.stderr)
except Exception as e:
print(f"Warning: Failed to pre-load default voice: {e}", file=sys.stderr)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(message="Model loaded successfully", success=True)
def _get_voice_state(self, voice_input):
"""
Get voice state from cache or load it.
voice_input can be:
- HuggingFace URL (e.g., hf://kyutai/tts-voices/alba-mackenna/casual.wav)
- Local file path
- None (use default)
"""
# Use default if no voice specified
if not voice_input:
voice_input = self.default_voice_url
if not voice_input:
return None
# Check cache first
if voice_input in self._voice_cache:
return self._voice_cache[voice_input]
# Load voice state
try:
print(f"Loading voice from: {voice_input}", file=sys.stderr)
voice_state = self.tts_model.get_state_for_audio_prompt(voice_input)
self._voice_cache[voice_input] = voice_state
return voice_state
except Exception as e:
print(f"Error loading voice from {voice_input}: {e}", file=sys.stderr)
return None
def TTS(self, request, context):
try:
# Determine voice input
# Priority: request.voice > AudioPath (from ModelOptions) > default
voice_input = None
if request.voice:
voice_input = request.voice
elif hasattr(request, 'AudioPath') and request.AudioPath:
# Use AudioPath as voice file
if os.path.isabs(request.AudioPath):
voice_input = request.AudioPath
elif hasattr(request, 'ModelFile') and request.ModelFile:
model_file_base = os.path.dirname(request.ModelFile)
voice_input = os.path.join(model_file_base, request.AudioPath)
elif hasattr(request, 'ModelPath') and request.ModelPath:
voice_input = os.path.join(request.ModelPath, request.AudioPath)
else:
voice_input = request.AudioPath
# Get voice state
voice_state = self._get_voice_state(voice_input)
if voice_state is None:
return backend_pb2.Result(
success=False,
message=f"Voice not found or failed to load: {voice_input}. Please provide a valid voice URL or file path."
)
# Prepare text
text = request.text.strip()
if not text:
return backend_pb2.Result(
success=False,
message="Text is empty"
)
print(f"Generating audio for text: {text[:50]}...", file=sys.stderr)
# Generate audio
audio = self.tts_model.generate_audio(voice_state, text)
# Audio is a 1D torch tensor containing PCM data
if audio is None or audio.numel() == 0:
return backend_pb2.Result(
success=False,
message="No audio generated"
)
# Save audio to file
output_path = request.dst
if not output_path:
output_path = "/tmp/pocket-tts-output.wav"
# Ensure output directory exists
output_dir = os.path.dirname(output_path)
if output_dir and not os.path.exists(output_dir):
os.makedirs(output_dir, exist_ok=True)
# Convert torch tensor to numpy and save
audio_numpy = audio.numpy()
scipy.io.wavfile.write(output_path, self.tts_model.sample_rate, audio_numpy)
print(f"Saved audio to {output_path}", file=sys.stderr)
except Exception as err:
print(f"Error in TTS: {err}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS),
options=[
('grpc.max_message_length', 50 * 1024 * 1024), # 50MB
('grpc.max_send_message_length', 50 * 1024 * 1024), # 50MB
('grpc.max_receive_message_length', 50 * 1024 * 1024), # 50MB
])
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)

View File

@@ -1,30 +0,0 @@
#!/bin/bash
set -e
backend_dir=$(dirname $0)
if [ -d $backend_dir/common ]; then
source $backend_dir/common/libbackend.sh
else
source $backend_dir/../common/libbackend.sh
fi
# This is here because the Intel pip index is broken and returns 200 status codes for every package name, it just doesn't return any package links.
# This makes uv think that the package exists in the Intel pip index, and by default it stops looking at other pip indexes once it finds a match.
# We need uv to continue falling through to the pypi default index to find optimum[openvino] in the pypi index
# the --upgrade actually allows us to *downgrade* torch to the version provided in the Intel pip index
if [ "x${BUILD_PROFILE}" == "xintel" ]; then
EXTRA_PIP_INSTALL_FLAGS+=" --upgrade --index-strategy=unsafe-first-match"
fi
# Use python 3.12 for l4t
if [ "x${BUILD_PROFILE}" == "xl4t13" ]; then
PYTHON_VERSION="3.12"
PYTHON_PATCH="12"
PY_STANDALONE_TAG="20251120"
fi
if [ "x${BUILD_PROFILE}" == "xl4t12" ]; then
USE_PIP=true
fi
installRequirements

View File

@@ -1,11 +0,0 @@
#!/bin/bash
set -e
backend_dir=$(dirname $0)
if [ -d $backend_dir/common ]; then
source $backend_dir/common/libbackend.sh
else
source $backend_dir/../common/libbackend.sh
fi
python3 -m grpc_tools.protoc -I../.. -I./ --python_out=. --grpc_python_out=. backend.proto

View File

@@ -1,4 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/cpu
pocket-tts
scipy
torch

View File

@@ -1,4 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/cu121
pocket-tts
scipy
torch

View File

@@ -1,4 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/cu130
pocket-tts
scipy
torch

View File

@@ -1,4 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.3
pocket-tts
scipy
torch==2.7.1+rocm6.3

View File

@@ -1,4 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/xpu
pocket-tts
scipy
torch

View File

@@ -1,4 +0,0 @@
--extra-index-url https://pypi.jetson-ai-lab.io/jp6/cu129/
pocket-tts
scipy
torch

View File

@@ -1,4 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/cu130
pocket-tts
scipy
torch

View File

@@ -1,4 +0,0 @@
pocket-tts
scipy
torch==2.7.1
torchvision==0.22.1

View File

@@ -1,4 +0,0 @@
grpcio==1.71.0
protobuf
certifi
packaging==24.1

View File

@@ -1,9 +0,0 @@
#!/bin/bash
backend_dir=$(dirname $0)
if [ -d $backend_dir/common ]; then
source $backend_dir/common/libbackend.sh
else
source $backend_dir/../common/libbackend.sh
fi
startBackend $@

View File

@@ -1,141 +0,0 @@
"""
A test script to test the gRPC service
"""
import unittest
import subprocess
import time
import os
import tempfile
import backend_pb2
import backend_pb2_grpc
import grpc
class TestBackendServicer(unittest.TestCase):
"""
TestBackendServicer is the class that tests the gRPC service
"""
def setUp(self):
"""
This method sets up the gRPC service by starting the server
"""
self.service = subprocess.Popen(["python3", "backend.py", "--addr", "localhost:50051"])
time.sleep(30)
def tearDown(self) -> None:
"""
This method tears down the gRPC service by terminating the server
"""
self.service.terminate()
self.service.wait()
def test_server_startup(self):
"""
This method tests if the server starts up successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.Health(backend_pb2.HealthMessage())
self.assertEqual(response.message, b'OK')
except Exception as err:
print(err)
self.fail("Server failed to start")
finally:
self.tearDown()
def test_load_model(self):
"""
This method tests if the model is loaded successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions())
print(response)
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
print(err)
self.fail("LoadModel service failed")
finally:
self.tearDown()
def test_tts_with_hf_voice(self):
"""
This method tests TTS generation with HuggingFace voice URL
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
# Load model
response = stub.LoadModel(backend_pb2.ModelOptions())
self.assertTrue(response.success)
# Create temporary output file
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file:
output_path = tmp_file.name
# Test TTS with HuggingFace voice URL
tts_request = backend_pb2.TTSRequest(
text="Hello world, this is a test.",
dst=output_path,
voice="azelma"
)
tts_response = stub.TTS(tts_request)
self.assertTrue(tts_response.success)
# Verify output file exists and is not empty
self.assertTrue(os.path.exists(output_path))
self.assertGreater(os.path.getsize(output_path), 0)
# Cleanup
os.unlink(output_path)
except Exception as err:
print(err)
self.fail("TTS service failed")
finally:
self.tearDown()
def test_tts_with_default_voice(self):
"""
This method tests TTS generation with default voice (via AudioPath in LoadModel)
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
# Load model with default voice
load_request = backend_pb2.ModelOptions(
Options=["default_voice:azelma"]
)
response = stub.LoadModel(load_request)
self.assertTrue(response.success)
# Create temporary output file
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file:
output_path = tmp_file.name
# Test TTS without specifying voice (should use default)
tts_request = backend_pb2.TTSRequest(
text="Hello world, this is a test.",
dst=output_path
)
tts_response = stub.TTS(tts_request)
self.assertTrue(tts_response.success)
# Verify output file exists and is not empty
self.assertTrue(os.path.exists(output_path))
self.assertGreater(os.path.getsize(output_path), 0)
# Cleanup
os.unlink(output_path)
except Exception as err:
print(err)
self.fail("TTS service with default voice failed")
finally:
self.tearDown()

View File

@@ -1,11 +0,0 @@
#!/bin/bash
set -e
backend_dir=$(dirname $0)
if [ -d $backend_dir/common ]; then
source $backend_dir/common/libbackend.sh
else
source $backend_dir/../common/libbackend.sh
fi
runUnittests

View File

@@ -1,23 +0,0 @@
.PHONY: qwen-tts
qwen-tts:
bash install.sh
.PHONY: run
run: qwen-tts
@echo "Running qwen-tts..."
bash run.sh
@echo "qwen-tts run."
.PHONY: test
test: qwen-tts
@echo "Testing qwen-tts..."
bash test.sh
@echo "qwen-tts tested."
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__

View File

@@ -1,475 +0,0 @@
#!/usr/bin/env python3
"""
This is an extra gRPC server of LocalAI for Qwen3-TTS
"""
from concurrent import futures
import time
import argparse
import signal
import sys
import os
import copy
import traceback
from pathlib import Path
import backend_pb2
import backend_pb2_grpc
import torch
import soundfile as sf
from qwen_tts import Qwen3TTSModel
import grpc
def is_float(s):
"""Check if a string can be converted to float."""
try:
float(s)
return True
except ValueError:
return False
def is_int(s):
"""Check if a string can be converted to int."""
try:
int(s)
return True
except ValueError:
return False
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
BackendServicer is the class that implements the gRPC service
"""
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
# Get device
if torch.cuda.is_available():
print("CUDA is available", file=sys.stderr)
device = "cuda"
else:
print("CUDA is not available", file=sys.stderr)
device = "cpu"
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
if mps_available:
device = "mps"
if not torch.cuda.is_available() and request.CUDA:
return backend_pb2.Result(success=False, message="CUDA is not available")
# Normalize potential 'mpx' typo to 'mps'
if device == "mpx":
print("Note: device 'mpx' detected, treating it as 'mps'.", file=sys.stderr)
device = "mps"
# Validate mps availability if requested
if device == "mps" and not torch.backends.mps.is_available():
print("Warning: MPS not available. Falling back to CPU.", file=sys.stderr)
device = "cpu"
self.device = device
self._torch_device = torch.device(device)
options = request.Options
# empty dict
self.options = {}
# The options are a list of strings in this form optname:optvalue
# We are storing all the options in a dict so we can use it later when
# generating the audio
for opt in options:
if ":" not in opt:
continue
key, value = opt.split(":", 1) # Split only on first colon
# if value is a number, convert it to the appropriate type
if is_float(value):
value = float(value)
elif is_int(value):
value = int(value)
elif value.lower() in ["true", "false"]:
value = value.lower() == "true"
self.options[key] = value
# Get model path from request
model_path = request.Model
if not model_path:
model_path = "Qwen/Qwen3-TTS-12Hz-1.7B-CustomVoice"
# Determine model type from model path or options
self.model_type = self.options.get("model_type", None)
if not self.model_type:
if "CustomVoice" in model_path:
self.model_type = "CustomVoice"
elif "VoiceDesign" in model_path:
self.model_type = "VoiceDesign"
elif "Base" in model_path or "0.6B" in model_path or "1.7B" in model_path:
self.model_type = "Base" # VoiceClone model
else:
# Default to CustomVoice
self.model_type = "CustomVoice"
# Cache for voice clone prompts
self._voice_clone_cache = {}
# Store AudioPath, ModelFile, and ModelPath from LoadModel request
# These are used later in TTS for VoiceClone mode
self.audio_path = request.AudioPath if hasattr(request, 'AudioPath') and request.AudioPath else None
self.model_file = request.ModelFile if hasattr(request, 'ModelFile') and request.ModelFile else None
self.model_path = request.ModelPath if hasattr(request, 'ModelPath') and request.ModelPath else None
# Decide dtype & attention implementation
if self.device == "mps":
load_dtype = torch.float32 # MPS requires float32
device_map = None
attn_impl_primary = "sdpa" # flash_attention_2 not supported on MPS
elif self.device == "cuda":
load_dtype = torch.bfloat16
device_map = "cuda"
attn_impl_primary = "flash_attention_2"
else: # cpu
load_dtype = torch.float32
device_map = "cpu"
attn_impl_primary = "sdpa"
print(f"Using device: {self.device}, torch_dtype: {load_dtype}, attn_implementation: {attn_impl_primary}, model_type: {self.model_type}", file=sys.stderr)
print(f"Loading model from: {model_path}", file=sys.stderr)
# Load model with device-specific logic
# Common parameters for all devices
load_kwargs = {
"dtype": load_dtype,
"attn_implementation": attn_impl_primary,
"trust_remote_code": True, # Required for qwen-tts models
}
try:
if self.device == "mps":
load_kwargs["device_map"] = None # load then move
self.model = Qwen3TTSModel.from_pretrained(model_path, **load_kwargs)
self.model.to("mps")
elif self.device == "cuda":
load_kwargs["device_map"] = device_map
self.model = Qwen3TTSModel.from_pretrained(model_path, **load_kwargs)
else: # cpu
load_kwargs["device_map"] = device_map
self.model = Qwen3TTSModel.from_pretrained(model_path, **load_kwargs)
except Exception as e:
error_msg = str(e)
print(f"[ERROR] Loading model: {type(e).__name__}: {error_msg}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
# Check if it's a missing feature extractor/tokenizer error
if "speech_tokenizer" in error_msg or "preprocessor_config.json" in error_msg or "feature extractor" in error_msg.lower():
print("\n[ERROR] Model files appear to be incomplete. This usually means:", file=sys.stderr)
print(" 1. The model download was interrupted or incomplete", file=sys.stderr)
print(" 2. The model cache is corrupted", file=sys.stderr)
print("\nTo fix this, try:", file=sys.stderr)
print(f" rm -rf ~/.cache/huggingface/hub/models--Qwen--Qwen3-TTS-*", file=sys.stderr)
print(" Then re-run to trigger a fresh download.", file=sys.stderr)
print("\nAlternatively, try using a different model variant:", file=sys.stderr)
print(" - Qwen/Qwen3-TTS-12Hz-1.7B-CustomVoice", file=sys.stderr)
print(" - Qwen/Qwen3-TTS-12Hz-1.7B-VoiceDesign", file=sys.stderr)
print(" - Qwen/Qwen3-TTS-12Hz-1.7B-Base", file=sys.stderr)
if attn_impl_primary == 'flash_attention_2':
print("\nTrying to use SDPA instead of flash_attention_2...", file=sys.stderr)
load_kwargs["attn_implementation"] = 'sdpa'
try:
if self.device == "mps":
load_kwargs["device_map"] = None
self.model = Qwen3TTSModel.from_pretrained(model_path, **load_kwargs)
self.model.to("mps")
else:
load_kwargs["device_map"] = (self.device if self.device in ("cuda", "cpu") else None)
self.model = Qwen3TTSModel.from_pretrained(model_path, **load_kwargs)
except Exception as e2:
print(f"[ERROR] Failed to load with SDPA: {type(e2).__name__}: {e2}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
raise e2
else:
raise e
print(f"Model loaded successfully: {model_path}", file=sys.stderr)
return backend_pb2.Result(message="Model loaded successfully", success=True)
def _detect_mode(self, request):
"""Detect which mode to use based on request parameters."""
# Priority: VoiceClone > VoiceDesign > CustomVoice
# model_type explicitly set
if self.model_type == "CustomVoice":
return "CustomVoice"
if self.model_type == "VoiceClone":
return "VoiceClone"
if self.model_type == "VoiceDesign":
return "VoiceDesign"
# VoiceClone: AudioPath is provided (from LoadModel, stored in self.audio_path)
if self.audio_path:
return "VoiceClone"
# VoiceDesign: instruct option is provided
if "instruct" in self.options and self.options["instruct"]:
return "VoiceDesign"
# Default to CustomVoice
return "CustomVoice"
def _get_ref_audio_path(self, request):
"""Get reference audio path from stored AudioPath (from LoadModel)."""
if not self.audio_path:
return None
# If absolute path, use as-is
if os.path.isabs(self.audio_path):
return self.audio_path
# Try relative to ModelFile
if self.model_file:
model_file_base = os.path.dirname(self.model_file)
ref_path = os.path.join(model_file_base, self.audio_path)
if os.path.exists(ref_path):
return ref_path
# Try relative to ModelPath
if self.model_path:
ref_path = os.path.join(self.model_path, self.audio_path)
if os.path.exists(ref_path):
return ref_path
# Return as-is (might be URL or base64)
return self.audio_path
def _get_voice_clone_prompt(self, request, ref_audio, ref_text):
"""Get or create voice clone prompt, with caching."""
cache_key = f"{ref_audio}:{ref_text}"
if cache_key not in self._voice_clone_cache:
print(f"Creating voice clone prompt from {ref_audio}", file=sys.stderr)
try:
prompt_items = self.model.create_voice_clone_prompt(
ref_audio=ref_audio,
ref_text=ref_text,
x_vector_only_mode=self.options.get("x_vector_only_mode", False),
)
self._voice_clone_cache[cache_key] = prompt_items
except Exception as e:
print(f"Error creating voice clone prompt: {e}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
return None
return self._voice_clone_cache[cache_key]
def TTS(self, request, context):
try:
# Check if dst is provided
if not request.dst:
return backend_pb2.Result(
success=False,
message="dst (output path) is required"
)
# Prepare text
text = request.text.strip()
if not text:
return backend_pb2.Result(
success=False,
message="Text is empty"
)
# Get language (auto-detect if not provided)
language = request.language if hasattr(request, 'language') and request.language else None
if not language or language == "":
language = "Auto" # Auto-detect language
# Detect mode
mode = self._detect_mode(request)
print(f"Detected mode: {mode}", file=sys.stderr)
# Get generation parameters from options
max_new_tokens = self.options.get("max_new_tokens", None)
top_p = self.options.get("top_p", None)
temperature = self.options.get("temperature", None)
do_sample = self.options.get("do_sample", None)
# Prepare generation kwargs
generation_kwargs = {}
if max_new_tokens is not None:
generation_kwargs["max_new_tokens"] = max_new_tokens
if top_p is not None:
generation_kwargs["top_p"] = top_p
if temperature is not None:
generation_kwargs["temperature"] = temperature
if do_sample is not None:
generation_kwargs["do_sample"] = do_sample
instruct = self.options.get("instruct", "")
if instruct is not None and instruct != "":
generation_kwargs["instruct"] = instruct
# Generate audio based on mode
if mode == "VoiceClone":
# VoiceClone mode
ref_audio = self._get_ref_audio_path(request)
if not ref_audio:
return backend_pb2.Result(
success=False,
message="AudioPath is required for VoiceClone mode"
)
ref_text = self.options.get("ref_text", None)
if not ref_text:
# Try to get from request if available
if hasattr(request, 'ref_text') and request.ref_text:
ref_text = request.ref_text
else:
# x_vector_only_mode doesn't require ref_text
if not self.options.get("x_vector_only_mode", False):
return backend_pb2.Result(
success=False,
message="ref_text is required for VoiceClone mode (or set x_vector_only_mode=true)"
)
# Check if we should use cached prompt
use_cached_prompt = self.options.get("use_cached_prompt", True)
voice_clone_prompt = None
if use_cached_prompt:
voice_clone_prompt = self._get_voice_clone_prompt(request, ref_audio, ref_text)
if voice_clone_prompt is None:
return backend_pb2.Result(
success=False,
message="Failed to create voice clone prompt"
)
if voice_clone_prompt:
# Use cached prompt
wavs, sr = self.model.generate_voice_clone(
text=text,
language=language,
voice_clone_prompt=voice_clone_prompt,
**generation_kwargs
)
else:
# Create prompt on-the-fly
wavs, sr = self.model.generate_voice_clone(
text=text,
language=language,
ref_audio=ref_audio,
ref_text=ref_text,
x_vector_only_mode=self.options.get("x_vector_only_mode", False),
**generation_kwargs
)
elif mode == "VoiceDesign":
# VoiceDesign mode
if not instruct:
return backend_pb2.Result(
success=False,
message="instruct option is required for VoiceDesign mode"
)
wavs, sr = self.model.generate_voice_design(
text=text,
language=language,
instruct=instruct,
**generation_kwargs
)
else:
# CustomVoice mode (default)
speaker = request.voice if request.voice else None
if not speaker:
# Try to get from options
speaker = self.options.get("speaker", None)
if not speaker:
# Use default speaker
speaker = "Vivian"
print(f"No speaker specified, using default: {speaker}", file=sys.stderr)
# Validate speaker if model supports it
if hasattr(self.model, 'get_supported_speakers'):
try:
supported_speakers = self.model.get_supported_speakers()
if speaker not in supported_speakers:
print(f"Warning: Speaker '{speaker}' not in supported list. Available: {supported_speakers}", file=sys.stderr)
# Try to find a close match (case-insensitive)
speaker_lower = speaker.lower()
for sup_speaker in supported_speakers:
if sup_speaker.lower() == speaker_lower:
speaker = sup_speaker
print(f"Using matched speaker: {speaker}", file=sys.stderr)
break
except Exception as e:
print(f"Warning: Could not get supported speakers: {e}", file=sys.stderr)
wavs, sr = self.model.generate_custom_voice(
text=text,
language=language,
speaker=speaker,
**generation_kwargs
)
# Save output
if wavs is not None and len(wavs) > 0:
# wavs is a list, take first element
audio_data = wavs[0] if isinstance(wavs, list) else wavs
sf.write(request.dst, audio_data, sr)
print(f"Saved output to {request.dst}", file=sys.stderr)
else:
return backend_pb2.Result(
success=False,
message="No audio output generated"
)
except Exception as err:
print(f"Error in TTS: {err}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS),
options=[
('grpc.max_message_length', 50 * 1024 * 1024), # 50MB
('grpc.max_send_message_length', 50 * 1024 * 1024), # 50MB
('grpc.max_receive_message_length', 50 * 1024 * 1024), # 50MB
])
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)

View File

@@ -1,13 +0,0 @@
#!/bin/bash
set -e
EXTRA_PIP_INSTALL_FLAGS="--no-build-isolation"
backend_dir=$(dirname $0)
if [ -d $backend_dir/common ]; then
source $backend_dir/common/libbackend.sh
else
source $backend_dir/../common/libbackend.sh
fi
installRequirements

View File

@@ -1,5 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/cpu
torch
torchaudio
qwen-tts
sox

View File

@@ -1 +0,0 @@
flash-attn

View File

@@ -1,5 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/cu121
torch
torchaudio
qwen-tts
sox

View File

@@ -1,5 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/cu130
torch
torchaudio
qwen-tts
sox

View File

@@ -1,5 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.3
torch==2.7.1+rocm6.3
torchaudio==2.7.1+rocm6.3
qwen-tts
sox

View File

@@ -1 +0,0 @@
flash-attn

View File

@@ -1,5 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/xpu
torch
torchaudio
qwen-tts
sox

View File

@@ -1,5 +0,0 @@
--extra-index-url https://pypi.jetson-ai-lab.io/jp6/cu129/
torch
torchaudio
qwen-tts
sox

View File

@@ -1,5 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/cu130
torch
torchaudio
qwen-tts
sox

View File

@@ -1,4 +0,0 @@
torch==2.7.1
torchaudio==0.22.1
qwen-tts
sox

View File

@@ -1,6 +0,0 @@
grpcio==1.71.0
protobuf
certifi
packaging==24.1
soundfile
setuptools

View File

@@ -1,9 +0,0 @@
#!/bin/bash
backend_dir=$(dirname $0)
if [ -d $backend_dir/common ]; then
source $backend_dir/common/libbackend.sh
else
source $backend_dir/../common/libbackend.sh
fi
startBackend $@

View File

@@ -1,98 +0,0 @@
"""
A test script to test the gRPC service
"""
import unittest
import subprocess
import time
import os
import sys
import tempfile
import threading
import backend_pb2
import backend_pb2_grpc
import grpc
class TestBackendServicer(unittest.TestCase):
"""
TestBackendServicer is the class that tests the gRPC service
"""
def setUp(self):
"""
This method sets up the gRPC service by starting the server
"""
self.service = subprocess.Popen(
["python3", "backend.py", "--addr", "localhost:50051"],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True
)
time.sleep(5)
def tearDown(self) -> None:
"""
This method tears down the gRPC service by terminating the server
"""
self.service.terminate()
try:
stdout, stderr = self.service.communicate(timeout=5)
# Output should already be printed by threads, but print any remaining
if stdout:
print("=== REMAINING STDOUT ===")
print(stdout)
if stderr:
print("=== REMAINING STDERR ===")
print(stderr)
except subprocess.TimeoutExpired:
self.service.kill()
stdout, stderr = self.service.communicate()
if stdout:
print("=== REMAINING STDOUT ===")
print(stdout)
if stderr:
print("=== REMAINING STDERR ===")
print(stderr)
def test_tts(self):
"""
This method tests if the TTS generation works successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
# Allow up to 10 minutes for model download on first run
response = stub.LoadModel(
backend_pb2.ModelOptions(Model="Qwen/Qwen3-TTS-12Hz-0.6B-CustomVoice"),
timeout=600.0
)
self.assertTrue(response.success)
# Create temporary output file
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file:
output_path = tmp_file.name
tts_request = backend_pb2.TTSRequest(
text="Hello, this is a test of the qwen-tts backend.",
voice="Vivian",
dst=output_path
)
# Allow up to 2 minutes for TTS generation
tts_response = stub.TTS(tts_request, timeout=120.0)
self.assertIsNotNone(tts_response)
self.assertTrue(tts_response.success)
# Verify output file exists and is not empty
self.assertTrue(os.path.exists(output_path))
self.assertGreater(os.path.getsize(output_path), 0)
# Cleanup
os.unlink(output_path)
except Exception as err:
print(f"Exception: {err}", file=sys.stderr)
# Give threads a moment to flush any remaining output
time.sleep(1)
self.fail("TTS service failed")
finally:
self.tearDown()

View File

@@ -1,11 +0,0 @@
#!/bin/bash
set -e
backend_dir=$(dirname $0)
if [ -d $backend_dir/common ]; then
source $backend_dir/common/libbackend.sh
else
source $backend_dir/../common/libbackend.sh
fi
runUnittests

View File

@@ -1,7 +1,9 @@
--extra-index-url https://download.pytorch.org/whl/xpu
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.3.110+xpu
transformers
accelerate
torch
torch==2.3.1+cxx11.abi
oneccl_bind_pt==2.8.0+xpu
rerankers[transformers]
optimum[openvino]
setuptools

View File

@@ -1,6 +1,8 @@
--extra-index-url https://download.pytorch.org/whl/xpu
torch
torchvision
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.3.110+xpu
torch==2.3.1+cxx11.abi
torchvision==0.18.1+cxx11.abi
oneccl_bind_pt==2.3.100+xpu
optimum[openvino]
setuptools
rfdetr

View File

@@ -6,4 +6,4 @@ transformers
bitsandbytes
outetts
sentence-transformers==5.2.0
protobuf==6.33.4
protobuf==6.33.2

View File

@@ -6,4 +6,4 @@ transformers
bitsandbytes
outetts
sentence-transformers==5.2.0
protobuf==6.33.4
protobuf==6.33.2

View File

@@ -6,4 +6,4 @@ transformers
bitsandbytes
outetts
sentence-transformers==5.2.0
protobuf==6.33.4
protobuf==6.33.2

View File

@@ -8,4 +8,4 @@ bitsandbytes
outetts
bitsandbytes
sentence-transformers==5.2.0
protobuf==6.33.4
protobuf==6.33.2

View File

@@ -1,10 +1,13 @@
--extra-index-url https://download.pytorch.org/whl/xpu
torch
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.3.110+xpu
torch==2.5.1+cxx11.abi
oneccl_bind_pt==2.8.0+xpu
optimum[openvino]
llvmlite==0.43.0
numba==0.60.0
transformers
intel-extension-for-transformers
bitsandbytes
outetts
sentence-transformers==5.2.0
protobuf==6.33.4
protobuf==6.33.2

View File

@@ -1,5 +1,5 @@
grpcio==1.76.0
protobuf==6.33.4
protobuf==6.33.2
certifi
setuptools
scipy==1.15.1

View File

@@ -23,10 +23,6 @@ if [ "x${BUILD_PROFILE}" == "xl4t13" ]; then
PY_STANDALONE_TAG="20251120"
fi
if [ "x${BUILD_PROFILE}" == "xl4t12" ]; then
USE_PIP=true
fi
installRequirements
git clone https://github.com/microsoft/VibeVoice.git

View File

@@ -1,6 +1,8 @@
--extra-index-url https://download.pytorch.org/whl/xpu
torch
torchvision
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.3.110+xpu
torch==2.5.1+cxx11.abi
torchvision==0.20.1+cxx11.abi
oneccl_bind_pt==2.8.0+xpu
optimum[openvino]
setuptools
git+https://github.com/huggingface/diffusers

View File

@@ -1,7 +1,10 @@
--extra-index-url https://download.pytorch.org/whl/xpu
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.7.10+xpu
accelerate
torch
torch==2.7.0+xpu
transformers
optimum[openvino]
setuptools
bitsandbytes
bitsandbytes
oneccl_bind_pt==2.7.0+xpu

View File

@@ -61,18 +61,6 @@ func ModelInference(ctx context.Context, s string, messages schema.Messages, ima
return nil, err
}
// Detect thinking support after model load (only if not already detected)
// This needs to happen after LoadModel succeeds so the backend can render templates
if (c.ReasoningConfig.DisableReasoning == nil && c.ReasoningConfig.DisableReasoningTagPrefill == nil) && c.TemplateConfig.UseTokenizerTemplate {
modelOpts := grpcModelOpts(*c, o.SystemState.Model.ModelsPath)
config.DetectThinkingSupportFromBackend(ctx, c, inferenceModel, modelOpts)
// Update the config in the loader so it persists for future requests
cl.UpdateModelConfig(c.Name, func(cfg *config.ModelConfig) {
cfg.ReasoningConfig.DisableReasoning = c.ReasoningConfig.DisableReasoning
cfg.ReasoningConfig.DisableReasoningTagPrefill = c.ReasoningConfig.DisableReasoningTagPrefill
})
}
var protoMessages []*proto.Message
// if we are using the tokenizer template, we need to convert the messages to proto messages
// unless the prompt has already been tokenized (non-chat endpoints + functions)

View File

@@ -56,7 +56,7 @@ type RunCMD struct {
UseSubtleKeyComparison bool `env:"LOCALAI_SUBTLE_KEY_COMPARISON" default:"false" help:"If true, API Key validation comparisons will be performed using constant-time comparisons rather than simple equality. This trades off performance on each request for resiliancy against timing attacks." group:"hardening"`
DisableApiKeyRequirementForHttpGet bool `env:"LOCALAI_DISABLE_API_KEY_REQUIREMENT_FOR_HTTP_GET" default:"false" help:"If true, a valid API key is not required to issue GET requests to portions of the web ui. This should only be enabled in secure testing environments" group:"hardening"`
DisableMetricsEndpoint bool `env:"LOCALAI_DISABLE_METRICS_ENDPOINT,DISABLE_METRICS_ENDPOINT" default:"false" help:"Disable the /metrics endpoint" group:"api"`
HttpGetExemptedEndpoints []string `env:"LOCALAI_HTTP_GET_EXEMPTED_ENDPOINTS" default:"^/$,^/browse/?$,^/talk/?$,^/p2p/?$,^/chat/?$,^/image/?$,^/text2image/?$,^/tts/?$,^/static/.*$,^/swagger.*$" help:"If LOCALAI_DISABLE_API_KEY_REQUIREMENT_FOR_HTTP_GET is overriden to true, this is the list of endpoints to exempt. Only adjust this in case of a security incident or as a result of a personal security posture review" group:"hardening"`
HttpGetExemptedEndpoints []string `env:"LOCALAI_HTTP_GET_EXEMPTED_ENDPOINTS" default:"^/$,^/browse/?$,^/talk/?$,^/p2p/?$,^/chat/?$,^/text2image/?$,^/tts/?$,^/static/.*$,^/swagger.*$" help:"If LOCALAI_DISABLE_API_KEY_REQUIREMENT_FOR_HTTP_GET is overriden to true, this is the list of endpoints to exempt. Only adjust this in case of a security incident or as a result of a personal security posture review" group:"hardening"`
Peer2Peer bool `env:"LOCALAI_P2P,P2P" name:"p2p" default:"false" help:"Enable P2P mode" group:"p2p"`
Peer2PeerDHTInterval int `env:"LOCALAI_P2P_DHT_INTERVAL,P2P_DHT_INTERVAL" default:"360" name:"p2p-dht-interval" help:"Interval for DHT refresh (used during token generation)" group:"p2p"`
Peer2PeerOTPInterval int `env:"LOCALAI_P2P_OTP_INTERVAL,P2P_OTP_INTERVAL" default:"9000" name:"p2p-otp-interval" help:"Interval for OTP refresh (used during token generation)" group:"p2p"`
@@ -83,7 +83,6 @@ type RunCMD struct {
EnableTracing bool `env:"LOCALAI_ENABLE_TRACING,ENABLE_TRACING" help:"Enable API tracing" group:"api"`
TracingMaxItems int `env:"LOCALAI_TRACING_MAX_ITEMS" default:"1024" help:"Maximum number of traces to keep" group:"api"`
AgentJobRetentionDays int `env:"LOCALAI_AGENT_JOB_RETENTION_DAYS,AGENT_JOB_RETENTION_DAYS" default:"30" help:"Number of days to keep agent job history (default: 30)" group:"api"`
OpenResponsesStoreTTL string `env:"LOCALAI_OPEN_RESPONSES_STORE_TTL,OPEN_RESPONSES_STORE_TTL" default:"0" help:"TTL for Open Responses store (e.g., 1h, 30m, 0 = no expiration)" group:"api"`
Version bool
}
@@ -250,15 +249,6 @@ func (r *RunCMD) Run(ctx *cliContext.Context) error {
opts = append(opts, config.WithLRUEvictionRetryInterval(dur))
}
// Handle Open Responses store TTL
if r.OpenResponsesStoreTTL != "" && r.OpenResponsesStoreTTL != "0" {
dur, err := time.ParseDuration(r.OpenResponsesStoreTTL)
if err != nil {
return fmt.Errorf("invalid Open Responses store TTL: %w", err)
}
opts = append(opts, config.WithOpenResponsesStoreTTL(dur))
}
// split ":" to get backend name and the uri
for _, v := range r.ExternalGRPCBackends {
backend := v[:strings.IndexByte(v, ':')]

View File

@@ -86,8 +86,6 @@ type ApplicationConfig struct {
AgentJobRetentionDays int // Default: 30 days
OpenResponsesStoreTTL time.Duration // TTL for Open Responses store (0 = no expiration)
PathWithoutAuth []string
}
@@ -469,12 +467,6 @@ func WithAgentJobRetentionDays(days int) AppOption {
}
}
func WithOpenResponsesStoreTTL(ttl time.Duration) AppOption {
return func(o *ApplicationConfig) {
o.OpenResponsesStoreTTL = ttl
}
}
func WithEnforcedPredownloadScans(enforced bool) AppOption {
return func(o *ApplicationConfig) {
o.EnforcePredownloadScans = enforced
@@ -602,12 +594,6 @@ func (o *ApplicationConfig) ToRuntimeSettings() RuntimeSettings {
} else {
lruEvictionRetryInterval = "1s" // default
}
var openResponsesStoreTTL string
if o.OpenResponsesStoreTTL > 0 {
openResponsesStoreTTL = o.OpenResponsesStoreTTL.String()
} else {
openResponsesStoreTTL = "0" // default: no expiration
}
return RuntimeSettings{
WatchdogEnabled: &watchdogEnabled,
@@ -642,7 +628,6 @@ func (o *ApplicationConfig) ToRuntimeSettings() RuntimeSettings {
AutoloadBackendGalleries: &autoloadBackendGalleries,
ApiKeys: &apiKeys,
AgentJobRetentionDays: &agentJobRetentionDays,
OpenResponsesStoreTTL: &openResponsesStoreTTL,
}
}
@@ -784,14 +769,6 @@ func (o *ApplicationConfig) ApplyRuntimeSettings(settings *RuntimeSettings) (req
if settings.AgentJobRetentionDays != nil {
o.AgentJobRetentionDays = *settings.AgentJobRetentionDays
}
if settings.OpenResponsesStoreTTL != nil {
if *settings.OpenResponsesStoreTTL == "0" || *settings.OpenResponsesStoreTTL == "" {
o.OpenResponsesStoreTTL = 0 // No expiration
} else if dur, err := time.ParseDuration(*settings.OpenResponsesStoreTTL); err == nil {
o.OpenResponsesStoreTTL = dur
}
// This setting doesn't require restart, can be updated dynamically
}
// Note: ApiKeys requires special handling (merging with startup keys) - handled in caller
return requireRestart

View File

@@ -1,16 +1,10 @@
package config
import (
"context"
"github.com/mudler/LocalAI/pkg/grpc"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
"github.com/mudler/LocalAI/pkg/reasoning"
"github.com/mudler/LocalAI/pkg/xsysinfo"
"github.com/mudler/xlog"
gguf "github.com/gpustack/gguf-parser-go"
"github.com/gpustack/gguf-parser-go/util/ptr"
)
const (
@@ -68,25 +62,16 @@ func guessGGUFFromFile(cfg *ModelConfig, f *gguf.GGUFFile, defaultCtx int) {
cfg.NGPULayers = &defaultHigh
}
xlog.Debug("[gguf] guessDefaultsFromFile: NGPULayers set", "NGPULayers", cfg.NGPULayers, "modelName", f.Metadata().Name)
// identify from well known templates first, otherwise use the raw jinja template
chatTemplate, found := f.Header.MetadataKV.Get("tokenizer.chat_template")
if found {
// fill jinja template
cfg.modelTemplate = chatTemplate.ValueString()
}
// Thinking support detection is done after model load via DetectThinkingSupportFromBackend
xlog.Debug("guessDefaultsFromFile: NGPULayers set", "NGPULayers", cfg.NGPULayers)
// template estimations
if cfg.HasTemplate() {
// nothing to guess here
xlog.Debug("[gguf] guessDefaultsFromFile: template already set", "name", cfg.Name, "modelName", f.Metadata().Name)
xlog.Debug("guessDefaultsFromFile: template already set", "name", cfg.Name)
return
}
xlog.Debug("[gguf] Model file loaded", "file", cfg.ModelFileName(), "eosTokenID", f.Tokenizer().EOSTokenID, "bosTokenID", f.Tokenizer().BOSTokenID, "modelName", f.Metadata().Name, "architecture", f.Architecture().Architecture)
xlog.Debug("Model file loaded", "file", cfg.ModelFileName(), "eosTokenID", f.Tokenizer().EOSTokenID, "bosTokenID", f.Tokenizer().BOSTokenID, "modelName", f.Metadata().Name, "architecture", f.Architecture().Architecture)
// guess the name
if cfg.Name == "" {
@@ -98,49 +83,4 @@ func guessGGUFFromFile(cfg *ModelConfig, f *gguf.GGUFFile, defaultCtx int) {
cfg.FunctionsConfig.GrammarConfig.NoGrammar = true
cfg.Options = append(cfg.Options, "use_jinja:true")
cfg.KnownUsecaseStrings = append(cfg.KnownUsecaseStrings, "FLAG_CHAT")
}
// DetectThinkingSupportFromBackend calls the ModelMetadata gRPC method to detect
// if the model supports thinking mode and if the template ends with a thinking start token.
// This should be called after the model is loaded.
// The results are stored in cfg.SupportsThinking and cfg.ThinkingForcedOpen.
func DetectThinkingSupportFromBackend(ctx context.Context, cfg *ModelConfig, backendClient grpc.Backend, modelOptions *pb.ModelOptions) {
if backendClient == nil {
xlog.Debug("[gguf] DetectThinkingSupportFromBackend: backend client is nil, skipping detection")
return
}
if modelOptions == nil {
xlog.Debug("[gguf] DetectThinkingSupportFromBackend: model options is nil, skipping detection")
return
}
// Only detect for llama-cpp backend when using tokenizer templates
if cfg.Backend != "llama-cpp" || !cfg.TemplateConfig.UseTokenizerTemplate {
xlog.Debug("[gguf] DetectThinkingSupportFromBackend: skipping detection", "backend", cfg.Backend, "useTokenizerTemplate", cfg.TemplateConfig.UseTokenizerTemplate)
return
}
metadata, err := backendClient.ModelMetadata(ctx, modelOptions)
if err != nil {
xlog.Warn("[gguf] DetectThinkingSupportFromBackend: failed to get model metadata", "error", err)
return
}
if metadata != nil {
cfg.ReasoningConfig.DisableReasoning = ptr.To(!metadata.SupportsThinking)
// Use the rendered template to detect if thinking token is at the end
// This reuses the existing DetectThinkingStartToken function
if metadata.RenderedTemplate != "" {
thinkingStartToken := reasoning.DetectThinkingStartToken(metadata.RenderedTemplate, &cfg.ReasoningConfig)
thinkingForcedOpen := thinkingStartToken != ""
cfg.ReasoningConfig.DisableReasoningTagPrefill = ptr.To(!thinkingForcedOpen)
xlog.Debug("[gguf] DetectThinkingSupportFromBackend: thinking support detected", "supports_thinking", metadata.SupportsThinking, "thinking_forced_open", thinkingForcedOpen, "thinking_start_token", thinkingStartToken)
} else {
cfg.ReasoningConfig.DisableReasoningTagPrefill = ptr.To(true)
xlog.Debug("[gguf] DetectThinkingSupportFromBackend: thinking support detected", "supports_thinking", metadata.SupportsThinking, "thinking_forced_open", false)
}
}
}

View File

@@ -10,7 +10,6 @@ import (
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/LocalAI/pkg/downloader"
"github.com/mudler/LocalAI/pkg/functions"
"github.com/mudler/LocalAI/pkg/reasoning"
"github.com/mudler/cogito"
"gopkg.in/yaml.v3"
)
@@ -31,7 +30,6 @@ type TTSConfig struct {
// @Description ModelConfig represents a model configuration
type ModelConfig struct {
modelConfigFile string `yaml:"-" json:"-"`
modelTemplate string `yaml:"-" json:"-"`
schema.PredictionOptions `yaml:"parameters,omitempty" json:"parameters,omitempty"`
Name string `yaml:"name,omitempty" json:"name,omitempty"`
@@ -53,7 +51,6 @@ type ModelConfig struct {
ResponseFormatMap map[string]interface{} `yaml:"-" json:"-"`
FunctionsConfig functions.FunctionsConfig `yaml:"function,omitempty" json:"function,omitempty"`
ReasoningConfig reasoning.Config `yaml:"reasoning,omitempty" json:"reasoning,omitempty"`
FeatureFlag FeatureFlag `yaml:"feature_flags,omitempty" json:"feature_flags,omitempty"` // Feature Flag registry. We move fast, and features may break on a per model/backend basis. Registry for (usually temporary) flags that indicate aborting something early.
// LLM configs (GPT4ALL, Llama.cpp, ...)
@@ -524,11 +521,6 @@ func (c *ModelConfig) GetModelConfigFile() string {
return c.modelConfigFile
}
// GetModelTemplate returns the model's chat template if available
func (c *ModelConfig) GetModelTemplate() string {
return c.modelTemplate
}
type ModelConfigUsecase int
const (

View File

@@ -246,17 +246,6 @@ func (bcl *ModelConfigLoader) RemoveModelConfig(m string) {
delete(bcl.configs, m)
}
// UpdateModelConfig updates an existing model config in the loader.
// This is useful for updating runtime-detected properties like thinking support.
func (bcl *ModelConfigLoader) UpdateModelConfig(m string, updater func(*ModelConfig)) {
bcl.Lock()
defer bcl.Unlock()
if cfg, exists := bcl.configs[m]; exists {
updater(&cfg)
bcl.configs[m] = cfg
}
}
// Preload prepare models if they are not local but url or huggingface repositories
func (bcl *ModelConfigLoader) Preload(modelPath string) error {
bcl.Lock()

View File

@@ -60,7 +60,4 @@ type RuntimeSettings struct {
// Agent settings
AgentJobRetentionDays *int `json:"agent_job_retention_days,omitempty"`
// Open Responses settings
OpenResponsesStoreTTL *string `json:"open_responses_store_ttl,omitempty"` // TTL for stored responses (e.g., "1h", "30m", "0" = no expiration)
}

View File

@@ -63,25 +63,6 @@ func (m *GalleryBackend) IsMeta() bool {
return len(m.CapabilitiesMap) > 0 && m.URI == ""
}
// IsCompatibleWith checks if the backend is compatible with the current system capability.
// For meta backends, it checks if any of the capabilities in the map match the system capability.
// For concrete backends, it delegates to SystemState.IsBackendCompatible.
func (m *GalleryBackend) IsCompatibleWith(systemState *system.SystemState) bool {
if systemState == nil {
return true
}
// Meta backends are compatible if the system capability matches one of the keys
if m.IsMeta() {
capability := systemState.Capability(m.CapabilitiesMap)
_, exists := m.CapabilitiesMap[capability]
return exists
}
// For concrete backends, delegate to the system package
return systemState.IsBackendCompatible(m.Name, m.URI)
}
func (m *GalleryBackend) SetInstalled(installed bool) {
m.Installed = installed
}

View File

@@ -172,252 +172,6 @@ var _ = Describe("Gallery Backends", func() {
Expect(nilMetaBackend.IsMeta()).To(BeFalse())
})
It("should check IsCompatibleWith correctly for meta backends", func() {
metaBackend := &GalleryBackend{
Metadata: Metadata{
Name: "meta-backend",
},
CapabilitiesMap: map[string]string{
"nvidia": "nvidia-backend",
"amd": "amd-backend",
"default": "default-backend",
},
}
// Test with nil state - should be compatible
Expect(metaBackend.IsCompatibleWith(nil)).To(BeTrue())
// Test with NVIDIA system - should be compatible (has nvidia key)
nvidiaState := &system.SystemState{GPUVendor: "nvidia", VRAM: 8 * 1024 * 1024 * 1024}
Expect(metaBackend.IsCompatibleWith(nvidiaState)).To(BeTrue())
// Test with default (no GPU) - should be compatible (has default key)
defaultState := &system.SystemState{}
Expect(metaBackend.IsCompatibleWith(defaultState)).To(BeTrue())
})
Describe("IsCompatibleWith for concrete backends", func() {
Context("CPU backends", func() {
It("should be compatible on all systems", func() {
cpuBackend := &GalleryBackend{
Metadata: Metadata{
Name: "cpu-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-cpu-llama-cpp",
}
Expect(cpuBackend.IsCompatibleWith(&system.SystemState{})).To(BeTrue())
Expect(cpuBackend.IsCompatibleWith(&system.SystemState{GPUVendor: system.Nvidia, VRAM: 8 * 1024 * 1024 * 1024})).To(BeTrue())
Expect(cpuBackend.IsCompatibleWith(&system.SystemState{GPUVendor: system.AMD, VRAM: 8 * 1024 * 1024 * 1024})).To(BeTrue())
})
})
Context("Darwin/Metal backends", func() {
When("running on darwin", func() {
BeforeEach(func() {
if runtime.GOOS != "darwin" {
Skip("Skipping darwin-specific tests on non-darwin system")
}
})
It("should be compatible for MLX backend", func() {
mlxBackend := &GalleryBackend{
Metadata: Metadata{
Name: "mlx",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-metal-darwin-arm64-mlx",
}
Expect(mlxBackend.IsCompatibleWith(&system.SystemState{})).To(BeTrue())
})
It("should be compatible for metal-llama-cpp backend", func() {
metalBackend := &GalleryBackend{
Metadata: Metadata{
Name: "metal-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-metal-darwin-arm64-llama-cpp",
}
Expect(metalBackend.IsCompatibleWith(&system.SystemState{})).To(BeTrue())
})
})
When("running on non-darwin", func() {
BeforeEach(func() {
if runtime.GOOS == "darwin" {
Skip("Skipping non-darwin-specific tests on darwin system")
}
})
It("should NOT be compatible for MLX backend", func() {
mlxBackend := &GalleryBackend{
Metadata: Metadata{
Name: "mlx",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-metal-darwin-arm64-mlx",
}
Expect(mlxBackend.IsCompatibleWith(&system.SystemState{})).To(BeFalse())
})
It("should NOT be compatible for metal-llama-cpp backend", func() {
metalBackend := &GalleryBackend{
Metadata: Metadata{
Name: "metal-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-metal-darwin-arm64-llama-cpp",
}
Expect(metalBackend.IsCompatibleWith(&system.SystemState{})).To(BeFalse())
})
})
})
Context("NVIDIA/CUDA backends", func() {
When("running on non-darwin", func() {
BeforeEach(func() {
if runtime.GOOS == "darwin" {
Skip("Skipping CUDA tests on darwin system")
}
})
It("should NOT be compatible without nvidia GPU", func() {
cudaBackend := &GalleryBackend{
Metadata: Metadata{
Name: "cuda12-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-gpu-nvidia-cuda-12-llama-cpp",
}
Expect(cudaBackend.IsCompatibleWith(&system.SystemState{})).To(BeFalse())
Expect(cudaBackend.IsCompatibleWith(&system.SystemState{GPUVendor: system.AMD, VRAM: 8 * 1024 * 1024 * 1024})).To(BeFalse())
})
It("should be compatible with nvidia GPU", func() {
cudaBackend := &GalleryBackend{
Metadata: Metadata{
Name: "cuda12-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-gpu-nvidia-cuda-12-llama-cpp",
}
Expect(cudaBackend.IsCompatibleWith(&system.SystemState{GPUVendor: system.Nvidia, VRAM: 8 * 1024 * 1024 * 1024})).To(BeTrue())
})
It("should be compatible with cuda13 backend on nvidia GPU", func() {
cuda13Backend := &GalleryBackend{
Metadata: Metadata{
Name: "cuda13-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-gpu-nvidia-cuda-13-llama-cpp",
}
Expect(cuda13Backend.IsCompatibleWith(&system.SystemState{GPUVendor: system.Nvidia, VRAM: 8 * 1024 * 1024 * 1024})).To(BeTrue())
})
})
})
Context("AMD/ROCm backends", func() {
When("running on non-darwin", func() {
BeforeEach(func() {
if runtime.GOOS == "darwin" {
Skip("Skipping AMD/ROCm tests on darwin system")
}
})
It("should NOT be compatible without AMD GPU", func() {
rocmBackend := &GalleryBackend{
Metadata: Metadata{
Name: "rocm-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-gpu-rocm-hipblas-llama-cpp",
}
Expect(rocmBackend.IsCompatibleWith(&system.SystemState{})).To(BeFalse())
Expect(rocmBackend.IsCompatibleWith(&system.SystemState{GPUVendor: system.Nvidia, VRAM: 8 * 1024 * 1024 * 1024})).To(BeFalse())
})
It("should be compatible with AMD GPU", func() {
rocmBackend := &GalleryBackend{
Metadata: Metadata{
Name: "rocm-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-gpu-rocm-hipblas-llama-cpp",
}
Expect(rocmBackend.IsCompatibleWith(&system.SystemState{GPUVendor: system.AMD, VRAM: 8 * 1024 * 1024 * 1024})).To(BeTrue())
})
It("should be compatible with hipblas backend on AMD GPU", func() {
hipBackend := &GalleryBackend{
Metadata: Metadata{
Name: "hip-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-gpu-hip-llama-cpp",
}
Expect(hipBackend.IsCompatibleWith(&system.SystemState{GPUVendor: system.AMD, VRAM: 8 * 1024 * 1024 * 1024})).To(BeTrue())
})
})
})
Context("Intel/SYCL backends", func() {
When("running on non-darwin", func() {
BeforeEach(func() {
if runtime.GOOS == "darwin" {
Skip("Skipping Intel/SYCL tests on darwin system")
}
})
It("should NOT be compatible without Intel GPU", func() {
intelBackend := &GalleryBackend{
Metadata: Metadata{
Name: "intel-sycl-f16-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-gpu-intel-sycl-f16-llama-cpp",
}
Expect(intelBackend.IsCompatibleWith(&system.SystemState{})).To(BeFalse())
Expect(intelBackend.IsCompatibleWith(&system.SystemState{GPUVendor: system.Nvidia, VRAM: 8 * 1024 * 1024 * 1024})).To(BeFalse())
})
It("should be compatible with Intel GPU", func() {
intelBackend := &GalleryBackend{
Metadata: Metadata{
Name: "intel-sycl-f16-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-gpu-intel-sycl-f16-llama-cpp",
}
Expect(intelBackend.IsCompatibleWith(&system.SystemState{GPUVendor: system.Intel, VRAM: 8 * 1024 * 1024 * 1024})).To(BeTrue())
})
It("should be compatible with intel-sycl-f32 backend on Intel GPU", func() {
intelF32Backend := &GalleryBackend{
Metadata: Metadata{
Name: "intel-sycl-f32-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-gpu-intel-sycl-f32-llama-cpp",
}
Expect(intelF32Backend.IsCompatibleWith(&system.SystemState{GPUVendor: system.Intel, VRAM: 8 * 1024 * 1024 * 1024})).To(BeTrue())
})
It("should be compatible with intel-transformers backend on Intel GPU", func() {
intelTransformersBackend := &GalleryBackend{
Metadata: Metadata{
Name: "intel-transformers",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-intel-transformers",
}
Expect(intelTransformersBackend.IsCompatibleWith(&system.SystemState{GPUVendor: system.Intel, VRAM: 8 * 1024 * 1024 * 1024})).To(BeTrue())
})
})
})
Context("Vulkan backends", func() {
It("should be compatible on CPU-only systems", func() {
// Vulkan backends don't have a specific GPU vendor requirement in the current logic
// They are compatible if no other GPU-specific pattern matches
vulkanBackend := &GalleryBackend{
Metadata: Metadata{
Name: "vulkan-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-gpu-vulkan-llama-cpp",
}
// Vulkan doesn't have vendor-specific filtering in current implementation
Expect(vulkanBackend.IsCompatibleWith(&system.SystemState{})).To(BeTrue())
})
})
})
It("should find best backend from meta based on system capabilities", func() {
metaBackend := &GalleryBackend{

View File

@@ -226,16 +226,6 @@ func AvailableGalleryModels(galleries []config.Gallery, systemState *system.Syst
// List available backends
func AvailableBackends(galleries []config.Gallery, systemState *system.SystemState) (GalleryElements[*GalleryBackend], error) {
return availableBackendsWithFilter(galleries, systemState, true)
}
// AvailableBackendsUnfiltered returns all available backends without filtering by system capability.
func AvailableBackendsUnfiltered(galleries []config.Gallery, systemState *system.SystemState) (GalleryElements[*GalleryBackend], error) {
return availableBackendsWithFilter(galleries, systemState, false)
}
// availableBackendsWithFilter is a helper function that lists available backends with optional filtering.
func availableBackendsWithFilter(galleries []config.Gallery, systemState *system.SystemState, filterByCapability bool) (GalleryElements[*GalleryBackend], error) {
var backends []*GalleryBackend
systemBackends, err := ListSystemBackends(systemState)
@@ -251,17 +241,7 @@ func availableBackendsWithFilter(galleries []config.Gallery, systemState *system
if err != nil {
return nil, err
}
// Filter backends by system capability if requested
if filterByCapability {
for _, backend := range galleryBackends {
if backend.IsCompatibleWith(systemState) {
backends = append(backends, backend)
}
}
} else {
backends = append(backends, galleryBackends...)
}
backends = append(backends, galleryBackends...)
}
return backends, nil

View File

@@ -108,15 +108,7 @@ func API(application *application.Application) (*echo.Echo, error) {
req := c.Request()
res := c.Response()
err := next(c)
// Fix for #7989: Reduce log verbosity of Web UI polling
// If the path is /api/operations and the request was successful (200),
// we log it at DEBUG level (hidden by default) instead of INFO.
if req.URL.Path == "/api/operations" && res.Status == 200 {
xlog.Debug("HTTP request", "method", req.Method, "path", req.URL.Path, "status", res.Status)
} else {
xlog.Info("HTTP request", "method", req.Method, "path", req.URL.Path, "status", res.Status)
}
xlog.Info("HTTP request", "method", req.Method, "path", req.URL.Path, "status", res.Status)
return err
}
})
@@ -193,8 +185,6 @@ func API(application *application.Application) (*echo.Echo, error) {
corsConfig.AllowOrigins = strings.Split(application.ApplicationConfig().CORSAllowOrigins, ",")
}
e.Use(middleware.CORSWithConfig(corsConfig))
} else {
e.Use(middleware.CORS())
}
// CSRF middleware
@@ -215,8 +205,6 @@ func API(application *application.Application) (*echo.Echo, error) {
routes.RegisterLocalAIRoutes(e, requestExtractor, application.ModelConfigLoader(), application.ModelLoader(), application.ApplicationConfig(), application.GalleryService(), opcache, application.TemplatesEvaluator(), application)
routes.RegisterOpenAIRoutes(e, requestExtractor, application)
routes.RegisterAnthropicRoutes(e, requestExtractor, application)
routes.RegisterOpenResponsesRoutes(e, requestExtractor, application)
if !application.ApplicationConfig().DisableWebUI {
routes.RegisterUIAPIRoutes(e, application.ModelConfigLoader(), application.ModelLoader(), application.ApplicationConfig(), application.GalleryService(), opcache, application)
routes.RegisterUIRoutes(e, application.ModelConfigLoader(), application.ModelLoader(), application.ApplicationConfig(), application.GalleryService())

View File

@@ -1,537 +0,0 @@
package anthropic
import (
"encoding/json"
"fmt"
"github.com/google/uuid"
"github.com/labstack/echo/v4"
"github.com/mudler/LocalAI/core/backend"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/http/middleware"
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/LocalAI/core/templates"
"github.com/mudler/LocalAI/pkg/functions"
"github.com/mudler/LocalAI/pkg/model"
"github.com/mudler/xlog"
)
// MessagesEndpoint is the Anthropic Messages API endpoint
// https://docs.anthropic.com/claude/reference/messages_post
// @Summary Generate a message response for the given messages and model.
// @Param request body schema.AnthropicRequest true "query params"
// @Success 200 {object} schema.AnthropicResponse "Response"
// @Router /v1/messages [post]
func MessagesEndpoint(cl *config.ModelConfigLoader, ml *model.ModelLoader, evaluator *templates.Evaluator, appConfig *config.ApplicationConfig) echo.HandlerFunc {
return func(c echo.Context) error {
id := uuid.New().String()
input, ok := c.Get(middleware.CONTEXT_LOCALS_KEY_LOCALAI_REQUEST).(*schema.AnthropicRequest)
if !ok || input.Model == "" {
return sendAnthropicError(c, 400, "invalid_request_error", "model is required")
}
cfg, ok := c.Get(middleware.CONTEXT_LOCALS_KEY_MODEL_CONFIG).(*config.ModelConfig)
if !ok || cfg == nil {
return sendAnthropicError(c, 400, "invalid_request_error", "model configuration not found")
}
if input.MaxTokens <= 0 {
return sendAnthropicError(c, 400, "invalid_request_error", "max_tokens is required and must be greater than 0")
}
xlog.Debug("Anthropic Messages endpoint configuration read", "config", cfg)
// Convert Anthropic messages to OpenAI format for internal processing
openAIMessages := convertAnthropicToOpenAIMessages(input)
// Convert Anthropic tools to internal Functions format
funcs, shouldUseFn := convertAnthropicTools(input, cfg)
// Create an OpenAI-compatible request for internal processing
openAIReq := &schema.OpenAIRequest{
PredictionOptions: schema.PredictionOptions{
BasicModelRequest: schema.BasicModelRequest{Model: input.Model},
Temperature: input.Temperature,
TopK: input.TopK,
TopP: input.TopP,
Maxtokens: &input.MaxTokens,
},
Messages: openAIMessages,
Stream: input.Stream,
Context: input.Context,
Cancel: input.Cancel,
}
// Set stop sequences
if len(input.StopSequences) > 0 {
openAIReq.Stop = input.StopSequences
}
// Merge config settings
if input.Temperature != nil {
cfg.Temperature = input.Temperature
}
if input.TopK != nil {
cfg.TopK = input.TopK
}
if input.TopP != nil {
cfg.TopP = input.TopP
}
cfg.Maxtokens = &input.MaxTokens
if len(input.StopSequences) > 0 {
cfg.StopWords = append(cfg.StopWords, input.StopSequences...)
}
// Template the prompt with tools if available
predInput := evaluator.TemplateMessages(*openAIReq, openAIReq.Messages, cfg, funcs, shouldUseFn)
xlog.Debug("Anthropic Messages - Prompt (after templating)", "prompt", predInput)
if input.Stream {
return handleAnthropicStream(c, id, input, cfg, ml, predInput, openAIReq, funcs, shouldUseFn)
}
return handleAnthropicNonStream(c, id, input, cfg, ml, predInput, openAIReq, funcs, shouldUseFn)
}
}
func handleAnthropicNonStream(c echo.Context, id string, input *schema.AnthropicRequest, cfg *config.ModelConfig, ml *model.ModelLoader, predInput string, openAIReq *schema.OpenAIRequest, funcs functions.Functions, shouldUseFn bool) error {
images := []string{}
for _, m := range openAIReq.Messages {
images = append(images, m.StringImages...)
}
predFunc, err := backend.ModelInference(
input.Context, predInput, openAIReq.Messages, images, nil, nil, ml, cfg, nil, nil, nil, "", "", nil, nil, nil)
if err != nil {
xlog.Error("Anthropic model inference failed", "error", err)
return sendAnthropicError(c, 500, "api_error", fmt.Sprintf("model inference failed: %v", err))
}
prediction, err := predFunc()
if err != nil {
xlog.Error("Anthropic prediction failed", "error", err)
return sendAnthropicError(c, 500, "api_error", fmt.Sprintf("prediction failed: %v", err))
}
result := backend.Finetune(*cfg, predInput, prediction.Response)
// Check if the result contains tool calls
toolCalls := functions.ParseFunctionCall(result, cfg.FunctionsConfig)
var contentBlocks []schema.AnthropicContentBlock
var stopReason string
if shouldUseFn && len(toolCalls) > 0 {
// Model wants to use tools
stopReason = "tool_use"
for _, tc := range toolCalls {
// Parse arguments as JSON
var inputArgs map[string]interface{}
if err := json.Unmarshal([]byte(tc.Arguments), &inputArgs); err != nil {
xlog.Warn("Failed to parse tool call arguments as JSON", "error", err, "args", tc.Arguments)
inputArgs = map[string]interface{}{"raw": tc.Arguments}
}
contentBlocks = append(contentBlocks, schema.AnthropicContentBlock{
Type: "tool_use",
ID: fmt.Sprintf("toolu_%s_%d", id, len(contentBlocks)),
Name: tc.Name,
Input: inputArgs,
})
}
// Add any text content before the tool calls
textContent := functions.ParseTextContent(result, cfg.FunctionsConfig)
if textContent != "" {
// Prepend text block
contentBlocks = append([]schema.AnthropicContentBlock{{Type: "text", Text: textContent}}, contentBlocks...)
}
} else {
// Normal text response
stopReason = "end_turn"
contentBlocks = []schema.AnthropicContentBlock{
{Type: "text", Text: result},
}
}
resp := &schema.AnthropicResponse{
ID: fmt.Sprintf("msg_%s", id),
Type: "message",
Role: "assistant",
Model: input.Model,
StopReason: &stopReason,
Content: contentBlocks,
Usage: schema.AnthropicUsage{
InputTokens: prediction.Usage.Prompt,
OutputTokens: prediction.Usage.Completion,
},
}
if respData, err := json.Marshal(resp); err == nil {
xlog.Debug("Anthropic Response", "response", string(respData))
}
return c.JSON(200, resp)
}
func handleAnthropicStream(c echo.Context, id string, input *schema.AnthropicRequest, cfg *config.ModelConfig, ml *model.ModelLoader, predInput string, openAIReq *schema.OpenAIRequest, funcs functions.Functions, shouldUseFn bool) error {
c.Response().Header().Set("Content-Type", "text/event-stream")
c.Response().Header().Set("Cache-Control", "no-cache")
c.Response().Header().Set("Connection", "keep-alive")
// Create OpenAI messages for inference
openAIMessages := openAIReq.Messages
images := []string{}
for _, m := range openAIMessages {
images = append(images, m.StringImages...)
}
// Send message_start event
messageStart := schema.AnthropicStreamEvent{
Type: "message_start",
Message: &schema.AnthropicStreamMessage{
ID: fmt.Sprintf("msg_%s", id),
Type: "message",
Role: "assistant",
Content: []schema.AnthropicContentBlock{},
Model: input.Model,
Usage: schema.AnthropicUsage{InputTokens: 0, OutputTokens: 0},
},
}
sendAnthropicSSE(c, messageStart)
// Track accumulated content for tool call detection
accumulatedContent := ""
currentBlockIndex := 0
inToolCall := false
toolCallsEmitted := 0
// Send initial content_block_start event
contentBlockStart := schema.AnthropicStreamEvent{
Type: "content_block_start",
Index: currentBlockIndex,
ContentBlock: &schema.AnthropicContentBlock{Type: "text", Text: ""},
}
sendAnthropicSSE(c, contentBlockStart)
// Stream content deltas
tokenCallback := func(token string, usage backend.TokenUsage) bool {
accumulatedContent += token
// If we're using functions, try to detect tool calls incrementally
if shouldUseFn {
cleanedResult := functions.CleanupLLMResult(accumulatedContent, cfg.FunctionsConfig)
// Try parsing for tool calls
toolCalls := functions.ParseFunctionCall(cleanedResult, cfg.FunctionsConfig)
// If we detected new tool calls and haven't emitted them yet
if len(toolCalls) > toolCallsEmitted {
// Stop the current text block if we were in one
if !inToolCall && currentBlockIndex == 0 {
sendAnthropicSSE(c, schema.AnthropicStreamEvent{
Type: "content_block_stop",
Index: currentBlockIndex,
})
currentBlockIndex++
inToolCall = true
}
// Emit new tool calls
for i := toolCallsEmitted; i < len(toolCalls); i++ {
tc := toolCalls[i]
// Send content_block_start for tool_use
sendAnthropicSSE(c, schema.AnthropicStreamEvent{
Type: "content_block_start",
Index: currentBlockIndex,
ContentBlock: &schema.AnthropicContentBlock{
Type: "tool_use",
ID: fmt.Sprintf("toolu_%s_%d", id, i),
Name: tc.Name,
},
})
// Send input_json_delta with the arguments
sendAnthropicSSE(c, schema.AnthropicStreamEvent{
Type: "content_block_delta",
Index: currentBlockIndex,
Delta: &schema.AnthropicStreamDelta{
Type: "input_json_delta",
PartialJSON: tc.Arguments,
},
})
// Send content_block_stop
sendAnthropicSSE(c, schema.AnthropicStreamEvent{
Type: "content_block_stop",
Index: currentBlockIndex,
})
currentBlockIndex++
}
toolCallsEmitted = len(toolCalls)
return true
}
}
// Send regular text delta if not in tool call mode
if !inToolCall {
delta := schema.AnthropicStreamEvent{
Type: "content_block_delta",
Index: 0,
Delta: &schema.AnthropicStreamDelta{
Type: "text_delta",
Text: token,
},
}
sendAnthropicSSE(c, delta)
}
return true
}
predFunc, err := backend.ModelInference(
input.Context, predInput, openAIMessages, images, nil, nil, ml, cfg, nil, nil, tokenCallback, "", "", nil, nil, nil)
if err != nil {
xlog.Error("Anthropic stream model inference failed", "error", err)
return sendAnthropicError(c, 500, "api_error", fmt.Sprintf("model inference failed: %v", err))
}
prediction, err := predFunc()
if err != nil {
xlog.Error("Anthropic stream prediction failed", "error", err)
return sendAnthropicError(c, 500, "api_error", fmt.Sprintf("prediction failed: %v", err))
}
// Send content_block_stop event for last block if we didn't close it yet
if !inToolCall {
contentBlockStop := schema.AnthropicStreamEvent{
Type: "content_block_stop",
Index: 0,
}
sendAnthropicSSE(c, contentBlockStop)
}
// Determine stop reason
stopReason := "end_turn"
if toolCallsEmitted > 0 {
stopReason = "tool_use"
}
// Send message_delta event with stop_reason
messageDelta := schema.AnthropicStreamEvent{
Type: "message_delta",
Delta: &schema.AnthropicStreamDelta{
StopReason: &stopReason,
},
Usage: &schema.AnthropicUsage{
OutputTokens: prediction.Usage.Completion,
},
}
sendAnthropicSSE(c, messageDelta)
// Send message_stop event
messageStop := schema.AnthropicStreamEvent{
Type: "message_stop",
}
sendAnthropicSSE(c, messageStop)
return nil
}
func sendAnthropicSSE(c echo.Context, event schema.AnthropicStreamEvent) {
data, err := json.Marshal(event)
if err != nil {
xlog.Error("Failed to marshal SSE event", "error", err)
return
}
fmt.Fprintf(c.Response().Writer, "event: %s\ndata: %s\n\n", event.Type, string(data))
c.Response().Flush()
}
func sendAnthropicError(c echo.Context, statusCode int, errorType, message string) error {
resp := schema.AnthropicErrorResponse{
Type: "error",
Error: schema.AnthropicError{
Type: errorType,
Message: message,
},
}
return c.JSON(statusCode, resp)
}
func convertAnthropicToOpenAIMessages(input *schema.AnthropicRequest) []schema.Message {
var messages []schema.Message
// Add system message if present
if input.System != "" {
messages = append(messages, schema.Message{
Role: "system",
StringContent: input.System,
Content: input.System,
})
}
// Convert Anthropic messages to OpenAI format
for _, msg := range input.Messages {
openAIMsg := schema.Message{
Role: msg.Role,
}
// Handle content (can be string or array of content blocks)
switch content := msg.Content.(type) {
case string:
openAIMsg.StringContent = content
openAIMsg.Content = content
case []interface{}:
// Handle array of content blocks
var textContent string
var stringImages []string
var toolCalls []schema.ToolCall
toolCallIndex := 0
for _, block := range content {
if blockMap, ok := block.(map[string]interface{}); ok {
blockType, _ := blockMap["type"].(string)
switch blockType {
case "text":
if text, ok := blockMap["text"].(string); ok {
textContent += text
}
case "image":
// Handle image content
if source, ok := blockMap["source"].(map[string]interface{}); ok {
if sourceType, ok := source["type"].(string); ok && sourceType == "base64" {
if data, ok := source["data"].(string); ok {
mediaType, _ := source["media_type"].(string)
// Format as data URI
dataURI := fmt.Sprintf("data:%s;base64,%s", mediaType, data)
stringImages = append(stringImages, dataURI)
}
}
}
case "tool_use":
// Convert tool_use to ToolCall format
toolID, _ := blockMap["id"].(string)
toolName, _ := blockMap["name"].(string)
toolInput := blockMap["input"]
// Serialize input to JSON string
inputJSON, err := json.Marshal(toolInput)
if err != nil {
xlog.Warn("Failed to marshal tool input", "error", err)
inputJSON = []byte("{}")
}
toolCalls = append(toolCalls, schema.ToolCall{
Index: toolCallIndex,
ID: toolID,
Type: "function",
FunctionCall: schema.FunctionCall{
Name: toolName,
Arguments: string(inputJSON),
},
})
toolCallIndex++
case "tool_result":
// Convert tool_result to a message with role "tool"
// This is handled by creating a separate message after this block
// For now, we'll add it as text content
toolUseID, _ := blockMap["tool_use_id"].(string)
isError := false
if isErrorPtr, ok := blockMap["is_error"].(*bool); ok && isErrorPtr != nil {
isError = *isErrorPtr
}
var resultText string
if resultContent, ok := blockMap["content"]; ok {
switch rc := resultContent.(type) {
case string:
resultText = rc
case []interface{}:
// Array of content blocks
for _, cb := range rc {
if cbMap, ok := cb.(map[string]interface{}); ok {
if cbMap["type"] == "text" {
if text, ok := cbMap["text"].(string); ok {
resultText += text
}
}
}
}
}
}
// Add tool result as a tool role message
// We need to handle this differently - create a new message
if msg.Role == "user" {
// Store tool result info for creating separate message
prefix := ""
if isError {
prefix = "Error: "
}
textContent += fmt.Sprintf("\n[Tool Result for %s]: %s%s", toolUseID, prefix, resultText)
}
}
}
}
openAIMsg.StringContent = textContent
openAIMsg.Content = textContent
openAIMsg.StringImages = stringImages
// Add tool calls if present
if len(toolCalls) > 0 {
openAIMsg.ToolCalls = toolCalls
}
}
messages = append(messages, openAIMsg)
}
return messages
}
// convertAnthropicTools converts Anthropic tools to internal Functions format
func convertAnthropicTools(input *schema.AnthropicRequest, cfg *config.ModelConfig) (functions.Functions, bool) {
if len(input.Tools) == 0 {
return nil, false
}
var funcs functions.Functions
for _, tool := range input.Tools {
f := functions.Function{
Name: tool.Name,
Description: tool.Description,
Parameters: tool.InputSchema,
}
funcs = append(funcs, f)
}
// Handle tool_choice
if input.ToolChoice != nil {
switch tc := input.ToolChoice.(type) {
case string:
// "auto", "any", or "none"
if tc == "any" {
// Force the model to use one of the tools
cfg.SetFunctionCallString("required")
} else if tc == "none" {
// Don't use tools
return nil, false
}
// "auto" is the default - let model decide
case map[string]interface{}:
// Specific tool selection: {"type": "tool", "name": "tool_name"}
if tcType, ok := tc["type"].(string); ok && tcType == "tool" {
if name, ok := tc["name"].(string); ok {
// Force specific tool
cfg.SetFunctionCallString(name)
}
}
}
}
return funcs, len(funcs) > 0 && cfg.ShouldUseFunctions()
}

View File

@@ -11,7 +11,6 @@ import (
"github.com/labstack/echo/v4"
"github.com/mudler/LocalAI/core/application"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/http/endpoints/openresponses"
"github.com/mudler/LocalAI/core/p2p"
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/xlog"
@@ -85,16 +84,6 @@ func UpdateSettingsEndpoint(app *application.Application) echo.HandlerFunc {
})
}
}
if settings.OpenResponsesStoreTTL != nil {
if *settings.OpenResponsesStoreTTL != "0" && *settings.OpenResponsesStoreTTL != "" {
if _, err := time.ParseDuration(*settings.OpenResponsesStoreTTL); err != nil {
return c.JSON(http.StatusBadRequest, schema.SettingsResponse{
Success: false,
Error: "Invalid open_responses_store_ttl format: " + err.Error(),
})
}
}
}
// Save to file
if appConfig.DynamicConfigsDir == "" {
@@ -155,22 +144,6 @@ func UpdateSettingsEndpoint(app *application.Application) echo.HandlerFunc {
xlog.Info("Updated LRU eviction retry settings", "maxRetries", maxRetries, "retryInterval", retryInterval)
}
// Update Open Responses store TTL dynamically
if settings.OpenResponsesStoreTTL != nil {
ttl := time.Duration(0)
if *settings.OpenResponsesStoreTTL != "0" && *settings.OpenResponsesStoreTTL != "" {
if dur, err := time.ParseDuration(*settings.OpenResponsesStoreTTL); err == nil {
ttl = dur
} else {
xlog.Warn("Invalid Open Responses store TTL format", "ttl", *settings.OpenResponsesStoreTTL, "error", err)
}
}
// Import the store package
store := openresponses.GetGlobalStore()
store.SetTTL(ttl)
xlog.Info("Updated Open Responses store TTL", "ttl", ttl)
}
// Check if agent job retention changed
agentJobChanged := settings.AgentJobRetentionDays != nil

View File

@@ -167,16 +167,6 @@ func VideoEndpoint(cl *config.ModelConfigLoader, ml *model.ModelLoader, appConfi
baseURL := middleware.BaseURL(c)
xlog.Debug("VideoEndpoint: Calling VideoGeneration",
"num_frames", input.NumFrames,
"fps", input.FPS,
"cfg_scale", input.CFGScale,
"step", input.Step,
"seed", input.Seed,
"width", width,
"height", height,
"negative_prompt", input.NegativePrompt)
fn, err := backend.VideoGeneration(
height,
width,

View File

@@ -3,7 +3,6 @@ package openai
import (
"encoding/json"
"fmt"
"strings"
"time"
"github.com/google/uuid"
@@ -13,7 +12,6 @@ import (
"github.com/mudler/LocalAI/core/http/middleware"
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/LocalAI/pkg/functions"
reason "github.com/mudler/LocalAI/pkg/reasoning"
"github.com/mudler/LocalAI/core/templates"
"github.com/mudler/LocalAI/pkg/model"
@@ -36,64 +34,11 @@ func ChatEndpoint(cl *config.ModelConfigLoader, ml *model.ModelLoader, evaluator
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant"}, Index: 0, FinishReason: nil}},
Object: "chat.completion.chunk",
}
responses <- initialMessage
// Detect if thinking token is already in prompt or template
// When UseTokenizerTemplate is enabled, predInput is empty, so we check the template
var template string
if config.TemplateConfig.UseTokenizerTemplate {
template = config.GetModelTemplate()
} else {
template = s
}
thinkingStartToken := reason.DetectThinkingStartToken(template, &config.ReasoningConfig)
// Track accumulated content for reasoning extraction
accumulatedContent := ""
lastEmittedReasoning := ""
lastEmittedCleanedContent := ""
_, _, err := ComputeChoices(req, s, config, cl, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, tokenUsage backend.TokenUsage) bool {
accumulatedContent += s
currentReasoning, cleanedContent := reason.ExtractReasoningWithConfig(accumulatedContent, thinkingStartToken, config.ReasoningConfig)
// Calculate new reasoning delta (what we haven't emitted yet)
var reasoningDelta *string
if currentReasoning != lastEmittedReasoning {
// Extract only the new part
if len(currentReasoning) > len(lastEmittedReasoning) && strings.HasPrefix(currentReasoning, lastEmittedReasoning) {
newReasoning := currentReasoning[len(lastEmittedReasoning):]
reasoningDelta = &newReasoning
lastEmittedReasoning = currentReasoning
} else if currentReasoning != "" {
// If reasoning changed in a non-append way, emit the full current reasoning
reasoningDelta = &currentReasoning
lastEmittedReasoning = currentReasoning
}
}
// Calculate content delta from cleaned content
var deltaContent string
if len(cleanedContent) > len(lastEmittedCleanedContent) && strings.HasPrefix(cleanedContent, lastEmittedCleanedContent) {
deltaContent = cleanedContent[len(lastEmittedCleanedContent):]
lastEmittedCleanedContent = cleanedContent
} else if cleanedContent != lastEmittedCleanedContent {
// If cleaned content changed but not in a simple append, extract delta from cleaned content
// This handles cases where thinking tags are removed mid-stream
if lastEmittedCleanedContent == "" {
deltaContent = cleanedContent
lastEmittedCleanedContent = cleanedContent
} else {
// Content changed in non-append way, use the new cleaned content
deltaContent = cleanedContent
lastEmittedCleanedContent = cleanedContent
}
}
// Only emit content if there's actual content (not just thinking tags)
// If deltaContent is empty, we still emit the response but with empty content
usage := schema.OpenAIUsage{
PromptTokens: tokenUsage.Prompt,
CompletionTokens: tokenUsage.Completion,
@@ -104,20 +49,11 @@ func ChatEndpoint(cl *config.ModelConfigLoader, ml *model.ModelLoader, evaluator
usage.TimingPromptProcessing = tokenUsage.TimingPromptProcessing
}
delta := &schema.Message{}
// Only include content if there's actual content (not just thinking tags)
if deltaContent != "" {
delta.Content = &deltaContent
}
if reasoningDelta != nil && *reasoningDelta != "" {
delta.Reasoning = reasoningDelta
}
resp := schema.OpenAIResponse{
ID: id,
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{Delta: delta, Index: 0, FinishReason: nil}},
Choices: []schema.Choice{{Delta: &schema.Message{Content: &s}, Index: 0, FinishReason: nil}},
Object: "chat.completion.chunk",
Usage: usage,
}
@@ -129,15 +65,6 @@ func ChatEndpoint(cl *config.ModelConfigLoader, ml *model.ModelLoader, evaluator
return err
}
processTools := func(noAction string, prompt string, req *schema.OpenAIRequest, config *config.ModelConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse, extraUsage bool) error {
// Detect if thinking token is already in prompt or template
var template string
if config.TemplateConfig.UseTokenizerTemplate {
template = config.GetModelTemplate()
} else {
template = prompt
}
thinkingStartToken := reason.DetectThinkingStartToken(template, &config.ReasoningConfig)
result := ""
lastEmittedCount := 0
_, tokenUsage, err := ComputeChoices(req, prompt, config, cl, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
@@ -249,9 +176,6 @@ func ChatEndpoint(cl *config.ModelConfigLoader, ml *model.ModelLoader, evaluator
if err != nil {
return err
}
// Prepend thinking token if needed, then extract reasoning before processing tool calls
reasoning, result := reason.ExtractReasoningWithConfig(result, thinkingStartToken, config.ReasoningConfig)
textContentToReturn = functions.ParseTextContent(result, config.FunctionsConfig)
result = functions.CleanupLLMResult(result, config.FunctionsConfig)
functionResults := functions.ParseFunctionCall(result, config.FunctionsConfig)
@@ -284,20 +208,11 @@ func ChatEndpoint(cl *config.ModelConfigLoader, ml *model.ModelLoader, evaluator
usage.TimingPromptProcessing = tokenUsage.TimingPromptProcessing
}
var deltaReasoning *string
if reasoning != "" {
deltaReasoning = &reasoning
}
delta := &schema.Message{Content: &result}
if deltaReasoning != nil {
delta.Reasoning = deltaReasoning
}
resp := schema.OpenAIResponse{
ID: id,
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{Delta: delta, Index: 0, FinishReason: nil}},
Choices: []schema.Choice{{Delta: &schema.Message{Content: &result}, Index: 0, FinishReason: nil}},
Object: "chat.completion.chunk",
Usage: usage,
}
@@ -636,29 +551,12 @@ func ChatEndpoint(cl *config.ModelConfigLoader, ml *model.ModelLoader, evaluator
// no streaming mode
default:
// Detect if thinking token is already in prompt or template
var template string
if config.TemplateConfig.UseTokenizerTemplate {
template = config.GetModelTemplate() // TODO: this should be the parsed jinja template. But for now this is the best we can do.
} else {
template = predInput
}
thinkingStartToken := reason.DetectThinkingStartToken(template, &config.ReasoningConfig)
xlog.Debug("Thinking start token", "thinkingStartToken", thinkingStartToken, "template", template)
tokenCallback := func(s string, c *[]schema.Choice) {
// Prepend thinking token if needed, then extract reasoning from the response
reasoning, s := reason.ExtractReasoningWithConfig(s, thinkingStartToken, config.ReasoningConfig)
if !shouldUseFn {
// no function is called, just reply and use stop as finish reason
stopReason := FinishReasonStop
message := &schema.Message{Role: "assistant", Content: &s}
if reasoning != "" {
message.Reasoning = &reasoning
}
*c = append(*c, schema.Choice{FinishReason: &stopReason, Index: 0, Message: message})
*c = append(*c, schema.Choice{FinishReason: &stopReason, Index: 0, Message: &schema.Message{Role: "assistant", Content: &s}})
return
}
@@ -677,13 +575,9 @@ func ChatEndpoint(cl *config.ModelConfigLoader, ml *model.ModelLoader, evaluator
}
stopReason := FinishReasonStop
message := &schema.Message{Role: "assistant", Content: &result}
if reasoning != "" {
message.Reasoning = &reasoning
}
*c = append(*c, schema.Choice{
FinishReason: &stopReason,
Message: message})
Message: &schema.Message{Role: "assistant", Content: &result}})
default:
toolCallsReason := FinishReasonToolCalls
toolChoice := schema.Choice{
@@ -692,9 +586,6 @@ func ChatEndpoint(cl *config.ModelConfigLoader, ml *model.ModelLoader, evaluator
Role: "assistant",
},
}
if reasoning != "" {
toolChoice.Message.Reasoning = &reasoning
}
for _, ss := range results {
name, args := ss.Name, ss.Arguments
@@ -715,20 +606,16 @@ func ChatEndpoint(cl *config.ModelConfigLoader, ml *model.ModelLoader, evaluator
} else {
// otherwise we return more choices directly (deprecated)
functionCallReason := FinishReasonFunctionCall
message := &schema.Message{
Role: "assistant",
Content: &textContentToReturn,
FunctionCall: map[string]interface{}{
"name": name,
"arguments": args,
},
}
if reasoning != "" {
message.Reasoning = &reasoning
}
*c = append(*c, schema.Choice{
FinishReason: &functionCallReason,
Message: message,
Message: &schema.Message{
Role: "assistant",
Content: &textContentToReturn,
FunctionCall: map[string]interface{}{
"name": name,
"arguments": args,
},
},
})
}
}

View File

@@ -0,0 +1,140 @@
package openai
import (
"encoding/json"
"fmt"
"strconv"
"strings"
"github.com/labstack/echo/v4"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/http/endpoints/localai"
"github.com/mudler/LocalAI/core/http/middleware"
"github.com/mudler/LocalAI/core/schema"
model "github.com/mudler/LocalAI/pkg/model"
)
func VideoEndpoint(cl *config.ModelConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) echo.HandlerFunc {
return func(c echo.Context) error {
input, ok := c.Get(middleware.CONTEXT_LOCALS_KEY_LOCALAI_REQUEST).(*schema.OpenAIRequest)
if !ok || input == nil {
return echo.ErrBadRequest
}
var raw map[string]interface{}
body := make([]byte, 0)
if c.Request().Body != nil {
c.Request().Body.Read(body)
}
if len(body) > 0 {
_ = json.Unmarshal(body, &raw)
}
// Build VideoRequest using shared mapper
vr := MapOpenAIToVideo(input, raw)
// Place VideoRequest into context so localai.VideoEndpoint can consume it
c.Set(middleware.CONTEXT_LOCALS_KEY_LOCALAI_REQUEST, vr)
// Delegate to existing localai handler
return localai.VideoEndpoint(cl, ml, appConfig)(c)
}
}
// VideoEndpoint godoc
// @Summary Generate a video from an OpenAI-compatible request
// @Description Accepts an OpenAI-style request and delegates to the LocalAI video generator
// @Tags openai
// @Accept json
// @Produce json
// @Param request body schema.OpenAIRequest true "OpenAI-style request"
// @Success 200 {object} map[string]interface{}
// @Failure 400 {object} map[string]interface{}
// @Router /v1/videos [post]
func MapOpenAIToVideo(input *schema.OpenAIRequest, raw map[string]interface{}) *schema.VideoRequest {
vr := &schema.VideoRequest{}
if input == nil {
return vr
}
if input.Model != "" {
vr.Model = input.Model
}
// Prompt mapping
switch p := input.Prompt.(type) {
case string:
vr.Prompt = p
case []interface{}:
if len(p) > 0 {
if s, ok := p[0].(string); ok {
vr.Prompt = s
}
}
}
// Size
size := input.Size
if size == "" && raw != nil {
if v, ok := raw["size"].(string); ok {
size = v
}
}
if size != "" {
parts := strings.SplitN(size, "x", 2)
if len(parts) == 2 {
if wi, err := strconv.Atoi(parts[0]); err == nil {
vr.Width = int32(wi)
}
if hi, err := strconv.Atoi(parts[1]); err == nil {
vr.Height = int32(hi)
}
}
}
// seconds -> num frames
secondsStr := ""
if raw != nil {
if v, ok := raw["seconds"].(string); ok {
secondsStr = v
} else if v, ok := raw["seconds"].(float64); ok {
secondsStr = fmt.Sprintf("%v", int(v))
}
}
fps := int32(30)
if raw != nil {
if rawFPS, ok := raw["fps"]; ok {
switch rf := rawFPS.(type) {
case float64:
fps = int32(rf)
case string:
if fi, err := strconv.Atoi(rf); err == nil {
fps = int32(fi)
}
}
}
}
if secondsStr != "" {
if secF, err := strconv.Atoi(secondsStr); err == nil {
vr.FPS = fps
vr.NumFrames = int32(secF) * fps
}
}
// input_reference
if raw != nil {
if v, ok := raw["input_reference"].(string); ok {
vr.StartImage = v
}
}
// response format
if input.ResponseFormat != nil {
if rf, ok := input.ResponseFormat.(string); ok {
vr.ResponseFormat = rf
}
}
if input.Step != 0 {
vr.Step = int32(input.Step)
}
return vr
}

View File

File diff suppressed because it is too large Load Diff

View File

@@ -1,453 +0,0 @@
package openresponses
import (
"context"
"encoding/json"
"fmt"
"sync"
"time"
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/xlog"
)
// ResponseStore provides thread-safe storage for Open Responses API responses
type ResponseStore struct {
mu sync.RWMutex
responses map[string]*StoredResponse
ttl time.Duration // Time-to-live for stored responses (0 = no expiration)
cleanupCtx context.Context
cleanupCancel context.CancelFunc
}
// StreamedEvent represents a buffered SSE event for streaming resume
type StreamedEvent struct {
SequenceNumber int `json:"sequence_number"`
EventType string `json:"event_type"`
Data []byte `json:"data"` // JSON-serialized event
}
// StoredResponse contains a complete response with its input request and output items
type StoredResponse struct {
Request *schema.OpenResponsesRequest
Response *schema.ORResponseResource
Items map[string]*schema.ORItemField // item_id -> item mapping for quick lookup
StoredAt time.Time
ExpiresAt *time.Time // nil if no expiration
// Background execution support
CancelFunc context.CancelFunc // For cancellation of background tasks
StreamEvents []StreamedEvent // Buffered events for streaming resume
StreamEnabled bool // Was created with stream=true
IsBackground bool // Was created with background=true
EventsChan chan struct{} // Signals new events for live subscribers
mu sync.RWMutex // Protect concurrent access to this response
}
var (
globalStore *ResponseStore
storeOnce sync.Once
)
// GetGlobalStore returns the singleton response store instance
func GetGlobalStore() *ResponseStore {
storeOnce.Do(func() {
globalStore = NewResponseStore(0) // Default: no TTL, will be updated from appConfig
})
return globalStore
}
// SetTTL updates the TTL for the store
// This will affect all new responses stored after this call
func (s *ResponseStore) SetTTL(ttl time.Duration) {
s.mu.Lock()
defer s.mu.Unlock()
// Stop existing cleanup loop if running
if s.cleanupCancel != nil {
s.cleanupCancel()
s.cleanupCancel = nil
s.cleanupCtx = nil
}
s.ttl = ttl
// If TTL > 0, start cleanup loop
if ttl > 0 {
s.cleanupCtx, s.cleanupCancel = context.WithCancel(context.Background())
go s.cleanupLoop(s.cleanupCtx)
}
xlog.Debug("Updated Open Responses store TTL", "ttl", ttl, "cleanup_running", ttl > 0)
}
// NewResponseStore creates a new response store with optional TTL
// If ttl is 0, responses are stored indefinitely
func NewResponseStore(ttl time.Duration) *ResponseStore {
store := &ResponseStore{
responses: make(map[string]*StoredResponse),
ttl: ttl,
}
// Start cleanup goroutine if TTL is set
if ttl > 0 {
store.cleanupCtx, store.cleanupCancel = context.WithCancel(context.Background())
go store.cleanupLoop(store.cleanupCtx)
}
return store
}
// Store stores a response with its request and items
func (s *ResponseStore) Store(responseID string, request *schema.OpenResponsesRequest, response *schema.ORResponseResource) {
s.mu.Lock()
defer s.mu.Unlock()
// Build item index for quick lookup
items := make(map[string]*schema.ORItemField)
for i := range response.Output {
item := &response.Output[i]
if item.ID != "" {
items[item.ID] = item
}
}
stored := &StoredResponse{
Request: request,
Response: response,
Items: items,
StoredAt: time.Now(),
ExpiresAt: nil,
}
// Set expiration if TTL is configured
if s.ttl > 0 {
expiresAt := time.Now().Add(s.ttl)
stored.ExpiresAt = &expiresAt
}
s.responses[responseID] = stored
xlog.Debug("Stored Open Responses response", "response_id", responseID, "items_count", len(items))
}
// Get retrieves a stored response by ID
func (s *ResponseStore) Get(responseID string) (*StoredResponse, error) {
s.mu.RLock()
defer s.mu.RUnlock()
stored, exists := s.responses[responseID]
if !exists {
return nil, fmt.Errorf("response not found: %s", responseID)
}
// Check expiration
if stored.ExpiresAt != nil && time.Now().After(*stored.ExpiresAt) {
// Expired, but we'll return it anyway and let caller handle cleanup
return nil, fmt.Errorf("response expired: %s", responseID)
}
return stored, nil
}
// GetItem retrieves a specific item from a stored response
func (s *ResponseStore) GetItem(responseID, itemID string) (*schema.ORItemField, error) {
stored, err := s.Get(responseID)
if err != nil {
return nil, err
}
item, exists := stored.Items[itemID]
if !exists {
return nil, fmt.Errorf("item not found: %s in response %s", itemID, responseID)
}
return item, nil
}
// FindItem searches for an item across all stored responses
// Returns the item and the response ID it was found in
func (s *ResponseStore) FindItem(itemID string) (*schema.ORItemField, string, error) {
s.mu.RLock()
defer s.mu.RUnlock()
now := time.Now()
for responseID, stored := range s.responses {
// Skip expired responses
if stored.ExpiresAt != nil && now.After(*stored.ExpiresAt) {
continue
}
if item, exists := stored.Items[itemID]; exists {
return item, responseID, nil
}
}
return nil, "", fmt.Errorf("item not found in any stored response: %s", itemID)
}
// Delete removes a response from storage
func (s *ResponseStore) Delete(responseID string) {
s.mu.Lock()
defer s.mu.Unlock()
delete(s.responses, responseID)
xlog.Debug("Deleted Open Responses response", "response_id", responseID)
}
// Cleanup removes expired responses
func (s *ResponseStore) Cleanup() int {
if s.ttl == 0 {
return 0
}
s.mu.Lock()
defer s.mu.Unlock()
now := time.Now()
count := 0
for id, stored := range s.responses {
if stored.ExpiresAt != nil && now.After(*stored.ExpiresAt) {
delete(s.responses, id)
count++
}
}
if count > 0 {
xlog.Debug("Cleaned up expired Open Responses", "count", count)
}
return count
}
// cleanupLoop runs periodic cleanup of expired responses
func (s *ResponseStore) cleanupLoop(ctx context.Context) {
if s.ttl == 0 {
return
}
ticker := time.NewTicker(s.ttl / 2) // Cleanup at half TTL interval
defer ticker.Stop()
for {
select {
case <-ctx.Done():
xlog.Debug("Stopped Open Responses store cleanup loop")
return
case <-ticker.C:
s.Cleanup()
}
}
}
// Count returns the number of stored responses
func (s *ResponseStore) Count() int {
s.mu.RLock()
defer s.mu.RUnlock()
return len(s.responses)
}
// StoreBackground stores a background response with cancel function and optional streaming support
func (s *ResponseStore) StoreBackground(responseID string, request *schema.OpenResponsesRequest, response *schema.ORResponseResource, cancelFunc context.CancelFunc, streamEnabled bool) {
s.mu.Lock()
defer s.mu.Unlock()
// Build item index for quick lookup
items := make(map[string]*schema.ORItemField)
for i := range response.Output {
item := &response.Output[i]
if item.ID != "" {
items[item.ID] = item
}
}
stored := &StoredResponse{
Request: request,
Response: response,
Items: items,
StoredAt: time.Now(),
ExpiresAt: nil,
CancelFunc: cancelFunc,
StreamEvents: []StreamedEvent{},
StreamEnabled: streamEnabled,
IsBackground: true,
EventsChan: make(chan struct{}, 100), // Buffered channel for event notifications
}
// Set expiration if TTL is configured
if s.ttl > 0 {
expiresAt := time.Now().Add(s.ttl)
stored.ExpiresAt = &expiresAt
}
s.responses[responseID] = stored
xlog.Debug("Stored background Open Responses response", "response_id", responseID, "stream_enabled", streamEnabled)
}
// UpdateStatus updates the status of a stored response
func (s *ResponseStore) UpdateStatus(responseID string, status string, completedAt *int64) error {
s.mu.RLock()
stored, exists := s.responses[responseID]
s.mu.RUnlock()
if !exists {
return fmt.Errorf("response not found: %s", responseID)
}
stored.mu.Lock()
defer stored.mu.Unlock()
stored.Response.Status = status
stored.Response.CompletedAt = completedAt
xlog.Debug("Updated response status", "response_id", responseID, "status", status)
return nil
}
// UpdateResponse updates the entire response object for a stored response
func (s *ResponseStore) UpdateResponse(responseID string, response *schema.ORResponseResource) error {
s.mu.RLock()
stored, exists := s.responses[responseID]
s.mu.RUnlock()
if !exists {
return fmt.Errorf("response not found: %s", responseID)
}
stored.mu.Lock()
defer stored.mu.Unlock()
// Rebuild item index
items := make(map[string]*schema.ORItemField)
for i := range response.Output {
item := &response.Output[i]
if item.ID != "" {
items[item.ID] = item
}
}
stored.Response = response
stored.Items = items
xlog.Debug("Updated response", "response_id", responseID, "status", response.Status, "items_count", len(items))
return nil
}
// AppendEvent appends a streaming event to the buffer for resume support
func (s *ResponseStore) AppendEvent(responseID string, event *schema.ORStreamEvent) error {
s.mu.RLock()
stored, exists := s.responses[responseID]
s.mu.RUnlock()
if !exists {
return fmt.Errorf("response not found: %s", responseID)
}
// Serialize the event
data, err := json.Marshal(event)
if err != nil {
return fmt.Errorf("failed to marshal event: %w", err)
}
stored.mu.Lock()
stored.StreamEvents = append(stored.StreamEvents, StreamedEvent{
SequenceNumber: event.SequenceNumber,
EventType: event.Type,
Data: data,
})
stored.mu.Unlock()
// Notify any subscribers of new event
select {
case stored.EventsChan <- struct{}{}:
default:
// Channel full, subscribers will catch up
}
return nil
}
// GetEventsAfter returns all events with sequence number greater than startingAfter
func (s *ResponseStore) GetEventsAfter(responseID string, startingAfter int) ([]StreamedEvent, error) {
s.mu.RLock()
stored, exists := s.responses[responseID]
s.mu.RUnlock()
if !exists {
return nil, fmt.Errorf("response not found: %s", responseID)
}
stored.mu.RLock()
defer stored.mu.RUnlock()
var result []StreamedEvent
for _, event := range stored.StreamEvents {
if event.SequenceNumber > startingAfter {
result = append(result, event)
}
}
return result, nil
}
// Cancel cancels a background response if it's still in progress
func (s *ResponseStore) Cancel(responseID string) (*schema.ORResponseResource, error) {
s.mu.RLock()
stored, exists := s.responses[responseID]
s.mu.RUnlock()
if !exists {
return nil, fmt.Errorf("response not found: %s", responseID)
}
stored.mu.Lock()
defer stored.mu.Unlock()
// If already in a terminal state, just return the response (idempotent)
status := stored.Response.Status
if status == schema.ORStatusCompleted || status == schema.ORStatusFailed ||
status == schema.ORStatusIncomplete || status == schema.ORStatusCancelled {
xlog.Debug("Response already in terminal state", "response_id", responseID, "status", status)
return stored.Response, nil
}
// Cancel the context if available
if stored.CancelFunc != nil {
stored.CancelFunc()
xlog.Debug("Cancelled background response", "response_id", responseID)
}
// Update status to cancelled
now := time.Now().Unix()
stored.Response.Status = schema.ORStatusCancelled
stored.Response.CompletedAt = &now
return stored.Response, nil
}
// GetEventsChan returns the events notification channel for a response
func (s *ResponseStore) GetEventsChan(responseID string) (chan struct{}, error) {
s.mu.RLock()
stored, exists := s.responses[responseID]
s.mu.RUnlock()
if !exists {
return nil, fmt.Errorf("response not found: %s", responseID)
}
return stored.EventsChan, nil
}
// IsStreamEnabled checks if a response was created with streaming enabled
func (s *ResponseStore) IsStreamEnabled(responseID string) (bool, error) {
s.mu.RLock()
stored, exists := s.responses[responseID]
s.mu.RUnlock()
if !exists {
return false, fmt.Errorf("response not found: %s", responseID)
}
stored.mu.RLock()
defer stored.mu.RUnlock()
return stored.StreamEnabled, nil
}

View File

@@ -1,13 +0,0 @@
package openresponses
import (
"testing"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
)
func TestStore(t *testing.T) {
RegisterFailHandler(Fail)
RunSpecs(t, "ResponseStore Suite")
}

View File

@@ -1,626 +0,0 @@
package openresponses
import (
"context"
"fmt"
"time"
"github.com/mudler/LocalAI/core/schema"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
)
var _ = Describe("ResponseStore", func() {
var store *ResponseStore
BeforeEach(func() {
store = NewResponseStore(0) // No TTL for most tests
})
AfterEach(func() {
// Clean up
})
Describe("Store and Get", func() {
It("should store and retrieve a response", func() {
responseID := "resp_test123"
request := &schema.OpenResponsesRequest{
Model: "test-model",
Input: "Hello",
}
response := &schema.ORResponseResource{
ID: responseID,
Object: "response",
CreatedAt: time.Now().Unix(),
Status: "completed",
Model: "test-model",
Output: []schema.ORItemField{
{
Type: "message",
ID: "msg_123",
Status: "completed",
Role: "assistant",
Content: []schema.ORContentPart{{
Type: "output_text",
Text: "Hello, world!",
Annotations: []schema.ORAnnotation{},
Logprobs: []schema.ORLogProb{},
}},
},
},
}
store.Store(responseID, request, response)
stored, err := store.Get(responseID)
Expect(err).ToNot(HaveOccurred())
Expect(stored).ToNot(BeNil())
Expect(stored.Response.ID).To(Equal(responseID))
Expect(stored.Request.Model).To(Equal("test-model"))
Expect(len(stored.Items)).To(Equal(1))
Expect(stored.Items["msg_123"]).ToNot(BeNil())
Expect(stored.Items["msg_123"].ID).To(Equal("msg_123"))
})
It("should return error for non-existent response", func() {
_, err := store.Get("nonexistent")
Expect(err).To(HaveOccurred())
Expect(err.Error()).To(ContainSubstring("not found"))
})
It("should index all items by ID", func() {
responseID := "resp_test456"
request := &schema.OpenResponsesRequest{
Model: "test-model",
Input: "Test",
}
response := &schema.ORResponseResource{
ID: responseID,
Object: "response",
Output: []schema.ORItemField{
{
Type: "message",
ID: "msg_1",
Status: "completed",
Role: "assistant",
},
{
Type: "function_call",
ID: "fc_1",
Status: "completed",
CallID: "fc_1",
Name: "test_function",
Arguments: `{"arg": "value"}`,
},
{
Type: "message",
ID: "msg_2",
Status: "completed",
Role: "assistant",
},
},
}
store.Store(responseID, request, response)
stored, err := store.Get(responseID)
Expect(err).ToNot(HaveOccurred())
Expect(len(stored.Items)).To(Equal(3))
Expect(stored.Items["msg_1"]).ToNot(BeNil())
Expect(stored.Items["fc_1"]).ToNot(BeNil())
Expect(stored.Items["msg_2"]).ToNot(BeNil())
})
It("should handle items without IDs", func() {
responseID := "resp_test789"
request := &schema.OpenResponsesRequest{
Model: "test-model",
Input: "Test",
}
response := &schema.ORResponseResource{
ID: responseID,
Object: "response",
Output: []schema.ORItemField{
{
Type: "message",
ID: "", // No ID
Status: "completed",
Role: "assistant",
},
{
Type: "message",
ID: "msg_with_id",
Status: "completed",
Role: "assistant",
},
},
}
store.Store(responseID, request, response)
stored, err := store.Get(responseID)
Expect(err).ToNot(HaveOccurred())
// Only items with IDs are indexed
Expect(len(stored.Items)).To(Equal(1))
Expect(stored.Items["msg_with_id"]).ToNot(BeNil())
})
})
Describe("GetItem", func() {
It("should retrieve a specific item by ID", func() {
responseID := "resp_item_test"
itemID := "msg_specific"
request := &schema.OpenResponsesRequest{
Model: "test-model",
Input: "Test",
}
response := &schema.ORResponseResource{
ID: responseID,
Object: "response",
Output: []schema.ORItemField{
{
Type: "message",
ID: itemID,
Status: "completed",
Role: "assistant",
Content: []schema.ORContentPart{{
Type: "output_text",
Text: "Specific message",
Annotations: []schema.ORAnnotation{},
Logprobs: []schema.ORLogProb{},
}},
},
},
}
store.Store(responseID, request, response)
item, err := store.GetItem(responseID, itemID)
Expect(err).ToNot(HaveOccurred())
Expect(item).ToNot(BeNil())
Expect(item.ID).To(Equal(itemID))
Expect(item.Type).To(Equal("message"))
})
It("should return error for non-existent item", func() {
responseID := "resp_item_test2"
request := &schema.OpenResponsesRequest{
Model: "test-model",
Input: "Test",
}
response := &schema.ORResponseResource{
ID: responseID,
Object: "response",
Output: []schema.ORItemField{
{
Type: "message",
ID: "msg_existing",
Status: "completed",
},
},
}
store.Store(responseID, request, response)
_, err := store.GetItem(responseID, "nonexistent_item")
Expect(err).To(HaveOccurred())
Expect(err.Error()).To(ContainSubstring("item not found"))
})
It("should return error for non-existent response when getting item", func() {
_, err := store.GetItem("nonexistent_response", "any_item")
Expect(err).To(HaveOccurred())
Expect(err.Error()).To(ContainSubstring("response not found"))
})
})
Describe("FindItem", func() {
It("should find an item across all stored responses", func() {
// Store first response
responseID1 := "resp_find_1"
itemID1 := "msg_find_1"
store.Store(responseID1, &schema.OpenResponsesRequest{Model: "test"}, &schema.ORResponseResource{
ID: responseID1,
Object: "response",
Output: []schema.ORItemField{
{Type: "message", ID: itemID1, Status: "completed"},
},
})
// Store second response
responseID2 := "resp_find_2"
itemID2 := "msg_find_2"
store.Store(responseID2, &schema.OpenResponsesRequest{Model: "test"}, &schema.ORResponseResource{
ID: responseID2,
Object: "response",
Output: []schema.ORItemField{
{Type: "message", ID: itemID2, Status: "completed"},
},
})
// Find item from first response
item, foundResponseID, err := store.FindItem(itemID1)
Expect(err).ToNot(HaveOccurred())
Expect(item).ToNot(BeNil())
Expect(item.ID).To(Equal(itemID1))
Expect(foundResponseID).To(Equal(responseID1))
// Find item from second response
item, foundResponseID, err = store.FindItem(itemID2)
Expect(err).ToNot(HaveOccurred())
Expect(item).ToNot(BeNil())
Expect(item.ID).To(Equal(itemID2))
Expect(foundResponseID).To(Equal(responseID2))
})
It("should return error when item not found in any response", func() {
_, _, err := store.FindItem("nonexistent_item")
Expect(err).To(HaveOccurred())
Expect(err.Error()).To(ContainSubstring("item not found in any stored response"))
})
})
Describe("Delete", func() {
It("should delete a stored response", func() {
responseID := "resp_delete_test"
request := &schema.OpenResponsesRequest{Model: "test"}
response := &schema.ORResponseResource{
ID: responseID,
Object: "response",
}
store.Store(responseID, request, response)
Expect(store.Count()).To(Equal(1))
store.Delete(responseID)
Expect(store.Count()).To(Equal(0))
_, err := store.Get(responseID)
Expect(err).To(HaveOccurred())
})
It("should handle deleting non-existent response gracefully", func() {
// Should not panic
store.Delete("nonexistent")
Expect(store.Count()).To(Equal(0))
})
})
Describe("Count", func() {
It("should return correct count of stored responses", func() {
Expect(store.Count()).To(Equal(0))
store.Store("resp_1", &schema.OpenResponsesRequest{Model: "test"}, &schema.ORResponseResource{ID: "resp_1", Object: "response"})
Expect(store.Count()).To(Equal(1))
store.Store("resp_2", &schema.OpenResponsesRequest{Model: "test"}, &schema.ORResponseResource{ID: "resp_2", Object: "response"})
Expect(store.Count()).To(Equal(2))
store.Delete("resp_1")
Expect(store.Count()).To(Equal(1))
})
})
Describe("TTL and Expiration", func() {
It("should set expiration when TTL is configured", func() {
ttlStore := NewResponseStore(100 * time.Millisecond)
responseID := "resp_ttl_test"
request := &schema.OpenResponsesRequest{Model: "test"}
response := &schema.ORResponseResource{ID: responseID, Object: "response"}
ttlStore.Store(responseID, request, response)
stored, err := ttlStore.Get(responseID)
Expect(err).ToNot(HaveOccurred())
Expect(stored.ExpiresAt).ToNot(BeNil())
Expect(stored.ExpiresAt.After(time.Now())).To(BeTrue())
})
It("should not set expiration when TTL is 0", func() {
responseID := "resp_no_ttl"
request := &schema.OpenResponsesRequest{Model: "test"}
response := &schema.ORResponseResource{ID: responseID, Object: "response"}
store.Store(responseID, request, response)
stored, err := store.Get(responseID)
Expect(err).ToNot(HaveOccurred())
Expect(stored.ExpiresAt).To(BeNil())
})
It("should clean up expired responses", func() {
ttlStore := NewResponseStore(50 * time.Millisecond)
responseID := "resp_expire_test"
request := &schema.OpenResponsesRequest{Model: "test"}
response := &schema.ORResponseResource{ID: responseID, Object: "response"}
ttlStore.Store(responseID, request, response)
Expect(ttlStore.Count()).To(Equal(1))
// Wait for expiration (longer than TTL and cleanup interval)
time.Sleep(150 * time.Millisecond)
// Cleanup should remove expired response (may have already been cleaned by goroutine)
count := ttlStore.Cleanup()
// Count might be 0 if cleanup goroutine already ran, or 1 if we're first
Expect(count).To(BeNumerically(">=", 0))
Expect(ttlStore.Count()).To(Equal(0))
_, err := ttlStore.Get(responseID)
Expect(err).To(HaveOccurred())
})
It("should return error for expired response", func() {
ttlStore := NewResponseStore(50 * time.Millisecond)
responseID := "resp_expire_error"
request := &schema.OpenResponsesRequest{Model: "test"}
response := &schema.ORResponseResource{ID: responseID, Object: "response"}
ttlStore.Store(responseID, request, response)
// Wait for expiration (but not long enough for cleanup goroutine to remove it)
time.Sleep(75 * time.Millisecond)
// Try to get before cleanup goroutine removes it
_, err := ttlStore.Get(responseID)
// Error could be "expired" or "not found" (if cleanup already ran)
Expect(err).To(HaveOccurred())
// Either error message is acceptable
errMsg := err.Error()
Expect(errMsg).To(Or(ContainSubstring("expired"), ContainSubstring("not found")))
})
})
Describe("Thread Safety", func() {
It("should handle concurrent stores and gets", func() {
// This is a basic concurrency test
done := make(chan bool, 10)
for i := 0; i < 10; i++ {
go func(id int) {
responseID := fmt.Sprintf("resp_concurrent_%d", id)
request := &schema.OpenResponsesRequest{Model: "test"}
response := &schema.ORResponseResource{
ID: responseID,
Object: "response",
Output: []schema.ORItemField{
{Type: "message", ID: fmt.Sprintf("msg_%d", id), Status: "completed"},
},
}
store.Store(responseID, request, response)
// Retrieve immediately
stored, err := store.Get(responseID)
Expect(err).ToNot(HaveOccurred())
Expect(stored).ToNot(BeNil())
done <- true
}(i)
}
// Wait for all goroutines
for i := 0; i < 10; i++ {
<-done
}
Expect(store.Count()).To(Equal(10))
})
})
Describe("GetGlobalStore", func() {
It("should return singleton instance", func() {
store1 := GetGlobalStore()
store2 := GetGlobalStore()
Expect(store1).To(Equal(store2))
})
It("should persist data across GetGlobalStore calls", func() {
globalStore := GetGlobalStore()
responseID := "resp_global_test"
request := &schema.OpenResponsesRequest{Model: "test"}
response := &schema.ORResponseResource{ID: responseID, Object: "response"}
globalStore.Store(responseID, request, response)
// Get store again
globalStore2 := GetGlobalStore()
stored, err := globalStore2.Get(responseID)
Expect(err).ToNot(HaveOccurred())
Expect(stored).ToNot(BeNil())
})
})
Describe("Background Mode Support", func() {
It("should store background response with cancel function", func() {
responseID := "resp_bg_test"
request := &schema.OpenResponsesRequest{Model: "test"}
response := &schema.ORResponseResource{
ID: responseID,
Object: "response",
Status: schema.ORStatusQueued,
}
_, cancel := context.WithCancel(context.Background())
defer cancel()
store.StoreBackground(responseID, request, response, cancel, true)
stored, err := store.Get(responseID)
Expect(err).ToNot(HaveOccurred())
Expect(stored).ToNot(BeNil())
Expect(stored.IsBackground).To(BeTrue())
Expect(stored.StreamEnabled).To(BeTrue())
Expect(stored.CancelFunc).ToNot(BeNil())
})
It("should update status of stored response", func() {
responseID := "resp_status_test"
request := &schema.OpenResponsesRequest{Model: "test"}
response := &schema.ORResponseResource{
ID: responseID,
Object: "response",
Status: schema.ORStatusQueued,
}
store.Store(responseID, request, response)
err := store.UpdateStatus(responseID, schema.ORStatusInProgress, nil)
Expect(err).ToNot(HaveOccurred())
stored, err := store.Get(responseID)
Expect(err).ToNot(HaveOccurred())
Expect(stored.Response.Status).To(Equal(schema.ORStatusInProgress))
})
It("should append and retrieve streaming events", func() {
responseID := "resp_events_test"
request := &schema.OpenResponsesRequest{Model: "test"}
response := &schema.ORResponseResource{
ID: responseID,
Object: "response",
Status: schema.ORStatusInProgress,
}
_, cancel := context.WithCancel(context.Background())
defer cancel()
store.StoreBackground(responseID, request, response, cancel, true)
// Append events
event1 := &schema.ORStreamEvent{
Type: "response.created",
SequenceNumber: 0,
}
event2 := &schema.ORStreamEvent{
Type: "response.in_progress",
SequenceNumber: 1,
}
event3 := &schema.ORStreamEvent{
Type: "response.output_text.delta",
SequenceNumber: 2,
}
err := store.AppendEvent(responseID, event1)
Expect(err).ToNot(HaveOccurred())
err = store.AppendEvent(responseID, event2)
Expect(err).ToNot(HaveOccurred())
err = store.AppendEvent(responseID, event3)
Expect(err).ToNot(HaveOccurred())
// Get all events after -1 (all events)
events, err := store.GetEventsAfter(responseID, -1)
Expect(err).ToNot(HaveOccurred())
Expect(events).To(HaveLen(3))
// Get events after sequence 1
events, err = store.GetEventsAfter(responseID, 1)
Expect(err).ToNot(HaveOccurred())
Expect(events).To(HaveLen(1))
Expect(events[0].SequenceNumber).To(Equal(2))
})
It("should cancel an in-progress response", func() {
responseID := "resp_cancel_test"
request := &schema.OpenResponsesRequest{Model: "test"}
response := &schema.ORResponseResource{
ID: responseID,
Object: "response",
Status: schema.ORStatusInProgress,
}
_, cancel := context.WithCancel(context.Background())
defer cancel()
store.StoreBackground(responseID, request, response, cancel, false)
// Cancel the response
cancelledResponse, err := store.Cancel(responseID)
Expect(err).ToNot(HaveOccurred())
Expect(cancelledResponse.Status).To(Equal(schema.ORStatusCancelled))
Expect(cancelledResponse.CompletedAt).ToNot(BeNil())
})
It("should be idempotent when cancelling already completed response", func() {
responseID := "resp_idempotent_cancel"
request := &schema.OpenResponsesRequest{Model: "test"}
completedAt := time.Now().Unix()
response := &schema.ORResponseResource{
ID: responseID,
Object: "response",
Status: schema.ORStatusCompleted,
CompletedAt: &completedAt,
}
store.Store(responseID, request, response)
// Try to cancel a completed response
cancelledResponse, err := store.Cancel(responseID)
Expect(err).ToNot(HaveOccurred())
// Status should remain completed (not changed to cancelled)
Expect(cancelledResponse.Status).To(Equal(schema.ORStatusCompleted))
})
It("should check if streaming is enabled", func() {
responseID := "resp_stream_check"
request := &schema.OpenResponsesRequest{Model: "test"}
response := &schema.ORResponseResource{
ID: responseID,
Object: "response",
Status: schema.ORStatusQueued,
}
_, cancel := context.WithCancel(context.Background())
defer cancel()
store.StoreBackground(responseID, request, response, cancel, true)
enabled, err := store.IsStreamEnabled(responseID)
Expect(err).ToNot(HaveOccurred())
Expect(enabled).To(BeTrue())
// Store another without streaming
responseID2 := "resp_no_stream"
store.StoreBackground(responseID2, request, response, cancel, false)
enabled2, err := store.IsStreamEnabled(responseID2)
Expect(err).ToNot(HaveOccurred())
Expect(enabled2).To(BeFalse())
})
It("should notify subscribers of new events", func() {
responseID := "resp_events_chan"
request := &schema.OpenResponsesRequest{Model: "test"}
response := &schema.ORResponseResource{
ID: responseID,
Object: "response",
Status: schema.ORStatusInProgress,
}
_, cancel := context.WithCancel(context.Background())
defer cancel()
store.StoreBackground(responseID, request, response, cancel, true)
eventsChan, err := store.GetEventsChan(responseID)
Expect(err).ToNot(HaveOccurred())
Expect(eventsChan).ToNot(BeNil())
// Append an event
event := &schema.ORStreamEvent{
Type: "response.output_text.delta",
SequenceNumber: 0,
}
go func() {
time.Sleep(10 * time.Millisecond)
store.AppendEvent(responseID, event)
}()
// Wait for notification
select {
case <-eventsChan:
// Event received
case <-time.After(1 * time.Second):
Fail("Timeout waiting for event notification")
}
})
})
})

View File

@@ -1,33 +1,13 @@
package http_test
import (
"os"
"path/filepath"
"testing"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
)
var (
tmpdir string
modelDir string
)
func TestLocalAI(t *testing.T) {
RegisterFailHandler(Fail)
var err error
tmpdir, err = os.MkdirTemp("", "")
Expect(err).ToNot(HaveOccurred())
modelDir = filepath.Join(tmpdir, "models")
err = os.Mkdir(modelDir, 0750)
Expect(err).ToNot(HaveOccurred())
AfterSuite(func() {
err := os.RemoveAll(tmpdir)
Expect(err).ToNot(HaveOccurred())
})
RunSpecs(t, "LocalAI HTTP test suite")
}

View File

@@ -484,103 +484,3 @@ func mergeOpenAIRequestAndModelConfig(config *config.ModelConfig, input *schema.
}
return fmt.Errorf("unable to validate configuration after merging")
}
func (re *RequestExtractor) SetOpenResponsesRequest(c echo.Context) error {
input, ok := c.Get(CONTEXT_LOCALS_KEY_LOCALAI_REQUEST).(*schema.OpenResponsesRequest)
if !ok || input.Model == "" {
return echo.ErrBadRequest
}
cfg, ok := c.Get(CONTEXT_LOCALS_KEY_MODEL_CONFIG).(*config.ModelConfig)
if !ok || cfg == nil {
return echo.ErrBadRequest
}
// Extract or generate the correlation ID (Open Responses uses x-request-id)
correlationID := c.Request().Header.Get("x-request-id")
if correlationID == "" {
correlationID = uuid.New().String()
}
c.Response().Header().Set("x-request-id", correlationID)
// Use the request context directly - Echo properly supports context cancellation!
reqCtx := c.Request().Context()
c1, cancel := context.WithCancel(re.applicationConfig.Context)
// Cancel when request context is cancelled (client disconnects)
go func() {
select {
case <-reqCtx.Done():
cancel()
case <-c1.Done():
// Already cancelled
}
}()
// Add the correlation ID to the new context
ctxWithCorrelationID := context.WithValue(c1, CorrelationIDKey, correlationID)
input.Context = ctxWithCorrelationID
input.Cancel = cancel
err := mergeOpenResponsesRequestAndModelConfig(cfg, input)
if err != nil {
return err
}
if cfg.Model == "" {
xlog.Debug("replacing empty cfg.Model with input value", "input.Model", input.Model)
cfg.Model = input.Model
}
c.Set(CONTEXT_LOCALS_KEY_LOCALAI_REQUEST, input)
c.Set(CONTEXT_LOCALS_KEY_MODEL_CONFIG, cfg)
return nil
}
func mergeOpenResponsesRequestAndModelConfig(config *config.ModelConfig, input *schema.OpenResponsesRequest) error {
// Temperature
if input.Temperature != nil {
config.Temperature = input.Temperature
}
// TopP
if input.TopP != nil {
config.TopP = input.TopP
}
// MaxOutputTokens -> Maxtokens
if input.MaxOutputTokens != nil {
config.Maxtokens = input.MaxOutputTokens
}
// Convert tools to functions - this will be handled in the endpoint handler
// We just validate that tools are present if needed
// Handle tool_choice
if input.ToolChoice != nil {
switch tc := input.ToolChoice.(type) {
case string:
// "auto", "required", or "none"
if tc == "required" {
config.SetFunctionCallString("required")
} else if tc == "none" {
// Don't use tools - handled in endpoint
}
// "auto" is default - let model decide
case map[string]interface{}:
// Specific tool: {type:"function", name:"..."}
if tcType, ok := tc["type"].(string); ok && tcType == "function" {
if name, ok := tc["name"].(string); ok {
config.SetFunctionCallString(name)
}
}
}
}
if valid, _ := config.Validate(); valid {
return nil
}
return fmt.Errorf("unable to validate configuration after merging")
}

View File

@@ -36,7 +36,6 @@ type APIExchange struct {
var traceBuffer *circularbuffer.Queue[APIExchange]
var mu sync.Mutex
var logChan = make(chan APIExchange, 100)
var initOnce sync.Once
type bodyWriter struct {
http.ResponseWriter
@@ -54,37 +53,26 @@ func (w *bodyWriter) Flush() {
}
}
func initializeTracing(maxItems int) {
initOnce.Do(func() {
if maxItems <= 0 {
maxItems = 100
}
mu.Lock()
traceBuffer = circularbuffer.New[APIExchange](maxItems)
mu.Unlock()
// TraceMiddleware intercepts and logs JSON API requests and responses
func TraceMiddleware(app *application.Application) echo.MiddlewareFunc {
if app.ApplicationConfig().EnableTracing && traceBuffer == nil {
traceBuffer = circularbuffer.New[APIExchange](app.ApplicationConfig().TracingMaxItems)
go func() {
for exchange := range logChan {
mu.Lock()
if traceBuffer != nil {
traceBuffer.Enqueue(exchange)
}
traceBuffer.Enqueue(exchange)
mu.Unlock()
}
}()
})
}
}
// TraceMiddleware intercepts and logs JSON API requests and responses
func TraceMiddleware(app *application.Application) echo.MiddlewareFunc {
return func(next echo.HandlerFunc) echo.HandlerFunc {
return func(c echo.Context) error {
if !app.ApplicationConfig().EnableTracing {
return next(c)
}
initializeTracing(app.ApplicationConfig().TracingMaxItems)
if c.Request().Header.Get("Content-Type") != "application/json" {
return next(c)
}
@@ -150,10 +138,6 @@ func TraceMiddleware(app *application.Application) echo.MiddlewareFunc {
// GetTraces returns a copy of the logged API exchanges for display
func GetTraces() []APIExchange {
mu.Lock()
if traceBuffer == nil {
mu.Unlock()
return []APIExchange{}
}
traces := traceBuffer.Values()
mu.Unlock()
@@ -167,8 +151,6 @@ func GetTraces() []APIExchange {
// ClearTraces clears the in-memory logs
func ClearTraces() {
mu.Lock()
if traceBuffer != nil {
traceBuffer.Clear()
}
traceBuffer.Clear()
mu.Unlock()
}

View File

@@ -0,0 +1,75 @@
package http_test
import (
"encoding/json"
openai "github.com/mudler/LocalAI/core/http/endpoints/openai"
"github.com/mudler/LocalAI/core/schema"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
)
var _ = Describe("MapOpenAIToVideo", func() {
It("maps size and seconds correctly", func() {
cases := []struct {
name string
input *schema.OpenAIRequest
raw map[string]interface{}
expectsW int32
expectsH int32
expectsF int32
expectsN int32
}{
{
name: "size in input",
input: &schema.OpenAIRequest{
PredictionOptions: schema.PredictionOptions{
BasicModelRequest: schema.BasicModelRequest{Model: "m"},
},
Size: "256x128",
},
expectsW: 256,
expectsH: 128,
},
{
name: "size in raw and seconds as string",
input: &schema.OpenAIRequest{PredictionOptions: schema.PredictionOptions{BasicModelRequest: schema.BasicModelRequest{Model: "m"}}},
raw: map[string]interface{}{"size": "720x480", "seconds": "2"},
expectsW: 720,
expectsH: 480,
expectsF: 30,
expectsN: 60,
},
{
name: "seconds as number and fps override",
input: &schema.OpenAIRequest{PredictionOptions: schema.PredictionOptions{BasicModelRequest: schema.BasicModelRequest{Model: "m"}}},
raw: map[string]interface{}{"seconds": 3.0, "fps": 24.0},
expectsF: 24,
expectsN: 72,
},
}
for _, c := range cases {
By(c.name)
vr := openai.MapOpenAIToVideo(c.input, c.raw)
if c.expectsW != 0 {
Expect(vr.Width).To(Equal(c.expectsW))
}
if c.expectsH != 0 {
Expect(vr.Height).To(Equal(c.expectsH))
}
if c.expectsF != 0 {
Expect(vr.FPS).To(Equal(c.expectsF))
}
if c.expectsN != 0 {
Expect(vr.NumFrames).To(Equal(c.expectsN))
}
b, err := json.Marshal(vr)
Expect(err).ToNot(HaveOccurred())
_ = b
}
})
})

View File

@@ -0,0 +1,168 @@
package http_test
import (
"bytes"
"context"
"encoding/json"
"io"
"net/http"
"os"
"path/filepath"
"time"
"github.com/mudler/LocalAI/core/application"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/pkg/system"
"github.com/mudler/LocalAI/pkg/grpc"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
"fmt"
. "github.com/mudler/LocalAI/core/http"
"github.com/labstack/echo/v4"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
)
const testAPIKey = "joshua"
type fakeAI struct{}
func (f *fakeAI) Busy() bool { return false }
func (f *fakeAI) Lock() {}
func (f *fakeAI) Unlock() {}
func (f *fakeAI) Locking() bool { return false }
func (f *fakeAI) Predict(*pb.PredictOptions) (string, error) { return "", nil }
func (f *fakeAI) PredictStream(*pb.PredictOptions, chan string) error {
return nil
}
func (f *fakeAI) Load(*pb.ModelOptions) error { return nil }
func (f *fakeAI) Embeddings(*pb.PredictOptions) ([]float32, error) { return nil, nil }
func (f *fakeAI) GenerateImage(*pb.GenerateImageRequest) error { return nil }
func (f *fakeAI) GenerateVideo(*pb.GenerateVideoRequest) error { return nil }
func (f *fakeAI) Detect(*pb.DetectOptions) (pb.DetectResponse, error) { return pb.DetectResponse{}, nil }
func (f *fakeAI) AudioTranscription(*pb.TranscriptRequest) (pb.TranscriptResult, error) {
return pb.TranscriptResult{}, nil
}
func (f *fakeAI) TTS(*pb.TTSRequest) error { return nil }
func (f *fakeAI) SoundGeneration(*pb.SoundGenerationRequest) error { return nil }
func (f *fakeAI) TokenizeString(*pb.PredictOptions) (pb.TokenizationResponse, error) {
return pb.TokenizationResponse{}, nil
}
func (f *fakeAI) Status() (pb.StatusResponse, error) { return pb.StatusResponse{}, nil }
func (f *fakeAI) StoresSet(*pb.StoresSetOptions) error { return nil }
func (f *fakeAI) StoresDelete(*pb.StoresDeleteOptions) error { return nil }
func (f *fakeAI) StoresGet(*pb.StoresGetOptions) (pb.StoresGetResult, error) {
return pb.StoresGetResult{}, nil
}
func (f *fakeAI) StoresFind(*pb.StoresFindOptions) (pb.StoresFindResult, error) {
return pb.StoresFindResult{}, nil
}
func (f *fakeAI) VAD(*pb.VADRequest) (pb.VADResponse, error) { return pb.VADResponse{}, nil }
var _ = Describe("OpenAI /v1/videos (embedded backend)", func() {
var tmpdir string
var appServer *application.Application
var app *echo.Echo
var ctx context.Context
var cancel context.CancelFunc
BeforeEach(func() {
var err error
tmpdir, err = os.MkdirTemp("", "")
Expect(err).ToNot(HaveOccurred())
modelDir := filepath.Join(tmpdir, "models")
err = os.Mkdir(modelDir, 0750)
Expect(err).ToNot(HaveOccurred())
ctx, cancel = context.WithCancel(context.Background())
systemState, err := system.GetSystemState(
system.WithModelPath(modelDir),
)
Expect(err).ToNot(HaveOccurred())
grpc.Provide("embedded://fake", &fakeAI{})
appServer, err = application.New(
config.WithContext(ctx),
config.WithSystemState(systemState),
config.WithApiKeys([]string{testAPIKey}),
config.WithGeneratedContentDir(tmpdir),
config.WithExternalBackend("fake", "embedded://fake"),
)
Expect(err).ToNot(HaveOccurred())
})
AfterEach(func() {
cancel()
if app != nil {
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
_ = app.Shutdown(ctx)
}
_ = os.RemoveAll(tmpdir)
})
It("accepts OpenAI-style video create and delegates to backend", func() {
var err error
app, err = API(appServer)
Expect(err).ToNot(HaveOccurred())
go func() {
if err := app.Start("127.0.0.1:9091"); err != nil && err != http.ErrServerClosed {
// Log error if needed
}
}()
// wait for server
client := &http.Client{Timeout: 5 * time.Second}
Eventually(func() error {
req, _ := http.NewRequest("GET", "http://127.0.0.1:9091/v1/models", nil)
req.Header.Set("Authorization", "Bearer "+testAPIKey)
resp, err := client.Do(req)
if err != nil {
return err
}
defer resp.Body.Close()
if resp.StatusCode >= 400 {
return fmt.Errorf("bad status: %d", resp.StatusCode)
}
return nil
}, "30s", "500ms").Should(Succeed())
body := map[string]interface{}{
"model": "fake-model",
"backend": "fake",
"prompt": "a test video",
"size": "256x256",
"seconds": "1",
}
payload, err := json.Marshal(body)
Expect(err).ToNot(HaveOccurred())
req, err := http.NewRequest("POST", "http://127.0.0.1:9091/v1/videos", bytes.NewBuffer(payload))
Expect(err).ToNot(HaveOccurred())
req.Header.Set("Content-Type", "application/json")
req.Header.Set("Authorization", "Bearer "+testAPIKey)
resp, err := client.Do(req)
Expect(err).ToNot(HaveOccurred())
defer resp.Body.Close()
Expect(resp.StatusCode).To(Equal(200))
dat, err := io.ReadAll(resp.Body)
Expect(err).ToNot(HaveOccurred())
var out map[string]interface{}
err = json.Unmarshal(dat, &out)
Expect(err).ToNot(HaveOccurred())
data, ok := out["data"].([]interface{})
Expect(ok).To(BeTrue())
Expect(len(data)).To(BeNumerically(">", 0))
first := data[0].(map[string]interface{})
url, ok := first["url"].(string)
Expect(ok).To(BeTrue())
Expect(url).To(ContainSubstring("/generated-videos/"))
Expect(url).To(ContainSubstring(".mp4"))
})
})

View File

File diff suppressed because it is too large Load Diff

View File

@@ -1,108 +0,0 @@
package routes
import (
"context"
"fmt"
"net/http"
"github.com/google/uuid"
"github.com/labstack/echo/v4"
"github.com/mudler/LocalAI/core/application"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/http/endpoints/anthropic"
"github.com/mudler/LocalAI/core/http/middleware"
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/xlog"
)
func RegisterAnthropicRoutes(app *echo.Echo,
re *middleware.RequestExtractor,
application *application.Application) {
// Anthropic Messages API endpoint
messagesHandler := anthropic.MessagesEndpoint(
application.ModelConfigLoader(),
application.ModelLoader(),
application.TemplatesEvaluator(),
application.ApplicationConfig(),
)
messagesMiddleware := []echo.MiddlewareFunc{
middleware.TraceMiddleware(application),
re.BuildFilteredFirstAvailableDefaultModel(config.BuildUsecaseFilterFn(config.FLAG_CHAT)),
re.SetModelAndConfig(func() schema.LocalAIRequest { return new(schema.AnthropicRequest) }),
setAnthropicRequestContext(application.ApplicationConfig()),
}
// Main Anthropic endpoint
app.POST("/v1/messages", messagesHandler, messagesMiddleware...)
// Also support without version prefix for compatibility
app.POST("/messages", messagesHandler, messagesMiddleware...)
}
// setAnthropicRequestContext sets up the context and cancel function for Anthropic requests
func setAnthropicRequestContext(appConfig *config.ApplicationConfig) echo.MiddlewareFunc {
return func(next echo.HandlerFunc) echo.HandlerFunc {
return func(c echo.Context) error {
input, ok := c.Get(middleware.CONTEXT_LOCALS_KEY_LOCALAI_REQUEST).(*schema.AnthropicRequest)
if !ok || input.Model == "" {
return echo.NewHTTPError(http.StatusBadRequest, "model is required")
}
cfg, ok := c.Get(middleware.CONTEXT_LOCALS_KEY_MODEL_CONFIG).(*config.ModelConfig)
if !ok || cfg == nil {
return echo.NewHTTPError(http.StatusBadRequest, "model configuration not found")
}
// Extract or generate the correlation ID
// Anthropic uses x-request-id header
correlationID := c.Request().Header.Get("x-request-id")
if correlationID == "" {
correlationID = uuid.New().String()
}
c.Response().Header().Set("x-request-id", correlationID)
// Set up context with cancellation
reqCtx := c.Request().Context()
c1, cancel := context.WithCancel(appConfig.Context)
// Cancel when request context is cancelled (client disconnects)
go func() {
select {
case <-reqCtx.Done():
cancel()
case <-c1.Done():
// Already cancelled
}
}()
// Add the correlation ID to the new context
ctxWithCorrelationID := context.WithValue(c1, middleware.CorrelationIDKey, correlationID)
input.Context = ctxWithCorrelationID
input.Cancel = cancel
if cfg.Model == "" {
xlog.Debug("replacing empty cfg.Model with input value", "input.Model", input.Model)
cfg.Model = input.Model
}
c.Set(middleware.CONTEXT_LOCALS_KEY_LOCALAI_REQUEST, input)
c.Set(middleware.CONTEXT_LOCALS_KEY_MODEL_CONFIG, cfg)
// Log the Anthropic API version if provided
anthropicVersion := c.Request().Header.Get("anthropic-version")
if anthropicVersion != "" {
xlog.Debug("Anthropic API version", "version", anthropicVersion)
}
// Validate max_tokens is provided
if input.MaxTokens <= 0 {
return echo.NewHTTPError(http.StatusBadRequest, fmt.Sprintf("max_tokens is required and must be greater than 0"))
}
return next(c)
}
}
}

Some files were not shown because too many files have changed in this diff Show More