Compare commits

..

1 Commits

Author SHA1 Message Date
Ettore Di Giacinto
3f52776a1c WIP 2025-07-23 21:18:47 +02:00
157 changed files with 5031 additions and 4673 deletions

View File

@@ -87,18 +87,6 @@ jobs:
backend: "diffusers"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'l4t'
cuda-major-version: "12"
cuda-minor-version: "0"
platforms: 'linux/arm64'
tag-latest: 'auto'
tag-suffix: '-gpu-nvidia-l4t-diffusers'
runs-on: 'ubuntu-24.04-arm'
base-image: "nvcr.io/nvidia/l4t-jetpack:r36.4.0"
skip-drivers: 'true'
backend: "diffusers"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
# CUDA 11 additional backends
- build-type: 'cublas'
cuda-major-version: "11"
@@ -325,7 +313,7 @@ jobs:
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-rocm-hipblas-transformers'
runs-on: 'arc-runner-set'
runs-on: 'ubuntu-latest'
base-image: "rocm/dev-ubuntu-22.04:6.1"
skip-drivers: 'false'
backend: "transformers"
@@ -337,7 +325,7 @@ jobs:
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-rocm-hipblas-diffusers'
runs-on: 'arc-runner-set'
runs-on: 'ubuntu-latest'
base-image: "rocm/dev-ubuntu-22.04:6.1"
skip-drivers: 'false'
backend: "diffusers"
@@ -350,7 +338,7 @@ jobs:
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-rocm-hipblas-kokoro'
runs-on: 'arc-runner-set'
runs-on: 'ubuntu-latest'
base-image: "rocm/dev-ubuntu-22.04:6.1"
skip-drivers: 'false'
backend: "kokoro"
@@ -386,19 +374,31 @@ jobs:
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-rocm-hipblas-bark'
runs-on: 'arc-runner-set'
runs-on: 'ubuntu-latest'
base-image: "rocm/dev-ubuntu-22.04:6.1"
skip-drivers: 'false'
backend: "bark"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
# sycl builds
- build-type: 'intel'
- build-type: 'sycl_f32'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-intel-rerankers'
tag-suffix: '-gpu-intel-sycl-f32-rerankers'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
skip-drivers: 'false'
backend: "rerankers"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'sycl_f16'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-intel-sycl-f16-rerankers'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
skip-drivers: 'false'
@@ -429,36 +429,60 @@ jobs:
backend: "llama-cpp"
dockerfile: "./backend/Dockerfile.llama-cpp"
context: "./"
- build-type: 'intel'
- build-type: 'sycl_f32'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-intel-vllm'
tag-suffix: '-gpu-intel-sycl-f32-vllm'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
skip-drivers: 'false'
backend: "vllm"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'intel'
- build-type: 'sycl_f16'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-intel-transformers'
tag-suffix: '-gpu-intel-sycl-f16-vllm'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
skip-drivers: 'false'
backend: "vllm"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'sycl_f32'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-intel-sycl-f32-transformers'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
skip-drivers: 'false'
backend: "transformers"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'intel'
- build-type: 'sycl_f16'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-intel-diffusers'
tag-suffix: '-gpu-intel-sycl-f16-transformers'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
skip-drivers: 'false'
backend: "transformers"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'sycl_f32'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-intel-sycl-f32-diffusers'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
skip-drivers: 'false'
@@ -466,48 +490,96 @@ jobs:
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
# SYCL additional backends
- build-type: 'intel'
- build-type: 'sycl_f32'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-intel-kokoro'
tag-suffix: '-gpu-intel-sycl-f32-kokoro'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
skip-drivers: 'false'
backend: "kokoro"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'intel'
- build-type: 'sycl_f16'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-intel-faster-whisper'
tag-suffix: '-gpu-intel-sycl-f16-kokoro'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
skip-drivers: 'false'
backend: "kokoro"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'sycl_f32'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-intel-sycl-f32-faster-whisper'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
skip-drivers: 'false'
backend: "faster-whisper"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'intel'
- build-type: 'sycl_f16'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-intel-coqui'
tag-suffix: '-gpu-intel-sycl-f16-faster-whisper'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
skip-drivers: 'false'
backend: "faster-whisper"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'sycl_f32'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-intel-sycl-f32-coqui'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
skip-drivers: 'false'
backend: "coqui"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'intel'
- build-type: 'sycl_f16'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-intel-bark'
tag-suffix: '-gpu-intel-sycl-f16-coqui'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
skip-drivers: 'false'
backend: "coqui"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'sycl_f32'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-intel-sycl-f32-bark'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
skip-drivers: 'false'
backend: "bark"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'sycl_f16'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-intel-sycl-f16-bark'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
skip-drivers: 'false'
@@ -525,7 +597,7 @@ jobs:
base-image: "ubuntu:22.04"
skip-drivers: 'false'
backend: "piper"
dockerfile: "./backend/Dockerfile.golang"
dockerfile: "./backend/Dockerfile.go"
context: "./"
# bark-cpp
- build-type: ''
@@ -538,7 +610,7 @@ jobs:
base-image: "ubuntu:22.04"
skip-drivers: 'false'
backend: "bark-cpp"
dockerfile: "./backend/Dockerfile.golang"
dockerfile: "./backend/Dockerfile.go"
context: "./"
- build-type: ''
cuda-major-version: ""
@@ -587,7 +659,7 @@ jobs:
base-image: "ubuntu:22.04"
skip-drivers: 'false'
backend: "stablediffusion-ggml"
dockerfile: "./backend/Dockerfile.golang"
dockerfile: "./backend/Dockerfile.go"
context: "./"
- build-type: 'cublas'
cuda-major-version: "12"
@@ -599,7 +671,7 @@ jobs:
base-image: "ubuntu:22.04"
skip-drivers: 'false'
backend: "stablediffusion-ggml"
dockerfile: "./backend/Dockerfile.golang"
dockerfile: "./backend/Dockerfile.go"
context: "./"
- build-type: 'cublas'
cuda-major-version: "11"
@@ -611,7 +683,7 @@ jobs:
base-image: "ubuntu:22.04"
skip-drivers: 'false'
backend: "stablediffusion-ggml"
dockerfile: "./backend/Dockerfile.golang"
dockerfile: "./backend/Dockerfile.go"
context: "./"
- build-type: 'sycl_f32'
cuda-major-version: ""
@@ -623,7 +695,7 @@ jobs:
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
skip-drivers: 'false'
backend: "stablediffusion-ggml"
dockerfile: "./backend/Dockerfile.golang"
dockerfile: "./backend/Dockerfile.go"
context: "./"
- build-type: 'sycl_f16'
cuda-major-version: ""
@@ -635,7 +707,7 @@ jobs:
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
skip-drivers: 'false'
backend: "stablediffusion-ggml"
dockerfile: "./backend/Dockerfile.golang"
dockerfile: "./backend/Dockerfile.go"
context: "./"
- build-type: 'vulkan'
cuda-major-version: ""
@@ -647,7 +719,7 @@ jobs:
base-image: "ubuntu:22.04"
skip-drivers: 'false'
backend: "stablediffusion-ggml"
dockerfile: "./backend/Dockerfile.golang"
dockerfile: "./backend/Dockerfile.go"
context: "./"
- build-type: 'cublas'
cuda-major-version: "12"
@@ -659,7 +731,7 @@ jobs:
base-image: "nvcr.io/nvidia/l4t-jetpack:r36.4.0"
runs-on: 'ubuntu-24.04-arm'
backend: "stablediffusion-ggml"
dockerfile: "./backend/Dockerfile.golang"
dockerfile: "./backend/Dockerfile.go"
context: "./"
# whisper
- build-type: ''
@@ -672,7 +744,7 @@ jobs:
base-image: "ubuntu:22.04"
skip-drivers: 'false'
backend: "whisper"
dockerfile: "./backend/Dockerfile.golang"
dockerfile: "./backend/Dockerfile.go"
context: "./"
- build-type: 'cublas'
cuda-major-version: "12"
@@ -684,7 +756,7 @@ jobs:
base-image: "ubuntu:22.04"
skip-drivers: 'false'
backend: "whisper"
dockerfile: "./backend/Dockerfile.golang"
dockerfile: "./backend/Dockerfile.go"
context: "./"
- build-type: 'cublas'
cuda-major-version: "11"
@@ -696,7 +768,7 @@ jobs:
base-image: "ubuntu:22.04"
skip-drivers: 'false'
backend: "whisper"
dockerfile: "./backend/Dockerfile.golang"
dockerfile: "./backend/Dockerfile.go"
context: "./"
- build-type: 'sycl_f32'
cuda-major-version: ""
@@ -708,7 +780,7 @@ jobs:
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
skip-drivers: 'false'
backend: "whisper"
dockerfile: "./backend/Dockerfile.golang"
dockerfile: "./backend/Dockerfile.go"
context: "./"
- build-type: 'sycl_f16'
cuda-major-version: ""
@@ -720,7 +792,7 @@ jobs:
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
skip-drivers: 'false'
backend: "whisper"
dockerfile: "./backend/Dockerfile.golang"
dockerfile: "./backend/Dockerfile.go"
context: "./"
- build-type: 'vulkan'
cuda-major-version: ""
@@ -732,7 +804,7 @@ jobs:
base-image: "ubuntu:22.04"
skip-drivers: 'false'
backend: "whisper"
dockerfile: "./backend/Dockerfile.golang"
dockerfile: "./backend/Dockerfile.go"
context: "./"
- build-type: 'cublas'
cuda-major-version: "12"
@@ -744,7 +816,7 @@ jobs:
base-image: "nvcr.io/nvidia/l4t-jetpack:r36.4.0"
runs-on: 'ubuntu-24.04-arm'
backend: "whisper"
dockerfile: "./backend/Dockerfile.golang"
dockerfile: "./backend/Dockerfile.go"
context: "./"
- build-type: 'hipblas'
cuda-major-version: ""
@@ -756,7 +828,7 @@ jobs:
runs-on: 'ubuntu-latest'
skip-drivers: 'false'
backend: "whisper"
dockerfile: "./backend/Dockerfile.golang"
dockerfile: "./backend/Dockerfile.go"
context: "./"
#silero-vad
- build-type: ''
@@ -769,7 +841,7 @@ jobs:
base-image: "ubuntu:22.04"
skip-drivers: 'false'
backend: "silero-vad"
dockerfile: "./backend/Dockerfile.golang"
dockerfile: "./backend/Dockerfile.go"
context: "./"
# local-store
- build-type: ''
@@ -782,7 +854,7 @@ jobs:
base-image: "ubuntu:22.04"
skip-drivers: 'false'
backend: "local-store"
dockerfile: "./backend/Dockerfile.golang"
dockerfile: "./backend/Dockerfile.go"
context: "./"
# huggingface
- build-type: ''
@@ -795,156 +867,8 @@ jobs:
base-image: "ubuntu:22.04"
skip-drivers: 'false'
backend: "huggingface"
dockerfile: "./backend/Dockerfile.golang"
context: "./"
# rfdetr
- build-type: ''
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64,linux/arm64'
tag-latest: 'auto'
tag-suffix: '-cpu-rfdetr'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
skip-drivers: 'false'
backend: "rfdetr"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-nvidia-cuda-12-rfdetr'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
skip-drivers: 'false'
backend: "rfdetr"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-nvidia-cuda-11-rfdetr'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
skip-drivers: 'false'
backend: "rfdetr"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'intel'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-intel-rfdetr'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
skip-drivers: 'false'
backend: "rfdetr"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
platforms: 'linux/arm64'
skip-drivers: 'true'
tag-latest: 'auto'
tag-suffix: '-nvidia-l4t-arm64-rfdetr'
base-image: "nvcr.io/nvidia/l4t-jetpack:r36.4.0"
runs-on: 'ubuntu-24.04-arm'
backend: "rfdetr"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
# exllama2
- build-type: ''
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-cpu-exllama2'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
skip-drivers: 'false'
backend: "exllama2"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-nvidia-cuda-12-exllama2'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
skip-drivers: 'false'
backend: "exllama2"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-nvidia-cuda-11-exllama2'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
skip-drivers: 'false'
backend: "exllama2"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'intel'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-intel-exllama2'
runs-on: 'ubuntu-latest'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
skip-drivers: 'false'
backend: "exllama2"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
- build-type: 'hipblas'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
skip-drivers: 'true'
tag-latest: 'auto'
tag-suffix: '-gpu-hipblas-exllama2'
base-image: "rocm/dev-ubuntu-22.04:6.1"
runs-on: 'ubuntu-latest'
backend: "exllama2"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
# runs out of space on the runner
# - build-type: 'hipblas'
# cuda-major-version: ""
# cuda-minor-version: ""
# platforms: 'linux/amd64'
# tag-latest: 'auto'
# tag-suffix: '-gpu-hipblas-rfdetr'
# base-image: "rocm/dev-ubuntu-22.04:6.1"
# runs-on: 'ubuntu-latest'
# skip-drivers: 'false'
# backend: "rfdetr"
# dockerfile: "./backend/Dockerfile.python"
# context: "./backend"
# kitten-tts
- build-type: ''
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64,linux/arm64'
tag-latest: 'auto'
tag-suffix: '-kitten-tts'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
skip-drivers: 'false'
backend: "kitten-tts"
dockerfile: "./backend/Dockerfile.python"
context: "./backend"
dockerfile: "./backend/Dockerfile.go"
context: "./"
llama-cpp-darwin:
runs-on: macOS-14
strategy:
@@ -980,7 +904,6 @@ jobs:
path: build/llama-cpp.tar
llama-cpp-darwin-publish:
needs: llama-cpp-darwin
if: github.event_name != 'pull_request'
runs-on: ubuntu-latest
steps:
- name: Download llama-cpp.tar
@@ -1069,7 +992,6 @@ jobs:
name: llama-cpp-tar-x86
path: build/llama-cpp.tar
llama-cpp-darwin-x86-publish:
if: github.event_name != 'pull_request'
needs: llama-cpp-darwin-x86
runs-on: ubuntu-latest
steps:
@@ -1123,4 +1045,4 @@ jobs:
run: |
for tag in $(echo "${{ steps.quaymeta.outputs.tags }}" | tr ',' '\n'); do
crane push llama-cpp.tar $tag
done
done

View File

@@ -21,7 +21,7 @@ jobs:
variable: "BARKCPP_VERSION"
branch: "main"
file: "Makefile"
- repository: "leejet/stable-diffusion.cpp"
- repository: "richiejp/stable-diffusion.cpp"
variable: "STABLEDIFFUSION_GGML_VERSION"
branch: "master"
file: "backend/go/stablediffusion-ggml/Makefile"

View File

@@ -39,7 +39,7 @@ jobs:
cuda-minor-version: "0"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-gpu-nvidia-cuda-12'
tag-suffix: '-gpu-nvidia-cuda12'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
@@ -51,12 +51,12 @@ jobs:
grpc-base-image: "ubuntu:22.04"
runs-on: 'ubuntu-latest'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl'
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
grpc-base-image: "ubuntu:22.04"
tag-suffix: 'sycl'
tag-suffix: 'sycl-f16'
runs-on: 'ubuntu-latest'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'vulkan'

View File

@@ -83,7 +83,7 @@ jobs:
cuda-minor-version: "7"
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-nvidia-cuda-11'
tag-suffix: '-gpu-nvidia-cuda11'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
makeflags: "--jobs=4 --output-sync=target"
@@ -94,7 +94,7 @@ jobs:
cuda-minor-version: "0"
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-nvidia-cuda-12'
tag-suffix: '-gpu-nvidia-cuda12'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
skip-drivers: 'false'
@@ -103,21 +103,30 @@ jobs:
- build-type: 'vulkan'
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-vulkan'
tag-suffix: '-vulkan'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
skip-drivers: 'false'
makeflags: "--jobs=4 --output-sync=target"
aio: "-aio-gpu-vulkan"
- build-type: 'intel'
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'auto'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
grpc-base-image: "ubuntu:22.04"
tag-suffix: '-gpu-intel'
tag-suffix: '-gpu-intel-f16'
runs-on: 'ubuntu-latest'
makeflags: "--jobs=3 --output-sync=target"
aio: "-aio-gpu-intel"
aio: "-aio-gpu-intel-f16"
- build-type: 'sycl_f32'
platforms: 'linux/amd64'
tag-latest: 'auto'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
grpc-base-image: "ubuntu:22.04"
tag-suffix: '-gpu-intel-f32'
runs-on: 'ubuntu-latest'
makeflags: "--jobs=3 --output-sync=target"
aio: "-aio-gpu-intel-f32"
gh-runner:
uses: ./.github/workflows/image_build.yml

View File

@@ -23,20 +23,6 @@ jobs:
matrix:
go-version: ['1.21.x']
steps:
- name: Free Disk Space (Ubuntu)
uses: jlumbroso/free-disk-space@main
with:
# this might remove tools that are actually needed,
# if set to "true" but frees about 6 GB
tool-cache: true
# all of these default to true, but feel free to set to
# "false" if necessary for your workflow
android: true
dotnet: true
haskell: true
large-packages: true
docker-images: true
swap-storage: true
- name: Release space from worker
run: |
echo "Listing top largest packages"

1
.gitignore vendored
View File

@@ -12,7 +12,6 @@ prepare-sources
/backends
/backend-images
/result.yaml
protoc
*.log

View File

@@ -9,7 +9,7 @@ ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update && \
apt-get install -y --no-install-recommends \
ca-certificates curl wget espeak-ng libgomp1 \
python3 python-is-python3 ffmpeg libopenblas-base libopenblas-dev && \
python3 python-is-python3 ffmpeg && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
@@ -72,12 +72,6 @@ RUN <<EOT bash
fi
EOT
RUN <<EOT bash
if [ "${BUILD_TYPE}" = "cublas" ] && [ "${TARGETARCH}" = "arm64" ]; then
echo "nvidia-l4t" > /run/localai/capability
fi
EOT
# If we are building with clblas support, we need the libraries for the builds
RUN if [ "${BUILD_TYPE}" = "clblas" ] && [ "${SKIP_DRIVERS}" = "false" ]; then \
apt-get update && \
@@ -100,8 +94,6 @@ RUN if [ "${BUILD_TYPE}" = "hipblas" ] && [ "${SKIP_DRIVERS}" = "false" ]; then
ldconfig \
; fi
RUN expr "${BUILD_TYPE}" = intel && echo "intel" > /run/localai/capability || echo "not intel"
# Cuda
ENV PATH=/usr/local/cuda/bin:${PATH}

178
Makefile
View File

@@ -5,6 +5,8 @@ BINARY_NAME=local-ai
GORELEASER?=
ONEAPI_VERSION?=2025.2
export BUILD_TYPE?=
GO_TAGS?=
@@ -132,9 +134,6 @@ test: test-models/testmodel.ggml protogen-go
$(MAKE) test-tts
$(MAKE) test-stablediffusion
backends/diffusers: docker-build-diffusers docker-save-diffusers build
./local-ai backends install "ocifile://$(abspath ./backend-images/diffusers.tar)"
backends/llama-cpp: docker-build-llama-cpp docker-save-llama-cpp build
./local-ai backends install "ocifile://$(abspath ./backend-images/llama-cpp.tar)"
@@ -146,7 +145,7 @@ backends/stablediffusion-ggml: docker-build-stablediffusion-ggml docker-save-sta
backends/whisper: docker-build-whisper docker-save-whisper build
./local-ai backends install "ocifile://$(abspath ./backend-images/whisper.tar)"
backends/silero-vad: docker-build-silero-vad docker-save-silero-vad build
./local-ai backends install "ocifile://$(abspath ./backend-images/silero-vad.tar)"
@@ -156,15 +155,6 @@ backends/local-store: docker-build-local-store docker-save-local-store build
backends/huggingface: docker-build-huggingface docker-save-huggingface build
./local-ai backends install "ocifile://$(abspath ./backend-images/huggingface.tar)"
backends/rfdetr: docker-build-rfdetr docker-save-rfdetr build
./local-ai backends install "ocifile://$(abspath ./backend-images/rfdetr.tar)"
backends/kitten-tts: docker-build-kitten-tts docker-save-kitten-tts build
./local-ai backends install "ocifile://$(abspath ./backend-images/kitten-tts.tar)"
backends/kokoro: docker-build-kokoro docker-save-kokoro build
./local-ai backends install "ocifile://$(abspath ./backend-images/kokoro.tar)"
########################################################
## AIO tests
########################################################
@@ -252,7 +242,10 @@ help: ## Show this help.
########################################################
.PHONY: protogen
protogen: protogen-go
protogen: protogen-go protogen-python
.PHONY: protogen-clean
protogen-clean: protogen-go-clean protogen-python-clean
protoc:
@OS_NAME=$$(uname -s | tr '[:upper:]' '[:lower:]'); \
@@ -297,6 +290,93 @@ protogen-go-clean:
$(RM) pkg/grpc/proto/backend.pb.go pkg/grpc/proto/backend_grpc.pb.go
$(RM) bin/*
.PHONY: protogen-python
protogen-python: bark-protogen coqui-protogen chatterbox-protogen diffusers-protogen exllama2-protogen rerankers-protogen transformers-protogen kokoro-protogen vllm-protogen faster-whisper-protogen
.PHONY: protogen-python-clean
protogen-python-clean: bark-protogen-clean coqui-protogen-clean chatterbox-protogen-clean diffusers-protogen-clean exllama2-protogen-clean rerankers-protogen-clean transformers-protogen-clean kokoro-protogen-clean vllm-protogen-clean faster-whisper-protogen-clean
.PHONY: bark-protogen
bark-protogen:
$(MAKE) -C backend/python/bark protogen
.PHONY: bark-protogen-clean
bark-protogen-clean:
$(MAKE) -C backend/python/bark protogen-clean
.PHONY: coqui-protogen
coqui-protogen:
$(MAKE) -C backend/python/coqui protogen
.PHONY: coqui-protogen-clean
coqui-protogen-clean:
$(MAKE) -C backend/python/coqui protogen-clean
.PHONY: diffusers-protogen
diffusers-protogen:
$(MAKE) -C backend/python/diffusers protogen
.PHONY: chatterbox-protogen
chatterbox-protogen:
$(MAKE) -C backend/python/chatterbox protogen
.PHONY: diffusers-protogen-clean
diffusers-protogen-clean:
$(MAKE) -C backend/python/diffusers protogen-clean
.PHONY: chatterbox-protogen-clean
chatterbox-protogen-clean:
$(MAKE) -C backend/python/chatterbox protogen-clean
.PHONY: faster-whisper-protogen
faster-whisper-protogen:
$(MAKE) -C backend/python/faster-whisper protogen
.PHONY: faster-whisper-protogen-clean
faster-whisper-protogen-clean:
$(MAKE) -C backend/python/faster-whisper protogen-clean
.PHONY: exllama2-protogen
exllama2-protogen:
$(MAKE) -C backend/python/exllama2 protogen
.PHONY: exllama2-protogen-clean
exllama2-protogen-clean:
$(MAKE) -C backend/python/exllama2 protogen-clean
.PHONY: rerankers-protogen
rerankers-protogen:
$(MAKE) -C backend/python/rerankers protogen
.PHONY: rerankers-protogen-clean
rerankers-protogen-clean:
$(MAKE) -C backend/python/rerankers protogen-clean
.PHONY: transformers-protogen
transformers-protogen:
$(MAKE) -C backend/python/transformers protogen
.PHONY: transformers-protogen-clean
transformers-protogen-clean:
$(MAKE) -C backend/python/transformers protogen-clean
.PHONY: kokoro-protogen
kokoro-protogen:
$(MAKE) -C backend/python/kokoro protogen
.PHONY: kokoro-protogen-clean
kokoro-protogen-clean:
$(MAKE) -C backend/python/kokoro protogen-clean
.PHONY: vllm-protogen
vllm-protogen:
$(MAKE) -C backend/python/vllm protogen
.PHONY: vllm-protogen-clean
vllm-protogen-clean:
$(MAKE) -C backend/python/vllm protogen-clean
prepare-test-extra: protogen-python
$(MAKE) -C backend/python/transformers
$(MAKE) -C backend/python/diffusers
@@ -332,7 +412,7 @@ docker-cuda11:
--build-arg GO_TAGS="$(GO_TAGS)" \
--build-arg MAKEFLAGS="$(DOCKER_MAKEFLAGS)" \
--build-arg BUILD_TYPE=$(BUILD_TYPE) \
-t $(DOCKER_IMAGE)-cuda-11 .
-t $(DOCKER_IMAGE)-cuda11 .
docker-aio:
@echo "Building AIO image with base $(BASE_IMAGE) as $(DOCKER_AIO_IMAGE)"
@@ -347,11 +427,19 @@ docker-aio-all:
docker-image-intel:
docker build \
--build-arg BASE_IMAGE=quay.io/go-skynet/intel-oneapi-base:latest \
--build-arg BASE_IMAGE=intel/oneapi-basekit:${ONEAPI_VERSION}.0-0-devel-ubuntu24.04 \
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
--build-arg GO_TAGS="$(GO_TAGS)" \
--build-arg MAKEFLAGS="$(DOCKER_MAKEFLAGS)" \
--build-arg BUILD_TYPE=intel -t $(DOCKER_IMAGE) .
--build-arg BUILD_TYPE=sycl_f32 -t $(DOCKER_IMAGE) .
docker-image-intel-xpu:
docker build \
--build-arg BASE_IMAGE=intel/oneapi-basekit:${ONEAPI_VERSION}.0-0-devel-ubuntu22.04 \
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
--build-arg GO_TAGS="$(GO_TAGS)" \
--build-arg MAKEFLAGS="$(DOCKER_MAKEFLAGS)" \
--build-arg BUILD_TYPE=sycl_f32 -t $(DOCKER_IMAGE) .
########################################################
## Backends
@@ -361,37 +449,19 @@ backend-images:
mkdir -p backend-images
docker-build-llama-cpp:
docker build --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg BASE_IMAGE=$(BASE_IMAGE) -t local-ai-backend:llama-cpp -f backend/Dockerfile.llama-cpp .
docker build --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg IMAGE_BASE=$(IMAGE_BASE) -t local-ai-backend:llama-cpp -f backend/Dockerfile.llama-cpp .
docker-build-bark-cpp:
docker build --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg BASE_IMAGE=$(BASE_IMAGE) -t local-ai-backend:bark-cpp -f backend/Dockerfile.golang --build-arg BACKEND=bark-cpp .
docker build -t local-ai-backend:bark-cpp -f backend/Dockerfile.go --build-arg BACKEND=bark-cpp .
docker-build-piper:
docker build --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg BASE_IMAGE=$(BASE_IMAGE) -t local-ai-backend:piper -f backend/Dockerfile.golang --build-arg BACKEND=piper .
docker build -t local-ai-backend:piper -f backend/Dockerfile.go --build-arg BACKEND=piper .
docker-build-local-store:
docker build --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg BASE_IMAGE=$(BASE_IMAGE) -t local-ai-backend:local-store -f backend/Dockerfile.golang --build-arg BACKEND=local-store .
docker build -t local-ai-backend:local-store -f backend/Dockerfile.go --build-arg BACKEND=local-store .
docker-build-huggingface:
docker build --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg BASE_IMAGE=$(BASE_IMAGE) -t local-ai-backend:huggingface -f backend/Dockerfile.golang --build-arg BACKEND=huggingface .
docker-build-rfdetr:
docker build --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg BASE_IMAGE=$(BASE_IMAGE) -t local-ai-backend:rfdetr -f backend/Dockerfile.python --build-arg BACKEND=rfdetr ./backend
docker-build-kitten-tts:
docker build --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg BASE_IMAGE=$(BASE_IMAGE) -t local-ai-backend:kitten-tts -f backend/Dockerfile.python --build-arg BACKEND=kitten-tts ./backend
docker-save-kitten-tts: backend-images
docker save local-ai-backend:kitten-tts -o backend-images/kitten-tts.tar
docker-build-kokoro:
docker build --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg BASE_IMAGE=$(BASE_IMAGE) -t local-ai-backend:kokoro -f backend/Dockerfile.python --build-arg BACKEND=kokoro ./backend
docker-save-kokoro: backend-images
docker save local-ai-backend:kokoro -o backend-images/kokoro.tar
docker-save-rfdetr: backend-images
docker save local-ai-backend:rfdetr -o backend-images/rfdetr.tar
docker build -t local-ai-backend:huggingface -f backend/Dockerfile.go --build-arg BACKEND=huggingface .
docker-save-huggingface: backend-images
docker save local-ai-backend:huggingface -o backend-images/huggingface.tar
@@ -400,7 +470,7 @@ docker-save-local-store: backend-images
docker save local-ai-backend:local-store -o backend-images/local-store.tar
docker-build-silero-vad:
docker build --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg BASE_IMAGE=$(BASE_IMAGE) -t local-ai-backend:silero-vad -f backend/Dockerfile.golang --build-arg BACKEND=silero-vad .
docker build -t local-ai-backend:silero-vad -f backend/Dockerfile.go --build-arg BACKEND=silero-vad .
docker-save-silero-vad: backend-images
docker save local-ai-backend:silero-vad -o backend-images/silero-vad.tar
@@ -415,46 +485,46 @@ docker-save-bark-cpp: backend-images
docker save local-ai-backend:bark-cpp -o backend-images/bark-cpp.tar
docker-build-stablediffusion-ggml:
docker build --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg BASE_IMAGE=$(BASE_IMAGE) -t local-ai-backend:stablediffusion-ggml -f backend/Dockerfile.golang --build-arg BACKEND=stablediffusion-ggml .
docker build -t local-ai-backend:stablediffusion-ggml -f backend/Dockerfile.go --build-arg BACKEND=stablediffusion-ggml .
docker-save-stablediffusion-ggml: backend-images
docker save local-ai-backend:stablediffusion-ggml -o backend-images/stablediffusion-ggml.tar
docker-build-rerankers:
docker build --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg BASE_IMAGE=$(BASE_IMAGE) -t local-ai-backend:rerankers -f backend/Dockerfile.python --build-arg BACKEND=rerankers .
docker build -t local-ai-backend:rerankers -f backend/Dockerfile.python --build-arg BACKEND=rerankers .
docker-build-vllm:
docker build --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg BASE_IMAGE=$(BASE_IMAGE) -t local-ai-backend:vllm -f backend/Dockerfile.python --build-arg BACKEND=vllm .
docker build -t local-ai-backend:vllm -f backend/Dockerfile.python --build-arg BACKEND=vllm .
docker-build-transformers:
docker build --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg BASE_IMAGE=$(BASE_IMAGE) -t local-ai-backend:transformers -f backend/Dockerfile.python --build-arg BACKEND=transformers .
docker build -t local-ai-backend:transformers -f backend/Dockerfile.python --build-arg BACKEND=transformers .
docker-build-diffusers:
docker build --progress=plain --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg BASE_IMAGE=$(BASE_IMAGE) -t local-ai-backend:diffusers -f backend/Dockerfile.python --build-arg BACKEND=diffusers ./backend
docker build -t local-ai-backend:diffusers -f backend/Dockerfile.python --build-arg BACKEND=diffusers .
docker-save-diffusers: backend-images
docker save local-ai-backend:diffusers -o backend-images/diffusers.tar
docker-build-kokoro:
docker build -t local-ai-backend:kokoro -f backend/Dockerfile.python --build-arg BACKEND=kokoro .
docker-build-whisper:
docker build --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg BASE_IMAGE=$(BASE_IMAGE) -t local-ai-backend:whisper -f backend/Dockerfile.golang --build-arg BACKEND=whisper .
docker build --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg BASE_IMAGE=$(BASE_IMAGE) -t local-ai-backend:whisper -f backend/Dockerfile.go --build-arg BACKEND=whisper .
docker-save-whisper: backend-images
docker save local-ai-backend:whisper -o backend-images/whisper.tar
docker-build-faster-whisper:
docker build --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg BASE_IMAGE=$(BASE_IMAGE) -t local-ai-backend:faster-whisper -f backend/Dockerfile.python --build-arg BACKEND=faster-whisper .
docker build -t local-ai-backend:faster-whisper -f backend/Dockerfile.python --build-arg BACKEND=faster-whisper .
docker-build-coqui:
docker build --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg BASE_IMAGE=$(BASE_IMAGE) -t local-ai-backend:coqui -f backend/Dockerfile.python --build-arg BACKEND=coqui .
docker build -t local-ai-backend:coqui -f backend/Dockerfile.python --build-arg BACKEND=coqui .
docker-build-bark:
docker build --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg BASE_IMAGE=$(BASE_IMAGE) -t local-ai-backend:bark -f backend/Dockerfile.python --build-arg BACKEND=bark .
docker build -t local-ai-backend:bark -f backend/Dockerfile.python --build-arg BACKEND=bark .
docker-build-chatterbox:
docker build --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg BASE_IMAGE=$(BASE_IMAGE) -t local-ai-backend:chatterbox -f backend/Dockerfile.python --build-arg BACKEND=chatterbox .
docker build -t local-ai-backend:chatterbox -f backend/Dockerfile.python --build-arg BACKEND=chatterbox .
docker-build-exllama2:
docker build --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg BASE_IMAGE=$(BASE_IMAGE) -t local-ai-backend:exllama2 -f backend/Dockerfile.python --build-arg BACKEND=exllama2 .
docker build -t local-ai-backend:exllama2 -f backend/Dockerfile.python --build-arg BACKEND=exllama2 .
docker-build-backends: docker-build-llama-cpp docker-build-rerankers docker-build-vllm docker-build-transformers docker-build-diffusers docker-build-kokoro docker-build-faster-whisper docker-build-coqui docker-build-bark docker-build-chatterbox docker-build-exllama2

View File

@@ -140,7 +140,11 @@ docker run -ti --name local-ai -p 8080:8080 --device=/dev/kfd --device=/dev/dri
### Intel GPU Images (oneAPI):
```bash
docker run -ti --name local-ai -p 8080:8080 --device=/dev/dri/card1 --device=/dev/dri/renderD128 localai/localai:latest-gpu-intel
# Intel GPU with FP16 support
docker run -ti --name local-ai -p 8080:8080 --device=/dev/dri/card1 --device=/dev/dri/renderD128 localai/localai:latest-gpu-intel-f16
# Intel GPU with FP32 support
docker run -ti --name local-ai -p 8080:8080 --device=/dev/dri/card1 --device=/dev/dri/renderD128 localai/localai:latest-gpu-intel-f32
```
### Vulkan GPU Images:
@@ -162,7 +166,7 @@ docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-ai
docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-aio-gpu-nvidia-cuda-11
# Intel GPU version
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-aio-gpu-intel
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-aio-gpu-intel-f16
# AMD GPU version
docker run -ti --name local-ai -p 8080:8080 --device=/dev/kfd --device=/dev/dri --group-add=video localai/localai:latest-aio-gpu-hipblas
@@ -185,14 +189,10 @@ local-ai run https://gist.githubusercontent.com/.../phi-2.yaml
local-ai run oci://localai/phi-2:latest
```
> ⚡ **Automatic Backend Detection**: When you install models from the gallery or YAML files, LocalAI automatically detects your system's GPU capabilities (NVIDIA, AMD, Intel) and downloads the appropriate backend. For advanced configuration options, see [GPU Acceleration](https://localai.io/features/gpu-acceleration/#automatic-backend-detection).
For more information, see [💻 Getting started](https://localai.io/basics/getting_started/index.html)
## 📰 Latest project news
- July/August 2025: 🔍 [Object Detection](https://localai.io/features/object-detection/) added to the API featuring [rf-detr](https://github.com/roboflow/rf-detr)
- July 2025: All backends migrated outside of the main binary. LocalAI is now more lightweight, small, and automatically downloads the required backend to run the model. [Read the release notes](https://github.com/mudler/LocalAI/releases/tag/v3.2.0)
- June 2025: [Backend management](https://github.com/mudler/LocalAI/pull/5607) has been added. Attention: extras images are going to be deprecated from the next release! Read [the backend management PR](https://github.com/mudler/LocalAI/pull/5607).
- May 2025: [Audio input](https://github.com/mudler/LocalAI/pull/5466) and [Reranking](https://github.com/mudler/LocalAI/pull/5396) in llama.cpp backend, [Realtime API](https://github.com/mudler/LocalAI/pull/5392), Support to Gemma, SmollVLM, and more multimodal models (available in the gallery).
- May 2025: Important: image name changes [See release](https://github.com/mudler/LocalAI/releases/tag/v2.29.0)
@@ -225,7 +225,6 @@ Roadmap items: [List of issues](https://github.com/mudler/LocalAI/issues?q=is%3A
- ✍️ [Constrained grammars](https://localai.io/features/constrained_grammars/)
- 🖼️ [Download Models directly from Huggingface ](https://localai.io/models/)
- 🥽 [Vision API](https://localai.io/features/gpt-vision/)
- 🔍 [Object Detection](https://localai.io/features/object-detection/)
- 📈 [Reranker API](https://localai.io/features/reranker/)
- 🆕🖧 [P2P Inferencing](https://localai.io/features/distribute/)
- [Agentic capabilities](https://github.com/mudler/LocalAGI)

View File

@@ -96,6 +96,17 @@ RUN if [ "${BUILD_TYPE}" = "hipblas" ] && [ "${SKIP_DRIVERS}" = "false" ]; then
ldconfig \
; fi
# Intel oneAPI requirements
RUN <<EOT bash
if [[ "${BUILD_TYPE}" == sycl* ]] && [ "${SKIP_DRIVERS}" = "false" ]; then
apt-get update && \
apt-get install -y --no-install-recommends \
intel-oneapi-runtime-libs && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
fi
EOT
# Install Go
RUN curl -L -s https://go.dev/dl/go${GO_VERSION}.linux-${TARGETARCH}.tar.gz | tar -C /usr/local -xz
ENV PATH=$PATH:/root/go/bin:/usr/local/go/bin:/usr/local/bin

View File

@@ -11,6 +11,7 @@ ARG GRPC_MAKEFLAGS="-j4 -Otarget"
ARG GRPC_VERSION=v1.65.0
ARG CMAKE_FROM_SOURCE=false
ARG CMAKE_VERSION=3.26.4
ARG PROTOBUF_VERSION=v21.12
ENV MAKEFLAGS=${GRPC_MAKEFLAGS}
@@ -49,6 +50,14 @@ RUN git clone --recurse-submodules --jobs 4 -b ${GRPC_VERSION} --depth 1 --shall
make install && \
rm -rf /build
RUN git clone --recurse-submodules --branch ${PROTOBUF_VERSION} https://github.com/protocolbuffers/protobuf.git && \
mkdir -p /build/protobuf/build && \
cd /build/protobuf/build && \
cmake -Dprotobuf_BUILD_SHARED_LIBS=ON -Dprotobuf_BUILD_TESTS=OFF .. && \
make && \
make install && \
rm -rf /build
FROM ${BASE_IMAGE} AS builder
ARG BACKEND=rerankers
ARG BUILD_TYPE
@@ -180,21 +189,9 @@ COPY --from=grpc /opt/grpc /usr/local
COPY . /LocalAI
## Otherwise just run the normal build
RUN <<EOT bash
if [ "${TARGETARCH}" = "arm64" ] || [ "${BUILD_TYPE}" = "hipblas" ]; then \
cd /LocalAI/backend/cpp/llama-cpp && make llama-cpp-fallback && \
make llama-cpp-grpc && make llama-cpp-rpc-server; \
else \
cd /LocalAI/backend/cpp/llama-cpp && make llama-cpp-avx && \
make llama-cpp-avx2 && \
make llama-cpp-avx512 && \
make llama-cpp-fallback && \
make llama-cpp-grpc && \
make llama-cpp-rpc-server; \
fi
EOT
RUN make -C /LocalAI/backend/cpp/llama-cpp llama-cpp
RUN make -C /LocalAI/backend/cpp/llama-cpp llama-cpp-grpc
RUN make -C /LocalAI/backend/cpp/llama-cpp llama-cpp-rpc-server
# Copy libraries using a script to handle architecture differences
RUN make -C /LocalAI/backend/cpp/llama-cpp package

View File

@@ -20,7 +20,6 @@ service Backend {
rpc SoundGeneration(SoundGenerationRequest) returns (Result) {}
rpc TokenizeString(PredictOptions) returns (TokenizationResponse) {}
rpc Status(HealthMessage) returns (StatusResponse) {}
rpc Detect(DetectOptions) returns (DetectResponse) {}
rpc StoresSet(StoresSetOptions) returns (Result) {}
rpc StoresDelete(StoresDeleteOptions) returns (Result) {}
@@ -305,9 +304,6 @@ message GenerateImageRequest {
// Diffusers
string EnableParameters = 10;
int32 CLIPSkip = 11;
// Reference images for models that support them (e.g., Flux Kontext)
repeated string ref_images = 12;
}
message GenerateVideoRequest {
@@ -380,20 +376,3 @@ message Message {
string role = 1;
string content = 2;
}
message DetectOptions {
string src = 1;
}
message Detection {
float x = 1;
float y = 2;
float width = 3;
float height = 4;
float confidence = 5;
string class_name = 6;
}
message DetectResponse {
repeated Detection Detections = 1;
}

View File

@@ -17,6 +17,8 @@ if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
include_directories("${HOMEBREW_DEFAULT_PREFIX}/include")
endif()
set(Protobuf_USE_STATIC_LIBS OFF)
set(gRPC_USE_STATIC_LIBS OFF)
find_package(absl CONFIG REQUIRED)
find_package(Protobuf CONFIG REQUIRED)
find_package(gRPC CONFIG REQUIRED)

View File

@@ -1,5 +1,5 @@
LLAMA_VERSION?=be48528b068111304e4a0bb82c028558b5705f05
LLAMA_VERSION?=acd6cb1c41676f6bbb25c2a76fa5abeb1719301e
LLAMA_REPO?=https://github.com/ggerganov/llama.cpp
CMAKE_ARGS?=
@@ -7,10 +7,9 @@ BUILD_TYPE?=
NATIVE?=false
ONEAPI_VARS?=/opt/intel/oneapi/setvars.sh
TARGET?=--target grpc-server
JOBS?=$(shell nproc)
# Disable Shared libs as we are linking on static gRPC and we can't mix shared and static
CMAKE_ARGS+=-DBUILD_SHARED_LIBS=OFF -DLLAMA_CURL=OFF
CMAKE_ARGS+=-DBUILD_SHARED_LIBS=ON -DLLAMA_CURL=OFF -DGGML_CPU_ALL_VARIANTS=ON -DGGML_BACKEND_DL=ON
CURRENT_MAKEFILE_DIR := $(dir $(abspath $(lastword $(MAKEFILE_LIST))))
ifeq ($(NATIVE),false)
@@ -26,7 +25,7 @@ else ifeq ($(BUILD_TYPE),openblas)
# If build type is clblas (openCL) we set -DGGML_CLBLAST=ON -DCLBlast_DIR=/some/path
else ifeq ($(BUILD_TYPE),clblas)
CMAKE_ARGS+=-DGGML_CLBLAST=ON -DCLBlast_DIR=/some/path
# If it's hipblas we do have also to set CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++
# If it's hipblas we do have also to set CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++
else ifeq ($(BUILD_TYPE),hipblas)
ROCM_HOME ?= /opt/rocm
ROCM_PATH ?= /opt/rocm
@@ -90,33 +89,12 @@ else
LLAMA_VERSION=$(LLAMA_VERSION) $(MAKE) -C $(CURRENT_MAKEFILE_DIR)/../$(VARIANT) grpc-server
endif
llama-cpp-avx2: llama.cpp
cp -rf $(CURRENT_MAKEFILE_DIR)/../llama-cpp $(CURRENT_MAKEFILE_DIR)/../llama-cpp-avx2-build
$(MAKE) -C $(CURRENT_MAKEFILE_DIR)/../llama-cpp-avx2-build purge
$(info ${GREEN}I llama-cpp build info:avx2${RESET})
CMAKE_ARGS="$(CMAKE_ARGS) -DGGML_AVX=on -DGGML_AVX2=on -DGGML_AVX512=off -DGGML_FMA=on -DGGML_F16C=on" $(MAKE) VARIANT="llama-cpp-avx2-build" build-llama-cpp-grpc-server
cp -rfv $(CURRENT_MAKEFILE_DIR)/../llama-cpp-avx2-build/grpc-server llama-cpp-avx2
llama-cpp-avx512: llama.cpp
cp -rf $(CURRENT_MAKEFILE_DIR)/../llama-cpp $(CURRENT_MAKEFILE_DIR)/../llama-cpp-avx512-build
$(MAKE) -C $(CURRENT_MAKEFILE_DIR)/../llama-cpp-avx512-build purge
$(info ${GREEN}I llama-cpp build info:avx512${RESET})
CMAKE_ARGS="$(CMAKE_ARGS) -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=on -DGGML_FMA=on -DGGML_F16C=on" $(MAKE) VARIANT="llama-cpp-avx512-build" build-llama-cpp-grpc-server
cp -rfv $(CURRENT_MAKEFILE_DIR)/../llama-cpp-avx512-build/grpc-server llama-cpp-avx512
llama-cpp-avx: llama.cpp
cp -rf $(CURRENT_MAKEFILE_DIR)/../llama-cpp $(CURRENT_MAKEFILE_DIR)/../llama-cpp-avx-build
$(MAKE) -C $(CURRENT_MAKEFILE_DIR)/../llama-cpp-avx-build purge
$(info ${GREEN}I llama-cpp build info:avx${RESET})
CMAKE_ARGS="$(CMAKE_ARGS) -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off" $(MAKE) VARIANT="llama-cpp-avx-build" build-llama-cpp-grpc-server
cp -rfv $(CURRENT_MAKEFILE_DIR)/../llama-cpp-avx-build/grpc-server llama-cpp-avx
llama-cpp-fallback: llama.cpp
cp -rf $(CURRENT_MAKEFILE_DIR)/../llama-cpp $(CURRENT_MAKEFILE_DIR)/../llama-cpp-fallback-build
$(MAKE) -C $(CURRENT_MAKEFILE_DIR)/../llama-cpp-fallback-build purge
$(info ${GREEN}I llama-cpp build info:fallback${RESET})
CMAKE_ARGS="$(CMAKE_ARGS) -DGGML_AVX=off -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off" $(MAKE) VARIANT="llama-cpp-fallback-build" build-llama-cpp-grpc-server
cp -rfv $(CURRENT_MAKEFILE_DIR)/../llama-cpp-fallback-build/grpc-server llama-cpp-fallback
llama-cpp: llama.cpp
cp -rf $(CURRENT_MAKEFILE_DIR)/../llama-cpp $(CURRENT_MAKEFILE_DIR)/../llama-cpp-build
$(MAKE) -C $(CURRENT_MAKEFILE_DIR)/../llama-cpp-build purge
$(info ${GREEN}I llama-cpp build info:${RESET})
CMAKE_ARGS="$(CMAKE_ARGS)" $(MAKE) VARIANT="llama-cpp-build" build-llama-cpp-grpc-server
cp -rfv $(CURRENT_MAKEFILE_DIR)/../llama-cpp-build/grpc-server llama-cpp
llama-cpp-grpc: llama.cpp
cp -rf $(CURRENT_MAKEFILE_DIR)/../llama-cpp $(CURRENT_MAKEFILE_DIR)/../llama-cpp-grpc-build
@@ -161,8 +139,8 @@ grpc-server: llama.cpp llama.cpp/tools/grpc-server
@echo "Building grpc-server with $(BUILD_TYPE) build type and $(CMAKE_ARGS)"
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
+bash -c "source $(ONEAPI_VARS); \
cd llama.cpp && mkdir -p build && cd build && cmake .. $(CMAKE_ARGS) && cmake --build . --config Release -j $(JOBS) $(TARGET)"
cd llama.cpp && mkdir -p build && cd build && cmake .. $(CMAKE_ARGS) && cmake --build . --config Release $(TARGET)"
else
+cd llama.cpp && mkdir -p build && cd build && cmake .. $(CMAKE_ARGS) && cmake --build . --config Release -j $(JOBS) $(TARGET)
+cd llama.cpp && mkdir -p build && cd build && cmake .. $(CMAKE_ARGS) && cmake --build . --config Release $(TARGET)
endif
cp llama.cpp/build/bin/grpc-server .

View File

@@ -313,11 +313,9 @@ static void params_parse(const backend::ModelOptions* request,
params.pooling_type = LLAMA_POOLING_TYPE_RANK;
}
if (request->ropescaling() == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
else if (request->ropescaling() == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
else if (request->ropescaling() == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
else { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
if ( request->yarnextfactor() != 0.0f ) {
params.yarn_ext_factor = request->yarnextfactor();
}

View File

@@ -6,34 +6,9 @@ CURDIR=$(dirname "$(realpath $0)")
cd /
echo "CPU info:"
grep -e "model\sname" /proc/cpuinfo | head -1
grep -e "flags" /proc/cpuinfo | head -1
BINARY=llama-cpp-fallback
if grep -q -e "\savx\s" /proc/cpuinfo ; then
echo "CPU: AVX found OK"
if [ -e $CURDIR/llama-cpp-avx ]; then
BINARY=llama-cpp-avx
fi
fi
if grep -q -e "\savx2\s" /proc/cpuinfo ; then
echo "CPU: AVX2 found OK"
if [ -e $CURDIR/llama-cpp-avx2 ]; then
BINARY=llama-cpp-avx2
fi
fi
# Check avx 512
if grep -q -e "\savx512f\s" /proc/cpuinfo ; then
echo "CPU: AVX512F found OK"
if [ -e $CURDIR/llama-cpp-avx512 ]; then
BINARY=llama-cpp-avx512
fi
fi
BINARY=llama-cpp
## P2P/GRPC mode
if [ -n "$LLAMACPP_GRPC_SERVERS" ]; then
if [ -e $CURDIR/llama-cpp-grpc ]; then
BINARY=llama-cpp-grpc
@@ -56,6 +31,3 @@ fi
echo "Using binary: $BINARY"
exec $CURDIR/$BINARY "$@"
# In case we fail execing, just run fallback
exec $CURDIR/llama-cpp-fallback "$@"

View File

@@ -18,11 +18,11 @@ GO_TAGS?=
LD_FLAGS?=
# stablediffusion.cpp (ggml)
STABLEDIFFUSION_GGML_REPO?=https://github.com/leejet/stable-diffusion.cpp
STABLEDIFFUSION_GGML_VERSION?=5900ef6605c6fbf7934239f795c13c97bc993853
STABLEDIFFUSION_GGML_REPO?=https://github.com/richiejp/stable-diffusion.cpp
STABLEDIFFUSION_GGML_VERSION?=53e3b17eb3d0b5760ced06a1f98320b68b34aaae
# Disable Shared libs as we are linking on static gRPC and we can't mix shared and static
CMAKE_ARGS+=-DBUILD_SHARED_LIBS=OFF -DGGML_MAX_NAME=128 -DSD_USE_SYSTEM_GGML=OFF
CMAKE_ARGS+=-DBUILD_SHARED_LIBS=OFF
ifeq ($(NATIVE),false)
CMAKE_ARGS+=-DGGML_NATIVE=OFF
@@ -91,18 +91,23 @@ endif
# (ggml can have different backends cpu, cuda, etc., each backend generates a .a archive)
GGML_ARCHIVE_DIR := build/ggml/src/
ALL_ARCHIVES := $(shell find $(GGML_ARCHIVE_DIR) -type f -name '*.a')
ALL_OBJS := $(shell find $(GGML_ARCHIVE_DIR) -type f -name '*.o')
# Name of the single merged library
COMBINED_LIB := libggmlall.a
# Instead of using the archives generated by GGML, use the object files directly to avoid overwriting objects with the same base name
# Rule to merge all the .a files into one
$(COMBINED_LIB): $(ALL_ARCHIVES)
@echo "Merging all .o into $(COMBINED_LIB): $(ALL_OBJS)"
@echo "Merging all .a into $(COMBINED_LIB)"
rm -f $@
ar -qc $@ $(ALL_OBJS)
mkdir -p merge-tmp
for a in $(ALL_ARCHIVES); do \
( cd merge-tmp && ar x ../$$a ); \
done
( cd merge-tmp && ar rcs ../$@ *.o )
# Ensure we have a proper index
ranlib $@
# Clean up
rm -rf merge-tmp
build/libstable-diffusion.a:
@echo "Building SD with $(BUILD_TYPE) build type and $(CMAKE_ARGS)"

View File

@@ -1,5 +1,3 @@
#define GGML_MAX_NAME 128
#include <stdio.h>
#include <string.h>
#include <time.h>
@@ -7,7 +5,6 @@
#include <random>
#include <string>
#include <vector>
#include <filesystem>
#include "gosd.h"
// #include "preprocessing.hpp"
@@ -56,43 +53,9 @@ sd_ctx_t* sd_c;
sample_method_t sample_method;
// Copied from the upstream CLI
void sd_log_cb(enum sd_log_level_t level, const char* log, void* data) {
//SDParams* params = (SDParams*)data;
const char* level_str;
if (!log /*|| (!params->verbose && level <= SD_LOG_DEBUG)*/) {
return;
}
switch (level) {
case SD_LOG_DEBUG:
level_str = "DEBUG";
break;
case SD_LOG_INFO:
level_str = "INFO";
break;
case SD_LOG_WARN:
level_str = "WARN";
break;
case SD_LOG_ERROR:
level_str = "ERROR";
break;
default: /* Potential future-proofing */
level_str = "?????";
break;
}
fprintf(stderr, "[%-5s] ", level_str);
fputs(log, stderr);
fflush(stderr);
}
int load_model(char *model, char *model_path, char* options[], int threads, int diff) {
int load_model(char *model, char* options[], int threads, int diff) {
fprintf (stderr, "Loading model!\n");
sd_set_log_callback(sd_log_cb, NULL);
char *stableDiffusionModel = "";
if (diff == 1 ) {
stableDiffusionModel = model;
@@ -106,10 +69,6 @@ int load_model(char *model, char *model_path, char* options[], int threads, int
char *vae_path = "";
char *scheduler = "";
char *sampler = "";
char *lora_dir = model_path;
bool lora_dir_allocated = false;
fprintf(stderr, "parsing options\n");
// If options is not NULL, parse options
for (int i = 0; options[i] != NULL; i++) {
@@ -137,29 +96,12 @@ int load_model(char *model, char *model_path, char* options[], int threads, int
if (!strcmp(optname, "sampler")) {
sampler = optval;
}
if (!strcmp(optname, "lora_dir")) {
// Path join with model dir
if (model_path && strlen(model_path) > 0) {
std::filesystem::path model_path_str(model_path);
std::filesystem::path lora_path(optval);
std::filesystem::path full_lora_path = model_path_str / lora_path;
lora_dir = strdup(full_lora_path.string().c_str());
lora_dir_allocated = true;
fprintf(stderr, "Lora dir resolved to: %s\n", lora_dir);
} else {
lora_dir = optval;
fprintf(stderr, "No model path provided, using lora dir as-is: %s\n", lora_dir);
}
}
}
fprintf(stderr, "parsed options\n");
int sample_method_found = -1;
for (int m = 0; m < SAMPLE_METHOD_COUNT; m++) {
for (int m = 0; m < N_SAMPLE_METHODS; m++) {
if (!strcmp(sampler, sample_method_str[m])) {
sample_method_found = m;
fprintf(stderr, "Found sampler: %s\n", sampler);
}
}
if (sample_method_found == -1) {
@@ -169,7 +111,7 @@ int load_model(char *model, char *model_path, char* options[], int threads, int
sample_method = (sample_method_t)sample_method_found;
int schedule_found = -1;
for (int d = 0; d < SCHEDULE_COUNT; d++) {
for (int d = 0; d < N_SCHEDULES; d++) {
if (!strcmp(scheduler, schedule_str[d])) {
schedule_found = d;
fprintf (stderr, "Found scheduler: %s\n", scheduler);
@@ -183,50 +125,43 @@ int load_model(char *model, char *model_path, char* options[], int threads, int
}
schedule_t schedule = (schedule_t)schedule_found;
fprintf (stderr, "Creating context\n");
sd_ctx_params_t ctx_params;
sd_ctx_params_init(&ctx_params);
ctx_params.model_path = model;
ctx_params.clip_l_path = clip_l_path;
ctx_params.clip_g_path = clip_g_path;
ctx_params.t5xxl_path = t5xxl_path;
ctx_params.diffusion_model_path = stableDiffusionModel;
ctx_params.vae_path = vae_path;
ctx_params.taesd_path = "";
ctx_params.control_net_path = "";
ctx_params.lora_model_dir = lora_dir;
ctx_params.embedding_dir = "";
ctx_params.stacked_id_embed_dir = "";
ctx_params.vae_decode_only = false;
ctx_params.vae_tiling = false;
ctx_params.free_params_immediately = false;
ctx_params.n_threads = threads;
ctx_params.rng_type = STD_DEFAULT_RNG;
ctx_params.schedule = schedule;
sd_ctx_t* sd_ctx = new_sd_ctx(&ctx_params);
sd_ctx_t* sd_ctx = new_sd_ctx(model,
clip_l_path,
clip_g_path,
t5xxl_path,
stableDiffusionModel,
vae_path,
"",
"",
"",
"",
"",
false,
false,
false,
threads,
SD_TYPE_COUNT,
STD_DEFAULT_RNG,
schedule,
false,
false,
false,
false);
if (sd_ctx == NULL) {
fprintf (stderr, "failed loading model (generic error)\n");
// Clean up allocated memory
if (lora_dir_allocated && lora_dir) {
free(lora_dir);
}
return 1;
}
fprintf (stderr, "Created context: OK\n");
sd_c = sd_ctx;
// Clean up allocated memory
if (lora_dir_allocated && lora_dir) {
free(lora_dir);
}
return 0;
}
int gen_image(char *text, char *negativeText, int width, int height, int steps, int seed , char *dst, float cfg_scale, char *src_image, float strength, char *mask_image, char **ref_images, int ref_images_count) {
int gen_image(char *text, char *negativeText, int width, int height, int steps, int seed , char *dst, float cfg_scale) {
sd_image_t* results;
@@ -234,202 +169,37 @@ int gen_image(char *text, char *negativeText, int width, int height, int steps,
fprintf (stderr, "Generating image\n");
sd_img_gen_params_t p;
sd_img_gen_params_init(&p);
p.prompt = text;
p.negative_prompt = negativeText;
p.guidance.txt_cfg = cfg_scale;
p.guidance.slg.layers = skip_layers.data();
p.guidance.slg.layer_count = skip_layers.size();
p.width = width;
p.height = height;
p.sample_method = sample_method;
p.sample_steps = steps;
p.seed = seed;
p.input_id_images_path = "";
// Handle input image for img2img
bool has_input_image = (src_image != NULL && strlen(src_image) > 0);
bool has_mask_image = (mask_image != NULL && strlen(mask_image) > 0);
uint8_t* input_image_buffer = NULL;
uint8_t* mask_image_buffer = NULL;
std::vector<uint8_t> default_mask_image_vec;
if (has_input_image) {
fprintf(stderr, "Loading input image: %s\n", src_image);
int c = 0;
int img_width = 0;
int img_height = 0;
input_image_buffer = stbi_load(src_image, &img_width, &img_height, &c, 3);
if (input_image_buffer == NULL) {
fprintf(stderr, "Failed to load input image from '%s'\n", src_image);
return 1;
}
if (c < 3) {
fprintf(stderr, "Input image must have at least 3 channels, got %d\n", c);
free(input_image_buffer);
return 1;
}
// Resize input image if dimensions don't match
if (img_width != width || img_height != height) {
fprintf(stderr, "Resizing input image from %dx%d to %dx%d\n", img_width, img_height, width, height);
uint8_t* resized_image_buffer = (uint8_t*)malloc(height * width * 3);
if (resized_image_buffer == NULL) {
fprintf(stderr, "Failed to allocate memory for resized image\n");
free(input_image_buffer);
return 1;
}
stbir_resize(input_image_buffer, img_width, img_height, 0,
resized_image_buffer, width, height, 0, STBIR_TYPE_UINT8,
3, STBIR_ALPHA_CHANNEL_NONE, 0,
STBIR_EDGE_CLAMP, STBIR_EDGE_CLAMP,
STBIR_FILTER_BOX, STBIR_FILTER_BOX,
STBIR_COLORSPACE_SRGB, nullptr);
free(input_image_buffer);
input_image_buffer = resized_image_buffer;
}
p.init_image = {(uint32_t)width, (uint32_t)height, 3, input_image_buffer};
p.strength = strength;
fprintf(stderr, "Using img2img with strength: %.2f\n", strength);
} else {
// No input image, use empty image for text-to-image
p.init_image = {(uint32_t)width, (uint32_t)height, 3, NULL};
p.strength = 0.0f;
}
// Handle mask image for inpainting
if (has_mask_image) {
fprintf(stderr, "Loading mask image: %s\n", mask_image);
int c = 0;
int mask_width = 0;
int mask_height = 0;
mask_image_buffer = stbi_load(mask_image, &mask_width, &mask_height, &c, 1);
if (mask_image_buffer == NULL) {
fprintf(stderr, "Failed to load mask image from '%s'\n", mask_image);
if (input_image_buffer) free(input_image_buffer);
return 1;
}
// Resize mask if dimensions don't match
if (mask_width != width || mask_height != height) {
fprintf(stderr, "Resizing mask image from %dx%d to %dx%d\n", mask_width, mask_height, width, height);
uint8_t* resized_mask_buffer = (uint8_t*)malloc(height * width);
if (resized_mask_buffer == NULL) {
fprintf(stderr, "Failed to allocate memory for resized mask\n");
free(mask_image_buffer);
if (input_image_buffer) free(input_image_buffer);
return 1;
}
stbir_resize(mask_image_buffer, mask_width, mask_height, 0,
resized_mask_buffer, width, height, 0, STBIR_TYPE_UINT8,
1, STBIR_ALPHA_CHANNEL_NONE, 0,
STBIR_EDGE_CLAMP, STBIR_EDGE_CLAMP,
STBIR_FILTER_BOX, STBIR_FILTER_BOX,
STBIR_COLORSPACE_SRGB, nullptr);
free(mask_image_buffer);
mask_image_buffer = resized_mask_buffer;
}
p.mask_image = {(uint32_t)width, (uint32_t)height, 1, mask_image_buffer};
fprintf(stderr, "Using inpainting with mask\n");
} else {
// No mask image, create default full mask
default_mask_image_vec.resize(width * height, 255);
p.mask_image = {(uint32_t)width, (uint32_t)height, 1, default_mask_image_vec.data()};
}
// Handle reference images
std::vector<sd_image_t> ref_images_vec;
std::vector<uint8_t*> ref_image_buffers;
if (ref_images_count > 0 && ref_images != NULL) {
fprintf(stderr, "Loading %d reference images\n", ref_images_count);
for (int i = 0; i < ref_images_count; i++) {
if (ref_images[i] == NULL || strlen(ref_images[i]) == 0) {
continue;
}
fprintf(stderr, "Loading reference image %d: %s\n", i + 1, ref_images[i]);
int c = 0;
int ref_width = 0;
int ref_height = 0;
uint8_t* ref_image_buffer = stbi_load(ref_images[i], &ref_width, &ref_height, &c, 3);
if (ref_image_buffer == NULL) {
fprintf(stderr, "Failed to load reference image from '%s'\n", ref_images[i]);
continue;
}
if (c < 3) {
fprintf(stderr, "Reference image must have at least 3 channels, got %d\n", c);
free(ref_image_buffer);
continue;
}
// Resize reference image if dimensions don't match
if (ref_width != width || ref_height != height) {
fprintf(stderr, "Resizing reference image from %dx%d to %dx%d\n", ref_width, ref_height, width, height);
uint8_t* resized_ref_buffer = (uint8_t*)malloc(height * width * 3);
if (resized_ref_buffer == NULL) {
fprintf(stderr, "Failed to allocate memory for resized reference image\n");
free(ref_image_buffer);
continue;
}
stbir_resize(ref_image_buffer, ref_width, ref_height, 0,
resized_ref_buffer, width, height, 0, STBIR_TYPE_UINT8,
3, STBIR_ALPHA_CHANNEL_NONE, 0,
STBIR_EDGE_CLAMP, STBIR_EDGE_CLAMP,
STBIR_FILTER_BOX, STBIR_FILTER_BOX,
STBIR_COLORSPACE_SRGB, nullptr);
free(ref_image_buffer);
ref_image_buffer = resized_ref_buffer;
}
ref_image_buffers.push_back(ref_image_buffer);
ref_images_vec.push_back({(uint32_t)width, (uint32_t)height, 3, ref_image_buffer});
}
if (!ref_images_vec.empty()) {
p.ref_images = ref_images_vec.data();
p.ref_images_count = ref_images_vec.size();
fprintf(stderr, "Using %zu reference images\n", ref_images_vec.size());
}
}
results = generate_image(sd_c, &p);
results = txt2img(sd_c,
text,
negativeText,
-1, //clip_skip
cfg_scale, // sfg_scale
3.5f,
0, // eta
width,
height,
sample_method,
steps,
seed,
1,
NULL,
0.9f,
20.f,
false,
"",
skip_layers.data(),
skip_layers.size(),
0,
0.01,
0.2);
if (results == NULL) {
fprintf (stderr, "NO results\n");
if (input_image_buffer) free(input_image_buffer);
if (mask_image_buffer) free(mask_image_buffer);
for (auto buffer : ref_image_buffers) {
if (buffer) free(buffer);
}
return 1;
}
if (results[0].data == NULL) {
fprintf (stderr, "Results with no data\n");
if (input_image_buffer) free(input_image_buffer);
if (mask_image_buffer) free(mask_image_buffer);
for (auto buffer : ref_image_buffers) {
if (buffer) free(buffer);
}
return 1;
}
@@ -445,15 +215,11 @@ int gen_image(char *text, char *negativeText, int width, int height, int steps,
results[0].data, 0, NULL);
fprintf (stderr, "Saved resulting image to '%s'\n", dst);
// Clean up
// TODO: free results. Why does it crash?
free(results[0].data);
results[0].data = NULL;
free(results);
if (input_image_buffer) free(input_image_buffer);
if (mask_image_buffer) free(mask_image_buffer);
for (auto buffer : ref_image_buffers) {
if (buffer) free(buffer);
}
fprintf (stderr, "gen_image is done", dst);
return 0;

View File

@@ -29,21 +29,16 @@ func (sd *SDGGML) Load(opts *pb.ModelOptions) error {
sd.threads = int(opts.Threads)
modelPath := opts.ModelPath
modelFile := C.CString(opts.ModelFile)
defer C.free(unsafe.Pointer(modelFile))
modelPathC := C.CString(modelPath)
defer C.free(unsafe.Pointer(modelPathC))
var options **C.char
// prepare the options array to pass to C
size := C.size_t(unsafe.Sizeof((*C.char)(nil)))
length := C.size_t(len(opts.Options))
options = (**C.char)(C.malloc((length + 1) * size))
view := (*[1 << 30]*C.char)(unsafe.Pointer(options))[0 : len(opts.Options)+1 : len(opts.Options)+1]
options = (**C.char)(C.malloc(length * size))
view := (*[1 << 30]*C.char)(unsafe.Pointer(options))[0:len(opts.Options):len(opts.Options)]
var diffusionModel int
@@ -71,11 +66,10 @@ func (sd *SDGGML) Load(opts *pb.ModelOptions) error {
for i, x := range oo {
view[i] = C.CString(x)
}
view[len(oo)] = nil
sd.cfgScale = opts.CFGScale
ret := C.load_model(modelFile, modelPathC, options, C.int(opts.Threads), C.int(diffusionModel))
ret := C.load_model(modelFile, options, C.int(opts.Threads), C.int(diffusionModel))
if ret != 0 {
return fmt.Errorf("could not load model")
}
@@ -93,56 +87,7 @@ func (sd *SDGGML) GenerateImage(opts *pb.GenerateImageRequest) error {
negative := C.CString(opts.NegativePrompt)
defer C.free(unsafe.Pointer(negative))
// Handle source image path
var srcImage *C.char
if opts.Src != "" {
srcImage = C.CString(opts.Src)
defer C.free(unsafe.Pointer(srcImage))
}
// Handle mask image path
var maskImage *C.char
if opts.EnableParameters != "" {
// Parse EnableParameters for mask path if provided
// This is a simple approach - in a real implementation you might want to parse JSON
if strings.Contains(opts.EnableParameters, "mask:") {
parts := strings.Split(opts.EnableParameters, "mask:")
if len(parts) > 1 {
maskPath := strings.TrimSpace(parts[1])
if maskPath != "" {
maskImage = C.CString(maskPath)
defer C.free(unsafe.Pointer(maskImage))
}
}
}
}
// Handle reference images
var refImages **C.char
var refImagesCount C.int
if len(opts.RefImages) > 0 {
refImagesCount = C.int(len(opts.RefImages))
// Allocate array of C strings
size := C.size_t(unsafe.Sizeof((*C.char)(nil)))
refImages = (**C.char)(C.malloc((C.size_t(len(opts.RefImages)) + 1) * size))
view := (*[1 << 30]*C.char)(unsafe.Pointer(refImages))[0 : len(opts.RefImages)+1 : len(opts.RefImages)+1]
for i, refImagePath := range opts.RefImages {
view[i] = C.CString(refImagePath)
defer C.free(unsafe.Pointer(view[i]))
}
view[len(opts.RefImages)] = nil
}
// Default strength for img2img (0.75 is a good default)
strength := C.float(0.75)
if opts.Src != "" {
// If we have a source image, use img2img mode
// You could also parse strength from EnableParameters if needed
strength = C.float(0.75)
}
ret := C.gen_image(t, negative, C.int(opts.Width), C.int(opts.Height), C.int(opts.Step), C.int(opts.Seed), dst, C.float(sd.cfgScale), srcImage, strength, maskImage, refImages, refImagesCount)
ret := C.gen_image(t, negative, C.int(opts.Width), C.int(opts.Height), C.int(opts.Step), C.int(opts.Seed), dst, C.float(sd.cfgScale))
if ret != 0 {
return fmt.Errorf("inference failed")
}

View File

@@ -1,8 +1,8 @@
#ifdef __cplusplus
extern "C" {
#endif
int load_model(char *model, char *model_path, char* options[], int threads, int diffusionModel);
int gen_image(char *text, char *negativeText, int width, int height, int steps, int seed, char *dst, float cfg_scale, char *src_image, float strength, char *mask_image, char **ref_images, int ref_images_count);
int load_model(char *model, char* options[], int threads, int diffusionModel);
int gen_image(char *text, char *negativeText, int width, int height, int steps, int seed, char *dst, float cfg_scale);
#ifdef __cplusplus
}
#endif

View File

@@ -6,7 +6,7 @@ CMAKE_ARGS?=
# whisper.cpp version
WHISPER_REPO?=https://github.com/ggml-org/whisper.cpp
WHISPER_CPP_VERSION?=b02242d0adb5c6c4896d59ac86d9ec9fe0d0fe33
WHISPER_CPP_VERSION?=1f5cf0b2888402d57bb17b2029b2caa97e5f3baf
export WHISPER_CMAKE_ARGS?=-DBUILD_SHARED_LIBS=OFF
export WHISPER_DIR=$(abspath ./sources/whisper.cpp)

View File

File diff suppressed because it is too large Load Diff

View File

@@ -57,11 +57,6 @@ function init() {
# - hipblas
# - intel
function getBuildProfile() {
if [ "x${BUILD_TYPE}" == "xl4t" ]; then
echo "l4t"
return 0
fi
# First check if we are a cublas build, and if so report the correct build profile
if [ x"${BUILD_TYPE}" == "xcublas" ]; then
if [ ! -z ${CUDA_MAJOR_VERSION} ]; then
@@ -116,7 +111,7 @@ function ensureVenv() {
# - requirements-${BUILD_TYPE}.txt
# - requirements-${BUILD_PROFILE}.txt
#
# BUILD_PROFILE is a pore specific version of BUILD_TYPE, ex: cuda-11 or cuda-12
# BUILD_PROFILE is a pore specific version of BUILD_TYPE, ex: cuda11 or cuda12
# it can also include some options that we do not have BUILD_TYPES for, ex: intel
#
# NOTE: for BUILD_PROFILE==intel, this function does NOT automatically use the Intel python package index.

View File

@@ -8,6 +8,4 @@ else
source $backend_dir/../common/libbackend.sh
fi
ensureVenv
python3 -m grpc_tools.protoc -I../.. -I./ --python_out=. --grpc_python_out=. backend.proto

View File

@@ -65,19 +65,6 @@ from diffusers.schedulers import (
UniPCMultistepScheduler,
)
def is_float(s):
try:
float(s)
return True
except ValueError:
return False
def is_int(s):
try:
int(s)
return True
except ValueError:
return False
# The scheduler list mapping was taken from here: https://github.com/neggles/animatediff-cli/blob/6f336f5f4b5e38e85d7f06f1744ef42d0a45f2a7/src/animatediff/schedulers.py#L39
# Credits to https://github.com/neggles
@@ -182,24 +169,8 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
if ":" not in opt:
continue
key, value = opt.split(":")
# if value is a number, convert it to the appropriate type
if is_float(value):
value = float(value)
elif is_int(value):
value = int(value)
self.options[key] = value
# From options, extract if present "torch_dtype" and set it to the appropriate type
if "torch_dtype" in self.options:
if self.options["torch_dtype"] == "fp16":
torchType = torch.float16
elif self.options["torch_dtype"] == "bf16":
torchType = torch.bfloat16
elif self.options["torch_dtype"] == "fp32":
torchType = torch.float32
# remove it from options
del self.options["torch_dtype"]
print(f"Options: {self.options}", file=sys.stderr)
local = False

View File

@@ -1,9 +1,9 @@
git+https://github.com/huggingface/diffusers
diffusers
opencv-python
transformers
accelerate
compel
peft
sentencepiece
torch==2.7.1
torch==2.4.1
optimum-quanto

View File

@@ -1,6 +1,6 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.7.1+cu118
git+https://github.com/huggingface/diffusers
torch==2.4.1+cu118
diffusers
opencv-python
transformers
accelerate

View File

@@ -1,5 +1,5 @@
torch==2.7.1
git+https://github.com/huggingface/diffusers
torch==2.4.1
diffusers
opencv-python
transformers
accelerate

View File

@@ -1,7 +1,7 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.3
torch==2.7.1+rocm6.3
torchvision==0.22.1+rocm6.3
git+https://github.com/huggingface/diffusers
--extra-index-url https://download.pytorch.org/whl/rocm6.0
torch==2.3.1+rocm6.0
torchvision==0.18.1+rocm6.0
diffusers
opencv-python
transformers
accelerate

View File

@@ -1,11 +1,11 @@
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.3.110+xpu
torch==2.5.1+cxx11.abi
torchvision==0.20.1+cxx11.abi
oneccl_bind_pt==2.8.0+xpu
torch==2.3.1+cxx11.abi
torchvision==0.18.1+cxx11.abi
oneccl_bind_pt==2.3.100+xpu
optimum[openvino]
setuptools
git+https://github.com/huggingface/diffusers
diffusers
opencv-python
transformers
accelerate

View File

@@ -1,10 +0,0 @@
--extra-index-url https://pypi.jetson-ai-lab.io/jp6/cu126/
torch
diffusers
transformers
accelerate
compel
peft
optimum-quanto
numpy<2
sentencepiece

View File

@@ -1,29 +0,0 @@
.PHONY: kitten-tts
kitten-tts: protogen
bash install.sh
.PHONY: run
run: protogen
@echo "Running kitten-tts..."
bash run.sh
@echo "kitten-tts run."
.PHONY: test
test: protogen
@echo "Testing kitten-tts..."
bash test.sh
@echo "kitten-tts tested."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. -I./ --python_out=. --grpc_python_out=. backend.proto
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__

View File

@@ -1,121 +0,0 @@
#!/usr/bin/env python3
"""
This is an extra gRPC server of LocalAI for Kitten TTS
"""
from concurrent import futures
import time
import argparse
import signal
import sys
import os
import backend_pb2
import backend_pb2_grpc
import torch
from kittentts import KittenTTS
import soundfile as sf
import grpc
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
KITTEN_LANGUAGE = os.environ.get('KITTEN_LANGUAGE', None)
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
BackendServicer is the class that implements the gRPC service
"""
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
# Get device
# device = "cuda" if request.CUDA else "cpu"
if torch.cuda.is_available():
print("CUDA is available", file=sys.stderr)
device = "cuda"
else:
print("CUDA is not available", file=sys.stderr)
device = "cpu"
if not torch.cuda.is_available() and request.CUDA:
return backend_pb2.Result(success=False, message="CUDA is not available")
self.AudioPath = None
# List available KittenTTS models
print("Available KittenTTS voices: expr-voice-2-m, expr-voice-2-f, expr-voice-3-m, expr-voice-3-f, expr-voice-4-m, expr-voice-4-f, expr-voice-5-m, expr-voice-5-f")
if os.path.isabs(request.AudioPath):
self.AudioPath = request.AudioPath
elif request.AudioPath and request.ModelFile != "" and not os.path.isabs(request.AudioPath):
# get base path of modelFile
modelFileBase = os.path.dirname(request.ModelFile)
# modify LoraAdapter to be relative to modelFileBase
self.AudioPath = os.path.join(modelFileBase, request.AudioPath)
try:
print("Preparing KittenTTS model, please wait", file=sys.stderr)
# Use the model name from request.Model, defaulting to "KittenML/kitten-tts-nano-0.1" if not specified
model_name = request.Model if request.Model else "KittenML/kitten-tts-nano-0.1"
self.tts = KittenTTS(model_name)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
# Implement your logic here for the LoadModel service
# Replace this with your desired response
return backend_pb2.Result(message="Model loaded successfully", success=True)
def TTS(self, request, context):
try:
# KittenTTS doesn't use language parameter like TTS, so we ignore it
# For multi-speaker models, use voice parameter
voice = request.voice if request.voice else "expr-voice-2-f"
# Generate audio using KittenTTS
audio = self.tts.generate(request.text, voice=voice)
# Save the audio using soundfile
sf.write(request.dst, audio, 24000)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS),
options=[
('grpc.max_message_length', 50 * 1024 * 1024), # 50MB
('grpc.max_send_message_length', 50 * 1024 * 1024), # 50MB
('grpc.max_receive_message_length', 50 * 1024 * 1024), # 50MB
])
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)

View File

@@ -1,19 +0,0 @@
#!/bin/bash
set -e
backend_dir=$(dirname $0)
if [ -d $backend_dir/common ]; then
source $backend_dir/common/libbackend.sh
else
source $backend_dir/../common/libbackend.sh
fi
# This is here because the Intel pip index is broken and returns 200 status codes for every package name, it just doesn't return any package links.
# This makes uv think that the package exists in the Intel pip index, and by default it stops looking at other pip indexes once it finds a match.
# We need uv to continue falling through to the pypi default index to find optimum[openvino] in the pypi index
# the --upgrade actually allows us to *downgrade* torch to the version provided in the Intel pip index
if [ "x${BUILD_PROFILE}" == "xintel" ]; then
EXTRA_PIP_INSTALL_FLAGS+=" --upgrade --index-strategy=unsafe-first-match"
fi
installRequirements

View File

@@ -1,5 +0,0 @@
grpcio==1.71.0
protobuf
certifi
packaging==24.1
https://github.com/KittenML/KittenTTS/releases/download/0.1/kittentts-0.1.0-py3-none-any.whl

View File

@@ -1,9 +0,0 @@
#!/bin/bash
backend_dir=$(dirname $0)
if [ -d $backend_dir/common ]; then
source $backend_dir/common/libbackend.sh
else
source $backend_dir/../common/libbackend.sh
fi
startBackend $@

View File

@@ -1,82 +0,0 @@
"""
A test script to test the gRPC service
"""
import unittest
import subprocess
import time
import backend_pb2
import backend_pb2_grpc
import grpc
class TestBackendServicer(unittest.TestCase):
"""
TestBackendServicer is the class that tests the gRPC service
"""
def setUp(self):
"""
This method sets up the gRPC service by starting the server
"""
self.service = subprocess.Popen(["python3", "backend.py", "--addr", "localhost:50051"])
time.sleep(30)
def tearDown(self) -> None:
"""
This method tears down the gRPC service by terminating the server
"""
self.service.terminate()
self.service.wait()
def test_server_startup(self):
"""
This method tests if the server starts up successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.Health(backend_pb2.HealthMessage())
self.assertEqual(response.message, b'OK')
except Exception as err:
print(err)
self.fail("Server failed to start")
finally:
self.tearDown()
def test_load_model(self):
"""
This method tests if the model is loaded successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="tts_models/en/vctk/vits"))
print(response)
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
print(err)
self.fail("LoadModel service failed")
finally:
self.tearDown()
def test_tts(self):
"""
This method tests if the embeddings are generated successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="tts_models/en/vctk/vits"))
self.assertTrue(response.success)
tts_request = backend_pb2.TTSRequest(text="80s TV news production music hit for tonight's biggest story")
tts_response = stub.TTS(tts_request)
self.assertIsNotNone(tts_response)
except Exception as err:
print(err)
self.fail("TTS service failed")
finally:
self.tearDown()

View File

@@ -1,11 +0,0 @@
#!/bin/bash
set -e
backend_dir=$(dirname $0)
if [ -d $backend_dir/common ]; then
source $backend_dir/common/libbackend.sh
else
source $backend_dir/../common/libbackend.sh
fi
runUnittests

View File

@@ -1,18 +1,9 @@
.PHONY: kokoro
kokoro: protogen
.DEFAULT_GOAL := install
.PHONY: install
install:
bash install.sh
.PHONY: run
run: protogen
@echo "Running kokoro..."
bash run.sh
@echo "kokoro run."
.PHONY: test
test: protogen
@echo "Testing kokoro..."
bash test.sh
@echo "kokoro tested."
$(MAKE) protogen
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
@@ -22,7 +13,7 @@ protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. -I./ --python_out=. --grpc_python_out=. backend.proto
bash protogen.sh
.PHONY: clean
clean: protogen-clean

View File

@@ -1,23 +0,0 @@
# Kokoro TTS Backend for LocalAI
This is a gRPC server backend for LocalAI that uses the Kokoro TTS pipeline.
## Creating a separate environment for kokoro project
```bash
make kokoro
```
## Testing the gRPC server
```bash
make test
```
## Features
- Lightweight TTS model with 82 million parameters
- Apache-licensed weights
- Fast and cost-efficient
- Multi-language support
- Multiple voice options

115
backend/python/kokoro/backend.py Normal file → Executable file
View File

@@ -1,92 +1,101 @@
#!/usr/bin/env python3
"""
This is an extra gRPC server of LocalAI for Kokoro TTS
Extra gRPC server for Kokoro models.
"""
from concurrent import futures
import time
import argparse
import signal
import sys
import os
import time
import backend_pb2
import backend_pb2_grpc
import torch
from kokoro import KPipeline
import soundfile as sf
import grpc
from models import build_model
from kokoro import generate
import torch
SAMPLE_RATE = 22050
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
KOKORO_LANG_CODE = os.environ.get('KOKORO_LANG_CODE', 'a')
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
BackendServicer is the class that implements the gRPC service
A gRPC servicer for the backend service.
This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding.
"""
def Health(self, request, context):
"""
A gRPC method that returns the health status of the backend service.
Args:
request: A HealthRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
A Reply object that contains the health status of the backend service.
"""
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
# Get device
if torch.cuda.is_available():
print("CUDA is available", file=sys.stderr)
device = "cuda"
else:
print("CUDA is not available", file=sys.stderr)
device = "cpu"
"""
A gRPC method that loads a model into memory.
if not torch.cuda.is_available() and request.CUDA:
return backend_pb2.Result(success=False, message="CUDA is not available")
Args:
request: A LoadModelRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
A Result object that contains the result of the LoadModel operation.
"""
model_name = request.Model
try:
print("Preparing Kokoro TTS pipeline, please wait", file=sys.stderr)
# empty dict
self.options = {}
device = "cuda:0" if torch.cuda.is_available() else "cpu"
self.MODEL = build_model(request.ModelFile, device)
options = request.Options
# The options are a list of strings in this form optname:optvalue
# We are storing all the options in a dict so we can use it later when
# generating the images
# Find the voice from the options, options are a list of strings in this form optname:optvalue:
VOICE_NAME = None
for opt in options:
if ":" not in opt:
continue
key, value = opt.split(":")
self.options[key] = value
if opt.startswith("voice:"):
VOICE_NAME = opt.split(":")[1]
break
if VOICE_NAME is None:
return backend_pb2.Result(success=False, message=f"No voice specified in options")
MODELPATH = request.ModelPath
# If voice name contains a plus, split it and load the two models and combine them
if "+" in VOICE_NAME:
voice1, voice2 = VOICE_NAME.split("+")
voice1 = torch.load(f'{MODELPATH}/{voice1}.pt', weights_only=True).to(device)
voice2 = torch.load(f'{MODELPATH}/{voice2}.pt', weights_only=True).to(device)
self.VOICEPACK = torch.mean(torch.stack([voice1, voice2]), dim=0)
else:
self.VOICEPACK = torch.load(f'{MODELPATH}/{VOICE_NAME}.pt', weights_only=True).to(device)
# Initialize Kokoro pipeline with language code
lang_code = self.options.get("lang_code", KOKORO_LANG_CODE)
self.pipeline = KPipeline(lang_code=lang_code)
print(f"Kokoro TTS pipeline loaded with language code: {lang_code}", file=sys.stderr)
self.VOICE_NAME = VOICE_NAME
print(f'Loaded voice: {VOICE_NAME}')
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(message="Kokoro TTS pipeline loaded successfully", success=True)
return backend_pb2.Result(message="Model loaded successfully", success=True)
def TTS(self, request, context):
model_name = request.model
if model_name == "":
return backend_pb2.Result(success=False, message="request.model is required")
try:
# Get voice from request, default to 'af_heart' if not specified
voice = request.voice if request.voice else 'af_heart'
# Generate audio using Kokoro pipeline
generator = self.pipeline(request.text, voice=voice)
# Get the first (and typically only) audio segment
for i, (gs, ps, audio) in enumerate(generator):
# Save audio to the destination file
sf.write(request.dst, audio, 24000)
print(f"Generated audio segment {i}: gs={gs}, ps={ps}", file=sys.stderr)
# For now, we only process the first segment
# If you need to handle multiple segments, you might want to modify this
break
audio, out_ps = generate(self.MODEL, request.text, self.VOICEPACK, lang=self.VOICE_NAME)
print(out_ps)
sf.write(request.dst, audio, SAMPLE_RATE)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
def serve(address):
@@ -99,11 +108,11 @@ def serve(address):
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
print("[Kokoro] Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
print("[Kokoro] Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
@@ -123,5 +132,5 @@ if __name__ == "__main__":
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
print(f"[Kokoro] startup: {args}", file=sys.stderr)
serve(args.addr)

View File

@@ -0,0 +1,524 @@
# https://huggingface.co/hexgrad/Kokoro-82M/blob/main/istftnet.py
# https://github.com/yl4579/StyleTTS2/blob/main/Modules/istftnet.py
from scipy.signal import get_window
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils import weight_norm, remove_weight_norm
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
# https://github.com/yl4579/StyleTTS2/blob/main/Modules/utils.py
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
def get_padding(kernel_size, dilation=1):
return int((kernel_size*dilation - dilation)/2)
LRELU_SLOPE = 0.1
class AdaIN1d(nn.Module):
def __init__(self, style_dim, num_features):
super().__init__()
self.norm = nn.InstanceNorm1d(num_features, affine=False)
self.fc = nn.Linear(style_dim, num_features*2)
def forward(self, x, s):
h = self.fc(s)
h = h.view(h.size(0), h.size(1), 1)
gamma, beta = torch.chunk(h, chunks=2, dim=1)
return (1 + gamma) * self.norm(x) + beta
class AdaINResBlock1(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
super(AdaINResBlock1, self).__init__()
self.convs1 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2])))
])
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1)))
])
self.convs2.apply(init_weights)
self.adain1 = nn.ModuleList([
AdaIN1d(style_dim, channels),
AdaIN1d(style_dim, channels),
AdaIN1d(style_dim, channels),
])
self.adain2 = nn.ModuleList([
AdaIN1d(style_dim, channels),
AdaIN1d(style_dim, channels),
AdaIN1d(style_dim, channels),
])
self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
def forward(self, x, s):
for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
xt = n1(x, s)
xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
xt = c1(xt)
xt = n2(xt, s)
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class TorchSTFT(torch.nn.Module):
def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'):
super().__init__()
self.filter_length = filter_length
self.hop_length = hop_length
self.win_length = win_length
self.window = torch.from_numpy(get_window(window, win_length, fftbins=True).astype(np.float32))
def transform(self, input_data):
forward_transform = torch.stft(
input_data,
self.filter_length, self.hop_length, self.win_length, window=self.window.to(input_data.device),
return_complex=True)
return torch.abs(forward_transform), torch.angle(forward_transform)
def inverse(self, magnitude, phase):
inverse_transform = torch.istft(
magnitude * torch.exp(phase * 1j),
self.filter_length, self.hop_length, self.win_length, window=self.window.to(magnitude.device))
return inverse_transform.unsqueeze(-2) # unsqueeze to stay consistent with conv_transpose1d implementation
def forward(self, input_data):
self.magnitude, self.phase = self.transform(input_data)
reconstruction = self.inverse(self.magnitude, self.phase)
return reconstruction
class SineGen(torch.nn.Module):
""" Definition of sine generator
SineGen(samp_rate, harmonic_num = 0,
sine_amp = 0.1, noise_std = 0.003,
voiced_threshold = 0,
flag_for_pulse=False)
samp_rate: sampling rate in Hz
harmonic_num: number of harmonic overtones (default 0)
sine_amp: amplitude of sine-wavefrom (default 0.1)
noise_std: std of Gaussian noise (default 0.003)
voiced_thoreshold: F0 threshold for U/V classification (default 0)
flag_for_pulse: this SinGen is used inside PulseGen (default False)
Note: when flag_for_pulse is True, the first time step of a voiced
segment is always sin(np.pi) or cos(0)
"""
def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
sine_amp=0.1, noise_std=0.003,
voiced_threshold=0,
flag_for_pulse=False):
super(SineGen, self).__init__()
self.sine_amp = sine_amp
self.noise_std = noise_std
self.harmonic_num = harmonic_num
self.dim = self.harmonic_num + 1
self.sampling_rate = samp_rate
self.voiced_threshold = voiced_threshold
self.flag_for_pulse = flag_for_pulse
self.upsample_scale = upsample_scale
def _f02uv(self, f0):
# generate uv signal
uv = (f0 > self.voiced_threshold).type(torch.float32)
return uv
def _f02sine(self, f0_values):
""" f0_values: (batchsize, length, dim)
where dim indicates fundamental tone and overtones
"""
# convert to F0 in rad. The integer part n can be ignored
# because 2 * np.pi * n doesn't affect phase
rad_values = (f0_values / self.sampling_rate) % 1
# initial phase noise (no noise for fundamental component)
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
device=f0_values.device)
rand_ini[:, 0] = 0
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
if not self.flag_for_pulse:
# # for normal case
# # To prevent torch.cumsum numerical overflow,
# # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
# # Buffer tmp_over_one_idx indicates the time step to add -1.
# # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
# cumsum_shift = torch.zeros_like(rad_values)
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
# phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
scale_factor=1/self.upsample_scale,
mode="linear").transpose(1, 2)
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
# cumsum_shift = torch.zeros_like(rad_values)
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
sines = torch.sin(phase)
else:
# If necessary, make sure that the first time step of every
# voiced segments is sin(pi) or cos(0)
# This is used for pulse-train generation
# identify the last time step in unvoiced segments
uv = self._f02uv(f0_values)
uv_1 = torch.roll(uv, shifts=-1, dims=1)
uv_1[:, -1, :] = 1
u_loc = (uv < 1) * (uv_1 > 0)
# get the instantanouse phase
tmp_cumsum = torch.cumsum(rad_values, dim=1)
# different batch needs to be processed differently
for idx in range(f0_values.shape[0]):
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
# stores the accumulation of i.phase within
# each voiced segments
tmp_cumsum[idx, :, :] = 0
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
# rad_values - tmp_cumsum: remove the accumulation of i.phase
# within the previous voiced segment.
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
# get the sines
sines = torch.cos(i_phase * 2 * np.pi)
return sines
def forward(self, f0):
""" sine_tensor, uv = forward(f0)
input F0: tensor(batchsize=1, length, dim=1)
f0 for unvoiced steps should be 0
output sine_tensor: tensor(batchsize=1, length, dim)
output uv: tensor(batchsize=1, length, 1)
"""
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
device=f0.device)
# fundamental component
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
# generate sine waveforms
sine_waves = self._f02sine(fn) * self.sine_amp
# generate uv signal
# uv = torch.ones(f0.shape)
# uv = uv * (f0 > self.voiced_threshold)
uv = self._f02uv(f0)
# noise: for unvoiced should be similar to sine_amp
# std = self.sine_amp/3 -> max value ~ self.sine_amp
# . for voiced regions is self.noise_std
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
noise = noise_amp * torch.randn_like(sine_waves)
# first: set the unvoiced part to 0 by uv
# then: additive noise
sine_waves = sine_waves * uv + noise
return sine_waves, uv, noise
class SourceModuleHnNSF(torch.nn.Module):
""" SourceModule for hn-nsf
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
add_noise_std=0.003, voiced_threshod=0)
sampling_rate: sampling_rate in Hz
harmonic_num: number of harmonic above F0 (default: 0)
sine_amp: amplitude of sine source signal (default: 0.1)
add_noise_std: std of additive Gaussian noise (default: 0.003)
note that amplitude of noise in unvoiced is decided
by sine_amp
voiced_threshold: threhold to set U/V given F0 (default: 0)
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
F0_sampled (batchsize, length, 1)
Sine_source (batchsize, length, 1)
noise_source (batchsize, length 1)
uv (batchsize, length, 1)
"""
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
add_noise_std=0.003, voiced_threshod=0):
super(SourceModuleHnNSF, self).__init__()
self.sine_amp = sine_amp
self.noise_std = add_noise_std
# to produce sine waveforms
self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
sine_amp, add_noise_std, voiced_threshod)
# to merge source harmonics into a single excitation
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
self.l_tanh = torch.nn.Tanh()
def forward(self, x):
"""
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
F0_sampled (batchsize, length, 1)
Sine_source (batchsize, length, 1)
noise_source (batchsize, length 1)
"""
# source for harmonic branch
with torch.no_grad():
sine_wavs, uv, _ = self.l_sin_gen(x)
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
# source for noise branch, in the same shape as uv
noise = torch.randn_like(uv) * self.sine_amp / 3
return sine_merge, noise, uv
def padDiff(x):
return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
class Generator(torch.nn.Module):
def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size):
super(Generator, self).__init__()
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
resblock = AdaINResBlock1
self.m_source = SourceModuleHnNSF(
sampling_rate=24000,
upsample_scale=np.prod(upsample_rates) * gen_istft_hop_size,
harmonic_num=8, voiced_threshod=10)
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * gen_istft_hop_size)
self.noise_convs = nn.ModuleList()
self.noise_res = nn.ModuleList()
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups.append(weight_norm(
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
k, u, padding=(k-u)//2)))
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = upsample_initial_channel//(2**(i+1))
for j, (k, d) in enumerate(zip(resblock_kernel_sizes,resblock_dilation_sizes)):
self.resblocks.append(resblock(ch, k, d, style_dim))
c_cur = upsample_initial_channel // (2 ** (i + 1))
if i + 1 < len(upsample_rates): #
stride_f0 = np.prod(upsample_rates[i + 1:])
self.noise_convs.append(Conv1d(
gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim))
else:
self.noise_convs.append(Conv1d(gen_istft_n_fft + 2, c_cur, kernel_size=1))
self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim))
self.post_n_fft = gen_istft_n_fft
self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3))
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
self.stft = TorchSTFT(filter_length=gen_istft_n_fft, hop_length=gen_istft_hop_size, win_length=gen_istft_n_fft)
def forward(self, x, s, f0):
with torch.no_grad():
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
har_source, noi_source, uv = self.m_source(f0)
har_source = har_source.transpose(1, 2).squeeze(1)
har_spec, har_phase = self.stft.transform(har_source)
har = torch.cat([har_spec, har_phase], dim=1)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, LRELU_SLOPE)
x_source = self.noise_convs[i](har)
x_source = self.noise_res[i](x_source, s)
x = self.ups[i](x)
if i == self.num_upsamples - 1:
x = self.reflection_pad(x)
x = x + x_source
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i*self.num_kernels+j](x, s)
else:
xs += self.resblocks[i*self.num_kernels+j](x, s)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
return self.stft.inverse(spec, phase)
def fw_phase(self, x, s):
for i in range(self.num_upsamples):
x = F.leaky_relu(x, LRELU_SLOPE)
x = self.ups[i](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i*self.num_kernels+j](x, s)
else:
xs += self.resblocks[i*self.num_kernels+j](x, s)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.reflection_pad(x)
x = self.conv_post(x)
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
return spec, phase
def remove_weight_norm(self):
print('Removing weight norm...')
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
class AdainResBlk1d(nn.Module):
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
upsample='none', dropout_p=0.0):
super().__init__()
self.actv = actv
self.upsample_type = upsample
self.upsample = UpSample1d(upsample)
self.learned_sc = dim_in != dim_out
self._build_weights(dim_in, dim_out, style_dim)
self.dropout = nn.Dropout(dropout_p)
if upsample == 'none':
self.pool = nn.Identity()
else:
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
def _build_weights(self, dim_in, dim_out, style_dim):
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
self.norm1 = AdaIN1d(style_dim, dim_in)
self.norm2 = AdaIN1d(style_dim, dim_out)
if self.learned_sc:
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
def _shortcut(self, x):
x = self.upsample(x)
if self.learned_sc:
x = self.conv1x1(x)
return x
def _residual(self, x, s):
x = self.norm1(x, s)
x = self.actv(x)
x = self.pool(x)
x = self.conv1(self.dropout(x))
x = self.norm2(x, s)
x = self.actv(x)
x = self.conv2(self.dropout(x))
return x
def forward(self, x, s):
out = self._residual(x, s)
out = (out + self._shortcut(x)) / np.sqrt(2)
return out
class UpSample1d(nn.Module):
def __init__(self, layer_type):
super().__init__()
self.layer_type = layer_type
def forward(self, x):
if self.layer_type == 'none':
return x
else:
return F.interpolate(x, scale_factor=2, mode='nearest')
class Decoder(nn.Module):
def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
resblock_kernel_sizes = [3,7,11],
upsample_rates = [10, 6],
upsample_initial_channel=512,
resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]],
upsample_kernel_sizes=[20, 12],
gen_istft_n_fft=20, gen_istft_hop_size=5):
super().__init__()
self.decode = nn.ModuleList()
self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
self.asr_res = nn.Sequential(
weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
)
self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates,
upsample_initial_channel, resblock_dilation_sizes,
upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size)
def forward(self, asr, F0_curve, N, s):
F0 = self.F0_conv(F0_curve.unsqueeze(1))
N = self.N_conv(N.unsqueeze(1))
x = torch.cat([asr, F0, N], axis=1)
x = self.encode(x, s)
asr_res = self.asr_res(asr)
res = True
for block in self.decode:
if res:
x = torch.cat([x, asr_res, F0, N], axis=1)
x = block(x, s)
if block.upsample_type != "none":
res = False
x = self.generator(x, s, F0_curve)
return x

View File

@@ -0,0 +1,166 @@
# https://huggingface.co/hexgrad/Kokoro-82M/blob/main/kokoro.py
import phonemizer
import re
import torch
import numpy as np
def split_num(num):
num = num.group()
if '.' in num:
return num
elif ':' in num:
h, m = [int(n) for n in num.split(':')]
if m == 0:
return f"{h} o'clock"
elif m < 10:
return f'{h} oh {m}'
return f'{h} {m}'
year = int(num[:4])
if year < 1100 or year % 1000 < 10:
return num
left, right = num[:2], int(num[2:4])
s = 's' if num.endswith('s') else ''
if 100 <= year % 1000 <= 999:
if right == 0:
return f'{left} hundred{s}'
elif right < 10:
return f'{left} oh {right}{s}'
return f'{left} {right}{s}'
def flip_money(m):
m = m.group()
bill = 'dollar' if m[0] == '$' else 'pound'
if m[-1].isalpha():
return f'{m[1:]} {bill}s'
elif '.' not in m:
s = '' if m[1:] == '1' else 's'
return f'{m[1:]} {bill}{s}'
b, c = m[1:].split('.')
s = '' if b == '1' else 's'
c = int(c.ljust(2, '0'))
coins = f"cent{'' if c == 1 else 's'}" if m[0] == '$' else ('penny' if c == 1 else 'pence')
return f'{b} {bill}{s} and {c} {coins}'
def point_num(num):
a, b = num.group().split('.')
return ' point '.join([a, ' '.join(b)])
def normalize_text(text):
text = text.replace(chr(8216), "'").replace(chr(8217), "'")
text = text.replace('«', chr(8220)).replace('»', chr(8221))
text = text.replace(chr(8220), '"').replace(chr(8221), '"')
text = text.replace('(', '«').replace(')', '»')
for a, b in zip('、。!,:;?', ',.!,:;?'):
text = text.replace(a, b+' ')
text = re.sub(r'[^\S \n]', ' ', text)
text = re.sub(r' +', ' ', text)
text = re.sub(r'(?<=\n) +(?=\n)', '', text)
text = re.sub(r'\bD[Rr]\.(?= [A-Z])', 'Doctor', text)
text = re.sub(r'\b(?:Mr\.|MR\.(?= [A-Z]))', 'Mister', text)
text = re.sub(r'\b(?:Ms\.|MS\.(?= [A-Z]))', 'Miss', text)
text = re.sub(r'\b(?:Mrs\.|MRS\.(?= [A-Z]))', 'Mrs', text)
text = re.sub(r'\betc\.(?! [A-Z])', 'etc', text)
text = re.sub(r'(?i)\b(y)eah?\b', r"\1e'a", text)
text = re.sub(r'\d*\.\d+|\b\d{4}s?\b|(?<!:)\b(?:[1-9]|1[0-2]):[0-5]\d\b(?!:)', split_num, text)
text = re.sub(r'(?<=\d),(?=\d)', '', text)
text = re.sub(r'(?i)[$£]\d+(?:\.\d+)?(?: hundred| thousand| (?:[bm]|tr)illion)*\b|[$£]\d+\.\d\d?\b', flip_money, text)
text = re.sub(r'\d*\.\d+', point_num, text)
text = re.sub(r'(?<=\d)-(?=\d)', ' to ', text)
text = re.sub(r'(?<=\d)S', ' S', text)
text = re.sub(r"(?<=[BCDFGHJ-NP-TV-Z])'?s\b", "'S", text)
text = re.sub(r"(?<=X')S\b", 's', text)
text = re.sub(r'(?:[A-Za-z]\.){2,} [a-z]', lambda m: m.group().replace('.', '-'), text)
text = re.sub(r'(?i)(?<=[A-Z])\.(?=[A-Z])', '-', text)
return text.strip()
def get_vocab():
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'"
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
dicts = {}
for i in range(len((symbols))):
dicts[symbols[i]] = i
return dicts
VOCAB = get_vocab()
def tokenize(ps):
return [i for i in map(VOCAB.get, ps) if i is not None]
phonemizers = dict(
a=phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True),
b=phonemizer.backend.EspeakBackend(language='en-gb', preserve_punctuation=True, with_stress=True),
)
def phonemize(text, lang, norm=True):
if norm:
text = normalize_text(text)
ps = phonemizers[lang].phonemize([text])
ps = ps[0] if ps else ''
# https://en.wiktionary.org/wiki/kokoro#English
ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ')
ps = ps.replace('ʲ', 'j').replace('r', 'ɹ').replace('x', 'k').replace('ɬ', 'l')
ps = re.sub(r'(?<=[a-zɹː])(?=hˈʌndɹɪd)', ' ', ps)
ps = re.sub(r' z(?=[;:,.!?¡¿—…"«»“” ]|$)', 'z', ps)
if lang == 'a':
ps = re.sub(r'(?<=nˈaɪn)ti(?!ː)', 'di', ps)
ps = ''.join(filter(lambda p: p in VOCAB, ps))
return ps.strip()
def length_to_mask(lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
@torch.no_grad()
def forward(model, tokens, ref_s, speed):
device = ref_s.device
tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
text_mask = length_to_mask(input_lengths).to(device)
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
s = ref_s[:, 128:]
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
x, _ = model.predictor.lstm(d)
duration = model.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1) / speed
pred_dur = torch.round(duration).clamp(min=1).long()
pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1
c_frame += pred_dur[0,i].item()
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
t_en = model.text_encoder(tokens, input_lengths, text_mask)
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
return model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()
def generate(model, text, voicepack, lang='a', speed=1, ps=None):
ps = ps or phonemize(text, lang)
tokens = tokenize(ps)
if not tokens:
return None
elif len(tokens) > 510:
tokens = tokens[:510]
print('Truncated to 510 tokens')
ref_s = voicepack[len(tokens)]
out = forward(model, tokens, ref_s, speed)
ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
return out, ps
def generate_full(model, text, voicepack, lang='a', speed=1, ps=None):
ps = ps or phonemize(text, lang)
tokens = tokenize(ps)
if not tokens:
return None
outs = []
loop_count = len(tokens)//510 + (1 if len(tokens) % 510 != 0 else 0)
for i in range(loop_count):
ref_s = voicepack[len(tokens[i*510:(i+1)*510])]
out = forward(model, tokens[i*510:(i+1)*510], ref_s, speed)
outs.append(out)
outs = np.concatenate(outs)
ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
return outs, ps

View File

@@ -0,0 +1,373 @@
# https://github.com/yl4579/StyleTTS2/blob/main/models.py
# https://huggingface.co/hexgrad/Kokoro-82M/blob/main/models.py
from istftnet import AdaIN1d, Decoder
from munch import Munch
from pathlib import Path
from plbert import load_plbert
from torch.nn.utils import weight_norm, spectral_norm
import json
import numpy as np
import os
import os.path as osp
import torch
import torch.nn as nn
import torch.nn.functional as F
class LinearNorm(torch.nn.Module):
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
super(LinearNorm, self).__init__()
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
torch.nn.init.xavier_uniform_(
self.linear_layer.weight,
gain=torch.nn.init.calculate_gain(w_init_gain))
def forward(self, x):
return self.linear_layer(x)
class LayerNorm(nn.Module):
def __init__(self, channels, eps=1e-5):
super().__init__()
self.channels = channels
self.eps = eps
self.gamma = nn.Parameter(torch.ones(channels))
self.beta = nn.Parameter(torch.zeros(channels))
def forward(self, x):
x = x.transpose(1, -1)
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
return x.transpose(1, -1)
class TextEncoder(nn.Module):
def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
super().__init__()
self.embedding = nn.Embedding(n_symbols, channels)
padding = (kernel_size - 1) // 2
self.cnn = nn.ModuleList()
for _ in range(depth):
self.cnn.append(nn.Sequential(
weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
LayerNorm(channels),
actv,
nn.Dropout(0.2),
))
# self.cnn = nn.Sequential(*self.cnn)
self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)
def forward(self, x, input_lengths, m):
x = self.embedding(x) # [B, T, emb]
x = x.transpose(1, 2) # [B, emb, T]
m = m.to(input_lengths.device).unsqueeze(1)
x.masked_fill_(m, 0.0)
for c in self.cnn:
x = c(x)
x.masked_fill_(m, 0.0)
x = x.transpose(1, 2) # [B, T, chn]
input_lengths = input_lengths.cpu().numpy()
x = nn.utils.rnn.pack_padded_sequence(
x, input_lengths, batch_first=True, enforce_sorted=False)
self.lstm.flatten_parameters()
x, _ = self.lstm(x)
x, _ = nn.utils.rnn.pad_packed_sequence(
x, batch_first=True)
x = x.transpose(-1, -2)
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
x_pad[:, :, :x.shape[-1]] = x
x = x_pad.to(x.device)
x.masked_fill_(m, 0.0)
return x
def inference(self, x):
x = self.embedding(x)
x = x.transpose(1, 2)
x = self.cnn(x)
x = x.transpose(1, 2)
self.lstm.flatten_parameters()
x, _ = self.lstm(x)
return x
def length_to_mask(self, lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
class UpSample1d(nn.Module):
def __init__(self, layer_type):
super().__init__()
self.layer_type = layer_type
def forward(self, x):
if self.layer_type == 'none':
return x
else:
return F.interpolate(x, scale_factor=2, mode='nearest')
class AdainResBlk1d(nn.Module):
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
upsample='none', dropout_p=0.0):
super().__init__()
self.actv = actv
self.upsample_type = upsample
self.upsample = UpSample1d(upsample)
self.learned_sc = dim_in != dim_out
self._build_weights(dim_in, dim_out, style_dim)
self.dropout = nn.Dropout(dropout_p)
if upsample == 'none':
self.pool = nn.Identity()
else:
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
def _build_weights(self, dim_in, dim_out, style_dim):
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
self.norm1 = AdaIN1d(style_dim, dim_in)
self.norm2 = AdaIN1d(style_dim, dim_out)
if self.learned_sc:
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
def _shortcut(self, x):
x = self.upsample(x)
if self.learned_sc:
x = self.conv1x1(x)
return x
def _residual(self, x, s):
x = self.norm1(x, s)
x = self.actv(x)
x = self.pool(x)
x = self.conv1(self.dropout(x))
x = self.norm2(x, s)
x = self.actv(x)
x = self.conv2(self.dropout(x))
return x
def forward(self, x, s):
out = self._residual(x, s)
out = (out + self._shortcut(x)) / np.sqrt(2)
return out
class AdaLayerNorm(nn.Module):
def __init__(self, style_dim, channels, eps=1e-5):
super().__init__()
self.channels = channels
self.eps = eps
self.fc = nn.Linear(style_dim, channels*2)
def forward(self, x, s):
x = x.transpose(-1, -2)
x = x.transpose(1, -1)
h = self.fc(s)
h = h.view(h.size(0), h.size(1), 1)
gamma, beta = torch.chunk(h, chunks=2, dim=1)
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
x = F.layer_norm(x, (self.channels,), eps=self.eps)
x = (1 + gamma) * x + beta
return x.transpose(1, -1).transpose(-1, -2)
class ProsodyPredictor(nn.Module):
def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
super().__init__()
self.text_encoder = DurationEncoder(sty_dim=style_dim,
d_model=d_hid,
nlayers=nlayers,
dropout=dropout)
self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
self.duration_proj = LinearNorm(d_hid, max_dur)
self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
self.F0 = nn.ModuleList()
self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
self.N = nn.ModuleList()
self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
def forward(self, texts, style, text_lengths, alignment, m):
d = self.text_encoder(texts, style, text_lengths, m)
batch_size = d.shape[0]
text_size = d.shape[1]
# predict duration
input_lengths = text_lengths.cpu().numpy()
x = nn.utils.rnn.pack_padded_sequence(
d, input_lengths, batch_first=True, enforce_sorted=False)
m = m.to(text_lengths.device).unsqueeze(1)
self.lstm.flatten_parameters()
x, _ = self.lstm(x)
x, _ = nn.utils.rnn.pad_packed_sequence(
x, batch_first=True)
x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]])
x_pad[:, :x.shape[1], :] = x
x = x_pad.to(x.device)
duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training))
en = (d.transpose(-1, -2) @ alignment)
return duration.squeeze(-1), en
def F0Ntrain(self, x, s):
x, _ = self.shared(x.transpose(-1, -2))
F0 = x.transpose(-1, -2)
for block in self.F0:
F0 = block(F0, s)
F0 = self.F0_proj(F0)
N = x.transpose(-1, -2)
for block in self.N:
N = block(N, s)
N = self.N_proj(N)
return F0.squeeze(1), N.squeeze(1)
def length_to_mask(self, lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
class DurationEncoder(nn.Module):
def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
super().__init__()
self.lstms = nn.ModuleList()
for _ in range(nlayers):
self.lstms.append(nn.LSTM(d_model + sty_dim,
d_model // 2,
num_layers=1,
batch_first=True,
bidirectional=True,
dropout=dropout))
self.lstms.append(AdaLayerNorm(sty_dim, d_model))
self.dropout = dropout
self.d_model = d_model
self.sty_dim = sty_dim
def forward(self, x, style, text_lengths, m):
masks = m.to(text_lengths.device)
x = x.permute(2, 0, 1)
s = style.expand(x.shape[0], x.shape[1], -1)
x = torch.cat([x, s], axis=-1)
x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0)
x = x.transpose(0, 1)
input_lengths = text_lengths.cpu().numpy()
x = x.transpose(-1, -2)
for block in self.lstms:
if isinstance(block, AdaLayerNorm):
x = block(x.transpose(-1, -2), style).transpose(-1, -2)
x = torch.cat([x, s.permute(1, -1, 0)], axis=1)
x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0)
else:
x = x.transpose(-1, -2)
x = nn.utils.rnn.pack_padded_sequence(
x, input_lengths, batch_first=True, enforce_sorted=False)
block.flatten_parameters()
x, _ = block(x)
x, _ = nn.utils.rnn.pad_packed_sequence(
x, batch_first=True)
x = F.dropout(x, p=self.dropout, training=self.training)
x = x.transpose(-1, -2)
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
x_pad[:, :, :x.shape[-1]] = x
x = x_pad.to(x.device)
return x.transpose(-1, -2)
def inference(self, x, style):
x = self.embedding(x.transpose(-1, -2)) * np.sqrt(self.d_model)
style = style.expand(x.shape[0], x.shape[1], -1)
x = torch.cat([x, style], axis=-1)
src = self.pos_encoder(x)
output = self.transformer_encoder(src).transpose(0, 1)
return output
def length_to_mask(self, lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
# https://github.com/yl4579/StyleTTS2/blob/main/utils.py
def recursive_munch(d):
if isinstance(d, dict):
return Munch((k, recursive_munch(v)) for k, v in d.items())
elif isinstance(d, list):
return [recursive_munch(v) for v in d]
else:
return d
def build_model(path, device):
config = Path(__file__).parent / 'config.json'
assert config.exists(), f'Config path incorrect: config.json not found at {config}'
with open(config, 'r') as r:
args = recursive_munch(json.load(r))
assert args.decoder.type == 'istftnet', f'Unknown decoder type: {args.decoder.type}'
decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
upsample_rates = args.decoder.upsample_rates,
upsample_initial_channel=args.decoder.upsample_initial_channel,
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes,
gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size)
text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
bert = load_plbert()
bert_encoder = nn.Linear(bert.config.hidden_size, args.hidden_dim)
for parent in [bert, bert_encoder, predictor, decoder, text_encoder]:
for child in parent.children():
if isinstance(child, nn.RNNBase):
child.flatten_parameters()
model = Munch(
bert=bert.to(device).eval(),
bert_encoder=bert_encoder.to(device).eval(),
predictor=predictor.to(device).eval(),
decoder=decoder.to(device).eval(),
text_encoder=text_encoder.to(device).eval(),
)
for key, state_dict in torch.load(path, map_location='cpu', weights_only=True)['net'].items():
assert key in model, key
try:
model[key].load_state_dict(state_dict)
except:
state_dict = {k[7:]: v for k, v in state_dict.items()}
model[key].load_state_dict(state_dict, strict=False)
return model

View File

@@ -0,0 +1,16 @@
# https://huggingface.co/hexgrad/Kokoro-82M/blob/main/plbert.py
# https://github.com/yl4579/StyleTTS2/blob/main/Utils/PLBERT/util.py
from transformers import AlbertConfig, AlbertModel
class CustomAlbert(AlbertModel):
def forward(self, *args, **kwargs):
# Call the original forward method
outputs = super().forward(*args, **kwargs)
# Only return the last_hidden_state
return outputs.last_hidden_state
def load_plbert():
plbert_config = {'vocab_size': 178, 'hidden_size': 768, 'num_attention_heads': 12, 'intermediate_size': 2048, 'max_position_embeddings': 512, 'num_hidden_layers': 12, 'dropout': 0.1}
albert_base_configuration = AlbertConfig(**plbert_config)
bert = CustomAlbert(albert_base_configuration)
return bert

View File

@@ -8,6 +8,4 @@ else
source $backend_dir/../common/libbackend.sh
fi
ensureVenv
python3 -m grpc_tools.protoc -I../.. -I./ --python_out=. --grpc_python_out=. backend.proto

View File

@@ -1,6 +1,2 @@
--extra-index-url https://download.pytorch.org/whl/cpu
transformers
accelerate
torch
kokoro
soundfile
torch==2.4.1
transformers

View File

@@ -1,7 +1,3 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.7.1+cu118
torchaudio==2.7.1+cu118
transformers
accelerate
kokoro
soundfile
torch==2.4.1+cu118
transformers

View File

@@ -1,6 +1,2 @@
torch==2.7.1
torchaudio==2.7.1
transformers
accelerate
kokoro
soundfile
torch==2.4.1
transformers

View File

@@ -1,7 +1,3 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.3
torch==2.7.1+rocm6.3
torchaudio==2.7.1+rocm6.3
transformers
accelerate
kokoro
soundfile
--extra-index-url https://download.pytorch.org/whl/rocm6.0
torch==2.4.1+rocm6.0
transformers

View File

@@ -1,11 +1,5 @@
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.8.10+xpu
torch==2.5.1+cxx11.abi
oneccl_bind_pt==2.8.0+xpu
torchaudio==2.5.1+cxx11.abi
optimum[openvino]
setuptools
transformers==4.48.3
accelerate
kokoro
soundfile
intel-extension-for-pytorch==2.3.110+xpu
torch==2.3.1+cxx11.abi
oneccl_bind_pt==2.3.100+xpu
transformers

View File

@@ -1,6 +1,7 @@
grpcio==1.71.0
protobuf
certifi
packaging==24.1
pip
chardet
phonemizer
scipy
munch
setuptools
soundfile

View File

@@ -1,87 +0,0 @@
"""
A test script to test the gRPC service
"""
import unittest
import subprocess
import time
import backend_pb2
import backend_pb2_grpc
import grpc
class TestBackendServicer(unittest.TestCase):
"""
TestBackendServicer is the class that tests the gRPC service
"""
def setUp(self):
"""
This method sets up the gRPC service by starting the server
"""
self.service = subprocess.Popen(["python3", "backend.py", "--addr", "localhost:50051"])
time.sleep(30)
def tearDown(self) -> None:
"""
This method tears down the gRPC service by terminating the server
"""
self.service.terminate()
self.service.wait()
def test_server_startup(self):
"""
This method tests if the server starts up successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.Health(backend_pb2.HealthMessage())
self.assertEqual(response.message, b'OK')
except Exception as err:
print(err)
self.fail("Server failed to start")
finally:
self.tearDown()
def test_load_model(self):
"""
This method tests if the Kokoro pipeline is loaded successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(language="a"))
print(response)
self.assertTrue(response.success)
self.assertEqual(response.message, "Kokoro TTS pipeline loaded successfully")
except Exception as err:
print(err)
self.fail("LoadModel service failed")
finally:
self.tearDown()
def test_tts(self):
"""
This method tests if the TTS generation works successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(language="a"))
self.assertTrue(response.success)
tts_request = backend_pb2.TTSRequest(
text="Kokoro is an open-weight TTS model with 82 million parameters.",
voice="af_heart",
dst="test_output.wav"
)
tts_response = stub.TTS(tts_request)
self.assertIsNotNone(tts_response)
self.assertTrue(tts_response.success)
except Exception as err:
print(err)
self.fail("TTS service failed")
finally:
self.tearDown()

View File

@@ -1,20 +0,0 @@
.DEFAULT_GOAL := install
.PHONY: install
install:
bash install.sh
$(MAKE) protogen
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
bash protogen.sh
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__

View File

@@ -1,174 +0,0 @@
#!/usr/bin/env python3
"""
gRPC server for RFDETR object detection models.
"""
from concurrent import futures
import argparse
import signal
import sys
import os
import time
import base64
import backend_pb2
import backend_pb2_grpc
import grpc
import requests
import supervision as sv
from inference import get_model
from PIL import Image
from io import BytesIO
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
A gRPC servicer for the RFDETR backend service.
This class implements the gRPC methods for object detection using RFDETR models.
"""
def __init__(self):
self.model = None
self.model_name = None
def Health(self, request, context):
"""
A gRPC method that returns the health status of the backend service.
Args:
request: A HealthMessage object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
A Reply object that contains the health status of the backend service.
"""
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
"""
A gRPC method that loads a RFDETR model into memory.
Args:
request: A ModelOptions object that contains the model parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
A Result object that contains the result of the LoadModel operation.
"""
model_name = request.Model
try:
# Load the RFDETR model
self.model = get_model(model_name)
self.model_name = model_name
print(f'Loaded RFDETR model: {model_name}')
except Exception as err:
return backend_pb2.Result(success=False, message=f"Failed to load model: {err}")
return backend_pb2.Result(message="Model loaded successfully", success=True)
def Detect(self, request, context):
"""
A gRPC method that performs object detection on an image.
Args:
request: A DetectOptions object that contains the image source.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
A DetectResponse object that contains the detection results.
"""
if self.model is None:
print(f"Model is None")
return backend_pb2.DetectResponse()
print(f"Model is not None")
try:
print(f"Decoding image")
# Decode the base64 image
print(f"Image data: {request.src}")
image_data = base64.b64decode(request.src)
image = Image.open(BytesIO(image_data))
# Perform inference
predictions = self.model.infer(image, confidence=0.5)[0]
# Convert to proto format
proto_detections = []
for i in range(len(predictions.predictions)):
pred = predictions.predictions[i]
print(f"Prediction: {pred}")
proto_detection = backend_pb2.Detection(
x=float(pred.x),
y=float(pred.y),
width=float(pred.width),
height=float(pred.height),
confidence=float(pred.confidence),
class_name=pred.class_name
)
proto_detections.append(proto_detection)
return backend_pb2.DetectResponse(Detections=proto_detections)
except Exception as err:
print(f"Detection error: {err}")
return backend_pb2.DetectResponse()
def Status(self, request, context):
"""
A gRPC method that returns the status of the backend service.
Args:
request: A HealthMessage object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
A StatusResponse object that contains the status information.
"""
state = backend_pb2.StatusResponse.READY if self.model is not None else backend_pb2.StatusResponse.UNINITIALIZED
return backend_pb2.StatusResponse(state=state)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS),
options=[
('grpc.max_message_length', 50 * 1024 * 1024), # 50MB
('grpc.max_send_message_length', 50 * 1024 * 1024), # 50MB
('grpc.max_receive_message_length', 50 * 1024 * 1024), # 50MB
])
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("[RFDETR] Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("[RFDETR] Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the RFDETR gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
print(f"[RFDETR] startup: {args}", file=sys.stderr)
serve(args.addr)

View File

@@ -1,19 +0,0 @@
#!/bin/bash
set -e
backend_dir=$(dirname $0)
if [ -d $backend_dir/common ]; then
source $backend_dir/common/libbackend.sh
else
source $backend_dir/../common/libbackend.sh
fi
# This is here because the Intel pip index is broken and returns 200 status codes for every package name, it just doesn't return any package links.
# This makes uv think that the package exists in the Intel pip index, and by default it stops looking at other pip indexes once it finds a match.
# We need uv to continue falling through to the pypi default index to find optimum[openvino] in the pypi index
# the --upgrade actually allows us to *downgrade* torch to the version provided in the Intel pip index
if [ "x${BUILD_PROFILE}" == "xintel" ]; then
EXTRA_PIP_INSTALL_FLAGS+=" --upgrade --index-strategy=unsafe-first-match"
fi
installRequirements

View File

@@ -1,7 +0,0 @@
rfdetr
opencv-python
accelerate
peft
inference
torch==2.7.1
optimum-quanto

View File

@@ -1,8 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.7.1+cu118
rfdetr
opencv-python
accelerate
inference
peft
optimum-quanto

View File

@@ -1,7 +0,0 @@
torch==2.7.1
rfdetr
opencv-python
accelerate
inference
peft
optimum-quanto

View File

@@ -1,9 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.3
torch==2.7.1+rocm6.3
torchvision==0.22.1+rocm6.3
rfdetr
opencv-python
accelerate
inference
peft
optimum-quanto

View File

@@ -1,13 +0,0 @@
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.3.110+xpu
torch==2.3.1+cxx11.abi
torchvision==0.18.1+cxx11.abi
oneccl_bind_pt==2.3.100+xpu
optimum[openvino]
setuptools
rfdetr
inference
opencv-python
accelerate
peft
optimum-quanto

View File

@@ -1,3 +0,0 @@
grpcio==1.71.0
protobuf
grpcio-tools

View File

@@ -1,9 +0,0 @@
#!/bin/bash
backend_dir=$(dirname $0)
if [ -d $backend_dir/common ]; then
source $backend_dir/common/libbackend.sh
else
source $backend_dir/../common/libbackend.sh
fi
startBackend $@

View File

@@ -1,11 +0,0 @@
#!/bin/bash
set -e
backend_dir=$(dirname $0)
if [ -d $backend_dir/common ]; then
source $backend_dir/common/libbackend.sh
else
source $backend_dir/../common/libbackend.sh
fi
runUnittests

View File

@@ -22,7 +22,7 @@ import torch.cuda
XPU=os.environ.get("XPU", "0") == "1"
from transformers import AutoTokenizer, AutoModel, set_seed, TextIteratorStreamer, StoppingCriteriaList, StopStringCriteria, MambaConfig, MambaForCausalLM
from transformers import AutoProcessor, MusicgenForConditionalGeneration, DiaForConditionalGeneration
from transformers import AutoProcessor, MusicgenForConditionalGeneration
from scipy.io import wavfile
import outetts
from sentence_transformers import SentenceTransformer
@@ -90,7 +90,6 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
self.CUDA = torch.cuda.is_available()
self.OV=False
self.OuteTTS=False
self.DiaTTS=False
self.SentenceTransformer = False
device_map="cpu"
@@ -98,30 +97,6 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
quantization = None
autoTokenizer = True
# Parse options from request.Options
self.options = {}
options = request.Options
# The options are a list of strings in this form optname:optvalue
# We are storing all the options in a dict so we can use it later when generating
# Example options: ["max_new_tokens:3072", "guidance_scale:3.0", "temperature:1.8", "top_p:0.90", "top_k:45"]
for opt in options:
if ":" not in opt:
continue
key, value = opt.split(":", 1)
# if value is a number, convert it to the appropriate type
try:
if "." in value:
value = float(value)
else:
value = int(value)
except ValueError:
# Keep as string if conversion fails
pass
self.options[key] = value
print(f"Parsed options: {self.options}", file=sys.stderr)
if self.CUDA:
from transformers import BitsAndBytesConfig, AutoModelForCausalLM
if request.MainGPU:
@@ -227,16 +202,6 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
autoTokenizer = False
self.processor = AutoProcessor.from_pretrained(model_name)
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
elif request.Type == "DiaForConditionalGeneration":
autoTokenizer = False
print("DiaForConditionalGeneration", file=sys.stderr)
self.processor = AutoProcessor.from_pretrained(model_name)
self.model = DiaForConditionalGeneration.from_pretrained(model_name)
if self.CUDA:
self.model = self.model.to("cuda")
self.processor = self.processor.to("cuda")
print("DiaForConditionalGeneration loaded", file=sys.stderr)
self.DiaTTS = True
elif request.Type == "OuteTTS":
autoTokenizer = False
options = request.Options
@@ -297,7 +262,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
elif hasattr(self.model, 'config') and hasattr(self.model.config, 'max_position_embeddings'):
self.max_tokens = self.model.config.max_position_embeddings
else:
self.max_tokens = self.options.get("max_new_tokens", 512)
self.max_tokens = 512
if autoTokenizer:
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_safetensors=True)
@@ -520,15 +485,16 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
return_tensors="pt",
)
tokens = 256
if request.HasField('duration'):
tokens = int(request.duration * 51.2) # 256 tokens = 5 seconds, therefore 51.2 tokens is one second
guidance = self.options.get("guidance_scale", 3.0)
guidance = 3.0
if request.HasField('temperature'):
guidance = request.temperature
dosample = self.options.get("do_sample", True)
dosample = True
if request.HasField('sample'):
dosample = request.sample
audio_values = self.model.generate(**inputs, do_sample=dosample, guidance_scale=guidance, max_new_tokens=self.max_tokens)
audio_values = self.model.generate(**inputs, do_sample=dosample, guidance_scale=guidance, max_new_tokens=tokens)
print("[transformers-musicgen] SoundGeneration generated!", file=sys.stderr)
sampling_rate = self.model.config.audio_encoder.sampling_rate
wavfile.write(request.dst, rate=sampling_rate, data=audio_values[0, 0].numpy())
@@ -540,59 +506,13 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
def CallDiaTTS(self, request, context):
"""
Generates dialogue audio using the Dia model.
Args:
request: A TTSRequest containing text dialogue and generation parameters
context: The gRPC context
Returns:
A Result object indicating success or failure
"""
try:
print("[DiaTTS] generating dialogue audio", file=sys.stderr)
# Prepare text input - expect dialogue format like [S1] ... [S2] ...
text = [request.text]
# Process the input
inputs = self.processor(text=text, padding=True, return_tensors="pt")
# Generate audio with parameters from options or defaults
generation_params = {
**inputs,
"max_new_tokens": self.max_tokens,
"guidance_scale": self.options.get("guidance_scale", 3.0),
"temperature": self.options.get("temperature", 1.8),
"top_p": self.options.get("top_p", 0.90),
"top_k": self.options.get("top_k", 45)
}
outputs = self.model.generate(**generation_params)
# Decode and save audio
outputs = self.processor.batch_decode(outputs)
self.processor.save_audio(outputs, request.dst)
print("[DiaTTS] Generated dialogue audio", file=sys.stderr)
print("[DiaTTS] Audio saved to", request.dst, file=sys.stderr)
print("[DiaTTS] Dialogue generation done", file=sys.stderr)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
def CallOuteTTS(self, request, context):
def OuteTTS(self, request, context):
try:
print("[OuteTTS] generating TTS", file=sys.stderr)
gen_cfg = outetts.GenerationConfig(
text="Speech synthesis is the artificial production of human speech.",
temperature=self.options.get("temperature", 0.1),
repetition_penalty=self.options.get("repetition_penalty", 1.1),
temperature=0.1,
repetition_penalty=1.1,
max_length=self.max_tokens,
speaker=self.speaker,
# voice_characteristics="upbeat enthusiasm, friendliness, clarity, professionalism, and trustworthiness"
@@ -608,11 +528,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
# The TTS endpoint is older, and provides fewer features, but exists for compatibility reasons
def TTS(self, request, context):
if self.OuteTTS:
return self.CallOuteTTS(request, context)
if self.DiaTTS:
print("DiaTTS", file=sys.stderr)
return self.CallDiaTTS(request, context)
return self.OuteTTS(request, context)
model_name = request.model
try:

View File

@@ -1,9 +1,9 @@
torch==2.7.1
torch==2.4.1
llvmlite==0.43.0
numba==0.60.0
accelerate
transformers
bitsandbytes
outetts
sentence-transformers==5.0.0
sentence-transformers==3.4.1
protobuf==6.31.0

View File

@@ -1,10 +1,10 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.7.1+cu118
torch==2.4.1+cu118
llvmlite==0.43.0
numba==0.60.0
accelerate
transformers
bitsandbytes
outetts
sentence-transformers==5.0.0
sentence-transformers==4.1.0
protobuf==6.31.0

View File

@@ -1,9 +1,9 @@
torch==2.7.1
torch==2.4.1
accelerate
llvmlite==0.43.0
numba==0.60.0
transformers
bitsandbytes
outetts
sentence-transformers==5.0.0
sentence-transformers==4.1.0
protobuf==6.31.0

View File

@@ -1,5 +1,5 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.3
torch==2.7.1+rocm6.3
--extra-index-url https://download.pytorch.org/whl/rocm6.0
torch==2.4.1+rocm6.0
accelerate
transformers
llvmlite==0.43.0
@@ -7,5 +7,5 @@ numba==0.60.0
bitsandbytes
outetts
bitsandbytes
sentence-transformers==5.0.0
sentence-transformers==4.1.0
protobuf==6.31.0

View File

@@ -1,7 +1,7 @@
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.3.110+xpu
torch==2.5.1+cxx11.abi
oneccl_bind_pt==2.8.0+xpu
torch==2.3.1+cxx11.abi
oneccl_bind_pt==2.3.100+xpu
optimum[openvino]
llvmlite==0.43.0
numba==0.60.0
@@ -9,5 +9,5 @@ transformers
intel-extension-for-transformers
bitsandbytes
outetts
sentence-transformers==5.0.0
sentence-transformers==4.1.0
protobuf==6.31.0

View File

@@ -2,8 +2,8 @@ package application
import (
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/templates"
"github.com/mudler/LocalAI/pkg/model"
"github.com/mudler/LocalAI/pkg/templates"
)
type Application struct {

View File

@@ -10,8 +10,8 @@ import (
"github.com/mudler/LocalAI/core/services"
"github.com/mudler/LocalAI/internal"
coreStartup "github.com/mudler/LocalAI/core/startup"
"github.com/mudler/LocalAI/pkg/model"
pkgStartup "github.com/mudler/LocalAI/pkg/startup"
"github.com/mudler/LocalAI/pkg/xsysinfo"
"github.com/rs/zerolog/log"
)
@@ -55,14 +55,12 @@ func New(opts ...config.AppOption) (*Application, error) {
}
}
if err := coreStartup.InstallModels(options.Galleries, options.BackendGalleries, options.ModelPath, options.BackendsPath, options.EnforcePredownloadScans, options.AutoloadBackendGalleries, nil, options.ModelsURL...); err != nil {
if err := pkgStartup.InstallModels(options.Galleries, options.BackendGalleries, options.ModelPath, options.BackendsPath, options.EnforcePredownloadScans, options.AutoloadBackendGalleries, nil, options.ModelsURL...); err != nil {
log.Error().Err(err).Msg("error installing models")
}
for _, backend := range options.ExternalBackends {
if err := coreStartup.InstallExternalBackends(options.BackendGalleries, options.BackendsPath, nil, backend, "", ""); err != nil {
log.Error().Err(err).Msg("error installing external backend")
}
if err := pkgStartup.InstallExternalBackends(options.BackendGalleries, options.BackendsPath, nil, options.ExternalBackends...); err != nil {
log.Error().Err(err).Msg("error installing external backends")
}
configLoaderOpts := options.ToConfigLoaderOptions()

View File

@@ -1,34 +0,0 @@
package backend
import (
"context"
"fmt"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/pkg/grpc/proto"
"github.com/mudler/LocalAI/pkg/model"
)
func Detection(
sourceFile string,
loader *model.ModelLoader,
appConfig *config.ApplicationConfig,
backendConfig config.BackendConfig,
) (*proto.DetectResponse, error) {
opts := ModelOptions(backendConfig, appConfig)
detectionModel, err := loader.Load(opts...)
if err != nil {
return nil, err
}
defer loader.Close()
if detectionModel == nil {
return nil, fmt.Errorf("could not load detection model")
}
res, err := detectionModel.Detect(context.Background(), &proto.DetectOptions{
Src: sourceFile,
})
return res, err
}

View File

@@ -7,7 +7,7 @@ import (
model "github.com/mudler/LocalAI/pkg/model"
)
func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, src, dst string, loader *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig, refImages []string) (func() error, error) {
func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, src, dst string, loader *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (func() error, error) {
opts := ModelOptions(backendConfig, appConfig)
inferenceModel, err := loader.Load(
@@ -33,7 +33,6 @@ func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negat
Dst: dst,
Src: src,
EnableParameters: backendConfig.Diffusers.EnableParameters,
RefImages: refImages,
})
return err
}

View File

@@ -8,7 +8,7 @@ import (
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/gallery"
"github.com/mudler/LocalAI/core/startup"
"github.com/mudler/LocalAI/pkg/startup"
"github.com/rs/zerolog/log"
"github.com/schollz/progressbar/v3"
)
@@ -23,9 +23,7 @@ type BackendsList struct {
}
type BackendsInstall struct {
BackendArgs string `arg:"" optional:"" name:"backend" help:"Backend configuration URL to load"`
Name string `arg:"" optional:"" name:"name" help:"Name of the backend"`
Alias string `arg:"" optional:"" name:"alias" help:"Alias of the backend"`
BackendArgs []string `arg:"" optional:"" name:"backends" help:"Backend configuration URLs to load"`
BackendsCMDFlags `embed:""`
}
@@ -68,25 +66,27 @@ func (bi *BackendsInstall) Run(ctx *cliContext.Context) error {
log.Error().Err(err).Msg("unable to load galleries")
}
progressBar := progressbar.NewOptions(
1000,
progressbar.OptionSetDescription(fmt.Sprintf("downloading backend %s", bi.BackendArgs)),
progressbar.OptionShowBytes(false),
progressbar.OptionClearOnFinish(),
)
progressCallback := func(fileName string, current string, total string, percentage float64) {
v := int(percentage * 10)
err := progressBar.Set(v)
for _, backendName := range bi.BackendArgs {
progressBar := progressbar.NewOptions(
1000,
progressbar.OptionSetDescription(fmt.Sprintf("downloading backend %s", backendName)),
progressbar.OptionShowBytes(false),
progressbar.OptionClearOnFinish(),
)
progressCallback := func(fileName string, current string, total string, percentage float64) {
v := int(percentage * 10)
err := progressBar.Set(v)
if err != nil {
log.Error().Err(err).Str("filename", fileName).Int("value", v).Msg("error while updating progress bar")
}
}
err := startup.InstallExternalBackends(galleries, bi.BackendsPath, progressCallback, backendName)
if err != nil {
log.Error().Err(err).Str("filename", fileName).Int("value", v).Msg("error while updating progress bar")
return err
}
}
err := startup.InstallExternalBackends(galleries, bi.BackendsPath, progressCallback, bi.BackendArgs, bi.Name, bi.Alias)
if err != nil {
return err
}
return nil
}

View File

@@ -9,8 +9,8 @@ import (
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/gallery"
"github.com/mudler/LocalAI/core/startup"
"github.com/mudler/LocalAI/pkg/downloader"
"github.com/mudler/LocalAI/pkg/startup"
"github.com/rs/zerolog/log"
"github.com/schollz/progressbar/v3"
)

View File

@@ -25,6 +25,7 @@ type RunCMD struct {
ModelsPath string `env:"LOCALAI_MODELS_PATH,MODELS_PATH" type:"path" default:"${basepath}/models" help:"Path containing models used for inferencing" group:"storage"`
GeneratedContentPath string `env:"LOCALAI_GENERATED_CONTENT_PATH,GENERATED_CONTENT_PATH" type:"path" default:"/tmp/generated/content" help:"Location for generated content (e.g. images, audio, videos)" group:"storage"`
UploadPath string `env:"LOCALAI_UPLOAD_PATH,UPLOAD_PATH" type:"path" default:"/tmp/localai/upload" help:"Path to store uploads from files api" group:"storage"`
ConfigPath string `env:"LOCALAI_CONFIG_PATH,CONFIG_PATH" default:"/tmp/localai/config" group:"storage"`
LocalaiConfigDir string `env:"LOCALAI_CONFIG_DIR" type:"path" default:"${basepath}/configuration" help:"Directory for dynamic loading of certain configuration files (currently api_keys.json and external_backends.json)" group:"storage"`
LocalaiConfigDirPollInterval time.Duration `env:"LOCALAI_CONFIG_DIR_POLL_INTERVAL" help:"Typically the config path picks up changes automatically, but if your system has broken fsnotify events, set this to an interval to poll the LocalAI Config Dir (example: 1m)" group:"storage"`
// The alias on this option is there to preserve functionality with the old `--config-file` parameter
@@ -87,6 +88,7 @@ func (r *RunCMD) Run(ctx *cliContext.Context) error {
config.WithDebug(zerolog.GlobalLevel() <= zerolog.DebugLevel),
config.WithGeneratedContentDir(r.GeneratedContentPath),
config.WithUploadDir(r.UploadPath),
config.WithConfigsDir(r.ConfigPath),
config.WithDynamicConfigDir(r.LocalaiConfigDir),
config.WithDynamicConfigDirPollInterval(r.LocalaiConfigDirPollInterval),
config.WithF16(r.F16),

View File

@@ -72,7 +72,7 @@ func (u *CreateOCIImageCMD) Run(ctx *cliContext.Context) error {
}
func (u *GGUFInfoCMD) Run(ctx *cliContext.Context) error {
if len(u.Args) == 0 {
if u.Args == nil || len(u.Args) == 0 {
return fmt.Errorf("no GGUF file provided")
}
// We try to guess only if we don't have a template defined already

View File

@@ -21,7 +21,8 @@ type ApplicationConfig struct {
Debug bool
GeneratedContentDir string
UploadDir string
ConfigsDir string
UploadDir string
DynamicConfigsDir string
DynamicConfigsDirPollInterval time.Duration
@@ -301,6 +302,12 @@ func WithUploadDir(uploadDir string) AppOption {
}
}
func WithConfigsDir(configsDir string) AppOption {
return func(o *ApplicationConfig) {
o.ConfigsDir = configsDir
}
}
func WithDynamicConfigDir(dynamicConfigsDir string) AppOption {
return func(o *ApplicationConfig) {
o.DynamicConfigsDir = dynamicConfigsDir

View File

@@ -458,7 +458,6 @@ const (
FLAG_TOKENIZE BackendConfigUsecases = 0b001000000000
FLAG_VAD BackendConfigUsecases = 0b010000000000
FLAG_VIDEO BackendConfigUsecases = 0b100000000000
FLAG_DETECTION BackendConfigUsecases = 0b1000000000000
// Common Subsets
FLAG_LLM BackendConfigUsecases = FLAG_CHAT | FLAG_COMPLETION | FLAG_EDIT
@@ -480,7 +479,6 @@ func GetAllBackendConfigUsecases() map[string]BackendConfigUsecases {
"FLAG_VAD": FLAG_VAD,
"FLAG_LLM": FLAG_LLM,
"FLAG_VIDEO": FLAG_VIDEO,
"FLAG_DETECTION": FLAG_DETECTION,
}
}
@@ -574,12 +572,6 @@ func (c *BackendConfig) GuessUsecases(u BackendConfigUsecases) bool {
}
}
if (u & FLAG_DETECTION) == FLAG_DETECTION {
if c.Backend != "rfdetr" {
return false
}
}
if (u & FLAG_SOUND_GENERATION) == FLAG_SOUND_GENERATION {
if c.Backend != "transformers-musicgen" {
return false

View File

@@ -2,8 +2,7 @@ package gallery
import (
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/pkg/system"
"github.com/rs/zerolog/log"
"github.com/mudler/LocalAI/core/system"
)
// BackendMetadata represents the metadata stored in a JSON file for each installed backend
@@ -24,7 +23,6 @@ type GalleryBackend struct {
Metadata `json:",inline" yaml:",inline"`
Alias string `json:"alias,omitempty" yaml:"alias,omitempty"`
URI string `json:"uri,omitempty" yaml:"uri,omitempty"`
Mirrors []string `json:"mirrors,omitempty" yaml:"mirrors,omitempty"`
CapabilitiesMap map[string]string `json:"capabilities,omitempty" yaml:"capabilities,omitempty"`
}
@@ -35,11 +33,9 @@ func (backend *GalleryBackend) FindBestBackendFromMeta(systemState *system.Syste
realBackend := backend.CapabilitiesMap[systemState.Capability(backend.CapabilitiesMap)]
if realBackend == "" {
log.Debug().Str("backend", backend.Name).Str("reportedCapability", systemState.Capability(backend.CapabilitiesMap)).Msg("No backend found for reported capability")
return nil
}
log.Debug().Str("backend", backend.Name).Str("reportedCapability", systemState.Capability(backend.CapabilitiesMap)).Msg("Found backend for reported capability")
return backends.FindByName(realBackend)
}

View File

@@ -8,10 +8,9 @@ import (
"time"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/system"
"github.com/mudler/LocalAI/pkg/downloader"
"github.com/mudler/LocalAI/pkg/model"
"github.com/mudler/LocalAI/pkg/system"
cp "github.com/otiai10/copy"
"github.com/rs/zerolog/log"
)
@@ -146,28 +145,8 @@ func InstallBackend(basePath string, config *GalleryBackend, downloadStatus func
}
uri := downloader.URI(config.URI)
// Check if it is a directory
if uri.LooksLikeDir() {
// It is a directory, we just copy it over in the backend folder
if err := cp.Copy(config.URI, backendPath); err != nil {
return fmt.Errorf("failed copying: %w", err)
}
} else {
uri := downloader.URI(config.URI)
if err := uri.DownloadFile(backendPath, "", 1, 1, downloadStatus); err != nil {
success := false
// Try to download from mirrors
for _, mirror := range config.Mirrors {
if err := downloader.URI(mirror).DownloadFile(backendPath, "", 1, 1, downloadStatus); err == nil {
success = true
break
}
}
if !success {
return fmt.Errorf("failed to download backend %q: %v", config.URI, err)
}
}
if err := uri.DownloadFile(backendPath, "", 1, 1, downloadStatus); err != nil {
return fmt.Errorf("failed to download backend %q: %v", config.URI, err)
}
// Create metadata for the backend
@@ -250,22 +229,16 @@ func ListSystemBackends(basePath string) (map[string]string, error) {
for _, backend := range backends {
if backend.IsDir() {
runFile := filepath.Join(basePath, backend.Name(), runFile)
var metadata *BackendMetadata
// If metadata file does not exist, we just use the directory name
// and we do not fill the other metadata (such as potential backend Aliases)
// Skip if metadata file don't exist
metadataFilePath := filepath.Join(basePath, backend.Name(), metadataFile)
if _, err := os.Stat(metadataFilePath); os.IsNotExist(err) {
metadata = &BackendMetadata{
Name: backend.Name(),
}
} else {
// Check for alias in metadata
metadata, err = readBackendMetadata(filepath.Join(basePath, backend.Name()))
if err != nil {
return nil, err
}
continue
}
// Check for alias in metadata
metadata, err := readBackendMetadata(filepath.Join(basePath, backend.Name()))
if err != nil {
return nil, err
}
if metadata == nil {

View File

@@ -7,7 +7,7 @@ import (
"runtime"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/pkg/system"
"github.com/mudler/LocalAI/core/system"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
"gopkg.in/yaml.v2"

View File

@@ -95,7 +95,7 @@ func FindGalleryElement[T GalleryElement](models []T, name string, basePath stri
if !strings.Contains(name, "@") {
for _, m := range models {
if strings.EqualFold(strings.ToLower(m.GetName()), strings.ToLower(name)) {
if strings.EqualFold(m.GetName(), name) {
model = m
break
}
@@ -103,7 +103,7 @@ func FindGalleryElement[T GalleryElement](models []T, name string, basePath stri
} else {
for _, m := range models {
if strings.EqualFold(strings.ToLower(name), strings.ToLower(fmt.Sprintf("%s@%s", m.GetGallery().Name, m.GetName()))) {
if strings.EqualFold(name, fmt.Sprintf("%s@%s", m.GetGallery().Name, m.GetName())) {
model = m
break
}

View File

@@ -10,8 +10,8 @@ import (
"dario.cat/mergo"
"github.com/mudler/LocalAI/core/config"
lconfig "github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/system"
"github.com/mudler/LocalAI/pkg/downloader"
"github.com/mudler/LocalAI/pkg/system"
"github.com/mudler/LocalAI/pkg/utils"
"github.com/rs/zerolog/log"

View File

@@ -10,8 +10,10 @@ import (
"github.com/dave-gray101/v2keyauth"
"github.com/gofiber/websocket/v2"
"github.com/mudler/LocalAI/pkg/utils"
"github.com/mudler/LocalAI/core/http/endpoints/localai"
"github.com/mudler/LocalAI/core/http/endpoints/openai"
"github.com/mudler/LocalAI/core/http/middleware"
"github.com/mudler/LocalAI/core/http/routes"
@@ -197,6 +199,11 @@ func API(application *application.Application) (*fiber.App, error) {
router.Use(csrf.New())
}
// Load config jsons
utils.LoadConfig(application.ApplicationConfig().UploadDir, openai.UploadedFilesFile, &openai.UploadedFiles)
utils.LoadConfig(application.ApplicationConfig().ConfigsDir, openai.AssistantsConfigFile, &openai.Assistants)
utils.LoadConfig(application.ApplicationConfig().ConfigsDir, openai.AssistantsFileConfigFile, &openai.AssistantFiles)
galleryService := services.NewGalleryService(application.ApplicationConfig(), application.ModelLoader())
err = galleryService.Start(application.ApplicationConfig().Context, application.BackendLoader())
if err != nil {

View File

@@ -34,7 +34,7 @@ func CreateBackendEndpointService(galleries []config.Gallery, backendPath string
// GetOpStatusEndpoint returns the job status
// @Summary Returns the job status
// @Success 200 {object} services.GalleryOpStatus "Response"
// @Success 200 {object} services.BackendOpStatus "Response"
// @Router /backends/jobs/{uuid} [get]
func (mgs *BackendEndpointService) GetOpStatusEndpoint() func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
@@ -48,7 +48,7 @@ func (mgs *BackendEndpointService) GetOpStatusEndpoint() func(c *fiber.Ctx) erro
// GetAllStatusEndpoint returns all the jobs status progress
// @Summary Returns all the jobs status progress
// @Success 200 {object} map[string]services.GalleryOpStatus "Response"
// @Success 200 {object} map[string]services.BackendOpStatus "Response"
// @Router /backends/jobs [get]
func (mgs *BackendEndpointService) GetAllStatusEndpoint() func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
@@ -58,7 +58,7 @@ func (mgs *BackendEndpointService) GetAllStatusEndpoint() func(c *fiber.Ctx) err
// ApplyBackendEndpoint installs a new backend to a LocalAI instance
// @Summary Install backends to LocalAI.
// @Param request body GalleryBackend true "query params"
// @Param request body BackendModel true "query params"
// @Success 200 {object} schema.BackendResponse "Response"
// @Router /backends/apply [post]
func (mgs *BackendEndpointService) ApplyBackendEndpoint() func(c *fiber.Ctx) error {

View File

@@ -1,59 +0,0 @@
package localai
import (
"github.com/gofiber/fiber/v2"
"github.com/mudler/LocalAI/core/backend"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/http/middleware"
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/LocalAI/pkg/model"
"github.com/mudler/LocalAI/pkg/utils"
"github.com/rs/zerolog/log"
)
// DetectionEndpoint is the LocalAI Detection endpoint https://localai.io/docs/api-reference/detection
// @Summary Detects objects in the input image.
// @Param request body schema.DetectionRequest true "query params"
// @Success 200 {object} schema.DetectionResponse "Response"
// @Router /v1/detection [post]
func DetectionEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
input, ok := c.Locals(middleware.CONTEXT_LOCALS_KEY_LOCALAI_REQUEST).(*schema.DetectionRequest)
if !ok || input.Model == "" {
return fiber.ErrBadRequest
}
cfg, ok := c.Locals(middleware.CONTEXT_LOCALS_KEY_MODEL_CONFIG).(*config.BackendConfig)
if !ok || cfg == nil {
return fiber.ErrBadRequest
}
log.Debug().Str("image", input.Image).Str("modelFile", "modelFile").Str("backend", cfg.Backend).Msg("Detection")
image, err := utils.GetContentURIAsBase64(input.Image)
if err != nil {
return err
}
res, err := backend.Detection(image, ml, appConfig, *cfg)
if err != nil {
return err
}
response := schema.DetectionResponse{
Detections: make([]schema.Detection, len(res.Detections)),
}
for i, detection := range res.Detections {
response.Detections[i] = schema.Detection{
X: detection.X,
Y: detection.Y,
Width: detection.Width,
Height: detection.Height,
ClassName: detection.ClassName,
}
}
return c.JSON(response)
}
}

View File

@@ -15,10 +15,9 @@ import (
)
type ModelGalleryEndpointService struct {
galleries []config.Gallery
backendGalleries []config.Gallery
modelPath string
galleryApplier *services.GalleryService
galleries []config.Gallery
modelPath string
galleryApplier *services.GalleryService
}
type GalleryModel struct {
@@ -26,12 +25,11 @@ type GalleryModel struct {
gallery.GalleryModel
}
func CreateModelGalleryEndpointService(galleries []config.Gallery, backendGalleries []config.Gallery, modelPath string, galleryApplier *services.GalleryService) ModelGalleryEndpointService {
func CreateModelGalleryEndpointService(galleries []config.Gallery, modelPath string, galleryApplier *services.GalleryService) ModelGalleryEndpointService {
return ModelGalleryEndpointService{
galleries: galleries,
backendGalleries: backendGalleries,
modelPath: modelPath,
galleryApplier: galleryApplier,
galleries: galleries,
modelPath: modelPath,
galleryApplier: galleryApplier,
}
}
@@ -81,7 +79,6 @@ func (mgs *ModelGalleryEndpointService) ApplyModelGalleryEndpoint() func(c *fibe
ID: uuid.String(),
GalleryElementName: input.ID,
Galleries: mgs.galleries,
BackendGalleries: mgs.backendGalleries,
}
return c.JSON(schema.GalleryResponse{ID: uuid.String(), StatusURL: fmt.Sprintf("%smodels/jobs/%s", utils.BaseURL(c), uuid.String())})

View File

@@ -0,0 +1,522 @@
package openai
import (
"fmt"
"net/http"
"sort"
"strconv"
"strings"
"sync/atomic"
"time"
"github.com/gofiber/fiber/v2"
"github.com/microcosm-cc/bluemonday"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/LocalAI/core/services"
model "github.com/mudler/LocalAI/pkg/model"
"github.com/mudler/LocalAI/pkg/utils"
"github.com/rs/zerolog/log"
)
// ToolType defines a type for tool options
type ToolType string
const (
CodeInterpreter ToolType = "code_interpreter"
Retrieval ToolType = "retrieval"
Function ToolType = "function"
MaxCharacterInstructions = 32768
MaxCharacterDescription = 512
MaxCharacterName = 256
MaxToolsSize = 128
MaxFileIdSize = 20
MaxCharacterMetadataKey = 64
MaxCharacterMetadataValue = 512
)
type Tool struct {
Type ToolType `json:"type"`
}
// Assistant represents the structure of an assistant object from the OpenAI API.
type Assistant struct {
ID string `json:"id"` // The unique identifier of the assistant.
Object string `json:"object"` // Object type, which is "assistant".
Created int64 `json:"created"` // The time at which the assistant was created.
Model string `json:"model"` // The model ID used by the assistant.
Name string `json:"name,omitempty"` // The name of the assistant.
Description string `json:"description,omitempty"` // The description of the assistant.
Instructions string `json:"instructions,omitempty"` // The system instructions that the assistant uses.
Tools []Tool `json:"tools,omitempty"` // A list of tools enabled on the assistant.
FileIDs []string `json:"file_ids,omitempty"` // A list of file IDs attached to this assistant.
Metadata map[string]string `json:"metadata,omitempty"` // Set of key-value pairs attached to the assistant.
}
var (
Assistants = []Assistant{} // better to return empty array instead of "null"
AssistantsConfigFile = "assistants.json"
)
type AssistantRequest struct {
Model string `json:"model"`
Name string `json:"name,omitempty"`
Description string `json:"description,omitempty"`
Instructions string `json:"instructions,omitempty"`
Tools []Tool `json:"tools,omitempty"`
FileIDs []string `json:"file_ids,omitempty"`
Metadata map[string]string `json:"metadata,omitempty"`
}
// CreateAssistantEndpoint is the OpenAI Assistant API endpoint https://platform.openai.com/docs/api-reference/assistants/createAssistant
// @Summary Create an assistant with a model and instructions.
// @Param request body AssistantRequest true "query params"
// @Success 200 {object} Assistant "Response"
// @Router /v1/assistants [post]
func CreateAssistantEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
request := new(AssistantRequest)
if err := c.BodyParser(request); err != nil {
log.Warn().AnErr("Unable to parse AssistantRequest", err)
return c.Status(fiber.StatusBadRequest).JSON(fiber.Map{"error": "Cannot parse JSON"})
}
if !modelExists(cl, ml, request.Model) {
log.Warn().Msgf("Model: %s was not found in list of models.", request.Model)
return c.Status(fiber.StatusBadRequest).SendString(bluemonday.StrictPolicy().Sanitize(fmt.Sprintf("Model %q not found", request.Model)))
}
if request.Tools == nil {
request.Tools = []Tool{}
}
if request.FileIDs == nil {
request.FileIDs = []string{}
}
if request.Metadata == nil {
request.Metadata = make(map[string]string)
}
id := "asst_" + strconv.FormatInt(generateRandomID(), 10)
assistant := Assistant{
ID: id,
Object: "assistant",
Created: time.Now().Unix(),
Model: request.Model,
Name: request.Name,
Description: request.Description,
Instructions: request.Instructions,
Tools: request.Tools,
FileIDs: request.FileIDs,
Metadata: request.Metadata,
}
Assistants = append(Assistants, assistant)
utils.SaveConfig(appConfig.ConfigsDir, AssistantsConfigFile, Assistants)
return c.Status(fiber.StatusOK).JSON(assistant)
}
}
var currentId int64 = 0
func generateRandomID() int64 {
atomic.AddInt64(&currentId, 1)
return currentId
}
// ListAssistantsEndpoint is the OpenAI Assistant API endpoint to list assistents https://platform.openai.com/docs/api-reference/assistants/listAssistants
// @Summary List available assistents
// @Param limit query int false "Limit the number of assistants returned"
// @Param order query string false "Order of assistants returned"
// @Param after query string false "Return assistants created after the given ID"
// @Param before query string false "Return assistants created before the given ID"
// @Success 200 {object} []Assistant "Response"
// @Router /v1/assistants [get]
func ListAssistantsEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
// Because we're altering the existing assistants list we should just duplicate it for now.
returnAssistants := Assistants
// Parse query parameters
limitQuery := c.Query("limit", "20")
orderQuery := c.Query("order", "desc")
afterQuery := c.Query("after")
beforeQuery := c.Query("before")
// Convert string limit to integer
limit, err := strconv.Atoi(limitQuery)
if err != nil {
return c.Status(http.StatusBadRequest).SendString(bluemonday.StrictPolicy().Sanitize(fmt.Sprintf("Invalid limit query value: %s", limitQuery)))
}
// Sort assistants
sort.SliceStable(returnAssistants, func(i, j int) bool {
if orderQuery == "asc" {
return returnAssistants[i].Created < returnAssistants[j].Created
}
return returnAssistants[i].Created > returnAssistants[j].Created
})
// After and before cursors
if afterQuery != "" {
returnAssistants = filterAssistantsAfterID(returnAssistants, afterQuery)
}
if beforeQuery != "" {
returnAssistants = filterAssistantsBeforeID(returnAssistants, beforeQuery)
}
// Apply limit
if limit < len(returnAssistants) {
returnAssistants = returnAssistants[:limit]
}
return c.JSON(returnAssistants)
}
}
// FilterAssistantsBeforeID filters out those assistants whose ID comes before the given ID
// We assume that the assistants are already sorted
func filterAssistantsBeforeID(assistants []Assistant, id string) []Assistant {
idInt, err := strconv.Atoi(id)
if err != nil {
return assistants // Return original slice if invalid id format is provided
}
var filteredAssistants []Assistant
for _, assistant := range assistants {
aid, err := strconv.Atoi(strings.TrimPrefix(assistant.ID, "asst_"))
if err != nil {
continue // Skip if invalid id in assistant
}
if aid < idInt {
filteredAssistants = append(filteredAssistants, assistant)
}
}
return filteredAssistants
}
// FilterAssistantsAfterID filters out those assistants whose ID comes after the given ID
// We assume that the assistants are already sorted
func filterAssistantsAfterID(assistants []Assistant, id string) []Assistant {
idInt, err := strconv.Atoi(id)
if err != nil {
return assistants // Return original slice if invalid id format is provided
}
var filteredAssistants []Assistant
for _, assistant := range assistants {
aid, err := strconv.Atoi(strings.TrimPrefix(assistant.ID, "asst_"))
if err != nil {
continue // Skip if invalid id in assistant
}
if aid > idInt {
filteredAssistants = append(filteredAssistants, assistant)
}
}
return filteredAssistants
}
func modelExists(cl *config.BackendConfigLoader, ml *model.ModelLoader, modelName string) (found bool) {
found = false
models, err := services.ListModels(cl, ml, config.NoFilterFn, services.SKIP_IF_CONFIGURED)
if err != nil {
return
}
for _, model := range models {
if model == modelName {
found = true
return
}
}
return
}
// DeleteAssistantEndpoint is the OpenAI Assistant API endpoint to delete assistents https://platform.openai.com/docs/api-reference/assistants/deleteAssistant
// @Summary Delete assistents
// @Success 200 {object} schema.DeleteAssistantResponse "Response"
// @Router /v1/assistants/{assistant_id} [delete]
func DeleteAssistantEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
assistantID := c.Params("assistant_id")
if assistantID == "" {
return c.Status(fiber.StatusBadRequest).SendString("parameter assistant_id is required")
}
for i, assistant := range Assistants {
if assistant.ID == assistantID {
Assistants = append(Assistants[:i], Assistants[i+1:]...)
utils.SaveConfig(appConfig.ConfigsDir, AssistantsConfigFile, Assistants)
return c.Status(fiber.StatusOK).JSON(schema.DeleteAssistantResponse{
ID: assistantID,
Object: "assistant.deleted",
Deleted: true,
})
}
}
log.Warn().Msgf("Unable to find assistant %s for deletion", assistantID)
return c.Status(fiber.StatusNotFound).JSON(schema.DeleteAssistantResponse{
ID: assistantID,
Object: "assistant.deleted",
Deleted: false,
})
}
}
// GetAssistantEndpoint is the OpenAI Assistant API endpoint to get assistents https://platform.openai.com/docs/api-reference/assistants/getAssistant
// @Summary Get assistent data
// @Success 200 {object} Assistant "Response"
// @Router /v1/assistants/{assistant_id} [get]
func GetAssistantEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
assistantID := c.Params("assistant_id")
if assistantID == "" {
return c.Status(fiber.StatusBadRequest).SendString("parameter assistant_id is required")
}
for _, assistant := range Assistants {
if assistant.ID == assistantID {
return c.Status(fiber.StatusOK).JSON(assistant)
}
}
return c.Status(fiber.StatusNotFound).SendString(bluemonday.StrictPolicy().Sanitize(fmt.Sprintf("Unable to find assistant with id: %s", assistantID)))
}
}
type AssistantFile struct {
ID string `json:"id"`
Object string `json:"object"`
CreatedAt int64 `json:"created_at"`
AssistantID string `json:"assistant_id"`
}
var (
AssistantFiles []AssistantFile
AssistantsFileConfigFile = "assistantsFile.json"
)
func CreateAssistantFileEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
request := new(schema.AssistantFileRequest)
if err := c.BodyParser(request); err != nil {
return c.Status(fiber.StatusBadRequest).JSON(fiber.Map{"error": "Cannot parse JSON"})
}
assistantID := c.Params("assistant_id")
if assistantID == "" {
return c.Status(fiber.StatusBadRequest).SendString("parameter assistant_id is required")
}
for _, assistant := range Assistants {
if assistant.ID == assistantID {
if len(assistant.FileIDs) > MaxFileIdSize {
return c.Status(fiber.StatusBadRequest).SendString(fmt.Sprintf("Max files %d for assistant %s reached.", MaxFileIdSize, assistant.Name))
}
for _, file := range UploadedFiles {
if file.ID == request.FileID {
assistant.FileIDs = append(assistant.FileIDs, request.FileID)
assistantFile := AssistantFile{
ID: file.ID,
Object: "assistant.file",
CreatedAt: time.Now().Unix(),
AssistantID: assistant.ID,
}
AssistantFiles = append(AssistantFiles, assistantFile)
utils.SaveConfig(appConfig.ConfigsDir, AssistantsFileConfigFile, AssistantFiles)
return c.Status(fiber.StatusOK).JSON(assistantFile)
}
}
return c.Status(fiber.StatusNotFound).SendString(bluemonday.StrictPolicy().Sanitize(fmt.Sprintf("Unable to find file_id: %s", request.FileID)))
}
}
return c.Status(fiber.StatusNotFound).SendString(bluemonday.StrictPolicy().Sanitize(fmt.Sprintf("Unable to find %q", assistantID)))
}
}
func ListAssistantFilesEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
type ListAssistantFiles struct {
Data []schema.File
Object string
}
return func(c *fiber.Ctx) error {
assistantID := c.Params("assistant_id")
if assistantID == "" {
return c.Status(fiber.StatusBadRequest).SendString("parameter assistant_id is required")
}
limitQuery := c.Query("limit", "20")
order := c.Query("order", "desc")
limit, err := strconv.Atoi(limitQuery)
if err != nil || limit < 1 || limit > 100 {
limit = 20 // Default to 20 if there's an error or the limit is out of bounds
}
// Sort files by CreatedAt depending on the order query parameter
if order == "asc" {
sort.Slice(AssistantFiles, func(i, j int) bool {
return AssistantFiles[i].CreatedAt < AssistantFiles[j].CreatedAt
})
} else { // default to "desc"
sort.Slice(AssistantFiles, func(i, j int) bool {
return AssistantFiles[i].CreatedAt > AssistantFiles[j].CreatedAt
})
}
// Limit the number of files returned
var limitedFiles []AssistantFile
hasMore := false
if len(AssistantFiles) > limit {
hasMore = true
limitedFiles = AssistantFiles[:limit]
} else {
limitedFiles = AssistantFiles
}
response := map[string]interface{}{
"object": "list",
"data": limitedFiles,
"first_id": func() string {
if len(limitedFiles) > 0 {
return limitedFiles[0].ID
}
return ""
}(),
"last_id": func() string {
if len(limitedFiles) > 0 {
return limitedFiles[len(limitedFiles)-1].ID
}
return ""
}(),
"has_more": hasMore,
}
return c.Status(fiber.StatusOK).JSON(response)
}
}
func ModifyAssistantEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
request := new(AssistantRequest)
if err := c.BodyParser(request); err != nil {
log.Warn().AnErr("Unable to parse AssistantRequest", err)
return c.Status(fiber.StatusBadRequest).JSON(fiber.Map{"error": "Cannot parse JSON"})
}
assistantID := c.Params("assistant_id")
if assistantID == "" {
return c.Status(fiber.StatusBadRequest).SendString("parameter assistant_id is required")
}
for i, assistant := range Assistants {
if assistant.ID == assistantID {
newAssistant := Assistant{
ID: assistantID,
Object: assistant.Object,
Created: assistant.Created,
Model: request.Model,
Name: request.Name,
Description: request.Description,
Instructions: request.Instructions,
Tools: request.Tools,
FileIDs: request.FileIDs, // todo: should probably verify fileids exist
Metadata: request.Metadata,
}
// Remove old one and replace with new one
Assistants = append(Assistants[:i], Assistants[i+1:]...)
Assistants = append(Assistants, newAssistant)
utils.SaveConfig(appConfig.ConfigsDir, AssistantsConfigFile, Assistants)
return c.Status(fiber.StatusOK).JSON(newAssistant)
}
}
return c.Status(fiber.StatusNotFound).SendString(bluemonday.StrictPolicy().Sanitize(fmt.Sprintf("Unable to find assistant with id: %s", assistantID)))
}
}
func DeleteAssistantFileEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
assistantID := c.Params("assistant_id")
fileId := c.Params("file_id")
if assistantID == "" {
return c.Status(fiber.StatusBadRequest).SendString("parameter assistant_id and file_id are required")
}
// First remove file from assistant
for i, assistant := range Assistants {
if assistant.ID == assistantID {
for j, fileId := range assistant.FileIDs {
Assistants[i].FileIDs = append(Assistants[i].FileIDs[:j], Assistants[i].FileIDs[j+1:]...)
// Check if the file exists in the assistantFiles slice
for i, assistantFile := range AssistantFiles {
if assistantFile.ID == fileId {
// Remove the file from the assistantFiles slice
AssistantFiles = append(AssistantFiles[:i], AssistantFiles[i+1:]...)
utils.SaveConfig(appConfig.ConfigsDir, AssistantsFileConfigFile, AssistantFiles)
return c.Status(fiber.StatusOK).JSON(schema.DeleteAssistantFileResponse{
ID: fileId,
Object: "assistant.file.deleted",
Deleted: true,
})
}
}
}
log.Warn().Msgf("Unable to locate file_id: %s in assistants: %s. Continuing to delete assistant file.", fileId, assistantID)
for i, assistantFile := range AssistantFiles {
if assistantFile.AssistantID == assistantID {
AssistantFiles = append(AssistantFiles[:i], AssistantFiles[i+1:]...)
utils.SaveConfig(appConfig.ConfigsDir, AssistantsFileConfigFile, AssistantFiles)
return c.Status(fiber.StatusNotFound).JSON(schema.DeleteAssistantFileResponse{
ID: fileId,
Object: "assistant.file.deleted",
Deleted: true,
})
}
}
}
}
log.Warn().Msgf("Unable to find assistant: %s", assistantID)
return c.Status(fiber.StatusNotFound).JSON(schema.DeleteAssistantFileResponse{
ID: fileId,
Object: "assistant.file.deleted",
Deleted: false,
})
}
}
func GetAssistantFileEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
assistantID := c.Params("assistant_id")
fileId := c.Params("file_id")
if assistantID == "" {
return c.Status(fiber.StatusBadRequest).SendString("parameter assistant_id and file_id are required")
}
for _, assistantFile := range AssistantFiles {
if assistantFile.AssistantID == assistantID {
if assistantFile.ID == fileId {
return c.Status(fiber.StatusOK).JSON(assistantFile)
}
return c.Status(fiber.StatusNotFound).SendString(bluemonday.StrictPolicy().Sanitize(fmt.Sprintf("Unable to find assistant file with file_id: %s", fileId)))
}
}
return c.Status(fiber.StatusNotFound).SendString(bluemonday.StrictPolicy().Sanitize(fmt.Sprintf("Unable to find assistant file with assistant_id: %s", assistantID)))
}
}

View File

@@ -0,0 +1,460 @@
package openai
import (
"encoding/json"
"fmt"
"io"
"net/http"
"net/http/httptest"
"os"
"path/filepath"
"strings"
"testing"
"time"
"github.com/gofiber/fiber/v2"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/LocalAI/pkg/model"
"github.com/stretchr/testify/assert"
)
var configsDir string = "/tmp/localai/configs"
type MockLoader struct {
models []string
}
func tearDown() func() {
return func() {
UploadedFiles = []schema.File{}
Assistants = []Assistant{}
AssistantFiles = []AssistantFile{}
_ = os.Remove(filepath.Join(configsDir, AssistantsConfigFile))
_ = os.Remove(filepath.Join(configsDir, AssistantsFileConfigFile))
}
}
func TestAssistantEndpoints(t *testing.T) {
// Preparing the mocked objects
cl := &config.BackendConfigLoader{}
//configsDir := "/tmp/localai/configs"
modelPath := "/tmp/localai/model"
var ml = model.NewModelLoader(modelPath, false)
appConfig := &config.ApplicationConfig{
ConfigsDir: configsDir,
UploadLimitMB: 10,
UploadDir: "test_dir",
ModelPath: modelPath,
}
_ = os.RemoveAll(appConfig.ConfigsDir)
_ = os.MkdirAll(appConfig.ConfigsDir, 0750)
_ = os.MkdirAll(modelPath, 0750)
os.Create(filepath.Join(modelPath, "ggml-gpt4all-j"))
app := fiber.New(fiber.Config{
BodyLimit: 20 * 1024 * 1024, // sets the limit to 20MB.
})
// Create a Test Server
app.Get("/assistants", ListAssistantsEndpoint(cl, ml, appConfig))
app.Post("/assistants", CreateAssistantEndpoint(cl, ml, appConfig))
app.Delete("/assistants/:assistant_id", DeleteAssistantEndpoint(cl, ml, appConfig))
app.Get("/assistants/:assistant_id", GetAssistantEndpoint(cl, ml, appConfig))
app.Post("/assistants/:assistant_id", ModifyAssistantEndpoint(cl, ml, appConfig))
app.Post("/files", UploadFilesEndpoint(cl, appConfig))
app.Get("/assistants/:assistant_id/files", ListAssistantFilesEndpoint(cl, ml, appConfig))
app.Post("/assistants/:assistant_id/files", CreateAssistantFileEndpoint(cl, ml, appConfig))
app.Delete("/assistants/:assistant_id/files/:file_id", DeleteAssistantFileEndpoint(cl, ml, appConfig))
app.Get("/assistants/:assistant_id/files/:file_id", GetAssistantFileEndpoint(cl, ml, appConfig))
t.Run("CreateAssistantEndpoint", func(t *testing.T) {
t.Cleanup(tearDown())
ar := &AssistantRequest{
Model: "ggml-gpt4all-j",
Name: "3.5-turbo",
Description: "Test Assistant",
Instructions: "You are computer science teacher answering student questions",
Tools: []Tool{{Type: Function}},
FileIDs: nil,
Metadata: nil,
}
resultAssistant, resp, err := createAssistant(app, *ar)
assert.NoError(t, err)
assert.Equal(t, fiber.StatusOK, resp.StatusCode)
assert.Equal(t, 1, len(Assistants))
//t.Cleanup(cleanupAllAssistants(t, app, []string{resultAssistant.ID}))
assert.Equal(t, ar.Name, resultAssistant.Name)
assert.Equal(t, ar.Model, resultAssistant.Model)
assert.Equal(t, ar.Tools, resultAssistant.Tools)
assert.Equal(t, ar.Description, resultAssistant.Description)
assert.Equal(t, ar.Instructions, resultAssistant.Instructions)
assert.Equal(t, ar.FileIDs, resultAssistant.FileIDs)
assert.Equal(t, ar.Metadata, resultAssistant.Metadata)
})
t.Run("ListAssistantsEndpoint", func(t *testing.T) {
var ids []string
var resultAssistant []Assistant
for i := 0; i < 4; i++ {
ar := &AssistantRequest{
Model: "ggml-gpt4all-j",
Name: fmt.Sprintf("3.5-turbo-%d", i),
Description: fmt.Sprintf("Test Assistant - %d", i),
Instructions: fmt.Sprintf("You are computer science teacher answering student questions - %d", i),
Tools: []Tool{{Type: Function}},
FileIDs: []string{"fid-1234"},
Metadata: map[string]string{"meta": "data"},
}
//var err error
ra, _, err := createAssistant(app, *ar)
// Because we create the assistants so fast all end up with the same created time.
time.Sleep(time.Second)
resultAssistant = append(resultAssistant, ra)
assert.NoError(t, err)
ids = append(ids, resultAssistant[i].ID)
}
t.Cleanup(cleanupAllAssistants(t, app, ids))
tests := []struct {
name string
reqURL string
expectedStatus int
expectedResult []Assistant
expectedStringResult string
}{
{
name: "Valid Usage - limit only",
reqURL: "/assistants?limit=2",
expectedStatus: http.StatusOK,
expectedResult: Assistants[:2], // Expecting the first two assistants
},
{
name: "Valid Usage - order asc",
reqURL: "/assistants?order=asc",
expectedStatus: http.StatusOK,
expectedResult: Assistants, // Expecting all assistants in ascending order
},
{
name: "Valid Usage - order desc",
reqURL: "/assistants?order=desc",
expectedStatus: http.StatusOK,
expectedResult: []Assistant{Assistants[3], Assistants[2], Assistants[1], Assistants[0]}, // Expecting all assistants in descending order
},
{
name: "Valid Usage - after specific ID",
reqURL: "/assistants?after=2",
expectedStatus: http.StatusOK,
// Note this is correct because it's put in descending order already
expectedResult: Assistants[:3], // Expecting assistants after (excluding) ID 2
},
{
name: "Valid Usage - before specific ID",
reqURL: "/assistants?before=4",
expectedStatus: http.StatusOK,
expectedResult: Assistants[2:], // Expecting assistants before (excluding) ID 3.
},
{
name: "Invalid Usage - non-integer limit",
reqURL: "/assistants?limit=two",
expectedStatus: http.StatusBadRequest,
expectedStringResult: "Invalid limit query value: two",
},
{
name: "Invalid Usage - non-existing id in after",
reqURL: "/assistants?after=100",
expectedStatus: http.StatusOK,
expectedResult: []Assistant(nil), // Expecting empty list as there are no IDs above 100
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
request := httptest.NewRequest(http.MethodGet, tt.reqURL, nil)
response, err := app.Test(request)
assert.NoError(t, err)
assert.Equal(t, tt.expectedStatus, response.StatusCode)
if tt.expectedStatus != fiber.StatusOK {
all, _ := io.ReadAll(response.Body)
assert.Equal(t, tt.expectedStringResult, string(all))
} else {
var result []Assistant
err = json.NewDecoder(response.Body).Decode(&result)
assert.NoError(t, err)
assert.Equal(t, tt.expectedResult, result)
}
})
}
})
t.Run("DeleteAssistantEndpoint", func(t *testing.T) {
ar := &AssistantRequest{
Model: "ggml-gpt4all-j",
Name: "3.5-turbo",
Description: "Test Assistant",
Instructions: "You are computer science teacher answering student questions",
Tools: []Tool{{Type: Function}},
FileIDs: nil,
Metadata: nil,
}
resultAssistant, _, err := createAssistant(app, *ar)
assert.NoError(t, err)
target := fmt.Sprintf("/assistants/%s", resultAssistant.ID)
deleteReq := httptest.NewRequest(http.MethodDelete, target, nil)
_, err = app.Test(deleteReq)
assert.NoError(t, err)
assert.Equal(t, 0, len(Assistants))
})
t.Run("GetAssistantEndpoint", func(t *testing.T) {
ar := &AssistantRequest{
Model: "ggml-gpt4all-j",
Name: "3.5-turbo",
Description: "Test Assistant",
Instructions: "You are computer science teacher answering student questions",
Tools: []Tool{{Type: Function}},
FileIDs: nil,
Metadata: nil,
}
resultAssistant, _, err := createAssistant(app, *ar)
assert.NoError(t, err)
t.Cleanup(cleanupAllAssistants(t, app, []string{resultAssistant.ID}))
target := fmt.Sprintf("/assistants/%s", resultAssistant.ID)
request := httptest.NewRequest(http.MethodGet, target, nil)
response, err := app.Test(request)
assert.NoError(t, err)
var getAssistant Assistant
err = json.NewDecoder(response.Body).Decode(&getAssistant)
assert.NoError(t, err)
assert.Equal(t, resultAssistant.ID, getAssistant.ID)
})
t.Run("ModifyAssistantEndpoint", func(t *testing.T) {
ar := &AssistantRequest{
Model: "ggml-gpt4all-j",
Name: "3.5-turbo",
Description: "Test Assistant",
Instructions: "You are computer science teacher answering student questions",
Tools: []Tool{{Type: Function}},
FileIDs: nil,
Metadata: nil,
}
resultAssistant, _, err := createAssistant(app, *ar)
assert.NoError(t, err)
modifiedAr := &AssistantRequest{
Model: "ggml-gpt4all-j",
Name: "4.0-turbo",
Description: "Modified Test Assistant",
Instructions: "You are math teacher answering student questions",
Tools: []Tool{{Type: CodeInterpreter}},
FileIDs: nil,
Metadata: nil,
}
modifiedArJson, err := json.Marshal(modifiedAr)
assert.NoError(t, err)
target := fmt.Sprintf("/assistants/%s", resultAssistant.ID)
request := httptest.NewRequest(http.MethodPost, target, strings.NewReader(string(modifiedArJson)))
request.Header.Set(fiber.HeaderContentType, "application/json")
modifyResponse, err := app.Test(request)
assert.NoError(t, err)
var getAssistant Assistant
err = json.NewDecoder(modifyResponse.Body).Decode(&getAssistant)
assert.NoError(t, err)
t.Cleanup(cleanupAllAssistants(t, app, []string{getAssistant.ID}))
assert.Equal(t, resultAssistant.ID, getAssistant.ID) // IDs should match even if contents change
assert.Equal(t, modifiedAr.Tools, getAssistant.Tools)
assert.Equal(t, modifiedAr.Name, getAssistant.Name)
assert.Equal(t, modifiedAr.Instructions, getAssistant.Instructions)
assert.Equal(t, modifiedAr.Description, getAssistant.Description)
})
t.Run("CreateAssistantFileEndpoint", func(t *testing.T) {
t.Cleanup(tearDown())
file, assistant, err := createFileAndAssistant(t, app, appConfig)
assert.NoError(t, err)
afr := schema.AssistantFileRequest{FileID: file.ID}
af, _, err := createAssistantFile(app, afr, assistant.ID)
assert.NoError(t, err)
assert.Equal(t, assistant.ID, af.AssistantID)
})
t.Run("ListAssistantFilesEndpoint", func(t *testing.T) {
t.Cleanup(tearDown())
file, assistant, err := createFileAndAssistant(t, app, appConfig)
assert.NoError(t, err)
afr := schema.AssistantFileRequest{FileID: file.ID}
af, _, err := createAssistantFile(app, afr, assistant.ID)
assert.NoError(t, err)
assert.Equal(t, assistant.ID, af.AssistantID)
})
t.Run("GetAssistantFileEndpoint", func(t *testing.T) {
t.Cleanup(tearDown())
file, assistant, err := createFileAndAssistant(t, app, appConfig)
assert.NoError(t, err)
afr := schema.AssistantFileRequest{FileID: file.ID}
af, _, err := createAssistantFile(app, afr, assistant.ID)
assert.NoError(t, err)
t.Cleanup(cleanupAssistantFile(t, app, af.ID, af.AssistantID))
target := fmt.Sprintf("/assistants/%s/files/%s", assistant.ID, file.ID)
request := httptest.NewRequest(http.MethodGet, target, nil)
response, err := app.Test(request)
assert.NoError(t, err)
var assistantFile AssistantFile
err = json.NewDecoder(response.Body).Decode(&assistantFile)
assert.NoError(t, err)
assert.Equal(t, af.ID, assistantFile.ID)
assert.Equal(t, af.AssistantID, assistantFile.AssistantID)
})
t.Run("DeleteAssistantFileEndpoint", func(t *testing.T) {
t.Cleanup(tearDown())
file, assistant, err := createFileAndAssistant(t, app, appConfig)
assert.NoError(t, err)
afr := schema.AssistantFileRequest{FileID: file.ID}
af, _, err := createAssistantFile(app, afr, assistant.ID)
assert.NoError(t, err)
cleanupAssistantFile(t, app, af.ID, af.AssistantID)()
assert.Empty(t, AssistantFiles)
})
}
func createFileAndAssistant(t *testing.T, app *fiber.App, o *config.ApplicationConfig) (schema.File, Assistant, error) {
ar := &AssistantRequest{
Model: "ggml-gpt4all-j",
Name: "3.5-turbo",
Description: "Test Assistant",
Instructions: "You are computer science teacher answering student questions",
Tools: []Tool{{Type: Function}},
FileIDs: nil,
Metadata: nil,
}
assistant, _, err := createAssistant(app, *ar)
if err != nil {
return schema.File{}, Assistant{}, err
}
t.Cleanup(cleanupAllAssistants(t, app, []string{assistant.ID}))
file := CallFilesUploadEndpointWithCleanup(t, app, "test.txt", "file", "fine-tune", 5, o)
t.Cleanup(func() {
_, err := CallFilesDeleteEndpoint(t, app, file.ID)
assert.NoError(t, err)
})
return file, assistant, nil
}
func createAssistantFile(app *fiber.App, afr schema.AssistantFileRequest, assistantId string) (AssistantFile, *http.Response, error) {
afrJson, err := json.Marshal(afr)
if err != nil {
return AssistantFile{}, nil, err
}
target := fmt.Sprintf("/assistants/%s/files", assistantId)
request := httptest.NewRequest(http.MethodPost, target, strings.NewReader(string(afrJson)))
request.Header.Set(fiber.HeaderContentType, "application/json")
request.Header.Set("OpenAi-Beta", "assistants=v1")
resp, err := app.Test(request)
if err != nil {
return AssistantFile{}, resp, err
}
var assistantFile AssistantFile
all, err := io.ReadAll(resp.Body)
if err != nil {
return AssistantFile{}, resp, err
}
err = json.NewDecoder(strings.NewReader(string(all))).Decode(&assistantFile)
if err != nil {
return AssistantFile{}, resp, err
}
return assistantFile, resp, nil
}
func createAssistant(app *fiber.App, ar AssistantRequest) (Assistant, *http.Response, error) {
assistant, err := json.Marshal(ar)
if err != nil {
return Assistant{}, nil, err
}
request := httptest.NewRequest(http.MethodPost, "/assistants", strings.NewReader(string(assistant)))
request.Header.Set(fiber.HeaderContentType, "application/json")
request.Header.Set("OpenAi-Beta", "assistants=v1")
resp, err := app.Test(request)
if err != nil {
return Assistant{}, resp, err
}
bodyString, err := io.ReadAll(resp.Body)
if err != nil {
return Assistant{}, resp, err
}
var resultAssistant Assistant
err = json.NewDecoder(strings.NewReader(string(bodyString))).Decode(&resultAssistant)
return resultAssistant, resp, err
}
func cleanupAllAssistants(t *testing.T, app *fiber.App, ids []string) func() {
return func() {
for _, assistant := range ids {
target := fmt.Sprintf("/assistants/%s", assistant)
deleteReq := httptest.NewRequest(http.MethodDelete, target, nil)
_, err := app.Test(deleteReq)
if err != nil {
t.Fatalf("Failed to delete assistant %s: %v", assistant, err)
}
}
}
}
func cleanupAssistantFile(t *testing.T, app *fiber.App, fileId, assistantId string) func() {
return func() {
target := fmt.Sprintf("/assistants/%s/files/%s", assistantId, fileId)
request := httptest.NewRequest(http.MethodDelete, target, nil)
request.Header.Set(fiber.HeaderContentType, "application/json")
request.Header.Set("OpenAi-Beta", "assistants=v1")
resp, err := app.Test(request)
assert.NoError(t, err)
var dafr schema.DeleteAssistantFileResponse
err = json.NewDecoder(resp.Body).Decode(&dafr)
assert.NoError(t, err)
assert.True(t, dafr.Deleted)
}
}

View File

@@ -15,8 +15,8 @@ import (
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/LocalAI/pkg/functions"
"github.com/mudler/LocalAI/core/templates"
"github.com/mudler/LocalAI/pkg/model"
"github.com/mudler/LocalAI/pkg/templates"
"github.com/rs/zerolog/log"
"github.com/valyala/fasthttp"
@@ -175,7 +175,7 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, evaluat
textContentToReturn = ""
id = uuid.New().String()
created = int(time.Now().Unix())
input, ok := c.Locals(middleware.CONTEXT_LOCALS_KEY_LOCALAI_REQUEST).(*schema.OpenAIRequest)
if !ok || input.Model == "" {
return fiber.ErrBadRequest
@@ -305,7 +305,7 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, evaluat
// If we are using the tokenizer template, we don't need to process the messages
// unless we are processing functions
if !config.TemplateConfig.UseTokenizerTemplate || shouldUseFn {
predInput = evaluator.TemplateMessages(*input, input.Messages, config, funcs, shouldUseFn)
predInput = evaluator.TemplateMessages(input.Messages, config, funcs, shouldUseFn)
log.Debug().Msgf("Prompt (after templating): %s", predInput)
if config.Grammar != "" {

View File

@@ -15,9 +15,9 @@ import (
"github.com/gofiber/fiber/v2"
"github.com/google/uuid"
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/LocalAI/core/templates"
"github.com/mudler/LocalAI/pkg/functions"
"github.com/mudler/LocalAI/pkg/model"
"github.com/mudler/LocalAI/pkg/templates"
"github.com/rs/zerolog/log"
"github.com/valyala/fasthttp"
)
@@ -109,10 +109,8 @@ func CompletionEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, e
predInput := config.PromptStrings[0]
templatedInput, err := evaluator.EvaluateTemplateForPrompt(templates.CompletionPromptTemplate, *config, templates.PromptTemplateData{
Input: predInput,
SystemPrompt: config.SystemPrompt,
ReasoningEffort: input.ReasoningEffort,
Metadata: input.Metadata,
Input: predInput,
SystemPrompt: config.SystemPrompt,
})
if err == nil {
predInput = templatedInput
@@ -162,10 +160,8 @@ func CompletionEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, e
for k, i := range config.PromptStrings {
templatedInput, err := evaluator.EvaluateTemplateForPrompt(templates.CompletionPromptTemplate, *config, templates.PromptTemplateData{
SystemPrompt: config.SystemPrompt,
Input: i,
ReasoningEffort: input.ReasoningEffort,
Metadata: input.Metadata,
SystemPrompt: config.SystemPrompt,
Input: i,
})
if err == nil {
i = templatedInput

View File

@@ -12,8 +12,8 @@ import (
"github.com/google/uuid"
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/LocalAI/core/templates"
"github.com/mudler/LocalAI/pkg/model"
"github.com/mudler/LocalAI/pkg/templates"
"github.com/rs/zerolog/log"
)
@@ -47,11 +47,9 @@ func EditEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, evaluat
for _, i := range config.InputStrings {
templatedInput, err := evaluator.EvaluateTemplateForPrompt(templates.EditPromptTemplate, *config, templates.PromptTemplateData{
Input: i,
Instruction: input.Instruction,
SystemPrompt: config.SystemPrompt,
ReasoningEffort: input.ReasoningEffort,
Metadata: input.Metadata,
Input: i,
Instruction: input.Instruction,
SystemPrompt: config.SystemPrompt,
})
if err == nil {
i = templatedInput

View File

@@ -0,0 +1,194 @@
package openai
import (
"errors"
"fmt"
"os"
"path/filepath"
"sync/atomic"
"time"
"github.com/microcosm-cc/bluemonday"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/schema"
"github.com/gofiber/fiber/v2"
"github.com/mudler/LocalAI/pkg/utils"
)
var UploadedFiles []schema.File
const UploadedFilesFile = "uploadedFiles.json"
// UploadFilesEndpoint https://platform.openai.com/docs/api-reference/files/create
func UploadFilesEndpoint(cm *config.BackendConfigLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
file, err := c.FormFile("file")
if err != nil {
return err
}
// Check the file size
if file.Size > int64(appConfig.UploadLimitMB*1024*1024) {
return c.Status(fiber.StatusBadRequest).SendString(fmt.Sprintf("File size %d exceeds upload limit %d", file.Size, appConfig.UploadLimitMB))
}
purpose := c.FormValue("purpose", "") //TODO put in purpose dirs
if purpose == "" {
return c.Status(fiber.StatusBadRequest).SendString("Purpose is not defined")
}
// Sanitize the filename to prevent directory traversal
filename := utils.SanitizeFileName(file.Filename)
savePath := filepath.Join(appConfig.UploadDir, filename)
// Check if file already exists
if _, err := os.Stat(savePath); !os.IsNotExist(err) {
return c.Status(fiber.StatusBadRequest).SendString("File already exists")
}
err = c.SaveFile(file, savePath)
if err != nil {
return c.Status(fiber.StatusInternalServerError).SendString("Failed to save file: " + bluemonday.StrictPolicy().Sanitize(err.Error()))
}
f := schema.File{
ID: fmt.Sprintf("file-%d", getNextFileId()),
Object: "file",
Bytes: int(file.Size),
CreatedAt: time.Now(),
Filename: file.Filename,
Purpose: purpose,
}
UploadedFiles = append(UploadedFiles, f)
utils.SaveConfig(appConfig.UploadDir, UploadedFilesFile, UploadedFiles)
return c.Status(fiber.StatusOK).JSON(f)
}
}
var currentFileId int64 = 0
func getNextFileId() int64 {
atomic.AddInt64(&currentId, 1)
return currentId
}
// ListFilesEndpoint https://platform.openai.com/docs/api-reference/files/list
// @Summary List files.
// @Success 200 {object} schema.ListFiles "Response"
// @Router /v1/files [get]
func ListFilesEndpoint(cm *config.BackendConfigLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
var listFiles schema.ListFiles
purpose := c.Query("purpose")
if purpose == "" {
listFiles.Data = UploadedFiles
} else {
for _, f := range UploadedFiles {
if purpose == f.Purpose {
listFiles.Data = append(listFiles.Data, f)
}
}
}
listFiles.Object = "list"
return c.Status(fiber.StatusOK).JSON(listFiles)
}
}
func getFileFromRequest(c *fiber.Ctx) (*schema.File, error) {
id := c.Params("file_id")
if id == "" {
return nil, fmt.Errorf("file_id parameter is required")
}
for _, f := range UploadedFiles {
if id == f.ID {
return &f, nil
}
}
return nil, fmt.Errorf("unable to find file id %s", id)
}
// GetFilesEndpoint is the OpenAI API endpoint to get files https://platform.openai.com/docs/api-reference/files/retrieve
// @Summary Returns information about a specific file.
// @Success 200 {object} schema.File "Response"
// @Router /v1/files/{file_id} [get]
func GetFilesEndpoint(cm *config.BackendConfigLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
file, err := getFileFromRequest(c)
if err != nil {
return c.Status(fiber.StatusInternalServerError).SendString(bluemonday.StrictPolicy().Sanitize(err.Error()))
}
return c.JSON(file)
}
}
type DeleteStatus struct {
Id string
Object string
Deleted bool
}
// DeleteFilesEndpoint is the OpenAI API endpoint to delete files https://platform.openai.com/docs/api-reference/files/delete
// @Summary Delete a file.
// @Success 200 {object} DeleteStatus "Response"
// @Router /v1/files/{file_id} [delete]
func DeleteFilesEndpoint(cm *config.BackendConfigLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
file, err := getFileFromRequest(c)
if err != nil {
return c.Status(fiber.StatusInternalServerError).SendString(bluemonday.StrictPolicy().Sanitize(err.Error()))
}
err = os.Remove(filepath.Join(appConfig.UploadDir, file.Filename))
if err != nil {
// If the file doesn't exist then we should just continue to remove it
if !errors.Is(err, os.ErrNotExist) {
return c.Status(fiber.StatusInternalServerError).SendString(bluemonday.StrictPolicy().Sanitize(fmt.Sprintf("Unable to delete file: %s, %v", file.Filename, err)))
}
}
// Remove upload from list
for i, f := range UploadedFiles {
if f.ID == file.ID {
UploadedFiles = append(UploadedFiles[:i], UploadedFiles[i+1:]...)
break
}
}
utils.SaveConfig(appConfig.UploadDir, UploadedFilesFile, UploadedFiles)
return c.JSON(DeleteStatus{
Id: file.ID,
Object: "file",
Deleted: true,
})
}
}
// GetFilesContentsEndpoint is the OpenAI API endpoint to get files content https://platform.openai.com/docs/api-reference/files/retrieve-contents
// @Summary Returns information about a specific file.
// @Success 200 {string} binary "file"
// @Router /v1/files/{file_id}/content [get]
// GetFilesContentsEndpoint
func GetFilesContentsEndpoint(cm *config.BackendConfigLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
file, err := getFileFromRequest(c)
if err != nil {
return c.Status(fiber.StatusInternalServerError).SendString(bluemonday.StrictPolicy().Sanitize(err.Error()))
}
fileContents, err := os.ReadFile(filepath.Join(appConfig.UploadDir, file.Filename))
if err != nil {
return c.Status(fiber.StatusInternalServerError).SendString(bluemonday.StrictPolicy().Sanitize(err.Error()))
}
return c.Send(fileContents)
}
}

View File

@@ -0,0 +1,301 @@
package openai
import (
"encoding/json"
"fmt"
"io"
"mime/multipart"
"net/http"
"net/http/httptest"
"os"
"path/filepath"
"strings"
"github.com/rs/zerolog/log"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/schema"
"github.com/gofiber/fiber/v2"
utils2 "github.com/mudler/LocalAI/pkg/utils"
"github.com/stretchr/testify/assert"
"testing"
)
func startUpApp() (app *fiber.App, option *config.ApplicationConfig, loader *config.BackendConfigLoader) {
// Preparing the mocked objects
loader = &config.BackendConfigLoader{}
option = &config.ApplicationConfig{
UploadLimitMB: 10,
UploadDir: "test_dir",
}
_ = os.RemoveAll(option.UploadDir)
app = fiber.New(fiber.Config{
BodyLimit: 20 * 1024 * 1024, // sets the limit to 20MB.
})
// Create a Test Server
app.Post("/files", UploadFilesEndpoint(loader, option))
app.Get("/files", ListFilesEndpoint(loader, option))
app.Get("/files/:file_id", GetFilesEndpoint(loader, option))
app.Delete("/files/:file_id", DeleteFilesEndpoint(loader, option))
app.Get("/files/:file_id/content", GetFilesContentsEndpoint(loader, option))
return
}
func TestUploadFileExceedSizeLimit(t *testing.T) {
// Preparing the mocked objects
loader := &config.BackendConfigLoader{}
option := &config.ApplicationConfig{
UploadLimitMB: 10,
UploadDir: "test_dir",
}
_ = os.RemoveAll(option.UploadDir)
app := fiber.New(fiber.Config{
BodyLimit: 20 * 1024 * 1024, // sets the limit to 20MB.
})
// Create a Test Server
app.Post("/files", UploadFilesEndpoint(loader, option))
app.Get("/files", ListFilesEndpoint(loader, option))
app.Get("/files/:file_id", GetFilesEndpoint(loader, option))
app.Delete("/files/:file_id", DeleteFilesEndpoint(loader, option))
app.Get("/files/:file_id/content", GetFilesContentsEndpoint(loader, option))
t.Run("UploadFilesEndpoint file size exceeds limit", func(t *testing.T) {
t.Cleanup(tearDown())
resp, err := CallFilesUploadEndpoint(t, app, "foo.txt", "file", "fine-tune", 11, option)
assert.NoError(t, err)
assert.Equal(t, fiber.StatusBadRequest, resp.StatusCode)
assert.Contains(t, bodyToString(resp, t), "exceeds upload limit")
})
t.Run("UploadFilesEndpoint purpose not defined", func(t *testing.T) {
t.Cleanup(tearDown())
resp, _ := CallFilesUploadEndpoint(t, app, "foo.txt", "file", "", 5, option)
assert.Equal(t, fiber.StatusBadRequest, resp.StatusCode)
assert.Contains(t, bodyToString(resp, t), "Purpose is not defined")
})
t.Run("UploadFilesEndpoint file already exists", func(t *testing.T) {
t.Cleanup(tearDown())
f1 := CallFilesUploadEndpointWithCleanup(t, app, "foo.txt", "file", "fine-tune", 5, option)
resp, err := CallFilesUploadEndpoint(t, app, "foo.txt", "file", "fine-tune", 5, option)
fmt.Println(f1)
fmt.Printf("ERror: %v\n", err)
fmt.Printf("resp: %+v\n", resp)
assert.Equal(t, fiber.StatusBadRequest, resp.StatusCode)
assert.Contains(t, bodyToString(resp, t), "File already exists")
})
t.Run("UploadFilesEndpoint file uploaded successfully", func(t *testing.T) {
t.Cleanup(tearDown())
file := CallFilesUploadEndpointWithCleanup(t, app, "test.txt", "file", "fine-tune", 5, option)
// Check if file exists in the disk
testName := strings.Split(t.Name(), "/")[1]
fileName := testName + "-test.txt"
filePath := filepath.Join(option.UploadDir, utils2.SanitizeFileName(fileName))
_, err := os.Stat(filePath)
assert.False(t, os.IsNotExist(err))
assert.Equal(t, file.Bytes, 5242880)
assert.NotEmpty(t, file.CreatedAt)
assert.Equal(t, file.Filename, fileName)
assert.Equal(t, file.Purpose, "fine-tune")
})
t.Run("ListFilesEndpoint without purpose parameter", func(t *testing.T) {
t.Cleanup(tearDown())
resp, err := CallListFilesEndpoint(t, app, "")
assert.NoError(t, err)
assert.Equal(t, 200, resp.StatusCode)
listFiles := responseToListFile(t, resp)
if len(listFiles.Data) != len(UploadedFiles) {
t.Errorf("Expected %v files, got %v files", len(UploadedFiles), len(listFiles.Data))
}
})
t.Run("ListFilesEndpoint with valid purpose parameter", func(t *testing.T) {
t.Cleanup(tearDown())
_ = CallFilesUploadEndpointWithCleanup(t, app, "test.txt", "file", "fine-tune", 5, option)
resp, err := CallListFilesEndpoint(t, app, "fine-tune")
assert.NoError(t, err)
listFiles := responseToListFile(t, resp)
if len(listFiles.Data) != 1 {
t.Errorf("Expected 1 file, got %v files", len(listFiles.Data))
}
})
t.Run("ListFilesEndpoint with invalid query parameter", func(t *testing.T) {
t.Cleanup(tearDown())
resp, err := CallListFilesEndpoint(t, app, "not-so-fine-tune")
assert.NoError(t, err)
assert.Equal(t, 200, resp.StatusCode)
listFiles := responseToListFile(t, resp)
if len(listFiles.Data) != 0 {
t.Errorf("Expected 0 file, got %v files", len(listFiles.Data))
}
})
t.Run("GetFilesContentsEndpoint get file content", func(t *testing.T) {
t.Cleanup(tearDown())
req := httptest.NewRequest("GET", "/files", nil)
resp, _ := app.Test(req)
assert.Equal(t, 200, resp.StatusCode)
var listFiles schema.ListFiles
if err := json.Unmarshal(bodyToByteArray(resp, t), &listFiles); err != nil {
t.Errorf("Failed to decode response: %v", err)
return
}
if len(listFiles.Data) != 0 {
t.Errorf("Expected 0 file, got %v files", len(listFiles.Data))
}
})
}
func CallListFilesEndpoint(t *testing.T, app *fiber.App, purpose string) (*http.Response, error) {
var target string
if purpose != "" {
target = fmt.Sprintf("/files?purpose=%s", purpose)
} else {
target = "/files"
}
req := httptest.NewRequest("GET", target, nil)
return app.Test(req)
}
func CallFilesContentEndpoint(t *testing.T, app *fiber.App, fileId string) (*http.Response, error) {
request := httptest.NewRequest("GET", "/files?file_id="+fileId, nil)
return app.Test(request)
}
func CallFilesUploadEndpoint(t *testing.T, app *fiber.App, fileName, tag, purpose string, fileSize int, appConfig *config.ApplicationConfig) (*http.Response, error) {
testName := strings.Split(t.Name(), "/")[1]
// Create a file that exceeds the limit
file := createTestFile(t, testName+"-"+fileName, fileSize, appConfig)
// Creating a new HTTP Request
body, writer := newMultipartFile(file.Name(), tag, purpose)
req := httptest.NewRequest(http.MethodPost, "/files", body)
req.Header.Set(fiber.HeaderContentType, writer.FormDataContentType())
return app.Test(req)
}
func CallFilesUploadEndpointWithCleanup(t *testing.T, app *fiber.App, fileName, tag, purpose string, fileSize int, appConfig *config.ApplicationConfig) schema.File {
// Create a file that exceeds the limit
testName := strings.Split(t.Name(), "/")[1]
file := createTestFile(t, testName+"-"+fileName, fileSize, appConfig)
// Creating a new HTTP Request
body, writer := newMultipartFile(file.Name(), tag, purpose)
req := httptest.NewRequest(http.MethodPost, "/files", body)
req.Header.Set(fiber.HeaderContentType, writer.FormDataContentType())
resp, err := app.Test(req)
assert.NoError(t, err)
f := responseToFile(t, resp)
//id := f.ID
//t.Cleanup(func() {
// _, err := CallFilesDeleteEndpoint(t, app, id)
// assert.NoError(t, err)
// assert.Empty(t, UploadedFiles)
//})
return f
}
func CallFilesDeleteEndpoint(t *testing.T, app *fiber.App, fileId string) (*http.Response, error) {
target := fmt.Sprintf("/files/%s", fileId)
req := httptest.NewRequest(http.MethodDelete, target, nil)
return app.Test(req)
}
// Helper to create multi-part file
func newMultipartFile(filePath, tag, purpose string) (*strings.Reader, *multipart.Writer) {
body := new(strings.Builder)
writer := multipart.NewWriter(body)
file, _ := os.Open(filePath)
defer file.Close()
part, _ := writer.CreateFormFile(tag, filepath.Base(filePath))
io.Copy(part, file)
if purpose != "" {
_ = writer.WriteField("purpose", purpose)
}
writer.Close()
return strings.NewReader(body.String()), writer
}
// Helper to create test files
func createTestFile(t *testing.T, name string, sizeMB int, option *config.ApplicationConfig) *os.File {
err := os.MkdirAll(option.UploadDir, 0750)
if err != nil {
t.Fatalf("Error MKDIR: %v", err)
}
file, err := os.Create(name)
assert.NoError(t, err)
file.WriteString(strings.Repeat("a", sizeMB*1024*1024)) // sizeMB MB File
t.Cleanup(func() {
os.Remove(name)
os.RemoveAll(option.UploadDir)
})
return file
}
func bodyToString(resp *http.Response, t *testing.T) string {
return string(bodyToByteArray(resp, t))
}
func bodyToByteArray(resp *http.Response, t *testing.T) []byte {
bodyBytes, err := io.ReadAll(resp.Body)
if err != nil {
t.Fatal(err)
}
return bodyBytes
}
func responseToFile(t *testing.T, resp *http.Response) schema.File {
var file schema.File
responseToString := bodyToString(resp, t)
err := json.NewDecoder(strings.NewReader(responseToString)).Decode(&file)
if err != nil {
t.Errorf("Failed to decode response: %s", err)
}
return file
}
func responseToListFile(t *testing.T, resp *http.Response) schema.ListFiles {
var listFiles schema.ListFiles
responseToString := bodyToString(resp, t)
err := json.NewDecoder(strings.NewReader(responseToString)).Decode(&listFiles)
if err != nil {
log.Error().Err(err).Msg("failed to decode response")
}
return listFiles
}

View File

@@ -79,37 +79,49 @@ func ImageEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appCon
return fiber.ErrBadRequest
}
// Process input images (for img2img/inpainting)
src := ""
if input.File != "" {
src = processImageFile(input.File, appConfig.GeneratedContentDir)
if src != "" {
defer os.RemoveAll(src)
}
}
// Process multiple input images
var inputImages []string
if len(input.Files) > 0 {
for _, file := range input.Files {
processedFile := processImageFile(file, appConfig.GeneratedContentDir)
if processedFile != "" {
inputImages = append(inputImages, processedFile)
defer os.RemoveAll(processedFile)
fileData := []byte{}
var err error
// check if input.File is an URL, if so download it and save it
// to a temporary file
if strings.HasPrefix(input.File, "http://") || strings.HasPrefix(input.File, "https://") {
out, err := downloadFile(input.File)
if err != nil {
return fmt.Errorf("failed downloading file:%w", err)
}
defer os.RemoveAll(out)
fileData, err = os.ReadFile(out)
if err != nil {
return fmt.Errorf("failed reading file:%w", err)
}
} else {
// base 64 decode the file and write it somewhere
// that we will cleanup
fileData, err = base64.StdEncoding.DecodeString(input.File)
if err != nil {
return err
}
}
}
// Process reference images
var refImages []string
if len(input.RefImages) > 0 {
for _, file := range input.RefImages {
processedFile := processImageFile(file, appConfig.GeneratedContentDir)
if processedFile != "" {
refImages = append(refImages, processedFile)
defer os.RemoveAll(processedFile)
}
// Create a temporary file
outputFile, err := os.CreateTemp(appConfig.GeneratedContentDir, "b64")
if err != nil {
return err
}
// write the base64 result
writer := bufio.NewWriter(outputFile)
_, err = writer.Write(fileData)
if err != nil {
outputFile.Close()
return err
}
outputFile.Close()
src = outputFile.Name()
defer os.RemoveAll(src)
}
log.Debug().Msgf("Parameter Config: %+v", config)
@@ -190,13 +202,7 @@ func ImageEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appCon
baseURL := c.BaseURL()
// Use the first input image as src if available, otherwise use the original src
inputSrc := src
if len(inputImages) > 0 {
inputSrc = inputImages[0]
}
fn, err := backend.ImageGeneration(height, width, mode, step, *config.Seed, positive_prompt, negative_prompt, inputSrc, output, ml, *config, appConfig, refImages)
fn, err := backend.ImageGeneration(height, width, mode, step, *config.Seed, positive_prompt, negative_prompt, src, output, ml, *config, appConfig)
if err != nil {
return err
}
@@ -237,51 +243,3 @@ func ImageEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appCon
return c.JSON(resp)
}
}
// processImageFile handles a single image file (URL or base64) and returns the path to the temporary file
func processImageFile(file string, generatedContentDir string) string {
fileData := []byte{}
var err error
// check if file is an URL, if so download it and save it to a temporary file
if strings.HasPrefix(file, "http://") || strings.HasPrefix(file, "https://") {
out, err := downloadFile(file)
if err != nil {
log.Error().Err(err).Msgf("Failed downloading file: %s", file)
return ""
}
defer os.RemoveAll(out)
fileData, err = os.ReadFile(out)
if err != nil {
log.Error().Err(err).Msgf("Failed reading downloaded file: %s", out)
return ""
}
} else {
// base 64 decode the file and write it somewhere that we will cleanup
fileData, err = base64.StdEncoding.DecodeString(file)
if err != nil {
log.Error().Err(err).Msgf("Failed decoding base64 file")
return ""
}
}
// Create a temporary file
outputFile, err := os.CreateTemp(generatedContentDir, "b64")
if err != nil {
log.Error().Err(err).Msg("Failed creating temporary file")
return ""
}
// write the base64 result
writer := bufio.NewWriter(outputFile)
_, err = writer.Write(fileData)
if err != nil {
outputFile.Close()
log.Error().Err(err).Msg("Failed writing to temporary file")
return ""
}
outputFile.Close()
return outputFile.Name()
}

View File

@@ -16,12 +16,12 @@ import (
"github.com/mudler/LocalAI/core/application"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/http/endpoints/openai/types"
"github.com/mudler/LocalAI/core/templates"
laudio "github.com/mudler/LocalAI/pkg/audio"
"github.com/mudler/LocalAI/pkg/functions"
"github.com/mudler/LocalAI/pkg/grpc/proto"
model "github.com/mudler/LocalAI/pkg/model"
"github.com/mudler/LocalAI/pkg/sound"
"github.com/mudler/LocalAI/pkg/templates"
"google.golang.org/grpc"
@@ -29,8 +29,8 @@ import (
)
const (
localSampleRate = 16000
remoteSampleRate = 24000
localSampleRate = 16000
remoteSampleRate = 24000
)
// A model can be "emulated" that is: transcribe audio to text -> feed text to the LLM -> generate audio as result
@@ -210,9 +210,9 @@ func registerRealtime(application *application.Application) func(c *websocket.Co
// TODO: Need some way to pass this to the backend
Threshold: 0.5,
// TODO: This is ignored and the amount of padding is random at present
PrefixPaddingMs: 30,
PrefixPaddingMs: 30,
SilenceDurationMs: 500,
CreateResponse: func() *bool { t := true; return &t }(),
CreateResponse: func() *bool { t := true; return &t }(),
},
},
InputAudioTranscription: &types.InputAudioTranscription{
@@ -233,7 +233,7 @@ func registerRealtime(application *application.Application) func(c *websocket.Co
// TODO: The API has no way to configure the VAD model or other models that make up a pipeline to fake any-to-any
// So possibly we could have a way to configure a composite model that can be used in situations where any-to-any is expected
pipeline := config.Pipeline{
VAD: "silero-vad",
VAD: "silero-vad",
Transcription: session.InputAudioTranscription.Model,
}
@@ -567,8 +567,8 @@ func updateTransSession(session *Session, update *types.ClientSession, cl *confi
trCur := session.InputAudioTranscription
if trUpd != nil && trUpd.Model != "" && trUpd.Model != trCur.Model {
pipeline := config.Pipeline{
VAD: "silero-vad",
pipeline := config.Pipeline {
VAD: "silero-vad",
Transcription: trUpd.Model,
}
@@ -684,7 +684,7 @@ func handleVAD(cfg *config.BackendConfig, evaluator *templates.Evaluator, sessio
sendEvent(c, types.InputAudioBufferClearedEvent{
ServerEventBase: types.ServerEventBase{
EventID: "event_TODO",
Type: types.ServerEventTypeInputAudioBufferCleared,
Type: types.ServerEventTypeInputAudioBufferCleared,
},
})
@@ -697,7 +697,7 @@ func handleVAD(cfg *config.BackendConfig, evaluator *templates.Evaluator, sessio
sendEvent(c, types.InputAudioBufferSpeechStartedEvent{
ServerEventBase: types.ServerEventBase{
EventID: "event_TODO",
Type: types.ServerEventTypeInputAudioBufferSpeechStarted,
Type: types.ServerEventTypeInputAudioBufferSpeechStarted,
},
AudioStartMs: time.Now().Sub(startTime).Milliseconds(),
})
@@ -719,7 +719,7 @@ func handleVAD(cfg *config.BackendConfig, evaluator *templates.Evaluator, sessio
sendEvent(c, types.InputAudioBufferSpeechStoppedEvent{
ServerEventBase: types.ServerEventBase{
EventID: "event_TODO",
Type: types.ServerEventTypeInputAudioBufferSpeechStopped,
Type: types.ServerEventTypeInputAudioBufferSpeechStopped,
},
AudioEndMs: time.Now().Sub(startTime).Milliseconds(),
})
@@ -728,9 +728,9 @@ func handleVAD(cfg *config.BackendConfig, evaluator *templates.Evaluator, sessio
sendEvent(c, types.InputAudioBufferCommittedEvent{
ServerEventBase: types.ServerEventBase{
EventID: "event_TODO",
Type: types.ServerEventTypeInputAudioBufferCommitted,
Type: types.ServerEventTypeInputAudioBufferCommitted,
},
ItemID: generateItemID(),
ItemID: generateItemID(),
PreviousItemID: "TODO",
})
@@ -833,9 +833,9 @@ func commitUtterance(ctx context.Context, utt []byte, cfg *config.BackendConfig,
func runVAD(ctx context.Context, session *Session, adata []int16) ([]*proto.VADSegment, error) {
soundIntBuffer := &audio.IntBuffer{
Format: &audio.Format{SampleRate: localSampleRate, NumChannels: 1},
Format: &audio.Format{SampleRate: localSampleRate, NumChannels: 1},
SourceBitDepth: 16,
Data: sound.ConvertInt16ToInt(adata),
Data: sound.ConvertInt16ToInt(adata),
}
float32Data := soundIntBuffer.AsFloat32Buffer().Data

View File

@@ -11,9 +11,9 @@ import (
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/LocalAI/core/services"
"github.com/mudler/LocalAI/core/templates"
"github.com/mudler/LocalAI/pkg/functions"
"github.com/mudler/LocalAI/pkg/model"
"github.com/mudler/LocalAI/pkg/templates"
"github.com/mudler/LocalAI/pkg/utils"
"github.com/gofiber/fiber/v2"

View File

@@ -23,7 +23,7 @@ func RegisterLocalAIRoutes(router *fiber.App,
// LocalAI API endpoints
if !appConfig.DisableGalleryEndpoint {
modelGalleryEndpointService := localai.CreateModelGalleryEndpointService(appConfig.Galleries, appConfig.BackendGalleries, appConfig.ModelPath, galleryService)
modelGalleryEndpointService := localai.CreateModelGalleryEndpointService(appConfig.Galleries, appConfig.ModelPath, galleryService)
router.Post("/models/apply", modelGalleryEndpointService.ApplyModelGalleryEndpoint())
router.Post("/models/delete/:name", modelGalleryEndpointService.DeleteModelGalleryEndpoint())
@@ -41,11 +41,6 @@ func RegisterLocalAIRoutes(router *fiber.App,
router.Get("/backends/jobs/:uuid", backendGalleryEndpointService.GetOpStatusEndpoint())
}
router.Post("/v1/detection",
requestExtractor.BuildFilteredFirstAvailableDefaultModel(config.BuildUsecaseFilterFn(config.FLAG_DETECTION)),
requestExtractor.SetModelAndConfig(func() schema.LocalAIRequest { return new(schema.DetectionRequest) }),
localai.DetectionEndpoint(cl, ml, appConfig))
router.Post("/tts",
requestExtractor.BuildFilteredFirstAvailableDefaultModel(config.BuildUsecaseFilterFn(config.FLAG_TTS)),
requestExtractor.SetModelAndConfig(func() schema.LocalAIRequest { return new(schema.TTSRequest) }),

Some files were not shown because too many files have changed in this diff Show More