mirror of
https://github.com/mudler/LocalAI.git
synced 2026-02-14 08:31:10 -05:00
162 lines
5.8 KiB
Python
162 lines
5.8 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
This is an extra gRPC server of LocalAI for Moonshine transcription
|
|
"""
|
|
from concurrent import futures
|
|
import time
|
|
import argparse
|
|
import signal
|
|
import sys
|
|
import os
|
|
import backend_pb2
|
|
import backend_pb2_grpc
|
|
from moonshine_voice import (
|
|
Transcriber,
|
|
get_model_for_language,
|
|
load_wav_file,
|
|
)
|
|
|
|
import grpc
|
|
|
|
|
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
|
|
|
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
|
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
|
|
|
# Implement the BackendServicer class with the service methods
|
|
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
|
"""
|
|
BackendServicer is the class that implements the gRPC service
|
|
"""
|
|
def __init__(self):
|
|
self.transcriber = None
|
|
self.model_name = None
|
|
|
|
def Health(self, request, context):
|
|
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
|
|
|
def LoadModel(self, request, context):
|
|
try:
|
|
print("Preparing models, please wait", file=sys.stderr)
|
|
self.model_name = request.Model
|
|
print(f"Model name set to: {self.model_name}", file=sys.stderr)
|
|
|
|
# Default values
|
|
language = "en"
|
|
model_arch = None
|
|
|
|
# Parse options from request
|
|
options = request.Options
|
|
self.options = {}
|
|
|
|
# The options are a list of strings in this form optname:optvalue
|
|
for opt in options:
|
|
if ":" not in opt:
|
|
continue
|
|
key, value = opt.split(":", 1)
|
|
self.options[key] = value
|
|
|
|
print(f"Options: {self.options}", file=sys.stderr)
|
|
|
|
# Extract language and model_arch from options
|
|
if "language" in self.options:
|
|
language = self.options["language"]
|
|
if "model_arch" in self.options:
|
|
model_arch = self.options["model_arch"]
|
|
|
|
# Get the model path and architecture
|
|
model_path, model_arch = get_model_for_language(language, model_arch)
|
|
print(f"Loading model: {model_path} with architecture: {model_arch} for language: {language}", file=sys.stderr)
|
|
|
|
# Initialize the transcriber
|
|
self.transcriber = Transcriber(model_path=model_path, model_arch=model_arch)
|
|
print("Model loaded successfully", file=sys.stderr)
|
|
except Exception as err:
|
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
|
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
|
|
|
def AudioTranscription(self, request, context):
|
|
resultSegments = []
|
|
text = ""
|
|
try:
|
|
if self.transcriber is None:
|
|
raise Exception("Model not loaded. Call LoadModel first.")
|
|
|
|
# Load the audio file
|
|
audio_data, sample_rate = load_wav_file(request.dst)
|
|
print(f"Loaded audio file: {request.dst} with sample rate: {sample_rate}", file=sys.stderr)
|
|
|
|
# Transcribe without streaming
|
|
transcript = self.transcriber.transcribe_without_streaming(
|
|
audio_data, sample_rate=sample_rate, flags=0
|
|
)
|
|
|
|
# Process transcript lines
|
|
full_text_parts = []
|
|
for idx, line in enumerate(transcript.lines):
|
|
line_text = line.text.strip()
|
|
full_text_parts.append(line_text)
|
|
|
|
# Create segment with timing information
|
|
start_ms = int(line.start_time * 1000)
|
|
end_ms = int((line.start_time + line.duration) * 1000)
|
|
|
|
resultSegments.append(backend_pb2.TranscriptSegment(
|
|
id=idx,
|
|
start=start_ms,
|
|
end=end_ms,
|
|
text=line_text
|
|
))
|
|
|
|
print(f"Segment {idx}: [{line.start_time:.2f}s - {line.start_time + line.duration:.2f}s] {line_text}", file=sys.stderr)
|
|
|
|
# Combine all transcriptions into a single text
|
|
text = " ".join(full_text_parts)
|
|
|
|
except Exception as err:
|
|
print(f"Unexpected {err=}, {type(err)=}", file=sys.stderr)
|
|
import traceback
|
|
traceback.print_exc()
|
|
return backend_pb2.TranscriptResult(segments=[], text="")
|
|
|
|
return backend_pb2.TranscriptResult(segments=resultSegments, text=text)
|
|
|
|
def serve(address):
|
|
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS),
|
|
options=[
|
|
('grpc.max_message_length', 50 * 1024 * 1024), # 50MB
|
|
('grpc.max_send_message_length', 50 * 1024 * 1024), # 50MB
|
|
('grpc.max_receive_message_length', 50 * 1024 * 1024), # 50MB
|
|
])
|
|
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
|
server.add_insecure_port(address)
|
|
server.start()
|
|
print("Server started. Listening on: " + address, file=sys.stderr)
|
|
|
|
# Define the signal handler function
|
|
def signal_handler(sig, frame):
|
|
print("Received termination signal. Shutting down...")
|
|
server.stop(0)
|
|
sys.exit(0)
|
|
|
|
# Set the signal handlers for SIGINT and SIGTERM
|
|
signal.signal(signal.SIGINT, signal_handler)
|
|
signal.signal(signal.SIGTERM, signal_handler)
|
|
|
|
try:
|
|
while True:
|
|
time.sleep(_ONE_DAY_IN_SECONDS)
|
|
except KeyboardInterrupt:
|
|
server.stop(0)
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
|
parser.add_argument(
|
|
"--addr", default="localhost:50051", help="The address to bind the server to."
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
serve(args.addr)
|
|
|