fix: update moonshine API, add setuptools to voxcpm requirements (#8541)

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
Ettore Di Giacinto
2026-02-12 23:22:37 +01:00
committed by GitHub
parent 08718b656e
commit 2fd026e958
5 changed files with 78 additions and 29 deletions

View File

@@ -10,7 +10,11 @@ import sys
import os
import backend_pb2
import backend_pb2_grpc
import moonshine_onnx
from moonshine_voice import (
Transcriber,
get_model_for_language,
load_wav_file,
)
import grpc
@@ -25,16 +29,49 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
BackendServicer is the class that implements the gRPC service
"""
def __init__(self):
self.transcriber = None
self.model_name = None
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
try:
print("Preparing models, please wait", file=sys.stderr)
# Store the model name for use in transcription
# Model name format: e.g., "moonshine/tiny"
self.model_name = request.Model
print(f"Model name set to: {self.model_name}", file=sys.stderr)
# Default values
language = "en"
model_arch = None
# Parse options from request
options = request.Options
self.options = {}
# The options are a list of strings in this form optname:optvalue
for opt in options:
if ":" not in opt:
continue
key, value = opt.split(":", 1)
self.options[key] = value
print(f"Options: {self.options}", file=sys.stderr)
# Extract language and model_arch from options
if "language" in self.options:
language = self.options["language"]
if "model_arch" in self.options:
model_arch = self.options["model_arch"]
# Get the model path and architecture
model_path, model_arch = get_model_for_language(language, model_arch)
print(f"Loading model: {model_path} with architecture: {model_arch} for language: {language}", file=sys.stderr)
# Initialize the transcriber
self.transcriber = Transcriber(model_path=model_path, model_arch=model_arch)
print("Model loaded successfully", file=sys.stderr)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(message="Model loaded successfully", success=True)
@@ -43,33 +80,44 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
resultSegments = []
text = ""
try:
# moonshine_onnx.transcribe returns a list of strings
transcriptions = moonshine_onnx.transcribe(request.dst, self.model_name)
if self.transcriber is None:
raise Exception("Model not loaded. Call LoadModel first.")
# Load the audio file
audio_data, sample_rate = load_wav_file(request.dst)
print(f"Loaded audio file: {request.dst} with sample rate: {sample_rate}", file=sys.stderr)
# Transcribe without streaming
transcript = self.transcriber.transcribe_without_streaming(
audio_data, sample_rate=sample_rate, flags=0
)
# Process transcript lines
full_text_parts = []
for idx, line in enumerate(transcript.lines):
line_text = line.text.strip()
full_text_parts.append(line_text)
# Create segment with timing information
start_ms = int(line.start_time * 1000)
end_ms = int((line.start_time + line.duration) * 1000)
resultSegments.append(backend_pb2.TranscriptSegment(
id=idx,
start=start_ms,
end=end_ms,
text=line_text
))
print(f"Segment {idx}: [{line.start_time:.2f}s - {line.start_time + line.duration:.2f}s] {line_text}", file=sys.stderr)
# Combine all transcriptions into a single text
if isinstance(transcriptions, list):
text = " ".join(transcriptions)
# Create segments for each transcription in the list
for id, trans in enumerate(transcriptions):
# Since moonshine doesn't provide timing info, we'll create a single segment
# with id and text, using approximate timing
resultSegments.append(backend_pb2.TranscriptSegment(
id=id,
start=0,
end=0,
text=trans
))
else:
# Handle case where it's not a list (shouldn't happen, but be safe)
text = str(transcriptions)
resultSegments.append(backend_pb2.TranscriptSegment(
id=0,
start=0,
end=0,
text=text
))
text = " ".join(full_text_parts)
except Exception as err:
print(f"Unexpected {err=}, {type(err)=}", file=sys.stderr)
import traceback
traceback.print_exc()
return backend_pb2.TranscriptResult(segments=[], text="")
return backend_pb2.TranscriptResult(segments=resultSegments, text=text)

View File

@@ -1,4 +1,4 @@
grpcio==1.71.0
protobuf
grpcio-tools
useful-moonshine-onnx@git+https://git@github.com/moonshine-ai/moonshine.git#subdirectory=moonshine-onnx
moonshine-voice

View File

@@ -1,4 +1,4 @@
grpcio==1.71.0
protobuf
grpcio-tools
useful-moonshine-onnx@git+https://git@github.com/moonshine-ai/moonshine.git#subdirectory=moonshine-onnx
moonshine-voice

View File

@@ -112,7 +112,7 @@ class TestBackendServicer(unittest.TestCase):
self.assertGreaterEqual(len(transcript_response.segments), 0)
# Verify the transcription contains the expected text
expected_text = "This is the micro machine man presenting the most midget miniature"
expected_text = "This is the micro machine man"
self.assertIn(
expected_text.lower(),
transcript_response.text.lower(),

View File

@@ -1,3 +1,4 @@
setuptools
grpcio==1.76.0
protobuf
certifi