Files
LocalAI/backend/python/whisperx/backend.py
eureka928 c8245d069d feat(whisperx): add whisperx backend for transcription with diarization
Add Python gRPC backend using WhisperX for speech-to-text with
word-level timestamps, forced alignment, and speaker diarization
via pyannote-audio when HF_TOKEN is provided.

Signed-off-by: eureka928 <meobius123@gmail.com>
2026-02-02 11:36:32 +01:00

170 lines
5.8 KiB
Python

#!/usr/bin/env python3
"""
This is an extra gRPC server of LocalAI for WhisperX transcription
with speaker diarization, word-level timestamps, and forced alignment.
"""
from concurrent import futures
import time
import argparse
import signal
import sys
import os
import backend_pb2
import backend_pb2_grpc
import grpc
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
BackendServicer is the class that implements the gRPC service
"""
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
import whisperx
import torch
device = "cpu"
if request.CUDA:
device = "cuda"
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
if mps_available:
device = "mps"
try:
print("Preparing WhisperX model, please wait", file=sys.stderr)
compute_type = "float16" if device != "cpu" else "int8"
self.model = whisperx.load_model(
request.Model,
device,
compute_type=compute_type,
)
self.device = device
self.model_name = request.Model
# Store HF token for diarization if available
self.hf_token = os.environ.get("HF_TOKEN", None)
self.diarize_pipeline = None
# Cache for alignment models keyed by language code
self.align_cache = {}
print(f"WhisperX model loaded: {request.Model} on {device}", file=sys.stderr)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(message="Model loaded successfully", success=True)
def _get_align_model(self, language_code):
"""Load or return cached alignment model for a given language."""
import whisperx
if language_code not in self.align_cache:
model_a, metadata = whisperx.load_align_model(
language_code=language_code,
device=self.device,
)
self.align_cache[language_code] = (model_a, metadata)
return self.align_cache[language_code]
def AudioTranscription(self, request, context):
import whisperx
resultSegments = []
text = ""
try:
audio = whisperx.load_audio(request.dst)
# Transcribe
transcript = self.model.transcribe(
audio,
batch_size=16,
language=request.language if request.language else None,
)
# Align for word-level timestamps
model_a, metadata = self._get_align_model(transcript["language"])
transcript = whisperx.align(
transcript["segments"],
model_a,
metadata,
audio,
self.device,
return_char_alignments=False,
)
# Diarize if requested and HF token is available
if request.diarize and self.hf_token:
if self.diarize_pipeline is None:
self.diarize_pipeline = whisperx.DiarizationPipeline(
use_auth_token=self.hf_token,
device=self.device,
)
diarize_segments = self.diarize_pipeline(audio)
transcript = whisperx.assign_word_speakers(diarize_segments, transcript)
# Build result segments
for idx, seg in enumerate(transcript["segments"]):
seg_text = seg.get("text", "")
start = int(seg.get("start", 0))
end = int(seg.get("end", 0))
speaker = seg.get("speaker", "")
resultSegments.append(backend_pb2.TranscriptSegment(
id=idx,
start=start,
end=end,
text=seg_text,
speaker=speaker,
))
text += seg_text
except Exception as err:
print(f"Unexpected {err=}, {type(err)=}", file=sys.stderr)
return backend_pb2.TranscriptResult(segments=[], text="")
return backend_pb2.TranscriptResult(segments=resultSegments, text=text)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS),
options=[
('grpc.max_message_length', 50 * 1024 * 1024), # 50MB
('grpc.max_send_message_length', 50 * 1024 * 1024), # 50MB
('grpc.max_receive_message_length', 50 * 1024 * 1024), # 50MB
])
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)