mirror of
https://github.com/bentoml/OpenLLM.git
synced 2025-12-23 23:57:46 -05:00
restore README
This commit is contained in:
941
README.md
941
README.md
@@ -1,22 +1,935 @@
|
||||

|
||||
|
||||
<!-- hatch-fancy-pypi-readme intro start -->
|
||||
|
||||
<div align="center">
|
||||
<h1 align="center">🦾 OpenLLM: Self-Hosting LLMs Made Easy</h1>
|
||||
<a href="https://pypi.org/project/openllm">
|
||||
<img src="https://img.shields.io/pypi/v/openllm.svg?logo=pypi&label=PyPI&logoColor=gold" alt="pypi_status" />
|
||||
</a><a href="https://test.pypi.org/project/openllm/">
|
||||
<img src="https://img.shields.io/badge/Nightly-PyPI?logo=pypi&label=PyPI&color=gray&link=https%3A%2F%2Ftest.pypi.org%2Fproject%2Fopenllm%2F" alt="test_pypi_status" />
|
||||
</a><a href="https://github.com/bentoml/OpenLLM/actions/workflows/ci.yml">
|
||||
<img src="https://github.com/bentoml/OpenLLM/actions/workflows/ci.yml/badge.svg?branch=main" alt="ci" />
|
||||
</a><a href="https://results.pre-commit.ci/latest/github/bentoml/OpenLLM/main">
|
||||
<img src="https://results.pre-commit.ci/badge/github/bentoml/OpenLLM/main.svg" alt="pre-commit.ci status" />
|
||||
</a><br><a href="https://twitter.com/bentomlai">
|
||||
<img src="https://badgen.net/badge/icon/@bentomlai/1DA1F2?icon=twitter&label=Follow%20Us" alt="Twitter" />
|
||||
</a><a href="https://l.bentoml.com/join-openllm-discord">
|
||||
<img src="https://badgen.net/badge/icon/OpenLLM/7289da?icon=discord&label=Join%20Us" alt="Discord" />
|
||||
</a>
|
||||
</div>
|
||||
|
||||
## 📖 Introduction
|
||||
|
||||
OpenLLM helps developers **run any open-source LLMs**, such as Llama 2 and Mistral, as **OpenAI-compatible API endpoints**, locally and in the cloud, optimized for serving throughput and production deployment.
|
||||
|
||||
- 🚂 Support a wide range of open-source LLMs including LLMs fine-tuned with your own data
|
||||
- ⛓️ OpenAI compatible API endpoints for seamless transition from your LLM app to open-source LLMs
|
||||
- 🔥 State-of-the-art serving and inference performance
|
||||
- 🎯 Simplified cloud deployment via [BentoML](https://www.bentoml.com)
|
||||
|
||||
<!-- hatch-fancy-pypi-readme intro stop -->
|
||||
|
||||

|
||||
|
||||
<br/>
|
||||
|
||||
<!-- hatch-fancy-pypi-readme interim start -->
|
||||
|
||||
## 💾 TL/DR
|
||||
|
||||
For starter, we provide two ways to quickly try out OpenLLM:
|
||||
|
||||
### Jupyter Notebooks
|
||||
|
||||
Try this [OpenLLM tutorial in Google Colab: Serving Phi 3 with OpenLLM](https://colab.research.google.com/github/bentoml/OpenLLM/blob/main/examples/llama2.ipynb).
|
||||
|
||||
## 🏃 Get started
|
||||
|
||||
The following provides instructions for how to get started with OpenLLM locally.
|
||||
|
||||
### Prerequisites
|
||||
|
||||
You have installed Python 3.9 (or later) and `pip`. We highly recommend using a [Virtual Environment](https://docs.python.org/3/library/venv.html) to prevent package conflicts.
|
||||
|
||||
### Install OpenLLM
|
||||
|
||||
Install OpenLLM by using `pip` as follows:
|
||||
|
||||
```bash
|
||||
pip install openllm
|
||||
```
|
||||
pip install .
|
||||
openllm serve
|
||||
# or openllm run
|
||||
|
||||
To verify the installation, run:
|
||||
|
||||
```bash
|
||||
$ openllm -h
|
||||
```
|
||||
To find out what LLM models are already in your hands.
|
||||
|
||||
License
|
||||
-------
|
||||
### Start a LLM server
|
||||
|
||||
This project is licensed under the MIT License - see the LICENSE file for details.
|
||||
OpenLLM allows you to quickly spin up an LLM server using `openllm start`. For example, to start a [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) server, run the following:
|
||||
|
||||
Acknowledgements
|
||||
----------------
|
||||
```bash
|
||||
openllm start microsoft/Phi-3-mini-4k-instruct --trust-remote-code
|
||||
```
|
||||
|
||||
This project makes use of the following open-source projects:
|
||||
To interact with the server, you can visit the web UI at [http://0.0.0.0:3000/](http://0.0.0.0:3000/) or send a request using `curl`. You can also use OpenLLM’s built-in Python client to interact with the server:
|
||||
|
||||
* [bentoml/bentoml](https://github.com/bentoml/bentoml) for production level model serving
|
||||
* [blrchen/chatgpt-lite](https://github.com/blrchen/chatgpt-lite) for a fancy Web Chat UI
|
||||
* [chujiezheng/chat_templates](https://github.com/chujiezheng/chat_templates)
|
||||
```python
|
||||
import openllm
|
||||
|
||||
We are grateful to the developers and contributors of these projects for their hard work and dedication.
|
||||
client = openllm.HTTPClient('http://localhost:3000')
|
||||
client.generate('Explain to me the difference between "further" and "farther"')
|
||||
```
|
||||
|
||||
OpenLLM seamlessly supports many models and their variants. You can specify different variants of the model to be served. For example:
|
||||
|
||||
```bash
|
||||
openllm start <model_id> --<options>
|
||||
```
|
||||
|
||||
## 🧩 Supported models
|
||||
|
||||
OpenLLM currently supports the following models. By default, OpenLLM doesn't include dependencies to run all models. The extra model-specific dependencies can be installed with the instructions below.
|
||||
|
||||
<!-- update-readme.py: start -->
|
||||
<details>
|
||||
|
||||
<summary>Baichuan</summary>
|
||||
|
||||
|
||||
### Quickstart
|
||||
|
||||
Run the following command to quickly spin up a Baichuan server:
|
||||
|
||||
```bash
|
||||
openllm start baichuan-inc/baichuan-7b --trust-remote-code
|
||||
```
|
||||
You can run the following code in a different terminal to interact with the server:
|
||||
```python
|
||||
import openllm_client
|
||||
client = openllm_client.HTTPClient('http://localhost:3000')
|
||||
client.generate('What are large language models?')
|
||||
```
|
||||
|
||||
|
||||
> **Note:** Any Baichuan variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=baichuan) to see more Baichuan-compatible models.
|
||||
|
||||
|
||||
|
||||
### Supported models
|
||||
|
||||
You can specify any of the following Baichuan models via `openllm start`:
|
||||
|
||||
|
||||
- [baichuan-inc/baichuan2-7b-base](https://huggingface.co/baichuan-inc/baichuan2-7b-base)
|
||||
- [baichuan-inc/baichuan2-7b-chat](https://huggingface.co/baichuan-inc/baichuan2-7b-chat)
|
||||
- [baichuan-inc/baichuan2-13b-base](https://huggingface.co/baichuan-inc/baichuan2-13b-base)
|
||||
- [baichuan-inc/baichuan2-13b-chat](https://huggingface.co/baichuan-inc/baichuan2-13b-chat)
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>ChatGLM</summary>
|
||||
|
||||
|
||||
### Quickstart
|
||||
|
||||
Run the following command to quickly spin up a ChatGLM server:
|
||||
|
||||
```bash
|
||||
openllm start thudm/chatglm-6b --trust-remote-code
|
||||
```
|
||||
You can run the following code in a different terminal to interact with the server:
|
||||
```python
|
||||
import openllm_client
|
||||
client = openllm_client.HTTPClient('http://localhost:3000')
|
||||
client.generate('What are large language models?')
|
||||
```
|
||||
|
||||
|
||||
> **Note:** Any ChatGLM variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=chatglm) to see more ChatGLM-compatible models.
|
||||
|
||||
|
||||
|
||||
### Supported models
|
||||
|
||||
You can specify any of the following ChatGLM models via `openllm start`:
|
||||
|
||||
|
||||
- [thudm/chatglm-6b](https://huggingface.co/thudm/chatglm-6b)
|
||||
- [thudm/chatglm-6b-int8](https://huggingface.co/thudm/chatglm-6b-int8)
|
||||
- [thudm/chatglm-6b-int4](https://huggingface.co/thudm/chatglm-6b-int4)
|
||||
- [thudm/chatglm2-6b](https://huggingface.co/thudm/chatglm2-6b)
|
||||
- [thudm/chatglm2-6b-int4](https://huggingface.co/thudm/chatglm2-6b-int4)
|
||||
- [thudm/chatglm3-6b](https://huggingface.co/thudm/chatglm3-6b)
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>Cohere</summary>
|
||||
|
||||
|
||||
### Quickstart
|
||||
|
||||
Run the following command to quickly spin up a Cohere server:
|
||||
|
||||
```bash
|
||||
openllm start CohereForAI/c4ai-command-r-plus --trust-remote-code
|
||||
```
|
||||
You can run the following code in a different terminal to interact with the server:
|
||||
```python
|
||||
import openllm_client
|
||||
client = openllm_client.HTTPClient('http://localhost:3000')
|
||||
client.generate('What are large language models?')
|
||||
```
|
||||
|
||||
|
||||
> **Note:** Any Cohere variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=commandr) to see more Cohere-compatible models.
|
||||
|
||||
|
||||
|
||||
### Supported models
|
||||
|
||||
You can specify any of the following Cohere models via `openllm start`:
|
||||
|
||||
|
||||
- [CohereForAI/c4ai-command-r-plus](https://huggingface.co/CohereForAI/c4ai-command-r-plus)
|
||||
- [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01)
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>Dbrx</summary>
|
||||
|
||||
|
||||
### Quickstart
|
||||
|
||||
Run the following command to quickly spin up a Dbrx server:
|
||||
|
||||
```bash
|
||||
openllm start databricks/dbrx-instruct --trust-remote-code
|
||||
```
|
||||
You can run the following code in a different terminal to interact with the server:
|
||||
```python
|
||||
import openllm_client
|
||||
client = openllm_client.HTTPClient('http://localhost:3000')
|
||||
client.generate('What are large language models?')
|
||||
```
|
||||
|
||||
|
||||
> **Note:** Any Dbrx variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=dbrx) to see more Dbrx-compatible models.
|
||||
|
||||
|
||||
|
||||
### Supported models
|
||||
|
||||
You can specify any of the following Dbrx models via `openllm start`:
|
||||
|
||||
|
||||
- [databricks/dbrx-instruct](https://huggingface.co/databricks/dbrx-instruct)
|
||||
- [databricks/dbrx-base](https://huggingface.co/databricks/dbrx-base)
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>DollyV2</summary>
|
||||
|
||||
|
||||
### Quickstart
|
||||
|
||||
Run the following command to quickly spin up a DollyV2 server:
|
||||
|
||||
```bash
|
||||
openllm start databricks/dolly-v2-3b --trust-remote-code
|
||||
```
|
||||
You can run the following code in a different terminal to interact with the server:
|
||||
```python
|
||||
import openllm_client
|
||||
client = openllm_client.HTTPClient('http://localhost:3000')
|
||||
client.generate('What are large language models?')
|
||||
```
|
||||
|
||||
|
||||
> **Note:** Any DollyV2 variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=dolly_v2) to see more DollyV2-compatible models.
|
||||
|
||||
|
||||
|
||||
### Supported models
|
||||
|
||||
You can specify any of the following DollyV2 models via `openllm start`:
|
||||
|
||||
|
||||
- [databricks/dolly-v2-3b](https://huggingface.co/databricks/dolly-v2-3b)
|
||||
- [databricks/dolly-v2-7b](https://huggingface.co/databricks/dolly-v2-7b)
|
||||
- [databricks/dolly-v2-12b](https://huggingface.co/databricks/dolly-v2-12b)
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>Falcon</summary>
|
||||
|
||||
|
||||
### Quickstart
|
||||
|
||||
Run the following command to quickly spin up a Falcon server:
|
||||
|
||||
```bash
|
||||
openllm start tiiuae/falcon-7b --trust-remote-code
|
||||
```
|
||||
You can run the following code in a different terminal to interact with the server:
|
||||
```python
|
||||
import openllm_client
|
||||
client = openllm_client.HTTPClient('http://localhost:3000')
|
||||
client.generate('What are large language models?')
|
||||
```
|
||||
|
||||
|
||||
> **Note:** Any Falcon variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=falcon) to see more Falcon-compatible models.
|
||||
|
||||
|
||||
|
||||
### Supported models
|
||||
|
||||
You can specify any of the following Falcon models via `openllm start`:
|
||||
|
||||
|
||||
- [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b)
|
||||
- [tiiuae/falcon-40b](https://huggingface.co/tiiuae/falcon-40b)
|
||||
- [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct)
|
||||
- [tiiuae/falcon-40b-instruct](https://huggingface.co/tiiuae/falcon-40b-instruct)
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>Gemma</summary>
|
||||
|
||||
|
||||
### Quickstart
|
||||
|
||||
Run the following command to quickly spin up a Gemma server:
|
||||
|
||||
```bash
|
||||
openllm start google/gemma-7b --trust-remote-code
|
||||
```
|
||||
You can run the following code in a different terminal to interact with the server:
|
||||
```python
|
||||
import openllm_client
|
||||
client = openllm_client.HTTPClient('http://localhost:3000')
|
||||
client.generate('What are large language models?')
|
||||
```
|
||||
|
||||
|
||||
> **Note:** Any Gemma variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=gemma) to see more Gemma-compatible models.
|
||||
|
||||
|
||||
|
||||
### Supported models
|
||||
|
||||
You can specify any of the following Gemma models via `openllm start`:
|
||||
|
||||
|
||||
- [google/gemma-7b](https://huggingface.co/google/gemma-7b)
|
||||
- [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it)
|
||||
- [google/gemma-2b](https://huggingface.co/google/gemma-2b)
|
||||
- [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it)
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>GPTNeoX</summary>
|
||||
|
||||
|
||||
### Quickstart
|
||||
|
||||
Run the following command to quickly spin up a GPTNeoX server:
|
||||
|
||||
```bash
|
||||
openllm start eleutherai/gpt-neox-20b --trust-remote-code
|
||||
```
|
||||
You can run the following code in a different terminal to interact with the server:
|
||||
```python
|
||||
import openllm_client
|
||||
client = openllm_client.HTTPClient('http://localhost:3000')
|
||||
client.generate('What are large language models?')
|
||||
```
|
||||
|
||||
|
||||
> **Note:** Any GPTNeoX variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=gpt_neox) to see more GPTNeoX-compatible models.
|
||||
|
||||
|
||||
|
||||
### Supported models
|
||||
|
||||
You can specify any of the following GPTNeoX models via `openllm start`:
|
||||
|
||||
|
||||
- [eleutherai/gpt-neox-20b](https://huggingface.co/eleutherai/gpt-neox-20b)
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>Llama</summary>
|
||||
|
||||
|
||||
### Quickstart
|
||||
|
||||
Run the following command to quickly spin up a Llama server:
|
||||
|
||||
```bash
|
||||
openllm start NousResearch/llama-2-7b-hf --trust-remote-code
|
||||
```
|
||||
You can run the following code in a different terminal to interact with the server:
|
||||
```python
|
||||
import openllm_client
|
||||
client = openllm_client.HTTPClient('http://localhost:3000')
|
||||
client.generate('What are large language models?')
|
||||
```
|
||||
|
||||
|
||||
> **Note:** Any Llama variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=llama) to see more Llama-compatible models.
|
||||
|
||||
|
||||
|
||||
### Supported models
|
||||
|
||||
You can specify any of the following Llama models via `openllm start`:
|
||||
|
||||
|
||||
- [meta-llama/Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf)
|
||||
- [meta-llama/Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf)
|
||||
- [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
|
||||
- [meta-llama/Llama-2-70b-hf](https://huggingface.co/meta-llama/Llama-2-70b-hf)
|
||||
- [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf)
|
||||
- [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)
|
||||
- [NousResearch/llama-2-70b-chat-hf](https://huggingface.co/NousResearch/llama-2-70b-chat-hf)
|
||||
- [NousResearch/llama-2-13b-chat-hf](https://huggingface.co/NousResearch/llama-2-13b-chat-hf)
|
||||
- [NousResearch/llama-2-7b-chat-hf](https://huggingface.co/NousResearch/llama-2-7b-chat-hf)
|
||||
- [NousResearch/llama-2-70b-hf](https://huggingface.co/NousResearch/llama-2-70b-hf)
|
||||
- [NousResearch/llama-2-13b-hf](https://huggingface.co/NousResearch/llama-2-13b-hf)
|
||||
- [NousResearch/llama-2-7b-hf](https://huggingface.co/NousResearch/llama-2-7b-hf)
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>Mistral</summary>
|
||||
|
||||
|
||||
### Quickstart
|
||||
|
||||
Run the following command to quickly spin up a Mistral server:
|
||||
|
||||
```bash
|
||||
openllm start mistralai/Mistral-7B-Instruct-v0.1 --trust-remote-code
|
||||
```
|
||||
You can run the following code in a different terminal to interact with the server:
|
||||
```python
|
||||
import openllm_client
|
||||
client = openllm_client.HTTPClient('http://localhost:3000')
|
||||
client.generate('What are large language models?')
|
||||
```
|
||||
|
||||
|
||||
> **Note:** Any Mistral variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=mistral) to see more Mistral-compatible models.
|
||||
|
||||
|
||||
|
||||
### Supported models
|
||||
|
||||
You can specify any of the following Mistral models via `openllm start`:
|
||||
|
||||
|
||||
- [HuggingFaceH4/zephyr-7b-alpha](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha)
|
||||
- [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)
|
||||
- [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
|
||||
- [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
|
||||
- [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>Mixtral</summary>
|
||||
|
||||
|
||||
### Quickstart
|
||||
|
||||
Run the following command to quickly spin up a Mixtral server:
|
||||
|
||||
```bash
|
||||
openllm start mistralai/Mixtral-8x7B-Instruct-v0.1 --trust-remote-code
|
||||
```
|
||||
You can run the following code in a different terminal to interact with the server:
|
||||
```python
|
||||
import openllm_client
|
||||
client = openllm_client.HTTPClient('http://localhost:3000')
|
||||
client.generate('What are large language models?')
|
||||
```
|
||||
|
||||
|
||||
> **Note:** Any Mixtral variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=mixtral) to see more Mixtral-compatible models.
|
||||
|
||||
|
||||
|
||||
### Supported models
|
||||
|
||||
You can specify any of the following Mixtral models via `openllm start`:
|
||||
|
||||
|
||||
- [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
|
||||
- [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>MPT</summary>
|
||||
|
||||
|
||||
### Quickstart
|
||||
|
||||
Run the following command to quickly spin up a MPT server:
|
||||
|
||||
```bash
|
||||
openllm start mosaicml/mpt-7b-instruct --trust-remote-code
|
||||
```
|
||||
You can run the following code in a different terminal to interact with the server:
|
||||
```python
|
||||
import openllm_client
|
||||
client = openllm_client.HTTPClient('http://localhost:3000')
|
||||
client.generate('What are large language models?')
|
||||
```
|
||||
|
||||
|
||||
> **Note:** Any MPT variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=mpt) to see more MPT-compatible models.
|
||||
|
||||
|
||||
|
||||
### Supported models
|
||||
|
||||
You can specify any of the following MPT models via `openllm start`:
|
||||
|
||||
|
||||
- [mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b)
|
||||
- [mosaicml/mpt-7b-instruct](https://huggingface.co/mosaicml/mpt-7b-instruct)
|
||||
- [mosaicml/mpt-7b-chat](https://huggingface.co/mosaicml/mpt-7b-chat)
|
||||
- [mosaicml/mpt-7b-storywriter](https://huggingface.co/mosaicml/mpt-7b-storywriter)
|
||||
- [mosaicml/mpt-30b](https://huggingface.co/mosaicml/mpt-30b)
|
||||
- [mosaicml/mpt-30b-instruct](https://huggingface.co/mosaicml/mpt-30b-instruct)
|
||||
- [mosaicml/mpt-30b-chat](https://huggingface.co/mosaicml/mpt-30b-chat)
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>OPT</summary>
|
||||
|
||||
|
||||
### Quickstart
|
||||
|
||||
Run the following command to quickly spin up a OPT server:
|
||||
|
||||
```bash
|
||||
openllm start facebook/opt-1.3b
|
||||
```
|
||||
You can run the following code in a different terminal to interact with the server:
|
||||
```python
|
||||
import openllm_client
|
||||
client = openllm_client.HTTPClient('http://localhost:3000')
|
||||
client.generate('What are large language models?')
|
||||
```
|
||||
|
||||
|
||||
> **Note:** Any OPT variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=opt) to see more OPT-compatible models.
|
||||
|
||||
|
||||
|
||||
### Supported models
|
||||
|
||||
You can specify any of the following OPT models via `openllm start`:
|
||||
|
||||
|
||||
- [facebook/opt-125m](https://huggingface.co/facebook/opt-125m)
|
||||
- [facebook/opt-350m](https://huggingface.co/facebook/opt-350m)
|
||||
- [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b)
|
||||
- [facebook/opt-2.7b](https://huggingface.co/facebook/opt-2.7b)
|
||||
- [facebook/opt-6.7b](https://huggingface.co/facebook/opt-6.7b)
|
||||
- [facebook/opt-66b](https://huggingface.co/facebook/opt-66b)
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>Phi</summary>
|
||||
|
||||
|
||||
### Quickstart
|
||||
|
||||
Run the following command to quickly spin up a Phi server:
|
||||
|
||||
```bash
|
||||
openllm start microsoft/Phi-3-mini-4k-instruct --trust-remote-code
|
||||
```
|
||||
You can run the following code in a different terminal to interact with the server:
|
||||
```python
|
||||
import openllm_client
|
||||
client = openllm_client.HTTPClient('http://localhost:3000')
|
||||
client.generate('What are large language models?')
|
||||
```
|
||||
|
||||
|
||||
> **Note:** Any Phi variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=phi) to see more Phi-compatible models.
|
||||
|
||||
|
||||
|
||||
### Supported models
|
||||
|
||||
You can specify any of the following Phi models via `openllm start`:
|
||||
|
||||
|
||||
- [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)
|
||||
- [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)
|
||||
- [microsoft/Phi-3-small-8k-instruct](https://huggingface.co/microsoft/Phi-3-small-8k-instruct)
|
||||
- [microsoft/Phi-3-small-128k-instruct](https://huggingface.co/microsoft/Phi-3-small-128k-instruct)
|
||||
- [microsoft/Phi-3-medium-4k-instruct](https://huggingface.co/microsoft/Phi-3-medium-4k-instruct)
|
||||
- [microsoft/Phi-3-medium-128k-instruct](https://huggingface.co/microsoft/Phi-3-medium-128k-instruct)
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>Qwen</summary>
|
||||
|
||||
|
||||
### Quickstart
|
||||
|
||||
Run the following command to quickly spin up a Qwen server:
|
||||
|
||||
```bash
|
||||
openllm start qwen/Qwen-7B-Chat --trust-remote-code
|
||||
```
|
||||
You can run the following code in a different terminal to interact with the server:
|
||||
```python
|
||||
import openllm_client
|
||||
client = openllm_client.HTTPClient('http://localhost:3000')
|
||||
client.generate('What are large language models?')
|
||||
```
|
||||
|
||||
|
||||
> **Note:** Any Qwen variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=qwen) to see more Qwen-compatible models.
|
||||
|
||||
|
||||
|
||||
### Supported models
|
||||
|
||||
You can specify any of the following Qwen models via `openllm start`:
|
||||
|
||||
|
||||
- [qwen/Qwen-7B-Chat](https://huggingface.co/qwen/Qwen-7B-Chat)
|
||||
- [qwen/Qwen-7B-Chat-Int8](https://huggingface.co/qwen/Qwen-7B-Chat-Int8)
|
||||
- [qwen/Qwen-7B-Chat-Int4](https://huggingface.co/qwen/Qwen-7B-Chat-Int4)
|
||||
- [qwen/Qwen-14B-Chat](https://huggingface.co/qwen/Qwen-14B-Chat)
|
||||
- [qwen/Qwen-14B-Chat-Int8](https://huggingface.co/qwen/Qwen-14B-Chat-Int8)
|
||||
- [qwen/Qwen-14B-Chat-Int4](https://huggingface.co/qwen/Qwen-14B-Chat-Int4)
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>StableLM</summary>
|
||||
|
||||
|
||||
### Quickstart
|
||||
|
||||
Run the following command to quickly spin up a StableLM server:
|
||||
|
||||
```bash
|
||||
openllm start stabilityai/stablelm-tuned-alpha-3b --trust-remote-code
|
||||
```
|
||||
You can run the following code in a different terminal to interact with the server:
|
||||
```python
|
||||
import openllm_client
|
||||
client = openllm_client.HTTPClient('http://localhost:3000')
|
||||
client.generate('What are large language models?')
|
||||
```
|
||||
|
||||
|
||||
> **Note:** Any StableLM variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=stablelm) to see more StableLM-compatible models.
|
||||
|
||||
|
||||
|
||||
### Supported models
|
||||
|
||||
You can specify any of the following StableLM models via `openllm start`:
|
||||
|
||||
|
||||
- [stabilityai/stablelm-tuned-alpha-3b](https://huggingface.co/stabilityai/stablelm-tuned-alpha-3b)
|
||||
- [stabilityai/stablelm-tuned-alpha-7b](https://huggingface.co/stabilityai/stablelm-tuned-alpha-7b)
|
||||
- [stabilityai/stablelm-base-alpha-3b](https://huggingface.co/stabilityai/stablelm-base-alpha-3b)
|
||||
- [stabilityai/stablelm-base-alpha-7b](https://huggingface.co/stabilityai/stablelm-base-alpha-7b)
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>StarCoder</summary>
|
||||
|
||||
|
||||
### Quickstart
|
||||
|
||||
Run the following command to quickly spin up a StarCoder server:
|
||||
|
||||
```bash
|
||||
openllm start bigcode/starcoder --trust-remote-code
|
||||
```
|
||||
You can run the following code in a different terminal to interact with the server:
|
||||
```python
|
||||
import openllm_client
|
||||
client = openllm_client.HTTPClient('http://localhost:3000')
|
||||
client.generate('What are large language models?')
|
||||
```
|
||||
|
||||
|
||||
> **Note:** Any StarCoder variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=starcoder) to see more StarCoder-compatible models.
|
||||
|
||||
|
||||
|
||||
### Supported models
|
||||
|
||||
You can specify any of the following StarCoder models via `openllm start`:
|
||||
|
||||
|
||||
- [bigcode/starcoder](https://huggingface.co/bigcode/starcoder)
|
||||
- [bigcode/starcoderbase](https://huggingface.co/bigcode/starcoderbase)
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>Yi</summary>
|
||||
|
||||
|
||||
### Quickstart
|
||||
|
||||
Run the following command to quickly spin up a Yi server:
|
||||
|
||||
```bash
|
||||
openllm start 01-ai/Yi-6B --trust-remote-code
|
||||
```
|
||||
You can run the following code in a different terminal to interact with the server:
|
||||
```python
|
||||
import openllm_client
|
||||
client = openllm_client.HTTPClient('http://localhost:3000')
|
||||
client.generate('What are large language models?')
|
||||
```
|
||||
|
||||
|
||||
> **Note:** Any Yi variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=yi) to see more Yi-compatible models.
|
||||
|
||||
|
||||
|
||||
### Supported models
|
||||
|
||||
You can specify any of the following Yi models via `openllm start`:
|
||||
|
||||
|
||||
- [01-ai/Yi-6B](https://huggingface.co/01-ai/Yi-6B)
|
||||
- [01-ai/Yi-34B](https://huggingface.co/01-ai/Yi-34B)
|
||||
- [01-ai/Yi-6B-200K](https://huggingface.co/01-ai/Yi-6B-200K)
|
||||
- [01-ai/Yi-34B-200K](https://huggingface.co/01-ai/Yi-34B-200K)
|
||||
|
||||
</details>
|
||||
|
||||
<!-- update-readme.py: stop -->
|
||||
|
||||
More models will be integrated with OpenLLM and we welcome your contributions if you want to incorporate your custom LLMs into the ecosystem. Check out [Adding a New Model Guide](https://github.com/bentoml/OpenLLM/blob/main/ADDING_NEW_MODEL.md) to learn more.
|
||||
|
||||
## 📐 Quantization
|
||||
|
||||
Quantization is a technique to reduce the storage and computation requirements for machine learning models, particularly during inference. By approximating floating-point numbers as integers (quantized values), quantization allows for faster computations, reduced memory footprint, and can make it feasible to deploy large models on resource-constrained devices.
|
||||
|
||||
OpenLLM supports the following quantization techniques
|
||||
|
||||
- [AWQ: Activation-aware Weight Quantization](https://arxiv.org/abs/2306.00978).
|
||||
- [GPTQ: Accurate Post-Training Quantization](https://arxiv.org/abs/2210.17323).
|
||||
- [SqueezeLLM: Dense-and-Sparse Quantization](https://arxiv.org/abs/2306.07629).
|
||||
|
||||
> [!NOTE]
|
||||
> Make sure to use pre-quantized models weights when using with `openllm start`.
|
||||
|
||||
## ⚙️ Integrations
|
||||
|
||||
OpenLLM is not just a standalone product; it's a building block designed to
|
||||
integrate with other powerful tools easily. We currently offer integration with
|
||||
[OpenAI's Compatible Endpoints](https://platform.openai.com/docs/api-reference/completions/object),
|
||||
[LlamaIndex](https://www.llamaindex.ai/),
|
||||
[LangChain](https://github.com/hwchase17/langchain).
|
||||
|
||||
### OpenAI Compatible Endpoints
|
||||
|
||||
OpenLLM Server can be used as a drop-in replacement for OpenAI's API. Simply
|
||||
specify the base_url to `llm-endpoint/v1` and you are good to go:
|
||||
|
||||
```python
|
||||
import openai
|
||||
|
||||
client = openai.OpenAI(base_url='http://localhost:3000/v1', api_key='na') # Here the server is running on 0.0.0.0:3000
|
||||
|
||||
completions = client.chat.completions.create(
|
||||
prompt='Write me a tag line for an ice cream shop.', model=model, max_tokens=64, stream=stream
|
||||
)
|
||||
```
|
||||
|
||||
The compatible endpoints supports `/chat/completions`, and `/models`
|
||||
|
||||
> [!NOTE]
|
||||
> You can find out OpenAI example clients under the
|
||||
> [examples](https://github.com/bentoml/OpenLLM/tree/main/examples) folder.
|
||||
|
||||
### [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/openllm/)
|
||||
|
||||
You can use `llama_index.llms.openllm.OpenLLMAPI` to interact with a LLM running server:
|
||||
|
||||
```python
|
||||
from llama_index.llms.openllm import OpenLLMAPI
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> All synchronous and asynchronous API from `llama_index.llms.OpenLLMAPI` are supported.
|
||||
> Make sure to install `llama-index-integrations-llm-openllm` to use the supported class.
|
||||
|
||||
### [LangChain](https://python.langchain.com/docs/integrations/llms/openllm/)
|
||||
|
||||
Spin up an OpenLLM server, and connect to it by specifying its URL:
|
||||
|
||||
```python
|
||||
from langchain.llms import OpenLLMAPI
|
||||
|
||||
llm = OpenLLMAPI(server_url='http://44.23.123.1:3000')
|
||||
llm.invoke('What is the difference between a duck and a goose? And why there are so many Goose in Canada?')
|
||||
|
||||
# streaming
|
||||
for it in llm.stream('What is the difference between a duck and a goose? And why there are so many Goose in Canada?'):
|
||||
print(it, flush=True, end='')
|
||||
|
||||
# async context
|
||||
await llm.ainvoke('What is the difference between a duck and a goose? And why there are so many Goose in Canada?')
|
||||
|
||||
# async streaming
|
||||
async for it in llm.astream('What is the difference between a duck and a goose? And why there are so many Goose in Canada?'):
|
||||
print(it, flush=True, end='')
|
||||
```
|
||||
|
||||
<!-- hatch-fancy-pypi-readme interim stop -->
|
||||
|
||||
<!-- hatch-fancy-pypi-readme meta start -->
|
||||
|
||||
## 🚀 Deploying models to production
|
||||
|
||||
There are several ways to deploy your LLMs:
|
||||
|
||||
### 🐳 Docker container
|
||||
|
||||
1. **Building a Bento**: With OpenLLM, you can easily build a Bento for a
|
||||
specific model, like `mistralai/Mistral-7B-Instruct-v0.1`, using the `build` command.:
|
||||
|
||||
```bash
|
||||
openllm build mistralai/Mistral-7B-Instruct-v0.1
|
||||
```
|
||||
|
||||
A
|
||||
[Bento](https://docs.bentoml.com/en/latest/concepts/bento.html#what-is-a-bento),
|
||||
in BentoML, is the unit of distribution. It packages your program's source
|
||||
code, models, files, artefacts, and dependencies.
|
||||
|
||||
2. **Containerize your Bento**
|
||||
|
||||
```bash
|
||||
bentoml containerize <name:version>
|
||||
```
|
||||
|
||||
This generates a OCI-compatible docker image that can be deployed anywhere
|
||||
docker runs. For best scalability and reliability of your LLM service in
|
||||
production, we recommend deploy with BentoCloud。
|
||||
|
||||
### ☁️ BentoCloud
|
||||
|
||||
Deploy OpenLLM with [BentoCloud](https://www.bentoml.com/), the inference platform
|
||||
for fast moving AI teams.
|
||||
|
||||
1. **Create a BentoCloud account:** [sign up here](https://bentoml.com/)
|
||||
|
||||
2. **Log into your BentoCloud account:**
|
||||
|
||||
```bash
|
||||
bentoml cloud login --api-token <your-api-token> --endpoint <bento-cloud-endpoint>
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> Replace `<your-api-token>` and `<bento-cloud-endpoint>` with your
|
||||
> specific API token and the BentoCloud endpoint respectively.
|
||||
|
||||
3. **Bulding a Bento**: With OpenLLM, you can easily build a Bento for a
|
||||
specific model, such as `mistralai/Mistral-7B-Instruct-v0.1`:
|
||||
|
||||
```bash
|
||||
openllm build mistralai/Mistral-7B-Instruct-v0.1
|
||||
```
|
||||
|
||||
4. **Pushing a Bento**: Push your freshly-built Bento service to BentoCloud via
|
||||
the `push` command:
|
||||
|
||||
```bash
|
||||
bentoml push <name:version>
|
||||
```
|
||||
|
||||
5. **Deploying a Bento**: Deploy your LLMs to BentoCloud with a single
|
||||
`bentoml deployment create` command following the
|
||||
[deployment instructions](https://docs.bentoml.com/en/latest/reference/cli.html#bentoml-deployment-create).
|
||||
|
||||
## 👥 Community
|
||||
|
||||
Engage with like-minded individuals passionate about LLMs, AI, and more on our
|
||||
[Discord](https://l.bentoml.com/join-openllm-discord)!
|
||||
|
||||
OpenLLM is actively maintained by the BentoML team. Feel free to reach out and
|
||||
join us in our pursuit to make LLMs more accessible and easy to use 👉
|
||||
[Join our Slack community!](https://l.bentoml.com/join-slack)
|
||||
|
||||
## 🎁 Contributing
|
||||
|
||||
We welcome contributions! If you're interested in enhancing OpenLLM's
|
||||
capabilities or have any questions, don't hesitate to reach out in our
|
||||
[discord channel](https://l.bentoml.com/join-openllm-discord).
|
||||
|
||||
Checkout our
|
||||
[Developer Guide](https://github.com/bentoml/OpenLLM/blob/main/DEVELOPMENT.md)
|
||||
if you wish to contribute to OpenLLM's codebase.
|
||||
|
||||
## 📔 Citation
|
||||
|
||||
If you use OpenLLM in your research, we provide a [citation](./CITATION.cff) to
|
||||
use:
|
||||
|
||||
```bibtex
|
||||
@software{Pham_OpenLLM_Operating_LLMs_2023,
|
||||
author = {Pham, Aaron and Yang, Chaoyu and Sheng, Sean and Zhao, Shenyang and Lee, Sauyon and Jiang, Bo and Dong, Fog and Guan, Xipeng and Ming, Frost},
|
||||
license = {Apache-2.0},
|
||||
month = jun,
|
||||
title = {{OpenLLM: Operating LLMs in production}},
|
||||
url = {https://github.com/bentoml/OpenLLM},
|
||||
year = {2023}
|
||||
}
|
||||
```
|
||||
|
||||
<!-- hatch-fancy-pypi-readme meta stop -->
|
||||
|
||||
Reference in New Issue
Block a user