mirror of
https://github.com/bentoml/OpenLLM.git
synced 2026-01-22 06:19:35 -05:00
248 lines
11 KiB
Python
Executable File
248 lines
11 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2023 BentoML Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import annotations
|
|
|
|
import dataclasses
|
|
import os
|
|
import typing as t
|
|
|
|
import inflection
|
|
import tomlkit
|
|
|
|
import openllm
|
|
|
|
if t.TYPE_CHECKING:
|
|
from tomlkit.items import Array
|
|
from tomlkit.items import Table
|
|
|
|
ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
|
|
|
@dataclasses.dataclass(frozen=True)
|
|
class Classifier:
|
|
identifier: t.Dict[str, str] = dataclasses.field(default_factory=lambda: {"status": "Development Status", "environment": "Environment", "license": "License", "topic": "Topic", "os": "Operating System", "audience": "Intended Audience", "typing": "Typing", "language": "Programming Language",})
|
|
|
|
joiner: str = " :: "
|
|
|
|
@staticmethod
|
|
def status() -> dict[int, str]:
|
|
return {v: status for v, status in zip(range(1, 8), ["1 - Planning", "2 - Pre-Alpha", "3 - Alpha", "4 - Beta", "5 - Production/Stable", "6 - Mature", "7 - Inactive",],)}
|
|
|
|
@staticmethod
|
|
def apache() -> str:
|
|
return Classifier.create_classifier("license", "OSI Approved", "Apache Software License")
|
|
|
|
@staticmethod
|
|
def create_classifier(identifier: str, *decls: t.Any) -> str:
|
|
cls_ = Classifier()
|
|
if identifier not in cls_.identifier:
|
|
raise ValueError(f"{identifier} is not yet supported (supported alias: {Classifier.identifier})")
|
|
return cls_.joiner.join([cls_.identifier[identifier], *decls])
|
|
|
|
@staticmethod
|
|
def create_python_classifier(implementation: list[str] | None = None, supported_version: list[str] | None = None) -> list[str]:
|
|
if supported_version is None:
|
|
supported_version = ["3.8", "3.9", "3.10", "3.11", "3.12"]
|
|
if implementation is None:
|
|
implementation = ["CPython", "PyPy"]
|
|
base = [Classifier.create_classifier("language", "Python"), Classifier.create_classifier("language", "Python", "3"),]
|
|
base.append(Classifier.create_classifier("language", "Python", "3", "Only"))
|
|
base.extend([Classifier.create_classifier("language", "Python", version) for version in supported_version])
|
|
base.extend([Classifier.create_classifier("language", "Python", "Implementation", impl) for impl in implementation])
|
|
return base
|
|
|
|
@staticmethod
|
|
def create_status_classifier(level: int) -> str:
|
|
return Classifier.create_classifier("status", Classifier.status()[level])
|
|
|
|
@dataclasses.dataclass(frozen=True)
|
|
class Dependencies:
|
|
name: str
|
|
git_repo_url: t.Optional[str] = None
|
|
branch: t.Optional[str] = None
|
|
extensions: t.Optional[t.List[str]] = None
|
|
subdirectory: t.Optional[str] = None
|
|
requires_gpu: bool = False
|
|
lower_constraint: t.Optional[str] = None
|
|
upper_constraint: t.Optional[str] = None
|
|
platform: t.Optional[t.Tuple[t.Literal["Linux", "Windows", "Darwin"], t.Literal["eq", "ne"]]] = None
|
|
|
|
def with_options(self, **kwargs: t.Any) -> Dependencies:
|
|
return dataclasses.replace(self, **kwargs)
|
|
|
|
@property
|
|
def has_constraint(self) -> bool:
|
|
return self.lower_constraint is not None or self.upper_constraint is not None
|
|
|
|
@property
|
|
def pypi_extensions(self) -> str:
|
|
return "" if self.extensions is None else f"[{','.join(self.extensions)}]"
|
|
|
|
@staticmethod
|
|
def platform_restriction(platform: t.LiteralString, op: t.Literal["eq", "ne"] = "eq") -> str:
|
|
return f'platform_system{"==" if op == "eq" else "!="}"{platform}"'
|
|
|
|
def to_str(self) -> str:
|
|
deps: list[str] = []
|
|
if self.lower_constraint is not None and self.upper_constraint is not None:
|
|
dep = f"{self.name}{self.pypi_extensions}>={self.lower_constraint},<{self.upper_constraint}"
|
|
elif self.lower_constraint is not None:
|
|
dep = f"{self.name}{self.pypi_extensions}>={self.lower_constraint}"
|
|
elif self.upper_constraint is not None:
|
|
dep = f"{self.name}{self.pypi_extensions}<{self.upper_constraint}"
|
|
elif self.subdirectory is not None:
|
|
dep = f"{self.name}{self.pypi_extensions} @ git+https://github.com/{self.git_repo_url}.git#subdirectory={self.subdirectory}"
|
|
elif self.branch is not None:
|
|
dep = f"{self.name}{self.pypi_extensions} @ git+https://github.com/{self.git_repo_url}.git@{self.branch}"
|
|
else:
|
|
dep = f"{self.name}{self.pypi_extensions}"
|
|
|
|
deps.append(dep)
|
|
|
|
if self.platform:
|
|
deps.append(self.platform_restriction(*self.platform))
|
|
|
|
return ";".join(deps)
|
|
|
|
@classmethod
|
|
def from_tuple(cls, *decls: t.Any) -> Dependencies:
|
|
return cls(*decls)
|
|
|
|
_BENTOML_EXT = ["grpc", "io"]
|
|
_TRANSFORMERS_EXT = ["torch", "tokenizers", "accelerate"]
|
|
|
|
_BASE_DEPENDENCIES = [
|
|
Dependencies(name="bentoml", extensions=_BENTOML_EXT, lower_constraint="1.0.25"),
|
|
Dependencies(name="transformers", extensions=_TRANSFORMERS_EXT, lower_constraint="4.29.0"),
|
|
Dependencies(name="safetensors"),
|
|
Dependencies(name="optimum"),
|
|
Dependencies(name="attrs", lower_constraint="23.1.0"),
|
|
Dependencies(name="cattrs", lower_constraint="23.1.0"),
|
|
Dependencies(name="orjson"),
|
|
Dependencies(name="inflection"),
|
|
Dependencies(name="tabulate", extensions=["widechars"], lower_constraint="0.9.0"),
|
|
Dependencies(name="httpx"),
|
|
Dependencies(name="click", lower_constraint="8.1.6"),
|
|
Dependencies(name="typing_extensions"),
|
|
Dependencies(name="GitPython"),
|
|
Dependencies(name="cuda-python", platform=("Darwin", "ne")),
|
|
Dependencies(name="bitsandbytes", upper_constraint="0.42"), # 0.41 works with CUDA 11.8
|
|
]
|
|
|
|
_NIGHTLY_MAPPING: dict[str, Dependencies] = {
|
|
"bentoml": Dependencies.from_tuple("bentoml", "bentoml/bentoml", "main", _BENTOML_EXT), "peft": Dependencies.from_tuple("peft", "huggingface/peft", "main", None), "transformers": Dependencies.from_tuple("transformers", "huggingface/transformers", "main", _TRANSFORMERS_EXT), "optimum": Dependencies.from_tuple("optimum", "huggingface/optimum", "main", None),
|
|
"accelerate": Dependencies.from_tuple("accelerate", "huggingface/accelerate", "main", None), "bitsandbytes": Dependencies.from_tuple("bitsandbytes", "TimDettmers/bitsandbytes", "main", None), "trl": Dependencies.from_tuple("trl", "lvwerra/trl", "main", None), "vllm": Dependencies.from_tuple("vllm", "vllm-project/vllm", "main", None, None, True, None),
|
|
}
|
|
|
|
_ALL_RUNTIME_DEPS = ["flax", "jax", "jaxlib", "tensorflow", "keras"]
|
|
FINE_TUNE_DEPS = ["peft>=0.4.0", "bitsandbytes", "datasets", "accelerate", "trl"]
|
|
FLAN_T5_DEPS = _ALL_RUNTIME_DEPS
|
|
OPT_DEPS = _ALL_RUNTIME_DEPS
|
|
OPENAI_DEPS = ["openai", "tiktoken"]
|
|
AGENTS_DEPS = ["transformers[agents]>=4.30", "diffusers", "soundfile"]
|
|
PLAYGROUND_DEPS = ["jupyter", "notebook", "ipython", "jupytext", "nbformat"]
|
|
GGML_DEPS = ["ctransformers"]
|
|
GPTQ_DEPS = ["auto-gptq[triton]"]
|
|
VLLM_DEPS = ["vllm", "ray"]
|
|
|
|
_base_requirements: dict[str, t.Any] = {inflection.dasherize(name): config_cls.__openllm_requirements__ for name, config_cls in openllm.CONFIG_MAPPING.items() if config_cls.__openllm_requirements__}
|
|
|
|
# shallow copy from locals()
|
|
_locals = locals().copy()
|
|
|
|
# NOTE: update this table when adding new external dependencies
|
|
# sync with openllm.utils.OPTIONAL_DEPENDENCIES
|
|
_base_requirements.update({v: _locals.get(f"{inflection.underscore(v).upper()}_DEPS") for v in openllm.utils.OPTIONAL_DEPENDENCIES})
|
|
|
|
_base_requirements = {k: v for k, v in sorted(_base_requirements.items())}
|
|
|
|
fname = f"{os.path.basename(os.path.dirname(__file__))}/{os.path.basename(__file__)}"
|
|
|
|
def create_classifiers() -> Array:
|
|
arr = tomlkit.array()
|
|
arr.extend([
|
|
Classifier.create_status_classifier(5),
|
|
Classifier.create_classifier("environment", "GPU", "NVIDIA CUDA"),
|
|
Classifier.create_classifier("environment", "GPU", "NVIDIA CUDA", "12"),
|
|
Classifier.create_classifier("environment", "GPU", "NVIDIA CUDA", "11.8"),
|
|
Classifier.create_classifier("environment", "GPU", "NVIDIA CUDA", "11.7"),
|
|
Classifier.apache(),
|
|
Classifier.create_classifier("topic", "Scientific/Engineering", "Artificial Intelligence"),
|
|
Classifier.create_classifier("topic", "Software Development", "Libraries"),
|
|
Classifier.create_classifier("os", "OS Independent"),
|
|
Classifier.create_classifier("audience", "Developers"),
|
|
Classifier.create_classifier("audience", "Science/Research"),
|
|
Classifier.create_classifier("audience", "System Administrators"),
|
|
Classifier.create_classifier("typing", "Typed"), *Classifier.create_python_classifier(),
|
|
])
|
|
return arr.multiline(True)
|
|
|
|
def create_optional_table() -> Table:
|
|
all_array = tomlkit.array()
|
|
all_array.extend([f"openllm[{k}]" for k in _base_requirements])
|
|
|
|
table = tomlkit.table(is_super_table=True)
|
|
_base_requirements.update({"all": all_array.multiline(True)})
|
|
table.update({k: v for k, v in sorted(_base_requirements.items())})
|
|
table.add(tomlkit.nl())
|
|
|
|
return table
|
|
|
|
def create_url_table() -> Table:
|
|
table = tomlkit.table()
|
|
_urls = {
|
|
"Blog": "https://modelserving.com", "Chat": "https://discord.gg/openllm", "Documentation": "https://github.com/bentoml/openllm#readme", "GitHub": "https://github.com/bentoml/openllm", "History": "https://github.com/bentoml/openllm/blob/main/CHANGELOG.md", "Homepage": "https://bentoml.com", "Tracker": "https://github.com/bentoml/openllm/issues",
|
|
"Twitter": "https://twitter.com/bentomlai",
|
|
}
|
|
table.update({k: v for k, v in sorted(_urls.items())})
|
|
return table
|
|
|
|
def build_cli_extensions() -> Table:
|
|
table = tomlkit.table()
|
|
ext: dict[str, str] = {"openllm": "openllm.cli.entrypoint:cli"}
|
|
ext.update({f"openllm-{inflection.dasherize(ke)}": f"openllm.cli.ext.{ke}:cli" for ke in sorted([fname[:-3] for fname in os.listdir(os.path.abspath(os.path.join(ROOT, "src", "openllm", "cli", "ext"))) if fname.endswith(".py") and not fname.startswith("__")])})
|
|
table.update(ext)
|
|
return table
|
|
|
|
def main() -> int:
|
|
with open(os.path.join(ROOT, "pyproject.toml"), "r") as f:
|
|
pyproject = tomlkit.parse(f.read())
|
|
|
|
dependencies_array = tomlkit.array()
|
|
dependencies_array.extend([v.to_str() for v in _BASE_DEPENDENCIES])
|
|
|
|
pyproject["project"]["urls"] = create_url_table()
|
|
pyproject["project"]["scripts"] = build_cli_extensions()
|
|
pyproject["project"]["classifiers"] = create_classifiers()
|
|
pyproject["project"]["optional-dependencies"] = create_optional_table()
|
|
pyproject["project"]["dependencies"] = dependencies_array.multiline(True)
|
|
|
|
with open(os.path.join(ROOT, "pyproject.toml"), "w") as f:
|
|
f.write(tomlkit.dumps(pyproject))
|
|
|
|
with open(os.path.join(ROOT, "nightly-requirements.txt"), "w") as f:
|
|
f.write(f"# This file is generated by `{fname}`. DO NOT EDIT\n-e .[playground,flan-t5]\n")
|
|
f.writelines([f"{v.to_str()}\n" for v in _NIGHTLY_MAPPING.values() if not v.requires_gpu])
|
|
with open(os.path.join(ROOT, "nightly-requirements-gpu.txt"), "w") as f:
|
|
f.write(f"# This file is generated by `{fname}`. # DO NOT EDIT\n")
|
|
f.write("# For Jax, Flax, Tensorflow, PyTorch CUDA support, please refers to their official installation for your specific setup.\n")
|
|
f.write("-r nightly-requirements.txt\n-e .[all]\n")
|
|
f.writelines([f"{v.to_str()}\n" for v in _NIGHTLY_MAPPING.values() if v.requires_gpu])
|
|
|
|
return 0
|
|
|
|
if __name__ == "__main__":
|
|
raise SystemExit(main())
|