Files
OpenLLM/openllm-python/src/openllm/_quantisation.py
Aaron Pham b7af7765d4 fix(yapf): align weird new lines break [generated] [skip ci] (#284)
fix(yapf): align weird new lines break

Signed-off-by: aarnphm-ec2-dev <29749331+aarnphm@users.noreply.github.com>
2023-09-01 05:34:22 -04:00

97 lines
5.1 KiB
Python

# mypy: disable-error-code="name-defined,no-redef"
from __future__ import annotations
import logging
import typing as t
from openllm_core._typing_compat import overload
from openllm_core.utils import LazyLoader
from openllm_core.utils import is_autogptq_available
from openllm_core.utils import is_bitsandbytes_available
from openllm_core.utils import is_transformers_supports_kbit
from openllm_core.utils import pkg
if t.TYPE_CHECKING:
from openllm_core._typing_compat import DictStrAny
from ._llm import LLM
autogptq, torch, transformers = LazyLoader('autogptq', globals(),
'auto_gptq'), LazyLoader('torch', globals(), 'torch'), LazyLoader('transformers', globals(), 'transformers')
logger = logging.getLogger(__name__)
QuantiseMode = t.Literal['int8', 'int4', 'gptq']
@overload
def infer_quantisation_config(cls: type[LLM[t.Any, t.Any]], quantise: t.Literal['int8', 'int4'],
**attrs: t.Any) -> tuple[transformers.BitsAndBytesConfig, DictStrAny]:
...
@overload
def infer_quantisation_config(cls: type[LLM[t.Any, t.Any]], quantise: t.Literal['gptq'],
**attrs: t.Any) -> tuple[autogptq.BaseQuantizeConfig, DictStrAny]:
...
def infer_quantisation_config(cls: type[LLM[t.Any, t.Any]], quantise: QuantiseMode,
**attrs: t.Any) -> tuple[transformers.BitsAndBytesConfig | autogptq.BaseQuantizeConfig, DictStrAny]:
# 8 bit configuration
int8_threshold = attrs.pop('llm_int8_threshhold', 6.0)
int8_enable_fp32_cpu_offload = attrs.pop('llm_int8_enable_fp32_cpu_offload', False)
int8_skip_modules: list[str] | None = attrs.pop('llm_int8_skip_modules', None)
int8_has_fp16_weight = attrs.pop('llm_int8_has_fp16_weight', False)
autogptq_attrs: DictStrAny = {
'bits': attrs.pop('gptq_bits', 4),
'group_size': attrs.pop('gptq_group_size', -1),
'damp_percent': attrs.pop('gptq_damp_percent', 0.01),
'desc_act': attrs.pop('gptq_desc_act', True),
'sym': attrs.pop('gptq_sym', True),
'true_sequential': attrs.pop('gptq_true_sequential', True),
}
def create_int8_config(int8_skip_modules: list[str] | None) -> transformers.BitsAndBytesConfig:
if int8_skip_modules is None: int8_skip_modules = []
if 'lm_head' not in int8_skip_modules and cls.config_class.__openllm_model_type__ == 'causal_lm':
logger.debug("Skipping 'lm_head' for quantization for %s", cls.__name__)
int8_skip_modules.append('lm_head')
return transformers.BitsAndBytesConfig(load_in_8bit=True,
llm_int8_enable_fp32_cpu_offload=int8_enable_fp32_cpu_offload,
llm_int8_threshhold=int8_threshold,
llm_int8_skip_modules=int8_skip_modules,
llm_int8_has_fp16_weight=int8_has_fp16_weight,
)
# 4 bit configuration
int4_compute_dtype = attrs.pop('bnb_4bit_compute_dtype', torch.bfloat16)
int4_quant_type = attrs.pop('bnb_4bit_quant_type', 'nf4')
int4_use_double_quant = attrs.pop('bnb_4bit_use_double_quant', True)
# NOTE: Quantization setup
# quantize is a openllm.LLM feature, where we can quantize the model
# with bitsandbytes or quantization aware training.
if not is_bitsandbytes_available():
raise RuntimeError("Quantization requires bitsandbytes to be installed. Make sure to install OpenLLM with 'pip install \"openllm[fine-tune]\"'")
if quantise == 'int8': quantisation_config = create_int8_config(int8_skip_modules)
elif quantise == 'int4':
if is_transformers_supports_kbit():
quantisation_config = transformers.BitsAndBytesConfig(load_in_4bit=True,
bnb_4bit_compute_dtype=int4_compute_dtype,
bnb_4bit_quant_type=int4_quant_type,
bnb_4bit_use_double_quant=int4_use_double_quant)
else:
logger.warning(
"'quantize' is set to int4, while the current transformers version %s does not support k-bit quantization. k-bit quantization is supported since transformers 4.30, therefore make sure to install the latest version of transformers either via PyPI or from git source: 'pip install git+https://github.com/huggingface/transformers'. Fallback to int8 quantisation.",
pkg.pkg_version_info('transformers'))
quantisation_config = create_int8_config(int8_skip_modules)
elif quantise == 'gptq':
if not is_autogptq_available():
logger.warning(
"'quantize=\"gptq\"' requires 'auto-gptq' to be installed (not available with local environment). Make sure to have 'auto-gptq' available locally: 'pip install \"openllm[gptq]\"'. OpenLLM will fallback to int8 with bitsandbytes."
)
quantisation_config = create_int8_config(int8_skip_modules)
else:
quantisation_config = autogptq.BaseQuantizeConfig(**autogptq_attrs)
else:
raise ValueError(f"'quantize' must be one of ['int8', 'int4', 'gptq'], got {quantise} instead.")
return quantisation_config, attrs