mirror of
https://github.com/bentoml/OpenLLM.git
synced 2026-01-14 10:27:48 -05:00
* chore: update rebase tests Signed-off-by: paperspace <29749331+aarnphm@users.noreply.github.com> * chore: update partial clients before removing Signed-off-by: paperspace <29749331+aarnphm@users.noreply.github.com> * fix: update clients parsing logics to work with 0.5 Signed-off-by: paperspace <29749331+aarnphm@users.noreply.github.com> * chore: ignore ci runs as to run locally Signed-off-by: paperspace <29749331+aarnphm@users.noreply.github.com> * chore: update async client tests Signed-off-by: paperspace <29749331+aarnphm@users.noreply.github.com> * chore: update pre-commit Signed-off-by: paperspace <29749331+aarnphm@users.noreply.github.com> --------- Signed-off-by: paperspace <29749331+aarnphm@users.noreply.github.com>
1316 lines
40 KiB
Markdown
Generated
1316 lines
40 KiB
Markdown
Generated

|
||
|
||
<!-- hatch-fancy-pypi-readme intro start -->
|
||
|
||
<div align="center">
|
||
<h1 align="center">🦾 OpenLLM: Self-Hosting LLMs Made Easy</h1>
|
||
<a href="https://pypi.org/project/openllm">
|
||
<img src="https://img.shields.io/pypi/v/openllm.svg?logo=pypi&label=PyPI&logoColor=gold" alt="pypi_status" />
|
||
</a><a href="https://test.pypi.org/project/openllm/">
|
||
<img src="https://img.shields.io/badge/Nightly-PyPI?logo=pypi&label=PyPI&color=gray&link=https%3A%2F%2Ftest.pypi.org%2Fproject%2Fopenllm%2F" alt="test_pypi_status" />
|
||
</a><a href="https://github.com/bentoml/OpenLLM/actions/workflows/ci.yml">
|
||
<img src="https://github.com/bentoml/OpenLLM/actions/workflows/ci.yml/badge.svg?branch=main" alt="ci" />
|
||
</a><a href="https://results.pre-commit.ci/latest/github/bentoml/OpenLLM/main">
|
||
<img src="https://results.pre-commit.ci/badge/github/bentoml/OpenLLM/main.svg" alt="pre-commit.ci status" />
|
||
</a><br><a href="https://twitter.com/bentomlai">
|
||
<img src="https://badgen.net/badge/icon/@bentomlai/1DA1F2?icon=twitter&label=Follow%20Us" alt="Twitter" />
|
||
</a><a href="https://l.bentoml.com/join-openllm-discord">
|
||
<img src="https://badgen.net/badge/icon/OpenLLM/7289da?icon=discord&label=Join%20Us" alt="Discord" />
|
||
</a>
|
||
</div>
|
||
|
||
## 📖 Introduction
|
||
|
||
OpenLLM helps developers **run any open-source LLMs**, such as Llama 2 and Mistral, as **OpenAI-compatible API endpoints**, locally and in the cloud, optimized for serving throughput and production deployment.
|
||
|
||
|
||
- 🚂 Support a wide range of open-source LLMs including LLMs fine-tuned with your own data
|
||
- ⛓️ OpenAI compatible API endpoints for seamless transition from your LLM app to open-source LLMs
|
||
- 🔥 State-of-the-art serving and inference performance
|
||
- 🎯 Simplified cloud deployment via [BentoML](https://www.bentoml.com)
|
||
|
||
|
||
<!-- hatch-fancy-pypi-readme intro stop -->
|
||
|
||

|
||
|
||
<br/>
|
||
|
||
<!-- hatch-fancy-pypi-readme interim start -->
|
||
|
||
## 💾 TL/DR
|
||
|
||
For starter, we provide two ways to quickly try out OpenLLM:
|
||
|
||
### Jupyter Notebooks
|
||
|
||
Try this [OpenLLM tutorial in Google Colab: Serving Llama 2 with OpenLLM](https://colab.research.google.com/github/bentoml/OpenLLM/blob/main/examples/llama2.ipynb).
|
||
|
||
### Docker
|
||
|
||
We provide a docker container that helps you start running OpenLLM:
|
||
|
||
```bash
|
||
docker run --rm -it -p 3000:3000 ghcr.io/bentoml/openllm start facebook/opt-1.3b --backend pt
|
||
```
|
||
|
||
> [!NOTE]
|
||
> Given you have access to GPUs and have setup [nvidia-docker](https://github.com/NVIDIA/nvidia-container-toolkit), you can additionally pass in `--gpus`
|
||
> to use GPU for faster inference and optimization
|
||
>```bash
|
||
> docker run --rm --gpus all -p 3000:3000 -it ghcr.io/bentoml/openllm start HuggingFaceH4/zephyr-7b-beta --backend vllm
|
||
> ```
|
||
|
||
|
||
## 🏃 Get started
|
||
|
||
The following provides instructions for how to get started with OpenLLM locally.
|
||
|
||
### Prerequisites
|
||
|
||
You have installed Python 3.8 (or later) and `pip`. We highly recommend using a [Virtual Environment](https://docs.python.org/3/library/venv.html) to prevent package conflicts.
|
||
|
||
### Install OpenLLM
|
||
|
||
Install OpenLLM by using `pip` as follows:
|
||
|
||
```bash
|
||
pip install openllm
|
||
```
|
||
|
||
To verify the installation, run:
|
||
|
||
```bash
|
||
$ openllm -h
|
||
|
||
Usage: openllm [OPTIONS] COMMAND [ARGS]...
|
||
|
||
██████╗ ██████╗ ███████╗███╗ ██╗██╗ ██╗ ███╗ ███╗
|
||
██╔═══██╗██╔══██╗██╔════╝████╗ ██║██║ ██║ ████╗ ████║
|
||
██║ ██║██████╔╝█████╗ ██╔██╗ ██║██║ ██║ ██╔████╔██║
|
||
██║ ██║██╔═══╝ ██╔══╝ ██║╚██╗██║██║ ██║ ██║╚██╔╝██║
|
||
╚██████╔╝██║ ███████╗██║ ╚████║███████╗███████╗██║ ╚═╝ ██║
|
||
╚═════╝ ╚═╝ ╚══════╝╚═╝ ╚═══╝╚══════╝╚══════╝╚═╝ ╚═╝.
|
||
|
||
An open platform for operating large language models in production.
|
||
Fine-tune, serve, deploy, and monitor any LLMs with ease.
|
||
|
||
Options:
|
||
-v, --version Show the version and exit.
|
||
-h, --help Show this message and exit.
|
||
|
||
Commands:
|
||
build Package a given models into a BentoLLM.
|
||
import Setup LLM interactively.
|
||
models List all supported models.
|
||
prune Remove all saved models, (and optionally bentos) built with OpenLLM locally.
|
||
query Query a LLM interactively, from a terminal.
|
||
start Start a LLMServer for any supported LLM.
|
||
|
||
Extensions:
|
||
build-base-container Base image builder for BentoLLM.
|
||
dive-bentos Dive into a BentoLLM.
|
||
get-containerfile Return Containerfile of any given Bento.
|
||
get-prompt Get the default prompt used by OpenLLM.
|
||
list-bentos List available bentos built by OpenLLM.
|
||
list-models This is equivalent to openllm models...
|
||
playground OpenLLM Playground.
|
||
```
|
||
|
||
### Start a LLM server
|
||
|
||
OpenLLM allows you to quickly spin up an LLM server using `openllm start`. For example, to start a [phi-2](https://huggingface.co/microsoft/phi-2) server, run the following:
|
||
|
||
```bash
|
||
TRUST_REMOTE_CODE=True openllm start microsoft/phi-2
|
||
```
|
||
|
||
This starts the server at [http://0.0.0.0:3000/](http://0.0.0.0:3000/). OpenLLM downloads the model to the BentoML local Model Store if it has not been registered before. To view your local models, run `bentoml models list`.
|
||
|
||
To interact with the server, you can visit the web UI at [http://0.0.0.0:3000/](http://0.0.0.0:3000/) or send a request using `curl`. You can also use OpenLLM’s built-in Python client to interact with the server:
|
||
|
||
```python
|
||
import openllm
|
||
|
||
client = openllm.client.HTTPClient('http://localhost:3000')
|
||
client.query('Explain to me the difference between "further" and "farther"')
|
||
```
|
||
|
||
Alternatively, use the `openllm query` command to query the model:
|
||
|
||
```bash
|
||
export OPENLLM_ENDPOINT=http://localhost:3000
|
||
openllm query 'Explain to me the difference between "further" and "farther"'
|
||
```
|
||
|
||
OpenLLM seamlessly supports many models and their variants. You can specify different variants of the model to be served. For example:
|
||
|
||
```bash
|
||
openllm start <model_id> --<options>
|
||
```
|
||
|
||
> [!NOTE]
|
||
> OpenLLM supports specifying fine-tuning weights and quantized weights
|
||
> for any of the supported models as long as they can be loaded with the model
|
||
> architecture. Use the `openllm models` command to see the complete list of supported
|
||
> models, their architectures, and their variants.
|
||
|
||
> [!IMPORTANT]
|
||
> If you are testing OpenLLM on CPU, you might want to pass in `DTYPE=float32`. By default,
|
||
> OpenLLM will set model `dtype` to `bfloat16` for the best performance.
|
||
> ```bash
|
||
> DTYPE=float32 openllm start microsoft/phi-2
|
||
> ```
|
||
> This will also applies to older GPUs. If your GPUs doesn't support `bfloat16`, then you also
|
||
> want to set `DTYPE=float16`.
|
||
|
||
## 🧩 Supported models
|
||
|
||
OpenLLM currently supports the following models. By default, OpenLLM doesn't include dependencies to run all models. The extra model-specific dependencies can be installed with the instructions below.
|
||
|
||
<!-- update-readme.py: start -->
|
||
<details>
|
||
|
||
<summary>Baichuan</summary>
|
||
|
||
|
||
### Quickstart
|
||
|
||
|
||
|
||
> **Note:** Baichuan requires to install with:
|
||
> ```bash
|
||
> pip install "openllm[baichuan]"
|
||
> ```
|
||
|
||
|
||
Run the following command to quickly spin up a Baichuan server:
|
||
|
||
```bash
|
||
TRUST_REMOTE_CODE=True openllm start baichuan-inc/baichuan-7b
|
||
```
|
||
In a different terminal, run the following command to interact with the server:
|
||
|
||
```bash
|
||
export OPENLLM_ENDPOINT=http://localhost:3000
|
||
openllm query 'What are large language models?'
|
||
```
|
||
|
||
|
||
> **Note:** Any Baichuan variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=baichuan) to see more Baichuan-compatible models.
|
||
|
||
|
||
|
||
### Supported models
|
||
|
||
You can specify any of the following Baichuan models via `openllm start`:
|
||
|
||
|
||
- [baichuan-inc/baichuan2-7b-base](https://huggingface.co/baichuan-inc/baichuan2-7b-base)
|
||
- [baichuan-inc/baichuan2-7b-chat](https://huggingface.co/baichuan-inc/baichuan2-7b-chat)
|
||
- [baichuan-inc/baichuan2-13b-base](https://huggingface.co/baichuan-inc/baichuan2-13b-base)
|
||
- [baichuan-inc/baichuan2-13b-chat](https://huggingface.co/baichuan-inc/baichuan2-13b-chat)
|
||
|
||
</details>
|
||
|
||
<details>
|
||
|
||
<summary>ChatGLM</summary>
|
||
|
||
|
||
### Quickstart
|
||
|
||
|
||
|
||
> **Note:** ChatGLM requires to install with:
|
||
> ```bash
|
||
> pip install "openllm[chatglm]"
|
||
> ```
|
||
|
||
|
||
Run the following command to quickly spin up a ChatGLM server:
|
||
|
||
```bash
|
||
TRUST_REMOTE_CODE=True openllm start thudm/chatglm-6b
|
||
```
|
||
In a different terminal, run the following command to interact with the server:
|
||
|
||
```bash
|
||
export OPENLLM_ENDPOINT=http://localhost:3000
|
||
openllm query 'What are large language models?'
|
||
```
|
||
|
||
|
||
> **Note:** Any ChatGLM variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=chatglm) to see more ChatGLM-compatible models.
|
||
|
||
|
||
|
||
### Supported models
|
||
|
||
You can specify any of the following ChatGLM models via `openllm start`:
|
||
|
||
|
||
- [thudm/chatglm-6b](https://huggingface.co/thudm/chatglm-6b)
|
||
- [thudm/chatglm-6b-int8](https://huggingface.co/thudm/chatglm-6b-int8)
|
||
- [thudm/chatglm-6b-int4](https://huggingface.co/thudm/chatglm-6b-int4)
|
||
- [thudm/chatglm2-6b](https://huggingface.co/thudm/chatglm2-6b)
|
||
- [thudm/chatglm2-6b-int4](https://huggingface.co/thudm/chatglm2-6b-int4)
|
||
- [thudm/chatglm3-6b](https://huggingface.co/thudm/chatglm3-6b)
|
||
|
||
</details>
|
||
|
||
<details>
|
||
|
||
<summary>Dbrx</summary>
|
||
|
||
|
||
### Quickstart
|
||
|
||
|
||
|
||
> **Note:** Dbrx requires to install with:
|
||
> ```bash
|
||
> pip install "openllm[dbrx]"
|
||
> ```
|
||
|
||
|
||
Run the following command to quickly spin up a Dbrx server:
|
||
|
||
```bash
|
||
TRUST_REMOTE_CODE=True openllm start databricks/dbrx-instruct
|
||
```
|
||
In a different terminal, run the following command to interact with the server:
|
||
|
||
```bash
|
||
export OPENLLM_ENDPOINT=http://localhost:3000
|
||
openllm query 'What are large language models?'
|
||
```
|
||
|
||
|
||
> **Note:** Any Dbrx variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=dbrx) to see more Dbrx-compatible models.
|
||
|
||
|
||
|
||
### Supported models
|
||
|
||
You can specify any of the following Dbrx models via `openllm start`:
|
||
|
||
|
||
- [databricks/dbrx-instruct](https://huggingface.co/databricks/dbrx-instruct)
|
||
- [databricks/dbrx-base](https://huggingface.co/databricks/dbrx-base)
|
||
|
||
</details>
|
||
|
||
<details>
|
||
|
||
<summary>DollyV2</summary>
|
||
|
||
|
||
### Quickstart
|
||
|
||
Run the following command to quickly spin up a DollyV2 server:
|
||
|
||
```bash
|
||
TRUST_REMOTE_CODE=True openllm start databricks/dolly-v2-3b
|
||
```
|
||
In a different terminal, run the following command to interact with the server:
|
||
|
||
```bash
|
||
export OPENLLM_ENDPOINT=http://localhost:3000
|
||
openllm query 'What are large language models?'
|
||
```
|
||
|
||
|
||
> **Note:** Any DollyV2 variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=dolly_v2) to see more DollyV2-compatible models.
|
||
|
||
|
||
|
||
### Supported models
|
||
|
||
You can specify any of the following DollyV2 models via `openllm start`:
|
||
|
||
|
||
- [databricks/dolly-v2-3b](https://huggingface.co/databricks/dolly-v2-3b)
|
||
- [databricks/dolly-v2-7b](https://huggingface.co/databricks/dolly-v2-7b)
|
||
- [databricks/dolly-v2-12b](https://huggingface.co/databricks/dolly-v2-12b)
|
||
|
||
</details>
|
||
|
||
<details>
|
||
|
||
<summary>Falcon</summary>
|
||
|
||
|
||
### Quickstart
|
||
|
||
|
||
|
||
> **Note:** Falcon requires to install with:
|
||
> ```bash
|
||
> pip install "openllm[falcon]"
|
||
> ```
|
||
|
||
|
||
Run the following command to quickly spin up a Falcon server:
|
||
|
||
```bash
|
||
TRUST_REMOTE_CODE=True openllm start tiiuae/falcon-7b
|
||
```
|
||
In a different terminal, run the following command to interact with the server:
|
||
|
||
```bash
|
||
export OPENLLM_ENDPOINT=http://localhost:3000
|
||
openllm query 'What are large language models?'
|
||
```
|
||
|
||
|
||
> **Note:** Any Falcon variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=falcon) to see more Falcon-compatible models.
|
||
|
||
|
||
|
||
### Supported models
|
||
|
||
You can specify any of the following Falcon models via `openllm start`:
|
||
|
||
|
||
- [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b)
|
||
- [tiiuae/falcon-40b](https://huggingface.co/tiiuae/falcon-40b)
|
||
- [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct)
|
||
- [tiiuae/falcon-40b-instruct](https://huggingface.co/tiiuae/falcon-40b-instruct)
|
||
|
||
</details>
|
||
|
||
<details>
|
||
|
||
<summary>FlanT5</summary>
|
||
|
||
|
||
### Quickstart
|
||
|
||
Run the following command to quickly spin up a FlanT5 server:
|
||
|
||
```bash
|
||
TRUST_REMOTE_CODE=True openllm start google/flan-t5-large
|
||
```
|
||
In a different terminal, run the following command to interact with the server:
|
||
|
||
```bash
|
||
export OPENLLM_ENDPOINT=http://localhost:3000
|
||
openllm query 'What are large language models?'
|
||
```
|
||
|
||
|
||
> **Note:** Any FlanT5 variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=flan_t5) to see more FlanT5-compatible models.
|
||
|
||
|
||
|
||
### Supported models
|
||
|
||
You can specify any of the following FlanT5 models via `openllm start`:
|
||
|
||
|
||
- [google/flan-t5-small](https://huggingface.co/google/flan-t5-small)
|
||
- [google/flan-t5-base](https://huggingface.co/google/flan-t5-base)
|
||
- [google/flan-t5-large](https://huggingface.co/google/flan-t5-large)
|
||
- [google/flan-t5-xl](https://huggingface.co/google/flan-t5-xl)
|
||
- [google/flan-t5-xxl](https://huggingface.co/google/flan-t5-xxl)
|
||
|
||
</details>
|
||
|
||
<details>
|
||
|
||
<summary>Gemma</summary>
|
||
|
||
|
||
### Quickstart
|
||
|
||
|
||
|
||
> **Note:** Gemma requires to install with:
|
||
> ```bash
|
||
> pip install "openllm[gemma]"
|
||
> ```
|
||
|
||
|
||
Run the following command to quickly spin up a Gemma server:
|
||
|
||
```bash
|
||
TRUST_REMOTE_CODE=True openllm start google/gemma-7b
|
||
```
|
||
In a different terminal, run the following command to interact with the server:
|
||
|
||
```bash
|
||
export OPENLLM_ENDPOINT=http://localhost:3000
|
||
openllm query 'What are large language models?'
|
||
```
|
||
|
||
|
||
> **Note:** Any Gemma variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=gemma) to see more Gemma-compatible models.
|
||
|
||
|
||
|
||
### Supported models
|
||
|
||
You can specify any of the following Gemma models via `openllm start`:
|
||
|
||
|
||
- [google/gemma-7b](https://huggingface.co/google/gemma-7b)
|
||
- [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it)
|
||
- [google/gemma-2b](https://huggingface.co/google/gemma-2b)
|
||
- [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it)
|
||
|
||
</details>
|
||
|
||
<details>
|
||
|
||
<summary>GPTNeoX</summary>
|
||
|
||
|
||
### Quickstart
|
||
|
||
Run the following command to quickly spin up a GPTNeoX server:
|
||
|
||
```bash
|
||
TRUST_REMOTE_CODE=True openllm start eleutherai/gpt-neox-20b
|
||
```
|
||
In a different terminal, run the following command to interact with the server:
|
||
|
||
```bash
|
||
export OPENLLM_ENDPOINT=http://localhost:3000
|
||
openllm query 'What are large language models?'
|
||
```
|
||
|
||
|
||
> **Note:** Any GPTNeoX variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=gpt_neox) to see more GPTNeoX-compatible models.
|
||
|
||
|
||
|
||
### Supported models
|
||
|
||
You can specify any of the following GPTNeoX models via `openllm start`:
|
||
|
||
|
||
- [eleutherai/gpt-neox-20b](https://huggingface.co/eleutherai/gpt-neox-20b)
|
||
|
||
</details>
|
||
|
||
<details>
|
||
|
||
<summary>Llama</summary>
|
||
|
||
|
||
### Quickstart
|
||
|
||
|
||
|
||
> **Note:** Llama requires to install with:
|
||
> ```bash
|
||
> pip install "openllm[llama]"
|
||
> ```
|
||
|
||
|
||
Run the following command to quickly spin up a Llama server:
|
||
|
||
```bash
|
||
TRUST_REMOTE_CODE=True openllm start NousResearch/llama-2-7b-hf
|
||
```
|
||
In a different terminal, run the following command to interact with the server:
|
||
|
||
```bash
|
||
export OPENLLM_ENDPOINT=http://localhost:3000
|
||
openllm query 'What are large language models?'
|
||
```
|
||
|
||
|
||
> **Note:** Any Llama variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=llama) to see more Llama-compatible models.
|
||
|
||
|
||
|
||
### Supported models
|
||
|
||
You can specify any of the following Llama models via `openllm start`:
|
||
|
||
|
||
- [meta-llama/Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf)
|
||
- [meta-llama/Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf)
|
||
- [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
|
||
- [meta-llama/Llama-2-70b-hf](https://huggingface.co/meta-llama/Llama-2-70b-hf)
|
||
- [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf)
|
||
- [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)
|
||
- [NousResearch/llama-2-70b-chat-hf](https://huggingface.co/NousResearch/llama-2-70b-chat-hf)
|
||
- [NousResearch/llama-2-13b-chat-hf](https://huggingface.co/NousResearch/llama-2-13b-chat-hf)
|
||
- [NousResearch/llama-2-7b-chat-hf](https://huggingface.co/NousResearch/llama-2-7b-chat-hf)
|
||
- [NousResearch/llama-2-70b-hf](https://huggingface.co/NousResearch/llama-2-70b-hf)
|
||
- [NousResearch/llama-2-13b-hf](https://huggingface.co/NousResearch/llama-2-13b-hf)
|
||
- [NousResearch/llama-2-7b-hf](https://huggingface.co/NousResearch/llama-2-7b-hf)
|
||
|
||
</details>
|
||
|
||
<details>
|
||
|
||
<summary>Mistral</summary>
|
||
|
||
|
||
### Quickstart
|
||
|
||
|
||
|
||
> **Note:** Mistral requires to install with:
|
||
> ```bash
|
||
> pip install "openllm[mistral]"
|
||
> ```
|
||
|
||
|
||
Run the following command to quickly spin up a Mistral server:
|
||
|
||
```bash
|
||
TRUST_REMOTE_CODE=True openllm start mistralai/Mistral-7B-Instruct-v0.1
|
||
```
|
||
In a different terminal, run the following command to interact with the server:
|
||
|
||
```bash
|
||
export OPENLLM_ENDPOINT=http://localhost:3000
|
||
openllm query 'What are large language models?'
|
||
```
|
||
|
||
|
||
> **Note:** Any Mistral variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=mistral) to see more Mistral-compatible models.
|
||
|
||
|
||
|
||
### Supported models
|
||
|
||
You can specify any of the following Mistral models via `openllm start`:
|
||
|
||
|
||
- [HuggingFaceH4/zephyr-7b-alpha](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha)
|
||
- [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)
|
||
- [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
|
||
- [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
|
||
- [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
||
|
||
</details>
|
||
|
||
<details>
|
||
|
||
<summary>Mixtral</summary>
|
||
|
||
|
||
### Quickstart
|
||
|
||
|
||
|
||
> **Note:** Mixtral requires to install with:
|
||
> ```bash
|
||
> pip install "openllm[mixtral]"
|
||
> ```
|
||
|
||
|
||
Run the following command to quickly spin up a Mixtral server:
|
||
|
||
```bash
|
||
TRUST_REMOTE_CODE=True openllm start mistralai/Mixtral-8x7B-Instruct-v0.1
|
||
```
|
||
In a different terminal, run the following command to interact with the server:
|
||
|
||
```bash
|
||
export OPENLLM_ENDPOINT=http://localhost:3000
|
||
openllm query 'What are large language models?'
|
||
```
|
||
|
||
|
||
> **Note:** Any Mixtral variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=mixtral) to see more Mixtral-compatible models.
|
||
|
||
|
||
|
||
### Supported models
|
||
|
||
You can specify any of the following Mixtral models via `openllm start`:
|
||
|
||
|
||
- [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
|
||
- [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)
|
||
|
||
</details>
|
||
|
||
<details>
|
||
|
||
<summary>MPT</summary>
|
||
|
||
|
||
### Quickstart
|
||
|
||
|
||
|
||
> **Note:** MPT requires to install with:
|
||
> ```bash
|
||
> pip install "openllm[mpt]"
|
||
> ```
|
||
|
||
|
||
Run the following command to quickly spin up a MPT server:
|
||
|
||
```bash
|
||
TRUST_REMOTE_CODE=True openllm start mosaicml/mpt-7b-instruct
|
||
```
|
||
In a different terminal, run the following command to interact with the server:
|
||
|
||
```bash
|
||
export OPENLLM_ENDPOINT=http://localhost:3000
|
||
openllm query 'What are large language models?'
|
||
```
|
||
|
||
|
||
> **Note:** Any MPT variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=mpt) to see more MPT-compatible models.
|
||
|
||
|
||
|
||
### Supported models
|
||
|
||
You can specify any of the following MPT models via `openllm start`:
|
||
|
||
|
||
- [mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b)
|
||
- [mosaicml/mpt-7b-instruct](https://huggingface.co/mosaicml/mpt-7b-instruct)
|
||
- [mosaicml/mpt-7b-chat](https://huggingface.co/mosaicml/mpt-7b-chat)
|
||
- [mosaicml/mpt-7b-storywriter](https://huggingface.co/mosaicml/mpt-7b-storywriter)
|
||
- [mosaicml/mpt-30b](https://huggingface.co/mosaicml/mpt-30b)
|
||
- [mosaicml/mpt-30b-instruct](https://huggingface.co/mosaicml/mpt-30b-instruct)
|
||
- [mosaicml/mpt-30b-chat](https://huggingface.co/mosaicml/mpt-30b-chat)
|
||
|
||
</details>
|
||
|
||
<details>
|
||
|
||
<summary>OPT</summary>
|
||
|
||
|
||
### Quickstart
|
||
|
||
|
||
|
||
> **Note:** OPT requires to install with:
|
||
> ```bash
|
||
> pip install "openllm[opt]"
|
||
> ```
|
||
|
||
|
||
Run the following command to quickly spin up a OPT server:
|
||
|
||
```bash
|
||
openllm start facebook/opt-1.3b
|
||
```
|
||
In a different terminal, run the following command to interact with the server:
|
||
|
||
```bash
|
||
export OPENLLM_ENDPOINT=http://localhost:3000
|
||
openllm query 'What are large language models?'
|
||
```
|
||
|
||
|
||
> **Note:** Any OPT variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=opt) to see more OPT-compatible models.
|
||
|
||
|
||
|
||
### Supported models
|
||
|
||
You can specify any of the following OPT models via `openllm start`:
|
||
|
||
|
||
- [facebook/opt-125m](https://huggingface.co/facebook/opt-125m)
|
||
- [facebook/opt-350m](https://huggingface.co/facebook/opt-350m)
|
||
- [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b)
|
||
- [facebook/opt-2.7b](https://huggingface.co/facebook/opt-2.7b)
|
||
- [facebook/opt-6.7b](https://huggingface.co/facebook/opt-6.7b)
|
||
- [facebook/opt-66b](https://huggingface.co/facebook/opt-66b)
|
||
|
||
</details>
|
||
|
||
<details>
|
||
|
||
<summary>Phi</summary>
|
||
|
||
|
||
### Quickstart
|
||
|
||
|
||
|
||
> **Note:** Phi requires to install with:
|
||
> ```bash
|
||
> pip install "openllm[phi]"
|
||
> ```
|
||
|
||
|
||
Run the following command to quickly spin up a Phi server:
|
||
|
||
```bash
|
||
TRUST_REMOTE_CODE=True openllm start microsoft/phi-2
|
||
```
|
||
In a different terminal, run the following command to interact with the server:
|
||
|
||
```bash
|
||
export OPENLLM_ENDPOINT=http://localhost:3000
|
||
openllm query 'What are large language models?'
|
||
```
|
||
|
||
|
||
> **Note:** Any Phi variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=phi) to see more Phi-compatible models.
|
||
|
||
|
||
|
||
### Supported models
|
||
|
||
You can specify any of the following Phi models via `openllm start`:
|
||
|
||
|
||
- [microsoft/phi-2](https://huggingface.co/microsoft/phi-2)
|
||
- [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5)
|
||
|
||
</details>
|
||
|
||
<details>
|
||
|
||
<summary>Qwen</summary>
|
||
|
||
|
||
### Quickstart
|
||
|
||
|
||
|
||
> **Note:** Qwen requires to install with:
|
||
> ```bash
|
||
> pip install "openllm[qwen]"
|
||
> ```
|
||
|
||
|
||
Run the following command to quickly spin up a Qwen server:
|
||
|
||
```bash
|
||
TRUST_REMOTE_CODE=True openllm start qwen/Qwen-7B-Chat
|
||
```
|
||
In a different terminal, run the following command to interact with the server:
|
||
|
||
```bash
|
||
export OPENLLM_ENDPOINT=http://localhost:3000
|
||
openllm query 'What are large language models?'
|
||
```
|
||
|
||
|
||
> **Note:** Any Qwen variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=qwen) to see more Qwen-compatible models.
|
||
|
||
|
||
|
||
### Supported models
|
||
|
||
You can specify any of the following Qwen models via `openllm start`:
|
||
|
||
|
||
- [qwen/Qwen-7B-Chat](https://huggingface.co/qwen/Qwen-7B-Chat)
|
||
- [qwen/Qwen-7B-Chat-Int8](https://huggingface.co/qwen/Qwen-7B-Chat-Int8)
|
||
- [qwen/Qwen-7B-Chat-Int4](https://huggingface.co/qwen/Qwen-7B-Chat-Int4)
|
||
- [qwen/Qwen-14B-Chat](https://huggingface.co/qwen/Qwen-14B-Chat)
|
||
- [qwen/Qwen-14B-Chat-Int8](https://huggingface.co/qwen/Qwen-14B-Chat-Int8)
|
||
- [qwen/Qwen-14B-Chat-Int4](https://huggingface.co/qwen/Qwen-14B-Chat-Int4)
|
||
|
||
</details>
|
||
|
||
<details>
|
||
|
||
<summary>StableLM</summary>
|
||
|
||
|
||
### Quickstart
|
||
|
||
|
||
|
||
> **Note:** StableLM requires to install with:
|
||
> ```bash
|
||
> pip install "openllm[stablelm]"
|
||
> ```
|
||
|
||
|
||
Run the following command to quickly spin up a StableLM server:
|
||
|
||
```bash
|
||
TRUST_REMOTE_CODE=True openllm start stabilityai/stablelm-tuned-alpha-3b
|
||
```
|
||
In a different terminal, run the following command to interact with the server:
|
||
|
||
```bash
|
||
export OPENLLM_ENDPOINT=http://localhost:3000
|
||
openllm query 'What are large language models?'
|
||
```
|
||
|
||
|
||
> **Note:** Any StableLM variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=stablelm) to see more StableLM-compatible models.
|
||
|
||
|
||
|
||
### Supported models
|
||
|
||
You can specify any of the following StableLM models via `openllm start`:
|
||
|
||
|
||
- [stabilityai/stablelm-tuned-alpha-3b](https://huggingface.co/stabilityai/stablelm-tuned-alpha-3b)
|
||
- [stabilityai/stablelm-tuned-alpha-7b](https://huggingface.co/stabilityai/stablelm-tuned-alpha-7b)
|
||
- [stabilityai/stablelm-base-alpha-3b](https://huggingface.co/stabilityai/stablelm-base-alpha-3b)
|
||
- [stabilityai/stablelm-base-alpha-7b](https://huggingface.co/stabilityai/stablelm-base-alpha-7b)
|
||
|
||
</details>
|
||
|
||
<details>
|
||
|
||
<summary>StarCoder</summary>
|
||
|
||
|
||
### Quickstart
|
||
|
||
|
||
|
||
> **Note:** StarCoder requires to install with:
|
||
> ```bash
|
||
> pip install "openllm[starcoder]"
|
||
> ```
|
||
|
||
|
||
Run the following command to quickly spin up a StarCoder server:
|
||
|
||
```bash
|
||
TRUST_REMOTE_CODE=True openllm start bigcode/starcoder
|
||
```
|
||
In a different terminal, run the following command to interact with the server:
|
||
|
||
```bash
|
||
export OPENLLM_ENDPOINT=http://localhost:3000
|
||
openllm query 'What are large language models?'
|
||
```
|
||
|
||
|
||
> **Note:** Any StarCoder variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=starcoder) to see more StarCoder-compatible models.
|
||
|
||
|
||
|
||
### Supported models
|
||
|
||
You can specify any of the following StarCoder models via `openllm start`:
|
||
|
||
|
||
- [bigcode/starcoder](https://huggingface.co/bigcode/starcoder)
|
||
- [bigcode/starcoderbase](https://huggingface.co/bigcode/starcoderbase)
|
||
|
||
</details>
|
||
|
||
<details>
|
||
|
||
<summary>Yi</summary>
|
||
|
||
|
||
### Quickstart
|
||
|
||
|
||
|
||
> **Note:** Yi requires to install with:
|
||
> ```bash
|
||
> pip install "openllm[yi]"
|
||
> ```
|
||
|
||
|
||
Run the following command to quickly spin up a Yi server:
|
||
|
||
```bash
|
||
TRUST_REMOTE_CODE=True openllm start 01-ai/Yi-6B
|
||
```
|
||
In a different terminal, run the following command to interact with the server:
|
||
|
||
```bash
|
||
export OPENLLM_ENDPOINT=http://localhost:3000
|
||
openllm query 'What are large language models?'
|
||
```
|
||
|
||
|
||
> **Note:** Any Yi variants can be deployed with OpenLLM. Visit the [HuggingFace Model Hub](https://huggingface.co/models?sort=trending&search=yi) to see more Yi-compatible models.
|
||
|
||
|
||
|
||
### Supported models
|
||
|
||
You can specify any of the following Yi models via `openllm start`:
|
||
|
||
|
||
- [01-ai/Yi-6B](https://huggingface.co/01-ai/Yi-6B)
|
||
- [01-ai/Yi-34B](https://huggingface.co/01-ai/Yi-34B)
|
||
- [01-ai/Yi-6B-200K](https://huggingface.co/01-ai/Yi-6B-200K)
|
||
- [01-ai/Yi-34B-200K](https://huggingface.co/01-ai/Yi-34B-200K)
|
||
|
||
</details>
|
||
|
||
<!-- update-readme.py: stop -->
|
||
|
||
More models will be integrated with OpenLLM and we welcome your contributions if you want to incorporate your custom LLMs into the ecosystem. Check out [Adding a New Model Guide](https://github.com/bentoml/OpenLLM/blob/main/ADDING_NEW_MODEL.md) to learn more.
|
||
|
||
## 💻 Run your model on multiple GPUs
|
||
|
||
OpenLLM allows you to start your model server on multiple GPUs and specify the number of workers per resource assigned using the `--workers-per-resource` option. For example, if you have 4 available GPUs, you set the value as one divided by the number as only one instance of the Runner server will be spawned.
|
||
|
||
```bash
|
||
TRUST_REMOTE_CODE=True openllm start microsoft/phi-2 --workers-per-resource 0.25
|
||
```
|
||
|
||
> [!NOTE]
|
||
> The amount of GPUs required depends on the model size itself.
|
||
> You can use [the Model Memory Calculator from Hugging Face](https://huggingface.co/spaces/hf-accelerate/model-memory-usage) to
|
||
> calculate how much vRAM is needed to train and perform big model
|
||
> inference on a model and then plan your GPU strategy based on it.
|
||
|
||
When using the `--workers-per-resource` option with the `openllm build` command, the environment variable is saved into the resulting Bento.
|
||
|
||
For more information, see [Resource scheduling strategy](https://docs.bentoml.org/en/latest/guides/scheduling.html#).
|
||
|
||
## 🛞 Runtime implementations
|
||
|
||
Different LLMs may support multiple runtime implementations. Models that have `vLLM` (`vllm`) supports will use vLLM by default, otherwise it fallback to use `PyTorch` (`pt`).
|
||
|
||
To specify a specific runtime for your chosen model, use the `--backend` option. For example:
|
||
|
||
```bash
|
||
openllm start meta-llama/Llama-2-7b-chat-hf --backend vllm
|
||
```
|
||
|
||
Note:
|
||
|
||
1. To use the vLLM backend, you need a GPU with at least the Ampere architecture or newer and CUDA version 11.8.
|
||
2. To see the backend options of each model supported by OpenLLM, see the Supported models section or run `openllm models`.
|
||
|
||
## 📐 Quantization
|
||
|
||
Quantization is a technique to reduce the storage and computation requirements for machine learning models, particularly during inference. By approximating floating-point numbers as integers (quantized values), quantization allows for faster computations, reduced memory footprint, and can make it feasible to deploy large models on resource-constrained devices.
|
||
|
||
OpenLLM supports the following quantization techniques
|
||
|
||
- [LLM.int8(): 8-bit Matrix Multiplication](https://arxiv.org/abs/2208.07339) through [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
|
||
- [SpQR: A Sparse-Quantized Representation for Near-Lossless LLM Weight Compression
|
||
](https://arxiv.org/abs/2306.03078) through [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
|
||
- [AWQ: Activation-aware Weight Quantization](https://arxiv.org/abs/2306.00978),
|
||
- [GPTQ: Accurate Post-Training Quantization](https://arxiv.org/abs/2210.17323)
|
||
- [SqueezeLLM: Dense-and-Sparse Quantization](https://arxiv.org/abs/2306.07629).
|
||
|
||
### PyTorch backend
|
||
|
||
With PyTorch backend, OpenLLM supports `int8`, `int4`, and `gptq`.
|
||
|
||
For using int8 and int4 quantization through `bitsandbytes`, you can use the following command:
|
||
|
||
```bash
|
||
TRUST_REMOTE_CODE=True openllm start microsoft/phi-2 --quantize int8
|
||
```
|
||
|
||
To run inference with `gptq`, simply pass `--quantize gptq`:
|
||
|
||
```bash
|
||
openllm start TheBloke/Llama-2-7B-Chat-GPTQ --quantize gptq
|
||
```
|
||
|
||
> [!NOTE]
|
||
> In order to run GPTQ, make sure you run `pip install "openllm[gptq]"`
|
||
> first to install the dependency. From the GPTQ paper, it is recommended to quantized the weights before serving.
|
||
> See [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) for more information on GPTQ quantization.
|
||
|
||
### vLLM backend
|
||
|
||
With vLLM backend, OpenLLM supports `awq`, `squeezellm`
|
||
|
||
To run inference with `awq`, simply pass `--quantize awq`:
|
||
|
||
```bash
|
||
openllm start TheBloke/zephyr-7B-alpha-AWQ --quantize awq
|
||
```
|
||
|
||
To run inference with `squeezellm`, simply pass `--quantize squeezellm`:
|
||
|
||
```bash
|
||
openllm start squeeze-ai-lab/sq-llama-2-7b-w4-s0 --quantize squeezellm --serialization legacy
|
||
```
|
||
|
||
> [!IMPORTANT]
|
||
> Since both `squeezellm` and `awq` are weight-aware quantization methods, meaning the quantization is done during training, all pre-trained weights needs to get quantized before inference time. Make sure to find compatible weights on HuggingFace Hub for your model of choice.
|
||
|
||
## 🛠️ Serving fine-tuning layers
|
||
|
||
[PEFT](https://huggingface.co/docs/peft/index), or Parameter-Efficient Fine-Tuning, is a methodology designed to fine-tune pre-trained models more efficiently. Instead of adjusting all model parameters, PEFT focuses on tuning only a subset, reducing computational and storage costs. [LoRA](https://huggingface.co/docs/peft/conceptual_guides/lora) (Low-Rank Adaptation) is one of the techniques supported by PEFT. It streamlines fine-tuning by using low-rank decomposition to represent weight updates, thereby drastically reducing the number of trainable parameters.
|
||
|
||
With OpenLLM, you can take advantage of the fine-tuning feature by serving models with any PEFT-compatible layers using the `--adapter-id` option. For example:
|
||
|
||
```bash
|
||
openllm start facebook/opt-6.7b --adapter-id aarnphm/opt-6-7b-quotes:default
|
||
```
|
||
|
||
OpenLLM also provides flexibility by supporting adapters from custom file paths:
|
||
|
||
```bash
|
||
openllm start facebook/opt-6.7b --adapter-id /path/to/adapters:local_adapter
|
||
```
|
||
|
||
To use multiple adapters, use the following format:
|
||
|
||
```bash
|
||
openllm start facebook/opt-6.7b --adapter-id aarnphm/opt-6.7b-lora:default --adapter-id aarnphm/opt-6.7b-french:french_lora
|
||
```
|
||
|
||
By default, all adapters will be injected into the models during startup. Adapters can be specified per request via `adapter_name`:
|
||
|
||
```bash
|
||
curl -X 'POST' \
|
||
'http://localhost:3000/v1/generate' \
|
||
-H 'accept: application/json' \
|
||
-H 'Content-Type: application/json' \
|
||
-d '{
|
||
"prompt": "What is the meaning of life?",
|
||
"stop": [
|
||
"philosopher"
|
||
],
|
||
"llm_config": {
|
||
"max_new_tokens": 256,
|
||
"temperature": 0.75,
|
||
"top_k": 15,
|
||
"top_p": 1
|
||
},
|
||
"adapter_name": "default"
|
||
}'
|
||
```
|
||
|
||
To include this into the Bento, you can specify the `--adapter-id` option when using the `openllm build` command:
|
||
|
||
```bash
|
||
openllm build facebook/opt-6.7b --adapter-id ...
|
||
```
|
||
|
||
If you use a relative path for `--adapter-id`, you need to add `--build-ctx`.
|
||
|
||
```bash
|
||
openllm build facebook/opt-6.7b --adapter-id ./path/to/adapter_id --build-ctx .
|
||
```
|
||
|
||
> [!IMPORTANT]
|
||
> Fine-tuning support is still experimental and currently only works with PyTorch backend. vLLM support is coming soon.
|
||
|
||
|
||
## ⚙️ Integrations
|
||
|
||
OpenLLM is not just a standalone product; it's a building block designed to
|
||
integrate with other powerful tools easily. We currently offer integration with
|
||
[OpenAI's Compatible Endpoints](https://platform.openai.com/docs/api-reference/completions/object),
|
||
[LlamaIndex](https://www.llamaindex.ai/),
|
||
[LangChain](https://github.com/hwchase17/langchain), and
|
||
[Transformers Agents](https://huggingface.co/docs/transformers/transformers_agents).
|
||
|
||
### OpenAI Compatible Endpoints
|
||
|
||
OpenLLM Server can be used as a drop-in replacement for OpenAI's API. Simply
|
||
specify the base_url to `llm-endpoint/v1` and you are good to go:
|
||
|
||
```python
|
||
import openai
|
||
|
||
client = openai.OpenAI(
|
||
base_url='http://localhost:3000/v1', api_key='na'
|
||
) # Here the server is running on localhost:3000
|
||
|
||
completions = client.completions.create(
|
||
prompt='Write me a tag line for an ice cream shop.', model=model, max_tokens=64, stream=stream
|
||
)
|
||
```
|
||
|
||
The compatible endpoints supports `/completions`, `/chat/completions`, and `/models`
|
||
|
||
> [!NOTE]
|
||
> You can find out OpenAI example clients under the
|
||
> [examples](https://github.com/bentoml/OpenLLM/tree/main/examples) folder.
|
||
|
||
|
||
### [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/openllm/)
|
||
|
||
To start a local LLM with `llama_index`, simply use `llama_index.llms.openllm.OpenLLM`:
|
||
|
||
```python
|
||
import asyncio
|
||
from llama_index.llms.openllm import OpenLLM
|
||
|
||
llm = OpenLLM('HuggingFaceH4/zephyr-7b-alpha')
|
||
|
||
llm.complete('The meaning of life is')
|
||
|
||
|
||
async def main(prompt, **kwargs):
|
||
async for it in llm.astream_chat(prompt, **kwargs):
|
||
print(it)
|
||
|
||
|
||
asyncio.run(main('The time at San Francisco is'))
|
||
```
|
||
|
||
If there is a remote LLM Server running elsewhere, then you can use `llama_index.llms.openllm.OpenLLMAPI`:
|
||
|
||
```python
|
||
from llama_index.llms.openllm import OpenLLMAPI
|
||
```
|
||
|
||
> [!NOTE]
|
||
> All synchronous and asynchronous API from `llama_index.llms.LLM` are supported.
|
||
|
||
### [LangChain](https://python.langchain.com/docs/integrations/llms/openllm/)
|
||
|
||
Spin up an OpenLLM server, and connect to it by specifying its URL:
|
||
|
||
```python
|
||
from langchain.llms import OpenLLM
|
||
|
||
llm = OpenLLM(server_url='http://44.23.123.1:3000', server_type='http')
|
||
llm('What is the difference between a duck and a goose? And why there are so many Goose in Canada?')
|
||
```
|
||
|
||
### Transformers Agents
|
||
|
||
OpenLLM seamlessly integrates with
|
||
[Transformers Agents](https://huggingface.co/docs/transformers/transformers_agents).
|
||
|
||
> [!WARNING]
|
||
> The Transformers Agent is still at an experimental stage. It is
|
||
> recommended to install OpenLLM with `pip install -r nightly-requirements.txt`
|
||
> to get the latest API update for HuggingFace agent.
|
||
|
||
```python
|
||
import transformers
|
||
|
||
agent = transformers.HfAgent('http://localhost:3000/hf/agent') # URL that runs the OpenLLM server
|
||
|
||
agent.run('Is the following `text` positive or negative?', text="I don't like how this models is generate inputs")
|
||
```
|
||
|
||
<!-- hatch-fancy-pypi-readme interim stop -->
|
||
|
||

|
||
|
||
<br/>
|
||
|
||
<!-- hatch-fancy-pypi-readme meta start -->
|
||
|
||
## 🚀 Deploying models to production
|
||
|
||
There are several ways to deploy your LLMs:
|
||
|
||
### 🐳 Docker container
|
||
|
||
1. **Building a Bento**: With OpenLLM, you can easily build a Bento for a
|
||
specific model, like `mistralai/Mistral-7B-Instruct-v0.1`, using the `build` command.:
|
||
|
||
```bash
|
||
openllm build mistralai/Mistral-7B-Instruct-v0.1
|
||
```
|
||
|
||
A
|
||
[Bento](https://docs.bentoml.com/en/latest/concepts/bento.html#what-is-a-bento),
|
||
in BentoML, is the unit of distribution. It packages your program's source
|
||
code, models, files, artefacts, and dependencies.
|
||
|
||
2. **Containerize your Bento**
|
||
|
||
```bash
|
||
bentoml containerize <name:version>
|
||
```
|
||
|
||
This generates a OCI-compatible docker image that can be deployed anywhere
|
||
docker runs. For best scalability and reliability of your LLM service in
|
||
production, we recommend deploy with BentoCloud。
|
||
|
||
### ☁️ BentoCloud
|
||
|
||
Deploy OpenLLM with [BentoCloud](https://www.bentoml.com/), the inference platform
|
||
for fast moving AI teams.
|
||
|
||
1. **Create a BentoCloud account:** [sign up here](https://bentoml.com/)
|
||
|
||
2. **Log into your BentoCloud account:**
|
||
|
||
```bash
|
||
bentoml cloud login --api-token <your-api-token> --endpoint <bento-cloud-endpoint>
|
||
```
|
||
|
||
> [!NOTE]
|
||
> Replace `<your-api-token>` and `<bento-cloud-endpoint>` with your
|
||
> specific API token and the BentoCloud endpoint respectively.
|
||
|
||
3. **Bulding a Bento**: With OpenLLM, you can easily build a Bento for a
|
||
specific model, such as `mistralai/Mistral-7B-Instruct-v0.1`:
|
||
|
||
```bash
|
||
openllm build mistralai/Mistral-7B-Instruct-v0.1
|
||
```
|
||
|
||
4. **Pushing a Bento**: Push your freshly-built Bento service to BentoCloud via
|
||
the `push` command:
|
||
|
||
```bash
|
||
bentoml push <name:version>
|
||
```
|
||
|
||
5. **Deploying a Bento**: Deploy your LLMs to BentoCloud with a single
|
||
`bentoml deployment create` command following the
|
||
[deployment instructions](https://docs.bentoml.com/en/latest/reference/cli.html#bentoml-deployment-create).
|
||
|
||
## 👥 Community
|
||
|
||
Engage with like-minded individuals passionate about LLMs, AI, and more on our
|
||
[Discord](https://l.bentoml.com/join-openllm-discord)!
|
||
|
||
OpenLLM is actively maintained by the BentoML team. Feel free to reach out and
|
||
join us in our pursuit to make LLMs more accessible and easy to use 👉
|
||
[Join our Slack community!](https://l.bentoml.com/join-slack)
|
||
|
||
## 🎁 Contributing
|
||
|
||
We welcome contributions! If you're interested in enhancing OpenLLM's
|
||
capabilities or have any questions, don't hesitate to reach out in our
|
||
[discord channel](https://l.bentoml.com/join-openllm-discord).
|
||
|
||
Checkout our
|
||
[Developer Guide](https://github.com/bentoml/OpenLLM/blob/main/DEVELOPMENT.md)
|
||
if you wish to contribute to OpenLLM's codebase.
|
||
|
||
## 🍇 Telemetry
|
||
|
||
OpenLLM collects usage data to enhance user experience and improve the product.
|
||
We only report OpenLLM's internal API calls and ensure maximum privacy by
|
||
excluding sensitive information. We will never collect user code, model data, or
|
||
stack traces. For usage tracking, check out the
|
||
[code](https://github.com/bentoml/OpenLLM/blob/main/openllm-core/src/openllm_core/utils/analytics.py).
|
||
|
||
You can opt out of usage tracking by using the `--do-not-track` CLI option:
|
||
|
||
```bash
|
||
openllm [command] --do-not-track
|
||
```
|
||
|
||
Or by setting the environment variable `OPENLLM_DO_NOT_TRACK=True`:
|
||
|
||
```bash
|
||
export OPENLLM_DO_NOT_TRACK=True
|
||
```
|
||
|
||
## 📔 Citation
|
||
|
||
If you use OpenLLM in your research, we provide a [citation](./CITATION.cff) to
|
||
use:
|
||
|
||
```bibtex
|
||
@software{Pham_OpenLLM_Operating_LLMs_2023,
|
||
author = {Pham, Aaron and Yang, Chaoyu and Sheng, Sean and Zhao, Shenyang and Lee, Sauyon and Jiang, Bo and Dong, Fog and Guan, Xipeng and Ming, Frost},
|
||
license = {Apache-2.0},
|
||
month = jun,
|
||
title = {{OpenLLM: Operating LLMs in production}},
|
||
url = {https://github.com/bentoml/OpenLLM},
|
||
year = {2023}
|
||
}
|
||
```
|
||
|
||
<!-- hatch-fancy-pypi-readme meta stop -->
|