Commit Graph

4 Commits

Author SHA1 Message Date
rltakashige
5c8a237940 Handle model timeouts (#1177)
- Add eval with a timeout.
- Add fast synch flag

## Motivation

Because of the experimental FAST SYNCH flag, some models may not work.
This PR catches when this occurs and allows users to specify a run
without fast synch

## Changes

- Adds a flag to enable or disable fast synch (--fast-synch and
--no-fast-synch)
- Adds a heuristic timeout
- Reduces exo_bench default timeout to 10 minutes.

## Why It Works

Heuristic timeout assumes normal loading times on Mac devices (60 +
model size in gb / 5: e.g. DeepSeek takes up to 120 seconds to load on
tensor parallel, and timeout is set to 60 + 120 = 180s.

We could raise this value if necessary.

## Test Plan

### Manual Testing
Catches that GPT OSS fails to load in Tensor RDMA
Can launch with --no-fast-synch flag to launch GPT OSS.

**GPT OSS 20B**
TP with fast synch
<img width="3064" height="456" alt="image"
src="https://github.com/user-attachments/assets/f6e25cd8-8621-4e99-99fe-292ee05c4035"
/>

TP without fast synch
<img width="3098" height="496" alt="image"
src="https://github.com/user-attachments/assets/d36453d9-6686-4cfe-aa7c-a7d458369d4d"
/>
[Note: the performance is really not great as fast synch is off]

(As a sanity check)
PP with fast synch
<img width="3124" height="496" alt="image"
src="https://github.com/user-attachments/assets/e97d4547-c6fa-483d-badb-4b371b900b4c"
/>

PP without fast synch
<img width="3078" height="508" alt="image"
src="https://github.com/user-attachments/assets/b2e20dfd-4b0e-4295-8a92-417dfe745c28"
/>

PP without RDMA
<img width="3070" height="498" alt="image"
src="https://github.com/user-attachments/assets/a8509d68-0aef-4cda-bca5-a67d39a0801e"
/>

TP without RDMA
<img width="3068" height="496" alt="image"
src="https://github.com/user-attachments/assets/b5691429-89f4-4369-bcf2-8fde2ad7154a"
/>
2026-01-16 20:25:12 +00:00
rltakashige
745343c705 Return error responses for Chat Completions (#1173)
- Error chunks
- Use error handling in exo_bench.py

## Motivation

Return when an error occurs so that generation stops. Adding timeouts is
a separate TODO for model loading and chat completions.

## Changes

- Return HTTP exceptions as JSON responses in an OpenAI compatible
format.
- Context manager for generation to catch and return error messages.
- Use error handling in exo_bench.py.

## Test Plan

### Manual Testing
Manually tested that exo_bench returns on failures within and outside
generation

### Automated Testing
<!-- Describe changes to automated tests, or how existing tests cover
this change -->
<!-- - -->
2026-01-16 19:24:37 +00:00
rltakashige
4b3de6b984 Fix exo bench for transformers 5.x (#1168)
## Motivation
Prompt Sizer was broken as transformers 5.x tokenizers create
BatchEncodings which are essentially a dictionary of {input_ids: []}
instead of the list of input ids.

## Test Plan

### Manual Testing
Tested that exo bench runs as expected.

### Automated Testing
<!-- Describe changes to automated tests, or how existing tests cover
this change -->
<!-- - -->
2026-01-16 12:39:22 +00:00
rltakashige
077b1bc732 exo-bench (Benchmark model pp & tg speed) (#1099)
## Motivation

This PR implements benchmarking in the style of llama-bench. The main
difficulty here is the fact that exo is not a library - it exposes an
endpoint. This means that benchmarking numbers will be inaccurate if the
API is measured.

The solution assumes nodes are set up with uv run exo (or via the app),
and then hits the new endpoint /bench/chat/completions to retrieve
generation statistics directly from mlx_lm.
<!-- Why is this change needed? What problem does it solve? -->

This will allow us to release benchmarks for models and perform
regression tests.

TODO: Performance benchmarking.
<!-- If it fixes an open issue, please link to the issue here -->

## Changes

<!-- Describe what you changed in detail -->
- Adds /bench/chat/completions endpoint
- Adds BenchChatCompletion/Response
- Adds a logits processor to prevent response from ending early
- Adds a "Prompt Sizer" which downloads the tokenizer and dynamically
adjusts the prompt of "a" to fit the desired prompt size.
- Reduce prefill step size to 2048 for now (in future, dynamically
adjust this value)

<!-- Explain why your approach solves the problem -->

## Test Plan

### Manual Testing
<!-- Hardware: (e.g., MacBook Pro M1 Max 32GB, Mac Mini M2 16GB,
connected via Thunderbolt 4) -->
<!-- What you did: -->
<!-- - -->
Benchmarked Llama, Qwen, DeepSeek and Kimi models. Will require several
fixes to run consistently on all configurations (to be done in the
future).
Manually tested the normal API to verify chat requests complete as
expected.

### Automated Testing
<!-- Describe changes to automated tests, or how existing tests cover
this change -->
<!-- - -->
Not really possible. Type checker passes.
2026-01-06 17:39:09 +00:00