mirror of
https://github.com/exo-explore/exo.git
synced 2025-12-23 22:27:50 -05:00
243 lines
8.9 KiB
Python
243 lines
8.9 KiB
Python
"""
|
|
This type stub file was generated by pyright.
|
|
"""
|
|
|
|
from typing import Optional, Tuple, Union
|
|
|
|
import mlx.core as mx
|
|
from base import Module
|
|
|
|
class _Pool(Module):
|
|
def __init__(
|
|
self, pooling_function, kernel_size, stride, padding, padding_value
|
|
) -> None: ...
|
|
def __call__(self, x: mx.array) -> mx.array: ...
|
|
|
|
class _Pool1d(_Pool):
|
|
def __init__(
|
|
self,
|
|
pooling_function,
|
|
padding_value,
|
|
kernel_size: Union[int, Tuple[int]],
|
|
stride: Optional[Union[int, Tuple[int]]] = ...,
|
|
padding: Union[int, Tuple[int]] = ...,
|
|
) -> None: ...
|
|
|
|
class _Pool2d(_Pool):
|
|
def __init__(
|
|
self,
|
|
pooling_function,
|
|
padding_value,
|
|
kernel_size: Union[int, Tuple[int, int]],
|
|
stride: Optional[Union[int, Tuple[int, int]]] = ...,
|
|
padding: Optional[Union[int, Tuple[int, int]]] = ...,
|
|
) -> None: ...
|
|
|
|
class _Pool3d(_Pool):
|
|
def __init__(
|
|
self,
|
|
pooling_function,
|
|
padding_value,
|
|
kernel_size: Union[int, Tuple[int, int, int]],
|
|
stride: Optional[Union[int, Tuple[int, int, int]]] = ...,
|
|
padding: Optional[Union[int, Tuple[int, int, int]]] = ...,
|
|
) -> None: ...
|
|
|
|
class MaxPool1d(_Pool1d):
|
|
r"""Applies 1-dimensional max pooling.
|
|
|
|
Spatially downsamples the input by taking the maximum of a sliding window
|
|
of size ``kernel_size`` and sliding stride ``stride``.
|
|
|
|
Args:
|
|
kernel_size (int or tuple(int)): The size of the pooling window kernel.
|
|
stride (int or tuple(int), optional): The stride of the pooling window.
|
|
Default: ``kernel_size``.
|
|
padding (int or tuple(int), optional): How much negative infinity
|
|
padding to apply to the input. The padding amount is applied to
|
|
both sides of the spatial axis. Default: ``0``.
|
|
|
|
Examples:
|
|
>>> import mlx.core as mx
|
|
>>> import layers as nn
|
|
>>> x = mx.random.normal(shape=(4, 16, 5))
|
|
>>> pool = nn.MaxPool1d(kernel_size=2, stride=2)
|
|
>>> pool(x)
|
|
"""
|
|
def __init__(
|
|
self,
|
|
kernel_size: Union[int, Tuple[int]],
|
|
stride: Optional[Union[int, Tuple[int]]] = ...,
|
|
padding: Union[int, Tuple[int]] = ...,
|
|
) -> None: ...
|
|
|
|
class AvgPool1d(_Pool1d):
|
|
r"""Applies 1-dimensional average pooling.
|
|
|
|
Spatially downsamples the input by taking the average of a sliding window
|
|
of size ``kernel_size`` and sliding stride ``stride``.
|
|
|
|
Args:
|
|
kernel_size (int or tuple(int)): The size of the pooling window kernel.
|
|
stride (int or tuple(int), optional): The stride of the pooling window.
|
|
Default: ``kernel_size``.
|
|
padding (int or tuple(int), optional): How much zero padding to apply to
|
|
the input. The padding amount is applied to both sides of the spatial
|
|
axis. Default: ``0``.
|
|
|
|
Examples:
|
|
>>> import mlx.core as mx
|
|
>>> import layers as nn
|
|
>>> x = mx.random.normal(shape=(4, 16, 5))
|
|
>>> pool = nn.AvgPool1d(kernel_size=2, stride=2)
|
|
>>> pool(x)
|
|
"""
|
|
def __init__(
|
|
self,
|
|
kernel_size: Union[int, Tuple[int]],
|
|
stride: Optional[Union[int, Tuple[int]]] = ...,
|
|
padding: Union[int, Tuple[int]] = ...,
|
|
) -> None: ...
|
|
|
|
class MaxPool2d(_Pool2d):
|
|
r"""Applies 2-dimensional max pooling.
|
|
|
|
Spatially downsamples the input by taking the maximum of a sliding window
|
|
of size ``kernel_size`` and sliding stride ``stride``.
|
|
|
|
The parameters ``kernel_size``, ``stride``, and ``padding`` can either be:
|
|
|
|
* a single ``int`` -- in which case the same value is used for both the
|
|
height and width axis.
|
|
* a ``tuple`` of two ``int`` s -- in which case, the first ``int`` is
|
|
used for the height axis, the second ``int`` for the width axis.
|
|
|
|
Args:
|
|
kernel_size (int or tuple(int, int)): The size of the pooling window.
|
|
stride (int or tuple(int, int), optional): The stride of the pooling
|
|
window. Default: ``kernel_size``.
|
|
padding (int or tuple(int, int), optional): How much negative infinity
|
|
padding to apply to the input. The padding is applied on both sides
|
|
of the height and width axis. Default: ``0``.
|
|
|
|
Examples:
|
|
>>> import mlx.core as mx
|
|
>>> import layers as nn
|
|
>>> x = mx.random.normal(shape=(8, 32, 32, 4))
|
|
>>> pool = nn.MaxPool2d(kernel_size=2, stride=2)
|
|
>>> pool(x)
|
|
"""
|
|
def __init__(
|
|
self,
|
|
kernel_size: Union[int, Tuple[int, int]],
|
|
stride: Optional[Union[int, Tuple[int, int]]] = ...,
|
|
padding: Optional[Union[int, Tuple[int, int]]] = ...,
|
|
) -> None: ...
|
|
|
|
class AvgPool2d(_Pool2d):
|
|
r"""Applies 2-dimensional average pooling.
|
|
|
|
Spatially downsamples the input by taking the average of a sliding window
|
|
of size ``kernel_size`` and sliding stride ``stride``.
|
|
|
|
The parameters ``kernel_size``, ``stride``, and ``padding`` can either be:
|
|
|
|
* a single ``int`` -- in which case the same value is used for both the
|
|
height and width axis.
|
|
* a ``tuple`` of two ``int`` s -- in which case, the first ``int`` is
|
|
used for the height axis, the second ``int`` for the width axis.
|
|
|
|
Args:
|
|
kernel_size (int or tuple(int, int)): The size of the pooling window.
|
|
stride (int or tuple(int, int), optional): The stride of the pooling
|
|
window. Default: ``kernel_size``.
|
|
padding (int or tuple(int, int), optional): How much zero
|
|
padding to apply to the input. The padding is applied on both sides
|
|
of the height and width axis. Default: ``0``.
|
|
|
|
Examples:
|
|
>>> import mlx.core as mx
|
|
>>> import layers as nn
|
|
>>> x = mx.random.normal(shape=(8, 32, 32, 4))
|
|
>>> pool = nn.AvgPool2d(kernel_size=2, stride=2)
|
|
>>> pool(x)
|
|
"""
|
|
def __init__(
|
|
self,
|
|
kernel_size: Union[int, Tuple[int, int]],
|
|
stride: Optional[Union[int, Tuple[int, int]]] = ...,
|
|
padding: Optional[Union[int, Tuple[int, int]]] = ...,
|
|
) -> None: ...
|
|
|
|
class MaxPool3d(_Pool3d):
|
|
r"""Applies 3-dimensional max pooling.
|
|
|
|
Spatially downsamples the input by taking the maximum of a sliding window
|
|
of size ``kernel_size`` and sliding stride ``stride``.
|
|
|
|
The parameters ``kernel_size``, ``stride``, and ``padding`` can either be:
|
|
|
|
* a single ``int`` -- in which case the same value is used for the depth,
|
|
height, and width axis.
|
|
* a ``tuple`` of three ``int`` s -- in which case, the first ``int`` is used
|
|
for the depth axis, the second ``int`` for the height axis, and the third
|
|
``int`` for the width axis.
|
|
|
|
Args:
|
|
kernel_size (int or tuple(int, int, int)): The size of the pooling window.
|
|
stride (int or tuple(int, int, int), optional): The stride of the pooling
|
|
window. Default: ``kernel_size``.
|
|
padding (int or tuple(int, int, int), optional): How much negative infinity
|
|
padding to apply to the input. The padding is applied on both sides
|
|
of the depth, height and width axis. Default: ``0``.
|
|
|
|
Examples:
|
|
>>> import mlx.core as mx
|
|
>>> import layers as nn
|
|
>>> x = mx.random.normal(shape=(8, 16, 32, 32, 4))
|
|
>>> pool = nn.MaxPool3d(kernel_size=2, stride=2)
|
|
>>> pool(x)
|
|
"""
|
|
def __init__(
|
|
self,
|
|
kernel_size: Union[int, Tuple[int, int, int]],
|
|
stride: Optional[Union[int, Tuple[int, int, int]]] = ...,
|
|
padding: Optional[Union[int, Tuple[int, int, int]]] = ...,
|
|
) -> None: ...
|
|
|
|
class AvgPool3d(_Pool3d):
|
|
r"""Applies 3-dimensional average pooling.
|
|
|
|
Spatially downsamples the input by taking the average of a sliding window
|
|
of size ``kernel_size`` and sliding stride ``stride``.
|
|
|
|
The parameters ``kernel_size``, ``stride``, and ``padding`` can either be:
|
|
|
|
* a single ``int`` -- in which case the same value is used for the depth,
|
|
height, and width axis.
|
|
* a ``tuple`` of three ``int`` s -- in which case, the first ``int`` is used
|
|
for the depth axis, the second ``int`` for the height axis, and the third
|
|
``int`` for the width axis.
|
|
|
|
Args:
|
|
kernel_size (int or tuple(int, int, int)): The size of the pooling window.
|
|
stride (int or tuple(int, int, int), optional): The stride of the pooling
|
|
window. Default: ``kernel_size``.
|
|
padding (int or tuple(int, int, int), optional): How much zero
|
|
padding to apply to the input. The padding is applied on both sides
|
|
of the depth, height and width axis. Default: ``0``.
|
|
|
|
Examples:
|
|
>>> import mlx.core as mx
|
|
>>> import layers as nn
|
|
>>> x = mx.random.normal(shape=(8, 16, 32, 32, 4))
|
|
>>> pool = nn.AvgPool3d(kernel_size=2, stride=2)
|
|
>>> pool(x)
|
|
"""
|
|
def __init__(
|
|
self,
|
|
kernel_size: Union[int, Tuple[int, int, int]],
|
|
stride: Optional[Union[int, Tuple[int, int, int]]] = ...,
|
|
padding: Optional[Union[int, Tuple[int, int, int]]] = ...,
|
|
) -> None: ...
|