Files
exo/.mlx_typings/mlx/nn/layers/recurrent.pyi
2025-11-06 21:59:29 +00:00

114 lines
3.8 KiB
Python

"""
This type stub file was generated by pyright.
"""
from typing import Callable, Optional
import mlx.core as mx
from base import Module
class RNN(Module):
r"""An Elman recurrent layer.
The input is a sequence of shape ``NLD`` or ``LD`` where:
* ``N`` is the optional batch dimension
* ``L`` is the sequence length
* ``D`` is the input's feature dimension
Concretely, for each element along the sequence length axis, this
layer applies the function:
.. math::
h_{t + 1} = \text{tanh} (W_{ih}x_t + W_{hh}h_t + b)
The hidden state :math:`h` has shape ``NH`` or ``H``, depending on
whether the input is batched or not. Returns the hidden state at each
time step, of shape ``NLH`` or ``LH``.
Args:
input_size (int): Dimension of the input, ``D``.
hidden_size (int): Dimension of the hidden state, ``H``.
bias (bool, optional): Whether to use a bias. Default: ``True``.
nonlinearity (callable, optional): Non-linearity to use. If ``None``,
then func:`tanh` is used. Default: ``None``.
"""
def __init__(
self,
input_size: int,
hidden_size: int,
bias: bool = ...,
nonlinearity: Optional[Callable] = ...,
) -> None: ...
def __call__(self, x: mx.array, hidden=...) -> mx.array: ...
class GRU(Module):
r"""A gated recurrent unit (GRU) RNN layer.
The input has shape ``NLD`` or ``LD`` where:
* ``N`` is the optional batch dimension
* ``L`` is the sequence length
* ``D`` is the input's feature dimension
Concretely, for each element of the sequence, this layer computes:
.. math::
\begin{aligned}
r_t &= \sigma (W_{xr}x_t + W_{hr}h_t + b_{r}) \\
z_t &= \sigma (W_{xz}x_t + W_{hz}h_t + b_{z}) \\
n_t &= \text{tanh}(W_{xn}x_t + b_{n} + r_t \odot (W_{hn}h_t + b_{hn})) \\
h_{t + 1} &= (1 - z_t) \odot n_t + z_t \odot h_t
\end{aligned}
The hidden state :math:`h` has shape ``NH`` or ``H`` depending on
whether the input is batched or not. Returns the hidden state at each
time step of shape ``NLH`` or ``LH``.
Args:
input_size (int): Dimension of the input, ``D``.
hidden_size (int): Dimension of the hidden state, ``H``.
bias (bool): Whether to use biases or not. Default: ``True``.
"""
def __init__(self, input_size: int, hidden_size: int, bias: bool = ...) -> None: ...
def __call__(self, x: mx.array, hidden=...) -> mx.array: ...
class LSTM(Module):
r"""An LSTM recurrent layer.
The input has shape ``NLD`` or ``LD`` where:
* ``N`` is the optional batch dimension
* ``L`` is the sequence length
* ``D`` is the input's feature dimension
Concretely, for each element of the sequence, this layer computes:
.. math::
\begin{aligned}
i_t &= \sigma (W_{xi}x_t + W_{hi}h_t + b_{i}) \\
f_t &= \sigma (W_{xf}x_t + W_{hf}h_t + b_{f}) \\
g_t &= \text{tanh} (W_{xg}x_t + W_{hg}h_t + b_{g}) \\
o_t &= \sigma (W_{xo}x_t + W_{ho}h_t + b_{o}) \\
c_{t + 1} &= f_t \odot c_t + i_t \odot g_t \\
h_{t + 1} &= o_t \text{tanh}(c_{t + 1})
\end{aligned}
The hidden state :math:`h` and cell state :math:`c` have shape ``NH``
or ``H``, depending on whether the input is batched or not.
The layer returns two arrays, the hidden state and the cell state at
each time step, both of shape ``NLH`` or ``LH``.
Args:
input_size (int): Dimension of the input, ``D``.
hidden_size (int): Dimension of the hidden state, ``H``.
bias (bool): Whether to use biases or not. Default: ``True``.
"""
def __init__(self, input_size: int, hidden_size: int, bias: bool = ...) -> None: ...
def __call__(
self, x: mx.array, hidden=..., cell=...
) -> tuple[mx.array, mx.array]: ...