Currently Flatpak has a few different implementations of helper functions to download a URI using libsoup, but the best one seems to be in common/flatpak-utils-http.c. So this commit deletes the others and makes use of flatpak_load_http_uri() in place of download_uri() in a few places. This has a couple consequences: 1) It means that we're now properly checking HTTP status codes rather than assuming that the request was successful, in the install command, remote-add command, and in FlatpakTransaction. This fixes an assertion failure seen by a user when they tried to use a flatpakref URL that hit a 404. 2) It means that in the places where we're using flatpak_load_http_uri() we are only supporting http:// and https:// URLs not, say, file:// ones. For the install and remote-add commands this was already being enforced. For the handling of flatpakref files and bundles in FlatpakTransaction, I believe it's just convention because it doesn't make much sense to do anything else; this commit enforces that convention. Also, add a unit test for the case of trying to install a flatpakref at a URL that hits a 404 error. Fixes https://github.com/flatpak/flatpak/issues/2727 Closes: #2740 Approved by: matthiasclasen
Flatpak is a system for building, distributing, and running sandboxed desktop applications on Linux.
See https://flatpak.org/ for more information.
Community discussion happens in #flatpak on Freenode and on the mailing list.
Read documentation for the flatpak commandline tools and for the libflatpak library API.
Contributing
Flatpak welcomes contributions from anyone! Here are some ways you can help:
- Fix one of the issues and submit a PR
- Update flatpak's translations and submit a PR
- Improve flatpak's documentation, hosted at http://docs.flatpak.org and developed over in flatpak-docs
- Find a bug and submit a detailed report including your OS, flatpak version, and the steps to reproduce
- Add your favorite application to Flathub by writing a flatpak-builder manifest and submitting it
- Improve the Flatpak support in your favorite Linux distribution
Hacking
Flatpak uses a traditional autoconf-style build mechanism. To build just do
./autogen.sh
./configure [args]
make
make install
To automatically install dependencies on apt-based distributions you can try
running apt build-dep flatpak and on dnf ones try dnf builddep flatpak.
Dependencies you will need include: autoconf, automake, libtool, bison,
gettext, gtk-doc, gobject-introspection, libcap, libarchive, libxml2, libsoup,
gpgme, polkit, libXau, ostree, json-glib, appstream, libseccomp (or their devel
packages).
Most configure arguments are documented in ./configure --help. However,
there are some options that are a bit more complicated.
Flatpak relies on a project called Bubblewrap for the
low-level sandboxing. By default, an in-tree copy of this is built
(distributed in the tarball or using git submodules in the git
tree). This will build a helper called flatpak-bwrap. If your system
has a recent enough version of Bubblewrap already, you can use
--with-system-bubblewrap to use that instead.
Bubblewrap can run in two modes, either using unprivileged user
namespaces or setuid mode. This requires that the kernel supports this,
which some distributions disable. For instance, Debian and Arch
(linux kernel v4.14.5
or later), support user namespaces with the kernel.unprivileged_userns_clone
sysctl enabled.
If unprivileged user namespaces are not available, then Bubblewrap must be built as setuid root. This is believed to be safe, as it is designed to do this. Any build of Bubblewrap supports both unprivileged and setuid mode, you just need to set the setuid bit for it to change mode.
However, this does complicate the installation a bit. If you pass
--with-priv-mode=setuid to configure (of Flatpak or Bubblewrap) then
make install will try to set the setuid bit. However that means you
have to run make install as root. Alternatively, you can pass
--enable-sudo to configure and it will call sudo when setting the
setuid bit. Alternatively you can enable setuid completely outside of
the installation, which is common for example when packaging Bubblewrap
in a .deb or .rpm.
There are some complications when building Flatpak to a different
prefix than the system-installed version. First of all, the newly
built Flatpak will look for system-installed flatpaks in
$PREFIX/var/lib/flatpak, which will not match existing installations.
You can use --with-system-install-dir=/var/lib/flatpak to make both
installations use the same location.
Secondly, Flatpak ships with a root-privileged PolicyKit helper for
system-wide installation, called flatpak-system-helper. It is D-Bus
activated (on the system bus) and if you install in a non-standard
location it is likely that D-Bus will not find it and PolicyKit
integration will not work. However, if the system installation is
synchronized, you can often use the system installed helper instead—
at least if the two versions are close in versions.
This repository
The Flatpak project consists of multiple pieces, and it can be a bit challenging to find your way around at first. Here is a quick intro to the major components of the flatpak repo:
common: contains the library, libflatpak. It also contains various pieces of code that are shared between the library, the client and the services. Non-public code can be recognized by having a-private.hheader file.app: the commandline client. Each command has aflatpak-builtins-source filedata: D-Bus interface definition filessession-helper: The flatpak-session-helper service, which provides various helpers for the sandbox setup at runtimesystem-helper: The flatpak-system-helper service, which runs as root on the system bus and allows non-root users to modify system installationsportal: The Flatpak portal service, which lets sandboxed apps request the creation of new sandboxesdoc: The sources for the documentation, both man pages and library documentationtests: The testsuitebubblewrap: Flatpak's unprivileged sandboxing tool which is developed separately and exists here as a submodulelibglnx: a small utility library for projects that use GLib on Linux, as a submoduledbus-proxy: a filtering proxy for D-Bus connections, as a submodule
