This adds a new helper method "GetRevokefsFd" which is responsible for spawning the backend part of the revokefs filesystem. It takes care of creating a cache location for the backing directory in repo/tmp. This cache location is transferred over D-Bus to the client with the other end socket fd. The client on receiving the socket fd creates a mountpoint directory and spawns the revokefs-fuse filesystem. It then creates a child repo for the pull. In any case of failure, it fallbacks on the current code path (which causes temporary duplication of files on disk). The backing dir itself and all files written to it by the revokefs-fuse backend process are owned by the "flatpak" user. After the pull in the child repo is completed, it's ownership is then canoncalized with owner=root and permissions as per bare-user-only in Deploy(). Now we have fulfilled all the criteria to hardlink the child repo into the system one and avoid duplication. See [1]. If there is existing cache directory available in repo/tmp, it will be mounted using revokefs-fuse for the current pull. Hence, it is possible to recover the previous partial pull which might have failed due to some error. [1] https://github.com/ostreedev/ostree/pull/1776 Closes: #2657 Approved by: alexlarsson
Flatpak is a system for building, distributing, and running sandboxed desktop applications on Linux.
See https://flatpak.org/ for more information.
Community discussion happens in #flatpak on Freenode and on the mailing list.
Read documentation for the flatpak commandline tools and for the libflatpak library API.
Contributing
Flatpak welcomes contributions from anyone! Here are some ways you can help:
- Fix one of the issues and submit a PR
- Update flatpak's translations and submit a PR
- Improve flatpak's documentation, hosted at http://docs.flatpak.org and developed over in flatpak-docs
- Find a bug and submit a detailed report including your OS, flatpak version, and the steps to reproduce
- Add your favorite application to Flathub by writing a flatpak-builder manifest and submitting it
- Improve the Flatpak support in your favorite Linux distribution
Hacking
Flatpak uses a traditional autoconf-style build mechanism. To build just do
./autogen.sh
./configure [args]
make
make install
To automatically install dependencies on apt-based distributions you can try
running apt build-dep flatpak and on dnf ones try dnf builddep flatpak.
Dependencies you will need include: autoconf, automake, libtool, bison,
gettext, gtk-doc, gobject-introspection, libcap, libarchive, libxml2, libsoup,
gpgme, polkit, libXau, ostree, json-glib, appstream, libseccomp (or their devel
packages).
Most configure arguments are documented in ./configure --help. However,
there are some options that are a bit more complicated.
Flatpak relies on a project called Bubblewrap for the
low-level sandboxing. By default, an in-tree copy of this is built
(distributed in the tarball or using git submodules in the git
tree). This will build a helper called flatpak-bwrap. If your system
has a recent enough version of Bubblewrap already, you can use
--with-system-bubblewrap to use that instead.
Bubblewrap can run in two modes, either using unprivileged user
namespaces or setuid mode. This requires that the kernel supports this,
which some distributions disable. For instance, Debian and Arch
(linux kernel v4.14.5
or later), support user namespaces with the kernel.unprivileged_userns_clone
sysctl enabled.
If unprivileged user namespaces are not available, then Bubblewrap must be built as setuid root. This is believed to be safe, as it is designed to do this. Any build of Bubblewrap supports both unprivileged and setuid mode, you just need to set the setuid bit for it to change mode.
However, this does complicate the installation a bit. If you pass
--with-priv-mode=setuid to configure (of Flatpak or Bubblewrap) then
make install will try to set the setuid bit. However that means you
have to run make install as root. Alternatively, you can pass
--enable-sudo to configure and it will call sudo when setting the
setuid bit. Alternatively you can enable setuid completely outside of
the installation, which is common for example when packaging Bubblewrap
in a .deb or .rpm.
There are some complications when building Flatpak to a different
prefix than the system-installed version. First of all, the newly
built Flatpak will look for system-installed flatpaks in
$PREFIX/var/lib/flatpak, which will not match existing installations.
You can use --with-system-install-dir=/var/lib/flatpak to make both
installations use the same location.
Secondly, Flatpak ships with a root-privileged PolicyKit helper for
system-wide installation, called flatpak-system-helper. It is D-Bus
activated (on the system bus) and if you install in a non-standard
location it is likely that D-Bus will not find it and PolicyKit
integration will not work. However, if the system installation is
synchronized, you can often use the system installed helper instead—
at least if the two versions are close in versions.
This repository
The Flatpak project consists of multiple pieces, and it can be a bit challenging to find your way around at first. Here is a quick intro to the major components of the flatpak repo:
common: contains the library, libflatpak. It also contains various pieces of code that are shared between the library, the client and the services. Non-public code can be recognized by having a-private.hheader file.app: the commandline client. Each command has aflatpak-builtins-source filedata: D-Bus interface definition filessession-helper: The flatpak-session-helper service, which provides various helpers for the sandbox setup at runtimesystem-helper: The flatpak-system-helper service, which runs as root on the system bus and allows non-root users to modify system installationsportal: The Flatpak portal service, which lets sandboxed apps request the creation of new sandboxesdoc: The sources for the documentation, both man pages and library documentationtests: The testsuitebubblewrap: Flatpak's unprivileged sandboxing tool which is developed separately and exists here as a submodulelibglnx: a small utility library for projects that use GLib on Linux, as a submoduledbus-proxy: a filtering proxy for D-Bus connections, as a submodule
