Compare commits

..

2 Commits

Author SHA1 Message Date
Nicolas Mowen
7e14b8a42e Improve handling of images in request 2026-01-22 08:59:30 -07:00
Nicolas Mowen
6569f27c26 Add live context tool 2026-01-20 09:01:28 -07:00
3 changed files with 185 additions and 3 deletions

View File

@@ -1,10 +1,12 @@
"""Chat and LLM tool calling APIs."""
import base64
import json
import logging
from datetime import datetime, timezone
from typing import Any, Dict, List
from typing import Any, Dict, List, Optional
import cv2
from fastapi import APIRouter, Body, Depends, Request
from fastapi.responses import JSONResponse
from pydantic import BaseModel
@@ -87,6 +89,28 @@ def get_tool_definitions() -> List[Dict[str, Any]]:
"required": [],
},
},
{
"type": "function",
"function": {
"name": "get_live_context",
"description": (
"Get the current detection information for a camera: objects being tracked, "
"zones, timestamps. Use this to understand what is visible in the live view. "
"Call this when the user has included a live image (via include_live_image) or "
"when answering questions about what is happening right now on a specific camera."
),
"parameters": {
"type": "object",
"properties": {
"camera": {
"type": "string",
"description": "Camera name to get live context for.",
},
},
"required": ["camera"],
},
},
},
]
@@ -207,6 +231,98 @@ async def execute_tool(
)
async def _execute_get_live_context(
request: Request,
camera: str,
allowed_cameras: List[str],
) -> Dict[str, Any]:
if camera not in allowed_cameras:
return {
"error": f"Camera '{camera}' not found or access denied",
}
if camera not in request.app.frigate_config.cameras:
return {
"error": f"Camera '{camera}' not found",
}
try:
frame_processor = request.app.detected_frames_processor
camera_state = frame_processor.camera_states.get(camera)
if camera_state is None:
return {
"error": f"Camera '{camera}' state not available",
}
tracked_objects_dict = {}
with camera_state.current_frame_lock:
tracked_objects = camera_state.tracked_objects.copy()
frame_time = camera_state.current_frame_time
for obj_id, tracked_obj in tracked_objects.items():
obj_dict = tracked_obj.to_dict()
if obj_dict.get("frame_time") == frame_time:
tracked_objects_dict[obj_id] = {
"label": obj_dict.get("label"),
"zones": obj_dict.get("current_zones", []),
"sub_label": obj_dict.get("sub_label"),
"stationary": obj_dict.get("stationary", False),
}
return {
"camera": camera,
"timestamp": frame_time,
"detections": list(tracked_objects_dict.values()),
}
except Exception as e:
logger.error(f"Error executing get_live_context: {e}", exc_info=True)
return {
"error": f"Error getting live context: {str(e)}",
}
async def _get_live_frame_image_url(
request: Request,
camera: str,
allowed_cameras: List[str],
) -> Optional[str]:
"""
Fetch the current live frame for a camera as a base64 data URL.
Returns None if the frame cannot be retrieved. Used when include_live_image
is set to attach the image to the first user message.
"""
if (
camera not in allowed_cameras
or camera not in request.app.frigate_config.cameras
):
return None
try:
frame_processor = request.app.detected_frames_processor
if camera not in frame_processor.camera_states:
return None
frame = frame_processor.get_current_frame(camera, {})
if frame is None:
return None
height, width = frame.shape[:2]
max_dimension = 1024
if height > max_dimension or width > max_dimension:
scale = max_dimension / max(height, width)
frame = cv2.resize(
frame,
(int(width * scale), int(height * scale)),
interpolation=cv2.INTER_AREA,
)
_, img_encoded = cv2.imencode(".jpg", frame, [cv2.IMWRITE_JPEG_QUALITY, 85])
b64 = base64.b64encode(img_encoded.tobytes()).decode("utf-8")
return f"data:image/jpeg;base64,{b64}"
except Exception as e:
logger.debug("Failed to get live frame for %s: %s", camera, e)
return None
async def _execute_tool_internal(
tool_name: str,
arguments: Dict[str, Any],
@@ -231,6 +347,11 @@ async def _execute_tool_internal(
except (json.JSONDecodeError, AttributeError) as e:
logger.warning(f"Failed to extract tool result: {e}")
return {"error": "Failed to parse tool result"}
elif tool_name == "get_live_context":
camera = arguments.get("camera")
if not camera:
return {"error": "Camera parameter is required"}
return await _execute_get_live_context(request, camera, allowed_cameras)
else:
return {"error": f"Unknown tool: {tool_name}"}
@@ -277,13 +398,43 @@ async def chat_completion(
current_datetime = datetime.now(timezone.utc)
current_date_str = current_datetime.strftime("%Y-%m-%d")
current_time_str = current_datetime.strftime("%H:%M:%S %Z")
cameras_info = []
config = request.app.frigate_config
for camera_id in allowed_cameras:
if camera_id not in config.cameras:
continue
camera_config = config.cameras[camera_id]
friendly_name = (
camera_config.friendly_name
if camera_config.friendly_name
else camera_id.replace("_", " ").title()
)
cameras_info.append(f" - {friendly_name} (ID: {camera_id})")
cameras_section = ""
if cameras_info:
cameras_section = (
"\n\nAvailable cameras:\n"
+ "\n".join(cameras_info)
+ "\n\nWhen users refer to cameras by their friendly name (e.g., 'Back Deck Camera'), use the corresponding camera ID (e.g., 'back_deck_cam') in tool calls."
)
live_image_note = ""
if body.include_live_image:
live_image_note = (
f"\n\nThe first user message includes a live image from camera "
f"'{body.include_live_image}'. Use get_live_context for that camera to get "
"current detection details (objects, zones) to aid in understanding the image."
)
system_prompt = f"""You are a helpful assistant for Frigate, a security camera NVR system. You help users answer questions about their cameras, detected objects, and events.
Current date and time: {current_date_str} at {current_time_str} (UTC)
When users ask questions about "today", "yesterday", "this week", etc., use the current date above as reference.
When searching for objects or events, use ISO 8601 format for dates (e.g., {current_date_str}T00:00:00Z for the start of today).
Always be accurate with time calculations based on the current date provided."""
Always be accurate with time calculations based on the current date provided.{cameras_section}{live_image_note}"""
conversation.append(
{
@@ -292,6 +443,7 @@ Always be accurate with time calculations based on the current date provided."""
}
)
first_user_message_seen = False
for msg in body.messages:
msg_dict = {
"role": msg.role,
@@ -301,6 +453,22 @@ Always be accurate with time calculations based on the current date provided."""
msg_dict["tool_call_id"] = msg.tool_call_id
if msg.name:
msg_dict["name"] = msg.name
if (
msg.role == "user"
and not first_user_message_seen
and body.include_live_image
):
first_user_message_seen = True
image_url = await _get_live_frame_image_url(
request, body.include_live_image, allowed_cameras
)
if image_url:
msg_dict["content"] = [
{"type": "text", "text": msg.content},
{"type": "image_url", "image_url": {"url": image_url}},
]
conversation.append(msg_dict)
tool_iterations = 0

View File

@@ -32,3 +32,10 @@ class ChatCompletionRequest(BaseModel):
le=10,
description="Maximum number of tool call iterations (default: 5)",
)
include_live_image: Optional[str] = Field(
default=None,
description=(
"If set, the current live frame from this camera is attached to the first "
"user message as multimodal content. Use with get_live_context for detection info."
),
)

View File

@@ -216,7 +216,14 @@ class LlamaCppClient(GenAIClient):
"finish_reason": "error",
}
except requests.exceptions.RequestException as e:
logger.warning("llama.cpp returned an error: %s", str(e))
error_detail = str(e)
if hasattr(e, "response") and e.response is not None:
try:
error_body = e.response.text
error_detail = f"{str(e)} - Response: {error_body[:500]}"
except Exception:
pass
logger.warning("llama.cpp returned an error: %s", error_detail)
return {
"content": None,
"tool_calls": None,