mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-06 11:31:53 -05:00
Compare commits
85 Commits
dependabot
...
fix-log-le
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5615ec82dc | ||
|
|
c9055ea941 | ||
|
|
c9ba851f0d | ||
|
|
a8ab82937b | ||
|
|
21e4b36c7c | ||
|
|
06141b900e | ||
|
|
011e7a1ce6 | ||
|
|
81d5e80dd2 | ||
|
|
3b79b34c07 | ||
|
|
7d8d2c5521 | ||
|
|
7fcce67c2a | ||
|
|
87da12c453 | ||
|
|
522630487b | ||
|
|
77eb5d6012 | ||
|
|
7339961636 | ||
|
|
c34fd3b0d5 | ||
|
|
00c8c407c5 | ||
|
|
b17e5a3eff | ||
|
|
8b3c8a0ade | ||
|
|
2fe5e06fed | ||
|
|
e9db966097 | ||
|
|
4d63a74fd6 | ||
|
|
b6e5894650 | ||
|
|
62b880a4b2 | ||
|
|
5984346623 | ||
|
|
a394d37bfe | ||
|
|
a407f08db6 | ||
|
|
2cd14341e0 | ||
|
|
9285c5e10a | ||
|
|
74ac45d0af | ||
|
|
2f06cfe50c | ||
|
|
9413f1c46d | ||
|
|
fee3050886 | ||
|
|
9d572ba8cb | ||
|
|
9267d006ce | ||
|
|
e6e2b74034 | ||
|
|
0a307edce9 | ||
|
|
59a959430d | ||
|
|
2d83992284 | ||
|
|
e4fe021279 | ||
|
|
b4520d9e2f | ||
|
|
3b6814fbc9 | ||
|
|
338d85a9a2 | ||
|
|
4131252a3b | ||
|
|
50ac5a1483 | ||
|
|
a75f6945ae | ||
|
|
90b14f1a32 | ||
|
|
d633c7d966 | ||
|
|
0a8f499640 | ||
|
|
cfeb86646f | ||
|
|
bf099c3edd | ||
|
|
2e1706baa0 | ||
|
|
43c8f68e44 | ||
|
|
90d857ad6d | ||
|
|
c222aa0e65 | ||
|
|
cd37af4365 | ||
|
|
5e57dbe070 | ||
|
|
bd568ab3b1 | ||
|
|
7d02220ec5 | ||
|
|
da75481443 | ||
|
|
85bc988c76 | ||
|
|
53a592322a | ||
|
|
0a24e3ce67 | ||
|
|
d1a184d4ac | ||
|
|
311549536c | ||
|
|
ace11730bd | ||
|
|
2b345bd3f7 | ||
|
|
e2353e55f3 | ||
|
|
cd3d0883bc | ||
|
|
820fc6e9b5 | ||
|
|
a326ecdc9f | ||
|
|
91f9a01df5 | ||
|
|
6572fa8a48 | ||
|
|
067de06176 | ||
|
|
849677c758 | ||
|
|
1c7f68bf44 | ||
|
|
68fee3ed7b | ||
|
|
c13a47f30b | ||
|
|
8d26d2dca2 | ||
|
|
4188eedf3d | ||
|
|
8a52d83065 | ||
|
|
b2d1fdf7eb | ||
|
|
2c34e1ec10 | ||
|
|
91cc6747b6 | ||
|
|
ea39bb3565 |
387
.github/copilot-instructions.md
vendored
387
.github/copilot-instructions.md
vendored
@@ -1,2 +1,385 @@
|
||||
Never write strings in the frontend directly, always write to and reference the relevant translations file.
|
||||
Always conform new and refactored code to the existing coding style in the project.
|
||||
# GitHub Copilot Instructions for Frigate NVR
|
||||
|
||||
This document provides coding guidelines and best practices for contributing to Frigate NVR, a complete and local NVR designed for Home Assistant with AI object detection.
|
||||
|
||||
## Project Overview
|
||||
|
||||
Frigate NVR is a realtime object detection system for IP cameras that uses:
|
||||
|
||||
- **Backend**: Python 3.13+ with FastAPI, OpenCV, TensorFlow/ONNX
|
||||
- **Frontend**: React with TypeScript, Vite, TailwindCSS
|
||||
- **Architecture**: Multiprocessing design with ZMQ and MQTT communication
|
||||
- **Focus**: Minimal resource usage with maximum performance
|
||||
|
||||
## Code Review Guidelines
|
||||
|
||||
When reviewing code, do NOT comment on:
|
||||
|
||||
- Missing imports - Static analysis tooling catches these
|
||||
- Code formatting - Ruff (Python) and Prettier (TypeScript/React) handle formatting
|
||||
- Minor style inconsistencies already enforced by linters
|
||||
|
||||
## Python Backend Standards
|
||||
|
||||
### Python Requirements
|
||||
|
||||
- **Compatibility**: Python 3.13+
|
||||
- **Language Features**: Use modern Python features:
|
||||
- Pattern matching
|
||||
- Type hints (comprehensive typing preferred)
|
||||
- f-strings (preferred over `%` or `.format()`)
|
||||
- Dataclasses
|
||||
- Async/await patterns
|
||||
|
||||
### Code Quality Standards
|
||||
|
||||
- **Formatting**: Ruff (configured in `pyproject.toml`)
|
||||
- **Linting**: Ruff with rules defined in project config
|
||||
- **Type Checking**: Use type hints consistently
|
||||
- **Testing**: unittest framework - use `python3 -u -m unittest` to run tests
|
||||
- **Language**: American English for all code, comments, and documentation
|
||||
|
||||
### Logging Standards
|
||||
|
||||
- **Logger Pattern**: Use module-level logger
|
||||
|
||||
```python
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
```
|
||||
|
||||
- **Format Guidelines**:
|
||||
- No periods at end of log messages
|
||||
- No sensitive data (keys, tokens, passwords)
|
||||
- Use lazy logging: `logger.debug("Message with %s", variable)`
|
||||
- **Log Levels**:
|
||||
- `debug`: Development and troubleshooting information
|
||||
- `info`: Important runtime events (startup, shutdown, state changes)
|
||||
- `warning`: Recoverable issues that should be addressed
|
||||
- `error`: Errors that affect functionality but don't crash the app
|
||||
- `exception`: Use in except blocks to include traceback
|
||||
|
||||
### Error Handling
|
||||
|
||||
- **Exception Types**: Choose most specific exception available
|
||||
- **Try/Catch Best Practices**:
|
||||
- Only wrap code that can throw exceptions
|
||||
- Keep try blocks minimal - process data after the try/except
|
||||
- Avoid bare exceptions except in background tasks
|
||||
|
||||
Bad pattern:
|
||||
|
||||
```python
|
||||
try:
|
||||
data = await device.get_data() # Can throw
|
||||
# ❌ Don't process data inside try block
|
||||
processed = data.get("value", 0) * 100
|
||||
result = processed
|
||||
except DeviceError:
|
||||
logger.error("Failed to get data")
|
||||
```
|
||||
|
||||
Good pattern:
|
||||
|
||||
```python
|
||||
try:
|
||||
data = await device.get_data() # Can throw
|
||||
except DeviceError:
|
||||
logger.error("Failed to get data")
|
||||
return
|
||||
|
||||
# ✅ Process data outside try block
|
||||
processed = data.get("value", 0) * 100
|
||||
result = processed
|
||||
```
|
||||
|
||||
### Async Programming
|
||||
|
||||
- **External I/O**: All external I/O operations must be async
|
||||
- **Best Practices**:
|
||||
- Avoid sleeping in loops - use `asyncio.sleep()` not `time.sleep()`
|
||||
- Avoid awaiting in loops - use `asyncio.gather()` instead
|
||||
- No blocking calls in async functions
|
||||
- Use `asyncio.create_task()` for background operations
|
||||
- **Thread Safety**: Use proper synchronization for shared state
|
||||
|
||||
### Documentation Standards
|
||||
|
||||
- **Module Docstrings**: Concise descriptions at top of files
|
||||
```python
|
||||
"""Utilities for motion detection and analysis."""
|
||||
```
|
||||
- **Function Docstrings**: Required for public functions and methods
|
||||
|
||||
```python
|
||||
async def process_frame(frame: ndarray, config: Config) -> Detection:
|
||||
"""Process a video frame for object detection.
|
||||
|
||||
Args:
|
||||
frame: The video frame as numpy array
|
||||
config: Detection configuration
|
||||
|
||||
Returns:
|
||||
Detection results with bounding boxes
|
||||
"""
|
||||
```
|
||||
|
||||
- **Comment Style**:
|
||||
- Explain the "why" not just the "what"
|
||||
- Keep lines under 88 characters when possible
|
||||
- Use clear, descriptive comments
|
||||
|
||||
### File Organization
|
||||
|
||||
- **API Endpoints**: `frigate/api/` - FastAPI route handlers
|
||||
- **Configuration**: `frigate/config/` - Configuration parsing and validation
|
||||
- **Detectors**: `frigate/detectors/` - Object detection backends
|
||||
- **Events**: `frigate/events/` - Event management and storage
|
||||
- **Utilities**: `frigate/util/` - Shared utility functions
|
||||
|
||||
## Frontend (React/TypeScript) Standards
|
||||
|
||||
### Internationalization (i18n)
|
||||
|
||||
- **CRITICAL**: Never write user-facing strings directly in components
|
||||
- **Always use react-i18next**: Import and use the `t()` function
|
||||
|
||||
```tsx
|
||||
import { useTranslation } from "react-i18next";
|
||||
|
||||
function MyComponent() {
|
||||
const { t } = useTranslation(["views/live"]);
|
||||
return <div>{t("camera_not_found")}</div>;
|
||||
}
|
||||
```
|
||||
|
||||
- **Translation Files**: Add English strings to the appropriate json files in `web/public/locales/en`
|
||||
- **Namespaces**: Organize translations by feature/view (e.g., `views/live`, `common`, `views/system`)
|
||||
|
||||
### Code Quality
|
||||
|
||||
- **Linting**: ESLint (see `web/.eslintrc.cjs`)
|
||||
- **Formatting**: Prettier with Tailwind CSS plugin
|
||||
- **Type Safety**: TypeScript strict mode enabled
|
||||
- **Testing**: Vitest for unit tests
|
||||
|
||||
### Component Patterns
|
||||
|
||||
- **UI Components**: Use Radix UI primitives (in `web/src/components/ui/`)
|
||||
- **Styling**: TailwindCSS with `cn()` utility for class merging
|
||||
- **State Management**: React hooks (useState, useEffect, useCallback, useMemo)
|
||||
- **Data Fetching**: Custom hooks with proper loading and error states
|
||||
|
||||
### ESLint Rules
|
||||
|
||||
Key rules enforced:
|
||||
|
||||
- `react-hooks/rules-of-hooks`: error
|
||||
- `react-hooks/exhaustive-deps`: error
|
||||
- `no-console`: error (use proper logging or remove)
|
||||
- `@typescript-eslint/no-explicit-any`: warn (always use proper types instead of `any`)
|
||||
- Unused variables must be prefixed with `_`
|
||||
- Comma dangles required for multiline objects/arrays
|
||||
|
||||
### File Organization
|
||||
|
||||
- **Pages**: `web/src/pages/` - Route components
|
||||
- **Views**: `web/src/views/` - Complex view components
|
||||
- **Components**: `web/src/components/` - Reusable components
|
||||
- **Hooks**: `web/src/hooks/` - Custom React hooks
|
||||
- **API**: `web/src/api/` - API client functions
|
||||
- **Types**: `web/src/types/` - TypeScript type definitions
|
||||
|
||||
## Testing Requirements
|
||||
|
||||
### Backend Testing
|
||||
|
||||
- **Framework**: Python unittest
|
||||
- **Run Command**: `python3 -u -m unittest`
|
||||
- **Location**: `frigate/test/`
|
||||
- **Coverage**: Aim for comprehensive test coverage of core functionality
|
||||
- **Pattern**: Use `TestCase` classes with descriptive test method names
|
||||
```python
|
||||
class TestMotionDetection(unittest.TestCase):
|
||||
def test_detects_motion_above_threshold(self):
|
||||
# Test implementation
|
||||
```
|
||||
|
||||
### Test Best Practices
|
||||
|
||||
- Always have a way to test your work and confirm your changes
|
||||
- Write tests for bug fixes to prevent regressions
|
||||
- Test edge cases and error conditions
|
||||
- Mock external dependencies (cameras, APIs, hardware)
|
||||
- Use fixtures for test data
|
||||
|
||||
## Development Commands
|
||||
|
||||
### Python Backend
|
||||
|
||||
```bash
|
||||
# Run all tests
|
||||
python3 -u -m unittest
|
||||
|
||||
# Run specific test file
|
||||
python3 -u -m unittest frigate.test.test_ffmpeg_presets
|
||||
|
||||
# Check formatting (Ruff)
|
||||
ruff format --check frigate/
|
||||
|
||||
# Apply formatting
|
||||
ruff format frigate/
|
||||
|
||||
# Run linter
|
||||
ruff check frigate/
|
||||
```
|
||||
|
||||
### Frontend (from web/ directory)
|
||||
|
||||
```bash
|
||||
# Start dev server (AI agents should never run this directly unless asked)
|
||||
npm run dev
|
||||
|
||||
# Build for production
|
||||
npm run build
|
||||
|
||||
# Run linter
|
||||
npm run lint
|
||||
|
||||
# Fix linting issues
|
||||
npm run lint:fix
|
||||
|
||||
# Format code
|
||||
npm run prettier:write
|
||||
```
|
||||
|
||||
### Docker Development
|
||||
|
||||
AI agents should never run these commands directly unless instructed.
|
||||
|
||||
```bash
|
||||
# Build local image
|
||||
make local
|
||||
|
||||
# Build debug image
|
||||
make debug
|
||||
```
|
||||
|
||||
## Common Patterns
|
||||
|
||||
### API Endpoint Pattern
|
||||
|
||||
```python
|
||||
from fastapi import APIRouter, Request
|
||||
from frigate.api.defs.tags import Tags
|
||||
|
||||
router = APIRouter(tags=[Tags.Events])
|
||||
|
||||
@router.get("/events")
|
||||
async def get_events(request: Request, limit: int = 100):
|
||||
"""Retrieve events from the database."""
|
||||
# Implementation
|
||||
```
|
||||
|
||||
### Configuration Access
|
||||
|
||||
```python
|
||||
# Access Frigate configuration
|
||||
config: FrigateConfig = request.app.frigate_config
|
||||
camera_config = config.cameras["front_door"]
|
||||
```
|
||||
|
||||
### Database Queries
|
||||
|
||||
```python
|
||||
from frigate.models import Event
|
||||
|
||||
# Use Peewee ORM for database access
|
||||
events = (
|
||||
Event.select()
|
||||
.where(Event.camera == camera_name)
|
||||
.order_by(Event.start_time.desc())
|
||||
.limit(limit)
|
||||
)
|
||||
```
|
||||
|
||||
## Common Anti-Patterns to Avoid
|
||||
|
||||
### ❌ Avoid These
|
||||
|
||||
```python
|
||||
# Blocking operations in async functions
|
||||
data = requests.get(url) # ❌ Use async HTTP client
|
||||
time.sleep(5) # ❌ Use asyncio.sleep()
|
||||
|
||||
# Hardcoded strings in React components
|
||||
<div>Camera not found</div> # ❌ Use t("camera_not_found")
|
||||
|
||||
# Missing error handling
|
||||
data = await api.get_data() # ❌ No exception handling
|
||||
|
||||
# Bare exceptions in regular code
|
||||
try:
|
||||
value = await sensor.read()
|
||||
except Exception: # ❌ Too broad
|
||||
logger.error("Failed")
|
||||
```
|
||||
|
||||
### ✅ Use These Instead
|
||||
|
||||
```python
|
||||
# Async operations
|
||||
import aiohttp
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.get(url) as response:
|
||||
data = await response.json()
|
||||
|
||||
await asyncio.sleep(5) # ✅ Non-blocking
|
||||
|
||||
# Translatable strings in React
|
||||
const { t } = useTranslation();
|
||||
<div>{t("camera_not_found")}</div> # ✅ Translatable
|
||||
|
||||
# Proper error handling
|
||||
try:
|
||||
data = await api.get_data()
|
||||
except ApiException as err:
|
||||
logger.error("API error: %s", err)
|
||||
raise
|
||||
|
||||
# Specific exceptions
|
||||
try:
|
||||
value = await sensor.read()
|
||||
except SensorException as err: # ✅ Specific
|
||||
logger.exception("Failed to read sensor")
|
||||
```
|
||||
|
||||
## Project-Specific Conventions
|
||||
|
||||
### Configuration Files
|
||||
|
||||
- Main config: `config/config.yml`
|
||||
|
||||
### Directory Structure
|
||||
|
||||
- Backend code: `frigate/`
|
||||
- Frontend code: `web/`
|
||||
- Docker files: `docker/`
|
||||
- Documentation: `docs/`
|
||||
- Database migrations: `migrations/`
|
||||
|
||||
### Code Style Conformance
|
||||
|
||||
Always conform new and refactored code to the existing coding style in the project:
|
||||
|
||||
- Follow established patterns in similar files
|
||||
- Match indentation and formatting of surrounding code
|
||||
- Use consistent naming conventions (snake_case for Python, camelCase for TypeScript)
|
||||
- Maintain the same level of verbosity in comments and docstrings
|
||||
|
||||
## Additional Resources
|
||||
|
||||
- Documentation: https://docs.frigate.video
|
||||
- Main Repository: https://github.com/blakeblackshear/frigate
|
||||
- Home Assistant Integration: https://github.com/blakeblackshear/frigate-hass-integration
|
||||
|
||||
@@ -2,15 +2,19 @@
|
||||
|
||||
# Update package list and install dependencies
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y build-essential cmake git wget
|
||||
sudo apt-get install -y build-essential cmake git wget linux-headers-$(uname -r)
|
||||
|
||||
hailo_version="4.21.0"
|
||||
arch=$(uname -m)
|
||||
|
||||
if [[ $arch == "x86_64" ]]; then
|
||||
sudo apt install -y linux-headers-$(uname -r);
|
||||
else
|
||||
sudo apt install -y linux-modules-extra-$(uname -r);
|
||||
if [[ $arch == "aarch64" ]]; then
|
||||
source /etc/os-release
|
||||
os_codename=$VERSION_CODENAME
|
||||
echo "Detected OS codename: $os_codename"
|
||||
fi
|
||||
|
||||
if [ "$os_codename" = "trixie" ]; then
|
||||
sudo apt install -y dkms
|
||||
fi
|
||||
|
||||
# Clone the HailoRT driver repository
|
||||
@@ -47,3 +51,4 @@ sudo udevadm control --reload-rules && sudo udevadm trigger
|
||||
|
||||
echo "HailoRT driver installation complete."
|
||||
echo "reboot your system to load the firmware!"
|
||||
echo "Driver version: $(modinfo -F version hailo_pci)"
|
||||
|
||||
@@ -47,7 +47,7 @@ onnxruntime == 1.22.*
|
||||
# Embeddings
|
||||
transformers == 4.45.*
|
||||
# Generative AI
|
||||
google-generativeai == 0.8.*
|
||||
google-genai == 1.58.*
|
||||
ollama == 0.6.*
|
||||
openai == 1.65.*
|
||||
# push notifications
|
||||
|
||||
@@ -54,8 +54,8 @@ function setup_homekit_config() {
|
||||
local config_path="$1"
|
||||
|
||||
if [[ ! -f "${config_path}" ]]; then
|
||||
echo "[INFO] Creating empty HomeKit config file..."
|
||||
echo 'homekit: {}' > "${config_path}"
|
||||
echo "[INFO] Creating empty config file for HomeKit..."
|
||||
echo '{}' > "${config_path}"
|
||||
fi
|
||||
|
||||
# Convert YAML to JSON for jq processing
|
||||
@@ -69,15 +69,15 @@ function setup_homekit_config() {
|
||||
local cleaned_json="/tmp/cache/homekit_cleaned.json"
|
||||
jq '
|
||||
# Keep only the homekit section if it exists, otherwise empty object
|
||||
if has("homekit") then {homekit: .homekit} else {homekit: {}} end
|
||||
if has("homekit") then {homekit: .homekit} else {} end
|
||||
' "${temp_json}" > "${cleaned_json}" 2>/dev/null || {
|
||||
echo '{"homekit": {}}' > "${cleaned_json}"
|
||||
echo '{}' > "${cleaned_json}"
|
||||
}
|
||||
|
||||
# Convert back to YAML and write to the config file
|
||||
yq eval -P "${cleaned_json}" > "${config_path}" 2>/dev/null || {
|
||||
echo "[WARNING] Failed to convert cleaned config to YAML, creating minimal config"
|
||||
echo 'homekit: {}' > "${config_path}"
|
||||
echo '{}' > "${config_path}"
|
||||
}
|
||||
|
||||
# Clean up temp files
|
||||
|
||||
@@ -23,8 +23,28 @@ sys.path.remove("/opt/frigate")
|
||||
yaml = YAML()
|
||||
|
||||
# Check if arbitrary exec sources are allowed (defaults to False for security)
|
||||
ALLOW_ARBITRARY_EXEC = os.environ.get(
|
||||
"GO2RTC_ALLOW_ARBITRARY_EXEC", "false"
|
||||
allow_arbitrary_exec = None
|
||||
if "GO2RTC_ALLOW_ARBITRARY_EXEC" in os.environ:
|
||||
allow_arbitrary_exec = os.environ.get("GO2RTC_ALLOW_ARBITRARY_EXEC")
|
||||
elif (
|
||||
os.path.isdir("/run/secrets")
|
||||
and os.access("/run/secrets", os.R_OK)
|
||||
and "GO2RTC_ALLOW_ARBITRARY_EXEC" in os.listdir("/run/secrets")
|
||||
):
|
||||
allow_arbitrary_exec = (
|
||||
Path(os.path.join("/run/secrets", "GO2RTC_ALLOW_ARBITRARY_EXEC"))
|
||||
.read_text()
|
||||
.strip()
|
||||
)
|
||||
# check for the add-on options file
|
||||
elif os.path.isfile("/data/options.json"):
|
||||
with open("/data/options.json") as f:
|
||||
raw_options = f.read()
|
||||
options = json.loads(raw_options)
|
||||
allow_arbitrary_exec = options.get("go2rtc_allow_arbitrary_exec")
|
||||
|
||||
ALLOW_ARBITRARY_EXEC = allow_arbitrary_exec is not None and str(
|
||||
allow_arbitrary_exec
|
||||
).lower() in ("true", "1", "yes")
|
||||
|
||||
FRIGATE_ENV_VARS = {k: v for k, v in os.environ.items() if k.startswith("FRIGATE_")}
|
||||
|
||||
@@ -29,6 +29,10 @@ auth:
|
||||
reset_admin_password: true
|
||||
```
|
||||
|
||||
## Password guidance
|
||||
|
||||
Constructing secure passwords and managing them properly is important. Frigate requires a minimum length of 12 characters. For guidance on password standards see [NIST SP 800-63B](https://pages.nist.gov/800-63-3/sp800-63b.html). To learn what makes a password truly secure, read this [article](https://medium.com/peerio/how-to-build-a-billion-dollar-password-3d92568d9277).
|
||||
|
||||
## Login failure rate limiting
|
||||
|
||||
In order to limit the risk of brute force attacks, rate limiting is available for login failures. This is implemented with SlowApi, and the string notation for valid values is available in [the documentation](https://limits.readthedocs.io/en/stable/quickstart.html#examples).
|
||||
|
||||
@@ -79,6 +79,12 @@ cameras:
|
||||
|
||||
If the ONVIF connection is successful, PTZ controls will be available in the camera's WebUI.
|
||||
|
||||
:::note
|
||||
|
||||
Some cameras use a separate ONVIF/service account that is distinct from the device administrator credentials. If ONVIF authentication fails with the admin account, try creating or using an ONVIF/service user in the camera's firmware. Refer to your camera manufacturer's documentation for more.
|
||||
|
||||
:::
|
||||
|
||||
:::tip
|
||||
|
||||
If your ONVIF camera does not require authentication credentials, you may still need to specify an empty string for `user` and `password`, eg: `user: ""` and `password: ""`.
|
||||
@@ -95,7 +101,7 @@ The FeatureList on the [ONVIF Conformant Products Database](https://www.onvif.or
|
||||
|
||||
| Brand or specific camera | PTZ Controls | Autotracking | Notes |
|
||||
| ---------------------------- | :----------: | :----------: | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| Amcrest | ✅ | ✅ | ⛔️ Generally, Amcrest should work, but some older models (like the common IP2M-841) don't support autotracking |
|
||||
| Amcrest | ✅ | ✅ | ⛔️ Generally, Amcrest should work, but some older models (like the common IP2M-841) don't support autotracking |
|
||||
| Amcrest ASH21 | ✅ | ❌ | ONVIF service port: 80 |
|
||||
| Amcrest IP4M-S2112EW-AI | ✅ | ❌ | FOV relative movement not supported. |
|
||||
| Amcrest IP5M-1190EW | ✅ | ❌ | ONVIF Port: 80. FOV relative movement not supported. |
|
||||
|
||||
@@ -1,249 +0,0 @@
|
||||
---
|
||||
id: genai
|
||||
title: Generative AI
|
||||
---
|
||||
|
||||
Generative AI can be used to automatically generate descriptive text based on the thumbnails of your tracked objects. This helps with [Semantic Search](/configuration/semantic_search) in Frigate to provide more context about your tracked objects. Descriptions are accessed via the _Explore_ view in the Frigate UI by clicking on a tracked object's thumbnail.
|
||||
|
||||
Requests for a description are sent off automatically to your AI provider at the end of the tracked object's lifecycle, or can optionally be sent earlier after a number of significantly changed frames, for example in use in more real-time notifications. Descriptions can also be regenerated manually via the Frigate UI. Note that if you are manually entering a description for tracked objects prior to its end, this will be overwritten by the generated response.
|
||||
|
||||
## Configuration
|
||||
|
||||
Generative AI can be enabled for all cameras or only for specific cameras. If GenAI is disabled for a camera, you can still manually generate descriptions for events using the HTTP API. There are currently 3 native providers available to integrate with Frigate. Other providers that support the OpenAI standard API can also be used. See the OpenAI section below.
|
||||
|
||||
To use Generative AI, you must define a single provider at the global level of your Frigate configuration. If the provider you choose requires an API key, you may either directly paste it in your configuration, or store it in an environment variable prefixed with `FRIGATE_`.
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
provider: gemini
|
||||
api_key: "{FRIGATE_GEMINI_API_KEY}"
|
||||
model: gemini-2.0-flash
|
||||
|
||||
cameras:
|
||||
front_camera:
|
||||
genai:
|
||||
enabled: True # <- enable GenAI for your front camera
|
||||
use_snapshot: True
|
||||
objects:
|
||||
- person
|
||||
required_zones:
|
||||
- steps
|
||||
indoor_camera:
|
||||
objects:
|
||||
genai:
|
||||
enabled: False # <- disable GenAI for your indoor camera
|
||||
```
|
||||
|
||||
By default, descriptions will be generated for all tracked objects and all zones. But you can also optionally specify `objects` and `required_zones` to only generate descriptions for certain tracked objects or zones.
|
||||
|
||||
Optionally, you can generate the description using a snapshot (if enabled) by setting `use_snapshot` to `True`. By default, this is set to `False`, which sends the uncompressed images from the `detect` stream collected over the object's lifetime to the model. Once the object lifecycle ends, only a single compressed and cropped thumbnail is saved with the tracked object. Using a snapshot might be useful when you want to _regenerate_ a tracked object's description as it will provide the AI with a higher-quality image (typically downscaled by the AI itself) than the cropped/compressed thumbnail. Using a snapshot otherwise has a trade-off in that only a single image is sent to your provider, which will limit the model's ability to determine object movement or direction.
|
||||
|
||||
Generative AI can also be toggled dynamically for a camera via MQTT with the topic `frigate/<camera_name>/object_descriptions/set`. See the [MQTT documentation](/integrations/mqtt/#frigatecamera_nameobjectdescriptionsset).
|
||||
|
||||
## Ollama
|
||||
|
||||
:::warning
|
||||
|
||||
Using Ollama on CPU is not recommended, high inference times make using Generative AI impractical.
|
||||
|
||||
:::
|
||||
|
||||
[Ollama](https://ollama.com/) allows you to self-host large language models and keep everything running locally. It is highly recommended to host this server on a machine with an Nvidia graphics card, or on a Apple silicon Mac for best performance.
|
||||
|
||||
Most of the 7b parameter 4-bit vision models will fit inside 8GB of VRAM. There is also a [Docker container](https://hub.docker.com/r/ollama/ollama) available.
|
||||
|
||||
Parallel requests also come with some caveats. You will need to set `OLLAMA_NUM_PARALLEL=1` and choose a `OLLAMA_MAX_QUEUE` and `OLLAMA_MAX_LOADED_MODELS` values that are appropriate for your hardware and preferences. See the [Ollama documentation](https://docs.ollama.com/faq#how-does-ollama-handle-concurrent-requests).
|
||||
|
||||
### Model Types: Instruct vs Thinking
|
||||
|
||||
Most vision-language models are available as **instruct** models, which are fine-tuned to follow instructions and respond concisely to prompts. However, some models (such as certain Qwen-VL or minigpt variants) offer both **instruct** and **thinking** versions.
|
||||
|
||||
- **Instruct models** are always recommended for use with Frigate. These models generate direct, relevant, actionable descriptions that best fit Frigate's object and event summary use case.
|
||||
- **Thinking models** are fine-tuned for more free-form, open-ended, and speculative outputs, which are typically not concise and may not provide the practical summaries Frigate expects. For this reason, Frigate does **not** recommend or support using thinking models.
|
||||
|
||||
Some models are labeled as **hybrid** (capable of both thinking and instruct tasks). In these cases, Frigate will always use instruct-style prompts and specifically disables thinking-mode behaviors to ensure concise, useful responses.
|
||||
|
||||
**Recommendation:**
|
||||
Always select the `-instruct` or documented instruct/tagged variant of any model you use in your Frigate configuration. If in doubt, refer to your model provider’s documentation or model library for guidance on the correct model variant to use.
|
||||
|
||||
|
||||
|
||||
### Supported Models
|
||||
|
||||
You must use a vision capable model with Frigate. Current model variants can be found [in their model library](https://ollama.com/search?c=vision). Note that Frigate will not automatically download the model you specify in your config, you must download the model to your local instance of Ollama first i.e. by running `ollama pull qwen3-vl:2b-instruct` on your Ollama server/Docker container. Note that the model specified in Frigate's config must match the downloaded model tag.
|
||||
|
||||
:::note
|
||||
|
||||
You should have at least 8 GB of RAM available (or VRAM if running on GPU) to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
|
||||
|
||||
:::
|
||||
|
||||
#### Ollama Cloud models
|
||||
|
||||
Ollama also supports [cloud models](https://ollama.com/cloud), where your local Ollama instance handles requests from Frigate, but model inference is performed in the cloud. Set up Ollama locally, sign in with your Ollama account, and specify the cloud model name in your Frigate config. For more details, see the Ollama cloud model [docs](https://docs.ollama.com/cloud).
|
||||
|
||||
### Configuration
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
provider: ollama
|
||||
base_url: http://localhost:11434
|
||||
model: qwen3-vl:4b
|
||||
```
|
||||
|
||||
## Google Gemini
|
||||
|
||||
Google Gemini has a free tier allowing [15 queries per minute](https://ai.google.dev/pricing) to the API, which is more than sufficient for standard Frigate usage.
|
||||
|
||||
### Supported Models
|
||||
|
||||
You must use a vision capable model with Frigate. Current model variants can be found [in their documentation](https://ai.google.dev/gemini-api/docs/models/gemini).
|
||||
|
||||
### Get API Key
|
||||
|
||||
To start using Gemini, you must first get an API key from [Google AI Studio](https://aistudio.google.com).
|
||||
|
||||
1. Accept the Terms of Service
|
||||
2. Click "Get API Key" from the right hand navigation
|
||||
3. Click "Create API key in new project"
|
||||
4. Copy the API key for use in your config
|
||||
|
||||
### Configuration
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
provider: gemini
|
||||
api_key: "{FRIGATE_GEMINI_API_KEY}"
|
||||
model: gemini-2.0-flash
|
||||
```
|
||||
|
||||
:::note
|
||||
|
||||
To use a different Gemini-compatible API endpoint, set the `GEMINI_BASE_URL` environment variable to your provider's API URL.
|
||||
|
||||
:::
|
||||
|
||||
## OpenAI
|
||||
|
||||
OpenAI does not have a free tier for their API. With the release of gpt-4o, pricing has been reduced and each generation should cost fractions of a cent if you choose to go this route.
|
||||
|
||||
### Supported Models
|
||||
|
||||
You must use a vision capable model with Frigate. Current model variants can be found [in their documentation](https://platform.openai.com/docs/models).
|
||||
|
||||
### Get API Key
|
||||
|
||||
To start using OpenAI, you must first [create an API key](https://platform.openai.com/api-keys) and [configure billing](https://platform.openai.com/settings/organization/billing/overview).
|
||||
|
||||
### Configuration
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
provider: openai
|
||||
api_key: "{FRIGATE_OPENAI_API_KEY}"
|
||||
model: gpt-4o
|
||||
```
|
||||
|
||||
:::note
|
||||
|
||||
To use a different OpenAI-compatible API endpoint, set the `OPENAI_BASE_URL` environment variable to your provider's API URL.
|
||||
|
||||
:::
|
||||
|
||||
## Azure OpenAI
|
||||
|
||||
Microsoft offers several vision models through Azure OpenAI. A subscription is required.
|
||||
|
||||
### Supported Models
|
||||
|
||||
You must use a vision capable model with Frigate. Current model variants can be found [in their documentation](https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models).
|
||||
|
||||
### Create Resource and Get API Key
|
||||
|
||||
To start using Azure OpenAI, you must first [create a resource](https://learn.microsoft.com/azure/cognitive-services/openai/how-to/create-resource?pivots=web-portal#create-a-resource). You'll need your API key, model name, and resource URL, which must include the `api-version` parameter (see the example below).
|
||||
|
||||
### Configuration
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
provider: azure_openai
|
||||
base_url: https://instance.cognitiveservices.azure.com/openai/responses?api-version=2025-04-01-preview
|
||||
model: gpt-5-mini
|
||||
api_key: "{FRIGATE_OPENAI_API_KEY}"
|
||||
```
|
||||
|
||||
## Usage and Best Practices
|
||||
|
||||
Frigate's thumbnail search excels at identifying specific details about tracked objects – for example, using an "image caption" approach to find a "person wearing a yellow vest," "a white dog running across the lawn," or "a red car on a residential street." To enhance this further, Frigate’s default prompts are designed to ask your AI provider about the intent behind the object's actions, rather than just describing its appearance.
|
||||
|
||||
While generating simple descriptions of detected objects is useful, understanding intent provides a deeper layer of insight. Instead of just recognizing "what" is in a scene, Frigate’s default prompts aim to infer "why" it might be there or "what" it could do next. Descriptions tell you what’s happening, but intent gives context. For instance, a person walking toward a door might seem like a visitor, but if they’re moving quickly after hours, you can infer a potential break-in attempt. Detecting a person loitering near a door at night can trigger an alert sooner than simply noting "a person standing by the door," helping you respond based on the situation’s context.
|
||||
|
||||
### Using GenAI for notifications
|
||||
|
||||
Frigate provides an [MQTT topic](/integrations/mqtt), `frigate/tracked_object_update`, that is updated with a JSON payload containing `event_id` and `description` when your AI provider returns a description for a tracked object. This description could be used directly in notifications, such as sending alerts to your phone or making audio announcements. If additional details from the tracked object are needed, you can query the [HTTP API](/integrations/api/event-events-event-id-get) using the `event_id`, eg: `http://frigate_ip:5000/api/events/<event_id>`.
|
||||
|
||||
If looking to get notifications earlier than when an object ceases to be tracked, an additional send trigger can be configured of `after_significant_updates`.
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
send_triggers:
|
||||
tracked_object_end: true # default
|
||||
after_significant_updates: 3 # how many updates to a tracked object before we should send an image
|
||||
```
|
||||
|
||||
## Custom Prompts
|
||||
|
||||
Frigate sends multiple frames from the tracked object along with a prompt to your Generative AI provider asking it to generate a description. The default prompt is as follows:
|
||||
|
||||
```
|
||||
Analyze the sequence of images containing the {label}. Focus on the likely intent or behavior of the {label} based on its actions and movement, rather than describing its appearance or the surroundings. Consider what the {label} is doing, why, and what it might do next.
|
||||
```
|
||||
|
||||
:::tip
|
||||
|
||||
Prompts can use variable replacements `{label}`, `{sub_label}`, and `{camera}` to substitute information from the tracked object as part of the prompt.
|
||||
|
||||
:::
|
||||
|
||||
You are also able to define custom prompts in your configuration.
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
provider: ollama
|
||||
base_url: http://localhost:11434
|
||||
model: qwen3-vl:8b-instruct
|
||||
|
||||
objects:
|
||||
prompt: "Analyze the {label} in these images from the {camera} security camera. Focus on the actions, behavior, and potential intent of the {label}, rather than just describing its appearance."
|
||||
object_prompts:
|
||||
person: "Examine the main person in these images. What are they doing and what might their actions suggest about their intent (e.g., approaching a door, leaving an area, standing still)? Do not describe the surroundings or static details."
|
||||
car: "Observe the primary vehicle in these images. Focus on its movement, direction, or purpose (e.g., parking, approaching, circling). If it's a delivery vehicle, mention the company."
|
||||
```
|
||||
|
||||
Prompts can also be overridden at the camera level to provide a more detailed prompt to the model about your specific camera, if you desire.
|
||||
|
||||
```yaml
|
||||
cameras:
|
||||
front_door:
|
||||
objects:
|
||||
genai:
|
||||
enabled: True
|
||||
use_snapshot: True
|
||||
prompt: "Analyze the {label} in these images from the {camera} security camera at the front door. Focus on the actions and potential intent of the {label}."
|
||||
object_prompts:
|
||||
person: "Examine the person in these images. What are they doing, and how might their actions suggest their purpose (e.g., delivering something, approaching, leaving)? If they are carrying or interacting with a package, include details about its source or destination."
|
||||
cat: "Observe the cat in these images. Focus on its movement and intent (e.g., wandering, hunting, interacting with objects). If the cat is near the flower pots or engaging in any specific actions, mention it."
|
||||
objects:
|
||||
- person
|
||||
- cat
|
||||
required_zones:
|
||||
- steps
|
||||
```
|
||||
|
||||
### Experiment with prompts
|
||||
|
||||
Many providers also have a public facing chat interface for their models. Download a couple of different thumbnails or snapshots from Frigate and try new things in the playground to get descriptions to your liking before updating the prompt in Frigate.
|
||||
|
||||
- OpenAI - [ChatGPT](https://chatgpt.com)
|
||||
- Gemini - [Google AI Studio](https://aistudio.google.com)
|
||||
- Ollama - [Open WebUI](https://docs.openwebui.com/)
|
||||
@@ -17,11 +17,23 @@ Using Ollama on CPU is not recommended, high inference times make using Generati
|
||||
|
||||
:::
|
||||
|
||||
[Ollama](https://ollama.com/) allows you to self-host large language models and keep everything running locally. It provides a nice API over [llama.cpp](https://github.com/ggerganov/llama.cpp). It is highly recommended to host this server on a machine with an Nvidia graphics card, or on a Apple silicon Mac for best performance.
|
||||
[Ollama](https://ollama.com/) allows you to self-host large language models and keep everything running locally. It is highly recommended to host this server on a machine with an Nvidia graphics card, or on a Apple silicon Mac for best performance.
|
||||
|
||||
Most of the 7b parameter 4-bit vision models will fit inside 8GB of VRAM. There is also a [Docker container](https://hub.docker.com/r/ollama/ollama) available.
|
||||
|
||||
Parallel requests also come with some caveats. You will need to set `OLLAMA_NUM_PARALLEL=1` and choose a `OLLAMA_MAX_QUEUE` and `OLLAMA_MAX_LOADED_MODELS` values that are appropriate for your hardware and preferences. See the [Ollama documentation](https://github.com/ollama/ollama/blob/main/docs/faq.md#how-does-ollama-handle-concurrent-requests).
|
||||
Parallel requests also come with some caveats. You will need to set `OLLAMA_NUM_PARALLEL=1` and choose a `OLLAMA_MAX_QUEUE` and `OLLAMA_MAX_LOADED_MODELS` values that are appropriate for your hardware and preferences. See the [Ollama documentation](https://docs.ollama.com/faq#how-does-ollama-handle-concurrent-requests).
|
||||
|
||||
### Model Types: Instruct vs Thinking
|
||||
|
||||
Most vision-language models are available as **instruct** models, which are fine-tuned to follow instructions and respond concisely to prompts. However, some models (such as certain Qwen-VL or minigpt variants) offer both **instruct** and **thinking** versions.
|
||||
|
||||
- **Instruct models** are always recommended for use with Frigate. These models generate direct, relevant, actionable descriptions that best fit Frigate's object and event summary use case.
|
||||
- **Thinking models** are fine-tuned for more free-form, open-ended, and speculative outputs, which are typically not concise and may not provide the practical summaries Frigate expects. For this reason, Frigate does **not** recommend or support using thinking models.
|
||||
|
||||
Some models are labeled as **hybrid** (capable of both thinking and instruct tasks). In these cases, Frigate will always use instruct-style prompts and specifically disables thinking-mode behaviors to ensure concise, useful responses.
|
||||
|
||||
**Recommendation:**
|
||||
Always select the `-instruct` or documented instruct/tagged variant of any model you use in your Frigate configuration. If in doubt, refer to your model provider’s documentation or model library for guidance on the correct model variant to use.
|
||||
|
||||
### Supported Models
|
||||
|
||||
@@ -41,12 +53,12 @@ If you are trying to use a single model for Frigate and HomeAssistant, it will n
|
||||
|
||||
The following models are recommended:
|
||||
|
||||
| Model | Notes |
|
||||
| ----------------- | -------------------------------------------------------------------- |
|
||||
| `qwen3-vl` | Strong visual and situational understanding, higher vram requirement |
|
||||
| `Intern3.5VL` | Relatively fast with good vision comprehension |
|
||||
| `gemma3` | Strong frame-to-frame understanding, slower inference times |
|
||||
| `qwen2.5-vl` | Fast but capable model with good vision comprehension |
|
||||
| Model | Notes |
|
||||
| ------------- | -------------------------------------------------------------------- |
|
||||
| `qwen3-vl` | Strong visual and situational understanding, higher vram requirement |
|
||||
| `Intern3.5VL` | Relatively fast with good vision comprehension |
|
||||
| `gemma3` | Strong frame-to-frame understanding, slower inference times |
|
||||
| `qwen2.5-vl` | Fast but capable model with good vision comprehension |
|
||||
|
||||
:::note
|
||||
|
||||
@@ -54,26 +66,26 @@ You should have at least 8 GB of RAM available (or VRAM if running on GPU) to ru
|
||||
|
||||
:::
|
||||
|
||||
#### Ollama Cloud models
|
||||
|
||||
Ollama also supports [cloud models](https://ollama.com/cloud), where your local Ollama instance handles requests from Frigate, but model inference is performed in the cloud. Set up Ollama locally, sign in with your Ollama account, and specify the cloud model name in your Frigate config. For more details, see the Ollama cloud model [docs](https://docs.ollama.com/cloud).
|
||||
|
||||
### Configuration
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
provider: ollama
|
||||
base_url: http://localhost:11434
|
||||
model: minicpm-v:8b
|
||||
provider_options: # other Ollama client options can be defined
|
||||
keep_alive: -1
|
||||
options:
|
||||
num_ctx: 8192 # make sure the context matches other services that are using ollama
|
||||
model: qwen3-vl:4b
|
||||
```
|
||||
|
||||
## Google Gemini
|
||||
|
||||
Google Gemini has a free tier allowing [15 queries per minute](https://ai.google.dev/pricing) to the API, which is more than sufficient for standard Frigate usage.
|
||||
Google Gemini has a [free tier](https://ai.google.dev/pricing) for the API, however the limits may not be sufficient for standard Frigate usage. Choose a plan appropriate for your installation.
|
||||
|
||||
### Supported Models
|
||||
|
||||
You must use a vision capable model with Frigate. Current model variants can be found [in their documentation](https://ai.google.dev/gemini-api/docs/models/gemini). At the time of writing, this includes `gemini-1.5-pro` and `gemini-1.5-flash`.
|
||||
You must use a vision capable model with Frigate. Current model variants can be found [in their documentation](https://ai.google.dev/gemini-api/docs/models/gemini).
|
||||
|
||||
### Get API Key
|
||||
|
||||
@@ -90,16 +102,32 @@ To start using Gemini, you must first get an API key from [Google AI Studio](htt
|
||||
genai:
|
||||
provider: gemini
|
||||
api_key: "{FRIGATE_GEMINI_API_KEY}"
|
||||
model: gemini-1.5-flash
|
||||
model: gemini-2.5-flash
|
||||
```
|
||||
|
||||
:::note
|
||||
|
||||
To use a different Gemini-compatible API endpoint, set the `provider_options` with the `base_url` key to your provider's API URL. For example:
|
||||
|
||||
```
|
||||
genai:
|
||||
provider: gemini
|
||||
...
|
||||
provider_options:
|
||||
base_url: https://...
|
||||
```
|
||||
|
||||
Other HTTP options are available, see the [python-genai documentation](https://github.com/googleapis/python-genai).
|
||||
|
||||
:::
|
||||
|
||||
## OpenAI
|
||||
|
||||
OpenAI does not have a free tier for their API. With the release of gpt-4o, pricing has been reduced and each generation should cost fractions of a cent if you choose to go this route.
|
||||
|
||||
### Supported Models
|
||||
|
||||
You must use a vision capable model with Frigate. Current model variants can be found [in their documentation](https://platform.openai.com/docs/models). At the time of writing, this includes `gpt-4o` and `gpt-4-turbo`.
|
||||
You must use a vision capable model with Frigate. Current model variants can be found [in their documentation](https://platform.openai.com/docs/models).
|
||||
|
||||
### Get API Key
|
||||
|
||||
@@ -120,23 +148,41 @@ To use a different OpenAI-compatible API endpoint, set the `OPENAI_BASE_URL` env
|
||||
|
||||
:::
|
||||
|
||||
:::tip
|
||||
|
||||
For OpenAI-compatible servers (such as llama.cpp) that don't expose the configured context size in the API response, you can manually specify the context size in `provider_options`:
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
provider: openai
|
||||
base_url: http://your-llama-server
|
||||
model: your-model-name
|
||||
provider_options:
|
||||
context_size: 8192 # Specify the configured context size
|
||||
```
|
||||
|
||||
This ensures Frigate uses the correct context window size when generating prompts.
|
||||
|
||||
:::
|
||||
|
||||
## Azure OpenAI
|
||||
|
||||
Microsoft offers several vision models through Azure OpenAI. A subscription is required.
|
||||
|
||||
### Supported Models
|
||||
|
||||
You must use a vision capable model with Frigate. Current model variants can be found [in their documentation](https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models). At the time of writing, this includes `gpt-4o` and `gpt-4-turbo`.
|
||||
You must use a vision capable model with Frigate. Current model variants can be found [in their documentation](https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models).
|
||||
|
||||
### Create Resource and Get API Key
|
||||
|
||||
To start using Azure OpenAI, you must first [create a resource](https://learn.microsoft.com/azure/cognitive-services/openai/how-to/create-resource?pivots=web-portal#create-a-resource). You'll need your API key and resource URL, which must include the `api-version` parameter (see the example below). The model field is not required in your configuration as the model is part of the deployment name you chose when deploying the resource.
|
||||
To start using Azure OpenAI, you must first [create a resource](https://learn.microsoft.com/azure/cognitive-services/openai/how-to/create-resource?pivots=web-portal#create-a-resource). You'll need your API key, model name, and resource URL, which must include the `api-version` parameter (see the example below).
|
||||
|
||||
### Configuration
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
provider: azure_openai
|
||||
base_url: https://example-endpoint.openai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2023-03-15-preview
|
||||
base_url: https://instance.cognitiveservices.azure.com/openai/responses?api-version=2025-04-01-preview
|
||||
model: gpt-5-mini
|
||||
api_key: "{FRIGATE_OPENAI_API_KEY}"
|
||||
```
|
||||
|
||||
@@ -125,10 +125,10 @@ review:
|
||||
|
||||
## Review Reports
|
||||
|
||||
Along with individual review item summaries, Generative AI provides the ability to request a report of a given time period. For example, you can get a daily report while on a vacation of any suspicious activity or other concerns that may require review.
|
||||
Along with individual review item summaries, Generative AI can also produce a single report of review items from all cameras marked "suspicious" over a specified time period (for example, a daily summary of suspicious activity while you're on vacation).
|
||||
|
||||
### Requesting Reports Programmatically
|
||||
|
||||
Review reports can be requested via the [API](/integrations/api#review-summarization) by sending a POST request to `/api/review/summarize/start/{start_ts}/end/{end_ts}` with Unix timestamps.
|
||||
Review reports can be requested via the [API](/integrations/api/generate-review-summary-review-summarize-start-start-ts-end-end-ts-post) by sending a POST request to `/api/review/summarize/start/{start_ts}/end/{end_ts}` with Unix timestamps.
|
||||
|
||||
For Home Assistant users, there is a built-in service (`frigate.review_summarize`) that makes it easy to request review reports as part of automations or scripts. This allows you to automatically generate daily summaries, vacation reports, or custom time period reports based on your specific needs.
|
||||
|
||||
@@ -68,8 +68,8 @@ Fine-tune the LPR feature using these optional parameters at the global level of
|
||||
- Default: `1000` pixels. Note: this is intentionally set very low as it is an _area_ measurement (length x width). For reference, 1000 pixels represents a ~32x32 pixel square in your camera image.
|
||||
- Depending on the resolution of your camera's `detect` stream, you can increase this value to ignore small or distant plates.
|
||||
- **`device`**: Device to use to run license plate detection _and_ recognition models.
|
||||
- Default: `CPU`
|
||||
- This can be `CPU`, `GPU`, or the GPU's device number. For users without a model that detects license plates natively, using a GPU may increase performance of the YOLOv9 license plate detector model. See the [Hardware Accelerated Enrichments](/configuration/hardware_acceleration_enrichments.md) documentation. However, for users who run a model that detects `license_plate` natively, there is little to no performance gain reported with running LPR on GPU compared to the CPU.
|
||||
- Default: `None`
|
||||
- This is auto-selected by Frigate and can be `CPU`, `GPU`, or the GPU's device number. For users without a model that detects license plates natively, using a GPU may increase performance of the YOLOv9 license plate detector model. See the [Hardware Accelerated Enrichments](/configuration/hardware_acceleration_enrichments.md) documentation. However, for users who run a model that detects `license_plate` natively, there is little to no performance gain reported with running LPR on GPU compared to the CPU.
|
||||
- **`model_size`**: The size of the model used to identify regions of text on plates.
|
||||
- Default: `small`
|
||||
- This can be `small` or `large`.
|
||||
@@ -381,6 +381,7 @@ Start with ["Why isn't my license plate being detected and recognized?"](#why-is
|
||||
```yaml
|
||||
lpr:
|
||||
enabled: true
|
||||
device: CPU
|
||||
debug_save_plates: true
|
||||
```
|
||||
|
||||
@@ -432,6 +433,6 @@ If you are using a model that natively detects `license_plate`, add an _object m
|
||||
|
||||
If you are not using a model that natively detects `license_plate` or you are using dedicated LPR camera mode, only a _motion mask_ over your text is required.
|
||||
|
||||
### I see "Error running ... model" in my logs. How can I fix this?
|
||||
### I see "Error running ... model" in my logs, or my inference time is very high. How can I fix this?
|
||||
|
||||
This usually happens when your GPU is unable to compile or use one of the LPR models. Set your `device` to `CPU` and try again. GPU acceleration only provides a slight performance increase, and the models are lightweight enough to run without issue on most CPUs.
|
||||
|
||||
@@ -696,6 +696,9 @@ genai:
|
||||
# Optional additional args to pass to the GenAI Provider (default: None)
|
||||
provider_options:
|
||||
keep_alive: -1
|
||||
# Optional: Options to pass during inference calls (default: {})
|
||||
runtime_options:
|
||||
temperature: 0.7
|
||||
|
||||
# Optional: Configuration for audio transcription
|
||||
# NOTE: only the enabled option can be overridden at the camera level
|
||||
|
||||
@@ -214,6 +214,12 @@ The `exec:`, `echo:`, and `expr:` sources are disabled by default for security.
|
||||
|
||||
:::
|
||||
|
||||
:::warning
|
||||
|
||||
The `exec:`, `echo:`, and `expr:` sources are disabled by default for security. You must set `GO2RTC_ALLOW_ARBITRARY_EXEC=true` to use them. See [Security: Restricted Stream Sources](#security-restricted-stream-sources) for more information.
|
||||
|
||||
:::
|
||||
|
||||
NOTE: The output will need to be passed with two curly braces `{{output}}`
|
||||
|
||||
```yaml
|
||||
|
||||
@@ -11,6 +11,12 @@ Cameras configured to output H.264 video and AAC audio will offer the most compa
|
||||
|
||||
- **Stream Viewing**: This stream will be rebroadcast as is to Home Assistant for viewing with the stream component. Setting this resolution too high will use significant bandwidth when viewing streams in Home Assistant, and they may not load reliably over slower connections.
|
||||
|
||||
:::tip
|
||||
|
||||
For the best experience in Frigate's UI, configure your camera so that the detection and recording streams use the same aspect ratio. For example, if your main stream is 3840x2160 (16:9), set your substream to 640x360 (also 16:9) instead of 640x480 (4:3). While not strictly required, matching aspect ratios helps ensure seamless live stream display and preview/recordings playback.
|
||||
|
||||
:::
|
||||
|
||||
### Choosing a detect resolution
|
||||
|
||||
The ideal resolution for detection is one where the objects you want to detect fit inside the dimensions of the model used by Frigate (320x320). Frigate does not pass the entire camera frame to object detection. It will crop an area of motion from the full frame and look in that portion of the frame. If the area being inspected is larger than 320x320, Frigate must resize it before running object detection. Higher resolutions do not improve the detection accuracy because the additional detail is lost in the resize. Below you can see a reference for how large a 320x320 area is against common resolutions.
|
||||
|
||||
@@ -42,7 +42,7 @@ If the EQ13 is out of stock, the link below may take you to a suggested alternat
|
||||
| ------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------- | --------------------------------------------------- |
|
||||
| Beelink EQ13 (<a href="https://amzn.to/4jn2qVr" target="_blank" rel="nofollow noopener sponsored">Amazon</a>) | Can run object detection on several 1080p cameras with low-medium activity | Dual gigabit NICs for easy isolated camera network. |
|
||||
| Intel 1120p ([Amazon](https://www.amazon.com/Beelink-i3-1220P-Computer-Display-Gigabit/dp/B0DDCKT9YP) | Can handle a large number of 1080p cameras with high activity | |
|
||||
| Intel 125H ([Amazon](https://www.amazon.com/MINISFORUM-Pro-125H-Barebone-Computer-HDMI2-1/dp/B0FH21FSZM) | Can handle a significant number of 1080p cameras with high activity | Includes NPU for more efficient detection in 0.17+ |
|
||||
| Intel 125H ([Amazon](https://www.amazon.com/MINISFORUM-Pro-125H-Barebone-Computer-HDMI2-1/dp/B0FH21FSZM) | Can handle a significant number of 1080p cameras with high activity | Includes NPU for more efficient detection in 0.17+ |
|
||||
|
||||
## Detectors
|
||||
|
||||
@@ -55,12 +55,10 @@ Frigate supports multiple different detectors that work on different types of ha
|
||||
**Most Hardware**
|
||||
|
||||
- [Hailo](#hailo-8): The Hailo8 and Hailo8L AI Acceleration module is available in m.2 format with a HAT for RPi devices offering a wide range of compatibility with devices.
|
||||
|
||||
- [Supports many model architectures](../../configuration/object_detectors#configuration)
|
||||
- Runs best with tiny or small size models
|
||||
|
||||
- [Google Coral EdgeTPU](#google-coral-tpu): The Google Coral EdgeTPU is available in USB and m.2 format allowing for a wide range of compatibility with devices.
|
||||
|
||||
- [Supports primarily ssdlite and mobilenet model architectures](../../configuration/object_detectors#edge-tpu-detector)
|
||||
|
||||
- <CommunityBadge /> [MemryX](#memryx-mx3): The MX3 M.2 accelerator module is available in m.2 format allowing for a wide range of compatibility with devices.
|
||||
@@ -89,7 +87,6 @@ Frigate supports multiple different detectors that work on different types of ha
|
||||
**Nvidia**
|
||||
|
||||
- [TensortRT](#tensorrt---nvidia-gpu): TensorRT can run on Nvidia GPUs to provide efficient object detection.
|
||||
|
||||
- [Supports majority of model architectures via ONNX](../../configuration/object_detectors#onnx-supported-models)
|
||||
- Runs well with any size models including large
|
||||
|
||||
@@ -152,9 +149,7 @@ The OpenVINO detector type is able to run on:
|
||||
|
||||
:::note
|
||||
|
||||
Intel NPUs have seen [limited success in community deployments](https://github.com/blakeblackshear/frigate/discussions/13248#discussioncomment-12347357), although they remain officially unsupported.
|
||||
|
||||
In testing, the NPU delivered performance that was only comparable to — or in some cases worse than — the integrated GPU.
|
||||
Intel B-series (Battlemage) GPUs are not officially supported with Frigate 0.17, though a user has [provided steps to rebuild the Frigate container](https://github.com/blakeblackshear/frigate/discussions/21257) with support for them.
|
||||
|
||||
:::
|
||||
|
||||
@@ -172,7 +167,7 @@ Inference speeds vary greatly depending on the CPU or GPU used, some known examp
|
||||
| Intel N100 | ~ 15 ms | s-320: 30 ms | 320: ~ 25 ms | | Can only run one detector instance |
|
||||
| Intel N150 | ~ 15 ms | t-320: 16 ms s-320: 24 ms | | | |
|
||||
| Intel Iris XE | ~ 10 ms | t-320: 6 ms t-640: 14 ms s-320: 8 ms s-640: 16 ms | 320: ~ 10 ms 640: ~ 20 ms | 320-n: 33 ms | |
|
||||
| Intel NPU | ~ 6 ms | s-320: 11 ms | 320: ~ 14 ms 640: ~ 34 ms | 320-n: 40 ms | |
|
||||
| Intel NPU | ~ 6 ms | s-320: 11 ms s-640: 30 ms | 320: ~ 14 ms 640: ~ 34 ms | 320-n: 40 ms | |
|
||||
| Intel Arc A310 | ~ 5 ms | t-320: 7 ms t-640: 11 ms s-320: 8 ms s-640: 15 ms | 320: ~ 8 ms 640: ~ 14 ms | | |
|
||||
| Intel Arc A380 | ~ 6 ms | | 320: ~ 10 ms 640: ~ 22 ms | 336: 20 ms 448: 27 ms | |
|
||||
| Intel Arc A750 | ~ 4 ms | | 320: ~ 8 ms | | |
|
||||
|
||||
@@ -112,42 +112,65 @@ The Hailo-8 and Hailo-8L AI accelerators are available in both M.2 and HAT form
|
||||
|
||||
:::warning
|
||||
|
||||
The Raspberry Pi kernel includes an older version of the Hailo driver that is incompatible with Frigate. You **must** follow the installation steps below to install the correct driver version, and you **must** disable the built-in kernel driver as described in step 1.
|
||||
On Raspberry Pi OS **Bookworm**, the kernel includes an older version of the Hailo driver that is incompatible with Frigate. You **must** follow the installation steps below to install the correct driver version, and you **must** disable the built-in kernel driver as described in step 1.
|
||||
|
||||
On Raspberry Pi OS **Trixie**, the Hailo driver is no longer shipped with the kernel. It is installed via DKMS, and the conflict described below does not apply. You can simply run the installation script.
|
||||
|
||||
:::
|
||||
|
||||
1. **Disable the built-in Hailo driver (Raspberry Pi only)**:
|
||||
1. **Disable the built-in Hailo driver (Raspberry Pi Bookworm OS only)**:
|
||||
|
||||
:::note
|
||||
|
||||
If you are **not** using a Raspberry Pi, skip this step and proceed directly to step 2.
|
||||
If you are **not** using a Raspberry Pi with **Bookworm OS**, skip this step and proceed directly to step 2.
|
||||
|
||||
If you are using Raspberry Pi with **Trixie OS**, also skip this step and proceed directly to step 2.
|
||||
|
||||
:::
|
||||
|
||||
If you are using a Raspberry Pi, you need to blacklist the built-in kernel Hailo driver to prevent conflicts. First, check if the driver is currently loaded:
|
||||
First, check if the driver is currently loaded:
|
||||
|
||||
```bash
|
||||
lsmod | grep hailo
|
||||
```
|
||||
|
||||
|
||||
If it shows `hailo_pci`, unload it:
|
||||
|
||||
```bash
|
||||
sudo rmmod hailo_pci
|
||||
sudo modprobe -r hailo_pci
|
||||
```
|
||||
|
||||
Now blacklist the driver to prevent it from loading on boot:
|
||||
|
||||
Then locate the built-in kernel driver and rename it so it cannot be loaded.
|
||||
Renaming allows the original driver to be restored later if needed.
|
||||
First, locate the currently installed kernel module:
|
||||
|
||||
```bash
|
||||
echo "blacklist hailo_pci" | sudo tee /etc/modprobe.d/blacklist-hailo_pci.conf
|
||||
modinfo -n hailo_pci
|
||||
```
|
||||
|
||||
Update initramfs to ensure the blacklist takes effect:
|
||||
|
||||
Example output:
|
||||
|
||||
```
|
||||
/lib/modules/6.6.31+rpt-rpi-2712/kernel/drivers/media/pci/hailo/hailo_pci.ko.xz
|
||||
```
|
||||
Save the module path to a variable:
|
||||
|
||||
```bash
|
||||
sudo update-initramfs -u
|
||||
BUILTIN=$(modinfo -n hailo_pci)
|
||||
```
|
||||
|
||||
And rename the module by appending .bak:
|
||||
|
||||
```bash
|
||||
sudo mv "$BUILTIN" "${BUILTIN}.bak"
|
||||
```
|
||||
|
||||
Now refresh the kernel module map so the system recognizes the change:
|
||||
|
||||
```bash
|
||||
sudo depmod -a
|
||||
```
|
||||
|
||||
Reboot your Raspberry Pi:
|
||||
|
||||
```bash
|
||||
@@ -160,9 +183,9 @@ The Raspberry Pi kernel includes an older version of the Hailo driver that is in
|
||||
lsmod | grep hailo
|
||||
```
|
||||
|
||||
This command should return no results. If it still shows `hailo_pci`, the blacklist did not take effect properly and you may need to check for other Hailo packages installed via apt that are loading the driver.
|
||||
This command should return no results.
|
||||
|
||||
2. **Run the installation script**:
|
||||
3. **Run the installation script**:
|
||||
|
||||
Download the installation script:
|
||||
|
||||
@@ -190,7 +213,7 @@ The Raspberry Pi kernel includes an older version of the Hailo driver that is in
|
||||
- Download and install the required firmware
|
||||
- Set up udev rules
|
||||
|
||||
3. **Reboot your system**:
|
||||
4. **Reboot your system**:
|
||||
|
||||
After the script completes successfully, reboot to load the firmware:
|
||||
|
||||
@@ -198,7 +221,7 @@ The Raspberry Pi kernel includes an older version of the Hailo driver that is in
|
||||
sudo reboot
|
||||
```
|
||||
|
||||
4. **Verify the installation**:
|
||||
5. **Verify the installation**:
|
||||
|
||||
After rebooting, verify that the Hailo device is available:
|
||||
|
||||
@@ -212,6 +235,38 @@ The Raspberry Pi kernel includes an older version of the Hailo driver that is in
|
||||
lsmod | grep hailo_pci
|
||||
```
|
||||
|
||||
Verify the driver version:
|
||||
|
||||
```bash
|
||||
cat /sys/module/hailo_pci/version
|
||||
```
|
||||
|
||||
Verify that the firmware was installed correctly:
|
||||
|
||||
```bash
|
||||
ls -l /lib/firmware/hailo/hailo8_fw.bin
|
||||
```
|
||||
|
||||
**Optional: Fix PCIe descriptor page size error**
|
||||
|
||||
If you encounter the following error:
|
||||
|
||||
```
|
||||
[HailoRT] [error] CHECK failed - max_desc_page_size given 16384 is bigger than hw max desc page size 4096
|
||||
```
|
||||
|
||||
Create a configuration file to force the correct descriptor page size:
|
||||
|
||||
```bash
|
||||
echo 'options hailo_pci force_desc_page_size=4096' | sudo tee /etc/modprobe.d/hailo_pci.conf
|
||||
```
|
||||
|
||||
and reboot:
|
||||
|
||||
```bash
|
||||
sudo reboot
|
||||
```
|
||||
|
||||
#### Setup
|
||||
|
||||
To set up Frigate, follow the default installation instructions, for example: `ghcr.io/blakeblackshear/frigate:stable`
|
||||
|
||||
@@ -37,7 +37,7 @@ cameras:
|
||||
|
||||
## Steps
|
||||
|
||||
1. Export or copy the clip you want to replay to the Frigate host (e.g., `/media/frigate/` or `debug/clips/`).
|
||||
1. Export or copy the clip you want to replay to the Frigate host (e.g., `/media/frigate/` or `debug/clips/`). Depending on what you are looking to debug, it is often helpful to add some "pre-capture" time (where the tracked object is not yet visible) to the clip when exporting.
|
||||
2. Add the temporary camera to `config/config.yml` (example above). Use a unique name such as `test` or `replay_camera` so it's easy to remove later.
|
||||
- If you're debugging a specific camera, copy the settings from that camera (frame rate, model/enrichment settings, zones, etc.) into the temporary camera so the replay closely matches the original environment. Leave `record` and `snapshots` disabled unless you are specifically debugging recording or snapshot behavior.
|
||||
3. Restart Frigate.
|
||||
|
||||
6
docs/package-lock.json
generated
6
docs/package-lock.json
generated
@@ -18490,9 +18490,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/qs": {
|
||||
"version": "6.14.0",
|
||||
"resolved": "https://registry.npmjs.org/qs/-/qs-6.14.0.tgz",
|
||||
"integrity": "sha512-YWWTjgABSKcvs/nWBi9PycY/JiPJqOD4JA6o9Sej2AtvSGarXxKC3OQSk4pAarbdQlKAh5D4FCQkJNkW+GAn3w==",
|
||||
"version": "6.14.1",
|
||||
"resolved": "https://registry.npmjs.org/qs/-/qs-6.14.1.tgz",
|
||||
"integrity": "sha512-4EK3+xJl8Ts67nLYNwqw/dsFVnCf+qR7RgXSK9jEEm9unao3njwMDdmsdvoKBKHzxd7tCYz5e5M+SnMjdtXGQQ==",
|
||||
"license": "BSD-3-Clause",
|
||||
"dependencies": {
|
||||
"side-channel": "^1.1.0"
|
||||
|
||||
@@ -23,7 +23,12 @@ from markupsafe import escape
|
||||
from peewee import SQL, fn, operator
|
||||
from pydantic import ValidationError
|
||||
|
||||
from frigate.api.auth import allow_any_authenticated, allow_public, require_role
|
||||
from frigate.api.auth import (
|
||||
allow_any_authenticated,
|
||||
allow_public,
|
||||
get_allowed_cameras_for_filter,
|
||||
require_role,
|
||||
)
|
||||
from frigate.api.defs.query.app_query_parameters import AppTimelineHourlyQueryParameters
|
||||
from frigate.api.defs.request.app_body import AppConfigSetBody
|
||||
from frigate.api.defs.tags import Tags
|
||||
@@ -687,13 +692,19 @@ def plusModels(request: Request, filterByCurrentModelDetector: bool = False):
|
||||
@router.get(
|
||||
"/recognized_license_plates", dependencies=[Depends(allow_any_authenticated())]
|
||||
)
|
||||
def get_recognized_license_plates(split_joined: Optional[int] = None):
|
||||
def get_recognized_license_plates(
|
||||
split_joined: Optional[int] = None,
|
||||
allowed_cameras: List[str] = Depends(get_allowed_cameras_for_filter),
|
||||
):
|
||||
try:
|
||||
query = (
|
||||
Event.select(
|
||||
SQL("json_extract(data, '$.recognized_license_plate') AS plate")
|
||||
)
|
||||
.where(SQL("json_extract(data, '$.recognized_license_plate') IS NOT NULL"))
|
||||
.where(
|
||||
(SQL("json_extract(data, '$.recognized_license_plate') IS NOT NULL"))
|
||||
& (Event.camera << allowed_cameras)
|
||||
)
|
||||
.distinct()
|
||||
)
|
||||
recognized_license_plates = [row[0] for row in query.tuples()]
|
||||
|
||||
@@ -350,21 +350,15 @@ def validate_password_strength(password: str) -> tuple[bool, Optional[str]]:
|
||||
Validate password strength.
|
||||
|
||||
Returns a tuple of (is_valid, error_message).
|
||||
|
||||
Longer passwords are harder to crack than shorter complex ones.
|
||||
https://pages.nist.gov/800-63-3/sp800-63b.html
|
||||
"""
|
||||
if not password:
|
||||
return False, "Password cannot be empty"
|
||||
|
||||
if len(password) < 8:
|
||||
return False, "Password must be at least 8 characters long"
|
||||
|
||||
if not any(c.isupper() for c in password):
|
||||
return False, "Password must contain at least one uppercase letter"
|
||||
|
||||
if not any(c.isdigit() for c in password):
|
||||
return False, "Password must contain at least one digit"
|
||||
|
||||
if not any(c in '!@#$%^&*(),.?":{}|<>' for c in password):
|
||||
return False, "Password must contain at least one special character"
|
||||
if len(password) < 12:
|
||||
return False, "Password must be at least 12 characters long"
|
||||
|
||||
return True, None
|
||||
|
||||
@@ -800,7 +794,7 @@ def get_users():
|
||||
"/users",
|
||||
dependencies=[Depends(require_role(["admin"]))],
|
||||
summary="Create new user",
|
||||
description='Creates a new user with the specified username, password, and role. Requires admin role. Password must meet strength requirements: minimum 8 characters, at least one uppercase letter, at least one digit, and at least one special character (!@#$%^&*(),.?":{} |<>).',
|
||||
description="Creates a new user with the specified username, password, and role. Requires admin role. Password must be at least 12 characters long.",
|
||||
)
|
||||
def create_user(
|
||||
request: Request,
|
||||
@@ -817,6 +811,15 @@ def create_user(
|
||||
content={"message": f"Role must be one of: {', '.join(config_roles)}"},
|
||||
status_code=400,
|
||||
)
|
||||
|
||||
# Validate password strength
|
||||
is_valid, error_message = validate_password_strength(body.password)
|
||||
if not is_valid:
|
||||
return JSONResponse(
|
||||
content={"message": error_message},
|
||||
status_code=400,
|
||||
)
|
||||
|
||||
role = body.role or "viewer"
|
||||
password_hash = hash_password(body.password, iterations=HASH_ITERATIONS)
|
||||
User.insert(
|
||||
@@ -851,7 +854,7 @@ def delete_user(request: Request, username: str):
|
||||
"/users/{username}/password",
|
||||
dependencies=[Depends(allow_any_authenticated())],
|
||||
summary="Update user password",
|
||||
description="Updates a user's password. Users can only change their own password unless they have admin role. Requires the current password to verify identity for non-admin users. Password must meet strength requirements: minimum 8 characters, at least one uppercase letter, at least one digit, and at least one special character (!@#$%^&*(),.?\":{} |<>). If user changes their own password, a new JWT cookie is automatically issued.",
|
||||
description="Updates a user's password. Users can only change their own password unless they have admin role. Requires the current password to verify identity for non-admin users. Password must be at least 12 characters long. If user changes their own password, a new JWT cookie is automatically issued.",
|
||||
)
|
||||
async def update_password(
|
||||
request: Request,
|
||||
|
||||
@@ -848,9 +848,10 @@ async def onvif_probe(
|
||||
try:
|
||||
if isinstance(uri, str) and uri.startswith("rtsp://"):
|
||||
if username and password and "@" not in uri:
|
||||
# Inject URL-encoded credentials and add only the
|
||||
# authenticated version.
|
||||
cred = f"{quote_plus(username)}:{quote_plus(password)}@"
|
||||
# Inject raw credentials and add only the
|
||||
# authenticated version. The credentials will be encoded
|
||||
# later by ffprobe_stream or the config system.
|
||||
cred = f"{username}:{password}@"
|
||||
injected = uri.replace(
|
||||
"rtsp://", f"rtsp://{cred}", 1
|
||||
)
|
||||
@@ -903,12 +904,8 @@ async def onvif_probe(
|
||||
"/cam/realmonitor?channel=1&subtype=0",
|
||||
"/11",
|
||||
]
|
||||
# Use URL-encoded credentials for pattern fallback URIs when provided
|
||||
auth_str = (
|
||||
f"{quote_plus(username)}:{quote_plus(password)}@"
|
||||
if username and password
|
||||
else ""
|
||||
)
|
||||
# Use raw credentials for pattern fallback URIs when provided
|
||||
auth_str = f"{username}:{password}@" if username and password else ""
|
||||
rtsp_port = 554
|
||||
for path in common_paths:
|
||||
uri = f"rtsp://{auth_str}{host}:{rtsp_port}{path}"
|
||||
@@ -930,7 +927,7 @@ async def onvif_probe(
|
||||
and uri.startswith("rtsp://")
|
||||
and "@" not in uri
|
||||
):
|
||||
cred = f"{quote_plus(username)}:{quote_plus(password)}@"
|
||||
cred = f"{username}:{password}@"
|
||||
cred_uri = uri.replace("rtsp://", f"rtsp://{cred}", 1)
|
||||
if cred_uri not in to_test:
|
||||
to_test.append(cred_uri)
|
||||
|
||||
@@ -73,7 +73,7 @@ def get_faces():
|
||||
face_dict[name] = []
|
||||
|
||||
for file in filter(
|
||||
lambda f: (f.lower().endswith((".webp", ".png", ".jpg", ".jpeg"))),
|
||||
lambda f: f.lower().endswith((".webp", ".png", ".jpg", ".jpeg")),
|
||||
os.listdir(face_dir),
|
||||
):
|
||||
face_dict[name].append(file)
|
||||
@@ -582,7 +582,7 @@ def get_classification_dataset(name: str):
|
||||
dataset_dict[category_name] = []
|
||||
|
||||
for file in filter(
|
||||
lambda f: (f.lower().endswith((".webp", ".png", ".jpg", ".jpeg"))),
|
||||
lambda f: f.lower().endswith((".webp", ".png", ".jpg", ".jpeg")),
|
||||
os.listdir(category_dir),
|
||||
):
|
||||
dataset_dict[category_name].append(file)
|
||||
@@ -693,7 +693,7 @@ def get_classification_images(name: str):
|
||||
status_code=200,
|
||||
content=list(
|
||||
filter(
|
||||
lambda f: (f.lower().endswith((".webp", ".png", ".jpg", ".jpeg"))),
|
||||
lambda f: f.lower().endswith((".webp", ".png", ".jpg", ".jpeg")),
|
||||
os.listdir(train_dir),
|
||||
)
|
||||
),
|
||||
@@ -759,15 +759,28 @@ def delete_classification_dataset_images(
|
||||
CLIPS_DIR, sanitize_filename(name), "dataset", sanitize_filename(category)
|
||||
)
|
||||
|
||||
deleted_count = 0
|
||||
for id in list_of_ids:
|
||||
file_path = os.path.join(folder, sanitize_filename(id))
|
||||
|
||||
if os.path.isfile(file_path):
|
||||
os.unlink(file_path)
|
||||
deleted_count += 1
|
||||
|
||||
if os.path.exists(folder) and not os.listdir(folder) and category.lower() != "none":
|
||||
os.rmdir(folder)
|
||||
|
||||
# Update training metadata to reflect deleted images
|
||||
# This ensures the dataset is marked as changed after deletion
|
||||
# (even if the total count happens to be the same after adding and deleting)
|
||||
if deleted_count > 0:
|
||||
sanitized_name = sanitize_filename(name)
|
||||
metadata = read_training_metadata(sanitized_name)
|
||||
if metadata:
|
||||
last_count = metadata.get("last_training_image_count", 0)
|
||||
updated_count = max(0, last_count - deleted_count)
|
||||
write_training_metadata(sanitized_name, updated_count)
|
||||
|
||||
return JSONResponse(
|
||||
content=({"success": True, "message": "Successfully deleted images."}),
|
||||
status_code=200,
|
||||
|
||||
@@ -10,7 +10,7 @@ class ReviewQueryParams(BaseModel):
|
||||
cameras: str = "all"
|
||||
labels: str = "all"
|
||||
zones: str = "all"
|
||||
reviewed: int = 0
|
||||
reviewed: Union[int, SkipJsonSchema[None]] = None
|
||||
limit: Union[int, SkipJsonSchema[None]] = None
|
||||
severity: Union[SeverityEnum, SkipJsonSchema[None]] = None
|
||||
before: Union[float, SkipJsonSchema[None]] = None
|
||||
|
||||
@@ -26,3 +26,6 @@ class GenAIConfig(FrigateBaseModel):
|
||||
provider_options: dict[str, Any] = Field(
|
||||
default={}, title="GenAI Provider extra options."
|
||||
)
|
||||
runtime_options: dict[str, Any] = Field(
|
||||
default={}, title="Options to pass during inference calls."
|
||||
)
|
||||
|
||||
@@ -108,12 +108,13 @@ class GenAIReviewConfig(FrigateBaseModel):
|
||||
default="""### Normal Activity Indicators (Level 0)
|
||||
- Known/verified people in any zone at any time
|
||||
- People with pets in residential areas
|
||||
- Routine residential vehicle access during daytime/evening (6 AM - 10 PM): entering, exiting, loading/unloading items — normal commute and travel patterns
|
||||
- Deliveries or services during daytime/evening (6 AM - 10 PM): carrying packages to doors/porches, placing items, leaving
|
||||
- Services/maintenance workers with visible tools, uniforms, or service vehicles during daytime
|
||||
- Activity confined to public areas only (sidewalks, streets) without entering property at any time
|
||||
|
||||
### Suspicious Activity Indicators (Level 1)
|
||||
- **Testing or attempting to open doors/windows/handles on vehicles or buildings** — ALWAYS Level 1 regardless of time or duration
|
||||
- **Checking or probing vehicle/building access**: trying handles without entering, peering through windows, examining multiple vehicles, or possessing break-in tools — Level 1
|
||||
- **Unidentified person in private areas (driveways, near vehicles/buildings) during late night/early morning (11 PM - 5 AM)** — ALWAYS Level 1 regardless of activity or duration
|
||||
- Taking items that don't belong to them (packages, objects from porches/driveways)
|
||||
- Climbing or jumping fences/barriers to access property
|
||||
@@ -133,8 +134,8 @@ Evaluate in this order:
|
||||
1. **If person is verified/known** → Level 0 regardless of time or activity
|
||||
2. **If person is unidentified:**
|
||||
- Check time: If late night/early morning (11 PM - 5 AM) AND in private areas (driveways, near vehicles/buildings) → Level 1
|
||||
- Check actions: If testing doors/handles, taking items, climbing → Level 1
|
||||
- Otherwise, if daytime/evening (6 AM - 10 PM) with clear legitimate purpose (delivery, service worker) → Level 0
|
||||
- Check actions: If probing access (trying handles without entering, checking multiple vehicles), taking items, climbing → Level 1
|
||||
- Otherwise, if daytime/evening (6 AM - 10 PM) with clear legitimate purpose (delivery, service, routine vehicle access) → Level 0
|
||||
3. **Escalate to Level 2 if:** Weapons, break-in tools, forced entry in progress, violence, or active property damage visible (escalates from Level 0 or 1)
|
||||
|
||||
The mere presence of an unidentified person in private areas during late night hours is inherently suspicious and warrants human review, regardless of what activity they appear to be doing or how brief the sequence is.""",
|
||||
|
||||
@@ -662,6 +662,13 @@ class FrigateConfig(FrigateBaseModel):
|
||||
# generate zone contours
|
||||
if len(camera_config.zones) > 0:
|
||||
for zone in camera_config.zones.values():
|
||||
if zone.filters:
|
||||
for object_name, filter_config in zone.filters.items():
|
||||
zone.filters[object_name] = RuntimeFilterConfig(
|
||||
frame_shape=camera_config.frame_shape,
|
||||
**filter_config.model_dump(exclude_unset=True),
|
||||
)
|
||||
|
||||
zone.generate_contour(camera_config.frame_shape)
|
||||
|
||||
# Set live view stream if none is set
|
||||
|
||||
@@ -97,7 +97,7 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
|
||||
self.interpreter.allocate_tensors()
|
||||
self.tensor_input_details = self.interpreter.get_input_details()
|
||||
self.tensor_output_details = self.interpreter.get_output_details()
|
||||
self.labelmap = load_labels(labelmap_path, prefill=0)
|
||||
self.labelmap = load_labels(labelmap_path, prefill=0, indexed=False)
|
||||
self.classifications_per_second.start()
|
||||
|
||||
def __update_metrics(self, duration: float) -> None:
|
||||
@@ -398,7 +398,7 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
|
||||
self.interpreter.allocate_tensors()
|
||||
self.tensor_input_details = self.interpreter.get_input_details()
|
||||
self.tensor_output_details = self.interpreter.get_output_details()
|
||||
self.labelmap = load_labels(labelmap_path, prefill=0)
|
||||
self.labelmap = load_labels(labelmap_path, prefill=0, indexed=False)
|
||||
|
||||
def __update_metrics(self, duration: float) -> None:
|
||||
self.classifications_per_second.update()
|
||||
@@ -419,14 +419,21 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
|
||||
"""
|
||||
if object_id not in self.classification_history:
|
||||
self.classification_history[object_id] = []
|
||||
logger.debug(f"Created new classification history for {object_id}")
|
||||
|
||||
self.classification_history[object_id].append(
|
||||
(current_label, current_score, current_time)
|
||||
)
|
||||
|
||||
history = self.classification_history[object_id]
|
||||
logger.debug(
|
||||
f"History for {object_id}: {len(history)} entries, latest=({current_label}, {current_score})"
|
||||
)
|
||||
|
||||
if len(history) < 3:
|
||||
logger.debug(
|
||||
f"History for {object_id} has {len(history)} entries, need at least 3"
|
||||
)
|
||||
return None, 0.0
|
||||
|
||||
label_counts = {}
|
||||
@@ -445,14 +452,27 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
|
||||
best_count = label_counts[best_label]
|
||||
|
||||
consensus_threshold = total_attempts * 0.6
|
||||
logger.debug(
|
||||
f"Consensus calc for {object_id}: label_counts={label_counts}, "
|
||||
f"best_label={best_label}, best_count={best_count}, "
|
||||
f"total={total_attempts}, threshold={consensus_threshold}"
|
||||
)
|
||||
|
||||
if best_count < consensus_threshold:
|
||||
logger.debug(
|
||||
f"No consensus for {object_id}: {best_count} < {consensus_threshold}"
|
||||
)
|
||||
return None, 0.0
|
||||
|
||||
avg_score = sum(label_scores[best_label]) / len(label_scores[best_label])
|
||||
|
||||
if best_label == "none":
|
||||
logger.debug(f"Filtering 'none' label for {object_id}")
|
||||
return None, 0.0
|
||||
|
||||
logger.debug(
|
||||
f"Consensus reached for {object_id}: {best_label} with avg_score={avg_score}"
|
||||
)
|
||||
return best_label, avg_score
|
||||
|
||||
def process_frame(self, obj_data, frame):
|
||||
@@ -560,17 +580,30 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
|
||||
)
|
||||
|
||||
if score < self.model_config.threshold:
|
||||
logger.debug(f"Score {score} is less than threshold.")
|
||||
logger.debug(
|
||||
f"{self.model_config.name}: Score {score} < threshold {self.model_config.threshold} for {object_id}, skipping"
|
||||
)
|
||||
return
|
||||
|
||||
sub_label = self.labelmap[best_id]
|
||||
|
||||
logger.debug(
|
||||
f"{self.model_config.name}: Object {object_id} (label={obj_data['label']}) passed threshold with sub_label={sub_label}, score={score}"
|
||||
)
|
||||
|
||||
consensus_label, consensus_score = self.get_weighted_score(
|
||||
object_id, sub_label, score, now
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
f"{self.model_config.name}: get_weighted_score returned consensus_label={consensus_label}, consensus_score={consensus_score} for {object_id}"
|
||||
)
|
||||
|
||||
if consensus_label is not None:
|
||||
camera = obj_data["camera"]
|
||||
logger.debug(
|
||||
f"{self.model_config.name}: Publishing sub_label={consensus_label} for {obj_data['label']} object {object_id} on {camera}"
|
||||
)
|
||||
|
||||
if (
|
||||
self.model_config.object_config.classification_type
|
||||
@@ -662,7 +695,7 @@ def write_classification_attempt(
|
||||
# delete oldest face image if maximum is reached
|
||||
try:
|
||||
files = sorted(
|
||||
filter(lambda f: (f.endswith(".webp")), os.listdir(folder)),
|
||||
filter(lambda f: f.endswith(".webp"), os.listdir(folder)),
|
||||
key=lambda f: os.path.getctime(os.path.join(folder, f)),
|
||||
reverse=True,
|
||||
)
|
||||
|
||||
@@ -539,7 +539,7 @@ class FaceRealTimeProcessor(RealTimeProcessorApi):
|
||||
cv2.imwrite(file, frame)
|
||||
|
||||
files = sorted(
|
||||
filter(lambda f: (f.endswith(".webp")), os.listdir(folder)),
|
||||
filter(lambda f: f.endswith(".webp"), os.listdir(folder)),
|
||||
key=lambda f: os.path.getctime(os.path.join(folder, f)),
|
||||
reverse=True,
|
||||
)
|
||||
|
||||
@@ -633,7 +633,7 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
|
||||
camera, frame_name, _, _, motion_boxes, _ = data
|
||||
|
||||
if not camera or len(motion_boxes) == 0 or camera not in self.config.cameras:
|
||||
if not camera or camera not in self.config.cameras:
|
||||
return
|
||||
|
||||
camera_config = self.config.cameras[camera]
|
||||
@@ -660,8 +660,10 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
return
|
||||
|
||||
for processor in self.realtime_processors:
|
||||
if dedicated_lpr_enabled and isinstance(
|
||||
processor, LicensePlateRealTimeProcessor
|
||||
if (
|
||||
dedicated_lpr_enabled
|
||||
and len(motion_boxes) > 0
|
||||
and isinstance(processor, LicensePlateRealTimeProcessor)
|
||||
):
|
||||
processor.process_frame(camera, yuv_frame, True)
|
||||
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
|
||||
import logging
|
||||
import os
|
||||
import threading
|
||||
import warnings
|
||||
|
||||
from transformers import AutoFeatureExtractor, AutoTokenizer
|
||||
@@ -54,6 +55,7 @@ class JinaV1TextEmbedding(BaseEmbedding):
|
||||
self.tokenizer = None
|
||||
self.feature_extractor = None
|
||||
self.runner = None
|
||||
self._lock = threading.Lock()
|
||||
files_names = list(self.download_urls.keys()) + [self.tokenizer_file]
|
||||
|
||||
if not all(
|
||||
@@ -134,17 +136,18 @@ class JinaV1TextEmbedding(BaseEmbedding):
|
||||
)
|
||||
|
||||
def _preprocess_inputs(self, raw_inputs):
|
||||
max_length = max(len(self.tokenizer.encode(text)) for text in raw_inputs)
|
||||
return [
|
||||
self.tokenizer(
|
||||
text,
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=max_length,
|
||||
return_tensors="np",
|
||||
)
|
||||
for text in raw_inputs
|
||||
]
|
||||
with self._lock:
|
||||
max_length = max(len(self.tokenizer.encode(text)) for text in raw_inputs)
|
||||
return [
|
||||
self.tokenizer(
|
||||
text,
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=max_length,
|
||||
return_tensors="np",
|
||||
)
|
||||
for text in raw_inputs
|
||||
]
|
||||
|
||||
|
||||
class JinaV1ImageEmbedding(BaseEmbedding):
|
||||
@@ -174,6 +177,7 @@ class JinaV1ImageEmbedding(BaseEmbedding):
|
||||
self.download_path = os.path.join(MODEL_CACHE_DIR, self.model_name)
|
||||
self.feature_extractor = None
|
||||
self.runner: BaseModelRunner | None = None
|
||||
self._lock = threading.Lock()
|
||||
files_names = list(self.download_urls.keys())
|
||||
if not all(
|
||||
os.path.exists(os.path.join(self.download_path, n)) for n in files_names
|
||||
@@ -216,8 +220,9 @@ class JinaV1ImageEmbedding(BaseEmbedding):
|
||||
)
|
||||
|
||||
def _preprocess_inputs(self, raw_inputs):
|
||||
processed_images = [self._process_image(img) for img in raw_inputs]
|
||||
return [
|
||||
self.feature_extractor(images=image, return_tensors="np")
|
||||
for image in processed_images
|
||||
]
|
||||
with self._lock:
|
||||
processed_images = [self._process_image(img) for img in raw_inputs]
|
||||
return [
|
||||
self.feature_extractor(images=image, return_tensors="np")
|
||||
for image in processed_images
|
||||
]
|
||||
|
||||
@@ -15,6 +15,16 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
def should_update_db(prev_event: Event, current_event: Event) -> bool:
|
||||
"""If current_event has updated fields and (clip or snapshot)."""
|
||||
# If event is ending and was previously saved, always update to set end_time
|
||||
# This ensures events are properly ended even when alerts/detections are disabled
|
||||
# mid-event (which can cause has_clip/has_snapshot to become False)
|
||||
if (
|
||||
prev_event["end_time"] is None
|
||||
and current_event["end_time"] is not None
|
||||
and (prev_event["has_clip"] or prev_event["has_snapshot"])
|
||||
):
|
||||
return True
|
||||
|
||||
if current_event["has_clip"] or current_event["has_snapshot"]:
|
||||
# if this is the first time has_clip or has_snapshot turned true
|
||||
if not prev_event["has_clip"] and not prev_event["has_snapshot"]:
|
||||
|
||||
@@ -99,8 +99,8 @@ When forming your description:
|
||||
## Response Format
|
||||
|
||||
Your response MUST be a flat JSON object with:
|
||||
- `title` (string): A concise, direct title that describes the primary action or event in the sequence, not just what you literally see. Use spatial context when available to make titles more meaningful. When multiple objects/actions are present, prioritize whichever is most prominent or occurs first. Use names from "Objects in Scene" based on what you visually observe. If you see both a name and an unidentified object of the same type but visually observe only one person/object, use ONLY the name. Examples: "Joe walking dog", "Person taking out trash", "Vehicle arriving in driveway", "Joe accessing vehicle", "Person leaving porch for driveway".
|
||||
- `scene` (string): A narrative description of what happens across the sequence from start to finish, in chronological order. Start by describing how the sequence begins, then describe the progression of events. **Describe all significant movements and actions in the order they occur.** For example, if a vehicle arrives and then a person exits, describe both actions sequentially. **Only describe actions you can actually observe happening in the frames provided.** Do not infer or assume actions that aren't visible (e.g., if you see someone walking but never see them sit, don't say they sat down). Include setting, detected objects, and their observable actions. Avoid speculation or filling in assumed behaviors. Your description should align with and support the threat level you assign.
|
||||
- `title` (string): A concise, grammatically complete title in the format "[Subject] [action verb] [context]" that matches your scene description. Use names from "Objects in Scene" when you visually observe them.
|
||||
- `shortSummary` (string): A brief 2-sentence summary of the scene, suitable for notifications. Should capture the key activity and context without full detail. This should be a condensed version of the scene description above.
|
||||
- `confidence` (float): 0-1 confidence in your analysis. Higher confidence when objects/actions are clearly visible and context is unambiguous. Lower confidence when the sequence is unclear, objects are partially obscured, or context is ambiguous.
|
||||
- `potential_threat_level` (integer): 0, 1, or 2 as defined in "Normal Activity Patterns for This Property" above. Your threat level must be consistent with your scene description and the guidance above.
|
||||
|
||||
@@ -64,6 +64,7 @@ class OpenAIClient(GenAIClient):
|
||||
},
|
||||
],
|
||||
timeout=self.timeout,
|
||||
**self.genai_config.runtime_options,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning("Azure OpenAI returned an error: %s", str(e))
|
||||
|
||||
@@ -3,8 +3,8 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
import google.generativeai as genai
|
||||
from google.api_core.exceptions import GoogleAPICallError
|
||||
from google import genai
|
||||
from google.genai import errors, types
|
||||
|
||||
from frigate.config import GenAIProviderEnum
|
||||
from frigate.genai import GenAIClient, register_genai_provider
|
||||
@@ -16,40 +16,58 @@ logger = logging.getLogger(__name__)
|
||||
class GeminiClient(GenAIClient):
|
||||
"""Generative AI client for Frigate using Gemini."""
|
||||
|
||||
provider: genai.GenerativeModel
|
||||
provider: genai.Client
|
||||
|
||||
def _init_provider(self):
|
||||
"""Initialize the client."""
|
||||
genai.configure(api_key=self.genai_config.api_key)
|
||||
return genai.GenerativeModel(
|
||||
self.genai_config.model, **self.genai_config.provider_options
|
||||
# Merge provider_options into HttpOptions
|
||||
http_options_dict = {
|
||||
"timeout": int(self.timeout * 1000), # requires milliseconds
|
||||
"retry_options": types.HttpRetryOptions(
|
||||
attempts=3,
|
||||
initial_delay=1.0,
|
||||
max_delay=60.0,
|
||||
exp_base=2.0,
|
||||
jitter=1.0,
|
||||
http_status_codes=[429, 500, 502, 503, 504],
|
||||
),
|
||||
}
|
||||
|
||||
if isinstance(self.genai_config.provider_options, dict):
|
||||
http_options_dict.update(self.genai_config.provider_options)
|
||||
|
||||
return genai.Client(
|
||||
api_key=self.genai_config.api_key,
|
||||
http_options=types.HttpOptions(**http_options_dict),
|
||||
)
|
||||
|
||||
def _send(self, prompt: str, images: list[bytes]) -> Optional[str]:
|
||||
"""Submit a request to Gemini."""
|
||||
data = [
|
||||
{
|
||||
"mime_type": "image/jpeg",
|
||||
"data": img,
|
||||
}
|
||||
for img in images
|
||||
contents = [
|
||||
types.Part.from_bytes(data=img, mime_type="image/jpeg") for img in images
|
||||
] + [prompt]
|
||||
try:
|
||||
response = self.provider.generate_content(
|
||||
data,
|
||||
generation_config=genai.types.GenerationConfig(
|
||||
candidate_count=1,
|
||||
),
|
||||
request_options=genai.types.RequestOptions(
|
||||
timeout=self.timeout,
|
||||
# Merge runtime_options into generation_config if provided
|
||||
generation_config_dict = {"candidate_count": 1}
|
||||
generation_config_dict.update(self.genai_config.runtime_options)
|
||||
|
||||
response = self.provider.models.generate_content(
|
||||
model=self.genai_config.model,
|
||||
contents=contents,
|
||||
config=types.GenerateContentConfig(
|
||||
**generation_config_dict,
|
||||
),
|
||||
)
|
||||
except GoogleAPICallError as e:
|
||||
except errors.APIError as e:
|
||||
logger.warning("Gemini returned an error: %s", str(e))
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.warning("An unexpected error occurred with Gemini: %s", str(e))
|
||||
return None
|
||||
|
||||
try:
|
||||
description = response.text.strip()
|
||||
except ValueError:
|
||||
except (ValueError, AttributeError):
|
||||
# No description was generated
|
||||
return None
|
||||
return description
|
||||
|
||||
@@ -58,11 +58,15 @@ class OllamaClient(GenAIClient):
|
||||
)
|
||||
return None
|
||||
try:
|
||||
ollama_options = {
|
||||
**self.provider_options,
|
||||
**self.genai_config.runtime_options,
|
||||
}
|
||||
result = self.provider.generate(
|
||||
self.genai_config.model,
|
||||
prompt,
|
||||
images=images if images else None,
|
||||
**self.provider_options,
|
||||
**ollama_options,
|
||||
)
|
||||
logger.debug(
|
||||
f"Ollama tokens used: eval_count={result.get('eval_count')}, prompt_eval_count={result.get('prompt_eval_count')}"
|
||||
|
||||
@@ -22,9 +22,14 @@ class OpenAIClient(GenAIClient):
|
||||
|
||||
def _init_provider(self):
|
||||
"""Initialize the client."""
|
||||
return OpenAI(
|
||||
api_key=self.genai_config.api_key, **self.genai_config.provider_options
|
||||
)
|
||||
# Extract context_size from provider_options as it's not a valid OpenAI client parameter
|
||||
# It will be used in get_context_size() instead
|
||||
provider_opts = {
|
||||
k: v
|
||||
for k, v in self.genai_config.provider_options.items()
|
||||
if k != "context_size"
|
||||
}
|
||||
return OpenAI(api_key=self.genai_config.api_key, **provider_opts)
|
||||
|
||||
def _send(self, prompt: str, images: list[bytes]) -> Optional[str]:
|
||||
"""Submit a request to OpenAI."""
|
||||
@@ -56,6 +61,7 @@ class OpenAIClient(GenAIClient):
|
||||
},
|
||||
],
|
||||
timeout=self.timeout,
|
||||
**self.genai_config.runtime_options,
|
||||
)
|
||||
if (
|
||||
result is not None
|
||||
@@ -73,6 +79,16 @@ class OpenAIClient(GenAIClient):
|
||||
if self.context_size is not None:
|
||||
return self.context_size
|
||||
|
||||
# First check provider_options for manually specified context size
|
||||
# This is necessary for llama.cpp and other OpenAI-compatible servers
|
||||
# that don't expose the configured runtime context size in the API response
|
||||
if "context_size" in self.genai_config.provider_options:
|
||||
self.context_size = self.genai_config.provider_options["context_size"]
|
||||
logger.debug(
|
||||
f"Using context size {self.context_size} from provider_options for model {self.genai_config.model}"
|
||||
)
|
||||
return self.context_size
|
||||
|
||||
try:
|
||||
models = self.provider.models.list()
|
||||
for model in models.data:
|
||||
|
||||
@@ -26,15 +26,16 @@ LOG_HANDLER.setFormatter(
|
||||
|
||||
# filter out norfair warning
|
||||
LOG_HANDLER.addFilter(
|
||||
lambda record: not record.getMessage().startswith(
|
||||
"You are using a scalar distance function"
|
||||
lambda record: (
|
||||
not record.getMessage().startswith("You are using a scalar distance function")
|
||||
)
|
||||
)
|
||||
|
||||
# filter out tflite logging
|
||||
LOG_HANDLER.addFilter(
|
||||
lambda record: "Created TensorFlow Lite XNNPACK delegate for CPU."
|
||||
not in record.getMessage()
|
||||
lambda record: (
|
||||
"Created TensorFlow Lite XNNPACK delegate for CPU." not in record.getMessage()
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
@@ -89,6 +90,7 @@ def apply_log_levels(default: str, log_levels: dict[str, LogLevel]) -> None:
|
||||
"ws4py": LogLevel.error,
|
||||
"PIL": LogLevel.warning,
|
||||
"numba": LogLevel.warning,
|
||||
"google_genai.models": LogLevel.warning,
|
||||
**log_levels,
|
||||
}
|
||||
|
||||
|
||||
@@ -97,6 +97,7 @@ class RecordingMaintainer(threading.Thread):
|
||||
self.object_recordings_info: dict[str, list] = defaultdict(list)
|
||||
self.audio_recordings_info: dict[str, list] = defaultdict(list)
|
||||
self.end_time_cache: dict[str, Tuple[datetime.datetime, float]] = {}
|
||||
self.unexpected_cache_files_logged: bool = False
|
||||
|
||||
async def move_files(self) -> None:
|
||||
cache_files = [
|
||||
@@ -112,7 +113,14 @@ class RecordingMaintainer(threading.Thread):
|
||||
for cache in cache_files:
|
||||
cache_path = os.path.join(CACHE_DIR, cache)
|
||||
basename = os.path.splitext(cache)[0]
|
||||
camera, date = basename.rsplit("@", maxsplit=1)
|
||||
try:
|
||||
camera, date = basename.rsplit("@", maxsplit=1)
|
||||
except ValueError:
|
||||
if not self.unexpected_cache_files_logged:
|
||||
logger.warning("Skipping unexpected files in cache")
|
||||
self.unexpected_cache_files_logged = True
|
||||
continue
|
||||
|
||||
start_time = datetime.datetime.strptime(
|
||||
date, CACHE_SEGMENT_FORMAT
|
||||
).astimezone(datetime.timezone.utc)
|
||||
@@ -164,7 +172,13 @@ class RecordingMaintainer(threading.Thread):
|
||||
|
||||
cache_path = os.path.join(CACHE_DIR, cache)
|
||||
basename = os.path.splitext(cache)[0]
|
||||
camera, date = basename.rsplit("@", maxsplit=1)
|
||||
try:
|
||||
camera, date = basename.rsplit("@", maxsplit=1)
|
||||
except ValueError:
|
||||
if not self.unexpected_cache_files_logged:
|
||||
logger.warning("Skipping unexpected files in cache")
|
||||
self.unexpected_cache_files_logged = True
|
||||
continue
|
||||
|
||||
# important that start_time is utc because recordings are stored and compared in utc
|
||||
start_time = datetime.datetime.strptime(
|
||||
@@ -194,8 +208,10 @@ class RecordingMaintainer(threading.Thread):
|
||||
processed_segment_count = len(
|
||||
list(
|
||||
filter(
|
||||
lambda r: r["start_time"].timestamp()
|
||||
< most_recently_processed_frame_time,
|
||||
lambda r: (
|
||||
r["start_time"].timestamp()
|
||||
< most_recently_processed_frame_time
|
||||
),
|
||||
grouped_recordings[camera],
|
||||
)
|
||||
)
|
||||
|
||||
@@ -632,6 +632,49 @@ class TestConfig(unittest.TestCase):
|
||||
)
|
||||
assert frigate_config.cameras["back"].zones["test"].color != (0, 0, 0)
|
||||
|
||||
def test_zone_filter_area_percent_converts_to_pixels(self):
|
||||
config = {
|
||||
"mqtt": {"host": "mqtt"},
|
||||
"record": {
|
||||
"alerts": {
|
||||
"retain": {
|
||||
"days": 20,
|
||||
}
|
||||
}
|
||||
},
|
||||
"cameras": {
|
||||
"back": {
|
||||
"ffmpeg": {
|
||||
"inputs": [
|
||||
{"path": "rtsp://10.0.0.1:554/video", "roles": ["detect"]}
|
||||
]
|
||||
},
|
||||
"detect": {
|
||||
"height": 1080,
|
||||
"width": 1920,
|
||||
"fps": 5,
|
||||
},
|
||||
"zones": {
|
||||
"notification": {
|
||||
"coordinates": "0.03,1,0.025,0,0.626,0,0.643,1",
|
||||
"objects": ["person"],
|
||||
"filters": {"person": {"min_area": 0.1}},
|
||||
}
|
||||
},
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
frigate_config = FrigateConfig(**config)
|
||||
expected_min_area = int(1080 * 1920 * 0.1)
|
||||
assert (
|
||||
frigate_config.cameras["back"]
|
||||
.zones["notification"]
|
||||
.filters["person"]
|
||||
.min_area
|
||||
== expected_min_area
|
||||
)
|
||||
|
||||
def test_zone_relative_matches_explicit(self):
|
||||
config = {
|
||||
"mqtt": {"host": "mqtt"},
|
||||
|
||||
66
frigate/test/test_maintainer.py
Normal file
66
frigate/test/test_maintainer.py
Normal file
@@ -0,0 +1,66 @@
|
||||
import sys
|
||||
import unittest
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
# Mock complex imports before importing maintainer
|
||||
sys.modules["frigate.comms.inter_process"] = MagicMock()
|
||||
sys.modules["frigate.comms.detections_updater"] = MagicMock()
|
||||
sys.modules["frigate.comms.recordings_updater"] = MagicMock()
|
||||
sys.modules["frigate.config.camera.updater"] = MagicMock()
|
||||
|
||||
# Now import the class under test
|
||||
from frigate.config import FrigateConfig # noqa: E402
|
||||
from frigate.record.maintainer import RecordingMaintainer # noqa: E402
|
||||
|
||||
|
||||
class TestMaintainer(unittest.IsolatedAsyncioTestCase):
|
||||
async def test_move_files_survives_bad_filename(self):
|
||||
config = MagicMock(spec=FrigateConfig)
|
||||
config.cameras = {}
|
||||
stop_event = MagicMock()
|
||||
|
||||
maintainer = RecordingMaintainer(config, stop_event)
|
||||
|
||||
# We need to mock end_time_cache to avoid key errors if logic proceeds
|
||||
maintainer.end_time_cache = {}
|
||||
|
||||
# Mock filesystem
|
||||
# One bad file, one good file
|
||||
files = ["bad_filename.mp4", "camera@20210101000000+0000.mp4"]
|
||||
|
||||
with patch("os.listdir", return_value=files):
|
||||
with patch("os.path.isfile", return_value=True):
|
||||
with patch(
|
||||
"frigate.record.maintainer.psutil.process_iter", return_value=[]
|
||||
):
|
||||
with patch("frigate.record.maintainer.logger.warning") as warn:
|
||||
# Mock validate_and_move_segment to avoid further logic
|
||||
maintainer.validate_and_move_segment = MagicMock()
|
||||
|
||||
try:
|
||||
await maintainer.move_files()
|
||||
except ValueError as e:
|
||||
if "not enough values to unpack" in str(e):
|
||||
self.fail("move_files() crashed on bad filename!")
|
||||
raise e
|
||||
except Exception:
|
||||
# Ignore other errors (like DB connection) as we only care about the unpack crash
|
||||
pass
|
||||
|
||||
# The bad filename is encountered in multiple loops, but should only warn once.
|
||||
matching = [
|
||||
c
|
||||
for c in warn.call_args_list
|
||||
if c.args
|
||||
and isinstance(c.args[0], str)
|
||||
and "Skipping unexpected files in cache" in c.args[0]
|
||||
]
|
||||
self.assertEqual(
|
||||
1,
|
||||
len(matching),
|
||||
f"Expected a single warning for unexpected files, got {len(matching)}",
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
@@ -129,7 +129,9 @@ def get_ffmpeg_arg_list(arg: Any) -> list:
|
||||
return arg if isinstance(arg, list) else shlex.split(arg)
|
||||
|
||||
|
||||
def load_labels(path: Optional[str], encoding="utf-8", prefill=91):
|
||||
def load_labels(
|
||||
path: Optional[str], encoding="utf-8", prefill=91, indexed: bool | None = None
|
||||
):
|
||||
"""Loads labels from file (with or without index numbers).
|
||||
Args:
|
||||
path: path to label file.
|
||||
@@ -146,11 +148,12 @@ def load_labels(path: Optional[str], encoding="utf-8", prefill=91):
|
||||
if not lines:
|
||||
return {}
|
||||
|
||||
if lines[0].split(" ", maxsplit=1)[0].isdigit():
|
||||
if indexed != False and lines[0].split(" ", maxsplit=1)[0].isdigit():
|
||||
pairs = [line.split(" ", maxsplit=1) for line in lines]
|
||||
labels.update({int(index): label.strip() for index, label in pairs})
|
||||
else:
|
||||
labels.update({index: line.strip() for index, line in enumerate(lines)})
|
||||
|
||||
return labels
|
||||
|
||||
|
||||
|
||||
@@ -43,6 +43,7 @@ def write_training_metadata(model_name: str, image_count: int) -> None:
|
||||
model_name: Name of the classification model
|
||||
image_count: Number of images used in training
|
||||
"""
|
||||
model_name = model_name.strip()
|
||||
clips_model_dir = os.path.join(CLIPS_DIR, model_name)
|
||||
os.makedirs(clips_model_dir, exist_ok=True)
|
||||
|
||||
@@ -70,6 +71,7 @@ def read_training_metadata(model_name: str) -> dict[str, any] | None:
|
||||
Returns:
|
||||
Dictionary with last_training_date and last_training_image_count, or None if not found
|
||||
"""
|
||||
model_name = model_name.strip()
|
||||
clips_model_dir = os.path.join(CLIPS_DIR, model_name)
|
||||
metadata_path = os.path.join(clips_model_dir, TRAINING_METADATA_FILE)
|
||||
|
||||
@@ -95,6 +97,7 @@ def get_dataset_image_count(model_name: str) -> int:
|
||||
Returns:
|
||||
Total count of images across all categories
|
||||
"""
|
||||
model_name = model_name.strip()
|
||||
dataset_dir = os.path.join(CLIPS_DIR, model_name, "dataset")
|
||||
|
||||
if not os.path.exists(dataset_dir):
|
||||
@@ -126,6 +129,7 @@ class ClassificationTrainingProcess(FrigateProcess):
|
||||
"TF_KERAS_MOBILENET_V2_WEIGHTS_URL",
|
||||
"",
|
||||
)
|
||||
model_name = model_name.strip()
|
||||
super().__init__(
|
||||
stop_event=None,
|
||||
priority=PROCESS_PRIORITY_LOW,
|
||||
@@ -292,6 +296,7 @@ class ClassificationTrainingProcess(FrigateProcess):
|
||||
def kickoff_model_training(
|
||||
embeddingRequestor: EmbeddingsRequestor, model_name: str
|
||||
) -> None:
|
||||
model_name = model_name.strip()
|
||||
requestor = InterProcessRequestor()
|
||||
requestor.send_data(
|
||||
UPDATE_MODEL_STATE,
|
||||
@@ -359,6 +364,7 @@ def collect_state_classification_examples(
|
||||
model_name: Name of the classification model
|
||||
cameras: Dict mapping camera names to normalized crop coordinates [x1, y1, x2, y2] (0-1)
|
||||
"""
|
||||
model_name = model_name.strip()
|
||||
dataset_dir = os.path.join(CLIPS_DIR, model_name, "dataset")
|
||||
|
||||
# Step 1: Get review items for the cameras
|
||||
@@ -714,6 +720,7 @@ def collect_object_classification_examples(
|
||||
model_name: Name of the classification model
|
||||
label: Object label to collect (e.g., "person", "car")
|
||||
"""
|
||||
model_name = model_name.strip()
|
||||
dataset_dir = os.path.join(CLIPS_DIR, model_name, "dataset")
|
||||
temp_dir = os.path.join(dataset_dir, "temp")
|
||||
os.makedirs(temp_dir, exist_ok=True)
|
||||
|
||||
@@ -540,9 +540,16 @@ def get_jetson_stats() -> Optional[dict[int, dict]]:
|
||||
try:
|
||||
results["mem"] = "-" # no discrete gpu memory
|
||||
|
||||
with open("/sys/devices/gpu.0/load", "r") as f:
|
||||
gpuload = float(f.readline()) / 10
|
||||
results["gpu"] = f"{gpuload}%"
|
||||
if os.path.exists("/sys/devices/gpu.0/load"):
|
||||
with open("/sys/devices/gpu.0/load", "r") as f:
|
||||
gpuload = float(f.readline()) / 10
|
||||
results["gpu"] = f"{gpuload}%"
|
||||
elif os.path.exists("/sys/devices/platform/gpu.0/load"):
|
||||
with open("/sys/devices/platform/gpu.0/load", "r") as f:
|
||||
gpuload = float(f.readline()) / 10
|
||||
results["gpu"] = f"{gpuload}%"
|
||||
else:
|
||||
results["gpu"] = "-"
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
|
||||
@@ -64,10 +64,12 @@ def stop_ffmpeg(ffmpeg_process: sp.Popen[Any], logger: logging.Logger):
|
||||
try:
|
||||
logger.info("Waiting for ffmpeg to exit gracefully...")
|
||||
ffmpeg_process.communicate(timeout=30)
|
||||
logger.info("FFmpeg has exited")
|
||||
except sp.TimeoutExpired:
|
||||
logger.info("FFmpeg didn't exit. Force killing...")
|
||||
ffmpeg_process.kill()
|
||||
ffmpeg_process.communicate()
|
||||
logger.info("FFmpeg has been killed")
|
||||
ffmpeg_process = None
|
||||
|
||||
|
||||
|
||||
300
web/package-lock.json
generated
300
web/package-lock.json
generated
@@ -48,7 +48,7 @@
|
||||
"idb-keyval": "^6.2.1",
|
||||
"immer": "^10.1.1",
|
||||
"konva": "^9.3.18",
|
||||
"lodash": "^4.17.21",
|
||||
"lodash": "^4.17.23",
|
||||
"lucide-react": "^0.477.0",
|
||||
"monaco-yaml": "^5.3.1",
|
||||
"next-themes": "^0.3.0",
|
||||
@@ -64,7 +64,7 @@
|
||||
"react-i18next": "^15.2.0",
|
||||
"react-icons": "^5.5.0",
|
||||
"react-konva": "^18.2.10",
|
||||
"react-router-dom": "^6.26.0",
|
||||
"react-router-dom": "^6.30.3",
|
||||
"react-swipeable": "^7.0.2",
|
||||
"react-tracked": "^2.0.1",
|
||||
"react-transition-group": "^4.4.5",
|
||||
@@ -116,7 +116,7 @@
|
||||
"prettier-plugin-tailwindcss": "^0.6.5",
|
||||
"tailwindcss": "^3.4.9",
|
||||
"typescript": "^5.8.2",
|
||||
"vite": "^6.2.0",
|
||||
"vite": "^6.4.1",
|
||||
"vitest": "^3.0.7"
|
||||
}
|
||||
},
|
||||
@@ -3293,9 +3293,9 @@
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/@remix-run/router": {
|
||||
"version": "1.19.0",
|
||||
"resolved": "https://registry.npmjs.org/@remix-run/router/-/router-1.19.0.tgz",
|
||||
"integrity": "sha512-zDICCLKEwbVYTS6TjYaWtHXxkdoUvD/QXvyVZjGCsWz5vyH7aFeONlPffPdW+Y/t6KT0MgXb2Mfjun9YpWN1dA==",
|
||||
"version": "1.23.2",
|
||||
"resolved": "https://registry.npmjs.org/@remix-run/router/-/router-1.23.2.tgz",
|
||||
"integrity": "sha512-Ic6m2U/rMjTkhERIa/0ZtXJP17QUi2CbWE7cqx4J58M8aA3QTfW+2UlQ4psvTX9IO1RfNVhK3pcpdjej7L+t2w==",
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": ">=14.0.0"
|
||||
@@ -4683,6 +4683,19 @@
|
||||
"node": ">=8"
|
||||
}
|
||||
},
|
||||
"node_modules/call-bind-apply-helpers": {
|
||||
"version": "1.0.2",
|
||||
"resolved": "https://registry.npmjs.org/call-bind-apply-helpers/-/call-bind-apply-helpers-1.0.2.tgz",
|
||||
"integrity": "sha512-Sp1ablJ0ivDkSzjcaJdxEunN5/XvksFJ2sMBFfq6x0ryhQV/2b/KwFe21cMpmHtPOSij8K99/wSfoEuTObmuMQ==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"es-errors": "^1.3.0",
|
||||
"function-bind": "^1.1.2"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">= 0.4"
|
||||
}
|
||||
},
|
||||
"node_modules/callsites": {
|
||||
"version": "3.1.0",
|
||||
"resolved": "https://registry.npmjs.org/callsites/-/callsites-3.1.0.tgz",
|
||||
@@ -5619,6 +5632,20 @@
|
||||
"csstype": "^3.0.2"
|
||||
}
|
||||
},
|
||||
"node_modules/dunder-proto": {
|
||||
"version": "1.0.1",
|
||||
"resolved": "https://registry.npmjs.org/dunder-proto/-/dunder-proto-1.0.1.tgz",
|
||||
"integrity": "sha512-KIN/nDJBQRcXw0MLVhZE9iQHmG68qAVIBg9CqmUYjmQIhgij9U5MFvrqkUL5FbtyyzZuOeOt0zdeRe4UY7ct+A==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"call-bind-apply-helpers": "^1.0.1",
|
||||
"es-errors": "^1.3.0",
|
||||
"gopd": "^1.2.0"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">= 0.4"
|
||||
}
|
||||
},
|
||||
"node_modules/eastasianwidth": {
|
||||
"version": "0.2.0",
|
||||
"resolved": "https://registry.npmjs.org/eastasianwidth/-/eastasianwidth-0.2.0.tgz",
|
||||
@@ -5679,6 +5706,24 @@
|
||||
"url": "https://github.com/fb55/entities?sponsor=1"
|
||||
}
|
||||
},
|
||||
"node_modules/es-define-property": {
|
||||
"version": "1.0.1",
|
||||
"resolved": "https://registry.npmjs.org/es-define-property/-/es-define-property-1.0.1.tgz",
|
||||
"integrity": "sha512-e3nRfgfUZ4rNGL232gUgX06QNyyez04KdjFrF+LTRoOXmrOgFKDg4BCdsjW8EnT69eqdYGmRpJwiPVYNrCaW3g==",
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": ">= 0.4"
|
||||
}
|
||||
},
|
||||
"node_modules/es-errors": {
|
||||
"version": "1.3.0",
|
||||
"resolved": "https://registry.npmjs.org/es-errors/-/es-errors-1.3.0.tgz",
|
||||
"integrity": "sha512-Zf5H2Kxt2xjTvbJvP2ZWLEICxA6j+hAmMzIlypy4xcBg1vKVnx89Wy0GbS+kf5cwCVFFzdCFh2XSCFNULS6csw==",
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": ">= 0.4"
|
||||
}
|
||||
},
|
||||
"node_modules/es-module-lexer": {
|
||||
"version": "1.6.0",
|
||||
"resolved": "https://registry.npmjs.org/es-module-lexer/-/es-module-lexer-1.6.0.tgz",
|
||||
@@ -5686,6 +5731,33 @@
|
||||
"dev": true,
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/es-object-atoms": {
|
||||
"version": "1.1.1",
|
||||
"resolved": "https://registry.npmjs.org/es-object-atoms/-/es-object-atoms-1.1.1.tgz",
|
||||
"integrity": "sha512-FGgH2h8zKNim9ljj7dankFPcICIK9Cp5bm+c2gQSYePhpaG5+esrLODihIorn+Pe6FGJzWhXQotPv73jTaldXA==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"es-errors": "^1.3.0"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">= 0.4"
|
||||
}
|
||||
},
|
||||
"node_modules/es-set-tostringtag": {
|
||||
"version": "2.1.0",
|
||||
"resolved": "https://registry.npmjs.org/es-set-tostringtag/-/es-set-tostringtag-2.1.0.tgz",
|
||||
"integrity": "sha512-j6vWzfrGVfyXxge+O0x5sh6cvxAog0a/4Rdd2K36zCMV5eJ+/+tOAngRO8cODMNWbVRdVlmGZQL2YS3yR8bIUA==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"es-errors": "^1.3.0",
|
||||
"get-intrinsic": "^1.2.6",
|
||||
"has-tostringtag": "^1.0.2",
|
||||
"hasown": "^2.0.2"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">= 0.4"
|
||||
}
|
||||
},
|
||||
"node_modules/esbuild": {
|
||||
"version": "0.25.0",
|
||||
"resolved": "https://registry.npmjs.org/esbuild/-/esbuild-0.25.0.tgz",
|
||||
@@ -6222,12 +6294,15 @@
|
||||
}
|
||||
},
|
||||
"node_modules/form-data": {
|
||||
"version": "4.0.0",
|
||||
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz",
|
||||
"integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==",
|
||||
"version": "4.0.4",
|
||||
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.4.tgz",
|
||||
"integrity": "sha512-KrGhL9Q4zjj0kiUt5OO4Mr/A/jlI2jDYs5eHBpYHPcBEVSiipAvn2Ko2HnPe20rmcuuvMHNdZFp+4IlGTMF0Ow==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"asynckit": "^0.4.0",
|
||||
"combined-stream": "^1.0.8",
|
||||
"es-set-tostringtag": "^2.1.0",
|
||||
"hasown": "^2.0.2",
|
||||
"mime-types": "^2.1.12"
|
||||
},
|
||||
"engines": {
|
||||
@@ -6307,6 +6382,30 @@
|
||||
"node": "6.* || 8.* || >= 10.*"
|
||||
}
|
||||
},
|
||||
"node_modules/get-intrinsic": {
|
||||
"version": "1.3.0",
|
||||
"resolved": "https://registry.npmjs.org/get-intrinsic/-/get-intrinsic-1.3.0.tgz",
|
||||
"integrity": "sha512-9fSjSaos/fRIVIp+xSJlE6lfwhES7LNtKaCBIamHsjr2na1BiABJPo0mOjjz8GJDURarmCPGqaiVg5mfjb98CQ==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"call-bind-apply-helpers": "^1.0.2",
|
||||
"es-define-property": "^1.0.1",
|
||||
"es-errors": "^1.3.0",
|
||||
"es-object-atoms": "^1.1.1",
|
||||
"function-bind": "^1.1.2",
|
||||
"get-proto": "^1.0.1",
|
||||
"gopd": "^1.2.0",
|
||||
"has-symbols": "^1.1.0",
|
||||
"hasown": "^2.0.2",
|
||||
"math-intrinsics": "^1.1.0"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">= 0.4"
|
||||
},
|
||||
"funding": {
|
||||
"url": "https://github.com/sponsors/ljharb"
|
||||
}
|
||||
},
|
||||
"node_modules/get-nonce": {
|
||||
"version": "1.0.1",
|
||||
"resolved": "https://registry.npmjs.org/get-nonce/-/get-nonce-1.0.1.tgz",
|
||||
@@ -6316,6 +6415,19 @@
|
||||
"node": ">=6"
|
||||
}
|
||||
},
|
||||
"node_modules/get-proto": {
|
||||
"version": "1.0.1",
|
||||
"resolved": "https://registry.npmjs.org/get-proto/-/get-proto-1.0.1.tgz",
|
||||
"integrity": "sha512-sTSfBjoXBp89JvIKIefqw7U2CCebsc74kiY6awiGogKtoSGbgjYE/G/+l9sF3MWFPNc9IcoOC4ODfKHfxFmp0g==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"dunder-proto": "^1.0.1",
|
||||
"es-object-atoms": "^1.0.0"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">= 0.4"
|
||||
}
|
||||
},
|
||||
"node_modules/glob": {
|
||||
"version": "7.2.3",
|
||||
"resolved": "https://registry.npmjs.org/glob/-/glob-7.2.3.tgz",
|
||||
@@ -6384,6 +6496,18 @@
|
||||
"url": "https://github.com/sponsors/sindresorhus"
|
||||
}
|
||||
},
|
||||
"node_modules/gopd": {
|
||||
"version": "1.2.0",
|
||||
"resolved": "https://registry.npmjs.org/gopd/-/gopd-1.2.0.tgz",
|
||||
"integrity": "sha512-ZUKRh6/kUFoAiTAtTYPZJ3hw9wNxx+BIBOijnlG9PnrJsCcSjs1wyyD6vJpaYtgnzDrKYRSqf3OO6Rfa93xsRg==",
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": ">= 0.4"
|
||||
},
|
||||
"funding": {
|
||||
"url": "https://github.com/sponsors/ljharb"
|
||||
}
|
||||
},
|
||||
"node_modules/graphemer": {
|
||||
"version": "1.4.0",
|
||||
"resolved": "https://registry.npmjs.org/graphemer/-/graphemer-1.4.0.tgz",
|
||||
@@ -6413,10 +6537,38 @@
|
||||
"node": ">=8"
|
||||
}
|
||||
},
|
||||
"node_modules/has-symbols": {
|
||||
"version": "1.1.0",
|
||||
"resolved": "https://registry.npmjs.org/has-symbols/-/has-symbols-1.1.0.tgz",
|
||||
"integrity": "sha512-1cDNdwJ2Jaohmb3sg4OmKaMBwuC48sYni5HUw2DvsC8LjGTLK9h+eb1X6RyuOHe4hT0ULCW68iomhjUoKUqlPQ==",
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": ">= 0.4"
|
||||
},
|
||||
"funding": {
|
||||
"url": "https://github.com/sponsors/ljharb"
|
||||
}
|
||||
},
|
||||
"node_modules/has-tostringtag": {
|
||||
"version": "1.0.2",
|
||||
"resolved": "https://registry.npmjs.org/has-tostringtag/-/has-tostringtag-1.0.2.tgz",
|
||||
"integrity": "sha512-NqADB8VjPFLM2V0VvHUewwwsw0ZWBaIdgo+ieHtK3hasLz4qeCRjYcqfB6AQrBggRKppKF8L52/VqdVsO47Dlw==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"has-symbols": "^1.0.3"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">= 0.4"
|
||||
},
|
||||
"funding": {
|
||||
"url": "https://github.com/sponsors/ljharb"
|
||||
}
|
||||
},
|
||||
"node_modules/hasown": {
|
||||
"version": "2.0.0",
|
||||
"resolved": "https://registry.npmjs.org/hasown/-/hasown-2.0.0.tgz",
|
||||
"integrity": "sha512-vUptKVTpIJhcczKBbgnS+RtcuYMB8+oNzPK2/Hp3hanz8JmpATdmmgLgSaadVREkDm+e2giHwY3ZRkyjSIDDFA==",
|
||||
"version": "2.0.2",
|
||||
"resolved": "https://registry.npmjs.org/hasown/-/hasown-2.0.2.tgz",
|
||||
"integrity": "sha512-0hJU9SCPvmMzIBdZFqNPXWa6dqh7WdH0cII9y+CyS8rG3nL48Bclra9HmKhVVUHyPWNH5Y7xDwAB7bfgSjkUMQ==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"function-bind": "^1.1.2"
|
||||
},
|
||||
@@ -7058,9 +7210,10 @@
|
||||
}
|
||||
},
|
||||
"node_modules/lodash": {
|
||||
"version": "4.17.21",
|
||||
"resolved": "https://registry.npmjs.org/lodash/-/lodash-4.17.21.tgz",
|
||||
"integrity": "sha512-v2kDEe57lecTulaDIuNTPy3Ry4gLGJ6Z1O3vE1krgXZNrsQ+LFTGHVxVjcXPs17LhbZVGedAJv8XZ1tvj5FvSg=="
|
||||
"version": "4.17.23",
|
||||
"resolved": "https://registry.npmjs.org/lodash/-/lodash-4.17.23.tgz",
|
||||
"integrity": "sha512-LgVTMpQtIopCi79SJeDiP0TfWi5CNEc/L/aRdTh3yIvmZXTnheWpKjSZhnvMl8iXbC1tFg9gdHHDMLoV7CnG+w==",
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/lodash.merge": {
|
||||
"version": "4.6.2",
|
||||
@@ -7140,6 +7293,15 @@
|
||||
"url": "https://github.com/sponsors/sindresorhus"
|
||||
}
|
||||
},
|
||||
"node_modules/math-intrinsics": {
|
||||
"version": "1.1.0",
|
||||
"resolved": "https://registry.npmjs.org/math-intrinsics/-/math-intrinsics-1.1.0.tgz",
|
||||
"integrity": "sha512-/IXtbwEk5HTPyEwyKX6hGkYXxM9nbj64B+ilVJnC/R6B0pH5G4V3b0pVbL7DBj4tkhBAppbQUlf6F6Xl9LHu1g==",
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": ">= 0.4"
|
||||
}
|
||||
},
|
||||
"node_modules/merge-stream": {
|
||||
"version": "2.0.0",
|
||||
"resolved": "https://registry.npmjs.org/merge-stream/-/merge-stream-2.0.0.tgz",
|
||||
@@ -8456,12 +8618,12 @@
|
||||
}
|
||||
},
|
||||
"node_modules/react-router": {
|
||||
"version": "6.26.0",
|
||||
"resolved": "https://registry.npmjs.org/react-router/-/react-router-6.26.0.tgz",
|
||||
"integrity": "sha512-wVQq0/iFYd3iZ9H2l3N3k4PL8EEHcb0XlU2Na8nEwmiXgIUElEH6gaJDtUQxJ+JFzmIXaQjfdpcGWaM6IoQGxg==",
|
||||
"version": "6.30.3",
|
||||
"resolved": "https://registry.npmjs.org/react-router/-/react-router-6.30.3.tgz",
|
||||
"integrity": "sha512-XRnlbKMTmktBkjCLE8/XcZFlnHvr2Ltdr1eJX4idL55/9BbORzyZEaIkBFDhFGCEWBBItsVrDxwx3gnisMitdw==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"@remix-run/router": "1.19.0"
|
||||
"@remix-run/router": "1.23.2"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=14.0.0"
|
||||
@@ -8471,13 +8633,13 @@
|
||||
}
|
||||
},
|
||||
"node_modules/react-router-dom": {
|
||||
"version": "6.26.0",
|
||||
"resolved": "https://registry.npmjs.org/react-router-dom/-/react-router-dom-6.26.0.tgz",
|
||||
"integrity": "sha512-RRGUIiDtLrkX3uYcFiCIxKFWMcWQGMojpYZfcstc63A1+sSnVgILGIm9gNUA6na3Fm1QuPGSBQH2EMbAZOnMsQ==",
|
||||
"version": "6.30.3",
|
||||
"resolved": "https://registry.npmjs.org/react-router-dom/-/react-router-dom-6.30.3.tgz",
|
||||
"integrity": "sha512-pxPcv1AczD4vso7G4Z3TKcvlxK7g7TNt3/FNGMhfqyntocvYKj+GCatfigGDjbLozC4baguJ0ReCigoDJXb0ag==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"@remix-run/router": "1.19.0",
|
||||
"react-router": "6.26.0"
|
||||
"@remix-run/router": "1.23.2",
|
||||
"react-router": "6.30.3"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=14.0.0"
|
||||
@@ -9502,6 +9664,54 @@
|
||||
"dev": true,
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/tinyglobby": {
|
||||
"version": "0.2.15",
|
||||
"resolved": "https://registry.npmjs.org/tinyglobby/-/tinyglobby-0.2.15.tgz",
|
||||
"integrity": "sha512-j2Zq4NyQYG5XMST4cbs02Ak8iJUdxRM0XI5QyxXuZOzKOINmWurp3smXu3y5wDcJrptwpSjgXHzIQxR0omXljQ==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"fdir": "^6.5.0",
|
||||
"picomatch": "^4.0.3"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=12.0.0"
|
||||
},
|
||||
"funding": {
|
||||
"url": "https://github.com/sponsors/SuperchupuDev"
|
||||
}
|
||||
},
|
||||
"node_modules/tinyglobby/node_modules/fdir": {
|
||||
"version": "6.5.0",
|
||||
"resolved": "https://registry.npmjs.org/fdir/-/fdir-6.5.0.tgz",
|
||||
"integrity": "sha512-tIbYtZbucOs0BRGqPJkshJUYdL+SDH7dVM8gjy+ERp3WAUjLEFJE+02kanyHtwjWOnwrKYBiwAmM0p4kLJAnXg==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": ">=12.0.0"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"picomatch": "^3 || ^4"
|
||||
},
|
||||
"peerDependenciesMeta": {
|
||||
"picomatch": {
|
||||
"optional": true
|
||||
}
|
||||
}
|
||||
},
|
||||
"node_modules/tinyglobby/node_modules/picomatch": {
|
||||
"version": "4.0.3",
|
||||
"resolved": "https://registry.npmjs.org/picomatch/-/picomatch-4.0.3.tgz",
|
||||
"integrity": "sha512-5gTmgEY/sqK6gFXLIsQNH19lWb4ebPDLA4SdLP7dsWkIXHWlG66oPuVvXSGFPppYZz8ZDZq0dYYrbHfBCVUb1Q==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": ">=12"
|
||||
},
|
||||
"funding": {
|
||||
"url": "https://github.com/sponsors/jonschlinkert"
|
||||
}
|
||||
},
|
||||
"node_modules/tinypool": {
|
||||
"version": "1.0.2",
|
||||
"resolved": "https://registry.npmjs.org/tinypool/-/tinypool-1.0.2.tgz",
|
||||
@@ -9868,15 +10078,18 @@
|
||||
}
|
||||
},
|
||||
"node_modules/vite": {
|
||||
"version": "6.2.0",
|
||||
"resolved": "https://registry.npmjs.org/vite/-/vite-6.2.0.tgz",
|
||||
"integrity": "sha512-7dPxoo+WsT/64rDcwoOjk76XHj+TqNTIvHKcuMQ1k4/SeHDaQt5GFAeLYzrimZrMpn/O6DtdI03WUjdxuPM0oQ==",
|
||||
"version": "6.4.1",
|
||||
"resolved": "https://registry.npmjs.org/vite/-/vite-6.4.1.tgz",
|
||||
"integrity": "sha512-+Oxm7q9hDoLMyJOYfUYBuHQo+dkAloi33apOPP56pzj+vsdJDzr+j1NISE5pyaAuKL4A3UD34qd0lx5+kfKp2g==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"esbuild": "^0.25.0",
|
||||
"fdir": "^6.4.4",
|
||||
"picomatch": "^4.0.2",
|
||||
"postcss": "^8.5.3",
|
||||
"rollup": "^4.30.1"
|
||||
"rollup": "^4.34.9",
|
||||
"tinyglobby": "^0.2.13"
|
||||
},
|
||||
"bin": {
|
||||
"vite": "bin/vite.js"
|
||||
@@ -9970,6 +10183,37 @@
|
||||
"monaco-editor": ">=0.33.0"
|
||||
}
|
||||
},
|
||||
"node_modules/vite/node_modules/fdir": {
|
||||
"version": "6.5.0",
|
||||
"resolved": "https://registry.npmjs.org/fdir/-/fdir-6.5.0.tgz",
|
||||
"integrity": "sha512-tIbYtZbucOs0BRGqPJkshJUYdL+SDH7dVM8gjy+ERp3WAUjLEFJE+02kanyHtwjWOnwrKYBiwAmM0p4kLJAnXg==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": ">=12.0.0"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"picomatch": "^3 || ^4"
|
||||
},
|
||||
"peerDependenciesMeta": {
|
||||
"picomatch": {
|
||||
"optional": true
|
||||
}
|
||||
}
|
||||
},
|
||||
"node_modules/vite/node_modules/picomatch": {
|
||||
"version": "4.0.3",
|
||||
"resolved": "https://registry.npmjs.org/picomatch/-/picomatch-4.0.3.tgz",
|
||||
"integrity": "sha512-5gTmgEY/sqK6gFXLIsQNH19lWb4ebPDLA4SdLP7dsWkIXHWlG66oPuVvXSGFPppYZz8ZDZq0dYYrbHfBCVUb1Q==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": ">=12"
|
||||
},
|
||||
"funding": {
|
||||
"url": "https://github.com/sponsors/jonschlinkert"
|
||||
}
|
||||
},
|
||||
"node_modules/vitest": {
|
||||
"version": "3.0.7",
|
||||
"resolved": "https://registry.npmjs.org/vitest/-/vitest-3.0.7.tgz",
|
||||
|
||||
@@ -54,7 +54,7 @@
|
||||
"idb-keyval": "^6.2.1",
|
||||
"immer": "^10.1.1",
|
||||
"konva": "^9.3.18",
|
||||
"lodash": "^4.17.21",
|
||||
"lodash": "^4.17.23",
|
||||
"lucide-react": "^0.477.0",
|
||||
"monaco-yaml": "^5.3.1",
|
||||
"next-themes": "^0.3.0",
|
||||
@@ -70,7 +70,7 @@
|
||||
"react-i18next": "^15.2.0",
|
||||
"react-icons": "^5.5.0",
|
||||
"react-konva": "^18.2.10",
|
||||
"react-router-dom": "^6.26.0",
|
||||
"react-router-dom": "^6.30.3",
|
||||
"react-swipeable": "^7.0.2",
|
||||
"react-tracked": "^2.0.1",
|
||||
"react-transition-group": "^4.4.5",
|
||||
@@ -122,7 +122,7 @@
|
||||
"prettier-plugin-tailwindcss": "^0.6.5",
|
||||
"tailwindcss": "^3.4.9",
|
||||
"typescript": "^5.8.2",
|
||||
"vite": "^6.2.0",
|
||||
"vite": "^6.4.1",
|
||||
"vitest": "^3.0.7"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1 +1,6 @@
|
||||
{}
|
||||
{
|
||||
"train": {
|
||||
"titleShort": "الأخيرة"
|
||||
},
|
||||
"documentTitle": "تصنيف النماذج - Frigate"
|
||||
}
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"description": {
|
||||
"addFace": "قم بإضافة مجموعة جديدة لمكتبة الأوجه.",
|
||||
"addFace": "أضف مجموعة جديدة إلى مكتبة الوجوه عن طريق رفع صورتك الأولى.",
|
||||
"invalidName": "أسم غير صالح. يجب أن يشمل الأسم فقط على الحروف، الأرقام، المسافات، الفاصلة العليا، الشرطة التحتية، والشرطة الواصلة.",
|
||||
"placeholder": "أدخل أسم لهذه المجموعة"
|
||||
},
|
||||
@@ -21,6 +21,88 @@
|
||||
"collections": "المجموعات",
|
||||
"createFaceLibrary": {
|
||||
"title": "إنشاء المجاميع",
|
||||
"desc": "إنشاء مجموعة جديدة"
|
||||
"desc": "إنشاء مجموعة جديدة",
|
||||
"new": "إضافة وجه جديد",
|
||||
"nextSteps": "لبناء أساس قوي:<li>استخدم علامة التبويب \"التعرّفات الأخيرة\" لاختيار الصور والتدريب عليها لكل شخص تم اكتشافه.</li> <li>ركّز على الصور الأمامية المباشرة للحصول على أفضل النتائج؛ وتجنّب صور التدريب التي تُظهر الوجوه بزاوية.</li>"
|
||||
},
|
||||
"steps": {
|
||||
"faceName": "ادخل اسم للوجه",
|
||||
"uploadFace": "ارفع صورة للوجه",
|
||||
"nextSteps": "الخطوة التالية",
|
||||
"description": {
|
||||
"uploadFace": "قم برفع صورة لـ {{name}} تُظهر وجهه من زاوية أمامية مباشرة. لا يلزم أن تكون الصورة مقتصرة على الوجه فقط."
|
||||
}
|
||||
},
|
||||
"train": {
|
||||
"title": "التعرّفات الأخيرة",
|
||||
"titleShort": "الأخيرة",
|
||||
"aria": "اختر التعرّفات الأخيرة",
|
||||
"empty": "لا توجد أي محاولات حديثة للتعرّف على الوجوه"
|
||||
},
|
||||
"deleteFaceLibrary": {
|
||||
"title": "احذف الاسم",
|
||||
"desc": "هل أنت متأكد أنك تريد حذف المجموعة {{name}}؟ سيؤدي هذا إلى حذف جميع الوجوه المرتبطة بها نهائيًا."
|
||||
},
|
||||
"deleteFaceAttempts": {
|
||||
"title": "احذف الوجوه",
|
||||
"desc_zero": "وجه",
|
||||
"desc_one": "وجه",
|
||||
"desc_two": "وجهان",
|
||||
"desc_few": "وجوه",
|
||||
"desc_many": "وجهًا",
|
||||
"desc_other": "وجه"
|
||||
},
|
||||
"renameFace": {
|
||||
"title": "اعادة تسمية الوجه",
|
||||
"desc": "ادخل اسم جديد لـ{{name}}"
|
||||
},
|
||||
"button": {
|
||||
"deleteFaceAttempts": "احذف الوجوه",
|
||||
"addFace": "اظف وجهًا",
|
||||
"renameFace": "اعد تسمية وجه",
|
||||
"deleteFace": "احذف وجهًا",
|
||||
"uploadImage": "ارفع صورة",
|
||||
"reprocessFace": "إعادة معالجة الوجه"
|
||||
},
|
||||
"imageEntry": {
|
||||
"validation": {
|
||||
"selectImage": "يرجى اختيار ملف صورة."
|
||||
},
|
||||
"dropActive": "اسحب الصورة إلى هنا…",
|
||||
"dropInstructions": "اسحب وأفلت أو الصق صورة هنا، أو انقر للاختيار",
|
||||
"maxSize": "الحجم الأقصى: {{size}} ميغابايت"
|
||||
},
|
||||
"nofaces": "لا توجد وجوه متاحة",
|
||||
"trainFaceAs": "درّب الوجه كـ:",
|
||||
"trainFace": "درّب الوجه",
|
||||
"toast": {
|
||||
"success": {
|
||||
"uploadedImage": "تم رفع الصورة بنجاح.",
|
||||
"addFaceLibrary": "تمت إضافة {{name}} بنجاح إلى مكتبة الوجوه!",
|
||||
"deletedFace_zero": "وجه",
|
||||
"deletedFace_one": "وجه",
|
||||
"deletedFace_two": "وجهين",
|
||||
"deletedFace_few": "وجوه",
|
||||
"deletedFace_many": "وجهًا",
|
||||
"deletedFace_other": "وجه",
|
||||
"deletedName_zero": "وجه",
|
||||
"deletedName_one": "وجه",
|
||||
"deletedName_two": "وجهين",
|
||||
"deletedName_few": "وجوه",
|
||||
"deletedName_many": "وجهًا",
|
||||
"deletedName_other": "وجه",
|
||||
"renamedFace": "تمت إعادة تسمية الوجه بنجاح إلى {{name}}",
|
||||
"trainedFace": "تم تدريب الوجه بنجاح.",
|
||||
"updatedFaceScore": "تم تحديث درجة الوجه بنجاح إلى {{name}} ({{score}})."
|
||||
},
|
||||
"error": {
|
||||
"uploadingImageFailed": "فشل في رفع الصورة: {{errorMessage}}",
|
||||
"addFaceLibraryFailed": "فشل في تعيين اسم الوجه: {{errorMessage}}",
|
||||
"deleteFaceFailed": "فشل الحذف: {{errorMessage}}",
|
||||
"deleteNameFailed": "فشل في حذف الاسم: {{errorMessage}}",
|
||||
"renameFaceFailed": "فشل في إعادة تسمية الوجه: {{errorMessage}}",
|
||||
"trainFailed": "فشل التدريب: {{errorMessage}}",
|
||||
"updateFaceScoreFailed": "فشل في تحديث درجة الوجه: {{errorMessage}}"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2,9 +2,9 @@
|
||||
"babbling": "Бърборене",
|
||||
"whispering": "Шепнене",
|
||||
"laughter": "Смях",
|
||||
"crying": "Плача",
|
||||
"crying": "Плач",
|
||||
"sigh": "Въздишка",
|
||||
"singing": "Подписвам",
|
||||
"singing": "Пеене",
|
||||
"choir": "Хор",
|
||||
"yodeling": "Йоделинг",
|
||||
"mantra": "Мантра",
|
||||
@@ -264,5 +264,6 @@
|
||||
"pant": "Здъхване",
|
||||
"stomach_rumble": "Къркорене на стомах",
|
||||
"heartbeat": "Сърцебиене",
|
||||
"scream": "Вик"
|
||||
"scream": "Вик",
|
||||
"snicker": "Хихикане"
|
||||
}
|
||||
|
||||
@@ -1,6 +1,16 @@
|
||||
{
|
||||
"form": {
|
||||
"user": "Потребителско име",
|
||||
"password": "Парола"
|
||||
"password": "Парола",
|
||||
"login": "Вход",
|
||||
"firstTimeLogin": "Опитвате да влезете за първи път? Данните за вход са разпечатани в логовете на Frigate.",
|
||||
"errors": {
|
||||
"usernameRequired": "Потребителското име е задължително",
|
||||
"passwordRequired": "Паролата е задължителна",
|
||||
"rateLimit": "Надхвърлен брой опити. Моля Опитайте по-късно.",
|
||||
"loginFailed": "Неуспешен вход",
|
||||
"unknownError": "Неизвестна грешка. Поля проверете логовете.",
|
||||
"webUnknownError": "Неизвестна грешка. Поля проверете изхода в конзолата."
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -7,7 +7,7 @@
|
||||
"label": "Изтрий група за камери",
|
||||
"confirm": {
|
||||
"title": "Потвърди изтриването",
|
||||
"desc": "Сигурни ли сте, че искате да изтриете група </em>{{name}}</em>?"
|
||||
"desc": "Сигурни ли сте, че искате да изтриете група <em>{{name}}</em>?"
|
||||
}
|
||||
},
|
||||
"name": {
|
||||
|
||||
@@ -11,6 +11,9 @@
|
||||
},
|
||||
"restart": {
|
||||
"title": "Сигурен ли сте, че искате да рестартирате Frigate?",
|
||||
"button": "Рестартирай"
|
||||
"button": "Рестартирай",
|
||||
"restarting": {
|
||||
"title": "Frigare се рестартира"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,3 +1,6 @@
|
||||
{
|
||||
"documentTitle": "Модели за класификация"
|
||||
"documentTitle": "Модели за класификация - Frigate",
|
||||
"description": {
|
||||
"invalidName": "Невалидно име. Имената могат да съдържат единствено: букви, числа, празни места, долни черти и тирета."
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,4 +1,18 @@
|
||||
{
|
||||
"documentTitle": "Настройки на конфигурацията - Фригейт",
|
||||
"configEditor": "Настройки на конфигурацията"
|
||||
"documentTitle": "Настройки на конфигурацията - Frigate",
|
||||
"configEditor": "Конфигуратор",
|
||||
"safeConfigEditor": "Конфигуратор (Safe Mode)",
|
||||
"safeModeDescription": "Frigate е в режим \"Safe Mode\" тъй като конфигурацията не минава проверките за валидност.",
|
||||
"copyConfig": "Копирай Конфигурацията",
|
||||
"saveAndRestart": "Запази и Рестартирай",
|
||||
"saveOnly": "Запази",
|
||||
"confirm": "Изход без запис?",
|
||||
"toast": {
|
||||
"success": {
|
||||
"copyToClipboard": "Конфигурацията е копирана."
|
||||
},
|
||||
"error": {
|
||||
"savingError": "Грешка при запис на конфигурацията"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -11,5 +11,8 @@
|
||||
},
|
||||
"allCameras": "Всички камери",
|
||||
"alerts": "Известия",
|
||||
"detections": "Засичания"
|
||||
"detections": "Засичания",
|
||||
"motion": {
|
||||
"label": "Движение"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -10,5 +10,5 @@
|
||||
"trackedObjectsCount_one": "{{count}} проследен обект ",
|
||||
"trackedObjectsCount_other": "{{count}} проследени обекта ",
|
||||
"documentTitle": "Разгледай - Фригейт",
|
||||
"generativeAI": "Генериращ Изкъствен Интелект"
|
||||
"generativeAI": "Генеративен Изкъствен Интелект"
|
||||
}
|
||||
|
||||
@@ -1,4 +1,23 @@
|
||||
{
|
||||
"documentTitle": "Експорт - Frigate",
|
||||
"search": "Търси"
|
||||
"search": "Търси",
|
||||
"noExports": "Няма намерени експорти",
|
||||
"deleteExport": "Изтрий експорт",
|
||||
"deleteExport.desc": "Сигурни ли сте, че искате да изтриете {{exportName}}?",
|
||||
"editExport": {
|
||||
"title": "Преименувай експорт",
|
||||
"desc": "Въведете ново име за този експорт.",
|
||||
"saveExport": "Запази експорт"
|
||||
},
|
||||
"tooltip": {
|
||||
"shareExport": "Сподели експорт",
|
||||
"downloadVideo": "Свали видео",
|
||||
"editName": "Редактирай име",
|
||||
"deleteExport": "Изтрий експорт"
|
||||
},
|
||||
"toast": {
|
||||
"error": {
|
||||
"renameExportFailed": "Неуспешно преименуване на експорт: {{errorMessage}}"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -13,6 +13,7 @@
|
||||
},
|
||||
"description": {
|
||||
"addFace": "Добавете нова колекция във библиотеката за лица при качването на първата ви снимка.",
|
||||
"placeholder": "Напишете име за тази колекция"
|
||||
"placeholder": "Напишете име за тази колекция",
|
||||
"invalidName": "Невалидно име. Имената могат да съдържат единствено: букви, числа, празни места, долни черти и тирета."
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3,5 +3,6 @@
|
||||
"save": "Запазване на търсенето"
|
||||
},
|
||||
"search": "Търси",
|
||||
"savedSearches": "Запазени търсения"
|
||||
"savedSearches": "Запазени търсения",
|
||||
"searchFor": "Търсене за {{inputValue}}"
|
||||
}
|
||||
|
||||
@@ -4,6 +4,7 @@
|
||||
},
|
||||
"documentTitle": {
|
||||
"cameras": "Статистики за Камери - Фригейт",
|
||||
"storage": "Статистика за паметта - Фригейт"
|
||||
"storage": "Статистика за паметта - Фригейт",
|
||||
"general": "Обща Статистика - Frigate"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -60,7 +60,7 @@
|
||||
"cough": "Tos",
|
||||
"throat_clearing": "Carraspeig",
|
||||
"sneeze": "Esternut",
|
||||
"sniff": "Fregit nasal",
|
||||
"sniff": "olorar",
|
||||
"run": "Córrer",
|
||||
"shuffle": "Passos arrossegats",
|
||||
"footsteps": "Passos",
|
||||
@@ -97,7 +97,7 @@
|
||||
"moo": "Mugir",
|
||||
"cowbell": "Esquellot",
|
||||
"pig": "Porc",
|
||||
"oink": "Oink",
|
||||
"oink": "Oinc",
|
||||
"bleat": "Brama",
|
||||
"fowl": "Au de corral",
|
||||
"chicken": "Pollastre",
|
||||
@@ -439,37 +439,37 @@
|
||||
"inside": "Interior",
|
||||
"pulse": "Pols",
|
||||
"outside": "Fora",
|
||||
"chirp_tone": "To de grinyol",
|
||||
"chirp_tone": "Gisclada",
|
||||
"harmonic": "Harmònic",
|
||||
"sine_wave": "Ona sinus",
|
||||
"crunch": "Cruixit",
|
||||
"hum": "Taral·lejar",
|
||||
"plop": "Chof",
|
||||
"hum": "Zunzum",
|
||||
"plop": "Xip-xap",
|
||||
"clickety_clack": "Clic-Clac",
|
||||
"clicking": "Clicant",
|
||||
"clatter": "Soroll",
|
||||
"clatter": "Rebombori",
|
||||
"chird": "Piular",
|
||||
"liquid": "Líquid",
|
||||
"splash": "Xof",
|
||||
"slosh": "Xip-xap",
|
||||
"boing": "Boing",
|
||||
"zing": "Fiu",
|
||||
"rumble": "Bum-bum",
|
||||
"sizzle": "Xiu-xiu",
|
||||
"splash": "Esquitx",
|
||||
"slosh": "Xipolleig",
|
||||
"boing": "Rebot",
|
||||
"zing": "Zunzum agut",
|
||||
"rumble": "Retombori",
|
||||
"sizzle": "Crepitació",
|
||||
"whir": "Brrrm",
|
||||
"rustle": "Fru-Fru",
|
||||
"creak": "Clic-clac",
|
||||
"clang": "Clang",
|
||||
"rustle": "Frec",
|
||||
"creak": "Rascada",
|
||||
"clang": "Soroll metàl·lic",
|
||||
"squish": "Xaf",
|
||||
"drip": "Plic-plic",
|
||||
"pour": "Glug-glug",
|
||||
"trickle": "Xiulet",
|
||||
"gush": "Xuuuix",
|
||||
"fill": "Glug-glug",
|
||||
"ding": "Ding",
|
||||
"ping": "Ping",
|
||||
"beep": "Bip",
|
||||
"squeal": "Xiscle",
|
||||
"drip": "Goteig",
|
||||
"pour": "Abocament",
|
||||
"trickle": "Raig fi",
|
||||
"gush": "Raig fort",
|
||||
"fill": "Ompliment",
|
||||
"ding": "Ting",
|
||||
"ping": "Ressò",
|
||||
"beep": "Pitit",
|
||||
"squeal": "Chirrit",
|
||||
"crumpling": "Arrugant-se",
|
||||
"rub": "Fregar",
|
||||
"scrape": "Raspar",
|
||||
@@ -480,13 +480,13 @@
|
||||
"smash": "Aixafar",
|
||||
"whack": "Cop",
|
||||
"slap": "Bufetada",
|
||||
"bang": "Bang",
|
||||
"bang": "Cop fort",
|
||||
"basketball_bounce": "Rebot de bàsquet",
|
||||
"chorus_effect": "Efecte de cor",
|
||||
"effects_unit": "Unitat d'Efectes",
|
||||
"electronic_tuner": "Afinador electrònic",
|
||||
"thunk": "Bruix",
|
||||
"thump": "Cop fort",
|
||||
"thump": "Soroll sord",
|
||||
"whoosh": "Xiuxiueig",
|
||||
"arrow": "Fletxa",
|
||||
"sonar": "Sonar",
|
||||
|
||||
@@ -201,7 +201,8 @@
|
||||
},
|
||||
"inProgress": "En curs",
|
||||
"invalidStartTime": "Hora d'inici no vàlida",
|
||||
"invalidEndTime": "Hora de finalització no vàlida"
|
||||
"invalidEndTime": "Hora de finalització no vàlida",
|
||||
"never": "Mai"
|
||||
},
|
||||
"unit": {
|
||||
"speed": {
|
||||
@@ -227,7 +228,8 @@
|
||||
"show": "Mostra {{item}}",
|
||||
"ID": "ID",
|
||||
"none": "Cap",
|
||||
"all": "Tots"
|
||||
"all": "Tots",
|
||||
"other": "Altres"
|
||||
},
|
||||
"button": {
|
||||
"apply": "Aplicar",
|
||||
|
||||
@@ -10,7 +10,11 @@
|
||||
"empty": {
|
||||
"alert": "Hi ha cap alerta per revisar",
|
||||
"detection": "Hi ha cap detecció per revisar",
|
||||
"motion": "No s'haan trobat dades de moviment"
|
||||
"motion": "No s'haan trobat dades de moviment",
|
||||
"recordingsDisabled": {
|
||||
"title": "S'han d'activar les gravacions",
|
||||
"description": "Només es poden revisar temes quan s'han activat les gravacions de la càmera."
|
||||
}
|
||||
},
|
||||
"timeline": "Línia de temps",
|
||||
"timeline.aria": "Seleccionar línia de temps",
|
||||
|
||||
@@ -169,7 +169,10 @@
|
||||
"title": "Edita els atributs",
|
||||
"desc": "Seleccioneu els atributs de classificació per a aquesta {{label}}"
|
||||
},
|
||||
"attributes": "Atributs de classificació"
|
||||
"attributes": "Atributs de classificació",
|
||||
"title": {
|
||||
"label": "Títol"
|
||||
}
|
||||
},
|
||||
"searchResult": {
|
||||
"tooltip": "S'ha identificat {{type}} amb una confiança del {{confidence}}%",
|
||||
|
||||
@@ -184,6 +184,16 @@
|
||||
"restricted": {
|
||||
"title": "No hi ha càmeres disponibles",
|
||||
"description": "No teniu permís per veure cap càmera en aquest grup."
|
||||
},
|
||||
"default": {
|
||||
"title": "No s'ha configurat cap càmera",
|
||||
"description": "Comenceu connectant una càmera a Frigate.",
|
||||
"buttonText": "Afegeix una càmera"
|
||||
},
|
||||
"group": {
|
||||
"title": "No hi ha càmeres al grup",
|
||||
"description": "Aquest grup de càmeres no té càmeres assignades o habilitades.",
|
||||
"buttonText": "Gestiona els grups"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -954,7 +954,7 @@
|
||||
"useDigestAuthDescription": "Usa l'autenticació de resum HTTP per a ONVIF. Algunes càmeres poden requerir un nom d'usuari/contrasenya ONVIF dedicat en lloc de l'usuari administrador estàndard."
|
||||
},
|
||||
"save": {
|
||||
"failure": "SS'ha produït un error en desar {{cameraName}}.",
|
||||
"failure": "S'ha produït un error en desar {{cameraName}}.",
|
||||
"success": "S'ha desat correctament la càmera nova {{cameraName}}."
|
||||
},
|
||||
"testResultLabels": {
|
||||
@@ -1211,11 +1211,11 @@
|
||||
"cameraReview": {
|
||||
"object_descriptions": {
|
||||
"title": "Descripcions d'objectes generadors d'IA",
|
||||
"desc": "Activa/desactiva temporalment les descripcions d'objectes generatius d'IA per a aquesta càmera. Quan està desactivat, les descripcions generades per IA no se sol·licitaran per als objectes rastrejats en aquesta càmera."
|
||||
"desc": "Activa/desactiva temporalment les descripcions d'objectes generatius d'IA per a aquesta càmera fins que es reiniciï Frigate. Quan està desactivat, les descripcions generades per IA no se sol·licitaran per als objectes rastrejats en aquesta càmera."
|
||||
},
|
||||
"review_descriptions": {
|
||||
"title": "Descripcions de la IA generativa",
|
||||
"desc": "Activa/desactiva temporalment les descripcions de revisió de la IA generativa per a aquesta càmera. Quan està desactivat, les descripcions generades per IA no se sol·licitaran per als elements de revisió d'aquesta càmera."
|
||||
"desc": "Activa/desactiva temporalment les descripcions de la IA Generativa per a aquesta càmera fins que es reiniciï Frigate. Quan està desactivat, les descripcions generades per IA no se sol·licitaran per als elements de revisió d'aquesta càmera."
|
||||
},
|
||||
"review": {
|
||||
"title": "Revisió",
|
||||
|
||||
@@ -86,7 +86,14 @@
|
||||
"otherProcesses": {
|
||||
"title": "Altres processos",
|
||||
"processMemoryUsage": "Ús de memòria de procés",
|
||||
"processCpuUsage": "Ús de la CPU del procés"
|
||||
"processCpuUsage": "Ús de la CPU del procés",
|
||||
"series": {
|
||||
"recording": "gravant",
|
||||
"review_segment": "segment de revisió",
|
||||
"embeddings": "incrustacions",
|
||||
"audio_detector": "detector d'àudio",
|
||||
"go2rtc": "go2rtc"
|
||||
}
|
||||
}
|
||||
},
|
||||
"storage": {
|
||||
|
||||
@@ -78,7 +78,11 @@
|
||||
"formattedTimestampFilename": {
|
||||
"24hour": "dd-MM-yy-HH-mm-ss",
|
||||
"12hour": "dd-MM.yy-h-mm-ss-a"
|
||||
}
|
||||
},
|
||||
"never": "Nikdy",
|
||||
"inProgress": "Zpracovává se",
|
||||
"invalidStartTime": "Neplatný čas začátku",
|
||||
"invalidEndTime": "Neplatný čas konce"
|
||||
},
|
||||
"button": {
|
||||
"twoWayTalk": "Obousměrná komunikace",
|
||||
@@ -115,10 +119,17 @@
|
||||
"unselect": "Zrušit výběr",
|
||||
"deleteNow": "Smazat hned",
|
||||
"next": "Další",
|
||||
"export": "Exportovat"
|
||||
"export": "Exportovat",
|
||||
"continue": "Pokračovat"
|
||||
},
|
||||
"label": {
|
||||
"back": "Jdi zpět"
|
||||
"back": "Jdi zpět",
|
||||
"hide": "Skrýt {{item}}",
|
||||
"show": "Zobrazit {{item}}",
|
||||
"ID": "ID",
|
||||
"none": "Nic",
|
||||
"all": "Vše",
|
||||
"other": "Ostatní"
|
||||
},
|
||||
"unit": {
|
||||
"speed": {
|
||||
@@ -128,6 +139,14 @@
|
||||
"length": {
|
||||
"feet": "stopa",
|
||||
"meters": "metry"
|
||||
},
|
||||
"data": {
|
||||
"kbps": "kB/s",
|
||||
"mbps": "MB/s",
|
||||
"gbps": "GB/s",
|
||||
"kbph": "kB/hodinu",
|
||||
"mbph": "MB/hodinu",
|
||||
"gbph": "GB/hodinu"
|
||||
}
|
||||
},
|
||||
"selectItem": "Vybrat {{item}}",
|
||||
@@ -230,7 +249,8 @@
|
||||
"uiPlayground": "UI hřiště",
|
||||
"faceLibrary": "Knihovna Obličejů",
|
||||
"configurationEditor": "Editor Konfigurace",
|
||||
"withSystem": "Systém"
|
||||
"withSystem": "Systém",
|
||||
"classification": "Klasifikace"
|
||||
},
|
||||
"pagination": {
|
||||
"previous": {
|
||||
@@ -270,5 +290,17 @@
|
||||
"viewer": "Divák",
|
||||
"desc": "Správci mají plný přístup ke všem funkcím v uživatelském rozhraní Frigate. Diváci jsou omezeni na sledování kamer, položek přehledu a historických záznamů v UI."
|
||||
},
|
||||
"readTheDocumentation": "Přečtěte si dokumentaci"
|
||||
"readTheDocumentation": "Přečtěte si dokumentaci",
|
||||
"list": {
|
||||
"two": "{{0}} a {{1}}",
|
||||
"many": "{{items}}, a {{last}}",
|
||||
"separatorWithSpace": ", "
|
||||
},
|
||||
"field": {
|
||||
"optional": "Volitelné",
|
||||
"internalID": "Interní ID Frigate používá v konfiguraci a databázi"
|
||||
},
|
||||
"information": {
|
||||
"pixels": "{{area}}px"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -44,7 +44,8 @@
|
||||
"button": {
|
||||
"markAsReviewed": "Označit jako zkontrolované",
|
||||
"deleteNow": "Smazat hned",
|
||||
"export": "Exportovat"
|
||||
"export": "Exportovat",
|
||||
"markAsUnreviewed": "Označit jako nezkontrolované"
|
||||
}
|
||||
},
|
||||
"export": {
|
||||
@@ -67,12 +68,13 @@
|
||||
"export": "Exportovat",
|
||||
"selectOrExport": "Vybrat pro Export",
|
||||
"toast": {
|
||||
"success": "Export úspěšně spuštěn. Soubor najdete v adresáři /exports.",
|
||||
"success": "Export úspěšně spuštěn. Soubor najdete na stránce exportů.",
|
||||
"error": {
|
||||
"failed": "Chyba spuštění exportu: {{error}}",
|
||||
"endTimeMustAfterStartTime": "Čas konce musí být po čase začátku",
|
||||
"noVaildTimeSelected": "Není vybráno žádné platné časové období"
|
||||
}
|
||||
},
|
||||
"view": "Zobrazení"
|
||||
},
|
||||
"fromTimeline": {
|
||||
"saveExport": "Uložit export",
|
||||
@@ -116,6 +118,7 @@
|
||||
"search": {
|
||||
"placeholder": "Hledej pomocí štítku nebo podštítku..."
|
||||
},
|
||||
"noImages": "Nebyly nalezeny žádné náhledy pro tuto kameru"
|
||||
"noImages": "Nebyly nalezeny žádné náhledy pro tuto kameru",
|
||||
"unknownLabel": "Uložený obrázek Spouštěče"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -132,5 +132,9 @@
|
||||
},
|
||||
"count_one": "Třída {{count}}",
|
||||
"count_other": "Třídy {{count}}"
|
||||
},
|
||||
"attributes": {
|
||||
"label": "Atributy Klasifikace",
|
||||
"all": "Všechny Atributy"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -38,10 +38,65 @@
|
||||
"deleteImageFailed": "Chyba při mazání: {{errorMessage}}",
|
||||
"deleteCategoryFailed": "Chyba při mazání třídy: {{errorMessage}}",
|
||||
"deleteModelFailed": "Chyba při mazání modelu: {{errorMessage}}",
|
||||
"categorizeFailed": "Chyba při mazání obrázku: {{errorMessage}}"
|
||||
"categorizeFailed": "Chyba při mazání obrázku: {{errorMessage}}",
|
||||
"trainingFailed": "Trénování modelu selhalo. Zkontrolujte logy Frigate pro zjištění detailů.",
|
||||
"trainingFailedToStart": "Chyba spuštění trénování modelu: {{errorMessage}}",
|
||||
"updateModelFailed": "Chyba aktualizace modelu: {{errorMessage}}",
|
||||
"renameCategoryFailed": "Chyba přejmenování třídy: {{errorMessage}}"
|
||||
}
|
||||
},
|
||||
"train": {
|
||||
"titleShort": "Nedávný"
|
||||
}
|
||||
"titleShort": "Nedávný",
|
||||
"title": "Předchozí klasifikace",
|
||||
"aria": "Vybrat předchozí Klasifikace"
|
||||
},
|
||||
"deleteModel": {
|
||||
"desc_one": "Jste si jistí, že chcete odstranit {{count}} model? Tím trvale odstraníte všechny související data včetně obrázků a tréninkových dat. Tato akce je nevratná.",
|
||||
"desc_few": "Jste si jistí, že chcete odstranit {{count}} modely? Tím trvale odstraníte všechny související data včetně obrázků a tréninkových dat. Tato akce je nevratná.",
|
||||
"desc_other": "Jste si jistí, že chcete odstranit {{count}} modelů? Tím trvale odstraníte všechny související data včetně obrázků a tréninkových dat. Tato akce je nevratná."
|
||||
},
|
||||
"deleteDatasetImages": {
|
||||
"desc_one": "Opravdu chcete odstranit {{count}} obrázek z {{dataset}}? Tato akce je nevratná a vyžaduje přetrénování modelu.",
|
||||
"desc_few": "Opravdu chcete odstranit {{count}} obrázky z {{dataset}}? Tato akce je nevratná a vyžaduje přetrénování modelu.",
|
||||
"desc_other": "Opravdu chcete odstranit {{count}} obrázků z {{dataset}}? Tato akce je nevratná a vyžaduje přetrénování modelu.",
|
||||
"title": "Smazat obrázky datové sady"
|
||||
},
|
||||
"deleteTrainImages": {
|
||||
"desc_one": "Opravdu chcete odstranit {{count}} obrázek? Tato akce je nevratná.",
|
||||
"desc_few": "Opravdu chcete odstranit {{count}} obrázky? Tato akce je nevratná.",
|
||||
"desc_other": "Opravdu chcete odstranit {{count}} obrázků? Tato akce je nevratná.",
|
||||
"title": "Odstranit tréninkové obrázky"
|
||||
},
|
||||
"wizard": {
|
||||
"step3": {
|
||||
"allImagesRequired_one": "Prosím, zařaďte všechny obrázky. Zbývá {{count}} obrázek.",
|
||||
"allImagesRequired_few": "Prosím, zařaďte všechny obrázky. Zbývají {{count}} obrázky.",
|
||||
"allImagesRequired_other": "Prosím, zařaďte všechny obrázky. Zbývá {{count}} obrázků.",
|
||||
"trainingStarted": "Trénování úspěšně spuštěno",
|
||||
"generateSuccess": "Vzorové obrázky byly úspěšně vytvořeny"
|
||||
}
|
||||
},
|
||||
"deleteCategory": {
|
||||
"title": "Smazat Třídu",
|
||||
"desc": "Opravdu chcete odstranit třídu {{name}}? Tím se na trvalo odstraní všechny související obrázky a bude potřeba přetrénovat model.",
|
||||
"minClassesTitle": "Nemůžete smazat třídu",
|
||||
"minClassesDesc": "Klasifikační model musí mít alespoň 2 třídy. Než tuto třídu odstraníte přidejte další třídu."
|
||||
},
|
||||
"edit": {
|
||||
"descriptionObject": "Upravte typ objektu a typ klasifikace pro tento model klasifikace.",
|
||||
"stateClassesInfo": "Poznámka: Změna tříd stavů vyžaduje přetrénování modelu s aktualizovanými třídami."
|
||||
},
|
||||
"renameCategory": {
|
||||
"title": "Přejmenovat třídu",
|
||||
"desc": "Vložte nové jméno pro {{name}}. Aby se změna názvu projevila, bude nutné model znovu natrénovat."
|
||||
},
|
||||
"description": {
|
||||
"invalidName": "Neplatné jméno. Jméno můžou obsahovat pouze písmena, čísla, mezery, apostrofy, podtržítka a spojovníky."
|
||||
},
|
||||
"categories": "Třídy",
|
||||
"createCategory": {
|
||||
"new": "Vytvořit novou Třídu"
|
||||
},
|
||||
"categorizeImageAs": "Klasifikovat obrázek jako:",
|
||||
"categorizeImage": "Klasifikovat obrázek"
|
||||
}
|
||||
|
||||
@@ -9,14 +9,18 @@
|
||||
"empty": {
|
||||
"alert": "Nejsou žádné výstrahy na kontrolu",
|
||||
"detection": "Nejsou žádné detekce na kontrolu",
|
||||
"motion": "Nenalezena žádná data o pohybu"
|
||||
"motion": "Nenalezena žádná data o pohybu",
|
||||
"recordingsDisabled": {
|
||||
"title": "Nahrávání musí být povoleno",
|
||||
"description": "Položky revize lze pro kameru vytvořit pouze tehdy, je-li pro ni povoleno nahrávání."
|
||||
}
|
||||
},
|
||||
"timeline": "Časová osa",
|
||||
"timeline.aria": "Zvolit časovou osu",
|
||||
"events": {
|
||||
"label": "Události",
|
||||
"aria": "Zvolit události",
|
||||
"noFoundForTimePeriod": "Pro toto období nebyly nalezeny žádné události."
|
||||
"noFoundForTimePeriod": "Pro toto časové období nebyly nalezeny žádné události."
|
||||
},
|
||||
"documentTitle": "Revize - Frigate",
|
||||
"camera": "Kamera",
|
||||
@@ -26,8 +30,8 @@
|
||||
"markAsReviewed": "Označit jako zkontrolované",
|
||||
"markTheseItemsAsReviewed": "Označit tyto položky jako zkontrolované",
|
||||
"newReviewItems": {
|
||||
"label": "Zobrazit nové položky na kontrolu",
|
||||
"button": "Nové položky na kontrolu"
|
||||
"label": "Zobrazit nové položky revize",
|
||||
"button": "Nové položky revize"
|
||||
},
|
||||
"recordings": {
|
||||
"documentTitle": "Záznamy - Frigate"
|
||||
@@ -42,8 +46,22 @@
|
||||
"detail": {
|
||||
"label": "Detail",
|
||||
"noDataFound": "Žádná detailní data k prohlédnutí",
|
||||
"aria": "Přepnout detailní zobrazení",
|
||||
"aria": "Přepnout zobrazení detailů",
|
||||
"trackedObject_other": "{{count}} objektů",
|
||||
"trackedObject_one": "{{count}} objektů"
|
||||
}
|
||||
"trackedObject_one": "{{count}} objekt",
|
||||
"noObjectDetailData": "Nejsou k dispozici žádné podrobné údaje o objektu.",
|
||||
"settings": "Nastavení Detailního Zobrazení",
|
||||
"alwaysExpandActive": {
|
||||
"title": "Vždy rozbalit aktivní",
|
||||
"desc": "Vždy zobrazit podrobnosti objektu aktivní položky revize, pokud jsou k dispozici."
|
||||
}
|
||||
},
|
||||
"objectTrack": {
|
||||
"trackedPoint": "Sledovaný bod",
|
||||
"clickToSeek": "Kliknutím přeskočte na tento čas"
|
||||
},
|
||||
"select_all": "Vše",
|
||||
"normalActivity": "Normální",
|
||||
"needsReview": "Potřebuje revizi",
|
||||
"securityConcern": "Obava o bezpečnost"
|
||||
}
|
||||
|
||||
@@ -24,7 +24,8 @@
|
||||
"regenerate": "Od {{provider}} byl vyžádán nový popis. V závislosti na rychlosti vašeho poskytovatele může obnovení nového popisu nějakou dobu trvat.",
|
||||
"updatedSublabel": "Úspěšně aktualizovaný podružný štítek.",
|
||||
"updatedLPR": "Úspěšně aktualizovaná SPZ.",
|
||||
"audioTranscription": "Požádání o přepis zvuku bylo úspěšné."
|
||||
"audioTranscription": "Požádání o přepis zvuku bylo úspěšné. V závislosti na rychlosti Vašeho Frigate serveru může přepis trvat nějaký čas než bude dokončen.",
|
||||
"updatedAttributes": "Atributy byly úspěšně aktualizovány."
|
||||
},
|
||||
"error": {
|
||||
"regenerate": "Chyba volání {{provider}} pro nový popis: {{errorMessage}}",
|
||||
@@ -206,7 +207,7 @@
|
||||
"dialog": {
|
||||
"confirmDelete": {
|
||||
"title": "Potvrdit smazání",
|
||||
"desc": "Odstraněním tohoto sledovaného objektu se odstraní snímek, všechna uložená vložení a všechny související položky životního cyklu objektu. Zaznamenaný záznam tohoto sledovaného objektu v zobrazení Historie <em>NEBUDE</em> smazán.<br /><br />Opravdu chcete pokračovat?"
|
||||
"desc": "Odstraněním tohoto sledovaného objektu se odstraní snímek, všechna uložená vložení a všechny související položky s podrobnostmi o sledování. Zaznamenaný záznam tohoto sledovaného objektu v zobrazení Historie <em>NEBUDE</em> smazán.<br /><br />Opravdu chcete pokračovat?"
|
||||
}
|
||||
},
|
||||
"trackedObjectDetails": "Detaily sledovaných objektů",
|
||||
@@ -214,7 +215,9 @@
|
||||
"details": "detaily",
|
||||
"snapshot": "snímek",
|
||||
"video": "video",
|
||||
"object_lifecycle": "životní cyklus objektu"
|
||||
"object_lifecycle": "životní cyklus objektu",
|
||||
"thumbnail": "Náhled",
|
||||
"tracking_details": "detaily sledování"
|
||||
},
|
||||
"noTrackedObjects": "Žádné sledované objekty nebyly nalezeny",
|
||||
"fetchingTrackedObjectsFailed": "Chyba při načítání sledovaných objektů: {{errorMessage}}",
|
||||
@@ -224,5 +227,49 @@
|
||||
},
|
||||
"concerns": {
|
||||
"label": "Obavy"
|
||||
},
|
||||
"trackingDetails": {
|
||||
"title": "Detaily Sledování",
|
||||
"noImageFound": "Nebyl nalezen obrázek pro tuto časovou značku.",
|
||||
"createObjectMask": "Vytvořit Masku Objektu",
|
||||
"adjustAnnotationSettings": "Upravte nastavení poznámek",
|
||||
"scrollViewTips": "Klikněte pro zobrazení významných okamžiků z životního cyklu tohoto objektu.",
|
||||
"autoTrackingTips": "Pozice ohraničujících rámečků budou nepřesné pro kamery s automatickým sledováním.",
|
||||
"count": "{{first}} z {{second}}",
|
||||
"trackedPoint": "Sledovaný Bod",
|
||||
"lifecycleItemDesc": {
|
||||
"visible": "Detekován {{label}}",
|
||||
"entered_zone": "{{label}} vstoupil do {{zones}}",
|
||||
"active": "{{label}} se stal aktivním",
|
||||
"stationary": "{{label}} se zastavil",
|
||||
"attribute": {
|
||||
"faceOrLicense_plate": "Pro {{label}} zjištěn {{attribute}}"
|
||||
},
|
||||
"header": {
|
||||
"ratio": "Poměr",
|
||||
"area": "Oblast",
|
||||
"score": "Skóre"
|
||||
}
|
||||
},
|
||||
"annotationSettings": {
|
||||
"title": "Nastavení anotací",
|
||||
"showAllZones": {
|
||||
"title": "Zobrazit všechny zóny",
|
||||
"desc": "Vždy zobrazovat zóny na snímcích, na kterých objekty vstoupili do zóny."
|
||||
},
|
||||
"offset": {
|
||||
"label": "Odsazení anotace",
|
||||
"desc": "Tato data pocházejí z detekčního kanálu vaší kamery, ale překrývají se s obrázky ze záznamového kanálu. Je nepravděpodobné, že by oba streamy byly dokonale synchronizované. V důsledku toho se ohraničovací rámeček a záznam nebudou dokonale srovnávat. Toto nastavení můžete použít k časovému posunutí anotací dopředu nebo dozadu, abyste je lépe zarovnali se zaznamenaným záznamem.",
|
||||
"millisecondsToOffset": "Milisekundy na posunutí detekce anotací. <em>Výchozí: 0</em>",
|
||||
"tips": "Snižte hodnotu, pokud je přehrávané video před ohraničením a body cesty, nebo zvyšte hodnotu, pokud je přehrávané video za nimi. Hodnota může být i záporná.",
|
||||
"toast": {
|
||||
"success": "Odsazení anotací pro {{camera}} bylo uloženo do konfiguračního souboru."
|
||||
}
|
||||
}
|
||||
},
|
||||
"carousel": {
|
||||
"previous": "Předcházející snímek",
|
||||
"next": "Další snímek"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"imageEntry": {
|
||||
"dropInstructions": "Přetáhněte obrázek zde, nebo klikněte na výběr",
|
||||
"dropInstructions": "Přetáhněte obrázek sem, nebo klikněte na výběr",
|
||||
"maxSize": "Maximální velikost: {{size}}MB",
|
||||
"dropActive": "Přetáhněte obrázek zde…",
|
||||
"validation": {
|
||||
@@ -10,7 +10,7 @@
|
||||
"createFaceLibrary": {
|
||||
"new": "Vytvořit nový obličej",
|
||||
"desc": "Vytvořit novou kolekci",
|
||||
"nextSteps": "Chcete-li vybudovat pevný základ:<li>Použijte kartu Trénování k výběru a trénování na snímcích pro každou detekovanou osobu.</li><li>Pro nejlepší výsledky se zaměřte na přímé snímky; vyhněte se trénování snímků, které zachycují obličeje pod úhlem.</li></ul>",
|
||||
"nextSteps": "Chcete-li vybudovat pevný základ:<li>Použijte kartu Nedávná Rozpoznání k výběru a trénování na snímcích pro každou detekovanou osobu.</li><li>Pro nejlepší výsledky se zaměřte na přímé snímky; vyhněte se trénování snímků, které zachycují obličeje pod úhlem.</li></ul>",
|
||||
"title": "Vytvořit kolekci"
|
||||
},
|
||||
"details": {
|
||||
@@ -44,7 +44,7 @@
|
||||
"description": {
|
||||
"addFace": "Přidejte novou kolekci do Knihovny obličejů nahráním prvního obrázku.",
|
||||
"placeholder": "Zadejte název pro tuto kolekci",
|
||||
"invalidName": "Neplatný název. Názvy mohou obsahovat pouze písmena, čísla, mezery, apostrofy, podtržítka a pomlčky."
|
||||
"invalidName": "Neplatné jméno. Jméno můžou obsahovat pouze písmena, čísla, mezery, apostrofy, podtržítka a spojovníky."
|
||||
},
|
||||
"documentTitle": "Knihovna obličejů - Frigate",
|
||||
"uploadFaceImage": {
|
||||
|
||||
@@ -86,7 +86,7 @@
|
||||
"enable": "Ukázat statistiky streamu"
|
||||
},
|
||||
"manualRecording": {
|
||||
"title": "Nahrávání na vyžádání",
|
||||
"title": "Na požádání",
|
||||
"playInBackground": {
|
||||
"label": "Přehrát na pozadí",
|
||||
"desc": "Povolte tuto volbu pro pokračování streamování i když je přehrávač skrytý."
|
||||
@@ -103,7 +103,7 @@
|
||||
"started": "Manuálně spuštěno nahrávání na požádání.",
|
||||
"ended": "Ukončeno manuální nahrávání na vyžádání.",
|
||||
"recordDisabledTips": "Protože je v konfiguraci této kamery nahrávání zakázáno nebo omezeno, bude uložen pouze snímek.",
|
||||
"tips": "Spustit ruční událost na základě nastavení uchovávání záznamů této kamery."
|
||||
"tips": "Stáhněte si aktuální snímek nebo spusťte ruční událost na základě nastavení uchování záznamu této kamery."
|
||||
},
|
||||
"streamingSettings": "Nastavení Streamování",
|
||||
"audio": "Zvuk",
|
||||
@@ -167,5 +167,11 @@
|
||||
"transcription": {
|
||||
"enable": "Povolit živý přepis zvuku",
|
||||
"disable": "Zakázat živý přepis zvuku"
|
||||
},
|
||||
"snapshot": {
|
||||
"takeSnapshot": "Stáhnout aktuální snímek",
|
||||
"noVideoSource": "Pro snímek není k dispozici žádné video.",
|
||||
"captureFailed": "Zachycení snímku selhalo.",
|
||||
"downloadStarted": "Stažení snímku spuštěno."
|
||||
}
|
||||
}
|
||||
|
||||
@@ -134,7 +134,7 @@
|
||||
"name": {
|
||||
"inputPlaceHolder": "Zadejte jméno…",
|
||||
"title": "Jméno",
|
||||
"tips": "Název musí mít alespoň 2 znaky a nesmí být shodný s názvem kamery nebo jiné zóny."
|
||||
"tips": "Název musí mít alespoň 2 znaky, musí obsahovat alespoň jedno písmeno a nesmí být shodný s názvem kamery nebo jiné zóny této kamery."
|
||||
},
|
||||
"inertia": {
|
||||
"title": "Setrvačnost",
|
||||
@@ -160,7 +160,7 @@
|
||||
}
|
||||
},
|
||||
"toast": {
|
||||
"success": "Zóna {{zoneName}} byla uložena. Restartujte Frigate pro aplikování změn."
|
||||
"success": "Zóna {{zoneName}} byla uložena."
|
||||
},
|
||||
"label": "Zóny",
|
||||
"desc": {
|
||||
@@ -199,8 +199,8 @@
|
||||
"clickDrawPolygon": "Kliknutím nakreslíte polygon do obrázku.",
|
||||
"toast": {
|
||||
"success": {
|
||||
"title": "{{polygonName}} byl uložen. Restartujte Frigate pro aplikování změn.",
|
||||
"noName": "Maska Detekce pohybu byla uložena. Restartujte Frigate pro aplikování změn."
|
||||
"title": "{{polygonName}} byl uložen.",
|
||||
"noName": "Maska Detekce pohybu byla uložena."
|
||||
}
|
||||
}
|
||||
},
|
||||
@@ -284,8 +284,8 @@
|
||||
"clickDrawPolygon": "Kliknutím nakreslete polygon do obrázku.",
|
||||
"toast": {
|
||||
"success": {
|
||||
"title": "{{polygonName}} byl uložen. Restartujte Frigate pro aplikování změn.",
|
||||
"noName": "Maska Objektu byla uložena. Restartujte Frigate pro aplikování změn."
|
||||
"title": "{{polygonName}} byl uložen.",
|
||||
"noName": "Maska Objektu byla uložena."
|
||||
}
|
||||
},
|
||||
"point_one": "{{count}} bod",
|
||||
@@ -322,7 +322,7 @@
|
||||
"noCamera": "Žádná Kamera"
|
||||
},
|
||||
"general": {
|
||||
"title": "Hlavní nastavení",
|
||||
"title": "Nastavení rozhraní",
|
||||
"liveDashboard": {
|
||||
"title": "Živý dashboard",
|
||||
"automaticLiveView": {
|
||||
@@ -332,6 +332,13 @@
|
||||
"playAlertVideos": {
|
||||
"label": "Přehrát videa s výstrahou",
|
||||
"desc": "Ve výchozím nastavení se nedávná upozornění na ovládacím panelu Živě přehrávají jako malá opakující se videa. Vypněte tuto možnost, chcete-li na tomto zařízení/prohlížeči zobrazovat pouze statický obrázek nedávných výstrah."
|
||||
},
|
||||
"displayCameraNames": {
|
||||
"label": "Vždy zobrazit názvy kamer",
|
||||
"desc": "Vždy zobrazit názvy kamer v čipu na ovládacím panelu živého náhledu s více kamerami."
|
||||
},
|
||||
"liveFallbackTimeout": {
|
||||
"label": "Časový limit pádu živého přehrávání"
|
||||
}
|
||||
},
|
||||
"storedLayouts": {
|
||||
@@ -629,11 +636,11 @@
|
||||
"actions": "Akce",
|
||||
"noUsers": "Žádní uživatelé nebyli nalezeni.",
|
||||
"changeRole": "Změnit roli uživatele",
|
||||
"password": "Heslo",
|
||||
"password": "Resetovat Heslo",
|
||||
"deleteUser": "Smazat uživatele",
|
||||
"role": "Role"
|
||||
},
|
||||
"updatePassword": "Aktualizovat heslo",
|
||||
"updatePassword": "Resetovat heslo",
|
||||
"toast": {
|
||||
"success": {
|
||||
"createUser": "Uživatel {{user}} úspěšně vytvořen",
|
||||
@@ -743,7 +750,7 @@
|
||||
"triggers": {
|
||||
"documentTitle": "Spouštěče",
|
||||
"management": {
|
||||
"title": "Správa spouštěčů",
|
||||
"title": "Spouštěče",
|
||||
"desc": "Spravovat spouštěče pro {{camera}}. Použít typ miniatury ke spuštění u miniatur podobných vybranému sledovanému objektu a typ popisu ke spuštění u popisů podobných zadanému textu."
|
||||
},
|
||||
"addTrigger": "Přidat spouštěč",
|
||||
@@ -782,10 +789,10 @@
|
||||
"form": {
|
||||
"name": {
|
||||
"title": "Název",
|
||||
"placeholder": "Zadejte název spouštěče",
|
||||
"placeholder": "Pojmenujte tento spouštěč",
|
||||
"error": {
|
||||
"minLength": "Název musí mít alespoň 2 znaky.",
|
||||
"invalidCharacters": "Jméno může obsahovat pouze písmena, číslice, podtržítka a pomlčky.",
|
||||
"minLength": "Pole musí mít alespoň 2 znaky.",
|
||||
"invalidCharacters": "Pole může obsahovat pouze písmena, číslice, podtržítka a pomlčky.",
|
||||
"alreadyExists": "Spouštěč s tímto názvem již pro tuto kameru existuje."
|
||||
}
|
||||
},
|
||||
@@ -798,9 +805,9 @@
|
||||
},
|
||||
"content": {
|
||||
"title": "Obsah",
|
||||
"imagePlaceholder": "Vybrat obrázek",
|
||||
"imagePlaceholder": "Vyberte miniaturu",
|
||||
"textPlaceholder": "Zadat textový obsah",
|
||||
"imageDesc": "Vybrat obrázek, který spustí tuto akci, když bude detekován podobný obrázek.",
|
||||
"imageDesc": "Je zobrazeno pouze posledních 100 miniatur. Pokud nemůžete najít požadovanou miniaturu, prosím zkontrolujte dřívější objekty v Prozkoumat a nastavte spouštěč ze tamějšího menu.",
|
||||
"textDesc": "Zadejte text, který spustí tuto akci, když bude zjištěn podobný popis sledovaného objektu.",
|
||||
"error": {
|
||||
"required": "Obsah je povinný."
|
||||
@@ -808,7 +815,7 @@
|
||||
},
|
||||
"actions": {
|
||||
"title": "Akce",
|
||||
"desc": "Ve výchozím nastavení Frigate odesílá MQTT zprávu pro všechny spouštěče. Zvolte dodatečnou akci, která se má provést, když se tento spouštěč aktivuje.",
|
||||
"desc": "Ve výchozím nastavení Frigate odesílá MQTT zprávu pro všechny spouštěče. Podřazené popisky přidávají název spouštěče k popisku objektu. Atributy jsou prohledávatelná metadata uložená samostatně v metadatech sledovaného objektu.",
|
||||
"error": {
|
||||
"min": "Musí být vybrána alespoň jedna akce."
|
||||
}
|
||||
@@ -850,9 +857,9 @@
|
||||
"createRole": "Role {{role}} byla úspěšně vytvořena",
|
||||
"updateCameras": "Kamery byly aktualizovány pro roli {{role}}",
|
||||
"deleteRole": "Role {{role}} byla úspěšně smazána",
|
||||
"userRolesUpdated_one": "{{count}} uživatel(ů) přiřazených k této roli bylo aktualizováno na „Divák“, který má přístup ke všem kamerám.",
|
||||
"userRolesUpdated_few": "",
|
||||
"userRolesUpdated_other": ""
|
||||
"userRolesUpdated_one": "{{count}} uživatel přiřazený k této roli byl aktualizován na „diváka“, který má přístup ke všem kamerám.",
|
||||
"userRolesUpdated_few": "{{count}} uživatelé přiřazení k této roli bylo aktualizováno na „diváky“, kteří mají přístup ke všem kamerám.",
|
||||
"userRolesUpdated_other": "{{count}} uživatelů přiřazených k této roli bylo aktualizováno na „diváky“, kteří mají přístup ke všem kamerám."
|
||||
},
|
||||
"error": {
|
||||
"createRoleFailed": "Nepodařilo se vytvořit roli: {{errorMessage}}",
|
||||
@@ -896,5 +903,36 @@
|
||||
"title": "Správa role diváka",
|
||||
"desc": "Spravujte vlastní role diváků a jejich oprávnění k přístupu ke kamerám pro tuto instanci Frigate."
|
||||
}
|
||||
},
|
||||
"cameraWizard": {
|
||||
"save": {
|
||||
"success": "Nová kamera {{cameraName}} úspěšně uložena."
|
||||
},
|
||||
"step2": {
|
||||
"testSuccess": "Test připojení v pořádku!",
|
||||
"probeSuccessful": "Sonda úspěšná",
|
||||
"probeNoSuccess": "Sonda neúspěšná"
|
||||
},
|
||||
"step3": {
|
||||
"testSuccess": "Test streamu v pořádku!"
|
||||
},
|
||||
"step4": {
|
||||
"reconnectionSuccess": "Opakované připojení úspěšné.",
|
||||
"streamValidated": "Stream {{number}} úspěšně ověřený"
|
||||
}
|
||||
},
|
||||
"cameraManagement": {
|
||||
"cameraConfig": {
|
||||
"toast": {
|
||||
"success": "Kamera {{cameraName}} úspěšně uložena"
|
||||
}
|
||||
}
|
||||
},
|
||||
"cameraReview": {
|
||||
"reviewClassification": {
|
||||
"toast": {
|
||||
"success": "Konfigurace Klasifikací Revizí byla uložena. Restartujte Frigate pro aplikování změn."
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -112,12 +112,23 @@
|
||||
"gpuUsage": "Využití CPU",
|
||||
"gpuMemory": "Paměť GPU",
|
||||
"gpuEncoder": "GPU kodér",
|
||||
"gpuDecoder": "GPU Dekodér"
|
||||
"gpuDecoder": "GPU Dekodér",
|
||||
"intelGpuWarning": {
|
||||
"title": "Upozornění Intel GPU Stats",
|
||||
"message": "Statistiky GPU nedostupné",
|
||||
"description": "Toto je známá chyba v nástrojích Intel pro hlášení statistik GPU (intel_gpu_top), která selhává a opakovaně vrací využití GPU 0 %, a to i v případech, kdy na (i)GPU správně běží hardwarová akcelerace a detekce objektů. Nejedná se o chybu Frigate. Můžete restartovat hostitele, abyste problém dočasně vyřešili a potvrdili, že GPU funguje správně. Toto neovlivňuje výkon."
|
||||
}
|
||||
},
|
||||
"otherProcesses": {
|
||||
"title": "Ostatní procesy",
|
||||
"processCpuUsage": "Využití CPU procesy",
|
||||
"processMemoryUsage": "Využití paměti procesy"
|
||||
"processMemoryUsage": "Využití paměti procesy",
|
||||
"series": {
|
||||
"go2rtc": "go2rtc",
|
||||
"recording": "nahrávání",
|
||||
"review_segment": "revidovat segment",
|
||||
"embeddings": "vložení"
|
||||
}
|
||||
},
|
||||
"title": "Hlavní"
|
||||
},
|
||||
|
||||
@@ -84,5 +84,116 @@
|
||||
"babbling": "Pludren",
|
||||
"yell": "Råb",
|
||||
"whoop": "Jubel",
|
||||
"snicker": "Smålatter"
|
||||
"snicker": "Smålatter",
|
||||
"bird": "Fugl",
|
||||
"cat": "Kat",
|
||||
"dog": "Hund",
|
||||
"horse": "Hest",
|
||||
"sheep": "Får",
|
||||
"mouse": "Mus",
|
||||
"keyboard": "Tastatur",
|
||||
"blender": "Mixer",
|
||||
"hair_dryer": "Føntørrer",
|
||||
"animal": "Dyr",
|
||||
"bark": "Gø",
|
||||
"goat": "Gæd",
|
||||
"sigh": "Suk",
|
||||
"singing": "Synger",
|
||||
"choir": "Kor",
|
||||
"yodeling": "Jodlen",
|
||||
"chant": "Messe",
|
||||
"mantra": "Meditationsmantra",
|
||||
"child_singing": "Barn Synger",
|
||||
"synthetic_singing": "Syntetisk Sang",
|
||||
"rapping": "Rapper",
|
||||
"humming": "Nynner",
|
||||
"groan": "Støn",
|
||||
"grunt": "Grynt",
|
||||
"whistling": "Fløjter",
|
||||
"breathing": "Vejrtrækning",
|
||||
"wheeze": "Hæsende vejrtrækning",
|
||||
"snoring": "Snorker",
|
||||
"gasp": "Gisp",
|
||||
"pant": "Anstrengende vejrtrækning",
|
||||
"snort": "Fnyse",
|
||||
"cough": "Hoster",
|
||||
"throat_clearing": "Rømmer sig",
|
||||
"sneeze": "Nyser",
|
||||
"sniff": "Snøfter",
|
||||
"run": "Løb",
|
||||
"shuffle": "Trække fødderne",
|
||||
"footsteps": "Fodtrin",
|
||||
"chewing": "Tygger",
|
||||
"biting": "Bider",
|
||||
"gargling": "Gurgler",
|
||||
"stomach_rumble": "Maverumlen",
|
||||
"burping": "Bøvser",
|
||||
"hiccup": "Hikke",
|
||||
"fart": "Prut",
|
||||
"hands": "Hænder",
|
||||
"finger_snapping": "Knipse fingere",
|
||||
"clapping": "Klapper",
|
||||
"heartbeat": "Hjertebanken",
|
||||
"heart_murmur": "Hjertemislyd",
|
||||
"cheering": "Hujen",
|
||||
"applause": "Bifald",
|
||||
"chatter": "Snak",
|
||||
"crowd": "Forsamling",
|
||||
"children_playing": "Børn leger",
|
||||
"pets": "Kæledyr",
|
||||
"yip": "Jubel",
|
||||
"howl": "Hyl",
|
||||
"bow_wow": "Vov vov",
|
||||
"growling": "Knurren",
|
||||
"whimper_dog": "Hundeklynk",
|
||||
"purr": "Spinde",
|
||||
"meow": "Meaw",
|
||||
"hiss": "Hvæser",
|
||||
"caterwaul": "Kattejammer",
|
||||
"livestock": "Husdyr",
|
||||
"oink": "Nøf",
|
||||
"bleat": "Brægen",
|
||||
"vibration": "Vibration",
|
||||
"fowl": "Fjerkræ",
|
||||
"chicken": "Kylling",
|
||||
"cluck": "Kagle",
|
||||
"cock_a_doodle_doo": "Kykeliky",
|
||||
"turkey": "Kalkun",
|
||||
"gobble": "Kalkunlyd",
|
||||
"duck": "And",
|
||||
"quack": "Rap",
|
||||
"goose": "Gås",
|
||||
"honk": "Dyt",
|
||||
"wild_animals": "Vilde dyr",
|
||||
"roaring_cats": "Brølende katte",
|
||||
"roar": "Brøl",
|
||||
"chirp": "Pip",
|
||||
"squawk": "Skræppen",
|
||||
"pigeon": "Due",
|
||||
"coo": "Kurre",
|
||||
"crow": "Krage",
|
||||
"caw": "Kragelyd",
|
||||
"owl": "Ugle",
|
||||
"hoot": "Uglehyl",
|
||||
"flapping_wings": "Vingeslag",
|
||||
"dogs": "Hunde",
|
||||
"rats": "Rotter",
|
||||
"patter": "Dråbelyd",
|
||||
"insect": "Insekt",
|
||||
"cricket": "Cricket",
|
||||
"guitar": "Guitar",
|
||||
"electric_guitar": "Elektrisk Guitar",
|
||||
"bass_guitar": "Basguitar",
|
||||
"acoustic_guitar": "Akustisk Guitar",
|
||||
"steel_guitar": "Stål Guitar",
|
||||
"tapping": "Tapping på guitar",
|
||||
"strum": "Slå an",
|
||||
"banjo": "Banjo",
|
||||
"sitar": "Sitar",
|
||||
"mandolin": "Mandolin",
|
||||
"snare_drum": "Lilletromme",
|
||||
"rimshot": "Kantslag",
|
||||
"drum_roll": "Trommehvirvel",
|
||||
"bass_drum": "Stortromme",
|
||||
"techno": "Techno"
|
||||
}
|
||||
|
||||
@@ -24,13 +24,13 @@
|
||||
"am": "am",
|
||||
"year_one": "{{time}} år",
|
||||
"year_other": "{{time}} år",
|
||||
"mo": "{{time}}mo",
|
||||
"mo": "{{time}}må",
|
||||
"month_one": "{{time}} måned",
|
||||
"month_other": "{{time}} måneder",
|
||||
"d": "{{time}}d",
|
||||
"day_one": "{{time}} dag",
|
||||
"day_other": "{{time}} dage",
|
||||
"h": "{{time}}h",
|
||||
"h": "{{time}}t",
|
||||
"yr": "{{time}}yr",
|
||||
"hour_one": "{{time}} time",
|
||||
"hour_other": "{{time}} timer",
|
||||
@@ -41,11 +41,11 @@
|
||||
"second_one": "{{time}} sekund",
|
||||
"second_other": "{{time}} sekunder",
|
||||
"formattedTimestamp": {
|
||||
"12hour": "MMM d, h:mm:ss aaa",
|
||||
"24hour": "MMM d, HH:mm:ss"
|
||||
"12hour": "d MMM, h:mm:ss aaa",
|
||||
"24hour": "d. MMM, HH:mm:ss"
|
||||
},
|
||||
"formattedTimestamp2": {
|
||||
"12hour": "MM/dd h:mm:ssa",
|
||||
"12hour": "dd/MM h:mm:ss",
|
||||
"24hour": "d MMM HH:mm:ss"
|
||||
},
|
||||
"formattedTimestampHourMinute": {
|
||||
@@ -57,22 +57,26 @@
|
||||
"24hour": "HH:mm:ss"
|
||||
},
|
||||
"formattedTimestampMonthDayHourMinute": {
|
||||
"12hour": "MMM d, h:mm aaa",
|
||||
"24hour": "MMM d, HH:mm"
|
||||
"12hour": "d MMM, h:mm aaa",
|
||||
"24hour": "d MMM, HH:mm"
|
||||
},
|
||||
"formattedTimestampMonthDayYear": {
|
||||
"12hour": "MMM d, yyyy",
|
||||
"24hour": "MMM d, yyyy"
|
||||
"12hour": "d MMM, yyyy",
|
||||
"24hour": "d MMM, yyyy"
|
||||
},
|
||||
"formattedTimestampMonthDayYearHourMinute": {
|
||||
"12hour": "MMM d yyyy, h:mm aaa",
|
||||
"24hour": "MMM d yyyy, HH:mm"
|
||||
"12hour": "d MMM yyyy, h:mm aaa",
|
||||
"24hour": "d MMM yyyy, HH:mm"
|
||||
},
|
||||
"formattedTimestampMonthDay": "MMM d",
|
||||
"formattedTimestampMonthDay": "d MMM",
|
||||
"formattedTimestampFilename": {
|
||||
"12hour": "MM-dd-yy-h-mm-ss-a",
|
||||
"24hour": "MM-dd-yy-HH-mm-ss"
|
||||
}
|
||||
"12hour": "dd-MM-yy-h-mm-ss-a",
|
||||
"24hour": "dd-MM-yy-HH-mm-ss"
|
||||
},
|
||||
"never": "Aldrig",
|
||||
"inProgress": "Under behandling",
|
||||
"invalidStartTime": "Ugyldig starttid",
|
||||
"invalidEndTime": "Ugyldig sluttid"
|
||||
},
|
||||
"unit": {
|
||||
"speed": {
|
||||
@@ -82,14 +86,28 @@
|
||||
"length": {
|
||||
"feet": "fod",
|
||||
"meters": "meter"
|
||||
},
|
||||
"data": {
|
||||
"kbps": "kB/s",
|
||||
"mbps": "MB/s",
|
||||
"gbps": "GB/s",
|
||||
"kbph": "kB/time",
|
||||
"mbph": "MB/time",
|
||||
"gbph": "GB/time"
|
||||
}
|
||||
},
|
||||
"label": {
|
||||
"back": "Gå tilbage"
|
||||
"back": "Gå tilbage",
|
||||
"hide": "Skjul {{item}}",
|
||||
"show": "Vis {{item}}",
|
||||
"ID": "ID",
|
||||
"none": "Ingen",
|
||||
"all": "Alle",
|
||||
"other": "Andet"
|
||||
},
|
||||
"button": {
|
||||
"apply": "Anvend",
|
||||
"reset": "Reset",
|
||||
"reset": "Nulstil",
|
||||
"done": "Udført",
|
||||
"enabled": "Aktiveret",
|
||||
"enable": "Aktiver",
|
||||
@@ -116,21 +134,22 @@
|
||||
"no": "Nej",
|
||||
"download": "Download",
|
||||
"info": "Info",
|
||||
"suspended": "Suspenderet",
|
||||
"unsuspended": "Ophæv suspendering",
|
||||
"suspended": "Sat på pause",
|
||||
"unsuspended": "Genoptag",
|
||||
"play": "Afspil",
|
||||
"unselect": "Fravælg",
|
||||
"export": "Eksporter",
|
||||
"deleteNow": "Slet nu",
|
||||
"next": "Næste"
|
||||
"next": "Næste",
|
||||
"continue": "Fortsæt"
|
||||
},
|
||||
"menu": {
|
||||
"system": "System",
|
||||
"systemMetrics": "System metrics",
|
||||
"systemMetrics": "Systemstatistik",
|
||||
"configuration": "Konfiguration",
|
||||
"systemLogs": "System logs",
|
||||
"systemLogs": "Systemlogfiler",
|
||||
"settings": "Indstillinger",
|
||||
"configurationEditor": "Konfiguratons Editor",
|
||||
"configurationEditor": "Konfigurationsværktøj",
|
||||
"languages": "Sprog",
|
||||
"language": {
|
||||
"en": "English (Engelsk)",
|
||||
@@ -165,8 +184,16 @@
|
||||
"th": "ไทย (Thai)",
|
||||
"ca": "Català (Katalansk)",
|
||||
"withSystem": {
|
||||
"label": "Brug system indstillinger for sprog"
|
||||
}
|
||||
"label": "Brug systemindstillinger for sprog"
|
||||
},
|
||||
"ptBR": "Português brasileiro (Brasiliansk Portugisisk)",
|
||||
"sr": "Српски (Serbisk)",
|
||||
"sl": "Slovenščina (Slovensk)",
|
||||
"lt": "Lietuvių (Litauisk)",
|
||||
"bg": "Български (Bulgarsk)",
|
||||
"gl": "Galego (Galisisk)",
|
||||
"id": "Bahasa Indonesia (Indonesisk)",
|
||||
"ur": "اردو (Urdu)"
|
||||
},
|
||||
"appearance": "Udseende",
|
||||
"darkMode": {
|
||||
@@ -185,7 +212,7 @@
|
||||
"nord": "Nord",
|
||||
"red": "Rød",
|
||||
"highcontrast": "Høj Kontrast",
|
||||
"default": "Default"
|
||||
"default": "Standard"
|
||||
},
|
||||
"help": "Hjælp",
|
||||
"documentation": {
|
||||
@@ -202,19 +229,20 @@
|
||||
"count_other": "{{count}} Kameraer"
|
||||
}
|
||||
},
|
||||
"review": "Review",
|
||||
"review": "Gennemse",
|
||||
"explore": "Udforsk",
|
||||
"export": "Eksporter",
|
||||
"uiPlayground": "UI sandkasse",
|
||||
"faceLibrary": "Face Library",
|
||||
"faceLibrary": "Ansigtsarkiv",
|
||||
"user": {
|
||||
"title": "Bruger",
|
||||
"account": "Konto",
|
||||
"current": "Aktiv bruger: {{user}}",
|
||||
"anonymous": "anonym",
|
||||
"logout": "Logout",
|
||||
"logout": "Log ud",
|
||||
"setPassword": "Set Password"
|
||||
}
|
||||
},
|
||||
"classification": "Kategorisering"
|
||||
},
|
||||
"toast": {
|
||||
"copyUrlToClipboard": "Kopieret URL til klippebord.",
|
||||
@@ -252,8 +280,20 @@
|
||||
"notFound": {
|
||||
"documentTitle": "Ikke fundet - Frigate",
|
||||
"title": "404",
|
||||
"desc": "Side ikke fundet"
|
||||
"desc": "Siden blev ikke fundet"
|
||||
},
|
||||
"selectItem": "Vælg {{item}}",
|
||||
"readTheDocumentation": "Læs dokumentationen"
|
||||
"readTheDocumentation": "Læs dokumentationen",
|
||||
"list": {
|
||||
"two": "{{0}} og {{1}}",
|
||||
"many": "{{items}}, og {{last}}",
|
||||
"separatorWithSpace": ", "
|
||||
},
|
||||
"field": {
|
||||
"optional": "Valgfrit",
|
||||
"internalID": "Det interne ID som Frigate bruger i konfigurationen og databasen"
|
||||
},
|
||||
"information": {
|
||||
"pixels": "{{area}}px"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -8,7 +8,8 @@
|
||||
"passwordRequired": "Kodeord kræves",
|
||||
"loginFailed": "Login fejlede",
|
||||
"unknownError": "Ukendt fejl. Tjek logs.",
|
||||
"rateLimit": "Grænsen for forespørgsler er overskredet. Prøv igen senere."
|
||||
"rateLimit": "Grænsen for forespørgsler er overskredet. Prøv igen senere.",
|
||||
"webUnknownError": "Ukendt fejl. Tjek konsollogs."
|
||||
},
|
||||
"firstTimeLogin": "Forsøger du at logge ind for første gang? Loginoplysningerne står i Frigate-loggene."
|
||||
}
|
||||
|
||||
@@ -14,8 +14,73 @@
|
||||
"label": "Navn",
|
||||
"placeholder": "Indtast et navn…",
|
||||
"errorMessage": {
|
||||
"mustLeastCharacters": "Kameragruppens navn skal være mindst 2 tegn."
|
||||
"mustLeastCharacters": "Kameragruppens navn skal være mindst 2 tegn.",
|
||||
"exists": "Kameragruppenavn findes allerede.",
|
||||
"nameMustNotPeriod": "Kameragruppenavn må ikke indeholde en periode.",
|
||||
"invalid": "Ugyldigt kamera gruppenavn."
|
||||
}
|
||||
},
|
||||
"cameras": {
|
||||
"label": "Kameraer",
|
||||
"desc": "Vælg kameraer til denne gruppe."
|
||||
},
|
||||
"icon": "Ikon",
|
||||
"success": "Kameragruppe ({{name}}) er blevet gemt.",
|
||||
"camera": {
|
||||
"birdseye": "Fugleøje",
|
||||
"setting": {
|
||||
"label": "Kamera Streaming Indstillinger",
|
||||
"title": "{{cameraName}} Streaming Indstillinger",
|
||||
"desc": "Skift de live streaming muligheder for denne kameragruppes dashboard. <em> Disse indstillinger er enheds- og browserspecifikke.</em>",
|
||||
"audioIsAvailable": "Lyd er tilgængelig for denne stream",
|
||||
"audioIsUnavailable": "Lyd er ikke tilgængelig for denne strøm",
|
||||
"audio": {
|
||||
"tips": {
|
||||
"title": "Lyd skal komme fra dit kamera og konfigureret i go2rtc til denne stream."
|
||||
}
|
||||
},
|
||||
"stream": "Stream",
|
||||
"placeholder": "Vælg en stream",
|
||||
"streamMethod": {
|
||||
"label": "Streaming Metode",
|
||||
"placeholder": "Vælg en streaming metode",
|
||||
"method": {
|
||||
"noStreaming": {
|
||||
"label": "Ingen Streaming",
|
||||
"desc": "Kamerabilleder vil kun opdatere én gang i minuttet og ingen live streaming vil forekomme."
|
||||
},
|
||||
"smartStreaming": {
|
||||
"label": "Smart Streaming (anbefalet)",
|
||||
"desc": "Smart streaming vil opdatere dit kamerabillede én gang i minuttet, når der ikke sker noget, for at spare båndbredde og ressourcer. Når der registreres aktivitet, skifter billedet problemfrit til en live stream."
|
||||
},
|
||||
"continuousStreaming": {
|
||||
"label": "Kontinuerlig Streaming",
|
||||
"desc": {
|
||||
"title": "Kamerabillede vil altid være en live stream, når det er synligt på instrumentbrættet, selv om der ikke registreres nogen aktivitet.",
|
||||
"warning": "Kontinuerlig streaming kan forårsage højt båndbreddeforbrug og ydelsesproblemer. Brug med omtanke."
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"compatibilityMode": {
|
||||
"label": "Kompatibilitetstilstand",
|
||||
"desc": "Aktivér kun denne mulighed, hvis kameraets live stream viser farve artefakter og har en diagonal linje på højre side af billedet."
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"debug": {
|
||||
"options": {
|
||||
"label": "Indstillinger",
|
||||
"title": "Valgmuligheder",
|
||||
"showOptions": "Vis muligheder",
|
||||
"hideOptions": "Skjul muligheder"
|
||||
},
|
||||
"boundingBox": "Afgrænsningsfelt",
|
||||
"timestamp": "Tidsstempel",
|
||||
"zones": "Zoner",
|
||||
"mask": "Maske",
|
||||
"motion": "Bevægelse",
|
||||
"regions": "Regioner"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
"iconPicker": {
|
||||
"selectIcon": "Vælg et ikon",
|
||||
"search": {
|
||||
"placeholder": "Søg efter ikoner…"
|
||||
"placeholder": "Søg efter et ikon…"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -11,5 +11,28 @@
|
||||
"streamOffline": {
|
||||
"title": "Stream offline",
|
||||
"desc": "Der er ikke modtaget nogen frames på {{cameraName}}-<code>detect</code>-streamen, tjek fejlloggene."
|
||||
},
|
||||
"stats": {
|
||||
"streamType": {
|
||||
"title": "Stream type:",
|
||||
"short": "Type"
|
||||
},
|
||||
"bandwidth": {
|
||||
"title": "Bandbredde:",
|
||||
"short": "Bandbredde"
|
||||
},
|
||||
"latency": {
|
||||
"title": "Latenstid:",
|
||||
"value": "{{seconds}} sekunder",
|
||||
"short": {
|
||||
"title": "Latenstid",
|
||||
"value": "{{seconds}} sek"
|
||||
}
|
||||
},
|
||||
"droppedFrames": {
|
||||
"short": {
|
||||
"title": "Tabt"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -14,5 +14,107 @@
|
||||
"sink": "Håndvask",
|
||||
"toothbrush": "Tandbørste",
|
||||
"scissors": "Saks",
|
||||
"clock": "Ur"
|
||||
"clock": "Ur",
|
||||
"fire_hydrant": "Brandhane",
|
||||
"street_sign": "Gadeskilt",
|
||||
"stop_sign": "Stopskilt",
|
||||
"parking_meter": "Parkeringsautomat",
|
||||
"bench": "Bænk",
|
||||
"bird": "Fugl",
|
||||
"cat": "Kat",
|
||||
"dog": "Hund",
|
||||
"horse": "Hest",
|
||||
"sheep": "Får",
|
||||
"cow": "Ko",
|
||||
"elephant": "Elefant",
|
||||
"bear": "Bjørn",
|
||||
"zebra": "Zebra",
|
||||
"giraffe": "Giraf",
|
||||
"hat": "Hat",
|
||||
"backpack": "Rygsæk",
|
||||
"umbrella": "Paraply",
|
||||
"shoe": "Sko",
|
||||
"eye_glasses": "Briller",
|
||||
"handbag": "Håndtaske",
|
||||
"tie": "Slips",
|
||||
"suitcase": "Kuffert",
|
||||
"frisbee": "Frisbee",
|
||||
"skis": "Ski",
|
||||
"snowboard": "Snowboard",
|
||||
"sports_ball": "Bold",
|
||||
"kite": "Drage",
|
||||
"baseball_bat": "Baseball Bat",
|
||||
"baseball_glove": "Baseball hanske",
|
||||
"surfboard": "Surfbræt",
|
||||
"tennis_racket": "Tennis ketcher",
|
||||
"bottle": "Flaske",
|
||||
"plate": "Tallerken",
|
||||
"wine_glass": "Vinglas",
|
||||
"cup": "Kop",
|
||||
"fork": "Gaffel",
|
||||
"knife": "Kniv",
|
||||
"spoon": "Ske",
|
||||
"bowl": "Skål",
|
||||
"banana": "Banan",
|
||||
"apple": "Æble",
|
||||
"sandwich": "Sandwich",
|
||||
"orange": "Appelsin",
|
||||
"broccoli": "Broccoli",
|
||||
"carrot": "Gulerod",
|
||||
"hot_dog": "Hotdog",
|
||||
"pizza": "Pizza",
|
||||
"donut": "Donut",
|
||||
"cake": "Kage",
|
||||
"chair": "Stol",
|
||||
"couch": "Sofa",
|
||||
"potted_plant": "Potteplante",
|
||||
"bed": "Seng",
|
||||
"mirror": "Spejl",
|
||||
"dining_table": "Spisebord",
|
||||
"window": "Vindue",
|
||||
"desk": "Bord",
|
||||
"toilet": "Toilet",
|
||||
"tv": "Fjernsyn",
|
||||
"laptop": "Bærebar computer",
|
||||
"mouse": "Mus",
|
||||
"remote": "Fjernbetjening",
|
||||
"keyboard": "Tastatur",
|
||||
"cell_phone": "Mobiltelefon",
|
||||
"microwave": "Mikrobølgeovn",
|
||||
"oven": "Ovn",
|
||||
"toaster": "Brødrister",
|
||||
"refrigerator": "Køleskab",
|
||||
"blender": "Mixer",
|
||||
"book": "Bog",
|
||||
"vase": "Vase",
|
||||
"teddy_bear": "Bamse",
|
||||
"hair_dryer": "Føntørrer",
|
||||
"hair_brush": "Hårbørste",
|
||||
"squirrel": "Egern",
|
||||
"deer": "Hjort",
|
||||
"animal": "Dyr",
|
||||
"bark": "Gø",
|
||||
"fox": "Ræv",
|
||||
"goat": "Gæd",
|
||||
"rabbit": "Kanin",
|
||||
"raccoon": "Vaskebjørn",
|
||||
"robot_lawnmower": "Robotplæneklipper",
|
||||
"waste_bin": "Affaldsspand",
|
||||
"on_demand": "Manuel optagelse",
|
||||
"face": "Ansigt",
|
||||
"license_plate": "Nummerplade",
|
||||
"package": "Pakke",
|
||||
"bbq_grill": "Grill",
|
||||
"amazon": "Amazon levering",
|
||||
"usps": "USPS levering",
|
||||
"ups": "UPS levering",
|
||||
"fedex": "FedEx levering",
|
||||
"dhl": "DHL levering",
|
||||
"an_post": "An Post levering",
|
||||
"purolator": "Purolator levering",
|
||||
"postnl": "PostNL levering",
|
||||
"nzpost": "NZPost levering",
|
||||
"postnord": "PostNord levering",
|
||||
"gls": "GLS levering",
|
||||
"dpd": "DPD levering"
|
||||
}
|
||||
|
||||
@@ -1,18 +1,187 @@
|
||||
{
|
||||
"documentTitle": "Klassifikationsmodeller",
|
||||
"documentTitle": "Kategoriseringsmodeller - Frigate",
|
||||
"details": {
|
||||
"scoreInfo": "Scoren repræsenterer den gennemsnitlige klassifikationssikkerhed på tværs af alle registreringer af dette objekt.",
|
||||
"unknown": "Ukendt"
|
||||
"scoreInfo": "Scoren viser den gennemsnitlige sikkerhed for kategoriseringen på tværs af alle registreringer af dette objekt.",
|
||||
"unknown": "Ukendt",
|
||||
"none": "Ingen"
|
||||
},
|
||||
"description": {
|
||||
"invalidName": "Ugyldigt navn. Navne må kun indeholde bogstaver, tal, mellemrum, apostroffer, understregninger og bindestreger."
|
||||
},
|
||||
"button": {
|
||||
"deleteClassificationAttempts": "Slet klassifikationsbilleder",
|
||||
"deleteClassificationAttempts": "Slet kategoriseringsbilleder",
|
||||
"renameCategory": "Omdøb klasse",
|
||||
"deleteCategory": "Slet klasse",
|
||||
"deleteImages": "Slet billeder",
|
||||
"trainModel": "Træn model",
|
||||
"addClassification": "Tilføj klassifikation"
|
||||
"addClassification": "Tilføj Kategori",
|
||||
"deleteModels": "Slet modeller",
|
||||
"editModel": "Rediger model"
|
||||
},
|
||||
"tooltip": {
|
||||
"trainingInProgress": "Modellen er ved at blive trænet",
|
||||
"noNewImages": "Der er ingen nye billeder at lære af. Kategorisér flere billeder i datasættet først.",
|
||||
"noChanges": "Ingen ændringer i datasættet siden sidste træning.",
|
||||
"modelNotReady": "Modellen er ikke klar til træning"
|
||||
},
|
||||
"toast": {
|
||||
"success": {
|
||||
"deletedCategory": "Slettet kategori",
|
||||
"deletedImage": "Slettede billeder",
|
||||
"deletedModel_one": "{{count}} model er nu slettet",
|
||||
"deletedModel_other": "{{count}} modeller er nu slettet",
|
||||
"categorizedImage": "Billedet er nu kategoriseret",
|
||||
"trainedModel": "Modellen er klar.",
|
||||
"trainingModel": "Modeltræning er started.",
|
||||
"updatedModel": "Modellens indstillinger er opdateret",
|
||||
"renamedCategory": "Kategorien er omdøbt til {{name}}"
|
||||
},
|
||||
"error": {
|
||||
"deleteImageFailed": "Fejl under sletning: {{errorMessage}}",
|
||||
"deleteCategoryFailed": "Sletning af kategori fejlede: {{errorMessage}}",
|
||||
"deleteModelFailed": "Sletning af model fejlede: {{errorMessage}}",
|
||||
"categorizeFailed": "Kategorisering af billedet fejlede: {{errorMessage}}",
|
||||
"trainingFailed": "Træning af modellen fejlede. Check Frigate loggen.",
|
||||
"trainingFailedToStart": "Opstart af modeltræning fejlede: {{errorMessage}}",
|
||||
"updateModelFailed": "Ændring af modellen fejlede: {{errorMessage}}",
|
||||
"renameCategoryFailed": "Kan ikke omdøbe kategorien: {{errorMessage}}"
|
||||
}
|
||||
},
|
||||
"deleteCategory": {
|
||||
"title": "Slet kategori",
|
||||
"desc": "Er du sikker på at du vil slette kategorien {{name}}? Dette kan ikke fortrydes og sletter alle tilhørende billeder samt træning af modellen.",
|
||||
"minClassesTitle": "Kan ikke slette Kategori",
|
||||
"minClassesDesc": "Modellen skal have mindst 2 kategorier. Tilføj en kategori, før du sletter denne."
|
||||
},
|
||||
"deleteModel": {
|
||||
"title": "Slet Kategoriseringsmodellen",
|
||||
"desc_one": "Er du sikker på, at du vil slette {{count}} model? Dette vil permanent slette alle tilknyttede data, inkl. billeder og træningsdata. Denne handling kan ikke fortrydes.",
|
||||
"desc_other": "Er du sikker på, at du vil slette {{count}} modeller? Dette vil permanent slette alle tilknyttede data, inkl. billeder og træningsdata. Denne handling kan ikke fortrydes.",
|
||||
"single": "Er du sikker på, at du vil slette {{name}}? Dette vil permanent slette alle tilknyttede data, inklusive billeder og træningsdata. Denne handling kan ikke fortrydes."
|
||||
},
|
||||
"train": {
|
||||
"title": "Nyeste kategorier",
|
||||
"titleShort": "Nyeste",
|
||||
"aria": "Vælg de nyeste kategorier"
|
||||
},
|
||||
"categories": "Kategorier",
|
||||
"createCategory": {
|
||||
"new": "Opret en ny kategori"
|
||||
},
|
||||
"categorizeImageAs": "Kategoriser billedet som:",
|
||||
"categorizeImage": "Kategoriser billedet",
|
||||
"menu": {
|
||||
"objects": "Genstande",
|
||||
"states": "Statestik"
|
||||
},
|
||||
"noModels": {
|
||||
"object": {
|
||||
"title": "Ingen kategoriseringsmodeller for genstande",
|
||||
"description": "Opret en model, der kan kategorisere genstande.",
|
||||
"buttonText": "Opret Genstands Model"
|
||||
},
|
||||
"state": {
|
||||
"title": "Ingen modeller til genstandstilstande",
|
||||
"description": "Opret en brugerdefineret model til at overvåge og kategorisere tilstandsændringer i specifikke kamerområder.",
|
||||
"buttonText": "Opret tilstandsmodel"
|
||||
}
|
||||
},
|
||||
"wizard": {
|
||||
"step1": {
|
||||
"type": "Type",
|
||||
"typeState": "Tilstand",
|
||||
"typeObject": "Genstand",
|
||||
"objectLabel": "Genstands mærkat",
|
||||
"objectLabelPlaceholder": "Vælg genstands type...",
|
||||
"classificationType": "Kategoriseringstype",
|
||||
"classificationTypeTip": "Udforsk kategoriseringstyper",
|
||||
"errors": {
|
||||
"nameLength": "Modellens navn må højst være 64 tegn",
|
||||
"nameOnlyNumbers": "Modellens navn skal indeholde bogstaver",
|
||||
"classRequired": "Der mangler en kategori",
|
||||
"classesUnique": "Kategorinavne skal være unikke",
|
||||
"noneNotAllowed": "Kategorinavnet 'none' er ikke tilladt",
|
||||
"stateRequiresTwoClasses": "Tilstandsmodeller har brug for 2 kategorier",
|
||||
"objectLabelRequired": "Vælg genstands mærkat",
|
||||
"objectTypeRequired": "Vælg kategoriseringstype",
|
||||
"nameRequired": "Modelnavn er påkrævet"
|
||||
},
|
||||
"description": "Tilstandsmodeller overvåger faste kameraområder for ændringer (f.eks. dør åben/lukket). Genstandsmodeller tilføjer kategoriseringer til detekterede genstande (f.eks. kendte dyr, leveringspersoner osv.).",
|
||||
"name": "Navn",
|
||||
"namePlaceholder": "Skriv modelnavn...",
|
||||
"classificationTypeDesc": "Underetiketter tilføjer ekstra tekst til genstandens etiket (f.eks. 'Person: UPS'). Attributter er søgbare metadata, der opbevares separat i genstandens metadata.",
|
||||
"classificationSubLabel": "Underetiketter",
|
||||
"classificationAttribute": "Attribut",
|
||||
"classes": "Kategori",
|
||||
"states": "Tilstande",
|
||||
"classesTip": "Lær om kategorier",
|
||||
"classesStateDesc": "Definér de forskellige tilstande, dit kameraområde kan være i. For eksempel: 'åben' og 'lukket' for en garageport.",
|
||||
"classesObjectDesc": "Definér de forskellige kategorier, som detekterede genstande skal kategoriseres i. For eksempel: 'leveringsperson', 'beboer', 'fremmed' til kategorisering af personer.",
|
||||
"classPlaceholder": "Skriv kategorinavn..."
|
||||
},
|
||||
"step2": {
|
||||
"description": "Vælg kameraer, og definer det område, der skal overvåges for hvert kamera. Modellen vil kategorisere tilstanden i disse områder.",
|
||||
"cameras": "Kameraer",
|
||||
"selectCamera": "Vælg Kamera",
|
||||
"noCameras": "Klik + for at tilføje kamera",
|
||||
"selectCameraPrompt": "Vælg et kamera fra listen for at definere dets overvågningsområde"
|
||||
},
|
||||
"step3": {
|
||||
"selectImagesPrompt": "Vælg alle billeder med: {{className}}",
|
||||
"selectImagesDescription": "Klik på billederne for at vælge dem. Klik på Fortsæt, når du er færdig med denne kategori.",
|
||||
"allImagesRequired_one": "Venligst kategoriser alle billeder. {{count}} billede tilbage.",
|
||||
"allImagesRequired_other": "Venligst kategoriser alle billeder. {{count}} billeder tilbage.",
|
||||
"generating": {
|
||||
"title": "Genererer testbilleder",
|
||||
"description": "Frigate henter repræsentative billeder fra dine optagelser. Det kan tage et øjeblik..."
|
||||
},
|
||||
"training": {
|
||||
"title": "Træningsmodel",
|
||||
"description": "Din model trænes i baggrunden. Luk denne dialog, og din model vil begynde at køre, så snart træningen er færdig."
|
||||
},
|
||||
"retryGenerate": "Forsøg at generere igen",
|
||||
"noImages": "Ingen prøvebilleder blev genereret",
|
||||
"classifying": "Kategoriserer og træner...",
|
||||
"trainingStarted": "Træningen er startet",
|
||||
"modelCreated": "Model er oprettet. Brug visningen af nylige kategoriseringer til at tilføje billeder for de manglende tilstande, og træn modellen derefter.",
|
||||
"errors": {
|
||||
"noCameras": "Ingen kamera konfigureret",
|
||||
"noObjectLabel": "Ingen genstandsmærkat valgt",
|
||||
"generateFailed": "Kunne ikke generere eksempler: {{error}}",
|
||||
"generationFailed": "Der opstod en fejl under genereringen. Prøv igen.",
|
||||
"classifyFailed": "Kunne ikke kategorisere billederne: {{error}}"
|
||||
},
|
||||
"generateSuccess": "Eksempelbilleder er nu genereret",
|
||||
"missingStatesWarning": {
|
||||
"title": "Manglende tilstandseksempler",
|
||||
"description": "Det anbefales at vælge eksempler for alle tilstande for at opnå de bedste resultater. Du kan fortsætte uden at vælge alle tilstande, men modellen bliver ikke trænet, før alle tilstande har billeder. Efter du fortsætter, kan du bruge visningen Seneste kategoriseringer til at kategorisere billeder for de manglende tilstande og derefter træne modellen."
|
||||
}
|
||||
},
|
||||
"title": "Opret ny kategorisering",
|
||||
"steps": {
|
||||
"nameAndDefine": "Navn og definition",
|
||||
"stateArea": "Tilstandsområde",
|
||||
"chooseExamples": "Vælg Eksempler"
|
||||
}
|
||||
},
|
||||
"edit": {
|
||||
"title": "Rediger kategoriseringsmodel",
|
||||
"descriptionState": "Rediger kategorierne for denne model til genstandstilstande. Ændringer kræver, at modellen trænes igen.",
|
||||
"descriptionObject": "Rediger genstandstypen og kategoriseringstypen for denne genstandskategoriseringsmodel.",
|
||||
"stateClassesInfo": "Bemærk: Ændring af tilstandskategorier kræver, at modellen trænes igen med de opdaterede kategorier."
|
||||
},
|
||||
"deleteDatasetImages": {
|
||||
"title": "Slet billeder i datasættet",
|
||||
"desc_one": "Er du sikker på, at du vil slette {{count}} billede fra {{dataset}}? Denne handling kan ikke fortrydes og kræver, at modellen trænes igen.",
|
||||
"desc_other": "Er du sikker på, at du vil slette {{count}} billeder fra {{dataset}}? Denne handling kan ikke fortrydes og kræver, at modellen trænes igen."
|
||||
},
|
||||
"deleteTrainImages": {
|
||||
"title": "Slet trænings billeder",
|
||||
"desc_one": "Er du sikker på, at du vil slette {{count}} billede? Denne handling kan ikke fortrydes.",
|
||||
"desc_other": "Er du sikker på, at du vil slette {{count}} billeder? Denne handling kan ikke fortrydes."
|
||||
},
|
||||
"renameCategory": {
|
||||
"title": "Omdøb Kategori",
|
||||
"desc": "Indtast et nyt navn til {{name}}. Modellen skal trænes igen, før navneændringen træder i kraft."
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3,8 +3,16 @@
|
||||
"copyConfig": "Kopiér konfiguration",
|
||||
"saveAndRestart": "Gem & Genstart",
|
||||
"saveOnly": "Kun gem",
|
||||
"configEditor": "Konfigurationseditor",
|
||||
"safeConfigEditor": "Konfigurationseditor (Sikker tilstand)",
|
||||
"safeModeDescription": "Frigate er i sikker tilstand på grund af en fejl ved validering af konfigurationen.",
|
||||
"confirm": "Afslut uden at gemme?"
|
||||
"configEditor": "Konfigurationsværktøj",
|
||||
"safeConfigEditor": "Konfigurationsværktøj (Sikker tilstand)",
|
||||
"safeModeDescription": "Frigate er i sikker tilstand på grund af valideringsfejl af konfigurationen.",
|
||||
"confirm": "Afslut uden at gemme?",
|
||||
"toast": {
|
||||
"success": {
|
||||
"copyToClipboard": "Konfigurationen er kopieret."
|
||||
},
|
||||
"error": {
|
||||
"savingError": "Kan ikke gemme konfigurationen"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -11,6 +11,21 @@
|
||||
"empty": {
|
||||
"alert": "Der er ingen advarsler at gennemgå",
|
||||
"detection": "Der er ingen registreringer at gennemgå",
|
||||
"motion": "Ingen bevægelsesdata fundet"
|
||||
"motion": "Ingen bevægelsesdata fundet",
|
||||
"recordingsDisabled": {
|
||||
"title": "Optagelser skal være aktiveret"
|
||||
}
|
||||
},
|
||||
"documentTitle": "Gennemse - Frigate",
|
||||
"recordings": {
|
||||
"documentTitle": "Optagelser - Frigate"
|
||||
},
|
||||
"calendarFilter": {
|
||||
"last24Hours": "Sidste 24 timer"
|
||||
},
|
||||
"markAsReviewed": "Marker som gennemset",
|
||||
"markTheseItemsAsReviewed": "Marker disse som gennemset",
|
||||
"detail": {
|
||||
"aria": "Skift til detaljevisning"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -8,5 +8,11 @@
|
||||
"desc": "Indtast et nyt navn for denne eksport."
|
||||
},
|
||||
"noExports": "Ingen eksporter fundet",
|
||||
"deleteExport": "Slet eksport"
|
||||
"deleteExport": "Slet eksport",
|
||||
"tooltip": {
|
||||
"shareExport": "Del eksport",
|
||||
"downloadVideo": "Download video",
|
||||
"editName": "Rediger navn",
|
||||
"deleteExport": "Slette eksport"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -15,5 +15,8 @@
|
||||
"uploadFaceImage": {
|
||||
"title": "Upload ansigtsbillede",
|
||||
"desc": "Upload et billede for at scanne efter ansigter og inkludere det for {{pageToggle}}"
|
||||
},
|
||||
"train": {
|
||||
"titleShort": "Nyeste"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -8,5 +8,6 @@
|
||||
"filterInformation": "Filter information",
|
||||
"filterActive": "Filtre aktiv",
|
||||
"clear": "Ryd søgning"
|
||||
}
|
||||
},
|
||||
"trackedObjectId": "Sporet genstands-ID"
|
||||
}
|
||||
|
||||
@@ -84,7 +84,8 @@
|
||||
},
|
||||
"inProgress": "Im Gange",
|
||||
"invalidStartTime": "Ungültige Startzeit",
|
||||
"invalidEndTime": "Ungültige Endzeit"
|
||||
"invalidEndTime": "Ungültige Endzeit",
|
||||
"never": "Nie"
|
||||
},
|
||||
"button": {
|
||||
"save": "Speichern",
|
||||
@@ -130,7 +131,8 @@
|
||||
"show": "Zeige {{item}}",
|
||||
"ID": "ID",
|
||||
"none": "Nichts",
|
||||
"all": "Alle"
|
||||
"all": "Alle",
|
||||
"other": "andere"
|
||||
},
|
||||
"menu": {
|
||||
"configurationEditor": "Konfigurationseditor",
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
{
|
||||
"documentTitle": "Klassifizierungsmodelle - Fregatte",
|
||||
"documentTitle": "Klassifikationsmodelle - Frigate",
|
||||
"details": {
|
||||
"scoreInfo": "Die Punktzahl gibt die durchschnittliche Konfidenz aller Erkennungen dieses Objekts wieder.",
|
||||
"none": "Keiner",
|
||||
@@ -11,7 +11,7 @@
|
||||
"deleteCategory": "Klasse löschen",
|
||||
"deleteImages": "Bilder löschen",
|
||||
"trainModel": "Modell trainieren",
|
||||
"addClassification": "Klassifizierung hinzufügen",
|
||||
"addClassification": "Klassifikationsmodell hinzufügen",
|
||||
"deleteModels": "Modell löschen",
|
||||
"editModel": "Modell bearbeiten"
|
||||
},
|
||||
@@ -58,7 +58,7 @@
|
||||
},
|
||||
"edit": {
|
||||
"title": "Klassifikationsmodell bearbeiten",
|
||||
"descriptionState": "Bearbeite die Klassen für dieses Zustandsklassifikationsmodell. Änderungen erfordern erneutes Trainieren des Modells.",
|
||||
"descriptionState": "Bearbeite die Klassen für dieses Zustandsklassifikationsmodell. Änderungen erfordern ein erneutes Trainieren des Modells.",
|
||||
"descriptionObject": "Bearbeite den Objekttyp und Klassifizierungstyp für dieses Objektklassifikationsmodell.",
|
||||
"stateClassesInfo": "Hinweis: Die Änderung der Statusklassen erfordert ein erneutes Trainieren des Modells mit den aktualisierten Klassen."
|
||||
},
|
||||
@@ -97,49 +97,49 @@
|
||||
"noModels": {
|
||||
"object": {
|
||||
"title": "Keine Objektklassifikationsmodelle",
|
||||
"description": "Erstelle ein benutzerdefiniertes Modell, um erkannte Objekte zu klassifizieren.",
|
||||
"buttonText": "Objektmodell erstellen"
|
||||
"description": "Erstelle ein benutzerdefiniertes Objektklassifikationsmodell, um erkannte Objekte zu klassifizieren.",
|
||||
"buttonText": "Objektklassifikationsmodell erstellen"
|
||||
},
|
||||
"state": {
|
||||
"title": "Keine Statusklassifizierungsmodelle",
|
||||
"description": "Erstellen Sie ein benutzerdefiniertes Modell, um Zustandsänderungen in bestimmten Kamerabereichen zu überwachen und zu klassifizieren.",
|
||||
"buttonText": "Zustandsmodell erstellen"
|
||||
"title": "Keine Zustandsklassifikationsmodelle",
|
||||
"description": "Erstellen Sie ein benutzerdefiniertes Zustandsklassifikationsmodell, um Zustandsänderungen in bestimmten Kamerabereichen zu überwachen und zu klassifizieren.",
|
||||
"buttonText": "Zustandsklassifikationsmodell erstellen"
|
||||
}
|
||||
},
|
||||
"wizard": {
|
||||
"title": "Neue Klassifizierung erstellen",
|
||||
"title": "Neues Klassifikationsmodell erstellen",
|
||||
"steps": {
|
||||
"nameAndDefine": "Benennen und definieren",
|
||||
"stateArea": "Gebiet",
|
||||
"stateArea": "Überwachungsbereich",
|
||||
"chooseExamples": "Beispiel auswählen"
|
||||
},
|
||||
"step1": {
|
||||
"description": "Zustandsmodelle überwachen feste Kamerabereiche auf Veränderungen (z. B. Tür offen/geschlossen). Objektmodelle fügen den erkannten Objekten Klassifizierungen hinzu (z. B. bekannte Tiere, Lieferanten usw.).",
|
||||
"description": "Zustandsmodelle überwachen fest definierte Kamerabereiche auf Veränderungen (z. B. Tür offen/geschlossen). Objektmodelle klassifizieren erkannte Objekte genauer (z. B. in bekannte Tiere, Lieferanten usw.).",
|
||||
"name": "Name",
|
||||
"namePlaceholder": "Eingeben Modell Name...",
|
||||
"namePlaceholder": "Modellname eingeben ...",
|
||||
"type": "Typ",
|
||||
"typeState": "Zustand",
|
||||
"typeObject": "Objekt",
|
||||
"objectLabel": "Objekt Bezeichnung",
|
||||
"objectLabel": "Objektbezeichnung",
|
||||
"objectLabelPlaceholder": "Auswahl Objekt Typ...",
|
||||
"classificationType": "Klassifizierungstyp",
|
||||
"classificationTypeTip": "Etwas über Klassifizierungstyp lernen",
|
||||
"classificationTypeDesc": "Unterbezeichnungen fügen dem Objektnamen zusätzlichen Text hinzu (z. B. „Person: UPS“). Attribute sind durchsuchbare Metadaten, die separat in den Objektmetadaten gespeichert sind.",
|
||||
"classificationSubLabel": "Unterlabel",
|
||||
"classificationAttribute": "Merkmal",
|
||||
"classes": "Klasse",
|
||||
"states": "Gebiet",
|
||||
"classesTip": "Über Klassen lernen",
|
||||
"classificationAttribute": "Attribut",
|
||||
"classes": "Klassen",
|
||||
"states": "Zustände",
|
||||
"classesTip": "Mehr über Klassen erfahren",
|
||||
"classesStateDesc": "Definieren Sie die verschiedenen Zustände, in denen sich Ihr Kamerabereich befinden kann. Beispiel: „offen” und „geschlossen” für ein Garagentor.",
|
||||
"classesObjectDesc": "Definieren Sie die verschiedenen Kategorien, in die erkannte Objekte klassifiziert werden sollen. Beispiel: „Lieferant“, „Bewohner“, „Fremder“ für die Klassifizierung von Personen.",
|
||||
"classPlaceholder": "Klassenbezeichnung eingeben...",
|
||||
"errors": {
|
||||
"nameRequired": "Modellname ist erforderlich",
|
||||
"nameRequired": "Der Modellname ist erforderlich",
|
||||
"nameLength": "Der Modellname darf maximal 64 Zeichen lang sein",
|
||||
"nameOnlyNumbers": "Der Modellname darf nicht nur aus Zahlen bestehen",
|
||||
"classRequired": "Mindestens eine Klasse ist erforderlich",
|
||||
"classesUnique": "Klassenname muss eindeutig sein",
|
||||
"stateRequiresTwoClasses": "Gebietsmodelle erfordern mindestens zwei Klassen",
|
||||
"classesUnique": "Der Klassenname muss eindeutig sein",
|
||||
"stateRequiresTwoClasses": "Zustandsmodelle erfordern mindestens zwei Klassen",
|
||||
"objectLabelRequired": "Bitte wähle eine Objektbeschriftung",
|
||||
"objectTypeRequired": "Bitte wählen Sie einen Klassifizierungstyp aus",
|
||||
"noneNotAllowed": "Die Klasse „none“ ist nicht zulässig"
|
||||
@@ -149,12 +149,12 @@
|
||||
"description": "Wählen Sie Kameras aus und legen Sie für jede Kamera den zu überwachenden Bereich fest. Das Modell klassifiziert den Zustand dieser Bereiche.",
|
||||
"cameras": "Kameras",
|
||||
"selectCamera": "Kamera auswählen",
|
||||
"noCameras": "Klick + zum hinzufügen der Kameras",
|
||||
"noCameras": "Klicke + zum Hinzufügen von Kameras",
|
||||
"selectCameraPrompt": "Wählen Sie eine Kamera aus der Liste aus, um ihren Überwachungsbereich festzulegen"
|
||||
},
|
||||
"step3": {
|
||||
"selectImagesPrompt": "Wählen sie alle Bilder mit: {{className}}",
|
||||
"selectImagesDescription": "Klicken Sie auf die Bilder, um sie auszuwählen. Klicken Sie auf „Weiter“, wenn Sie mit diesem Kurs fertig sind.",
|
||||
"selectImagesPrompt": "Wählen Sie alle Bilder mit: {{className}}",
|
||||
"selectImagesDescription": "Klicken Sie auf die Bilder, um sie auszuwählen. Klicken Sie auf „Weiter“, wenn Sie mit dieser Klasse fertig sind.",
|
||||
"allImagesRequired_one": "Bitte klassifizieren Sie alle Bilder. {{count}} Bild verbleibend.",
|
||||
"allImagesRequired_other": "Bitte klassifizieren Sie alle Bilder. {{count}} Bilder verbleiben.",
|
||||
"generating": {
|
||||
@@ -162,7 +162,7 @@
|
||||
"description": "Frigate extrahiert repräsentative Bilder aus Ihren Aufnahmen. Dies kann einen Moment dauern..."
|
||||
},
|
||||
"training": {
|
||||
"title": "Trainingsmodell",
|
||||
"title": "Trainiere Modell",
|
||||
"description": "Ihr Modell wird im Hintergrund trainiert. Schließen Sie diesen Dialog, und Ihr Modell wird ausgeführt, sobald das Training abgeschlossen ist."
|
||||
},
|
||||
"retryGenerate": "Generierung wiederholen",
|
||||
@@ -177,7 +177,7 @@
|
||||
"classifyFailed": "Bilder konnten nicht klassifiziert werden: {{error}}"
|
||||
},
|
||||
"generateSuccess": "Erfolgreich generierte Beispielbilder",
|
||||
"modelCreated": "Modell erfolgreich erstellt. Verwenden Sie die Ansicht „Aktuelle Klassifizierungen“, um Bilder für fehlende Zustände hinzuzufügen, und trainieren Sie dann das Modell.",
|
||||
"modelCreated": "Modell erfolgreich erstellt. Verwenden Sie die Ansicht „Aktuelle Klassifizierungen“, um Bilder für fehlende Zustände hinzuzufügen und trainieren Sie dann das Modell erneut.",
|
||||
"missingStatesWarning": {
|
||||
"title": "Beispiele für fehlende Zustände",
|
||||
"description": "Es wird empfohlen für alle Zustände Beispiele auszuwählen. Das Modell wird erst trainiert, wenn für alle Zustände Bilder vorhanden sind. Fahren Sie fort und verwenden Sie die Ansicht „Aktuelle Klassifizierungen“, um Bilder für die fehlenden Zustände zu klassifizieren. Trainieren Sie anschließend das Modell."
|
||||
|
||||
@@ -8,7 +8,11 @@
|
||||
"empty": {
|
||||
"alert": "Es gibt keine zu prüfenden Alarme",
|
||||
"detection": "Es gibt keine zu prüfenden Erkennungen",
|
||||
"motion": "Keine Bewegungsdaten gefunden"
|
||||
"motion": "Keine Bewegungsdaten gefunden",
|
||||
"recordingsDisabled": {
|
||||
"title": "Aufzeichnungen müssen aktiviert sein",
|
||||
"description": "Überprüfungselemente können nur für eine Kamera erstellt werden, wenn Aufzeichnungen für diese Kamera aktiviert sind."
|
||||
}
|
||||
},
|
||||
"timeline": "Zeitleiste",
|
||||
"timeline.aria": "Zeitleiste auswählen",
|
||||
|
||||
@@ -79,7 +79,10 @@
|
||||
"title": "Attribute bearbeiten",
|
||||
"desc": "Wählen Sie Klassifizierungsattribute für dieses {{label}} aus"
|
||||
},
|
||||
"attributes": "Klassifizierungsattribute"
|
||||
"attributes": "Klassifizierungsattribute",
|
||||
"title": {
|
||||
"label": "Titel"
|
||||
}
|
||||
},
|
||||
"documentTitle": "Erkunde - Frigate",
|
||||
"generativeAI": "Generative KI",
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
{
|
||||
"description": {
|
||||
"placeholder": "Gib einen Name für diese Kollektion ein",
|
||||
"addFace": "Füge der Gesichtsbibliothek eine neue Sammlung hinzu, indem ein Bild hinzufügst.",
|
||||
"addFace": "Füge der Gesichtsbibliothek eine neue Sammlung hinzu, indem du ein Bild hochlädst.",
|
||||
"invalidName": "Ungültiger Name. Namen dürfen nur Buchstaben, Zahlen, Leerzeichen, Apostrophe, Unterstriche und Bindestriche enthalten."
|
||||
},
|
||||
"details": {
|
||||
|
||||
@@ -178,6 +178,16 @@
|
||||
"restricted": {
|
||||
"title": "Keine Kamera verfügbar",
|
||||
"description": "Sie haben keine Berechtigung, Kameras in dieser Gruppe anzuzeigen."
|
||||
},
|
||||
"default": {
|
||||
"title": "Keine Kameras konfiguriert",
|
||||
"description": "Zum Start eine Kamera mit Frigate verbinden.",
|
||||
"buttonText": "Kamera hinzufügen"
|
||||
},
|
||||
"group": {
|
||||
"title": "Keine Kameras in der Gruppe",
|
||||
"description": "Diese Kameragruppe hat keine zugewiesenen oder aktiven Kameras.",
|
||||
"buttonText": "Gruppen verwalten"
|
||||
}
|
||||
},
|
||||
"snapshot": {
|
||||
|
||||
@@ -49,7 +49,7 @@
|
||||
"desc": "Standardmäßig werden die letzten Warnmeldungen auf dem Live-Dashboard als kurze Videoschleifen abgespielt. Deaktiviere diese Option, um nur ein statisches Bild der letzten Warnungen auf diesem Gerät/Browser anzuzeigen."
|
||||
},
|
||||
"automaticLiveView": {
|
||||
"desc": "Wechsle automatisch zur Live Ansicht der Kamera, wenn einen Aktivität erkannt wurde. Wenn du diese Option deaktivierst, werden die statischen Kamerabilder auf der Liveübersicht nur einmal pro Minute aktualisiert.",
|
||||
"desc": "Zeigt automatisch das Live-Bild einer Kamera an, wenn eine Aktivität erkannt wird. Ist diese Option deaktiviert, werden Kamerabilder im Live-Dashboard nur einmal pro Minute aktualisiert.",
|
||||
"label": "Automatische Live Ansicht"
|
||||
},
|
||||
"displayCameraNames": {
|
||||
@@ -1265,11 +1265,11 @@
|
||||
"title": "Kamera-Einstellungen überprüfen",
|
||||
"object_descriptions": {
|
||||
"title": "Generative KI Objektbeschreibungen",
|
||||
"desc": "Aktiviere/deaktiviere vorübergehend die Objektbeschreibungen durch Generative KI für diese Kamera. Wenn diese Option deaktiviert ist, werden keine KI-generierten Beschreibungen für verfolgte Objekte dieser Kamera erstellt."
|
||||
"desc": "Aktiviere/deaktiviere vorübergehend die Objektbeschreibungen durch generative KI für diese Kamera. Wenn diese Option deaktiviert ist, werden keine KI-generierten Beschreibungen für verfolgte Objekte dieser Kamera erstellt."
|
||||
},
|
||||
"review_descriptions": {
|
||||
"title": "Generative KI Review Beschreibungen",
|
||||
"desc": "Generative KI Review Beschreibungen für diese Kamera vorübergehend aktivieren/deaktivieren. Wenn diese Option deaktiviert ist, werden für die Review Elemente dieser Kamera keine KI-generierten Beschreibungen angefordert."
|
||||
"desc": "Aktivieren/deaktivieren Sie vorübergehend die generativen KI-Überprüfungsbeschreibungen für diese Kamera, bis Frigate neu gestartet wird. Wenn diese Option deaktiviert ist, werden für Überprüfungselemente auf dieser Kamera keine KI-generierten Beschreibungen angefordert."
|
||||
},
|
||||
"review": {
|
||||
"title": "Überprüfung",
|
||||
|
||||
@@ -50,7 +50,14 @@
|
||||
"otherProcesses": {
|
||||
"title": "Andere Prozesse",
|
||||
"processCpuUsage": "CPU Auslastung für Prozess",
|
||||
"processMemoryUsage": "Prozessspeicherauslastung"
|
||||
"processMemoryUsage": "Prozessspeicherauslastung",
|
||||
"series": {
|
||||
"go2rtc": "go2rtc",
|
||||
"recording": "Aufnahme",
|
||||
"audio_detector": "Geräuscherkennung",
|
||||
"review_segment": "Überprüfungsteil",
|
||||
"embeddings": "Einbettungen"
|
||||
}
|
||||
}
|
||||
},
|
||||
"documentTitle": {
|
||||
|
||||
@@ -75,7 +75,8 @@
|
||||
"s": "{{time}}δ",
|
||||
"inProgress": "Σε εξέλιξη",
|
||||
"invalidStartTime": "Μη έγκυρη ώρα έναρξης",
|
||||
"invalidEndTime": "Μη έγκυρη ώρα λήξης"
|
||||
"invalidEndTime": "Μη έγκυρη ώρα λήξης",
|
||||
"never": "Ποτέ"
|
||||
},
|
||||
"menu": {
|
||||
"live": {
|
||||
|
||||
@@ -1 +1,14 @@
|
||||
{}
|
||||
{
|
||||
"documentTitle": "Μοντέλα Ταξινόμησης - Frigate",
|
||||
"details": {
|
||||
"scoreInfo": "Η βαθμολογία αντιπροσωπεύει την κατά μέσο όρο ταξινομική εμπιστοσύνη μεταξύ όλων των ανιχνεύσεων αυτού του αντικειμένου.",
|
||||
"none": "Καμία",
|
||||
"unknown": "Άγνωστο"
|
||||
},
|
||||
"button": {
|
||||
"deleteClassificationAttempts": "Διαγραφή Εικόνων Ταξινόμησης",
|
||||
"deleteImages": "Διαγραφή Εικόνων",
|
||||
"trainModel": "Εκπαίδευση Μοντέλου",
|
||||
"addClassification": "Προσθήκη Ταξινόμησης"
|
||||
}
|
||||
}
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user