Compare commits

..

19 Commits

Author SHA1 Message Date
dependabot[bot]
a2397b5308 Update onnxruntime-gpu requirement in /docker/tensorrt
Updates the requirements on [onnxruntime-gpu](https://github.com/microsoft/onnxruntime) to permit the latest version.
- [Release notes](https://github.com/microsoft/onnxruntime/releases)
- [Changelog](https://github.com/microsoft/onnxruntime/blob/main/docs/ReleaseManagement.md)
- [Commits](https://github.com/microsoft/onnxruntime/compare/v1.22.0...v1.23.2)

---
updated-dependencies:
- dependency-name: onnxruntime-gpu
  dependency-version: 1.23.2
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-12-23 11:06:55 +00:00
apocaliss92
f862ef5d0c Add Scrypted - Frigate bridge plugin information (#21365) 2025-12-22 08:13:37 -07:00
GuoQing Liu
f74df040bb fix: fix password setting overlay time i18n (#21387) 2025-12-22 05:56:19 -06:00
Nicolas Mowen
54f4af3c6a Miscellaneous fixes (#21373)
* Send preferred language for report service

* make object lifecycle scrollable in tracking details

* fix info popovers in live camera drawer

* ensure metrics are initialized if genai is enabled

* docs

* ollama cloud model docs

* Ensure object descriptions get claened up

---------

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-12-20 18:30:34 -06:00
GuoQing Liu
8a4d5f34da fix: fix system enrichments view classification i18n (#21366) 2025-12-20 05:45:31 -07:00
Josh Hawkins
60052e5f9f Miscellaneous Fixes (0.17 beta) (#21355)
* remove footer messages and add update topic to motion tuner view

restart after changing values is no longer required

* add cache key and activity indicator for loading classification wizard images

* Always mark model as untrained when a classname is changed

* clarify object classification docs

* add debug logs for individual lpr replace_rules

* update memray docs

* memray tweaks

* Don't fail for audio transcription when semantic search is not enabled

* Fix incorrect mismatch for object vs sub label

* Check if the video is currently playing when deciding to seek due to misalignment

* Refactor timeline event handling to allow multiple timeline entries per update

* Check if zones have actually changed (not just count) for event state update

* show event icon on mobile

* move div inside conditional

---------

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
2025-12-19 18:59:26 -06:00
Nicolas Mowen
e636449d56 Miscellaneous fixes (0.17 beta) (#21350)
* Fix genai callbacks in MQTT

* Cleanup cursor pointer for classification cards

* Cleanup

* Handle unknown SOCs for RKNN converter by only using known SOCs

* don't allow "none" as a classification class name

* change internal port user to admin and default unspecified username to viewer

* keep 5000 as anonymous user

* suppress tensorflow logging during classification training

* Always apply base log level suppressions for noisy third-party libraries even if no specific logConfig is provided

* remove decorator and specifically suppress TFLite delegate creation messages

---------

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-12-18 15:12:10 -07:00
Josh Hawkins
6a0e31dcf9 Add object classification attributes to Tracked Object Details (#21348)
* attributes endpoint

* event endpoints

* add attributes to more filters

* add to suggestions and query in explore

* support attributes in search input

* i18n

* add object type filter to endpoint

* add attributes to tracked object details pane

* add generic multi select dialog

* save object attributes endpoint

* add group by param to fetch attributes endpoint

* add attribute editing to tracked object details

* docs

* fix docs

* update openapi spec to match python
2025-12-18 08:35:47 -06:00
GuoQing Liu
074b060e9c fix: temp directory is only created when there are review_items. (#21344) 2025-12-18 07:08:45 -07:00
Josh Hawkins
ae009b9861 Miscellaneous Fixes (0.17 beta) (#21336)
* fix coral docs

* add note about sub label object classification with person

* Catch OSError for deleting classification image

* add docs for dummy camera debugging

* add to sidebar

* fix formatting

* fix

* avx instructions are required for classification

* break text on classification card to prevent button overflow

* Ensure there is no NameError when processing

* Don't use region for state classification models

* fix spelling

* Handle attribute based models

* Catch case of non-trained model that doesn't add infinite number of classification images

* Actually train object classification models automatically

---------

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
2025-12-17 16:52:27 -07:00
GuoQing Liu
13957fec00 classification i18n fix (#21331)
* fix: fix classification pages none label i18n

* fix: fix README_CN formatting issue
2025-12-17 15:26:11 -07:00
Blake Blackshear
3edfd905de consider anonymous user authenticated (#21335)
* consider anonymous user authenticated

* simplify and update comments
2025-12-17 08:01:20 -06:00
Nicolas Mowen
78eace258e Miscellaneous Fixes (0.17 Beta) (#21320)
* Exclude D-FINE from using CUDA Graphs

* fix objects count in detail stream

* Add debugging for classification models

* validate idb stored stream name and reset if invalid

fixes https://github.com/blakeblackshear/frigate/discussions/21311

* ensure jina loading takes place in the main thread to prevent lazily importing tensorflow in another thread later

reverts atexit changes in https://github.com/blakeblackshear/frigate/pull/21301 and fixes https://github.com/blakeblackshear/frigate/discussions/21306

* revert old atexit change in bird too

* revert types

* ensure we bail in the live mode hook for empty camera groups

prevent infinite rendering on camera groups with no cameras

---------

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-12-16 22:35:43 -06:00
Issy Szemeti
c292cd207d Align node versions used in GHA PR workflow (#21302)
* Add node/npm version config to package.json

* Bump npm version/fix node version format

* Version range

* Use package.json for github actions node version

* Unification

* Move it all to the bottom

* Remove this

* Bump versions in docs

* Add volta config here too

* Revert changes

* Revert this
2025-12-16 20:28:35 -07:00
Josh Hawkins
e7d047715d Miscellaneous Fixes (0.17 beta) (#21301)
* Wait for config to load before evaluating route access

Fix race condition where custom role users are temporarily denied access after login while config is still loading. Defer route rendering in DefaultAppView until config is available so the complete role list is known before ProtectedRoute evaluates permissions

* Use batching for state classification generation

* Ignore incorrect scoring images if they make it through the deletion

* Delete unclassified images

* mitigate tensorflow atexit crash by pre-importing tflite/tensorflow on main thread

Pre-import Interpreter in embeddings maintainer and add defensive lazy imports in classification processors to avoid worker-thread tensorflow imports causing "can't register atexit after shutdown"

* don't require old password for users with admin role when changing passwords

* don't render actions menu if no options are available

* Remove hwaccel arg as it is not used for encoding

* change password button text

---------

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
2025-12-16 08:11:53 -06:00
Issy Szemeti
818cccb2e3 Settings page layout shift - follow up (#21300)
* Fix layout shift with camera filter

* Move min height
2025-12-15 11:42:11 -07:00
Issy Szemeti
f543d0ab31 Fix layout shift with camera filter (#21298) 2025-12-15 11:18:41 -07:00
GuoQing Liu
39af85625e feat: add train classification download weights file endpoint (#21294)
* feat: add train classification download weights file endpoint: "TF_KERAS_MOBILENET_V2_ENDPOINT"

* refactor: custom weights file url
2025-12-15 08:59:13 -07:00
Nicolas Mowen
fa16539429 Miscellaneous Fixes (#21289)
* Exclude yolov9 license plate from migraphx runner

* clarify auth endpoint return in openapi schema

* Clarify ROCm enrichments

* fix object mask creation

* Consider audio activity when deciding if recording segments should be kept due to motion

* ensure python defs match openapi spec for auth endpoints

* Fix check for audio activity to keep a segemnt

* fix calendar popover modal bug on export dialog

---------

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-12-15 09:32:11 -06:00
143 changed files with 2901 additions and 4870 deletions

View File

@@ -19,9 +19,9 @@ jobs:
- uses: actions/checkout@v6
with:
persist-credentials: false
- uses: actions/setup-node@master
- uses: actions/setup-node@v6
with:
node-version: 16.x
node-version: 20.x
- run: npm install
working-directory: ./web
- name: Lint
@@ -35,7 +35,7 @@ jobs:
- uses: actions/checkout@v6
with:
persist-credentials: false
- uses: actions/setup-node@master
- uses: actions/setup-node@v6
with:
node-version: 20.x
- run: npm install
@@ -78,7 +78,7 @@ jobs:
uses: actions/checkout@v6
with:
persist-credentials: false
- uses: actions/setup-node@master
- uses: actions/setup-node@v6
with:
node-version: 20.x
- name: Install devcontainer cli

View File

@@ -1,7 +1,7 @@
default_target: local
COMMIT_HASH := $(shell git log -1 --pretty=format:"%h"|tail -1)
VERSION = 0.18.0
VERSION = 0.17.0
IMAGE_REPO ?= ghcr.io/blakeblackshear/frigate
GITHUB_REF_NAME ?= $(shell git rev-parse --abbrev-ref HEAD)
BOARDS= #Initialized empty

View File

@@ -4,14 +4,14 @@
# Frigate NVR™ - 一个具有实时目标检测的本地 NVR
[English](https://github.com/blakeblackshear/frigate) | \[简体中文\]
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
<a href="https://hosted.weblate.org/engage/frigate-nvr/-/zh_Hans/">
<img src="https://hosted.weblate.org/widget/frigate-nvr/-/zh_Hans/svg-badge.svg" alt="翻译状态" />
</a>
[English](https://github.com/blakeblackshear/frigate) | \[简体中文\]
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
一个完整的本地网络视频录像机NVR专为[Home Assistant](https://www.home-assistant.io)设计,具备 AI 目标/物体检测功能。使用 OpenCV 和 TensorFlow 在本地为 IP 摄像头执行实时物体检测。
强烈推荐使用 GPU 或者 AI 加速器(例如[Google Coral 加速器](https://coral.ai/products/) 或者 [Hailo](https://hailo.ai/)等)。它们的运行效率远远高于现在的顶级 CPU并且功耗也极低。
@@ -38,6 +38,7 @@
## 协议
本项目采用 **MIT 许可证**授权。
**代码部分**:本代码库中的源代码、配置文件和文档均遵循 [MIT 许可证](LICENSE)。您可以自由使用、修改和分发这些代码,但必须保留原始版权声明。
**商标部分**“Frigate”名称、“Frigate NVR”品牌以及 Frigate 的 Logo 为 **Frigate LLC 的商标****不在** MIT 许可证覆盖范围内。

View File

@@ -55,7 +55,7 @@ RUN --mount=type=tmpfs,target=/tmp --mount=type=tmpfs,target=/var/cache/apt \
FROM scratch AS go2rtc
ARG TARGETARCH
WORKDIR /rootfs/usr/local/go2rtc/bin
ADD --link --chmod=755 "https://github.com/AlexxIT/go2rtc/releases/download/v1.9.13/go2rtc_linux_${TARGETARCH}" go2rtc
ADD --link --chmod=755 "https://github.com/AlexxIT/go2rtc/releases/download/v1.9.10/go2rtc_linux_${TARGETARCH}" go2rtc
FROM wget AS tempio
ARG TARGETARCH
@@ -237,8 +237,18 @@ ENV PYTHONWARNINGS="ignore:::numpy.core.getlimits"
# Set HailoRT to disable logging
ENV HAILORT_LOGGER_PATH=NONE
# TensorFlow error only
# TensorFlow C++ logging suppression (must be set before import)
# TF_CPP_MIN_LOG_LEVEL: 0=all, 1=INFO+, 2=WARNING+, 3=ERROR+ (we use 3 for errors only)
ENV TF_CPP_MIN_LOG_LEVEL=3
# Suppress verbose logging from TensorFlow C++ code
ENV TF_CPP_MIN_VLOG_LEVEL=3
# Disable oneDNN optimization messages ("optimized with oneDNN...")
ENV TF_ENABLE_ONEDNN_OPTS=0
# Suppress AutoGraph verbosity during conversion
ENV AUTOGRAPH_VERBOSITY=0
# Google Logging (GLOG) suppression for TensorFlow components
ENV GLOG_minloglevel=3
ENV GLOG_logtostderr=0
ENV PATH="/usr/local/go2rtc/bin:/usr/local/tempio/bin:/usr/local/nginx/sbin:${PATH}"

View File

@@ -14,5 +14,5 @@ nvidia_cusparse_cu12==12.5.1.*; platform_machine == 'x86_64'
nvidia_nccl_cu12==2.23.4; platform_machine == 'x86_64'
nvidia_nvjitlink_cu12==12.5.82; platform_machine == 'x86_64'
onnx==1.16.*; platform_machine == 'x86_64'
onnxruntime-gpu==1.22.*; platform_machine == 'x86_64'
onnxruntime-gpu==1.23.*; platform_machine == 'x86_64'
protobuf==3.20.3; platform_machine == 'x86_64'

View File

@@ -234,7 +234,7 @@ To do this:
### Custom go2rtc version
Frigate currently includes go2rtc v1.9.13, there may be certain cases where you want to run a different version of go2rtc.
Frigate currently includes go2rtc v1.9.10, there may be certain cases where you want to run a different version of go2rtc.
To do this:

View File

@@ -238,7 +238,7 @@ go2rtc:
- rtspx://192.168.1.1:7441/abcdefghijk
```
[See the go2rtc docs for more information](https://github.com/AlexxIT/go2rtc/tree/v1.9.13#source-rtsp)
[See the go2rtc docs for more information](https://github.com/AlexxIT/go2rtc/tree/v1.9.10#source-rtsp)
In the Unifi 2.0 update Unifi Protect Cameras had a change in audio sample rate which causes issues for ffmpeg. The input rate needs to be set for record if used directly with unifi protect.

View File

@@ -3,7 +3,7 @@ id: object_classification
title: Object Classification
---
Object classification allows you to train a custom MobileNetV2 classification model to run on tracked objects (persons, cars, animals, etc.) to identify a finer category or attribute for that object.
Object classification allows you to train a custom MobileNetV2 classification model to run on tracked objects (persons, cars, animals, etc.) to identify a finer category or attribute for that object. Classification results are visible in the Tracked Object Details pane in Explore, through the `frigate/tracked_object_details` MQTT topic, in Home Assistant sensors via the official Frigate integration, or through the event endpoints in the HTTP API.
## Minimum System Requirements
@@ -11,6 +11,8 @@ Object classification models are lightweight and run very fast on CPU. Inference
Training the model does briefly use a high amount of system resources for about 13 minutes per training run. On lower-power devices, training may take longer.
A CPU with AVX instructions is required for training and inference.
## Classes
Classes are the categories your model will learn to distinguish between. Each class represents a distinct visual category that the model will predict.
@@ -31,9 +33,15 @@ For object classification:
- Example: `cat``Leo`, `Charlie`, `None`.
- **Attribute**:
- Added as metadata to the object (visible in /events): `<model_name>: <predicted_value>`.
- Added as metadata to the object, visible in the Tracked Object Details pane in Explore, `frigate/events` MQTT messages, and the HTTP API response as `<model_name>: <predicted_value>`.
- Ideal when multiple attributes can coexist independently.
- Example: Detecting if a `person` in a construction yard is wearing a helmet or not.
- Example: Detecting if a `person` in a construction yard is wearing a helmet or not, and if they are wearing a yellow vest or not.
:::note
A tracked object can only have a single sub label. If you are using Face Recognition and you configure an object classification model for `person` using the sub label type, your sub label may not be assigned correctly as it depends on which enrichment completes its analysis first. Consider using the `attribute` type instead.
:::
## Assignment Requirements
@@ -73,6 +81,8 @@ classification:
classification_type: sub_label # or: attribute
```
An optional config, `save_attempts`, can be set as a key under the model name. This defines the number of classification attempts to save in the Recent Classifications tab. For object classification models, the default is 200.
## Training the model
Creating and training the model is done within the Frigate UI using the `Classification` page. The process consists of two steps:
@@ -81,12 +91,16 @@ Creating and training the model is done within the Frigate UI using the `Classif
Enter a name for your model, select the object label to classify (e.g., `person`, `dog`, `car`), choose the classification type (sub label or attribute), and define your classes. Include a `none` class for objects that don't fit any specific category.
For example: To classify your two cats, create a model named "Our Cats" and create two classes, "Charlie" and "Leo". Create a third class, "none", for other neighborhood cats that are not your own.
### Step 2: Assign Training Examples
The system will automatically generate example images from detected objects matching your selected label. You'll be guided through each class one at a time to select which images represent that class. Any images not assigned to a specific class will automatically be assigned to `none` when you complete the last class. Once all images are processed, training will begin automatically.
When choosing which objects to classify, start with a small number of visually distinct classes and ensure your training samples match camera viewpoints and distances typical for those objects.
If examples for some of your classes do not appear in the grid, you can continue configuring the model without them. New images will begin to appear in the Recent Classifications view. When your missing classes are seen, classify them from this view and retrain your model.
### Improving the Model
- **Problem framing**: Keep classes visually distinct and relevant to the chosen object types.
@@ -94,3 +108,23 @@ When choosing which objects to classify, start with a small number of visually d
- **Preprocessing**: Ensure examples reflect object crops similar to Frigates boxes; keep the subject centered.
- **Labels**: Keep label names short and consistent; include a `none` class if you plan to ignore uncertain predictions for sub labels.
- **Threshold**: Tune `threshold` per model to reduce false assignments. Start at `0.8` and adjust based on validation.
## Debugging Classification Models
To troubleshoot issues with object classification models, enable debug logging to see detailed information about classification attempts, scores, and consensus calculations.
Enable debug logs for classification models by adding `frigate.data_processing.real_time.custom_classification: debug` to your `logger` configuration. These logs are verbose, so only keep this enabled when necessary. Restart Frigate after this change.
```yaml
logger:
default: info
logs:
frigate.data_processing.real_time.custom_classification: debug
```
The debug logs will show:
- Classification probabilities for each attempt
- Whether scores meet the threshold requirement
- Consensus calculations and when assignments are made
- Object classification history and weighted scores

View File

@@ -3,7 +3,7 @@ id: state_classification
title: State Classification
---
State classification allows you to train a custom MobileNetV2 classification model on a fixed region of your camera frame(s) to determine a current state. The model can be configured to run on a schedule and/or when motion is detected in that region.
State classification allows you to train a custom MobileNetV2 classification model on a fixed region of your camera frame(s) to determine a current state. The model can be configured to run on a schedule and/or when motion is detected in that region. Classification results are available through the `frigate/<camera_name>/classification/<model_name>` MQTT topic and in Home Assistant sensors via the official Frigate integration.
## Minimum System Requirements
@@ -11,6 +11,8 @@ State classification models are lightweight and run very fast on CPU. Inference
Training the model does briefly use a high amount of system resources for about 13 minutes per training run. On lower-power devices, training may take longer.
A CPU with AVX instructions is required for training and inference.
## Classes
Classes are the different states an area on your camera can be in. Each class represents a distinct visual state that the model will learn to recognize.
@@ -46,6 +48,8 @@ classification:
crop: [0, 180, 220, 400]
```
An optional config, `save_attempts`, can be set as a key under the model name. This defines the number of classification attempts to save in the Recent Classifications tab. For state classification models, the default is 100.
## Training the model
Creating and training the model is done within the Frigate UI using the `Classification` page. The process consists of three steps:
@@ -70,3 +74,34 @@ Once some images are assigned, training will begin automatically.
- **Data collection**: Use the model's Recent Classifications tab to gather balanced examples across times of day and weather.
- **When to train**: Focus on cases where the model is entirely incorrect or flips between states when it should not. There's no need to train additional images when the model is already working consistently.
- **Selecting training images**: Images scoring below 100% due to new conditions (e.g., first snow of the year, seasonal changes) or variations (e.g., objects temporarily in view, insects at night) are good candidates for training, as they represent scenarios different from the default state. Training these lower-scoring images that differ from existing training data helps prevent overfitting. Avoid training large quantities of images that look very similar, especially if they already score 100% as this can lead to overfitting.
## Debugging Classification Models
To troubleshoot issues with state classification models, enable debug logging to see detailed information about classification attempts, scores, and state verification.
Enable debug logs for classification models by adding `frigate.data_processing.real_time.custom_classification: debug` to your `logger` configuration. These logs are verbose, so only keep this enabled when necessary. Restart Frigate after this change.
```yaml
logger:
default: info
logs:
frigate.data_processing.real_time.custom_classification: debug
```
The debug logs will show:
- Classification probabilities for each attempt
- Whether scores meet the threshold requirement
- State verification progress (consecutive detections needed)
- When state changes are published
### Recent Classifications
For state classification, images are only added to recent classifications under specific circumstances:
- **First detection**: The first classification attempt for a camera is always saved
- **State changes**: Images are saved when the detected state differs from the current verified state
- **Pending verification**: Images are saved when there's a pending state change being verified (requires 3 consecutive identical states)
- **Low confidence**: Images with scores below 100% are saved even if the state matches the current state (useful for training)
Images are **not** saved when the state is stable (detected state matches current state) **and** the score is 100%. This prevents unnecessary storage of redundant high-confidence classifications.

View File

@@ -0,0 +1,235 @@
---
id: genai
title: Generative AI
---
Generative AI can be used to automatically generate descriptive text based on the thumbnails of your tracked objects. This helps with [Semantic Search](/configuration/semantic_search) in Frigate to provide more context about your tracked objects. Descriptions are accessed via the _Explore_ view in the Frigate UI by clicking on a tracked object's thumbnail.
Requests for a description are sent off automatically to your AI provider at the end of the tracked object's lifecycle, or can optionally be sent earlier after a number of significantly changed frames, for example in use in more real-time notifications. Descriptions can also be regenerated manually via the Frigate UI. Note that if you are manually entering a description for tracked objects prior to its end, this will be overwritten by the generated response.
## Configuration
Generative AI can be enabled for all cameras or only for specific cameras. If GenAI is disabled for a camera, you can still manually generate descriptions for events using the HTTP API. There are currently 3 native providers available to integrate with Frigate. Other providers that support the OpenAI standard API can also be used. See the OpenAI section below.
To use Generative AI, you must define a single provider at the global level of your Frigate configuration. If the provider you choose requires an API key, you may either directly paste it in your configuration, or store it in an environment variable prefixed with `FRIGATE_`.
```yaml
genai:
provider: gemini
api_key: "{FRIGATE_GEMINI_API_KEY}"
model: gemini-2.0-flash
cameras:
front_camera:
genai:
enabled: True # <- enable GenAI for your front camera
use_snapshot: True
objects:
- person
required_zones:
- steps
indoor_camera:
objects:
genai:
enabled: False # <- disable GenAI for your indoor camera
```
By default, descriptions will be generated for all tracked objects and all zones. But you can also optionally specify `objects` and `required_zones` to only generate descriptions for certain tracked objects or zones.
Optionally, you can generate the description using a snapshot (if enabled) by setting `use_snapshot` to `True`. By default, this is set to `False`, which sends the uncompressed images from the `detect` stream collected over the object's lifetime to the model. Once the object lifecycle ends, only a single compressed and cropped thumbnail is saved with the tracked object. Using a snapshot might be useful when you want to _regenerate_ a tracked object's description as it will provide the AI with a higher-quality image (typically downscaled by the AI itself) than the cropped/compressed thumbnail. Using a snapshot otherwise has a trade-off in that only a single image is sent to your provider, which will limit the model's ability to determine object movement or direction.
Generative AI can also be toggled dynamically for a camera via MQTT with the topic `frigate/<camera_name>/object_descriptions/set`. See the [MQTT documentation](/integrations/mqtt/#frigatecamera_nameobjectdescriptionsset).
## Ollama
:::warning
Using Ollama on CPU is not recommended, high inference times make using Generative AI impractical.
:::
[Ollama](https://ollama.com/) allows you to self-host large language models and keep everything running locally. It provides a nice API over [llama.cpp](https://github.com/ggerganov/llama.cpp). It is highly recommended to host this server on a machine with an Nvidia graphics card, or on a Apple silicon Mac for best performance.
Most of the 7b parameter 4-bit vision models will fit inside 8GB of VRAM. There is also a [Docker container](https://hub.docker.com/r/ollama/ollama) available.
Parallel requests also come with some caveats. You will need to set `OLLAMA_NUM_PARALLEL=1` and choose a `OLLAMA_MAX_QUEUE` and `OLLAMA_MAX_LOADED_MODELS` values that are appropriate for your hardware and preferences. See the [Ollama documentation](https://github.com/ollama/ollama/blob/main/docs/faq.md#how-does-ollama-handle-concurrent-requests).
### Supported Models
You must use a vision capable model with Frigate. Current model variants can be found [in their model library](https://ollama.com/library). Note that Frigate will not automatically download the model you specify in your config, you must download the model to your local instance of Ollama first i.e. by running `ollama pull llava:7b` on your Ollama server/Docker container. Note that the model specified in Frigate's config must match the downloaded model tag.
:::note
You should have at least 8 GB of RAM available (or VRAM if running on GPU) to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
:::
#### Ollama Cloud models
Ollama also supports [cloud models](https://ollama.com/cloud), where your local Ollama instance handles requests from Frigate, but model inference is performed in the cloud. Set up Ollama locally, sign in with your Ollama account, and specify the cloud model name in your Frigate config. For more details, see the Ollama cloud model [docs](https://docs.ollama.com/cloud).
### Configuration
```yaml
genai:
provider: ollama
base_url: http://localhost:11434
model: qwen3-vl:4b
```
## Google Gemini
Google Gemini has a free tier allowing [15 queries per minute](https://ai.google.dev/pricing) to the API, which is more than sufficient for standard Frigate usage.
### Supported Models
You must use a vision capable model with Frigate. Current model variants can be found [in their documentation](https://ai.google.dev/gemini-api/docs/models/gemini).
### Get API Key
To start using Gemini, you must first get an API key from [Google AI Studio](https://aistudio.google.com).
1. Accept the Terms of Service
2. Click "Get API Key" from the right hand navigation
3. Click "Create API key in new project"
4. Copy the API key for use in your config
### Configuration
```yaml
genai:
provider: gemini
api_key: "{FRIGATE_GEMINI_API_KEY}"
model: gemini-2.0-flash
```
:::note
To use a different Gemini-compatible API endpoint, set the `GEMINI_BASE_URL` environment variable to your provider's API URL.
:::
## OpenAI
OpenAI does not have a free tier for their API. With the release of gpt-4o, pricing has been reduced and each generation should cost fractions of a cent if you choose to go this route.
### Supported Models
You must use a vision capable model with Frigate. Current model variants can be found [in their documentation](https://platform.openai.com/docs/models).
### Get API Key
To start using OpenAI, you must first [create an API key](https://platform.openai.com/api-keys) and [configure billing](https://platform.openai.com/settings/organization/billing/overview).
### Configuration
```yaml
genai:
provider: openai
api_key: "{FRIGATE_OPENAI_API_KEY}"
model: gpt-4o
```
:::note
To use a different OpenAI-compatible API endpoint, set the `OPENAI_BASE_URL` environment variable to your provider's API URL.
:::
## Azure OpenAI
Microsoft offers several vision models through Azure OpenAI. A subscription is required.
### Supported Models
You must use a vision capable model with Frigate. Current model variants can be found [in their documentation](https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models).
### Create Resource and Get API Key
To start using Azure OpenAI, you must first [create a resource](https://learn.microsoft.com/azure/cognitive-services/openai/how-to/create-resource?pivots=web-portal#create-a-resource). You'll need your API key, model name, and resource URL, which must include the `api-version` parameter (see the example below).
### Configuration
```yaml
genai:
provider: azure_openai
base_url: https://instance.cognitiveservices.azure.com/openai/responses?api-version=2025-04-01-preview
model: gpt-5-mini
api_key: "{FRIGATE_OPENAI_API_KEY}"
```
## Usage and Best Practices
Frigate's thumbnail search excels at identifying specific details about tracked objects for example, using an "image caption" approach to find a "person wearing a yellow vest," "a white dog running across the lawn," or "a red car on a residential street." To enhance this further, Frigates default prompts are designed to ask your AI provider about the intent behind the object's actions, rather than just describing its appearance.
While generating simple descriptions of detected objects is useful, understanding intent provides a deeper layer of insight. Instead of just recognizing "what" is in a scene, Frigates default prompts aim to infer "why" it might be there or "what" it could do next. Descriptions tell you whats happening, but intent gives context. For instance, a person walking toward a door might seem like a visitor, but if theyre moving quickly after hours, you can infer a potential break-in attempt. Detecting a person loitering near a door at night can trigger an alert sooner than simply noting "a person standing by the door," helping you respond based on the situations context.
### Using GenAI for notifications
Frigate provides an [MQTT topic](/integrations/mqtt), `frigate/tracked_object_update`, that is updated with a JSON payload containing `event_id` and `description` when your AI provider returns a description for a tracked object. This description could be used directly in notifications, such as sending alerts to your phone or making audio announcements. If additional details from the tracked object are needed, you can query the [HTTP API](/integrations/api/event-events-event-id-get) using the `event_id`, eg: `http://frigate_ip:5000/api/events/<event_id>`.
If looking to get notifications earlier than when an object ceases to be tracked, an additional send trigger can be configured of `after_significant_updates`.
```yaml
genai:
send_triggers:
tracked_object_end: true # default
after_significant_updates: 3 # how many updates to a tracked object before we should send an image
```
## Custom Prompts
Frigate sends multiple frames from the tracked object along with a prompt to your Generative AI provider asking it to generate a description. The default prompt is as follows:
```
Analyze the sequence of images containing the {label}. Focus on the likely intent or behavior of the {label} based on its actions and movement, rather than describing its appearance or the surroundings. Consider what the {label} is doing, why, and what it might do next.
```
:::tip
Prompts can use variable replacements `{label}`, `{sub_label}`, and `{camera}` to substitute information from the tracked object as part of the prompt.
:::
You are also able to define custom prompts in your configuration.
```yaml
genai:
provider: ollama
base_url: http://localhost:11434
model: llava
objects:
prompt: "Analyze the {label} in these images from the {camera} security camera. Focus on the actions, behavior, and potential intent of the {label}, rather than just describing its appearance."
object_prompts:
person: "Examine the main person in these images. What are they doing and what might their actions suggest about their intent (e.g., approaching a door, leaving an area, standing still)? Do not describe the surroundings or static details."
car: "Observe the primary vehicle in these images. Focus on its movement, direction, or purpose (e.g., parking, approaching, circling). If it's a delivery vehicle, mention the company."
```
Prompts can also be overridden at the camera level to provide a more detailed prompt to the model about your specific camera, if you desire.
```yaml
cameras:
front_door:
objects:
genai:
enabled: True
use_snapshot: True
prompt: "Analyze the {label} in these images from the {camera} security camera at the front door. Focus on the actions and potential intent of the {label}."
object_prompts:
person: "Examine the person in these images. What are they doing, and how might their actions suggest their purpose (e.g., delivering something, approaching, leaving)? If they are carrying or interacting with a package, include details about its source or destination."
cat: "Observe the cat in these images. Focus on its movement and intent (e.g., wandering, hunting, interacting with objects). If the cat is near the flower pots or engaging in any specific actions, mention it."
objects:
- person
- cat
required_zones:
- steps
```
### Experiment with prompts
Many providers also have a public facing chat interface for their models. Download a couple of different thumbnails or snapshots from Frigate and try new things in the playground to get descriptions to your liking before updating the prompt in Frigate.
- OpenAI - [ChatGPT](https://chatgpt.com)
- Gemini - [Google AI Studio](https://aistudio.google.com)
- Ollama - [Open WebUI](https://docs.openwebui.com/)

View File

@@ -5,7 +5,7 @@ title: Configuring Generative AI
## Configuration
A Generative AI provider can be configured in the global config, which will make the Generative AI features available for use. There are currently 4 native providers available to integrate with Frigate. Other providers that support the OpenAI standard API can also be used. See the OpenAI section below.
A Generative AI provider can be configured in the global config, which will make the Generative AI features available for use. There are currently 3 native providers available to integrate with Frigate. Other providers that support the OpenAI standard API can also be used. See the OpenAI section below.
To use Generative AI, you must define a single provider at the global level of your Frigate configuration. If the provider you choose requires an API key, you may either directly paste it in your configuration, or store it in an environment variable prefixed with `FRIGATE_`.
@@ -41,12 +41,12 @@ If you are trying to use a single model for Frigate and HomeAssistant, it will n
The following models are recommended:
| Model | Notes |
| ------------- | -------------------------------------------------------------------- |
| `qwen3-vl` | Strong visual and situational understanding, higher vram requirement |
| `Intern3.5VL` | Relatively fast with good vision comprehension |
| `gemma3` | Strong frame-to-frame understanding, slower inference times |
| `qwen2.5-vl` | Fast but capable model with good vision comprehension |
| Model | Notes |
| ----------------- | -------------------------------------------------------------------- |
| `qwen3-vl` | Strong visual and situational understanding, higher vram requirement |
| `Intern3.5VL` | Relatively fast with good vision comprehension |
| `gemma3` | Strong frame-to-frame understanding, slower inference times |
| `qwen2.5-vl` | Fast but capable model with good vision comprehension |
:::note
@@ -61,46 +61,12 @@ genai:
provider: ollama
base_url: http://localhost:11434
model: minicpm-v:8b
provider_options: # other Ollama client options can be defined
provider_options: # other Ollama client options can be defined
keep_alive: -1
options:
num_ctx: 8192 # make sure the context matches other services that are using ollama
num_ctx: 8192 # make sure the context matches other services that are using ollama
```
## llama.cpp
[llama.cpp](https://github.com/ggerganov/llama.cpp) is a C++ implementation of LLaMA that provides a high-performance inference server. Using llama.cpp directly gives you access to all native llama.cpp options and parameters.
:::warning
Using llama.cpp on CPU is not recommended, high inference times make using Generative AI impractical.
:::
It is highly recommended to host the llama.cpp server on a machine with a discrete graphics card, or on an Apple silicon Mac for best performance.
### Supported Models
You must use a vision capable model with Frigate. The llama.cpp server supports various vision models in GGUF format.
### Configuration
```yaml
genai:
provider: llamacpp
base_url: http://localhost:8080
model: your-model-name
provider_options:
temperature: 0.7
repeat_penalty: 1.05
top_p: 0.8
top_k: 40
min_p: 0.05
seed: -1
```
All llama.cpp native options can be passed through `provider_options`, including `temperature`, `top_k`, `top_p`, `min_p`, `repeat_penalty`, `repeat_last_n`, `seed`, `grammar`, and more. See the [llama.cpp server documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md) for a complete list of available parameters.
## Google Gemini
Google Gemini has a free tier allowing [15 queries per minute](https://ai.google.dev/pricing) to the API, which is more than sufficient for standard Frigate usage.

View File

@@ -13,7 +13,7 @@ Object detection and enrichments (like Semantic Search, Face Recognition, and Li
- **AMD**
- ROCm will automatically be detected and used for enrichments in the `-rocm` Frigate image.
- ROCm support in the `-rocm` Frigate image is automatically detected for enrichments, but only some enrichment models are available due to ROCm's focus on LLMs and limited stability with certain neural network models. Frigate disables models that perform poorly or are unstable to ensure reliable operation, so only compatible enrichments may be active.
- **Intel**

View File

@@ -146,16 +146,16 @@ detectors:
### EdgeTPU Supported Models
| Model | Notes |
| ------------------------------------- | ------------------------------------------- |
| [MobileNet v2](#ssdlite-mobilenet-v2) | Default model |
| [YOLOv9](#yolo-v9) | More accurate but slower than default model |
| Model | Notes |
| ----------------------- | ------------------------------------------- |
| [Mobiledet](#mobiledet) | Default model |
| [YOLOv9](#yolov9) | More accurate but slower than default model |
#### SSDLite MobileNet v2
#### Mobiledet
A TensorFlow Lite model is provided in the container at `/edgetpu_model.tflite` and is used by this detector type by default. To provide your own model, bind mount the file into the container and provide the path with `model.path`.
#### YOLO v9
#### YOLOv9
[YOLOv9](https://github.com/dbro/frigate-detector-edgetpu-yolo9/releases/download/v1.0/yolov9-s-relu6-best_320_int8_edgetpu.tflite) models that are compiled for Tensorflow Lite and properly quantized are supported, but not included by default. To provide your own model, bind mount the file into the container and provide the path with `model.path`. Note that the model may require a custom label file (eg. [use this 17 label file](https://raw.githubusercontent.com/dbro/frigate-detector-edgetpu-yolo9/refs/heads/main/labels-coco17.txt) for the model linked above.)

View File

@@ -139,13 +139,7 @@ record:
:::tip
When using `hwaccel_args`, hardware encoding is used for timelapse generation. This setting can be overridden for a specific camera (e.g., when camera resolution exceeds hardware encoder limits); set `cameras.<camera>.record.export.hwaccel_args` with the appropriate settings. Using an unrecognized value or empty string will fall back to software encoding (libx264).
:::
:::tip
The encoder determines its own behavior so the resulting file size may be undesirably large.
When using `hwaccel_args` globally hardware encoding is used for time lapse generation. The encoder determines its own behavior so the resulting file size may be undesirably large.
To reduce the output file size the ffmpeg parameter `-qp n` can be utilized (where `n` stands for the value of the quantisation parameter). The value can be adjusted to get an acceptable tradeoff between quality and file size for the given scenario.
:::
@@ -154,16 +148,19 @@ To reduce the output file size the ffmpeg parameter `-qp n` can be utilized (whe
Apple devices running the Safari browser may fail to playback h.265 recordings. The [apple compatibility option](../configuration/camera_specific.md#h265-cameras-via-safari) should be used to ensure seamless playback on Apple devices.
## Syncing Media Files With Disk
## Syncing Recordings With Disk
Media files (event snapshots, event thumbnails, review thumbnails, previews, exports, and recordings) can become orphaned when database entries are deleted but the corresponding files remain on disk.
In some cases the recordings files may be deleted but Frigate will not know this has happened. Recordings sync can be enabled which will tell Frigate to check the file system and delete any db entries for files which don't exist.
Normal operation may leave small numbers of orphaned files until Frigate's scheduled cleanup, but crashes, configuration changes, or upgrades may cause more orphaned files that Frigate does not clean up. This feature checks the file system for media files and removes any that are not referenced in the database.
```yaml
record:
sync_recordings: True
```
The Maintenance pane in the Frigate UI or an API endpoint `POST /api/media/sync` can be used to trigger a media sync. When using the API, a job ID is returned and the operation continues on the server. Status can be checked with the `/api/media/sync/status/{job_id}` endpoint.
This feature is meant to fix variations in files, not completely delete entries in the database. If you delete all of your media, don't use `sync_recordings`, just stop Frigate, delete the `frigate.db` database, and restart.
:::warning
This operation uses considerable CPU resources and includes a safety threshold that aborts if more than 50% of files would be deleted. Only run when necessary. If you set `force: true` the safety threshold will be bypassed; do not use `force` unless you are certain the deletions are intended.
The sync operation uses considerable CPU resources and in most cases is not needed, only enable when necessary.
:::

View File

@@ -510,6 +510,8 @@ record:
# Optional: Number of minutes to wait between cleanup runs (default: shown below)
# This can be used to reduce the frequency of deleting recording segments from disk if you want to minimize i/o
expire_interval: 60
# Optional: Two-way sync recordings database with disk on startup and once a day (default: shown below).
sync_recordings: False
# Optional: Continuous retention settings
continuous:
# Optional: Number of days to retain recordings regardless of tracked objects or motion (default: shown below)
@@ -532,8 +534,6 @@ record:
# The -r (framerate) dictates how smooth the output video is.
# So the args would be -vf setpts=0.02*PTS -r 30 in that case.
timelapse_args: "-vf setpts=0.04*PTS -r 30"
# Optional: Global hardware acceleration settings for timelapse exports. (default: inherit)
hwaccel_args: auto
# Optional: Recording Preview Settings
preview:
# Optional: Quality of recording preview (default: shown below).
@@ -749,7 +749,7 @@ classification:
interval: None
# Optional: Restream configuration
# Uses https://github.com/AlexxIT/go2rtc (v1.9.13)
# Uses https://github.com/AlexxIT/go2rtc (v1.9.10)
# NOTE: The default go2rtc API port (1984) must be used,
# changing this port for the integrated go2rtc instance is not supported.
go2rtc:
@@ -835,11 +835,6 @@ cameras:
# Optional: camera specific output args (default: inherit)
# output_args:
# Optional: camera specific hwaccel args for timelapse export (default: inherit)
# record:
# export:
# hwaccel_args:
# Optional: timeout for highest scoring image before allowing it
# to be replaced by a newer image. (default: shown below)
best_image_timeout: 60

View File

@@ -7,7 +7,7 @@ title: Restream
Frigate can restream your video feed as an RTSP feed for other applications such as Home Assistant to utilize it at `rtsp://<frigate_host>:8554/<camera_name>`. Port 8554 must be open. [This allows you to use a video feed for detection in Frigate and Home Assistant live view at the same time without having to make two separate connections to the camera](#reduce-connections-to-camera). The video feed is copied from the original video feed directly to avoid re-encoding. This feed does not include any annotation by Frigate.
Frigate uses [go2rtc](https://github.com/AlexxIT/go2rtc/tree/v1.9.13) to provide its restream and MSE/WebRTC capabilities. The go2rtc config is hosted at the `go2rtc` in the config, see [go2rtc docs](https://github.com/AlexxIT/go2rtc/tree/v1.9.13#configuration) for more advanced configurations and features.
Frigate uses [go2rtc](https://github.com/AlexxIT/go2rtc/tree/v1.9.10) to provide its restream and MSE/WebRTC capabilities. The go2rtc config is hosted at the `go2rtc` in the config, see [go2rtc docs](https://github.com/AlexxIT/go2rtc/tree/v1.9.10#configuration) for more advanced configurations and features.
:::note
@@ -187,7 +187,7 @@ In this configuration:
## Advanced Restream Configurations
The [exec](https://github.com/AlexxIT/go2rtc/tree/v1.9.13#source-exec) source in go2rtc can be used for custom ffmpeg commands. An example is below:
The [exec](https://github.com/AlexxIT/go2rtc/tree/v1.9.10#source-exec) source in go2rtc can be used for custom ffmpeg commands. An example is below:
NOTE: The output will need to be passed with two curly braces `{{output}}`

View File

@@ -11,7 +11,7 @@ Use of the bundled go2rtc is optional. You can still configure FFmpeg to connect
## Setup a go2rtc stream
First, you will want to configure go2rtc to connect to your camera stream by adding the stream you want to use for live view in your Frigate config file. Avoid changing any other parts of your config at this step. Note that go2rtc supports [many different stream types](https://github.com/AlexxIT/go2rtc/tree/v1.9.13#module-streams), not just rtsp.
First, you will want to configure go2rtc to connect to your camera stream by adding the stream you want to use for live view in your Frigate config file. Avoid changing any other parts of your config at this step. Note that go2rtc supports [many different stream types](https://github.com/AlexxIT/go2rtc/tree/v1.9.10#module-streams), not just rtsp.
:::tip
@@ -47,8 +47,8 @@ After adding this to the config, restart Frigate and try to watch the live strea
- Check Video Codec:
- If the camera stream works in go2rtc but not in your browser, the video codec might be unsupported.
- If using H265, switch to H264. Refer to [video codec compatibility](https://github.com/AlexxIT/go2rtc/tree/v1.9.13#codecs-madness) in go2rtc documentation.
- If unable to switch from H265 to H264, or if the stream format is different (e.g., MJPEG), re-encode the video using [FFmpeg parameters](https://github.com/AlexxIT/go2rtc/tree/v1.9.13#source-ffmpeg). It supports rotating and resizing video feeds and hardware acceleration. Keep in mind that transcoding video from one format to another is a resource intensive task and you may be better off using the built-in jsmpeg view.
- If using H265, switch to H264. Refer to [video codec compatibility](https://github.com/AlexxIT/go2rtc/tree/v1.9.10#codecs-madness) in go2rtc documentation.
- If unable to switch from H265 to H264, or if the stream format is different (e.g., MJPEG), re-encode the video using [FFmpeg parameters](https://github.com/AlexxIT/go2rtc/tree/v1.9.10#source-ffmpeg). It supports rotating and resizing video feeds and hardware acceleration. Keep in mind that transcoding video from one format to another is a resource intensive task and you may be better off using the built-in jsmpeg view.
```yaml
go2rtc:
streams:

View File

@@ -38,3 +38,7 @@ This is a fork (with fixed errors and new features) of [original Double Take](ht
## [Periscope](https://github.com/maksz42/periscope)
[Periscope](https://github.com/maksz42/periscope) is a lightweight Android app that turns old devices into live viewers for Frigate. It works on Android 2.2 and above, including Android TV. It supports authentication and HTTPS.
## [Scrypted - Frigate bridge plugin](https://github.com/apocaliss92/scrypted-frigate-bridge)
[Scrypted - Frigate bridge](https://github.com/apocaliss92/scrypted-frigate-bridge) is an plugin that allows to ingest Frigate detections, motion, videoclips on Scrypted as well as provide templates to export rebroadcast configurations on Frigate.

View File

@@ -0,0 +1,60 @@
---
id: dummy-camera
title: Troubleshooting Detection
---
When investigating object detection or tracking problems, it can be helpful to replay an exported video as a temporary "dummy" camera. This lets you reproduce issues locally, iterate on configuration (detections, zones, enrichment settings), and capture logs and clips for analysis.
## When to use
- Replaying an exported clip to reproduce incorrect detections
- Testing configuration changes (model settings, trackers, filters) against a known clip
- Gathering deterministic logs and recordings for debugging or issue reports
## Example Config
Place the clip you want to replay in a location accessible to Frigate (for example `/media/frigate/` or the repository `debug/` folder when developing). Then add a temporary camera to your `config/config.yml` like this:
```yaml
cameras:
test:
ffmpeg:
inputs:
- path: /media/frigate/car-stopping.mp4
input_args: -re -stream_loop -1 -fflags +genpts
roles:
- detect
detect:
enabled: true
record:
enabled: false
snapshots:
enabled: false
```
- `-re -stream_loop -1` tells `ffmpeg` to play the file in realtime and loop indefinitely, which is useful for long debugging sessions.
- `-fflags +genpts` helps generate presentation timestamps when they are missing in the file.
## Steps
1. Export or copy the clip you want to replay to the Frigate host (e.g., `/media/frigate/` or `debug/clips/`).
2. Add the temporary camera to `config/config.yml` (example above). Use a unique name such as `test` or `replay_camera` so it's easy to remove later.
- If you're debugging a specific camera, copy the settings from that camera (frame rate, model/enrichment settings, zones, etc.) into the temporary camera so the replay closely matches the original environment. Leave `record` and `snapshots` disabled unless you are specifically debugging recording or snapshot behavior.
3. Restart Frigate.
4. Observe the Debug view in the UI and logs as the clip is replayed. Watch detections, zones, or any feature you're looking to debug, and note any errors in the logs to reproduce the issue.
5. Iterate on camera or enrichment settings (model, fps, zones, filters) and re-check the replay until the behavior is resolved.
6. Remove the temporary camera from your config after debugging to avoid spurious telemetry or recordings.
## Variables to consider in object tracking
- The exported video will not always line up exactly with how it originally ran through Frigate (or even with the last loop). Different frames may be used on replay, which can change detections and tracking.
- Motion detection depends on the frames used; small frame shifts can change motion regions and therefore what gets passed to the detector.
- Object detection is not deterministic: models and post-processing can yield different results across runs, so you may not get identical detections or track IDs every time.
When debugging, treat the replay as a close approximation rather than a byte-for-byte replay. Capture multiple runs, enable recording if helpful, and examine logs and saved event clips to understand variability.
## Troubleshooting
- No video: verify the path is correct and accessible from the Frigate process/container.
- FFmpeg errors: check the log output for ffmpeg-specific flags and adjust `input_args` accordingly for your file/container. You may also need to disable hardware acceleration (`hwaccel_args: ""`) for the dummy camera.
- No detections: confirm the camera `roles` include `detect`, and model/detector configuration is enabled.

View File

@@ -9,8 +9,20 @@ Frigate includes built-in memory profiling using [memray](https://bloomberg.gith
Memory profiling is controlled via the `FRIGATE_MEMRAY_MODULES` environment variable. Set it to a comma-separated list of module names you want to profile:
```yaml
# docker-compose example
services:
frigate:
...
environment:
- FRIGATE_MEMRAY_MODULES=frigate.embeddings,frigate.capture
```
```bash
export FRIGATE_MEMRAY_MODULES="frigate.review_segment_manager,frigate.capture"
# docker run example
docker run -e FRIGATE_MEMRAY_MODULES="frigate.embeddings" \
...
--name frigate <frigate_image>
```
### Module Names
@@ -24,11 +36,12 @@ Frigate processes are named using a module-based naming scheme. Common module na
- `frigate.output` - Output processing
- `frigate.audio_manager` - Audio processing
- `frigate.embeddings` - Embeddings processing
- `frigate.embeddings_manager` - Embeddings manager
You can also specify the full process name (including camera-specific identifiers) if you want to profile a specific camera:
```bash
export FRIGATE_MEMRAY_MODULES="frigate.capture:front_door"
FRIGATE_MEMRAY_MODULES=frigate.capture:front_door
```
When you specify a module name (e.g., `frigate.capture`), all processes with that module prefix will be profiled. For example, `frigate.capture` will profile all camera capture processes.
@@ -55,11 +68,20 @@ After a process exits normally, you'll find HTML reports in `/config/memray_repo
If a process crashes or you want to generate a report from an existing binary file, you can manually create the HTML report:
- Run `memray` inside the Frigate container:
```bash
memray flamegraph /config/memray_reports/<module_name>.bin
docker-compose exec frigate memray flamegraph /config/memray_reports/<module_name>.bin
# or
docker exec -it <container_name_or_id> memray flamegraph /config/memray_reports/<module_name>.bin
```
This will generate an HTML file that you can open in your browser.
- You can also copy the `.bin` file to the host and run `memray` locally if you have it installed:
```bash
docker cp <container_name_or_id>:/config/memray_reports/<module_name>.bin /tmp/
memray flamegraph /tmp/<module_name>.bin
```
## Understanding the Reports
@@ -110,20 +132,4 @@ The interactive HTML reports allow you to:
- Check that memray is properly installed (included by default in Frigate)
- Verify the process actually started and ran (check process logs)
## Example Usage
```bash
# Enable profiling for review and capture modules
export FRIGATE_MEMRAY_MODULES="frigate.review_segment_manager,frigate.capture"
# Start Frigate
# ... let it run for a while ...
# Check for reports
ls -lh /config/memray_reports/
# If a process crashed, manually generate report
memray flamegraph /config/memray_reports/frigate_capture_front_door.bin
```
For more information about memray and interpreting reports, see the [official memray documentation](https://bloomberg.github.io/memray/).

View File

@@ -28,7 +28,7 @@ const sidebars: SidebarsConfig = {
{
type: "link",
label: "Go2RTC Configuration Reference",
href: "https://github.com/AlexxIT/go2rtc/tree/v1.9.13#configuration",
href: "https://github.com/AlexxIT/go2rtc/tree/v1.9.10#configuration",
} as PropSidebarItemLink,
],
Detectors: [
@@ -132,6 +132,7 @@ const sidebars: SidebarsConfig = {
"troubleshooting/gpu",
"troubleshooting/edgetpu",
"troubleshooting/memory",
"troubleshooting/dummy-camera",
],
Development: [
"development/contributing",

View File

@@ -17,20 +17,25 @@ paths:
summary: Authenticate request
description: |-
Authenticates the current request based on proxy headers or JWT token.
Returns user role and permissions for camera access.
This endpoint verifies authentication credentials and manages JWT token refresh.
On success, no JSON body is returned; authentication state is communicated via response headers and cookies.
operationId: auth_auth_get
responses:
"200":
description: Successful Response
content:
application/json:
schema: {}
"202":
description: Authentication Accepted
content:
application/json:
schema: {}
description: Authentication Accepted (no response body, different headers depending on auth method)
headers:
remote-user:
description: Authenticated username or "viewer" in proxy-only mode
schema:
type: string
remote-role:
description: Resolved role (e.g., admin, viewer, or custom)
schema:
type: string
Set-Cookie:
description: May include refreshed JWT cookie ("frigate-token") when applicable
schema:
type: string
"401":
description: Authentication Failed
/profile:
@@ -326,59 +331,6 @@ paths:
application/json:
schema:
$ref: "#/components/schemas/HTTPValidationError"
/media/sync:
post:
tags:
- App
summary: Start media sync job
description: |-
Start an asynchronous media sync job to find and (optionally) remove orphaned media files.
Returns 202 with job details when queued, or 409 if a job is already running.
operationId: sync_media_media_sync_post
requestBody:
required: true
content:
application/json:
responses:
"202":
description: Accepted - Job queued
"409":
description: Conflict - Job already running
"422":
description: Validation Error
/media/sync/current:
get:
tags:
- App
summary: Get current media sync job
description: |-
Retrieve the current running media sync job, if any. Returns the job details or null when no job is active.
operationId: get_media_sync_current_media_sync_current_get
responses:
"200":
description: Successful Response
"422":
description: Validation Error
/media/sync/status/{job_id}:
get:
tags:
- App
summary: Get media sync job status
description: |-
Get status and results for the specified media sync job id. Returns 200 with job details including results, or 404 if the job is not found.
operationId: get_media_sync_status_media_sync_status__job_id__get
parameters:
- name: job_id
in: path
responses:
"200":
description: Successful Response
"404":
description: Not Found - Job not found
"422":
description: Validation Error
/faces/train/{name}/classify:
post:
tags:
@@ -664,6 +616,32 @@ paths:
application/json:
schema:
$ref: "#/components/schemas/HTTPValidationError"
/classification/attributes:
get:
tags:
- Classification
summary: Get custom classification attributes
description: |-
Returns custom classification attributes for a given object type.
Only includes models with classification_type set to 'attribute'.
By default returns a flat sorted list of all attribute labels.
If group_by_model is true, returns attributes grouped by model name.
operationId: get_custom_attributes_classification_attributes_get
parameters:
- name: object_type
in: query
schema:
type: string
- name: group_by_model
in: query
schema:
type: boolean
default: false
responses:
"200":
description: Successful Response
"422":
description: Validation Error
/classification/{name}/dataset:
get:
tags:
@@ -2960,6 +2938,42 @@ paths:
application/json:
schema:
$ref: "#/components/schemas/HTTPValidationError"
/events/{event_id}/attributes:
post:
tags:
- Events
summary: Set custom classification attributes
description: |-
Sets an event's custom classification attributes for all attribute-type
models that apply to the event's object type.
Returns a success message or an error if the event is not found.
operationId: set_attributes_events__event_id__attributes_post
parameters:
- name: event_id
in: path
required: true
schema:
type: string
title: Event Id
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/EventsAttributesBody"
responses:
"200":
description: Successful Response
content:
application/json:
schema:
$ref: "#/components/schemas/GenericResponse"
"422":
description: Validation Error
content:
application/json:
schema:
$ref: "#/components/schemas/HTTPValidationError"
/events/{event_id}/description:
post:
tags:
@@ -5007,6 +5021,18 @@ components:
required:
- subLabel
title: EventsSubLabelBody
EventsAttributesBody:
properties:
attributes:
type: object
title: Attributes
description: Object with model names as keys and attribute values
additionalProperties:
type: string
type: object
required:
- attributes
title: EventsAttributesBody
ExportModel:
properties:
id:

View File

@@ -25,22 +25,15 @@ from pydantic import ValidationError
from frigate.api.auth import allow_any_authenticated, allow_public, require_role
from frigate.api.defs.query.app_query_parameters import AppTimelineHourlyQueryParameters
from frigate.api.defs.request.app_body import AppConfigSetBody, MediaSyncBody
from frigate.api.defs.request.app_body import AppConfigSetBody
from frigate.api.defs.tags import Tags
from frigate.config import FrigateConfig
from frigate.config.camera.updater import (
CameraConfigUpdateEnum,
CameraConfigUpdateTopic,
)
from frigate.ffmpeg_presets import FFMPEG_HWACCEL_VAAPI, _gpu_selector
from frigate.jobs.media_sync import (
get_current_media_sync_job,
get_media_sync_job_by_id,
start_media_sync_job,
)
from frigate.models import Event, Timeline
from frigate.stats.prometheus import get_metrics, update_metrics
from frigate.types import JobStatusTypesEnum
from frigate.util.builtin import (
clean_camera_user_pass,
flatten_config_data,
@@ -465,15 +458,7 @@ def config_set(request: Request, body: AppConfigSetBody):
@router.get("/vainfo", dependencies=[Depends(allow_any_authenticated())])
def vainfo():
# Use LibvaGpuSelector to pick an appropriate libva device (if available)
selected_gpu = ""
try:
selected_gpu = _gpu_selector.get_gpu_arg(FFMPEG_HWACCEL_VAAPI, 0) or ""
except Exception:
selected_gpu = ""
# If selected_gpu is empty, pass None to vainfo_hwaccel to run plain `vainfo`.
vainfo = vainfo_hwaccel(device_name=selected_gpu or None)
vainfo = vainfo_hwaccel()
return JSONResponse(
content={
"return_code": vainfo.returncode,
@@ -608,98 +593,6 @@ def restart():
)
@router.post(
"/media/sync",
dependencies=[Depends(require_role(["admin"]))],
summary="Start media sync job",
description="""Start an asynchronous media sync job to find and (optionally) remove orphaned media files.
Returns 202 with job details when queued, or 409 if a job is already running.""",
)
def sync_media(body: MediaSyncBody = Body(...)):
"""Start async media sync job - remove orphaned files.
Syncs specified media types: event snapshots, event thumbnails, review thumbnails,
previews, exports, and/or recordings. Job runs in background; use /media/sync/current
or /media/sync/status/{job_id} to check status.
Args:
body: MediaSyncBody with dry_run flag and media_types list.
media_types can include: 'all', 'event_snapshots', 'event_thumbnails',
'review_thumbnails', 'previews', 'exports', 'recordings'
Returns:
202 Accepted with job_id, or 409 Conflict if job already running.
"""
job_id = start_media_sync_job(
dry_run=body.dry_run, media_types=body.media_types, force=body.force
)
if job_id is None:
# A job is already running
current = get_current_media_sync_job()
return JSONResponse(
content={
"error": "A media sync job is already running",
"current_job_id": current.id if current else None,
},
status_code=409,
)
return JSONResponse(
content={
"job": {
"job_type": "media_sync",
"status": JobStatusTypesEnum.queued,
"id": job_id,
}
},
status_code=202,
)
@router.get(
"/media/sync/current",
dependencies=[Depends(require_role(["admin"]))],
summary="Get current media sync job",
description="""Retrieve the current running media sync job, if any. Returns the job details
or null when no job is active.""",
)
def get_media_sync_current():
"""Get the current running media sync job, if any."""
job = get_current_media_sync_job()
if job is None:
return JSONResponse(content={"job": None}, status_code=200)
return JSONResponse(
content={"job": job.to_dict()},
status_code=200,
)
@router.get(
"/media/sync/status/{job_id}",
dependencies=[Depends(require_role(["admin"]))],
summary="Get media sync job status",
description="""Get status and results for the specified media sync job id. Returns 200 with
job details including results, or 404 if the job is not found.""",
)
def get_media_sync_status(job_id: str):
"""Get the status of a specific media sync job."""
job = get_media_sync_job_by_id(job_id)
if job is None:
return JSONResponse(
content={"error": "Job not found"},
status_code=404,
)
return JSONResponse(
content={"job": job.to_dict()},
status_code=200,
)
@router.get("/labels", dependencies=[Depends(allow_any_authenticated())])
def get_labels(camera: str = ""):
try:

View File

@@ -143,17 +143,6 @@ def require_admin_by_default():
return admin_checker
def _is_authenticated(request: Request) -> bool:
"""
Helper to determine if a request is from an authenticated user.
Returns True if the request has a valid authenticated user (not anonymous).
Port 5000 internal requests are considered anonymous despite having admin role.
"""
username = request.headers.get("remote-user")
return username is not None and username != "anonymous"
def allow_public():
"""
Override dependency to allow unauthenticated access to an endpoint.
@@ -173,27 +162,24 @@ def allow_public():
def allow_any_authenticated():
"""
Override dependency to allow any authenticated user (bypass admin requirement).
Override dependency to allow any request that passed through the /auth endpoint.
Allows:
- Port 5000 internal requests (have admin role despite anonymous user)
- Any authenticated user with a real username (not "anonymous")
- Port 5000 internal requests (remote-user: "anonymous", remote-role: "admin")
- Authenticated users with JWT tokens (remote-user: username)
- Unauthenticated requests when auth is disabled (remote-user: "viewer")
Rejects:
- Port 8971 requests with anonymous user (auth disabled, no proxy auth)
- Requests with no remote-user header (did not pass through /auth endpoint)
Example:
@router.get("/authenticated-endpoint", dependencies=[Depends(allow_any_authenticated())])
"""
async def auth_checker(request: Request):
# Port 5000 requests have admin role and should be allowed
role = request.headers.get("remote-role")
if role == "admin":
return
# Otherwise require a real authenticated user (not anonymous)
if not _is_authenticated(request):
# Ensure a remote-user has been set by the /auth endpoint
username = request.headers.get("remote-user")
if username is None:
raise HTTPException(status_code=401, detail="Authentication required")
return
@@ -553,7 +539,32 @@ def resolve_role(
"/auth",
dependencies=[Depends(allow_public())],
summary="Authenticate request",
description="Authenticates the current request based on proxy headers or JWT token. Returns user role and permissions for camera access.",
description=(
"Authenticates the current request based on proxy headers or JWT token. "
"This endpoint verifies authentication credentials and manages JWT token refresh. "
"On success, no JSON body is returned; authentication state is communicated via response headers and cookies."
),
status_code=202,
responses={
202: {
"description": "Authentication Accepted (no response body)",
"headers": {
"remote-user": {
"description": 'Authenticated username or "viewer" in proxy-only mode',
"schema": {"type": "string"},
},
"remote-role": {
"description": "Resolved role (e.g., admin, viewer, or custom)",
"schema": {"type": "string"},
},
"Set-Cookie": {
"description": "May include refreshed JWT cookie when applicable",
"schema": {"type": "string"},
},
},
},
401: {"description": "Authentication Failed"},
},
)
def auth(request: Request):
auth_config: AuthConfig = request.app.frigate_config.auth
@@ -581,12 +592,12 @@ def auth(request: Request):
# if auth is disabled, just apply the proxy header map and return success
if not auth_config.enabled:
# pass the user header value from the upstream proxy if a mapping is specified
# or use anonymous if none are specified
# or use viewer if none are specified
user_header = proxy_config.header_map.user
success_response.headers["remote-user"] = (
request.headers.get(user_header, default="anonymous")
request.headers.get(user_header, default="viewer")
if user_header
else "anonymous"
else "viewer"
)
# parse header and resolve a valid role
@@ -698,10 +709,10 @@ def auth(request: Request):
"/profile",
dependencies=[Depends(allow_any_authenticated())],
summary="Get user profile",
description="Returns the current authenticated user's profile including username, role, and allowed cameras.",
description="Returns the current authenticated user's profile including username, role, and allowed cameras. This endpoint requires authentication and returns information about the user's permissions.",
)
def profile(request: Request):
username = request.headers.get("remote-user", "anonymous")
username = request.headers.get("remote-user", "viewer")
role = request.headers.get("remote-role", "viewer")
all_camera_names = set(request.app.frigate_config.cameras.keys())
@@ -717,7 +728,7 @@ def profile(request: Request):
"/logout",
dependencies=[Depends(allow_public())],
summary="Logout user",
description="Logs out the current user by clearing the session cookie.",
description="Logs out the current user by clearing the session cookie. After logout, subsequent requests will require re-authentication.",
)
def logout(request: Request):
auth_config: AuthConfig = request.app.frigate_config.auth
@@ -733,7 +744,7 @@ limiter = Limiter(key_func=get_remote_addr)
"/login",
dependencies=[Depends(allow_public())],
summary="Login with credentials",
description="Authenticates a user with username and password. Returns a JWT token as a secure HTTP-only cookie that can be used for subsequent API requests. The token can also be retrieved and used as a Bearer token in the Authorization header.",
description='Authenticates a user with username and password. Returns a JWT token as a secure HTTP-only cookie that can be used for subsequent API requests. The JWT token can also be retrieved from the response and used as a Bearer token in the Authorization header.\n\nExample using Bearer token:\n```\ncurl -H "Authorization: Bearer <token_value>" https://frigate_ip:8971/api/profile\n```',
)
@limiter.limit(limit_value=rateLimiter.get_limit)
def login(request: Request, body: AppPostLoginBody):
@@ -776,7 +787,7 @@ def login(request: Request, body: AppPostLoginBody):
"/users",
dependencies=[Depends(require_role(["admin"]))],
summary="Get all users",
description="Returns a list of all users with their usernames and roles. Requires admin role.",
description="Returns a list of all users with their usernames and roles. Requires admin role. Each user object contains the username and assigned role.",
)
def get_users():
exports = (
@@ -789,7 +800,7 @@ def get_users():
"/users",
dependencies=[Depends(require_role(["admin"]))],
summary="Create new user",
description="Creates a new user with the specified username, password, and role. Requires admin role. Password must meet strength requirements.",
description='Creates a new user with the specified username, password, and role. Requires admin role. Password must meet strength requirements: minimum 8 characters, at least one uppercase letter, at least one digit, and at least one special character (!@#$%^&*(),.?":{} |<>).',
)
def create_user(
request: Request,
@@ -823,7 +834,7 @@ def create_user(
"/users/{username}",
dependencies=[Depends(require_role(["admin"]))],
summary="Delete user",
description="Deletes a user by username. The built-in admin user cannot be deleted. Requires admin role.",
description="Deletes a user by username. The built-in admin user cannot be deleted. Requires admin role. Returns success message or error if user not found.",
)
def delete_user(request: Request, username: str):
# Prevent deletion of the built-in admin user
@@ -840,7 +851,7 @@ def delete_user(request: Request, username: str):
"/users/{username}/password",
dependencies=[Depends(allow_any_authenticated())],
summary="Update user password",
description="Updates a user's password. Users can only change their own password unless they have admin role. Requires the current password to verify identity. Password must meet strength requirements (minimum 8 characters, uppercase letter, digit, and special character).",
description="Updates a user's password. Users can only change their own password unless they have admin role. Requires the current password to verify identity for non-admin users. Password must meet strength requirements: minimum 8 characters, at least one uppercase letter, at least one digit, and at least one special character (!@#$%^&*(),.?\":{} |<>). If user changes their own password, a new JWT cookie is automatically issued.",
)
async def update_password(
request: Request,
@@ -868,13 +879,9 @@ async def update_password(
except DoesNotExist:
return JSONResponse(content={"message": "User not found"}, status_code=404)
# Require old_password when:
# 1. Non-admin user is changing another user's password (admin only action)
# 2. Any user is changing their own password
is_changing_own_password = current_username == username
is_non_admin = current_role != "admin"
if is_changing_own_password or is_non_admin:
# Require old_password when non-admin user is changing any password
# Admin users changing passwords do NOT need to provide the current password
if current_role != "admin":
if not body.old_password:
return JSONResponse(
content={"message": "Current password is required"},
@@ -926,7 +933,7 @@ async def update_password(
"/users/{username}/role",
dependencies=[Depends(require_role(["admin"]))],
summary="Update user role",
description="Updates a user's role. The built-in admin user's role cannot be modified. Requires admin role.",
description="Updates a user's role. The built-in admin user's role cannot be modified. Requires admin role. Valid roles are defined in the configuration.",
)
async def update_role(
request: Request,

View File

@@ -31,6 +31,7 @@ from frigate.api.defs.response.generic_response import GenericResponse
from frigate.api.defs.tags import Tags
from frigate.config import FrigateConfig
from frigate.config.camera import DetectConfig
from frigate.config.classification import ObjectClassificationType
from frigate.const import CLIPS_DIR, FACE_DIR, MODEL_CACHE_DIR
from frigate.embeddings import EmbeddingsContext
from frigate.models import Event
@@ -39,6 +40,7 @@ from frigate.util.classification import (
collect_state_classification_examples,
get_dataset_image_count,
read_training_metadata,
write_training_metadata,
)
from frigate.util.file import get_event_snapshot
@@ -622,6 +624,59 @@ def get_classification_dataset(name: str):
)
@router.get(
"/classification/attributes",
summary="Get custom classification attributes",
description="""Returns custom classification attributes for a given object type.
Only includes models with classification_type set to 'attribute'.
By default returns a flat sorted list of all attribute labels.
If group_by_model is true, returns attributes grouped by model name.""",
)
def get_custom_attributes(
request: Request, object_type: str = None, group_by_model: bool = False
):
models_with_attributes = {}
for (
model_key,
model_config,
) in request.app.frigate_config.classification.custom.items():
if (
not model_config.enabled
or not model_config.object_config
or model_config.object_config.classification_type
!= ObjectClassificationType.attribute
):
continue
model_objects = getattr(model_config.object_config, "objects", []) or []
if object_type is not None and object_type not in model_objects:
continue
dataset_dir = os.path.join(CLIPS_DIR, sanitize_filename(model_key), "dataset")
if not os.path.exists(dataset_dir):
continue
attributes = []
for category_name in os.listdir(dataset_dir):
category_dir = os.path.join(dataset_dir, category_name)
if os.path.isdir(category_dir) and category_name != "none":
attributes.append(category_name)
if attributes:
model_name = model_config.name or model_key
models_with_attributes[model_name] = sorted(attributes)
if group_by_model:
return JSONResponse(content=models_with_attributes)
else:
# Flatten to a unique sorted list
all_attributes = set()
for attributes in models_with_attributes.values():
all_attributes.update(attributes)
return JSONResponse(content=sorted(list(all_attributes)))
@router.get(
"/classification/{name}/train",
summary="Get classification train images",
@@ -788,6 +843,12 @@ def rename_classification_category(
try:
os.rename(old_folder, new_folder)
# Mark dataset as ready to train by resetting training metadata
# This ensures the dataset is marked as changed after renaming
sanitized_name = sanitize_filename(name)
write_training_metadata(sanitized_name, 0)
return JSONResponse(
content=(
{

View File

@@ -12,6 +12,7 @@ class EventsQueryParams(BaseModel):
labels: Optional[str] = "all"
sub_label: Optional[str] = "all"
sub_labels: Optional[str] = "all"
attributes: Optional[str] = "all"
zone: Optional[str] = "all"
zones: Optional[str] = "all"
limit: Optional[int] = 100
@@ -58,6 +59,8 @@ class EventsSearchQueryParams(BaseModel):
limit: Optional[int] = 50
cameras: Optional[str] = "all"
labels: Optional[str] = "all"
sub_labels: Optional[str] = "all"
attributes: Optional[str] = "all"
zones: Optional[str] = "all"
after: Optional[float] = None
before: Optional[float] = None

View File

@@ -1,7 +1,8 @@
from enum import Enum
from typing import Optional
from typing import Optional, Union
from pydantic import BaseModel
from pydantic.json_schema import SkipJsonSchema
class Extension(str, Enum):
@@ -47,3 +48,15 @@ class MediaMjpegFeedQueryParams(BaseModel):
mask: Optional[int] = None
motion: Optional[int] = None
regions: Optional[int] = None
class MediaRecordingsSummaryQueryParams(BaseModel):
timezone: str = "utc"
cameras: Optional[str] = "all"
class MediaRecordingsAvailabilityQueryParams(BaseModel):
cameras: str = "all"
before: Union[float, SkipJsonSchema[None]] = None
after: Union[float, SkipJsonSchema[None]] = None
scale: int = 30

View File

@@ -1,21 +0,0 @@
from typing import Optional, Union
from pydantic import BaseModel
from pydantic.json_schema import SkipJsonSchema
class MediaRecordingsSummaryQueryParams(BaseModel):
timezone: str = "utc"
cameras: Optional[str] = "all"
class MediaRecordingsAvailabilityQueryParams(BaseModel):
cameras: str = "all"
before: Union[float, SkipJsonSchema[None]] = None
after: Union[float, SkipJsonSchema[None]] = None
scale: int = 30
class RecordingsDeleteQueryParams(BaseModel):
keep: Optional[str] = None
cameras: Optional[str] = "all"

View File

@@ -1,6 +1,6 @@
from typing import Any, Dict, List, Optional
from typing import Any, Dict, Optional
from pydantic import BaseModel, Field
from pydantic import BaseModel
class AppConfigSetBody(BaseModel):
@@ -27,16 +27,3 @@ class AppPostLoginBody(BaseModel):
class AppPutRoleBody(BaseModel):
role: str
class MediaSyncBody(BaseModel):
dry_run: bool = Field(
default=True, description="If True, only report orphans without deleting them"
)
media_types: List[str] = Field(
default=["all"],
description="Types of media to sync: 'all', 'event_snapshots', 'event_thumbnails', 'review_thumbnails', 'previews', 'exports', 'recordings'",
)
force: bool = Field(
default=False, description="If True, bypass safety threshold checks"
)

View File

@@ -24,6 +24,13 @@ class EventsLPRBody(BaseModel):
)
class EventsAttributesBody(BaseModel):
attributes: List[str] = Field(
title="Selected classification attributes for the event",
default_factory=list,
)
class EventsDescriptionBody(BaseModel):
description: Union[str, None] = Field(title="The description of the event")

View File

@@ -1,35 +0,0 @@
from typing import Optional
from pydantic import BaseModel, Field
class ExportCaseCreateBody(BaseModel):
"""Request body for creating a new export case."""
name: str = Field(max_length=100, description="Friendly name of the export case")
description: Optional[str] = Field(
default=None, description="Optional description of the export case"
)
class ExportCaseUpdateBody(BaseModel):
"""Request body for updating an existing export case."""
name: Optional[str] = Field(
default=None,
max_length=100,
description="Updated friendly name of the export case",
)
description: Optional[str] = Field(
default=None, description="Updated description of the export case"
)
class ExportCaseAssignBody(BaseModel):
"""Request body for assigning or unassigning an export to a case."""
export_case_id: Optional[str] = Field(
default=None,
max_length=30,
description="Case ID to assign to the export, or null to unassign",
)

View File

@@ -1,4 +1,4 @@
from typing import Optional, Union
from typing import Union
from pydantic import BaseModel, Field
from pydantic.json_schema import SkipJsonSchema
@@ -18,9 +18,3 @@ class ExportRecordingsBody(BaseModel):
)
name: str = Field(title="Friendly name", default=None, max_length=256)
image_path: Union[str, SkipJsonSchema[None]] = None
export_case_id: Optional[str] = Field(
default=None,
title="Export case ID",
max_length=30,
description="ID of the export case to assign this export to",
)

View File

@@ -1,22 +0,0 @@
from typing import List, Optional
from pydantic import BaseModel, Field
class ExportCaseModel(BaseModel):
"""Model representing a single export case."""
id: str = Field(description="Unique identifier for the export case")
name: str = Field(description="Friendly name of the export case")
description: Optional[str] = Field(
default=None, description="Optional description of the export case"
)
created_at: float = Field(
description="Unix timestamp when the export case was created"
)
updated_at: float = Field(
description="Unix timestamp when the export case was last updated"
)
ExportCasesResponse = List[ExportCaseModel]

View File

@@ -15,9 +15,6 @@ class ExportModel(BaseModel):
in_progress: bool = Field(
description="Whether the export is currently being processed"
)
export_case_id: Optional[str] = Field(
default=None, description="ID of the export case this export belongs to"
)
class StartExportResponse(BaseModel):

View File

@@ -3,14 +3,13 @@ from enum import Enum
class Tags(Enum):
app = "App"
auth = "Auth"
camera = "Camera"
events = "Events"
export = "Export"
classification = "Classification"
preview = "Preview"
logs = "Logs"
media = "Media"
notifications = "Notifications"
preview = "Preview"
recordings = "Recordings"
review = "Review"
export = "Export"
events = "Events"
classification = "Classification"
auth = "Auth"

View File

@@ -37,6 +37,7 @@ from frigate.api.defs.query.regenerate_query_parameters import (
RegenerateQueryParameters,
)
from frigate.api.defs.request.events_body import (
EventsAttributesBody,
EventsCreateBody,
EventsDeleteBody,
EventsDescriptionBody,
@@ -55,6 +56,7 @@ from frigate.api.defs.response.event_response import (
from frigate.api.defs.response.generic_response import GenericResponse
from frigate.api.defs.tags import Tags
from frigate.comms.event_metadata_updater import EventMetadataTypeEnum
from frigate.config.classification import ObjectClassificationType
from frigate.const import CLIPS_DIR, TRIGGER_DIR
from frigate.embeddings import EmbeddingsContext
from frigate.models import Event, ReviewSegment, Timeline, Trigger
@@ -99,6 +101,8 @@ def events(
if sub_labels == "all" and sub_label != "all":
sub_labels = sub_label
attributes = unquote(params.attributes)
zone = params.zone
zones = params.zones
@@ -187,6 +191,17 @@ def events(
sub_label_clause = reduce(operator.or_, sub_label_clauses)
clauses.append((sub_label_clause))
if attributes != "all":
# Custom classification results are stored as data[model_name] = result_value
filtered_attributes = attributes.split(",")
attribute_clauses = []
for attr in filtered_attributes:
attribute_clauses.append(Event.data.cast("text") % f'*:"{attr}"*')
attribute_clause = reduce(operator.or_, attribute_clauses)
clauses.append(attribute_clause)
if recognized_license_plate != "all":
filtered_recognized_license_plates = recognized_license_plate.split(",")
@@ -492,6 +507,8 @@ def events_search(
# Filters
cameras = params.cameras
labels = params.labels
sub_labels = params.sub_labels
attributes = params.attributes
zones = params.zones
after = params.after
before = params.before
@@ -566,6 +583,38 @@ def events_search(
if labels != "all":
event_filters.append((Event.label << labels.split(",")))
if sub_labels != "all":
# use matching so joined sub labels are included
# for example a sub label 'bob' would get events
# with sub labels 'bob' and 'bob, john'
sub_label_clauses = []
filtered_sub_labels = sub_labels.split(",")
if "None" in filtered_sub_labels:
filtered_sub_labels.remove("None")
sub_label_clauses.append((Event.sub_label.is_null()))
for label in filtered_sub_labels:
sub_label_clauses.append(
(Event.sub_label.cast("text") == label)
) # include exact matches
# include this label when part of a list
sub_label_clauses.append((Event.sub_label.cast("text") % f"*{label},*"))
sub_label_clauses.append((Event.sub_label.cast("text") % f"*, {label}*"))
event_filters.append((reduce(operator.or_, sub_label_clauses)))
if attributes != "all":
# Custom classification results are stored as data[model_name] = result_value
filtered_attributes = attributes.split(",")
attribute_clauses = []
for attr in filtered_attributes:
attribute_clauses.append(Event.data.cast("text") % f'*:"{attr}"*')
event_filters.append(reduce(operator.or_, attribute_clauses))
if zones != "all":
zone_clauses = []
filtered_zones = zones.split(",")
@@ -1351,6 +1400,107 @@ async def set_plate(
)
@router.post(
"/events/{event_id}/attributes",
response_model=GenericResponse,
dependencies=[Depends(require_role(["admin"]))],
summary="Set custom classification attributes",
description=(
"Sets an event's custom classification attributes for all attribute-type "
"models that apply to the event's object type."
),
)
async def set_attributes(
request: Request,
event_id: str,
body: EventsAttributesBody,
):
try:
event: Event = Event.get(Event.id == event_id)
await require_camera_access(event.camera, request=request)
except DoesNotExist:
return JSONResponse(
content=({"success": False, "message": f"Event {event_id} not found."}),
status_code=404,
)
object_type = event.label
selected_attributes = set(body.attributes or [])
applied_updates: list[dict[str, str | float | None]] = []
for (
model_key,
model_config,
) in request.app.frigate_config.classification.custom.items():
# Only apply to enabled attribute classifiers that target this object type
if (
not model_config.enabled
or not model_config.object_config
or model_config.object_config.classification_type
!= ObjectClassificationType.attribute
or object_type not in (model_config.object_config.objects or [])
):
continue
# Get available labels from dataset directory
dataset_dir = os.path.join(CLIPS_DIR, sanitize_filename(model_key), "dataset")
available_labels = set()
if os.path.exists(dataset_dir):
for category_name in os.listdir(dataset_dir):
category_dir = os.path.join(dataset_dir, category_name)
if os.path.isdir(category_dir):
available_labels.add(category_name)
if not available_labels:
logger.warning(
"No dataset found for custom attribute model %s at %s",
model_key,
dataset_dir,
)
continue
# Find all selected attributes that apply to this model
model_name = model_config.name or model_key
matching_attrs = selected_attributes & available_labels
if matching_attrs:
# Publish updates for each selected attribute
for attr in matching_attrs:
request.app.event_metadata_updater.publish(
(event_id, model_name, attr, 1.0),
EventMetadataTypeEnum.attribute.value,
)
applied_updates.append(
{"model": model_name, "label": attr, "score": 1.0}
)
else:
# Clear this model's attribute
request.app.event_metadata_updater.publish(
(event_id, model_name, None, None),
EventMetadataTypeEnum.attribute.value,
)
applied_updates.append({"model": model_name, "label": None, "score": None})
if len(applied_updates) == 0:
return JSONResponse(
content={
"success": False,
"message": "No matching attributes found for this object type.",
},
status_code=400,
)
return JSONResponse(
content={
"success": True,
"message": f"Updated {len(applied_updates)} attribute(s)",
"applied": applied_updates,
},
status_code=200,
)
@router.post(
"/events/{event_id}/description",
response_model=GenericResponse,

View File

@@ -4,10 +4,10 @@ import logging
import random
import string
from pathlib import Path
from typing import List, Optional
from typing import List
import psutil
from fastapi import APIRouter, Depends, Query, Request
from fastapi import APIRouter, Depends, Request
from fastapi.responses import JSONResponse
from pathvalidate import sanitize_filepath
from peewee import DoesNotExist
@@ -19,17 +19,8 @@ from frigate.api.auth import (
require_camera_access,
require_role,
)
from frigate.api.defs.request.export_case_body import (
ExportCaseAssignBody,
ExportCaseCreateBody,
ExportCaseUpdateBody,
)
from frigate.api.defs.request.export_recordings_body import ExportRecordingsBody
from frigate.api.defs.request.export_rename_body import ExportRenameBody
from frigate.api.defs.response.export_case_response import (
ExportCaseModel,
ExportCasesResponse,
)
from frigate.api.defs.response.export_response import (
ExportModel,
ExportsResponse,
@@ -38,7 +29,7 @@ from frigate.api.defs.response.export_response import (
from frigate.api.defs.response.generic_response import GenericResponse
from frigate.api.defs.tags import Tags
from frigate.const import CLIPS_DIR, EXPORT_DIR
from frigate.models import Export, ExportCase, Previews, Recordings
from frigate.models import Export, Previews, Recordings
from frigate.record.export import (
PlaybackFactorEnum,
PlaybackSourceEnum,
@@ -61,182 +52,17 @@ router = APIRouter(tags=[Tags.export])
)
def get_exports(
allowed_cameras: List[str] = Depends(get_allowed_cameras_for_filter),
export_case_id: Optional[str] = None,
cameras: Optional[str] = Query(default="all"),
start_date: Optional[float] = None,
end_date: Optional[float] = None,
):
query = Export.select().where(Export.camera << allowed_cameras)
if export_case_id is not None:
if export_case_id == "unassigned":
query = query.where(Export.export_case.is_null(True))
else:
query = query.where(Export.export_case == export_case_id)
if cameras and cameras != "all":
requested = set(cameras.split(","))
filtered_cameras = list(requested.intersection(allowed_cameras))
if not filtered_cameras:
return JSONResponse(content=[])
query = query.where(Export.camera << filtered_cameras)
if start_date is not None:
query = query.where(Export.date >= start_date)
if end_date is not None:
query = query.where(Export.date <= end_date)
exports = query.order_by(Export.date.desc()).dicts().iterator()
exports = (
Export.select()
.where(Export.camera << allowed_cameras)
.order_by(Export.date.desc())
.dicts()
.iterator()
)
return JSONResponse(content=[e for e in exports])
@router.get(
"/cases",
response_model=ExportCasesResponse,
dependencies=[Depends(allow_any_authenticated())],
summary="Get export cases",
description="Gets all export cases from the database.",
)
def get_export_cases():
cases = (
ExportCase.select().order_by(ExportCase.created_at.desc()).dicts().iterator()
)
return JSONResponse(content=[c for c in cases])
@router.post(
"/cases",
response_model=ExportCaseModel,
dependencies=[Depends(require_role(["admin"]))],
summary="Create export case",
description="Creates a new export case.",
)
def create_export_case(body: ExportCaseCreateBody):
case = ExportCase.create(
id="".join(random.choices(string.ascii_lowercase + string.digits, k=12)),
name=body.name,
description=body.description,
created_at=Path().stat().st_mtime,
updated_at=Path().stat().st_mtime,
)
return JSONResponse(content=model_to_dict(case))
@router.get(
"/cases/{case_id}",
response_model=ExportCaseModel,
dependencies=[Depends(allow_any_authenticated())],
summary="Get a single export case",
description="Gets a specific export case by ID.",
)
def get_export_case(case_id: str):
try:
case = ExportCase.get(ExportCase.id == case_id)
return JSONResponse(content=model_to_dict(case))
except DoesNotExist:
return JSONResponse(
content={"success": False, "message": "Export case not found"},
status_code=404,
)
@router.patch(
"/cases/{case_id}",
response_model=GenericResponse,
dependencies=[Depends(require_role(["admin"]))],
summary="Update export case",
description="Updates an existing export case.",
)
def update_export_case(case_id: str, body: ExportCaseUpdateBody):
try:
case = ExportCase.get(ExportCase.id == case_id)
except DoesNotExist:
return JSONResponse(
content={"success": False, "message": "Export case not found"},
status_code=404,
)
if body.name is not None:
case.name = body.name
if body.description is not None:
case.description = body.description
case.save()
return JSONResponse(
content={"success": True, "message": "Successfully updated export case."}
)
@router.delete(
"/cases/{case_id}",
response_model=GenericResponse,
dependencies=[Depends(require_role(["admin"]))],
summary="Delete export case",
description="""Deletes an export case.\n Exports that reference this case will have their export_case set to null.\n """,
)
def delete_export_case(case_id: str):
try:
case = ExportCase.get(ExportCase.id == case_id)
except DoesNotExist:
return JSONResponse(
content={"success": False, "message": "Export case not found"},
status_code=404,
)
# Unassign exports from this case but keep the exports themselves
Export.update(export_case=None).where(Export.export_case == case).execute()
case.delete_instance()
return JSONResponse(
content={"success": True, "message": "Successfully deleted export case."}
)
@router.patch(
"/export/{export_id}/case",
response_model=GenericResponse,
dependencies=[Depends(require_role(["admin"]))],
summary="Assign export to case",
description=(
"Assigns an export to a case, or unassigns it if export_case_id is null."
),
)
async def assign_export_case(
export_id: str,
body: ExportCaseAssignBody,
request: Request,
):
try:
export: Export = Export.get(Export.id == export_id)
await require_camera_access(export.camera, request=request)
except DoesNotExist:
return JSONResponse(
content={"success": False, "message": "Export not found."},
status_code=404,
)
if body.export_case_id is not None:
try:
ExportCase.get(ExportCase.id == body.export_case_id)
except DoesNotExist:
return JSONResponse(
content={"success": False, "message": "Export case not found."},
status_code=404,
)
export.export_case = body.export_case_id
else:
export.export_case = None
export.save()
return JSONResponse(
content={"success": True, "message": "Successfully updated export case."}
)
@router.post(
"/export/{camera_name}/start/{start_time}/end/{end_time}",
response_model=StartExportResponse,
@@ -267,16 +93,6 @@ def export_recording(
friendly_name = body.name
existing_image = sanitize_filepath(body.image_path) if body.image_path else None
export_case_id = body.export_case_id
if export_case_id is not None:
try:
ExportCase.get(ExportCase.id == export_case_id)
except DoesNotExist:
return JSONResponse(
content={"success": False, "message": "Export case not found"},
status_code=404,
)
# Ensure that existing_image is a valid path
if existing_image and not existing_image.startswith(CLIPS_DIR):
return JSONResponse(
@@ -345,7 +161,6 @@ def export_recording(
if playback_source in PlaybackSourceEnum.__members__.values()
else PlaybackSourceEnum.recordings
),
export_case_id,
)
exporter.start()
return JSONResponse(

View File

@@ -22,7 +22,6 @@ from frigate.api import (
media,
notification,
preview,
record,
review,
)
from frigate.api.auth import get_jwt_secret, limiter, require_admin_by_default
@@ -129,7 +128,6 @@ def create_fastapi_app(
app.include_router(export.router)
app.include_router(event.router)
app.include_router(media.router)
app.include_router(record.router)
# App Properties
app.frigate_config = frigate_config
app.embeddings = embeddings

View File

@@ -8,8 +8,9 @@ import os
import subprocess as sp
import time
from datetime import datetime, timedelta, timezone
from functools import reduce
from pathlib import Path as FilePath
from typing import Any
from typing import Any, List
from urllib.parse import unquote
import cv2
@@ -18,11 +19,12 @@ import pytz
from fastapi import APIRouter, Depends, Path, Query, Request, Response
from fastapi.responses import FileResponse, JSONResponse, StreamingResponse
from pathvalidate import sanitize_filename
from peewee import DoesNotExist, fn
from peewee import DoesNotExist, fn, operator
from tzlocal import get_localzone_name
from frigate.api.auth import (
allow_any_authenticated,
get_allowed_cameras_for_filter,
require_camera_access,
)
from frigate.api.defs.query.media_query_parameters import (
@@ -30,6 +32,8 @@ from frigate.api.defs.query.media_query_parameters import (
MediaEventsSnapshotQueryParams,
MediaLatestFrameQueryParams,
MediaMjpegFeedQueryParams,
MediaRecordingsAvailabilityQueryParams,
MediaRecordingsSummaryQueryParams,
)
from frigate.api.defs.tags import Tags
from frigate.camera.state import CameraState
@@ -40,11 +44,13 @@ from frigate.const import (
INSTALL_DIR,
MAX_SEGMENT_DURATION,
PREVIEW_FRAME_TYPE,
RECORD_DIR,
)
from frigate.models import Event, Previews, Recordings, Regions, ReviewSegment
from frigate.track.object_processing import TrackedObjectProcessor
from frigate.util.file import get_event_thumbnail_bytes
from frigate.util.image import get_image_from_recording
from frigate.util.time import get_dst_transitions
logger = logging.getLogger(__name__)
@@ -391,6 +397,333 @@ async def submit_recording_snapshot_to_plus(
)
@router.get("/recordings/storage", dependencies=[Depends(allow_any_authenticated())])
def get_recordings_storage_usage(request: Request):
recording_stats = request.app.stats_emitter.get_latest_stats()["service"][
"storage"
][RECORD_DIR]
if not recording_stats:
return JSONResponse({})
total_mb = recording_stats["total"]
camera_usages: dict[str, dict] = (
request.app.storage_maintainer.calculate_camera_usages()
)
for camera_name in camera_usages.keys():
if camera_usages.get(camera_name, {}).get("usage"):
camera_usages[camera_name]["usage_percent"] = (
camera_usages.get(camera_name, {}).get("usage", 0) / total_mb
) * 100
return JSONResponse(content=camera_usages)
@router.get("/recordings/summary", dependencies=[Depends(allow_any_authenticated())])
def all_recordings_summary(
request: Request,
params: MediaRecordingsSummaryQueryParams = Depends(),
allowed_cameras: List[str] = Depends(get_allowed_cameras_for_filter),
):
"""Returns true/false by day indicating if recordings exist"""
cameras = params.cameras
if cameras != "all":
requested = set(unquote(cameras).split(","))
filtered = requested.intersection(allowed_cameras)
if not filtered:
return JSONResponse(content={})
camera_list = list(filtered)
else:
camera_list = allowed_cameras
time_range_query = (
Recordings.select(
fn.MIN(Recordings.start_time).alias("min_time"),
fn.MAX(Recordings.start_time).alias("max_time"),
)
.where(Recordings.camera << camera_list)
.dicts()
.get()
)
min_time = time_range_query.get("min_time")
max_time = time_range_query.get("max_time")
if min_time is None or max_time is None:
return JSONResponse(content={})
dst_periods = get_dst_transitions(params.timezone, min_time, max_time)
days: dict[str, bool] = {}
for period_start, period_end, period_offset in dst_periods:
hours_offset = int(period_offset / 60 / 60)
minutes_offset = int(period_offset / 60 - hours_offset * 60)
period_hour_modifier = f"{hours_offset} hour"
period_minute_modifier = f"{minutes_offset} minute"
period_query = (
Recordings.select(
fn.strftime(
"%Y-%m-%d",
fn.datetime(
Recordings.start_time,
"unixepoch",
period_hour_modifier,
period_minute_modifier,
),
).alias("day")
)
.where(
(Recordings.camera << camera_list)
& (Recordings.end_time >= period_start)
& (Recordings.start_time <= period_end)
)
.group_by(
fn.strftime(
"%Y-%m-%d",
fn.datetime(
Recordings.start_time,
"unixepoch",
period_hour_modifier,
period_minute_modifier,
),
)
)
.order_by(Recordings.start_time.desc())
.namedtuples()
)
for g in period_query:
days[g.day] = True
return JSONResponse(content=dict(sorted(days.items())))
@router.get(
"/{camera_name}/recordings/summary", dependencies=[Depends(require_camera_access)]
)
async def recordings_summary(camera_name: str, timezone: str = "utc"):
"""Returns hourly summary for recordings of given camera"""
time_range_query = (
Recordings.select(
fn.MIN(Recordings.start_time).alias("min_time"),
fn.MAX(Recordings.start_time).alias("max_time"),
)
.where(Recordings.camera == camera_name)
.dicts()
.get()
)
min_time = time_range_query.get("min_time")
max_time = time_range_query.get("max_time")
days: dict[str, dict] = {}
if min_time is None or max_time is None:
return JSONResponse(content=list(days.values()))
dst_periods = get_dst_transitions(timezone, min_time, max_time)
for period_start, period_end, period_offset in dst_periods:
hours_offset = int(period_offset / 60 / 60)
minutes_offset = int(period_offset / 60 - hours_offset * 60)
period_hour_modifier = f"{hours_offset} hour"
period_minute_modifier = f"{minutes_offset} minute"
recording_groups = (
Recordings.select(
fn.strftime(
"%Y-%m-%d %H",
fn.datetime(
Recordings.start_time,
"unixepoch",
period_hour_modifier,
period_minute_modifier,
),
).alias("hour"),
fn.SUM(Recordings.duration).alias("duration"),
fn.SUM(Recordings.motion).alias("motion"),
fn.SUM(Recordings.objects).alias("objects"),
)
.where(
(Recordings.camera == camera_name)
& (Recordings.end_time >= period_start)
& (Recordings.start_time <= period_end)
)
.group_by((Recordings.start_time + period_offset).cast("int") / 3600)
.order_by(Recordings.start_time.desc())
.namedtuples()
)
event_groups = (
Event.select(
fn.strftime(
"%Y-%m-%d %H",
fn.datetime(
Event.start_time,
"unixepoch",
period_hour_modifier,
period_minute_modifier,
),
).alias("hour"),
fn.COUNT(Event.id).alias("count"),
)
.where(Event.camera == camera_name, Event.has_clip)
.where(
(Event.start_time >= period_start) & (Event.start_time <= period_end)
)
.group_by((Event.start_time + period_offset).cast("int") / 3600)
.namedtuples()
)
event_map = {g.hour: g.count for g in event_groups}
for recording_group in recording_groups:
parts = recording_group.hour.split()
hour = parts[1]
day = parts[0]
events_count = event_map.get(recording_group.hour, 0)
hour_data = {
"hour": hour,
"events": events_count,
"motion": recording_group.motion,
"objects": recording_group.objects,
"duration": round(recording_group.duration),
}
if day in days:
# merge counts if already present (edge-case at DST boundary)
days[day]["events"] += events_count or 0
days[day]["hours"].append(hour_data)
else:
days[day] = {
"events": events_count or 0,
"hours": [hour_data],
"day": day,
}
return JSONResponse(content=list(days.values()))
@router.get("/{camera_name}/recordings", dependencies=[Depends(require_camera_access)])
async def recordings(
camera_name: str,
after: float = (datetime.now() - timedelta(hours=1)).timestamp(),
before: float = datetime.now().timestamp(),
):
"""Return specific camera recordings between the given 'after'/'end' times. If not provided the last hour will be used"""
recordings = (
Recordings.select(
Recordings.id,
Recordings.start_time,
Recordings.end_time,
Recordings.segment_size,
Recordings.motion,
Recordings.objects,
Recordings.duration,
)
.where(
Recordings.camera == camera_name,
Recordings.end_time >= after,
Recordings.start_time <= before,
)
.order_by(Recordings.start_time)
.dicts()
.iterator()
)
return JSONResponse(content=list(recordings))
@router.get(
"/recordings/unavailable",
response_model=list[dict],
dependencies=[Depends(allow_any_authenticated())],
)
async def no_recordings(
request: Request,
params: MediaRecordingsAvailabilityQueryParams = Depends(),
allowed_cameras: List[str] = Depends(get_allowed_cameras_for_filter),
):
"""Get time ranges with no recordings."""
cameras = params.cameras
if cameras != "all":
requested = set(unquote(cameras).split(","))
filtered = requested.intersection(allowed_cameras)
if not filtered:
return JSONResponse(content=[])
cameras = ",".join(filtered)
else:
cameras = allowed_cameras
before = params.before or datetime.datetime.now().timestamp()
after = (
params.after
or (datetime.datetime.now() - datetime.timedelta(hours=1)).timestamp()
)
scale = params.scale
clauses = [(Recordings.end_time >= after) & (Recordings.start_time <= before)]
if cameras != "all":
camera_list = cameras.split(",")
clauses.append((Recordings.camera << camera_list))
else:
camera_list = allowed_cameras
# Get recording start times
data: list[Recordings] = (
Recordings.select(Recordings.start_time, Recordings.end_time)
.where(reduce(operator.and_, clauses))
.order_by(Recordings.start_time.asc())
.dicts()
.iterator()
)
# Convert recordings to list of (start, end) tuples
recordings = [(r["start_time"], r["end_time"]) for r in data]
# Iterate through time segments and check if each has any recording
no_recording_segments = []
current = after
current_gap_start = None
while current < before:
segment_end = min(current + scale, before)
# Check if this segment overlaps with any recording
has_recording = any(
rec_start < segment_end and rec_end > current
for rec_start, rec_end in recordings
)
if not has_recording:
# This segment has no recordings
if current_gap_start is None:
current_gap_start = current # Start a new gap
else:
# This segment has recordings
if current_gap_start is not None:
# End the current gap and append it
no_recording_segments.append(
{"start_time": int(current_gap_start), "end_time": int(current)}
)
current_gap_start = None
current = segment_end
# Append the last gap if it exists
if current_gap_start is not None:
no_recording_segments.append(
{"start_time": int(current_gap_start), "end_time": int(before)}
)
return JSONResponse(content=no_recording_segments)
@router.get(
"/{camera_name}/start/{start_ts}/end/{end_ts}/clip.mp4",
dependencies=[Depends(require_camera_access)],

View File

@@ -1,479 +0,0 @@
"""Recording APIs."""
import logging
from datetime import datetime, timedelta
from functools import reduce
from pathlib import Path
from typing import List
from urllib.parse import unquote
from fastapi import APIRouter, Depends, Request
from fastapi import Path as PathParam
from fastapi.responses import JSONResponse
from peewee import fn, operator
from frigate.api.auth import (
allow_any_authenticated,
get_allowed_cameras_for_filter,
require_camera_access,
require_role,
)
from frigate.api.defs.query.recordings_query_parameters import (
MediaRecordingsAvailabilityQueryParams,
MediaRecordingsSummaryQueryParams,
RecordingsDeleteQueryParams,
)
from frigate.api.defs.response.generic_response import GenericResponse
from frigate.api.defs.tags import Tags
from frigate.const import RECORD_DIR
from frigate.models import Event, Recordings
from frigate.util.time import get_dst_transitions
logger = logging.getLogger(__name__)
router = APIRouter(tags=[Tags.recordings])
@router.get("/recordings/storage", dependencies=[Depends(allow_any_authenticated())])
def get_recordings_storage_usage(request: Request):
recording_stats = request.app.stats_emitter.get_latest_stats()["service"][
"storage"
][RECORD_DIR]
if not recording_stats:
return JSONResponse({})
total_mb = recording_stats["total"]
camera_usages: dict[str, dict] = (
request.app.storage_maintainer.calculate_camera_usages()
)
for camera_name in camera_usages.keys():
if camera_usages.get(camera_name, {}).get("usage"):
camera_usages[camera_name]["usage_percent"] = (
camera_usages.get(camera_name, {}).get("usage", 0) / total_mb
) * 100
return JSONResponse(content=camera_usages)
@router.get("/recordings/summary", dependencies=[Depends(allow_any_authenticated())])
def all_recordings_summary(
request: Request,
params: MediaRecordingsSummaryQueryParams = Depends(),
allowed_cameras: List[str] = Depends(get_allowed_cameras_for_filter),
):
"""Returns true/false by day indicating if recordings exist"""
cameras = params.cameras
if cameras != "all":
requested = set(unquote(cameras).split(","))
filtered = requested.intersection(allowed_cameras)
if not filtered:
return JSONResponse(content={})
camera_list = list(filtered)
else:
camera_list = allowed_cameras
time_range_query = (
Recordings.select(
fn.MIN(Recordings.start_time).alias("min_time"),
fn.MAX(Recordings.start_time).alias("max_time"),
)
.where(Recordings.camera << camera_list)
.dicts()
.get()
)
min_time = time_range_query.get("min_time")
max_time = time_range_query.get("max_time")
if min_time is None or max_time is None:
return JSONResponse(content={})
dst_periods = get_dst_transitions(params.timezone, min_time, max_time)
days: dict[str, bool] = {}
for period_start, period_end, period_offset in dst_periods:
hours_offset = int(period_offset / 60 / 60)
minutes_offset = int(period_offset / 60 - hours_offset * 60)
period_hour_modifier = f"{hours_offset} hour"
period_minute_modifier = f"{minutes_offset} minute"
period_query = (
Recordings.select(
fn.strftime(
"%Y-%m-%d",
fn.datetime(
Recordings.start_time,
"unixepoch",
period_hour_modifier,
period_minute_modifier,
),
).alias("day")
)
.where(
(Recordings.camera << camera_list)
& (Recordings.end_time >= period_start)
& (Recordings.start_time <= period_end)
)
.group_by(
fn.strftime(
"%Y-%m-%d",
fn.datetime(
Recordings.start_time,
"unixepoch",
period_hour_modifier,
period_minute_modifier,
),
)
)
.order_by(Recordings.start_time.desc())
.namedtuples()
)
for g in period_query:
days[g.day] = True
return JSONResponse(content=dict(sorted(days.items())))
@router.get(
"/{camera_name}/recordings/summary", dependencies=[Depends(require_camera_access)]
)
async def recordings_summary(camera_name: str, timezone: str = "utc"):
"""Returns hourly summary for recordings of given camera"""
time_range_query = (
Recordings.select(
fn.MIN(Recordings.start_time).alias("min_time"),
fn.MAX(Recordings.start_time).alias("max_time"),
)
.where(Recordings.camera == camera_name)
.dicts()
.get()
)
min_time = time_range_query.get("min_time")
max_time = time_range_query.get("max_time")
days: dict[str, dict] = {}
if min_time is None or max_time is None:
return JSONResponse(content=list(days.values()))
dst_periods = get_dst_transitions(timezone, min_time, max_time)
for period_start, period_end, period_offset in dst_periods:
hours_offset = int(period_offset / 60 / 60)
minutes_offset = int(period_offset / 60 - hours_offset * 60)
period_hour_modifier = f"{hours_offset} hour"
period_minute_modifier = f"{minutes_offset} minute"
recording_groups = (
Recordings.select(
fn.strftime(
"%Y-%m-%d %H",
fn.datetime(
Recordings.start_time,
"unixepoch",
period_hour_modifier,
period_minute_modifier,
),
).alias("hour"),
fn.SUM(Recordings.duration).alias("duration"),
fn.SUM(Recordings.motion).alias("motion"),
fn.SUM(Recordings.objects).alias("objects"),
)
.where(
(Recordings.camera == camera_name)
& (Recordings.end_time >= period_start)
& (Recordings.start_time <= period_end)
)
.group_by((Recordings.start_time + period_offset).cast("int") / 3600)
.order_by(Recordings.start_time.desc())
.namedtuples()
)
event_groups = (
Event.select(
fn.strftime(
"%Y-%m-%d %H",
fn.datetime(
Event.start_time,
"unixepoch",
period_hour_modifier,
period_minute_modifier,
),
).alias("hour"),
fn.COUNT(Event.id).alias("count"),
)
.where(Event.camera == camera_name, Event.has_clip)
.where(
(Event.start_time >= period_start) & (Event.start_time <= period_end)
)
.group_by((Event.start_time + period_offset).cast("int") / 3600)
.namedtuples()
)
event_map = {g.hour: g.count for g in event_groups}
for recording_group in recording_groups:
parts = recording_group.hour.split()
hour = parts[1]
day = parts[0]
events_count = event_map.get(recording_group.hour, 0)
hour_data = {
"hour": hour,
"events": events_count,
"motion": recording_group.motion,
"objects": recording_group.objects,
"duration": round(recording_group.duration),
}
if day in days:
# merge counts if already present (edge-case at DST boundary)
days[day]["events"] += events_count or 0
days[day]["hours"].append(hour_data)
else:
days[day] = {
"events": events_count or 0,
"hours": [hour_data],
"day": day,
}
return JSONResponse(content=list(days.values()))
@router.get("/{camera_name}/recordings", dependencies=[Depends(require_camera_access)])
async def recordings(
camera_name: str,
after: float = (datetime.now() - timedelta(hours=1)).timestamp(),
before: float = datetime.now().timestamp(),
):
"""Return specific camera recordings between the given 'after'/'end' times. If not provided the last hour will be used"""
recordings = (
Recordings.select(
Recordings.id,
Recordings.start_time,
Recordings.end_time,
Recordings.segment_size,
Recordings.motion,
Recordings.objects,
Recordings.duration,
)
.where(
Recordings.camera == camera_name,
Recordings.end_time >= after,
Recordings.start_time <= before,
)
.order_by(Recordings.start_time)
.dicts()
.iterator()
)
return JSONResponse(content=list(recordings))
@router.get(
"/recordings/unavailable",
response_model=list[dict],
dependencies=[Depends(allow_any_authenticated())],
)
async def no_recordings(
request: Request,
params: MediaRecordingsAvailabilityQueryParams = Depends(),
allowed_cameras: List[str] = Depends(get_allowed_cameras_for_filter),
):
"""Get time ranges with no recordings."""
cameras = params.cameras
if cameras != "all":
requested = set(unquote(cameras).split(","))
filtered = requested.intersection(allowed_cameras)
if not filtered:
return JSONResponse(content=[])
cameras = ",".join(filtered)
else:
cameras = allowed_cameras
before = params.before or datetime.datetime.now().timestamp()
after = (
params.after
or (datetime.datetime.now() - datetime.timedelta(hours=1)).timestamp()
)
scale = params.scale
clauses = [(Recordings.end_time >= after) & (Recordings.start_time <= before)]
if cameras != "all":
camera_list = cameras.split(",")
clauses.append((Recordings.camera << camera_list))
else:
camera_list = allowed_cameras
# Get recording start times
data: list[Recordings] = (
Recordings.select(Recordings.start_time, Recordings.end_time)
.where(reduce(operator.and_, clauses))
.order_by(Recordings.start_time.asc())
.dicts()
.iterator()
)
# Convert recordings to list of (start, end) tuples
recordings = [(r["start_time"], r["end_time"]) for r in data]
# Iterate through time segments and check if each has any recording
no_recording_segments = []
current = after
current_gap_start = None
while current < before:
segment_end = min(current + scale, before)
# Check if this segment overlaps with any recording
has_recording = any(
rec_start < segment_end and rec_end > current
for rec_start, rec_end in recordings
)
if not has_recording:
# This segment has no recordings
if current_gap_start is None:
current_gap_start = current # Start a new gap
else:
# This segment has recordings
if current_gap_start is not None:
# End the current gap and append it
no_recording_segments.append(
{"start_time": int(current_gap_start), "end_time": int(current)}
)
current_gap_start = None
current = segment_end
# Append the last gap if it exists
if current_gap_start is not None:
no_recording_segments.append(
{"start_time": int(current_gap_start), "end_time": int(before)}
)
return JSONResponse(content=no_recording_segments)
@router.delete(
"/recordings/start/{start}/end/{end}",
response_model=GenericResponse,
dependencies=[Depends(require_role(["admin"]))],
summary="Delete recordings",
description="""Deletes recordings within the specified time range.
Recordings can be filtered by cameras and kept based on motion, objects, or audio attributes.
""",
)
async def delete_recordings(
start: float = PathParam(..., description="Start timestamp (unix)"),
end: float = PathParam(..., description="End timestamp (unix)"),
params: RecordingsDeleteQueryParams = Depends(),
allowed_cameras: List[str] = Depends(get_allowed_cameras_for_filter),
):
"""Delete recordings in the specified time range."""
if start >= end:
return JSONResponse(
content={
"success": False,
"message": "Start time must be less than end time.",
},
status_code=400,
)
cameras = params.cameras
if cameras != "all":
requested = set(cameras.split(","))
filtered = requested.intersection(allowed_cameras)
if not filtered:
return JSONResponse(
content={
"success": False,
"message": "No valid cameras found in the request.",
},
status_code=400,
)
camera_list = list(filtered)
else:
camera_list = allowed_cameras
# Parse keep parameter
keep_set = set()
if params.keep:
keep_set = set(params.keep.split(","))
# Build query to find overlapping recordings
clauses = [
(
Recordings.start_time.between(start, end)
| Recordings.end_time.between(start, end)
| ((start > Recordings.start_time) & (end < Recordings.end_time))
),
(Recordings.camera << camera_list),
]
keep_clauses = []
if "motion" in keep_set:
keep_clauses.append(Recordings.motion.is_null(False) & (Recordings.motion > 0))
if "object" in keep_set:
keep_clauses.append(
Recordings.objects.is_null(False) & (Recordings.objects > 0)
)
if "audio" in keep_set:
keep_clauses.append(Recordings.dBFS.is_null(False))
if keep_clauses:
keep_condition = reduce(operator.or_, keep_clauses)
clauses.append(~keep_condition)
recordings_to_delete = (
Recordings.select(Recordings.id, Recordings.path)
.where(reduce(operator.and_, clauses))
.dicts()
.iterator()
)
recording_ids = []
deleted_count = 0
error_count = 0
for recording in recordings_to_delete:
recording_ids.append(recording["id"])
try:
Path(recording["path"]).unlink(missing_ok=True)
deleted_count += 1
except Exception as e:
logger.error(f"Failed to delete recording file {recording['path']}: {e}")
error_count += 1
if recording_ids:
max_deletes = 100000
recording_ids_list = list(recording_ids)
for i in range(0, len(recording_ids_list), max_deletes):
Recordings.delete().where(
Recordings.id << recording_ids_list[i : i + max_deletes]
).execute()
message = f"Successfully deleted {deleted_count} recording(s)."
if error_count > 0:
message += f" {error_count} file deletion error(s) occurred."
return JSONResponse(
content={"success": True, "message": message},
status_code=200,
)

View File

@@ -100,6 +100,10 @@ class FrigateApp:
)
if (
config.semantic_search.enabled
or any(
c.objects.genai.enabled or c.review.genai.enabled
for c in config.cameras.values()
)
or config.lpr.enabled
or config.face_recognition.enabled
or len(config.classification.custom) > 0

View File

@@ -19,8 +19,6 @@ class CameraMetrics:
process_pid: Synchronized
capture_process_pid: Synchronized
ffmpeg_pid: Synchronized
reconnects_last_hour: Synchronized
stalls_last_hour: Synchronized
def __init__(self, manager: SyncManager):
self.camera_fps = manager.Value("d", 0)
@@ -37,8 +35,6 @@ class CameraMetrics:
self.process_pid = manager.Value("i", 0)
self.capture_process_pid = manager.Value("i", 0)
self.ffmpeg_pid = manager.Value("i", 0)
self.reconnects_last_hour = manager.Value("i", 0)
self.stalls_last_hour = manager.Value("i", 0)
class PTZMetrics:

View File

@@ -28,7 +28,6 @@ from frigate.const import (
UPDATE_CAMERA_ACTIVITY,
UPDATE_EMBEDDINGS_REINDEX_PROGRESS,
UPDATE_EVENT_DESCRIPTION,
UPDATE_JOB_STATE,
UPDATE_MODEL_STATE,
UPDATE_REVIEW_DESCRIPTION,
UPSERT_REVIEW_SEGMENT,
@@ -61,7 +60,6 @@ class Dispatcher:
self.camera_activity = CameraActivityManager(config, self.publish)
self.audio_activity = AudioActivityManager(config, self.publish)
self.model_state: dict[str, ModelStatusTypesEnum] = {}
self.job_state: dict[str, dict[str, Any]] = {} # {job_type: job_data}
self.embeddings_reindex: dict[str, Any] = {}
self.birdseye_layout: dict[str, Any] = {}
self.audio_transcription_state: str = "idle"
@@ -182,19 +180,6 @@ class Dispatcher:
def handle_model_state() -> None:
self.publish("model_state", json.dumps(self.model_state.copy()))
def handle_update_job_state() -> None:
if payload and isinstance(payload, dict):
job_type = payload.get("job_type")
if job_type:
self.job_state[job_type] = payload
self.publish(
"job_state",
json.dumps(self.job_state),
)
def handle_job_state() -> None:
self.publish("job_state", json.dumps(self.job_state.copy()))
def handle_update_audio_transcription_state() -> None:
if payload:
self.audio_transcription_state = payload
@@ -292,7 +277,6 @@ class Dispatcher:
UPDATE_EVENT_DESCRIPTION: handle_update_event_description,
UPDATE_REVIEW_DESCRIPTION: handle_update_review_description,
UPDATE_MODEL_STATE: handle_update_model_state,
UPDATE_JOB_STATE: handle_update_job_state,
UPDATE_EMBEDDINGS_REINDEX_PROGRESS: handle_update_embeddings_reindex_progress,
UPDATE_BIRDSEYE_LAYOUT: handle_update_birdseye_layout,
UPDATE_AUDIO_TRANSCRIPTION_STATE: handle_update_audio_transcription_state,
@@ -300,7 +284,6 @@ class Dispatcher:
"restart": handle_restart,
"embeddingsReindexProgress": handle_embeddings_reindex_progress,
"modelState": handle_model_state,
"jobState": handle_job_state,
"audioTranscriptionState": handle_audio_transcription_state,
"birdseyeLayout": handle_birdseye_layout,
"onConnect": handle_on_connect,

View File

@@ -225,7 +225,8 @@ class MqttClient(Communicator):
"birdseye_mode",
"review_alerts",
"review_detections",
"genai",
"object_descriptions",
"review_descriptions",
]
for name in self.config.cameras.keys():

View File

@@ -14,7 +14,6 @@ class GenAIProviderEnum(str, Enum):
azure_openai = "azure_openai"
gemini = "gemini"
ollama = "ollama"
llamacpp = "llamacpp"
class GenAIConfig(FrigateBaseModel):

View File

@@ -1,5 +1,5 @@
from enum import Enum
from typing import Optional, Union
from typing import Optional
from pydantic import Field
@@ -70,13 +70,13 @@ class RecordExportConfig(FrigateBaseModel):
timelapse_args: str = Field(
default=DEFAULT_TIME_LAPSE_FFMPEG_ARGS, title="Timelapse Args"
)
hwaccel_args: Union[str, list[str]] = Field(
default="auto", title="Export-specific FFmpeg hardware acceleration arguments."
)
class RecordConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable record on all cameras.")
sync_recordings: bool = Field(
default=False, title="Sync recordings with disk on startup and once a day."
)
expire_interval: int = Field(
default=60,
title="Number of minutes to wait between cleanup runs.",

View File

@@ -523,14 +523,6 @@ class FrigateConfig(FrigateBaseModel):
if camera_config.ffmpeg.hwaccel_args == "auto":
camera_config.ffmpeg.hwaccel_args = self.ffmpeg.hwaccel_args
# Resolve export hwaccel_args: camera export -> camera ffmpeg -> global ffmpeg
# This allows per-camera override for exports (e.g., when camera resolution
# exceeds hardware encoder limits)
if camera_config.record.export.hwaccel_args == "auto":
camera_config.record.export.hwaccel_args = (
camera_config.ffmpeg.hwaccel_args
)
for input in camera_config.ffmpeg.inputs:
need_detect_dimensions = "detect" in input.roles and (
camera_config.detect.height is None

View File

@@ -77,6 +77,9 @@ FFMPEG_HWACCEL_RKMPP = "preset-rkmpp"
FFMPEG_HWACCEL_AMF = "preset-amd-amf"
FFMPEG_HVC1_ARGS = ["-tag:v", "hvc1"]
# RKNN constants
SUPPORTED_RK_SOCS = ["rk3562", "rk3566", "rk3568", "rk3576", "rk3588"]
# Regex constants
REGEX_CAMERA_NAME = r"^[a-zA-Z0-9_-]+$"
@@ -119,7 +122,6 @@ UPDATE_REVIEW_DESCRIPTION = "update_review_description"
UPDATE_MODEL_STATE = "update_model_state"
UPDATE_EMBEDDINGS_REINDEX_PROGRESS = "handle_embeddings_reindex_progress"
UPDATE_BIRDSEYE_LAYOUT = "update_birdseye_layout"
UPDATE_JOB_STATE = "update_job_state"
NOTIFICATION_TEST = "notification_test"
# IO Nice Values

View File

@@ -374,6 +374,9 @@ class LicensePlateProcessingMixin:
combined_plate = re.sub(
pattern, replacement, combined_plate
)
logger.debug(
f"{camera}: Processing replace rule: '{pattern}' -> '{replacement}', result: '{combined_plate}'"
)
except re.error as e:
logger.warning(
f"{camera}: Invalid regex in replace_rules '{pattern}': {e}"
@@ -381,7 +384,7 @@ class LicensePlateProcessingMixin:
if combined_plate != original_combined:
logger.debug(
f"{camera}: Rules applied: '{original_combined}' -> '{combined_plate}'"
f"{camera}: All rules applied: '{original_combined}' -> '{combined_plate}'"
)
# Compute the combined area for qualifying boxes

View File

@@ -131,8 +131,9 @@ class AudioTranscriptionPostProcessor(PostProcessorApi):
},
)
# Embed the description
self.embeddings.embed_description(event_id, transcription)
# Embed the description if semantic search is enabled
if self.config.semantic_search.enabled:
self.embeddings.embed_description(event_id, transcription)
except DoesNotExist:
logger.debug("No recording found for audio transcription post-processing")

View File

@@ -131,6 +131,8 @@ class ObjectDescriptionProcessor(PostProcessorApi):
)
):
self._process_genai_description(event, camera_config, thumbnail)
else:
self.cleanup_event(event.id)
def __regenerate_description(self, event_id: str, source: str, force: bool) -> None:
"""Regenerate the description for an event."""
@@ -204,6 +206,17 @@ class ObjectDescriptionProcessor(PostProcessorApi):
)
return None
def cleanup_event(self, event_id: str) -> None:
"""Clean up tracked event data to prevent memory leaks.
This should be called when an event ends, regardless of whether
genai processing is triggered.
"""
if event_id in self.tracked_events:
del self.tracked_events[event_id]
if event_id in self.early_request_sent:
del self.early_request_sent[event_id]
def _read_and_crop_snapshot(self, event: Event) -> bytes | None:
"""Read, decode, and crop the snapshot image."""
@@ -299,9 +312,8 @@ class ObjectDescriptionProcessor(PostProcessorApi):
),
).start()
# Delete tracked events based on the event_id
if event.id in self.tracked_events:
del self.tracked_events[event.id]
# Clean up tracked events and early request state
self.cleanup_event(event.id)
def _genai_embed_description(self, event: Event, thumbnails: list[bytes]) -> None:
"""Embed the description for an event."""

View File

@@ -311,6 +311,7 @@ class ReviewDescriptionProcessor(PostProcessorApi):
start_ts,
end_ts,
events_with_context,
self.config.review.genai.preferred_language,
self.config.review.genai.debug_save_thumbnails,
)
else:

View File

@@ -13,7 +13,7 @@ from frigate.comms.event_metadata_updater import (
)
from frigate.config import FrigateConfig
from frigate.const import MODEL_CACHE_DIR
from frigate.log import redirect_output_to_logger
from frigate.log import suppress_stderr_during
from frigate.util.object import calculate_region
from ..types import DataProcessorMetrics
@@ -80,13 +80,14 @@ class BirdRealTimeProcessor(RealTimeProcessorApi):
except Exception as e:
logger.error(f"Failed to download {path}: {e}")
@redirect_output_to_logger(logger, logging.DEBUG)
def __build_detector(self) -> None:
self.interpreter = Interpreter(
model_path=os.path.join(MODEL_CACHE_DIR, "bird/bird.tflite"),
num_threads=2,
)
self.interpreter.allocate_tensors()
# Suppress TFLite delegate creation messages that bypass Python logging
with suppress_stderr_during("tflite_interpreter_init"):
self.interpreter = Interpreter(
model_path=os.path.join(MODEL_CACHE_DIR, "bird/bird.tflite"),
num_threads=2,
)
self.interpreter.allocate_tensors()
self.tensor_input_details = self.interpreter.get_input_details()
self.tensor_output_details = self.interpreter.get_output_details()

View File

@@ -21,7 +21,7 @@ from frigate.config.classification import (
ObjectClassificationType,
)
from frigate.const import CLIPS_DIR, MODEL_CACHE_DIR
from frigate.log import redirect_output_to_logger
from frigate.log import suppress_stderr_during
from frigate.types import TrackedObjectUpdateTypesEnum
from frigate.util.builtin import EventsPerSecond, InferenceSpeed, load_labels
from frigate.util.object import box_overlaps, calculate_region
@@ -52,7 +52,7 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
self.requestor = requestor
self.model_dir = os.path.join(MODEL_CACHE_DIR, self.model_config.name)
self.train_dir = os.path.join(CLIPS_DIR, self.model_config.name, "train")
self.interpreter: Interpreter | None = None
self.interpreter: Interpreter = None
self.tensor_input_details: dict[str, Any] | None = None
self.tensor_output_details: dict[str, Any] | None = None
self.labelmap: dict[int, str] = {}
@@ -72,8 +72,12 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
self.last_run = datetime.datetime.now().timestamp()
self.__build_detector()
@redirect_output_to_logger(logger, logging.DEBUG)
def __build_detector(self) -> None:
try:
from tflite_runtime.interpreter import Interpreter
except ModuleNotFoundError:
from tensorflow.lite.python.interpreter import Interpreter
model_path = os.path.join(self.model_dir, "model.tflite")
labelmap_path = os.path.join(self.model_dir, "labelmap.txt")
@@ -84,11 +88,13 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
self.labelmap = {}
return
self.interpreter = Interpreter(
model_path=model_path,
num_threads=2,
)
self.interpreter.allocate_tensors()
# Suppress TFLite delegate creation messages that bypass Python logging
with suppress_stderr_during("tflite_interpreter_init"):
self.interpreter = Interpreter(
model_path=model_path,
num_threads=2,
)
self.interpreter.allocate_tensors()
self.tensor_input_details = self.interpreter.get_input_details()
self.tensor_output_details = self.interpreter.get_output_details()
self.labelmap = load_labels(labelmap_path, prefill=0)
@@ -224,28 +230,34 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
if not should_run:
return
x, y, x2, y2 = calculate_region(
frame.shape,
crop[0],
crop[1],
crop[2],
crop[3],
224,
1.0,
)
rgb = cv2.cvtColor(frame, cv2.COLOR_YUV2RGB_I420)
frame = rgb[
y:y2,
x:x2,
]
height, width = rgb.shape[:2]
if frame.shape != (224, 224):
try:
resized_frame = cv2.resize(frame, (224, 224))
except Exception:
logger.warning("Failed to resize image for state classification")
return
# Convert normalized crop coordinates to pixel values
x1 = int(camera_config.crop[0] * width)
y1 = int(camera_config.crop[1] * height)
x2 = int(camera_config.crop[2] * width)
y2 = int(camera_config.crop[3] * height)
# Clip coordinates to frame boundaries
x1 = max(0, min(x1, width))
y1 = max(0, min(y1, height))
x2 = max(0, min(x2, width))
y2 = max(0, min(y2, height))
if x2 <= x1 or y2 <= y1:
logger.warning(
f"Invalid crop coordinates for {camera}: [{x1}, {y1}, {x2}, {y2}]"
)
return
frame = rgb[y1:y2, x1:x2]
try:
resized_frame = cv2.resize(frame, (224, 224))
except Exception:
logger.warning("Failed to resize image for state classification")
return
if self.interpreter is None:
# When interpreter is None, always save (score is 0.0, which is < 1.0)
@@ -345,7 +357,7 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
self.model_config = model_config
self.model_dir = os.path.join(MODEL_CACHE_DIR, self.model_config.name)
self.train_dir = os.path.join(CLIPS_DIR, self.model_config.name, "train")
self.interpreter: Interpreter | None = None
self.interpreter: Interpreter = None
self.sub_label_publisher = sub_label_publisher
self.requestor = requestor
self.tensor_input_details: dict[str, Any] | None = None
@@ -366,7 +378,6 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
self.__build_detector()
@redirect_output_to_logger(logger, logging.DEBUG)
def __build_detector(self) -> None:
model_path = os.path.join(self.model_dir, "model.tflite")
labelmap_path = os.path.join(self.model_dir, "labelmap.txt")
@@ -378,11 +389,13 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
self.labelmap = {}
return
self.interpreter = Interpreter(
model_path=model_path,
num_threads=2,
)
self.interpreter.allocate_tensors()
# Suppress TFLite delegate creation messages that bypass Python logging
with suppress_stderr_during("tflite_interpreter_init"):
self.interpreter = Interpreter(
model_path=model_path,
num_threads=2,
)
self.interpreter.allocate_tensors()
self.tensor_input_details = self.interpreter.get_input_details()
self.tensor_output_details = self.interpreter.get_output_details()
self.labelmap = load_labels(labelmap_path, prefill=0)
@@ -508,6 +521,13 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
0.0,
max_files=save_attempts,
)
# Still track history even when model doesn't exist to respect MAX_OBJECT_CLASSIFICATIONS
# Add an entry with "unknown" label so the history limit is enforced
if object_id not in self.classification_history:
self.classification_history[object_id] = []
self.classification_history[object_id].append(("unknown", 0.0, now))
return
input = np.expand_dims(resized_crop, axis=0)
@@ -649,5 +669,5 @@ def write_classification_attempt(
if len(files) > max_files:
os.unlink(os.path.join(folder, files[-1]))
except FileNotFoundError:
except (FileNotFoundError, OSError):
pass

View File

@@ -131,6 +131,7 @@ class ONNXModelRunner(BaseModelRunner):
return model_type in [
EnrichmentModelTypeEnum.paddleocr.value,
EnrichmentModelTypeEnum.yolov9_license_plate.value,
EnrichmentModelTypeEnum.jina_v1.value,
EnrichmentModelTypeEnum.jina_v2.value,
EnrichmentModelTypeEnum.facenet.value,
@@ -169,6 +170,7 @@ class CudaGraphRunner(BaseModelRunner):
return model_type not in [
ModelTypeEnum.yolonas.value,
ModelTypeEnum.dfine.value,
EnrichmentModelTypeEnum.paddleocr.value,
EnrichmentModelTypeEnum.jina_v1.value,
EnrichmentModelTypeEnum.jina_v2.value,

View File

@@ -5,7 +5,7 @@ from typing_extensions import Literal
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig
from frigate.log import redirect_output_to_logger
from frigate.log import suppress_stderr_during
from ..detector_utils import tflite_detect_raw, tflite_init
@@ -28,12 +28,13 @@ class CpuDetectorConfig(BaseDetectorConfig):
class CpuTfl(DetectionApi):
type_key = DETECTOR_KEY
@redirect_output_to_logger(logger, logging.DEBUG)
def __init__(self, detector_config: CpuDetectorConfig):
interpreter = Interpreter(
model_path=detector_config.model.path,
num_threads=detector_config.num_threads or 3,
)
# Suppress TFLite delegate creation messages that bypass Python logging
with suppress_stderr_during("tflite_interpreter_init"):
interpreter = Interpreter(
model_path=detector_config.model.path,
num_threads=detector_config.num_threads or 3,
)
tflite_init(self, interpreter)

View File

@@ -8,7 +8,7 @@ import cv2
import numpy as np
from pydantic import Field
from frigate.const import MODEL_CACHE_DIR
from frigate.const import MODEL_CACHE_DIR, SUPPORTED_RK_SOCS
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detection_runners import RKNNModelRunner
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum
@@ -19,8 +19,6 @@ logger = logging.getLogger(__name__)
DETECTOR_KEY = "rknn"
supported_socs = ["rk3562", "rk3566", "rk3568", "rk3576", "rk3588"]
supported_models = {
ModelTypeEnum.yologeneric: "^frigate-fp16-yolov9-[cemst]$",
ModelTypeEnum.yolonas: "^deci-fp16-yolonas_[sml]$",
@@ -82,9 +80,9 @@ class Rknn(DetectionApi):
except FileNotFoundError:
raise Exception("Make sure to run docker in privileged mode.")
if soc not in supported_socs:
if soc not in SUPPORTED_RK_SOCS:
raise Exception(
f"Your SoC is not supported. Your SoC is: {soc}. Currently these SoCs are supported: {supported_socs}."
f"Your SoC is not supported. Your SoC is: {soc}. Currently these SoCs are supported: {SUPPORTED_RK_SOCS}."
)
return soc

View File

@@ -522,6 +522,8 @@ class EmbeddingMaintainer(threading.Thread):
)
elif isinstance(processor, ObjectDescriptionProcessor):
if not updated_db:
# Still need to cleanup tracked events even if not processing
processor.cleanup_event(event_id)
continue
processor.process_data(

View File

@@ -8,7 +8,7 @@ import numpy as np
from frigate.const import MODEL_CACHE_DIR
from frigate.detectors.detection_runners import get_optimized_runner
from frigate.embeddings.types import EnrichmentModelTypeEnum
from frigate.log import redirect_output_to_logger
from frigate.log import suppress_stderr_during
from frigate.util.downloader import ModelDownloader
from ...config import FaceRecognitionConfig
@@ -57,17 +57,18 @@ class FaceNetEmbedding(BaseEmbedding):
self._load_model_and_utils()
logger.debug(f"models are already downloaded for {self.model_name}")
@redirect_output_to_logger(logger, logging.DEBUG)
def _load_model_and_utils(self):
if self.runner is None:
if self.downloader:
self.downloader.wait_for_download()
self.runner = Interpreter(
model_path=os.path.join(MODEL_CACHE_DIR, "facedet/facenet.tflite"),
num_threads=2,
)
self.runner.allocate_tensors()
# Suppress TFLite delegate creation messages that bypass Python logging
with suppress_stderr_during("tflite_interpreter_init"):
self.runner = Interpreter(
model_path=os.path.join(MODEL_CACHE_DIR, "facedet/facenet.tflite"),
num_threads=2,
)
self.runner.allocate_tensors()
self.tensor_input_details = self.runner.get_input_details()
self.tensor_output_details = self.runner.get_output_details()

View File

@@ -186,6 +186,9 @@ class JinaV1ImageEmbedding(BaseEmbedding):
download_func=self._download_model,
)
self.downloader.ensure_model_files()
# Avoid lazy loading in worker threads: block until downloads complete
# and load the model on the main thread during initialization.
self._load_model_and_utils()
else:
self.downloader = None
ModelDownloader.mark_files_state(

View File

@@ -65,6 +65,9 @@ class JinaV2Embedding(BaseEmbedding):
download_func=self._download_model,
)
self.downloader.ensure_model_files()
# Avoid lazy loading in worker threads: block until downloads complete
# and load the model on the main thread during initialization.
self._load_model_and_utils()
else:
self.downloader = None
ModelDownloader.mark_files_state(

View File

@@ -34,7 +34,7 @@ from frigate.data_processing.real_time.audio_transcription import (
AudioTranscriptionRealTimeProcessor,
)
from frigate.ffmpeg_presets import parse_preset_input
from frigate.log import LogPipe, redirect_output_to_logger
from frigate.log import LogPipe, suppress_stderr_during
from frigate.object_detection.base import load_labels
from frigate.util.builtin import get_ffmpeg_arg_list
from frigate.util.process import FrigateProcess
@@ -367,17 +367,17 @@ class AudioEventMaintainer(threading.Thread):
class AudioTfl:
@redirect_output_to_logger(logger, logging.DEBUG)
def __init__(self, stop_event: threading.Event, num_threads=2):
self.stop_event = stop_event
self.num_threads = num_threads
self.labels = load_labels("/audio-labelmap.txt", prefill=521)
self.interpreter = Interpreter(
model_path="/cpu_audio_model.tflite",
num_threads=self.num_threads,
)
self.interpreter.allocate_tensors()
# Suppress TFLite delegate creation messages that bypass Python logging
with suppress_stderr_during("tflite_interpreter_init"):
self.interpreter = Interpreter(
model_path="/cpu_audio_model.tflite",
num_threads=self.num_threads,
)
self.interpreter.allocate_tensors()
self.tensor_input_details = self.interpreter.get_input_details()
self.tensor_output_details = self.interpreter.get_output_details()

View File

@@ -46,7 +46,7 @@ def should_update_state(prev_event: Event, current_event: Event) -> bool:
if prev_event["sub_label"] != current_event["sub_label"]:
return True
if len(prev_event["current_zones"]) < len(current_event["current_zones"]):
if set(prev_event["current_zones"]) != set(current_event["current_zones"]):
return True
return False

View File

@@ -153,7 +153,7 @@ PRESETS_HW_ACCEL_ENCODE_BIRDSEYE = {
FFMPEG_HWACCEL_VAAPI: "{0} -hide_banner -hwaccel vaapi -hwaccel_output_format vaapi -hwaccel_device {3} {1} -c:v h264_vaapi -g 50 -bf 0 -profile:v high -level:v 4.1 -sei:v 0 -an -vf format=vaapi|nv12,hwupload {2}",
"preset-intel-qsv-h264": "{0} -hide_banner {1} -c:v h264_qsv -g 50 -bf 0 -profile:v high -level:v 4.1 -async_depth:v 1 {2}",
"preset-intel-qsv-h265": "{0} -hide_banner {1} -c:v h264_qsv -g 50 -bf 0 -profile:v main -level:v 4.1 -async_depth:v 1 {2}",
FFMPEG_HWACCEL_NVIDIA: "{0} -hide_banner {1} -hwaccel cuda -hwaccel_device {3} -c:v h264_nvenc -g 50 -profile:v high -level:v auto -preset:v p2 -tune:v ll {2}",
FFMPEG_HWACCEL_NVIDIA: "{0} -hide_banner {1} -c:v h264_nvenc -g 50 -profile:v high -level:v auto -preset:v p2 -tune:v ll {2}",
"preset-jetson-h264": "{0} -hide_banner {1} -c:v h264_nvmpi -profile high {2}",
"preset-jetson-h265": "{0} -hide_banner {1} -c:v h264_nvmpi -profile main {2}",
FFMPEG_HWACCEL_RKMPP: "{0} -hide_banner {1} -c:v h264_rkmpp -profile:v high {2}",

View File

@@ -178,6 +178,7 @@ Each line represents a detection state, not necessarily unique individuals. Pare
start_ts: float,
end_ts: float,
events: list[dict[str, Any]],
preferred_language: str | None,
debug_save: bool,
) -> str | None:
"""Generate a summary of review item descriptions over a period of time."""
@@ -232,6 +233,9 @@ Guidelines:
for event in events:
timeline_summary_prompt += f"\n{event}\n"
if preferred_language:
timeline_summary_prompt += f"\nProvide your answer in {preferred_language}"
if debug_save:
with open(
os.path.join(

View File

@@ -1,101 +0,0 @@
"""llama.cpp Provider for Frigate AI."""
import base64
import logging
from typing import Any, Optional
import requests
from frigate.config import GenAIProviderEnum
from frigate.genai import GenAIClient, register_genai_provider
logger = logging.getLogger(__name__)
@register_genai_provider(GenAIProviderEnum.llamacpp)
class LlamaCppClient(GenAIClient):
"""Generative AI client for Frigate using llama.cpp server."""
LOCAL_OPTIMIZED_OPTIONS = {
"temperature": 0.7,
"repeat_penalty": 1.05,
"top_p": 0.8,
}
provider: str # base_url
provider_options: dict[str, Any]
def _init_provider(self):
"""Initialize the client."""
self.provider_options = {
**self.LOCAL_OPTIMIZED_OPTIONS,
**self.genai_config.provider_options,
}
return (
self.genai_config.base_url.rstrip("/")
if self.genai_config.base_url
else None
)
def _send(self, prompt: str, images: list[bytes]) -> Optional[str]:
"""Submit a request to llama.cpp server."""
if self.provider is None:
logger.warning(
"llama.cpp provider has not been initialized, a description will not be generated. Check your llama.cpp configuration."
)
return None
try:
content = []
for image in images:
encoded_image = base64.b64encode(image).decode("utf-8")
content.append(
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{encoded_image}",
},
}
)
content.append(
{
"type": "text",
"text": prompt,
}
)
# Build request payload with llama.cpp native options
payload = {
"messages": [
{
"role": "user",
"content": content,
},
],
**self.provider_options,
}
response = requests.post(
f"{self.provider}/v1/chat/completions",
json=payload,
timeout=self.timeout,
)
response.raise_for_status()
result = response.json()
if (
result is not None
and "choices" in result
and len(result["choices"]) > 0
):
choice = result["choices"][0]
if "message" in choice and "content" in choice["message"]:
return choice["message"]["content"].strip()
return None
except Exception as e:
logger.warning("llama.cpp returned an error: %s", str(e))
return None
def get_context_size(self) -> int:
"""Get the context window size for llama.cpp."""
return self.genai_config.provider_options.get("context_size", 4096)

View File

View File

@@ -1,21 +0,0 @@
"""Generic base class for long-running background jobs."""
from dataclasses import asdict, dataclass, field
from typing import Any, Optional
@dataclass
class Job:
"""Base class for long-running background jobs."""
id: str = field(default_factory=lambda: __import__("uuid").uuid4().__str__()[:12])
job_type: str = "" # Must be set by subclasses
status: str = "queued" # queued, running, success, failed, cancelled
results: Optional[dict[str, Any]] = None
start_time: Optional[float] = None
end_time: Optional[float] = None
error_message: Optional[str] = None
def to_dict(self) -> dict[str, Any]:
"""Convert to dictionary for WebSocket transmission."""
return asdict(self)

View File

@@ -1,70 +0,0 @@
"""Generic job management for long-running background tasks."""
import threading
from typing import Optional
from frigate.jobs.job import Job
from frigate.types import JobStatusTypesEnum
# Global state and locks for enforcing single concurrent job per job type
_job_locks: dict[str, threading.Lock] = {}
_current_jobs: dict[str, Optional[Job]] = {}
# Keep completed jobs for retrieval, keyed by (job_type, job_id)
_completed_jobs: dict[tuple[str, str], Job] = {}
def _get_lock(job_type: str) -> threading.Lock:
"""Get or create a lock for the specified job type."""
if job_type not in _job_locks:
_job_locks[job_type] = threading.Lock()
return _job_locks[job_type]
def set_current_job(job: Job) -> None:
"""Set the current job for a given job type."""
lock = _get_lock(job.job_type)
with lock:
# Store the previous job if it was completed
old_job = _current_jobs.get(job.job_type)
if old_job and old_job.status in (
JobStatusTypesEnum.success,
JobStatusTypesEnum.failed,
JobStatusTypesEnum.cancelled,
):
_completed_jobs[(job.job_type, old_job.id)] = old_job
_current_jobs[job.job_type] = job
def clear_current_job(job_type: str, job_id: Optional[str] = None) -> None:
"""Clear the current job for a given job type, optionally checking the ID."""
lock = _get_lock(job_type)
with lock:
if job_type in _current_jobs:
current = _current_jobs[job_type]
if current is None or (job_id is None or current.id == job_id):
_current_jobs[job_type] = None
def get_current_job(job_type: str) -> Optional[Job]:
"""Get the current running/queued job for a given job type, if any."""
lock = _get_lock(job_type)
with lock:
return _current_jobs.get(job_type)
def get_job_by_id(job_type: str, job_id: str) -> Optional[Job]:
"""Get job by ID. Checks current job first, then completed jobs."""
lock = _get_lock(job_type)
with lock:
# Check if it's the current job
current = _current_jobs.get(job_type)
if current and current.id == job_id:
return current
# Check if it's a completed job
return _completed_jobs.get((job_type, job_id))
def job_is_running(job_type: str) -> bool:
"""Check if a job of the given type is currently running or queued."""
job = get_current_job(job_type)
return job is not None and job.status in ("queued", "running")

View File

@@ -1,135 +0,0 @@
"""Media sync job management with background execution."""
import logging
import threading
from dataclasses import dataclass, field
from datetime import datetime
from typing import Optional
from frigate.comms.inter_process import InterProcessRequestor
from frigate.const import UPDATE_JOB_STATE
from frigate.jobs.job import Job
from frigate.jobs.manager import (
get_current_job,
get_job_by_id,
job_is_running,
set_current_job,
)
from frigate.types import JobStatusTypesEnum
from frigate.util.media import sync_all_media
logger = logging.getLogger(__name__)
@dataclass
class MediaSyncJob(Job):
"""In-memory job state for media sync operations."""
job_type: str = "media_sync"
dry_run: bool = False
media_types: list[str] = field(default_factory=lambda: ["all"])
force: bool = False
class MediaSyncRunner(threading.Thread):
"""Thread-based runner for media sync jobs."""
def __init__(self, job: MediaSyncJob) -> None:
super().__init__(daemon=True, name="media_sync")
self.job = job
self.requestor = InterProcessRequestor()
def run(self) -> None:
"""Execute the media sync job and broadcast status updates."""
try:
# Update job status to running
self.job.status = JobStatusTypesEnum.running
self.job.start_time = datetime.now().timestamp()
self._broadcast_status()
# Execute sync with provided parameters
logger.debug(
f"Starting media sync job {self.job.id}: "
f"media_types={self.job.media_types}, "
f"dry_run={self.job.dry_run}, "
f"force={self.job.force}"
)
results = sync_all_media(
dry_run=self.job.dry_run,
media_types=self.job.media_types,
force=self.job.force,
)
# Store results and mark as complete
self.job.results = results.to_dict()
self.job.status = JobStatusTypesEnum.success
self.job.end_time = datetime.now().timestamp()
logger.debug(f"Media sync job {self.job.id} completed successfully")
self._broadcast_status()
except Exception as e:
logger.error(f"Media sync job {self.job.id} failed: {e}", exc_info=True)
self.job.status = JobStatusTypesEnum.failed
self.job.error_message = str(e)
self.job.end_time = datetime.now().timestamp()
self._broadcast_status()
finally:
if self.requestor:
self.requestor.stop()
def _broadcast_status(self) -> None:
"""Broadcast job status update via IPC to all WebSocket subscribers."""
try:
self.requestor.send_data(
UPDATE_JOB_STATE,
self.job.to_dict(),
)
except Exception as e:
logger.warning(f"Failed to broadcast media sync status: {e}")
def start_media_sync_job(
dry_run: bool = False,
media_types: Optional[list[str]] = None,
force: bool = False,
) -> Optional[str]:
"""Start a new media sync job if none is currently running.
Returns job ID on success, None if job already running.
"""
# Check if a job is already running
if job_is_running("media_sync"):
current = get_current_job("media_sync")
logger.warning(
f"Media sync job {current.id} is already running. Rejecting new request."
)
return None
# Create and start new job
job = MediaSyncJob(
dry_run=dry_run,
media_types=media_types or ["all"],
force=force,
)
logger.debug(f"Creating new media sync job: {job.id}")
set_current_job(job)
# Start the background runner
runner = MediaSyncRunner(job)
runner.start()
return job.id
def get_current_media_sync_job() -> Optional[MediaSyncJob]:
"""Get the current running/queued media sync job, if any."""
return get_current_job("media_sync")
def get_media_sync_job_by_id(job_id: str) -> Optional[MediaSyncJob]:
"""Get media sync job by ID. Currently only tracks the current job."""
return get_job_by_id("media_sync", job_id)

View File

@@ -80,10 +80,15 @@ def apply_log_levels(default: str, log_levels: dict[str, LogLevel]) -> None:
log_levels = {
"absl": LogLevel.error,
"httpx": LogLevel.error,
"h5py": LogLevel.error,
"keras": LogLevel.error,
"matplotlib": LogLevel.error,
"tensorflow": LogLevel.error,
"tensorflow.python": LogLevel.error,
"werkzeug": LogLevel.error,
"ws4py": LogLevel.error,
"PIL": LogLevel.warning,
"numba": LogLevel.warning,
**log_levels,
}
@@ -318,3 +323,31 @@ def suppress_os_output(func: Callable) -> Callable:
return result
return wrapper
@contextmanager
def suppress_stderr_during(operation_name: str) -> Generator[None, None, None]:
"""
Context manager to suppress stderr output during a specific operation.
Useful for silencing LLVM debug output, CUDA messages, and other native
library logging that cannot be controlled via Python logging or environment
variables. Completely redirects file descriptor 2 (stderr) to /dev/null.
Usage:
with suppress_stderr_during("model_conversion"):
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
Args:
operation_name: Name of the operation for debugging purposes
"""
original_stderr_fd = os.dup(2)
devnull = os.open(os.devnull, os.O_WRONLY)
try:
os.dup2(devnull, 2)
yield
finally:
os.dup2(original_stderr_fd, 2)
os.close(devnull)
os.close(original_stderr_fd)

View File

@@ -80,14 +80,6 @@ class Recordings(Model):
regions = IntegerField(null=True)
class ExportCase(Model):
id = CharField(null=False, primary_key=True, max_length=30)
name = CharField(index=True, max_length=100)
description = TextField(null=True)
created_at = DateTimeField()
updated_at = DateTimeField()
class Export(Model):
id = CharField(null=False, primary_key=True, max_length=30)
camera = CharField(index=True, max_length=20)
@@ -96,12 +88,6 @@ class Export(Model):
video_path = CharField(unique=True)
thumb_path = CharField(unique=True)
in_progress = BooleanField()
export_case = ForeignKeyField(
ExportCase,
null=True,
backref="exports",
column_name="export_case_id",
)
class ReviewSegment(Model):

View File

@@ -13,8 +13,9 @@ from playhouse.sqlite_ext import SqliteExtDatabase
from frigate.config import CameraConfig, FrigateConfig, RetainModeEnum
from frigate.const import CACHE_DIR, CLIPS_DIR, MAX_WAL_SIZE, RECORD_DIR
from frigate.models import Previews, Recordings, ReviewSegment, UserReviewStatus
from frigate.record.util import remove_empty_directories, sync_recordings
from frigate.util.builtin import clear_and_unlink
from frigate.util.media import remove_empty_directories
from frigate.util.time import get_tomorrow_at_time
logger = logging.getLogger(__name__)
@@ -118,6 +119,7 @@ class RecordingCleanup(threading.Thread):
Recordings.path,
Recordings.objects,
Recordings.motion,
Recordings.dBFS,
)
.where(
(Recordings.camera == config.name)
@@ -125,6 +127,7 @@ class RecordingCleanup(threading.Thread):
(
(Recordings.end_time < continuous_expire_date)
& (Recordings.motion == 0)
& (Recordings.dBFS == 0)
)
| (Recordings.end_time < motion_expire_date)
)
@@ -184,6 +187,7 @@ class RecordingCleanup(threading.Thread):
mode == RetainModeEnum.motion
and recording.motion == 0
and recording.objects == 0
and recording.dBFS == 0
)
or (mode == RetainModeEnum.active_objects and recording.objects == 0)
):
@@ -346,6 +350,11 @@ class RecordingCleanup(threading.Thread):
logger.debug("End expire recordings.")
def run(self) -> None:
# on startup sync recordings with disk if enabled
if self.config.record.sync_recordings:
sync_recordings(limited=False)
next_sync = get_tomorrow_at_time(3)
# Expire tmp clips every minute, recordings and clean directories every hour.
for counter in itertools.cycle(range(self.config.record.expire_interval)):
if self.stop_event.wait(60):
@@ -354,6 +363,14 @@ class RecordingCleanup(threading.Thread):
self.clean_tmp_previews()
if (
self.config.record.sync_recordings
and datetime.datetime.now().astimezone(datetime.timezone.utc)
> next_sync
):
sync_recordings(limited=True)
next_sync = get_tomorrow_at_time(3)
if counter == 0:
self.clean_tmp_clips()
self.expire_recordings()

View File

@@ -64,7 +64,6 @@ class RecordingExporter(threading.Thread):
end_time: int,
playback_factor: PlaybackFactorEnum,
playback_source: PlaybackSourceEnum,
export_case_id: Optional[str] = None,
) -> None:
super().__init__()
self.config = config
@@ -76,7 +75,6 @@ class RecordingExporter(threading.Thread):
self.end_time = end_time
self.playback_factor = playback_factor
self.playback_source = playback_source
self.export_case_id = export_case_id
# ensure export thumb dir
Path(os.path.join(CLIPS_DIR, "export")).mkdir(exist_ok=True)
@@ -228,7 +226,7 @@ class RecordingExporter(threading.Thread):
ffmpeg_cmd = (
parse_preset_hardware_acceleration_encode(
self.config.ffmpeg.ffmpeg_path,
self.config.cameras[self.camera].record.export.hwaccel_args,
self.config.ffmpeg.hwaccel_args,
f"-an {ffmpeg_input}",
f"{self.config.cameras[self.camera].record.export.timelapse_args} -movflags +faststart",
EncodeTypeEnum.timelapse,
@@ -319,7 +317,7 @@ class RecordingExporter(threading.Thread):
ffmpeg_cmd = (
parse_preset_hardware_acceleration_encode(
self.config.ffmpeg.ffmpeg_path,
self.config.cameras[self.camera].record.export.hwaccel_args,
self.config.ffmpeg.hwaccel_args,
f"{TIMELAPSE_DATA_INPUT_ARGS} {ffmpeg_input}",
f"{self.config.cameras[self.camera].record.export.timelapse_args} -movflags +faststart {video_path}",
EncodeTypeEnum.timelapse,
@@ -350,20 +348,17 @@ class RecordingExporter(threading.Thread):
video_path = f"{EXPORT_DIR}/{self.camera}_{filename_start_datetime}-{filename_end_datetime}_{cleaned_export_id}.mp4"
thumb_path = self.save_thumbnail(self.export_id)
export_values = {
Export.id: self.export_id,
Export.camera: self.camera,
Export.name: export_name,
Export.date: self.start_time,
Export.video_path: video_path,
Export.thumb_path: thumb_path,
Export.in_progress: True,
}
if self.export_case_id is not None:
export_values[Export.export_case] = self.export_case_id
Export.insert(export_values).execute()
Export.insert(
{
Export.id: self.export_id,
Export.camera: self.camera,
Export.name: export_name,
Export.date: self.start_time,
Export.video_path: video_path,
Export.thumb_path: thumb_path,
Export.in_progress: True,
}
).execute()
try:
if self.playback_source == PlaybackSourceEnum.recordings:

View File

@@ -67,7 +67,7 @@ class SegmentInfo:
if (
not keep
and retain_mode == RetainModeEnum.motion
and (self.motion_count > 0 or self.average_dBFS > 0)
and (self.motion_count > 0 or self.average_dBFS != 0)
):
keep = True

147
frigate/record/util.py Normal file
View File

@@ -0,0 +1,147 @@
"""Recordings Utilities."""
import datetime
import logging
import os
from peewee import DatabaseError, chunked
from frigate.const import RECORD_DIR
from frigate.models import Recordings, RecordingsToDelete
logger = logging.getLogger(__name__)
def remove_empty_directories(directory: str) -> None:
# list all directories recursively and sort them by path,
# longest first
paths = sorted(
[x[0] for x in os.walk(directory)],
key=lambda p: len(str(p)),
reverse=True,
)
for path in paths:
# don't delete the parent
if path == directory:
continue
if len(os.listdir(path)) == 0:
os.rmdir(path)
def sync_recordings(limited: bool) -> None:
"""Check the db for stale recordings entries that don't exist in the filesystem."""
def delete_db_entries_without_file(check_timestamp: float) -> bool:
"""Delete db entries where file was deleted outside of frigate."""
if limited:
recordings = Recordings.select(Recordings.id, Recordings.path).where(
Recordings.start_time >= check_timestamp
)
else:
# get all recordings in the db
recordings = Recordings.select(Recordings.id, Recordings.path)
# Use pagination to process records in chunks
page_size = 1000
num_pages = (recordings.count() + page_size - 1) // page_size
recordings_to_delete = set()
for page in range(num_pages):
for recording in recordings.paginate(page, page_size):
if not os.path.exists(recording.path):
recordings_to_delete.add(recording.id)
if len(recordings_to_delete) == 0:
return True
logger.info(
f"Deleting {len(recordings_to_delete)} recording DB entries with missing files"
)
# convert back to list of dictionaries for insertion
recordings_to_delete = [
{"id": recording_id} for recording_id in recordings_to_delete
]
if float(len(recordings_to_delete)) / max(1, recordings.count()) > 0.5:
logger.warning(
f"Deleting {(len(recordings_to_delete) / max(1, recordings.count()) * 100):.2f}% of recordings DB entries, could be due to configuration error. Aborting..."
)
return False
# create a temporary table for deletion
RecordingsToDelete.create_table(temporary=True)
# insert ids to the temporary table
max_inserts = 1000
for batch in chunked(recordings_to_delete, max_inserts):
RecordingsToDelete.insert_many(batch).execute()
try:
# delete records in the main table that exist in the temporary table
query = Recordings.delete().where(
Recordings.id.in_(RecordingsToDelete.select(RecordingsToDelete.id))
)
query.execute()
except DatabaseError as e:
logger.error(f"Database error during recordings db cleanup: {e}")
return True
def delete_files_without_db_entry(files_on_disk: list[str]):
"""Delete files where file is not inside frigate db."""
files_to_delete = []
for file in files_on_disk:
if not Recordings.select().where(Recordings.path == file).exists():
files_to_delete.append(file)
if len(files_to_delete) == 0:
return True
logger.info(
f"Deleting {len(files_to_delete)} recordings files with missing DB entries"
)
if float(len(files_to_delete)) / max(1, len(files_on_disk)) > 0.5:
logger.debug(
f"Deleting {(len(files_to_delete) / max(1, len(files_on_disk)) * 100):.2f}% of recordings DB entries, could be due to configuration error. Aborting..."
)
return False
for file in files_to_delete:
os.unlink(file)
return True
logger.debug("Start sync recordings.")
# start checking on the hour 36 hours ago
check_point = datetime.datetime.now().replace(
minute=0, second=0, microsecond=0
).astimezone(datetime.timezone.utc) - datetime.timedelta(hours=36)
db_success = delete_db_entries_without_file(check_point.timestamp())
# only try to cleanup files if db cleanup was successful
if db_success:
if limited:
# get recording files from last 36 hours
hour_check = f"{RECORD_DIR}/{check_point.strftime('%Y-%m-%d/%H')}"
files_on_disk = {
os.path.join(root, file)
for root, _, files in os.walk(RECORD_DIR)
for file in files
if root > hour_check
}
else:
# get all recordings files on disk and put them in a set
files_on_disk = {
os.path.join(root, file)
for root, _, files in os.walk(RECORD_DIR)
for file in files
}
delete_files_without_db_entry(files_on_disk)
logger.debug("End sync recordings.")

View File

@@ -22,7 +22,6 @@ from frigate.util.services import (
get_bandwidth_stats,
get_cpu_stats,
get_fs_type,
get_hailo_temps,
get_intel_gpu_stats,
get_jetson_stats,
get_nvidia_gpu_stats,
@@ -92,80 +91,9 @@ def get_temperatures() -> dict[str, float]:
if temp is not None:
temps[apex] = temp
# Get temperatures for Hailo devices
temps.update(get_hailo_temps())
return temps
def get_detector_temperature(
detector_type: str,
detector_index_by_type: dict[str, int],
) -> Optional[float]:
"""Get temperature for a specific detector based on its type."""
if detector_type == "edgetpu":
# Get temperatures for all attached Corals
base = "/sys/class/apex/"
if os.path.isdir(base):
apex_devices = sorted(os.listdir(base))
index = detector_index_by_type.get("edgetpu", 0)
if index < len(apex_devices):
apex_name = apex_devices[index]
temp = read_temperature(os.path.join(base, apex_name, "temp"))
if temp is not None:
return temp
elif detector_type == "hailo8l":
# Get temperatures for Hailo devices
hailo_temps = get_hailo_temps()
if hailo_temps:
hailo_device_names = sorted(hailo_temps.keys())
index = detector_index_by_type.get("hailo8l", 0)
if index < len(hailo_device_names):
device_name = hailo_device_names[index]
return hailo_temps[device_name]
elif detector_type == "rknn":
# Rockchip temperatures are handled by the GPU / NPU stats
# as there are not detector specific temperatures
pass
return None
def get_detector_stats(
stats_tracking: StatsTrackingTypes,
) -> dict[str, dict[str, Any]]:
"""Get stats for all detectors, including temperatures based on detector type."""
detector_stats: dict[str, dict[str, Any]] = {}
detector_type_indices: dict[str, int] = {}
for name, detector in stats_tracking["detectors"].items():
pid = detector.detect_process.pid if detector.detect_process else None
detector_type = detector.detector_config.type
# Keep track of the index for each detector type to match temperatures correctly
current_index = detector_type_indices.get(detector_type, 0)
detector_type_indices[detector_type] = current_index + 1
detector_stat = {
"inference_speed": round(detector.avg_inference_speed.value * 1000, 2), # type: ignore[attr-defined]
# issue https://github.com/python/typeshed/issues/8799
# from mypy 0.981 onwards
"detection_start": detector.detection_start.value, # type: ignore[attr-defined]
# issue https://github.com/python/typeshed/issues/8799
# from mypy 0.981 onwards
"pid": pid,
}
temp = get_detector_temperature(detector_type, {detector_type: current_index})
if temp is not None:
detector_stat["temperature"] = round(temp, 1)
detector_stats[name] = detector_stat
return detector_stats
def get_processing_stats(
config: FrigateConfig, stats: dict[str, str], hwaccel_errors: list[str]
) -> None:
@@ -246,7 +174,6 @@ async def set_gpu_stats(
"mem": str(round(float(nvidia_usage[i]["mem"]), 2)) + "%",
"enc": str(round(float(nvidia_usage[i]["enc"]), 2)) + "%",
"dec": str(round(float(nvidia_usage[i]["dec"]), 2)) + "%",
"temp": str(nvidia_usage[i]["temp"]),
}
else:
@@ -352,32 +279,6 @@ def stats_snapshot(
if camera_stats.capture_process_pid.value
else None
)
# Calculate connection quality based on current state
# This is computed at stats-collection time so offline cameras
# correctly show as unusable rather than excellent
expected_fps = config.cameras[name].detect.fps
current_fps = camera_stats.camera_fps.value
reconnects = camera_stats.reconnects_last_hour.value
stalls = camera_stats.stalls_last_hour.value
if current_fps < 0.1:
quality_str = "unusable"
elif reconnects == 0 and current_fps >= 0.9 * expected_fps and stalls < 5:
quality_str = "excellent"
elif reconnects <= 2 and current_fps >= 0.6 * expected_fps:
quality_str = "fair"
elif reconnects > 10 or current_fps < 1.0 or stalls > 100:
quality_str = "unusable"
else:
quality_str = "poor"
connection_quality = {
"connection_quality": quality_str,
"expected_fps": expected_fps,
"reconnects_last_hour": reconnects,
"stalls_last_hour": stalls,
}
stats["cameras"][name] = {
"camera_fps": round(camera_stats.camera_fps.value, 2),
"process_fps": round(camera_stats.process_fps.value, 2),
@@ -389,10 +290,20 @@ def stats_snapshot(
"ffmpeg_pid": ffmpeg_pid,
"audio_rms": round(camera_stats.audio_rms.value, 4),
"audio_dBFS": round(camera_stats.audio_dBFS.value, 4),
**connection_quality,
}
stats["detectors"] = get_detector_stats(stats_tracking)
stats["detectors"] = {}
for name, detector in stats_tracking["detectors"].items():
pid = detector.detect_process.pid if detector.detect_process else None
stats["detectors"][name] = {
"inference_speed": round(detector.avg_inference_speed.value * 1000, 2), # type: ignore[attr-defined]
# issue https://github.com/python/typeshed/issues/8799
# from mypy 0.981 onwards
"detection_start": detector.detection_start.value, # type: ignore[attr-defined]
# issue https://github.com/python/typeshed/issues/8799
# from mypy 0.981 onwards
"pid": pid,
}
stats["camera_fps"] = round(total_camera_fps, 2)
stats["process_fps"] = round(total_process_fps, 2)
stats["skipped_fps"] = round(total_skipped_fps, 2)
@@ -478,6 +389,7 @@ def stats_snapshot(
"version": VERSION,
"latest_version": stats_tracking["latest_frigate_version"],
"storage": {},
"temperatures": get_temperatures(),
"last_updated": int(time.time()),
}

View File

@@ -86,11 +86,11 @@ class TimelineProcessor(threading.Thread):
event_data: dict[Any, Any],
) -> bool:
"""Handle object detection."""
save = False
camera_config = self.config.cameras[camera]
event_id = event_data["id"]
timeline_entry = {
# Base timeline entry data that all entries will share
base_entry = {
Timeline.timestamp: event_data["frame_time"],
Timeline.camera: camera,
Timeline.source: "tracked_object",
@@ -123,40 +123,64 @@ class TimelineProcessor(threading.Thread):
e[Timeline.data]["sub_label"] = event_data["sub_label"]
if event_type == EventStateEnum.start:
timeline_entry = base_entry.copy()
timeline_entry[Timeline.class_type] = "visible"
save = True
self.insert_or_save(timeline_entry, prev_event_data, event_data)
elif event_type == EventStateEnum.update:
# Check all conditions and create timeline entries for each change
entries_to_save = []
# Check for zone changes
prev_zones = set(prev_event_data["current_zones"])
current_zones = set(event_data["current_zones"])
zones_changed = prev_zones != current_zones
# Only save "entered_zone" events when the object is actually IN zones
if (
len(prev_event_data["current_zones"]) < len(event_data["current_zones"])
zones_changed
and not event_data["stationary"]
and len(current_zones) > 0
):
timeline_entry[Timeline.class_type] = "entered_zone"
timeline_entry[Timeline.data]["zones"] = event_data["current_zones"]
save = True
elif prev_event_data["stationary"] != event_data["stationary"]:
timeline_entry[Timeline.class_type] = (
zone_entry = base_entry.copy()
zone_entry[Timeline.class_type] = "entered_zone"
zone_entry[Timeline.data] = base_entry[Timeline.data].copy()
zone_entry[Timeline.data]["zones"] = event_data["current_zones"]
entries_to_save.append(zone_entry)
# Check for stationary status change
if prev_event_data["stationary"] != event_data["stationary"]:
stationary_entry = base_entry.copy()
stationary_entry[Timeline.class_type] = (
"stationary" if event_data["stationary"] else "active"
)
save = True
elif prev_event_data["attributes"] == {} and event_data["attributes"] != {}:
timeline_entry[Timeline.class_type] = "attribute"
timeline_entry[Timeline.data]["attribute"] = list(
stationary_entry[Timeline.data] = base_entry[Timeline.data].copy()
entries_to_save.append(stationary_entry)
# Check for new attributes
if prev_event_data["attributes"] == {} and event_data["attributes"] != {}:
attribute_entry = base_entry.copy()
attribute_entry[Timeline.class_type] = "attribute"
attribute_entry[Timeline.data] = base_entry[Timeline.data].copy()
attribute_entry[Timeline.data]["attribute"] = list(
event_data["attributes"].keys()
)[0]
if len(event_data["current_attributes"]) > 0:
timeline_entry[Timeline.data]["attribute_box"] = to_relative_box(
attribute_entry[Timeline.data]["attribute_box"] = to_relative_box(
camera_config.detect.width,
camera_config.detect.height,
event_data["current_attributes"][0]["box"],
)
save = True
elif event_type == EventStateEnum.end:
timeline_entry[Timeline.class_type] = "gone"
save = True
entries_to_save.append(attribute_entry)
if save:
# Save all entries
for entry in entries_to_save:
self.insert_or_save(entry, prev_event_data, event_data)
elif event_type == EventStateEnum.end:
timeline_entry = base_entry.copy()
timeline_entry[Timeline.class_type] = "gone"
self.insert_or_save(timeline_entry, prev_event_data, event_data)
def handle_api_entry(

View File

@@ -26,15 +26,6 @@ class ModelStatusTypesEnum(str, Enum):
failed = "failed"
class JobStatusTypesEnum(str, Enum):
pending = "pending"
queued = "queued"
running = "running"
success = "success"
failed = "failed"
cancelled = "cancelled"
class TrackedObjectUpdateTypesEnum(str, Enum):
description = "description"
face = "face"

View File

@@ -19,9 +19,10 @@ from frigate.const import (
PROCESS_PRIORITY_LOW,
UPDATE_MODEL_STATE,
)
from frigate.log import redirect_output_to_logger
from frigate.log import redirect_output_to_logger, suppress_stderr_during
from frigate.models import Event, Recordings, ReviewSegment
from frigate.types import ModelStatusTypesEnum
from frigate.util.downloader import ModelDownloader
from frigate.util.file import get_event_thumbnail_bytes
from frigate.util.image import get_image_from_recording
from frigate.util.process import FrigateProcess
@@ -121,6 +122,10 @@ def get_dataset_image_count(model_name: str) -> int:
class ClassificationTrainingProcess(FrigateProcess):
def __init__(self, model_name: str) -> None:
self.BASE_WEIGHT_URL = os.environ.get(
"TF_KERAS_MOBILENET_V2_WEIGHTS_URL",
"",
)
super().__init__(
stop_event=None,
priority=PROCESS_PRIORITY_LOW,
@@ -179,11 +184,23 @@ class ClassificationTrainingProcess(FrigateProcess):
)
return False
weights_path = "imagenet"
# Download MobileNetV2 weights if not present
if self.BASE_WEIGHT_URL:
weights_path = os.path.join(
MODEL_CACHE_DIR, "MobileNet", "mobilenet_v2_weights.h5"
)
if not os.path.exists(weights_path):
logger.info("Downloading MobileNet V2 weights file")
ModelDownloader.download_from_url(
self.BASE_WEIGHT_URL, weights_path
)
# Start with imagenet base model with 35% of channels in each layer
base_model = MobileNetV2(
input_shape=(224, 224, 3),
include_top=False,
weights="imagenet",
weights=weights_path,
alpha=0.35,
)
base_model.trainable = False # Freeze pre-trained layers
@@ -233,15 +250,20 @@ class ClassificationTrainingProcess(FrigateProcess):
logger.debug(f"Converting {self.model_name} to TFLite...")
# convert model to tflite
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = (
self.__generate_representative_dataset_factory(dataset_dir)
)
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.uint8
converter.inference_output_type = tf.uint8
tflite_model = converter.convert()
# Suppress stderr during conversion to avoid LLVM debug output
# (fully_quantize, inference_type, MLIR optimization messages, etc)
with suppress_stderr_during("tflite_conversion"):
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = (
self.__generate_representative_dataset_factory(dataset_dir)
)
converter.target_spec.supported_ops = [
tf.lite.OpsSet.TFLITE_BUILTINS_INT8
]
converter.inference_input_type = tf.uint8
converter.inference_output_type = tf.uint8
tflite_model = converter.convert()
# write model
model_path = os.path.join(model_dir, "model.tflite")
@@ -338,8 +360,6 @@ def collect_state_classification_examples(
cameras: Dict mapping camera names to normalized crop coordinates [x1, y1, x2, y2] (0-1)
"""
dataset_dir = os.path.join(CLIPS_DIR, model_name, "dataset")
temp_dir = os.path.join(dataset_dir, "temp")
os.makedirs(temp_dir, exist_ok=True)
# Step 1: Get review items for the cameras
camera_names = list(cameras.keys())
@@ -354,6 +374,10 @@ def collect_state_classification_examples(
logger.warning(f"No review items found for cameras: {camera_names}")
return
# The temp directory is only created when there are review_items.
temp_dir = os.path.join(dataset_dir, "temp")
os.makedirs(temp_dir, exist_ok=True)
# Step 2: Create balanced timestamp selection (100 samples)
timestamps = _select_balanced_timestamps(review_items, target_count=100)
@@ -482,6 +506,10 @@ def _extract_keyframes(
"""
Extract keyframes from recordings at specified timestamps and crop to specified regions.
This implementation batches work by running multiple ffmpeg snapshot commands
concurrently, which significantly reduces total runtime compared to
processing each timestamp serially.
Args:
ffmpeg_path: Path to ffmpeg binary
timestamps: List of timestamp dicts from _select_balanced_timestamps
@@ -491,15 +519,21 @@ def _extract_keyframes(
Returns:
List of paths to successfully extracted and cropped keyframe images
"""
keyframe_paths = []
from concurrent.futures import ThreadPoolExecutor, as_completed
for idx, ts_info in enumerate(timestamps):
if not timestamps:
return []
# Limit the number of concurrent ffmpeg processes so we don't overload the host.
max_workers = min(5, len(timestamps))
def _process_timestamp(idx: int, ts_info: dict) -> tuple[int, str | None]:
camera = ts_info["camera"]
timestamp = ts_info["timestamp"]
if camera not in camera_crops:
logger.warning(f"No crop coordinates for camera {camera}")
continue
return idx, None
norm_x1, norm_y1, norm_x2, norm_y2 = camera_crops[camera]
@@ -516,7 +550,7 @@ def _extract_keyframes(
.get()
)
except Exception:
continue
return idx, None
relative_time = timestamp - recording.start_time
@@ -530,38 +564,57 @@ def _extract_keyframes(
height=None,
)
if image_data:
nparr = np.frombuffer(image_data, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if not image_data:
return idx, None
if img is not None:
height, width = img.shape[:2]
nparr = np.frombuffer(image_data, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
x1 = int(norm_x1 * width)
y1 = int(norm_y1 * height)
x2 = int(norm_x2 * width)
y2 = int(norm_y2 * height)
if img is None:
return idx, None
x1_clipped = max(0, min(x1, width))
y1_clipped = max(0, min(y1, height))
x2_clipped = max(0, min(x2, width))
y2_clipped = max(0, min(y2, height))
height, width = img.shape[:2]
if x2_clipped > x1_clipped and y2_clipped > y1_clipped:
cropped = img[y1_clipped:y2_clipped, x1_clipped:x2_clipped]
resized = cv2.resize(cropped, (224, 224))
x1 = int(norm_x1 * width)
y1 = int(norm_y1 * height)
x2 = int(norm_x2 * width)
y2 = int(norm_y2 * height)
output_path = os.path.join(output_dir, f"frame_{idx:04d}.jpg")
cv2.imwrite(output_path, resized)
keyframe_paths.append(output_path)
x1_clipped = max(0, min(x1, width))
y1_clipped = max(0, min(y1, height))
x2_clipped = max(0, min(x2, width))
y2_clipped = max(0, min(y2, height))
if x2_clipped <= x1_clipped or y2_clipped <= y1_clipped:
return idx, None
cropped = img[y1_clipped:y2_clipped, x1_clipped:x2_clipped]
resized = cv2.resize(cropped, (224, 224))
output_path = os.path.join(output_dir, f"frame_{idx:04d}.jpg")
cv2.imwrite(output_path, resized)
return idx, output_path
except Exception as e:
logger.debug(
f"Failed to extract frame from {recording.path} at {relative_time}s: {e}"
)
continue
return idx, None
return keyframe_paths
keyframes_with_index: list[tuple[int, str]] = []
with ThreadPoolExecutor(max_workers=max_workers) as executor:
future_to_idx = {
executor.submit(_process_timestamp, idx, ts_info): idx
for idx, ts_info in enumerate(timestamps)
}
for future in as_completed(future_to_idx):
_, path = future.result()
if path:
keyframes_with_index.append((future_to_idx[future], path))
keyframes_with_index.sort(key=lambda item: item[0])
return [path for _, path in keyframes_with_index]
def _select_distinct_images(

View File

@@ -13,7 +13,7 @@ from frigate.util.services import get_video_properties
logger = logging.getLogger(__name__)
CURRENT_CONFIG_VERSION = "0.18-0"
CURRENT_CONFIG_VERSION = "0.17-0"
DEFAULT_CONFIG_FILE = os.path.join(CONFIG_DIR, "config.yml")
@@ -98,13 +98,6 @@ def migrate_frigate_config(config_file: str):
yaml.dump(new_config, f)
previous_version = "0.17-0"
if previous_version < "0.18-0":
logger.info(f"Migrating frigate config from {previous_version} to 0.18-0...")
new_config = migrate_018_0(config)
with open(config_file, "w") as f:
yaml.dump(new_config, f)
previous_version = "0.18-0"
logger.info("Finished frigate config migration...")
@@ -434,27 +427,6 @@ def migrate_017_0(config: dict[str, dict[str, Any]]) -> dict[str, dict[str, Any]
return new_config
def migrate_018_0(config: dict[str, dict[str, Any]]) -> dict[str, dict[str, Any]]:
"""Handle migrating frigate config to 0.18-0"""
new_config = config.copy()
# Remove deprecated sync_recordings from global record config
if new_config.get("record", {}).get("sync_recordings") is not None:
del new_config["record"]["sync_recordings"]
# Remove deprecated sync_recordings from camera-specific record configs
for name, camera in config.get("cameras", {}).items():
camera_config: dict[str, dict[str, Any]] = camera.copy()
if camera_config.get("record", {}).get("sync_recordings") is not None:
del camera_config["record"]["sync_recordings"]
new_config["cameras"][name] = camera_config
new_config["version"] = "0.18-0"
return new_config
def get_relative_coordinates(
mask: Optional[Union[str, list]], frame_shape: tuple[int, int]
) -> Union[str, list]:

View File

@@ -1,788 +0,0 @@
"""Recordings Utilities."""
import datetime
import logging
import os
from dataclasses import dataclass, field
from peewee import DatabaseError, chunked
from frigate.const import CLIPS_DIR, EXPORT_DIR, RECORD_DIR, THUMB_DIR
from frigate.models import (
Event,
Export,
Previews,
Recordings,
RecordingsToDelete,
ReviewSegment,
)
logger = logging.getLogger(__name__)
# Safety threshold - abort if more than 50% of files would be deleted
SAFETY_THRESHOLD = 0.5
@dataclass
class SyncResult:
"""Result of a sync operation."""
media_type: str
files_checked: int = 0
orphans_found: int = 0
orphans_deleted: int = 0
orphan_paths: list[str] = field(default_factory=list)
aborted: bool = False
error: str | None = None
def to_dict(self) -> dict:
return {
"media_type": self.media_type,
"files_checked": self.files_checked,
"orphans_found": self.orphans_found,
"orphans_deleted": self.orphans_deleted,
"aborted": self.aborted,
"error": self.error,
}
def remove_empty_directories(directory: str) -> None:
# list all directories recursively and sort them by path,
# longest first
paths = sorted(
[x[0] for x in os.walk(directory)],
key=lambda p: len(str(p)),
reverse=True,
)
for path in paths:
# don't delete the parent
if path == directory:
continue
if len(os.listdir(path)) == 0:
os.rmdir(path)
def sync_recordings(
limited: bool = False, dry_run: bool = False, force: bool = False
) -> SyncResult:
"""Sync recordings between the database and disk using the SyncResult format."""
result = SyncResult(media_type="recordings")
try:
logger.debug("Start sync recordings.")
# start checking on the hour 36 hours ago
check_point = datetime.datetime.now().replace(
minute=0, second=0, microsecond=0
).astimezone(datetime.timezone.utc) - datetime.timedelta(hours=36)
# Gather DB recordings to inspect
if limited:
recordings_query = Recordings.select(Recordings.id, Recordings.path).where(
Recordings.start_time >= check_point.timestamp()
)
else:
recordings_query = Recordings.select(Recordings.id, Recordings.path)
recordings_count = recordings_query.count()
page_size = 1000
num_pages = (recordings_count + page_size - 1) // page_size
recordings_to_delete: list[dict] = []
for page in range(num_pages):
for recording in recordings_query.paginate(page, page_size):
if not os.path.exists(recording.path):
recordings_to_delete.append(
{"id": recording.id, "path": recording.path}
)
result.orphans_found += len(recordings_to_delete)
result.orphan_paths.extend(
[
recording["path"]
for recording in recordings_to_delete
if recording.get("path")
]
)
if (
recordings_count
and len(recordings_to_delete) / recordings_count > SAFETY_THRESHOLD
):
if force:
logger.warning(
f"Deleting {(len(recordings_to_delete) / max(1, recordings_count) * 100):.2f}% of recordings DB entries (force=True, bypassing safety threshold)"
)
else:
logger.warning(
f"Deleting {(len(recordings_to_delete) / max(1, recordings_count) * 100):.2f}% of recordings DB entries, could be due to configuration error. Aborting..."
)
result.aborted = True
return result
if recordings_to_delete and not dry_run:
logger.info(
f"Deleting {len(recordings_to_delete)} recording DB entries with missing files"
)
RecordingsToDelete.create_table(temporary=True)
max_inserts = 1000
for batch in chunked(recordings_to_delete, max_inserts):
RecordingsToDelete.insert_many(batch).execute()
try:
deleted = (
Recordings.delete()
.where(
Recordings.id.in_(
RecordingsToDelete.select(RecordingsToDelete.id)
)
)
.execute()
)
result.orphans_deleted += int(deleted)
except DatabaseError as e:
logger.error(f"Database error during recordings db cleanup: {e}")
result.error = str(e)
result.aborted = True
return result
if result.aborted:
logger.warning("Recording DB sync aborted; skipping file cleanup.")
return result
# Only try to cleanup files if db cleanup was successful or dry_run
if limited:
# get recording files from last 36 hours
hour_check = f"{RECORD_DIR}/{check_point.strftime('%Y-%m-%d/%H')}"
files_on_disk = {
os.path.join(root, file)
for root, _, files in os.walk(RECORD_DIR)
for file in files
if root > hour_check
}
else:
# get all recordings files on disk and put them in a set
files_on_disk = {
os.path.join(root, file)
for root, _, files in os.walk(RECORD_DIR)
for file in files
}
result.files_checked = len(files_on_disk)
files_to_delete: list[str] = []
for file in files_on_disk:
if not Recordings.select().where(Recordings.path == file).exists():
files_to_delete.append(file)
result.orphans_found += len(files_to_delete)
result.orphan_paths.extend(files_to_delete)
if (
files_on_disk
and len(files_to_delete) / len(files_on_disk) > SAFETY_THRESHOLD
):
if force:
logger.warning(
f"Deleting {(len(files_to_delete) / max(1, len(files_on_disk)) * 100):.2f}% of recordings files (force=True, bypassing safety threshold)"
)
else:
logger.warning(
f"Deleting {(len(files_to_delete) / max(1, len(files_on_disk)) * 100):.2f}% of recordings files, could be due to configuration error. Aborting..."
)
result.aborted = True
return result
if dry_run:
logger.info(
f"Recordings sync (dry run): Found {len(files_to_delete)} orphaned files"
)
return result
# Delete orphans
logger.info(f"Deleting {len(files_to_delete)} orphaned recordings files")
for file in files_to_delete:
try:
os.unlink(file)
result.orphans_deleted += 1
except OSError as e:
logger.error(f"Failed to delete {file}: {e}")
logger.debug("End sync recordings.")
except Exception as e:
logger.error(f"Error syncing recordings: {e}")
result.error = str(e)
return result
def sync_event_snapshots(dry_run: bool = False, force: bool = False) -> SyncResult:
"""Sync event snapshots - delete files not referenced by any event.
Event snapshots are stored at: CLIPS_DIR/{camera}-{event_id}.jpg
Also checks for clean variants: {camera}-{event_id}-clean.webp and -clean.png
"""
result = SyncResult(media_type="event_snapshots")
try:
# Get all event IDs with snapshots from DB
events_with_snapshots = set(
f"{e.camera}-{e.id}"
for e in Event.select(Event.id, Event.camera).where(
Event.has_snapshot == True
)
)
# Find snapshot files on disk (directly in CLIPS_DIR, not subdirectories)
snapshot_files: list[tuple[str, str]] = [] # (full_path, base_name)
if os.path.isdir(CLIPS_DIR):
for file in os.listdir(CLIPS_DIR):
file_path = os.path.join(CLIPS_DIR, file)
if os.path.isfile(file_path) and file.endswith(
(".jpg", "-clean.webp", "-clean.png")
):
# Extract base name (camera-event_id) from filename
base_name = file
for suffix in ["-clean.webp", "-clean.png", ".jpg"]:
if file.endswith(suffix):
base_name = file[: -len(suffix)]
break
snapshot_files.append((file_path, base_name))
result.files_checked = len(snapshot_files)
# Find orphans
orphans: list[str] = []
for file_path, base_name in snapshot_files:
if base_name not in events_with_snapshots:
orphans.append(file_path)
result.orphans_found = len(orphans)
result.orphan_paths = orphans
if len(orphans) == 0:
return result
# Safety check
if (
result.files_checked > 0
and len(orphans) / result.files_checked > SAFETY_THRESHOLD
):
if force:
logger.warning(
f"Event snapshots sync: Would delete {len(orphans)}/{result.files_checked} "
f"({len(orphans) / result.files_checked * 100:.2f}%) files (force=True, bypassing safety threshold)."
)
else:
logger.warning(
f"Event snapshots sync: Would delete {len(orphans)}/{result.files_checked} "
f"({len(orphans) / result.files_checked * 100:.2f}%) files. "
"Aborting due to safety threshold."
)
result.aborted = True
return result
if dry_run:
logger.info(
f"Event snapshots sync (dry run): Found {len(orphans)} orphaned files"
)
return result
# Delete orphans
logger.info(f"Deleting {len(orphans)} orphaned event snapshot files")
for file_path in orphans:
try:
os.unlink(file_path)
result.orphans_deleted += 1
except OSError as e:
logger.error(f"Failed to delete {file_path}: {e}")
except Exception as e:
logger.error(f"Error syncing event snapshots: {e}")
result.error = str(e)
return result
def sync_event_thumbnails(dry_run: bool = False, force: bool = False) -> SyncResult:
"""Sync event thumbnails - delete files not referenced by any event.
Event thumbnails are stored at: THUMB_DIR/{camera}/{event_id}.webp
Only events without inline thumbnail (thumbnail field is None/empty) use files.
"""
result = SyncResult(media_type="event_thumbnails")
try:
# Get all events that use file-based thumbnails
# Events with thumbnail field populated don't need files
events_with_file_thumbs = set(
(e.camera, e.id)
for e in Event.select(Event.id, Event.camera, Event.thumbnail).where(
(Event.thumbnail.is_null(True)) | (Event.thumbnail == "")
)
)
# Find thumbnail files on disk
thumbnail_files: list[
tuple[str, str, str]
] = [] # (full_path, camera, event_id)
if os.path.isdir(THUMB_DIR):
for camera_dir in os.listdir(THUMB_DIR):
camera_path = os.path.join(THUMB_DIR, camera_dir)
if not os.path.isdir(camera_path):
continue
for file in os.listdir(camera_path):
if file.endswith(".webp"):
event_id = file[:-5] # Remove .webp
file_path = os.path.join(camera_path, file)
thumbnail_files.append((file_path, camera_dir, event_id))
result.files_checked = len(thumbnail_files)
# Find orphans - files where event doesn't exist or event has inline thumbnail
orphans: list[str] = []
for file_path, camera, event_id in thumbnail_files:
if (camera, event_id) not in events_with_file_thumbs:
# Check if event exists with inline thumbnail
event_exists = Event.select().where(Event.id == event_id).exists()
if not event_exists:
orphans.append(file_path)
# If event exists with inline thumbnail, the file is also orphaned
elif event_exists:
event = Event.get_or_none(Event.id == event_id)
if event and event.thumbnail:
orphans.append(file_path)
result.orphans_found = len(orphans)
result.orphan_paths = orphans
if len(orphans) == 0:
return result
# Safety check
if (
result.files_checked > 0
and len(orphans) / result.files_checked > SAFETY_THRESHOLD
):
if force:
logger.warning(
f"Event thumbnails sync: Would delete {len(orphans)}/{result.files_checked} "
f"({len(orphans) / result.files_checked * 100:.2f}%) files (force=True, bypassing safety threshold)."
)
else:
logger.warning(
f"Event thumbnails sync: Would delete {len(orphans)}/{result.files_checked} "
f"({len(orphans) / result.files_checked * 100:.2f}%) files. "
"Aborting due to safety threshold."
)
result.aborted = True
return result
if dry_run:
logger.info(
f"Event thumbnails sync (dry run): Found {len(orphans)} orphaned files"
)
return result
# Delete orphans
logger.info(f"Deleting {len(orphans)} orphaned event thumbnail files")
for file_path in orphans:
try:
os.unlink(file_path)
result.orphans_deleted += 1
except OSError as e:
logger.error(f"Failed to delete {file_path}: {e}")
except Exception as e:
logger.error(f"Error syncing event thumbnails: {e}")
result.error = str(e)
return result
def sync_review_thumbnails(dry_run: bool = False, force: bool = False) -> SyncResult:
"""Sync review segment thumbnails - delete files not referenced by any review segment.
Review thumbnails are stored at: CLIPS_DIR/review/thumb-{camera}-{review_id}.webp
The full path is stored in ReviewSegment.thumb_path
"""
result = SyncResult(media_type="review_thumbnails")
try:
# Get all thumb paths from DB
review_thumb_paths = set(
r.thumb_path
for r in ReviewSegment.select(ReviewSegment.thumb_path)
if r.thumb_path
)
# Find review thumbnail files on disk
review_dir = os.path.join(CLIPS_DIR, "review")
thumbnail_files: list[str] = []
if os.path.isdir(review_dir):
for file in os.listdir(review_dir):
if file.startswith("thumb-") and file.endswith(".webp"):
file_path = os.path.join(review_dir, file)
thumbnail_files.append(file_path)
result.files_checked = len(thumbnail_files)
# Find orphans
orphans: list[str] = []
for file_path in thumbnail_files:
if file_path not in review_thumb_paths:
orphans.append(file_path)
result.orphans_found = len(orphans)
result.orphan_paths = orphans
if len(orphans) == 0:
return result
# Safety check
if (
result.files_checked > 0
and len(orphans) / result.files_checked > SAFETY_THRESHOLD
):
if force:
logger.warning(
f"Review thumbnails sync: Would delete {len(orphans)}/{result.files_checked} "
f"({len(orphans) / result.files_checked * 100:.2f}%) files (force=True, bypassing safety threshold)."
)
else:
logger.warning(
f"Review thumbnails sync: Would delete {len(orphans)}/{result.files_checked} "
f"({len(orphans) / result.files_checked * 100:.2f}%) files. "
"Aborting due to safety threshold."
)
result.aborted = True
return result
if dry_run:
logger.info(
f"Review thumbnails sync (dry run): Found {len(orphans)} orphaned files"
)
return result
# Delete orphans
logger.info(f"Deleting {len(orphans)} orphaned review thumbnail files")
for file_path in orphans:
try:
os.unlink(file_path)
result.orphans_deleted += 1
except OSError as e:
logger.error(f"Failed to delete {file_path}: {e}")
except Exception as e:
logger.error(f"Error syncing review thumbnails: {e}")
result.error = str(e)
return result
def sync_previews(dry_run: bool = False, force: bool = False) -> SyncResult:
"""Sync preview files - delete files not referenced by any preview record.
Previews are stored at: CLIPS_DIR/previews/{camera}/*.mp4
The full path is stored in Previews.path
"""
result = SyncResult(media_type="previews")
try:
# Get all preview paths from DB
preview_paths = set(p.path for p in Previews.select(Previews.path) if p.path)
# Find preview files on disk
previews_dir = os.path.join(CLIPS_DIR, "previews")
preview_files: list[str] = []
if os.path.isdir(previews_dir):
for camera_dir in os.listdir(previews_dir):
camera_path = os.path.join(previews_dir, camera_dir)
if not os.path.isdir(camera_path):
continue
for file in os.listdir(camera_path):
if file.endswith(".mp4"):
file_path = os.path.join(camera_path, file)
preview_files.append(file_path)
result.files_checked = len(preview_files)
# Find orphans
orphans: list[str] = []
for file_path in preview_files:
if file_path not in preview_paths:
orphans.append(file_path)
result.orphans_found = len(orphans)
result.orphan_paths = orphans
if len(orphans) == 0:
return result
# Safety check
if (
result.files_checked > 0
and len(orphans) / result.files_checked > SAFETY_THRESHOLD
):
if force:
logger.warning(
f"Previews sync: Would delete {len(orphans)}/{result.files_checked} "
f"({len(orphans) / result.files_checked * 100:.2f}%) files (force=True, bypassing safety threshold)."
)
else:
logger.warning(
f"Previews sync: Would delete {len(orphans)}/{result.files_checked} "
f"({len(orphans) / result.files_checked * 100:.2f}%) files. "
"Aborting due to safety threshold."
)
result.aborted = True
return result
if dry_run:
logger.info(f"Previews sync (dry run): Found {len(orphans)} orphaned files")
return result
# Delete orphans
logger.info(f"Deleting {len(orphans)} orphaned preview files")
for file_path in orphans:
try:
os.unlink(file_path)
result.orphans_deleted += 1
except OSError as e:
logger.error(f"Failed to delete {file_path}: {e}")
except Exception as e:
logger.error(f"Error syncing previews: {e}")
result.error = str(e)
return result
def sync_exports(dry_run: bool = False, force: bool = False) -> SyncResult:
"""Sync export files - delete files not referenced by any export record.
Export videos are stored at: EXPORT_DIR/*.mp4
Export thumbnails are stored at: CLIPS_DIR/export/*.jpg
The paths are stored in Export.video_path and Export.thumb_path
"""
result = SyncResult(media_type="exports")
try:
# Get all export paths from DB
export_video_paths = set()
export_thumb_paths = set()
for e in Export.select(Export.video_path, Export.thumb_path):
if e.video_path:
export_video_paths.add(e.video_path)
if e.thumb_path:
export_thumb_paths.add(e.thumb_path)
# Find export video files on disk
export_files: list[str] = []
if os.path.isdir(EXPORT_DIR):
for file in os.listdir(EXPORT_DIR):
if file.endswith(".mp4"):
file_path = os.path.join(EXPORT_DIR, file)
export_files.append(file_path)
# Find export thumbnail files on disk
export_thumb_dir = os.path.join(CLIPS_DIR, "export")
thumb_files: list[str] = []
if os.path.isdir(export_thumb_dir):
for file in os.listdir(export_thumb_dir):
if file.endswith(".jpg"):
file_path = os.path.join(export_thumb_dir, file)
thumb_files.append(file_path)
result.files_checked = len(export_files) + len(thumb_files)
# Find orphans
orphans: list[str] = []
for file_path in export_files:
if file_path not in export_video_paths:
orphans.append(file_path)
for file_path in thumb_files:
if file_path not in export_thumb_paths:
orphans.append(file_path)
result.orphans_found = len(orphans)
result.orphan_paths = orphans
if len(orphans) == 0:
return result
# Safety check
if (
result.files_checked > 0
and len(orphans) / result.files_checked > SAFETY_THRESHOLD
):
if force:
logger.warning(
f"Exports sync: Would delete {len(orphans)}/{result.files_checked} "
f"({len(orphans) / result.files_checked * 100:.2f}%) files (force=True, bypassing safety threshold)."
)
else:
logger.warning(
f"Exports sync: Would delete {len(orphans)}/{result.files_checked} "
f"({len(orphans) / result.files_checked * 100:.2f}%) files. "
"Aborting due to safety threshold."
)
result.aborted = True
return result
if dry_run:
logger.info(f"Exports sync (dry run): Found {len(orphans)} orphaned files")
return result
# Delete orphans
logger.info(f"Deleting {len(orphans)} orphaned export files")
for file_path in orphans:
try:
os.unlink(file_path)
result.orphans_deleted += 1
except OSError as e:
logger.error(f"Failed to delete {file_path}: {e}")
except Exception as e:
logger.error(f"Error syncing exports: {e}")
result.error = str(e)
return result
@dataclass
class MediaSyncResults:
"""Combined results from all media sync operations."""
event_snapshots: SyncResult | None = None
event_thumbnails: SyncResult | None = None
review_thumbnails: SyncResult | None = None
previews: SyncResult | None = None
exports: SyncResult | None = None
recordings: SyncResult | None = None
@property
def total_files_checked(self) -> int:
total = 0
for result in [
self.event_snapshots,
self.event_thumbnails,
self.review_thumbnails,
self.previews,
self.exports,
self.recordings,
]:
if result:
total += result.files_checked
return total
@property
def total_orphans_found(self) -> int:
total = 0
for result in [
self.event_snapshots,
self.event_thumbnails,
self.review_thumbnails,
self.previews,
self.exports,
self.recordings,
]:
if result:
total += result.orphans_found
return total
@property
def total_orphans_deleted(self) -> int:
total = 0
for result in [
self.event_snapshots,
self.event_thumbnails,
self.review_thumbnails,
self.previews,
self.exports,
self.recordings,
]:
if result:
total += result.orphans_deleted
return total
def to_dict(self) -> dict:
"""Convert results to dictionary for API response."""
results = {}
for name, result in [
("event_snapshots", self.event_snapshots),
("event_thumbnails", self.event_thumbnails),
("review_thumbnails", self.review_thumbnails),
("previews", self.previews),
("exports", self.exports),
("recordings", self.recordings),
]:
if result:
results[name] = {
"files_checked": result.files_checked,
"orphans_found": result.orphans_found,
"orphans_deleted": result.orphans_deleted,
"aborted": result.aborted,
"error": result.error,
}
results["totals"] = {
"files_checked": self.total_files_checked,
"orphans_found": self.total_orphans_found,
"orphans_deleted": self.total_orphans_deleted,
}
return results
def sync_all_media(
dry_run: bool = False, media_types: list[str] = ["all"], force: bool = False
) -> MediaSyncResults:
"""Sync specified media types with the database.
Args:
dry_run: If True, only report orphans without deleting them.
media_types: List of media types to sync. Can include: 'all', 'event_snapshots',
'event_thumbnails', 'review_thumbnails', 'previews', 'exports', 'recordings'
force: If True, bypass safety threshold checks.
Returns:
MediaSyncResults with details of each sync operation.
"""
logger.debug(
f"Starting media sync (dry_run={dry_run}, media_types={media_types}, force={force})"
)
results = MediaSyncResults()
# Determine which media types to sync
sync_all = "all" in media_types
if sync_all or "event_snapshots" in media_types:
results.event_snapshots = sync_event_snapshots(dry_run=dry_run, force=force)
if sync_all or "event_thumbnails" in media_types:
results.event_thumbnails = sync_event_thumbnails(dry_run=dry_run, force=force)
if sync_all or "review_thumbnails" in media_types:
results.review_thumbnails = sync_review_thumbnails(dry_run=dry_run, force=force)
if sync_all or "previews" in media_types:
results.previews = sync_previews(dry_run=dry_run, force=force)
if sync_all or "exports" in media_types:
results.exports = sync_exports(dry_run=dry_run, force=force)
if sync_all or "recordings" in media_types:
results.recordings = sync_recordings(dry_run=dry_run, force=force)
logger.info(
f"Media sync complete: checked {results.total_files_checked} files, "
f"found {results.total_orphans_found} orphans, "
f"deleted {results.total_orphans_deleted}"
)
return results

View File

@@ -65,10 +65,15 @@ class FrigateProcess(BaseProcess):
logging.basicConfig(handlers=[], force=True)
logging.getLogger().addHandler(QueueHandler(self.__log_queue))
# Always apply base log level suppressions for noisy third-party libraries
# even if no specific logConfig is provided
if logConfig:
frigate.log.apply_log_levels(
logConfig.default.value.upper(), logConfig.logs
)
else:
# Apply default INFO level with standard library suppressions
frigate.log.apply_log_levels("INFO", {})
self._setup_memray()

View File

@@ -8,6 +8,7 @@ import time
from pathlib import Path
from typing import Optional
from frigate.const import SUPPORTED_RK_SOCS
from frigate.util.file import FileLock
logger = logging.getLogger(__name__)
@@ -68,9 +69,20 @@ def is_rknn_compatible(model_path: str, model_type: str | None = None) -> bool:
True if the model is RKNN-compatible, False otherwise
"""
soc = get_soc_type()
if soc is None:
return False
# Check if the SoC is actually a supported RK device
# This prevents false positives on non-RK devices (e.g., macOS Docker)
# where /proc/device-tree/compatible might exist but contain non-RK content
if soc not in SUPPORTED_RK_SOCS:
logger.debug(
f"SoC '{soc}' is not a supported RK device for RKNN conversion. "
f"Supported SoCs: {SUPPORTED_RK_SOCS}"
)
return False
if not model_type:
model_type = get_rknn_model_type(model_path)

View File

@@ -417,12 +417,12 @@ def get_openvino_npu_stats() -> Optional[dict[str, str]]:
else:
usage = 0.0
return {"npu": f"{round(usage, 2)}", "mem": "-%"}
return {"npu": f"{round(usage, 2)}", "mem": "-"}
except (FileNotFoundError, PermissionError, ValueError):
return None
def get_rockchip_gpu_stats() -> Optional[dict[str, str | float]]:
def get_rockchip_gpu_stats() -> Optional[dict[str, str]]:
"""Get GPU stats using rk."""
try:
with open("/sys/kernel/debug/rkrga/load", "r") as f:
@@ -440,16 +440,7 @@ def get_rockchip_gpu_stats() -> Optional[dict[str, str | float]]:
return None
average_load = f"{round(sum(load_values) / len(load_values), 2)}%"
stats: dict[str, str | float] = {"gpu": average_load, "mem": "-%"}
try:
with open("/sys/class/thermal/thermal_zone5/temp", "r") as f:
line = f.readline().strip()
stats["temp"] = round(int(line) / 1000, 1)
except (FileNotFoundError, OSError, ValueError):
pass
return stats
return {"gpu": average_load, "mem": "-"}
def get_rockchip_npu_stats() -> Optional[dict[str, float | str]]:
@@ -472,25 +463,13 @@ def get_rockchip_npu_stats() -> Optional[dict[str, float | str]]:
percentages = [int(load) for load in core_loads]
mean = round(sum(percentages) / len(percentages), 2)
stats: dict[str, float | str] = {"npu": mean, "mem": "-%"}
try:
with open("/sys/class/thermal/thermal_zone6/temp", "r") as f:
line = f.readline().strip()
stats["temp"] = round(int(line) / 1000, 1)
except (FileNotFoundError, OSError, ValueError):
pass
return stats
return {"npu": mean, "mem": "-"}
def try_get_info(f, h, default="N/A", sensor=None):
def try_get_info(f, h, default="N/A"):
try:
if h:
if sensor is not None:
v = f(h, sensor)
else:
v = f(h)
v = f(h)
else:
v = f()
except nvml.NVMLError_NotSupported:
@@ -519,9 +498,6 @@ def get_nvidia_gpu_stats() -> dict[int, dict]:
util = try_get_info(nvml.nvmlDeviceGetUtilizationRates, handle)
enc = try_get_info(nvml.nvmlDeviceGetEncoderUtilization, handle)
dec = try_get_info(nvml.nvmlDeviceGetDecoderUtilization, handle)
temp = try_get_info(
nvml.nvmlDeviceGetTemperature, handle, default=None, sensor=0
)
pstate = try_get_info(nvml.nvmlDeviceGetPowerState, handle, default=None)
if util != "N/A":
@@ -534,11 +510,6 @@ def get_nvidia_gpu_stats() -> dict[int, dict]:
else:
gpu_mem_util = -1
if temp != "N/A" and temp is not None:
temp = float(temp)
else:
temp = None
if enc != "N/A":
enc_util = enc[0]
else:
@@ -556,7 +527,6 @@ def get_nvidia_gpu_stats() -> dict[int, dict]:
"enc": enc_util,
"dec": dec_util,
"pstate": pstate or "unknown",
"temp": temp,
}
except Exception:
pass
@@ -579,53 +549,6 @@ def get_jetson_stats() -> Optional[dict[int, dict]]:
return results
def get_hailo_temps() -> dict[str, float]:
"""Get temperatures for Hailo devices."""
try:
from hailo_platform import Device
except ModuleNotFoundError:
return {}
temps = {}
try:
device_ids = Device.scan()
for i, device_id in enumerate(device_ids):
try:
with Device(device_id) as device:
temp_info = device.control.get_chip_temperature()
# Get board name and normalise it
identity = device.control.identify()
board_name = None
for line in str(identity).split("\n"):
if line.startswith("Board Name:"):
board_name = (
line.split(":", 1)[1].strip().lower().replace("-", "")
)
break
if not board_name:
board_name = f"hailo{i}"
# Use indexed name if multiple devices, otherwise just the board name
device_name = (
f"{board_name}-{i}" if len(device_ids) > 1 else board_name
)
# ts1_temperature is also available, but appeared to be the same as ts0 in testing.
temps[device_name] = round(temp_info.ts0_temperature, 1)
except Exception as e:
logger.debug(
f"Failed to get temperature for Hailo device {device_id}: {e}"
)
continue
except Exception as e:
logger.debug(f"Failed to scan for Hailo devices: {e}")
return temps
def ffprobe_stream(ffmpeg, path: str, detailed: bool = False) -> sp.CompletedProcess:
"""Run ffprobe on stream."""
clean_path = escape_special_characters(path)
@@ -661,17 +584,12 @@ def ffprobe_stream(ffmpeg, path: str, detailed: bool = False) -> sp.CompletedPro
def vainfo_hwaccel(device_name: Optional[str] = None) -> sp.CompletedProcess:
"""Run vainfo."""
if not device_name:
cmd = ["vainfo"]
else:
if os.path.isabs(device_name) and device_name.startswith("/dev/dri/"):
device_path = device_name
else:
device_path = f"/dev/dri/{device_name}"
cmd = ["vainfo", "--display", "drm", "--device", device_path]
return sp.run(cmd, capture_output=True)
ffprobe_cmd = (
["vainfo"]
if not device_name
else ["vainfo", "--display", "drm", "--device", f"/dev/dri/{device_name}"]
)
return sp.run(ffprobe_cmd, capture_output=True)
def get_nvidia_driver_info() -> dict[str, Any]:

View File

@@ -3,7 +3,6 @@ import queue
import subprocess as sp
import threading
import time
from collections import deque
from datetime import datetime, timedelta, timezone
from multiprocessing import Queue, Value
from multiprocessing.synchronize import Event as MpEvent
@@ -116,7 +115,6 @@ def capture_frames(
frame_rate.start()
skipped_eps = EventsPerSecond()
skipped_eps.start()
config_subscriber = CameraConfigUpdateSubscriber(
None, {config.name: config}, [CameraConfigUpdateEnum.enabled]
)
@@ -181,9 +179,6 @@ class CameraWatchdog(threading.Thread):
camera_fps,
skipped_fps,
ffmpeg_pid,
stalls,
reconnects,
detection_frame,
stop_event,
):
threading.Thread.__init__(self)
@@ -204,10 +199,6 @@ class CameraWatchdog(threading.Thread):
self.frame_index = 0
self.stop_event = stop_event
self.sleeptime = self.config.ffmpeg.retry_interval
self.reconnect_timestamps = deque()
self.stalls = stalls
self.reconnects = reconnects
self.detection_frame = detection_frame
self.config_subscriber = CameraConfigUpdateSubscriber(
None,
@@ -222,35 +213,6 @@ class CameraWatchdog(threading.Thread):
self.latest_invalid_segment_time: float = 0
self.latest_cache_segment_time: float = 0
# Stall tracking (based on last processed frame)
self._stall_timestamps: deque[float] = deque()
self._stall_active: bool = False
# Status caching to reduce message volume
self._last_detect_status: str | None = None
self._last_record_status: str | None = None
self._last_status_update_time: float = 0.0
def _send_detect_status(self, status: str, now: float) -> None:
"""Send detect status only if changed or retry_interval has elapsed."""
if (
status != self._last_detect_status
or (now - self._last_status_update_time) >= self.sleeptime
):
self.requestor.send_data(f"{self.config.name}/status/detect", status)
self._last_detect_status = status
self._last_status_update_time = now
def _send_record_status(self, status: str, now: float) -> None:
"""Send record status only if changed or retry_interval has elapsed."""
if (
status != self._last_record_status
or (now - self._last_status_update_time) >= self.sleeptime
):
self.requestor.send_data(f"{self.config.name}/status/record", status)
self._last_record_status = status
self._last_status_update_time = now
def _update_enabled_state(self) -> bool:
"""Fetch the latest config and update enabled state."""
self.config_subscriber.check_for_updates()
@@ -277,14 +239,6 @@ class CameraWatchdog(threading.Thread):
else:
self.ffmpeg_detect_process.wait()
# Update reconnects
now = datetime.now().timestamp()
self.reconnect_timestamps.append(now)
while self.reconnect_timestamps and self.reconnect_timestamps[0] < now - 3600:
self.reconnect_timestamps.popleft()
if self.reconnects:
self.reconnects.value = len(self.reconnect_timestamps)
# Wait for old capture thread to fully exit before starting a new one
if self.capture_thread is not None and self.capture_thread.is_alive():
self.logger.info("Waiting for capture thread to exit...")
@@ -307,10 +261,7 @@ class CameraWatchdog(threading.Thread):
self.start_all_ffmpeg()
time.sleep(self.sleeptime)
last_restart_time = datetime.now().timestamp()
# 1 second watchdog loop
while not self.stop_event.wait(1):
while not self.stop_event.wait(self.sleeptime):
enabled = self._update_enabled_state()
if enabled != self.was_enabled:
if enabled:
@@ -326,9 +277,12 @@ class CameraWatchdog(threading.Thread):
self.stop_all_ffmpeg()
# update camera status
now = datetime.now().timestamp()
self._send_detect_status("disabled", now)
self._send_record_status("disabled", now)
self.requestor.send_data(
f"{self.config.name}/status/detect", "disabled"
)
self.requestor.send_data(
f"{self.config.name}/status/record", "disabled"
)
self.was_enabled = enabled
continue
@@ -367,44 +321,36 @@ class CameraWatchdog(threading.Thread):
now = datetime.now().timestamp()
# Check if enough time has passed to allow ffmpeg restart (backoff pacing)
time_since_last_restart = now - last_restart_time
can_restart = time_since_last_restart >= self.sleeptime
if not self.capture_thread.is_alive():
self._send_detect_status("offline", now)
self.requestor.send_data(f"{self.config.name}/status/detect", "offline")
self.camera_fps.value = 0
self.logger.error(
f"Ffmpeg process crashed unexpectedly for {self.config.name}."
)
if can_restart:
self.reset_capture_thread(terminate=False)
last_restart_time = now
self.reset_capture_thread(terminate=False)
elif self.camera_fps.value >= (self.config.detect.fps + 10):
self.fps_overflow_count += 1
if self.fps_overflow_count == 3:
self._send_detect_status("offline", now)
self.requestor.send_data(
f"{self.config.name}/status/detect", "offline"
)
self.fps_overflow_count = 0
self.camera_fps.value = 0
self.logger.info(
f"{self.config.name} exceeded fps limit. Exiting ffmpeg..."
)
if can_restart:
self.reset_capture_thread(drain_output=False)
last_restart_time = now
self.reset_capture_thread(drain_output=False)
elif now - self.capture_thread.current_frame.value > 20:
self._send_detect_status("offline", now)
self.requestor.send_data(f"{self.config.name}/status/detect", "offline")
self.camera_fps.value = 0
self.logger.info(
f"No frames received from {self.config.name} in 20 seconds. Exiting ffmpeg..."
)
if can_restart:
self.reset_capture_thread()
last_restart_time = now
self.reset_capture_thread()
else:
# process is running normally
self._send_detect_status("online", now)
self.requestor.send_data(f"{self.config.name}/status/detect", "online")
self.fps_overflow_count = 0
for p in self.ffmpeg_other_processes:
@@ -475,7 +421,9 @@ class CameraWatchdog(threading.Thread):
continue
else:
self._send_record_status("online", now)
self.requestor.send_data(
f"{self.config.name}/status/record", "online"
)
p["latest_segment_time"] = self.latest_cache_segment_time
if poll is None:
@@ -491,34 +439,6 @@ class CameraWatchdog(threading.Thread):
p["cmd"], self.logger, p["logpipe"], ffmpeg_process=p["process"]
)
# Update stall metrics based on last processed frame timestamp
now = datetime.now().timestamp()
processed_ts = (
float(self.detection_frame.value) if self.detection_frame else 0.0
)
if processed_ts > 0:
delta = now - processed_ts
observed_fps = (
self.camera_fps.value
if self.camera_fps.value > 0
else self.config.detect.fps
)
interval = 1.0 / max(observed_fps, 0.1)
stall_threshold = max(2.0 * interval, 2.0)
if delta > stall_threshold:
if not self._stall_active:
self._stall_timestamps.append(now)
self._stall_active = True
else:
self._stall_active = False
while self._stall_timestamps and self._stall_timestamps[0] < now - 3600:
self._stall_timestamps.popleft()
if self.stalls:
self.stalls.value = len(self._stall_timestamps)
self.stop_all_ffmpeg()
self.logpipe.close()
self.config_subscriber.stop()
@@ -656,9 +576,6 @@ class CameraCapture(FrigateProcess):
self.camera_metrics.camera_fps,
self.camera_metrics.skipped_fps,
self.camera_metrics.ffmpeg_pid,
self.camera_metrics.stalls_last_hour,
self.camera_metrics.reconnects_last_hour,
self.camera_metrics.detection_frame,
self.stop_event,
)
camera_watchdog.start()

View File

@@ -1,50 +0,0 @@
"""Peewee migrations -- 033_create_export_case_table.py.
Some examples (model - class or model name)::
> Model = migrator.orm['model_name'] # Return model in current state by name
> migrator.sql(sql) # Run custom SQL
> migrator.python(func, *args, **kwargs) # Run python code
> migrator.create_model(Model) # Create a model (could be used as decorator)
> migrator.remove_model(model, cascade=True) # Remove a model
> migrator.add_fields(model, **fields) # Add fields to a model
> migrator.change_fields(model, **fields) # Change fields
> migrator.remove_fields(model, *field_names, cascade=True)
> migrator.rename_field(model, old_field_name, new_field_name)
> migrator.rename_table(model, new_table_name)
> migrator.add_index(model, *col_names, unique=False)
> migrator.drop_index(model, *col_names)
> migrator.add_not_null(model, *field_names)
> migrator.drop_not_null(model, *field_names)
> migrator.add_default(model, field_name, default)
"""
import peewee as pw
SQL = pw.SQL
def migrate(migrator, database, fake=False, **kwargs):
migrator.sql(
"""
CREATE TABLE IF NOT EXISTS "exportcase" (
"id" VARCHAR(30) NOT NULL PRIMARY KEY,
"name" VARCHAR(100) NOT NULL,
"description" TEXT NULL,
"created_at" DATETIME NOT NULL,
"updated_at" DATETIME NOT NULL
)
"""
)
migrator.sql(
'CREATE INDEX IF NOT EXISTS "exportcase_name" ON "exportcase" ("name")'
)
migrator.sql(
'CREATE INDEX IF NOT EXISTS "exportcase_created_at" ON "exportcase" ("created_at")'
)
def rollback(migrator, database, fake=False, **kwargs):
pass

View File

@@ -1,40 +0,0 @@
"""Peewee migrations -- 034_add_export_case_to_exports.py.
Some examples (model - class or model name)::
> Model = migrator.orm['model_name'] # Return model in current state by name
> migrator.sql(sql) # Run custom SQL
> migrator.python(func, *args, **kwargs) # Run python code
> migrator.create_model(Model) # Create a model (could be used as decorator)
> migrator.remove_model(model, cascade=True) # Remove a model
> migrator.add_fields(model, **fields) # Add fields to a model
> migrator.change_fields(model, **fields) # Change fields
> migrator.remove_fields(model, *field_names, cascade=True)
> migrator.rename_field(model, old_field_name, new_field_name)
> migrator.rename_table(model, new_table_name)
> migrator.add_index(model, *col_names, unique=False)
> migrator.drop_index(model, *col_names)
> migrator.add_not_null(model, *field_names)
> migrator.drop_not_null(model, *field_names)
> migrator.add_default(model, field_name, default)
"""
import peewee as pw
SQL = pw.SQL
def migrate(migrator, database, fake=False, **kwargs):
# Add nullable export_case_id column to export table
migrator.sql('ALTER TABLE "export" ADD COLUMN "export_case_id" VARCHAR(30) NULL')
# Index for faster case-based queries
migrator.sql(
'CREATE INDEX IF NOT EXISTS "export_export_case_id" ON "export" ("export_case_id")'
)
def rollback(migrator, database, fake=False, **kwargs):
pass

View File

@@ -48,10 +48,6 @@
"name": {
"placeholder": "Name the Export"
},
"case": {
"label": "Case",
"placeholder": "Select a case"
},
"select": "Select",
"export": "Export",
"selectOrExport": "Select or Export",

View File

@@ -38,6 +38,10 @@
"label": "Sub Labels",
"all": "All Sub Labels"
},
"attributes": {
"label": "Classification Attributes",
"all": "All Attributes"
},
"score": "Score",
"estimatedSpeed": "Estimated Speed ({{unit}})",
"features": {

View File

@@ -324,6 +324,9 @@
"enabled": {
"label": "Enable record on all cameras."
},
"sync_recordings": {
"label": "Sync recordings with disk on startup and once a day."
},
"expire_interval": {
"label": "Number of minutes to wait between cleanup runs."
},
@@ -755,4 +758,4 @@
"label": "Keep track of original state of camera."
}
}
}
}

View File

@@ -4,6 +4,9 @@
"enabled": {
"label": "Enable record on all cameras."
},
"sync_recordings": {
"label": "Sync recordings with disk on startup and once a day."
},
"expire_interval": {
"label": "Number of minutes to wait between cleanup runs."
},
@@ -87,4 +90,4 @@
"label": "Keep track of original state of recording."
}
}
}
}

View File

@@ -1,7 +1,9 @@
{
"documentTitle": "Classification Models - Frigate",
"details": {
"scoreInfo": "Score represents the average classification confidence across all detections of this object."
"scoreInfo": "Score represents the average classification confidence across all detections of this object.",
"none": "None",
"unknown": "Unknown"
},
"button": {
"deleteClassificationAttempts": "Delete Classification Images",
@@ -72,7 +74,7 @@
},
"renameCategory": {
"title": "Rename Class",
"desc": "Enter a new name for {{name}}. You will be required to retrain the model for the name change to take affect."
"desc": "Enter a new name for {{name}}. You will be required to retrain the model for the name change to take effect."
},
"description": {
"invalidName": "Invalid name. Names can only include letters, numbers, spaces, apostrophes, underscores, and hyphens."
@@ -83,7 +85,6 @@
"aria": "Select Recent Classifications"
},
"categories": "Classes",
"none": "None",
"createCategory": {
"new": "Create New Class"
},
@@ -138,6 +139,7 @@
"nameOnlyNumbers": "Model name cannot contain only numbers",
"classRequired": "At least 1 class is required",
"classesUnique": "Class names must be unique",
"noneNotAllowed": "The class 'none' is not allowed",
"stateRequiresTwoClasses": "State models require at least 2 classes",
"objectLabelRequired": "Please select an object label",
"objectTypeRequired": "Please select a classification type"

View File

@@ -104,12 +104,14 @@
"regenerate": "A new description has been requested from {{provider}}. Depending on the speed of your provider, the new description may take some time to regenerate.",
"updatedSublabel": "Successfully updated sub label.",
"updatedLPR": "Successfully updated license plate.",
"updatedAttributes": "Successfully updated attributes.",
"audioTranscription": "Successfully requested audio transcription. Depending on the speed of your Frigate server, the transcription may take some time to complete."
},
"error": {
"regenerate": "Failed to call {{provider}} for a new description: {{errorMessage}}",
"updatedSublabelFailed": "Failed to update sub label: {{errorMessage}}",
"updatedLPRFailed": "Failed to update license plate: {{errorMessage}}",
"updatedAttributesFailed": "Failed to update attributes: {{errorMessage}}",
"audioTranscription": "Failed to request audio transcription: {{errorMessage}}"
}
}
@@ -125,6 +127,10 @@
"desc": "Enter a new license plate value for this {{label}}",
"descNoLabel": "Enter a new license plate value for this tracked object"
},
"editAttributes": {
"title": "Edit attributes",
"desc": "Select classification attributes for this {{label}}"
},
"snapshotScore": {
"label": "Snapshot Score"
},
@@ -136,6 +142,7 @@
"label": "Score"
},
"recognizedLicensePlate": "Recognized License Plate",
"attributes": "Classification Attributes",
"estimatedSpeed": "Estimated Speed",
"objects": "Objects",
"camera": "Camera",

View File

@@ -2,10 +2,6 @@
"documentTitle": "Export - Frigate",
"search": "Search",
"noExports": "No exports found",
"headings": {
"cases": "Cases",
"uncategorizedExports": "Uncategorized Exports"
},
"deleteExport": "Delete Export",
"deleteExport.desc": "Are you sure you want to delete {{exportName}}?",
"editExport": {
@@ -17,21 +13,11 @@
"shareExport": "Share export",
"downloadVideo": "Download video",
"editName": "Edit name",
"deleteExport": "Delete export",
"assignToCase": "Add to case"
"deleteExport": "Delete export"
},
"toast": {
"error": {
"renameExportFailed": "Failed to rename export: {{errorMessage}}",
"assignCaseFailed": "Failed to update case assignment: {{errorMessage}}"
"renameExportFailed": "Failed to rename export: {{errorMessage}}"
}
},
"caseDialog": {
"title": "Add to case",
"description": "Choose an existing case or create a new one.",
"selectLabel": "Case",
"newCaseOption": "Create new case",
"nameLabel": "Case name",
"descriptionLabel": "Description"
}
}

View File

@@ -16,6 +16,7 @@
"labels": "Labels",
"zones": "Zones",
"sub_labels": "Sub Labels",
"attributes": "Attributes",
"search_type": "Search Type",
"time_range": "Time Range",
"before": "Before",

View File

@@ -679,7 +679,7 @@
"desc": "Manage this Frigate instance's user accounts."
},
"addUser": "Add User",
"updatePassword": "Update Password",
"updatePassword": "Reset Password",
"toast": {
"success": {
"createUser": "User {{user}} created successfully",
@@ -700,7 +700,7 @@
"role": "Role",
"noUsers": "No users found.",
"changeRole": "Change user role",
"password": "Password",
"password": "Reset Password",
"deleteUser": "Delete user"
},
"dialog": {
@@ -1065,53 +1065,5 @@
"deleteTriggerFailed": "Failed to delete trigger: {{errorMessage}}"
}
}
},
"maintenance": {
"title": "Maintenance",
"sync": {
"title": "Media Sync",
"desc": "Frigate will periodically clean up media on a regular schedule according to your retention configuration. It is normal to see a few orphaned files as Frigate runs. Use this feature to remove orphaned media files from disk that are no longer referenced in the database.",
"started": "Media sync started.",
"alreadyRunning": "A sync job is already running",
"error": "Failed to start sync",
"currentStatus": "Status",
"jobId": "Job ID",
"startTime": "Start Time",
"endTime": "End Time",
"statusLabel": "Status",
"results": "Results",
"errorLabel": "Error",
"mediaTypes": "Media Types",
"allMedia": "All Media",
"dryRun": "Dry Run",
"dryRunEnabled": "No files will be deleted",
"dryRunDisabled": "Files will be deleted",
"force": "Force",
"forceDesc": "Bypass safety threshold and complete sync even if more than 50% of the files would be deleted.",
"running": "Sync Running...",
"start": "Start Sync",
"inProgress": "Sync is in progress. This page is disabled.",
"status": {
"queued": "Queued",
"running": "Running",
"completed": "Completed",
"failed": "Failed",
"notRunning": "Not Running"
},
"resultsFields": {
"filesChecked": "Files Checked",
"orphansFound": "Orphans Found",
"orphansDeleted": "Orphans Deleted",
"aborted": "Aborted. Deletion would exceed safety threshold.",
"error": "Error",
"totals": "Totals"
},
"event_snapshots": "Tracked Object Snapshots",
"event_thumbnails": "Tracked Object Thumbnails",
"review_thumbnails": "Review Thumbnails",
"previews": "Previews",
"exports": "Exports",
"recordings": "Recordings"
}
}
}

View File

@@ -51,7 +51,6 @@
"gpuMemory": "GPU Memory",
"gpuEncoder": "GPU Encoder",
"gpuDecoder": "GPU Decoder",
"gpuTemperature": "GPU Temperature",
"gpuInfo": {
"vainfoOutput": {
"title": "Vainfo Output",
@@ -78,7 +77,6 @@
},
"npuUsage": "NPU Usage",
"npuMemory": "NPU Memory",
"npuTemperature": "NPU Temperature",
"intelGpuWarning": {
"title": "Intel GPU Stats Warning",
"message": "GPU stats unavailable",
@@ -153,17 +151,6 @@
"cameraDetectionsPerSecond": "{{camName}} detections per second",
"cameraSkippedDetectionsPerSecond": "{{camName}} skipped detections per second"
},
"connectionQuality": {
"title": "Connection Quality",
"excellent": "Excellent",
"fair": "Fair",
"poor": "Poor",
"unusable": "Unusable",
"fps": "FPS",
"expectedFps": "Expected FPS",
"reconnectsLastHour": "Reconnects (last hour)",
"stallsLastHour": "Stalls (last hour)"
},
"toast": {
"success": {
"copyToClipboard": "Copied probe data to clipboard."
@@ -205,7 +192,10 @@
"review_description_events_per_second": "Review Description",
"object_description": "Object Description",
"object_description_speed": "Object Description Speed",
"object_description_events_per_second": "Object Description"
"object_description_events_per_second": "Object Description",
"classification": "{{name}} Classification",
"classification_speed": "{{name}} Classification Speed",
"classification_events_per_second": "{{name}} Classification Events Per Second"
}
}
}

View File

@@ -14,6 +14,7 @@ import ProtectedRoute from "@/components/auth/ProtectedRoute";
import { AuthProvider } from "@/context/auth-context";
import useSWR from "swr";
import { FrigateConfig } from "./types/frigateConfig";
import ActivityIndicator from "@/components/indicators/activity-indicator";
const Live = lazy(() => import("@/pages/Live"));
const Events = lazy(() => import("@/pages/Events"));
@@ -50,6 +51,13 @@ function DefaultAppView() {
const { data: config } = useSWR<FrigateConfig>("config", {
revalidateOnFocus: false,
});
// Compute required roles for main routes, ensuring we have config first
// to prevent race condition where custom roles are temporarily unavailable
const mainRouteRoles = config?.auth?.roles
? Object.keys(config.auth.roles)
: undefined;
return (
<div className="size-full overflow-hidden">
{isDesktop && <Sidebar />}
@@ -68,13 +76,11 @@ function DefaultAppView() {
<Routes>
<Route
element={
<ProtectedRoute
requiredRoles={
config?.auth.roles
? Object.keys(config.auth.roles)
: ["admin", "viewer"]
}
/>
mainRouteRoles ? (
<ProtectedRoute requiredRoles={mainRouteRoles} />
) : (
<ActivityIndicator className="absolute left-1/2 top-1/2 -translate-x-1/2 -translate-y-1/2" />
)
}
>
<Route index element={<Live />} />

View File

@@ -11,7 +11,6 @@ import {
TrackedObjectUpdateReturnType,
TriggerStatus,
FrigateAudioDetections,
Job,
} from "@/types/ws";
import { FrigateStats } from "@/types/stats";
import { createContainer } from "react-tracked";
@@ -652,40 +651,3 @@ export function useTriggers(): { payload: TriggerStatus } {
: { name: "", camera: "", event_id: "", type: "", score: 0 };
return { payload: useDeepMemo(parsed) };
}
export function useJobStatus(
jobType: string,
revalidateOnFocus: boolean = true,
): { payload: Job | null } {
const {
value: { payload },
send: sendCommand,
} = useWs("job_state", "jobState");
const jobData = useDeepMemo(
payload && typeof payload === "string" ? JSON.parse(payload) : {},
);
const currentJob = jobData[jobType] || null;
useEffect(() => {
let listener: (() => void) | undefined;
if (revalidateOnFocus) {
sendCommand("jobState");
listener = () => {
if (document.visibilityState === "visible") {
sendCommand("jobState");
}
};
addEventListener("visibilitychange", listener);
}
return () => {
if (listener) {
removeEventListener("visibilitychange", listener);
}
};
// eslint-disable-next-line react-hooks/exhaustive-deps
}, [revalidateOnFocus]);
return { payload: currentJob as Job | null };
}

Some files were not shown because too many files have changed in this diff Show More