Compare commits

...

78 Commits

Author SHA1 Message Date
Josh Hawkins
d952a97bda reduce gif size for docs assets changes (#21594) 2026-01-10 12:59:15 -07:00
Blake Blackshear
93016c662f add synaptics to release (#21591) 2026-01-10 11:50:37 -06:00
Josh Hawkins
c08fa15724 Miscellaneous Fixes (0.17 beta) (#21575)
* icon improvements

add type to getIconForLabel
provide default icon for audio events

* Add preferred language to review docs

* prevent react Suspense crash during auth redirect

add redirect-check guards to stop rendering lazy routes while navigation is pending (fixes some users seeing React error #426 when auth expires)

* Uppsercase model name

---------

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
2026-01-09 16:23:33 -07:00
GuoQing Liu
f3543cfee2 I18N Miscellaneous Fixes (#21573)
* fix: fix classification none tag i18n wrong

* fix: fix set password dialog jwt time i18n wrong

* fix: fix wizard other camera i18n

* fix: fix explore tracking detail audio i18n

* feat: add system processes info i18n

* fix: fix live page label i18n
2026-01-08 14:28:18 -07:00
Josh Hawkins
74d14cb8ca Miscellaneous Fixes (0.17 beta) (#21558)
* mse player improvements

- fix WebSocket race condition by registering message handlers before sending and avoid closing CONNECTING sockets to eliminate "Socket is not connected" errors.
- attempt to resolve Safari MSE timeout and handler issues by wrapping temporary handlers in try/catch and stabilizing the permanent mse handler so SourceBuffer setup completes reliably.
- add intentional disconnect tracking to prevent unwanted reconnects during navigation/StrictMode cycles

* Update Ollama

* additional MSE tweaks

* Turn activity context prompt into a yaml example

---------

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
2026-01-07 17:29:19 -06:00
Sai Bharat Kumar
99d48ecbc3 docs: fix alt text and capitalization in documentation (#21551)
- Fix incorrect alt text in README.md for mask and zone editor screenshot

- Capitalize 'Frigate' in audio_detectors.md for consistency
2026-01-07 07:22:05 -07:00
Nicolas Mowen
c8f55ac41f Restrict go2rtc exec sources by default (#21543)
* Restrict go2rtc exec sources by default

* add docs
2026-01-06 09:07:51 -06:00
Nicolas Mowen
047ae19191 Miscellaneous fixes (0.17 Beta) (#21489)
* Correctly set query padding

* Adjust AMD headers and add community badge

* Simplify getting started guide for camera wizard

* add optimizing performance guide

* tweaks

* fix character issue

* fix more characters

* fix links

* fix more links

* Refactor new docs

* Add import

* Fix link

* Don't list hardware

* Reduce redundancy in titles

* Add note about Intel NPU and addon

* Fix ability to specify if card is using heading

* improve display of area percentage

* fix text color on genai summary chip

* fix indentation in genai docs

* Adjust default config model to align with recommended

* add correct genai key

---------

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2026-01-04 12:12:03 -06:00
Blake Blackshear
d1f28eb8e1 llc to inc and 2025 to 2026 (#21484) 2026-01-01 09:56:09 -06:00
Nicolas Mowen
b5d2f86a9b Refactor hardware acceleration docs (#21488)
* Refactor hardware acceleration docs

* Add a linking header

* Add RPi
2025-12-31 07:37:52 -06:00
Blake Blackshear
15c223d0e5 Merge remote-tracking branch 'origin/master' into dev 2025-12-31 13:15:05 +00:00
Josh Hawkins
e0d6365f62 Miscellaneous Fixes (0.17 beta) (#21474)
* disable modal on dropdown menu in explore

* add another example case for when classification overrides a sub label

* update ollama docs link

* Improve handling of automatic playback for recordings

* Improve ollama documentation

* Don't fall out when all recording segments exist

* clarify coral docs

* improve initial scroll to active item in detail stream

* i18n fixes

* remove console warning

* detail stream scrolling fixes for HA/iOS

* Improve usability of GenAI summary dialog and make clicking on the description directly open it

* Review card too

* Use empty card with dynamic text for review based on the user's config

---------

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
2025-12-31 05:48:56 -07:00
Kobus van Schoor
fb9604fbcc [docs] fix topic for camera status (#21462) 2025-12-29 13:54:07 -07:00
Nicolas Mowen
e2a1208c90 Miscellaneous fixes (0.17 Beta) (#21443)
* Use thread lock for JinaV2 call as it sets multiple internal fields while being called

* fix audio label translation in explore filter

* Show event in all cases, even without non-none match

* improve i18n key fallback when translation files aren't loaded

just display a valid time now instead of "invalid time"

---------

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-12-29 09:31:54 -06:00
hofq
3655b9269d fix: additional proxy headers for complete support of oauth2-proxy (#21434)
https://oauth2-proxy.github.io/oauth2-proxy/configuration/overview#header-options
2025-12-27 07:33:25 -06:00
Nicolas Mowen
3c5eb1aee5 Miscellaneous fixes (0.17 beta) (#21431)
* Add shortSummary field to review summary to be used for notifications

* pull in current config version into default config

* fix crash when dynamically adding cameras

depending on where we are in the update loop, camera configs might not be updated yet and we are receiving detections already

* add no tracked objects and icon to explore summary view

* reset add camera wizard when closing and saving

* don't flash no exports icon while loading

* Improve handling of homekit config

* Increase prompt tokens reservation

* Adjust

* Catch event not found object detection

* Use thread lock for JinaV2 in onnxruntime

* remove incorrect embeddings process from memray docs

* only show transcribe button if audio event has video

* apply aspect ratio and margin constraints to path overlay in detail stream on mobile

improves a specific case where the overlay was not aligned with 4:3 cameras on mobile phones

* show metadata title as tooltip on icon hover in detail stream

---------

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-12-26 08:45:03 -06:00
Hosted Weblate
e20b324e0a Update translation files
Updated by "Squash Git commits" add-on in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/common/
Translation: Frigate NVR/common
2025-12-26 08:44:19 -06:00
Hosted Weblate
ca0e53f671 Update translation files
Updated by "Squash Git commits" add-on in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/common/
Translation: Frigate NVR/common
2025-12-26 08:44:19 -06:00
Hosted Weblate
a2e98dc89b Update translation files
Updated by "Squash Git commits" add-on in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/common/
Translation: Frigate NVR/common
2025-12-26 08:44:19 -06:00
Hosted Weblate
b54cb219f8 Update translation files
Updated by "Squash Git commits" add-on in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/common/
Translation: Frigate NVR/common
2025-12-26 08:44:19 -06:00
Hosted Weblate
edeb47a08e Translated using Weblate (Persian)
Currently translated at 9.4% (5 of 53 strings)

Translated using Weblate (Persian)

Currently translated at 8.6% (4 of 46 strings)

Translated using Weblate (Persian)

Currently translated at 3.8% (5 of 131 strings)

Translated using Weblate (Persian)

Currently translated at 9.7% (4 of 41 strings)

Translated using Weblate (Persian)

Currently translated at 5.4% (4 of 74 strings)

Translated using Weblate (Persian)

Currently translated at 16.0% (4 of 25 strings)

Translated using Weblate (Persian)

Currently translated at 4.4% (6 of 135 strings)

Translated using Weblate (Persian)

Currently translated at 66.6% (4 of 6 strings)

Translated using Weblate (Persian)

Currently translated at 10.2% (5 of 49 strings)

Translated using Weblate (Persian)

Currently translated at 0.7% (5 of 654 strings)

Translated using Weblate (Persian)

Currently translated at 5.4% (5 of 92 strings)

Translated using Weblate (Persian)

Currently translated at 30.7% (4 of 13 strings)

Translated using Weblate (Persian)

Currently translated at 13.9% (17 of 122 strings)

Translated using Weblate (Persian)

Currently translated at 40.0% (4 of 10 strings)

Translated using Weblate (Persian)

Currently translated at 9.0% (5 of 55 strings)

Translated using Weblate (Persian)

Currently translated at 2.3% (5 of 214 strings)

Translated using Weblate (Persian)

Currently translated at 50.0% (5 of 10 strings)

Translated using Weblate (Persian)

Currently translated at 8.1% (4 of 49 strings)

Translated using Weblate (Persian)

Currently translated at 12.3% (15 of 121 strings)

Translated using Weblate (Persian)

Currently translated at 5.6% (3 of 53 strings)

Translated using Weblate (Persian)

Currently translated at 2.2% (3 of 135 strings)

Translated using Weblate (Persian)

Currently translated at 30.0% (3 of 10 strings)

Translated using Weblate (Persian)

Currently translated at 0.4% (3 of 654 strings)

Translated using Weblate (Persian)

Currently translated at 4.0% (3 of 74 strings)

Translated using Weblate (Persian)

Currently translated at 1.8% (4 of 214 strings)

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Co-authored-by: حمید ملک محمدی <hmmftg@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/common/fa/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-auth/fa/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-camera/fa/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-dialog/fa/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-filter/fa/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-player/fa/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-classificationmodel/fa/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-configeditor/fa/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-events/fa/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-explore/fa/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-exports/fa/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-facelibrary/fa/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-live/fa/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-recording/fa/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-search/fa/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-settings/fa/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-system/fa/
Translation: Frigate NVR/common
Translation: Frigate NVR/components-auth
Translation: Frigate NVR/components-camera
Translation: Frigate NVR/components-dialog
Translation: Frigate NVR/components-filter
Translation: Frigate NVR/components-player
Translation: Frigate NVR/views-classificationmodel
Translation: Frigate NVR/views-configeditor
Translation: Frigate NVR/views-events
Translation: Frigate NVR/views-explore
Translation: Frigate NVR/views-exports
Translation: Frigate NVR/views-facelibrary
Translation: Frigate NVR/views-live
Translation: Frigate NVR/views-recording
Translation: Frigate NVR/views-search
Translation: Frigate NVR/views-settings
Translation: Frigate NVR/views-system
2025-12-26 08:44:19 -06:00
Hosted Weblate
f34e2200b5 Translated using Weblate (Swedish)
Currently translated at 100.0% (131 of 131 strings)

Translated using Weblate (Swedish)

Currently translated at 100.0% (122 of 122 strings)

Translated using Weblate (Swedish)

Currently translated at 100.0% (135 of 135 strings)

Translated using Weblate (Swedish)

Currently translated at 100.0% (49 of 49 strings)

Translated using Weblate (Swedish)

Currently translated at 100.0% (74 of 74 strings)

Translated using Weblate (Swedish)

Currently translated at 100.0% (25 of 25 strings)

Translated using Weblate (Swedish)

Currently translated at 100.0% (121 of 121 strings)

Translated using Weblate (Swedish)

Currently translated at 100.0% (53 of 53 strings)

Translated using Weblate (Swedish)

Currently translated at 100.0% (654 of 654 strings)

Co-authored-by: Felix Boström <felix.bostrum@gmail.com>
Co-authored-by: Hosted Weblate <hosted@weblate.org>
Co-authored-by: Kristian Johansson <knmjohansson@gmail.com>
Co-authored-by: Samuel Åkesson <samuel.akesson@bolmso.se>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-filter/sv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-player/sv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-classificationmodel/sv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-explore/sv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-facelibrary/sv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-search/sv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-settings/sv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-system/sv/
Translation: Frigate NVR/components-filter
Translation: Frigate NVR/components-player
Translation: Frigate NVR/views-classificationmodel
Translation: Frigate NVR/views-explore
Translation: Frigate NVR/views-facelibrary
Translation: Frigate NVR/views-search
Translation: Frigate NVR/views-settings
Translation: Frigate NVR/views-system
2025-12-26 08:44:19 -06:00
Hosted Weblate
57d344a441 Translated using Weblate (French)
Currently translated at 100.0% (131 of 131 strings)

Translated using Weblate (French)

Currently translated at 100.0% (122 of 122 strings)

Translated using Weblate (French)

Currently translated at 100.0% (135 of 135 strings)

Translated using Weblate (French)

Currently translated at 100.0% (74 of 74 strings)

Translated using Weblate (French)

Currently translated at 100.0% (49 of 49 strings)

Translated using Weblate (French)

Currently translated at 100.0% (121 of 121 strings)

Translated using Weblate (French)

Currently translated at 100.0% (654 of 654 strings)

Co-authored-by: Apocoloquintose <bertrand.moreux@gmail.com>
Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-filter/fr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-classificationmodel/fr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-explore/fr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-search/fr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-settings/fr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-system/fr/
Translation: Frigate NVR/components-filter
Translation: Frigate NVR/views-classificationmodel
Translation: Frigate NVR/views-explore
Translation: Frigate NVR/views-search
Translation: Frigate NVR/views-settings
Translation: Frigate NVR/views-system
2025-12-26 08:44:19 -06:00
Hosted Weblate
225c5f0d71 Translated using Weblate (Dutch)
Currently translated at 100.0% (74 of 74 strings)

Translated using Weblate (Dutch)

Currently translated at 100.0% (122 of 122 strings)

Translated using Weblate (Dutch)

Currently translated at 100.0% (135 of 135 strings)

Translated using Weblate (Dutch)

Currently translated at 100.0% (49 of 49 strings)

Translated using Weblate (Dutch)

Currently translated at 100.0% (654 of 654 strings)

Update translation files

Updated by "Squash Git commits" add-on in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Co-authored-by: Marijn <168113859+Marijn0@users.noreply.github.com>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/common/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-filter/nl/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-classificationmodel/nl/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-explore/nl/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-search/nl/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-settings/nl/
Translation: Frigate NVR/common
Translation: Frigate NVR/components-filter
Translation: Frigate NVR/views-classificationmodel
Translation: Frigate NVR/views-explore
Translation: Frigate NVR/views-search
Translation: Frigate NVR/views-settings
2025-12-26 08:44:19 -06:00
Hosted Weblate
5d960aa282 Update translation files
Updated by "Squash Git commits" add-on in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/common/
Translation: Frigate NVR/common
2025-12-26 08:44:19 -06:00
Hosted Weblate
bfc2859c8e Translated using Weblate (Italian)
Currently translated at 100.0% (654 of 654 strings)

Translated using Weblate (Italian)

Currently translated at 100.0% (135 of 135 strings)

Translated using Weblate (Italian)

Currently translated at 100.0% (131 of 131 strings)

Translated using Weblate (Italian)

Currently translated at 100.0% (122 of 122 strings)

Translated using Weblate (Italian)

Currently translated at 100.0% (74 of 74 strings)

Translated using Weblate (Italian)

Currently translated at 100.0% (49 of 49 strings)

Update translation files

Updated by "Squash Git commits" add-on in Weblate.

Co-authored-by: Gringo <ita.translations@tiscali.it>
Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/common/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-filter/it/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-classificationmodel/it/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-explore/it/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-search/it/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-settings/it/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-system/it/
Translation: Frigate NVR/common
Translation: Frigate NVR/components-filter
Translation: Frigate NVR/views-classificationmodel
Translation: Frigate NVR/views-explore
Translation: Frigate NVR/views-search
Translation: Frigate NVR/views-settings
Translation: Frigate NVR/views-system
2025-12-26 08:44:19 -06:00
Hosted Weblate
d2aa2a0558 Translated using Weblate (Polish)
Currently translated at 98.6% (73 of 74 strings)

Translated using Weblate (Polish)

Currently translated at 69.6% (85 of 122 strings)

Translated using Weblate (Polish)

Currently translated at 93.1% (122 of 131 strings)

Translated using Weblate (Polish)

Currently translated at 83.7% (113 of 135 strings)

Translated using Weblate (Polish)

Currently translated at 58.1% (71 of 122 strings)

Co-authored-by: Artur <wy66m6xm@anonaddy.me>
Co-authored-by: Hosted Weblate <hosted@weblate.org>
Co-authored-by: piesu <dogiiee@proton.me>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-filter/pl/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-classificationmodel/pl/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-explore/pl/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-system/pl/
Translation: Frigate NVR/components-filter
Translation: Frigate NVR/views-classificationmodel
Translation: Frigate NVR/views-explore
Translation: Frigate NVR/views-system
2025-12-26 08:44:19 -06:00
Hosted Weblate
bd2382dc45 Added translation using Weblate (Malayalam)
Added translation using Weblate (Malayalam)

Added translation using Weblate (Malayalam)

Added translation using Weblate (Malayalam)

Added translation using Weblate (Malayalam)

Added translation using Weblate (Malayalam)

Added translation using Weblate (Malayalam)

Added translation using Weblate (Malayalam)

Added translation using Weblate (Malayalam)

Added translation using Weblate (Malayalam)

Added translation using Weblate (Malayalam)

Added translation using Weblate (Malayalam)

Added translation using Weblate (Malayalam)

Added translation using Weblate (Malayalam)

Added translation using Weblate (Malayalam)

Added translation using Weblate (Malayalam)

Added translation using Weblate (Malayalam)

Added translation using Weblate (Malayalam)

Added translation using Weblate (Malayalam)

Added translation using Weblate (Malayalam)

Update translation files

Updated by "Squash Git commits" add-on in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Co-authored-by: Languages add-on <noreply-addon-languages@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/common/
Translation: Frigate NVR/common
2025-12-26 08:44:19 -06:00
Hosted Weblate
aa9dbbb48d Translated using Weblate (Hebrew)
Currently translated at 100.0% (501 of 501 strings)

Translated using Weblate (Hebrew)

Currently translated at 100.0% (74 of 74 strings)

Translated using Weblate (Hebrew)

Currently translated at 100.0% (92 of 92 strings)

Translated using Weblate (Hebrew)

Currently translated at 100.0% (49 of 49 strings)

Translated using Weblate (Hebrew)

Currently translated at 100.0% (122 of 122 strings)

Translated using Weblate (Hebrew)

Currently translated at 100.0% (46 of 46 strings)

Translated using Weblate (Hebrew)

Currently translated at 100.0% (10 of 10 strings)

Translated using Weblate (Hebrew)

Currently translated at 100.0% (53 of 53 strings)

Translated using Weblate (Hebrew)

Currently translated at 100.0% (135 of 135 strings)

Translated using Weblate (Hebrew)

Currently translated at 100.0% (654 of 654 strings)

Translated using Weblate (Hebrew)

Currently translated at 94.3% (617 of 654 strings)

Translated using Weblate (Hebrew)

Currently translated at 100.0% (214 of 214 strings)

Translated using Weblate (Hebrew)

Currently translated at 100.0% (41 of 41 strings)

Translated using Weblate (Hebrew)

Currently translated at 94.3% (617 of 654 strings)

Translated using Weblate (Hebrew)

Currently translated at 100.0% (118 of 118 strings)

Translated using Weblate (Hebrew)

Currently translated at 100.0% (55 of 55 strings)

Translated using Weblate (Hebrew)

Currently translated at 100.0% (131 of 131 strings)

Translated using Weblate (Hebrew)

Currently translated at 96.2% (51 of 53 strings)

Translated using Weblate (Hebrew)

Currently translated at 100.0% (122 of 122 strings)

Translated using Weblate (Hebrew)

Currently translated at 97.8% (90 of 92 strings)

Translated using Weblate (Hebrew)

Currently translated at 100.0% (501 of 501 strings)

Translated using Weblate (Hebrew)

Currently translated at 99.2% (134 of 135 strings)

Translated using Weblate (Hebrew)

Currently translated at 90.2% (83 of 92 strings)

Translated using Weblate (Hebrew)

Currently translated at 91.1% (195 of 214 strings)

Translated using Weblate (Hebrew)

Currently translated at 100.0% (46 of 46 strings)

Translated using Weblate (Hebrew)

Currently translated at 95.1% (39 of 41 strings)

Translated using Weblate (Hebrew)

Currently translated at 100.0% (13 of 13 strings)

Translated using Weblate (Hebrew)

Currently translated at 100.0% (10 of 10 strings)

Translated using Weblate (Hebrew)

Currently translated at 45.0% (55 of 122 strings)

Translated using Weblate (Hebrew)

Currently translated at 48.6% (318 of 654 strings)

Translated using Weblate (Hebrew)

Currently translated at 100.0% (74 of 74 strings)

Translated using Weblate (Hebrew)

Currently translated at 98.1% (54 of 55 strings)

Translated using Weblate (Hebrew)

Currently translated at 82.9% (112 of 135 strings)

Translated using Weblate (Hebrew)

Currently translated at 90.0% (118 of 131 strings)

Translated using Weblate (Hebrew)

Currently translated at 100.0% (49 of 49 strings)

Translated using Weblate (Hebrew)

Currently translated at 88.6% (47 of 53 strings)

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Co-authored-by: Ronen Atsil <atsil55@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/audio/he/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/common/he/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-auth/he/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-camera/he/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-dialog/he/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-filter/he/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/objects/he/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-classificationmodel/he/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-events/he/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-explore/he/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-exports/he/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-facelibrary/he/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-live/he/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-search/he/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-settings/he/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-system/he/
Translation: Frigate NVR/audio
Translation: Frigate NVR/common
Translation: Frigate NVR/components-auth
Translation: Frigate NVR/components-camera
Translation: Frigate NVR/components-dialog
Translation: Frigate NVR/components-filter
Translation: Frigate NVR/objects
Translation: Frigate NVR/views-classificationmodel
Translation: Frigate NVR/views-events
Translation: Frigate NVR/views-explore
Translation: Frigate NVR/views-exports
Translation: Frigate NVR/views-facelibrary
Translation: Frigate NVR/views-live
Translation: Frigate NVR/views-search
Translation: Frigate NVR/views-settings
Translation: Frigate NVR/views-system
2025-12-26 08:44:19 -06:00
Hosted Weblate
a1094615e1 Translated using Weblate (Croatian)
Currently translated at 100.0% (2 of 2 strings)

Translated using Weblate (Croatian)

Currently translated at 9.8% (21 of 214 strings)

Translated using Weblate (Croatian)

Currently translated at 17.3% (16 of 92 strings)

Translated using Weblate (Croatian)

Currently translated at 8.1% (10 of 122 strings)

Translated using Weblate (Croatian)

Currently translated at 18.9% (14 of 74 strings)

Translated using Weblate (Croatian)

Currently translated at 7.4% (10 of 135 strings)

Translated using Weblate (Croatian)

Currently translated at 9.9% (13 of 131 strings)

Translated using Weblate (Croatian)

Currently translated at 4.7% (24 of 501 strings)

Translated using Weblate (Croatian)

Currently translated at 16.1% (19 of 118 strings)

Translated using Weblate (Croatian)

Currently translated at 39.0% (16 of 41 strings)

Translated using Weblate (Croatian)

Currently translated at 80.0% (8 of 10 strings)

Translated using Weblate (Croatian)

Currently translated at 34.6% (17 of 49 strings)

Translated using Weblate (Croatian)

Currently translated at 28.0% (7 of 25 strings)

Translated using Weblate (Croatian)

Currently translated at 92.3% (12 of 13 strings)

Translated using Weblate (Croatian)

Currently translated at 100.0% (6 of 6 strings)

Translated using Weblate (Croatian)

Currently translated at 2.1% (14 of 654 strings)

Translated using Weblate (Croatian)

Currently translated at 30.9% (17 of 55 strings)

Update translation files

Updated by "Squash Git commits" add-on in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Co-authored-by: Zoran Ivancevic <zolakt@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/audio/hr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/common/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/common/hr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-auth/hr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-dialog/hr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-filter/hr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-input/hr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-player/hr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/objects/hr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-classificationmodel/hr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-events/hr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-explore/hr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-exports/hr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-live/hr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-recording/hr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-search/hr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-settings/hr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-system/hr/
Translation: Frigate NVR/audio
Translation: Frigate NVR/common
Translation: Frigate NVR/components-auth
Translation: Frigate NVR/components-dialog
Translation: Frigate NVR/components-filter
Translation: Frigate NVR/components-input
Translation: Frigate NVR/components-player
Translation: Frigate NVR/objects
Translation: Frigate NVR/views-classificationmodel
Translation: Frigate NVR/views-events
Translation: Frigate NVR/views-explore
Translation: Frigate NVR/views-exports
Translation: Frigate NVR/views-live
Translation: Frigate NVR/views-recording
Translation: Frigate NVR/views-search
Translation: Frigate NVR/views-settings
Translation: Frigate NVR/views-system
2025-12-26 08:44:19 -06:00
Hosted Weblate
59780203a3 Translated using Weblate (Czech)
Currently translated at 61.0% (399 of 654 strings)

Translated using Weblate (Czech)

Currently translated at 96.2% (51 of 53 strings)

Translated using Weblate (Czech)

Currently translated at 96.2% (51 of 53 strings)

Translated using Weblate (Czech)

Currently translated at 100.0% (49 of 49 strings)

Translated using Weblate (Czech)

Currently translated at 75.6% (31 of 41 strings)

Translated using Weblate (Czech)

Currently translated at 23.7% (29 of 122 strings)

Translated using Weblate (Czech)

Currently translated at 23.7% (29 of 122 strings)

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Co-authored-by: Vitek <vit@vakula.cz>
Co-authored-by: lukascissa <lukas@cissa.cz>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-classificationmodel/cs/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-events/cs/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-facelibrary/cs/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-search/cs/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-settings/cs/
Translation: Frigate NVR/views-classificationmodel
Translation: Frigate NVR/views-events
Translation: Frigate NVR/views-facelibrary
Translation: Frigate NVR/views-search
Translation: Frigate NVR/views-settings
2025-12-26 08:44:19 -06:00
Hosted Weblate
525cc5b663 Translated using Weblate (Catalan)
Currently translated at 100.0% (131 of 131 strings)

Translated using Weblate (Catalan)

Currently translated at 100.0% (122 of 122 strings)

Translated using Weblate (Catalan)

Currently translated at 100.0% (135 of 135 strings)

Translated using Weblate (Catalan)

Currently translated at 100.0% (49 of 49 strings)

Translated using Weblate (Catalan)

Currently translated at 100.0% (121 of 121 strings)

Translated using Weblate (Catalan)

Currently translated at 100.0% (74 of 74 strings)

Translated using Weblate (Catalan)

Currently translated at 100.0% (654 of 654 strings)

Update translation files

Updated by "Squash Git commits" add-on in Weblate.

Co-authored-by: Eduardo Pastor Fernández <123eduardoneko123@gmail.com>
Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/common/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-filter/ca/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-classificationmodel/ca/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-explore/ca/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-search/ca/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-settings/ca/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-system/ca/
Translation: Frigate NVR/common
Translation: Frigate NVR/components-filter
Translation: Frigate NVR/views-classificationmodel
Translation: Frigate NVR/views-explore
Translation: Frigate NVR/views-search
Translation: Frigate NVR/views-settings
Translation: Frigate NVR/views-system
2025-12-26 08:44:19 -06:00
Hosted Weblate
29bcb7f47a Translated using Weblate (Japanese)
Currently translated at 100.0% (53 of 53 strings)

Translated using Weblate (Japanese)

Currently translated at 100.0% (131 of 131 strings)

Translated using Weblate (Japanese)

Currently translated at 100.0% (122 of 122 strings)

Translated using Weblate (Japanese)

Currently translated at 100.0% (92 of 92 strings)

Translated using Weblate (Japanese)

Currently translated at 100.0% (135 of 135 strings)

Translated using Weblate (Japanese)

Currently translated at 100.0% (49 of 49 strings)

Translated using Weblate (Japanese)

Currently translated at 100.0% (654 of 654 strings)

Translated using Weblate (Japanese)

Currently translated at 92.4% (49 of 53 strings)

Translated using Weblate (Japanese)

Currently translated at 100.0% (41 of 41 strings)

Translated using Weblate (Japanese)

Currently translated at 100.0% (122 of 122 strings)

Translated using Weblate (Japanese)

Currently translated at 100.0% (13 of 13 strings)

Translated using Weblate (Japanese)

Currently translated at 100.0% (501 of 501 strings)

Translated using Weblate (Japanese)

Currently translated at 100.0% (10 of 10 strings)

Translated using Weblate (Japanese)

Currently translated at 7.3% (9 of 122 strings)

Translated using Weblate (Japanese)

Currently translated at 100.0% (214 of 214 strings)

Translated using Weblate (Japanese)

Currently translated at 92.4% (49 of 53 strings)

Translated using Weblate (Japanese)

Currently translated at 100.0% (55 of 55 strings)

Translated using Weblate (Japanese)

Currently translated at 100.0% (74 of 74 strings)

Translated using Weblate (Japanese)

Currently translated at 4.9% (6 of 122 strings)

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Co-authored-by: yhi264 <yhiraki@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/audio/ja/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/common/ja/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-auth/ja/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-dialog/ja/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-filter/ja/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-classificationmodel/ja/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-events/ja/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-explore/ja/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-exports/ja/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-facelibrary/ja/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-live/ja/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-search/ja/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-settings/ja/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-system/ja/
Translation: Frigate NVR/audio
Translation: Frigate NVR/common
Translation: Frigate NVR/components-auth
Translation: Frigate NVR/components-dialog
Translation: Frigate NVR/components-filter
Translation: Frigate NVR/views-classificationmodel
Translation: Frigate NVR/views-events
Translation: Frigate NVR/views-explore
Translation: Frigate NVR/views-exports
Translation: Frigate NVR/views-facelibrary
Translation: Frigate NVR/views-live
Translation: Frigate NVR/views-search
Translation: Frigate NVR/views-settings
Translation: Frigate NVR/views-system
2025-12-26 08:44:19 -06:00
Hosted Weblate
2522a10afb Translated using Weblate (Ukrainian)
Currently translated at 100.0% (131 of 131 strings)

Translated using Weblate (Ukrainian)

Currently translated at 100.0% (122 of 122 strings)

Translated using Weblate (Ukrainian)

Currently translated at 100.0% (135 of 135 strings)

Translated using Weblate (Ukrainian)

Currently translated at 100.0% (74 of 74 strings)

Translated using Weblate (Ukrainian)

Currently translated at 100.0% (121 of 121 strings)

Translated using Weblate (Ukrainian)

Currently translated at 100.0% (49 of 49 strings)

Translated using Weblate (Ukrainian)

Currently translated at 100.0% (654 of 654 strings)

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Co-authored-by: Максим Горпиніч <gorpinicmaksim0@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-filter/uk/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-classificationmodel/uk/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-explore/uk/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-search/uk/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-settings/uk/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-system/uk/
Translation: Frigate NVR/components-filter
Translation: Frigate NVR/views-classificationmodel
Translation: Frigate NVR/views-explore
Translation: Frigate NVR/views-search
Translation: Frigate NVR/views-settings
Translation: Frigate NVR/views-system
2025-12-26 08:44:19 -06:00
Hosted Weblate
f94aa0ff2c Translated using Weblate (Romanian)
Currently translated at 100.0% (131 of 131 strings)

Translated using Weblate (Romanian)

Currently translated at 100.0% (122 of 122 strings)

Translated using Weblate (Romanian)

Currently translated at 100.0% (135 of 135 strings)

Translated using Weblate (Romanian)

Currently translated at 100.0% (74 of 74 strings)

Translated using Weblate (Romanian)

Currently translated at 100.0% (49 of 49 strings)

Translated using Weblate (Romanian)

Currently translated at 100.0% (654 of 654 strings)

Translated using Weblate (Romanian)

Currently translated at 100.0% (214 of 214 strings)

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Co-authored-by: Liviu Roman <contact@liviuroman.com>
Co-authored-by: lukasig <lukasig@hotmail.com>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/common/ro/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-filter/ro/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-classificationmodel/ro/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-explore/ro/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-search/ro/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-settings/ro/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-system/ro/
Translation: Frigate NVR/common
Translation: Frigate NVR/components-filter
Translation: Frigate NVR/views-classificationmodel
Translation: Frigate NVR/views-explore
Translation: Frigate NVR/views-search
Translation: Frigate NVR/views-settings
Translation: Frigate NVR/views-system
2025-12-26 08:44:19 -06:00
Hosted Weblate
32429688ff Translated using Weblate (Russian)
Currently translated at 100.0% (131 of 131 strings)

Translated using Weblate (Russian)

Currently translated at 100.0% (122 of 122 strings)

Translated using Weblate (Russian)

Currently translated at 100.0% (654 of 654 strings)

Translated using Weblate (Russian)

Currently translated at 100.0% (53 of 53 strings)

Translated using Weblate (Russian)

Currently translated at 100.0% (74 of 74 strings)

Translated using Weblate (Russian)

Currently translated at 100.0% (49 of 49 strings)

Translated using Weblate (Russian)

Currently translated at 99.1% (121 of 122 strings)

Translated using Weblate (Russian)

Currently translated at 100.0% (135 of 135 strings)

Translated using Weblate (Russian)

Currently translated at 100.0% (131 of 131 strings)

Translated using Weblate (Russian)

Currently translated at 100.0% (53 of 53 strings)

Update translation files

Updated by "Squash Git commits" add-on in Weblate.

Co-authored-by: Artem Vladimirov <artyomka71@mail.ru>
Co-authored-by: Gatis <gatisagnese@gmail.com>
Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/common/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-filter/ru/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-classificationmodel/ru/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-explore/ru/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-facelibrary/ru/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-search/ru/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-settings/ru/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-system/ru/
Translation: Frigate NVR/common
Translation: Frigate NVR/components-filter
Translation: Frigate NVR/views-classificationmodel
Translation: Frigate NVR/views-explore
Translation: Frigate NVR/views-facelibrary
Translation: Frigate NVR/views-search
Translation: Frigate NVR/views-settings
Translation: Frigate NVR/views-system
2025-12-26 08:44:19 -06:00
Hosted Weblate
4ae3c97865 Translated using Weblate (Estonian)
Currently translated at 61.9% (57 of 92 strings)

Translated using Weblate (Estonian)

Currently translated at 100.0% (46 of 46 strings)

Translated using Weblate (Estonian)

Currently translated at 13.3% (87 of 654 strings)

Translated using Weblate (Estonian)

Currently translated at 16.9% (22 of 130 strings)

Translated using Weblate (Estonian)

Currently translated at 100.0% (214 of 214 strings)

Translated using Weblate (Estonian)

Currently translated at 59.7% (55 of 92 strings)

Translated using Weblate (Estonian)

Currently translated at 7.5% (9 of 120 strings)

Translated using Weblate (Estonian)

Currently translated at 24.5% (13 of 53 strings)

Translated using Weblate (Estonian)

Currently translated at 100.0% (55 of 55 strings)

Translated using Weblate (Estonian)

Currently translated at 13.3% (87 of 654 strings)

Translated using Weblate (Estonian)

Currently translated at 16.6% (8 of 48 strings)

Translated using Weblate (Estonian)

Currently translated at 55.5% (40 of 72 strings)

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Co-authored-by: Priit Jõerüüt <jrthwlate@users.noreply.hosted.weblate.org>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/common/et/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-camera/et/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-dialog/et/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-filter/et/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-classificationmodel/et/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-explore/et/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-facelibrary/et/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-live/et/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-search/et/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-settings/et/
Translation: Frigate NVR/common
Translation: Frigate NVR/components-camera
Translation: Frigate NVR/components-dialog
Translation: Frigate NVR/components-filter
Translation: Frigate NVR/views-classificationmodel
Translation: Frigate NVR/views-explore
Translation: Frigate NVR/views-facelibrary
Translation: Frigate NVR/views-live
Translation: Frigate NVR/views-search
Translation: Frigate NVR/views-settings
2025-12-26 08:44:19 -06:00
Hosted Weblate
1be7c561d7 Update translation files
Updated by "Squash Git commits" add-on in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/common/
Translation: Frigate NVR/common
2025-12-26 08:44:19 -06:00
Hosted Weblate
50a5e40410 Translated using Weblate (Danish)
Currently translated at 36.0% (9 of 25 strings)

Translated using Weblate (Danish)

Currently translated at 7.3% (9 of 122 strings)

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Co-authored-by: Sean <sean.nielsen.1984@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-player/da/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-classificationmodel/da/
Translation: Frigate NVR/components-player
Translation: Frigate NVR/views-classificationmodel
2025-12-26 08:44:19 -06:00
Hosted Weblate
d7e10dffc6 Translated using Weblate (German)
Currently translated at 100.0% (131 of 131 strings)

Translated using Weblate (German)

Currently translated at 99.2% (130 of 131 strings)

Translated using Weblate (German)

Currently translated at 100.0% (74 of 74 strings)

Translated using Weblate (German)

Currently translated at 100.0% (135 of 135 strings)

Translated using Weblate (German)

Currently translated at 100.0% (49 of 49 strings)

Translated using Weblate (German)

Currently translated at 99.1% (121 of 122 strings)

Translated using Weblate (German)

Currently translated at 100.0% (654 of 654 strings)

Update translation files

Updated by "Squash Git commits" add-on in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Co-authored-by: Sebastian Sie <sebastian.neuplanitz@googlemail.com>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/common/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-filter/de/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-classificationmodel/de/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-explore/de/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-search/de/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-settings/de/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-system/de/
Translation: Frigate NVR/common
Translation: Frigate NVR/components-filter
Translation: Frigate NVR/views-classificationmodel
Translation: Frigate NVR/views-explore
Translation: Frigate NVR/views-search
Translation: Frigate NVR/views-settings
Translation: Frigate NVR/views-system
2025-12-26 08:44:19 -06:00
Hosted Weblate
8fb413ce7c Translated using Weblate (Latvian)
Currently translated at 35.1% (26 of 74 strings)

Translated using Weblate (Latvian)

Currently translated at 100.0% (10 of 10 strings)

Translated using Weblate (Latvian)

Currently translated at 12.9% (17 of 131 strings)

Translated using Weblate (Latvian)

Currently translated at 9.4% (7 of 74 strings)

Translated using Weblate (Latvian)

Currently translated at 100.0% (55 of 55 strings)

Translated using Weblate (Latvian)

Currently translated at 100.0% (25 of 25 strings)

Translated using Weblate (Latvian)

Currently translated at 100.0% (13 of 13 strings)

Translated using Weblate (Latvian)

Currently translated at 14.7% (18 of 122 strings)

Translated using Weblate (Latvian)

Currently translated at 100.0% (6 of 6 strings)

Translated using Weblate (Latvian)

Currently translated at 100.0% (214 of 214 strings)

Translated using Weblate (Latvian)

Currently translated at 2.7% (18 of 654 strings)

Translated using Weblate (Latvian)

Currently translated at 100.0% (53 of 53 strings)

Translated using Weblate (Latvian)

Currently translated at 100.0% (49 of 49 strings)

Translated using Weblate (Latvian)

Currently translated at 100.0% (41 of 41 strings)

Translated using Weblate (Latvian)

Currently translated at 7.6% (7 of 92 strings)

Translated using Weblate (Latvian)

Currently translated at 100.0% (46 of 46 strings)

Translated using Weblate (Latvian)

Currently translated at 6.5% (33 of 501 strings)

Translated using Weblate (Latvian)

Currently translated at 14.0% (19 of 135 strings)

Translated using Weblate (Latvian)

Currently translated at 14.4% (17 of 118 strings)

Translated using Weblate (Latvian)

Currently translated at 100.0% (2 of 2 strings)

Translated using Weblate (Latvian)

Currently translated at 5.7% (7 of 122 strings)

Translated using Weblate (Latvian)

Currently translated at 5.1% (7 of 135 strings)

Translated using Weblate (Latvian)

Currently translated at 28.0% (7 of 25 strings)

Translated using Weblate (Latvian)

Currently translated at 10.9% (6 of 55 strings)

Translated using Weblate (Latvian)

Currently translated at 100.0% (10 of 10 strings)

Translated using Weblate (Latvian)

Currently translated at 100.0% (46 of 46 strings)

Translated using Weblate (Latvian)

Currently translated at 100.0% (6 of 6 strings)

Translated using Weblate (Latvian)

Currently translated at 6.5% (6 of 92 strings)

Translated using Weblate (Latvian)

Currently translated at 0.9% (6 of 654 strings)

Translated using Weblate (Latvian)

Currently translated at 8.1% (6 of 74 strings)

Translated using Weblate (Latvian)

Currently translated at 2.1% (11 of 501 strings)

Translated using Weblate (Latvian)

Currently translated at 12.2% (6 of 49 strings)

Translated using Weblate (Latvian)

Currently translated at 100.0% (13 of 13 strings)

Translated using Weblate (Latvian)

Currently translated at 100.0% (2 of 2 strings)

Translated using Weblate (Latvian)

Currently translated at 17.0% (7 of 41 strings)

Translated using Weblate (Latvian)

Currently translated at 100.0% (10 of 10 strings)

Translated using Weblate (Latvian)

Currently translated at 11.3% (6 of 53 strings)

Translated using Weblate (Latvian)

Currently translated at 4.5% (6 of 131 strings)

Translated using Weblate (Latvian)

Currently translated at 5.9% (7 of 118 strings)

Translated using Weblate (Latvian)

Currently translated at 100.0% (214 of 214 strings)

Translated using Weblate (Latvian)

Currently translated at 98.1% (210 of 214 strings)

Translated using Weblate (Latvian)

Currently translated at 96.7% (207 of 214 strings)

Translated using Weblate (Latvian)

Currently translated at 93.4% (200 of 214 strings)

Translated using Weblate (Latvian)

Currently translated at 91.1% (195 of 214 strings)

Translated using Weblate (Latvian)

Currently translated at 90.6% (194 of 214 strings)

Translated using Weblate (Latvian)

Currently translated at 89.7% (192 of 214 strings)

Translated using Weblate (Latvian)

Currently translated at 87.3% (187 of 214 strings)

Translated using Weblate (Latvian)

Currently translated at 85.5% (183 of 214 strings)

Translated using Weblate (Latvian)

Currently translated at 84.1% (180 of 214 strings)

Translated using Weblate (Latvian)

Currently translated at 73.8% (158 of 214 strings)

Update translation files

Updated by "Squash Git commits" add-on in Weblate.

Co-authored-by: Gatis <gatisagnese@gmail.com>
Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/audio/lv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/common/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/common/lv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-auth/lv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-camera/lv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-dialog/lv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-filter/lv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-icons/lv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-input/lv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-player/lv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/objects/lv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-classificationmodel/lv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-configeditor/lv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-events/lv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-explore/lv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-exports/lv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-facelibrary/lv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-live/lv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-recording/lv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-search/lv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-settings/lv/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-system/lv/
Translation: Frigate NVR/audio
Translation: Frigate NVR/common
Translation: Frigate NVR/components-auth
Translation: Frigate NVR/components-camera
Translation: Frigate NVR/components-dialog
Translation: Frigate NVR/components-filter
Translation: Frigate NVR/components-icons
Translation: Frigate NVR/components-input
Translation: Frigate NVR/components-player
Translation: Frigate NVR/objects
Translation: Frigate NVR/views-classificationmodel
Translation: Frigate NVR/views-configeditor
Translation: Frigate NVR/views-events
Translation: Frigate NVR/views-explore
Translation: Frigate NVR/views-exports
Translation: Frigate NVR/views-facelibrary
Translation: Frigate NVR/views-live
Translation: Frigate NVR/views-recording
Translation: Frigate NVR/views-search
Translation: Frigate NVR/views-settings
Translation: Frigate NVR/views-system
2025-12-26 08:44:19 -06:00
Hosted Weblate
bb3991f62b Translated using Weblate (Turkish)
Currently translated at 100.0% (122 of 122 strings)

Translated using Weblate (Turkish)

Currently translated at 100.0% (131 of 131 strings)

Translated using Weblate (Turkish)

Currently translated at 100.0% (121 of 121 strings)

Translated using Weblate (Turkish)

Currently translated at 100.0% (135 of 135 strings)

Translated using Weblate (Turkish)

Currently translated at 100.0% (49 of 49 strings)

Translated using Weblate (Turkish)

Currently translated at 100.0% (74 of 74 strings)

Translated using Weblate (Turkish)

Currently translated at 100.0% (53 of 53 strings)

Translated using Weblate (Turkish)

Currently translated at 100.0% (130 of 130 strings)

Translated using Weblate (Turkish)

Currently translated at 100.0% (53 of 53 strings)

Translated using Weblate (Turkish)

Currently translated at 100.0% (92 of 92 strings)

Translated using Weblate (Turkish)

Currently translated at 100.0% (10 of 10 strings)

Translated using Weblate (Turkish)

Currently translated at 100.0% (128 of 128 strings)

Translated using Weblate (Turkish)

Currently translated at 100.0% (120 of 120 strings)

Translated using Weblate (Turkish)

Currently translated at 100.0% (41 of 41 strings)

Translated using Weblate (Turkish)

Currently translated at 100.0% (214 of 214 strings)

Translated using Weblate (Turkish)

Currently translated at 100.0% (654 of 654 strings)

Update translation files

Updated by "Squash Git commits" add-on in Weblate.

Co-authored-by: Emircanos <emircan368@gmail.com>
Co-authored-by: Hosted Weblate <hosted@weblate.org>
Co-authored-by: pcislocked <git@pcislocked.net>
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/common/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/common/tr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-auth/tr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/components-filter/tr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-classificationmodel/tr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-events/tr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-explore/tr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-facelibrary/tr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-live/tr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-search/tr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-settings/tr/
Translate-URL: https://hosted.weblate.org/projects/frigate-nvr/views-system/tr/
Translation: Frigate NVR/common
Translation: Frigate NVR/components-auth
Translation: Frigate NVR/components-filter
Translation: Frigate NVR/views-classificationmodel
Translation: Frigate NVR/views-events
Translation: Frigate NVR/views-explore
Translation: Frigate NVR/views-facelibrary
Translation: Frigate NVR/views-live
Translation: Frigate NVR/views-search
Translation: Frigate NVR/views-settings
Translation: Frigate NVR/views-system
2025-12-26 08:44:19 -06:00
Josh Hawkins
a4ece9dae3 Miscellaneous Fixes (0.17 beta) (#21396)
* use fallback timeout for opening media source

covers the case where there is no active connection to the go2rtc stream and the camera takes a long time to start

* Add review thumbnail URL to integration docs

* fix weekday starting point on explore when set to monday in UI settings

* only show allowed cameras and groups in camera filter button

* Reset the wizard state after closing with model

* remove footnote about 0.17

* 0.17

* add triggers to note

* add slovak

* Ensure genai client exists

* Correctly catch JSONDecodeError

* clarify docs for none class

* version bump on updating page

* fix ExportRecordingsBody to allow optional name field

fixes https://github.com/blakeblackshear/frigate/discussions/21413 because of https://github.com/blakeblackshear/frigate-hass-integration/pull/1021

* Catch remote protocol error from ollama

---------

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
2025-12-24 08:03:09 -06:00
apocaliss92
f862ef5d0c Add Scrypted - Frigate bridge plugin information (#21365) 2025-12-22 08:13:37 -07:00
GuoQing Liu
f74df040bb fix: fix password setting overlay time i18n (#21387) 2025-12-22 05:56:19 -06:00
Nicolas Mowen
54f4af3c6a Miscellaneous fixes (#21373)
* Send preferred language for report service

* make object lifecycle scrollable in tracking details

* fix info popovers in live camera drawer

* ensure metrics are initialized if genai is enabled

* docs

* ollama cloud model docs

* Ensure object descriptions get claened up

---------

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-12-20 18:30:34 -06:00
GuoQing Liu
8a4d5f34da fix: fix system enrichments view classification i18n (#21366) 2025-12-20 05:45:31 -07:00
Josh Hawkins
60052e5f9f Miscellaneous Fixes (0.17 beta) (#21355)
* remove footer messages and add update topic to motion tuner view

restart after changing values is no longer required

* add cache key and activity indicator for loading classification wizard images

* Always mark model as untrained when a classname is changed

* clarify object classification docs

* add debug logs for individual lpr replace_rules

* update memray docs

* memray tweaks

* Don't fail for audio transcription when semantic search is not enabled

* Fix incorrect mismatch for object vs sub label

* Check if the video is currently playing when deciding to seek due to misalignment

* Refactor timeline event handling to allow multiple timeline entries per update

* Check if zones have actually changed (not just count) for event state update

* show event icon on mobile

* move div inside conditional

---------

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
2025-12-19 18:59:26 -06:00
Nicolas Mowen
e636449d56 Miscellaneous fixes (0.17 beta) (#21350)
* Fix genai callbacks in MQTT

* Cleanup cursor pointer for classification cards

* Cleanup

* Handle unknown SOCs for RKNN converter by only using known SOCs

* don't allow "none" as a classification class name

* change internal port user to admin and default unspecified username to viewer

* keep 5000 as anonymous user

* suppress tensorflow logging during classification training

* Always apply base log level suppressions for noisy third-party libraries even if no specific logConfig is provided

* remove decorator and specifically suppress TFLite delegate creation messages

---------

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-12-18 15:12:10 -07:00
Josh Hawkins
6a0e31dcf9 Add object classification attributes to Tracked Object Details (#21348)
* attributes endpoint

* event endpoints

* add attributes to more filters

* add to suggestions and query in explore

* support attributes in search input

* i18n

* add object type filter to endpoint

* add attributes to tracked object details pane

* add generic multi select dialog

* save object attributes endpoint

* add group by param to fetch attributes endpoint

* add attribute editing to tracked object details

* docs

* fix docs

* update openapi spec to match python
2025-12-18 08:35:47 -06:00
GuoQing Liu
074b060e9c fix: temp directory is only created when there are review_items. (#21344) 2025-12-18 07:08:45 -07:00
Josh Hawkins
ae009b9861 Miscellaneous Fixes (0.17 beta) (#21336)
* fix coral docs

* add note about sub label object classification with person

* Catch OSError for deleting classification image

* add docs for dummy camera debugging

* add to sidebar

* fix formatting

* fix

* avx instructions are required for classification

* break text on classification card to prevent button overflow

* Ensure there is no NameError when processing

* Don't use region for state classification models

* fix spelling

* Handle attribute based models

* Catch case of non-trained model that doesn't add infinite number of classification images

* Actually train object classification models automatically

---------

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
2025-12-17 16:52:27 -07:00
GuoQing Liu
13957fec00 classification i18n fix (#21331)
* fix: fix classification pages none label i18n

* fix: fix README_CN formatting issue
2025-12-17 15:26:11 -07:00
Blake Blackshear
3edfd905de consider anonymous user authenticated (#21335)
* consider anonymous user authenticated

* simplify and update comments
2025-12-17 08:01:20 -06:00
Nicolas Mowen
78eace258e Miscellaneous Fixes (0.17 Beta) (#21320)
* Exclude D-FINE from using CUDA Graphs

* fix objects count in detail stream

* Add debugging for classification models

* validate idb stored stream name and reset if invalid

fixes https://github.com/blakeblackshear/frigate/discussions/21311

* ensure jina loading takes place in the main thread to prevent lazily importing tensorflow in another thread later

reverts atexit changes in https://github.com/blakeblackshear/frigate/pull/21301 and fixes https://github.com/blakeblackshear/frigate/discussions/21306

* revert old atexit change in bird too

* revert types

* ensure we bail in the live mode hook for empty camera groups

prevent infinite rendering on camera groups with no cameras

---------

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-12-16 22:35:43 -06:00
Issy Szemeti
c292cd207d Align node versions used in GHA PR workflow (#21302)
* Add node/npm version config to package.json

* Bump npm version/fix node version format

* Version range

* Use package.json for github actions node version

* Unification

* Move it all to the bottom

* Remove this

* Bump versions in docs

* Add volta config here too

* Revert changes

* Revert this
2025-12-16 20:28:35 -07:00
Josh Hawkins
e7d047715d Miscellaneous Fixes (0.17 beta) (#21301)
* Wait for config to load before evaluating route access

Fix race condition where custom role users are temporarily denied access after login while config is still loading. Defer route rendering in DefaultAppView until config is available so the complete role list is known before ProtectedRoute evaluates permissions

* Use batching for state classification generation

* Ignore incorrect scoring images if they make it through the deletion

* Delete unclassified images

* mitigate tensorflow atexit crash by pre-importing tflite/tensorflow on main thread

Pre-import Interpreter in embeddings maintainer and add defensive lazy imports in classification processors to avoid worker-thread tensorflow imports causing "can't register atexit after shutdown"

* don't require old password for users with admin role when changing passwords

* don't render actions menu if no options are available

* Remove hwaccel arg as it is not used for encoding

* change password button text

---------

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
2025-12-16 08:11:53 -06:00
Issy Szemeti
818cccb2e3 Settings page layout shift - follow up (#21300)
* Fix layout shift with camera filter

* Move min height
2025-12-15 11:42:11 -07:00
Issy Szemeti
f543d0ab31 Fix layout shift with camera filter (#21298) 2025-12-15 11:18:41 -07:00
GuoQing Liu
39af85625e feat: add train classification download weights file endpoint (#21294)
* feat: add train classification download weights file endpoint: "TF_KERAS_MOBILENET_V2_ENDPOINT"

* refactor: custom weights file url
2025-12-15 08:59:13 -07:00
Nicolas Mowen
fa16539429 Miscellaneous Fixes (#21289)
* Exclude yolov9 license plate from migraphx runner

* clarify auth endpoint return in openapi schema

* Clarify ROCm enrichments

* fix object mask creation

* Consider audio activity when deciding if recording segments should be kept due to motion

* ensure python defs match openapi spec for auth endpoints

* Fix check for audio activity to keep a segemnt

* fix calendar popover modal bug on export dialog

---------

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-12-15 09:32:11 -06:00
Nicolas Mowen
1d5c2466a8 Update HIKVISION camera link in hardware documentation (#21256) 2025-12-12 14:25:22 -06:00
GuoQing Liu
0a293aebab docs: update OpenVINO D-FINE configuration default device (#21231)
* docs: remove OpenVINO D-FINE configuration device

* docs: change D-FINE model detectors default device
2025-12-11 06:31:52 -07:00
User873902
1de7519d1a Update camera_specific.md for Wyze Cameras (Thingino) (#21221)
* Update camera_specific.md

Wyze Cameras alternative firmware considerations.

* Update docs/docs/configuration/camera_specific.md

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>

* Update docs/docs/configuration/camera_specific.md

* Update camera_specific.md

Moved Wyze Camera section

---------

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
2025-12-10 10:33:10 -07:00
GuoQing Liu
c3f596327e docs: fix the missing quotes in the Reolink example within the documentation (#21178) 2025-12-07 07:38:41 -07:00
Nicolas Mowen
90344540b3 Fix jetson build (#21173) 2025-12-06 09:16:23 -06:00
Josh Hawkins
7167cf57c5 pin cryptography version to fix vapid issues (#21126) 2025-12-02 07:20:50 -07:00
Josh Hawkins
e47e82f4be Pin onnx in rfdetr model generation command (#21127)
* pin onnx in rfdetr model generation command

* Apply suggestion from @NickM-27

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>

---------

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
2025-12-02 08:15:12 -06:00
munit85
a43d294bd1 Add Axis Q-6155E camera configuration details (#21105)
* Add Axis Q-6155E camera configuration details

Added Axis Q-6155E camera details with ONVIF service port information.

* Update Axis Q-6155E ONVIF autotracking support details

Added the reason for autotracking not working
2025-12-01 10:47:01 -07:00
Josh Hawkins
9f95a5f31f version bump in docs (#21111) 2025-12-01 07:21:27 -07:00
Josh Hawkins
592c245dcd Fixes (#21061)
* require admin role to delete users

* explicitly prevent deletion of admin user

* Recordings playback fixes

* Remove nvidia pyindex

* Update version

---------

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
2025-11-26 07:27:16 -06:00
h-leth
914ff4f1e5 add comment about unifi g5 and newer cams (#21003) 2025-11-22 12:41:13 -06:00
Josh Hawkins
9589c5fc24 Fix rf-detr heading (#20963)
The link earlier in the file was referencing "#downloading-rf-detr-model"
2025-11-18 18:15:38 -07:00
Nicolas Mowen
3620ef27db Update hailo installation instructions (#20847)
* Update hailo docs installation

* Adjust section separation
2025-11-08 13:21:15 -06:00
GuoQing Liu
5cf2ae0121 docs: remove webrtc not support H.265 tips (#20769) 2025-11-05 06:23:45 -06:00
Nicolas Mowen
17d2bc240a Update recommended hardware to list more models (#20777)
* Update recommended hardware to list more models

* Update hardware.md with new Intel models and links
2025-11-04 10:56:28 -06:00
Nicolas Mowen
6fd7f862f5 Update coral docs / links (#20674)
* Revise GPU and AI accelerator recommendations

Updated hardware recommendations for AI acceleration.

* Revise PCIe Coral driver installation instructions

Updated instructions for PCIe Coral driver installation.

* Revise Coral driver installation instructions

Updated driver installation instructions for PCIe and M.2 versions of Google Coral.

* Change PCIe Coral driver link in getting_started.md

Updated the link for PCIe Coral driver instructions.

* Change PCIe Coral driver link in installation guide

Updated the link for PCIe Coral driver instructions.

* Update Coral TPU recommendation in hardware documentation

Added a warning about the Coral TPU's recommendation status for new Frigate installations and suggested alternatives.
2025-10-26 06:56:01 -05:00
Nicolas Mowen
5d038b5c75 Update PWA requirements and add usage section (#20562)
Added VPN as a secure context option for PWA installation and included a usage section.
2025-10-26 05:39:09 -06:00
403 changed files with 8099 additions and 1483 deletions

View File

@@ -19,9 +19,9 @@ jobs:
- uses: actions/checkout@v6
with:
persist-credentials: false
- uses: actions/setup-node@master
- uses: actions/setup-node@v6
with:
node-version: 16.x
node-version: 20.x
- run: npm install
working-directory: ./web
- name: Lint
@@ -35,7 +35,7 @@ jobs:
- uses: actions/checkout@v6
with:
persist-credentials: false
- uses: actions/setup-node@master
- uses: actions/setup-node@v6
with:
node-version: 20.x
- run: npm install
@@ -78,7 +78,7 @@ jobs:
uses: actions/checkout@v6
with:
persist-credentials: false
- uses: actions/setup-node@master
- uses: actions/setup-node@v6
with:
node-version: 20.x
- name: Install devcontainer cli

View File

@@ -39,14 +39,14 @@ jobs:
STABLE_TAG=${BASE}:stable
PULL_TAG=${BASE}:${BUILD_TAG}
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG} docker://${VERSION_TAG}
for variant in standard-arm64 tensorrt tensorrt-jp6 rk rocm; do
for variant in standard-arm64 tensorrt tensorrt-jp6 rk rocm synaptics; do
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG}-${variant} docker://${VERSION_TAG}-${variant}
done
# stable tag
if [[ "${BUILD_TYPE}" == "stable" ]]; then
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG} docker://${STABLE_TAG}
for variant in standard-arm64 tensorrt tensorrt-jp6 rk rocm; do
for variant in standard-arm64 tensorrt tensorrt-jp6 rk rocm synaptics; do
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG}-${variant} docker://${STABLE_TAG}-${variant}
done
fi

View File

@@ -1,6 +1,6 @@
The MIT License
Copyright (c) 2025 Frigate LLC (Frigate™)
Copyright (c) 2026 Frigate, Inc. (Frigate™)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View File

@@ -40,7 +40,7 @@ If you would like to make a donation to support development, please use [Github
This project is licensed under the **MIT License**.
- **Code:** The source code, configuration files, and documentation in this repository are available under the [MIT License](LICENSE). You are free to use, modify, and distribute the code as long as you include the original copyright notice.
- **Trademarks:** The "Frigate" name, the "Frigate NVR" brand, and the Frigate logo are **trademarks of Frigate LLC** and are **not** covered by the MIT License.
- **Trademarks:** The "Frigate" name, the "Frigate NVR" brand, and the Frigate logo are **trademarks of Frigate, Inc.** and are **not** covered by the MIT License.
Please see our [Trademark Policy](TRADEMARK.md) for details on acceptable use of our brand assets.
@@ -67,7 +67,7 @@ Please see our [Trademark Policy](TRADEMARK.md) for details on acceptable use of
### Built-in mask and zone editor
<div>
<img width="800" alt="Multi-camera scrubbing" src="https://github.com/blakeblackshear/frigate/assets/569905/d7885fc3-bfe6-452f-b7d0-d957cb3e31f5">
<img width="800" alt="Built-in mask and zone editor" src="https://github.com/blakeblackshear/frigate/assets/569905/d7885fc3-bfe6-452f-b7d0-d957cb3e31f5">
</div>
## Translations
@@ -80,4 +80,4 @@ We use [Weblate](https://hosted.weblate.org/projects/frigate-nvr/) to support la
---
**Copyright © 2025 Frigate LLC.**
**Copyright © 2026 Frigate, Inc.**

View File

@@ -4,14 +4,14 @@
# Frigate NVR™ - 一个具有实时目标检测的本地 NVR
[English](https://github.com/blakeblackshear/frigate) | \[简体中文\]
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
<a href="https://hosted.weblate.org/engage/frigate-nvr/-/zh_Hans/">
<img src="https://hosted.weblate.org/widget/frigate-nvr/-/zh_Hans/svg-badge.svg" alt="翻译状态" />
</a>
[English](https://github.com/blakeblackshear/frigate) | \[简体中文\]
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
一个完整的本地网络视频录像机NVR专为[Home Assistant](https://www.home-assistant.io)设计,具备 AI 目标/物体检测功能。使用 OpenCV 和 TensorFlow 在本地为 IP 摄像头执行实时物体检测。
强烈推荐使用 GPU 或者 AI 加速器(例如[Google Coral 加速器](https://coral.ai/products/) 或者 [Hailo](https://hailo.ai/)等)。它们的运行效率远远高于现在的顶级 CPU并且功耗也极低。
@@ -38,9 +38,10 @@
## 协议
本项目采用 **MIT 许可证**授权。
**代码部分**:本代码库中的源代码、配置文件和文档均遵循 [MIT 许可证](LICENSE)。您可以自由使用、修改和分发这些代码,但必须保留原始版权声明。
**商标部分**“Frigate”名称、“Frigate NVR”品牌以及 Frigate 的 Logo 为 **Frigate LLC 的商标****不在** MIT 许可证覆盖范围内。
**商标部分**“Frigate”名称、“Frigate NVR”品牌以及 Frigate 的 Logo 为 **Frigate, Inc. 的商标****不在** MIT 许可证覆盖范围内。
有关品牌资产的规范使用详情,请参阅我们的[《商标政策》](TRADEMARK.md)。
## 截图
@@ -86,4 +87,4 @@ Bilibilihttps://space.bilibili.com/3546894915602564
---
**Copyright © 2025 Frigate LLC.**
**Copyright © 2026 Frigate, Inc.**

View File

@@ -6,7 +6,7 @@ This document outlines the policy regarding the use of the trademarks associated
## 1. Our Trademarks
The following terms and visual assets are trademarks (the "Marks") of **Frigate LLC**:
The following terms and visual assets are trademarks (the "Marks") of **Frigate, Inc.**:
- **Frigate™**
- **Frigate NVR™**
@@ -14,7 +14,7 @@ The following terms and visual assets are trademarks (the "Marks") of **Frigate
- **The Frigate Logo**
**Note on Common Law Rights:**
Frigate LLC asserts all common law rights in these Marks. The absence of a federal registration symbol (®) does not constitute a waiver of our intellectual property rights.
Frigate, Inc. asserts all common law rights in these Marks. The absence of a federal registration symbol (®) does not constitute a waiver of our intellectual property rights.
## 2. Interaction with the MIT License
@@ -25,7 +25,7 @@ The software in this repository is licensed under the [MIT License](LICENSE).
- The **Code** is free to use, modify, and distribute under the MIT terms.
- The **Brand (Trademarks)** is **NOT** licensed under MIT.
You may not use the Marks in any way that is not explicitly permitted by this policy or by written agreement with Frigate LLC.
You may not use the Marks in any way that is not explicitly permitted by this policy or by written agreement with Frigate, Inc.
## 3. Acceptable Use
@@ -40,7 +40,7 @@ You may use the Marks without prior written permission in the following specific
You may **NOT** use the Marks in the following ways:
- **Commercial Products:** You may not use "Frigate" in the name of a commercial product, service, or app (e.g., selling an app named _"Frigate Viewer"_ is prohibited).
- **Implying Affiliation:** You may not use the Marks in a way that suggests your project is official, sponsored by, or endorsed by Frigate LLC.
- **Implying Affiliation:** You may not use the Marks in a way that suggests your project is official, sponsored by, or endorsed by Frigate, Inc.
- **Confusing Forks:** If you fork this repository to create a derivative work, you **must** remove the Frigate logo and rename your project to avoid user confusion. You cannot distribute a modified version of the software under the name "Frigate".
- **Domain Names:** You may not register domain names containing "Frigate" that are likely to confuse users (e.g., `frigate-official-support.com`).

View File

@@ -237,8 +237,18 @@ ENV PYTHONWARNINGS="ignore:::numpy.core.getlimits"
# Set HailoRT to disable logging
ENV HAILORT_LOGGER_PATH=NONE
# TensorFlow error only
# TensorFlow C++ logging suppression (must be set before import)
# TF_CPP_MIN_LOG_LEVEL: 0=all, 1=INFO+, 2=WARNING+, 3=ERROR+ (we use 3 for errors only)
ENV TF_CPP_MIN_LOG_LEVEL=3
# Suppress verbose logging from TensorFlow C++ code
ENV TF_CPP_MIN_VLOG_LEVEL=3
# Disable oneDNN optimization messages ("optimized with oneDNN...")
ENV TF_ENABLE_ONEDNN_OPTS=0
# Suppress AutoGraph verbosity during conversion
ENV AUTOGRAPH_VERBOSITY=0
# Google Logging (GLOG) suppression for TensorFlow components
ENV GLOG_minloglevel=3
ENV GLOG_logtostderr=0
ENV PATH="/usr/local/go2rtc/bin:/usr/local/tempio/bin:/usr/local/nginx/sbin:${PATH}"

View File

@@ -48,7 +48,7 @@ onnxruntime == 1.22.*
transformers == 4.45.*
# Generative AI
google-generativeai == 0.8.*
ollama == 0.5.*
ollama == 0.6.*
openai == 1.65.*
# push notifications
py-vapid == 1.9.*

View File

@@ -55,7 +55,7 @@ function setup_homekit_config() {
if [[ ! -f "${config_path}" ]]; then
echo "[INFO] Creating empty HomeKit config file..."
echo '{}' > "${config_path}"
echo 'homekit: {}' > "${config_path}"
fi
# Convert YAML to JSON for jq processing
@@ -70,12 +70,14 @@ function setup_homekit_config() {
jq '
# Keep only the homekit section if it exists, otherwise empty object
if has("homekit") then {homekit: .homekit} else {homekit: {}} end
' "${temp_json}" > "${cleaned_json}" 2>/dev/null || echo '{"homekit": {}}' > "${cleaned_json}"
' "${temp_json}" > "${cleaned_json}" 2>/dev/null || {
echo '{"homekit": {}}' > "${cleaned_json}"
}
# Convert back to YAML and write to the config file
yq eval -P "${cleaned_json}" > "${config_path}" 2>/dev/null || {
echo "[WARNING] Failed to convert cleaned config to YAML, creating minimal config"
echo '{"homekit": {}}' > "${config_path}"
echo 'homekit: {}' > "${config_path}"
}
# Clean up temp files

View File

@@ -22,6 +22,11 @@ sys.path.remove("/opt/frigate")
yaml = YAML()
# Check if arbitrary exec sources are allowed (defaults to False for security)
ALLOW_ARBITRARY_EXEC = os.environ.get(
"GO2RTC_ALLOW_ARBITRARY_EXEC", "false"
).lower() in ("true", "1", "yes")
FRIGATE_ENV_VARS = {k: v for k, v in os.environ.items() if k.startswith("FRIGATE_")}
# read docker secret files as env vars too
if os.path.isdir("/run/secrets"):
@@ -109,14 +114,26 @@ if LIBAVFORMAT_VERSION_MAJOR < 59:
elif go2rtc_config["ffmpeg"].get("rtsp") is None:
go2rtc_config["ffmpeg"]["rtsp"] = rtsp_args
for name in go2rtc_config.get("streams", {}):
def is_restricted_source(stream_source: str) -> bool:
"""Check if a stream source is restricted (echo, expr, or exec)."""
return stream_source.strip().startswith(("echo:", "expr:", "exec:"))
for name in list(go2rtc_config.get("streams", {})):
stream = go2rtc_config["streams"][name]
if isinstance(stream, str):
try:
go2rtc_config["streams"][name] = go2rtc_config["streams"][name].format(
**FRIGATE_ENV_VARS
)
formatted_stream = stream.format(**FRIGATE_ENV_VARS)
if not ALLOW_ARBITRARY_EXEC and is_restricted_source(formatted_stream):
print(
f"[ERROR] Stream '{name}' uses a restricted source (echo/expr/exec) which is disabled by default for security. "
f"Set GO2RTC_ALLOW_ARBITRARY_EXEC=true to enable arbitrary exec sources."
)
del go2rtc_config["streams"][name]
continue
go2rtc_config["streams"][name] = formatted_stream
except KeyError as e:
print(
"[ERROR] Invalid substitution found, see https://docs.frigate.video/configuration/restream#advanced-restream-configurations for more info."
@@ -124,15 +141,33 @@ for name in go2rtc_config.get("streams", {}):
sys.exit(e)
elif isinstance(stream, list):
for i, stream in enumerate(stream):
filtered_streams = []
for i, stream_item in enumerate(stream):
try:
go2rtc_config["streams"][name][i] = stream.format(**FRIGATE_ENV_VARS)
formatted_stream = stream_item.format(**FRIGATE_ENV_VARS)
if not ALLOW_ARBITRARY_EXEC and is_restricted_source(formatted_stream):
print(
f"[ERROR] Stream '{name}' item {i + 1} uses a restricted source (echo/expr/exec) which is disabled by default for security. "
f"Set GO2RTC_ALLOW_ARBITRARY_EXEC=true to enable arbitrary exec sources."
)
continue
filtered_streams.append(formatted_stream)
except KeyError as e:
print(
"[ERROR] Invalid substitution found, see https://docs.frigate.video/configuration/restream#advanced-restream-configurations for more info."
)
sys.exit(e)
if filtered_streams:
go2rtc_config["streams"][name] = filtered_streams
else:
print(
f"[ERROR] Stream '{name}' was removed because all sources were restricted (echo/expr/exec). "
f"Set GO2RTC_ALLOW_ARBITRARY_EXEC=true to enable arbitrary exec sources."
)
del go2rtc_config["streams"][name]
# add birdseye restream stream if enabled
if config.get("birdseye", {}).get("restream", False):
birdseye: dict[str, Any] = config.get("birdseye")

View File

@@ -18,6 +18,10 @@ proxy_set_header X-Forwarded-User $http_x_forwarded_user;
proxy_set_header X-Forwarded-Groups $http_x_forwarded_groups;
proxy_set_header X-Forwarded-Email $http_x_forwarded_email;
proxy_set_header X-Forwarded-Preferred-Username $http_x_forwarded_preferred_username;
proxy_set_header X-Auth-Request-User $http_x_auth_request_user;
proxy_set_header X-Auth-Request-Groups $http_x_auth_request_groups;
proxy_set_header X-Auth-Request-Email $http_x_auth_request_email;
proxy_set_header X-Auth-Request-Preferred-Username $http_x_auth_request_preferred_username;
proxy_set_header X-authentik-username $http_x_authentik_username;
proxy_set_header X-authentik-groups $http_x_authentik_groups;
proxy_set_header X-authentik-email $http_x_authentik_email;

View File

@@ -50,7 +50,7 @@ cameras:
### Configuring Minimum Volume
The audio detector uses volume levels in the same way that motion in a camera feed is used for object detection. This means that frigate will not run audio detection unless the audio volume is above the configured level in order to reduce resource usage. Audio levels can vary widely between camera models so it is important to run tests to see what volume levels are. The Debug view in the Frigate UI has an Audio tab for cameras that have the `audio` role assigned where a graph and the current levels are is displayed. The `min_volume` parameter should be set to the minimum the `RMS` level required to run audio detection.
The audio detector uses volume levels in the same way that motion in a camera feed is used for object detection. This means that Frigate will not run audio detection unless the audio volume is above the configured level in order to reduce resource usage. Audio levels can vary widely between camera models so it is important to run tests to see what volume levels are. The Debug view in the Frigate UI has an Audio tab for cameras that have the `audio` role assigned where a graph and the current levels are is displayed. The `min_volume` parameter should be set to the minimum the `RMS` level required to run audio detection.
:::tip

View File

@@ -188,10 +188,10 @@ go2rtc:
# example for connectin to a Reolink camera that supports two way talk
your_reolink_camera_twt:
- "ffmpeg:http://reolink_ip/flv?port=1935&app=bcs&stream=channel0_main.bcs&user=username&password=password#video=copy#audio=copy#audio=opus"
- "rtsp://username:password@reolink_ip/Preview_01_sub
- "rtsp://username:password@reolink_ip/Preview_01_sub"
your_reolink_camera_twt_sub:
- "ffmpeg:http://reolink_ip/flv?port=1935&app=bcs&stream=channel0_ext.bcs&user=username&password=password"
- "rtsp://username:password@reolink_ip/Preview_01_sub
- "rtsp://username:password@reolink_ip/Preview_01_sub"
# example for connecting to a Reolink NVR
your_reolink_camera_via_nvr:
- "ffmpeg:http://reolink_nvr_ip/flv?port=1935&app=bcs&stream=channel3_main.bcs&user=username&password=password" # channel numbers are 0-15
@@ -227,6 +227,12 @@ cameras:
### Unifi Protect Cameras
:::note
Unifi G5s cameras and newer need a Unifi Protect server to enable rtsps stream, it's not posible to enable it in standalone mode.
:::
Unifi protect cameras require the rtspx stream to be used with go2rtc.
To utilize a Unifi protect camera, modify the rtsps link to begin with rtspx.
Additionally, remove the "?enableSrtp" from the end of the Unifi link.
@@ -252,6 +258,10 @@ ffmpeg:
TP-Link VIGI cameras need some adjustments to the main stream settings on the camera itself to avoid issues. The stream needs to be configured as `H264` with `Smart Coding` set to `off`. Without these settings you may have problems when trying to watch recorded footage. For example Firefox will stop playback after a few seconds and show the following error message: `The media playback was aborted due to a corruption problem or because the media used features your browser did not support.`.
### Wyze Wireless Cameras
Some community members have found better performance on Wyze cameras by using an alternative firmware known as [Thingino](https://thingino.com/).
## USB Cameras (aka Webcams)
To use a USB camera (webcam) with Frigate, the recommendation is to use go2rtc's [FFmpeg Device](https://github.com/AlexxIT/go2rtc?tab=readme-ov-file#source-ffmpeg-device) support:

View File

@@ -94,18 +94,19 @@ This list of working and non-working PTZ cameras is based on user feedback. If y
The FeatureList on the [ONVIF Conformant Products Database](https://www.onvif.org/conformant-products/) can provide a starting point to determine a camera's compatibility with Frigate's autotracking. Look to see if a camera lists `PTZRelative`, `PTZRelativePanTilt` and/or `PTZRelativeZoom`. These features are required for autotracking, but some cameras still fail to respond even if they claim support. If they are missing, autotracking will not work (though basic PTZ in the WebUI might). Avoid cameras with no database entry unless they are confirmed as working below.
| Brand or specific camera | PTZ Controls | Autotracking | Notes |
| ---------------------------- | :----------: | :----------: | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --- |
| ---------------------------- | :----------: | :----------: | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Amcrest | ✅ | ✅ | ⛔️ Generally, Amcrest should work, but some older models (like the common IP2M-841) don't support autotracking |
| Amcrest ASH21 | ✅ | ❌ | ONVIF service port: 80 |
| Amcrest IP4M-S2112EW-AI | ✅ | ❌ | FOV relative movement not supported. |
| Amcrest IP5M-1190EW | ✅ | ❌ | ONVIF Port: 80. FOV relative movement not supported. |
| Annke CZ504 | ✅ | ✅ | Annke support provide specific firmware ([V5.7.1 build 250227](https://github.com/pierrepinon/annke_cz504/raw/refs/heads/main/digicap_V5-7-1_build_250227.dav)) to fix issue with ONVIF "TranslationSpaceFov" |
| Axis Q-6155E | ✅ | ❌ | ONVIF service port: 80; Camera does not support MoveStatus. |
| Ctronics PTZ | ✅ | ❌ | |
| Dahua | ✅ | ✅ | Some low-end Dahuas (lite series, picoo series (commonly), among others) have been reported to not support autotracking. These models usually don't have a four digit model number with chassis prefix and options postfix (e.g. DH-P5AE-PV vs DH-SD49825GB-HNR). |
| Dahua DH-SD2A500HB | ✅ | ❌ | |
| Dahua DH-SD49825GB-HNR | ✅ | ✅ | |
| Dahua DH-P5AE-PV | ❌ | ❌ | |
| Foscam | ✅ | ❌ | In general support PTZ, but not relative move. There are no official ONVIF certifications and tests available on the ONVIF Conformant Products Database | |
| Foscam | ✅ | ❌ | In general support PTZ, but not relative move. There are no official ONVIF certifications and tests available on the ONVIF Conformant Products Database |
| Foscam R5 | ✅ | ❌ | |
| Foscam SD4 | ✅ | ❌ | |
| Hanwha XNP-6550RH | ✅ | ❌ | |

View File

@@ -3,7 +3,7 @@ id: object_classification
title: Object Classification
---
Object classification allows you to train a custom MobileNetV2 classification model to run on tracked objects (persons, cars, animals, etc.) to identify a finer category or attribute for that object.
Object classification allows you to train a custom MobileNetV2 classification model to run on tracked objects (persons, cars, animals, etc.) to identify a finer category or attribute for that object. Classification results are visible in the Tracked Object Details pane in Explore, through the `frigate/tracked_object_details` MQTT topic, in Home Assistant sensors via the official Frigate integration, or through the event endpoints in the HTTP API.
## Minimum System Requirements
@@ -11,6 +11,8 @@ Object classification models are lightweight and run very fast on CPU. Inference
Training the model does briefly use a high amount of system resources for about 13 minutes per training run. On lower-power devices, training may take longer.
A CPU with AVX instructions is required for training and inference.
## Classes
Classes are the categories your model will learn to distinguish between. Each class represents a distinct visual category that the model will predict.
@@ -31,9 +33,15 @@ For object classification:
- Example: `cat``Leo`, `Charlie`, `None`.
- **Attribute**:
- Added as metadata to the object (visible in /events): `<model_name>: <predicted_value>`.
- Added as metadata to the object, visible in the Tracked Object Details pane in Explore, `frigate/events` MQTT messages, and the HTTP API response as `<model_name>: <predicted_value>`.
- Ideal when multiple attributes can coexist independently.
- Example: Detecting if a `person` in a construction yard is wearing a helmet or not.
- Example: Detecting if a `person` in a construction yard is wearing a helmet or not, and if they are wearing a yellow vest or not.
:::note
A tracked object can only have a single sub label. If you are using Triggers or Face Recognition and you configure an object classification model for `person` using the sub label type, your sub label may not be assigned correctly as it depends on which enrichment completes its analysis first. This could also occur with `car` objects that are assigned a sub label for a delivery carrier. Consider using the `attribute` type instead.
:::
## Assignment Requirements
@@ -73,13 +81,17 @@ classification:
classification_type: sub_label # or: attribute
```
An optional config, `save_attempts`, can be set as a key under the model name. This defines the number of classification attempts to save in the Recent Classifications tab. For object classification models, the default is 200.
## Training the model
Creating and training the model is done within the Frigate UI using the `Classification` page. The process consists of two steps:
### Step 1: Name and Define
Enter a name for your model, select the object label to classify (e.g., `person`, `dog`, `car`), choose the classification type (sub label or attribute), and define your classes. Include a `none` class for objects that don't fit any specific category.
Enter a name for your model, select the object label to classify (e.g., `person`, `dog`, `car`), choose the classification type (sub label or attribute), and define your classes. Frigate will automatically include a `none` class for objects that don't fit any specific category.
For example: To classify your two cats, create a model named "Our Cats" and create two classes, "Charlie" and "Leo". A third class, "none", will be created automatically for other neighborhood cats that are not your own.
### Step 2: Assign Training Examples
@@ -87,6 +99,8 @@ The system will automatically generate example images from detected objects matc
When choosing which objects to classify, start with a small number of visually distinct classes and ensure your training samples match camera viewpoints and distances typical for those objects.
If examples for some of your classes do not appear in the grid, you can continue configuring the model without them. New images will begin to appear in the Recent Classifications view. When your missing classes are seen, classify them from this view and retrain your model.
### Improving the Model
- **Problem framing**: Keep classes visually distinct and relevant to the chosen object types.
@@ -94,3 +108,23 @@ When choosing which objects to classify, start with a small number of visually d
- **Preprocessing**: Ensure examples reflect object crops similar to Frigates boxes; keep the subject centered.
- **Labels**: Keep label names short and consistent; include a `none` class if you plan to ignore uncertain predictions for sub labels.
- **Threshold**: Tune `threshold` per model to reduce false assignments. Start at `0.8` and adjust based on validation.
## Debugging Classification Models
To troubleshoot issues with object classification models, enable debug logging to see detailed information about classification attempts, scores, and consensus calculations.
Enable debug logs for classification models by adding `frigate.data_processing.real_time.custom_classification: debug` to your `logger` configuration. These logs are verbose, so only keep this enabled when necessary. Restart Frigate after this change.
```yaml
logger:
default: info
logs:
frigate.data_processing.real_time.custom_classification: debug
```
The debug logs will show:
- Classification probabilities for each attempt
- Whether scores meet the threshold requirement
- Consensus calculations and when assignments are made
- Object classification history and weighted scores

View File

@@ -3,7 +3,7 @@ id: state_classification
title: State Classification
---
State classification allows you to train a custom MobileNetV2 classification model on a fixed region of your camera frame(s) to determine a current state. The model can be configured to run on a schedule and/or when motion is detected in that region.
State classification allows you to train a custom MobileNetV2 classification model on a fixed region of your camera frame(s) to determine a current state. The model can be configured to run on a schedule and/or when motion is detected in that region. Classification results are available through the `frigate/<camera_name>/classification/<model_name>` MQTT topic and in Home Assistant sensors via the official Frigate integration.
## Minimum System Requirements
@@ -11,6 +11,8 @@ State classification models are lightweight and run very fast on CPU. Inference
Training the model does briefly use a high amount of system resources for about 13 minutes per training run. On lower-power devices, training may take longer.
A CPU with AVX instructions is required for training and inference.
## Classes
Classes are the different states an area on your camera can be in. Each class represents a distinct visual state that the model will learn to recognize.
@@ -46,6 +48,8 @@ classification:
crop: [0, 180, 220, 400]
```
An optional config, `save_attempts`, can be set as a key under the model name. This defines the number of classification attempts to save in the Recent Classifications tab. For state classification models, the default is 100.
## Training the model
Creating and training the model is done within the Frigate UI using the `Classification` page. The process consists of three steps:
@@ -70,3 +74,34 @@ Once some images are assigned, training will begin automatically.
- **Data collection**: Use the model's Recent Classifications tab to gather balanced examples across times of day and weather.
- **When to train**: Focus on cases where the model is entirely incorrect or flips between states when it should not. There's no need to train additional images when the model is already working consistently.
- **Selecting training images**: Images scoring below 100% due to new conditions (e.g., first snow of the year, seasonal changes) or variations (e.g., objects temporarily in view, insects at night) are good candidates for training, as they represent scenarios different from the default state. Training these lower-scoring images that differ from existing training data helps prevent overfitting. Avoid training large quantities of images that look very similar, especially if they already score 100% as this can lead to overfitting.
## Debugging Classification Models
To troubleshoot issues with state classification models, enable debug logging to see detailed information about classification attempts, scores, and state verification.
Enable debug logs for classification models by adding `frigate.data_processing.real_time.custom_classification: debug` to your `logger` configuration. These logs are verbose, so only keep this enabled when necessary. Restart Frigate after this change.
```yaml
logger:
default: info
logs:
frigate.data_processing.real_time.custom_classification: debug
```
The debug logs will show:
- Classification probabilities for each attempt
- Whether scores meet the threshold requirement
- State verification progress (consecutive detections needed)
- When state changes are published
### Recent Classifications
For state classification, images are only added to recent classifications under specific circumstances:
- **First detection**: The first classification attempt for a camera is always saved
- **State changes**: Images are saved when the detected state differs from the current verified state
- **Pending verification**: Images are saved when there's a pending state change being verified (requires 3 consecutive identical states)
- **Low confidence**: Images with scores below 100% are saved even if the state matches the current state (useful for training)
Images are **not** saved when the state is stable (detected state matches current state) **and** the score is 100%. This prevents unnecessary storage of redundant high-confidence classifications.

View File

@@ -48,15 +48,29 @@ Using Ollama on CPU is not recommended, high inference times make using Generati
:::
[Ollama](https://ollama.com/) allows you to self-host large language models and keep everything running locally. It provides a nice API over [llama.cpp](https://github.com/ggerganov/llama.cpp). It is highly recommended to host this server on a machine with an Nvidia graphics card, or on a Apple silicon Mac for best performance.
[Ollama](https://ollama.com/) allows you to self-host large language models and keep everything running locally. It is highly recommended to host this server on a machine with an Nvidia graphics card, or on a Apple silicon Mac for best performance.
Most of the 7b parameter 4-bit vision models will fit inside 8GB of VRAM. There is also a [Docker container](https://hub.docker.com/r/ollama/ollama) available.
Parallel requests also come with some caveats. You will need to set `OLLAMA_NUM_PARALLEL=1` and choose a `OLLAMA_MAX_QUEUE` and `OLLAMA_MAX_LOADED_MODELS` values that are appropriate for your hardware and preferences. See the [Ollama documentation](https://github.com/ollama/ollama/blob/main/docs/faq.md#how-does-ollama-handle-concurrent-requests).
Parallel requests also come with some caveats. You will need to set `OLLAMA_NUM_PARALLEL=1` and choose a `OLLAMA_MAX_QUEUE` and `OLLAMA_MAX_LOADED_MODELS` values that are appropriate for your hardware and preferences. See the [Ollama documentation](https://docs.ollama.com/faq#how-does-ollama-handle-concurrent-requests).
### Model Types: Instruct vs Thinking
Most vision-language models are available as **instruct** models, which are fine-tuned to follow instructions and respond concisely to prompts. However, some models (such as certain Qwen-VL or minigpt variants) offer both **instruct** and **thinking** versions.
- **Instruct models** are always recommended for use with Frigate. These models generate direct, relevant, actionable descriptions that best fit Frigate's object and event summary use case.
- **Thinking models** are fine-tuned for more free-form, open-ended, and speculative outputs, which are typically not concise and may not provide the practical summaries Frigate expects. For this reason, Frigate does **not** recommend or support using thinking models.
Some models are labeled as **hybrid** (capable of both thinking and instruct tasks). In these cases, Frigate will always use instruct-style prompts and specifically disables thinking-mode behaviors to ensure concise, useful responses.
**Recommendation:**
Always select the `-instruct` or documented instruct/tagged variant of any model you use in your Frigate configuration. If in doubt, refer to your model providers documentation or model library for guidance on the correct model variant to use.
### Supported Models
You must use a vision capable model with Frigate. Current model variants can be found [in their model library](https://ollama.com/library). At the time of writing, this includes `llava`, `llava-llama3`, `llava-phi3`, and `moondream`. Note that Frigate will not automatically download the model you specify in your config, you must download the model to your local instance of Ollama first i.e. by running `ollama pull llava:7b` on your Ollama server/Docker container. Note that the model specified in Frigate's config must match the downloaded model tag.
You must use a vision capable model with Frigate. Current model variants can be found [in their model library](https://ollama.com/search?c=vision). Note that Frigate will not automatically download the model you specify in your config, you must download the model to your local instance of Ollama first i.e. by running `ollama pull qwen3-vl:2b-instruct` on your Ollama server/Docker container. Note that the model specified in Frigate's config must match the downloaded model tag.
:::note
@@ -64,6 +78,10 @@ You should have at least 8 GB of RAM available (or VRAM if running on GPU) to ru
:::
#### Ollama Cloud models
Ollama also supports [cloud models](https://ollama.com/cloud), where your local Ollama instance handles requests from Frigate, but model inference is performed in the cloud. Set up Ollama locally, sign in with your Ollama account, and specify the cloud model name in your Frigate config. For more details, see the Ollama cloud model [docs](https://docs.ollama.com/cloud).
### Configuration
```yaml
@@ -193,7 +211,7 @@ You are also able to define custom prompts in your configuration.
genai:
provider: ollama
base_url: http://localhost:11434
model: llava
model: qwen3-vl:8b-instruct
objects:
prompt: "Analyze the {label} in these images from the {camera} security camera. Focus on the actions, behavior, and potential intent of the {label}, rather than just describing its appearance."

View File

@@ -39,9 +39,10 @@ You are also able to define custom prompts in your configuration.
genai:
provider: ollama
base_url: http://localhost:11434
model: llava
model: qwen3-vl:8b-instruct
objects:
genai:
prompt: "Analyze the {label} in these images from the {camera} security camera. Focus on the actions, behavior, and potential intent of the {label}, rather than just describing its appearance."
object_prompts:
person: "Examine the main person in these images. What are they doing and what might their actions suggest about their intent (e.g., approaching a door, leaving an area, standing still)? Do not describe the surroundings or static details."

View File

@@ -16,12 +16,13 @@ Review summaries provide structured JSON responses that are saved for each revie
```
- `title` (string): A concise, direct title that describes the purpose or overall action (e.g., "Person taking out trash", "Joe walking dog").
- `scene` (string): A narrative description of what happens across the sequence from start to finish, including setting, detected objects, and their observable actions.
- `shortSummary` (string): A brief 2-sentence summary of the scene, suitable for notifications. This is a condensed version of the scene description.
- `confidence` (float): 0-1 confidence in the analysis. Higher confidence when objects/actions are clearly visible and context is unambiguous.
- `other_concerns` (list): List of user-defined concerns that may need additional investigation.
- `potential_threat_level` (integer): 0, 1, or 2 as defined below.
```
This will show in multiple places in the UI to give additional context about each activity, and allow viewing more details when extra attention is required. Frigate's built in notifications will also automatically show the title and description when the data is available.
This will show in multiple places in the UI to give additional context about each activity, and allow viewing more details when extra attention is required. Frigate's built in notifications will automatically show the title and `shortSummary` when the data is available, while the full `scene` description is available in the UI for detailed review.
### Defining Typical Activity
@@ -30,40 +31,43 @@ Each installation and even camera can have different parameters for what is cons
<details>
<summary>Default Activity Context Prompt</summary>
```
### Normal Activity Indicators (Level 0)
- Known/verified people in any zone at any time
- People with pets in residential areas
- Deliveries or services during daytime/evening (6 AM - 10 PM): carrying packages to doors/porches, placing items, leaving
- Services/maintenance workers with visible tools, uniforms, or service vehicles during daytime
- Activity confined to public areas only (sidewalks, streets) without entering property at any time
```yaml
review:
genai:
activity_context_prompt: |
### Normal Activity Indicators (Level 0)
- Known/verified people in any zone at any time
- People with pets in residential areas
- Deliveries or services during daytime/evening (6 AM - 10 PM): carrying packages to doors/porches, placing items, leaving
- Services/maintenance workers with visible tools, uniforms, or service vehicles during daytime
- Activity confined to public areas only (sidewalks, streets) without entering property at any time
### Suspicious Activity Indicators (Level 1)
- **Testing or attempting to open doors/windows/handles on vehicles or buildings** — ALWAYS Level 1 regardless of time or duration
- **Unidentified person in private areas (driveways, near vehicles/buildings) during late night/early morning (11 PM - 5 AM)** — ALWAYS Level 1 regardless of activity or duration
- Taking items that don't belong to them (packages, objects from porches/driveways)
- Climbing or jumping fences/barriers to access property
- Attempting to conceal actions or items from view
- Prolonged loitering: remaining in same area without visible purpose throughout most of the sequence
### Suspicious Activity Indicators (Level 1)
- **Testing or attempting to open doors/windows/handles on vehicles or buildings** — ALWAYS Level 1 regardless of time or duration
- **Unidentified person in private areas (driveways, near vehicles/buildings) during late night/early morning (11 PM - 5 AM)** — ALWAYS Level 1 regardless of activity or duration
- Taking items that don't belong to them (packages, objects from porches/driveways)
- Climbing or jumping fences/barriers to access property
- Attempting to conceal actions or items from view
- Prolonged loitering: remaining in same area without visible purpose throughout most of the sequence
### Critical Threat Indicators (Level 2)
- Holding break-in tools (crowbars, pry bars, bolt cutters)
- Weapons visible (guns, knives, bats used aggressively)
- Forced entry in progress
- Physical aggression or violence
- Active property damage or theft in progress
### Critical Threat Indicators (Level 2)
- Holding break-in tools (crowbars, pry bars, bolt cutters)
- Weapons visible (guns, knives, bats used aggressively)
- Forced entry in progress
- Physical aggression or violence
- Active property damage or theft in progress
### Assessment Guidance
Evaluate in this order:
### Assessment Guidance
Evaluate in this order:
1. **If person is verified/known** → Level 0 regardless of time or activity
2. **If person is unidentified:**
- Check time: If late night/early morning (11 PM - 5 AM) AND in private areas (driveways, near vehicles/buildings) → Level 1
- Check actions: If testing doors/handles, taking items, climbing → Level 1
- Otherwise, if daytime/evening (6 AM - 10 PM) with clear legitimate purpose (delivery, service worker) → Level 0
3. **Escalate to Level 2 if:** Weapons, break-in tools, forced entry in progress, violence, or active property damage visible (escalates from Level 0 or 1)
1. **If person is verified/known** → Level 0 regardless of time or activity
2. **If person is unidentified:**
- Check time: If late night/early morning (11 PM - 5 AM) AND in private areas (driveways, near vehicles/buildings) → Level 1
- Check actions: If testing doors/handles, taking items, climbing → Level 1
- Otherwise, if daytime/evening (6 AM - 10 PM) with clear legitimate purpose (delivery, service worker) → Level 0
3. **Escalate to Level 2 if:** Weapons, break-in tools, forced entry in progress, violence, or active property damage visible (escalates from Level 0 or 1)
The mere presence of an unidentified person in private areas during late night hours is inherently suspicious and warrants human review, regardless of what activity they appear to be doing or how brief the sequence is.
The mere presence of an unidentified person in private areas during late night hours is inherently suspicious and warrants human review, regardless of what activity they appear to be doing or how brief the sequence is.
```
</details>
@@ -108,6 +112,17 @@ review:
- animals in the garden
```
### Preferred Language
By default, review summaries are generated in English. You can configure Frigate to generate summaries in your preferred language by setting the `preferred_language` option:
```yaml
review:
genai:
enabled: true
preferred_language: Spanish
```
## Review Reports
Along with individual review item summaries, Generative AI provides the ability to request a report of a given time period. For example, you can get a daily report while on a vacation of any suspicious activity or other concerns that may require review.

View File

@@ -13,7 +13,7 @@ Object detection and enrichments (like Semantic Search, Face Recognition, and Li
- **AMD**
- ROCm will automatically be detected and used for enrichments in the `-rocm` Frigate image.
- ROCm support in the `-rocm` Frigate image is automatically detected for enrichments, but only some enrichment models are available due to ROCm's focus on LLMs and limited stability with certain neural network models. Frigate disables models that perform poorly or are unstable to ensure reliable operation, so only compatible enrichments may be active.
- **Intel**

View File

@@ -3,78 +3,65 @@ id: hardware_acceleration_video
title: Video Decoding
---
import CommunityBadge from '@site/src/components/CommunityBadge';
# Video Decoding
It is highly recommended to use a GPU for hardware acceleration video decoding in Frigate. Some types of hardware acceleration are detected and used automatically, but you may need to update your configuration to enable hardware accelerated decoding in ffmpeg.
It is highly recommended to use an integrated or discrete GPU for hardware acceleration video decoding in Frigate.
Depending on your system, these parameters may not be compatible. More information on hardware accelerated decoding for ffmpeg can be found here: https://trac.ffmpeg.org/wiki/HWAccelIntro
Some types of hardware acceleration are detected and used automatically, but you may need to update your configuration to enable hardware accelerated decoding in ffmpeg. To verify that hardware acceleration is working:
- Check the logs: A message will either say that hardware acceleration was automatically detected, or there will be a warning that no hardware acceleration was automatically detected
- If hardware acceleration is specified in the config, verification can be done by ensuring the logs are free from errors. There is no CPU fallback for hardware acceleration.
:::info
## Raspberry Pi 3/4
Frigate supports presets for optimal hardware accelerated video decoding:
Ensure you increase the allocated RAM for your GPU to at least 128 (`raspi-config` > Performance Options > GPU Memory).
If you are using the HA Add-on, you may need to use the full access variant and turn off _Protection mode_ for hardware acceleration.
**AMD**
```yaml
# if you want to decode a h264 stream
ffmpeg:
hwaccel_args: preset-rpi-64-h264
- [AMD](#amd-based-cpus): Frigate can utilize modern AMD integrated GPUs and AMD discrete GPUs to accelerate video decoding.
# if you want to decode a h265 (hevc) stream
ffmpeg:
hwaccel_args: preset-rpi-64-h265
```
**Intel**
:::note
- [Intel](#intel-based-cpus): Frigate can utilize most Intel integrated GPUs and Arc GPUs to accelerate video decoding.
If running Frigate through Docker, you either need to run in privileged mode or
map the `/dev/video*` devices to Frigate. With Docker Compose add:
**Nvidia GPU**
```yaml
services:
frigate:
...
devices:
- /dev/video11:/dev/video11
```
- [Nvidia GPU](#nvidia-gpus): Frigate can utilize most modern Nvidia GPUs to accelerate video decoding.
Or with `docker run`:
**Raspberry Pi 3/4**
```bash
docker run -d \
--name frigate \
...
--device /dev/video11 \
ghcr.io/blakeblackshear/frigate:stable
```
- [Raspberry Pi](#raspberry-pi-34): Frigate can utilize the media engine in the Raspberry Pi 3 and 4 to slightly accelerate video decoding.
`/dev/video11` is the correct device (on Raspberry Pi 4B). You can check
by running the following and looking for `H264`:
**Nvidia Jetson** <CommunityBadge />
```bash
for d in /dev/video*; do
echo -e "---\n$d"
v4l2-ctl --list-formats-ext -d $d
done
```
- [Jetson](#nvidia-jetson): Frigate can utilize the media engine in Jetson hardware to accelerate video decoding.
Or map in all the `/dev/video*` devices.
**Rockchip** <CommunityBadge />
- [RKNN](#rockchip-platform): Frigate can utilize the media engine in RockChip SOCs to accelerate video decoding.
**Other Hardware**
Depending on your system, these presets may not be compatible, and you may need to use manual hwaccel args to take advantage of your hardware. More information on hardware accelerated decoding for ffmpeg can be found here: https://trac.ffmpeg.org/wiki/HWAccelIntro
:::
## Intel-based CPUs
Frigate can utilize most Intel integrated GPUs and Arc GPUs to accelerate video decoding.
:::info
**Recommended hwaccel Preset**
| CPU Generation | Intel Driver | Recommended Preset | Notes |
| -------------- | ------------ | ------------------- | ------------------------------------ |
| gen1 - gen5 | i965 | preset-vaapi | qsv is not supported |
| gen6 - gen7 | iHD | preset-vaapi | qsv is not supported |
| gen8 - gen12 | iHD | preset-vaapi | preset-intel-qsv-\* can also be used |
| gen13+ | iHD / Xe | preset-intel-qsv-\* | |
| Intel Arc GPU | iHD / Xe | preset-intel-qsv-\* | |
| CPU Generation | Intel Driver | Recommended Preset | Notes |
| -------------- | ------------ | ------------------- | ------------------------------------------- |
| gen1 - gen5 | i965 | preset-vaapi | qsv is not supported, may not support H.265 |
| gen6 - gen7 | iHD | preset-vaapi | qsv is not supported |
| gen8 - gen12 | iHD | preset-vaapi | preset-intel-qsv-\* can also be used |
| gen13+ | iHD / Xe | preset-intel-qsv-\* | |
| Intel Arc GPU | iHD / Xe | preset-intel-qsv-\* | |
:::
@@ -195,15 +182,17 @@ telemetry:
If you are passing in a device path, make sure you've passed the device through to the container.
## AMD/ATI GPUs (Radeon HD 2000 and newer GPUs) via libva-mesa-driver
## AMD-based CPUs
VAAPI supports automatic profile selection so it will work automatically with both H.264 and H.265 streams.
Frigate can utilize modern AMD integrated GPUs and AMD GPUs to accelerate video decoding using VAAPI.
:::note
### Configuring Radeon Driver
You need to change the driver to `radeonsi` by adding the following environment variable `LIBVA_DRIVER_NAME=radeonsi` to your docker-compose file or [in the `config.yml` for HA Add-on users](advanced.md#environment_vars).
:::
### Via VAAPI
VAAPI supports automatic profile selection so it will work automatically with both H.264 and H.265 streams.
```yaml
ffmpeg:
@@ -264,7 +253,7 @@ processes:
:::note
`nvidia-smi` may not show `ffmpeg` processes when run inside the container [due to docker limitations](https://github.com/NVIDIA/nvidia-docker/issues/179#issuecomment-645579458).
`nvidia-smi` will not show `ffmpeg` processes when run inside the container [due to docker limitations](https://github.com/NVIDIA/nvidia-docker/issues/179#issuecomment-645579458).
:::
@@ -300,12 +289,63 @@ If you do not see these processes, check the `docker logs` for the container and
These instructions were originally based on the [Jellyfin documentation](https://jellyfin.org/docs/general/administration/hardware-acceleration.html#nvidia-hardware-acceleration-on-docker-linux).
## Raspberry Pi 3/4
Ensure you increase the allocated RAM for your GPU to at least 128 (`raspi-config` > Performance Options > GPU Memory).
If you are using the HA Add-on, you may need to use the full access variant and turn off _Protection mode_ for hardware acceleration.
```yaml
# if you want to decode a h264 stream
ffmpeg:
hwaccel_args: preset-rpi-64-h264
# if you want to decode a h265 (hevc) stream
ffmpeg:
hwaccel_args: preset-rpi-64-h265
```
:::note
If running Frigate through Docker, you either need to run in privileged mode or
map the `/dev/video*` devices to Frigate. With Docker Compose add:
```yaml
services:
frigate:
...
devices:
- /dev/video11:/dev/video11
```
Or with `docker run`:
```bash
docker run -d \
--name frigate \
...
--device /dev/video11 \
ghcr.io/blakeblackshear/frigate:stable
```
`/dev/video11` is the correct device (on Raspberry Pi 4B). You can check
by running the following and looking for `H264`:
```bash
for d in /dev/video*; do
echo -e "---\n$d"
v4l2-ctl --list-formats-ext -d $d
done
```
Or map in all the `/dev/video*` devices.
:::
# Community Supported
## NVIDIA Jetson (Orin AGX, Orin NX, Orin Nano\*, Xavier AGX, Xavier NX, TX2, TX1, Nano)
## NVIDIA Jetson
A separate set of docker images is available that is based on Jetpack/L4T. They come with an `ffmpeg` build
with codecs that use the Jetson's dedicated media engine. If your Jetson host is running Jetpack 6.0+ use the `stable-tensorrt-jp6` tagged image. Note that the Orin Nano has no video encoder, so frigate will use software encoding on this platform, but the image will still allow hardware decoding and tensorrt object detection.
A separate set of docker images is available for Jetson devices. They come with an `ffmpeg` build with codecs that use the Jetson's dedicated media engine. If your Jetson host is running Jetpack 6.0+ use the `stable-tensorrt-jp6` tagged image. Note that the Orin Nano has no video encoder, so frigate will use software encoding on this platform, but the image will still allow hardware decoding and tensorrt object detection.
You will need to use the image with the nvidia container runtime:

View File

@@ -15,7 +15,7 @@ The jsmpeg live view will use more browser and client GPU resources. Using go2rt
| ------ | ------------------------------------- | ---------- | ---------------------------- | --------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| jsmpeg | same as `detect -> fps`, capped at 10 | 720p | no | no | Resolution is configurable, but go2rtc is recommended if you want higher resolutions and better frame rates. jsmpeg is Frigate's default without go2rtc configured. |
| mse | native | native | yes (depends on audio codec) | yes | iPhone requires iOS 17.1+, Firefox is h.264 only. This is Frigate's default when go2rtc is configured. |
| webrtc | native | native | yes (depends on audio codec) | yes | Requires extra configuration, doesn't support h.265. Frigate attempts to use WebRTC when MSE fails or when using a camera's two-way talk feature. |
| webrtc | native | native | yes (depends on audio codec) | yes | Requires extra configuration. Frigate attempts to use WebRTC when MSE fails or when using a camera's two-way talk feature. |
### Camera Settings Recommendations
@@ -127,7 +127,8 @@ WebRTC works by creating a TCP or UDP connection on port `8555`. However, it req
```
- For access through Tailscale, the Frigate system's Tailscale IP must be added as a WebRTC candidate. Tailscale IPs all start with `100.`, and are reserved within the `100.64.0.0/10` CIDR block.
- Note that WebRTC does not support H.265.
- Note that some browsers may not support H.265 (HEVC). You can check your browser's current version for H.265 compatibility [here](https://github.com/AlexxIT/go2rtc?tab=readme-ov-file#codecs-madness).
:::tip

View File

@@ -146,18 +146,18 @@ detectors:
### EdgeTPU Supported Models
| Model | Notes |
| ------------------------------------- | ------------------------------------------- |
| [MobileNet v2](#ssdlite-mobilenet-v2) | Default model |
| [YOLOv9](#yolo-v9) | More accurate but slower than default model |
| Model | Notes |
| ----------------------- | ------------------------------------------- |
| [Mobiledet](#mobiledet) | Default model |
| [YOLOv9](#yolov9) | More accurate but slower than default model |
#### SSDLite MobileNet v2
#### Mobiledet
A TensorFlow Lite model is provided in the container at `/edgetpu_model.tflite` and is used by this detector type by default. To provide your own model, bind mount the file into the container and provide the path with `model.path`.
#### YOLO v9
#### YOLOv9
[YOLOv9](https://github.com/dbro/frigate-detector-edgetpu-yolo9/releases/download/v1.0/yolov9-s-relu6-best_320_int8_edgetpu.tflite) models that are compiled for Tensorflow Lite and properly quantized are supported, but not included by default. To provide your own model, bind mount the file into the container and provide the path with `model.path`. Note that the model may require a custom label file (eg. [use this 17 label file](https://raw.githubusercontent.com/dbro/frigate-detector-edgetpu-yolo9/refs/heads/main/labels-coco17.txt) for the model linked above.)
YOLOv9 models that are compiled for TensorFlow Lite and properly quantized are supported, but not included by default. [Download the model](https://github.com/dbro/frigate-detector-edgetpu-yolo9/releases/download/v1.0/yolov9-s-relu6-best_320_int8_edgetpu.tflite), bind mount the file into the container, and provide the path with `model.path`. Note that the linked model requires a 17-label [labelmap file](https://raw.githubusercontent.com/dbro/frigate-detector-edgetpu-yolo9/refs/heads/main/labels-coco17.txt) that includes only 17 COCO classes.
<details>
<summary>YOLOv9 Setup & Config</summary>
@@ -178,7 +178,7 @@ model:
labelmap_path: /config/labels-coco17.txt
```
Note that the labelmap uses a subset of the complete COCO label set that has only 17 objects.
Note that due to hardware limitations of the Coral, the labelmap is a subset of the COCO labels and includes only 17 object classes.
</details>
@@ -477,7 +477,7 @@ After placing the downloaded onnx model in your config/model_cache folder, you c
detectors:
ov:
type: openvino
device: GPU
device: CPU
model:
model_type: dfine
@@ -569,10 +569,10 @@ When using Docker Compose:
```yaml
services:
frigate:
---
devices:
- /dev/dri
- /dev/kfd
...
devices:
- /dev/dri
- /dev/kfd
```
For reference on recommended settings see [running ROCm/pytorch in Docker](https://rocm.docs.amd.com/projects/install-on-linux/en/develop/how-to/3rd-party/pytorch-install.html#using-docker-with-pytorch-pre-installed).
@@ -600,9 +600,9 @@ When using Docker Compose:
```yaml
services:
frigate:
environment:
HSA_OVERRIDE_GFX_VERSION: "10.0.0"
...
environment:
HSA_OVERRIDE_GFX_VERSION: "10.0.0"
```
Figuring out what version you need can be complicated as you can't tell the chipset name and driver from the AMD brand name.
@@ -1508,17 +1508,17 @@ COPY --from=build /dfine/output/dfine_${MODEL_SIZE}_obj2coco.onnx /dfine-${MODEL
EOF
```
### Download RF-DETR Model
### Downloading RF-DETR Model
RF-DETR can be exported as ONNX by running the command below. You can copy and paste the whole thing to your terminal and execute, altering `MODEL_SIZE=Nano` in the first line to `Nano`, `Small`, or `Medium` size.
```sh
docker build . --build-arg MODEL_SIZE=Nano --output . -f- <<'EOF'
docker build . --build-arg MODEL_SIZE=Nano --rm --output . -f- <<'EOF'
FROM python:3.11 AS build
RUN apt-get update && apt-get install --no-install-recommends -y libgl1 && rm -rf /var/lib/apt/lists/*
COPY --from=ghcr.io/astral-sh/uv:0.8.0 /uv /bin/
WORKDIR /rfdetr
RUN uv pip install --system rfdetr[onnxexport] torch==2.8.0 onnxscript
RUN uv pip install --system rfdetr[onnxexport] torch==2.8.0 onnx==1.19.1 onnxscript
ARG MODEL_SIZE
RUN python3 -c "from rfdetr import RFDETR${MODEL_SIZE}; x = RFDETR${MODEL_SIZE}(resolution=320); x.export(simplify=True)"
FROM scratch

View File

@@ -11,7 +11,7 @@ This adds features including the ability to deep link directly into the app.
In order to install Frigate as a PWA, the following requirements must be met:
- Frigate must be accessed via a secure context (localhost, secure https, etc.)
- Frigate must be accessed via a secure context (localhost, secure https, VPN, etc.)
- On Android, Firefox, Chrome, Edge, Opera, and Samsung Internet Browser all support installing PWAs.
- On iOS 16.4 and later, PWAs can be installed from the Share menu in Safari, Chrome, Edge, Firefox, and Orion.
@@ -22,3 +22,7 @@ Installation varies slightly based on the device that is being used:
- Desktop: Use the install button typically found in right edge of the address bar
- Android: Use the `Install as App` button in the more options menu for Chrome, and the `Add app to Home screen` button for Firefox
- iOS: Use the `Add to Homescreen` button in the share menu
## Usage
Once setup, the Frigate app can be used wherever it has access to Frigate. This means it can be setup as local-only, VPN-only, or fully accessible depending on your needs.

View File

@@ -185,10 +185,35 @@ In this configuration:
- `front_door` stream is used by Frigate for viewing, recording, and detection. The `#backchannel=0` parameter prevents go2rtc from establishing the audio output backchannel, so it won't block two-way talk access.
- `front_door_twoway` stream is used for two-way talk functionality. This stream can be used by Frigate's WebRTC viewer when two-way talk is enabled, or by other applications (like Home Assistant Advanced Camera Card) that need access to the camera's audio output channel.
## Security: Restricted Stream Sources
For security reasons, the `echo:`, `expr:`, and `exec:` stream sources are disabled by default in go2rtc. These sources allow arbitrary command execution and can pose security risks if misconfigured.
If you attempt to use these sources in your configuration, the streams will be removed and an error message will be printed in the logs.
To enable these sources, you must set the environment variable `GO2RTC_ALLOW_ARBITRARY_EXEC=true`. This can be done in your Docker Compose file or container environment:
```yaml
environment:
- GO2RTC_ALLOW_ARBITRARY_EXEC=true
```
:::warning
Enabling arbitrary exec sources allows execution of arbitrary commands through go2rtc stream configurations. Only enable this if you understand the security implications and trust all sources of your configuration.
:::
## Advanced Restream Configurations
The [exec](https://github.com/AlexxIT/go2rtc/tree/v1.9.10#source-exec) source in go2rtc can be used for custom ffmpeg commands. An example is below:
:::warning
The `exec:`, `echo:`, and `expr:` sources are disabled by default for security. You must set `GO2RTC_ALLOW_ARBITRARY_EXEC=true` to use them. See [Security: Restricted Stream Sources](#security-restricted-stream-sources) for more information.
:::
NOTE: The output will need to be passed with two curly braces `{{output}}`
```yaml

View File

@@ -20,7 +20,7 @@ Here are some of the cameras I recommend:
- <a href="https://amzn.to/4fwoNWA" target="_blank" rel="nofollow noopener sponsored">Loryta(Dahua) IPC-T549M-ALED-S3</a> (affiliate link)
- <a href="https://amzn.to/3YXpcMw" target="_blank" rel="nofollow noopener sponsored">Loryta(Dahua) IPC-T54IR-AS</a> (affiliate link)
- <a href="https://amzn.to/3AvBHoY" target="_blank" rel="nofollow noopener sponsored">Amcrest IP5M-T1179EW-AI-V3</a> (affiliate link)
- <a href="https://amzn.to/4ltOpaC" target="_blank" rel="nofollow noopener sponsored">HIKVISION DS-2CD2387G2P-LSU/SL ColorVu 8MP Panoramic Turret IP Camera</a> (affiliate link)
- <a href="https://www.bhphotovideo.com/c/product/1705511-REG/hikvision_colorvu_ds_2cd2387g2p_lsu_sl_8mp_network.html" target="_blank" rel="nofollow noopener">HIKVISION DS-2CD2387G2P-LSU/SL ColorVu 8MP Panoramic Turret IP Camera</a> (affiliate link)
I may earn a small commission for my endorsement, recommendation, testimonial, or link to any products or services from this website.
@@ -38,9 +38,11 @@ If the EQ13 is out of stock, the link below may take you to a suggested alternat
:::
| Name | Coral Inference Speed | Coral Compatibility | Notes |
| ------------------------------------------------------------------------------------------------------------- | --------------------- | ------------------- | ----------------------------------------------------------------------------------------- |
| Beelink EQ13 (<a href="https://amzn.to/4jn2qVr" target="_blank" rel="nofollow noopener sponsored">Amazon</a>) | 5-10ms | USB | Dual gigabit NICs for easy isolated camera network. Easily handles several 1080p cameras. |
| Name | Capabilities | Notes |
| ------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------- | --------------------------------------------------- |
| Beelink EQ13 (<a href="https://amzn.to/4jn2qVr" target="_blank" rel="nofollow noopener sponsored">Amazon</a>) | Can run object detection on several 1080p cameras with low-medium activity | Dual gigabit NICs for easy isolated camera network. |
| Intel 1120p ([Amazon](https://www.amazon.com/Beelink-i3-1220P-Computer-Display-Gigabit/dp/B0DDCKT9YP) | Can handle a large number of 1080p cameras with high activity | |
| Intel 125H ([Amazon](https://www.amazon.com/MINISFORUM-Pro-125H-Barebone-Computer-HDMI2-1/dp/B0FH21FSZM) | Can handle a significant number of 1080p cameras with high activity | Includes NPU for more efficient detection in 0.17+ |
## Detectors
@@ -125,10 +127,16 @@ In real-world deployments, even with multiple cameras running concurrently, Frig
### Google Coral TPU
:::warning
The Coral is no longer recommended for new Frigate installations, except in deployments with particularly low power requirements or hardware incapable of utilizing alternative AI accelerators for object detection. Instead, we suggest using one of the numerous other supported object detectors. Frigate will continue to provide support for the Coral TPU for as long as practicably possible given its still one of the most power-efficient devices for executing object detection models.
:::
Frigate supports both the USB and M.2 versions of the Google Coral.
- The USB version is compatible with the widest variety of hardware and does not require a driver on the host machine. However, it does lack the automatic throttling features of the other versions.
- The PCIe and M.2 versions require installation of a driver on the host. Follow the instructions for your version from https://coral.ai
- The PCIe and M.2 versions require installation of a driver on the host. https://github.com/jnicolson/gasket-builder should be used.
A single Coral can handle many cameras using the default model and will be sufficient for the majority of users. You can calculate the maximum performance of your Coral based on the inference speed reported by Frigate. With an inference speed of 10, your Coral will top out at `1000/10=100`, or 100 frames per second. If your detection fps is regularly getting close to that, you should first consider tuning motion masks. If those are already properly configured, a second Coral may be needed.

View File

@@ -94,6 +94,10 @@ $ python -c 'print("{:.2f}MB".format(((1280 * 720 * 1.5 * 20 + 270480) / 1048576
The shm size cannot be set per container for Home Assistant add-ons. However, this is probably not required since by default Home Assistant Supervisor allocates `/dev/shm` with half the size of your total memory. If your machine has 8GB of memory, chances are that Frigate will have access to up to 4GB without any additional configuration.
## Extra Steps for Specific Hardware
The following sections contain additional setup steps that are only required if you are using specific hardware. If you are not using any of these hardware types, you can skip to the [Docker](#docker) installation section.
### Raspberry Pi 3/4
By default, the Raspberry Pi limits the amount of memory available to the GPU. In order to use ffmpeg hardware acceleration, you must increase the available memory by setting `gpu_mem` to the maximum recommended value in `config.txt` as described in the [official docs](https://www.raspberrypi.org/documentation/computers/config_txt.html#memory-options).
@@ -106,14 +110,107 @@ The Hailo-8 and Hailo-8L AI accelerators are available in both M.2 and HAT form
#### Installation
For Raspberry Pi 5 users with the AI Kit, installation is straightforward. Simply follow this [guide](https://www.raspberrypi.com/documentation/accessories/ai-kit.html#ai-kit-installation) to install the driver and software.
:::warning
For other installations, follow these steps for installation:
The Raspberry Pi kernel includes an older version of the Hailo driver that is incompatible with Frigate. You **must** follow the installation steps below to install the correct driver version, and you **must** disable the built-in kernel driver as described in step 1.
1. Install the driver from the [Hailo GitHub repository](https://github.com/hailo-ai/hailort-drivers). A convenient script for Linux is available to clone the repository, build the driver, and install it.
2. Copy or download [this script](https://github.com/blakeblackshear/frigate/blob/dev/docker/hailo8l/user_installation.sh).
3. Ensure it has execution permissions with `sudo chmod +x user_installation.sh`
4. Run the script with `./user_installation.sh`
:::
1. **Disable the built-in Hailo driver (Raspberry Pi only)**:
:::note
If you are **not** using a Raspberry Pi, skip this step and proceed directly to step 2.
:::
If you are using a Raspberry Pi, you need to blacklist the built-in kernel Hailo driver to prevent conflicts. First, check if the driver is currently loaded:
```bash
lsmod | grep hailo
```
If it shows `hailo_pci`, unload it:
```bash
sudo rmmod hailo_pci
```
Now blacklist the driver to prevent it from loading on boot:
```bash
echo "blacklist hailo_pci" | sudo tee /etc/modprobe.d/blacklist-hailo_pci.conf
```
Update initramfs to ensure the blacklist takes effect:
```bash
sudo update-initramfs -u
```
Reboot your Raspberry Pi:
```bash
sudo reboot
```
After rebooting, verify the built-in driver is not loaded:
```bash
lsmod | grep hailo
```
This command should return no results. If it still shows `hailo_pci`, the blacklist did not take effect properly and you may need to check for other Hailo packages installed via apt that are loading the driver.
2. **Run the installation script**:
Download the installation script:
```bash
wget https://raw.githubusercontent.com/blakeblackshear/frigate/dev/docker/hailo8l/user_installation.sh
```
Make it executable:
```bash
sudo chmod +x user_installation.sh
```
Run the script:
```bash
./user_installation.sh
```
The script will:
- Install necessary build dependencies
- Clone and build the Hailo driver from the official repository
- Install the driver
- Download and install the required firmware
- Set up udev rules
3. **Reboot your system**:
After the script completes successfully, reboot to load the firmware:
```bash
sudo reboot
```
4. **Verify the installation**:
After rebooting, verify that the Hailo device is available:
```bash
ls -l /dev/hailo0
```
You should see the device listed. You can also verify the driver is loaded:
```bash
lsmod | grep hailo_pci
```
#### Setup
@@ -302,7 +399,7 @@ services:
shm_size: "512mb" # update for your cameras based on calculation above
devices:
- /dev/bus/usb:/dev/bus/usb # Passes the USB Coral, needs to be modified for other versions
- /dev/apex_0:/dev/apex_0 # Passes a PCIe Coral, follow driver instructions here https://coral.ai/docs/m2/get-started/#2a-on-linux
- /dev/apex_0:/dev/apex_0 # Passes a PCIe Coral, follow driver instructions here https://github.com/jnicolson/gasket-builder
- /dev/video11:/dev/video11 # For Raspberry Pi 4B
- /dev/dri/renderD128:/dev/dri/renderD128 # AMD / Intel GPU, needs to be updated for your hardware
- /dev/accel:/dev/accel # Intel NPU
@@ -368,6 +465,7 @@ There are important limitations in HA OS to be aware of:
- Separate local storage for media is not yet supported by Home Assistant
- AMD GPUs are not supported because HA OS does not include the mesa driver.
- Intel NPUs are not supported because HA OS does not include the NPU firmware.
- Nvidia GPUs are not supported because addons do not support the nvidia runtime.
:::

View File

@@ -5,7 +5,7 @@ title: Updating
# Updating Frigate
The current stable version of Frigate is **0.16.2**. The release notes and any breaking changes for this version can be found on the [Frigate GitHub releases page](https://github.com/blakeblackshear/frigate/releases/tag/v0.16.2).
The current stable version of Frigate is **0.17.0**. The release notes and any breaking changes for this version can be found on the [Frigate GitHub releases page](https://github.com/blakeblackshear/frigate/releases/tag/v0.17.0).
Keeping Frigate up to date ensures you benefit from the latest features, performance improvements, and bug fixes. The update process varies slightly depending on your installation method (Docker, Home Assistant Addon, etc.). Below are instructions for the most common setups.
@@ -33,21 +33,21 @@ If youre running Frigate via Docker (recommended method), follow these steps:
2. **Update and Pull the Latest Image**:
- If using Docker Compose:
- Edit your `docker-compose.yml` file to specify the desired version tag (e.g., `0.16.2` instead of `0.15.2`). For example:
- Edit your `docker-compose.yml` file to specify the desired version tag (e.g., `0.17.0` instead of `0.16.3`). For example:
```yaml
services:
frigate:
image: ghcr.io/blakeblackshear/frigate:0.16.2
image: ghcr.io/blakeblackshear/frigate:0.17.0
```
- Then pull the image:
```bash
docker pull ghcr.io/blakeblackshear/frigate:0.16.2
docker pull ghcr.io/blakeblackshear/frigate:0.17.0
```
- **Note for `stable` Tag Users**: If your `docker-compose.yml` uses the `stable` tag (e.g., `ghcr.io/blakeblackshear/frigate:stable`), you dont need to update the tag manually. The `stable` tag always points to the latest stable release after pulling.
- If using `docker run`:
- Pull the image with the appropriate tag (e.g., `0.16.2`, `0.16.2-tensorrt`, or `stable`):
- Pull the image with the appropriate tag (e.g., `0.17.0`, `0.17.0-tensorrt`, or `stable`):
```bash
docker pull ghcr.io/blakeblackshear/frigate:0.16.2
docker pull ghcr.io/blakeblackshear/frigate:0.17.0
```
3. **Start the Container**:
@@ -105,8 +105,8 @@ If an update causes issues:
1. Stop Frigate.
2. Restore your backed-up config file and database.
3. Revert to the previous image version:
- For Docker: Specify an older tag (e.g., `ghcr.io/blakeblackshear/frigate:0.15.2`) in your `docker run` command.
- For Docker Compose: Edit your `docker-compose.yml`, specify the older version tag (e.g., `ghcr.io/blakeblackshear/frigate:0.15.2`), and re-run `docker compose up -d`.
- For Docker: Specify an older tag (e.g., `ghcr.io/blakeblackshear/frigate:0.16.3`) in your `docker run` command.
- For Docker Compose: Edit your `docker-compose.yml`, specify the older version tag (e.g., `ghcr.io/blakeblackshear/frigate:0.16.3`), and re-run `docker compose up -d`.
- For Home Assistant: Reinstall the previous addon version manually via the repository if needed and restart the addon.
4. Verify the old version is running again.

View File

@@ -134,31 +134,13 @@ Now you should be able to start Frigate by running `docker compose up -d` from w
This section assumes that you already have an environment setup as described in [Installation](../frigate/installation.md). You should also configure your cameras according to the [camera setup guide](/frigate/camera_setup). Pay particular attention to the section on choosing a detect resolution.
### Step 1: Add a detect stream
### Step 1: Start Frigate
First we will add the detect stream for the camera:
At this point you should be able to start Frigate and a basic config will be created automatically.
```yaml
mqtt:
enabled: False
### Step 2: Add a camera
cameras:
name_of_your_camera: # <------ Name the camera
enabled: True
ffmpeg:
inputs:
- path: rtsp://10.0.10.10:554/rtsp # <----- The stream you want to use for detection
roles:
- detect
```
### Step 2: Start Frigate
At this point you should be able to start Frigate and see the video feed in the UI.
If you get an error image from the camera, this means ffmpeg was not able to get the video feed from your camera. Check the logs for error messages from ffmpeg. The default ffmpeg arguments are designed to work with H264 RTSP cameras that support TCP connections.
FFmpeg arguments for other types of cameras can be found [here](../configuration/camera_specific.md).
You can click the `Add Camera` button to use the camera setup wizard to get your first camera added into Frigate.
### Step 3: Configure hardware acceleration (recommended)
@@ -173,7 +155,7 @@ services:
frigate:
...
devices:
- /dev/dri/renderD128:/dev/dri/renderD128 # for intel hwaccel, needs to be updated for your hardware
- /dev/dri/renderD128:/dev/dri/renderD128 # for intel & amd hwaccel, needs to be updated for your hardware
...
```
@@ -202,7 +184,7 @@ services:
...
devices:
- /dev/bus/usb:/dev/bus/usb # passes the USB Coral, needs to be modified for other versions
- /dev/apex_0:/dev/apex_0 # passes a PCIe Coral, follow driver instructions here https://coral.ai/docs/m2/get-started/#2a-on-linux
- /dev/apex_0:/dev/apex_0 # passes a PCIe Coral, follow driver instructions here https://github.com/jnicolson/gasket-builder
...
```

View File

@@ -245,6 +245,12 @@ To load a preview gif of a review item:
https://HA_URL/api/frigate/notifications/<review-id>/review_preview.gif
```
To load the thumbnail of a review item:
```
https://HA_URL/api/frigate/notifications/<review-id>/<camera>/review_thumbnail.webp
```
<a name="streams"></a>
## RTSP stream

View File

@@ -280,7 +280,7 @@ Topic with current state of notifications. Published values are `ON` and `OFF`.
## Frigate Camera Topics
### `frigate/<camera_name>/<role>/status`
### `frigate/<camera_name>/status/<role>`
Publishes the current health status of each role that is enabled (`audio`, `detect`, `record`). Possible values are:

View File

@@ -38,3 +38,7 @@ This is a fork (with fixed errors and new features) of [original Double Take](ht
## [Periscope](https://github.com/maksz42/periscope)
[Periscope](https://github.com/maksz42/periscope) is a lightweight Android app that turns old devices into live viewers for Frigate. It works on Android 2.2 and above, including Android TV. It supports authentication and HTTPS.
## [Scrypted - Frigate bridge plugin](https://github.com/apocaliss92/scrypted-frigate-bridge)
[Scrypted - Frigate bridge](https://github.com/apocaliss92/scrypted-frigate-bridge) is an plugin that allows to ingest Frigate detections, motion, videoclips on Scrypted as well as provide templates to export rebroadcast configurations on Frigate.

View File

@@ -15,13 +15,11 @@ There are three model types offered in Frigate+, `mobiledet`, `yolonas`, and `yo
Not all model types are supported by all detectors, so it's important to choose a model type to match your detector as shown in the table under [supported detector types](#supported-detector-types). You can test model types for compatibility and speed on your hardware by using the base models.
| Model Type | Description |
| ----------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `mobiledet` | Based on the same architecture as the default model included with Frigate. Runs on Google Coral devices and CPUs. |
| `yolonas` | A newer architecture that offers slightly higher accuracy and improved detection of small objects. Runs on Intel, NVidia GPUs, and AMD GPUs. |
| `yolov9` | A leading SOTA (state of the art) object detection model with similar performance to yolonas, but on a wider range of hardware options. Runs on Intel, NVidia GPUs, AMD GPUs, Hailo, MemryX\*, Apple Silicon\*, and Rockchip NPUs. |
_\* Support coming in 0.17_
| Model Type | Description |
| ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `mobiledet` | Based on the same architecture as the default model included with Frigate. Runs on Google Coral devices and CPUs. |
| `yolonas` | A newer architecture that offers slightly higher accuracy and improved detection of small objects. Runs on Intel, NVidia GPUs, and AMD GPUs. |
| `yolov9` | A leading SOTA (state of the art) object detection model with similar performance to yolonas, but on a wider range of hardware options. Runs on Intel, NVidia GPUs, AMD GPUs, Hailo, MemryX, Apple Silicon, and Rockchip NPUs. |
### YOLOv9 Details
@@ -39,7 +37,7 @@ If you have a Hailo device, you will need to specify the hardware you have when
#### Rockchip (RKNN) Support
For 0.16, YOLOv9 onnx models will need to be manually converted. First, you will need to configure Frigate to use the model id for your YOLOv9 onnx model so it downloads the model to your `model_cache` directory. From there, you can follow the [documentation](/configuration/object_detectors.md#converting-your-own-onnx-model-to-rknn-format) to convert it. Automatic conversion is coming in 0.17.
For 0.16, YOLOv9 onnx models will need to be manually converted. First, you will need to configure Frigate to use the model id for your YOLOv9 onnx model so it downloads the model to your `model_cache` directory. From there, you can follow the [documentation](/configuration/object_detectors.md#converting-your-own-onnx-model-to-rknn-format) to convert it. Automatic conversion is available in 0.17 and later.
## Supported detector types
@@ -55,7 +53,7 @@ Currently, Frigate+ models support CPU (`cpu`), Google Coral (`edgetpu`), OpenVi
| [Hailo8/Hailo8L/Hailo8R](/configuration/object_detectors#hailo-8) | `hailo8l` | `yolov9` |
| [Rockchip NPU](/configuration/object_detectors#rockchip-platform)\* | `rknn` | `yolov9` |
_\* Requires manual conversion in 0.16. Automatic conversion coming in 0.17._
_\* Requires manual conversion in 0.16. Automatic conversion available in 0.17 and later._
## Improving your model

View File

@@ -0,0 +1,73 @@
---
id: cpu
title: High CPU Usage
---
High CPU usage can impact Frigate's performance and responsiveness. This guide outlines the most effective configuration changes to help reduce CPU consumption and optimize resource usage.
## 1. Hardware Acceleration for Video Decoding
**Priority: Critical**
Video decoding is one of the most CPU-intensive tasks in Frigate. While an AI accelerator handles object detection, it does not assist with decoding video streams. Hardware acceleration (hwaccel) offloads this work to your GPU or specialized video decode hardware, significantly reducing CPU usage and enabling you to support more cameras on the same hardware.
### Key Concepts
**Resolution & FPS Impact:** The decoding burden grows exponentially with resolution and frame rate. A 4K stream at 30 FPS requires roughly 4 times the processing power of a 1080p stream at the same frame rate, and doubling the frame rate doubles the decode workload. This is why hardware acceleration becomes critical when working with multiple high-resolution cameras.
**Hardware Acceleration Benefits:** By using dedicated video decode hardware, you can:
- Significantly reduce CPU usage per camera stream
- Support 2-3x more cameras on the same hardware
- Free up CPU resources for motion detection and other Frigate processes
- Reduce system heat and power consumption
### Configuration
Frigate provides preset configurations for common hardware acceleration scenarios. Set up `hwaccel_args` based on your hardware in your [configuration](../configuration/reference) as described in the [getting started guide](../guides/getting_started).
### Troubleshooting Hardware Acceleration
If hardware acceleration isn't working:
1. Check Frigate logs for FFmpeg errors related to hwaccel
2. Verify the hardware device is accessible inside the container
3. Ensure your camera streams use H.264 or H.265 codecs (most common)
4. Try different presets if the automatic detection fails
5. Check that your GPU drivers are properly installed on the host system
## 2. Detector Selection and Configuration
**Priority: Critical**
Choosing the right detector for your hardware is the single most important factor for detection performance. The detector is responsible for running the AI model that identifies objects in video frames. Different detector types have vastly different performance characteristics and hardware requirements, as detailed in the [hardware documentation](../frigate/hardware).
### Understanding Detector Performance
Frigate uses motion detection as a first-line check before running expensive object detection, as explained in the [motion detection documentation](../configuration/motion_detection). When motion is detected, Frigate creates a "region" (the green boxes in the debug viewer) and sends it to the detector. The detector's inference speed determines how many detections per second your system can handle.
**Calculating Detector Capacity:** Your detector has a finite capacity measured in detections per second. With an inference speed of 10ms, your detector can handle approximately 100 detections per second (1000ms / 10ms = 100).If your cameras collectively require more than this capacity, you'll experience delays, missed detections, or the system will fall behind.
### Choosing the Right Detector
Different detectors have vastly different performance characteristics, see the expected performance for object detectors in [the hardware docs](../frigate/hardware)
### Multiple Detector Instances
When a single detector cannot keep up with your camera count, some detector types (`openvino`, `onnx`) allow you to define multiple detector instances to share the workload. This is particularly useful with GPU-based detectors that have sufficient VRAM to run multiple inference processes.
For detailed instructions on configuring multiple detectors, see the [Object Detectors documentation](../configuration/object_detectors).
**When to add a second detector:**
- Skipped FPS is consistently > 0 even during normal activity
### Model Selection and Optimization
The model you use significantly impacts detector performance. Frigate provides default models optimized for each detector type, but you can customize them as described in the [detector documentation](../configuration/object_detectors).
**Model Size Trade-offs:**
- Smaller models (320x320): Faster inference, Frigate is specifically optimized for a 320x320 size model.
- Larger models (640x640): Slower inference, can sometimes have higher accuracy on very large objects that take up a majority of the frame.

View File

@@ -0,0 +1,60 @@
---
id: dummy-camera
title: Analyzing Object Detection
---
When investigating object detection or tracking problems, it can be helpful to replay an exported video as a temporary "dummy" camera. This lets you reproduce issues locally, iterate on configuration (detections, zones, enrichment settings), and capture logs and clips for analysis.
## When to use
- Replaying an exported clip to reproduce incorrect detections
- Testing configuration changes (model settings, trackers, filters) against a known clip
- Gathering deterministic logs and recordings for debugging or issue reports
## Example Config
Place the clip you want to replay in a location accessible to Frigate (for example `/media/frigate/` or the repository `debug/` folder when developing). Then add a temporary camera to your `config/config.yml` like this:
```yaml
cameras:
test:
ffmpeg:
inputs:
- path: /media/frigate/car-stopping.mp4
input_args: -re -stream_loop -1 -fflags +genpts
roles:
- detect
detect:
enabled: true
record:
enabled: false
snapshots:
enabled: false
```
- `-re -stream_loop -1` tells `ffmpeg` to play the file in realtime and loop indefinitely, which is useful for long debugging sessions.
- `-fflags +genpts` helps generate presentation timestamps when they are missing in the file.
## Steps
1. Export or copy the clip you want to replay to the Frigate host (e.g., `/media/frigate/` or `debug/clips/`).
2. Add the temporary camera to `config/config.yml` (example above). Use a unique name such as `test` or `replay_camera` so it's easy to remove later.
- If you're debugging a specific camera, copy the settings from that camera (frame rate, model/enrichment settings, zones, etc.) into the temporary camera so the replay closely matches the original environment. Leave `record` and `snapshots` disabled unless you are specifically debugging recording or snapshot behavior.
3. Restart Frigate.
4. Observe the Debug view in the UI and logs as the clip is replayed. Watch detections, zones, or any feature you're looking to debug, and note any errors in the logs to reproduce the issue.
5. Iterate on camera or enrichment settings (model, fps, zones, filters) and re-check the replay until the behavior is resolved.
6. Remove the temporary camera from your config after debugging to avoid spurious telemetry or recordings.
## Variables to consider in object tracking
- The exported video will not always line up exactly with how it originally ran through Frigate (or even with the last loop). Different frames may be used on replay, which can change detections and tracking.
- Motion detection depends on the frames used; small frame shifts can change motion regions and therefore what gets passed to the detector.
- Object detection is not deterministic: models and post-processing can yield different results across runs, so you may not get identical detections or track IDs every time.
When debugging, treat the replay as a close approximation rather than a byte-for-byte replay. Capture multiple runs, enable recording if helpful, and examine logs and saved event clips to understand variability.
## Troubleshooting
- No video: verify the path is correct and accessible from the Frigate process/container.
- FFmpeg errors: check the log output for ffmpeg-specific flags and adjust `input_args` accordingly for your file/container. You may also need to disable hardware acceleration (`hwaccel_args: ""`) for the dummy camera.
- No detections: confirm the camera `roles` include `detect`, and model/detector configuration is enabled.

View File

@@ -1,6 +1,6 @@
---
id: edgetpu
title: Troubleshooting EdgeTPU
title: EdgeTPU Errors
---
## USB Coral Not Detected
@@ -68,8 +68,7 @@ The USB Coral can become stuck and need to be restarted, this can happen for a n
The most common reason for the PCIe Coral not being detected is that the driver has not been installed. This process varies based on what OS and kernel that is being run.
- In most cases [the Coral docs](https://coral.ai/docs/m2/get-started/#2-install-the-pcie-driver-and-edge-tpu-runtime) show how to install the driver for the PCIe based Coral.
- For some newer Linux distros (for example, Ubuntu 22.04+), https://github.com/jnicolson/gasket-builder can be used to build and install the latest version of the driver.
- In most cases https://github.com/jnicolson/gasket-builder can be used to build and install the latest version of the driver.
## Attempting to load TPU as pci & Fatal Python error: Illegal instruction

View File

@@ -1,6 +1,6 @@
---
id: gpu
title: Troubleshooting GPU
title: GPU Errors
---
## OpenVINO

View File

@@ -1,6 +1,6 @@
---
id: memory
title: Memory Troubleshooting
title: Memory Usage
---
Frigate includes built-in memory profiling using [memray](https://bloomberg.github.io/memray/) to help diagnose memory issues. This feature allows you to profile specific Frigate modules to identify memory leaks, excessive allocations, or other memory-related problems.
@@ -9,8 +9,20 @@ Frigate includes built-in memory profiling using [memray](https://bloomberg.gith
Memory profiling is controlled via the `FRIGATE_MEMRAY_MODULES` environment variable. Set it to a comma-separated list of module names you want to profile:
```yaml
# docker-compose example
services:
frigate:
...
environment:
- FRIGATE_MEMRAY_MODULES=frigate.embeddings,frigate.capture
```
```bash
export FRIGATE_MEMRAY_MODULES="frigate.review_segment_manager,frigate.capture"
# docker run example
docker run -e FRIGATE_MEMRAY_MODULES="frigate.embeddings" \
...
--name frigate <frigate_image>
```
### Module Names
@@ -28,7 +40,7 @@ Frigate processes are named using a module-based naming scheme. Common module na
You can also specify the full process name (including camera-specific identifiers) if you want to profile a specific camera:
```bash
export FRIGATE_MEMRAY_MODULES="frigate.capture:front_door"
FRIGATE_MEMRAY_MODULES=frigate.capture:front_door
```
When you specify a module name (e.g., `frigate.capture`), all processes with that module prefix will be profiled. For example, `frigate.capture` will profile all camera capture processes.
@@ -55,11 +67,20 @@ After a process exits normally, you'll find HTML reports in `/config/memray_repo
If a process crashes or you want to generate a report from an existing binary file, you can manually create the HTML report:
- Run `memray` inside the Frigate container:
```bash
memray flamegraph /config/memray_reports/<module_name>.bin
docker-compose exec frigate memray flamegraph /config/memray_reports/<module_name>.bin
# or
docker exec -it <container_name_or_id> memray flamegraph /config/memray_reports/<module_name>.bin
```
This will generate an HTML file that you can open in your browser.
- You can also copy the `.bin` file to the host and run `memray` locally if you have it installed:
```bash
docker cp <container_name_or_id>:/config/memray_reports/<module_name>.bin /tmp/
memray flamegraph /tmp/<module_name>.bin
```
## Understanding the Reports
@@ -110,20 +131,4 @@ The interactive HTML reports allow you to:
- Check that memray is properly installed (included by default in Frigate)
- Verify the process actually started and ran (check process logs)
## Example Usage
```bash
# Enable profiling for review and capture modules
export FRIGATE_MEMRAY_MODULES="frigate.review_segment_manager,frigate.capture"
# Start Frigate
# ... let it run for a while ...
# Check for reports
ls -lh /config/memray_reports/
# If a process crashed, manually generate report
memray flamegraph /config/memray_reports/frigate_capture_front_door.bin
```
For more information about memray and interpreting reports, see the [official memray documentation](https://bloomberg.github.io/memray/).

View File

@@ -1,6 +1,6 @@
---
id: recordings
title: Troubleshooting Recordings
title: Recordings Errors
---
## I have Frigate configured for motion recording only, but it still seems to be recording even with no motion. Why?

View File

@@ -170,7 +170,7 @@ const config: Config = {
],
},
],
copyright: `Copyright © ${new Date().getFullYear()} Frigate LLC`,
copyright: `Copyright © ${new Date().getFullYear()} Frigate, Inc.`,
},
},
plugins: [

View File

@@ -129,9 +129,27 @@ const sidebars: SidebarsConfig = {
Troubleshooting: [
"troubleshooting/faqs",
"troubleshooting/recordings",
"troubleshooting/gpu",
"troubleshooting/edgetpu",
"troubleshooting/memory",
"troubleshooting/dummy-camera",
{
type: "category",
label: "Troubleshooting Hardware",
link: {
type: "generated-index",
title: "Troubleshooting Hardware",
description: "Troubleshooting Problems with Hardware",
},
items: ["troubleshooting/gpu", "troubleshooting/edgetpu"],
},
{
type: "category",
label: "Troubleshooting Resource Usage",
link: {
type: "generated-index",
title: "Troubleshooting Resource Usage",
description: "Troubleshooting issues with resource usage",
},
items: ["troubleshooting/cpu", "troubleshooting/memory"],
},
],
Development: [
"development/contributing",

View File

@@ -17,20 +17,25 @@ paths:
summary: Authenticate request
description: |-
Authenticates the current request based on proxy headers or JWT token.
Returns user role and permissions for camera access.
This endpoint verifies authentication credentials and manages JWT token refresh.
On success, no JSON body is returned; authentication state is communicated via response headers and cookies.
operationId: auth_auth_get
responses:
"200":
description: Successful Response
content:
application/json:
schema: {}
"202":
description: Authentication Accepted
content:
application/json:
schema: {}
description: Authentication Accepted (no response body, different headers depending on auth method)
headers:
remote-user:
description: Authenticated username or "viewer" in proxy-only mode
schema:
type: string
remote-role:
description: Resolved role (e.g., admin, viewer, or custom)
schema:
type: string
Set-Cookie:
description: May include refreshed JWT cookie ("frigate-token") when applicable
schema:
type: string
"401":
description: Authentication Failed
/profile:
@@ -611,6 +616,32 @@ paths:
application/json:
schema:
$ref: "#/components/schemas/HTTPValidationError"
/classification/attributes:
get:
tags:
- Classification
summary: Get custom classification attributes
description: |-
Returns custom classification attributes for a given object type.
Only includes models with classification_type set to 'attribute'.
By default returns a flat sorted list of all attribute labels.
If group_by_model is true, returns attributes grouped by model name.
operationId: get_custom_attributes_classification_attributes_get
parameters:
- name: object_type
in: query
schema:
type: string
- name: group_by_model
in: query
schema:
type: boolean
default: false
responses:
"200":
description: Successful Response
"422":
description: Validation Error
/classification/{name}/dataset:
get:
tags:
@@ -2907,6 +2938,42 @@ paths:
application/json:
schema:
$ref: "#/components/schemas/HTTPValidationError"
/events/{event_id}/attributes:
post:
tags:
- Events
summary: Set custom classification attributes
description: |-
Sets an event's custom classification attributes for all attribute-type
models that apply to the event's object type.
Returns a success message or an error if the event is not found.
operationId: set_attributes_events__event_id__attributes_post
parameters:
- name: event_id
in: path
required: true
schema:
type: string
title: Event Id
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/EventsAttributesBody"
responses:
"200":
description: Successful Response
content:
application/json:
schema:
$ref: "#/components/schemas/GenericResponse"
"422":
description: Validation Error
content:
application/json:
schema:
$ref: "#/components/schemas/HTTPValidationError"
/events/{event_id}/description:
post:
tags:
@@ -4954,6 +5021,18 @@ components:
required:
- subLabel
title: EventsSubLabelBody
EventsAttributesBody:
properties:
attributes:
type: object
title: Attributes
description: Object with model names as keys and attribute values
additionalProperties:
type: string
type: object
required:
- attributes
title: EventsAttributesBody
ExportModel:
properties:
id:

View File

@@ -1,12 +1,12 @@
# COPYRIGHT AND TRADEMARK NOTICE
The images, logos, and icons contained in this directory (the "Brand Assets") are
proprietary to Frigate LLC and are NOT covered by the MIT License governing the
proprietary to Frigate, Inc. and are NOT covered by the MIT License governing the
rest of this repository.
1. TRADEMARK STATUS
The "Frigate" name and the accompanying logo are common law trademarks™ of
Frigate LLC. Frigate LLC reserves all rights to these marks.
Frigate, Inc. Frigate, Inc. reserves all rights to these marks.
2. LIMITED PERMISSION FOR USE
Permission is hereby granted to display these Brand Assets strictly for the
@@ -17,9 +17,9 @@ rest of this repository.
3. RESTRICTIONS
You may NOT:
a. Use these Brand Assets to represent a derivative work (fork) as an official
product of Frigate LLC.
product of Frigate, Inc.
b. Use these Brand Assets in a way that implies endorsement, sponsorship, or
commercial affiliation with Frigate LLC.
commercial affiliation with Frigate, Inc.
c. Modify or alter the Brand Assets.
If you fork this repository with the intent to distribute a modified or competing
@@ -27,4 +27,4 @@ version of the software, you must replace these Brand Assets with your own
original content.
ALL RIGHTS RESERVED.
Copyright (c) 2025 Frigate LLC.
Copyright (c) 2026 Frigate, Inc.

View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 MiB

After

Width:  |  Height:  |  Size: 12 MiB

View File

@@ -143,17 +143,6 @@ def require_admin_by_default():
return admin_checker
def _is_authenticated(request: Request) -> bool:
"""
Helper to determine if a request is from an authenticated user.
Returns True if the request has a valid authenticated user (not anonymous).
Port 5000 internal requests are considered anonymous despite having admin role.
"""
username = request.headers.get("remote-user")
return username is not None and username != "anonymous"
def allow_public():
"""
Override dependency to allow unauthenticated access to an endpoint.
@@ -173,27 +162,24 @@ def allow_public():
def allow_any_authenticated():
"""
Override dependency to allow any authenticated user (bypass admin requirement).
Override dependency to allow any request that passed through the /auth endpoint.
Allows:
- Port 5000 internal requests (have admin role despite anonymous user)
- Any authenticated user with a real username (not "anonymous")
- Port 5000 internal requests (remote-user: "anonymous", remote-role: "admin")
- Authenticated users with JWT tokens (remote-user: username)
- Unauthenticated requests when auth is disabled (remote-user: "viewer")
Rejects:
- Port 8971 requests with anonymous user (auth disabled, no proxy auth)
- Requests with no remote-user header (did not pass through /auth endpoint)
Example:
@router.get("/authenticated-endpoint", dependencies=[Depends(allow_any_authenticated())])
"""
async def auth_checker(request: Request):
# Port 5000 requests have admin role and should be allowed
role = request.headers.get("remote-role")
if role == "admin":
return
# Otherwise require a real authenticated user (not anonymous)
if not _is_authenticated(request):
# Ensure a remote-user has been set by the /auth endpoint
username = request.headers.get("remote-user")
if username is None:
raise HTTPException(status_code=401, detail="Authentication required")
return
@@ -553,7 +539,32 @@ def resolve_role(
"/auth",
dependencies=[Depends(allow_public())],
summary="Authenticate request",
description="Authenticates the current request based on proxy headers or JWT token. Returns user role and permissions for camera access.",
description=(
"Authenticates the current request based on proxy headers or JWT token. "
"This endpoint verifies authentication credentials and manages JWT token refresh. "
"On success, no JSON body is returned; authentication state is communicated via response headers and cookies."
),
status_code=202,
responses={
202: {
"description": "Authentication Accepted (no response body)",
"headers": {
"remote-user": {
"description": 'Authenticated username or "viewer" in proxy-only mode',
"schema": {"type": "string"},
},
"remote-role": {
"description": "Resolved role (e.g., admin, viewer, or custom)",
"schema": {"type": "string"},
},
"Set-Cookie": {
"description": "May include refreshed JWT cookie when applicable",
"schema": {"type": "string"},
},
},
},
401: {"description": "Authentication Failed"},
},
)
def auth(request: Request):
auth_config: AuthConfig = request.app.frigate_config.auth
@@ -581,12 +592,12 @@ def auth(request: Request):
# if auth is disabled, just apply the proxy header map and return success
if not auth_config.enabled:
# pass the user header value from the upstream proxy if a mapping is specified
# or use anonymous if none are specified
# or use viewer if none are specified
user_header = proxy_config.header_map.user
success_response.headers["remote-user"] = (
request.headers.get(user_header, default="anonymous")
request.headers.get(user_header, default="viewer")
if user_header
else "anonymous"
else "viewer"
)
# parse header and resolve a valid role
@@ -698,10 +709,10 @@ def auth(request: Request):
"/profile",
dependencies=[Depends(allow_any_authenticated())],
summary="Get user profile",
description="Returns the current authenticated user's profile including username, role, and allowed cameras.",
description="Returns the current authenticated user's profile including username, role, and allowed cameras. This endpoint requires authentication and returns information about the user's permissions.",
)
def profile(request: Request):
username = request.headers.get("remote-user", "anonymous")
username = request.headers.get("remote-user", "viewer")
role = request.headers.get("remote-role", "viewer")
all_camera_names = set(request.app.frigate_config.cameras.keys())
@@ -717,7 +728,7 @@ def profile(request: Request):
"/logout",
dependencies=[Depends(allow_public())],
summary="Logout user",
description="Logs out the current user by clearing the session cookie.",
description="Logs out the current user by clearing the session cookie. After logout, subsequent requests will require re-authentication.",
)
def logout(request: Request):
auth_config: AuthConfig = request.app.frigate_config.auth
@@ -733,7 +744,7 @@ limiter = Limiter(key_func=get_remote_addr)
"/login",
dependencies=[Depends(allow_public())],
summary="Login with credentials",
description="Authenticates a user with username and password. Returns a JWT token as a secure HTTP-only cookie that can be used for subsequent API requests. The token can also be retrieved and used as a Bearer token in the Authorization header.",
description='Authenticates a user with username and password. Returns a JWT token as a secure HTTP-only cookie that can be used for subsequent API requests. The JWT token can also be retrieved from the response and used as a Bearer token in the Authorization header.\n\nExample using Bearer token:\n```\ncurl -H "Authorization: Bearer <token_value>" https://frigate_ip:8971/api/profile\n```',
)
@limiter.limit(limit_value=rateLimiter.get_limit)
def login(request: Request, body: AppPostLoginBody):
@@ -776,7 +787,7 @@ def login(request: Request, body: AppPostLoginBody):
"/users",
dependencies=[Depends(require_role(["admin"]))],
summary="Get all users",
description="Returns a list of all users with their usernames and roles. Requires admin role.",
description="Returns a list of all users with their usernames and roles. Requires admin role. Each user object contains the username and assigned role.",
)
def get_users():
exports = (
@@ -789,7 +800,7 @@ def get_users():
"/users",
dependencies=[Depends(require_role(["admin"]))],
summary="Create new user",
description="Creates a new user with the specified username, password, and role. Requires admin role. Password must meet strength requirements.",
description='Creates a new user with the specified username, password, and role. Requires admin role. Password must meet strength requirements: minimum 8 characters, at least one uppercase letter, at least one digit, and at least one special character (!@#$%^&*(),.?":{} |<>).',
)
def create_user(
request: Request,
@@ -823,7 +834,7 @@ def create_user(
"/users/{username}",
dependencies=[Depends(require_role(["admin"]))],
summary="Delete user",
description="Deletes a user by username. The built-in admin user cannot be deleted. Requires admin role.",
description="Deletes a user by username. The built-in admin user cannot be deleted. Requires admin role. Returns success message or error if user not found.",
)
def delete_user(request: Request, username: str):
# Prevent deletion of the built-in admin user
@@ -840,7 +851,7 @@ def delete_user(request: Request, username: str):
"/users/{username}/password",
dependencies=[Depends(allow_any_authenticated())],
summary="Update user password",
description="Updates a user's password. Users can only change their own password unless they have admin role. Requires the current password to verify identity. Password must meet strength requirements (minimum 8 characters, uppercase letter, digit, and special character).",
description="Updates a user's password. Users can only change their own password unless they have admin role. Requires the current password to verify identity for non-admin users. Password must meet strength requirements: minimum 8 characters, at least one uppercase letter, at least one digit, and at least one special character (!@#$%^&*(),.?\":{} |<>). If user changes their own password, a new JWT cookie is automatically issued.",
)
async def update_password(
request: Request,
@@ -868,13 +879,9 @@ async def update_password(
except DoesNotExist:
return JSONResponse(content={"message": "User not found"}, status_code=404)
# Require old_password when:
# 1. Non-admin user is changing another user's password (admin only action)
# 2. Any user is changing their own password
is_changing_own_password = current_username == username
is_non_admin = current_role != "admin"
if is_changing_own_password or is_non_admin:
# Require old_password when non-admin user is changing any password
# Admin users changing passwords do NOT need to provide the current password
if current_role != "admin":
if not body.old_password:
return JSONResponse(
content={"message": "Current password is required"},
@@ -926,7 +933,7 @@ async def update_password(
"/users/{username}/role",
dependencies=[Depends(require_role(["admin"]))],
summary="Update user role",
description="Updates a user's role. The built-in admin user's role cannot be modified. Requires admin role.",
description="Updates a user's role. The built-in admin user's role cannot be modified. Requires admin role. Valid roles are defined in the configuration.",
)
async def update_role(
request: Request,

View File

@@ -31,6 +31,7 @@ from frigate.api.defs.response.generic_response import GenericResponse
from frigate.api.defs.tags import Tags
from frigate.config import FrigateConfig
from frigate.config.camera import DetectConfig
from frigate.config.classification import ObjectClassificationType
from frigate.const import CLIPS_DIR, FACE_DIR, MODEL_CACHE_DIR
from frigate.embeddings import EmbeddingsContext
from frigate.models import Event
@@ -39,6 +40,7 @@ from frigate.util.classification import (
collect_state_classification_examples,
get_dataset_image_count,
read_training_metadata,
write_training_metadata,
)
from frigate.util.file import get_event_snapshot
@@ -622,6 +624,59 @@ def get_classification_dataset(name: str):
)
@router.get(
"/classification/attributes",
summary="Get custom classification attributes",
description="""Returns custom classification attributes for a given object type.
Only includes models with classification_type set to 'attribute'.
By default returns a flat sorted list of all attribute labels.
If group_by_model is true, returns attributes grouped by model name.""",
)
def get_custom_attributes(
request: Request, object_type: str = None, group_by_model: bool = False
):
models_with_attributes = {}
for (
model_key,
model_config,
) in request.app.frigate_config.classification.custom.items():
if (
not model_config.enabled
or not model_config.object_config
or model_config.object_config.classification_type
!= ObjectClassificationType.attribute
):
continue
model_objects = getattr(model_config.object_config, "objects", []) or []
if object_type is not None and object_type not in model_objects:
continue
dataset_dir = os.path.join(CLIPS_DIR, sanitize_filename(model_key), "dataset")
if not os.path.exists(dataset_dir):
continue
attributes = []
for category_name in os.listdir(dataset_dir):
category_dir = os.path.join(dataset_dir, category_name)
if os.path.isdir(category_dir) and category_name != "none":
attributes.append(category_name)
if attributes:
model_name = model_config.name or model_key
models_with_attributes[model_name] = sorted(attributes)
if group_by_model:
return JSONResponse(content=models_with_attributes)
else:
# Flatten to a unique sorted list
all_attributes = set()
for attributes in models_with_attributes.values():
all_attributes.update(attributes)
return JSONResponse(content=sorted(list(all_attributes)))
@router.get(
"/classification/{name}/train",
summary="Get classification train images",
@@ -788,6 +843,12 @@ def rename_classification_category(
try:
os.rename(old_folder, new_folder)
# Mark dataset as ready to train by resetting training metadata
# This ensures the dataset is marked as changed after renaming
sanitized_name = sanitize_filename(name)
write_training_metadata(sanitized_name, 0)
return JSONResponse(
content=(
{

View File

@@ -12,6 +12,7 @@ class EventsQueryParams(BaseModel):
labels: Optional[str] = "all"
sub_label: Optional[str] = "all"
sub_labels: Optional[str] = "all"
attributes: Optional[str] = "all"
zone: Optional[str] = "all"
zones: Optional[str] = "all"
limit: Optional[int] = 100
@@ -58,6 +59,8 @@ class EventsSearchQueryParams(BaseModel):
limit: Optional[int] = 50
cameras: Optional[str] = "all"
labels: Optional[str] = "all"
sub_labels: Optional[str] = "all"
attributes: Optional[str] = "all"
zones: Optional[str] = "all"
after: Optional[float] = None
before: Optional[float] = None

View File

@@ -24,6 +24,13 @@ class EventsLPRBody(BaseModel):
)
class EventsAttributesBody(BaseModel):
attributes: List[str] = Field(
title="Selected classification attributes for the event",
default_factory=list,
)
class EventsDescriptionBody(BaseModel):
description: Union[str, None] = Field(title="The description of the event")

View File

@@ -1,4 +1,4 @@
from typing import Union
from typing import Optional, Union
from pydantic import BaseModel, Field
from pydantic.json_schema import SkipJsonSchema
@@ -16,5 +16,5 @@ class ExportRecordingsBody(BaseModel):
source: PlaybackSourceEnum = Field(
default=PlaybackSourceEnum.recordings, title="Playback source"
)
name: str = Field(title="Friendly name", default=None, max_length=256)
name: Optional[str] = Field(title="Friendly name", default=None, max_length=256)
image_path: Union[str, SkipJsonSchema[None]] = None

View File

@@ -37,6 +37,7 @@ from frigate.api.defs.query.regenerate_query_parameters import (
RegenerateQueryParameters,
)
from frigate.api.defs.request.events_body import (
EventsAttributesBody,
EventsCreateBody,
EventsDeleteBody,
EventsDescriptionBody,
@@ -55,6 +56,7 @@ from frigate.api.defs.response.event_response import (
from frigate.api.defs.response.generic_response import GenericResponse
from frigate.api.defs.tags import Tags
from frigate.comms.event_metadata_updater import EventMetadataTypeEnum
from frigate.config.classification import ObjectClassificationType
from frigate.const import CLIPS_DIR, TRIGGER_DIR
from frigate.embeddings import EmbeddingsContext
from frigate.models import Event, ReviewSegment, Timeline, Trigger
@@ -99,6 +101,8 @@ def events(
if sub_labels == "all" and sub_label != "all":
sub_labels = sub_label
attributes = unquote(params.attributes)
zone = params.zone
zones = params.zones
@@ -187,6 +191,17 @@ def events(
sub_label_clause = reduce(operator.or_, sub_label_clauses)
clauses.append((sub_label_clause))
if attributes != "all":
# Custom classification results are stored as data[model_name] = result_value
filtered_attributes = attributes.split(",")
attribute_clauses = []
for attr in filtered_attributes:
attribute_clauses.append(Event.data.cast("text") % f'*:"{attr}"*')
attribute_clause = reduce(operator.or_, attribute_clauses)
clauses.append(attribute_clause)
if recognized_license_plate != "all":
filtered_recognized_license_plates = recognized_license_plate.split(",")
@@ -492,6 +507,8 @@ def events_search(
# Filters
cameras = params.cameras
labels = params.labels
sub_labels = params.sub_labels
attributes = params.attributes
zones = params.zones
after = params.after
before = params.before
@@ -566,6 +583,38 @@ def events_search(
if labels != "all":
event_filters.append((Event.label << labels.split(",")))
if sub_labels != "all":
# use matching so joined sub labels are included
# for example a sub label 'bob' would get events
# with sub labels 'bob' and 'bob, john'
sub_label_clauses = []
filtered_sub_labels = sub_labels.split(",")
if "None" in filtered_sub_labels:
filtered_sub_labels.remove("None")
sub_label_clauses.append((Event.sub_label.is_null()))
for label in filtered_sub_labels:
sub_label_clauses.append(
(Event.sub_label.cast("text") == label)
) # include exact matches
# include this label when part of a list
sub_label_clauses.append((Event.sub_label.cast("text") % f"*{label},*"))
sub_label_clauses.append((Event.sub_label.cast("text") % f"*, {label}*"))
event_filters.append((reduce(operator.or_, sub_label_clauses)))
if attributes != "all":
# Custom classification results are stored as data[model_name] = result_value
filtered_attributes = attributes.split(",")
attribute_clauses = []
for attr in filtered_attributes:
attribute_clauses.append(Event.data.cast("text") % f'*:"{attr}"*')
event_filters.append(reduce(operator.or_, attribute_clauses))
if zones != "all":
zone_clauses = []
filtered_zones = zones.split(",")
@@ -1351,6 +1400,107 @@ async def set_plate(
)
@router.post(
"/events/{event_id}/attributes",
response_model=GenericResponse,
dependencies=[Depends(require_role(["admin"]))],
summary="Set custom classification attributes",
description=(
"Sets an event's custom classification attributes for all attribute-type "
"models that apply to the event's object type."
),
)
async def set_attributes(
request: Request,
event_id: str,
body: EventsAttributesBody,
):
try:
event: Event = Event.get(Event.id == event_id)
await require_camera_access(event.camera, request=request)
except DoesNotExist:
return JSONResponse(
content=({"success": False, "message": f"Event {event_id} not found."}),
status_code=404,
)
object_type = event.label
selected_attributes = set(body.attributes or [])
applied_updates: list[dict[str, str | float | None]] = []
for (
model_key,
model_config,
) in request.app.frigate_config.classification.custom.items():
# Only apply to enabled attribute classifiers that target this object type
if (
not model_config.enabled
or not model_config.object_config
or model_config.object_config.classification_type
!= ObjectClassificationType.attribute
or object_type not in (model_config.object_config.objects or [])
):
continue
# Get available labels from dataset directory
dataset_dir = os.path.join(CLIPS_DIR, sanitize_filename(model_key), "dataset")
available_labels = set()
if os.path.exists(dataset_dir):
for category_name in os.listdir(dataset_dir):
category_dir = os.path.join(dataset_dir, category_name)
if os.path.isdir(category_dir):
available_labels.add(category_name)
if not available_labels:
logger.warning(
"No dataset found for custom attribute model %s at %s",
model_key,
dataset_dir,
)
continue
# Find all selected attributes that apply to this model
model_name = model_config.name or model_key
matching_attrs = selected_attributes & available_labels
if matching_attrs:
# Publish updates for each selected attribute
for attr in matching_attrs:
request.app.event_metadata_updater.publish(
(event_id, model_name, attr, 1.0),
EventMetadataTypeEnum.attribute.value,
)
applied_updates.append(
{"model": model_name, "label": attr, "score": 1.0}
)
else:
# Clear this model's attribute
request.app.event_metadata_updater.publish(
(event_id, model_name, None, None),
EventMetadataTypeEnum.attribute.value,
)
applied_updates.append({"model": model_name, "label": None, "score": None})
if len(applied_updates) == 0:
return JSONResponse(
content={
"success": False,
"message": "No matching attributes found for this object type.",
},
status_code=400,
)
return JSONResponse(
content={
"success": True,
"message": f"Updated {len(applied_updates)} attribute(s)",
"applied": applied_updates,
},
status_code=200,
)
@router.post(
"/events/{event_id}/description",
response_model=GenericResponse,

View File

@@ -1935,7 +1935,7 @@ async def label_clip(request: Request, camera_name: str, label: str):
try:
event = event_query.get()
return await event_clip(request, event.id)
return await event_clip(request, event.id, 0)
except DoesNotExist:
return JSONResponse(
content={"success": False, "message": "Event not found"}, status_code=404

View File

@@ -100,6 +100,10 @@ class FrigateApp:
)
if (
config.semantic_search.enabled
or any(
c.objects.genai.enabled or c.review.genai.enabled
for c in config.cameras.values()
)
or config.lpr.enabled
or config.face_recognition.enabled
or len(config.classification.custom) > 0

View File

@@ -225,7 +225,8 @@ class MqttClient(Communicator):
"birdseye_mode",
"review_alerts",
"review_detections",
"genai",
"object_descriptions",
"review_descriptions",
]
for name in self.config.cameras.keys():

View File

@@ -388,7 +388,7 @@ class WebPushClient(Communicator):
else:
title = base_title
message = payload["after"]["data"]["metadata"]["scene"]
message = payload["after"]["data"]["metadata"]["shortSummary"]
else:
zone_names = payload["after"]["data"]["zones"]
formatted_zone_names = []

View File

@@ -28,6 +28,7 @@ from frigate.util.builtin import (
get_ffmpeg_arg_list,
)
from frigate.util.config import (
CURRENT_CONFIG_VERSION,
StreamInfoRetriever,
convert_area_to_pixels,
find_config_file,
@@ -76,11 +77,12 @@ logger = logging.getLogger(__name__)
yaml = YAML()
DEFAULT_CONFIG = """
DEFAULT_CONFIG = f"""
mqtt:
enabled: False
cameras: {} # No cameras defined, UI wizard should be used
cameras: {{}} # No cameras defined, UI wizard should be used
version: {CURRENT_CONFIG_VERSION}
"""
DEFAULT_DETECTORS = {"cpu": {"type": "cpu"}}
@@ -753,8 +755,7 @@ class FrigateConfig(FrigateBaseModel):
if new_config and f.tell() == 0:
f.write(DEFAULT_CONFIG)
logger.info(
"Created default config file, see the getting started docs \
for configuration https://docs.frigate.video/guides/getting_started"
"Created default config file, see the getting started docs for configuration: https://docs.frigate.video/guides/getting_started"
)
f.seek(0)

View File

@@ -77,6 +77,9 @@ FFMPEG_HWACCEL_RKMPP = "preset-rkmpp"
FFMPEG_HWACCEL_AMF = "preset-amd-amf"
FFMPEG_HVC1_ARGS = ["-tag:v", "hvc1"]
# RKNN constants
SUPPORTED_RK_SOCS = ["rk3562", "rk3566", "rk3568", "rk3576", "rk3588"]
# Regex constants
REGEX_CAMERA_NAME = r"^[a-zA-Z0-9_-]+$"

View File

@@ -374,6 +374,9 @@ class LicensePlateProcessingMixin:
combined_plate = re.sub(
pattern, replacement, combined_plate
)
logger.debug(
f"{camera}: Processing replace rule: '{pattern}' -> '{replacement}', result: '{combined_plate}'"
)
except re.error as e:
logger.warning(
f"{camera}: Invalid regex in replace_rules '{pattern}': {e}"
@@ -381,7 +384,7 @@ class LicensePlateProcessingMixin:
if combined_plate != original_combined:
logger.debug(
f"{camera}: Rules applied: '{original_combined}' -> '{combined_plate}'"
f"{camera}: All rules applied: '{original_combined}' -> '{combined_plate}'"
)
# Compute the combined area for qualifying boxes

View File

@@ -131,8 +131,9 @@ class AudioTranscriptionPostProcessor(PostProcessorApi):
},
)
# Embed the description
self.embeddings.embed_description(event_id, transcription)
# Embed the description if semantic search is enabled
if self.config.semantic_search.enabled:
self.embeddings.embed_description(event_id, transcription)
except DoesNotExist:
logger.debug("No recording found for audio transcription post-processing")

View File

@@ -86,7 +86,11 @@ class ObjectDescriptionProcessor(PostProcessorApi):
and data["id"] not in self.early_request_sent
):
if data["has_clip"] and data["has_snapshot"]:
event: Event = Event.get(Event.id == data["id"])
try:
event: Event = Event.get(Event.id == data["id"])
except DoesNotExist:
logger.error(f"Event {data['id']} not found")
return
if (
not camera_config.objects.genai.objects
@@ -131,6 +135,8 @@ class ObjectDescriptionProcessor(PostProcessorApi):
)
):
self._process_genai_description(event, camera_config, thumbnail)
else:
self.cleanup_event(event.id)
def __regenerate_description(self, event_id: str, source: str, force: bool) -> None:
"""Regenerate the description for an event."""
@@ -204,6 +210,17 @@ class ObjectDescriptionProcessor(PostProcessorApi):
)
return None
def cleanup_event(self, event_id: str) -> None:
"""Clean up tracked event data to prevent memory leaks.
This should be called when an event ends, regardless of whether
genai processing is triggered.
"""
if event_id in self.tracked_events:
del self.tracked_events[event_id]
if event_id in self.early_request_sent:
del self.early_request_sent[event_id]
def _read_and_crop_snapshot(self, event: Event) -> bytes | None:
"""Read, decode, and crop the snapshot image."""
@@ -299,9 +316,8 @@ class ObjectDescriptionProcessor(PostProcessorApi):
),
).start()
# Delete tracked events based on the event_id
if event.id in self.tracked_events:
del self.tracked_events[event.id]
# Clean up tracked events and early request state
self.cleanup_event(event.id)
def _genai_embed_description(self, event: Event, thumbnails: list[bytes]) -> None:
"""Embed the description for an event."""

View File

@@ -92,7 +92,7 @@ class ReviewDescriptionProcessor(PostProcessorApi):
pixels_per_image = width * height
tokens_per_image = pixels_per_image / 1250
prompt_tokens = 3500
prompt_tokens = 3800
response_tokens = 300
available_tokens = context_size - prompt_tokens - response_tokens
max_frames = int(available_tokens / tokens_per_image)
@@ -311,6 +311,7 @@ class ReviewDescriptionProcessor(PostProcessorApi):
start_ts,
end_ts,
events_with_context,
self.config.review.genai.preferred_language,
self.config.review.genai.debug_save_thumbnails,
)
else:

View File

@@ -8,6 +8,9 @@ class ReviewMetadata(BaseModel):
scene: str = Field(
description="A comprehensive description of the setting and entities, including relevant context and plausible inferences if supported by visual evidence."
)
shortSummary: str = Field(
description="A brief 2-sentence summary of the scene, suitable for notifications. Should capture the key activity and context without full detail."
)
confidence: float = Field(
description="A float between 0 and 1 representing your overall confidence in this analysis."
)

View File

@@ -13,7 +13,7 @@ from frigate.comms.event_metadata_updater import (
)
from frigate.config import FrigateConfig
from frigate.const import MODEL_CACHE_DIR
from frigate.log import redirect_output_to_logger
from frigate.log import suppress_stderr_during
from frigate.util.object import calculate_region
from ..types import DataProcessorMetrics
@@ -80,13 +80,14 @@ class BirdRealTimeProcessor(RealTimeProcessorApi):
except Exception as e:
logger.error(f"Failed to download {path}: {e}")
@redirect_output_to_logger(logger, logging.DEBUG)
def __build_detector(self) -> None:
self.interpreter = Interpreter(
model_path=os.path.join(MODEL_CACHE_DIR, "bird/bird.tflite"),
num_threads=2,
)
self.interpreter.allocate_tensors()
# Suppress TFLite delegate creation messages that bypass Python logging
with suppress_stderr_during("tflite_interpreter_init"):
self.interpreter = Interpreter(
model_path=os.path.join(MODEL_CACHE_DIR, "bird/bird.tflite"),
num_threads=2,
)
self.interpreter.allocate_tensors()
self.tensor_input_details = self.interpreter.get_input_details()
self.tensor_output_details = self.interpreter.get_output_details()

View File

@@ -21,7 +21,7 @@ from frigate.config.classification import (
ObjectClassificationType,
)
from frigate.const import CLIPS_DIR, MODEL_CACHE_DIR
from frigate.log import redirect_output_to_logger
from frigate.log import suppress_stderr_during
from frigate.types import TrackedObjectUpdateTypesEnum
from frigate.util.builtin import EventsPerSecond, InferenceSpeed, load_labels
from frigate.util.object import box_overlaps, calculate_region
@@ -52,7 +52,7 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
self.requestor = requestor
self.model_dir = os.path.join(MODEL_CACHE_DIR, self.model_config.name)
self.train_dir = os.path.join(CLIPS_DIR, self.model_config.name, "train")
self.interpreter: Interpreter | None = None
self.interpreter: Interpreter = None
self.tensor_input_details: dict[str, Any] | None = None
self.tensor_output_details: dict[str, Any] | None = None
self.labelmap: dict[int, str] = {}
@@ -72,8 +72,12 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
self.last_run = datetime.datetime.now().timestamp()
self.__build_detector()
@redirect_output_to_logger(logger, logging.DEBUG)
def __build_detector(self) -> None:
try:
from tflite_runtime.interpreter import Interpreter
except ModuleNotFoundError:
from tensorflow.lite.python.interpreter import Interpreter
model_path = os.path.join(self.model_dir, "model.tflite")
labelmap_path = os.path.join(self.model_dir, "labelmap.txt")
@@ -84,11 +88,13 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
self.labelmap = {}
return
self.interpreter = Interpreter(
model_path=model_path,
num_threads=2,
)
self.interpreter.allocate_tensors()
# Suppress TFLite delegate creation messages that bypass Python logging
with suppress_stderr_during("tflite_interpreter_init"):
self.interpreter = Interpreter(
model_path=model_path,
num_threads=2,
)
self.interpreter.allocate_tensors()
self.tensor_input_details = self.interpreter.get_input_details()
self.tensor_output_details = self.interpreter.get_output_details()
self.labelmap = load_labels(labelmap_path, prefill=0)
@@ -224,28 +230,34 @@ class CustomStateClassificationProcessor(RealTimeProcessorApi):
if not should_run:
return
x, y, x2, y2 = calculate_region(
frame.shape,
crop[0],
crop[1],
crop[2],
crop[3],
224,
1.0,
)
rgb = cv2.cvtColor(frame, cv2.COLOR_YUV2RGB_I420)
frame = rgb[
y:y2,
x:x2,
]
height, width = rgb.shape[:2]
if frame.shape != (224, 224):
try:
resized_frame = cv2.resize(frame, (224, 224))
except Exception:
logger.warning("Failed to resize image for state classification")
return
# Convert normalized crop coordinates to pixel values
x1 = int(camera_config.crop[0] * width)
y1 = int(camera_config.crop[1] * height)
x2 = int(camera_config.crop[2] * width)
y2 = int(camera_config.crop[3] * height)
# Clip coordinates to frame boundaries
x1 = max(0, min(x1, width))
y1 = max(0, min(y1, height))
x2 = max(0, min(x2, width))
y2 = max(0, min(y2, height))
if x2 <= x1 or y2 <= y1:
logger.warning(
f"Invalid crop coordinates for {camera}: [{x1}, {y1}, {x2}, {y2}]"
)
return
frame = rgb[y1:y2, x1:x2]
try:
resized_frame = cv2.resize(frame, (224, 224))
except Exception:
logger.warning("Failed to resize image for state classification")
return
if self.interpreter is None:
# When interpreter is None, always save (score is 0.0, which is < 1.0)
@@ -345,7 +357,7 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
self.model_config = model_config
self.model_dir = os.path.join(MODEL_CACHE_DIR, self.model_config.name)
self.train_dir = os.path.join(CLIPS_DIR, self.model_config.name, "train")
self.interpreter: Interpreter | None = None
self.interpreter: Interpreter = None
self.sub_label_publisher = sub_label_publisher
self.requestor = requestor
self.tensor_input_details: dict[str, Any] | None = None
@@ -366,7 +378,6 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
self.__build_detector()
@redirect_output_to_logger(logger, logging.DEBUG)
def __build_detector(self) -> None:
model_path = os.path.join(self.model_dir, "model.tflite")
labelmap_path = os.path.join(self.model_dir, "labelmap.txt")
@@ -378,11 +389,13 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
self.labelmap = {}
return
self.interpreter = Interpreter(
model_path=model_path,
num_threads=2,
)
self.interpreter.allocate_tensors()
# Suppress TFLite delegate creation messages that bypass Python logging
with suppress_stderr_during("tflite_interpreter_init"):
self.interpreter = Interpreter(
model_path=model_path,
num_threads=2,
)
self.interpreter.allocate_tensors()
self.tensor_input_details = self.interpreter.get_input_details()
self.tensor_output_details = self.interpreter.get_output_details()
self.labelmap = load_labels(labelmap_path, prefill=0)
@@ -508,6 +521,13 @@ class CustomObjectClassificationProcessor(RealTimeProcessorApi):
0.0,
max_files=save_attempts,
)
# Still track history even when model doesn't exist to respect MAX_OBJECT_CLASSIFICATIONS
# Add an entry with "unknown" label so the history limit is enforced
if object_id not in self.classification_history:
self.classification_history[object_id] = []
self.classification_history[object_id].append(("unknown", 0.0, now))
return
input = np.expand_dims(resized_crop, axis=0)
@@ -649,5 +669,5 @@ def write_classification_attempt(
if len(files) > max_files:
os.unlink(os.path.join(folder, files[-1]))
except FileNotFoundError:
except (FileNotFoundError, OSError):
pass

View File

@@ -131,6 +131,7 @@ class ONNXModelRunner(BaseModelRunner):
return model_type in [
EnrichmentModelTypeEnum.paddleocr.value,
EnrichmentModelTypeEnum.yolov9_license_plate.value,
EnrichmentModelTypeEnum.jina_v1.value,
EnrichmentModelTypeEnum.jina_v2.value,
EnrichmentModelTypeEnum.facenet.value,
@@ -138,8 +139,31 @@ class ONNXModelRunner(BaseModelRunner):
ModelTypeEnum.dfine.value,
]
def __init__(self, ort: ort.InferenceSession):
@staticmethod
def is_concurrent_model(model_type: str | None) -> bool:
"""Check if model requires thread locking for concurrent inference.
Some models (like JinaV2) share one runner between text and vision embeddings
called from different threads, requiring thread synchronization.
"""
if not model_type:
return False
# Import here to avoid circular imports
from frigate.embeddings.types import EnrichmentModelTypeEnum
return model_type == EnrichmentModelTypeEnum.jina_v2.value
def __init__(self, ort: ort.InferenceSession, model_type: str | None = None):
self.ort = ort
self.model_type = model_type
# Thread lock to prevent concurrent inference (needed for JinaV2 which shares
# one runner between text and vision embeddings called from different threads)
if self.is_concurrent_model(model_type):
self._inference_lock = threading.Lock()
else:
self._inference_lock = None
def get_input_names(self) -> list[str]:
return [input.name for input in self.ort.get_inputs()]
@@ -149,6 +173,10 @@ class ONNXModelRunner(BaseModelRunner):
return self.ort.get_inputs()[0].shape[3]
def run(self, input: dict[str, Any]) -> Any | None:
if self._inference_lock:
with self._inference_lock:
return self.ort.run(None, input)
return self.ort.run(None, input)
@@ -169,6 +197,7 @@ class CudaGraphRunner(BaseModelRunner):
return model_type not in [
ModelTypeEnum.yolonas.value,
ModelTypeEnum.dfine.value,
EnrichmentModelTypeEnum.paddleocr.value,
EnrichmentModelTypeEnum.jina_v1.value,
EnrichmentModelTypeEnum.jina_v2.value,
@@ -574,5 +603,6 @@ def get_optimized_runner(
),
providers=providers,
provider_options=options,
)
),
model_type=model_type,
)

View File

@@ -5,7 +5,7 @@ from typing_extensions import Literal
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig
from frigate.log import redirect_output_to_logger
from frigate.log import suppress_stderr_during
from ..detector_utils import tflite_detect_raw, tflite_init
@@ -28,12 +28,13 @@ class CpuDetectorConfig(BaseDetectorConfig):
class CpuTfl(DetectionApi):
type_key = DETECTOR_KEY
@redirect_output_to_logger(logger, logging.DEBUG)
def __init__(self, detector_config: CpuDetectorConfig):
interpreter = Interpreter(
model_path=detector_config.model.path,
num_threads=detector_config.num_threads or 3,
)
# Suppress TFLite delegate creation messages that bypass Python logging
with suppress_stderr_during("tflite_interpreter_init"):
interpreter = Interpreter(
model_path=detector_config.model.path,
num_threads=detector_config.num_threads or 3,
)
tflite_init(self, interpreter)

View File

@@ -8,7 +8,7 @@ import cv2
import numpy as np
from pydantic import Field
from frigate.const import MODEL_CACHE_DIR
from frigate.const import MODEL_CACHE_DIR, SUPPORTED_RK_SOCS
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detection_runners import RKNNModelRunner
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum
@@ -19,8 +19,6 @@ logger = logging.getLogger(__name__)
DETECTOR_KEY = "rknn"
supported_socs = ["rk3562", "rk3566", "rk3568", "rk3576", "rk3588"]
supported_models = {
ModelTypeEnum.yologeneric: "^frigate-fp16-yolov9-[cemst]$",
ModelTypeEnum.yolonas: "^deci-fp16-yolonas_[sml]$",
@@ -82,9 +80,9 @@ class Rknn(DetectionApi):
except FileNotFoundError:
raise Exception("Make sure to run docker in privileged mode.")
if soc not in supported_socs:
if soc not in SUPPORTED_RK_SOCS:
raise Exception(
f"Your SoC is not supported. Your SoC is: {soc}. Currently these SoCs are supported: {supported_socs}."
f"Your SoC is not supported. Your SoC is: {soc}. Currently these SoCs are supported: {SUPPORTED_RK_SOCS}."
)
return soc

View File

@@ -203,7 +203,9 @@ class EmbeddingMaintainer(threading.Thread):
# post processors
self.post_processors: list[PostProcessorApi] = []
if any(c.review.genai.enabled_in_config for c in self.config.cameras.values()):
if self.genai_client is not None and any(
c.review.genai.enabled_in_config for c in self.config.cameras.values()
):
self.post_processors.append(
ReviewDescriptionProcessor(
self.config, self.requestor, self.metrics, self.genai_client
@@ -244,7 +246,9 @@ class EmbeddingMaintainer(threading.Thread):
)
self.post_processors.append(semantic_trigger_processor)
if any(c.objects.genai.enabled_in_config for c in self.config.cameras.values()):
if self.genai_client is not None and any(
c.objects.genai.enabled_in_config for c in self.config.cameras.values()
):
self.post_processors.append(
ObjectDescriptionProcessor(
self.config,
@@ -522,6 +526,8 @@ class EmbeddingMaintainer(threading.Thread):
)
elif isinstance(processor, ObjectDescriptionProcessor):
if not updated_db:
# Still need to cleanup tracked events even if not processing
processor.cleanup_event(event_id)
continue
processor.process_data(
@@ -627,7 +633,7 @@ class EmbeddingMaintainer(threading.Thread):
camera, frame_name, _, _, motion_boxes, _ = data
if not camera or len(motion_boxes) == 0:
if not camera or len(motion_boxes) == 0 or camera not in self.config.cameras:
return
camera_config = self.config.cameras[camera]

View File

@@ -8,7 +8,7 @@ import numpy as np
from frigate.const import MODEL_CACHE_DIR
from frigate.detectors.detection_runners import get_optimized_runner
from frigate.embeddings.types import EnrichmentModelTypeEnum
from frigate.log import redirect_output_to_logger
from frigate.log import suppress_stderr_during
from frigate.util.downloader import ModelDownloader
from ...config import FaceRecognitionConfig
@@ -57,17 +57,18 @@ class FaceNetEmbedding(BaseEmbedding):
self._load_model_and_utils()
logger.debug(f"models are already downloaded for {self.model_name}")
@redirect_output_to_logger(logger, logging.DEBUG)
def _load_model_and_utils(self):
if self.runner is None:
if self.downloader:
self.downloader.wait_for_download()
self.runner = Interpreter(
model_path=os.path.join(MODEL_CACHE_DIR, "facedet/facenet.tflite"),
num_threads=2,
)
self.runner.allocate_tensors()
# Suppress TFLite delegate creation messages that bypass Python logging
with suppress_stderr_during("tflite_interpreter_init"):
self.runner = Interpreter(
model_path=os.path.join(MODEL_CACHE_DIR, "facedet/facenet.tflite"),
num_threads=2,
)
self.runner.allocate_tensors()
self.tensor_input_details = self.runner.get_input_details()
self.tensor_output_details = self.runner.get_output_details()

View File

@@ -186,6 +186,9 @@ class JinaV1ImageEmbedding(BaseEmbedding):
download_func=self._download_model,
)
self.downloader.ensure_model_files()
# Avoid lazy loading in worker threads: block until downloads complete
# and load the model on the main thread during initialization.
self._load_model_and_utils()
else:
self.downloader = None
ModelDownloader.mark_files_state(

View File

@@ -3,6 +3,7 @@
import io
import logging
import os
import threading
import numpy as np
from PIL import Image
@@ -53,6 +54,11 @@ class JinaV2Embedding(BaseEmbedding):
self.tokenizer = None
self.image_processor = None
self.runner = None
# Lock to prevent concurrent calls (text and vision share this instance)
self._call_lock = threading.Lock()
# download the model and tokenizer
files_names = list(self.download_urls.keys()) + [self.tokenizer_file]
if not all(
os.path.exists(os.path.join(self.download_path, n)) for n in files_names
@@ -65,6 +71,9 @@ class JinaV2Embedding(BaseEmbedding):
download_func=self._download_model,
)
self.downloader.ensure_model_files()
# Avoid lazy loading in worker threads: block until downloads complete
# and load the model on the main thread during initialization.
self._load_model_and_utils()
else:
self.downloader = None
ModelDownloader.mark_files_state(
@@ -197,37 +206,40 @@ class JinaV2Embedding(BaseEmbedding):
def __call__(
self, inputs: list[str] | list[Image.Image] | list[str], embedding_type=None
) -> list[np.ndarray]:
self.embedding_type = embedding_type
if not self.embedding_type:
raise ValueError(
"embedding_type must be specified either in __init__ or __call__"
)
# Lock the entire call to prevent race conditions when text and vision
# embeddings are called concurrently from different threads
with self._call_lock:
self.embedding_type = embedding_type
if not self.embedding_type:
raise ValueError(
"embedding_type must be specified either in __init__ or __call__"
)
self._load_model_and_utils()
processed = self._preprocess_inputs(inputs)
batch_size = len(processed)
self._load_model_and_utils()
processed = self._preprocess_inputs(inputs)
batch_size = len(processed)
# Prepare ONNX inputs with matching batch sizes
onnx_inputs = {}
if self.embedding_type == "text":
onnx_inputs["input_ids"] = np.stack([x[0] for x in processed])
onnx_inputs["pixel_values"] = np.zeros(
(batch_size, 3, 512, 512), dtype=np.float32
)
elif self.embedding_type == "vision":
onnx_inputs["input_ids"] = np.zeros((batch_size, 16), dtype=np.int64)
onnx_inputs["pixel_values"] = np.stack([x[0] for x in processed])
else:
raise ValueError("Invalid embedding type")
# Prepare ONNX inputs with matching batch sizes
onnx_inputs = {}
if self.embedding_type == "text":
onnx_inputs["input_ids"] = np.stack([x[0] for x in processed])
onnx_inputs["pixel_values"] = np.zeros(
(batch_size, 3, 512, 512), dtype=np.float32
)
elif self.embedding_type == "vision":
onnx_inputs["input_ids"] = np.zeros((batch_size, 16), dtype=np.int64)
onnx_inputs["pixel_values"] = np.stack([x[0] for x in processed])
else:
raise ValueError("Invalid embedding type")
# Run inference
outputs = self.runner.run(onnx_inputs)
if self.embedding_type == "text":
embeddings = outputs[2] # text embeddings
elif self.embedding_type == "vision":
embeddings = outputs[3] # image embeddings
else:
raise ValueError("Invalid embedding type")
# Run inference
outputs = self.runner.run(onnx_inputs)
if self.embedding_type == "text":
embeddings = outputs[2] # text embeddings
elif self.embedding_type == "vision":
embeddings = outputs[3] # image embeddings
else:
raise ValueError("Invalid embedding type")
embeddings = self._postprocess_outputs(embeddings)
return [embedding for embedding in embeddings]
embeddings = self._postprocess_outputs(embeddings)
return [embedding for embedding in embeddings]

View File

@@ -34,7 +34,7 @@ from frigate.data_processing.real_time.audio_transcription import (
AudioTranscriptionRealTimeProcessor,
)
from frigate.ffmpeg_presets import parse_preset_input
from frigate.log import LogPipe, redirect_output_to_logger
from frigate.log import LogPipe, suppress_stderr_during
from frigate.object_detection.base import load_labels
from frigate.util.builtin import get_ffmpeg_arg_list
from frigate.util.process import FrigateProcess
@@ -367,17 +367,17 @@ class AudioEventMaintainer(threading.Thread):
class AudioTfl:
@redirect_output_to_logger(logger, logging.DEBUG)
def __init__(self, stop_event: threading.Event, num_threads=2):
self.stop_event = stop_event
self.num_threads = num_threads
self.labels = load_labels("/audio-labelmap.txt", prefill=521)
self.interpreter = Interpreter(
model_path="/cpu_audio_model.tflite",
num_threads=self.num_threads,
)
self.interpreter.allocate_tensors()
# Suppress TFLite delegate creation messages that bypass Python logging
with suppress_stderr_during("tflite_interpreter_init"):
self.interpreter = Interpreter(
model_path="/cpu_audio_model.tflite",
num_threads=self.num_threads,
)
self.interpreter.allocate_tensors()
self.tensor_input_details = self.interpreter.get_input_details()
self.tensor_output_details = self.interpreter.get_output_details()

View File

@@ -46,7 +46,7 @@ def should_update_state(prev_event: Event, current_event: Event) -> bool:
if prev_event["sub_label"] != current_event["sub_label"]:
return True
if len(prev_event["current_zones"]) < len(current_event["current_zones"]):
if set(prev_event["current_zones"]) != set(current_event["current_zones"]):
return True
return False

View File

@@ -153,7 +153,7 @@ PRESETS_HW_ACCEL_ENCODE_BIRDSEYE = {
FFMPEG_HWACCEL_VAAPI: "{0} -hide_banner -hwaccel vaapi -hwaccel_output_format vaapi -hwaccel_device {3} {1} -c:v h264_vaapi -g 50 -bf 0 -profile:v high -level:v 4.1 -sei:v 0 -an -vf format=vaapi|nv12,hwupload {2}",
"preset-intel-qsv-h264": "{0} -hide_banner {1} -c:v h264_qsv -g 50 -bf 0 -profile:v high -level:v 4.1 -async_depth:v 1 {2}",
"preset-intel-qsv-h265": "{0} -hide_banner {1} -c:v h264_qsv -g 50 -bf 0 -profile:v main -level:v 4.1 -async_depth:v 1 {2}",
FFMPEG_HWACCEL_NVIDIA: "{0} -hide_banner {1} -hwaccel cuda -hwaccel_device {3} -c:v h264_nvenc -g 50 -profile:v high -level:v auto -preset:v p2 -tune:v ll {2}",
FFMPEG_HWACCEL_NVIDIA: "{0} -hide_banner {1} -c:v h264_nvenc -g 50 -profile:v high -level:v auto -preset:v p2 -tune:v ll {2}",
"preset-jetson-h264": "{0} -hide_banner {1} -c:v h264_nvmpi -profile high {2}",
"preset-jetson-h265": "{0} -hide_banner {1} -c:v h264_nvmpi -profile main {2}",
FFMPEG_HWACCEL_RKMPP: "{0} -hide_banner {1} -c:v h264_rkmpp -profile:v high {2}",

View File

@@ -101,6 +101,7 @@ When forming your description:
Your response MUST be a flat JSON object with:
- `title` (string): A concise, direct title that describes the primary action or event in the sequence, not just what you literally see. Use spatial context when available to make titles more meaningful. When multiple objects/actions are present, prioritize whichever is most prominent or occurs first. Use names from "Objects in Scene" based on what you visually observe. If you see both a name and an unidentified object of the same type but visually observe only one person/object, use ONLY the name. Examples: "Joe walking dog", "Person taking out trash", "Vehicle arriving in driveway", "Joe accessing vehicle", "Person leaving porch for driveway".
- `scene` (string): A narrative description of what happens across the sequence from start to finish, in chronological order. Start by describing how the sequence begins, then describe the progression of events. **Describe all significant movements and actions in the order they occur.** For example, if a vehicle arrives and then a person exits, describe both actions sequentially. **Only describe actions you can actually observe happening in the frames provided.** Do not infer or assume actions that aren't visible (e.g., if you see someone walking but never see them sit, don't say they sat down). Include setting, detected objects, and their observable actions. Avoid speculation or filling in assumed behaviors. Your description should align with and support the threat level you assign.
- `shortSummary` (string): A brief 2-sentence summary of the scene, suitable for notifications. Should capture the key activity and context without full detail. This should be a condensed version of the scene description above.
- `confidence` (float): 0-1 confidence in your analysis. Higher confidence when objects/actions are clearly visible and context is unambiguous. Lower confidence when the sequence is unclear, objects are partially obscured, or context is ambiguous.
- `potential_threat_level` (integer): 0, 1, or 2 as defined in "Normal Activity Patterns for This Property" above. Your threat level must be consistent with your scene description and the guidance above.
{get_concern_prompt()}
@@ -178,6 +179,7 @@ Each line represents a detection state, not necessarily unique individuals. Pare
start_ts: float,
end_ts: float,
events: list[dict[str, Any]],
preferred_language: str | None,
debug_save: bool,
) -> str | None:
"""Generate a summary of review item descriptions over a period of time."""
@@ -191,6 +193,8 @@ Input format: Each event is a JSON object with:
- "title", "scene", "confidence", "potential_threat_level" (0-2), "other_concerns", "camera", "time", "start_time", "end_time"
- "context": array of related events from other cameras that occurred during overlapping time periods
**Note: Use the "scene" field for event descriptions in the report. Ignore any "shortSummary" field if present.**
Report Structure - Use this EXACT format:
# Security Summary - {time_range}
@@ -232,6 +236,9 @@ Guidelines:
for event in events:
timeline_summary_prompt += f"\n{event}\n"
if preferred_language:
timeline_summary_prompt += f"\nProvide your answer in {preferred_language}"
if debug_save:
with open(
os.path.join(

View File

@@ -3,7 +3,7 @@
import logging
from typing import Any, Optional
from httpx import TimeoutException
from httpx import RemoteProtocolError, TimeoutException
from ollama import Client as ApiClient
from ollama import ResponseError
@@ -68,7 +68,12 @@ class OllamaClient(GenAIClient):
f"Ollama tokens used: eval_count={result.get('eval_count')}, prompt_eval_count={result.get('prompt_eval_count')}"
)
return result["response"].strip()
except (TimeoutException, ResponseError, ConnectionError) as e:
except (
TimeoutException,
ResponseError,
RemoteProtocolError,
ConnectionError,
) as e:
logger.warning("Ollama returned an error: %s", str(e))
return None

View File

@@ -80,10 +80,15 @@ def apply_log_levels(default: str, log_levels: dict[str, LogLevel]) -> None:
log_levels = {
"absl": LogLevel.error,
"httpx": LogLevel.error,
"h5py": LogLevel.error,
"keras": LogLevel.error,
"matplotlib": LogLevel.error,
"tensorflow": LogLevel.error,
"tensorflow.python": LogLevel.error,
"werkzeug": LogLevel.error,
"ws4py": LogLevel.error,
"PIL": LogLevel.warning,
"numba": LogLevel.warning,
**log_levels,
}
@@ -318,3 +323,31 @@ def suppress_os_output(func: Callable) -> Callable:
return result
return wrapper
@contextmanager
def suppress_stderr_during(operation_name: str) -> Generator[None, None, None]:
"""
Context manager to suppress stderr output during a specific operation.
Useful for silencing LLVM debug output, CUDA messages, and other native
library logging that cannot be controlled via Python logging or environment
variables. Completely redirects file descriptor 2 (stderr) to /dev/null.
Usage:
with suppress_stderr_during("model_conversion"):
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
Args:
operation_name: Name of the operation for debugging purposes
"""
original_stderr_fd = os.dup(2)
devnull = os.open(os.devnull, os.O_WRONLY)
try:
os.dup2(devnull, 2)
yield
finally:
os.dup2(original_stderr_fd, 2)
os.close(devnull)
os.close(original_stderr_fd)

View File

@@ -139,9 +139,11 @@ class OutputProcess(FrigateProcess):
if CameraConfigUpdateEnum.add in updates:
for camera in updates["add"]:
jsmpeg_cameras[camera] = JsmpegCamera(
cam_config, self.stop_event, websocket_server
self.config.cameras[camera], self.stop_event, websocket_server
)
preview_recorders[camera] = PreviewRecorder(
self.config.cameras[camera]
)
preview_recorders[camera] = PreviewRecorder(cam_config)
preview_write_times[camera] = 0
if (

View File

@@ -119,6 +119,7 @@ class RecordingCleanup(threading.Thread):
Recordings.path,
Recordings.objects,
Recordings.motion,
Recordings.dBFS,
)
.where(
(Recordings.camera == config.name)
@@ -126,6 +127,7 @@ class RecordingCleanup(threading.Thread):
(
(Recordings.end_time < continuous_expire_date)
& (Recordings.motion == 0)
& (Recordings.dBFS == 0)
)
| (Recordings.end_time < motion_expire_date)
)
@@ -185,6 +187,7 @@ class RecordingCleanup(threading.Thread):
mode == RetainModeEnum.motion
and recording.motion == 0
and recording.objects == 0
and recording.dBFS == 0
)
or (mode == RetainModeEnum.active_objects and recording.objects == 0)
):

View File

@@ -67,7 +67,7 @@ class SegmentInfo:
if (
not keep
and retain_mode == RetainModeEnum.motion
and (self.motion_count > 0 or self.average_dBFS > 0)
and (self.motion_count > 0 or self.average_dBFS != 0)
):
keep = True

View File

@@ -42,11 +42,10 @@ def get_latest_version(config: FrigateConfig) -> str:
"https://api.github.com/repos/blakeblackshear/frigate/releases/latest",
timeout=10,
)
response = request.json()
except (RequestException, JSONDecodeError):
return "unknown"
response = request.json()
if request.ok and response and "tag_name" in response:
return str(response.get("tag_name").replace("v", ""))
else:

View File

@@ -86,11 +86,11 @@ class TimelineProcessor(threading.Thread):
event_data: dict[Any, Any],
) -> bool:
"""Handle object detection."""
save = False
camera_config = self.config.cameras[camera]
event_id = event_data["id"]
timeline_entry = {
# Base timeline entry data that all entries will share
base_entry = {
Timeline.timestamp: event_data["frame_time"],
Timeline.camera: camera,
Timeline.source: "tracked_object",
@@ -123,40 +123,64 @@ class TimelineProcessor(threading.Thread):
e[Timeline.data]["sub_label"] = event_data["sub_label"]
if event_type == EventStateEnum.start:
timeline_entry = base_entry.copy()
timeline_entry[Timeline.class_type] = "visible"
save = True
self.insert_or_save(timeline_entry, prev_event_data, event_data)
elif event_type == EventStateEnum.update:
# Check all conditions and create timeline entries for each change
entries_to_save = []
# Check for zone changes
prev_zones = set(prev_event_data["current_zones"])
current_zones = set(event_data["current_zones"])
zones_changed = prev_zones != current_zones
# Only save "entered_zone" events when the object is actually IN zones
if (
len(prev_event_data["current_zones"]) < len(event_data["current_zones"])
zones_changed
and not event_data["stationary"]
and len(current_zones) > 0
):
timeline_entry[Timeline.class_type] = "entered_zone"
timeline_entry[Timeline.data]["zones"] = event_data["current_zones"]
save = True
elif prev_event_data["stationary"] != event_data["stationary"]:
timeline_entry[Timeline.class_type] = (
zone_entry = base_entry.copy()
zone_entry[Timeline.class_type] = "entered_zone"
zone_entry[Timeline.data] = base_entry[Timeline.data].copy()
zone_entry[Timeline.data]["zones"] = event_data["current_zones"]
entries_to_save.append(zone_entry)
# Check for stationary status change
if prev_event_data["stationary"] != event_data["stationary"]:
stationary_entry = base_entry.copy()
stationary_entry[Timeline.class_type] = (
"stationary" if event_data["stationary"] else "active"
)
save = True
elif prev_event_data["attributes"] == {} and event_data["attributes"] != {}:
timeline_entry[Timeline.class_type] = "attribute"
timeline_entry[Timeline.data]["attribute"] = list(
stationary_entry[Timeline.data] = base_entry[Timeline.data].copy()
entries_to_save.append(stationary_entry)
# Check for new attributes
if prev_event_data["attributes"] == {} and event_data["attributes"] != {}:
attribute_entry = base_entry.copy()
attribute_entry[Timeline.class_type] = "attribute"
attribute_entry[Timeline.data] = base_entry[Timeline.data].copy()
attribute_entry[Timeline.data]["attribute"] = list(
event_data["attributes"].keys()
)[0]
if len(event_data["current_attributes"]) > 0:
timeline_entry[Timeline.data]["attribute_box"] = to_relative_box(
attribute_entry[Timeline.data]["attribute_box"] = to_relative_box(
camera_config.detect.width,
camera_config.detect.height,
event_data["current_attributes"][0]["box"],
)
save = True
elif event_type == EventStateEnum.end:
timeline_entry[Timeline.class_type] = "gone"
save = True
entries_to_save.append(attribute_entry)
if save:
# Save all entries
for entry in entries_to_save:
self.insert_or_save(entry, prev_event_data, event_data)
elif event_type == EventStateEnum.end:
timeline_entry = base_entry.copy()
timeline_entry[Timeline.class_type] = "gone"
self.insert_or_save(timeline_entry, prev_event_data, event_data)
def handle_api_entry(

View File

@@ -19,9 +19,10 @@ from frigate.const import (
PROCESS_PRIORITY_LOW,
UPDATE_MODEL_STATE,
)
from frigate.log import redirect_output_to_logger
from frigate.log import redirect_output_to_logger, suppress_stderr_during
from frigate.models import Event, Recordings, ReviewSegment
from frigate.types import ModelStatusTypesEnum
from frigate.util.downloader import ModelDownloader
from frigate.util.file import get_event_thumbnail_bytes
from frigate.util.image import get_image_from_recording
from frigate.util.process import FrigateProcess
@@ -121,6 +122,10 @@ def get_dataset_image_count(model_name: str) -> int:
class ClassificationTrainingProcess(FrigateProcess):
def __init__(self, model_name: str) -> None:
self.BASE_WEIGHT_URL = os.environ.get(
"TF_KERAS_MOBILENET_V2_WEIGHTS_URL",
"",
)
super().__init__(
stop_event=None,
priority=PROCESS_PRIORITY_LOW,
@@ -179,11 +184,23 @@ class ClassificationTrainingProcess(FrigateProcess):
)
return False
weights_path = "imagenet"
# Download MobileNetV2 weights if not present
if self.BASE_WEIGHT_URL:
weights_path = os.path.join(
MODEL_CACHE_DIR, "MobileNet", "mobilenet_v2_weights.h5"
)
if not os.path.exists(weights_path):
logger.info("Downloading MobileNet V2 weights file")
ModelDownloader.download_from_url(
self.BASE_WEIGHT_URL, weights_path
)
# Start with imagenet base model with 35% of channels in each layer
base_model = MobileNetV2(
input_shape=(224, 224, 3),
include_top=False,
weights="imagenet",
weights=weights_path,
alpha=0.35,
)
base_model.trainable = False # Freeze pre-trained layers
@@ -233,15 +250,20 @@ class ClassificationTrainingProcess(FrigateProcess):
logger.debug(f"Converting {self.model_name} to TFLite...")
# convert model to tflite
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = (
self.__generate_representative_dataset_factory(dataset_dir)
)
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.uint8
converter.inference_output_type = tf.uint8
tflite_model = converter.convert()
# Suppress stderr during conversion to avoid LLVM debug output
# (fully_quantize, inference_type, MLIR optimization messages, etc)
with suppress_stderr_during("tflite_conversion"):
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = (
self.__generate_representative_dataset_factory(dataset_dir)
)
converter.target_spec.supported_ops = [
tf.lite.OpsSet.TFLITE_BUILTINS_INT8
]
converter.inference_input_type = tf.uint8
converter.inference_output_type = tf.uint8
tflite_model = converter.convert()
# write model
model_path = os.path.join(model_dir, "model.tflite")
@@ -338,8 +360,6 @@ def collect_state_classification_examples(
cameras: Dict mapping camera names to normalized crop coordinates [x1, y1, x2, y2] (0-1)
"""
dataset_dir = os.path.join(CLIPS_DIR, model_name, "dataset")
temp_dir = os.path.join(dataset_dir, "temp")
os.makedirs(temp_dir, exist_ok=True)
# Step 1: Get review items for the cameras
camera_names = list(cameras.keys())
@@ -354,6 +374,10 @@ def collect_state_classification_examples(
logger.warning(f"No review items found for cameras: {camera_names}")
return
# The temp directory is only created when there are review_items.
temp_dir = os.path.join(dataset_dir, "temp")
os.makedirs(temp_dir, exist_ok=True)
# Step 2: Create balanced timestamp selection (100 samples)
timestamps = _select_balanced_timestamps(review_items, target_count=100)
@@ -482,6 +506,10 @@ def _extract_keyframes(
"""
Extract keyframes from recordings at specified timestamps and crop to specified regions.
This implementation batches work by running multiple ffmpeg snapshot commands
concurrently, which significantly reduces total runtime compared to
processing each timestamp serially.
Args:
ffmpeg_path: Path to ffmpeg binary
timestamps: List of timestamp dicts from _select_balanced_timestamps
@@ -491,15 +519,21 @@ def _extract_keyframes(
Returns:
List of paths to successfully extracted and cropped keyframe images
"""
keyframe_paths = []
from concurrent.futures import ThreadPoolExecutor, as_completed
for idx, ts_info in enumerate(timestamps):
if not timestamps:
return []
# Limit the number of concurrent ffmpeg processes so we don't overload the host.
max_workers = min(5, len(timestamps))
def _process_timestamp(idx: int, ts_info: dict) -> tuple[int, str | None]:
camera = ts_info["camera"]
timestamp = ts_info["timestamp"]
if camera not in camera_crops:
logger.warning(f"No crop coordinates for camera {camera}")
continue
return idx, None
norm_x1, norm_y1, norm_x2, norm_y2 = camera_crops[camera]
@@ -516,7 +550,7 @@ def _extract_keyframes(
.get()
)
except Exception:
continue
return idx, None
relative_time = timestamp - recording.start_time
@@ -530,38 +564,57 @@ def _extract_keyframes(
height=None,
)
if image_data:
nparr = np.frombuffer(image_data, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if not image_data:
return idx, None
if img is not None:
height, width = img.shape[:2]
nparr = np.frombuffer(image_data, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
x1 = int(norm_x1 * width)
y1 = int(norm_y1 * height)
x2 = int(norm_x2 * width)
y2 = int(norm_y2 * height)
if img is None:
return idx, None
x1_clipped = max(0, min(x1, width))
y1_clipped = max(0, min(y1, height))
x2_clipped = max(0, min(x2, width))
y2_clipped = max(0, min(y2, height))
height, width = img.shape[:2]
if x2_clipped > x1_clipped and y2_clipped > y1_clipped:
cropped = img[y1_clipped:y2_clipped, x1_clipped:x2_clipped]
resized = cv2.resize(cropped, (224, 224))
x1 = int(norm_x1 * width)
y1 = int(norm_y1 * height)
x2 = int(norm_x2 * width)
y2 = int(norm_y2 * height)
output_path = os.path.join(output_dir, f"frame_{idx:04d}.jpg")
cv2.imwrite(output_path, resized)
keyframe_paths.append(output_path)
x1_clipped = max(0, min(x1, width))
y1_clipped = max(0, min(y1, height))
x2_clipped = max(0, min(x2, width))
y2_clipped = max(0, min(y2, height))
if x2_clipped <= x1_clipped or y2_clipped <= y1_clipped:
return idx, None
cropped = img[y1_clipped:y2_clipped, x1_clipped:x2_clipped]
resized = cv2.resize(cropped, (224, 224))
output_path = os.path.join(output_dir, f"frame_{idx:04d}.jpg")
cv2.imwrite(output_path, resized)
return idx, output_path
except Exception as e:
logger.debug(
f"Failed to extract frame from {recording.path} at {relative_time}s: {e}"
)
continue
return idx, None
return keyframe_paths
keyframes_with_index: list[tuple[int, str]] = []
with ThreadPoolExecutor(max_workers=max_workers) as executor:
future_to_idx = {
executor.submit(_process_timestamp, idx, ts_info): idx
for idx, ts_info in enumerate(timestamps)
}
for future in as_completed(future_to_idx):
_, path = future.result()
if path:
keyframes_with_index.append((future_to_idx[future], path))
keyframes_with_index.sort(key=lambda item: item[0])
return [path for _, path in keyframes_with_index]
def _select_distinct_images(

View File

@@ -65,10 +65,15 @@ class FrigateProcess(BaseProcess):
logging.basicConfig(handlers=[], force=True)
logging.getLogger().addHandler(QueueHandler(self.__log_queue))
# Always apply base log level suppressions for noisy third-party libraries
# even if no specific logConfig is provided
if logConfig:
frigate.log.apply_log_levels(
logConfig.default.value.upper(), logConfig.logs
)
else:
# Apply default INFO level with standard library suppressions
frigate.log.apply_log_levels("INFO", {})
self._setup_memray()

View File

@@ -8,6 +8,7 @@ import time
from pathlib import Path
from typing import Optional
from frigate.const import SUPPORTED_RK_SOCS
from frigate.util.file import FileLock
logger = logging.getLogger(__name__)
@@ -68,9 +69,20 @@ def is_rknn_compatible(model_path: str, model_type: str | None = None) -> bool:
True if the model is RKNN-compatible, False otherwise
"""
soc = get_soc_type()
if soc is None:
return False
# Check if the SoC is actually a supported RK device
# This prevents false positives on non-RK devices (e.g., macOS Docker)
# where /proc/device-tree/compatible might exist but contain non-RK content
if soc not in SUPPORTED_RK_SOCS:
logger.debug(
f"SoC '{soc}' is not a supported RK device for RKNN conversion. "
f"Supported SoCs: {SUPPORTED_RK_SOCS}"
)
return False
if not model_type:
model_type = get_rknn_model_type(model_path)

View File

@@ -1,12 +1,12 @@
# COPYRIGHT AND TRADEMARK NOTICE
The images, logos, and icons contained in this directory (the "Brand Assets") are
proprietary to Frigate LLC and are NOT covered by the MIT License governing the
proprietary to Frigate, Inc. and are NOT covered by the MIT License governing the
rest of this repository.
1. TRADEMARK STATUS
The "Frigate" name and the accompanying logo are common law trademarks™ of
Frigate LLC. Frigate LLC reserves all rights to these marks.
Frigate, Inc. Frigate, Inc. reserves all rights to these marks.
2. LIMITED PERMISSION FOR USE
Permission is hereby granted to display these Brand Assets strictly for the
@@ -17,9 +17,9 @@ rest of this repository.
3. RESTRICTIONS
You may NOT:
a. Use these Brand Assets to represent a derivative work (fork) as an official
product of Frigate LLC.
product of Frigate, Inc.
b. Use these Brand Assets in a way that implies endorsement, sponsorship, or
commercial affiliation with Frigate LLC.
commercial affiliation with Frigate, Inc.
c. Modify or alter the Brand Assets.
If you fork this repository with the intent to distribute a modified or competing
@@ -30,4 +30,4 @@ For full usage guidelines, strictly see the TRADEMARK.md file in the
repository root.
ALL RIGHTS RESERVED.
Copyright (c) 2025 Frigate LLC.
Copyright (c) 2026 Frigate, Inc.

View File

@@ -132,5 +132,9 @@
},
"count_one": "{{count}} Classe",
"count_other": "{{count}} Classes"
},
"attributes": {
"label": "Atributs de classificació",
"all": "Tots els atributs"
}
}

View File

@@ -54,7 +54,7 @@
},
"renameCategory": {
"title": "Reanomena la classe",
"desc": "Introduïu un nom nou per {{name}}. Se us requerirà que torneu a entrenar el model per al canvi de nom a afectar."
"desc": "Introduïu un nom nou per {{name}}. Se us requerirà que torneu a entrenar el model per al canvi de nom afectar."
},
"description": {
"invalidName": "Nom no vàlid. Els noms només poden incloure lletres, números, espais, apòstrofs, guions baixos i guions."
@@ -116,7 +116,8 @@
"classesUnique": "Els noms de classe han de ser únics",
"stateRequiresTwoClasses": "Els models d'estat requereixen almenys 2 classes",
"objectLabelRequired": "Seleccioneu una etiqueta d'objecte",
"objectTypeRequired": "Seleccioneu un tipus de classificació"
"objectTypeRequired": "Seleccioneu un tipus de classificació",
"noneNotAllowed": "La classe 'none' no està permesa"
},
"states": "Estats"
},
@@ -172,7 +173,9 @@
"states": "Estats"
},
"details": {
"scoreInfo": "La puntuació representa la confiança mitjana de la classificació en totes les deteccions d'aquest objecte."
"scoreInfo": "La puntuació representa la confiança mitjana de la classificació en totes les deteccions d'aquest objecte.",
"none": "Cap",
"unknown": "Desconegut"
},
"edit": {
"title": "Edita el model de classificació",

View File

@@ -100,13 +100,15 @@
"updatedSublabel": "Subetiqueta actualitzada amb èxit.",
"updatedLPR": "Matrícula actualitzada amb èxit.",
"regenerate": "El {{provider}} ha sol·licitat una nova descripció. En funció de la velocitat del vostre proveïdor, la nova descripció pot trigar un temps a regenerar-se.",
"audioTranscription": "S'ha sol·licitat correctament la transcripció d'àudio. Depenent de la velocitat del vostre servidor Frigate, la transcripció pot trigar una estona a completar-se."
"audioTranscription": "S'ha sol·licitat correctament la transcripció d'àudio. Depenent de la velocitat del vostre servidor Frigate, la transcripció pot trigar una estona a completar-se.",
"updatedAttributes": "Els atributs s'han actualitzat correctament."
},
"error": {
"regenerate": "No s'ha pogut contactar amb {{provider}} per obtenir una nova descripció: {{errorMessage}}",
"updatedSublabelFailed": "No s'ha pogut actualitzar la subetiqueta: {{errorMessage}}",
"updatedLPRFailed": "No s'ha pogut actualitzar la matrícula: {{errorMessage}}",
"audioTranscription": "Error en demanar la transcripció d'audio {{errorMessage}}"
"audioTranscription": "Error en demanar la transcripció d'audio {{errorMessage}}",
"updatedAttributesFailed": "No s'han pogut actualitzar els atributs: {{errorMessage}}"
}
},
"title": "Revisar detalls de l'element",
@@ -162,7 +164,12 @@
},
"score": {
"label": "Puntuació"
}
},
"editAttributes": {
"title": "Edita els atributs",
"desc": "Seleccioneu els atributs de classificació per a aquesta {{label}}"
},
"attributes": "Atributs de classificació"
},
"searchResult": {
"tooltip": "S'ha identificat {{type}} amb una confiança del {{confidence}}%",

View File

@@ -15,7 +15,8 @@
"max_speed": "Velocitat màxima",
"recognized_license_plate": "Matrícula reconeguda",
"has_clip": "Té Clip",
"has_snapshot": "Té instantània"
"has_snapshot": "Té instantània",
"attributes": "Atributs"
},
"searchType": {
"thumbnail": "Miniatura",

View File

@@ -484,7 +484,7 @@
"users": {
"table": {
"username": "Usuari",
"password": "Contrasenya",
"password": "Restableix la contrasenya",
"deleteUser": "Suprimir usuari",
"noUsers": "No s'han trobat usuaris.",
"changeRole": "Canviar la funció dusuari",
@@ -595,7 +595,7 @@
"title": "Gestió d'usuaris",
"desc": "Gestioneu els comptes d'usuari d'aquesta instància de Frigate."
},
"updatePassword": "Actualitzar contrasenya"
"updatePassword": "Restableix la contrasenya"
},
"frigatePlus": {
"snapshotConfig": {
@@ -696,7 +696,7 @@
"title": "Classificació d'ocells",
"desc": "La classificació docells identifica ocells coneguts mitjançant un model TensorFlow quantitzat. Quan es reconeix un ocell conegut, el seu nom comú safegeix com a subetiqueta. Aquesta informació es mostra a la interfície dusuari, als filtres i també a les notificacions."
},
"title": "Parmàmetres complementaris",
"title": "Configuració dels enriquiments",
"toast": {
"error": "No s'han pogut guardar els canvis de configuració: {{errorMessage}}",
"success": "Els paràmetres complementaris s'han desat. Reinicia Frigate per aplicar els canvis."
@@ -805,7 +805,7 @@
"documentTitle": "Disparadors",
"management": {
"title": "Activadors",
"desc": "Gestionar els disparadors de {{camera}}. Usa les tipus de miniatures per disparar miniatures similars a l'objecte a seguir seleccionat, i el tipus de descripció per disparar en cas de descripcions similars a l'especificada."
"desc": "Gestionar els disparadors de {{camera}}. Usa els tipus de miniatures per disparar miniatures similars a l'objecte a seguir seleccionat, i el tipus de descripció per disparar en cas de descripcions similars a l'especificada."
},
"addTrigger": "Afegir disaprador",
"semanticSearch": {

View File

@@ -190,7 +190,10 @@
"review_description_events_per_second": "Descripció de la revisió",
"object_description": "Descripció de l'objecte",
"object_description_speed": "Velocitat de la descripció de l'objecte",
"object_description_events_per_second": "Descripció de l'objecte"
"object_description_events_per_second": "Descripció de l'objecte",
"classification": "{{name}} Classificació",
"classification_speed": "Velocitat de classificació de {{name}}",
"classification_events_per_second": "{{name}} Esdeveniments de classificació per segon"
},
"infPerSecond": "Inferències per segon",
"averageInf": "Temps mitjà d'inferència"

View File

@@ -1,34 +1,47 @@
{
"documentTitle": "Klasifikační modely",
"documentTitle": "Klasifikační modely - Frigate",
"button": {
"deleteClassificationAttempts": "Odstrániť Klasifikačné obrazy",
"renameCategory": "Premenovať triedu",
"deleteCategory": "Zmazať triedu",
"deleteImages": "Zmazať obrázok",
"trainModel": "Trenova model",
"addClassification": "Pridať klasifikáciu",
"deleteModels": "Zmazať modeli",
"editModel": "Upraviť model"
"renameCategory": "Přejmenovat třídu",
"deleteCategory": "Smazat třídu",
"deleteImages": "Smazat obrázek",
"trainModel": "Trénovat model",
"addClassification": "Přidat klasifikaci",
"deleteModels": "Smazat modely",
"editModel": "Upravit model"
},
"details": {
"scoreInfo": "Skóre predstavuje priemernú istotu klasifikácie naprieč detekciami tohoto objektu."
"scoreInfo": "Skóre predstavuje priemernú istotu klasifikácie naprieč detekciami tohoto objektu.",
"none": "Nic",
"unknown": "Neznámý"
},
"tooltip": {
"trainingInProgress": "Model se práve trénuje",
"noNewImages": iadne nové obrázky na trénovanie. Najskôr klasifikujte viac obrazkov v datasete.",
"noChanges": "Od posledného treningu nedošlo k žiadnym zmenám v datasete.",
"modelNotReady": "Model nieje pripravený na trénovanie."
"trainingInProgress": "Model se právě trénuje",
"noNewImages": ádné obrázky pro trénování. Nejdříve klasifikujte obrázky pro dataset.",
"noChanges": "Od posledního trénování nedošlo k žádné změně.",
"modelNotReady": "Model není připravený na trénování."
},
"toast": {
"success": {
"deletedImage": "Zmazať obrazky",
"deletedModel_one": "Úspešne odstranený {{count}} model",
"deletedModel_few": "Úspešne odstranené {{count}} modely",
"deletedModel_other": "Úspěšne ostranených {{count}} modelov",
"deletedCategory": "Zmazať triedu",
"deletedImage": "Smazat obrázky",
"deletedModel_one": "Úspěšně odstraněný {{count}} model",
"deletedModel_few": "Úspěšně odstraněné {{count}} modely",
"deletedModel_other": "Úspěšně odstraněných {{count}} modelů",
"deletedCategory": "Smazat třídu",
"categorizedImage": "Obrázek úspěšně klasifikován",
"trainedModel": "Úspěšně vytrénovaný model.",
"trainingModel": "Trénování modelu bylo úspěšně zahájeno."
"trainingModel": "Trénování modelu bylo úspěšně zahájeno.",
"updatedModel": "Konfigurace modelu úspěšně aktualizována.",
"renamedCategory": "Třída úspěšně přejmenována na {{name}}"
},
"error": {
"deleteImageFailed": "Chyba při mazání: {{errorMessage}}",
"deleteCategoryFailed": "Chyba při mazání třídy: {{errorMessage}}",
"deleteModelFailed": "Chyba při mazání modelu: {{errorMessage}}",
"categorizeFailed": "Chyba při mazání obrázku: {{errorMessage}}"
}
},
"train": {
"titleShort": "Nedávný"
}
}

View File

@@ -43,6 +43,7 @@
"label": "Detail",
"noDataFound": "Žádná detailní data k prohlédnutí",
"aria": "Přepnout detailní zobrazení",
"trackedObject_other": "{{count}} objektů"
"trackedObject_other": "{{count}} objektů",
"trackedObject_one": "{{count}} objektů"
}
}

View File

@@ -38,7 +38,8 @@
"train": {
"title": "Nedávná rozpoznání",
"empty": "Nejsou zde žádné předchozí pokusy o rozpoznání obličeje",
"aria": "Vybrat trénink"
"aria": "Vybrat poslední rozpoznávání",
"titleShort": "Nedávný"
},
"description": {
"addFace": "Přidejte novou kolekci do Knihovny obličejů nahráním prvního obrázku.",
@@ -76,7 +77,7 @@
"deletedName_one": "{{count}} obličej byl úspěšně odstraněn.",
"deletedName_few": "{{count}} tváře byly úspěšně odstraněny.",
"deletedName_other": "{{count}} tváře byly úspěšně odstraněny.",
"updatedFaceScore": "Úspěšně aktualizováno skóre obličeje.",
"updatedFaceScore": "Úspěšně aktualizováno skóre obličeje na {{name}} ({{score}}).",
"addFaceLibrary": "{{name}} byl(a) úspěšně přidán(a) do Knihovny obličejů!"
},
"error": {

View File

@@ -26,7 +26,8 @@
"min_score": "Minimální Skóre",
"recognized_license_plate": "Rozpoznaná SPZ",
"has_clip": "Má Klip",
"has_snapshot": "Má Snímek"
"has_snapshot": "Má Snímek",
"attributes": "Atributy"
},
"tips": {
"desc": {

View File

@@ -8,7 +8,7 @@
"masksAndZones": "Editor masky a zón - Frigate",
"motionTuner": "Ladění detekce pohybu - Frigate",
"object": "Ladění - Frigate",
"general": "Nastavení rozhraní- Frigate",
"general": "Nastavení rozhraní - Frigate",
"frigatePlus": "Frigate+ nastavení - Frigate",
"enrichments": "Nastavení obohacení - Frigate",
"cameraManagement": "Správa kamer - Frigate",

View File

@@ -1,5 +1,5 @@
{
"noRecordingsFoundForThisTime": "Ingen optagelser fundet i det angivet tidsrum",
"noRecordingsFoundForThisTime": "Ingen optagelser fundet i det angivne tidsrum",
"noPreviewFound": "Ingen forhåndsvisning fundet",
"cameraDisabled": "Kamera er deaktiveret",
"noPreviewFoundFor": "Ingen forhåndsvisning fundet for {{cameraName}}",

View File

@@ -1,7 +1,8 @@
{
"documentTitle": "Klassifikationsmodeller",
"details": {
"scoreInfo": "Scoren repræsenterer den gennemsnitlige klassifikationssikkerhed på tværs af alle registreringer af dette objekt."
"scoreInfo": "Scoren repræsenterer den gennemsnitlige klassifikationssikkerhed på tværs af alle registreringer af dette objekt.",
"unknown": "Ukendt"
},
"description": {
"invalidName": "Ugyldigt navn. Navne må kun indeholde bogstaver, tal, mellemrum, apostroffer, understregninger og bindestreger."

View File

@@ -12,7 +12,7 @@
"24hours": "24 Stunden",
"month_one": "{{time}} Monat",
"month_other": "{{time}} Monate",
"d": "{{time}} Tag",
"d": "{{time}} Tg.",
"day_one": "{{time}} Tag",
"day_other": "{{time}} Tage",
"m": "{{time}} Min",
@@ -37,12 +37,12 @@
"30minutes": "30 Minuten",
"1hour": "1 Stunde",
"lastWeek": "Letzte Woche",
"h": "{{time}} Stunde",
"h": "{{time}} Std.",
"ago": "vor {{timeAgo}}",
"untilRestart": "Bis zum Neustart",
"justNow": "Gerade",
"pm": "nachmittags",
"mo": "{{time}}Monat",
"mo": "{{time}} Mon.",
"formattedTimestamp": {
"12hour": "d. MMM, hh:mm:ss aaa",
"24hour": "dd. MMM, hh:mm:ss aaa"
@@ -82,7 +82,7 @@
"12hour": "d. MMM yyyy",
"24hour": "d. MMM yyyy"
},
"inProgress": "In Bearbeitung",
"inProgress": "Im Gange",
"invalidStartTime": "Ungültige Startzeit",
"invalidEndTime": "Ungültige Endzeit"
},

View File

@@ -132,5 +132,9 @@
},
"count_one": "{{count}} Klasse",
"count_other": "{{count}} Klassen"
},
"attributes": {
"label": "Klassifizierungsattribute",
"all": "Alle Attribute"
}
}

Some files were not shown because too many files have changed in this diff Show More