Compare commits

...

26 Commits

Author SHA1 Message Date
Nicolas Mowen
4d582062fb Ensure that a user must provide an image in an expected location (#20491)
* Ensure that a user must provide an image in an expected location

* Use const
2025-10-14 16:29:20 -05:00
Nicolas Mowen
e0a8445bac Improve rf-detr export (#20485) 2025-10-14 08:32:44 -05:00
Josh Hawkins
2a271c0f5e Update GenAI docs for Gemini model deprecation (#20462) 2025-10-13 10:00:21 -06:00
Nicolas Mowen
925bf78811 Update review topic description (#20445) 2025-10-12 07:28:08 -05:00
Sean Kelly
59102794e8 Add keyboard shortcut for switching to previous label (#20426)
* Add keyboard shortcut for switching to previous label

* Update docs/docs/plus/annotating.md

Co-authored-by: Blake Blackshear <blake.blackshear@gmail.com>

---------

Co-authored-by: Blake Blackshear <blake.blackshear@gmail.com>
2025-10-11 10:43:41 -06:00
mpking828
20e5e3bdc0 Update camera_specific.md to fix 2 way audio example for Reolink (#20343)
Update camera_specific.md to fix 2 way audio example for Reolink
2025-10-03 08:49:51 -06:00
AmirHossein_Omidi
b94ebda9e5 Update license_plate_recognition.md (#20306)
* Update license_plate_recognition.md

Add PaddleOCR description for license plate recognition in Frigate docs

* Update docs/docs/configuration/license_plate_recognition.md

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>

* Update docs/docs/configuration/license_plate_recognition.md

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>

---------

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-10-01 08:18:47 -05:00
Nicolas Mowen
8cdaef307a Update face rec docs (#20256)
* Update face rec docs

* clarify

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>

---------

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-09-28 11:31:59 -05:00
Josh Hawkins
4914029a50 Add average_estimated_speed to mqtt docs (#20101) 2025-09-16 11:03:36 -06:00
GuoQing Liu
bafdab9d67 feat: add robots.txt (#20093) 2025-09-16 06:14:27 -06:00
GuoQing Liu
b08db4913f feat: add github mirror download endpoint (#20007)
* feat: add github mirror download endpoint

* fix: fix face_embedding endpoint line

* fix: fix github raw endpoint

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>

---------

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-09-14 06:51:56 -06:00
Nicolas Mowen
7c7ff49b90 Improve d-fine model export docs (#20020) 2025-09-11 06:17:08 -05:00
Nicolas Mowen
037c4d1cc0 Don't block UI while pulling the stream live info (#19998) 2025-09-09 17:53:26 -05:00
laviddichterman
1613499218 Update object_detectors.md to document configuring image size in YOLO 9 (#19951)
* Update object_detectors.md for v16

* add configurability to IMG_SIZE for YOLOv9 export
* remove TensorRT detector as it's no longer supported in v16

* Revert removing NVIDIA TensorRT detector docs

Added documentation for NVidia TensorRT Detector, including model generation, configuration parameters, and example usage.

* Dumb copy/paste

* Enhance YOLOv9 export instructions in documentation

Updated YOLOv9 export command to include IMG_SIZE parameter and clarified model size options.
2025-09-09 14:27:30 -06:00
Nicolas Mowen
205fdf3ae3 Fixes (#19984)
* Always handle RKNN as NHWC in Frigate+ model loading

* Correct Intel stats

* Update inference time docs

* Update version

* Adjust inference speeds
2025-09-09 06:17:56 -06:00
Nicolas Mowen
f46f8a2160 More inference speed updates (#19974) 2025-09-08 10:39:33 -06:00
Josh Hawkins
880902cdd7 Add specific notes for frigate+ models in object detector docs (#19971) 2025-09-08 09:29:03 -05:00
Nicolas Mowen
c5ed95ec52 More inference speed updates (#19947)
* More inference speed updates

* Update hardware.md

* Update hardware.md

* Update index.md

* More inference speeds

* Update home-assistant.md

* Update object_detectors.md

* Update first_model.md
2025-09-08 07:43:04 -05:00
Josh Hawkins
751de141d5 Fix model selection type in Frigate+ settings pane (#19952)
* model type does not need to match config model type

As long as a model is supported by a detector, it should be available in the list

* fix missing semicolon

the web linter was complaining
2025-09-07 19:19:40 -06:00
Nicolas Mowen
0eb441fe50 Update inference times for yolov9 (#19946) 2025-09-07 14:59:48 -05:00
Josh Hawkins
7566aecb0b Add note about Apple Silicon support in 0.17 (#19944) 2025-09-07 14:12:49 -05:00
Blake Blackshear
60714a733e update docs for Frigate+ yolov9 (#19938)
* update docs for Frigate+ yolov9

* footnote memryx suport

* tweaks
2025-09-07 06:01:10 -05:00
Josh Hawkins
d7f7cd7be1 best thumbnail endpoint should pass correct extension param (#19930) 2025-09-05 06:33:57 -05:00
GuoQing Liu
6591210050 docs: fix reolink camera table display (#19926) 2025-09-05 06:01:26 -05:00
Nicolas Mowen
7e7b3288a8 Update live FAQ for camera distortion (#19907)
* Add item to FAQ about stream distortion

* Update updating docs

* Update link
2025-09-04 07:44:33 -05:00
Nicolas Mowen
fe3eb24dfe Update Reolink support docs (#19887) 2025-09-02 15:21:18 -05:00
28 changed files with 257 additions and 134 deletions

View File

@@ -1,7 +1,7 @@
default_target: local
COMMIT_HASH := $(shell git log -1 --pretty=format:"%h"|tail -1)
VERSION = 0.16.1
VERSION = 0.16.2
IMAGE_REPO ?= ghcr.io/blakeblackshear/frigate
GITHUB_REF_NAME ?= $(shell git rev-parse --abbrev-ref HEAD)
BOARDS= #Initialized empty

View File

@@ -144,7 +144,14 @@ WEB Digest Algorithm - MD5
### Reolink Cameras
Reolink has older cameras (ex: 410 & 520) as well as newer camera (ex: 520a & 511wa) which support different subsets of options. In both cases using the http stream is recommended.
Reolink has many different camera models with inconsistently supported features and behavior. The below table shows a summary of various features and recommendations.
| Camera Resolution | Camera Generation | Recommended Stream Type | Additional Notes |
| ---------------- | ------------------------- | -------------------------------- | ----------------------------------------------------------------------- |
| 5MP or lower | All | http-flv | Stream is h264 |
| 6MP or higher | Latest (ex: Duo3, CX-8##) | http-flv with ffmpeg 8.0, or rtsp | This uses the new http-flv-enhanced over H265 which requires ffmpeg 8.0 |
| 6MP or higher | Older (ex: RLC-8##) | rtsp | |
Frigate works much better with newer reolink cameras that are setup with the below options:
If available, recommended settings are:
@@ -157,12 +164,6 @@ According to [this discussion](https://github.com/blakeblackshear/frigate/issues
Cameras connected via a Reolink NVR can be connected with the http stream, use `channel[0..15]` in the stream url for the additional channels.
The setup of main stream can be also done via RTSP, but isn't always reliable on all hardware versions. The example configuration is working with the oldest HW version RLN16-410 device with multiple types of cameras.
:::warning
The below configuration only works for reolink cameras with stream resolution of 5MP or lower, 8MP+ cameras need to use RTSP as http-flv is not supported in this case.
:::
```yaml
go2rtc:
streams:
@@ -212,7 +213,7 @@ go2rtc:
streams:
your_reolink_doorbell:
- "ffmpeg:http://reolink_ip/flv?port=1935&app=bcs&stream=channel0_main.bcs&user=username&password=password#video=copy#audio=copy#audio=opus"
- rtsp://reolink_ip/Preview_01_sub
- rtsp://username:password@reolink_ip/Preview_01_sub
your_reolink_doorbell_sub:
- "ffmpeg:http://reolink_ip/flv?port=1935&app=bcs&stream=channel0_ext.bcs&user=username&password=password"
```
@@ -259,7 +260,7 @@ To use a USB camera (webcam) with Frigate, the recommendation is to use go2rtc's
go2rtc:
streams:
usb_camera:
- "ffmpeg:device?video=0&video_size=1024x576#video=h264"
- "ffmpeg:device?video=0&video_size=1024x576#video=h264"
cameras:
usb_camera:

View File

@@ -107,10 +107,7 @@ This list of working and non-working PTZ cameras is based on user feedback.
| Hanwha XNP-6550RH | ✅ | ❌ | |
| Hikvision | ✅ | ❌ | Incomplete ONVIF support (MoveStatus won't update even on latest firmware) - reported with HWP-N4215IH-DE and DS-2DE3304W-DE, but likely others |
| Hikvision DS-2DE3A404IWG-E/W | ✅ | ✅ | |
| Reolink 511WA | ✅ | ❌ | Zoom only |
| Reolink E1 Pro | ✅ | ❌ | |
| Reolink E1 Zoom | ✅ | ❌ | |
| Reolink RLC-823A 16x | ✅ | ❌ | |
| Reolink | ✅ | ❌ | |
| Speco O8P32X | ✅ | ❌ | |
| Sunba 405-D20X | ✅ | ❌ | Incomplete ONVIF support reported on original, and 4k models. All models are suspected incompatable. |
| Tapo | ✅ | ❌ | Many models supported, ONVIF Service Port: 2020 |

View File

@@ -158,6 +158,8 @@ Start with the [Usage](#usage) section and re-read the [Model Requirements](#mod
Accuracy is definitely a going to be improved with higher quality cameras / streams. It is important to look at the DORI (Detection Observation Recognition Identification) range of your camera, if that specification is posted. This specification explains the distance from the camera that a person can be detected, observed, recognized, and identified. The identification range is the most relevant here, and the distance listed by the camera is the furthest that face recognition will realistically work.
Some users have also noted that setting the stream in camera firmware to a constant bit rate (CBR) leads to better image clarity than with a variable bit rate (VBR).
### Why can't I bulk upload photos?
It is important to methodically add photos to the library, bulk importing photos (especially from a general photo library) will lead to over-fitting in that particular scenario and hurt recognition performance.

View File

@@ -18,10 +18,10 @@ genai:
enabled: True
provider: gemini
api_key: "{FRIGATE_GEMINI_API_KEY}"
model: gemini-1.5-flash
model: gemini-2.0-flash
cameras:
front_camera:
front_camera:
genai:
enabled: True # <- enable GenAI for your front camera
use_snapshot: True
@@ -30,7 +30,7 @@ cameras:
required_zones:
- steps
indoor_camera:
genai:
genai:
enabled: False # <- disable GenAI for your indoor camera
```
@@ -78,7 +78,7 @@ Google Gemini has a free tier allowing [15 queries per minute](https://ai.google
### Supported Models
You must use a vision capable model with Frigate. Current model variants can be found [in their documentation](https://ai.google.dev/gemini-api/docs/models/gemini). At the time of writing, this includes `gemini-1.5-pro` and `gemini-1.5-flash`.
You must use a vision capable model with Frigate. Current model variants can be found [in their documentation](https://ai.google.dev/gemini-api/docs/models/gemini).
### Get API Key
@@ -96,7 +96,7 @@ genai:
enabled: True
provider: gemini
api_key: "{FRIGATE_GEMINI_API_KEY}"
model: gemini-1.5-flash
model: gemini-2.0-flash
```
:::note
@@ -202,7 +202,7 @@ genai:
car: "Observe the primary vehicle in these images. Focus on its movement, direction, or purpose (e.g., parking, approaching, circling). If it's a delivery vehicle, mention the company."
```
Prompts can also be overriden at the camera level to provide a more detailed prompt to the model about your specific camera, if you desire.
Prompts can also be overriden at the camera level to provide a more detailed prompt to the model about your specific camera, if you desire.
```yaml
cameras:

View File

@@ -30,8 +30,7 @@ In the default mode, Frigate's LPR needs to first detect a `car` or `motorcycle`
## Minimum System Requirements
License plate recognition works by running AI models locally on your system. The models are relatively lightweight and can run on your CPU or GPU, depending on your configuration. At least 4GB of RAM is required.
License plate recognition works by running AI models locally on your system. The YOLOv9 plate detector model and the OCR models ([PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)) are relatively lightweight and can run on your CPU or GPU, depending on your configuration. At least 4GB of RAM is required.
## Configuration
License plate recognition is disabled by default. Enable it in your config file:

View File

@@ -251,3 +251,7 @@ Note that disabling a camera through the config file (`enabled: False`) removes
6. **I have unmuted some cameras on my dashboard, but I do not hear sound. Why?**
If your camera is streaming (as indicated by a red dot in the upper right, or if it has been set to continuous streaming mode), your browser may be blocking audio until you interact with the page. This is an intentional browser limitation. See [this article](https://developer.mozilla.org/en-US/docs/Web/Media/Autoplay_guide#autoplay_availability). Many browsers have a whitelist feature to change this behavior.
7. **My camera streams have lots of visual artifacts / distortion.**
Some cameras don't include the hardware to support multiple connections to the high resolution stream, and this can cause unexpected behavior. In this case it is recommended to [restream](./restream.md) the high resolution stream so that it can be used for live view and recordings.

View File

@@ -29,6 +29,7 @@ Frigate supports multiple different detectors that work on different types of ha
- [ONNX](#onnx): TensorRT will automatically be detected and used as a detector in the `-tensorrt` Frigate image when a supported ONNX model is configured.
**Nvidia Jetson**
- [TensortRT](#nvidia-tensorrt-detector): TensorRT can run on Jetson devices, using one of many default models.
- [ONNX](#onnx): TensorRT will automatically be detected and used as a detector in the `-tensorrt-jp6` Frigate image when a supported ONNX model is configured.
@@ -325,6 +326,12 @@ The YOLO detector has been designed to support YOLOv3, YOLOv4, YOLOv7, and YOLOv
:::
:::warning
If you are using a Frigate+ YOLOv9 model, you should not define any of the below `model` parameters in your config except for `path`. See [the Frigate+ model docs](/plus/first_model#step-3-set-your-model-id-in-the-config) for more information on setting up your model.
:::
After placing the downloaded onnx model in your config folder, you can use the following configuration:
```yaml
@@ -533,6 +540,12 @@ There is no default model provided, the following formats are supported:
[YOLO-NAS](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md) models are supported, but not included by default. See [the models section](#downloading-yolo-nas-model) for more information on downloading the YOLO-NAS model for use in Frigate.
:::warning
If you are using a Frigate+ YOLO-NAS model, you should not define any of the below `model` parameters in your config except for `path`. See [the Frigate+ model docs](/plus/first_model#step-3-set-your-model-id-in-the-config) for more information on setting up your model.
:::
After placing the downloaded onnx model in your config folder, you can use the following configuration:
```yaml
@@ -560,6 +573,12 @@ The YOLO detector has been designed to support YOLOv3, YOLOv4, YOLOv7, and YOLOv
:::
:::warning
If you are using a Frigate+ YOLOv9 model, you should not define any of the below `model` parameters in your config except for `path`. See [the Frigate+ model docs](/plus/first_model#step-3-set-your-model-id-in-the-config) for more information on setting up your model.
:::
After placing the downloaded onnx model in your config folder, you can use the following configuration:
```yaml
@@ -959,26 +978,29 @@ Here are some tips for getting different model types
### Downloading D-FINE Model
To export as ONNX:
1. Clone: https://github.com/Peterande/D-FINE and install all dependencies.
2. Select and download a checkpoint from the [readme](https://github.com/Peterande/D-FINE).
3. Modify line 58 of `tools/deployment/export_onnx.py` and change batch size to 1: `data = torch.rand(1, 3, 640, 640)`
4. Run the export, making sure you select the right config, for your checkpoint.
Example:
D-FINE can be exported as ONNX by running the command below. You can copy and paste the whole thing to your terminal and execute, altering `MODEL_SIZE=s` in the first line to `s`, `m`, or `l` size.
```sh
docker build . --build-arg MODEL_SIZE=s --output . -f- <<'EOF'
FROM python:3.11 AS build
RUN apt-get update && apt-get install --no-install-recommends -y libgl1 && rm -rf /var/lib/apt/lists/*
COPY --from=ghcr.io/astral-sh/uv:0.8.0 /uv /bin/
WORKDIR /dfine
RUN git clone https://github.com/Peterande/D-FINE.git .
RUN uv pip install --system -r requirements.txt
RUN uv pip install --system onnx onnxruntime onnxsim
# Create output directory and download checkpoint
RUN mkdir -p output
ARG MODEL_SIZE
RUN wget https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_${MODEL_SIZE}_obj2coco.pth -O output/dfine_${MODEL_SIZE}_obj2coco.pth
# Modify line 58 of export_onnx.py to change batch size to 1
RUN sed -i '58s/data = torch.rand(.*)/data = torch.rand(1, 3, 640, 640)/' tools/deployment/export_onnx.py
RUN python3 tools/deployment/export_onnx.py -c configs/dfine/objects365/dfine_hgnetv2_${MODEL_SIZE}_obj2coco.yml -r output/dfine_${MODEL_SIZE}_obj2coco.pth
FROM scratch
ARG MODEL_SIZE
COPY --from=build /dfine/output/dfine_${MODEL_SIZE}_obj2coco.onnx /dfine-${MODEL_SIZE}.onnx
EOF
```
python3 tools/deployment/export_onnx.py -c configs/dfine/objects365/dfine_hgnetv2_m_obj2coco.yml -r output/dfine_m_obj2coco.pth
```
:::tip
Model export has only been tested on Linux (or WSL2). Not all dependencies are in `requirements.txt`. Some live in the deployment folder, and some are still missing entirely and must be installed manually.
Make sure you change the batch size to 1 before exporting.
:::
### Download RF-DETR Model
@@ -990,9 +1012,9 @@ FROM python:3.11 AS build
RUN apt-get update && apt-get install --no-install-recommends -y libgl1 && rm -rf /var/lib/apt/lists/*
COPY --from=ghcr.io/astral-sh/uv:0.8.0 /uv /bin/
WORKDIR /rfdetr
RUN uv pip install --system rfdetr onnx onnxruntime onnxsim onnx-graphsurgeon
RUN uv pip install --system rfdetr[onnxexport]
ARG MODEL_SIZE
RUN python3 -c "from rfdetr import RFDETR${MODEL_SIZE}; x = RFDETR${MODEL_SIZE}(resolution=320); x.export()"
RUN python3 -c "from rfdetr import RFDETR${MODEL_SIZE}; x = RFDETR${MODEL_SIZE}(resolution=320); x.export(simplify=True)"
FROM scratch
ARG MODEL_SIZE
COPY --from=build /rfdetr/output/inference_model.onnx /rfdetr-${MODEL_SIZE}.onnx
@@ -1030,23 +1052,25 @@ python3 yolo_to_onnx.py -m yolov7-320
#### YOLOv9
YOLOv9 model can be exported as ONNX using the command below. You can copy and paste the whole thing to your terminal and execute, altering `MODEL_SIZE=t` in the first line to the [model size](https://github.com/WongKinYiu/yolov9#performance) you would like to convert (available sizes are `t`, `s`, `m`, `c`, and `e`).
YOLOv9 model can be exported as ONNX using the command below. You can copy and paste the whole thing to your terminal and execute, altering `MODEL_SIZE=t` and `IMG_SIZE=320` in the first line to the [model size](https://github.com/WongKinYiu/yolov9#performance) you would like to convert (available model sizes are `t`, `s`, `m`, `c`, and `e`, common image sizes are `320` and `640`).
```sh
docker build . --build-arg MODEL_SIZE=t --output . -f- <<'EOF'
docker build . --build-arg MODEL_SIZE=t --build-arg IMG_SIZE=320 --output . -f- <<'EOF'
FROM python:3.11 AS build
RUN apt-get update && apt-get install --no-install-recommends -y libgl1 && rm -rf /var/lib/apt/lists/*
COPY --from=ghcr.io/astral-sh/uv:0.8.0 /uv /bin/
WORKDIR /yolov9
ADD https://github.com/WongKinYiu/yolov9.git .
RUN uv pip install --system -r requirements.txt
RUN uv pip install --system onnx onnxruntime onnx-simplifier>=0.4.1
RUN uv pip install --system onnx==1.18.0 onnxruntime onnx-simplifier>=0.4.1
ARG MODEL_SIZE
ARG IMG_SIZE
ADD https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-${MODEL_SIZE}-converted.pt yolov9-${MODEL_SIZE}.pt
RUN sed -i "s/ckpt = torch.load(attempt_download(w), map_location='cpu')/ckpt = torch.load(attempt_download(w), map_location='cpu', weights_only=False)/g" models/experimental.py
RUN python3 export.py --weights ./yolov9-${MODEL_SIZE}.pt --imgsz 320 --simplify --include onnx
RUN python3 export.py --weights ./yolov9-${MODEL_SIZE}.pt --imgsz ${IMG_SIZE} --simplify --include onnx
FROM scratch
ARG MODEL_SIZE
COPY --from=build /yolov9/yolov9-${MODEL_SIZE}.onnx /
ARG IMG_SIZE
COPY --from=build /yolov9/yolov9-${MODEL_SIZE}.onnx /yolov9-${MODEL_SIZE}-${IMG_SIZE}.onnx
EOF
```

View File

@@ -99,6 +99,7 @@ In real-world deployments, even with multiple cameras running concurrently, Frig
| Name | Hailo8 Inference Time | Hailo8L Inference Time |
| ---------------- | ---------------------- | ----------------------- |
| ssd mobilenet v1 | ~ 6 ms | ~ 10 ms |
| yolov9-tiny | | 320: 18ms |
| yolov6n | ~ 7 ms | ~ 11 ms |
### Google Coral TPU
@@ -131,17 +132,19 @@ More information is available [in the detector docs](/configuration/object_detec
Inference speeds vary greatly depending on the CPU or GPU used, some known examples of GPU inference times are below:
| Name | MobileNetV2 Inference Time | YOLO-NAS Inference Time | RF-DETR Inference Time | Notes |
| -------------- | -------------------------- | ------------------------- | ---------------------- | ---------------------------------- |
| Intel HD 530 | 15 - 35 ms | | | Can only run one detector instance |
| Intel HD 620 | 15 - 25 ms | 320: ~ 35 ms | | |
| Intel HD 630 | ~ 15 ms | 320: ~ 30 ms | | |
| Intel UHD 730 | ~ 10 ms | 320: ~ 19 ms 640: ~ 54 ms | | |
| Intel UHD 770 | ~ 15 ms | 320: ~ 20 ms 640: ~ 46 ms | | |
| Intel N100 | ~ 15 ms | 320: ~ 25 ms | | Can only run one detector instance |
| Intel Iris XE | ~ 10 ms | 320: ~ 18 ms 640: ~ 50 ms | | |
| Intel Arc A380 | ~ 6 ms | 320: ~ 10 ms 640: ~ 22 ms | 336: 20 ms 448: 27 ms | |
| Intel Arc A750 | ~ 4 ms | 320: ~ 8 ms | | |
| Name | MobileNetV2 Inference Time | YOLOv9 | YOLO-NAS Inference Time | RF-DETR Inference Time | Notes |
| -------------- | -------------------------- | ------------------------------------------------- | ------------------------- | ---------------------- | ---------------------------------- |
| Intel HD 530 | 15 - 35 ms | | | | Can only run one detector instance |
| Intel HD 620 | 15 - 25 ms | | 320: ~ 35 ms | | |
| Intel HD 630 | ~ 15 ms | | 320: ~ 30 ms | | |
| Intel UHD 730 | ~ 10 ms | | 320: ~ 19 ms 640: ~ 54 ms | | |
| Intel UHD 770 | ~ 15 ms | t-320: ~ 16 ms s-320: ~ 20 ms s-640: ~ 40 ms | 320: ~ 20 ms 640: ~ 46 ms | | |
| Intel N100 | ~ 15 ms | s-320: 30 ms | 320: ~ 25 ms | | Can only run one detector instance |
| Intel N150 | ~ 15 ms | t-320: 16 ms s-320: 24 ms | | | |
| Intel Iris XE | ~ 10 ms | s-320: 12 ms s-640: 30 ms | 320: ~ 18 ms 640: ~ 50 ms | | |
| Intel Arc A310 | ~ 5 ms | t-320: 7 ms t-640: 11 ms s-320: 8 ms s-640: 15 ms | 320: ~ 8 ms 640: ~ 14 ms | | |
| Intel Arc A380 | ~ 6 ms | | 320: ~ 10 ms 640: ~ 22 ms | 336: 20 ms 448: 27 ms | |
| Intel Arc A750 | ~ 4 ms | | 320: ~ 8 ms | | |
### TensorRT - Nvidia GPU
@@ -166,12 +169,13 @@ There are improved capabilities in newer GPU architectures that TensorRT can ben
Inference speeds will vary greatly depending on the GPU and the model used.
`tiny` variants are faster than the equivalent non-tiny model, some known examples are below:
| Name | YOLOv9 Inference Time | YOLO-NAS Inference Time | RF-DETR Inference Time |
| --------------- | --------------------- | ------------------------- | ---------------------- |
| RTX 3050 | t-320: 15 ms | 320: ~ 10 ms 640: ~ 16 ms | Nano-320: ~ 12 ms |
| RTX 3070 | t-320: 11 ms | 320: ~ 8 ms 640: ~ 14 ms | Nano-320: ~ 9 ms |
| RTX A4000 | | 320: ~ 15 ms | |
| Tesla P40 | | 320: ~ 105 ms | |
| Name | YOLOv9 Inference Time | YOLO-NAS Inference Time | RF-DETR Inference Time |
| --------------- | ------------------------- | ------------------------- | ---------------------- |
| GTX 1070 | s-320: 16 ms | 320: 14 ms | |
| RTX 3050 | t-320: 15 ms s-320: 17 ms | 320: ~ 10 ms 640: ~ 16 ms | Nano-320: ~ 12 ms |
| RTX 3070 | t-320: 11 ms s-320: 13 ms | 320: ~ 8 ms 640: ~ 14 ms | Nano-320: ~ 9 ms |
| RTX A4000 | | 320: ~ 15 ms | |
| Tesla P40 | | 320: ~ 105 ms | |
### ROCm - AMD GPU
@@ -179,7 +183,7 @@ With the [rocm](../configuration/object_detectors.md#amdrocm-gpu-detector) detec
| Name | YOLOv9 Inference Time | YOLO-NAS Inference Time |
| --------- | --------------------- | ------------------------- |
| AMD 780M | ~ 14 ms | 320: ~ 25 ms 640: ~ 50 ms |
| AMD 780M | 320: ~ 14 ms | 320: ~ 25 ms 640: ~ 50 ms |
| AMD 8700G | | 320: ~ 20 ms 640: ~ 40 ms |
## Community Supported Detectors

View File

@@ -5,7 +5,7 @@ title: Updating
# Updating Frigate
The current stable version of Frigate is **0.16.0**. The release notes and any breaking changes for this version can be found on the [Frigate GitHub releases page](https://github.com/blakeblackshear/frigate/releases/tag/v0.16.0).
The current stable version of Frigate is **0.16.1**. The release notes and any breaking changes for this version can be found on the [Frigate GitHub releases page](https://github.com/blakeblackshear/frigate/releases/tag/v0.16.1).
Keeping Frigate up to date ensures you benefit from the latest features, performance improvements, and bug fixes. The update process varies slightly depending on your installation method (Docker, Home Assistant Addon, etc.). Below are instructions for the most common setups.
@@ -33,21 +33,21 @@ If youre running Frigate via Docker (recommended method), follow these steps:
2. **Update and Pull the Latest Image**:
- If using Docker Compose:
- Edit your `docker-compose.yml` file to specify the desired version tag (e.g., `0.16.0` instead of `0.15.2`). For example:
- Edit your `docker-compose.yml` file to specify the desired version tag (e.g., `0.16.1` instead of `0.15.2`). For example:
```yaml
services:
frigate:
image: ghcr.io/blakeblackshear/frigate:0.16.0
image: ghcr.io/blakeblackshear/frigate:0.16.1
```
- Then pull the image:
```bash
docker pull ghcr.io/blakeblackshear/frigate:0.16.0
docker pull ghcr.io/blakeblackshear/frigate:0.16.1
```
- **Note for `stable` Tag Users**: If your `docker-compose.yml` uses the `stable` tag (e.g., `ghcr.io/blakeblackshear/frigate:stable`), you dont need to update the tag manually. The `stable` tag always points to the latest stable release after pulling.
- If using `docker run`:
- Pull the image with the appropriate tag (e.g., `0.16.0`, `0.16.0-tensorrt`, or `stable`):
- Pull the image with the appropriate tag (e.g., `0.16.1`, `0.16.1-tensorrt`, or `stable`):
```bash
docker pull ghcr.io/blakeblackshear/frigate:0.16.0
docker pull ghcr.io/blakeblackshear/frigate:0.16.1
```
3. **Start the Container**:

View File

@@ -185,6 +185,26 @@ For clips to be castable to media devices, audio is required and may need to be
<a name="api"></a>
## Camera API
To disable a camera dynamically
```
action: camera.turn_off
data: {}
target:
entity_id: camera.back_deck_cam # your Frigate camera entity ID
```
To enable a camera that has been disabled dynamically
```
action: camera.turn_on
data: {}
target:
entity_id: camera.back_deck_cam # your Frigate camera entity ID
```
## Notification API
Many people do not want to expose Frigate to the web, so the integration creates some public API endpoints that can be used for notifications.

View File

@@ -29,12 +29,12 @@ Message published for each changed tracked object. The first message is publishe
"camera": "front_door",
"frame_time": 1607123961.837752,
"snapshot": {
"frame_time": 1607123965.975463,
"box": [415, 489, 528, 700],
"area": 12728,
"region": [260, 446, 660, 846],
"score": 0.77546,
"attributes": [],
"frame_time": 1607123965.975463,
"box": [415, 489, 528, 700],
"area": 12728,
"region": [260, 446, 660, 846],
"score": 0.77546,
"attributes": []
},
"label": "person",
"sub_label": null,
@@ -61,6 +61,7 @@ Message published for each changed tracked object. The first message is publishe
}, // attributes with top score that have been identified on the object at any point
"current_attributes": [], // detailed data about the current attributes in this frame
"current_estimated_speed": 0.71, // current estimated speed (mph or kph) for objects moving through zones with speed estimation enabled
"average_estimated_speed": 14.3, // average estimated speed (mph or kph) for objects moving through zones with speed estimation enabled
"velocity_angle": 180, // direction of travel relative to the frame for objects moving through zones with speed estimation enabled
"recognized_license_plate": "ABC12345", // a recognized license plate for car objects
"recognized_license_plate_score": 0.933451
@@ -70,12 +71,12 @@ Message published for each changed tracked object. The first message is publishe
"camera": "front_door",
"frame_time": 1607123962.082975,
"snapshot": {
"frame_time": 1607123965.975463,
"box": [415, 489, 528, 700],
"area": 12728,
"region": [260, 446, 660, 846],
"score": 0.77546,
"attributes": [],
"frame_time": 1607123965.975463,
"box": [415, 489, 528, 700],
"area": 12728,
"region": [260, 446, 660, 846],
"score": 0.77546,
"attributes": []
},
"label": "person",
"sub_label": ["John Smith", 0.79],
@@ -109,6 +110,7 @@ Message published for each changed tracked object. The first message is publishe
}
],
"current_estimated_speed": 0.77, // current estimated speed (mph or kph) for objects moving through zones with speed estimation enabled
"average_estimated_speed": 14.31, // average estimated speed (mph or kph) for objects moving through zones with speed estimation enabled
"velocity_angle": 180, // direction of travel relative to the frame for objects moving through zones with speed estimation enabled
"recognized_license_plate": "ABC12345", // a recognized license plate for car objects
"recognized_license_plate_score": 0.933451
@@ -139,7 +141,7 @@ Message published for updates to tracked object metadata, for example:
"name": "John",
"score": 0.95,
"camera": "front_door_cam",
"timestamp": 1607123958.748393,
"timestamp": 1607123958.748393
}
```
@@ -153,13 +155,20 @@ Message published for updates to tracked object metadata, for example:
"plate": "123ABC",
"score": 0.95,
"camera": "driveway_cam",
"timestamp": 1607123958.748393,
"timestamp": 1607123958.748393
}
```
### `frigate/reviews`
Message published for each changed review item. The first message is published when the `detection` or `alert` is initiated. When additional objects are detected or when a zone change occurs, it will publish a, `update` message with the same id. When the review activity has ended a final `end` message is published.
Message published for each changed review item. The first message is published when the `detection` or `alert` is initiated.
An `update` with the same ID will be published when:
- The severity changes from `detection` to `alert`
- Additional objects are detected
- An object is recognized via face, lpr, etc.
When the review activity has ended a final `end` message is published.
```json
{

View File

@@ -42,6 +42,7 @@ Misidentified objects should have a correct label added. For example, if a perso
| `w` | Add box |
| `d` | Toggle difficult |
| `s` | Switch to the next label |
| `Shift + s` | Switch to the previous label |
| `tab` | Select next largest box |
| `del` | Delete current box |
| `esc` | Deselect/Cancel |

View File

@@ -34,6 +34,12 @@ Model IDs are not secret values and can be shared freely. Access to your model i
:::
:::tip
When setting the plus model id, all other fields should be removed as these are configured automatically with the Frigate+ model config
:::
## Step 4: Adjust your object filters for higher scores
Frigate+ models generally have much higher scores than the default model provided in Frigate. You will likely need to increase your `threshold` and `min_score` values. Here is an example of how these values can be refined, but you should expect these to evolve as your model improves. For more information about how `threshold` and `min_score` are related, see the docs on [object filters](../configuration/object_filters.md#object-scores).

View File

@@ -11,34 +11,51 @@ Information on how to integrate Frigate+ with Frigate can be found in the [integ
## Available model types
There are two model types offered in Frigate+, `mobiledet` and `yolonas`. Both of these models are object detection models and are trained to detect the same set of labels [listed below](#available-label-types).
There are three model types offered in Frigate+, `mobiledet`, `yolonas`, and `yolov9`. All of these models are object detection models and are trained to detect the same set of labels [listed below](#available-label-types).
Not all model types are supported by all detectors, so it's important to choose a model type to match your detector as shown in the table under [supported detector types](#supported-detector-types). You can test model types for compatibility and speed on your hardware by using the base models.
| Model Type | Description |
| ----------- | -------------------------------------------------------------------------------------------------------------------------------------------- |
| `mobiledet` | Based on the same architecture as the default model included with Frigate. Runs on Google Coral devices and CPUs. |
| `yolonas` | A newer architecture that offers slightly higher accuracy and improved detection of small objects. Runs on Intel, NVidia GPUs, and AMD GPUs. |
| Model Type | Description |
| ----------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `mobiledet` | Based on the same architecture as the default model included with Frigate. Runs on Google Coral devices and CPUs. |
| `yolonas` | A newer architecture that offers slightly higher accuracy and improved detection of small objects. Runs on Intel, NVidia GPUs, and AMD GPUs. |
| `yolov9` | A leading SOTA (state of the art) object detection model with similar performance to yolonas, but on a wider range of hardware options. Runs on Intel, NVidia GPUs, AMD GPUs, Hailo, MemryX\*, Apple Silicon\*, and Rockchip NPUs. |
_\* Support coming in 0.17_
### YOLOv9 Details
YOLOv9 models are available in `s` and `t` sizes. When requesting a `yolov9` model, you will be prompted to choose a size. If you are unsure what size to choose, you should perform some tests with the base models to find the performance level that suits you. The `s` size is most similar to the current `yolonas` models in terms of inference times and accuracy, and a good place to start is the `320x320` resolution model for `yolov9s`.
:::info
When switching to YOLOv9, you may need to adjust your thresholds for some objects.
:::
#### Hailo Support
If you have a Hailo device, you will need to specify the hardware you have when submitting a model request because they are not cross compatible. Please test using the available base models before submitting your model request.
#### Rockchip (RKNN) Support
For 0.16, YOLOv9 onnx models will need to be manually converted. First, you will need to configure Frigate to use the model id for your YOLOv9 onnx model so it downloads the model to your `model_cache` directory. From there, you can follow the [documentation](/configuration/object_detectors.md#converting-your-own-onnx-model-to-rknn-format) to convert it. Automatic conversion is coming in 0.17.
## Supported detector types
Currently, Frigate+ models support CPU (`cpu`), Google Coral (`edgetpu`), OpenVino (`openvino`), and ONNX (`onnx`) detectors.
:::warning
Using Frigate+ models with `onnx` is only available with Frigate 0.15 and later.
:::
Currently, Frigate+ models support CPU (`cpu`), Google Coral (`edgetpu`), OpenVino (`openvino`), ONNX (`onnx`), Hailo (`hailo8l`), and Rockchip\* (`rknn`) detectors.
| Hardware | Recommended Detector Type | Recommended Model Type |
| -------------------------------------------------------------------------------- | ------------------------- | ---------------------- |
| [CPU](/configuration/object_detectors.md#cpu-detector-not-recommended) | `cpu` | `mobiledet` |
| [Coral (all form factors)](/configuration/object_detectors.md#edge-tpu-detector) | `edgetpu` | `mobiledet` |
| [Intel](/configuration/object_detectors.md#openvino-detector) | `openvino` | `yolonas` |
| [NVidia GPU](/configuration/object_detectors#onnx)\* | `onnx` | `yolonas` |
| [AMD ROCm GPU](/configuration/object_detectors#amdrocm-gpu-detector)\* | `rocm` | `yolonas` |
| [Intel](/configuration/object_detectors.md#openvino-detector) | `openvino` | `yolov9` |
| [NVidia GPU](/configuration/object_detectors#onnx) | `onnx` | `yolov9` |
| [AMD ROCm GPU](/configuration/object_detectors#amdrocm-gpu-detector) | `onnx` | `yolov9` |
| [Hailo8/Hailo8L/Hailo8R](/configuration/object_detectors#hailo-8) | `hailo8l` | `yolov9` |
| [Rockchip NPU](/configuration/object_detectors#rockchip-platform)\* | `rknn` | `yolov9` |
_\* Requires Frigate 0.15_
_\* Requires manual conversion in 0.16. Automatic conversion coming in 0.17._
## Improving your model

View File

@@ -8,6 +8,7 @@ from pathlib import Path
import psutil
from fastapi import APIRouter, Depends, Request
from fastapi.responses import JSONResponse
from pathvalidate import sanitize_filepath
from peewee import DoesNotExist
from playhouse.shortcuts import model_to_dict
@@ -15,7 +16,7 @@ from frigate.api.auth import require_role
from frigate.api.defs.request.export_recordings_body import ExportRecordingsBody
from frigate.api.defs.request.export_rename_body import ExportRenameBody
from frigate.api.defs.tags import Tags
from frigate.const import EXPORT_DIR
from frigate.const import CLIPS_DIR, EXPORT_DIR
from frigate.models import Export, Previews, Recordings
from frigate.record.export import (
PlaybackFactorEnum,
@@ -54,7 +55,14 @@ def export_recording(
playback_factor = body.playback
playback_source = body.source
friendly_name = body.name
existing_image = body.image_path
existing_image = sanitize_filepath(body.image_path) if body.image_path else None
# Ensure that existing_image is a valid path
if existing_image and not existing_image.startswith(CLIPS_DIR):
return JSONResponse(
content=({"success": False, "message": "Invalid image path"}),
status_code=400,
)
if playback_source == "recordings":
recordings_count = (

View File

@@ -1598,7 +1598,7 @@ def label_thumbnail(request: Request, camera_name: str, label: str):
try:
event_id = event_query.scalar()
return event_thumbnail(request, event_id, 60)
return event_thumbnail(request, event_id, Extension.jpg, 60)
except DoesNotExist:
frame = np.zeros((175, 175, 3), np.uint8)
ret, jpg = cv2.imencode(".jpg", frame, [int(cv2.IMWRITE_JPEG_QUALITY), 70])

View File

@@ -41,10 +41,13 @@ class BirdRealTimeProcessor(RealTimeProcessorApi):
self.detected_birds: dict[str, float] = {}
self.labelmap: dict[int, str] = {}
GITHUB_RAW_ENDPOINT = os.environ.get(
"GITHUB_RAW_ENDPOINT", "https://raw.githubusercontent.com"
)
download_path = os.path.join(MODEL_CACHE_DIR, "bird")
self.model_files = {
"bird.tflite": "https://raw.githubusercontent.com/google-coral/test_data/master/mobilenet_v2_1.0_224_inat_bird_quant.tflite",
"birdmap.txt": "https://raw.githubusercontent.com/google-coral/test_data/master/inat_bird_labels.txt",
"bird.tflite": f"{GITHUB_RAW_ENDPOINT}/google-coral/test_data/master/mobilenet_v2_1.0_224_inat_bird_quant.tflite",
"birdmap.txt": f"{GITHUB_RAW_ENDPOINT}/google-coral/test_data/master/inat_bird_labels.txt",
}
if not all(

View File

@@ -60,10 +60,12 @@ class FaceRealTimeProcessor(RealTimeProcessorApi):
self.faces_per_second = EventsPerSecond()
self.inference_speed = InferenceSpeed(self.metrics.face_rec_speed)
GITHUB_ENDPOINT = os.environ.get("GITHUB_ENDPOINT", "https://github.com")
download_path = os.path.join(MODEL_CACHE_DIR, "facedet")
self.model_files = {
"facedet.onnx": "https://github.com/NickM-27/facenet-onnx/releases/download/v1.0/facedet.onnx",
"landmarkdet.yaml": "https://github.com/NickM-27/facenet-onnx/releases/download/v1.0/landmarkdet.yaml",
"facedet.onnx": f"{GITHUB_ENDPOINT}/NickM-27/facenet-onnx/releases/download/v1.0/facedet.onnx",
"landmarkdet.yaml": f"{GITHUB_ENDPOINT}/NickM-27/facenet-onnx/releases/download/v1.0/landmarkdet.yaml",
}
if not all(

View File

@@ -161,6 +161,10 @@ class ModelConfig(BaseModel):
if model_info.get("inputDataType"):
self.input_dtype = model_info["inputDataType"]
# RKNN always uses NHWC
if detector == "rknn":
self.input_tensor = InputTensorEnum.nhwc
# generate list of attribute labels
self.attributes_map = {
**model_info.get("attributes", DEFAULT_ATTRIBUTE_LABEL_MAP),

View File

@@ -139,8 +139,9 @@ class Rknn(DetectionApi):
if not os.path.isdir(model_cache_dir):
os.mkdir(model_cache_dir)
GITHUB_ENDPOINT = os.environ.get("GITHUB_ENDPOINT", "https://github.com")
urllib.request.urlretrieve(
f"https://github.com/MarcA711/rknn-models/releases/download/v2.3.2-2/{filename}",
f"{GITHUB_ENDPOINT}/MarcA711/rknn-models/releases/download/v2.3.2-2/{filename}",
model_cache_dir + filename,
)

View File

@@ -24,11 +24,12 @@ FACENET_INPUT_SIZE = 160
class FaceNetEmbedding(BaseEmbedding):
def __init__(self):
GITHUB_ENDPOINT = os.environ.get("GITHUB_ENDPOINT", "https://github.com")
super().__init__(
model_name="facedet",
model_file="facenet.tflite",
download_urls={
"facenet.tflite": "https://github.com/NickM-27/facenet-onnx/releases/download/v1.0/facenet.tflite",
"facenet.tflite": f"{GITHUB_ENDPOINT}/NickM-27/facenet-onnx/releases/download/v1.0/facenet.tflite",
},
)
self.download_path = os.path.join(MODEL_CACHE_DIR, self.model_name)
@@ -110,11 +111,12 @@ class FaceNetEmbedding(BaseEmbedding):
class ArcfaceEmbedding(BaseEmbedding):
def __init__(self):
GITHUB_ENDPOINT = os.environ.get("GITHUB_ENDPOINT", "https://github.com")
super().__init__(
model_name="facedet",
model_file="arcface.onnx",
download_urls={
"arcface.onnx": "https://github.com/NickM-27/facenet-onnx/releases/download/v1.0/arcface.onnx",
"arcface.onnx": f"{GITHUB_ENDPOINT}/NickM-27/facenet-onnx/releases/download/v1.0/arcface.onnx",
},
)
self.download_path = os.path.join(MODEL_CACHE_DIR, self.model_name)

View File

@@ -34,11 +34,12 @@ class PaddleOCRDetection(BaseEmbedding):
model_file = (
"detection-large.onnx" if model_size == "large" else "detection-small.onnx"
)
GITHUB_ENDPOINT = os.environ.get("GITHUB_ENDPOINT", "https://github.com")
super().__init__(
model_name="paddleocr-onnx",
model_file=model_file,
download_urls={
model_file: f"https://github.com/hawkeye217/paddleocr-onnx/raw/refs/heads/master/models/{model_file}"
model_file: f"{GITHUB_ENDPOINT}/hawkeye217/paddleocr-onnx/raw/refs/heads/master/models/{model_file}"
},
)
self.requestor = requestor
@@ -94,11 +95,12 @@ class PaddleOCRClassification(BaseEmbedding):
requestor: InterProcessRequestor,
device: str = "AUTO",
):
GITHUB_ENDPOINT = os.environ.get("GITHUB_ENDPOINT", "https://github.com")
super().__init__(
model_name="paddleocr-onnx",
model_file="classification.onnx",
download_urls={
"classification.onnx": "https://github.com/hawkeye217/paddleocr-onnx/raw/refs/heads/master/models/classification.onnx"
"classification.onnx": f"{GITHUB_ENDPOINT}/hawkeye217/paddleocr-onnx/raw/refs/heads/master/models/classification.onnx"
},
)
self.requestor = requestor
@@ -154,11 +156,12 @@ class PaddleOCRRecognition(BaseEmbedding):
requestor: InterProcessRequestor,
device: str = "AUTO",
):
GITHUB_ENDPOINT = os.environ.get("GITHUB_ENDPOINT", "https://github.com")
super().__init__(
model_name="paddleocr-onnx",
model_file="recognition.onnx",
download_urls={
"recognition.onnx": "https://github.com/hawkeye217/paddleocr-onnx/raw/refs/heads/master/models/recognition.onnx"
"recognition.onnx": f"{GITHUB_ENDPOINT}/hawkeye217/paddleocr-onnx/raw/refs/heads/master/models/recognition.onnx"
},
)
self.requestor = requestor
@@ -214,11 +217,12 @@ class LicensePlateDetector(BaseEmbedding):
requestor: InterProcessRequestor,
device: str = "AUTO",
):
GITHUB_ENDPOINT = os.environ.get("GITHUB_ENDPOINT", "https://github.com")
super().__init__(
model_name="yolov9_license_plate",
model_file="yolov9-256-license-plates.onnx",
download_urls={
"yolov9-256-license-plates.onnx": "https://github.com/hawkeye217/yolov9-license-plates/raw/refs/heads/master/models/yolov9-256-license-plates.onnx"
"yolov9-256-license-plates.onnx": f"{GITHUB_ENDPOINT}/hawkeye217/yolov9-license-plates/raw/refs/heads/master/models/yolov9-256-license-plates.onnx"
},
)

View File

@@ -301,7 +301,7 @@ def get_intel_gpu_stats(intel_gpu_device: Optional[str]) -> Optional[dict[str, s
"-o",
"-",
"-s",
"1",
"1000", # Intel changed this from seconds to milliseconds in 2024+ versions
]
if intel_gpu_device:

2
web/public/robots.txt Normal file
View File

@@ -0,0 +1,2 @@
User-agent: *
Disallow: /

View File

@@ -139,7 +139,7 @@ export default function HlsVideoPlayer({
if (hlsRef.current) {
hlsRef.current.destroy();
}
}
};
}, [videoRef, hlsRef, useHlsCompat, currentSource]);
// state handling

View File

@@ -33,29 +33,43 @@ export default function useCameraLiveMode(
const streamsFetcher = useCallback(async (key: string) => {
const streamNames = key.split(",");
const metadata: { [key: string]: LiveStreamMetadata } = {};
await Promise.all(
streamNames.map(async (streamName) => {
try {
const response = await fetch(`/api/go2rtc/streams/${streamName}`);
if (response.ok) {
const data = await response.json();
metadata[streamName] = data;
}
} catch (error) {
// eslint-disable-next-line no-console
console.error(`Failed to fetch metadata for ${streamName}:`, error);
const metadataPromises = streamNames.map(async (streamName) => {
try {
const response = await fetch(`/api/go2rtc/streams/${streamName}`, {
priority: "low",
});
if (response.ok) {
const data = await response.json();
return { streamName, data };
}
}),
);
return { streamName, data: null };
} catch (error) {
// eslint-disable-next-line no-console
console.error(`Failed to fetch metadata for ${streamName}:`, error);
return { streamName, data: null };
}
});
const results = await Promise.allSettled(metadataPromises);
const metadata: { [key: string]: LiveStreamMetadata } = {};
results.forEach((result) => {
if (result.status === "fulfilled" && result.value.data) {
metadata[result.value.streamName] = result.value.data;
}
});
return metadata;
}, []);
const { data: allStreamMetadata = {} } = useSWR<{
[key: string]: LiveStreamMetadata;
}>(restreamedStreamsKey, streamsFetcher, { revalidateOnFocus: false });
}>(restreamedStreamsKey, streamsFetcher, {
revalidateOnFocus: false,
dedupingInterval: 10000,
});
const [preferredLiveModes, setPreferredLiveModes] = useState<{
[key: string]: LivePlayerMode;

View File

@@ -390,7 +390,6 @@ export default function FrigatePlusSettingsView({
className="cursor-pointer"
value={id}
disabled={
model.type != config.model.model_type ||
!model.supportedDetectors.includes(
Object.values(config.detectors)[0]
.type,