Files
lmms/include/BasicFilters.h
luzpaz 8c12e47b11 Fix several typos (#8090)
This cleans up typos in source comments and some user-facing strings.

Found via `codespell -q 3 -S "./plugins,./src/3rdparty,./data/locale,*.in,*.xpf" -L continous,currenty,globaly,inports,localy,nd,ot,sie,te,trough`
2025-10-20 22:20:01 -04:00

918 lines
23 KiB
C++

/*
* BasicFilters.h - simple but powerful filter-class with most used filters
*
* original file by ???
* modified and enhanced by Tobias Doerffel
*
* Lowpass_SV code originally from Nekobee, Copyright (C) 2004 Sean Bolton and others
* adapted & modified for use in LMMS
*
* Copyright (c) 2004-2009 Tobias Doerffel <tobydox/at/users.sourceforge.net>
*
* This file is part of LMMS - https://lmms.io
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program (see COPYING); if not, write to the
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301 USA.
*
*/
#ifndef LMMS_BASIC_FILTERS_H
#define LMMS_BASIC_FILTERS_H
#include <algorithm>
#include <array>
#include <cmath>
#include <numbers>
#include "lmms_constants.h"
#include "LmmsTypes.h"
namespace lmms
{
template<ch_cnt_t CHANNELS=DEFAULT_CHANNELS> class BasicFilters;
template<ch_cnt_t CHANNELS>
class LinkwitzRiley
{
public:
LinkwitzRiley( float sampleRate )
{
m_sampleRate = sampleRate;
clearHistory();
}
virtual ~LinkwitzRiley() = default;
inline void clearHistory()
{
for( int i = 0; i < CHANNELS; ++i )
{
m_z1[i] = m_z2[i] = m_z3[i] = m_z4[i] = 0.0f;
}
}
inline void setSampleRate( float sampleRate )
{
m_sampleRate = sampleRate;
}
inline void setCoeffs( float freq )
{
using namespace std::numbers;
// wc
const double wc = 2 * pi * freq;
const double wc2 = wc * wc;
const double wc3 = wc2 * wc;
m_wc4 = wc2 * wc2;
// k
const double k = wc / std::tan(pi * freq / m_sampleRate);
const double k2 = k * k;
const double k3 = k2 * k;
m_k4 = k2 * k2;
// a
const double sq_tmp1 = sqrt2 * wc3 * k;
const double sq_tmp2 = sqrt2 * wc * k3;
m_a = 1.0 / ( 4.0 * wc2 * k2 + 2.0 * sq_tmp1 + m_k4 + 2.0 * sq_tmp2 + m_wc4 );
// b
m_b1 = ( 4.0 * ( m_wc4 + sq_tmp1 - m_k4 - sq_tmp2 ) ) * m_a;
m_b2 = ( 6.0 * m_wc4 - 8.0 * wc2 * k2 + 6.0 * m_k4 ) * m_a;
m_b3 = ( 4.0 * ( m_wc4 - sq_tmp1 + sq_tmp2 - m_k4 ) ) * m_a;
m_b4 = ( m_k4 - 2.0 * sq_tmp1 + m_wc4 - 2.0 * sq_tmp2 + 4.0 * wc2 * k2 ) * m_a;
}
inline void setLowpass( float freq )
{
setCoeffs( freq );
m_a0 = m_wc4 * m_a;
m_a1 = 4.0 * m_a0;
m_a2 = 6.0 * m_a0;
}
inline void setHighpass( float freq )
{
setCoeffs( freq );
m_a0 = m_k4 * m_a;
m_a1 = -4.0 * m_a0;
m_a2 = 6.0 * m_a0;
}
inline float update( float in, ch_cnt_t ch )
{
const double x = in - ( m_z1[ch] * m_b1 ) - ( m_z2[ch] * m_b2 ) -
( m_z3[ch] * m_b3 ) - ( m_z4[ch] * m_b4 );
const double y = ( m_a0 * x ) + ( m_z1[ch] * m_a1 ) + ( m_z2[ch] * m_a2 ) +
( m_z3[ch] * m_a1 ) + ( m_z4[ch] * m_a0 );
m_z4[ch] = m_z3[ch];
m_z3[ch] = m_z2[ch];
m_z2[ch] = m_z1[ch];
m_z1[ch] = x;
return y;
}
private:
float m_sampleRate;
double m_wc4;
double m_k4;
double m_a, m_a0, m_a1, m_a2;
double m_b1, m_b2, m_b3, m_b4;
using frame = std::array<double, CHANNELS>;
frame m_z1, m_z2, m_z3, m_z4;
};
using StereoLinkwitzRiley = LinkwitzRiley<2>;
template<ch_cnt_t CHANNELS>
class BiQuad
{
public:
BiQuad() :
m_a1(0.),
m_a2(0.),
m_b0(0.),
m_b1(0.),
m_b2(0.)
{
clearHistory();
}
virtual ~BiQuad() = default;
inline void setCoeffs( float a1, float a2, float b0, float b1, float b2 )
{
m_a1 = a1;
m_a2 = a2;
m_b0 = b0;
m_b1 = b1;
m_b2 = b2;
}
inline void clearHistory()
{
for( int i = 0; i < CHANNELS; ++i )
{
m_z1[i] = 0.0f;
m_z2[i] = 0.0f;
}
}
inline float update( float in, ch_cnt_t ch )
{
// biquad filter in transposed form
const float out = m_z1[ch] + m_b0 * in;
m_z1[ch] = m_b1 * in + m_z2[ch] - m_a1 * out;
m_z2[ch] = m_b2 * in - m_a2 * out;
return out;
}
private:
float m_a1, m_a2, m_b0, m_b1, m_b2;
float m_z1 [CHANNELS], m_z2 [CHANNELS];
friend class BasicFilters<CHANNELS>; // needed for subfilter stuff in BasicFilters
};
using StereoBiQuad = BiQuad<2>;
template<ch_cnt_t CHANNELS>
class OnePole
{
public:
OnePole()
{
m_a0 = 1.0;
m_b1 = 0.0;
for( int i = 0; i < CHANNELS; ++i )
{
m_z1[i] = 0.0;
}
}
virtual ~OnePole() = default;
inline void setCoeffs( float a0, float b1 )
{
m_a0 = a0;
m_b1 = b1;
}
inline float update( float s, ch_cnt_t ch )
{
if (std::abs(s) < F_EPSILON && std::abs(m_z1[ch]) < F_EPSILON) { return 0.0f; }
return m_z1[ch] = s * m_a0 + m_z1[ch] * m_b1;
}
private:
float m_a0, m_b1;
float m_z1 [CHANNELS];
};
using StereoOnePole = OnePole<2>;
template<ch_cnt_t CHANNELS>
class BasicFilters
{
public:
enum class FilterType
{
LowPass,
HiPass,
BandPass_CSG,
BandPass_CZPG,
Notch,
AllPass,
Moog,
DoubleLowPass,
Lowpass_RC12,
Bandpass_RC12,
Highpass_RC12,
Lowpass_RC24,
Bandpass_RC24,
Highpass_RC24,
Formantfilter,
DoubleMoog,
Lowpass_SV,
Bandpass_SV,
Highpass_SV,
Notch_SV,
FastFormant,
Tripole
};
static inline float minFreq()
{
return( 5.0f );
}
static inline float minQ()
{
return( 0.01f );
}
inline void setFilterType( const FilterType _idx )
{
m_doubleFilter = _idx == FilterType::DoubleLowPass || _idx == FilterType::DoubleMoog;
if( !m_doubleFilter )
{
m_type = _idx;
return;
}
// Double lowpass mode, backwards-compat for the goofy
// Add-NumFilters to signify doubleFilter stuff
m_type = _idx == FilterType::DoubleLowPass
? FilterType::LowPass
: FilterType::Moog;
if( m_subFilter == nullptr )
{
m_subFilter = new BasicFilters<CHANNELS>(
static_cast<sample_rate_t>(
m_sampleRate ) );
}
m_subFilter->m_type = m_type;
}
inline BasicFilters( const sample_rate_t _sample_rate ) :
m_doubleFilter( false ),
m_sampleRate( (float) _sample_rate ),
m_sampleRatio( 1.0f / m_sampleRate ),
m_subFilter( nullptr )
{
clearHistory();
}
inline ~BasicFilters()
{
delete m_subFilter;
}
inline void clearHistory()
{
// reset in/out history for biquads
m_biQuad.clearHistory();
// reset in/out history
for( ch_cnt_t _chnl = 0; _chnl < CHANNELS; ++_chnl )
{
// reset in/out history for moog-filter
m_y1[_chnl] = m_y2[_chnl] = m_y3[_chnl] = m_y4[_chnl] =
m_oldx[_chnl] = m_oldy1[_chnl] =
m_oldy2[_chnl] = m_oldy3[_chnl] = 0.0f;
// tripole
m_last[_chnl] = 0.0f;
// reset in/out history for RC-filters
m_rclp0[_chnl] = m_rcbp0[_chnl] = m_rchp0[_chnl] = m_rclast0[_chnl] = 0.0f;
m_rclp1[_chnl] = m_rcbp1[_chnl] = m_rchp1[_chnl] = m_rclast1[_chnl] = 0.0f;
for(int i=0; i<6; i++)
m_vfbp[i][_chnl] = m_vfhp[i][_chnl] = m_vflast[i][_chnl] = 0.0f;
// reset in/out history for SV-filters
m_delay1[_chnl] = 0.0f;
m_delay2[_chnl] = 0.0f;
m_delay3[_chnl] = 0.0f;
m_delay4[_chnl] = 0.0f;
}
}
inline void setSampleRate(const sample_rate_t sampleRate)
{
m_sampleRate = sampleRate;
m_sampleRatio = 1.f / m_sampleRate;
if (m_subFilter != nullptr)
{
m_subFilter->setSampleRate(m_sampleRate);
}
}
inline sample_t update( sample_t _in0, ch_cnt_t _chnl )
{
sample_t out = 0.0f;
switch( m_type )
{
case FilterType::Moog:
{
sample_t x = _in0 - m_r*m_y4[_chnl];
// four cascaded onepole filters
// (bilinear transform)
m_y1[_chnl] = std::clamp((x + m_oldx[_chnl]) * m_p
- m_k * m_y1[_chnl], -10.0f,
10.0f);
m_y2[_chnl] = std::clamp((m_y1[_chnl] + m_oldy1[_chnl]) * m_p
- m_k * m_y2[_chnl], -10.0f,
10.0f);
m_y3[_chnl] = std::clamp((m_y2[_chnl] + m_oldy2[_chnl]) * m_p
- m_k * m_y3[_chnl], -10.0f,
10.0f );
m_y4[_chnl] = std::clamp((m_y3[_chnl] + m_oldy3[_chnl]) * m_p
- m_k * m_y4[_chnl], -10.0f,
10.0f);
m_oldx[_chnl] = x;
m_oldy1[_chnl] = m_y1[_chnl];
m_oldy2[_chnl] = m_y2[_chnl];
m_oldy3[_chnl] = m_y3[_chnl];
out = m_y4[_chnl] - m_y4[_chnl] * m_y4[_chnl] *
m_y4[_chnl] * ( 1.0f / 6.0f );
break;
}
// 3x onepole filters with 4x oversampling and interpolation of oversampled signal:
// input signal is linear-interpolated after oversampling, output signal is averaged from oversampled outputs
case FilterType::Tripole:
{
float ip = 0.0f;
for( int i = 0; i < 4; ++i )
{
ip += 0.25f;
sample_t x = std::lerp(m_last[_chnl], _in0, ip) - m_r * m_y3[_chnl];
m_y1[_chnl] = std::clamp((x + m_oldx[_chnl]) * m_p
- m_k * m_y1[_chnl], -10.0f,
10.0f);
m_y2[_chnl] = std::clamp((m_y1[_chnl] + m_oldy1[_chnl]) * m_p
- m_k * m_y2[_chnl], -10.0f,
10.0f);
m_y3[_chnl] = std::clamp((m_y2[_chnl] + m_oldy2[_chnl]) * m_p
- m_k * m_y3[_chnl], -10.0f,
10.0f);
m_oldx[_chnl] = x;
m_oldy1[_chnl] = m_y1[_chnl];
m_oldy2[_chnl] = m_y2[_chnl];
out += ( m_y3[_chnl] - m_y3[_chnl] * m_y3[_chnl] * m_y3[_chnl] * ( 1.0f / 6.0f ) );
}
out *= 0.25f;
m_last[_chnl] = _in0;
return out;
}
// 4-pole state-variant lowpass filter, adapted from Nekobee source code
// and extended to other SV filter types
// /* Hal Chamberlin's state variable filter */
case FilterType::Lowpass_SV:
case FilterType::Bandpass_SV:
{
float highpass;
for( int i = 0; i < 2; ++i ) // 2x oversample
{
m_delay2[_chnl] = m_delay2[_chnl] + m_svf1 * m_delay1[_chnl]; /* delay2/4 = lowpass output */
highpass = _in0 - m_delay2[_chnl] - m_svq * m_delay1[_chnl];
m_delay1[_chnl] = m_svf1 * highpass + m_delay1[_chnl]; /* delay1/3 = bandpass output */
m_delay4[_chnl] = m_delay4[_chnl] + m_svf2 * m_delay3[_chnl];
highpass = m_delay2[_chnl] - m_delay4[_chnl] - m_svq * m_delay3[_chnl];
m_delay3[_chnl] = m_svf2 * highpass + m_delay3[_chnl];
}
/* mix filter output into output buffer */
return m_type == FilterType::Lowpass_SV
? m_delay4[_chnl]
: m_delay3[_chnl];
}
case FilterType::Highpass_SV:
{
float hp;
for( int i = 0; i < 2; ++i ) // 2x oversample
{
m_delay2[_chnl] = m_delay2[_chnl] + m_svf1 * m_delay1[_chnl];
hp = _in0 - m_delay2[_chnl] - m_svq * m_delay1[_chnl];
m_delay1[_chnl] = m_svf1 * hp + m_delay1[_chnl];
}
return hp;
}
case FilterType::Notch_SV:
{
float hp1;
for( int i = 0; i < 2; ++i ) // 2x oversample
{
m_delay2[_chnl] = m_delay2[_chnl] + m_svf1 * m_delay1[_chnl]; /* delay2/4 = lowpass output */
hp1 = _in0 - m_delay2[_chnl] - m_svq * m_delay1[_chnl];
m_delay1[_chnl] = m_svf1 * hp1 + m_delay1[_chnl]; /* delay1/3 = bandpass output */
m_delay4[_chnl] = m_delay4[_chnl] + m_svf2 * m_delay3[_chnl];
float hp2 = m_delay2[_chnl] - m_delay4[_chnl] - m_svq * m_delay3[_chnl];
m_delay3[_chnl] = m_svf2 * hp2 + m_delay3[_chnl];
}
/* mix filter output into output buffer */
return m_delay4[_chnl] + hp1;
}
// 4-times oversampled simulation of an active RC-Bandpass,-Lowpass,-Highpass-
// Filter-Network as it was used in nearly all modern analog synthesizers. This
// can be driven up to self-oscillation (BTW: do not remove the limits!!!).
// (C) 1998 ... 2009 S.Fendt. Released under the GPL v2.0 or any later version.
case FilterType::Lowpass_RC12:
{
sample_t lp = 0.0f;
for( int n = 4; n != 0; --n )
{
sample_t in = _in0 + m_rcbp0[_chnl] * m_rcq;
in = std::clamp(in, -1.0f, 1.0f);
lp = in * m_rcb + m_rclp0[_chnl] * m_rca;
lp = std::clamp(lp, -1.0f, 1.0f);
sample_t hp = m_rcc * (m_rchp0[_chnl] + in - m_rclast0[_chnl]);
hp = std::clamp(hp, -1.0f, 1.0f);
sample_t bp = hp * m_rcb + m_rcbp0[_chnl] * m_rca;
bp = std::clamp(bp, -1.0f, 1.0f);
m_rclast0[_chnl] = in;
m_rclp0[_chnl] = lp;
m_rchp0[_chnl] = hp;
m_rcbp0[_chnl] = bp;
}
return lp;
}
case FilterType::Highpass_RC12:
case FilterType::Bandpass_RC12:
{
sample_t hp, bp;
for( int n = 4; n != 0; --n )
{
sample_t in = _in0 + m_rcbp0[_chnl] * m_rcq;
in = std::clamp(in, -1.0f, 1.0f);
hp = m_rcc * ( m_rchp0[_chnl] + in - m_rclast0[_chnl] );
hp = std::clamp(hp, -1.0f, 1.0f);
bp = hp * m_rcb + m_rcbp0[_chnl] * m_rca;
bp = std::clamp(bp, -1.0f, 1.0f);
m_rclast0[_chnl] = in;
m_rchp0[_chnl] = hp;
m_rcbp0[_chnl] = bp;
}
return m_type == FilterType::Highpass_RC12 ? hp : bp;
}
case FilterType::Lowpass_RC24:
{
sample_t lp;
for( int n = 4; n != 0; --n )
{
// first stage is as for the 12dB case...
sample_t in = _in0 + m_rcbp0[_chnl] * m_rcq;
in = std::clamp(in, -1.0f, 1.0f);
lp = in * m_rcb + m_rclp0[_chnl] * m_rca;
lp = std::clamp(lp, -1.0f, 1.0f);
sample_t hp = m_rcc * ( m_rchp0[_chnl] + in - m_rclast0[_chnl] );
hp = std::clamp(hp, -1.0f, 1.0f);
sample_t bp = hp * m_rcb + m_rcbp0[_chnl] * m_rca;
bp = std::clamp(bp, -1.0f, 1.0f);
m_rclast0[_chnl] = in;
m_rclp0[_chnl] = lp;
m_rcbp0[_chnl] = bp;
m_rchp0[_chnl] = hp;
// second stage gets the output of the first stage as input...
in = lp + m_rcbp1[_chnl] * m_rcq;
in = std::clamp(in, -1.0f, 1.0f );
lp = in * m_rcb + m_rclp1[_chnl] * m_rca;
lp = std::clamp(lp, -1.0f, 1.0f);
hp = m_rcc * ( m_rchp1[_chnl] + in - m_rclast1[_chnl] );
hp = std::clamp(hp, -1.0f, 1.0f);
bp = hp * m_rcb + m_rcbp1[_chnl] * m_rca;
bp = std::clamp(bp, -1.0f, 1.0f);
m_rclast1[_chnl] = in;
m_rclp1[_chnl] = lp;
m_rcbp1[_chnl] = bp;
m_rchp1[_chnl] = hp;
}
return lp;
}
case FilterType::Highpass_RC24:
case FilterType::Bandpass_RC24:
{
sample_t hp, bp;
for( int n = 4; n != 0; --n )
{
// first stage is as for the 12dB case...
sample_t in = _in0 + m_rcbp0[_chnl] * m_rcq;
in = std::clamp(in, -1.0f, 1.0f);
hp = m_rcc * ( m_rchp0[_chnl] + in - m_rclast0[_chnl] );
hp = std::clamp(hp, -1.0f, 1.0f);
bp = hp * m_rcb + m_rcbp0[_chnl] * m_rca;
bp = std::clamp(bp, -1.0f, 1.0f);
m_rclast0[_chnl] = in;
m_rchp0[_chnl] = hp;
m_rcbp0[_chnl] = bp;
// second stage gets the output of the first stage as input...
in = m_type == FilterType::Highpass_RC24
? hp + m_rcbp1[_chnl] * m_rcq
: bp + m_rcbp1[_chnl] * m_rcq;
in = std::clamp(in, -1.0f, 1.0f);
hp = m_rcc * ( m_rchp1[_chnl] + in - m_rclast1[_chnl] );
hp = std::clamp(hp, -1.0f, 1.0f);
bp = hp * m_rcb + m_rcbp1[_chnl] * m_rca;
bp = std::clamp(bp, -1.0f, 1.0f);
m_rclast1[_chnl] = in;
m_rchp1[_chnl] = hp;
m_rcbp1[_chnl] = bp;
}
return m_type == FilterType::Highpass_RC24 ? hp : bp;
}
case FilterType::Formantfilter:
case FilterType::FastFormant:
{
if (std::abs(_in0) < F_EPSILON && std::abs(m_vflast[0][_chnl]) < F_EPSILON) { return 0.0f; } // performance hack - skip processing when the numbers get too small
const int os = m_type == FilterType::FastFormant ? 1 : 4; // no oversampling for fast formant
for( int o = 0; o < os; ++o )
{
// first formant
sample_t in = _in0 + m_vfbp[0][_chnl] * m_vfq;
in = std::clamp(in, -1.0f, 1.0f);
sample_t hp = m_vfc[0] * ( m_vfhp[0][_chnl] + in - m_vflast[0][_chnl] );
hp = std::clamp(hp, -1.0f, 1.0f);
sample_t bp = hp * m_vfb[0] + m_vfbp[0][_chnl] * m_vfa[0];
bp = std::clamp(bp, -1.0f, 1.0f);
m_vflast[0][_chnl] = in;
m_vfhp[0][_chnl] = hp;
m_vfbp[0][_chnl] = bp;
in = bp + m_vfbp[2][_chnl] * m_vfq;
in = std::clamp(in, -1.0f, 1.0f);
hp = m_vfc[0] * ( m_vfhp[2][_chnl] + in - m_vflast[2][_chnl] );
hp = std::clamp(hp, -1.0f, 1.0f);
bp = hp * m_vfb[0] + m_vfbp[2][_chnl] * m_vfa[0];
bp = std::clamp(bp, -1.0f, 1.0f);
m_vflast[2][_chnl] = in;
m_vfhp[2][_chnl] = hp;
m_vfbp[2][_chnl] = bp;
in = bp + m_vfbp[4][_chnl] * m_vfq;
in = std::clamp(in, -1.0f, 1.0f);
hp = m_vfc[0] * ( m_vfhp[4][_chnl] + in - m_vflast[4][_chnl] );
hp = std::clamp(hp, -1.0f, 1.0f);
bp = hp * m_vfb[0] + m_vfbp[4][_chnl] * m_vfa[0];
bp = std::clamp(bp, -1.0f, 1.0f);
m_vflast[4][_chnl] = in;
m_vfhp[4][_chnl] = hp;
m_vfbp[4][_chnl] = bp;
out += bp;
// second formant
in = _in0 + m_vfbp[0][_chnl] * m_vfq;
in = std::clamp(in, -1.0f, 1.0f);
hp = m_vfc[1] * ( m_vfhp[1][_chnl] + in - m_vflast[1][_chnl] );
hp = std::clamp(hp, -1.0f, 1.0f);
bp = hp * m_vfb[1] + m_vfbp[1][_chnl] * m_vfa[1];
bp = std::clamp(bp, -1.0f, 1.0f);
m_vflast[1][_chnl] = in;
m_vfhp[1][_chnl] = hp;
m_vfbp[1][_chnl] = bp;
in = bp + m_vfbp[3][_chnl] * m_vfq;
in = std::clamp(in, -1.0f, 1.0f);
hp = m_vfc[1] * ( m_vfhp[3][_chnl] + in - m_vflast[3][_chnl] );
hp = std::clamp(hp, -1.0f, 1.0f);
bp = hp * m_vfb[1] + m_vfbp[3][_chnl] * m_vfa[1];
bp = std::clamp(bp, -1.0f, 1.0f);
m_vflast[3][_chnl] = in;
m_vfhp[3][_chnl] = hp;
m_vfbp[3][_chnl] = bp;
in = bp + m_vfbp[5][_chnl] * m_vfq;
in = std::clamp(in, -1.0f, 1.0f);
hp = m_vfc[1] * ( m_vfhp[5][_chnl] + in - m_vflast[5][_chnl] );
hp = std::clamp(hp, -1.0f, 1.0f);
bp = hp * m_vfb[1] + m_vfbp[5][_chnl] * m_vfa[1];
bp = std::clamp(bp, -1.0f, 1.0f);
m_vflast[5][_chnl] = in;
m_vfhp[5][_chnl] = hp;
m_vfbp[5][_chnl] = bp;
out += bp;
}
return m_type == FilterType::FastFormant ? out * 2.0f : out * 0.5f;
}
default:
out = m_biQuad.update( _in0, _chnl );
break;
}
if( m_doubleFilter )
{
return m_subFilter->update( out, _chnl );
}
// Clipper band limited sigmoid
return out;
}
inline void calcFilterCoeffs( float _freq, float _q )
{
using namespace std::numbers;
// temp coef vars
_q = std::max(_q, minQ());
if( m_type == FilterType::Lowpass_RC12 ||
m_type == FilterType::Bandpass_RC12 ||
m_type == FilterType::Highpass_RC12 ||
m_type == FilterType::Lowpass_RC24 ||
m_type == FilterType::Bandpass_RC24 ||
m_type == FilterType::Highpass_RC24 )
{
_freq = std::clamp(_freq, 50.0f, 20000.0f);
const float sr = m_sampleRatio * 0.25f;
const float f = 1.0f / (_freq * 2 * pi_v<float>);
m_rca = 1.0f - sr / ( f + sr );
m_rcb = 1.0f - m_rca;
m_rcc = f / ( f + sr );
// Stretch Q/resonance, as self-oscillation reliably starts at a q of ~2.5 - ~2.6
m_rcq = _q * 0.25f;
return;
}
if( m_type == FilterType::Formantfilter ||
m_type == FilterType::FastFormant )
{
_freq = std::clamp(_freq, minFreq(), 20000.0f); // limit freq and q for not getting bad noise out of the filter...
// formats for a, e, i, o, u, a
static const float _f[6][2] = { { 1000, 1400 }, { 500, 2300 },
{ 320, 3200 },
{ 500, 1000 },
{ 320, 800 },
{ 1000, 1400 } };
static const float freqRatio = 4.0f / 14000.0f;
// Stretch Q/resonance
m_vfq = _q * 0.25f;
// frequency in lmms ranges from 1Hz to 14000Hz
const float vowelf = _freq * freqRatio;
const int vowel = static_cast<int>( vowelf );
const float fract = vowelf - vowel;
// interpolate between formant frequencies
const float f0 = 1.f / (std::lerp(_f[vowel+0][0], _f[vowel+1][0], fract) * 2 * pi_v<float>);
const float f1 = 1.f / (std::lerp(_f[vowel+0][1], _f[vowel+1][1], fract) * 2 * pi_v<float>);
// samplerate coeff: depends on oversampling
const float sr = m_type == FilterType::FastFormant ? m_sampleRatio : m_sampleRatio * 0.25f;
m_vfa[0] = 1.0f - sr / ( f0 + sr );
m_vfb[0] = 1.0f - m_vfa[0];
m_vfc[0] = f0 / ( f0 + sr );
m_vfa[1] = 1.0f - sr / ( f1 + sr );
m_vfb[1] = 1.0f - m_vfa[1];
m_vfc[1] = f1 / ( f1 + sr );
return;
}
if( m_type == FilterType::Moog ||
m_type == FilterType::DoubleMoog )
{
// [ 0 - 0.5 ]
const float f = std::clamp(_freq, minFreq(), 20000.0f) * m_sampleRatio;
// (Empirical tuning)
m_p = ( 3.6f - 3.2f * f ) * f;
m_k = 2.0f * m_p - 1;
m_r = _q * std::exp((1 - m_p) * 1.386249f);
if( m_doubleFilter )
{
m_subFilter->m_r = m_r;
m_subFilter->m_p = m_p;
m_subFilter->m_k = m_k;
}
return;
}
if( m_type == FilterType::Tripole )
{
const float f = std::clamp(_freq, 20.0f, 20000.0f) * m_sampleRatio * 0.25f;
m_p = ( 3.6f - 3.2f * f ) * f;
m_k = 2.0f * m_p - 1.0f;
m_r = _q * 0.1f * std::exp((1 - m_p) * 1.386249f);
return;
}
if( m_type == FilterType::Lowpass_SV ||
m_type == FilterType::Bandpass_SV ||
m_type == FilterType::Highpass_SV ||
m_type == FilterType::Notch_SV )
{
const float f = std::sin(std::max(minFreq(), _freq) * m_sampleRatio * pi_v<float>);
m_svf1 = std::min(f, 0.825f);
m_svf2 = std::min(f * 2.0f, 0.825f);
m_svq = std::max(0.0001f, 2.0f - (_q * 0.1995f));
return;
}
// other filters
_freq = std::clamp(_freq, minFreq(), 20000.0f);
const float omega = 2 * pi_v<float> * _freq * m_sampleRatio;
const float tsin = std::sin(omega) * 0.5f;
const float tcos = std::cos(omega);
const float alpha = tsin / _q;
const float a0 = 1.0f / ( 1.0f + alpha );
const float a1 = -2.0f * tcos * a0;
const float a2 = ( 1.0f - alpha ) * a0;
switch( m_type )
{
case FilterType::LowPass:
{
const float b1 = ( 1.0f - tcos ) * a0;
const float b0 = b1 * 0.5f;
m_biQuad.setCoeffs( a1, a2, b0, b1, b0 );
break;
}
case FilterType::HiPass:
{
const float b1 = ( -1.0f - tcos ) * a0;
const float b0 = b1 * -0.5f;
m_biQuad.setCoeffs( a1, a2, b0, b1, b0 );
break;
}
case FilterType::BandPass_CSG:
{
const float b0 = tsin * a0;
m_biQuad.setCoeffs( a1, a2, b0, 0.0f, -b0 );
break;
}
case FilterType::BandPass_CZPG:
{
const float b0 = alpha * a0;
m_biQuad.setCoeffs( a1, a2, b0, 0.0f, -b0 );
break;
}
case FilterType::Notch:
{
m_biQuad.setCoeffs( a1, a2, a0, a1, a0 );
break;
}
case FilterType::AllPass:
{
m_biQuad.setCoeffs( a1, a2, a2, a1, 1.0f );
break;
}
default:
break;
}
if( m_doubleFilter )
{
m_subFilter->m_biQuad.setCoeffs( m_biQuad.m_a1, m_biQuad.m_a2, m_biQuad.m_b0, m_biQuad.m_b1, m_biQuad.m_b2 );
}
}
private:
// biquad filter
BiQuad<CHANNELS> m_biQuad;
// coeffs for moog-filter
float m_r, m_p, m_k;
// coeffs for RC-type-filters
float m_rca, m_rcb, m_rcc, m_rcq;
// coeffs for formant-filters
float m_vfa[4], m_vfb[4], m_vfc[4], m_vfq;
// coeffs for Lowpass_SV (state-variant lowpass)
float m_svf1, m_svf2, m_svq;
using frame = std::array<sample_t, CHANNELS>;
// in/out history for moog-filter
frame m_y1, m_y2, m_y3, m_y4, m_oldx, m_oldy1, m_oldy2, m_oldy3;
// additional one for Tripole filter
frame m_last;
// in/out history for RC-type-filters
frame m_rcbp0, m_rclp0, m_rchp0, m_rclast0;
frame m_rcbp1, m_rclp1, m_rchp1, m_rclast1;
// in/out history for Formant-filters
frame m_vfbp[6], m_vfhp[6], m_vflast[6];
// in/out history for Lowpass_SV (state-variant lowpass)
frame m_delay1, m_delay2, m_delay3, m_delay4;
FilterType m_type;
bool m_doubleFilter;
float m_sampleRate;
float m_sampleRatio;
BasicFilters<CHANNELS> * m_subFilter;
} ;
} // namespace lmms
#endif // LMMS_BASIC_FILTERS_H