mirror of
https://github.com/LMMS/lmms.git
synced 2025-12-30 18:17:59 -05:00
* Renamed lmms_basics.h to LmmsTypes.h and scoped it down for that purpose. * Shifted the LMMS_STRINGIFY macro to it's own header. * Removed the debug.h header file and use cmake to handle the macro logic. * Remove some unused headers and include directives
693 lines
24 KiB
C++
693 lines
24 KiB
C++
/* SaProcessor.cpp - implementation of SaProcessor class.
|
|
*
|
|
* Copyright (c) 2019 Martin Pavelek <he29/dot/HS/at/gmail/dot/com>
|
|
*
|
|
* Based partially on Eq plugin code,
|
|
* Copyright (c) 2014-2017, David French <dave/dot/french3/at/googlemail/dot/com>
|
|
*
|
|
* This file is part of LMMS - https://lmms.io
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program (see COPYING); if not, write to the
|
|
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
* Boston, MA 02110-1301 USA.
|
|
*
|
|
*/
|
|
|
|
#include "SaProcessor.h"
|
|
|
|
#include <algorithm>
|
|
#include "lmms_math.h"
|
|
#include <cmath>
|
|
#ifdef SA_DEBUG
|
|
#include <chrono>
|
|
#include <iomanip>
|
|
#include <iostream>
|
|
#endif
|
|
#include <QMutexLocker>
|
|
|
|
#include "fft_helpers.h"
|
|
#include "lmms_constants.h"
|
|
#include "LocklessRingBuffer.h"
|
|
#include "SaControls.h"
|
|
|
|
#include <cassert>
|
|
#include <limits>
|
|
|
|
namespace lmms
|
|
{
|
|
|
|
|
|
SaProcessor::SaProcessor(const SaControls *controls) :
|
|
m_controls(controls),
|
|
m_terminate(false),
|
|
m_inBlockSize(FFT_BLOCK_SIZES[0]),
|
|
m_fftBlockSize(FFT_BLOCK_SIZES[0]),
|
|
m_sampleRate(Engine::audioEngine()->outputSampleRate()),
|
|
m_framesFilledUp(0),
|
|
m_spectrumActive(false),
|
|
m_waterfallActive(false),
|
|
m_waterfallNotEmpty(0),
|
|
m_reallocating(false)
|
|
{
|
|
m_fftWindow.resize(m_inBlockSize, 1.0);
|
|
precomputeWindow(m_fftWindow.data(), m_inBlockSize, FFTWindow::BlackmanHarris);
|
|
|
|
m_bufferL.resize(m_inBlockSize, 0);
|
|
m_bufferR.resize(m_inBlockSize, 0);
|
|
m_filteredBufferL.resize(m_fftBlockSize, 0);
|
|
m_filteredBufferR.resize(m_fftBlockSize, 0);
|
|
m_spectrumL = (fftwf_complex *) fftwf_malloc(binCount() * sizeof (fftwf_complex));
|
|
m_spectrumR = (fftwf_complex *) fftwf_malloc(binCount() * sizeof (fftwf_complex));
|
|
m_fftPlanL = fftwf_plan_dft_r2c_1d(m_fftBlockSize, m_filteredBufferL.data(), m_spectrumL, FFTW_MEASURE);
|
|
m_fftPlanR = fftwf_plan_dft_r2c_1d(m_fftBlockSize, m_filteredBufferR.data(), m_spectrumR, FFTW_MEASURE);
|
|
|
|
m_absSpectrumL.resize(binCount(), 0);
|
|
m_absSpectrumR.resize(binCount(), 0);
|
|
m_normSpectrumL.resize(binCount(), 0);
|
|
m_normSpectrumR.resize(binCount(), 0);
|
|
|
|
m_waterfallHeight = 100; // a small safe value
|
|
m_history_work.resize(waterfallWidth() * m_waterfallHeight * sizeof qRgb(0,0,0), 0);
|
|
m_history.resize(waterfallWidth() * m_waterfallHeight * sizeof qRgb(0,0,0), 0);
|
|
}
|
|
|
|
|
|
SaProcessor::~SaProcessor()
|
|
{
|
|
if (m_fftPlanL != nullptr) {fftwf_destroy_plan(m_fftPlanL);}
|
|
if (m_fftPlanR != nullptr) {fftwf_destroy_plan(m_fftPlanR);}
|
|
if (m_spectrumL != nullptr) {fftwf_free(m_spectrumL);}
|
|
if (m_spectrumR != nullptr) {fftwf_free(m_spectrumR);}
|
|
|
|
m_fftPlanL = nullptr;
|
|
m_fftPlanR = nullptr;
|
|
m_spectrumL = nullptr;
|
|
m_spectrumR = nullptr;
|
|
}
|
|
|
|
|
|
// Load data from audio thread ringbuffer and run FFT analysis if buffer is full enough.
|
|
void SaProcessor::analyze(LocklessRingBuffer<SampleFrame> &ring_buffer)
|
|
{
|
|
LocklessRingBufferReader<SampleFrame> reader(ring_buffer);
|
|
|
|
// Processing thread loop
|
|
while (!m_terminate)
|
|
{
|
|
// If there is nothing to read, wait for notification from the writing side.
|
|
if (reader.empty()) {reader.waitForData();}
|
|
|
|
// skip waterfall render if processing can't keep up with input
|
|
bool overload = ring_buffer.free() < ring_buffer.capacity() / 2;
|
|
|
|
auto in_buffer = reader.read_max(ring_buffer.capacity() / 4);
|
|
std::size_t frame_count = in_buffer.size();
|
|
|
|
// Process received data only if any view is visible and not paused.
|
|
// Also, to prevent a momentary GUI freeze under high load (due to lock
|
|
// starvation), skip analysis when buffer reallocation is requested.
|
|
if ((m_spectrumActive || m_waterfallActive) && !m_controls->m_pauseModel.value() && !m_reallocating)
|
|
{
|
|
const bool stereo = m_controls->m_stereoModel.value();
|
|
fpp_t in_frame = 0;
|
|
while (in_frame < frame_count)
|
|
{
|
|
// Lock data access to prevent reallocation from changing
|
|
// buffers and control variables.
|
|
QMutexLocker data_lock(&m_dataAccess);
|
|
|
|
// Fill sample buffers and check for zero input.
|
|
bool block_empty = true;
|
|
for (; in_frame < frame_count && m_framesFilledUp < m_inBlockSize; in_frame++, m_framesFilledUp++)
|
|
{
|
|
if (stereo)
|
|
{
|
|
m_bufferL[m_framesFilledUp] = in_buffer[in_frame][0];
|
|
m_bufferR[m_framesFilledUp] = in_buffer[in_frame][1];
|
|
}
|
|
else
|
|
{
|
|
m_bufferL[m_framesFilledUp] =
|
|
m_bufferR[m_framesFilledUp] = (in_buffer[in_frame][0] + in_buffer[in_frame][1]) * 0.5f;
|
|
}
|
|
if (in_buffer[in_frame][0] != 0.f || in_buffer[in_frame][1] != 0.f)
|
|
{
|
|
block_empty = false;
|
|
}
|
|
}
|
|
|
|
// Run analysis only if buffers contain enough data.
|
|
if (m_framesFilledUp < m_inBlockSize) {break;}
|
|
|
|
// Print performance analysis once per 2 seconds if debug is enabled
|
|
#ifdef SA_DEBUG
|
|
unsigned int total_time = std::chrono::high_resolution_clock::now().time_since_epoch().count();
|
|
if (total_time - m_last_dump_time > 2000000000)
|
|
{
|
|
std::cout << "FFT analysis: " << std::fixed << std::setprecision(2)
|
|
<< m_sum_execution / m_dump_count << " ms avg / "
|
|
<< m_max_execution << " ms peak, executing "
|
|
<< m_dump_count << " times per second ("
|
|
<< m_sum_execution / 20.0 << " % CPU usage)." << std::endl;
|
|
m_last_dump_time = total_time;
|
|
m_sum_execution = m_max_execution = m_dump_count = 0;
|
|
}
|
|
#endif
|
|
|
|
// update sample rate
|
|
m_sampleRate = Engine::audioEngine()->outputSampleRate();
|
|
|
|
// apply FFT window
|
|
for (unsigned int i = 0; i < m_inBlockSize; i++)
|
|
{
|
|
m_filteredBufferL[i] = m_bufferL[i] * m_fftWindow[i];
|
|
m_filteredBufferR[i] = m_bufferR[i] * m_fftWindow[i];
|
|
}
|
|
|
|
// Run FFT on left channel, convert the result to absolute magnitude
|
|
// spectrum and normalize it.
|
|
fftwf_execute(m_fftPlanL);
|
|
absspec(m_spectrumL, m_absSpectrumL.data(), binCount());
|
|
normalize(m_absSpectrumL, m_normSpectrumL, m_inBlockSize);
|
|
|
|
// repeat analysis for right channel if stereo processing is enabled
|
|
if (stereo)
|
|
{
|
|
fftwf_execute(m_fftPlanR);
|
|
absspec(m_spectrumR, m_absSpectrumR.data(), binCount());
|
|
normalize(m_absSpectrumR, m_normSpectrumR, m_inBlockSize);
|
|
}
|
|
|
|
// count empty lines so that empty history does not have to update
|
|
if (block_empty && m_waterfallNotEmpty)
|
|
{
|
|
m_waterfallNotEmpty -= 1;
|
|
}
|
|
else if (!block_empty)
|
|
{
|
|
m_waterfallNotEmpty = m_waterfallHeight + 2;
|
|
}
|
|
|
|
if (m_waterfallActive && m_waterfallNotEmpty)
|
|
{
|
|
// move waterfall history one line down and clear the top line
|
|
auto pixel = (QRgb*)m_history_work.data();
|
|
std::copy(pixel,
|
|
pixel + waterfallWidth() * m_waterfallHeight - waterfallWidth(),
|
|
pixel + waterfallWidth());
|
|
memset(pixel, 0, waterfallWidth() * sizeof (QRgb));
|
|
|
|
// add newest result on top
|
|
float accL = 0; // accumulators for merging multiple bins
|
|
float accR = 0;
|
|
for (unsigned int i = 0; i < binCount(); i++)
|
|
{
|
|
// fill line with red color to indicate lost data if CPU cannot keep up
|
|
if (overload && i < waterfallWidth())
|
|
{
|
|
pixel[i] = qRgb(42, 0, 0);
|
|
continue;
|
|
}
|
|
|
|
// Every frequency bin spans a frequency range that must be
|
|
// partially or fully mapped to a pixel. Any inconsistency
|
|
// may be seen in the spectrogram as dark or white lines --
|
|
// play white noise to confirm your change did not break it.
|
|
float band_start = freqToXPixel(binToFreq(i) - binBandwidth() / 2.0, waterfallWidth());
|
|
float band_end = freqToXPixel(binToFreq(i + 1) - binBandwidth() / 2.0, waterfallWidth());
|
|
if (m_controls->m_logXModel.value())
|
|
{
|
|
// Logarithmic scale
|
|
if (band_end - band_start > 1.0)
|
|
{
|
|
// band spans multiple pixels: draw all pixels it covers
|
|
for (auto target = static_cast<std::size_t>(std::max(band_start, 0.f));
|
|
target < band_end && target < waterfallWidth(); target++)
|
|
{
|
|
pixel[target] = makePixel(m_normSpectrumL[i], m_normSpectrumR[i]);
|
|
}
|
|
// save remaining portion of the band for the following band / pixel
|
|
// (in case the next band uses sub-pixel drawing)
|
|
accL = (band_end - (int)band_end) * m_normSpectrumL[i];
|
|
accR = (band_end - (int)band_end) * m_normSpectrumR[i];
|
|
}
|
|
else
|
|
{
|
|
// sub-pixel drawing; add contribution of current band
|
|
int target = static_cast<int>(band_start);
|
|
if ((int)band_start == (int)band_end)
|
|
{
|
|
// band ends within current target pixel, accumulate
|
|
accL += (band_end - band_start) * m_normSpectrumL[i];
|
|
accR += (band_end - band_start) * m_normSpectrumR[i];
|
|
}
|
|
else
|
|
{
|
|
// Band ends in the next pixel -- finalize the current pixel.
|
|
// Make sure contribution is split correctly on pixel boundary.
|
|
accL += ((int)band_end - band_start) * m_normSpectrumL[i];
|
|
accR += ((int)band_end - band_start) * m_normSpectrumR[i];
|
|
|
|
if (target >= 0 && static_cast<std::size_t>(target) < waterfallWidth()) {
|
|
pixel[target] = makePixel(accL, accR);
|
|
}
|
|
|
|
// save remaining portion of the band for the following band / pixel
|
|
accL = (band_end - (int)band_end) * m_normSpectrumL[i];
|
|
accR = (band_end - (int)band_end) * m_normSpectrumR[i];
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Linear: always draws one or more pixels per band
|
|
for (auto target = static_cast<std::size_t>(std::max(band_start, 0.f));
|
|
target < band_end && target < waterfallWidth(); target++)
|
|
{
|
|
pixel[target] = makePixel(m_normSpectrumL[i], m_normSpectrumR[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Copy work buffer to result buffer. Done only if requested, so
|
|
// that time isn't wasted on updating faster than display FPS.
|
|
// (The copy is about as expensive as the movement.)
|
|
if (m_flipRequest)
|
|
{
|
|
m_history = m_history_work;
|
|
m_flipRequest = false;
|
|
}
|
|
}
|
|
// clean up before checking for more data from input buffer
|
|
const unsigned int overlaps = m_controls->m_windowOverlapModel.value();
|
|
if (overlaps == 1) // Discard buffer, each sample used only once
|
|
{
|
|
m_framesFilledUp = 0;
|
|
}
|
|
else
|
|
{
|
|
// Drop only a part of the buffer from the beginning, so that new
|
|
// data can be added to the end. This means the older samples will
|
|
// be analyzed again, but in a different position in the window,
|
|
// making short transient signals show up better in the waterfall.
|
|
const unsigned int drop = m_inBlockSize / overlaps;
|
|
std::move(m_bufferL.begin() + drop, m_bufferL.end(), m_bufferL.begin());
|
|
std::move(m_bufferR.begin() + drop, m_bufferR.end(), m_bufferR.begin());
|
|
m_framesFilledUp -= drop;
|
|
}
|
|
|
|
#ifdef SA_DEBUG
|
|
// measure overall FFT processing speed
|
|
total_time = std::chrono::high_resolution_clock::now().time_since_epoch().count() - total_time;
|
|
m_dump_count++;
|
|
m_sum_execution += total_time / 1000000.0;
|
|
if (total_time / 1000000.0 > m_max_execution) {m_max_execution = total_time / 1000000.0;}
|
|
#endif
|
|
} // frame filler and processing
|
|
} // process if active
|
|
} // thread loop end
|
|
}
|
|
|
|
|
|
// Produce a spectrogram pixel from normalized spectrum data.
|
|
// Values over 1.0 will cause the color components to overflow: this is left
|
|
// intentionally untreated as it clearly indicates which frequency is clipping.
|
|
// Gamma correction is applied to make small values more visible and to make
|
|
// a linear gradient actually appear roughly linear. The correction should be
|
|
// around 0.42 to 0.45 for sRGB displays (or lower for bigger visibility boost).
|
|
QRgb SaProcessor::makePixel(float left, float right) const
|
|
{
|
|
const float gamma_correction = m_controls->m_waterfallGammaModel.value();
|
|
if (m_controls->m_stereoModel.value())
|
|
{
|
|
float ampL = std::pow(left, gamma_correction);
|
|
float ampR = std::pow(right, gamma_correction);
|
|
return qRgb(m_controls->m_colorL.red() * ampL + m_controls->m_colorR.red() * ampR,
|
|
m_controls->m_colorL.green() * ampL + m_controls->m_colorR.green() * ampR,
|
|
m_controls->m_colorL.blue() * ampL + m_controls->m_colorR.blue() * ampR);
|
|
}
|
|
else
|
|
{
|
|
float ampL = std::pow(left, gamma_correction);
|
|
// make mono color brighter to compensate for the fact it is not summed
|
|
return qRgb(m_controls->m_colorMonoW.red() * ampL,
|
|
m_controls->m_colorMonoW.green() * ampL,
|
|
m_controls->m_colorMonoW.blue() * ampL);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Inform the processor whether any display widgets actually need it.
|
|
void SaProcessor::setSpectrumActive(bool active)
|
|
{
|
|
m_spectrumActive = active;
|
|
}
|
|
|
|
void SaProcessor::setWaterfallActive(bool active)
|
|
{
|
|
m_waterfallActive = active;
|
|
}
|
|
|
|
|
|
// Reallocate data buffers according to newly set block size.
|
|
void SaProcessor::reallocateBuffers()
|
|
{
|
|
m_zeroPadFactor = m_controls->m_zeroPaddingModel.value();
|
|
|
|
// get new block sizes and bin count based on selected index
|
|
const unsigned int new_size_index = m_controls->m_blockSizeModel.value();
|
|
|
|
const unsigned int new_in_size = new_size_index < FFT_BLOCK_SIZES.size()
|
|
? FFT_BLOCK_SIZES[new_size_index]
|
|
: FFT_BLOCK_SIZES.back();
|
|
|
|
const unsigned int new_fft_size = (new_size_index + m_zeroPadFactor < FFT_BLOCK_SIZES.size())
|
|
? FFT_BLOCK_SIZES[new_size_index + m_zeroPadFactor]
|
|
: FFT_BLOCK_SIZES.back();
|
|
|
|
const unsigned int new_bins = new_fft_size / 2 + 1;
|
|
|
|
// Use m_reallocating to tell analyze() to avoid asking for the lock. This
|
|
// is needed because under heavy load the FFT thread requests data lock so
|
|
// often that this routine could end up waiting even for several seconds.
|
|
m_reallocating = true;
|
|
|
|
// Lock data shared with SaSpectrumView and SaWaterfallView.
|
|
// Reallocation lock must be acquired first to avoid deadlock (a view class
|
|
// may already have it and request the "stronger" data lock on top of that).
|
|
QMutexLocker reloc_lock(&m_reallocationAccess);
|
|
QMutexLocker data_lock(&m_dataAccess);
|
|
|
|
// destroy old FFT plan and free the result buffer
|
|
if (m_fftPlanL != nullptr) {fftwf_destroy_plan(m_fftPlanL);}
|
|
if (m_fftPlanR != nullptr) {fftwf_destroy_plan(m_fftPlanR);}
|
|
if (m_spectrumL != nullptr) {fftwf_free(m_spectrumL);}
|
|
if (m_spectrumR != nullptr) {fftwf_free(m_spectrumR);}
|
|
|
|
// allocate new space, create new plan and resize containers
|
|
m_fftWindow.resize(new_in_size, 1.0);
|
|
precomputeWindow(m_fftWindow.data(), new_in_size, (FFTWindow) m_controls->m_windowModel.value());
|
|
m_bufferL.resize(new_in_size, 0);
|
|
m_bufferR.resize(new_in_size, 0);
|
|
m_filteredBufferL.resize(new_fft_size, 0);
|
|
m_filteredBufferR.resize(new_fft_size, 0);
|
|
m_spectrumL = (fftwf_complex *) fftwf_malloc(new_bins * sizeof (fftwf_complex));
|
|
m_spectrumR = (fftwf_complex *) fftwf_malloc(new_bins * sizeof (fftwf_complex));
|
|
m_fftPlanL = fftwf_plan_dft_r2c_1d(new_fft_size, m_filteredBufferL.data(), m_spectrumL, FFTW_MEASURE);
|
|
m_fftPlanR = fftwf_plan_dft_r2c_1d(new_fft_size, m_filteredBufferR.data(), m_spectrumR, FFTW_MEASURE);
|
|
|
|
if (m_fftPlanL == nullptr || m_fftPlanR == nullptr)
|
|
{
|
|
#ifdef SA_DEBUG
|
|
std::cerr << "Analyzer: failed to create new FFT plan!" << std::endl;
|
|
#endif
|
|
}
|
|
m_absSpectrumL.resize(new_bins, 0);
|
|
m_absSpectrumR.resize(new_bins, 0);
|
|
m_normSpectrumL.resize(new_bins, 0);
|
|
m_normSpectrumR.resize(new_bins, 0);
|
|
|
|
m_waterfallHeight = m_controls->m_waterfallHeightModel.value();
|
|
m_history_work.resize((new_bins < m_waterfallMaxWidth ? new_bins : m_waterfallMaxWidth)
|
|
* m_waterfallHeight
|
|
* sizeof qRgb(0,0,0), 0);
|
|
m_history.resize((new_bins < m_waterfallMaxWidth ? new_bins : m_waterfallMaxWidth)
|
|
* m_waterfallHeight
|
|
* sizeof qRgb(0,0,0), 0);
|
|
|
|
// done; publish new sizes and clean up
|
|
m_inBlockSize = new_in_size;
|
|
m_fftBlockSize = new_fft_size;
|
|
|
|
data_lock.unlock();
|
|
reloc_lock.unlock();
|
|
m_reallocating = false;
|
|
|
|
clear();
|
|
}
|
|
|
|
|
|
// Precompute a new FFT window based on currently selected type.
|
|
void SaProcessor::rebuildWindow()
|
|
{
|
|
// computation is done in fft_helpers
|
|
QMutexLocker lock(&m_dataAccess);
|
|
precomputeWindow(m_fftWindow.data(), m_inBlockSize, (FFTWindow) m_controls->m_windowModel.value());
|
|
}
|
|
|
|
|
|
// Clear all data buffers and replace contents with zeros.
|
|
// Note: may take a few milliseconds, do not call in a loop!
|
|
void SaProcessor::clear()
|
|
{
|
|
const unsigned int overlaps = m_controls->m_windowOverlapModel.value();
|
|
QMutexLocker lock(&m_dataAccess);
|
|
// If there is any window overlap, leave space only for the new samples
|
|
// and treat the rest at initialized with zeros. Prevents missing
|
|
// transients at the start of the very first block.
|
|
m_framesFilledUp = m_inBlockSize - m_inBlockSize / overlaps;
|
|
std::fill(m_bufferL.begin(), m_bufferL.end(), 0);
|
|
std::fill(m_bufferR.begin(), m_bufferR.end(), 0);
|
|
std::fill(m_filteredBufferL.begin(), m_filteredBufferL.end(), 0);
|
|
std::fill(m_filteredBufferR.begin(), m_filteredBufferR.end(), 0);
|
|
std::fill(m_absSpectrumL.begin(), m_absSpectrumL.end(), 0);
|
|
std::fill(m_absSpectrumR.begin(), m_absSpectrumR.end(), 0);
|
|
std::fill(m_normSpectrumL.begin(), m_normSpectrumL.end(), 0);
|
|
std::fill(m_normSpectrumR.begin(), m_normSpectrumR.end(), 0);
|
|
std::fill(m_history_work.begin(), m_history_work.end(), 0);
|
|
std::fill(m_history.begin(), m_history.end(), 0);
|
|
}
|
|
|
|
// Clear only history work buffer. Used to flush old data when waterfall
|
|
// is shown after a period of inactivity.
|
|
void SaProcessor::clearHistory()
|
|
{
|
|
QMutexLocker lock(&m_dataAccess);
|
|
std::fill(m_history_work.begin(), m_history_work.end(), 0);
|
|
}
|
|
|
|
// Check if result buffers contain any non-zero values
|
|
bool SaProcessor::spectrumNotEmpty()
|
|
{
|
|
QMutexLocker lock(&m_reallocationAccess);
|
|
return notEmpty(m_normSpectrumL) || notEmpty(m_normSpectrumR);
|
|
}
|
|
|
|
|
|
// --------------------------------------
|
|
// Frequency conversion helpers
|
|
//
|
|
|
|
// Get sample rate value that is valid for currently stored results.
|
|
unsigned int SaProcessor::getSampleRate() const
|
|
{
|
|
return m_sampleRate;
|
|
}
|
|
|
|
|
|
// Maximum frequency of a sampled signal is equal to half of its sample rate.
|
|
float SaProcessor::getNyquistFreq() const
|
|
{
|
|
return getSampleRate() / 2.0f;
|
|
}
|
|
|
|
|
|
// FFTW automatically discards upper half of the symmetric FFT output, so
|
|
// the useful bin count is the transform size divided by 2, plus zero.
|
|
unsigned int SaProcessor::binCount() const
|
|
{
|
|
return m_fftBlockSize / 2 + 1;
|
|
}
|
|
|
|
|
|
// Return the final width of waterfall display buffer.
|
|
// Normally the waterfall width equals the number of frequency bins, but the
|
|
// FFT transform can easily produce more bins than can be reasonably useful for
|
|
// currently used display resolutions. This function limits width of the final
|
|
// image to a given size, which is then used during waterfall render and display.
|
|
unsigned int SaProcessor::waterfallWidth() const
|
|
{
|
|
return binCount() < m_waterfallMaxWidth ? binCount() : m_waterfallMaxWidth;
|
|
}
|
|
|
|
|
|
// Return the center frequency of given frequency bin.
|
|
float SaProcessor::binToFreq(unsigned int bin_index) const
|
|
{
|
|
return getNyquistFreq() * bin_index / binCount();
|
|
}
|
|
|
|
|
|
// Return width of the frequency range that falls into one bin.
|
|
// The binCount is lowered by one since half of the first and last bin is
|
|
// actually outside the frequency range.
|
|
float SaProcessor::binBandwidth() const
|
|
{
|
|
return getNyquistFreq() / (binCount() - 1);
|
|
}
|
|
|
|
|
|
float SaProcessor::getFreqRangeMin(bool linear) const
|
|
{
|
|
switch (static_cast<FrequencyRange>(m_controls->m_freqRangeModel.value()))
|
|
{
|
|
case FrequencyRange::Audible: return FRANGE_AUDIBLE_START;
|
|
case FrequencyRange::Bass: return FRANGE_BASS_START;
|
|
case FrequencyRange::Mids: return FRANGE_MIDS_START;
|
|
case FrequencyRange::High: return FRANGE_HIGH_START;
|
|
default:
|
|
case FrequencyRange::Full: return linear ? 0 : LOWEST_LOG_FREQ;
|
|
}
|
|
}
|
|
|
|
|
|
float SaProcessor::getFreqRangeMax() const
|
|
{
|
|
switch (static_cast<FrequencyRange>(m_controls->m_freqRangeModel.value()))
|
|
{
|
|
case FrequencyRange::Audible: return FRANGE_AUDIBLE_END;
|
|
case FrequencyRange::Bass: return FRANGE_BASS_END;
|
|
case FrequencyRange::Mids: return FRANGE_MIDS_END;
|
|
case FrequencyRange::High: return FRANGE_HIGH_END;
|
|
default:
|
|
case FrequencyRange::Full: return getNyquistFreq();
|
|
}
|
|
}
|
|
|
|
|
|
// Map frequency to pixel x position on a display of given width.
|
|
// NOTE: Results of this function may be cached by SaSpectrumView. If you use
|
|
// a new function call or variable that can affect results of this function,
|
|
// make sure to also add it as a trigger for cache update in SaSpectrumView.
|
|
float SaProcessor::freqToXPixel(float freq, unsigned int width) const
|
|
{
|
|
if (m_controls->m_logXModel.value())
|
|
{
|
|
if (freq <= 1) {return 0;}
|
|
float min = std::log10(getFreqRangeMin());
|
|
float range = std::log10(getFreqRangeMax()) - min;
|
|
return (std::log10(freq) - min) / range * width;
|
|
}
|
|
else
|
|
{
|
|
float min = getFreqRangeMin();
|
|
float range = getFreqRangeMax() - min;
|
|
return (freq - min) / range * width;
|
|
}
|
|
}
|
|
|
|
|
|
// Map pixel x position on display of given width back to frequency.
|
|
float SaProcessor::xPixelToFreq(float x, unsigned int width) const
|
|
{
|
|
if (m_controls->m_logXModel.value())
|
|
{
|
|
float min = std::log10(getFreqRangeMin());
|
|
float max = std::log10(getFreqRangeMax());
|
|
float range = max - min;
|
|
return fastPow10f(min + x / width * range);
|
|
}
|
|
else
|
|
{
|
|
float min = getFreqRangeMin();
|
|
float range = getFreqRangeMax() - min;
|
|
return min + x / width * range;
|
|
}
|
|
}
|
|
|
|
|
|
// --------------------------------------
|
|
// Amplitude conversion helpers
|
|
//
|
|
float SaProcessor::getAmpRangeMin(bool linear) const
|
|
{
|
|
// return very low limit to make sure zero gets included at linear grid
|
|
if (linear) {return -900;}
|
|
switch (static_cast<AmplitudeRange>(m_controls->m_ampRangeModel.value()))
|
|
{
|
|
case AmplitudeRange::Extended: return ARANGE_EXTENDED_START;
|
|
case AmplitudeRange::Silent: return ARANGE_SILENT_START;
|
|
case AmplitudeRange::Loud: return ARANGE_LOUD_START;
|
|
default:
|
|
case AmplitudeRange::Audible: return ARANGE_AUDIBLE_START;
|
|
}
|
|
}
|
|
|
|
|
|
float SaProcessor::getAmpRangeMax() const
|
|
{
|
|
switch (static_cast<AmplitudeRange>(m_controls->m_ampRangeModel.value()))
|
|
{
|
|
case AmplitudeRange::Extended: return ARANGE_EXTENDED_END;
|
|
case AmplitudeRange::Silent: return ARANGE_SILENT_END;
|
|
case AmplitudeRange::Loud: return ARANGE_LOUD_END;
|
|
default:
|
|
case AmplitudeRange::Audible: return ARANGE_AUDIBLE_END;
|
|
}
|
|
}
|
|
|
|
|
|
// Map linear amplitude to pixel y position on a display of given height.
|
|
// Note that display coordinates are flipped: amplitude grows from [height] to zero.
|
|
float SaProcessor::ampToYPixel(float amplitude, unsigned int height) const
|
|
{
|
|
if (m_controls->m_logYModel.value())
|
|
{
|
|
// logarithmic scale: convert linear amplitude to dB (relative to 1.0)
|
|
assert (amplitude >= 0);
|
|
float amplitude_dB = 10 * std::log10(std::max(amplitude, std::numeric_limits<float>::min()));
|
|
if (amplitude_dB < getAmpRangeMin())
|
|
{
|
|
return height;
|
|
}
|
|
else
|
|
{
|
|
float max = getAmpRangeMax();
|
|
float range = getAmpRangeMin() - max;
|
|
return (amplitude_dB - max) / range * height;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// linear scale: convert returned ranges from dB to linear scale
|
|
float max = fastPow10f(getAmpRangeMax() / 10);
|
|
float range = fastPow10f(getAmpRangeMin() / 10) - max;
|
|
return (amplitude - max) / range * height;
|
|
}
|
|
}
|
|
|
|
|
|
// Map pixel y position on display of given height back to amplitude.
|
|
// Note that display coordinates are flipped: amplitude grows from [height] to zero.
|
|
// Also note that in logarithmic Y mode the returned amplitude is in dB, not linear.
|
|
float SaProcessor::yPixelToAmp(float y, unsigned int height) const
|
|
{
|
|
if (m_controls->m_logYModel.value())
|
|
{
|
|
float max = getAmpRangeMax();
|
|
float range = getAmpRangeMin() - max;
|
|
return max + range * (y / height);
|
|
}
|
|
else
|
|
{
|
|
// linear scale: convert returned ranges from dB to linear scale
|
|
float max = fastPow10f(getAmpRangeMax() / 10);
|
|
float range = fastPow10f(getAmpRangeMin() / 10) - max;
|
|
return max + range * (y / height);
|
|
}
|
|
}
|
|
|
|
|
|
} // namespace lmms
|