Files
lmms/plugins/SpectrumAnalyzer/SaProcessor.cpp
Rossmaxx 7367750823 [Code Cleanup] Cleaned up some header files and move a bit of debugging logic to cmake (#7677)
* Renamed lmms_basics.h to LmmsTypes.h and scoped it down for that purpose.

* Shifted the LMMS_STRINGIFY macro to it's own header.

* Removed the debug.h header file and use cmake to handle the macro logic.

* Remove some unused headers and include directives
2025-03-24 19:07:46 +05:30

693 lines
24 KiB
C++

/* SaProcessor.cpp - implementation of SaProcessor class.
*
* Copyright (c) 2019 Martin Pavelek <he29/dot/HS/at/gmail/dot/com>
*
* Based partially on Eq plugin code,
* Copyright (c) 2014-2017, David French <dave/dot/french3/at/googlemail/dot/com>
*
* This file is part of LMMS - https://lmms.io
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program (see COPYING); if not, write to the
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301 USA.
*
*/
#include "SaProcessor.h"
#include <algorithm>
#include "lmms_math.h"
#include <cmath>
#ifdef SA_DEBUG
#include <chrono>
#include <iomanip>
#include <iostream>
#endif
#include <QMutexLocker>
#include "fft_helpers.h"
#include "lmms_constants.h"
#include "LocklessRingBuffer.h"
#include "SaControls.h"
#include <cassert>
#include <limits>
namespace lmms
{
SaProcessor::SaProcessor(const SaControls *controls) :
m_controls(controls),
m_terminate(false),
m_inBlockSize(FFT_BLOCK_SIZES[0]),
m_fftBlockSize(FFT_BLOCK_SIZES[0]),
m_sampleRate(Engine::audioEngine()->outputSampleRate()),
m_framesFilledUp(0),
m_spectrumActive(false),
m_waterfallActive(false),
m_waterfallNotEmpty(0),
m_reallocating(false)
{
m_fftWindow.resize(m_inBlockSize, 1.0);
precomputeWindow(m_fftWindow.data(), m_inBlockSize, FFTWindow::BlackmanHarris);
m_bufferL.resize(m_inBlockSize, 0);
m_bufferR.resize(m_inBlockSize, 0);
m_filteredBufferL.resize(m_fftBlockSize, 0);
m_filteredBufferR.resize(m_fftBlockSize, 0);
m_spectrumL = (fftwf_complex *) fftwf_malloc(binCount() * sizeof (fftwf_complex));
m_spectrumR = (fftwf_complex *) fftwf_malloc(binCount() * sizeof (fftwf_complex));
m_fftPlanL = fftwf_plan_dft_r2c_1d(m_fftBlockSize, m_filteredBufferL.data(), m_spectrumL, FFTW_MEASURE);
m_fftPlanR = fftwf_plan_dft_r2c_1d(m_fftBlockSize, m_filteredBufferR.data(), m_spectrumR, FFTW_MEASURE);
m_absSpectrumL.resize(binCount(), 0);
m_absSpectrumR.resize(binCount(), 0);
m_normSpectrumL.resize(binCount(), 0);
m_normSpectrumR.resize(binCount(), 0);
m_waterfallHeight = 100; // a small safe value
m_history_work.resize(waterfallWidth() * m_waterfallHeight * sizeof qRgb(0,0,0), 0);
m_history.resize(waterfallWidth() * m_waterfallHeight * sizeof qRgb(0,0,0), 0);
}
SaProcessor::~SaProcessor()
{
if (m_fftPlanL != nullptr) {fftwf_destroy_plan(m_fftPlanL);}
if (m_fftPlanR != nullptr) {fftwf_destroy_plan(m_fftPlanR);}
if (m_spectrumL != nullptr) {fftwf_free(m_spectrumL);}
if (m_spectrumR != nullptr) {fftwf_free(m_spectrumR);}
m_fftPlanL = nullptr;
m_fftPlanR = nullptr;
m_spectrumL = nullptr;
m_spectrumR = nullptr;
}
// Load data from audio thread ringbuffer and run FFT analysis if buffer is full enough.
void SaProcessor::analyze(LocklessRingBuffer<SampleFrame> &ring_buffer)
{
LocklessRingBufferReader<SampleFrame> reader(ring_buffer);
// Processing thread loop
while (!m_terminate)
{
// If there is nothing to read, wait for notification from the writing side.
if (reader.empty()) {reader.waitForData();}
// skip waterfall render if processing can't keep up with input
bool overload = ring_buffer.free() < ring_buffer.capacity() / 2;
auto in_buffer = reader.read_max(ring_buffer.capacity() / 4);
std::size_t frame_count = in_buffer.size();
// Process received data only if any view is visible and not paused.
// Also, to prevent a momentary GUI freeze under high load (due to lock
// starvation), skip analysis when buffer reallocation is requested.
if ((m_spectrumActive || m_waterfallActive) && !m_controls->m_pauseModel.value() && !m_reallocating)
{
const bool stereo = m_controls->m_stereoModel.value();
fpp_t in_frame = 0;
while (in_frame < frame_count)
{
// Lock data access to prevent reallocation from changing
// buffers and control variables.
QMutexLocker data_lock(&m_dataAccess);
// Fill sample buffers and check for zero input.
bool block_empty = true;
for (; in_frame < frame_count && m_framesFilledUp < m_inBlockSize; in_frame++, m_framesFilledUp++)
{
if (stereo)
{
m_bufferL[m_framesFilledUp] = in_buffer[in_frame][0];
m_bufferR[m_framesFilledUp] = in_buffer[in_frame][1];
}
else
{
m_bufferL[m_framesFilledUp] =
m_bufferR[m_framesFilledUp] = (in_buffer[in_frame][0] + in_buffer[in_frame][1]) * 0.5f;
}
if (in_buffer[in_frame][0] != 0.f || in_buffer[in_frame][1] != 0.f)
{
block_empty = false;
}
}
// Run analysis only if buffers contain enough data.
if (m_framesFilledUp < m_inBlockSize) {break;}
// Print performance analysis once per 2 seconds if debug is enabled
#ifdef SA_DEBUG
unsigned int total_time = std::chrono::high_resolution_clock::now().time_since_epoch().count();
if (total_time - m_last_dump_time > 2000000000)
{
std::cout << "FFT analysis: " << std::fixed << std::setprecision(2)
<< m_sum_execution / m_dump_count << " ms avg / "
<< m_max_execution << " ms peak, executing "
<< m_dump_count << " times per second ("
<< m_sum_execution / 20.0 << " % CPU usage)." << std::endl;
m_last_dump_time = total_time;
m_sum_execution = m_max_execution = m_dump_count = 0;
}
#endif
// update sample rate
m_sampleRate = Engine::audioEngine()->outputSampleRate();
// apply FFT window
for (unsigned int i = 0; i < m_inBlockSize; i++)
{
m_filteredBufferL[i] = m_bufferL[i] * m_fftWindow[i];
m_filteredBufferR[i] = m_bufferR[i] * m_fftWindow[i];
}
// Run FFT on left channel, convert the result to absolute magnitude
// spectrum and normalize it.
fftwf_execute(m_fftPlanL);
absspec(m_spectrumL, m_absSpectrumL.data(), binCount());
normalize(m_absSpectrumL, m_normSpectrumL, m_inBlockSize);
// repeat analysis for right channel if stereo processing is enabled
if (stereo)
{
fftwf_execute(m_fftPlanR);
absspec(m_spectrumR, m_absSpectrumR.data(), binCount());
normalize(m_absSpectrumR, m_normSpectrumR, m_inBlockSize);
}
// count empty lines so that empty history does not have to update
if (block_empty && m_waterfallNotEmpty)
{
m_waterfallNotEmpty -= 1;
}
else if (!block_empty)
{
m_waterfallNotEmpty = m_waterfallHeight + 2;
}
if (m_waterfallActive && m_waterfallNotEmpty)
{
// move waterfall history one line down and clear the top line
auto pixel = (QRgb*)m_history_work.data();
std::copy(pixel,
pixel + waterfallWidth() * m_waterfallHeight - waterfallWidth(),
pixel + waterfallWidth());
memset(pixel, 0, waterfallWidth() * sizeof (QRgb));
// add newest result on top
float accL = 0; // accumulators for merging multiple bins
float accR = 0;
for (unsigned int i = 0; i < binCount(); i++)
{
// fill line with red color to indicate lost data if CPU cannot keep up
if (overload && i < waterfallWidth())
{
pixel[i] = qRgb(42, 0, 0);
continue;
}
// Every frequency bin spans a frequency range that must be
// partially or fully mapped to a pixel. Any inconsistency
// may be seen in the spectrogram as dark or white lines --
// play white noise to confirm your change did not break it.
float band_start = freqToXPixel(binToFreq(i) - binBandwidth() / 2.0, waterfallWidth());
float band_end = freqToXPixel(binToFreq(i + 1) - binBandwidth() / 2.0, waterfallWidth());
if (m_controls->m_logXModel.value())
{
// Logarithmic scale
if (band_end - band_start > 1.0)
{
// band spans multiple pixels: draw all pixels it covers
for (auto target = static_cast<std::size_t>(std::max(band_start, 0.f));
target < band_end && target < waterfallWidth(); target++)
{
pixel[target] = makePixel(m_normSpectrumL[i], m_normSpectrumR[i]);
}
// save remaining portion of the band for the following band / pixel
// (in case the next band uses sub-pixel drawing)
accL = (band_end - (int)band_end) * m_normSpectrumL[i];
accR = (band_end - (int)band_end) * m_normSpectrumR[i];
}
else
{
// sub-pixel drawing; add contribution of current band
int target = static_cast<int>(band_start);
if ((int)band_start == (int)band_end)
{
// band ends within current target pixel, accumulate
accL += (band_end - band_start) * m_normSpectrumL[i];
accR += (band_end - band_start) * m_normSpectrumR[i];
}
else
{
// Band ends in the next pixel -- finalize the current pixel.
// Make sure contribution is split correctly on pixel boundary.
accL += ((int)band_end - band_start) * m_normSpectrumL[i];
accR += ((int)band_end - band_start) * m_normSpectrumR[i];
if (target >= 0 && static_cast<std::size_t>(target) < waterfallWidth()) {
pixel[target] = makePixel(accL, accR);
}
// save remaining portion of the band for the following band / pixel
accL = (band_end - (int)band_end) * m_normSpectrumL[i];
accR = (band_end - (int)band_end) * m_normSpectrumR[i];
}
}
}
else
{
// Linear: always draws one or more pixels per band
for (auto target = static_cast<std::size_t>(std::max(band_start, 0.f));
target < band_end && target < waterfallWidth(); target++)
{
pixel[target] = makePixel(m_normSpectrumL[i], m_normSpectrumR[i]);
}
}
}
// Copy work buffer to result buffer. Done only if requested, so
// that time isn't wasted on updating faster than display FPS.
// (The copy is about as expensive as the movement.)
if (m_flipRequest)
{
m_history = m_history_work;
m_flipRequest = false;
}
}
// clean up before checking for more data from input buffer
const unsigned int overlaps = m_controls->m_windowOverlapModel.value();
if (overlaps == 1) // Discard buffer, each sample used only once
{
m_framesFilledUp = 0;
}
else
{
// Drop only a part of the buffer from the beginning, so that new
// data can be added to the end. This means the older samples will
// be analyzed again, but in a different position in the window,
// making short transient signals show up better in the waterfall.
const unsigned int drop = m_inBlockSize / overlaps;
std::move(m_bufferL.begin() + drop, m_bufferL.end(), m_bufferL.begin());
std::move(m_bufferR.begin() + drop, m_bufferR.end(), m_bufferR.begin());
m_framesFilledUp -= drop;
}
#ifdef SA_DEBUG
// measure overall FFT processing speed
total_time = std::chrono::high_resolution_clock::now().time_since_epoch().count() - total_time;
m_dump_count++;
m_sum_execution += total_time / 1000000.0;
if (total_time / 1000000.0 > m_max_execution) {m_max_execution = total_time / 1000000.0;}
#endif
} // frame filler and processing
} // process if active
} // thread loop end
}
// Produce a spectrogram pixel from normalized spectrum data.
// Values over 1.0 will cause the color components to overflow: this is left
// intentionally untreated as it clearly indicates which frequency is clipping.
// Gamma correction is applied to make small values more visible and to make
// a linear gradient actually appear roughly linear. The correction should be
// around 0.42 to 0.45 for sRGB displays (or lower for bigger visibility boost).
QRgb SaProcessor::makePixel(float left, float right) const
{
const float gamma_correction = m_controls->m_waterfallGammaModel.value();
if (m_controls->m_stereoModel.value())
{
float ampL = std::pow(left, gamma_correction);
float ampR = std::pow(right, gamma_correction);
return qRgb(m_controls->m_colorL.red() * ampL + m_controls->m_colorR.red() * ampR,
m_controls->m_colorL.green() * ampL + m_controls->m_colorR.green() * ampR,
m_controls->m_colorL.blue() * ampL + m_controls->m_colorR.blue() * ampR);
}
else
{
float ampL = std::pow(left, gamma_correction);
// make mono color brighter to compensate for the fact it is not summed
return qRgb(m_controls->m_colorMonoW.red() * ampL,
m_controls->m_colorMonoW.green() * ampL,
m_controls->m_colorMonoW.blue() * ampL);
}
}
// Inform the processor whether any display widgets actually need it.
void SaProcessor::setSpectrumActive(bool active)
{
m_spectrumActive = active;
}
void SaProcessor::setWaterfallActive(bool active)
{
m_waterfallActive = active;
}
// Reallocate data buffers according to newly set block size.
void SaProcessor::reallocateBuffers()
{
m_zeroPadFactor = m_controls->m_zeroPaddingModel.value();
// get new block sizes and bin count based on selected index
const unsigned int new_size_index = m_controls->m_blockSizeModel.value();
const unsigned int new_in_size = new_size_index < FFT_BLOCK_SIZES.size()
? FFT_BLOCK_SIZES[new_size_index]
: FFT_BLOCK_SIZES.back();
const unsigned int new_fft_size = (new_size_index + m_zeroPadFactor < FFT_BLOCK_SIZES.size())
? FFT_BLOCK_SIZES[new_size_index + m_zeroPadFactor]
: FFT_BLOCK_SIZES.back();
const unsigned int new_bins = new_fft_size / 2 + 1;
// Use m_reallocating to tell analyze() to avoid asking for the lock. This
// is needed because under heavy load the FFT thread requests data lock so
// often that this routine could end up waiting even for several seconds.
m_reallocating = true;
// Lock data shared with SaSpectrumView and SaWaterfallView.
// Reallocation lock must be acquired first to avoid deadlock (a view class
// may already have it and request the "stronger" data lock on top of that).
QMutexLocker reloc_lock(&m_reallocationAccess);
QMutexLocker data_lock(&m_dataAccess);
// destroy old FFT plan and free the result buffer
if (m_fftPlanL != nullptr) {fftwf_destroy_plan(m_fftPlanL);}
if (m_fftPlanR != nullptr) {fftwf_destroy_plan(m_fftPlanR);}
if (m_spectrumL != nullptr) {fftwf_free(m_spectrumL);}
if (m_spectrumR != nullptr) {fftwf_free(m_spectrumR);}
// allocate new space, create new plan and resize containers
m_fftWindow.resize(new_in_size, 1.0);
precomputeWindow(m_fftWindow.data(), new_in_size, (FFTWindow) m_controls->m_windowModel.value());
m_bufferL.resize(new_in_size, 0);
m_bufferR.resize(new_in_size, 0);
m_filteredBufferL.resize(new_fft_size, 0);
m_filteredBufferR.resize(new_fft_size, 0);
m_spectrumL = (fftwf_complex *) fftwf_malloc(new_bins * sizeof (fftwf_complex));
m_spectrumR = (fftwf_complex *) fftwf_malloc(new_bins * sizeof (fftwf_complex));
m_fftPlanL = fftwf_plan_dft_r2c_1d(new_fft_size, m_filteredBufferL.data(), m_spectrumL, FFTW_MEASURE);
m_fftPlanR = fftwf_plan_dft_r2c_1d(new_fft_size, m_filteredBufferR.data(), m_spectrumR, FFTW_MEASURE);
if (m_fftPlanL == nullptr || m_fftPlanR == nullptr)
{
#ifdef SA_DEBUG
std::cerr << "Analyzer: failed to create new FFT plan!" << std::endl;
#endif
}
m_absSpectrumL.resize(new_bins, 0);
m_absSpectrumR.resize(new_bins, 0);
m_normSpectrumL.resize(new_bins, 0);
m_normSpectrumR.resize(new_bins, 0);
m_waterfallHeight = m_controls->m_waterfallHeightModel.value();
m_history_work.resize((new_bins < m_waterfallMaxWidth ? new_bins : m_waterfallMaxWidth)
* m_waterfallHeight
* sizeof qRgb(0,0,0), 0);
m_history.resize((new_bins < m_waterfallMaxWidth ? new_bins : m_waterfallMaxWidth)
* m_waterfallHeight
* sizeof qRgb(0,0,0), 0);
// done; publish new sizes and clean up
m_inBlockSize = new_in_size;
m_fftBlockSize = new_fft_size;
data_lock.unlock();
reloc_lock.unlock();
m_reallocating = false;
clear();
}
// Precompute a new FFT window based on currently selected type.
void SaProcessor::rebuildWindow()
{
// computation is done in fft_helpers
QMutexLocker lock(&m_dataAccess);
precomputeWindow(m_fftWindow.data(), m_inBlockSize, (FFTWindow) m_controls->m_windowModel.value());
}
// Clear all data buffers and replace contents with zeros.
// Note: may take a few milliseconds, do not call in a loop!
void SaProcessor::clear()
{
const unsigned int overlaps = m_controls->m_windowOverlapModel.value();
QMutexLocker lock(&m_dataAccess);
// If there is any window overlap, leave space only for the new samples
// and treat the rest at initialized with zeros. Prevents missing
// transients at the start of the very first block.
m_framesFilledUp = m_inBlockSize - m_inBlockSize / overlaps;
std::fill(m_bufferL.begin(), m_bufferL.end(), 0);
std::fill(m_bufferR.begin(), m_bufferR.end(), 0);
std::fill(m_filteredBufferL.begin(), m_filteredBufferL.end(), 0);
std::fill(m_filteredBufferR.begin(), m_filteredBufferR.end(), 0);
std::fill(m_absSpectrumL.begin(), m_absSpectrumL.end(), 0);
std::fill(m_absSpectrumR.begin(), m_absSpectrumR.end(), 0);
std::fill(m_normSpectrumL.begin(), m_normSpectrumL.end(), 0);
std::fill(m_normSpectrumR.begin(), m_normSpectrumR.end(), 0);
std::fill(m_history_work.begin(), m_history_work.end(), 0);
std::fill(m_history.begin(), m_history.end(), 0);
}
// Clear only history work buffer. Used to flush old data when waterfall
// is shown after a period of inactivity.
void SaProcessor::clearHistory()
{
QMutexLocker lock(&m_dataAccess);
std::fill(m_history_work.begin(), m_history_work.end(), 0);
}
// Check if result buffers contain any non-zero values
bool SaProcessor::spectrumNotEmpty()
{
QMutexLocker lock(&m_reallocationAccess);
return notEmpty(m_normSpectrumL) || notEmpty(m_normSpectrumR);
}
// --------------------------------------
// Frequency conversion helpers
//
// Get sample rate value that is valid for currently stored results.
unsigned int SaProcessor::getSampleRate() const
{
return m_sampleRate;
}
// Maximum frequency of a sampled signal is equal to half of its sample rate.
float SaProcessor::getNyquistFreq() const
{
return getSampleRate() / 2.0f;
}
// FFTW automatically discards upper half of the symmetric FFT output, so
// the useful bin count is the transform size divided by 2, plus zero.
unsigned int SaProcessor::binCount() const
{
return m_fftBlockSize / 2 + 1;
}
// Return the final width of waterfall display buffer.
// Normally the waterfall width equals the number of frequency bins, but the
// FFT transform can easily produce more bins than can be reasonably useful for
// currently used display resolutions. This function limits width of the final
// image to a given size, which is then used during waterfall render and display.
unsigned int SaProcessor::waterfallWidth() const
{
return binCount() < m_waterfallMaxWidth ? binCount() : m_waterfallMaxWidth;
}
// Return the center frequency of given frequency bin.
float SaProcessor::binToFreq(unsigned int bin_index) const
{
return getNyquistFreq() * bin_index / binCount();
}
// Return width of the frequency range that falls into one bin.
// The binCount is lowered by one since half of the first and last bin is
// actually outside the frequency range.
float SaProcessor::binBandwidth() const
{
return getNyquistFreq() / (binCount() - 1);
}
float SaProcessor::getFreqRangeMin(bool linear) const
{
switch (static_cast<FrequencyRange>(m_controls->m_freqRangeModel.value()))
{
case FrequencyRange::Audible: return FRANGE_AUDIBLE_START;
case FrequencyRange::Bass: return FRANGE_BASS_START;
case FrequencyRange::Mids: return FRANGE_MIDS_START;
case FrequencyRange::High: return FRANGE_HIGH_START;
default:
case FrequencyRange::Full: return linear ? 0 : LOWEST_LOG_FREQ;
}
}
float SaProcessor::getFreqRangeMax() const
{
switch (static_cast<FrequencyRange>(m_controls->m_freqRangeModel.value()))
{
case FrequencyRange::Audible: return FRANGE_AUDIBLE_END;
case FrequencyRange::Bass: return FRANGE_BASS_END;
case FrequencyRange::Mids: return FRANGE_MIDS_END;
case FrequencyRange::High: return FRANGE_HIGH_END;
default:
case FrequencyRange::Full: return getNyquistFreq();
}
}
// Map frequency to pixel x position on a display of given width.
// NOTE: Results of this function may be cached by SaSpectrumView. If you use
// a new function call or variable that can affect results of this function,
// make sure to also add it as a trigger for cache update in SaSpectrumView.
float SaProcessor::freqToXPixel(float freq, unsigned int width) const
{
if (m_controls->m_logXModel.value())
{
if (freq <= 1) {return 0;}
float min = std::log10(getFreqRangeMin());
float range = std::log10(getFreqRangeMax()) - min;
return (std::log10(freq) - min) / range * width;
}
else
{
float min = getFreqRangeMin();
float range = getFreqRangeMax() - min;
return (freq - min) / range * width;
}
}
// Map pixel x position on display of given width back to frequency.
float SaProcessor::xPixelToFreq(float x, unsigned int width) const
{
if (m_controls->m_logXModel.value())
{
float min = std::log10(getFreqRangeMin());
float max = std::log10(getFreqRangeMax());
float range = max - min;
return fastPow10f(min + x / width * range);
}
else
{
float min = getFreqRangeMin();
float range = getFreqRangeMax() - min;
return min + x / width * range;
}
}
// --------------------------------------
// Amplitude conversion helpers
//
float SaProcessor::getAmpRangeMin(bool linear) const
{
// return very low limit to make sure zero gets included at linear grid
if (linear) {return -900;}
switch (static_cast<AmplitudeRange>(m_controls->m_ampRangeModel.value()))
{
case AmplitudeRange::Extended: return ARANGE_EXTENDED_START;
case AmplitudeRange::Silent: return ARANGE_SILENT_START;
case AmplitudeRange::Loud: return ARANGE_LOUD_START;
default:
case AmplitudeRange::Audible: return ARANGE_AUDIBLE_START;
}
}
float SaProcessor::getAmpRangeMax() const
{
switch (static_cast<AmplitudeRange>(m_controls->m_ampRangeModel.value()))
{
case AmplitudeRange::Extended: return ARANGE_EXTENDED_END;
case AmplitudeRange::Silent: return ARANGE_SILENT_END;
case AmplitudeRange::Loud: return ARANGE_LOUD_END;
default:
case AmplitudeRange::Audible: return ARANGE_AUDIBLE_END;
}
}
// Map linear amplitude to pixel y position on a display of given height.
// Note that display coordinates are flipped: amplitude grows from [height] to zero.
float SaProcessor::ampToYPixel(float amplitude, unsigned int height) const
{
if (m_controls->m_logYModel.value())
{
// logarithmic scale: convert linear amplitude to dB (relative to 1.0)
assert (amplitude >= 0);
float amplitude_dB = 10 * std::log10(std::max(amplitude, std::numeric_limits<float>::min()));
if (amplitude_dB < getAmpRangeMin())
{
return height;
}
else
{
float max = getAmpRangeMax();
float range = getAmpRangeMin() - max;
return (amplitude_dB - max) / range * height;
}
}
else
{
// linear scale: convert returned ranges from dB to linear scale
float max = fastPow10f(getAmpRangeMax() / 10);
float range = fastPow10f(getAmpRangeMin() / 10) - max;
return (amplitude - max) / range * height;
}
}
// Map pixel y position on display of given height back to amplitude.
// Note that display coordinates are flipped: amplitude grows from [height] to zero.
// Also note that in logarithmic Y mode the returned amplitude is in dB, not linear.
float SaProcessor::yPixelToAmp(float y, unsigned int height) const
{
if (m_controls->m_logYModel.value())
{
float max = getAmpRangeMax();
float range = getAmpRangeMin() - max;
return max + range * (y / height);
}
else
{
// linear scale: convert returned ranges from dB to linear scale
float max = fastPow10f(getAmpRangeMax() / 10);
float range = fastPow10f(getAmpRangeMin() / 10) - max;
return max + range * (y / height);
}
}
} // namespace lmms