Compare commits

..

9 Commits

Author SHA1 Message Date
Patrick Devine
b7349a4efd more linter feeding 2025-02-18 13:32:58 -08:00
Patrick Devine
4cda3e3622 feed the linter 2025-02-18 13:16:43 -08:00
Patrick Devine
95fbf1da12 fix causal test 2025-02-18 13:02:44 -08:00
Patrick Devine
83d1a1ab55 cleanup 2025-02-18 12:47:34 -08:00
Patrick Devine
035e69799e clean up 2025-02-18 12:40:12 -08:00
Patrick Devine
10e06d0a45 gemma2 ftw 2025-02-18 12:40:02 -08:00
Patrick Devine
8cf1ea4fd8 add sentence piece tokenizer 2025-02-18 12:39:45 -08:00
Patrick Devine
d231229122 cache is king 2025-02-18 12:39:27 -08:00
Patrick Devine
fad98fabab gemma2 impl 2025-02-18 12:39:17 -08:00
17 changed files with 541 additions and 696 deletions

View File

@@ -24,7 +24,7 @@ set(GGML_LLAMAFILE ON)
set(GGML_CUDA_PEER_MAX_BATCH_SIZE 128)
set(GGML_CUDA_GRAPHS ON)
if((CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
if((NOT CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
OR (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_SYSTEM_PROCESSOR MATCHES "arm|aarch64|ARM64|ARMv[0-9]+"))
set(GGML_CPU_ALL_VARIANTS ON)
endif()

View File

@@ -1,338 +0,0 @@
# Guide: Implementing Models in Ollama's Go Inference Engine
> **Note**: This guide and the Go inference engine are in early development and will be updated as implementation details evolve.
This guide outlines the process of implementing a new model in Ollama's inference engine. It covers everything from initial setup to publishing your model to ollama.com.
## Architecture Overview
Below is a diagram showing Ollama's inference engine architecture layers and how they interact:
```mermaid
graph TB
subgraph Models["Model Layer: LLM Implementations"]
direction TB
llama["model/models/llama"]
mllama["model/models/mllama"]
qwen["model/models/qwen2"]
etc["...etc"]
note1[" Each model implements a<br>specific architecture:<br>- Defines model parameters<br>- Implements forward pass"]
end
subgraph ML_Ops["Neural Network Operations"]
direction TB
nn_ops[" nn/<br>linear.go: Matrix multiplication<br>embedding.go: Token embedding lookups<br>normalization.go: Layer norm operations<br>convolution.go: Convolutional operations "]
backend[" ml/backend.go<br>Hardware Abstraction Layer:<br>- Defines tensor operations<br>- Manages computation graphs<br>- Handles memory allocation "]
note2[" Common neural net operations:<br>- Abstracts hardware details<br>- Provides unified API<br>- Manages computation flow "]
end
subgraph Hardware["Backend Execution Layer"]
direction TB
backend_impl[" The backend package provides:<br>- Unified computation interface<br>- Automatic hardware selection<br>- Optimized kernels<br>- Efficient memory management "]
subgraph Backends["Backend Implementations"]
direction LR
cpu["backend/cpu<br>- Pure Go implementation<br>- Fallback for all platforms"]
metal["backend/metal<br>- Apple Silicon (M1/M2/M3)<br>- MLX integration<br>- Leverages Apple Neural Engine"]
onnx["backend/onnx<br>- Cross-platform compatibility<br>- ONNX Runtime integration<br>- Pre-compiled graph execution"]
ggml["backend/ggml<br>- CPU/GPU quantized compute<br>- Low-precision operations<br>- Memory-efficient inferencing"]
end
end
Models --> |" Makes high-level calls<br>(e.g., self-attention) "| ML_Ops
ML_Ops --> |" Translates to tensor operations<br>(e.g., matmul, softmax) "| Hardware
backend_impl --> Backends
```
When implementing a new model, you'll primarily work in the model layer, interfacing with the neural network operations layer.
## Implementation Process Overview
Here's the high-level process for implementing a new model in Ollama:
1. **Environment Setup**: Clone the repository and set up your development environment
2. **Research Implementation**: Understand the original model architecture
3. **Project Structure Setup**: Set up the necessary file structure
4. **Create Basic Modelfile**: Create a simple Modelfile for testing
5. **Implement Weight Conversion**: Map from original format to GGUF
6. **Open a Draft PR**: Create a draft pull request to establish communication with maintainers
7. **Implement Model Logic**: Create the model architecture and forward pass
8. **Quality Check and Final Steps**: Create a Modelfile, add tests and ensure functionality
10. **Finalize PR and Publish**: Complete the PR and publish to ollama.com
## Implementation Steps in Detail
### 1. Environment Setup
First, clone the Ollama repository and get it running locally. Follow the development setup guide at:
https://github.com/ollama/ollama/blob/main/docs/development.md
### 2. Research Implementation
Get the original model implementation running. This typically involves:
- Cloning the research code repository (usually Python-based)
- Setting up the required environment
- Running inference with sample inputs
- Understanding the model architecture and forward pass
### 3. Project Structure Setup
Create the necessary file structure by referencing previous model implementations. You'll need:
```
convert/
└── convert_your-model.go # Weight conversion logic (PyTorch/SafeTensors to GGML)
model/
└── your-model/
└── model.go # Architecture and forward pass implementation
```
Add your model to the main paths in [model/models/models.go](https://github.com/ollama/ollama/blob/main/model/models/models.go):
```
package models
import (
_ "github.com/ollama/ollama/model/models/llama"
_ "github.com/ollama/ollama/model/models/mllama"
_ "github.com/ollama/ollama/model/models/your-model" // Add your model here
)
```
### 4. Create a Basic Modelfile
Create a simple Modelfile early in the process to facilitate testing:
```
FROM /path/to/model
TEMPLATE "{{.Prompt}}" # Use a static prompt format for initial testing
```
This allows you to test your implementation with consistent inputs before finalizing the proper prompt template.
### 5. Implement Weight Conversion
- Work on `convert/convert_your-model.go`
- Reference existing conversion implementations
- Conversion involves mapping from PyTorch/SafeTensors naming to GGUF naming as you see fit
- Understand typical GGUF layout and structure:
**Typical GGUF Layout:**
```
GGUF
├── Metadata Section
│ ├── Model Parameters
│ │ ├── General architecture parameters
│ │ │ ├── "{arch}.vocab_size" (e.g., "llama.vocab_size")
│ │ │ ├── "{arch}.context_length" (e.g., "llama.context_length")
│ │ │ ├── "{arch}.embedding_length" (e.g., "llama.embedding_length")
│ │ │ └── "{arch}.block_count" (e.g., "llama.block_count")
│ │ │
│ │ └── Architecture-specific parameters
│ │ ├── "{arch}.attention.head_count" (e.g., "llama.attention.head_count")
│ │ ├── "{arch}.attention.head_count_kv" (e.g., "llama.attention.head_count_kv")
│ │ ├── "{arch}.rope.dimension_count" (e.g., "llama.rope.dimension_count")
│ │ └── "{arch}.attention.layer_norm_rms_epsilon" (e.g., "llama.attention.layer_norm_rms_epsilon")
│ │
│ ├── Tokenizer parameters
│ │ ├── "tokenizer.ggml.model" (e.g., "llama")
│ │ ├── "tokenizer.ggml.tokens" (vocabulary tokens)
│ │ ├── "tokenizer.ggml.bos_id" (beginning of sequence token ID)
│ │ └── "tokenizer.ggml.eos_id" (end of sequence token ID)
│ │
│ └── General metadata
│ └── "general.architecture" (e.g., "llama", "qwen2", "phi")
└── Tensor Data Section
├── Common tensors:
│ ├── "token_embd.weight" (token embedding matrix)
│ ├── "rope_freqs.weight" (RoPE frequency weights)
│ ├── "output_norm.weight" (final layer normalization)
│ └── "output.weight" (output projection)
└── Layer-specific tensors:
├── "blk.{i}.attn_q.weight" (query projection)
├── "blk.{i}.attn_k.weight" (key projection)
├── "blk.{i}.attn_v.weight" (value projection)
├── "blk.{i}.attn_output.weight" (attention output)
├── "blk.{i}.attn_norm.weight" (attention normalization)
├── "blk.{i}.ffn_norm.weight" (feed-forward normalization)
├── "blk.{i}.ffn_up.weight" (FFN up projection)
├── "blk.{i}.ffn_down.weight" (FFN down projection)
└── "blk.{i}.ffn_gate.weight" (FFN gate projection)
```
- Key conversion details include:
- Linear weight matrices (sometimes need transposition)
- Layer normalization weights (might need reshaping)
- **Note: In GGML, FFN values are for the MLP (Multi-Layer Perceptron) part of the architecture**
- Test conversion:
```bash
go run . create <my-model> -f /path/to/Modelfile
```
### 6. Open a Draft PR
After implementing the initial weight conversion, creating a draft pull request is recommended as it:
- Establishes a communication channel with Ollama maintainers
- Allows for early feedback on your approach
- Makes it easier to track progress and changes
To open a draft PR:
1. Fork the repository
2. Create a new branch for your model implementation
3. Make initial commits with your weight conversion implementation
4. Open a PR in the `ollama/ollama` repository and mark it as draft
5. Include a clear description of the model you're implementing
### 7. Implement Model Logic
- Reference existing model implementations
- Implement `New()` and `Forward()` functions in `model.go`:
**The `New()` function:**
- Creates and initializes your model structure
- Loads configuration parameters (embedding size, attention heads, etc.)
- Sets up the tokenizer with vocabulary and special tokens
- Initializes all model layers and weights
- **Important**: Sets up the KV cache for efficient inference
- Example:
```go
func New(c ml.Config) (model.Model, error) {
m := &Model{
// Initialize tokenizer
BytePairEncoding: model.NewBytePairEncoding(...),
// Create layer arrays
Layers: make([]Layer, c.Uint("block_count")),
// Set model parameters
Options: &Options{...},
}
// Initialize KV cache for efficient inference
m.Cache = kvcache.NewCausalCache(m.Shift)
return m, nil
}
```
**The `Forward()` function:**
- **What it does**: Defines the computational graph of your model
- **Important**: The graph is NOT executed immediately - it's built first, then executed later when predictions are needed
- Takes input tokens and converts them to embeddings
- Processes inputs through transformer layers (attention and feed-forward networks)
- Creates the path for data flow through your model's components
- Example:
```go
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
// Convert inputs to tensors
inputTensor, _ := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
positionsTensor, _ := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
// Initial token embedding
hiddenStates := m.TokenEmbedding.Forward(ctx, inputTensor)
// Process through transformer layers
for i, layer := range m.Layers {
m.Cache.SetLayer(i)
hiddenStates = layer.Forward(ctx, hiddenStates, positionsTensor, m.Cache, m.Options)
}
// Final processing and output
normalizedOutput := m.OutputNorm.Forward(ctx, hiddenStates, m.modelEpsilon)
logits := m.Output.Forward(ctx, normalizedOutput)
// Return logits for requested positions
outputsTensor, _ := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
return logits.Rows(ctx, outputsTensor), nil
}
```
**Key Components to Implement:**
1. **KV Cache**:
- Improves inference performance for text generation
- How it works: Stores previously computed key and value tensors from self-attention, avoiding redundant computations
- Implementation: Use the `kvcache.NewCausalCache()` for autoregressive models
- Important: Must implement the `Shift()` function to handle rotary position embeddings with the cache
2. **Self-Attention**:
- Core component that learns contextual relationships between tokens
- Implements query, key, value projections and their interactions
- Must handle positional encoding (usually Rotary Position Embeddings)
- Uses the KV cache to make generation efficient
3. **Normalization Layers**:
- Purpose: Stabilizes training and maintains consistent activation distributions
- Types: RMSNorm, LayerNorm, etc. depending on model architecture
- Implementation: Apply before attention and feed-forward networks
- Example: `normalizedOutput := m.OutputNorm.Forward(ctx, hiddenStates, m.modelEpsilon)`
4. **Activation Functions**:
- Purpose: Introduces non-linearity into the model
- Common types: SILU (Sigmoid Linear Unit), GELU, ReLU
- Found in feed-forward/MLP blocks
- Example:
```go
// SwiGLU activation in MLP
gateActivation := mlp.Gate.Forward(ctx, hiddenState).SILU(ctx)
upProjection := mlp.Up.Forward(ctx, hiddenState)
intermediateStates := gateActivation.Mul(ctx, upProjection)
```
- Run your forward pass:
```bash
# in the root of the ollama directory
go build .
OLLAMA_DEBUG=1 ./ollama serve
OLLAMA_DEBUG=1 ./ollama run <my-model>
```
- Compare output with research implementation
### 8. Quality Check and Final Steps
1. Add comprehensive tests to:
- `model_test.go`
- `convert_test.go`
2. Ensure tests cover:
- Weight conversion
- Model initialization
- Text generation
3. **Create Final Modelfile**
- Replace the static prompt with the proper Go template for your model:
```
FROM <converted-gguf>
TEMPLATE <prompt-template> # Add the proper Go template for your model, including tools if needed
LICENSE <license-info> # Add appropriate license information
# Add additional parameters if needed
```
4. **End-to-end Testing**
- Run your model with your local Ollama build to ensure that it functions as expected
5. Benchmark
- Run performance benchmarks on your model implementation
```go
# from the root of the Ollama directory, while a server is running locally
go build .
OLLAMA_DEBUG=1 ./ollama serve
go test -bench=. -m <your-model-name> ./...
```
### 9. Finalize PR and Publish to ollama.com
1. **Finalize Pull Request**
- Move PR out of draft state
- Address reviewer feedback
2. **Publish to ollama.com**
- Push to ollama.com:
```bash
ollama create <your-namespace>/<your-model> -f /path/to/Modelfile
ollama push <your-namespace>/<your-model>
```

View File

@@ -120,6 +120,15 @@ func (kv KV) Uints(key string, defaultValue ...[]uint32) []uint32 {
return s
}
func (kv KV) Floats(key string, defaultValue ...[]float32) []float32 {
r := keyValue(kv, key, &array{})
s := make([]float32, r.size)
for i := range r.size {
s[i] = float32(r.values[i].(float32))
}
return s
}
func keyValue[T string | uint32 | uint64 | float32 | *array](kv KV, key string, defaultValue ...T) T {
if !strings.HasPrefix(key, "tokenizer.") && !strings.HasPrefix(key, "general.") {
key = kv.Architecture() + "." + key

1
go.mod
View File

@@ -18,6 +18,7 @@ require (
github.com/agnivade/levenshtein v1.1.1
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1
github.com/dlclark/regexp2 v1.11.4
github.com/emirpasic/gods v1.18.1
github.com/emirpasic/gods/v2 v2.0.0-alpha
github.com/google/go-cmp v0.6.0
github.com/mattn/go-runewidth v0.0.14

2
go.sum
View File

@@ -44,6 +44,8 @@ github.com/dgryski/trifles v0.0.0-20200323201526-dd97f9abfb48 h1:fRzb/w+pyskVMQ+
github.com/dgryski/trifles v0.0.0-20200323201526-dd97f9abfb48/go.mod h1:if7Fbed8SFyPtHLHbg49SI7NAdJiC5WIA09pe59rfAA=
github.com/dlclark/regexp2 v1.11.4 h1:rPYF9/LECdNymJufQKmri9gV604RvvABwgOA8un7yAo=
github.com/dlclark/regexp2 v1.11.4/go.mod h1:DHkYz0B9wPfa6wondMfaivmHpzrQ3v9q8cnmRbL6yW8=
github.com/emirpasic/gods v1.18.1 h1:FXtiHYKDGKCW2KzwZKx0iC0PQmdlorYgdFG9jPXJ1Bc=
github.com/emirpasic/gods v1.18.1/go.mod h1:8tpGGwCnJ5H4r6BWwaV6OrWmMoPhUl5jm/FMNAnJvWQ=
github.com/emirpasic/gods/v2 v2.0.0-alpha h1:dwFlh8pBg1VMOXWGipNMRt8v96dKAIvBehtCt6OtunU=
github.com/emirpasic/gods/v2 v2.0.0-alpha/go.mod h1:W0y4M2dtBB9U5z3YlghmpuUhiaZT2h6yoeE+C1sCp6A=
github.com/envoyproxy/go-control-plane v0.9.0/go.mod h1:YTl/9mNaCwkRvm6d1a2C3ymFceY/DCBVvsKhRF0iEA4=

View File

@@ -434,7 +434,7 @@ func (t *testTensor) Conv2D(ctx ml.Context, weight ml.Tensor, s0, s1, p0, p1, d0
panic("not implemented")
}
func (t *testTensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, dim uint32, base, scale float32) ml.Tensor {
func (t *testTensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, dim, ropeType uint32, base, scale float32) ml.Tensor {
panic("not implemented")
}

View File

@@ -1,285 +0,0 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Sun, 16 Feb 2025 20:00:22 -0500
Subject: [PATCH] use std::filesystem::path instead of wstring
---
ggml/src/ggml-backend-reg.cpp | 116 ++++++++++++----------------------
1 file changed, 40 insertions(+), 76 deletions(-)
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
index 84b21dd8..de78feae 100644
--- a/ggml/src/ggml-backend-reg.cpp
+++ b/ggml/src/ggml-backend-reg.cpp
@@ -72,16 +72,6 @@
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
#endif
-static std::wstring utf8_to_utf16(const std::string & str) {
- std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> converter;
- return converter.from_bytes(str);
-}
-
-static std::string utf16_to_utf8(const std::wstring & str) {
- std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> converter;
- return converter.to_bytes(str);
-}
-
#if defined(__clang__)
# pragma clang diagnostic pop
#endif
@@ -96,12 +86,12 @@ struct dl_handle_deleter {
}
};
-static dl_handle * dl_load_library(const std::wstring & path) {
+static dl_handle * dl_load_library(const std::filesystem::path & path) {
// suppress error dialogs for missing DLLs
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
- HMODULE handle = LoadLibraryW(path.c_str());
+ HMODULE handle = LoadLibraryW(path.wstring().c_str());
SetErrorMode(old_mode);
@@ -129,8 +119,8 @@ struct dl_handle_deleter {
}
};
-static void * dl_load_library(const std::wstring & path) {
- dl_handle * handle = dlopen(utf16_to_utf8(path).c_str(), RTLD_NOW | RTLD_LOCAL);
+static void * dl_load_library(const std::filesystem::path & path) {
+ dl_handle * handle = dlopen(path.string().c_str(), RTLD_NOW | RTLD_LOCAL);
return handle;
}
@@ -222,11 +212,11 @@ struct ggml_backend_registry {
);
}
- ggml_backend_reg_t load_backend(const std::wstring & path, bool silent) {
+ ggml_backend_reg_t load_backend(const std::filesystem::path & path, bool silent) {
dl_handle_ptr handle { dl_load_library(path) };
if (!handle) {
if (!silent) {
- GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(path).c_str());
+ GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path.string().c_str());
}
return nullptr;
}
@@ -234,7 +224,7 @@ struct ggml_backend_registry {
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
if (score_fn && score_fn() == 0) {
if (!silent) {
- GGML_LOG_INFO("%s: backend %s is not supported on this system\n", __func__, utf16_to_utf8(path).c_str());
+ GGML_LOG_INFO("%s: backend %s is not supported on this system\n", __func__, path.string().c_str());
}
return nullptr;
}
@@ -242,7 +232,7 @@ struct ggml_backend_registry {
auto backend_init_fn = (ggml_backend_init_t) dl_get_sym(handle.get(), "ggml_backend_init");
if (!backend_init_fn) {
if (!silent) {
- GGML_LOG_ERROR("%s: failed to find ggml_backend_init in %s\n", __func__, utf16_to_utf8(path).c_str());
+ GGML_LOG_ERROR("%s: failed to find ggml_backend_init in %s\n", __func__, path.string().c_str());
}
return nullptr;
}
@@ -251,16 +241,16 @@ struct ggml_backend_registry {
if (!reg || reg->api_version != GGML_BACKEND_API_VERSION) {
if (!silent) {
if (!reg) {
- GGML_LOG_ERROR("%s: failed to initialize backend from %s: ggml_backend_init returned NULL\n", __func__, utf16_to_utf8(path).c_str());
+ GGML_LOG_ERROR("%s: failed to initialize backend from %s: ggml_backend_init returned NULL\n", __func__, path.string().c_str());
} else {
GGML_LOG_ERROR("%s: failed to initialize backend from %s: incompatible API version (backend: %d, current: %d)\n",
- __func__, utf16_to_utf8(path).c_str(), reg->api_version, GGML_BACKEND_API_VERSION);
+ __func__, path.string().c_str(), reg->api_version, GGML_BACKEND_API_VERSION);
}
}
return nullptr;
}
- GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), utf16_to_utf8(path).c_str());
+ GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), path.string().c_str());
register_backend(reg, score_fn ? score_fn() : -1, std::move(handle));
@@ -396,14 +386,14 @@ ggml_backend_t ggml_backend_init_best(void) {
// Dynamic loading
ggml_backend_reg_t ggml_backend_load(const char * path) {
- return get_reg().load_backend(utf8_to_utf16(path), false);
+ return get_reg().load_backend(path, false);
}
void ggml_backend_unload(ggml_backend_reg_t reg) {
get_reg().unload_backend(reg, true);
}
-static std::wstring get_executable_path() {
+static std::filesystem::path get_executable_path() {
#if defined(__APPLE__)
// get executable path
std::vector<char> path;
@@ -415,15 +405,9 @@ static std::wstring get_executable_path() {
}
path.resize(size);
}
- std::string base_path(path.data(), size);
- // remove executable name
- auto last_slash = base_path.find_last_of('/');
- if (last_slash != std::string::npos) {
- base_path = base_path.substr(0, last_slash);
- }
- return utf8_to_utf16(base_path + "/");
+
+ return std::filesystem::path(path.data()).parent_path();
#elif defined(__linux__) || defined(__FreeBSD__)
- std::string base_path = ".";
std::vector<char> path(1024);
while (true) {
// get executable path
@@ -436,76 +420,56 @@ static std::wstring get_executable_path() {
break;
}
if (len < (ssize_t) path.size()) {
- base_path = std::string(path.data(), len);
- // remove executable name
- auto last_slash = base_path.find_last_of('/');
- if (last_slash != std::string::npos) {
- base_path = base_path.substr(0, last_slash);
- }
- break;
+ return std::filesystem::path(path.data()).parent_path();
}
path.resize(path.size() * 2);
}
-
- return utf8_to_utf16(base_path + "/");
#elif defined(_WIN32)
std::vector<wchar_t> path(MAX_PATH);
DWORD len = GetModuleFileNameW(NULL, path.data(), path.size());
if (len == 0) {
return {};
}
- std::wstring base_path(path.data(), len);
- // remove executable name
- auto last_slash = base_path.find_last_of('\\');
- if (last_slash != std::string::npos) {
- base_path = base_path.substr(0, last_slash);
- }
- return base_path + L"\\";
-#else
- return {};
-#endif
-}
-static std::wstring backend_filename_prefix() {
-#ifdef _WIN32
- return L"ggml-";
+ return std::filesystem::path(path.data()).parent_path();
#else
- return L"libggml-";
+ return {};
#endif
}
-static std::wstring backend_filename_suffix() {
+static std::string backend_filename_prefix() {
#ifdef _WIN32
- return L".dll";
+ return "ggml-";
#else
- return L".so";
+ return "libggml-";
#endif
}
-static std::wstring path_separator() {
+static std::string backend_filename_suffix() {
#ifdef _WIN32
- return L"\\";
+ return ".dll";
#else
- return L"/";
+ return ".so";
#endif
}
static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent, const char * user_search_path) {
// enumerate all the files that match [lib]ggml-name-*.[so|dll] in the search paths
// TODO: search system paths
- std::wstring file_prefix = backend_filename_prefix() + utf8_to_utf16(name) + L"-";
- std::vector<std::wstring> search_paths;
+ namespace fs = std::filesystem;
+ std::string file_prefix = backend_filename_prefix() + name + "-";
+ std::vector<fs::path> search_paths;
+
if (user_search_path == nullptr) {
- search_paths.push_back(L"." + path_separator());
+ search_paths.push_back(fs::current_path());
search_paths.push_back(get_executable_path());
} else {
- search_paths.push_back(utf8_to_utf16(user_search_path) + path_separator());
+ search_paths.push_back(fs::u8path(user_search_path));
}
int best_score = 0;
- std::wstring best_path;
+ fs::path best_path;
- namespace fs = std::filesystem;
for (const auto & search_path : search_paths) {
if (!fs::exists(search_path)) {
continue;
@@ -514,31 +478,31 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
for (const auto & entry : dir_it) {
try {
if (entry.is_regular_file()) {
- std::wstring filename = entry.path().filename().wstring();
- std::wstring ext = entry.path().extension().wstring();
+ std::string filename = entry.path().filename().string();
+ std::string ext = entry.path().extension().string();
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
- dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
+ dl_handle_ptr handle { dl_load_library(entry.path()) };
if (!handle) {
- GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
+ GGML_LOG_ERROR("%s: failed to load %s\n", __func__, entry.path().string().c_str());
continue;
}
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
if (!score_fn) {
- GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
+ GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, entry.path().string().c_str());
continue;
}
int s = score_fn();
- GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
+ GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, entry.path().string().c_str(), s);
if (s > best_score) {
best_score = s;
- best_path = entry.path().wstring();
+ best_path = entry.path();
}
}
}
} catch (const std::exception & e) {
- GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), e.what());
+ GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, entry.path().string().c_str(), e.what());
}
}
}
@@ -546,7 +510,7 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
if (best_score == 0) {
// try to load the base backend
for (const auto & search_path : search_paths) {
- std::wstring path = search_path + backend_filename_prefix() + utf8_to_utf16(name) + backend_filename_suffix();
+ fs::path path = fs::path(search_path) / (backend_filename_prefix() + name + backend_filename_suffix());
if (fs::exists(path)) {
return get_reg().load_backend(path, silent);
}

View File

@@ -17,6 +17,7 @@ type Config interface {
Strings(string, ...[]string) []string
Uints(string, ...[]uint32) []uint32
Floats(string, ...[]float32) []float32
}
type Backend interface {
@@ -76,7 +77,7 @@ type Tensor interface {
Scale(ctx Context, s float64) Tensor
Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim uint32, base, scale float32) Tensor
RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim, ropeType uint32, base, scale float32) Tensor
Tanh(ctx Context) Tensor
GELU(ctx Context) Tensor

View File

@@ -596,10 +596,13 @@ func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
}
const (
ropeTypeNorm C.int = iota
ropeTypeNorm C.int = 0
ropeTypeNeox C.int = 2
ropeTypeMrope C.int = 8
ropeTypeVision C.int = 24
)
func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim uint32, ropeBase, ropeScale float32) ml.Tensor {
func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim, ropeType uint32, ropeBase, ropeScale float32) ml.Tensor {
if ropeFactors == nil {
ropeFactors = &Tensor{}
}
@@ -613,8 +616,8 @@ func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDi
t: C.ggml_rope_ext(
ctx.(*Context).ctx, dequant, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
C.int(ropeDim),
131072, // YaRN n_ctx_train
ropeTypeNorm, // ROPE_TYPE_NORM
C.int(ropeType),
131072, // YaRN n_ctx_train
C.float(ropeBase),
C.float(ropeScale),
0., // YaRN ext_factor

View File

@@ -72,6 +72,16 @@
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
#endif
static std::wstring utf8_to_utf16(const std::string & str) {
std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> converter;
return converter.from_bytes(str);
}
static std::string utf16_to_utf8(const std::wstring & str) {
std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> converter;
return converter.to_bytes(str);
}
#if defined(__clang__)
# pragma clang diagnostic pop
#endif
@@ -86,12 +96,12 @@ struct dl_handle_deleter {
}
};
static dl_handle * dl_load_library(const std::filesystem::path & path) {
static dl_handle * dl_load_library(const std::wstring & path) {
// suppress error dialogs for missing DLLs
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
HMODULE handle = LoadLibraryW(path.wstring().c_str());
HMODULE handle = LoadLibraryW(path.c_str());
SetErrorMode(old_mode);
@@ -119,8 +129,8 @@ struct dl_handle_deleter {
}
};
static void * dl_load_library(const std::filesystem::path & path) {
dl_handle * handle = dlopen(path.string().c_str(), RTLD_NOW | RTLD_LOCAL);
static void * dl_load_library(const std::wstring & path) {
dl_handle * handle = dlopen(utf16_to_utf8(path).c_str(), RTLD_NOW | RTLD_LOCAL);
return handle;
}
@@ -212,11 +222,11 @@ struct ggml_backend_registry {
);
}
ggml_backend_reg_t load_backend(const std::filesystem::path & path, bool silent) {
ggml_backend_reg_t load_backend(const std::wstring & path, bool silent) {
dl_handle_ptr handle { dl_load_library(path) };
if (!handle) {
if (!silent) {
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path.string().c_str());
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(path).c_str());
}
return nullptr;
}
@@ -224,7 +234,7 @@ struct ggml_backend_registry {
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
if (score_fn && score_fn() == 0) {
if (!silent) {
GGML_LOG_INFO("%s: backend %s is not supported on this system\n", __func__, path.string().c_str());
GGML_LOG_INFO("%s: backend %s is not supported on this system\n", __func__, utf16_to_utf8(path).c_str());
}
return nullptr;
}
@@ -232,7 +242,7 @@ struct ggml_backend_registry {
auto backend_init_fn = (ggml_backend_init_t) dl_get_sym(handle.get(), "ggml_backend_init");
if (!backend_init_fn) {
if (!silent) {
GGML_LOG_ERROR("%s: failed to find ggml_backend_init in %s\n", __func__, path.string().c_str());
GGML_LOG_ERROR("%s: failed to find ggml_backend_init in %s\n", __func__, utf16_to_utf8(path).c_str());
}
return nullptr;
}
@@ -241,16 +251,16 @@ struct ggml_backend_registry {
if (!reg || reg->api_version != GGML_BACKEND_API_VERSION) {
if (!silent) {
if (!reg) {
GGML_LOG_ERROR("%s: failed to initialize backend from %s: ggml_backend_init returned NULL\n", __func__, path.string().c_str());
GGML_LOG_ERROR("%s: failed to initialize backend from %s: ggml_backend_init returned NULL\n", __func__, utf16_to_utf8(path).c_str());
} else {
GGML_LOG_ERROR("%s: failed to initialize backend from %s: incompatible API version (backend: %d, current: %d)\n",
__func__, path.string().c_str(), reg->api_version, GGML_BACKEND_API_VERSION);
__func__, utf16_to_utf8(path).c_str(), reg->api_version, GGML_BACKEND_API_VERSION);
}
}
return nullptr;
}
GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), path.string().c_str());
GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), utf16_to_utf8(path).c_str());
register_backend(reg, score_fn ? score_fn() : -1, std::move(handle));
@@ -386,14 +396,14 @@ ggml_backend_t ggml_backend_init_best(void) {
// Dynamic loading
ggml_backend_reg_t ggml_backend_load(const char * path) {
return get_reg().load_backend(path, false);
return get_reg().load_backend(utf8_to_utf16(path), false);
}
void ggml_backend_unload(ggml_backend_reg_t reg) {
get_reg().unload_backend(reg, true);
}
static std::filesystem::path get_executable_path() {
static std::wstring get_executable_path() {
#if defined(__APPLE__)
// get executable path
std::vector<char> path;
@@ -405,9 +415,15 @@ static std::filesystem::path get_executable_path() {
}
path.resize(size);
}
return std::filesystem::path(path.data()).parent_path();
std::string base_path(path.data(), size);
// remove executable name
auto last_slash = base_path.find_last_of('/');
if (last_slash != std::string::npos) {
base_path = base_path.substr(0, last_slash);
}
return utf8_to_utf16(base_path + "/");
#elif defined(__linux__) || defined(__FreeBSD__)
std::string base_path = ".";
std::vector<char> path(1024);
while (true) {
// get executable path
@@ -420,56 +436,76 @@ static std::filesystem::path get_executable_path() {
break;
}
if (len < (ssize_t) path.size()) {
return std::filesystem::path(path.data()).parent_path();
base_path = std::string(path.data(), len);
// remove executable name
auto last_slash = base_path.find_last_of('/');
if (last_slash != std::string::npos) {
base_path = base_path.substr(0, last_slash);
}
break;
}
path.resize(path.size() * 2);
}
return utf8_to_utf16(base_path + "/");
#elif defined(_WIN32)
std::vector<wchar_t> path(MAX_PATH);
DWORD len = GetModuleFileNameW(NULL, path.data(), path.size());
if (len == 0) {
return {};
}
return std::filesystem::path(path.data()).parent_path();
std::wstring base_path(path.data(), len);
// remove executable name
auto last_slash = base_path.find_last_of('\\');
if (last_slash != std::string::npos) {
base_path = base_path.substr(0, last_slash);
}
return base_path + L"\\";
#else
return {};
#endif
}
static std::string backend_filename_prefix() {
static std::wstring backend_filename_prefix() {
#ifdef _WIN32
return "ggml-";
return L"ggml-";
#else
return "libggml-";
return L"libggml-";
#endif
}
static std::string backend_filename_suffix() {
static std::wstring backend_filename_suffix() {
#ifdef _WIN32
return ".dll";
return L".dll";
#else
return ".so";
return L".so";
#endif
}
static std::wstring path_separator() {
#ifdef _WIN32
return L"\\";
#else
return L"/";
#endif
}
static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent, const char * user_search_path) {
// enumerate all the files that match [lib]ggml-name-*.[so|dll] in the search paths
// TODO: search system paths
namespace fs = std::filesystem;
std::string file_prefix = backend_filename_prefix() + name + "-";
std::vector<fs::path> search_paths;
std::wstring file_prefix = backend_filename_prefix() + utf8_to_utf16(name) + L"-";
std::vector<std::wstring> search_paths;
if (user_search_path == nullptr) {
search_paths.push_back(fs::current_path());
search_paths.push_back(L"." + path_separator());
search_paths.push_back(get_executable_path());
} else {
search_paths.push_back(fs::u8path(user_search_path));
search_paths.push_back(utf8_to_utf16(user_search_path) + path_separator());
}
int best_score = 0;
fs::path best_path;
std::wstring best_path;
namespace fs = std::filesystem;
for (const auto & search_path : search_paths) {
if (!fs::exists(search_path)) {
continue;
@@ -478,31 +514,31 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
for (const auto & entry : dir_it) {
try {
if (entry.is_regular_file()) {
std::string filename = entry.path().filename().string();
std::string ext = entry.path().extension().string();
std::wstring filename = entry.path().filename().wstring();
std::wstring ext = entry.path().extension().wstring();
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
dl_handle_ptr handle { dl_load_library(entry.path()) };
dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
if (!handle) {
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, entry.path().string().c_str());
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
continue;
}
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
if (!score_fn) {
GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, entry.path().string().c_str());
GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
continue;
}
int s = score_fn();
GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, entry.path().string().c_str(), s);
GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
if (s > best_score) {
best_score = s;
best_path = entry.path();
best_path = entry.path().wstring();
}
}
}
} catch (const std::exception & e) {
GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, entry.path().string().c_str(), e.what());
GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), e.what());
}
}
}
@@ -510,7 +546,7 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
if (best_score == 0) {
// try to load the base backend
for (const auto & search_path : search_paths) {
fs::path path = fs::path(search_path) / (backend_filename_prefix() + name + backend_filename_suffix());
std::wstring path = search_path + backend_filename_prefix() + utf8_to_utf16(name) + backend_filename_suffix();
if (fs::exists(path)) {
return get_reg().load_backend(path, silent);
}

View File

@@ -0,0 +1,193 @@
package gemma2
import (
"math"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
)
type Options struct {
hiddenSize, numHeads, numKVHeads int
attnKeyLen, attnValLen int
eps, ropeBase, ropeScale float32
attnLogitSoftcap float32
finalLogitSoftcap float32
}
type Model struct {
model.Base
model.SentencePieceModel
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"` // is this supposed to be root means square?
Output *nn.Linear `gguf:"output,alt:token_embd"` // just set to token_embd?
*Options
}
func New(c ml.Config) (model.Model, error) {
m := Model{
SentencePieceModel: model.NewSentencePieceModel(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Uints("tokenizer.ggml.token_type"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
},
),
Layers: make([]Layer, c.Uint("block_count")),
Options: &Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
attnKeyLen: int(c.Uint("attention.key_length")),
attnValLen: int(c.Uint("attention.value_length")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base", 10000.0),
ropeScale: c.Float("rope.freq_scale", 1.0),
attnLogitSoftcap: c.Float("attn_logit_softcapping"),
finalLogitSoftcap: c.Float("final_logit_softcapping"),
},
}
slidingWindowLen := int32(c.Uint("attention.sliding_window"))
m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift))
return &m, nil
}
type SelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
batchSize := hiddenState.Dim(1)
ropeType := uint32(2)
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)
// todo: this should be 1.0/math.Sqrt(float64(headDim)) for 27B models
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.attnKeyLen)))
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
cache.Put(ctx, k, v)
k, v, mask := cache.Get(ctx)
q = q.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
k = k.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
kq := k.Mulmat(ctx, q)
// logit softcap
kq = kq.Scale(ctx, 1.0/float64(opts.attnLogitSoftcap))
kq = kq.Tanh(ctx)
kq = kq.Scale(ctx, float64(opts.attnLogitSoftcap))
kq = kq.Add(ctx, mask)
kq = kq.Softmax(ctx)
kqv := v.Mulmat(ctx, kq)
kqv = kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
kqv = kqv.Reshape(ctx, opts.attnValLen*opts.numHeads, batchSize)
return sa.Output.Forward(ctx, kqv)
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.RoPE(ctx, shift, nil, uint32(m.Options.attnKeyLen), uint32(2), m.Options.ropeBase, m.Options.ropeScale), nil
}
type MLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
Gate *nn.Linear `gguf:"ffn_gate"`
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
type Layer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
SelfAttention *SelfAttention
PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP *MLP
PostMLPNorm *nn.RMSNorm `gguf:"post_ffw_norm"`
}
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
residual := hiddenState
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
hiddenState = l.PostMLPNorm.Forward(ctx, hiddenState, opts.eps)
return hiddenState.Add(ctx, residual)
}
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
inputs, err := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
if err != nil {
return nil, err
}
positions, err := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
if err != nil {
return nil, err
}
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize)))
for i, layer := range m.Layers {
cacheType := i % 2
m.Cache.SetLayer(i)
wc := m.Cache.(*kvcache.WrapperCache)
wc.SetLayerType(cacheType)
hiddenState = layer.Forward(ctx, hiddenState, positions, m.Cache, m.Options)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
hiddenState = m.Output.Forward(ctx, hiddenState)
// final logit softcap
hiddenState = hiddenState.Scale(ctx, 1.0/float64(m.Options.finalLogitSoftcap))
hiddenState = hiddenState.Tanh(ctx)
hiddenState = hiddenState.Scale(ctx, float64(m.Options.finalLogitSoftcap))
outputs, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
}
return hiddenState.Rows(ctx, outputs), nil
}
func init() {
model.Register("gemma2", New)
}

View File

@@ -67,14 +67,15 @@ type SelfAttention struct {
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := opts.hiddenSize / opts.numHeads
ropeType := uint32(0)
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
q = q.RoPE(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
q = q.RoPE(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
k = k.RoPE(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
k = k.RoPE(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
@@ -99,7 +100,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.RoPE(ctx, shift, m.Options.RopeFactors, m.Options.ropeDim, m.Options.ropeBase, m.Options.ropeScale), nil
return key.RoPE(ctx, shift, m.Options.RopeFactors, m.Options.ropeDim, uint32(0), m.Options.ropeBase, m.Options.ropeScale), nil
}
type MLP struct {

View File

@@ -19,14 +19,15 @@ type TextSelfAttention struct {
func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, _ ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := opts.hiddenSize / opts.numHeads
ropeType := uint32(0)
query := sa.Query.Forward(ctx, hiddenState)
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
query = query.RoPE(ctx, positions, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
query = query.RoPE(ctx, positions, opts.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
key := sa.Key.Forward(ctx, hiddenState)
key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
key = key.RoPE(ctx, positions, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
key = key.RoPE(ctx, positions, opts.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
value := sa.Value.Forward(ctx, hiddenState)
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
@@ -52,7 +53,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, _ m
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
// This will only get called for layers in the cache, which are just the self attention layers
return key.RoPE(ctx, shift, m.RopeFactors, m.ropeDim, m.ropeBase, m.ropeScale), nil
return key.RoPE(ctx, shift, m.RopeFactors, m.ropeDim, uint32(0), m.ropeBase, m.ropeScale), nil
}
type TextMLP struct {

View File

@@ -1,6 +1,7 @@
package models
import (
_ "github.com/ollama/ollama/model/models/gemma2"
_ "github.com/ollama/ollama/model/models/llama"
_ "github.com/ollama/ollama/model/models/mllama"
)

View File

@@ -18,6 +18,15 @@ const (
SpecialEOS
)
const (
TOKEN_TYPE_NORMAL = iota + 1
TOKEN_TYPE_UNKNOWN
TOKEN_TYPE_CONTROL
TOKEN_TYPE_USER_DEFINED
TOKEN_TYPE_UNUSED
TOKEN_TYPE_BYTE
)
type TextProcessor interface {
Encode(string) ([]int32, error)
Decode([]int32) (string, error)
@@ -27,7 +36,7 @@ type TextProcessor interface {
type Vocabulary struct {
Values []string
Types []uint32
Scores []uint32
Scores []float32
Merges []string
BOS, EOS int32
@@ -75,7 +84,7 @@ func (v *Vocabulary) Decode(id int32) string {
func (v *Vocabulary) SpecialVocabulary() []string {
v.specialOnce.Do(func() {
for i := range v.Values {
if v.Types[i] == 3 {
if v.Types[i] == TOKEN_TYPE_CONTROL {
v.special = append(v.special, v.Values[i])
}
}

220
model/process_text_spm.go Normal file
View File

@@ -0,0 +1,220 @@
package model
import (
"iter"
"log/slog"
"strings"
"github.com/dlclark/regexp2"
queue "github.com/emirpasic/gods/queues/priorityqueue"
)
const spmWhitespaceSep = "▁"
func replaceWhitespaceBySeperator(s string) string {
return strings.ReplaceAll(s, " ", spmWhitespaceSep)
}
type SentencePieceModel struct {
maxTokenLen int
pre *regexp2.Regexp
vocab *Vocabulary
}
func NewSentencePieceModel(pre string, vocab *Vocabulary) SentencePieceModel {
slog.Debug("Tokens", "num tokens", len(vocab.Values), "vals", vocab.Values[:3], "scores", vocab.Scores[:3], "types", vocab.Types[:3])
counter := map[int]int{}
var maxTokenLen int
for cnt := range vocab.Types {
switch vocab.Types[cnt] {
case TOKEN_TYPE_NORMAL, TOKEN_TYPE_USER_DEFINED, TOKEN_TYPE_UNUSED:
maxTokenLen = max(maxTokenLen, len(vocab.Values[cnt]))
fallthrough
default:
counter[int(vocab.Types[cnt])] += 1
}
}
slog.Debug("Token counts", "normal", counter[TOKEN_TYPE_NORMAL], "unknown", counter[TOKEN_TYPE_UNKNOWN], "control", counter[TOKEN_TYPE_CONTROL],
"user defined", counter[TOKEN_TYPE_USER_DEFINED], "unused", counter[TOKEN_TYPE_UNUSED], "byte", counter[TOKEN_TYPE_BYTE],
"max token len", maxTokenLen)
return SentencePieceModel{
maxTokenLen: maxTokenLen,
pre: regexp2.MustCompile(pre, regexp2.Unicode|regexp2.RE2),
vocab: vocab,
}
}
func (spm SentencePieceModel) Is(id int32, special Special) bool {
return spm.vocab.Is(id, special)
}
func (spm *SentencePieceModel) split(s string) iter.Seq[string] {
return func(yield func(string) bool) {
for m, _ := spm.pre.FindStringMatch(s); m != nil; m, _ = spm.pre.FindNextMatch(m) {
if !yield(m.String()) {
break
}
}
}
}
func (spm SentencePieceModel) Encode(s string) ([]int32, error) {
fragments := []fragment{{value: s}}
for _, special := range spm.vocab.SpecialVocabulary() {
// TODO: process special tokens concurrently
id := spm.vocab.Encode(special)
for i := 0; i < len(fragments); i++ {
frag := fragments[i]
if len(frag.ids) > 0 {
continue
}
var middle []fragment
switch i := strings.Index(frag.value, special); {
case i < 0:
middle = append(middle, frag)
case i > 0:
middle = append(middle, fragment{value: frag.value[:i]})
fallthrough
default:
middle = append(middle, fragment{value: special, ids: []int32{id}})
if rest := frag.value[i+len(special):]; rest != "" {
middle = append(middle, fragment{value: rest})
}
}
fragments = append(fragments[:i], append(middle, fragments[i+1:]...)...)
}
}
slog.Debug("fragments", "frags", fragments)
var ids []int32
for _, frag := range fragments {
if len(frag.ids) > 0 {
ids = append(ids, frag.ids...)
continue
}
for split := range spm.split(frag.value) {
split = replaceWhitespaceBySeperator(split)
var sb strings.Builder
sb.Write([]byte(split))
if id := spm.vocab.Encode(sb.String()); id >= 0 {
ids = append(ids, id)
continue
}
runes := []rune(sb.String())
pq := queue.NewWith(func(a, b any) int {
priA := a.(*candidate)
priB := b.(*candidate)
if priA.score > priB.score || (priA.score == priB.score && priA.a < priB.a) {
return 1
}
return -1
})
merges := make([]merge, len(runes))
for r := range runes {
merges[r] = merge{
p: r - 1,
n: r + 1,
runes: []rune{runes[r]},
}
}
pairwise := func(a, b int) *candidate {
if a < 0 || b >= len(runes) {
return nil
}
left, right := string(merges[a].runes), string(merges[b].runes)
if id := spm.vocab.Encode(left + right); id >= 0 {
return &candidate{
a: a,
b: b,
length: len(left + " " + right),
score: spm.vocab.Scores[id],
}
}
return nil
}
for i := range len(runes) - 1 {
if pair := pairwise(i, i+1); pair != nil {
pq.Enqueue(pair)
}
}
pqv := pq.Values()
for _, v := range pqv {
e := v.(*candidate)
slog.Debug("candidate", "candidate", e)
}
for !pq.Empty() {
v, _ := pq.Dequeue()
pair := v.(*candidate)
left, right := merges[pair.a], merges[pair.b]
if len(left.runes) == 0 || len(right.runes) == 0 {
continue
}
merges[pair.a].runes = append(left.runes, right.runes...)
merges[pair.b].runes = nil
merges[pair.a].n = right.n
if right.n < len(merges) {
merges[right.n].p = pair.a
}
if pair := pairwise(merges[pair.a].p, pair.a); pair != nil {
pq.Enqueue(pair)
}
if pair := pairwise(pair.a, merges[pair.a].n); pair != nil {
pq.Enqueue(pair)
}
}
slog.Debug("merges", "merges", merges)
for _, merge := range merges {
if len(merge.runes) > 0 {
if id := spm.vocab.Encode(string(merge.runes)); id >= 0 {
ids = append(ids, id)
} else {
slog.Debug("missing token", "token", string(merge.runes))
}
}
}
}
}
slog.Debug("encoded", "ids", ids)
return ids, nil
}
type candidate struct {
a, b int
score float32
length int
}
func (spm SentencePieceModel) Decode(ids []int32) (string, error) {
var sb strings.Builder
for _, id := range ids {
data := spm.vocab.Decode(id)
data = strings.ReplaceAll(data, spmWhitespaceSep, " ")
if _, err := sb.WriteString(data); err != nil {
return "", err
}
}
slog.Debug("decoded", "ids", ids, "text", sb.String())
return sb.String(), nil
}

View File

@@ -1,7 +1,6 @@
package progress
import (
"bufio"
"fmt"
"io"
"sync"
@@ -14,8 +13,7 @@ type State interface {
type Progress struct {
mu sync.Mutex
// buffer output to minimize flickering on all terminals
w *bufio.Writer
w io.Writer
pos int
@@ -24,7 +22,7 @@ type Progress struct {
}
func NewProgress(w io.Writer) *Progress {
p := &Progress{w: bufio.NewWriter(w)}
p := &Progress{w: w}
go p.start()
return p
}
@@ -50,14 +48,11 @@ func (p *Progress) Stop() bool {
stopped := p.stop()
if stopped {
fmt.Fprint(p.w, "\n")
p.w.Flush()
}
return stopped
}
func (p *Progress) StopAndClear() bool {
defer p.w.Flush()
fmt.Fprint(p.w, "\033[?25l")
defer fmt.Fprint(p.w, "\033[?25h")
@@ -86,24 +81,20 @@ func (p *Progress) render() {
p.mu.Lock()
defer p.mu.Unlock()
defer p.w.Flush()
// eliminate flickering on terminals that support synchronized output
fmt.Fprint(p.w, "\033[?2026h")
defer fmt.Fprint(p.w, "\033[?2026l")
fmt.Fprint(p.w, "\033[?25l")
defer fmt.Fprint(p.w, "\033[?25h")
// move the cursor back to the beginning
for range p.pos - 1 {
fmt.Fprint(p.w, "\033[A")
// clear already rendered progress lines
for i := range p.pos {
if i > 0 {
fmt.Fprint(p.w, "\033[A")
}
fmt.Fprint(p.w, "\033[2K\033[1G")
}
fmt.Fprint(p.w, "\033[1G")
// render progress lines
for i, state := range p.states {
fmt.Fprint(p.w, state.String(), "\033[K")
fmt.Fprint(p.w, state.String())
if i < len(p.states)-1 {
fmt.Fprint(p.w, "\n")
}