Compare commits

..

1 Commits

Author SHA1 Message Date
Blake Mizerany
b48b6f85cd server/internal/client/ollama: hold DiskCache on Registry
Previously, clients of a Registry had to carry around a DiskCache to use
it. This change makes the DiskCache an optional field on the Registry
struct.

This also changes DefaultCache to initialize one on first use. This
prevents overhead of building the cache if it is never used, or per
Registry request that involves use of DefaultCache.

Also, slip in some minor docs on Trace.
2025-03-02 15:43:24 -08:00
63 changed files with 1320 additions and 2571 deletions

View File

@@ -12,7 +12,7 @@ FROM --platform=linux/amd64 rocm/dev-almalinux-8:${ROCMVERSION}-complete AS base
RUN yum install -y yum-utils \
&& yum-config-manager --add-repo https://dl.rockylinux.org/vault/rocky/8.5/AppStream/\$basearch/os/ \
&& rpm --import https://dl.rockylinux.org/pub/rocky/RPM-GPG-KEY-Rocky-8 \
&& dnf install -y yum-utils ccache gcc-toolset-10-gcc-10.2.1-8.2.el8 gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 gcc-toolset-10-binutils-2.35-11.el8 \
&& dnf install -y yum-utils ccache gcc-toolset-10-gcc-10.2.1-8.2.el8 gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 \
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/cuda-rhel8.repo
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
@@ -86,11 +86,10 @@ RUN --mount=type=cache,target=/root/.ccache \
&& cmake --install build --component CUDA --strip --parallel 8
FROM base AS build
WORKDIR /go/src/github.com/ollama/ollama
COPY go.mod go.sum .
RUN curl -fsSL https://golang.org/dl/go$(awk '/^go/ { print $2 }' go.mod).linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
ARG GOVERSION=1.23.4
RUN curl -fsSL https://golang.org/dl/go${GOVERSION}.linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
ENV PATH=/usr/local/go/bin:$PATH
RUN go mod download
WORKDIR /go/src/github.com/ollama/ollama
COPY . .
ARG GOFLAGS="'-ldflags=-w -s'"
ENV CGO_ENABLED=1

View File

@@ -1,5 +1,5 @@
<div align="center">
  <a href="https://ollama.com">
  <a href="https://ollama.com" />
<img alt="ollama" height="200px" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
</a>
</div>
@@ -54,7 +54,6 @@ Here are some example models that can be downloaded:
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | -------------------------------- |
| QwQ | 32B | 20GB | `ollama run qwq` |
| DeepSeek-R1 | 7B | 4.7GB | `ollama run deepseek-r1` |
| DeepSeek-R1 | 671B | 404GB | `ollama run deepseek-r1:671b` |
| Llama 3.3 | 70B | 43GB | `ollama run llama3.3` |
@@ -65,7 +64,7 @@ Here are some example models that can be downloaded:
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
| Phi 4 | 14B | 9.1GB | `ollama run phi4` |
| Phi 4 Mini | 3.8B | 2.5GB | `ollama run phi4-mini` |
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
@@ -76,7 +75,7 @@ Here are some example models that can be downloaded:
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
| LLaVA | 7B | 4.5GB | `ollama run llava` |
| Granite-3.2 | 8B | 4.9GB | `ollama run granite3.2` |
| Solar | 10.7B | 6.1GB | `ollama run solar` |
> [!NOTE]
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
@@ -276,7 +275,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
### Web & Desktop
- [Open WebUI](https://github.com/open-webui/open-webui)
- [SwiftChat (macOS with ReactNative)](https://github.com/aws-samples/swift-chat)
- [Enchanted (macOS native)](https://github.com/AugustDev/enchanted)
- [Hollama](https://github.com/fmaclen/hollama)
- [Lollms-Webui](https://github.com/ParisNeo/lollms-webui)
@@ -390,7 +388,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [LangBot](https://github.com/RockChinQ/LangBot) (LLM-based instant messaging bots platform, with Agents, RAG features, supports multiple platforms)
- [1Panel](https://github.com/1Panel-dev/1Panel/) (Web-based Linux Server Management Tool)
- [AstrBot](https://github.com/Soulter/AstrBot/) (User-friendly LLM-based multi-platform chatbot with a WebUI, supporting RAG, LLM agents, and plugins integration)
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
### Cloud
@@ -434,7 +431,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
### Apple Vision Pro
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Cross-platform AI chat app supporting Apple Vision Pro via "Designed for iPad")
- [Enchanted](https://github.com/AugustDev/enchanted)
### Database
@@ -512,13 +508,10 @@ See the [API documentation](./docs/api.md) for all endpoints.
### Mobile
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Lightning-fast Cross-platform AI chat app with native UI for Android, iOS and iPad)
- [Enchanted](https://github.com/AugustDev/enchanted)
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
- [Ollama Android Chat](https://github.com/sunshine0523/OllamaServer) (No need for Termux, start the Ollama service with one click on an Android device)
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
### Extensions & Plugins
@@ -564,7 +557,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [TextLLaMA](https://github.com/adarshM84/TextLLaMA) A Chrome Extension that helps you write emails, correct grammar, and translate into any language
- [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai)
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
- [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs)
### Supported backends

View File

@@ -361,9 +361,9 @@ type CopyRequest struct {
// PullRequest is the request passed to [Client.Pull].
type PullRequest struct {
Model string `json:"model"`
Insecure bool `json:"insecure,omitempty"` // Deprecated: ignored
Username string `json:"username"` // Deprecated: ignored
Password string `json:"password"` // Deprecated: ignored
Insecure bool `json:"insecure,omitempty"`
Username string `json:"username"`
Password string `json:"password"`
Stream *bool `json:"stream,omitempty"`
// Deprecated: set the model name with Model instead

View File

@@ -34,6 +34,7 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/llama"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/progress"
"github.com/ollama/ollama/runner"
@@ -255,7 +256,6 @@ func StopHandler(cmd *cobra.Command, args []string) error {
if strings.Contains(err.Error(), "not found") {
return fmt.Errorf("couldn't find model \"%s\" to stop", args[0])
}
return err
}
return nil
}
@@ -338,16 +338,10 @@ func RunHandler(cmd *cobra.Command, args []string) error {
return err
}
if len(info.ProjectorInfo) != 0 {
opts.MultiModal = true
}
for k := range info.ModelInfo {
if strings.Contains(k, ".vision.") {
opts.MultiModal = true
break
}
}
// TODO(jessegross): We should either find another way to know if this is
// a vision model or remove the logic. Also consider that other modalities will
// need different behavior anyways.
opts.MultiModal = len(info.ProjectorInfo) != 0 || envconfig.NewEngine()
opts.ParentModel = info.Details.ParentModel
if interactive {
@@ -1280,6 +1274,7 @@ func NewCLI() *cobra.Command {
runnerCmd := &cobra.Command{
Use: "runner",
Short: llama.PrintSystemInfo(),
Hidden: true,
RunE: func(cmd *cobra.Command, args []string) error {
return runner.Execute(os.Args[1:])

View File

@@ -118,35 +118,6 @@ To run tests, use `go test`:
go test ./...
```
> NOTE: In rare cirumstances, you may nedd to change a package using the new
> "synctest" package in go1.24.
>
> If you do not have the "synctest" package enabled, you will not see build or
> test failures resulting from your change(s), if any, locally, but CI will
> break.
>
> If you see failures in CI, you can either keep pushing changes to see if the
> CI build passes, or you can enable the "synctest" package locally to see the
> failures before pushing.
>
> To enable the "synctest" package for testing, run the following command:
>
> ```shell
> GOEXPERIMENT=synctest go test ./...
> ```
>
> If you wish to enable synctest for all go commands, you can set the
> `GOEXPERIMENT` environment variable in your shell profile or by using:
>
> ```shell
> go env -w GOEXPERIMENT=synctest
> ```
>
> Which will enable the "synctest" package for all go commands without needing
> to set it for all shell sessions.
>
> The synctest package is not required for production builds.
## Library detection
Ollama looks for acceleration libraries in the following paths relative to the `ollama` executable:

View File

@@ -20,7 +20,7 @@ Please refer to the [GPU docs](./gpu.md).
## How can I specify the context window size?
By default, Ollama uses a context window size of 2048 tokens. This can be overridden with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context length to 8K, use: `OLLAMA_CONTEXT_LENGTH=8192 ollama serve`.
By default, Ollama uses a context window size of 2048 tokens.
To change this when using `ollama run`, use `/set parameter`:

View File

@@ -81,11 +81,9 @@ help you keep up to date.
If you'd like to install or integrate Ollama as a service, a standalone
`ollama-windows-amd64.zip` zip file is available containing only the Ollama CLI
and GPU library dependencies for Nvidia. If you have an AMD GPU, also download
and extract the additional ROCm package `ollama-windows-amd64-rocm.zip` into the
same directory. This allows for embedding Ollama in existing applications, or
running it as a system service via `ollama serve` with tools such as
[NSSM](https://nssm.cc/).
and GPU library dependencies for Nvidia and AMD. This allows for embedding
Ollama in existing applications, or running it as a system service via `ollama
serve` with tools such as [NSSM](https://nssm.cc/).
> [!NOTE]
> If you are upgrading from a prior version, you should remove the old directories first.

View File

@@ -565,43 +565,6 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
return
}
func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
switch llm.KV().Architecture() {
case "mllama":
for _, layer := range llm.Tensors().GroupLayers()["v"] {
weights += layer.Size()
}
kv := func(n string) uint64 {
if v, ok := llm.KV()["mllama.vision."+n].(uint32); ok {
return uint64(v)
}
return 0
}
imageSize := kv("image_size")
maxNumTiles := kv("max_num_tiles")
embeddingLength := kv("embedding_length")
headCount := kv("attention.head_count")
numPatches := (imageSize / kv("patch_size")) * (imageSize / kv("patch_size"))
if _, ok := llm.Tensors().GroupLayers()["v"]["class_embd"]; ok {
numPatches++
}
numPaddedPatches := numPatches + 8 - (numPatches%8)%8
graphSize = 4 * (8 +
imageSize*imageSize*kv("num_channels")*maxNumTiles +
embeddingLength*numPatches*maxNumTiles +
9*embeddingLength*numPaddedPatches*maxNumTiles +
numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount)
}
return weights, graphSize
}
// SupportsKVCacheType checks if the requested cache type is supported
func (f GGML) SupportsKVCacheType(cacheType string) bool {
return slices.Contains([]string{"f16", "q8_0", "q4_0"}, cacheType)

3
go.mod
View File

@@ -24,7 +24,7 @@ require (
github.com/nlpodyssey/gopickle v0.3.0
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
golang.org/x/image v0.22.0
golang.org/x/tools v0.30.0
gonum.org/v1/gonum v0.15.0
)
require (
@@ -44,7 +44,6 @@ require (
github.com/xtgo/set v1.0.0 // indirect
go4.org/unsafe/assume-no-moving-gc v0.0.0-20231121144256-b99613f794b6 // indirect
golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1 // indirect
gonum.org/v1/gonum v0.15.0 // indirect
gorgonia.org/vecf32 v0.9.0 // indirect
gorgonia.org/vecf64 v0.9.0 // indirect
)

2
go.sum
View File

@@ -309,8 +309,6 @@ golang.org/x/tools v0.0.0-20200130002326-2f3ba24bd6e7/go.mod h1:TB2adYChydJhpapK
golang.org/x/tools v0.0.0-20200619180055-7c47624df98f/go.mod h1:EkVYQZoAsY45+roYkvgYkIh4xh/qjgUK9TdY2XT94GE=
golang.org/x/tools v0.0.0-20210106214847-113979e3529a/go.mod h1:emZCQorbCU4vsT4fOWvOPXz4eW1wZW4PmDk9uLelYpA=
golang.org/x/tools v0.1.4/go.mod h1:o0xws9oXOQQZyjljx8fwUC0k7L1pTE6eaCbjGeHmOkk=
golang.org/x/tools v0.30.0 h1:BgcpHewrV5AUp2G9MebG4XPFI1E2W41zU1SaqVA9vJY=
golang.org/x/tools v0.30.0/go.mod h1:c347cR/OJfw5TI+GfX7RUPNMdDRRbjvYTS0jPyvsVtY=
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=

View File

@@ -4,7 +4,6 @@ import (
"errors"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
var (
@@ -52,7 +51,7 @@ type Cache interface {
// StartForward is called before the start of the model's forward pass.
// For each token in the coming batch, there must be a corresponding
// entry in positions and seqs.
StartForward(ctx ml.Context, opts input.Options) error
StartForward(ctx ml.Context, positions []int32, seqs []int) error
// CopyPrefix copies tokens in the range [0, len) from srcSeq to dstSeq
CopyPrefix(srcSeq, dstSeq int, len int32)

View File

@@ -8,7 +8,6 @@ import (
"slices"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
type shiftFn func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error)
@@ -21,7 +20,6 @@ type shiftFn func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, e
type Causal struct {
DType ml.DType
Capacity int32
causal bool
windowSize int32
// config controls mostly backend-specific optimizations
@@ -44,12 +42,6 @@ type Causal struct {
// locations in the cache that are needed for this batch
curCellRange cellRange
// curSequences is the sequences corresponding to this pass's entries in the cache
curSequences []int
// curPositions is the positions corresponding to this pass's entries in the cache
curPositions []int32
// ** cache metadata **
// for each possible location in the cache, stores the position and set of sequences
@@ -63,8 +55,8 @@ type Causal struct {
shiftFn shiftFn
backend ml.Backend
ctxs map[int]ml.Context
keys, values map[int]ml.Tensor
cacheCtx ml.Context
keys, values []ml.Tensor
}
type cacheCell struct {
@@ -78,25 +70,11 @@ type cellRange struct {
}
func NewCausalCache(shift shiftFn) *Causal {
return &Causal{
causal: true,
windowSize: math.MaxInt32,
shiftFn: shift,
ctxs: make(map[int]ml.Context),
keys: make(map[int]ml.Tensor),
values: make(map[int]ml.Tensor),
}
return &Causal{windowSize: math.MaxInt32, shiftFn: shift}
}
func NewSWACache(windowSize int32, shift shiftFn) *Causal {
return &Causal{
causal: true,
windowSize: windowSize,
shiftFn: shift,
ctxs: make(map[int]ml.Context),
keys: make(map[int]ml.Tensor),
values: make(map[int]ml.Tensor),
}
return &Causal{windowSize: windowSize, shiftFn: shift}
}
func (c *Causal) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
@@ -125,6 +103,7 @@ func (c *Causal) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
c.cells = make([]cacheCell, c.Capacity)
c.cellRanges = make(map[int]cellRange)
c.backend = backend
c.cacheCtx = backend.NewContext()
}
func (c *Causal) SetConfig(config ml.CacheConfig) {
@@ -136,15 +115,11 @@ func (c *Causal) SetConfig(config ml.CacheConfig) {
}
func (c *Causal) Close() {
for _, ctx := range c.ctxs {
ctx.Close()
}
c.cacheCtx.Close()
}
func (c *Causal) StartForward(ctx ml.Context, opts input.Options) error {
c.curBatchSize = len(opts.Positions)
c.curSequences = opts.Sequences
c.curPositions = opts.Positions
func (c *Causal) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
c.curBatchSize = len(positions)
var err error
c.curLoc, err = c.findStartLoc()
@@ -157,8 +132,8 @@ func (c *Causal) StartForward(ctx ml.Context, opts input.Options) error {
}
c.curCellRange = newRange()
for i, pos := range opts.Positions {
seq := opts.Sequences[i]
for i, pos := range positions {
seq := seqs[i]
c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}
@@ -183,7 +158,7 @@ func (c *Causal) StartForward(ctx ml.Context, opts input.Options) error {
c.cellRanges[seq] = seqRange
}
c.curMask, err = c.buildMask(ctx)
c.curMask, err = c.buildMask(ctx, positions, seqs)
return err
}
@@ -224,7 +199,7 @@ func roundUp(length, pad int) int {
// Builds a mask of history x batch indicating whether for each token in the batch the
// token in the history should apply. This is based on both the sequence and causality (the
// position of the history is not ahead of the token in the batch).
func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
func (c *Causal) buildMask(ctx ml.Context, positions []int32, seqs []int) (ml.Tensor, error) {
// Align and pad the two dimensions as required by the backend
batchSize := roundUp(c.curBatchSize, c.config.MaskBatchPadding)
@@ -236,9 +211,8 @@ func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
for i := range c.curBatchSize {
for j := c.curCellRange.min; j <= c.curCellRange.max; j++ {
if !slices.Contains(c.cells[j].sequences, c.curSequences[i]) ||
(c.causal && c.cells[j].pos > c.curPositions[i]) ||
c.cells[j].pos < c.curPositions[i]-c.windowSize {
if !slices.Contains(c.cells[j].sequences, seqs[i]) || c.cells[j].pos > positions[i] ||
c.cells[j].pos < positions[i]-c.windowSize {
mask[i*length+(j-c.curCellRange.min)] = float32(math.Inf(-1))
}
}
@@ -250,13 +224,13 @@ func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
mask[i] = float32(math.Inf(-1))
}
maskTensor, err := ctx.Input().FromFloatSlice(mask, length, batchSize)
maskTensor, err := ctx.FromFloatSlice(mask, length, batchSize)
if err != nil {
return nil, err
}
if c.config.MaskDType != ml.DTypeF32 {
out := ctx.Input().Empty(c.config.MaskDType, maskTensor.Shape()...)
out := ctx.Empty(c.config.MaskDType, maskTensor.Shape()...)
ctx.Forward(maskTensor.Copy(ctx, out))
maskTensor = out
}
@@ -265,11 +239,13 @@ func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
}
func (c *Causal) moveCells(ctx ml.Context, src, dst, len int) {
for i, key := range c.keys {
if key == nil {
for i := range c.keys {
if c.keys[i] == nil {
continue
}
key := c.keys[i]
kHeadDim := key.Dim(0)
numKVHeads := key.Dim(1)
rowSize := key.Stride(2)
@@ -329,7 +305,7 @@ func (c *Causal) defrag() {
layers++
}
maxMoves := ctx.MaxGraphNodes() / (6 * layers)
maxMoves := ctx.MaxTensors() / (6 * layers)
moves := 0
var pendingSrc, pendingDst, pendingLen int
@@ -401,27 +377,12 @@ func (c *Causal) defrag() {
}
func (c *Causal) SetLayer(layer int) {
c.curLayer = layer
}
// SetCausal enables or disables causal mask generation for subsequent calls to Get.
// This state carries over to future forward passes. The default value is true.
//
// ctx may be set to nil if this is called from outside of a forward pass, for
// example, when initializing the cache.
func (c *Causal) SetCausal(ctx ml.Context, causal bool) {
if c.causal != causal {
c.causal = causal
if ctx != nil {
var err error
c.curMask, err = c.buildMask(ctx)
if err != nil {
// This error should never occur because we have previously built a mask with the same shape
panic(fmt.Errorf("SetCausal: %w", err))
}
}
if layer >= len(c.keys) {
c.keys = append(c.keys, make([]ml.Tensor, layer-len(c.keys)+1)...)
c.values = append(c.values, make([]ml.Tensor, layer-len(c.values)+1)...)
}
c.curLayer = layer
}
func (c *Causal) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
@@ -472,19 +433,13 @@ func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
panic(fmt.Errorf("inconsistent batch sizes (layer: %v, batch size: %v layer batch size: %v)", c.curLayer, c.curBatchSize, batchSize))
}
if _, ok := c.ctxs[c.curLayer]; !ok {
c.ctxs[c.curLayer] = c.backend.NewContextSize(2).Layer(c.curLayer)
}
if c.keys[c.curLayer] == nil || c.values[c.curLayer] == nil {
c.keys[c.curLayer] = c.cacheCtx.Zeros(c.DType, kHeadDim, numKVHeads, int(c.Capacity))
if _, ok := c.keys[c.curLayer]; !ok {
c.keys[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, kHeadDim, numKVHeads, int(c.Capacity))
}
if _, ok := c.values[c.curLayer]; !ok {
if c.config.PermutedV {
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, int(c.Capacity), vHeadDim, numKVHeads)
c.values[c.curLayer] = c.cacheCtx.Zeros(c.DType, int(c.Capacity), vHeadDim, numKVHeads)
} else {
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, vHeadDim, numKVHeads, int(c.Capacity))
c.values[c.curLayer] = c.cacheCtx.Zeros(c.DType, vHeadDim, numKVHeads, int(c.Capacity))
}
}
@@ -546,7 +501,7 @@ func (c *Causal) shift(seq int, beginIndex, offset int32) error {
}
}
kShift, err := ctx.Input().FromIntSlice(offsets, len(offsets))
kShift, err := ctx.FromIntSlice(offsets, len(offsets))
if err != nil {
return err
}

View File

@@ -6,7 +6,6 @@ import (
"testing"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
type testCase struct {
@@ -270,7 +269,7 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
context := backend.NewContext()
defer context.Close()
err := cache.StartForward(context, input.Options{Positions: test.pos, Sequences: test.seqs})
err := cache.StartForward(context, test.pos, test.seqs)
if err != nil {
panic(err)
}
@@ -304,10 +303,6 @@ func (b *testBackend) NewContext() ml.Context {
return &testContext{}
}
func (b *testBackend) NewContextSize(int) ml.Context {
return &testContext{}
}
func (b *testBackend) SystemInfo() string {
return "not implemented"
}
@@ -351,15 +346,11 @@ func (c *testContext) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
return out, nil
}
func (c *testContext) Input() ml.Context { return c }
func (c *testContext) Output() ml.Context { return c }
func (c *testContext) Layer(int) ml.Context { return c }
func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }
func (c *testContext) Compute(...ml.Tensor) {}
func (c *testContext) MaxGraphNodes() int {
func (c *testContext) MaxTensors() int {
return 10
}

View File

@@ -4,7 +4,6 @@ import (
"fmt"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
// Encoder cache stores K and V tensors that are position independent
@@ -36,17 +35,13 @@ type EncoderCache struct {
encoderPos int32
// ** cache data storage **
backend ml.Backend
ctxs map[int]ml.Context
keys, values map[int]ml.Tensor
cacheCtx ml.Context
keys, values []ml.Tensor
}
func NewEncoderCache() *EncoderCache {
return &EncoderCache{
ctxs: make(map[int]ml.Context),
keys: make(map[int]ml.Tensor),
values: make(map[int]ml.Tensor),
}
return &EncoderCache{}
}
func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
@@ -62,7 +57,7 @@ func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, capacity int32)
panic(fmt.Errorf("encoder cache is unable to enforce requested CachePadding (%v)", c.config.CachePadding))
}
c.backend = backend
c.cacheCtx = backend.NewContext()
}
func (c *EncoderCache) SetConfig(config ml.CacheConfig) {
@@ -74,21 +69,22 @@ func (c *EncoderCache) SetConfig(config ml.CacheConfig) {
}
func (c *EncoderCache) Close() {
for _, ctx := range c.ctxs {
ctx.Close()
}
c.cacheCtx.Close()
}
func (c *EncoderCache) StartForward(ctx ml.Context, opts input.Options) error {
// We work with the most recent image
if len(opts.Multimodal) > 0 {
c.curPos = opts.Positions[opts.Multimodal[len(opts.Multimodal)-1].Index]
}
func (c *EncoderCache) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
// The image is always in the first position
c.curPos = positions[0]
return nil
}
func (c *EncoderCache) SetLayer(layer int) {
if layer >= len(c.keys) {
c.keys = append(c.keys, make([]ml.Tensor, layer-len(c.keys)+1)...)
c.values = append(c.values, make([]ml.Tensor, layer-len(c.values)+1)...)
}
c.curLayer = layer
}
@@ -108,16 +104,9 @@ func (c *EncoderCache) Put(ctx ml.Context, key, value ml.Tensor) {
value = value.Permute(ctx, 1, 2, 0, 3)
}
if _, ok := c.ctxs[c.curLayer]; !ok {
c.ctxs[c.curLayer] = c.backend.NewContextSize(2).Layer(c.curLayer)
}
if _, ok := c.keys[c.curLayer]; !ok {
c.keys[c.curLayer] = c.ctxs[c.curLayer].Empty(key.DType(), key.Shape()...)
}
if _, ok := c.values[c.curLayer]; !ok {
c.values[c.curLayer] = c.ctxs[c.curLayer].Empty(value.DType(), value.Shape()...)
if c.keys[c.curLayer] == nil || c.values[c.curLayer] == nil {
c.keys[c.curLayer] = c.cacheCtx.Empty(key.DType(), key.Shape()...)
c.values[c.curLayer] = c.cacheCtx.Empty(value.DType(), value.Shape()...)
}
ctx.Forward(

View File

@@ -4,7 +4,6 @@ import (
"math"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
// Wrapper cache is a container for multiple types of caches,
@@ -41,14 +40,14 @@ func (c *WrapperCache) Close() {
}
}
func (c *WrapperCache) StartForward(ctx ml.Context, opts input.Options) error {
func (c *WrapperCache) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
for i, cache := range c.caches {
err := cache.StartForward(ctx, opts)
err := cache.StartForward(ctx, positions, seqs)
if err != nil {
// unwind on error - Remove with endIndex set to math.MaxInt32 does not fail
for j := i - 1; j >= 0; j-- {
for k := range opts.Positions {
_ = c.caches[j].Remove(opts.Sequences[k], opts.Positions[k], math.MaxInt32)
for k := range positions {
_ = c.caches[j].Remove(seqs[k], positions[k], math.MaxInt32)
}
}
return err

View File

@@ -1443,7 +1443,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
if (precompiled_charsmap_keyidx != -1) {
size_t n_precompiled_charsmap = gguf_get_arr_data_n(ctx, precompiled_charsmap_keyidx);
size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx);
const char * pc = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
precompiled_charsmap.assign(pc, pc + n_precompiled_charsmap);
#ifdef IS_BIG_ENDIAN

View File

@@ -21,6 +21,18 @@ package llama
extern bool llamaProgressCallback(float progress, void *user_data);
extern void llamaLog(int level, char* text, void* user_data);
typedef enum {COMP_UNKNOWN,COMP_GCC,COMP_CLANG} COMPILER;
COMPILER inline get_compiler() {
#if defined(__clang__)
return COMP_CLANG;
#elif defined(__GNUC__)
return COMP_GCC;
#else
return UNKNOWN_COMPILER;
#endif
}
*/
import "C"
@@ -60,6 +72,19 @@ func BackendInit() {
C.llama_backend_init()
}
func PrintSystemInfo() string {
var compiler string
switch C.get_compiler() {
case C.COMP_UNKNOWN:
compiler = "cgo(unknown_compiler)"
case C.COMP_GCC:
compiler = "cgo(gcc)"
case C.COMP_CLANG:
compiler = "cgo(clang)"
}
return C.GoString(C.llama_print_system_info()) + compiler
}
func GetModelArch(modelPath string) (string, error) {
mp := C.CString(modelPath)
defer C.free(unsafe.Pointer(mp))
@@ -245,20 +270,6 @@ func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) {
return &m, nil
}
func LoadVocabFromFile(path string) (*Vocab, error) {
mp := C.CString(path)
defer C.free(unsafe.Pointer(mp))
v := Vocab{c: C.llama_load_vocab_from_file(mp)}
if v.c == nil {
return nil, fmt.Errorf("unable to load vocab: %s", path)
}
return &v, nil
}
func FreeVocab(vocab *Vocab) {
C.llama_free_vocab(vocab.c)
}
func FreeModel(model *Model) {
C.llama_model_free(model.c)
}
@@ -307,10 +318,6 @@ func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float
return nil
}
type Vocab struct {
c *C.struct_llama_vocab
}
func (m *Model) Vocab() *C.struct_llama_vocab {
return C.llama_model_get_vocab(m.c)
}
@@ -687,53 +694,3 @@ func SchemaToGrammar(schema []byte) []byte {
}
return buf[:n]
}
type Sampler struct {
c *C.struct_llama_sampler
}
func NewGrammarSampler(vocab *Vocab, grammar string) *Sampler {
cGrammar := C.CString(grammar)
cRoot := C.CString("root")
defer C.free(unsafe.Pointer(cGrammar))
defer C.free(unsafe.Pointer(cRoot))
sampler := &Sampler{c: C.llama_sampler_init_grammar(vocab.c, cGrammar, cRoot)}
return sampler
}
func (s *Sampler) Accept(token int32) {
C.llama_sampler_accept(s.c, C.llama_token(token))
}
type TokenData struct {
Id int32
Logit float32
}
func (s *Sampler) Apply(tokens []TokenData) {
tds := make([]C.struct_llama_token_data, len(tokens))
for i, token := range tokens {
tds[i] = C.struct_llama_token_data{
id: C.int32_t(token.Id),
logit: C.float(token.Logit),
p: C.float(0.0),
}
}
tda := &C.llama_token_data_array{
data: (*C.struct_llama_token_data)(unsafe.Pointer(&tds[0])),
size: C.size_t(len(tokens)),
selected: C.int64_t(-1),
sorted: C.bool(false),
}
var pinner runtime.Pinner
pinner.Pin(&tds[0])
defer pinner.Unpin()
C.llama_sampler_apply(s.c, tda)
for i := range tokens {
tokens[i].Logit = float32(tds[i].logit)
}
}

View File

@@ -0,0 +1,69 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Tue, 11 Feb 2025 14:06:36 -0800
Subject: [PATCH] try/catch backend load
---
ggml/src/ggml-backend-reg.cpp | 45 ++++++++++++++++++-----------------
1 file changed, 23 insertions(+), 22 deletions(-)
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
index 98d5e14d..1c19129a 100644
--- a/ggml/src/ggml-backend-reg.cpp
+++ b/ggml/src/ggml-backend-reg.cpp
@@ -512,32 +512,33 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
}
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
for (const auto & entry : dir_it) {
- if (entry.is_regular_file()) {
- std::wstring filename = entry.path().filename().wstring();
- std::wstring ext = entry.path().extension().wstring();
- if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
- dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
- if (!handle && !silent) {
- GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
- }
- if (handle) {
+ try {
+ if (entry.is_regular_file()) {
+ std::wstring filename = entry.path().filename().wstring();
+ std::wstring ext = entry.path().extension().wstring();
+ if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
+ dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
+ if (!handle) {
+ GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
+ continue;
+ }
+
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
- if (score_fn) {
- int s = score_fn();
-#ifndef NDEBUG
- GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
-#endif
- if (s > best_score) {
- best_score = s;
- best_path = entry.path().wstring();
- }
- } else {
- if (!silent) {
- GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
- }
+ if (!score_fn) {
+ GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
+ continue;
+ }
+
+ int s = score_fn();
+ GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
+ if (s > best_score) {
+ best_score = s;
+ best_path = entry.path().wstring();
}
}
}
+ } catch (const std::exception & e) {
+ GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), e.what());
}
}
}

View File

@@ -4,11 +4,11 @@ Date: Sun, 16 Feb 2025 20:00:22 -0500
Subject: [PATCH] use std::filesystem::path instead of wstring
---
ggml/src/ggml-backend-reg.cpp | 199 +++++++++++++++-------------------
1 file changed, 88 insertions(+), 111 deletions(-)
ggml/src/ggml-backend-reg.cpp | 144 ++++++++++++++--------------------
1 file changed, 58 insertions(+), 86 deletions(-)
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
index 98d5e14d..799af5f3 100644
index 1c19129a..c854e6bb 100644
--- a/ggml/src/ggml-backend-reg.cpp
+++ b/ggml/src/ggml-backend-reg.cpp
@@ -66,26 +66,6 @@
@@ -264,55 +264,47 @@ index 98d5e14d..799af5f3 100644
for (const auto & search_path : search_paths) {
if (!fs::exists(search_path)) {
continue;
@@ -513,29 +485,26 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
@@ -514,31 +486,31 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
for (const auto & entry : dir_it) {
if (entry.is_regular_file()) {
- std::wstring filename = entry.path().filename().wstring();
- std::wstring ext = entry.path().extension().wstring();
+ std::string filename = entry.path().filename().string();
+ std::string ext = entry.path().extension().string();
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
- dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
- if (!handle && !silent) {
- GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
+ dl_handle_ptr handle { dl_load_library(entry.path()) };
+ if (!handle) {
+ GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_to_string(entry.path()).c_str());
+ continue;
}
- if (handle) {
- auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
- if (score_fn) {
- int s = score_fn();
-#ifndef NDEBUG
- GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
-#endif
- if (s > best_score) {
- best_score = s;
- best_path = entry.path().wstring();
- }
- } else {
- if (!silent) {
- GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
- }
- }
+
+ auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
+ if (!score_fn) {
+ GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, path_to_string(entry.path()).c_str());
+ continue;
+ }
+
+ int s = score_fn();
+ GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, path_to_string(entry.path()).c_str(), s);
+ if (s > best_score) {
+ best_score = s;
+ best_path = entry.path();
try {
if (entry.is_regular_file()) {
- std::wstring filename = entry.path().filename().wstring();
- std::wstring ext = entry.path().extension().wstring();
+ std::string filename = entry.path().filename().string();
+ std::string ext = entry.path().extension().string();
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
- dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
+ dl_handle_ptr handle { dl_load_library(entry.path()) };
if (!handle) {
- GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
+ GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_to_string(entry.path()).c_str());
continue;
}
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
if (!score_fn) {
- GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
+ GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, path_to_string(entry.path()).c_str());
continue;
}
int s = score_fn();
- GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
+ GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, path_to_string(entry.path()).c_str(), s);
if (s > best_score) {
best_score = s;
- best_path = entry.path().wstring();
+ best_path = entry.path();
}
}
}
} catch (const std::exception & e) {
- GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), e.what());
+ GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, path_to_string(entry.path()).c_str(), e.what());
}
@@ -545,7 +514,7 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
}
}
@@ -546,7 +518,7 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
if (best_score == 0) {
// try to load the base backend
for (const auto & search_path : search_paths) {
@@ -321,49 +313,3 @@ index 98d5e14d..799af5f3 100644
if (fs::exists(path)) {
return get_reg().load_backend(path, silent);
}
@@ -560,6 +529,14 @@ void ggml_backend_load_all() {
ggml_backend_load_all_from_path(nullptr);
}
+static void ggml_backend_try_load_best(const char * name, bool silent, const char * user_search_path) {
+ try {
+ ggml_backend_load_best(name, silent, user_search_path);
+ } catch (const std::exception & e) {
+ GGML_LOG_DEBUG("%s: failed to load %s: %s\n", __func__, name, e.what());
+ }
+}
+
void ggml_backend_load_all_from_path(const char * dir_path) {
#ifdef NDEBUG
bool silent = true;
@@ -567,18 +544,18 @@ void ggml_backend_load_all_from_path(const char * dir_path) {
bool silent = false;
#endif
- ggml_backend_load_best("blas", silent, dir_path);
- ggml_backend_load_best("cann", silent, dir_path);
- ggml_backend_load_best("cuda", silent, dir_path);
- ggml_backend_load_best("hip", silent, dir_path);
- ggml_backend_load_best("kompute", silent, dir_path);
- ggml_backend_load_best("metal", silent, dir_path);
- ggml_backend_load_best("rpc", silent, dir_path);
- ggml_backend_load_best("sycl", silent, dir_path);
- ggml_backend_load_best("vulkan", silent, dir_path);
- ggml_backend_load_best("opencl", silent, dir_path);
- ggml_backend_load_best("musa", silent, dir_path);
- ggml_backend_load_best("cpu", silent, dir_path);
+ ggml_backend_try_load_best("blas", silent, dir_path);
+ ggml_backend_try_load_best("cann", silent, dir_path);
+ ggml_backend_try_load_best("cuda", silent, dir_path);
+ ggml_backend_try_load_best("hip", silent, dir_path);
+ ggml_backend_try_load_best("kompute", silent, dir_path);
+ ggml_backend_try_load_best("metal", silent, dir_path);
+ ggml_backend_try_load_best("rpc", silent, dir_path);
+ ggml_backend_try_load_best("sycl", silent, dir_path);
+ ggml_backend_try_load_best("vulkan", silent, dir_path);
+ ggml_backend_try_load_best("opencl", silent, dir_path);
+ ggml_backend_try_load_best("musa", silent, dir_path);
+ ggml_backend_try_load_best("cpu", silent, dir_path);
// check the environment variable GGML_BACKEND_PATH to load an out-of-tree backend
const char * backend_path = std::getenv("GGML_BACKEND_PATH");
if (backend_path) {

View File

@@ -1,64 +0,0 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Wed, 5 Mar 2025 17:41:07 -0800
Subject: [PATCH] fix string arr kv loading
---
ggml/include/gguf.h | 1 +
ggml/src/gguf.cpp | 7 +++++--
src/llama-vocab.cpp | 2 +-
3 files changed, 7 insertions(+), 3 deletions(-)
diff --git a/ggml/include/gguf.h b/ggml/include/gguf.h
index 79ee2020..3efb22f0 100644
--- a/ggml/include/gguf.h
+++ b/ggml/include/gguf.h
@@ -114,6 +114,7 @@ extern "C" {
// get raw pointer to the first element of the array with the given key_id
// for bool arrays, note that they are always stored as int8 on all platforms (usually this makes no difference)
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id);
+ GGML_API size_t gguf_get_arr_data_n(const struct gguf_context * ctx, int64_t key_id);
// get ith C string from array with given key_id
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int64_t key_id, size_t i);
diff --git a/ggml/src/gguf.cpp b/ggml/src/gguf.cpp
index ab13669c..f75b923f 100644
--- a/ggml/src/gguf.cpp
+++ b/ggml/src/gguf.cpp
@@ -777,10 +777,14 @@ enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id
const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
return ctx->kv[key_id].data.data();
}
+size_t gguf_get_arr_data_n(const struct gguf_context * ctx, int64_t key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ return ctx->kv[key_id].data.size();
+}
+
const char * gguf_get_arr_str(const struct gguf_context * ctx, int64_t key_id, size_t i) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_type() == GGUF_TYPE_STRING);
@@ -874,7 +878,6 @@ const char * gguf_get_val_str(const struct gguf_context * ctx, int64_t key_id) {
const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
- GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
return ctx->kv[key_id].data.data();
}
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
index c7ff28be..7a185443 100644
--- a/src/llama-vocab.cpp
+++ b/src/llama-vocab.cpp
@@ -1443,7 +1443,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
if (precompiled_charsmap_keyidx != -1) {
- size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx);
+ size_t n_precompiled_charsmap = gguf_get_arr_data_n(ctx, precompiled_charsmap_keyidx);
const char * pc = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
precompiled_charsmap.assign(pc, pc + n_precompiled_charsmap);
#ifdef IS_BIG_ENDIAN

View File

@@ -2,9 +2,6 @@
#include "sampling.h"
#include "sampling_ext.h"
#include "json-schema-to-grammar.h"
#include "llama.h"
#include "llama-model.h"
#include "llama-model-loader.h"
struct common_sampler *common_sampler_cinit(const struct llama_model *model, struct common_sampler_cparams *params) {
try {
@@ -67,22 +64,3 @@ int schema_to_grammar(const char *json_schema, char *grammar, size_t max_len)
return 0;
}
}
struct llama_vocab * llama_load_vocab_from_file(const char * fname) {
llama_vocab * vocab = new llama_vocab();
try {
const auto kv = LLM_KV(LLM_ARCH_UNKNOWN);
std::vector<std::string> splits = {};
llama_model_loader ml(std::string(fname), splits, false, false, nullptr);
vocab->load(ml, kv);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
return nullptr;
}
return vocab;
}
void llama_free_vocab(struct llama_vocab * vocab) {
delete vocab;
}

View File

@@ -35,9 +35,6 @@ extern "C"
int schema_to_grammar(const char *json_schema, char *grammar, size_t max_len);
struct llama_vocab * llama_load_vocab_from_file(const char * fname);
void llama_free_vocab(struct llama_vocab * vocab);
#ifdef __cplusplus
}
#endif

View File

@@ -115,9 +115,6 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
// multimodal models require at least 2048 context
opts.NumCtx = max(opts.NumCtx, 2048)
}
if projectorWeights == 0 && projectorGraph == 0 {
projectorWeights, projectorGraph = f.VisionGraphSize()
}
layers := f.Tensors().GroupLayers()
// add one layer worth of memory as a buffer

View File

@@ -30,7 +30,6 @@ import (
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llama"
"github.com/ollama/ollama/model"
)
type LlamaServer interface {
@@ -55,15 +54,8 @@ type llmServer struct {
options api.Options
numParallel int
modelPath string
// llamaModel is an instance of the cgo llama.cpp model definition
// nil if this server is running the new engine
llamaModel *llama.Model
llamaModelLock sync.Mutex
// textProcessor handles text encoding/decoding for the model in the Ollama engine
// nil if this server is running the llama.cpp based engine
textProcessor model.TextProcessor
modelLock sync.Mutex // Temporary until we switch fully to Go server
model *llama.Model // If non-nil, the runner is a new Go server
estimate MemoryEstimate
totalLayers uint64
@@ -97,7 +89,7 @@ func LoadModel(model string, maxArraySize int) (*ggml.GGML, error) {
// NewLlamaServer will run a server for the given GPUs
// The gpu list must be a single family.
func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
systemInfo := discover.GetSystemInfo()
systemTotalMemory := systemInfo.System.TotalMemory
systemFreeMemory := systemInfo.System.FreeMemory
@@ -138,7 +130,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
slog.Info("offload", "", estimate)
params := []string{
"--model", modelPath,
"--model", model,
"--ctx-size", strconv.Itoa(opts.NumCtx),
"--batch-size", strconv.Itoa(opts.NumBatch),
}
@@ -161,6 +153,11 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
}
}
if len(projectors) > 0 {
// TODO: applying multiple projectors is not supported by the llama.cpp server yet
params = append(params, "--mmproj", projectors[0])
}
defaultThreads := systemInfo.GetOptimalThreadCount()
if opts.NumThread > 0 {
params = append(params, "--threads", strconv.Itoa(opts.NumThread))
@@ -260,34 +257,6 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
}
}
slog.Debug("compatible gpu libraries", "compatible", compatible)
exe, err := os.Executable()
if err != nil {
return nil, fmt.Errorf("unable to lookup executable path: %w", err)
}
if eval, err := filepath.EvalSymlinks(exe); err == nil {
exe = eval
}
var llamaModel *llama.Model
var textProcessor model.TextProcessor
if envconfig.NewEngine() {
textProcessor, err = model.NewTextProcessor(modelPath)
if err != nil {
// To prepare for opt-out mode, instead of treating this as an error, we fallback to the old runner
slog.Debug("model not yet supported by Ollama engine, switching to compatibility mode", "model", modelPath, "error", err)
}
}
if textProcessor == nil {
llamaModel, err = llama.LoadModelFromFile(modelPath, llama.ModelParams{VocabOnly: true})
if err != nil {
return nil, err
}
}
if len(projectors) > 0 && llamaModel != nil {
params = append(params, "--mmproj", projectors[0])
}
// iterate through compatible GPU libraries such as 'cuda_v12', 'cuda_v11', 'rocm', etc.
// adding each library's respective path to the LD_LIBRARY_PATH, until finally running
@@ -306,9 +275,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
port = rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
}
finalParams := []string{"runner"}
if textProcessor != nil {
// New engine
// TODO - if we have failure to load scenarios, add logic to retry with the old runner
if envconfig.NewEngine() {
finalParams = append(finalParams, "--ollama-engine")
}
finalParams = append(finalParams, params...)
@@ -348,20 +315,28 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
// finally, add the root library path
libraryPaths = append(libraryPaths, discover.LibOllamaPath)
exe, err := os.Executable()
if err != nil {
return nil, fmt.Errorf("unable to lookup executable path: %w", err)
}
if eval, err := filepath.EvalSymlinks(exe); err == nil {
exe = eval
}
// TODO - once fully switched to the Go runner, load the model here for tokenize/detokenize cgo access
s := &llmServer{
port: port,
cmd: exec.Command(exe, finalParams...),
status: NewStatusWriter(os.Stderr),
options: opts,
modelPath: modelPath,
llamaModel: llamaModel,
textProcessor: textProcessor,
estimate: estimate,
numParallel: numParallel,
sem: semaphore.NewWeighted(int64(numParallel)),
totalLayers: f.KV().BlockCount() + 1,
gpus: gpus,
done: make(chan error, 1),
port: port,
cmd: exec.Command(exe, finalParams...),
status: NewStatusWriter(os.Stderr),
options: opts,
modelPath: model,
estimate: estimate,
numParallel: numParallel,
sem: semaphore.NewWeighted(int64(numParallel)),
totalLayers: f.KV().BlockCount() + 1,
gpus: gpus,
done: make(chan error, 1),
}
s.cmd.Env = os.Environ()
@@ -430,9 +405,6 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
}
err := fmt.Errorf("error starting runner: %v %s", err, msg)
if len(compatible) == 0 {
if llamaModel != nil {
llama.FreeModel(llamaModel)
}
return nil, err
}
@@ -961,25 +933,64 @@ type TokenizeResponse struct {
}
func (s *llmServer) Tokenize(ctx context.Context, content string) ([]int, error) {
s.llamaModelLock.Lock()
defer s.llamaModelLock.Unlock()
s.modelLock.Lock()
defer s.modelLock.Unlock()
if s.model != nil {
return s.model.Tokenize(content, false, true)
}
if s.llamaModel != nil {
return s.llamaModel.Tokenize(content, false, true)
// Make sure the server is ready
status, err := s.getServerStatus(ctx)
if err != nil {
return nil, err
} else if status != ServerStatusReady && status != ServerStatusNoSlotsAvailable {
return nil, fmt.Errorf("unexpected server status: %s", status.ToString())
}
if s.textProcessor != nil {
tokens, err := s.textProcessor.Encode(content, false)
if err != nil {
return nil, err
}
toks := make([]int, len(tokens))
for i, t := range tokens {
toks[i] = int(t)
}
return toks, nil
data, err := json.Marshal(TokenizeRequest{Content: content})
if err != nil {
return nil, fmt.Errorf("marshaling encode data: %w", err)
}
// not reached
return nil, fmt.Errorf("no tokenizer configured")
req, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/tokenize", s.port), bytes.NewBuffer(data))
if err != nil {
return nil, fmt.Errorf("encode request: %w", err)
}
req.Header.Set("Content-Type", "application/json")
resp, err := http.DefaultClient.Do(req)
if err != nil {
return nil, fmt.Errorf("do encode request: %w", err)
}
defer resp.Body.Close()
if resp.StatusCode == http.StatusNotFound {
if s.model == nil {
slog.Debug("new runner detected, loading model for cgo tokenization")
m, err := llama.LoadModelFromFile(s.modelPath, llama.ModelParams{VocabOnly: true})
if err != nil {
return nil, err
}
s.model = m
}
return s.model.Tokenize(content, false, true)
}
body, err := io.ReadAll(resp.Body)
if err != nil {
return nil, fmt.Errorf("read encode request: %w", err)
}
if resp.StatusCode >= 400 {
log.Printf("llm encode error: %s", body)
return nil, fmt.Errorf("%s", body)
}
var encoded TokenizeResponse
if err := json.Unmarshal(body, &encoded); err != nil {
return nil, fmt.Errorf("unmarshal encode response: %w", err)
}
return encoded.Tokens, nil
}
type DetokenizeRequest struct {
@@ -991,38 +1002,80 @@ type DetokenizeResponse struct {
}
func (s *llmServer) Detokenize(ctx context.Context, tokens []int) (string, error) {
s.llamaModelLock.Lock()
defer s.llamaModelLock.Unlock()
if s.llamaModel != nil {
s.modelLock.Lock()
defer s.modelLock.Unlock()
if s.model != nil {
var resp string
for _, token := range tokens {
resp += s.llamaModel.TokenToPiece(token)
resp += s.model.TokenToPiece(token)
}
return resp, nil
}
if s.textProcessor != nil {
toks := make([]int32, len(tokens))
for i, t := range tokens {
toks[i] = int32(t)
}
content, err := s.textProcessor.Decode(toks)
if err != nil {
return "", err
}
return content, nil
// Make sure the server is ready
status, err := s.getServerStatus(ctx)
if err != nil {
return "", err
} else if status != ServerStatusReady && status != ServerStatusNoSlotsAvailable {
return "", fmt.Errorf("unexpected server status: %s", status.ToString())
}
// not reached
return "", fmt.Errorf("no tokenizer configured")
data, err := json.Marshal(DetokenizeRequest{Tokens: tokens})
if err != nil {
return "", fmt.Errorf("marshaling decode data: %w", err)
}
req, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/detokenize", s.port), bytes.NewBuffer(data))
if err != nil {
return "", fmt.Errorf("decode request: %w", err)
}
req.Header.Set("Content-Type", "application/json")
resp, err := http.DefaultClient.Do(req)
if err != nil {
return "", fmt.Errorf("do decode request: %w", err)
}
defer resp.Body.Close()
if resp.StatusCode == http.StatusNotFound {
if s.model == nil {
slog.Debug("new runner detected, loading model for cgo tokenization")
m, err := llama.LoadModelFromFile(s.modelPath, llama.ModelParams{VocabOnly: true})
if err != nil {
return "", err
}
s.model = m
}
var resp string
for _, token := range tokens {
resp += s.model.TokenToPiece(token)
}
return resp, nil
}
body, err := io.ReadAll(resp.Body)
if err != nil {
return "", fmt.Errorf("read decode request: %w", err)
}
if resp.StatusCode >= 400 {
log.Printf("llm decode error: %s", body)
return "", fmt.Errorf("%s", body)
}
var decoded DetokenizeResponse
if err := json.Unmarshal(body, &decoded); err != nil {
return "", fmt.Errorf("unmarshal encode response: %w", err)
}
return decoded.Content, nil
}
func (s *llmServer) Close() error {
s.llamaModelLock.Lock()
if s.llamaModel != nil {
llama.FreeModel(s.llamaModel)
s.llamaModel = nil
s.modelLock.Lock()
if s.model != nil {
llama.FreeModel(s.model)
s.model = nil
}
s.llamaModelLock.Unlock()
s.modelLock.Unlock()
if s.cmd != nil {
slog.Debug("stopping llama server")

View File

@@ -24,7 +24,7 @@ type Backend interface {
Config() Config
Get(name string) Tensor
NewContext() Context
NewContextSize(size int) Context
SystemInfo() string
}
// BackendCacheConfig should be implemented by backends that need special output
@@ -100,17 +100,8 @@ type Context interface {
Forward(...Tensor) Context
Compute(...Tensor)
MaxGraphNodes() int
MaxTensors() int
Close()
// Input returns a context appropriate for creating input tensors
Input() Context
// Output returns a context appropriate for creating output tensors
Output() Context
// Layer returns a context appropriate for creating intermediate tensors
Layer(int) Context
}
type Tensor interface {
@@ -215,7 +206,7 @@ func Dump(ctx Context, t Tensor, opts ...DumpOptions) string {
return dump[[]float32](ctx, t, opts[0].Items, func(f float32) string {
return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32)
})
case DTypeF16, DTypeQ80, DTypeQ40:
case DTypeF16:
f32 := ctx.Empty(DTypeF32, t.Shape()...)
f32 = t.Copy(ctx, f32)
return dump[[]float32](ctx, f32, opts[0].Items, func(f float32) string {
@@ -283,7 +274,5 @@ const (
DTypeOther DType = iota
DTypeF32
DTypeF16
DTypeQ80
DTypeQ40
DTypeI32
)

View File

@@ -1,61 +1,91 @@
package ggml
// #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
// #include <stdlib.h>
// #include <stdint.h>
// #include "ggml.h"
// #include "ggml-cpu.h"
// #include "ggml-backend.h"
/*
#cgo CPPFLAGS: -I${SRCDIR}/ggml/include
#include <stdlib.h>
#include <stdint.h>
#include "ggml.h"
#include "ggml-cpu.h"
#include "ggml-backend.h"
static struct ggml_backend_feature * getBackendFeatures(void *fp, ggml_backend_reg_t reg) {return ((ggml_backend_get_features_t)(fp))(reg);}
static struct ggml_backend_feature * getNextBackendFeatures(struct ggml_backend_feature * feature) { return &feature[1];}
typedef enum {COMP_UNKNOWN,COMP_GCC,COMP_CLANG} COMPILER;
COMPILER inline get_compiler() {
#if defined(__clang__)
return COMP_CLANG;
#elif defined(__GNUC__)
return COMP_GCC;
#else
return UNKNOWN_COMPILER;
#endif
}
*/
import "C"
import (
"errors"
"fmt"
"io"
"log/slog"
"maps"
"os"
"slices"
"strconv"
"strings"
"unicode"
"sync"
"unsafe"
"github.com/ollama/ollama/format"
fs "github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/ml"
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
"golang.org/x/sync/errgroup"
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
)
func devices() []*C.struct_ggml_backend_device {
ggml.OnceLoad()
ds := make([]*C.struct_ggml_backend_device, C.ggml_backend_dev_count())
for i := range ds {
ds[i] = C.ggml_backend_dev_get(C.size_t(i))
}
return ds
type device struct {
d *C.struct_ggml_backend_device
}
func (d device) LogValue() slog.Value {
var free, total uint64
C.ggml_backend_dev_memory(d.d, (*C.size_t)(&free), (*C.size_t)(&total))
kind := "unknown"
switch C.ggml_backend_dev_type(d.d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
kind = "cpu"
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
kind = "gpu"
case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
kind = "accel"
}
return slog.GroupValue(
slog.String("name", C.GoString(C.ggml_backend_dev_name(d.d))),
slog.String("description", C.GoString(C.ggml_backend_dev_description(d.d))),
slog.String("kind", kind),
slog.String("free", format.HumanBytes2(free)),
slog.String("total", format.HumanBytes2(total)),
)
}
var devices = sync.OnceValue(func() []device {
ggml.OnceLoad()
s := make([]device, C.ggml_backend_dev_count())
for i := range s {
s[i] = device{C.ggml_backend_dev_get(C.size_t(i))}
}
return s
})
type Backend struct {
meta *fs.GGML
sched *C.struct_ggml_backend_sched
tensors map[string]*C.struct_ggml_tensor
// input is the backend used for inputs
input *C.struct_ggml_backend_buffer_type
// output is the backend used for outputs
output *C.struct_ggml_backend_buffer_type
// layers is the backend used for repeating layers
layers map[int]*C.struct_ggml_backend_buffer_type
flashAttention bool
// maxGraphNodes is the maximum allowed number of graph nodes in this scheduler
maxGraphNodes int
meta *fs.GGML
cpus, gpus []Context
tensors map[string]*Context
sched *C.struct_ggml_backend_sched
}
func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
@@ -74,310 +104,107 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
"num_key_values", len(meta.KV()),
)
type deviceBufferType struct {
d *C.struct_ggml_backend_device
bts []*C.struct_ggml_backend_buffer_type
}
var cpus, accels, gpus []*C.struct_ggml_backend_device
var cpus, gpus []Context
for _, d := range devices() {
switch C.ggml_backend_dev_type(d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
if len(cpus) == 0 {
// only the first cpu device should be used
cpus = append(cpus, d)
}
case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
accels = append(accels, d)
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
gpus = append(gpus, d)
}
}
// create list of buffer types for the cpu
cpuDeviceBufferType := deviceBufferType{d: C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU)}
for _, d := range append(accels, append(gpus, cpus...)...) {
switch C.ggml_backend_dev_type(d) {
switch C.ggml_backend_dev_type(d.d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU,
C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
cpuDeviceBufferType.bts = append(cpuDeviceBufferType.bts, C.ggml_backend_dev_buffer_type(d))
}
}
// create list of buffer types for each gpu
var gpuDeviceBufferTypes []deviceBufferType
for _, d := range gpus {
bt := C.ggml_backend_dev_buffer_type(d)
gpuDeviceBufferTypes = append(gpuDeviceBufferTypes, deviceBufferType{
d: d,
bts: append([]*C.struct_ggml_backend_buffer_type{bt}, cpuDeviceBufferType.bts...),
})
}
useDefaultSplit := true
for _, s := range params.TensorSplit {
if s != 0 {
useDefaultSplit = false
break
}
}
// calculate splits
splits := make([]float32, len(gpus))
if useDefaultSplit {
// default: split on free memory
for i := range splits {
var free, total C.size_t
C.ggml_backend_dev_memory(gpus[i], &free, &total)
splits[i] = float32(free)
}
} else {
splits = params.TensorSplit
}
var sum float32
// cumulative sum of all splits
for i := range splits {
sum += splits[i]
splits[i] = sum
}
// normalize splits
for i := range splits {
splits[i] /= sum
}
// inputs always use cpu
input := cpuDeviceBufferType
blocks := int(meta.KV().BlockCount())
// define a range of gpu layers. anything outside of this range is assigned to the cpu
gpuRangeStart := max(0, blocks-params.NumGPULayers)
gpuRangeStop := min(gpuRangeStart+params.NumGPULayers, blocks+1)
assignLayer := func(i int) deviceBufferType {
if i < gpuRangeStart || i >= gpuRangeStop {
return cpuDeviceBufferType
}
index := slices.IndexFunc(splits, func(f float32) bool { return float32(i-gpuRangeStart)/float32(gpuRangeStop-gpuRangeStart) < f })
if index < 0 || index >= len(gpuDeviceBufferTypes) {
return cpuDeviceBufferType
}
return gpuDeviceBufferTypes[index]
}
// repeating layers are assigned based on their index in reverse order, e.g. i / (block_count + 1)
layers := make([]deviceBufferType, blocks)
for i := range layers {
layers[i] = assignLayer(i)
}
// outputs are assigned iff allowed by splits and configured number of gpu layers
output := assignLayer(blocks)
maxTensors := len(meta.Tensors().Items())
maxTensors += 1
// each layer has at most 2 extra tensors for rope operations
maxTensors += blocks * 2
type tensor struct {
source *fs.Tensor
target string
}
// some tensors are mapped to different names so keep a list
targets := make(map[string][]string)
// contexts are shared by tensors of the same buffer type
ctxs := make(map[*C.struct_ggml_backend_buffer_type]*C.struct_ggml_context)
createTensor := func(t tensor, bts []*C.struct_ggml_backend_buffer_type) *C.struct_ggml_tensor {
for _, bt := range bts {
if _, ok := ctxs[bt]; !ok {
ctxs[bt] = C.ggml_init(C.struct_ggml_init_params{
mem_size: C.ggml_tensor_overhead() * C.size_t(maxTensors),
slog.Info("cpu", "device", d)
cpus = append(cpus, Context{
ctx: C.ggml_init(C.struct_ggml_init_params{
mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
no_alloc: true,
})
}
targets[t.source.Name] = append(targets[t.source.Name], t.target)
name := t.source.Name
if t.target != "" {
name = t.target
}
cname := C.CString(name)
defer C.free(unsafe.Pointer(cname))
if tt := C.ggml_get_tensor(ctxs[bt], cname); tt != nil {
return tt
}
tt := C.ggml_new_tensor(ctxs[bt], t.source.Kind, C.int(len(t.source.Shape)), (*C.int64_t)(unsafe.Pointer(&t.source.Shape[0])))
C.ggml_set_name(tt, cname)
slog.Debug("created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
//nolint:staticcheck // TODO: check if buffer type supports this tensor
return tt
}
return nil
}
contains := func(s string, parts ...string) bool {
split := strings.Split(s, ".")
for _, part := range parts {
if slices.Contains(split, part) {
return true
}
}
return false
}
for _, t := range meta.Tensors().Items() {
switch {
case contains(t.Name, "position_embd", "token_embd", "token_norm_embd", "token_types"):
createTensor(tensor{source: t}, input.bts)
case contains(t.Name, "cls", "output", "output_norm"):
createTensor(tensor{source: t}, output.bts)
case strings.HasPrefix(t.Name, "v.") || strings.HasPrefix(t.Name, "mm."):
// TODO: assign vision tensors to the gpu if possible
createTensor(tensor{source: t}, input.bts)
default:
layerIndex := -1
if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
if i, err := strconv.Atoi(fields[0]); err == nil {
layerIndex = i
}
}
if layerIndex >= 0 {
createTensor(tensor{source: t}, layers[layerIndex].bts)
} else {
// this is a repeating tensor that doesn't explicitly associated with a layer so
// duplicate it for each layer
for i, layer := range layers {
createTensor(tensor{
source: t,
target: "blk." + strconv.Itoa(i) + "." + t.Name,
}, layer.bts)
}
}
}
}
// allocate buffers for each context
bbs := make(map[*C.struct_ggml_context]*C.struct_ggml_backend_buffer, len(ctxs))
for bt, c := range ctxs {
if C.ggml_get_first_tensor(c) == nil {
continue
}
b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
bbs[c] = b
}
for bs := range maps.Values(bbs) {
slog.Info("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(bs)), "size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(bs))))
}
// map tensor names to tensors for easy lookup later
tensors := make(map[string]*C.struct_ggml_tensor)
for _, c := range ctxs {
for t := C.ggml_get_first_tensor(c); t != nil; t = C.ggml_get_next_tensor(c, t) {
tensors[C.GoString(C.ggml_get_name(t))] = t
}
}
// concurrently read in tensor data. uses a section reader which is safe for concurrent reads
sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
var g errgroup.Group
for _, t := range meta.Tensors().Items() {
for _, target := range targets[t.Name] {
g.Go(func() error {
if target == "" {
target = t.Name
}
tt, ok := tensors[target]
if !ok {
return fmt.Errorf("unassigned tensor: %s", t.Name)
}
bts := make([]byte, t.Size())
n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
if err != nil {
return err
}
if n != len(bts) {
return errors.New("short read")
}
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), 0, C.size_t(t.Size()))
return nil
}),
backend: C.ggml_backend_dev_init(d.d, nil),
})
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
slog.Info("gpu", "device", d)
gpus = append(gpus, Context{
ctx: C.ggml_init(C.struct_ggml_init_params{
mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
no_alloc: true,
}),
backend: C.ggml_backend_dev_init(d.d, nil),
})
}
}
if g.Wait() != nil {
ctxFunc := func(s []Context) (*Context, error) {
for _, e := range s {
return &e, nil
}
return nil, fmt.Errorf("no devices available")
}
tensors := make(map[*fs.Tensor]*Context, len(meta.Tensors().Items()))
for _, t := range meta.Tensors().Items() {
c, err := ctxFunc(append(gpus, cpus...))
if err != nil {
return nil, err
}
func() {
tt := C.ggml_new_tensor(c.ctx, t.Kind, C.int(len(t.Shape)), (*C.int64_t)(unsafe.Pointer(&t.Shape[0])))
cname := C.CString(t.Name)
defer C.free(unsafe.Pointer(cname))
C.ggml_set_name(tt, cname)
tensors[t] = c
}()
}
for _, b := range append(gpus, cpus...) {
C.ggml_backend_alloc_ctx_tensors(b.ctx, b.backend)
}
sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
var g errgroup.Group
for t, c := range tensors {
g.Go(func() error {
bts := make([]byte, t.Size())
n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
if err != nil {
return err
}
if n != int(t.Size()) {
return fmt.Errorf("expected %d bytes, got %d", t.Size(), n)
}
cname := C.CString(t.Name)
defer C.free(unsafe.Pointer(cname))
C.ggml_backend_tensor_set(C.ggml_get_tensor(c.ctx, cname), unsafe.Pointer(&bts[0]), 0, C.size_t(n))
return nil
})
}
if err := g.Wait(); err != nil {
return nil, err
}
// map devices to backend buffer types so new tensors can be assigned to the correct device
deviceBufferTypes := make(map[*C.struct_ggml_backend_device]*C.struct_ggml_backend_buffer_type)
// create backends and buffer types used for the compute graph scheduler
var schedBackends []*C.struct_ggml_backend
var schedBufts []*C.struct_ggml_backend_buffer_type
for _, d := range append(gpus, append(accels, cpus...)...) {
b := C.ggml_backend_dev_init(d, nil)
bt := C.ggml_backend_get_default_buffer_type(b)
if d := C.ggml_backend_get_device(b); C.ggml_backend_dev_type(d) == C.GGML_BACKEND_DEVICE_TYPE_CPU && len(gpus) > 0 {
// use the first gpu host buffer type for gpu if possible
if hbt := C.ggml_backend_dev_host_buffer_type(gpus[0]); hbt != nil {
bt = hbt
}
}
deviceBufferTypes[d] = bt
schedBackends = append(schedBackends, b)
schedBufts = append(schedBufts, bt)
slog.Info("compute graph", "backend", C.GoString(C.ggml_backend_name(b)), "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
if C.ggml_backend_is_cpu(b) {
// set number of threads for cpu backend
C.ggml_backend_cpu_set_n_threads(b, C.int(params.NumThreads))
}
backends := make([]*C.struct_ggml_backend, len(gpus)+len(cpus))
bufts := make([]*C.struct_ggml_backend_buffer_type, len(gpus)+len(cpus))
for i, c := range append(gpus, cpus...) {
backends[i] = c.backend
bufts[i] = C.ggml_backend_get_default_buffer_type(c.backend)
}
maxGraphNodes := max(8192, len(meta.Tensors().Items())*5)
return &Backend{
flashAttention: params.FlashAttention,
meta: meta,
tensors: tensors,
cpus: cpus,
gpus: gpus,
sched: C.ggml_backend_sched_new(
(*C.ggml_backend_t)(unsafe.Pointer(&schedBackends[0])),
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])),
C.int(len(schedBackends)),
C.size_t(maxGraphNodes),
(*C.ggml_backend_t)(unsafe.Pointer(&backends[0])),
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&bufts[0])),
C.int(len(backends)),
C.size_t(max(8192, len(meta.Tensors().Items())*5)),
true,
),
input: deviceBufferTypes[input.d],
output: deviceBufferTypes[output.d],
layers: func() map[int]*C.struct_ggml_backend_buffer_type {
m := make(map[int]*C.struct_ggml_backend_buffer_type)
for i, layer := range layers {
m[i] = deviceBufferTypes[layer.d]
}
return m
}(),
maxGraphNodes: maxGraphNodes,
}, nil
}
@@ -390,29 +217,36 @@ func (b *Backend) Config() ml.Config {
}
func (b *Backend) Get(name string) ml.Tensor {
if t, ok := b.tensors[name]; ok {
return &Tensor{b: b, t: t}
cname := C.CString(name)
defer C.free(unsafe.Pointer(cname))
for _, c := range append(b.gpus, b.cpus...) {
if t := C.ggml_get_tensor(c.ctx, cname); t != nil {
return &Tensor{b: b, t: t}
}
}
return nil
}
func (b *Backend) NewContext() ml.Context {
return b.NewContextSize(b.maxGraphNodes)
}
nodes := max(8192, len(b.meta.Tensors().Items())*5)
c := C.ggml_init(C.struct_ggml_init_params{
mem_buffer: nil,
mem_size: C.size_t(nodes)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(nodes), false),
no_alloc: true,
})
func (b *Backend) NewContextSize(n int) ml.Context {
if n > b.maxGraphNodes {
panic(fmt.Errorf("requested number of graph nodes (%v) for new context exceeds maximum (%v)", n, b.maxGraphNodes))
backends := make([]*C.struct_ggml_backend, len(b.gpus)+len(b.cpus))
for i, c := range append(b.gpus, b.cpus...) {
backends[i] = c.backend
}
return &Context{
b: b,
maxGraphNodes: n,
ctx: C.ggml_init(C.struct_ggml_init_params{
mem_size: C.size_t(n)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(n), false),
no_alloc: true,
}),
b: b,
ctx: c,
backend: backends[0],
nodes: nodes,
}
}
@@ -425,60 +259,17 @@ func (b *Backend) CacheConfig() ml.CacheConfig {
}
type Context struct {
b *Backend
b *Backend
ctx *C.struct_ggml_context
backend *C.struct_ggml_backend
ctx *C.struct_ggml_context
graph *C.struct_ggml_cgraph
// buft is the buffer type used for new tensors
buft *C.struct_ggml_backend_buffer_type
// maxGraphNodes is the maximum allowed number of graph nodes in this context
maxGraphNodes int
}
func (c Context) Input() ml.Context {
if c.b.input != nil {
return &Context{
b: c.b,
ctx: c.ctx,
buft: c.b.input,
maxGraphNodes: c.maxGraphNodes,
}
}
return &c
}
func (c Context) Output() ml.Context {
if c.b.output != nil {
return &Context{
b: c.b,
ctx: c.ctx,
buft: c.b.output,
maxGraphNodes: c.maxGraphNodes,
}
}
return &c
}
func (c Context) Layer(i int) ml.Context {
if buft, ok := c.b.layers[i]; ok {
return &Context{
b: c.b,
ctx: c.ctx,
buft: buft,
maxGraphNodes: c.maxGraphNodes,
}
}
return &c
nodes int
}
func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
if c.graph == nil {
c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.maxGraphNodes), false)
c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.nodes), false)
}
for _, tensor := range tensors {
@@ -488,7 +279,7 @@ func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
return c
}
func (c Context) Compute(tensors ...ml.Tensor) {
func (c *Context) Compute(tensors ...ml.Tensor) {
C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph)
C.ggml_backend_sched_reset(c.b.sched)
@@ -507,48 +298,21 @@ func (c Context) Compute(tensors ...ml.Tensor) {
}
}
func (c Context) MaxGraphNodes() int {
return c.maxGraphNodes
func (c *Context) MaxTensors() int {
return c.nodes
}
func shapeToGGML(shape []int) *C.int64_t {
sh := make([]C.int64_t, len(shape))
for i, s := range shape {
sh[i] = C.int64_t(s)
sh[i] = (C.int64_t)(s)
}
return &sh[0]
}
func pad(length, pad C.size_t) C.size_t {
return ((length + pad - 1) / pad) * pad
}
func (c Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
if c.buft == nil {
panic("set Input, Output, or Layer before creating tensors")
}
var cdtype uint32
switch dtype {
case ml.DTypeF32:
cdtype = C.GGML_TYPE_F32
case ml.DTypeF16:
cdtype = C.GGML_TYPE_F16
case ml.DTypeQ80:
cdtype = C.GGML_TYPE_Q8_0
case ml.DTypeQ40:
cdtype = C.GGML_TYPE_Q4_0
case ml.DTypeI32:
cdtype = C.GGML_TYPE_I32
default:
panic("unsupported dtype")
}
if len(shape) < 1 || shape[0] == 0 {
var shape C.int64_t = 0
return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}
} else if len(shape) > 4 {
func newTensor(ctx Context, dtype ml.DType, zero bool, shape []int) ml.Tensor {
if len(shape) < 1 || len(shape) > 4 {
panic("unsupported number of dimensions")
}
@@ -558,28 +322,41 @@ func (c Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
}
}
t := C.ggml_new_tensor(c.ctx, cdtype, C.int(len(shape)), shapeToGGML(shape))
size := pad(C.ggml_backend_buft_get_alloc_size(c.buft, t), C.ggml_backend_buft_get_alignment(c.buft))
b := C.ggml_backend_buft_alloc_buffer(c.buft, size)
var t *C.struct_ggml_tensor
switch dtype {
case ml.DTypeF32:
t = C.ggml_new_tensor(ctx.ctx, C.GGML_TYPE_F32, C.int(len(shape)), shapeToGGML(shape))
case ml.DTypeF16:
t = C.ggml_new_tensor(ctx.ctx, C.GGML_TYPE_F16, C.int(len(shape)), shapeToGGML(shape))
case ml.DTypeI32:
t = C.ggml_new_tensor(ctx.ctx, C.GGML_TYPE_I32, C.int(len(shape)), shapeToGGML(shape))
default:
panic("unsupported dtype")
}
b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t))
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
return &Tensor{b: c.b, t: t}
if zero {
C.ggml_set_zero(t)
}
return &Tensor{b: ctx.b, t: t}
}
func (c Context) Empty(dtype ml.DType, shape ...int) ml.Tensor {
return c.newTensor(dtype, shape)
return newTensor(c, dtype, false, shape)
}
func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
t := c.newTensor(dtype, shape)
C.ggml_set_zero(t.(*Tensor).t)
return t
return newTensor(c, dtype, true, shape)
}
func checkShape[S ~[]E, E any](s S, shape ...int) error {
func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype uint32) (ml.Tensor, error) {
n := len(s)
if n == 0 {
return nil
var shape C.int64_t = 0
t := C.ggml_new_tensor(ctx.ctx, dtype, 1, &shape)
return &Tensor{b: ctx.b, t: t}, nil
}
for _, v := range shape {
@@ -587,36 +364,22 @@ func checkShape[S ~[]E, E any](s S, shape ...int) error {
}
if n != 1 {
return fmt.Errorf("invalid shape: %v", shape)
return nil, fmt.Errorf("invalid shape %v for %d elements", shape, len(s))
}
return nil
t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), shapeToGGML(shape))
b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t))
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
C.ggml_backend_tensor_set(t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t))
return &Tensor{b: ctx.b, t: t}, nil
}
func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
if err := checkShape(s, shape...); err != nil {
return nil, err
}
t := c.newTensor(ml.DTypeF32, shape)
if len(s) > 0 {
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
}
return t, nil
return fromSlice(c, s, shape, C.GGML_TYPE_F32)
}
func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
if err := checkShape(s, shape...); err != nil {
return nil, err
}
t := c.newTensor(ml.DTypeI32, shape)
if len(s) > 0 {
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
}
return t, nil
return fromSlice(c, s, shape, C.GGML_TYPE_I32)
}
func (c *Context) Close() {
@@ -684,10 +447,6 @@ func (t *Tensor) DType() ml.DType {
return ml.DTypeF32
case C.GGML_TYPE_F16:
return ml.DTypeF16
case C.GGML_TYPE_Q8_0:
return ml.DTypeQ80
case C.GGML_TYPE_Q4_0:
return ml.DTypeQ40
case C.GGML_TYPE_I32:
return ml.DTypeI32
default:
@@ -970,3 +729,34 @@ func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask ml.T
return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
}
}
func (b *Backend) SystemInfo() string {
var compiler string
switch C.get_compiler() {
case C.COMP_UNKNOWN:
compiler = "cgo(unknown_compiler)"
case C.COMP_GCC:
compiler = "cgo(gcc)"
case C.COMP_CLANG:
compiler = "cgo(clang)"
}
var s string
for i := range C.ggml_backend_reg_count() {
reg := C.ggml_backend_reg_get(i)
fName := C.CString("ggml_backend_get_features")
defer C.free(unsafe.Pointer(fName))
get_features_fn := C.ggml_backend_reg_get_proc_address(reg, fName)
if get_features_fn != nil {
s += C.GoString(C.ggml_backend_reg_name(reg))
s += " : "
for features := C.getBackendFeatures(get_features_fn, reg); features.name != nil; features = C.getNextBackendFeatures(features) {
s += C.GoString(features.name)
s += " = "
s += C.GoString(features.value)
s += " | "
}
}
}
return s + compiler
}

View File

@@ -114,7 +114,6 @@ extern "C" {
// get raw pointer to the first element of the array with the given key_id
// for bool arrays, note that they are always stored as int8 on all platforms (usually this makes no difference)
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id);
GGML_API size_t gguf_get_arr_data_n(const struct gguf_context * ctx, int64_t key_id);
// get ith C string from array with given key_id
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int64_t key_id, size_t i);

View File

@@ -484,29 +484,33 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
}
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
for (const auto & entry : dir_it) {
if (entry.is_regular_file()) {
std::string filename = entry.path().filename().string();
std::string ext = entry.path().extension().string();
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
dl_handle_ptr handle { dl_load_library(entry.path()) };
if (!handle) {
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_to_string(entry.path()).c_str());
continue;
}
try {
if (entry.is_regular_file()) {
std::string filename = entry.path().filename().string();
std::string ext = entry.path().extension().string();
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
dl_handle_ptr handle { dl_load_library(entry.path()) };
if (!handle) {
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_to_string(entry.path()).c_str());
continue;
}
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
if (!score_fn) {
GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, path_to_string(entry.path()).c_str());
continue;
}
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
if (!score_fn) {
GGML_LOG_DEBUG("%s: failed to find ggml_backend_score in %s\n", __func__, path_to_string(entry.path()).c_str());
continue;
}
int s = score_fn();
GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, path_to_string(entry.path()).c_str(), s);
if (s > best_score) {
best_score = s;
best_path = entry.path();
int s = score_fn();
GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, path_to_string(entry.path()).c_str(), s);
if (s > best_score) {
best_score = s;
best_path = entry.path();
}
}
}
} catch (const std::exception & e) {
GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, path_to_string(entry.path()).c_str(), e.what());
}
}
}
@@ -529,14 +533,6 @@ void ggml_backend_load_all() {
ggml_backend_load_all_from_path(nullptr);
}
static void ggml_backend_try_load_best(const char * name, bool silent, const char * user_search_path) {
try {
ggml_backend_load_best(name, silent, user_search_path);
} catch (const std::exception & e) {
GGML_LOG_DEBUG("%s: failed to load %s: %s\n", __func__, name, e.what());
}
}
void ggml_backend_load_all_from_path(const char * dir_path) {
#ifdef NDEBUG
bool silent = true;
@@ -544,18 +540,18 @@ void ggml_backend_load_all_from_path(const char * dir_path) {
bool silent = false;
#endif
ggml_backend_try_load_best("blas", silent, dir_path);
ggml_backend_try_load_best("cann", silent, dir_path);
ggml_backend_try_load_best("cuda", silent, dir_path);
ggml_backend_try_load_best("hip", silent, dir_path);
ggml_backend_try_load_best("kompute", silent, dir_path);
ggml_backend_try_load_best("metal", silent, dir_path);
ggml_backend_try_load_best("rpc", silent, dir_path);
ggml_backend_try_load_best("sycl", silent, dir_path);
ggml_backend_try_load_best("vulkan", silent, dir_path);
ggml_backend_try_load_best("opencl", silent, dir_path);
ggml_backend_try_load_best("musa", silent, dir_path);
ggml_backend_try_load_best("cpu", silent, dir_path);
ggml_backend_load_best("blas", silent, dir_path);
ggml_backend_load_best("cann", silent, dir_path);
ggml_backend_load_best("cuda", silent, dir_path);
ggml_backend_load_best("hip", silent, dir_path);
ggml_backend_load_best("kompute", silent, dir_path);
ggml_backend_load_best("metal", silent, dir_path);
ggml_backend_load_best("rpc", silent, dir_path);
ggml_backend_load_best("sycl", silent, dir_path);
ggml_backend_load_best("vulkan", silent, dir_path);
ggml_backend_load_best("opencl", silent, dir_path);
ggml_backend_load_best("musa", silent, dir_path);
ggml_backend_load_best("cpu", silent, dir_path);
// check the environment variable GGML_BACKEND_PATH to load an out-of-tree backend
const char * backend_path = std::getenv("GGML_BACKEND_PATH");
if (backend_path) {

View File

@@ -7,20 +7,6 @@ package ggml
// #include <stdlib.h>
// #include "ggml-backend.h"
// extern void sink(int level, char *text, void *user_data);
// static struct ggml_backend_feature * first_feature(ggml_backend_get_features_t fp, ggml_backend_reg_t reg) { return fp(reg); }
// static struct ggml_backend_feature * next_feature(struct ggml_backend_feature * feature) { return &feature[1]; }
/*
typedef enum { COMPILER_CLANG, COMPILER_GNUC, COMPILER_UNKNOWN } COMPILER;
static COMPILER compiler_name(void) {
#if defined(__clang__)
return COMPILER_CLANG;
#elif defined(__GNUC__)
return COMPILER_GNUC;
#else
return COMPILER_UNKNOWN;
#endif
}
*/
import "C"
import (
@@ -30,7 +16,6 @@ import (
"os"
"path/filepath"
"runtime"
"strconv"
"strings"
"sync"
"unsafe"
@@ -105,43 +90,4 @@ var OnceLoad = sync.OnceFunc(func() {
visited[abspath] = struct{}{}
}
}
slog.Info("system", "", system{})
})
type system struct{}
func (system) LogValue() slog.Value {
var attrs []slog.Attr
names := make(map[string]int)
for i := range C.ggml_backend_dev_count() {
r := C.ggml_backend_dev_backend_reg(C.ggml_backend_dev_get(i))
func() {
fName := C.CString("ggml_backend_get_features")
defer C.free(unsafe.Pointer(fName))
if fn := C.ggml_backend_reg_get_proc_address(r, fName); fn != nil {
var features []any
for f := C.first_feature(C.ggml_backend_get_features_t(fn), r); f.name != nil; f = C.next_feature(f) {
features = append(features, C.GoString(f.name), C.GoString(f.value))
}
name := C.GoString(C.ggml_backend_reg_name(r))
attrs = append(attrs, slog.Group(name+"."+strconv.Itoa(names[name]), features...))
names[name] += 1
}
}()
}
switch C.compiler_name() {
case C.COMPILER_CLANG:
attrs = append(attrs, slog.String("compiler", "cgo(clang)"))
case C.COMPILER_GNUC:
attrs = append(attrs, slog.String("compiler", "cgo(gcc)"))
default:
attrs = append(attrs, slog.String("compiler", "cgo(unknown)"))
}
return slog.GroupValue(attrs...)
}

View File

@@ -777,14 +777,10 @@ enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id
const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
return ctx->kv[key_id].data.data();
}
size_t gguf_get_arr_data_n(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
return ctx->kv[key_id].data.size();
}
const char * gguf_get_arr_str(const struct gguf_context * ctx, int64_t key_id, size_t i) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_type() == GGUF_TYPE_STRING);
@@ -878,6 +874,7 @@ const char * gguf_get_val_str(const struct gguf_context * ctx, int64_t key_id) {
const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id) {
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
return ctx->kv[key_id].data.data();
}

View File

@@ -1,37 +0,0 @@
package input
// Input represents one token in the input stream
type Input struct {
// Token is a single element of text.
Token int32
// Multimodal is opaque data representing a non-text
// element such as an image (or part of one if the image
// can be processed in pieces). It may be either together
// with Token or on its own.
Multimodal any
// MultimodalHash is a unique representation of the data
// stored in Multimodal, used for caching and comparing
// equality.
MultimodalHash uint64
}
// MultimodalIndex is a multimodal element (such as an image)
// together with an index into the slice of Inputs with the
// corresponding token. Note that the index is not the same
// as the position - to find that use the index with the
// Positions slice.
type MultimodalIndex struct {
Index int
Multimodal any
}
// Options contains the inputs for a model forward pass
type Options struct {
Inputs []int32
Multimodal []MultimodalIndex
Positions []int32
Sequences []int
Outputs []int32
}

View File

@@ -3,6 +3,7 @@ package model
import (
"errors"
"fmt"
"image"
_ "image/jpeg"
_ "image/png"
"log/slog"
@@ -15,50 +16,23 @@ import (
_ "golang.org/x/image/tiff"
_ "golang.org/x/image/webp"
fs "github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
_ "github.com/ollama/ollama/ml/backend"
"github.com/ollama/ollama/model/input"
)
// Model implements a specific model architecture, defining the forward pass and any model-specific configuration
type Model interface {
Forward(ml.Context, input.Options) (ml.Tensor, error)
// Options contains the inputs for a model forward pass
type Options struct {
Inputs []int32
Positions []int32
Sequences []int
Outputs []int32
Backend() ml.Backend
Config() config
Images []image.Image
}
// MultimodalProcessor must be implemented by multimodal models.
type MultimodalProcessor interface {
// EncodeMultimodal processes a single input (such as an image) and
// generates an output (typically an embedding) that can be used by the model.
//
// The return value is most typically an ml.Tensor, however, different
// type are possible, such as an object containing a tensor plus
// additional metadata, a slice of tensors or even just the original input.
//
// The result may be cached by the runner.
EncodeMultimodal(ml.Context, []byte) (any, error)
// PostTokenize is called after tokenization to allow the model to edit the
// input stream to correctly arrange multimodal elements.
//
// The input is a slice of tokens with the results of EncodeMultimodal interleaved
// in the order that the user provided them. Each element of the slice will be
// either a single token or single multimodal object.
//
// The model must ensure that inputs are stored according to how they will be
// processed and stored in the cache. For example, Llava-style models should insert
// placeholder tokens equal to the feature size of the corresponding image with
// the image itself attached to and split across these tokens. When Forward is called
// a partial subset of these tokens may be submitted according to the batch size.
//
// This function is also responsible for updating MultimodalHash for any Multimodal
// that is modified to ensure that there is a unique hash value that accurately
// represents the contents.
PostTokenize(ml.Context, []input.Input) ([]input.Input, error)
type config struct {
Cache kvcache.Cache
}
// Base implements the common fields and methods for all models
@@ -67,10 +41,6 @@ type Base struct {
config
}
type config struct {
Cache kvcache.Cache
}
// Backend returns the underlying backend that will run the model
func (m *Base) Backend() ml.Backend {
return m.b
@@ -80,6 +50,14 @@ func (m *Base) Config() config {
return m.config
}
// Model implements a specific model architecture, defining the forward pass and any model-specific configuration
type Model interface {
Forward(ml.Context, Options) (ml.Tensor, error)
Backend() ml.Backend
Config() config
}
var models = make(map[string]func(ml.Config) (Model, error))
// Register registers a model constructor for the given architecture
@@ -122,36 +100,6 @@ func New(modelPath string, params ml.BackendParams) (Model, error) {
return m, nil
}
func NewTextProcessor(s string) (TextProcessor, error) {
r, err := os.Open(s)
if err != nil {
return nil, err
}
defer r.Close()
meta, _, err := fs.Decode(r, -1)
if err != nil {
return nil, err
}
return getTextProcessor(meta.KV())
}
func getTextProcessor(kv fs.KV) (TextProcessor, error) {
arch := kv.Architecture()
f, ok := models[arch]
if !ok {
return nil, fmt.Errorf("unsupported model architecture %q", arch)
}
m, err := f(kv)
if err != nil {
return nil, err
}
tp, ok := m.(TextProcessor)
if !ok {
return nil, fmt.Errorf("%v is not a TextProcessor", m)
}
return tp, nil
}
func populateFields(base Base, v reflect.Value, tags ...Tag) reflect.Value {
t := v.Type()
@@ -278,7 +226,7 @@ func canNil(t reflect.Type) bool {
t.Kind() == reflect.Slice
}
func Forward(ctx ml.Context, m Model, opts input.Options) (ml.Tensor, error) {
func Forward(ctx ml.Context, m Model, opts Options) (ml.Tensor, error) {
if len(opts.Positions) != len(opts.Sequences) {
return nil, fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(opts.Positions), len(opts.Sequences))
}
@@ -289,7 +237,7 @@ func Forward(ctx ml.Context, m Model, opts input.Options) (ml.Tensor, error) {
cache := m.Config().Cache
if cache != nil {
err := cache.StartForward(ctx, opts)
err := cache.StartForward(ctx, opts.Positions, opts.Sequences)
if err != nil {
return nil, err
}

View File

@@ -3,15 +3,12 @@ package model
import (
"reflect"
"slices"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
fs "github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/backend/ggml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model/input"
)
func TestParseTags(t *testing.T) {
@@ -137,40 +134,3 @@ func TestPopulateFieldsAlternateName(t *testing.T) {
t.Errorf("populateFields() set incorrect values (-want +got):\n%s", diff)
}
}
func TestGetTextProcessor(t *testing.T) {
tp, err := getTextProcessor(fs.KV{})
if err == nil {
t.Error("expected error")
} else if !strings.Contains(err.Error(), "unsupported model architecture") {
t.Errorf("unexpected error: %v", err)
} else if tp != nil {
t.Error("expected nil tp")
}
models["dummy"] = func(ml.Config) (Model, error) {
return notTextProcessorModel{}, nil
}
tp, err = getTextProcessor(fs.KV{"general.architecture": "dummy"})
if err == nil {
t.Error("expected error")
} else if !strings.Contains(err.Error(), "not a TextProcessor") {
t.Errorf("unexpected error: %v", err)
} else if tp != nil {
t.Error("expected nil tp")
}
}
type notTextProcessorModel struct{}
func (notTextProcessorModel) Forward(ml.Context, input.Options) (ml.Tensor, error) {
panic("unimplemented")
}
func (notTextProcessorModel) Backend() ml.Backend {
panic("unimplemented")
}
func (notTextProcessorModel) Config() config {
panic("unimplemented")
}

View File

@@ -1,18 +1,16 @@
package llama
import (
"fmt"
"math"
"strings"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Options struct {
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
hiddenSize, numHeads, numKVHeads int
eps, ropeBase, ropeScale float32
ropeDim uint32
@@ -31,10 +29,6 @@ type Model struct {
}
func New(c ml.Config) (model.Model, error) {
if !strings.EqualFold(c.String("tokenizer.ggml.model"), "gpt2") {
return nil, fmt.Errorf("tokenizer %s not yet supported", c.String("tokenizer.ggml.model"))
}
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
@@ -66,11 +60,10 @@ func New(c ml.Config) (model.Model, error) {
}
type SelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
@@ -79,11 +72,11 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
q = q.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
q = q.RoPE(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
k = k.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
k = k.RoPE(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
@@ -96,7 +89,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.RoPE(ctx, shift, m.Layers[layer].SelfAttention.RopeFactors, m.ropeDim, m.ropeBase, m.ropeScale), nil
return key.RoPE(ctx, shift, m.Options.RopeFactors, m.Options.ropeDim, m.Options.ropeBase, m.Options.ropeScale), nil
}
type MLP struct {
@@ -138,18 +131,18 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Ten
return hiddenState.Add(ctx, residual)
}
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
inputs, err := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
if err != nil {
return nil, err
}
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
positions, err := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
outputs, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
}

View File

@@ -1,18 +1,10 @@
package mllama
import (
"bytes"
"encoding/binary"
"fmt"
"hash/fnv"
"image"
"slices"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
@@ -33,10 +25,6 @@ const (
)
func New(c ml.Config) (model.Model, error) {
// Verify unified config
if c.Uint("vision.block_count") == 0 {
return nil, fmt.Errorf("non-unified vision model not supported")
}
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
@@ -62,92 +50,54 @@ func New(c ml.Config) (model.Model, error) {
return &m, nil
}
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
image, _, err := image.Decode(bytes.NewReader(multimodalData))
if err != nil {
return nil, err
}
f32s, aspectRatioID, err := m.ImageProcessor.ProcessImage(image)
if err != nil {
return nil, err
}
pixelValues, err := ctx.Input().FromFloatSlice(f32s,
m.ImageProcessor.imageSize,
m.ImageProcessor.imageSize,
m.ImageProcessor.numChannels,
m.ImageProcessor.maxNumTiles,
)
if err != nil {
return nil, err
}
aspectRatio, err := ctx.Input().FromIntSlice([]int32{int32(aspectRatioID)}, 1)
if err != nil {
return nil, err
}
positions := make([]int32, 1601)
for i := range positions {
positions[i] = int32(i)
}
positionIDs, err := ctx.Input().FromIntSlice(positions, len(positions))
if err != nil {
return nil, err
}
crossAttentionStates := m.VisionModel.Forward(ctx, pixelValues, positionIDs, aspectRatio)
return m.Projector.Forward(ctx, crossAttentionStates), nil
}
func (m *Model) PostTokenize(ctx ml.Context, inputs []input.Input) ([]input.Input, error) {
var images []input.Input
fnvHash := fnv.New64a()
for i := range inputs {
if inputs[i].Multimodal == nil {
if len(images) > 0 {
inputs[i].Multimodal = images[0].Multimodal
inputs[i].MultimodalHash = images[0].MultimodalHash
for j := 1; j < len(images); j++ {
inputs[i].Multimodal = inputs[i].Multimodal.(ml.Tensor).Concat(ctx, images[j].Multimodal.(ml.Tensor), 3)
fnvHash.Reset()
binary.Write(fnvHash, binary.NativeEndian, inputs[i].MultimodalHash)
binary.Write(fnvHash, binary.NativeEndian, inputs[j].MultimodalHash)
inputs[i].MultimodalHash = fnvHash.Sum64()
}
images = nil
}
} else {
images = append(images, inputs[i])
inputs[i].Token = -1
}
}
inputs = slices.DeleteFunc(inputs, func(input input.Input) bool { return input.Token == -1 })
return inputs, nil
}
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
var crossAttentionStates ml.Tensor
if len(opts.Multimodal) > 0 {
crossAttentionStates = opts.Multimodal[len(opts.Multimodal)-1].Multimodal.(ml.Tensor)
if opts.Images != nil {
f32s, aspectRatioID, err := m.ImageProcessor.ProcessImage(opts.Images[0])
if err != nil {
return nil, err
}
pixelValues, err := ctx.FromFloatSlice(f32s,
m.ImageProcessor.imageSize,
m.ImageProcessor.imageSize,
m.ImageProcessor.numChannels,
m.ImageProcessor.maxNumTiles,
)
if err != nil {
return nil, err
}
aspectRatio, err := ctx.FromIntSlice([]int32{int32(aspectRatioID)}, 1)
if err != nil {
return nil, err
}
positions := make([]int32, 1601)
for i := range positions {
positions[i] = int32(i)
}
positionIDs, err := ctx.FromIntSlice(positions, len(positions))
if err != nil {
return nil, err
}
crossAttentionStates = m.VisionModel.Forward(ctx, pixelValues, positionIDs, aspectRatio)
crossAttentionStates = m.Projector.Forward(ctx, crossAttentionStates)
}
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
inputs, err := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
if err != nil {
return nil, err
}
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
positions, err := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
outputs, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
}

View File

@@ -10,11 +10,10 @@ import (
)
type TextSelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, _ ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
@@ -23,11 +22,11 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, _ m
query := sa.Query.Forward(ctx, hiddenState)
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
query = query.RoPE(ctx, positions, sa.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
query = query.RoPE(ctx, positions, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
key := sa.Key.Forward(ctx, hiddenState)
key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
key = key.RoPE(ctx, positions, sa.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
key = key.RoPE(ctx, positions, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
value := sa.Value.Forward(ctx, hiddenState)
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
@@ -40,11 +39,8 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, _ m
}
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
if sa, ok := m.Transformer.Layers[layer].(*TextSelfAttentionDecoderLayer); ok {
return key.RoPE(ctx, shift, sa.SelfAttention.RopeFactors, m.ropeDim, m.ropeBase, m.ropeScale), nil
}
return key, nil
// This will only get called for layers in the causal cache, which are just the self attention layers
return key.RoPE(ctx, shift, m.RopeFactors, m.ropeDim, m.ropeBase, m.ropeScale), nil
}
type TextMLP struct {
@@ -195,6 +191,8 @@ func (d *TextDecoder) Forward(ctx ml.Context, hiddenState, positionIDs, outputs,
}
type TextModelOptions struct {
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
hiddenSize, numHeads, numKVHeads int
eps, ropeBase, ropeScale float32
ropeDim uint32

View File

@@ -19,7 +19,7 @@ const (
)
type TextProcessor interface {
Encode(s string, addSpecial bool) ([]int32, error)
Encode(string) ([]int32, error)
Decode([]int32) (string, error)
Is(int32, Special) bool
}
@@ -144,7 +144,7 @@ type merge struct {
runes []rune
}
func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
func (bpe BytePairEncoding) Encode(s string) ([]int32, error) {
fragments := []fragment{{value: s}}
for _, special := range bpe.vocab.SpecialVocabulary() {
// TODO: process special tokens concurrently
@@ -177,6 +177,7 @@ func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
for _, frag := range fragments {
if len(frag.ids) > 0 {
ids = append(ids, frag.ids...)
slog.Debug("encoded", "text", frag.value, "ids", frag.ids, "special", true)
continue
}
@@ -200,6 +201,7 @@ func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
// short circuit if the fragment is in the vocabulary
if id := bpe.vocab.Encode(sb.String()); id >= 0 {
ids = append(ids, id)
slog.Debug("encoded", "text", sb.String(), "ids", []int32{id})
continue
}
@@ -273,13 +275,14 @@ func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
// TODO: handle the edge case where the rune isn't in the vocabulary
if id := bpe.vocab.Encode(string(merge.runes)); id >= 0 {
ids = append(ids, id)
slog.Debug("encoded", "text", string(merge.runes), "ids", []int32{id})
}
}
}
}
}
if addSpecial && len(ids) > 0 {
if len(ids) > 0 {
if bpe.vocab.AddBOS {
if ids[0] == bpe.vocab.BOS {
slog.Warn("adding bos token to prompt which already has it", "id", bpe.vocab.BOS)
@@ -326,5 +329,6 @@ func (bpe BytePairEncoding) Decode(ids []int32) (string, error) {
}
}
slog.Debug("decoded", "ids", ids, "text", sb.String())
return sb.String(), nil
}

View File

@@ -74,7 +74,7 @@ func TestLlama(t *testing.T) {
t.Run("simple", func(t *testing.T) {
t.Parallel()
ids, err := tokenizer.Encode("hello world", true)
ids, err := tokenizer.Encode("hello world")
if err != nil {
t.Error(err)
}
@@ -92,7 +92,7 @@ func TestLlama(t *testing.T) {
t.Errorf("got %q, want hello world", s)
}
ids, err = tokenizer.Encode("hello <|end_of_text|>", true)
ids, err = tokenizer.Encode("hello <|end_of_text|>")
if err != nil {
t.Error(err)
}
@@ -126,7 +126,7 @@ func TestLlama(t *testing.T) {
}
for s, want := range cases {
ids, err := tokenizer.Encode(s, true)
ids, err := tokenizer.Encode(s)
if err != nil {
t.Error(err)
}
@@ -152,7 +152,7 @@ func TestLlama(t *testing.T) {
}
for _, want := range cases {
ids, err := tokenizer.Encode(want, true)
ids, err := tokenizer.Encode(want)
if err != nil {
t.Error(err)
}
@@ -176,7 +176,7 @@ func TestLlama(t *testing.T) {
}
for s, want := range cases {
ids, err := tokenizer.Encode(s, true)
ids, err := tokenizer.Encode(s)
if err != nil {
t.Fatal(err)
}
@@ -222,7 +222,7 @@ func BenchmarkBytePairEncoding(b *testing.B) {
b.Run("encode"+strconv.Itoa(n), func(b *testing.B) {
b.ResetTimer()
for range b.N {
_, err := tokenizer.Encode(string(bts), true)
_, err := tokenizer.Encode(string(bts))
if err != nil {
b.Fatal(err)
}
@@ -230,7 +230,7 @@ func BenchmarkBytePairEncoding(b *testing.B) {
})
b.Run("decode"+strconv.Itoa(n), func(b *testing.B) {
ids, err := tokenizer.Encode(string(bts), true)
ids, err := tokenizer.Encode(string(bts))
if err != nil {
b.Fatal(err)
}

View File

@@ -931,6 +931,7 @@ func Execute(args []string) error {
slog.Info("starting go runner")
llama.BackendInit()
slog.Info("system", "info", llama.PrintSystemInfo(), "threads", *threads)
server := &Server{
batchSize: *batchSize,

View File

@@ -5,12 +5,12 @@ import (
"fmt"
"log/slog"
"math"
"reflect"
"time"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type InputCache struct {
@@ -39,7 +39,10 @@ func NewInputCache(model model.Model, kvCacheType string, kvSize int32, numSlots
slots := make([]InputCacheSlot, numSlots)
for i := range slots {
slots[i] = InputCacheSlot{Id: i}
slots[i] = InputCacheSlot{
Id: i,
Inputs: make([]input, 0),
}
}
cache := model.Config().Cache
@@ -59,9 +62,9 @@ func NewInputCache(model model.Model, kvCacheType string, kvSize int32, numSlots
func kvCacheTypeFromStr(s string) ml.DType {
switch s {
case "q8_0":
return ml.DTypeQ80
panic("kv cache quantization not yet implemented")
case "q4_0":
return ml.DTypeQ40
panic("kv cache quantization not yet implemented")
default:
return ml.DTypeF16
}
@@ -80,7 +83,7 @@ type InputCacheSlot struct {
Id int
// Inputs that are stored in the KV cache
Inputs []input.Input
Inputs []input
// is this cache actively being processed as part of a sequence?
InUse bool
@@ -89,7 +92,7 @@ type InputCacheSlot struct {
lastUsed time.Time
}
func (c *InputCache) LoadCacheSlot(prompt []input.Input, cachePrompt bool) (*InputCacheSlot, []input.Input, error) {
func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCacheSlot, []input, error) {
var slot *InputCacheSlot
var numPast int32
var err error
@@ -140,7 +143,7 @@ func (c *InputCache) LoadCacheSlot(prompt []input.Input, cachePrompt bool) (*Inp
return slot, prompt, nil
}
func (c *InputCache) findLongestCacheSlot(prompt []input.Input) (*InputCacheSlot, int32, error) {
func (c *InputCache) findLongestCacheSlot(prompt []input) (*InputCacheSlot, int32, error) {
longest := int32(-1)
var longestSlot *InputCacheSlot
@@ -163,7 +166,7 @@ func (c *InputCache) findLongestCacheSlot(prompt []input.Input) (*InputCacheSlot
return longestSlot, longest, nil
}
func (c *InputCache) findBestCacheSlot(prompt []input.Input) (*InputCacheSlot, int32, error) {
func (c *InputCache) findBestCacheSlot(prompt []input) (*InputCacheSlot, int32, error) {
oldest := time.Now()
var oldestSlot *InputCacheSlot
@@ -199,7 +202,7 @@ func (c *InputCache) findBestCacheSlot(prompt []input.Input) (*InputCacheSlot, i
if longest > 0 && longestSlot != oldestSlot {
slog.Debug("forking cache slot", "src", longestSlot.Id, "dst", oldestSlot.Id, "inputs", longest, "total",
len(longestSlot.Inputs))
oldestSlot.Inputs = make([]input.Input, longest)
oldestSlot.Inputs = make([]input, longest)
copy(oldestSlot.Inputs, longestSlot.Inputs[:longest])
if c.cache != nil {
c.cache.CopyPrefix(longestSlot.Id, oldestSlot.Id, longest)
@@ -209,7 +212,7 @@ func (c *InputCache) findBestCacheSlot(prompt []input.Input) (*InputCacheSlot, i
return oldestSlot, longest, nil
}
func countCommonPrefix(a []input.Input, b []input.Input) int32 {
func countCommonPrefix(a []input, b []input) int32 {
var count int32
for i := range a {
@@ -217,7 +220,7 @@ func countCommonPrefix(a []input.Input, b []input.Input) int32 {
break
}
if a[i].Token != b[i].Token || a[i].MultimodalHash != b[i].MultimodalHash {
if !reflect.DeepEqual(a[i], b[i]) {
break
}

View File

@@ -4,8 +4,6 @@ import (
"image"
"testing"
"time"
"github.com/ollama/ollama/model/input"
)
func TestCountCommon(t *testing.T) {
@@ -15,50 +13,44 @@ func TestCountCommon(t *testing.T) {
tests := []struct {
name string
t1 []input.Input
t2 []input.Input
t1 []input
t2 []input
expected int32
}{
{
name: "Equal",
t1: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
t2: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
t1: []input{{token: 1}, {token: 2}, {token: 3}},
t2: []input{{token: 1}, {token: 2}, {token: 3}},
expected: 3,
},
{
name: "Prefix",
t1: []input.Input{{Token: 1}},
t2: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
t1: []input{{token: 1}},
t2: []input{{token: 1}, {token: 2}, {token: 3}},
expected: 1,
},
{
name: "Image Prefix",
t1: []input.Input{{Multimodal: imgA, MultimodalHash: 1}},
t2: []input.Input{{Multimodal: imgA, MultimodalHash: 1}, {Multimodal: imgB, MultimodalHash: 2}, {Multimodal: imgC, MultimodalHash: 3}},
t1: []input{{image: imgA}},
t2: []input{{image: imgA}, {image: imgB}, {image: imgC}},
expected: 1,
},
{
name: "Mixed",
t1: []input.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}},
t2: []input.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}, {Token: 5}},
t1: []input{{token: 1}, {image: imgA}},
t2: []input{{token: 1}, {image: imgA}, {token: 5}},
expected: 2,
},
{
name: "Mixed, Same Length",
t1: []input.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}},
t2: []input.Input{{Token: 1}, {Multimodal: imgB, MultimodalHash: 2}},
expected: 1,
},
{
name: "Empty",
t1: []input.Input{},
t2: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
t1: []input{},
t2: []input{{token: 1}, {token: 2}, {token: 3}},
expected: 0,
},
{
name: "Both Empty",
t1: []input.Input{},
t2: []input.Input{},
t1: []input{},
t2: []input{},
expected: 0,
},
}
@@ -82,7 +74,7 @@ func TestFindCacheSlot(t *testing.T) {
tests := []struct {
name string
cache InputCache
prompt []input.Input
prompt []input
longest expected
best expected
}{
@@ -91,18 +83,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{},
Inputs: []input{},
InUse: false,
lastUsed: time.Time{},
},
{
Id: 1,
Inputs: []input.Input{},
Inputs: []input{},
InUse: false,
lastUsed: time.Time{},
},
}},
prompt: []input.Input{{Token: 1}},
prompt: []input{{token: 1}},
longest: expected{result: 0, len: 0},
best: expected{result: 0, len: 0},
},
@@ -111,18 +103,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}},
Inputs: []input{{token: 1}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
Inputs: []input{{token: 1}, {token: 2}},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
}},
prompt: []input.Input{{Token: 1}, {Token: 2}},
prompt: []input{{token: 1}, {token: 2}},
longest: expected{result: 1, len: 2},
best: expected{result: 1, len: 2},
},
@@ -131,18 +123,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
Inputs: []input{{token: 1}, {token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input.Input{},
Inputs: []input{},
InUse: false,
lastUsed: time.Time{},
},
}},
prompt: []input.Input{{Token: 2}},
prompt: []input{{token: 2}},
longest: expected{result: 0, len: 0},
best: expected{result: 1, len: 0},
},
@@ -152,19 +144,19 @@ func TestFindCacheSlot(t *testing.T) {
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
Inputs: []input{{token: 1}, {token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input.Input{},
Inputs: []input{},
InUse: false,
lastUsed: time.Time{},
},
},
},
prompt: []input.Input{{Token: 1}},
prompt: []input{{token: 1}},
longest: expected{result: 0, len: 1},
best: expected{result: 1, len: 1},
},
@@ -173,18 +165,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}},
Inputs: []input{{token: 1}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
Inputs: []input{{token: 1}, {token: 2}},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
}},
prompt: []input.Input{{Token: 2}, {Token: 3}},
prompt: []input{{token: 2}, {token: 3}},
longest: expected{result: 0, len: 0},
best: expected{result: 1, len: 0},
},
@@ -193,18 +185,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
Inputs: []input{{token: 1}, {token: 2}},
InUse: true,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input.Input{{Token: 1}},
Inputs: []input{{token: 1}},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
}},
prompt: []input.Input{{Token: 1}, {Token: 2}},
prompt: []input{{token: 1}, {token: 2}},
longest: expected{result: 1, len: 1},
best: expected{result: 1, len: 2},
},

View File

@@ -1,12 +1,13 @@
package ollamarunner
import (
"bytes"
"context"
"encoding/json"
"errors"
"flag"
"fmt"
"hash/maphash"
"image"
"log"
"log/slog"
"net"
@@ -26,26 +27,28 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/runner/common"
"github.com/ollama/ollama/sample"
_ "github.com/ollama/ollama/model/models"
)
type Sequence struct {
// ctx for allocating tensors that last the lifetime of the sequence, such as
// multimodal embeddings
ctx ml.Context
// input is an element of the prompt to process, either a token or an image
type input struct {
token int32
image image.Image
}
type Sequence struct {
// batch index
iBatch int
// prompt inputs left to evaluate
inputs []input.Input
inputs []input
// inputs that have been added to a batch but not yet submitted to Forward
pendingInputs []input.Input
pendingInputs []input
// tokens that have been generated but not returned yet (e.g. for stop sequences)
pendingResponses []string
@@ -98,9 +101,8 @@ func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequen
s.ready.Wait()
startTime := time.Now()
ctx := s.model.Backend().NewContext()
inputs, err := s.inputs(ctx, prompt, images)
inputs, err := s.inputs(prompt, images)
if err != nil {
return nil, fmt.Errorf("failed to process inputs: %w", err)
} else if len(inputs) == 0 {
@@ -126,7 +128,6 @@ func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequen
// TODO(jessegross): Ingest cached history for grammar
return &Sequence{
ctx: ctx,
inputs: inputs,
numPromptInputs: len(inputs),
startProcessingTime: startTime,
@@ -145,31 +146,28 @@ func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequen
// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
// decoding images
func (s *Server) inputs(ctx ml.Context, prompt string, images []ImageData) ([]input.Input, error) {
var inputs []input.Input
func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
var inputs []input
var parts []string
var matches [][]string
multimodalProcessor, visionModel := s.model.(model.MultimodalProcessor)
// TODO(jessegross): This can sometimes trigger for matching text in the
// user's prompt. We previously tried to avoid it by only looking for images
// on image models. We don't have a clear indication now but it would be better
// to properly escape it in any case.
re := regexp.MustCompile(`\[img-(\d+)\]`)
parts = re.Split(prompt, -1)
matches = re.FindAllStringSubmatch(prompt, -1)
if visionModel {
re := regexp.MustCompile(`\[img-(\d+)\]`)
parts = re.Split(prompt, -1)
matches = re.FindAllStringSubmatch(prompt, -1)
} else {
parts = []string{prompt}
}
postTokenize := false
for i, part := range parts {
// text - tokenize
tokens, err := s.model.(model.TextProcessor).Encode(part, i == 0)
tokens, err := s.model.(model.TextProcessor).Encode(part)
if err != nil {
return nil, err
}
for _, t := range tokens {
inputs = append(inputs, input.Input{Token: t})
inputs = append(inputs, input{token: t})
}
// image - decode and store
@@ -188,25 +186,12 @@ func (s *Server) inputs(ctx ml.Context, prompt string, images []ImageData) ([]in
return nil, fmt.Errorf("invalid image index: %d", n)
}
imageEmbeddings, err := multimodalProcessor.EncodeMultimodal(ctx, images[imageIndex].Data)
image, _, err := image.Decode(bytes.NewReader(images[imageIndex].Data))
if err != nil {
return nil, err
}
s.multimodalHash.Reset()
_, _ = s.multimodalHash.Write(images[imageIndex].Data)
imageHash := s.multimodalHash.Sum64()
inputs = append(inputs, input.Input{Multimodal: imageEmbeddings, MultimodalHash: imageHash})
postTokenize = true
}
}
if visionModel && postTokenize {
var err error
inputs, err = multimodalProcessor.PostTokenize(ctx, inputs)
if err != nil {
return nil, err
inputs = append(inputs, input{image: image})
}
}
@@ -251,15 +236,8 @@ type Server struct {
// KV cache
cache *InputCache
// multimodalHash generates hashes for comparing equality
// of non-text data
multimodalHash maphash.Hash
// vocab is a llama.cpp vocab required for gammar-based
// constrained generation (json mode, structured outputs)
// TODO: this is temporary until Ollama sampling supports
// constrained generation
vocab *sample.Vocab
// next sequence for prompt processing to avoid starvation
nextSeq int
}
func (s *Server) allNil() bool {
@@ -305,7 +283,6 @@ func (s *Server) removeSequence(seqIndex int, reason string) {
close(seq.responses)
close(seq.embedding)
seq.cache.InUse = false
seq.ctx.Close()
s.seqs[seqIndex] = nil
s.seqsSem.Release(1)
}
@@ -333,25 +310,30 @@ func (s *Server) processBatch() error {
}
defer s.mu.Unlock()
var options input.Options
var options model.Options
imgSeq := -1
seqIdx := s.nextSeq - 1
for range s.seqs {
seqIdx = (seqIdx + 1) % len(s.seqs)
seq := s.seqs[seqIdx]
for i, seq := range s.seqs {
if seq == nil {
continue
}
// if past the num predict limit
if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
s.removeSequence(i, "limit")
s.removeSequence(seqIdx, "limit")
continue
}
if !s.cache.enabled {
seq.inputs = append(seq.cache.Inputs, seq.inputs...)
seq.cache.Inputs = []input.Input{}
seq.cache.Inputs = []input{}
}
for j, inp := range seq.inputs {
for i, input := range seq.inputs {
if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+1) > s.cache.numCtx {
if len(seq.pendingInputs) == 0 {
err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
@@ -363,23 +345,37 @@ func (s *Server) processBatch() error {
}
}
if j >= s.batchSize {
if i >= s.batchSize {
break
}
options.Inputs = append(options.Inputs, inp.Token)
if inp.Multimodal != nil {
options.Multimodal = append(options.Multimodal, input.MultimodalIndex{Index: len(options.Inputs) - 1, Multimodal: inp.Multimodal})
// TODO(jessegross): Image inputs need to be rethought - it's
// it doesn't work well for different types of models or multiple sequences
if input.image != nil {
if len(seq.pendingInputs) != len(options.Images) {
break
}
if imgSeq != seqIdx && imgSeq != -1 {
s.nextSeq = seqIdx
break
}
imgSeq = seqIdx
options.Images = append(options.Images, input.image)
seq.pendingInputs = append(seq.pendingInputs, input)
continue
}
options.Inputs = append(options.Inputs, input.token)
options.Positions = append(options.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
options.Sequences = append(options.Sequences, seq.cache.Id)
seq.iBatch = len(options.Outputs)
if j+1 == len(seq.inputs) {
if i+1 == len(seq.inputs) {
options.Outputs = append(options.Outputs, int32(len(options.Inputs)-1))
}
seq.pendingInputs = append(seq.pendingInputs, inp)
seq.pendingInputs = append(seq.pendingInputs, input)
}
seq.inputs = seq.inputs[len(seq.pendingInputs):]
@@ -407,7 +403,7 @@ func (s *Server) processBatch() error {
// After calling Forward, pending inputs are now in the cache
if len(seq.pendingInputs) > 0 {
seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
seq.pendingInputs = []input.Input{}
seq.pendingInputs = []input{}
}
// don't sample prompt processing
@@ -426,7 +422,6 @@ func (s *Server) processBatch() error {
// if done processing the prompt, generate an embedding and return
if seq.embeddingOnly {
// TODO(jessegross): Embedding support
slog.Warn("generation of embedding outputs not yet supported")
s.removeSequence(i, "")
continue
}
@@ -454,7 +449,7 @@ func (s *Server) processBatch() error {
return err
}
seq.inputs = []input.Input{{Token: token}}
seq.inputs = []input{{token: token}}
seq.pendingResponses = append(seq.pendingResponses, piece)
sequence := strings.Join(seq.pendingResponses, "")
@@ -580,30 +575,11 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
return
}
var grammar *sample.Grammar
var err error
if req.Grammar != "" {
grammar, err = sample.NewGrammar(s.vocab, req.Grammar)
if err != nil {
http.Error(w, "failed to load model vocabulary required for format", http.StatusInternalServerError)
return
}
}
sampler := sample.NewSampler(
req.Temperature,
req.TopK,
req.TopP,
req.MinP,
req.Seed,
grammar,
)
seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
numPredict: req.NumPredict,
stop: req.Stop,
numKeep: int32(req.NumKeep),
sampler: sampler,
sampler: sample.Greedy(), // TODO: add support for different samplers when performance is optimized
embedding: false,
})
if err != nil {
@@ -810,7 +786,7 @@ func (s *Server) loadModel(
panic(err)
}
s.vocab = sample.NewVocab(mpath)
slog.Info("system", "info", s.model.Backend().SystemInfo(), "threads", params.NumThreads)
// TODO(jessegross): LoRA loading
if lpath.String() != "" {

View File

@@ -3,225 +3,118 @@ package sample
import (
"errors"
"math"
"math/rand/v2"
"slices"
"sync"
"github.com/ollama/ollama/llama"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/stat/sampleuv"
)
// token represents information about a single token during sampling
type token struct {
id int32 // The token's unique identifier
value float32 // The raw logit or probability from the model
type Sampler interface {
Sample([]float32) (int32, error)
}
type Sampler struct {
rng *rand.Rand
topK int
topP float32
minP float32
temperature float32
grammar *Grammar
type weighted struct {
src rand.Source
transforms []Transform
}
func (s *Sampler) Sample(logits []float32) (int32, error) {
tokens := make([]token, len(logits))
// TODO(parthsareen): remove uv sample dependency https://github.com/ollama/ollama/issues/9279
func Weighted(seed *uint64, transforms ...Transform) Sampler {
var src rand.Source
if seed != nil {
src = rand.NewSource(*seed)
}
return weighted{src: src, transforms: transforms}
}
func (s weighted) Sample(logits []float32) (int32, error) {
logits64 := make([]float64, len(logits))
for i, v := range logits {
logits64[i] = float64(v)
}
for _, t := range s.transforms {
logits64 = t.Apply(logits64)
}
logitsCopy := make([]float64, 0, len(logits))
indices := make([]int, 0, len(logits))
for i, logit := range logits64 {
if !math.IsInf(logit, -1) {
logitsCopy = append(logitsCopy, logit)
indices = append(indices, i)
}
}
if len(logitsCopy) == 0 {
return -1, errors.New("no valid logits found for weighed sampling")
}
probs := softmax(logitsCopy)
w := sampleuv.NewWeighted(probs, s.src)
if idx, ok := w.Take(); ok {
return int32(indices[idx]), nil
}
return -1, errors.New("weighted sampler failed, no valid token found")
}
type greedy struct{}
func Greedy() Sampler {
return greedy{}
}
// Sample returns the index of the maximum value in logits.
func (s greedy) Sample(logits []float32) (int32, error) {
if len(logits) == 0 {
return -1, errors.New("no logits provided for greedy sampling")
}
maxIdx := 0
for i := range logits {
tokens[i].id = int32(i)
tokens[i].value = logits[i]
}
t, err := s.sample(tokens)
if err != nil {
return -1, err
}
if s.grammar != nil {
// optimization: first check if the max logit is accepted by the grammar
// if the max logit is rejected, apply the grammar to all logits (slower)
top := []token{t}
s.grammar.Apply(top)
if !math.IsInf(float64(top[0].value), -1) {
s.grammar.Accept(top[0].id)
return top[0].id, nil
}
// since .sample has side effects of modifying the tokens
// we need to reset them before applying the grammar and
// sampling again
for i := range logits {
tokens[i].id = int32(i)
tokens[i].value = logits[i]
}
s.grammar.Apply(tokens)
t, err = s.sample(tokens)
if err != nil {
return -1, err
}
s.grammar.Accept(t.id)
}
return t.id, nil
}
// greedy returns the highest probability token from the tokens
func greedy(tokens []token) token {
max := tokens[0]
for i := 1; i < len(tokens); i++ {
if tokens[i].value > max.value {
max = tokens[i]
if logits[i] > logits[maxIdx] {
maxIdx = i
}
}
return max
}
// sample returns the highest probability token from the tokens
// given sampler parameters. It also has side effects of modifying the tokens
func (s *Sampler) sample(tokens []token) (token, error) {
if s.temperature == 0 {
return greedy(tokens), nil
}
if s.topK > 0 {
tokens = topK(tokens, s.topK)
} else {
sortLogits(tokens)
}
tokens = temperature(tokens, s.temperature)
tokens = softmax(tokens)
tokens = topP(tokens, s.topP)
tokens = minP(tokens, s.minP)
// TODO: this should fall back to greedy sampling
// or topP, topK values etc should be such that
// there are always tokens to sample from
if len(tokens) == 0 {
return token{}, errors.New("no tokens to sample from")
}
var r float32
if s.rng != nil {
r = s.rng.Float32()
} else {
r = rand.Float32()
}
// Calculate cumulative sum of probabilities
var sum float32
for i := range tokens {
sum += tokens[i].value
tokens[i].value = sum
}
r *= tokens[len(tokens)-1].value
idx, _ := slices.BinarySearchFunc(tokens, r, func(token token, target float32) int {
if token.value < target {
return -1
}
return 1
})
return tokens[idx], nil
return int32(maxIdx), nil
}
// TODO(parthsareen): update sampler interface to use json unmarshal https://github.com/ollama/ollama/issues/9278
func NewSampler(temperature float32, topK int, topP float32, minP float32, seed int, grammar *Grammar) Sampler {
var rng *rand.Rand
if seed != -1 {
// PCG requires two parameters: sequence and stream
// Use original seed for sequence
sequence := uint64(seed)
// Use golden ratio hash to generate statistically independent seeds
rng = rand.New(rand.NewPCG(sequence, sequence^0x9E3779B9))
}
if temperature < 0.0 {
temperature = 0.0
func NewSampler(temperature float32, topK int, topP float32, minP float32, seed int) (Sampler, error) {
if temperature == 0 {
return Greedy(), nil
}
if topP < 0.0 {
topP = 0.0
}
if topP >= 1.0 {
topP = 1.0
if temperature < 0 || temperature > 2 {
return nil, errors.New("temperature must be between 0 and 2")
}
if minP < 0.0 {
minP = 0.0
}
if minP >= 1.0 {
minP = 1.0
}
transforms := []Transform{Temperature(temperature)}
return Sampler{
rng: rng,
topK: topK,
topP: topP,
minP: minP,
temperature: temperature,
grammar: grammar,
}
}
type Grammar struct {
vocab *Vocab
grammar string
sampler *llama.Sampler
}
func NewGrammar(vocab *Vocab, grammar string) (*Grammar, error) {
v, err := vocab.Load()
if err != nil {
return nil, err
}
return &Grammar{
vocab: vocab,
grammar: grammar,
sampler: llama.NewGrammarSampler(v, grammar),
}, nil
}
func (g *Grammar) Apply(tokens []token) {
tds := make([]llama.TokenData, len(tokens))
for i, token := range tokens {
tds[i].Id = token.id
tds[i].Logit = token.value
}
g.sampler.Apply(tds)
for i := range tokens {
tokens[i].value = tds[i].Logit
}
}
func (g *Grammar) Accept(token int32) {
g.sampler.Accept(token)
}
type Vocab struct {
once sync.Once
vocab *llama.Vocab
err error
path string
}
func NewVocab(path string) *Vocab {
return &Vocab{path: path}
}
// Load returns the lazily-loaded vocabulary
func (v *Vocab) Load() (*llama.Vocab, error) {
v.once.Do(func() {
vocab, err := llama.LoadVocabFromFile(v.path)
if err != nil {
v.err = err
return
if topK != 0 {
if topK <= 0 {
return nil, errors.New("topK must be greater than 0")
}
v.vocab = vocab
})
return v.vocab, v.err
transforms = append(transforms, TopK(topK))
}
if topP != 0 {
if topP < 0 || topP >= 1 {
return nil, errors.New("topP must be between 0 and 1")
}
transforms = append(transforms, TopP(topP))
}
if minP != 0 {
if minP < 0 || minP >= 1 {
return nil, errors.New("minP must be between 0 and 1")
}
transforms = append(transforms, MinP(minP))
}
if seed >= 0 {
seed64 := uint64(seed)
return Weighted(&seed64, transforms...), nil
}
return Weighted(nil, transforms...), nil
}

View File

@@ -1,92 +0,0 @@
package sample
import (
"fmt"
"math/rand"
"testing"
)
func BenchmarkWeightedSampler(b *testing.B) {
sizes := []int{10, 100, 1000, 10000}
for _, size := range sizes {
b.Run(fmt.Sprintf("Size %d", size), func(b *testing.B) {
logits := make([]float32, size)
for i := range logits {
logits[i] = float32(rand.Float64()*10 - 5)
}
sampler := NewSampler(0.8, 0, 0, 0, 42, nil)
b.ResetTimer()
for b.Loop() {
sampler.Sample(logits)
}
})
}
configs := []struct {
name string
temperature float32
topK int
topP float32
minP float32
seed int
}{
{"Greedy", 0, -1, 0, 0, -1},
{"Temperature", 0.8, -1, 0, 0, -1},
{"TopK", 0.8, 50, 0, 0, -1},
{"TopP", 0.8, -1, 0.9, 0, -1},
{"MinP", 0.8, -1, 0, 0.05, -1},
{"WithSeed", 0.8, 50, 0, 0, 42},
}
// Fixed size for common vocab size
size := 128000
logits := make([]float32, size)
for i := range logits {
logits[i] = float32(rand.Float64()*10 - 5)
}
for _, tc := range configs {
b.Run("Config"+tc.name, func(b *testing.B) {
sampler := NewSampler(tc.temperature, tc.topK, tc.topP, tc.minP, tc.seed, nil)
sampler.Sample(logits)
b.ResetTimer()
for b.Loop() {
sampler.Sample(logits)
}
})
}
// Test with combined transforms separately - topK influences performance greatly
b.Run("TransformCombined", func(b *testing.B) {
sampler := NewSampler(0.8, 50, 0.9, 0.05, 42, nil)
b.ResetTimer()
for b.Loop() {
sampler.Sample(logits)
}
})
}
func BenchmarkGreedySampler(b *testing.B) {
sizes := []int{10, 100, 1000, 10000, 100000}
for _, size := range sizes {
b.Run(fmt.Sprintf("Size %d", size), func(b *testing.B) {
logits := make([]float32, size)
for i := range logits {
logits[i] = float32(rand.Float64()*10 - 5)
}
sampler := NewSampler(0, -1, 0, 0, -1, nil)
b.ResetTimer()
for b.Loop() {
sampler.Sample(logits)
}
})
}
}

View File

@@ -1,14 +1,15 @@
package sample
import (
"math"
"math/rand/v2"
"testing"
"github.com/google/go-cmp/cmp"
)
func TestWeighted(t *testing.T) {
logits := []float32{-10, 3, -10, -10}
sampler := NewSampler(0, 0, 0, 0, 0, nil)
got, err := sampler.Sample(logits)
got, err := Weighted(nil).Sample([]float32{float32(math.Inf(-1)), 2, float32(math.Inf(-1)), float32(math.Inf(-1))})
if err != nil {
t.Error(err)
return
@@ -18,26 +19,194 @@ func TestWeighted(t *testing.T) {
t.Errorf("index mismatch: want %d, got %d", want, got)
}
logits = []float32{-100, -10, 0, 10}
sampler = NewSampler(0, 0, 0, 0, 0, nil)
got, err = sampler.Sample(logits)
got, err = Weighted(nil).Sample([]float32{float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1))})
if err == nil {
t.Error("expected error for no valid tokens, got index", got)
}
seed := uint64(42)
got, err = Weighted(&seed).Sample([]float32{1, 2, 3, 4})
if err != nil {
t.Error(err)
return
}
want = int32(3) // Should pick highest probability with this r value
// With seed 42, we expect a consistent sample
want = int32(3) // This will be deterministic due to the seed
if want != got {
t.Errorf("index mismatch: want %d, got %d", want, got)
}
}
func BenchmarkSample(b *testing.B) {
samplers := map[string]Sampler{
"Greedy": NewSampler(0, 0, 0, 0, 0, nil), // Use NewSampler with temp=0 for greedy
"Weighted": NewSampler(0.5, 10, 0.9, 0.2, -1, nil),
type testTransform struct {
id int
callOrder *[]int
}
func (ts *testTransform) Apply(logits []float64) []float64 {
if ts.callOrder != nil {
*ts.callOrder = append(*ts.callOrder, ts.id)
}
return logits
}
func TestSample(t *testing.T) {
input := []float32{1, 2, 3, 4}
var callOrder []int
mock1 := &testTransform{
id: 1,
callOrder: &callOrder,
}
mock2 := &testTransform{
id: 2,
callOrder: &callOrder,
}
mock3 := &testTransform{
id: 3,
callOrder: &callOrder,
}
_, err := Weighted(nil, mock1, mock2, mock3).Sample(input)
if err != nil {
t.Error(err)
return
}
wantOrder := []int{1, 2, 3}
if diff := cmp.Diff(wantOrder, callOrder); diff != "" {
t.Errorf("call order mismatch (-want +got):\n%s", diff)
}
}
func TestNewSampler(t *testing.T) {
tests := []struct {
name string
temperature float32
topK int
topP float32
minP float32
seed int
wantErr bool
}{
{
name: "no transforms",
// temperature is 0, so greedy should be used
wantErr: false,
},
{
name: "temperature",
temperature: 0.5,
wantErr: false,
},
{
name: "invalid temperature negative",
temperature: -1,
wantErr: true,
},
{
name: "invalid temperature too high",
temperature: 2.1,
wantErr: true,
},
{
name: "top k",
topK: 10,
temperature: 0.8,
wantErr: false,
},
{
name: "invalid top k negative",
topK: -1,
temperature: 0.8,
wantErr: true,
},
{
name: "top p",
topP: 0.9,
temperature: 0.8,
wantErr: false,
},
{
name: "invalid top p negative",
topP: -0.1,
temperature: 0.8,
wantErr: true,
},
{
name: "invalid top p one",
topP: 1.0,
temperature: 0.8,
wantErr: true,
},
{
name: "min p",
minP: 0.2,
temperature: 0.8,
wantErr: false,
},
{
name: "invalid min p negative",
minP: -0.1,
temperature: 0.8,
wantErr: true,
},
{
name: "invalid min p one",
minP: 1.0,
temperature: 0.8,
wantErr: true,
},
{
name: "default values",
temperature: 0.8,
topK: 40,
topP: 0.9,
minP: 0.0,
seed: 0,
wantErr: false,
},
{
name: "all zeroes",
temperature: 0.0,
topK: 0,
topP: 0.0,
minP: 0.0,
seed: 0,
wantErr: false, // all zeroes means no transforms
},
{
name: "all transforms",
temperature: 0.8,
topK: 50,
topP: 0.95,
minP: 0.1,
seed: 42,
wantErr: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
_, err := NewSampler(tt.temperature, tt.topK, tt.topP, tt.minP, tt.seed)
if (err != nil) != tt.wantErr {
t.Errorf("NewSampler() error = %v, wantErr %v", err, tt.wantErr)
}
})
}
}
func BenchmarkSample(b *testing.B) {
transforms := []Transform{
Temperature(0.5),
TopK(10),
TopP(0.9),
MinP(0.2),
}
samplers := map[string]Sampler{
"Greedy": Greedy(),
"Weighted": Weighted(nil, transforms...),
}
// Generate random logits for benchmarking
logits := make([]float32, 1<<16)
for i := range logits {
logits[i] = rand.Float32()
@@ -46,9 +215,9 @@ func BenchmarkSample(b *testing.B) {
for name, s := range samplers {
b.Run(name, func(b *testing.B) {
b.ResetTimer()
for b.Loop() {
for range b.N {
if _, err := s.Sample(logits); err != nil {
b.Fatalf("error sampling: %v", err)
b.Error(err)
}
}
})

View File

@@ -1,203 +1,120 @@
package sample
import (
"cmp"
"math"
"slices"
pq "github.com/emirpasic/gods/v2/queues/priorityqueue"
)
func softmax(ts []token) []token {
var sum float32
for i, v := range ts {
ts[i].value = float32(math.Exp(float64(v.value)))
sum += ts[i].value
}
for i := range ts {
ts[i].value /= sum
}
return ts
type Transform interface {
Apply([]float64) []float64
}
func temperature(ti []token, t float32) []token {
if t == 1 {
return ti
// TODO(parthsareen): potentially cache softmax values
func softmax(logits []float64) []float64 {
var sum float64
probs := make([]float64, len(logits))
for i, v := range logits {
probs[i] = math.Exp(v)
sum += probs[i]
}
temp := max(t, 1e-7)
maxLogit := float32(math.Inf(-1))
for _, token := range ti {
if token.value > maxLogit {
maxLogit = token.value
}
for i := range probs {
probs[i] /= sum
}
return probs
}
type Temperature float64
func (t Temperature) Apply(logits []float64) []float64 {
temp := math.Max(float64(t), 1e-7)
// subtracting max logit to avoid under/overflow
for i := range ti {
ti[i].value = (ti[i].value - maxLogit) / temp
maxLogit := slices.Max(logits)
for i := range logits {
logits[i] = (logits[i] - maxLogit) / temp
}
return ti
return logits
}
// siftDown maintains a min-heap property by recursively moving larger elements down the heap.
//
// The heap is represented as an array where for any node at index i:
// - Left child is at index 2i + 1
// - Right child is at index 2i + 2
// - Parent is at index (i-1)/2
//
// The function compares a node with its children and:
// 1. Finds the smallest value between the node and its children
// 2. If the node is not the smallest, swaps it with its smallest child
// 3. Continues this process down the affected path until the min-heap property is restored
func siftDown(data []token, start, end int) {
root := start
for {
child := 2*root + 1
if child >= end {
type logitMap struct {
index int
logit float64
}
type TopK int
// TODO(parthsareen): avoid having to check all logits after this transform
func (k TopK) Apply(logits []float64) []float64 {
if int(k) >= len(logits) {
return logits
}
q := pq.NewWith(func(a, b logitMap) int {
return -cmp.Compare(a.logit, b.logit)
})
for i, logit := range logits {
q.Enqueue(logitMap{index: i, logit: logit})
}
validLogits := make(map[int]float64)
for range k {
logitMap, _ := q.Dequeue()
validLogits[logitMap.index] = logitMap.logit
}
for i := range logits {
if _, ok := validLogits[i]; !ok {
logits[i] = math.Inf(-1)
}
}
return logits
}
type TopP float64
func (p TopP) Apply(logits []float64) []float64 {
probs := softmax(logits)
indices := make([]int, len(probs))
for i := range indices {
indices[i] = i
}
// sort in descending order
slices.SortFunc(indices, func(i, j int) int {
return cmp.Compare(probs[j], probs[i])
})
var sum float64
for i, idx := range indices {
sum += probs[idx]
if sum > float64(p) {
for _, idx := range indices[i+1:] {
logits[idx] = math.Inf(-1)
}
break
}
// Find smaller child (we want min heap)
if child+1 < end && data[child+1].value < data[child].value {
child++
}
// Exit if root is already smaller than children
if data[root].value <= data[child].value {
break
}
// Swap with smaller child and continue
data[root], data[child] = data[child], data[root]
root = child
}
return logits
}
// topK limits the number of tokens considered to the k highest logits
func topK(ts []token, k int) []token {
if k >= len(ts) {
return ts
}
// Heapify + siftDown - O(nlog(k))
// Build min-heap of first k elements
heap := ts[:k]
for i := k/2 - 1; i >= 0; i-- {
siftDown(heap, i, k)
}
type MinP float64
// Process remaining elements - if larger than heap root, replace root
for i := k; i < len(ts); i++ {
if ts[i].value > heap[0].value {
heap[0] = ts[i]
siftDown(heap, 0, k)
func (p MinP) Apply(logits []float64) []float64 {
probs := softmax(logits)
threshold := slices.Max(probs) * float64(p)
for i, prob := range probs {
if prob < threshold {
logits[i] = math.Inf(-1)
}
}
slices.Reverse(heap)
ts = heap
return ts
}
// topP limits tokens to those with cumulative probability p
func topP(ts []token, p float32) []token {
if p == 1.0 {
return ts
}
// Find cutoff index where cumulative sum exceeds p
var sum float32
for i, t := range ts {
sum += t.value
if sum > float32(p) {
ts = ts[:i+1]
return ts
}
}
return ts
}
// minP limits tokens to those with cumulative probability p
func minP(ts []token, p float32) []token {
if p == 1.0 {
return ts
}
maxProb := float32(math.Inf(-1))
for _, token := range ts {
if token.value > maxProb {
maxProb = token.value
}
}
threshold := maxProb * float32(p)
// Filter tokens in-place
validTokens := ts[:0]
for i, token := range ts {
if token.value >= threshold {
validTokens = append(validTokens, ts[i])
}
}
ts = validTokens
return ts
}
// TODO(parthsareen): possibly replace with simpler implementation https://github.com/ollama/ollama/issues/9584
// Conting sort implementation to sort tokens by logits
func sortLogits(tokens []token) {
if len(tokens) <= 1 {
return
}
// Find max/min in a single pass
minLogit, maxLogit := tokens[0].value, tokens[0].value
for _, t := range tokens[1:] {
if t.value < minLogit {
minLogit = t.value
} else if t.value > maxLogit {
maxLogit = t.value
}
}
// Calculate scaling to map to uint32 range
logitRange := maxLogit - minLogit
if logitRange < 1e-6 {
return // All values effectively equal
}
// Count frequencies directly from tokens
const maxInt = (1 << 24) - 1 // Use 24 bits for good granularity
var counts [256]int // For first byte
// First pass: count frequencies
for _, t := range tokens {
// Map to [0, maxInt] range
score := min(uint32((t.value-minLogit)*float32(maxInt)/logitRange), maxInt)
counts[score>>16]++
}
// Calculate offsets
var offset int
for i := range counts {
count := counts[i]
counts[i] = offset
offset += count
}
// Second pass: place elements in correct position
output := make([]token, len(tokens))
// Track current positions
countsCopy := counts
for i, t := range tokens {
score := min(uint32((t.value-minLogit)*float32(maxInt)/logitRange), maxInt)
pos := countsCopy[score>>16]
countsCopy[score>>16]++
output[len(tokens)-1-pos] = tokens[i]
}
copy(tokens, output)
return logits
}

View File

@@ -4,182 +4,77 @@ import (
"math"
"math/rand/v2"
"testing"
"github.com/google/go-cmp/cmp"
)
// Helper to convert float64 slice to logit slice
func toTokens(values []float64) []token {
tokens := make([]token, len(values))
for i, v := range values {
tokens[i] = token{
id: int32(i),
value: float32(v),
}
}
return tokens
}
// Helper to compare logit slices
func compareLogits(t *testing.T, name string, want []float64, got []token) {
t.Helper()
if len(want) != len(got) {
t.Errorf("%s: length mismatch: want %d, got %d", name, len(want), len(got))
return
}
for i := range want {
if math.Abs(float64(got[i].value)-want[i]) > 1e-6 {
t.Errorf("%s: index %d: want %f, got %f", name, i, want[i], got[i].value)
}
}
}
func TestTemperature(t *testing.T) {
input := []float64{2, -1, 4, -3, 1, -2, 0}
want := []float64{-4, -10, 0, -14, -6, -12, -8} // (logit - max logit) / temp
got := temperature(toTokens(input), 0.5)
compareLogits(t, "Temperature", want, got)
got := Temperature(0.5).Apply([]float64{2, -1, 4, -3, 1, -2, 0})
want := []float64{-4, -10, 0, -14, -6, -12, -8}
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("logits mismatch (-want +got):\n%s", diff)
}
}
func TestSoftmax(t *testing.T) {
input := []float64{-3, -2, -1, 0, 1, 2, 4}
got := softmax(toTokens(input))
got := softmax([]float64{-3, -2, -1, 0, 1, 2, 4})
// Check probabilities sum to 1
var sum float32
for _, token := range got {
sum += token.value
}
if math.Abs(float64(sum)-1.0) > 1e-6 {
t.Errorf("probabilities don't sum to 1: got %f", sum)
}
// Check relative ordering is preserved
for i := 1; i < len(got); i++ {
if got[i].value < got[i-1].value {
t.Errorf("probability ordering not preserved at index %d", i)
}
want := []float64{0.000751406628089903, 0.0020425349829204676, 0.005552185728064613, 0.015092405572827691, 0.04102541181635154, 0.11151863144543739, 0.8240174238263085}
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("probs mismatch (-want +got):\n%s", diff)
}
}
func TestTopK(t *testing.T) {
input := []float64{-3, -2, -1, 0, 1, 2, 4}
// Test k=3
got := topK(toTokens(input), 3)
if len(got) != 3 {
t.Errorf("topK(3): wrong length: want 3, got %d", len(got))
got := TopK(3).Apply([]float64{-3, -2, -1, 0, 1, 2, 4})
want := []float64{math.Inf(-1), math.Inf(-1), math.Inf(-1), math.Inf(-1), 1, 2, 4}
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("logits mismatch (-want +got):\n%s", diff)
}
// Should keep highest 3 values: 4, 2, 1
want := []float64{4, 2, 1}
compareLogits(t, "topK(3)", want, got)
// Test k > len
got = topK(toTokens(input), 10)
compareLogits(t, "topK(10)", input, got)
got = TopK(10).Apply([]float64{-3, -2, -1, 0, 1, 2, 4})
want = []float64{-3, -2, -1, 0, 1, 2, 4}
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("logits mismatch (-want +got):\n%s", diff)
}
}
func TestTopP(t *testing.T) {
input := []float64{-3, -2, -1, 0, 1, 2, 4}
tokens := toTokens(input)
// First apply temperature and softmax to get probabilities
tokens = temperature(tokens, 1)
tokens = softmax(tokens)
sortLogits(tokens)
// Then apply topP
got := topP(tokens, 0.95)
// Should keep tokens until cumsum > 0.95
if len(got) > 3 {
t.Errorf("topP(0.95): kept too many tokens: got %d", len(got))
t.Logf("got: %v", got)
got := TopP(0.9).Apply([]float64{-3, -2, -1, 0, 1, 2, 4})
want := []float64{math.Inf(-1), math.Inf(-1), math.Inf(-1), math.Inf(-1), math.Inf(-1), 2, 4}
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("logits mismatch (-want +got):\n%s", diff)
}
}
func TestMinP(t *testing.T) {
input := []float64{-3, -2, -1, 0, 1, 2, 4, 3}
tokens := toTokens(input)
// First apply temperature and softmax
tokens = temperature(tokens, 1)
tokens = softmax(tokens)
// Then apply minP
got := minP(tokens, 0.2)
// Should keep tokens with prob >= 0.2 * max_prob
if len(got) > 3 {
t.Errorf("minP(0.2): kept too many tokens: got %d", len(got))
got := MinP(0.2).Apply([]float64{-3, -2, -1, 0, 1, 2, 4, 3})
want := []float64{math.Inf(-1), math.Inf(-1), math.Inf(-1), math.Inf(-1), math.Inf(-1), math.Inf(-1), 4, 3}
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("logits mismatch (-want +got):\n%s", diff)
}
}
func TestSortLogits(t *testing.T) {
input := []float64{3, 1, 4, 2, -1, 0, -2}
tokens := toTokens(input)
sortLogits(tokens)
for i := 1; i < len(tokens); i++ {
if tokens[i].value > tokens[i-1].value {
t.Errorf("sortLogits: tokens not sorted in descending order at index %d: %f > %f",
i, tokens[i].value, tokens[i-1].value)
}
func BenchmarkTransform(b *testing.B) {
transforms := map[string]Transform{
"Temperature": Temperature(0.5),
"TopK": TopK(10),
"TopP": TopP(0.9),
"MinP": MinP(0.2),
}
want := []float64{4, 3, 2, 1, 0, -1, -2}
compareLogits(t, "sortLogits", want, tokens)
}
func BenchmarkTransforms(b *testing.B) {
// Generate random logits
tokens := make([]token, 1<<16)
for i := range tokens {
tokens[i] = token{
id: int32(i),
value: rand.Float32(),
}
logits := make([]float64, 1<<16)
for i := range logits {
logits[i] = rand.Float64()
}
tokensCopy := make([]token, len(tokens))
b.Run("Temperature", func(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
temperature(tokensCopy, 0.5)
}
})
b.Run("TopK", func(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
topK(tokensCopy, 10)
}
})
b.Run("TopP", func(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
topP(tokensCopy, 0.9)
}
})
b.Run("MinP", func(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
minP(tokensCopy, 0.2)
}
})
b.Run("SortTokens", func(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
sortLogits(tokensCopy)
}
})
for name, transform := range transforms {
b.Run(name, func(b *testing.B) {
b.ResetTimer()
for range b.N {
transform.Apply(logits)
}
})
}
}

View File

@@ -77,12 +77,11 @@ if [ -d "$OLLAMA_INSTALL_DIR/lib/ollama" ] ; then
fi
status "Installing ollama to $OLLAMA_INSTALL_DIR"
$SUDO install -o0 -g0 -m755 -d $BINDIR
$SUDO install -o0 -g0 -m755 -d "$OLLAMA_INSTALL_DIR/lib/ollama"
$SUDO install -o0 -g0 -m755 -d "$OLLAMA_INSTALL_DIR"
status "Downloading Linux ${ARCH} bundle"
curl --fail --show-error --location --progress-bar \
"https://ollama.com/download/ollama-linux-${ARCH}.tgz${VER_PARAM}" | \
$SUDO tar -xzf - -C "$OLLAMA_INSTALL_DIR"
if [ "$OLLAMA_INSTALL_DIR/bin/ollama" != "$BINDIR/ollama" ] ; then
status "Making ollama accessible in the PATH in $BINDIR"
$SUDO ln -sf "$OLLAMA_INSTALL_DIR/ollama" "$BINDIR/ollama"

View File

@@ -45,9 +45,9 @@ import (
// Errors
var (
// ErrModelNotFound is returned when a manifest is not found in the
// ErrManifestNotFound is returned when a manifest is not found in the
// cache or registry.
ErrModelNotFound = errors.New("model not found")
ErrManifestNotFound = errors.New("manifest not found")
// ErrManifestInvalid is returned when a manifest found in a local or
// remote cache is invalid.
@@ -114,18 +114,7 @@ type Error struct {
}
func (e *Error) Error() string {
var b strings.Builder
b.WriteString("registry responded with status ")
b.WriteString(strconv.Itoa(e.Status))
if e.Code != "" {
b.WriteString(": code ")
b.WriteString(e.Code)
}
if e.Message != "" {
b.WriteString(": ")
b.WriteString(e.Message)
}
return b.String()
return fmt.Sprintf("registry responded with status %d: %s %s", e.Status, e.Code, e.Message)
}
func (e *Error) LogValue() slog.Value {
@@ -266,6 +255,10 @@ func DefaultRegistry() (*Registry, error) {
}
var rc Registry
rc.Cache, err = defaultCache()
if err != nil {
return nil, err
}
rc.Key, err = ssh.ParseRawPrivateKey(keyPEM)
if err != nil {
return nil, err
@@ -366,7 +359,7 @@ func (r *Registry) Push(ctx context.Context, name string, p *PushParams) error {
n.Model(),
l.Digest,
)
res, err := r.send(ctx, "POST", startURL, nil)
res, err := r.doOK(ctx, "POST", startURL, nil)
if err != nil {
return err
}
@@ -390,7 +383,7 @@ func (r *Registry) Push(ctx context.Context, name string, p *PushParams) error {
}
req.ContentLength = l.Size
res, err = sendRequest(r.client(), req)
res, err = doOK(r.client(), req)
if err == nil {
res.Body.Close()
}
@@ -410,7 +403,7 @@ func (r *Registry) Push(ctx context.Context, name string, p *PushParams) error {
n.Model(),
n.Tag(),
)
res, err := r.send(ctx, "PUT", path, bytes.NewReader(m.Data))
res, err := r.doOK(ctx, "PUT", path, bytes.NewReader(m.Data))
if err == nil {
res.Body.Close()
}
@@ -459,15 +452,10 @@ func (r *Registry) Pull(ctx context.Context, name string) error {
t := traceFromContext(ctx)
g, ctx := errgroup.WithContext(ctx)
var g errgroup.Group
g.SetLimit(r.maxStreams())
layers := m.Layers
if m.Config != nil && m.Config.Digest.IsValid() {
layers = append(layers, m.Config)
}
for _, l := range layers {
for _, l := range m.Layers {
if exists(l) {
t.update(l, l.Size, ErrCached)
continue
@@ -484,9 +472,7 @@ func (r *Registry) Pull(ctx context.Context, name string) error {
if l.Size <= r.maxChunkingThreshold() {
g.Go(func() error {
// TODO(bmizerany): retry/backoff like below in
// the chunking case
res, err := sendRequest(r.client(), req)
res, err := doOK(r.client(), req)
if err != nil {
return err
}
@@ -512,21 +498,19 @@ func (r *Registry) Pull(ctx context.Context, name string) error {
// fire an initial request to get the final URL and
// then use that URL for the chunk requests.
req.Header.Set("Range", "bytes=0-0")
res, err := sendRequest(r.client(), req)
res, err := doOK(r.client(), req)
if err != nil {
return err
}
res.Body.Close()
req = res.Request.WithContext(req.Context())
wp := writerPool{size: r.maxChunkSize()}
streamNo := 0
tws := make([]*bufio.Writer, r.maxStreams()-1)
for chunk := range chunks.Of(l.Size, r.maxChunkSize()) {
if ctx.Err() != nil {
break
}
ticket := q.Take()
bufIdx := streamNo % len(tws)
streamNo++
g.Go(func() (err error) {
defer func() {
if err != nil {
@@ -540,18 +524,23 @@ func (r *Registry) Pull(ctx context.Context, name string) error {
if err != nil {
return err
}
err := func() error {
req := req.Clone(req.Context())
req.Header.Set("Range", fmt.Sprintf("bytes=%s", chunk))
res, err := sendRequest(r.client(), req)
res, err := doOK(r.client(), req)
if err != nil {
return err
}
defer res.Body.Close()
tw := wp.get()
tw := tws[bufIdx]
if tw == nil {
tw = bufio.NewWriterSize(nil, int(r.maxChunkSize()))
tws[bufIdx] = tw
}
tw.Reset(ticket)
defer wp.put(tw)
defer tw.Reset(nil) // release ticket
_, err = io.CopyN(tw, res.Body, chunk.Size())
if err != nil {
@@ -610,9 +599,6 @@ type Manifest struct {
Name string `json:"-"` // the canonical name of the model
Data []byte `json:"-"` // the raw data of the manifest
Layers []*Layer `json:"layers"`
// For legacy reasons, we still have to download the config layer.
Config *Layer `json:"config"`
}
var emptyDigest, _ = blob.ParseDigest("sha256:0000000000000000000000000000000000000000000000000000000000000000")
@@ -696,7 +682,7 @@ func (r *Registry) ResolveLocal(name string) (*Manifest, error) {
data, err := os.ReadFile(c.GetFile(d))
if err != nil {
if errors.Is(err, fs.ErrNotExist) {
return nil, fmt.Errorf("%w: %s", ErrModelNotFound, name)
return nil, fmt.Errorf("%w: %s", ErrManifestNotFound, name)
}
return nil, err
}
@@ -719,7 +705,7 @@ func (r *Registry) Resolve(ctx context.Context, name string) (*Manifest, error)
manifestURL = fmt.Sprintf("%s://%s/v2/%s/%s/blobs/%s", scheme, n.Host(), n.Namespace(), n.Model(), d)
}
res, err := r.send(ctx, "GET", manifestURL, nil)
res, err := r.doOK(ctx, "GET", manifestURL, nil)
if err != nil {
return nil, err
}
@@ -744,7 +730,7 @@ func (r *Registry) client() *http.Client {
}
// newRequest constructs a new request, ready to use, with the given method,
// url, and body, pre-signed with client [Key] and [UserAgent].
// url, and body, presigned with client Key and UserAgent.
func (r *Registry) newRequest(ctx context.Context, method, url string, body io.Reader) (*http.Request, error) {
req, err := http.NewRequestWithContext(ctx, method, url, body)
if err != nil {
@@ -763,17 +749,11 @@ func (r *Registry) newRequest(ctx context.Context, method, url string, body io.R
return req, nil
}
// sendRequest makes a request with the given client and request, and returns the
// doOK makes a request with the given client and request, and returns the
// response if the status code is 200. If the status code is not 200, an Error
// is parsed from the response body and returned. If any other error occurs, it
// is returned.
func sendRequest(c *http.Client, r *http.Request) (_ *http.Response, err error) {
defer func() {
if err != nil {
err = fmt.Errorf("request error %s: %w", r.URL, err)
}
}()
func doOK(c *http.Client, r *http.Request) (*http.Response, error) {
if r.URL.Scheme == "https+insecure" {
// TODO(bmizerany): clone client.Transport, set
// InsecureSkipVerify, etc.
@@ -816,26 +796,20 @@ func sendRequest(c *http.Client, r *http.Request) (_ *http.Response, err error)
// Use the raw body if we can't parse it as an error object.
re.Message = string(out)
}
// coerce MANIFEST_UNKNOWN to ErrManifestNotFound
if strings.EqualFold(re.Code, "MANIFEST_UNKNOWN") {
return nil, ErrModelNotFound
}
re.Status = res.StatusCode
return nil, &re
}
return res, nil
}
// send is a convenience method for making a request with newRequest and
// passing it to send with r.client().
func (r *Registry) send(ctx context.Context, method, path string, body io.Reader) (*http.Response, error) {
// doOK is a convenience method for making a request with newRequest and
// passing it to doOK with r.client().
func (r *Registry) doOK(ctx context.Context, method, path string, body io.Reader) (*http.Response, error) {
req, err := r.newRequest(ctx, method, path, body)
if err != nil {
return nil, err
}
return sendRequest(r.client(), req)
return doOK(r.client(), req)
}
// makeAuthToken creates an Ollama auth token for the given private key.
@@ -990,28 +964,3 @@ func splitExtended(s string) (scheme, name, digest string) {
}
return scheme, s, digest
}
type writerPool struct {
size int64 // set by the caller
mu sync.Mutex
ws []*bufio.Writer
}
func (p *writerPool) get() *bufio.Writer {
p.mu.Lock()
defer p.mu.Unlock()
if len(p.ws) == 0 {
return bufio.NewWriterSize(nil, int(p.size))
}
w := p.ws[len(p.ws)-1]
p.ws = p.ws[:len(p.ws)-1]
return w
}
func (p *writerPool) put(w *bufio.Writer) {
p.mu.Lock()
defer p.mu.Unlock()
w.Reset(nil)
p.ws = append(p.ws, w)
}

View File

@@ -608,7 +608,7 @@ func TestInsecureSkipVerify(t *testing.T) {
url := fmt.Sprintf("https://%s/%s", s.Listener.Addr(), name)
_, err := rc.Resolve(t.Context(), url)
if err == nil || !strings.Contains(err.Error(), "failed to verify") {
t.Errorf("err = %v; want cert verification failure", err)
t.Errorf("err = %v; want cert verifiction failure", err)
}
url = fmt.Sprintf("https+insecure://%s/%s", s.Listener.Addr(), name)

View File

@@ -13,13 +13,9 @@ type Trace struct {
// Update is called during [Registry.Push] and [Registry.Pull] to
// report the progress of blob uploads and downloads.
//
// The n argument is the number of bytes transferred so far, and err is
// any error that has occurred. If n == 0, and err is nil, the download
// or upload has just started. If err is [ErrCached], the download or
// upload has been skipped because the blob is already present in the
// local cache or remote registry, respectively. Otherwise, if err is
// non-nil, the download or upload has failed. When l.Size == n, and
// err is nil, the download or upload has completed.
// It is called once at the beginning of the download with a zero n and
// then once per read operation with the number of bytes read so far,
// and an error if any.
//
// A function assigned must be safe for concurrent use. The function is
// called synchronously and so should not block or take long to run.

View File

@@ -1,5 +1,3 @@
//go:build goexperiment.synctest
package backoff
import (

View File

@@ -1,5 +1,3 @@
//go:build goexperiment.synctest
package syncs
import (

View File

@@ -7,14 +7,10 @@ import (
"cmp"
"encoding/json"
"errors"
"fmt"
"io"
"log/slog"
"net/http"
"sync"
"time"
"github.com/ollama/ollama/server/internal/cache/blob"
"github.com/ollama/ollama/server/internal/client/ollama"
)
@@ -35,10 +31,6 @@ type Local struct {
// Fallback, if set, is used to handle requests that are not handled by
// this handler.
Fallback http.Handler
// Prune, if set, is called to prune the local disk cache after a model
// is deleted.
Prune func() error // optional
}
// serverError is like ollama.Error, but with a Status field for the HTTP
@@ -113,8 +105,6 @@ func (s *Local) serveHTTP(rec *statusCodeRecorder, r *http.Request) {
switch r.URL.Path {
case "/api/delete":
return false, s.handleDelete(rec, r)
case "/api/pull":
return false, s.handlePull(rec, r)
default:
if s.Fallback != nil {
s.Fallback.ServeHTTP(rec, r)
@@ -214,100 +204,6 @@ func (s *Local) handleDelete(_ http.ResponseWriter, r *http.Request) error {
if !ok {
return &serverError{404, "not_found", "model not found"}
}
if s.Prune == nil {
return nil
}
return s.Prune()
}
type progressUpdateJSON struct {
Status string `json:"status"`
Digest blob.Digest `json:"digest,omitempty,omitzero"`
Total int64 `json:"total,omitempty,omitzero"`
Completed int64 `json:"completed,omitempty,omitzero"`
}
func (s *Local) handlePull(w http.ResponseWriter, r *http.Request) error {
if r.Method != "POST" {
return errMethodNotAllowed
}
p, err := decodeUserJSON[*params](r.Body)
if err != nil {
return err
}
maybeFlush := func() {
fl, _ := w.(http.Flusher)
if fl != nil {
fl.Flush()
}
}
defer maybeFlush()
var mu sync.Mutex
enc := json.NewEncoder(w)
enc.Encode(progressUpdateJSON{Status: "pulling manifest"})
ctx := ollama.WithTrace(r.Context(), &ollama.Trace{
Update: func(l *ollama.Layer, n int64, err error) {
mu.Lock()
defer mu.Unlock()
// TODO(bmizerany): coalesce these updates; writing per
// update is expensive
enc.Encode(progressUpdateJSON{
Digest: l.Digest,
Status: "pulling",
Total: l.Size,
Completed: n,
})
},
})
done := make(chan error, 1)
go func() {
// TODO(bmizerany): continue to support non-streaming responses
done <- s.Client.Pull(ctx, p.model())
}()
func() {
t := time.NewTicker(100 * time.Millisecond)
defer t.Stop()
for {
select {
case <-t.C:
mu.Lock()
maybeFlush()
mu.Unlock()
case err := <-done:
if err != nil {
var status string
if errors.Is(err, ollama.ErrModelNotFound) {
status = fmt.Sprintf("error: model %q not found", p.model())
enc.Encode(progressUpdateJSON{Status: status})
} else {
status = fmt.Sprintf("error: %v", err)
enc.Encode(progressUpdateJSON{Status: status})
}
return
}
// These final updates are not strictly necessary, because they have
// already happened at this point. Our pull handler code used to do
// these steps after, not during, the pull, and they were slow, so we
// wanted to provide feedback to users what was happening. For now, we
// keep them to not jar users who are used to seeing them. We can phase
// them out with a new and nicer UX later. One without progress bars
// and digests that no one cares about.
enc.Encode(progressUpdateJSON{Status: "verifying layers"})
enc.Encode(progressUpdateJSON{Status: "writing manifest"})
enc.Encode(progressUpdateJSON{Status: "success"})
return
}
}
}()
return nil
}

View File

@@ -1,27 +1,17 @@
package registry
import (
"bytes"
"context"
"encoding/json"
"fmt"
"io"
"io/fs"
"net"
"net/http"
"net/http/httptest"
"os"
"regexp"
"strings"
"sync"
"testing"
"github.com/ollama/ollama/server/internal/cache/blob"
"github.com/ollama/ollama/server/internal/client/ollama"
"github.com/ollama/ollama/server/internal/testutil"
"golang.org/x/tools/txtar"
_ "embed"
)
type panicTransport struct{}
@@ -40,7 +30,7 @@ type bytesResetter interface {
Reset()
}
func newTestServer(t *testing.T, upstreamRegistry http.HandlerFunc) *Local {
func newTestServer(t *testing.T) *Local {
t.Helper()
dir := t.TempDir()
err := os.CopyFS(dir, os.DirFS("testdata/models"))
@@ -51,25 +41,10 @@ func newTestServer(t *testing.T, upstreamRegistry http.HandlerFunc) *Local {
if err != nil {
t.Fatal(err)
}
client := panicOnRoundTrip
if upstreamRegistry != nil {
s := httptest.NewTLSServer(upstreamRegistry)
t.Cleanup(s.Close)
tr := s.Client().Transport.(*http.Transport).Clone()
tr.DialContext = func(ctx context.Context, _, _ string) (net.Conn, error) {
var d net.Dialer
return d.DialContext(ctx, "tcp", s.Listener.Addr().String())
}
client = &http.Client{Transport: tr}
}
rc := &ollama.Registry{
Cache: c,
HTTPClient: client,
Mask: "example.com/library/_:latest",
HTTPClient: panicOnRoundTrip,
}
l := &Local{
Client: rc,
Logger: testutil.Slogger(t),
@@ -110,7 +85,7 @@ func captureLogs(t *testing.T, s *Local) (*Local, bytesResetter) {
func TestServerDelete(t *testing.T) {
check := testutil.Checker(t)
s := newTestServer(t, nil)
s := newTestServer(t)
_, err := s.Client.ResolveLocal("smol")
check(err)
@@ -152,105 +127,8 @@ func TestServerDelete(t *testing.T) {
}
}
//go:embed testdata/registry.txt
var registryTXT []byte
var registryFS = sync.OnceValue(func() fs.FS {
// Txtar gets hung up on \r\n line endings, so we need to convert them
// to \n when parsing the txtar on Windows.
data := bytes.ReplaceAll(registryTXT, []byte("\r\n"), []byte("\n"))
a := txtar.Parse(data)
fmt.Printf("%q\n", a.Comment)
fsys, err := txtar.FS(a)
if err != nil {
panic(err)
}
return fsys
})
func TestServerPull(t *testing.T) {
modelsHandler := http.FileServerFS(registryFS())
s := newTestServer(t, func(w http.ResponseWriter, r *http.Request) {
switch r.URL.Path {
case "/v2/library/BOOM/manifests/latest":
w.WriteHeader(999)
io.WriteString(w, `{"error": "boom"}`)
case "/v2/library/unknown/manifests/latest":
w.WriteHeader(404)
io.WriteString(w, `{"errors": [{"code": "MANIFEST_UNKNOWN", "message": "manifest unknown"}]}`)
default:
t.Logf("serving file: %s", r.URL.Path)
modelsHandler.ServeHTTP(w, r)
}
})
checkResponse := func(got *httptest.ResponseRecorder, wantlines string) {
t.Helper()
if got.Code != 200 {
t.Fatalf("Code = %d; want 200", got.Code)
}
gotlines := got.Body.String()
t.Logf("got:\n%s", gotlines)
for want := range strings.Lines(wantlines) {
want = strings.TrimSpace(want)
want, unwanted := strings.CutPrefix(want, "!")
want = strings.TrimSpace(want)
if !unwanted && !strings.Contains(gotlines, want) {
t.Fatalf("! missing %q in body", want)
}
if unwanted && strings.Contains(gotlines, want) {
t.Fatalf("! unexpected %q in body", want)
}
}
}
got := s.send(t, "POST", "/api/pull", `{"model": "BOOM"}`)
checkResponse(got, `
{"status":"pulling manifest"}
{"status":"error: request error https://example.com/v2/library/BOOM/manifests/latest: registry responded with status 999: boom"}
`)
got = s.send(t, "POST", "/api/pull", `{"model": "smol"}`)
checkResponse(got, `
{"status":"pulling manifest"}
{"status":"pulling","digest":"sha256:68e0ec597aee59d35f8dc44942d7b17d471ade10d3aca07a5bb7177713950312","total":5}
{"status":"pulling","digest":"sha256:ca3d163bab055381827226140568f3bef7eaac187cebd76878e0b63e9e442356","total":3}
{"status":"pulling","digest":"sha256:68e0ec597aee59d35f8dc44942d7b17d471ade10d3aca07a5bb7177713950312","total":5,"completed":5}
{"status":"pulling","digest":"sha256:ca3d163bab055381827226140568f3bef7eaac187cebd76878e0b63e9e442356","total":3,"completed":3}
{"status":"verifying layers"}
{"status":"writing manifest"}
{"status":"success"}
`)
got = s.send(t, "POST", "/api/pull", `{"model": "unknown"}`)
checkResponse(got, `
{"status":"pulling manifest"}
{"status":"error: model \"unknown\" not found"}
`)
got = s.send(t, "DELETE", "/api/pull", `{"model": "smol"}`)
checkErrorResponse(t, got, 405, "method_not_allowed", "method not allowed")
got = s.send(t, "POST", "/api/pull", `!`)
checkErrorResponse(t, got, 400, "bad_request", "invalid character '!' looking for beginning of value")
got = s.send(t, "POST", "/api/pull", ``)
checkErrorResponse(t, got, 400, "bad_request", "empty request body")
got = s.send(t, "POST", "/api/pull", `{"model": "://"}`)
checkResponse(got, `
{"status":"pulling manifest"}
{"status":"error: invalid or missing name: \"\""}
!verifying
!writing
!success
`)
}
func TestServerUnknownPath(t *testing.T) {
s := newTestServer(t, nil)
s := newTestServer(t)
got := s.send(t, "DELETE", "/api/unknown", `{}`)
checkErrorResponse(t, got, 404, "not_found", "not found")
}

View File

@@ -1,22 +0,0 @@
-- v2/library/smol/manifests/latest --
{
"schemaVersion": 2,
"mediaType": "application/vnd.docker.distribution.manifest.v2+json",
"config": {
"mediaType": "application/vnd.docker.container.image.v1+json",
"digest": "sha256:ca3d163bab055381827226140568f3bef7eaac187cebd76878e0b63e9e442356",
"size": 3
},
"layers": [
{
"mediaType": "application/vnd.ollama.image.model",
"digest": "sha256:68e0ec597aee59d35f8dc44942d7b17d471ade10d3aca07a5bb7177713950312",
"size": 5
}
]
}
-- v2/library/smol/blobs/sha256:68e0ec597aee59d35f8dc44942d7b17d471ade10d3aca07a5bb7177713950312 --
GGUF
-- v2/library/smol/blobs/sha256:ca3d163bab055381827226140568f3bef7eaac187cebd76878e0b63e9e442356 --
{}

View File

@@ -10,6 +10,7 @@ import (
"strings"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/model/models/mllama"
"github.com/ollama/ollama/template"
@@ -92,7 +93,7 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
var imgData llm.ImageData
if isMllama {
if len(m.ProjectorPaths) == 0 {
if envconfig.NewEngine() {
imgData = llm.ImageData{
ID: len(images),
Data: i,

View File

@@ -42,12 +42,6 @@ import (
"github.com/ollama/ollama/version"
)
func experimentEnabled(name string) bool {
return slices.Contains(strings.Split(os.Getenv("OLLAMA_EXPERIMENT"), ","), name)
}
var useClient2 = experimentEnabled("client2")
var mode string = gin.DebugMode
type Server struct {
@@ -211,7 +205,7 @@ func (s *Server) GenerateHandler(c *gin.Context) {
images := make([]llm.ImageData, len(req.Images))
for i := range req.Images {
if isMllama && len(model.ProjectorPaths) > 0 {
if isMllama && !envconfig.NewEngine() {
data, opts, err := mllama.Preprocess(bytes.NewReader(req.Images[i]))
if err != nil {
c.AbortWithStatusJSON(http.StatusInternalServerError, gin.H{"error": "error processing image"})
@@ -1179,7 +1173,6 @@ func (s *Server) GenerateRoutes(rc *ollama.Registry) (http.Handler, error) {
r.HEAD("/api/tags", s.ListHandler)
r.GET("/api/tags", s.ListHandler)
r.POST("/api/show", s.ShowHandler)
r.DELETE("/api/delete", s.DeleteHandler)
// Create
r.POST("/api/create", s.CreateHandler)
@@ -1201,19 +1194,14 @@ func (s *Server) GenerateRoutes(rc *ollama.Registry) (http.Handler, error) {
r.GET("/v1/models", openai.ListMiddleware(), s.ListHandler)
r.GET("/v1/models/:model", openai.RetrieveMiddleware(), s.ShowHandler)
if rc != nil {
// wrap old with new
rs := &registry.Local{
Client: rc,
Logger: slog.Default(), // TODO(bmizerany): Take a logger, do not use slog.Default()
Fallback: r,
Prune: PruneLayers,
}
return rs, nil
// wrap old with new
rs := &registry.Local{
Client: rc,
Logger: slog.Default(), // TODO(bmizerany): Take a logger, do not use slog.Default()
Fallback: r,
}
return r, nil
return rs, nil
}
func Serve(ln net.Listener) error {
@@ -1268,20 +1256,15 @@ func Serve(ln net.Listener) error {
s := &Server{addr: ln.Addr()}
var rc *ollama.Registry
if useClient2 {
var err error
rc, err = ollama.DefaultRegistry()
if err != nil {
return err
}
rc, err := ollama.DefaultRegistry()
if err != nil {
return err
}
h, err := s.GenerateRoutes(rc)
if err != nil {
return err
}
http.Handle("/", h)
ctx, done := context.WithCancel(context.Background())

View File

@@ -194,6 +194,11 @@ func (s *Scheduler) processPending(ctx context.Context) {
break
}
// Embedding models should always be loaded with parallel=1
if pending.model.CheckCapabilities(CapabilityCompletion) != nil {
numParallel = 1
}
// Evaluate if the model will fit in the available system memory, or if we should unload a model first
if len(gpus) == 1 && gpus[0].Library == "cpu" {
// simplifying assumption of defaultParallel when in CPU mode