mirror of
https://github.com/ollama/ollama.git
synced 2025-12-25 16:49:52 -05:00
Compare commits
2 Commits
brucemacd/
...
parth/pyth
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
23e8ac9428 | ||
|
|
611d3a17ed |
16
.github/workflows/release.yaml
vendored
16
.github/workflows/release.yaml
vendored
@@ -432,22 +432,6 @@ jobs:
|
||||
docker buildx imagetools inspect ollama/ollama:${{ steps.metadata.outputs.version }}
|
||||
working-directory: ${{ runner.temp }}
|
||||
|
||||
# Trigger downstream release process
|
||||
trigger:
|
||||
runs-on: ubuntu-latest
|
||||
environment: release
|
||||
needs: [darwin-build, windows-build, windows-depends]
|
||||
steps:
|
||||
- name: Trigger downstream release process
|
||||
run: |
|
||||
curl -L \
|
||||
-X POST \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "Authorization: Bearer ${{ secrets.RELEASE_TOKEN }}" \
|
||||
-H "X-GitHub-Api-Version: 2022-11-28" \
|
||||
https://api.github.com/repos/ollama/${{ vars.RELEASE_REPO }}/dispatches \
|
||||
-d "{\"event_type\": \"trigger-workflow\", \"client_payload\": {\"run_id\": \"${GITHUB_RUN_ID}\", \"version\": \"${GITHUB_REF_NAME#v}\"}}"
|
||||
|
||||
# Aggregate all the assets and ship a release
|
||||
release:
|
||||
needs: [darwin-sign, windows-sign, linux-build]
|
||||
|
||||
@@ -19,8 +19,8 @@ linters:
|
||||
- nolintlint
|
||||
- nosprintfhostport
|
||||
- staticcheck
|
||||
- tenv
|
||||
- unconvert
|
||||
- usetesting
|
||||
- wastedassign
|
||||
- whitespace
|
||||
disable:
|
||||
|
||||
@@ -51,8 +51,6 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/include
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu)
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu/amx)
|
||||
|
||||
add_compile_definitions(NDEBUG)
|
||||
|
||||
set(GGML_CPU ON)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
|
||||
set_property(TARGET ggml PROPERTY EXCLUDE_FROM_ALL TRUE)
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
UPSTREAM=https://github.com/ggerganov/llama.cpp.git
|
||||
WORKDIR=llama/vendor
|
||||
FETCH_HEAD=de4c07f93783a1a96456a44dc16b9db538ee1618
|
||||
FETCH_HEAD=2016f07bd106c73699ecbaace80f55db5ed95dac
|
||||
|
||||
.PHONY: help
|
||||
help:
|
||||
@@ -15,13 +15,11 @@ help:
|
||||
@echo " make -f $(lastword $(MAKEFILE_LIST)) clean sync"
|
||||
|
||||
.PHONY: sync
|
||||
sync: llama/build-info.cpp ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.metal
|
||||
sync: llama/build-info.cpp llama/llama.cpp ml/backend/ggml/ggml
|
||||
|
||||
llama/build-info.cpp: llama/build-info.cpp.in llama/llama.cpp
|
||||
sed -e 's|@FETCH_HEAD@|$(FETCH_HEAD)|' <$< >$@
|
||||
|
||||
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.metal: ml/backend/ggml/ggml
|
||||
go generate ./$(@D)
|
||||
.PHONY: llama/build-info.cpp
|
||||
llama/build-info.cpp: llama/build-info.cpp.in
|
||||
sed -e 's|@FETCH_HEAD@|$(FETCH_HEAD)|' $< > $@
|
||||
|
||||
.PHONY: llama/llama.cpp
|
||||
llama/llama.cpp: llama/vendor/
|
||||
@@ -32,13 +30,12 @@ ml/backend/ggml/ggml: llama/vendor/ggml/
|
||||
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
|
||||
|
||||
PATCHES=$(wildcard llama/patches/*.patch)
|
||||
PATCHED=$(join $(dir $(PATCHES)), $(addsuffix ed, $(addprefix ., $(notdir $(PATCHES)))))
|
||||
|
||||
.PHONY: apply-patches
|
||||
.NOTPARALLEL:
|
||||
apply-patches: $(PATCHED)
|
||||
apply-patches: $(addsuffix ed, $(PATCHES))
|
||||
|
||||
llama/patches/.%.patched: llama/patches/%.patch
|
||||
%.patched: %.patch
|
||||
@if git -c user.name=nobody -c 'user.email=<>' -C $(WORKDIR) am -3 $(realpath $<); then touch $@; else git -C $(WORKDIR) am --abort; exit 1; fi
|
||||
|
||||
.PHONY: checkout
|
||||
@@ -60,4 +57,4 @@ format-patches: llama/patches
|
||||
|
||||
.PHONE: clean
|
||||
clean: checkout
|
||||
$(RM) llama/patches/.*.patched
|
||||
$(RM) $(addsuffix ed, $(PATCHES))
|
||||
|
||||
55
README.md
55
README.md
@@ -40,10 +40,10 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
|
||||
|
||||
## Quickstart
|
||||
|
||||
To run and chat with [Gemma 3](https://ollama.com/library/gemma3):
|
||||
To run and chat with [Llama 3.2](https://ollama.com/library/llama3.2):
|
||||
|
||||
```shell
|
||||
ollama run gemma3
|
||||
ollama run llama3.2
|
||||
```
|
||||
|
||||
## Model library
|
||||
@@ -61,8 +61,6 @@ Here are some example models that can be downloaded:
|
||||
| QwQ | 32B | 20GB | `ollama run qwq` |
|
||||
| DeepSeek-R1 | 7B | 4.7GB | `ollama run deepseek-r1` |
|
||||
| DeepSeek-R1 | 671B | 404GB | `ollama run deepseek-r1:671b` |
|
||||
| Llama 4 | 109B | 67GB | `ollama run llama4:scout` |
|
||||
| Llama 4 | 400B | 245GB | `ollama run llama4:maverick` |
|
||||
| Llama 3.3 | 70B | 43GB | `ollama run llama3.3` |
|
||||
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
|
||||
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
|
||||
@@ -79,7 +77,7 @@ Here are some example models that can be downloaded:
|
||||
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
|
||||
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
|
||||
| LLaVA | 7B | 4.5GB | `ollama run llava` |
|
||||
| Granite-3.3 | 8B | 4.9GB | `ollama run granite3.3` |
|
||||
| Granite-3.2 | 8B | 4.9GB | `ollama run granite3.2` |
|
||||
|
||||
> [!NOTE]
|
||||
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
|
||||
@@ -287,7 +285,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Bionic GPT](https://github.com/bionic-gpt/bionic-gpt)
|
||||
- [HTML UI](https://github.com/rtcfirefly/ollama-ui)
|
||||
- [Saddle](https://github.com/jikkuatwork/saddle)
|
||||
- [TagSpaces](https://www.tagspaces.org) (A platform for file-based apps, [utilizing Ollama](https://docs.tagspaces.org/ai/) for the generation of tags and descriptions)
|
||||
- [TagSpaces](https://www.tagspaces.org) (A platform for file based apps, [utilizing Ollama](https://docs.tagspaces.org/ai/) for the generation of tags and descriptions)
|
||||
- [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama)
|
||||
- [Chatbot UI v2](https://github.com/mckaywrigley/chatbot-ui)
|
||||
- [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file)
|
||||
@@ -314,8 +312,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Ollama Basic Chat: Uses HyperDiv Reactive UI](https://github.com/rapidarchitect/ollama_basic_chat)
|
||||
- [Ollama-chats RPG](https://github.com/drazdra/ollama-chats)
|
||||
- [IntelliBar](https://intellibar.app/) (AI-powered assistant for macOS)
|
||||
- [Jirapt](https://github.com/AliAhmedNada/jirapt) (Jira Integration to generate issues, tasks, epics)
|
||||
- [ojira](https://github.com/AliAhmedNada/ojira) (Jira chrome plugin to easily generate descriptions for tasks)
|
||||
- [QA-Pilot](https://github.com/reid41/QA-Pilot) (Interactive chat tool that can leverage Ollama models for rapid understanding and navigation of GitHub code repositories)
|
||||
- [ChatOllama](https://github.com/sugarforever/chat-ollama) (Open Source Chatbot based on Ollama with Knowledge Bases)
|
||||
- [CRAG Ollama Chat](https://github.com/Nagi-ovo/CRAG-Ollama-Chat) (Simple Web Search with Corrective RAG)
|
||||
@@ -329,14 +325,14 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [RWKV-Runner](https://github.com/josStorer/RWKV-Runner) (RWKV offline LLM deployment tool, also usable as a client for ChatGPT and Ollama)
|
||||
- [Ollama Grid Search](https://github.com/dezoito/ollama-grid-search) (app to evaluate and compare models)
|
||||
- [Olpaka](https://github.com/Otacon/olpaka) (User-friendly Flutter Web App for Ollama)
|
||||
- [Casibase](https://casibase.org) (An open source AI knowledge base and dialogue system combining the latest RAG, SSO, ollama support, and multiple large language models.)
|
||||
- [Casibase](https://casibase.org) (An open source AI knowledge base and dialogue system combining the latest RAG, SSO, ollama support and multiple large language models.)
|
||||
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
|
||||
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
|
||||
- [Shinkai Desktop](https://github.com/dcSpark/shinkai-apps) (Two click install Local AI using Ollama + Files + RAG)
|
||||
- [AiLama](https://github.com/zeyoyt/ailama) (A Discord User App that allows you to interact with Ollama anywhere in Discord)
|
||||
- [AiLama](https://github.com/zeyoyt/ailama) (A Discord User App that allows you to interact with Ollama anywhere in discord )
|
||||
- [Ollama with Google Mesop](https://github.com/rapidarchitect/ollama_mesop/) (Mesop Chat Client implementation with Ollama)
|
||||
- [R2R](https://github.com/SciPhi-AI/R2R) (Open-source RAG engine)
|
||||
- [Ollama-Kis](https://github.com/elearningshow/ollama-kis) (A simple easy-to-use GUI with sample custom LLM for Drivers Education)
|
||||
- [Ollama-Kis](https://github.com/elearningshow/ollama-kis) (A simple easy to use GUI with sample custom LLM for Drivers Education)
|
||||
- [OpenGPA](https://opengpa.org) (Open-source offline-first Enterprise Agentic Application)
|
||||
- [Painting Droid](https://github.com/mateuszmigas/painting-droid) (Painting app with AI integrations)
|
||||
- [Kerlig AI](https://www.kerlig.com/) (AI writing assistant for macOS)
|
||||
@@ -345,16 +341,16 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [LLMStack](https://github.com/trypromptly/LLMStack) (No-code multi-agent framework to build LLM agents and workflows)
|
||||
- [BoltAI for Mac](https://boltai.com) (AI Chat Client for Mac)
|
||||
- [Harbor](https://github.com/av/harbor) (Containerized LLM Toolkit with Ollama as default backend)
|
||||
- [PyGPT](https://github.com/szczyglis-dev/py-gpt) (AI desktop assistant for Linux, Windows, and Mac)
|
||||
- [Alpaca](https://github.com/Jeffser/Alpaca) (An Ollama client application for Linux and macOS made with GTK4 and Adwaita)
|
||||
- [PyGPT](https://github.com/szczyglis-dev/py-gpt) (AI desktop assistant for Linux, Windows and Mac)
|
||||
- [Alpaca](https://github.com/Jeffser/Alpaca) (An Ollama client application for linux and macos made with GTK4 and Adwaita)
|
||||
- [AutoGPT](https://github.com/Significant-Gravitas/AutoGPT/blob/master/docs/content/platform/ollama.md) (AutoGPT Ollama integration)
|
||||
- [Go-CREW](https://www.jonathanhecl.com/go-crew/) (Powerful Offline RAG in Golang)
|
||||
- [PartCAD](https://github.com/openvmp/partcad/) (CAD model generation with OpenSCAD and CadQuery)
|
||||
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot, and Ollama4j
|
||||
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot and Ollama4j
|
||||
- [PyOllaMx](https://github.com/kspviswa/pyOllaMx) - macOS application capable of chatting with both Ollama and Apple MLX models.
|
||||
- [Cline](https://github.com/cline/cline) - Formerly known as Claude Dev is a VSCode extension for multi-file/whole-repo coding
|
||||
- [Cherry Studio](https://github.com/kangfenmao/cherry-studio) (Desktop client with Ollama support)
|
||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy-focused LLM chat interface with optional encryption)
|
||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
|
||||
- [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library)
|
||||
- [crewAI with Mesop](https://github.com/rapidarchitect/ollama-crew-mesop) (Mesop Web Interface to run crewAI with Ollama)
|
||||
- [Tkinter-based client](https://github.com/chyok/ollama-gui) (Python tkinter-based Client for Ollama)
|
||||
@@ -372,7 +368,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [DualMind](https://github.com/tcsenpai/dualmind) (Experimental app allowing two models to talk to each other in the terminal or in a web interface)
|
||||
- [ollamarama-matrix](https://github.com/h1ddenpr0cess20/ollamarama-matrix) (Ollama chatbot for the Matrix chat protocol)
|
||||
- [ollama-chat-app](https://github.com/anan1213095357/ollama-chat-app) (Flutter-based chat app)
|
||||
- [Perfect Memory AI](https://www.perfectmemory.ai/) (Productivity AI assists personalized by what you have seen on your screen, heard, and said in the meetings)
|
||||
- [Perfect Memory AI](https://www.perfectmemory.ai/) (Productivity AI assists personalized by what you have seen on your screen, heard and said in the meetings)
|
||||
- [Hexabot](https://github.com/hexastack/hexabot) (A conversational AI builder)
|
||||
- [Reddit Rate](https://github.com/rapidarchitect/reddit_analyzer) (Search and Rate Reddit topics with a weighted summation)
|
||||
- [OpenTalkGpt](https://github.com/adarshM84/OpenTalkGpt) (Chrome Extension to manage open-source models supported by Ollama, create custom models, and chat with models from a user-friendly UI)
|
||||
@@ -390,7 +386,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [ChibiChat](https://github.com/CosmicEventHorizon/ChibiChat) (Kotlin-based Android app to chat with Ollama and Koboldcpp API endpoints)
|
||||
- [LocalLLM](https://github.com/qusaismael/localllm) (Minimal Web-App to run ollama models on it with a GUI)
|
||||
- [Ollamazing](https://github.com/buiducnhat/ollamazing) (Web extension to run Ollama models)
|
||||
- [OpenDeepResearcher-via-searxng](https://github.com/benhaotang/OpenDeepResearcher-via-searxng) (A Deep Research equivalent endpoint with Ollama support for running locally)
|
||||
- [OpenDeepResearcher-via-searxng](https://github.com/benhaotang/OpenDeepResearcher-via-searxng) (A Deep Research equivent endpoint with Ollama support for running locally)
|
||||
- [AntSK](https://github.com/AIDotNet/AntSK) (Out-of-the-box & Adaptable RAG Chatbot)
|
||||
- [MaxKB](https://github.com/1Panel-dev/MaxKB/) (Ready-to-use & flexible RAG Chatbot)
|
||||
- [yla](https://github.com/danielekp/yla) (Web interface to freely interact with your customized models)
|
||||
@@ -398,15 +394,11 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [1Panel](https://github.com/1Panel-dev/1Panel/) (Web-based Linux Server Management Tool)
|
||||
- [AstrBot](https://github.com/Soulter/AstrBot/) (User-friendly LLM-based multi-platform chatbot with a WebUI, supporting RAG, LLM agents, and plugins integration)
|
||||
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
|
||||
- [Flufy](https://github.com/Aharon-Bensadoun/Flufy) (A beautiful chat interface for interacting with Ollama's API. Built with React, TypeScript, and Material-UI.)
|
||||
- [Ellama](https://github.com/zeozeozeo/ellama) (Friendly native app to chat with an Ollama instance)
|
||||
- [screenpipe](https://github.com/mediar-ai/screenpipe) Build agents powered by your screen history
|
||||
- [Ollamb](https://github.com/hengkysteen/ollamb) (Simple yet rich in features, cross-platform built with Flutter and designed for Ollama. Try the [web demo](https://hengkysteen.github.io/demo/ollamb/).)
|
||||
- [Writeopia](https://github.com/Writeopia/Writeopia) (Text editor with integration with Ollama)
|
||||
- [AppFlowy](https://github.com/AppFlowy-IO/AppFlowy) (AI collaborative workspace with Ollama, cross-platform and self-hostable)
|
||||
- [Lumina](https://github.com/cushydigit/lumina.git) (A lightweight, minimal React.js frontend for interacting with Ollama servers)
|
||||
- [Tiny Notepad](https://pypi.org/project/tiny-notepad) (A lightweight, notepad-like interface to chat with ollama available on PyPI)
|
||||
- [macLlama (macOS native)](https://github.com/hellotunamayo/macLlama) (A native macOS GUI application for interacting with Ollama models, featuring a chat interface.)
|
||||
|
||||
### Cloud
|
||||
|
||||
@@ -448,10 +440,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [PowershAI](https://github.com/rrg92/powershai) PowerShell module that brings AI to terminal on Windows, including support for Ollama
|
||||
- [DeepShell](https://github.com/Abyss-c0re/deepshell) Your self-hosted AI assistant. Interactive Shell, Files and Folders analysis.
|
||||
- [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama.
|
||||
- [orca-cli](https://github.com/molbal/orca-cli) Ollama Registry CLI Application - Browse, pull, and download models from Ollama Registry in your terminal.
|
||||
- [orca-cli](https://github.com/molbal/orca-cli) Ollama Registry CLI Application - Browse, pull and download models from Ollama Registry in your terminal.
|
||||
- [GGUF-to-Ollama](https://github.com/jonathanhecl/gguf-to-ollama) - Importing GGUF to Ollama made easy (multiplatform)
|
||||
- [AWS-Strands-With-Ollama](https://github.com/rapidarchitect/ollama_strands) - AWS Strands Agents with Ollama Examples
|
||||
- [ollama-multirun](https://github.com/attogram/ollama-multirun) - A bash shell script to run a single prompt against any or all of your locally installed ollama models, saving the output and performance statistics as easily navigable web pages. ([Demo](https://attogram.github.io/ai_test_zone/))
|
||||
|
||||
### Apple Vision Pro
|
||||
|
||||
@@ -478,7 +468,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
|
||||
### Libraries
|
||||
|
||||
- [LangChain](https://python.langchain.com/docs/integrations/chat/ollama/) and [LangChain.js](https://js.langchain.com/docs/integrations/chat/ollama/) with [example](https://js.langchain.com/docs/tutorials/local_rag/)
|
||||
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/integrations/chat/ollama/) with [example](https://js.langchain.com/docs/tutorials/local_rag/)
|
||||
- [Firebase Genkit](https://firebase.google.com/docs/genkit/plugins/ollama)
|
||||
- [crewAI](https://github.com/crewAIInc/crewAI)
|
||||
- [Yacana](https://remembersoftwares.github.io/yacana/) (User-friendly multi-agent framework for brainstorming and executing predetermined flows with built-in tool integration)
|
||||
@@ -525,21 +515,20 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Swollama for Swift](https://github.com/marcusziade/Swollama) with [DocC](https://marcusziade.github.io/Swollama/documentation/swollama/)
|
||||
- [GoLamify](https://github.com/prasad89/golamify)
|
||||
- [Ollama for Haskell](https://github.com/tusharad/ollama-haskell)
|
||||
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in a unified API)
|
||||
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in unified API)
|
||||
- [LlmTornado](https://github.com/lofcz/llmtornado) (C# library providing a unified interface for major FOSS & Commercial inference APIs)
|
||||
- [Ollama for Zig](https://github.com/dravenk/ollama-zig)
|
||||
- [Abso](https://github.com/lunary-ai/abso) (OpenAI-compatible TypeScript SDK for any LLM provider)
|
||||
- [Nichey](https://github.com/goodreasonai/nichey) is a Python package for generating custom wikis for your research topic
|
||||
- [Ollama for D](https://github.com/kassane/ollama-d)
|
||||
- [OllamaPlusPlus](https://github.com/HardCodeDev777/OllamaPlusPlus) (Very simple C++ library for Ollama)
|
||||
|
||||
### Mobile
|
||||
|
||||
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Lightning-fast Cross-platform AI chat app with native UI for Android, iOS, and iPad)
|
||||
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Lightning-fast Cross-platform AI chat app with native UI for Android, iOS and iPad)
|
||||
- [Enchanted](https://github.com/AugustDev/enchanted)
|
||||
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
|
||||
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
|
||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy-focused LLM chat interface with optional encryption)
|
||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
|
||||
- [Ollama Android Chat](https://github.com/sunshine0523/OllamaServer) (No need for Termux, start the Ollama service with one click on an Android device)
|
||||
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
|
||||
|
||||
@@ -563,7 +552,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Obsidian Local GPT plugin](https://github.com/pfrankov/obsidian-local-gpt)
|
||||
- [Open Interpreter](https://docs.openinterpreter.com/language-model-setup/local-models/ollama)
|
||||
- [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama)
|
||||
- [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) (Proxy that allows you to use Ollama as a copilot like GitHub Copilot)
|
||||
- [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) (Proxy that allows you to use ollama as a copilot like Github copilot)
|
||||
- [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama)
|
||||
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and Hugging Face)
|
||||
- [Page Assist](https://github.com/n4ze3m/page-assist) (Chrome Extension)
|
||||
@@ -573,8 +562,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Discord-Ollama Chat Bot](https://github.com/kevinthedang/discord-ollama) (Generalized TypeScript Discord Bot w/ Tuning Documentation)
|
||||
- [ChatGPTBox: All in one browser extension](https://github.com/josStorer/chatGPTBox) with [Integrating Tutorial](https://github.com/josStorer/chatGPTBox/issues/616#issuecomment-1975186467)
|
||||
- [Discord AI chat/moderation bot](https://github.com/rapmd73/Companion) Chat/moderation bot written in python. Uses Ollama to create personalities.
|
||||
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depend on ollama server)
|
||||
- [Terraform AWS Ollama & Open WebUI](https://github.com/xuyangbocn/terraform-aws-self-host-llm) (A Terraform module to deploy on AWS a ready-to-use Ollama service, together with its front-end Open WebUI service.)
|
||||
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depends on ollama server)
|
||||
- [Terraform AWS Ollama & Open WebUI](https://github.com/xuyangbocn/terraform-aws-self-host-llm) (A Terraform module to deploy on AWS a ready-to-use Ollama service, together with its front end Open WebUI service.)
|
||||
- [node-red-contrib-ollama](https://github.com/jakubburkiewicz/node-red-contrib-ollama)
|
||||
- [Local AI Helper](https://github.com/ivostoykov/localAI) (Chrome and Firefox extensions that enable interactions with the active tab and customisable API endpoints. Includes secure storage for user prompts.)
|
||||
- [vnc-lm](https://github.com/jake83741/vnc-lm) (Discord bot for messaging with LLMs through Ollama and LiteLLM. Seamlessly move between local and flagship models.)
|
||||
@@ -588,8 +577,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai)
|
||||
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
|
||||
- [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs)
|
||||
- [SimpleOllamaUnity](https://github.com/HardCodeDev777/SimpleOllamaUnity) (Unity Engine extension for communicating with Ollama in a few lines of code. Also works at runtime)
|
||||
- [UnityCodeLama](https://github.com/HardCodeDev777/UnityCodeLama) (Unity Edtior tool to analyze scripts via Ollama)
|
||||
|
||||
### Supported backends
|
||||
|
||||
|
||||
@@ -24,10 +24,7 @@ import (
|
||||
"net/http"
|
||||
"net/url"
|
||||
"runtime"
|
||||
"strconv"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/auth"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/version"
|
||||
@@ -79,14 +76,6 @@ func NewClient(base *url.URL, http *http.Client) *Client {
|
||||
}
|
||||
}
|
||||
|
||||
func getAuthorizationToken(ctx context.Context, challenge string) (string, error) {
|
||||
token, err := auth.Sign(ctx, []byte(challenge))
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
return token, nil
|
||||
}
|
||||
|
||||
func (c *Client) do(ctx context.Context, method, path string, reqData, respData any) error {
|
||||
var reqBody io.Reader
|
||||
var data []byte
|
||||
@@ -108,21 +97,6 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
|
||||
}
|
||||
|
||||
requestURL := c.base.JoinPath(path)
|
||||
|
||||
var token string
|
||||
if envconfig.UseAuth() || c.base.Hostname() == "ollama.com" {
|
||||
now := strconv.FormatInt(time.Now().Unix(), 10)
|
||||
chal := fmt.Sprintf("%s,%s?ts=%s", method, path, now)
|
||||
token, err = getAuthorizationToken(ctx, chal)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
q := requestURL.Query()
|
||||
q.Set("ts", now)
|
||||
requestURL.RawQuery = q.Encode()
|
||||
}
|
||||
|
||||
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), reqBody)
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -132,10 +106,6 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
|
||||
request.Header.Set("Accept", "application/json")
|
||||
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
|
||||
|
||||
if token != "" {
|
||||
request.Header.Set("Authorization", token)
|
||||
}
|
||||
|
||||
respObj, err := c.http.Do(request)
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -173,22 +143,6 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
|
||||
}
|
||||
|
||||
requestURL := c.base.JoinPath(path)
|
||||
|
||||
var token string
|
||||
if envconfig.UseAuth() || c.base.Hostname() == "ollama.com" {
|
||||
var err error
|
||||
now := strconv.FormatInt(time.Now().Unix(), 10)
|
||||
chal := fmt.Sprintf("%s,%s?ts=%s", method, path, now)
|
||||
token, err = getAuthorizationToken(ctx, chal)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
q := requestURL.Query()
|
||||
q.Set("ts", now)
|
||||
requestURL.RawQuery = q.Encode()
|
||||
}
|
||||
|
||||
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), buf)
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -198,10 +152,6 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
|
||||
request.Header.Set("Accept", "application/x-ndjson")
|
||||
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
|
||||
|
||||
if token != "" {
|
||||
request.Header.Set("Authorization", token)
|
||||
}
|
||||
|
||||
response, err := c.http.Do(request)
|
||||
if err != nil {
|
||||
return err
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
package api
|
||||
|
||||
import (
|
||||
"context"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"net/http"
|
||||
@@ -136,7 +137,7 @@ func TestClientStream(t *testing.T) {
|
||||
client := NewClient(&url.URL{Scheme: "http", Host: ts.Listener.Addr().String()}, http.DefaultClient)
|
||||
|
||||
var receivedChunks []ChatResponse
|
||||
err := client.stream(t.Context(), http.MethodPost, "/v1/chat", nil, func(chunk []byte) error {
|
||||
err := client.stream(context.Background(), http.MethodPost, "/v1/chat", nil, func(chunk []byte) error {
|
||||
var resp ChatResponse
|
||||
if err := json.Unmarshal(chunk, &resp); err != nil {
|
||||
return fmt.Errorf("failed to unmarshal chunk: %w", err)
|
||||
@@ -222,7 +223,7 @@ func TestClientDo(t *testing.T) {
|
||||
ID string `json:"id"`
|
||||
Success bool `json:"success"`
|
||||
}
|
||||
err := client.do(t.Context(), http.MethodPost, "/v1/messages", nil, &resp)
|
||||
err := client.do(context.Background(), http.MethodPost, "/v1/messages", nil, &resp)
|
||||
|
||||
if tc.wantErr != "" {
|
||||
if err == nil {
|
||||
|
||||
41
api/types.go
41
api/types.go
@@ -83,12 +83,6 @@ type GenerateRequest struct {
|
||||
// Options lists model-specific options. For example, temperature can be
|
||||
// set through this field, if the model supports it.
|
||||
Options map[string]any `json:"options"`
|
||||
|
||||
// Think controls whether thinking/reasoning models will think before
|
||||
// responding. Needs to be a pointer so we can distinguish between false
|
||||
// (request that thinking _not_ be used) and unset (use the old behavior
|
||||
// before this option was introduced)
|
||||
Think *bool `json:"think,omitempty"`
|
||||
}
|
||||
|
||||
// ChatRequest describes a request sent by [Client.Chat].
|
||||
@@ -114,10 +108,6 @@ type ChatRequest struct {
|
||||
|
||||
// Options lists model-specific options.
|
||||
Options map[string]any `json:"options"`
|
||||
|
||||
// Think controls whether thinking/reasoning models will think before
|
||||
// responding
|
||||
Think *bool `json:"think,omitempty"`
|
||||
}
|
||||
|
||||
type Tools []Tool
|
||||
@@ -136,11 +126,8 @@ func (t Tool) String() string {
|
||||
// role ("system", "user", or "assistant"), the content and an optional list
|
||||
// of images.
|
||||
type Message struct {
|
||||
Role string `json:"role"`
|
||||
Content string `json:"content"`
|
||||
// Thinking contains the text that was inside thinking tags in the
|
||||
// original model output when ChatRequest.Think is enabled.
|
||||
Thinking string `json:"thinking,omitempty"`
|
||||
Role string `json:"role"`
|
||||
Content string `json:"content"`
|
||||
Images []ImageData `json:"images,omitempty"`
|
||||
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
|
||||
}
|
||||
@@ -284,6 +271,9 @@ type Options struct {
|
||||
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
|
||||
PresencePenalty float32 `json:"presence_penalty,omitempty"`
|
||||
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
|
||||
Mirostat int `json:"mirostat,omitempty"`
|
||||
MirostatTau float32 `json:"mirostat_tau,omitempty"`
|
||||
MirostatEta float32 `json:"mirostat_eta,omitempty"`
|
||||
Stop []string `json:"stop,omitempty"`
|
||||
}
|
||||
|
||||
@@ -293,7 +283,12 @@ type Runner struct {
|
||||
NumBatch int `json:"num_batch,omitempty"`
|
||||
NumGPU int `json:"num_gpu,omitempty"`
|
||||
MainGPU int `json:"main_gpu,omitempty"`
|
||||
LowVRAM bool `json:"low_vram,omitempty"`
|
||||
F16KV bool `json:"f16_kv,omitempty"` // Deprecated: This option is ignored
|
||||
LogitsAll bool `json:"logits_all,omitempty"`
|
||||
VocabOnly bool `json:"vocab_only,omitempty"`
|
||||
UseMMap *bool `json:"use_mmap,omitempty"`
|
||||
UseMLock bool `json:"use_mlock,omitempty"`
|
||||
NumThread int `json:"num_thread,omitempty"`
|
||||
}
|
||||
|
||||
@@ -476,6 +471,13 @@ type ProcessModelResponse struct {
|
||||
SizeVRAM int64 `json:"size_vram"`
|
||||
}
|
||||
|
||||
type RetrieveModelResponse struct {
|
||||
Id string `json:"id"`
|
||||
Object string `json:"object"`
|
||||
Created int64 `json:"created"`
|
||||
OwnedBy string `json:"owned_by"`
|
||||
}
|
||||
|
||||
type TokenResponse struct {
|
||||
Token string `json:"token"`
|
||||
}
|
||||
@@ -491,10 +493,6 @@ type GenerateResponse struct {
|
||||
// Response is the textual response itself.
|
||||
Response string `json:"response"`
|
||||
|
||||
// Thinking contains the text that was inside thinking tags in the
|
||||
// original model output when ChatRequest.Think is enabled.
|
||||
Thinking string `json:"thinking,omitempty"`
|
||||
|
||||
// Done specifies if the response is complete.
|
||||
Done bool `json:"done"`
|
||||
|
||||
@@ -662,6 +660,9 @@ func DefaultOptions() Options {
|
||||
RepeatPenalty: 1.1,
|
||||
PresencePenalty: 0.0,
|
||||
FrequencyPenalty: 0.0,
|
||||
Mirostat: 0,
|
||||
MirostatTau: 5.0,
|
||||
MirostatEta: 0.1,
|
||||
Seed: -1,
|
||||
|
||||
Runner: Runner{
|
||||
@@ -670,6 +671,8 @@ func DefaultOptions() Options {
|
||||
NumBatch: 512,
|
||||
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
|
||||
NumThread: 0, // let the runtime decide
|
||||
LowVRAM: false,
|
||||
UseMLock: false,
|
||||
UseMMap: nil,
|
||||
},
|
||||
}
|
||||
|
||||
@@ -372,50 +372,3 @@ func TestPropertyType_MarshalJSON(t *testing.T) {
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestThinking_UnmarshalJSON(t *testing.T) {
|
||||
trueVal := true
|
||||
falseVal := false
|
||||
|
||||
tests := []struct {
|
||||
name string
|
||||
input string
|
||||
expectedThinking *bool
|
||||
expectedError bool
|
||||
}{
|
||||
{
|
||||
name: "true",
|
||||
input: `{ "think": true }`,
|
||||
expectedThinking: &trueVal,
|
||||
},
|
||||
{
|
||||
name: "false",
|
||||
input: `{ "think": false }`,
|
||||
expectedThinking: &falseVal,
|
||||
},
|
||||
{
|
||||
name: "unset",
|
||||
input: `{ }`,
|
||||
expectedThinking: nil,
|
||||
},
|
||||
{
|
||||
name: "invalid",
|
||||
input: `{ "think": "true" }`,
|
||||
expectedThinking: nil,
|
||||
expectedError: true,
|
||||
},
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
var req GenerateRequest
|
||||
err := json.Unmarshal([]byte(test.input), &req)
|
||||
if test.expectedError {
|
||||
require.Error(t, err)
|
||||
} else {
|
||||
require.NoError(t, err)
|
||||
assert.Equal(t, test.expectedThinking, req.Think)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
@@ -4,14 +4,20 @@ import (
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strconv"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/logutil"
|
||||
)
|
||||
|
||||
func InitLogging() {
|
||||
level := slog.LevelInfo
|
||||
|
||||
if envconfig.Debug() {
|
||||
level = slog.LevelDebug
|
||||
}
|
||||
|
||||
var logFile *os.File
|
||||
var err error
|
||||
// Detect if we're a GUI app on windows, and if not, send logs to console
|
||||
@@ -27,8 +33,20 @@ func InitLogging() {
|
||||
return
|
||||
}
|
||||
}
|
||||
handler := slog.NewTextHandler(logFile, &slog.HandlerOptions{
|
||||
Level: level,
|
||||
AddSource: true,
|
||||
ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
|
||||
if attr.Key == slog.SourceKey {
|
||||
source := attr.Value.Any().(*slog.Source)
|
||||
source.File = filepath.Base(source.File)
|
||||
}
|
||||
return attr
|
||||
},
|
||||
})
|
||||
|
||||
slog.SetDefault(slog.New(handler))
|
||||
|
||||
slog.SetDefault(logutil.NewLogger(logFile, envconfig.LogLevel()))
|
||||
slog.Info("ollama app started")
|
||||
}
|
||||
|
||||
|
||||
@@ -78,7 +78,7 @@ func BenchmarkColdStart(b *testing.B) {
|
||||
|
||||
for _, tt := range tests {
|
||||
b.Run(fmt.Sprintf("%s/cold/%s", m, tt.name), func(b *testing.B) {
|
||||
ctx := b.Context()
|
||||
ctx := context.Background()
|
||||
|
||||
// Set number of tokens as our throughput metric
|
||||
b.SetBytes(int64(tt.maxTokens))
|
||||
@@ -113,7 +113,7 @@ func BenchmarkWarmStart(b *testing.B) {
|
||||
|
||||
for _, tt := range tests {
|
||||
b.Run(fmt.Sprintf("%s/warm/%s", m, tt.name), func(b *testing.B) {
|
||||
ctx := b.Context()
|
||||
ctx := context.Background()
|
||||
|
||||
// Pre-warm the model
|
||||
warmup(client, m, tt.prompt, b)
|
||||
@@ -140,7 +140,7 @@ func setup(b *testing.B) *api.Client {
|
||||
if err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
if _, err := client.Show(b.Context(), &api.ShowRequest{Model: modelName(b)}); err != nil {
|
||||
if _, err := client.Show(context.Background(), &api.ShowRequest{Model: modelName(b)}); err != nil {
|
||||
b.Fatalf("Model unavailable: %v", err)
|
||||
}
|
||||
|
||||
|
||||
287
cmd/cmd.go
287
cmd/cmd.go
@@ -31,7 +31,6 @@ import (
|
||||
"github.com/olekukonko/tablewriter"
|
||||
"github.com/spf13/cobra"
|
||||
"golang.org/x/crypto/ssh"
|
||||
"golang.org/x/sync/errgroup"
|
||||
"golang.org/x/term"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
@@ -39,31 +38,12 @@ import (
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/parser"
|
||||
"github.com/ollama/ollama/progress"
|
||||
"github.com/ollama/ollama/readline"
|
||||
"github.com/ollama/ollama/runner"
|
||||
"github.com/ollama/ollama/server"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
"github.com/ollama/ollama/types/syncmap"
|
||||
"github.com/ollama/ollama/version"
|
||||
)
|
||||
|
||||
// ensureThinkingSupport emits a warning if the model does not advertise thinking support
|
||||
func ensureThinkingSupport(ctx context.Context, client *api.Client, name string) {
|
||||
if name == "" {
|
||||
return
|
||||
}
|
||||
resp, err := client.Show(ctx, &api.ShowRequest{Model: name})
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
for _, cap := range resp.Capabilities {
|
||||
if cap == model.CapabilityThinking {
|
||||
return
|
||||
}
|
||||
}
|
||||
fmt.Fprintf(os.Stderr, "warning: model %q does not support thinking output\n", name)
|
||||
}
|
||||
|
||||
var errModelfileNotFound = errors.New("specified Modelfile wasn't found")
|
||||
|
||||
func getModelfileName(cmd *cobra.Command) (string, error) {
|
||||
@@ -126,7 +106,7 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
|
||||
}
|
||||
spinner.Stop()
|
||||
|
||||
req.Model = args[0]
|
||||
req.Name = args[0]
|
||||
quantize, _ := cmd.Flags().GetString("quantize")
|
||||
if quantize != "" {
|
||||
req.Quantize = quantize
|
||||
@@ -137,54 +117,34 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
|
||||
return err
|
||||
}
|
||||
|
||||
var g errgroup.Group
|
||||
g.SetLimit(max(runtime.GOMAXPROCS(0)-1, 1))
|
||||
|
||||
files := syncmap.NewSyncMap[string, string]()
|
||||
for f, digest := range req.Files {
|
||||
g.Go(func() error {
|
||||
if len(req.Files) > 0 {
|
||||
fileMap := map[string]string{}
|
||||
for f, digest := range req.Files {
|
||||
if _, err := createBlob(cmd, client, f, digest, p); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// TODO: this is incorrect since the file might be in a subdirectory
|
||||
// instead this should take the path relative to the model directory
|
||||
// but the current implementation does not allow this
|
||||
files.Store(filepath.Base(f), digest)
|
||||
return nil
|
||||
})
|
||||
fileMap[filepath.Base(f)] = digest
|
||||
}
|
||||
req.Files = fileMap
|
||||
}
|
||||
|
||||
adapters := syncmap.NewSyncMap[string, string]()
|
||||
for f, digest := range req.Adapters {
|
||||
g.Go(func() error {
|
||||
if len(req.Adapters) > 0 {
|
||||
fileMap := map[string]string{}
|
||||
for f, digest := range req.Adapters {
|
||||
if _, err := createBlob(cmd, client, f, digest, p); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// TODO: same here
|
||||
adapters.Store(filepath.Base(f), digest)
|
||||
return nil
|
||||
})
|
||||
fileMap[filepath.Base(f)] = digest
|
||||
}
|
||||
req.Adapters = fileMap
|
||||
}
|
||||
|
||||
if err := g.Wait(); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
req.Files = files.Items()
|
||||
req.Adapters = adapters.Items()
|
||||
|
||||
bars := make(map[string]*progress.Bar)
|
||||
fn := func(resp api.ProgressResponse) error {
|
||||
if resp.Digest != "" {
|
||||
bar, ok := bars[resp.Digest]
|
||||
if !ok {
|
||||
msg := resp.Status
|
||||
if msg == "" {
|
||||
msg = fmt.Sprintf("pulling %s...", resp.Digest[7:19])
|
||||
}
|
||||
bar = progress.NewBar(msg, resp.Total, resp.Completed)
|
||||
bar = progress.NewBar(fmt.Sprintf("pulling %s...", resp.Digest[7:19]), resp.Total, resp.Completed)
|
||||
bars[resp.Digest] = bar
|
||||
p.Add(resp.Digest, bar)
|
||||
}
|
||||
@@ -253,7 +213,7 @@ func createBlob(cmd *cobra.Command, client *api.Client, path string, digest stri
|
||||
}
|
||||
}()
|
||||
|
||||
if err := client.CreateBlob(cmd.Context(), digest, io.TeeReader(bin, &pw)); err != nil {
|
||||
if err = client.CreateBlob(cmd.Context(), digest, io.TeeReader(bin, &pw)); err != nil {
|
||||
return "", err
|
||||
}
|
||||
return digest, nil
|
||||
@@ -283,9 +243,6 @@ func loadOrUnloadModel(cmd *cobra.Command, opts *runOptions) error {
|
||||
req := &api.GenerateRequest{
|
||||
Model: opts.Model,
|
||||
KeepAlive: opts.KeepAlive,
|
||||
|
||||
// pass Think here so we fail before getting to the chat prompt if the model doesn't support it
|
||||
Think: opts.Think,
|
||||
}
|
||||
|
||||
return client.Generate(cmd.Context(), req, func(api.GenerateResponse) error { return nil })
|
||||
@@ -320,22 +277,6 @@ func RunHandler(cmd *cobra.Command, args []string) error {
|
||||
}
|
||||
opts.Format = format
|
||||
|
||||
thinkFlag := cmd.Flags().Lookup("think")
|
||||
if thinkFlag.Changed {
|
||||
think, err := cmd.Flags().GetBool("think")
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
opts.Think = &think
|
||||
} else {
|
||||
opts.Think = nil
|
||||
}
|
||||
hidethinking, err := cmd.Flags().GetBool("hidethinking")
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
opts.HideThinking = hidethinking
|
||||
|
||||
keepAlive, err := cmd.Flags().GetString("keepalive")
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -399,11 +340,6 @@ func RunHandler(cmd *cobra.Command, args []string) error {
|
||||
return err
|
||||
}
|
||||
|
||||
opts.Think, err = inferThinkingOption(&info.Capabilities, &opts, thinkFlag.Changed)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
opts.MultiModal = slices.Contains(info.Capabilities, model.CapabilityVision)
|
||||
|
||||
// TODO: remove the projector info and vision info checks below,
|
||||
@@ -789,38 +725,11 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
|
||||
case float64:
|
||||
v = fmt.Sprintf("%g", vData)
|
||||
case []any:
|
||||
targetWidth := 10 // Small width where we are displaying the data in a column
|
||||
|
||||
var itemsToShow int
|
||||
totalWidth := 1 // Start with 1 for opening bracket
|
||||
|
||||
// Find how many we can fit
|
||||
for i := range vData {
|
||||
itemStr := fmt.Sprintf("%v", vData[i])
|
||||
width := runewidth.StringWidth(itemStr)
|
||||
|
||||
// Add separator width (", ") for all items except the first
|
||||
if i > 0 {
|
||||
width += 2
|
||||
}
|
||||
|
||||
// Check if adding this item would exceed our width limit
|
||||
if totalWidth+width > targetWidth && i > 0 {
|
||||
break
|
||||
}
|
||||
|
||||
totalWidth += width
|
||||
itemsToShow++
|
||||
}
|
||||
|
||||
// Format the output
|
||||
if itemsToShow < len(vData) {
|
||||
v = fmt.Sprintf("%v", vData[:itemsToShow])
|
||||
v = strings.TrimSuffix(v, "]")
|
||||
v += fmt.Sprintf(" ...+%d more]", len(vData)-itemsToShow)
|
||||
} else {
|
||||
v = fmt.Sprintf("%v", vData)
|
||||
n := 3
|
||||
if len(vData) < n {
|
||||
n = len(vData)
|
||||
}
|
||||
v = fmt.Sprintf("%v", vData[:n])
|
||||
default:
|
||||
v = fmt.Sprintf("%T", vData)
|
||||
}
|
||||
@@ -841,19 +750,10 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
|
||||
|
||||
head := func(s string, n int) (rows [][]string) {
|
||||
scanner := bufio.NewScanner(strings.NewReader(s))
|
||||
count := 0
|
||||
for scanner.Scan() {
|
||||
text := strings.TrimSpace(scanner.Text())
|
||||
if text == "" {
|
||||
continue
|
||||
for scanner.Scan() && (len(rows) < n || n < 0) {
|
||||
if text := scanner.Text(); text != "" {
|
||||
rows = append(rows, []string{"", strings.TrimSpace(text)})
|
||||
}
|
||||
count++
|
||||
if n < 0 || count <= n {
|
||||
rows = append(rows, []string{"", text})
|
||||
}
|
||||
}
|
||||
if n >= 0 && count > n {
|
||||
rows = append(rows, []string{"", "..."})
|
||||
}
|
||||
return
|
||||
}
|
||||
@@ -965,19 +865,17 @@ func PullHandler(cmd *cobra.Command, args []string) error {
|
||||
type generateContextKey string
|
||||
|
||||
type runOptions struct {
|
||||
Model string
|
||||
ParentModel string
|
||||
Prompt string
|
||||
Messages []api.Message
|
||||
WordWrap bool
|
||||
Format string
|
||||
System string
|
||||
Images []api.ImageData
|
||||
Options map[string]any
|
||||
MultiModal bool
|
||||
KeepAlive *api.Duration
|
||||
Think *bool
|
||||
HideThinking bool
|
||||
Model string
|
||||
ParentModel string
|
||||
Prompt string
|
||||
Messages []api.Message
|
||||
WordWrap bool
|
||||
Format string
|
||||
System string
|
||||
Images []api.ImageData
|
||||
Options map[string]any
|
||||
MultiModal bool
|
||||
KeepAlive *api.Duration
|
||||
}
|
||||
|
||||
type displayResponseState struct {
|
||||
@@ -1033,26 +931,6 @@ func displayResponse(content string, wordWrap bool, state *displayResponseState)
|
||||
}
|
||||
}
|
||||
|
||||
func thinkingOutputOpeningText(plainText bool) string {
|
||||
text := "Thinking...\n"
|
||||
|
||||
if plainText {
|
||||
return text
|
||||
}
|
||||
|
||||
return readline.ColorGrey + readline.ColorBold + text + readline.ColorDefault + readline.ColorGrey
|
||||
}
|
||||
|
||||
func thinkingOutputClosingText(plainText bool) string {
|
||||
text := "...done thinking.\n\n"
|
||||
|
||||
if plainText {
|
||||
return text
|
||||
}
|
||||
|
||||
return readline.ColorGrey + readline.ColorBold + text + readline.ColorDefault
|
||||
}
|
||||
|
||||
func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
|
||||
client, err := api.ClientFromEnvironment()
|
||||
if err != nil {
|
||||
@@ -1080,34 +958,14 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
|
||||
var latest api.ChatResponse
|
||||
var fullResponse strings.Builder
|
||||
var role string
|
||||
var thinkTagOpened bool = false
|
||||
var thinkTagClosed bool = false
|
||||
|
||||
fn := func(response api.ChatResponse) error {
|
||||
if response.Message.Content != "" || !opts.HideThinking {
|
||||
p.StopAndClear()
|
||||
}
|
||||
p.StopAndClear()
|
||||
|
||||
latest = response
|
||||
|
||||
role = response.Message.Role
|
||||
if response.Message.Thinking != "" && !opts.HideThinking {
|
||||
if !thinkTagOpened {
|
||||
fmt.Print(thinkingOutputOpeningText(false))
|
||||
thinkTagOpened = true
|
||||
}
|
||||
displayResponse(response.Message.Thinking, opts.WordWrap, state)
|
||||
}
|
||||
|
||||
content := response.Message.Content
|
||||
if thinkTagOpened && !thinkTagClosed && content != "" {
|
||||
fmt.Print(thinkingOutputClosingText(false))
|
||||
thinkTagClosed = true
|
||||
}
|
||||
// purposefully not putting thinking blocks in the response, which would
|
||||
// only be needed if we later added tool calling to the cli (they get
|
||||
// filtered out anyway since current models don't expect them unless you're
|
||||
// about to finish some tool calls)
|
||||
fullResponse.WriteString(content)
|
||||
|
||||
displayResponse(content, opts.WordWrap, state)
|
||||
@@ -1124,7 +982,6 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
|
||||
Messages: opts.Messages,
|
||||
Format: json.RawMessage(opts.Format),
|
||||
Options: opts.Options,
|
||||
Think: opts.Think,
|
||||
}
|
||||
|
||||
if opts.KeepAlive != nil {
|
||||
@@ -1186,32 +1043,13 @@ func generate(cmd *cobra.Command, opts runOptions) error {
|
||||
}()
|
||||
|
||||
var state *displayResponseState = &displayResponseState{}
|
||||
var thinkTagOpened bool = false
|
||||
var thinkTagClosed bool = false
|
||||
|
||||
plainText := !term.IsTerminal(int(os.Stdout.Fd()))
|
||||
|
||||
fn := func(response api.GenerateResponse) error {
|
||||
p.StopAndClear()
|
||||
|
||||
latest = response
|
||||
content := response.Response
|
||||
|
||||
if response.Response != "" || !opts.HideThinking {
|
||||
p.StopAndClear()
|
||||
}
|
||||
|
||||
if response.Thinking != "" && !opts.HideThinking {
|
||||
if !thinkTagOpened {
|
||||
fmt.Print(thinkingOutputOpeningText(plainText))
|
||||
thinkTagOpened = true
|
||||
}
|
||||
displayResponse(response.Thinking, opts.WordWrap, state)
|
||||
}
|
||||
|
||||
if thinkTagOpened && !thinkTagClosed && content != "" {
|
||||
fmt.Print(thinkingOutputClosingText(plainText))
|
||||
thinkTagClosed = true
|
||||
}
|
||||
|
||||
displayResponse(content, opts.WordWrap, state)
|
||||
|
||||
return nil
|
||||
@@ -1237,7 +1075,6 @@ func generate(cmd *cobra.Command, opts runOptions) error {
|
||||
System: opts.System,
|
||||
Options: opts.Options,
|
||||
KeepAlive: opts.KeepAlive,
|
||||
Think: opts.Think,
|
||||
}
|
||||
|
||||
if err := client.Generate(ctx, &request, fn); err != nil {
|
||||
@@ -1341,11 +1178,11 @@ func checkServerHeartbeat(cmd *cobra.Command, _ []string) error {
|
||||
return err
|
||||
}
|
||||
if err := client.Heartbeat(cmd.Context()); err != nil {
|
||||
if !(strings.Contains(err.Error(), " refused") || strings.Contains(err.Error(), "could not connect")) {
|
||||
if !strings.Contains(err.Error(), " refused") {
|
||||
return err
|
||||
}
|
||||
if err := startApp(cmd.Context(), client); err != nil {
|
||||
return fmt.Errorf("ollama server not responding - %w", err)
|
||||
return errors.New("could not connect to ollama app, is it running?")
|
||||
}
|
||||
}
|
||||
return nil
|
||||
@@ -1423,7 +1260,7 @@ func NewCLI() *cobra.Command {
|
||||
}
|
||||
|
||||
createCmd.Flags().StringP("file", "f", "", "Name of the Modelfile (default \"Modelfile\"")
|
||||
createCmd.Flags().StringP("quantize", "q", "", "Quantize model to this level (e.g. q4_K_M)")
|
||||
createCmd.Flags().StringP("quantize", "q", "", "Quantize model to this level (e.g. q4_0)")
|
||||
|
||||
showCmd := &cobra.Command{
|
||||
Use: "show MODEL",
|
||||
@@ -1453,8 +1290,6 @@ func NewCLI() *cobra.Command {
|
||||
runCmd.Flags().Bool("insecure", false, "Use an insecure registry")
|
||||
runCmd.Flags().Bool("nowordwrap", false, "Don't wrap words to the next line automatically")
|
||||
runCmd.Flags().String("format", "", "Response format (e.g. json)")
|
||||
runCmd.Flags().Bool("think", false, "Whether to use thinking mode for supported models")
|
||||
runCmd.Flags().Bool("hidethinking", false, "Hide thinking output (if provided)")
|
||||
|
||||
stopCmd := &cobra.Command{
|
||||
Use: "stop MODEL",
|
||||
@@ -1506,6 +1341,7 @@ func NewCLI() *cobra.Command {
|
||||
PreRunE: checkServerHeartbeat,
|
||||
RunE: ListRunningHandler,
|
||||
}
|
||||
|
||||
copyCmd := &cobra.Command{
|
||||
Use: "cp SOURCE DESTINATION",
|
||||
Short: "Copy a model",
|
||||
@@ -1571,6 +1407,7 @@ func NewCLI() *cobra.Command {
|
||||
envVars["OLLAMA_LLM_LIBRARY"],
|
||||
envVars["OLLAMA_GPU_OVERHEAD"],
|
||||
envVars["OLLAMA_LOAD_TIMEOUT"],
|
||||
envVars["OLLAMA_CONTEXT_LENGTH"],
|
||||
})
|
||||
default:
|
||||
appendEnvDocs(cmd, envs)
|
||||
@@ -1594,45 +1431,3 @@ func NewCLI() *cobra.Command {
|
||||
|
||||
return rootCmd
|
||||
}
|
||||
|
||||
// If the user has explicitly set thinking options, either through the CLI or
|
||||
// through the `/set think` or `set nothink` interactive options, then we
|
||||
// respect them. Otherwise, we check model capabilities to see if the model
|
||||
// supports thinking. If the model does support thinking, we enable it.
|
||||
// Otherwise, we unset the thinking option (which is different than setting it
|
||||
// to false).
|
||||
//
|
||||
// If capabilities are not provided, we fetch them from the server.
|
||||
func inferThinkingOption(caps *[]model.Capability, runOpts *runOptions, explicitlySetByUser bool) (*bool, error) {
|
||||
if explicitlySetByUser {
|
||||
return runOpts.Think, nil
|
||||
}
|
||||
|
||||
if caps == nil {
|
||||
client, err := api.ClientFromEnvironment()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
ret, err := client.Show(context.Background(), &api.ShowRequest{
|
||||
Model: runOpts.Model,
|
||||
})
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
caps = &ret.Capabilities
|
||||
}
|
||||
|
||||
thinkingSupported := false
|
||||
for _, cap := range *caps {
|
||||
if cap == model.CapabilityThinking {
|
||||
thinkingSupported = true
|
||||
}
|
||||
}
|
||||
|
||||
if thinkingSupported {
|
||||
thinking := true
|
||||
return &thinking, nil
|
||||
}
|
||||
|
||||
return nil, nil
|
||||
}
|
||||
|
||||
@@ -2,6 +2,7 @@ package cmd
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"encoding/json"
|
||||
"io"
|
||||
"net/http"
|
||||
@@ -225,7 +226,6 @@ Weigh anchor!
|
||||
System
|
||||
You are a pirate!
|
||||
Ahoy, matey!
|
||||
...
|
||||
|
||||
`
|
||||
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||
@@ -337,7 +337,7 @@ func TestDeleteHandler(t *testing.T) {
|
||||
t.Cleanup(mockServer.Close)
|
||||
|
||||
cmd := &cobra.Command{}
|
||||
cmd.SetContext(t.Context())
|
||||
cmd.SetContext(context.TODO())
|
||||
if err := DeleteHandler(cmd, []string{"test-model"}); err != nil {
|
||||
t.Fatalf("DeleteHandler failed: %v", err)
|
||||
}
|
||||
@@ -399,6 +399,11 @@ func TestGetModelfileName(t *testing.T) {
|
||||
var expectedFilename string
|
||||
|
||||
if tt.fileExists {
|
||||
tempDir, err := os.MkdirTemp("", "modelfiledir")
|
||||
defer os.RemoveAll(tempDir)
|
||||
if err != nil {
|
||||
t.Fatalf("temp modelfile dir creation failed: %v", err)
|
||||
}
|
||||
var fn string
|
||||
if tt.modelfileName != "" {
|
||||
fn = tt.modelfileName
|
||||
@@ -406,7 +411,7 @@ func TestGetModelfileName(t *testing.T) {
|
||||
fn = "Modelfile"
|
||||
}
|
||||
|
||||
tempFile, err := os.CreateTemp(t.TempDir(), fn)
|
||||
tempFile, err := os.CreateTemp(tempDir, fn)
|
||||
if err != nil {
|
||||
t.Fatalf("temp modelfile creation failed: %v", err)
|
||||
}
|
||||
@@ -525,7 +530,7 @@ func TestPushHandler(t *testing.T) {
|
||||
|
||||
cmd := &cobra.Command{}
|
||||
cmd.Flags().Bool("insecure", false, "")
|
||||
cmd.SetContext(t.Context())
|
||||
cmd.SetContext(context.TODO())
|
||||
|
||||
// Redirect stderr to capture progress output
|
||||
oldStderr := os.Stderr
|
||||
@@ -630,7 +635,7 @@ func TestListHandler(t *testing.T) {
|
||||
t.Setenv("OLLAMA_HOST", mockServer.URL)
|
||||
|
||||
cmd := &cobra.Command{}
|
||||
cmd.SetContext(t.Context())
|
||||
cmd.SetContext(context.TODO())
|
||||
|
||||
// Capture stdout
|
||||
oldStdout := os.Stdout
|
||||
@@ -685,7 +690,7 @@ func TestCreateHandler(t *testing.T) {
|
||||
return
|
||||
}
|
||||
|
||||
if req.Model != "test-model" {
|
||||
if req.Name != "test-model" {
|
||||
t.Errorf("expected model name 'test-model', got %s", req.Name)
|
||||
}
|
||||
|
||||
@@ -725,7 +730,7 @@ func TestCreateHandler(t *testing.T) {
|
||||
}))
|
||||
t.Setenv("OLLAMA_HOST", mockServer.URL)
|
||||
t.Cleanup(mockServer.Close)
|
||||
tempFile, err := os.CreateTemp(t.TempDir(), "modelfile")
|
||||
tempFile, err := os.CreateTemp("", "modelfile")
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
@@ -745,7 +750,7 @@ func TestCreateHandler(t *testing.T) {
|
||||
}
|
||||
|
||||
cmd.Flags().Bool("insecure", false, "")
|
||||
cmd.SetContext(t.Context())
|
||||
cmd.SetContext(context.TODO())
|
||||
|
||||
// Redirect stderr to capture progress output
|
||||
oldStderr := os.Stderr
|
||||
|
||||
@@ -44,7 +44,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
fmt.Fprintln(os.Stderr, "Use \"\"\" to begin a multi-line message.")
|
||||
|
||||
if opts.MultiModal {
|
||||
fmt.Fprintf(os.Stderr, "Use %s to include .jpg, .png, or .webp images.\n", filepath.FromSlash("/path/to/file"))
|
||||
fmt.Fprintf(os.Stderr, "Use %s to include .jpg or .png images.\n", filepath.FromSlash("/path/to/file"))
|
||||
}
|
||||
|
||||
fmt.Fprintln(os.Stderr, "")
|
||||
@@ -62,8 +62,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
fmt.Fprintln(os.Stderr, " /set noformat Disable formatting")
|
||||
fmt.Fprintln(os.Stderr, " /set verbose Show LLM stats")
|
||||
fmt.Fprintln(os.Stderr, " /set quiet Disable LLM stats")
|
||||
fmt.Fprintln(os.Stderr, " /set think Enable thinking")
|
||||
fmt.Fprintln(os.Stderr, " /set nothink Disable thinking")
|
||||
fmt.Fprintln(os.Stderr, "")
|
||||
}
|
||||
|
||||
@@ -130,7 +128,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
|
||||
var sb strings.Builder
|
||||
var multiline MultilineState
|
||||
var thinkExplicitlySet bool = opts.Think != nil
|
||||
|
||||
for {
|
||||
line, err := scanner.Readline()
|
||||
@@ -198,19 +195,11 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
opts.Model = args[1]
|
||||
opts.Messages = []api.Message{}
|
||||
fmt.Printf("Loading model '%s'\n", opts.Model)
|
||||
opts.Think, err = inferThinkingOption(nil, &opts, thinkExplicitlySet)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if err := loadOrUnloadModel(cmd, &opts); err != nil {
|
||||
if strings.Contains(err.Error(), "not found") {
|
||||
fmt.Printf("error: %v\n", err)
|
||||
continue
|
||||
}
|
||||
if strings.Contains(err.Error(), "does not support thinking") {
|
||||
fmt.Printf("error: %v\n", err)
|
||||
continue
|
||||
}
|
||||
return err
|
||||
}
|
||||
continue
|
||||
@@ -271,22 +260,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
return err
|
||||
}
|
||||
fmt.Println("Set 'quiet' mode.")
|
||||
case "think":
|
||||
think := true
|
||||
opts.Think = &think
|
||||
thinkExplicitlySet = true
|
||||
if client, err := api.ClientFromEnvironment(); err == nil {
|
||||
ensureThinkingSupport(cmd.Context(), client, opts.Model)
|
||||
}
|
||||
fmt.Println("Set 'think' mode.")
|
||||
case "nothink":
|
||||
think := false
|
||||
opts.Think = &think
|
||||
thinkExplicitlySet = true
|
||||
if client, err := api.ClientFromEnvironment(); err == nil {
|
||||
ensureThinkingSupport(cmd.Context(), client, opts.Model)
|
||||
}
|
||||
fmt.Println("Set 'nothink' mode.")
|
||||
case "format":
|
||||
if len(args) < 3 || args[2] != "json" {
|
||||
fmt.Println("Invalid or missing format. For 'json' mode use '/set format json'")
|
||||
@@ -475,11 +448,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
|
||||
assistant, err := chat(cmd, opts)
|
||||
if err != nil {
|
||||
if strings.Contains(err.Error(), "does not support thinking") {
|
||||
fmt.Printf("error: %v\n", err)
|
||||
sb.Reset()
|
||||
continue
|
||||
}
|
||||
return err
|
||||
}
|
||||
if assistant != nil {
|
||||
@@ -543,7 +511,7 @@ func extractFileNames(input string) []string {
|
||||
// Regex to match file paths starting with optional drive letter, / ./ \ or .\ and include escaped or unescaped spaces (\ or %20)
|
||||
// and followed by more characters and a file extension
|
||||
// This will capture non filename strings, but we'll check for file existence to remove mismatches
|
||||
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png|webp)\b`
|
||||
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png)\b`
|
||||
re := regexp.MustCompile(regexPattern)
|
||||
|
||||
return re.FindAllString(input, -1)
|
||||
@@ -563,8 +531,6 @@ func extractFileData(input string) (string, []api.ImageData, error) {
|
||||
return "", imgs, err
|
||||
}
|
||||
fmt.Fprintf(os.Stderr, "Added image '%s'\n", nfp)
|
||||
input = strings.ReplaceAll(input, "'"+nfp+"'", "")
|
||||
input = strings.ReplaceAll(input, "'"+fp+"'", "")
|
||||
input = strings.ReplaceAll(input, fp, "")
|
||||
imgs = append(imgs, data)
|
||||
}
|
||||
@@ -585,7 +551,7 @@ func getImageData(filePath string) ([]byte, error) {
|
||||
}
|
||||
|
||||
contentType := http.DetectContentType(buf)
|
||||
allowedTypes := []string{"image/jpeg", "image/jpg", "image/png", "image/webp"}
|
||||
allowedTypes := []string{"image/jpeg", "image/jpg", "image/png"}
|
||||
if !slices.Contains(allowedTypes, contentType) {
|
||||
return nil, fmt.Errorf("invalid image type: %s", contentType)
|
||||
}
|
||||
|
||||
@@ -1,8 +1,6 @@
|
||||
package cmd
|
||||
|
||||
import (
|
||||
"os"
|
||||
"path/filepath"
|
||||
"testing"
|
||||
|
||||
"github.com/stretchr/testify/assert"
|
||||
@@ -12,17 +10,14 @@ func TestExtractFilenames(t *testing.T) {
|
||||
// Unix style paths
|
||||
input := ` some preamble
|
||||
./relative\ path/one.png inbetween1 ./not a valid two.jpg inbetween2 ./1.svg
|
||||
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.JPG
|
||||
/unescaped space /six.webp inbetween6 /valid\ path/dir/seven.WEBP`
|
||||
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.JPG`
|
||||
res := extractFileNames(input)
|
||||
assert.Len(t, res, 7)
|
||||
assert.Len(t, res, 5)
|
||||
assert.Contains(t, res[0], "one.png")
|
||||
assert.Contains(t, res[1], "two.jpg")
|
||||
assert.Contains(t, res[2], "three.jpeg")
|
||||
assert.Contains(t, res[3], "four.png")
|
||||
assert.Contains(t, res[4], "five.JPG")
|
||||
assert.Contains(t, res[5], "six.webp")
|
||||
assert.Contains(t, res[6], "seven.WEBP")
|
||||
assert.NotContains(t, res[4], '"')
|
||||
assert.NotContains(t, res, "inbetween1")
|
||||
assert.NotContains(t, res, "./1.svg")
|
||||
@@ -33,12 +28,10 @@ func TestExtractFilenames(t *testing.T) {
|
||||
/absolute/nospace/three.jpeg inbetween3 /absolute/with space/four.png inbetween4
|
||||
./relative\ path/five.JPG inbetween5 "./relative with/spaces/six.png inbetween6
|
||||
d:\path with\spaces\seven.JPEG inbetween7 c:\users\jdoe\eight.png inbetween8
|
||||
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.PNG
|
||||
c:/users/jdoe/eleven.webp inbetween11 c:/program files/someplace/twelve.WebP inbetween12
|
||||
d:\path with\spaces\thirteen.WEBP some ending
|
||||
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.PNG some ending
|
||||
`
|
||||
res = extractFileNames(input)
|
||||
assert.Len(t, res, 13)
|
||||
assert.Len(t, res, 10)
|
||||
assert.NotContains(t, res, "inbetween2")
|
||||
assert.Contains(t, res[0], "one.png")
|
||||
assert.Contains(t, res[0], "c:")
|
||||
@@ -56,31 +49,4 @@ d:\path with\spaces\thirteen.WEBP some ending
|
||||
assert.Contains(t, res[8], "d:")
|
||||
assert.Contains(t, res[9], "ten.PNG")
|
||||
assert.Contains(t, res[9], "E:")
|
||||
assert.Contains(t, res[10], "eleven.webp")
|
||||
assert.Contains(t, res[10], "c:")
|
||||
assert.Contains(t, res[11], "twelve.WebP")
|
||||
assert.Contains(t, res[11], "c:")
|
||||
assert.Contains(t, res[12], "thirteen.WEBP")
|
||||
assert.Contains(t, res[12], "d:")
|
||||
}
|
||||
|
||||
// Ensure that file paths wrapped in single quotes are removed with the quotes.
|
||||
func TestExtractFileDataRemovesQuotedFilepath(t *testing.T) {
|
||||
dir := t.TempDir()
|
||||
fp := filepath.Join(dir, "img.jpg")
|
||||
data := make([]byte, 600)
|
||||
copy(data, []byte{
|
||||
0xff, 0xd8, 0xff, 0xe0, 0x00, 0x10, 'J', 'F', 'I', 'F',
|
||||
0x00, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0xff, 0xd9,
|
||||
})
|
||||
if err := os.WriteFile(fp, data, 0o600); err != nil {
|
||||
t.Fatalf("failed to write test image: %v", err)
|
||||
}
|
||||
|
||||
input := "before '" + fp + "' after"
|
||||
cleaned, imgs, err := extractFileData(input)
|
||||
assert.NoError(t, err)
|
||||
assert.Len(t, imgs, 1)
|
||||
assert.Equal(t, cleaned, "before after")
|
||||
}
|
||||
|
||||
@@ -5,7 +5,7 @@ import (
|
||||
"errors"
|
||||
"os"
|
||||
"os/exec"
|
||||
"regexp"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
@@ -19,12 +19,11 @@ func startApp(ctx context.Context, client *api.Client) error {
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
r := regexp.MustCompile(`^.*/Ollama\s?\d*.app`)
|
||||
m := r.FindStringSubmatch(link)
|
||||
if len(m) != 1 {
|
||||
if !strings.Contains(link, "Ollama.app") {
|
||||
return errors.New("could not find ollama app")
|
||||
}
|
||||
if err := exec.Command("/usr/bin/open", "-j", "-a", m[0], "--args", "--fast-startup").Run(); err != nil {
|
||||
path := strings.Split(link, "Ollama.app")
|
||||
if err := exec.Command("/usr/bin/open", "-a", path[0]+"Ollama.app").Run(); err != nil {
|
||||
return err
|
||||
}
|
||||
return waitForServer(ctx, client)
|
||||
|
||||
@@ -4,27 +4,17 @@ import (
|
||||
"context"
|
||||
"errors"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"os"
|
||||
"os/exec"
|
||||
"path"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
"syscall"
|
||||
"unsafe"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"golang.org/x/sys/windows"
|
||||
)
|
||||
|
||||
const (
|
||||
Installer = "OllamaSetup.exe"
|
||||
)
|
||||
|
||||
func startApp(ctx context.Context, client *api.Client) error {
|
||||
if len(isProcRunning(Installer)) > 0 {
|
||||
return fmt.Errorf("upgrade in progress...")
|
||||
}
|
||||
// log.Printf("XXX Attempting to find and start ollama app")
|
||||
AppName := "ollama app.exe"
|
||||
exe, err := os.Executable()
|
||||
if err != nil {
|
||||
@@ -45,11 +35,14 @@ func startApp(ctx context.Context, client *api.Client) error {
|
||||
}
|
||||
}
|
||||
}
|
||||
// log.Printf("XXX attempting to start app %s", appExe)
|
||||
|
||||
cmd_path := "c:\\Windows\\system32\\cmd.exe"
|
||||
cmd := exec.Command(cmd_path, "/c", appExe, "--hide", "--fast-startup")
|
||||
cmd := exec.Command(cmd_path, "/c", appExe)
|
||||
// TODO - these hide flags aren't working - still pops up a command window for some reason
|
||||
cmd.SysProcAttr = &syscall.SysProcAttr{CreationFlags: 0x08000000, HideWindow: true}
|
||||
|
||||
// TODO this didn't help either...
|
||||
cmd.Stdin = strings.NewReader("")
|
||||
cmd.Stdout = os.Stdout
|
||||
cmd.Stderr = os.Stderr
|
||||
@@ -63,50 +56,3 @@ func startApp(ctx context.Context, client *api.Client) error {
|
||||
}
|
||||
return waitForServer(ctx, client)
|
||||
}
|
||||
|
||||
func isProcRunning(procName string) []uint32 {
|
||||
pids := make([]uint32, 2048)
|
||||
var ret uint32
|
||||
if err := windows.EnumProcesses(pids, &ret); err != nil || ret == 0 {
|
||||
slog.Debug("failed to check for running installers", "error", err)
|
||||
return nil
|
||||
}
|
||||
if ret > uint32(len(pids)) {
|
||||
pids = make([]uint32, ret+10)
|
||||
if err := windows.EnumProcesses(pids, &ret); err != nil || ret == 0 {
|
||||
slog.Debug("failed to check for running installers", "error", err)
|
||||
return nil
|
||||
}
|
||||
}
|
||||
if ret < uint32(len(pids)) {
|
||||
pids = pids[:ret]
|
||||
}
|
||||
var matches []uint32
|
||||
for _, pid := range pids {
|
||||
if pid == 0 {
|
||||
continue
|
||||
}
|
||||
hProcess, err := windows.OpenProcess(windows.PROCESS_QUERY_INFORMATION|windows.PROCESS_VM_READ, false, pid)
|
||||
if err != nil {
|
||||
continue
|
||||
}
|
||||
defer windows.CloseHandle(hProcess)
|
||||
var module windows.Handle
|
||||
var cbNeeded uint32
|
||||
cb := (uint32)(unsafe.Sizeof(module))
|
||||
if err := windows.EnumProcessModules(hProcess, &module, cb, &cbNeeded); err != nil {
|
||||
continue
|
||||
}
|
||||
var sz uint32 = 1024 * 8
|
||||
moduleName := make([]uint16, sz)
|
||||
cb = uint32(len(moduleName)) * (uint32)(unsafe.Sizeof(uint16(0)))
|
||||
if err := windows.GetModuleBaseName(hProcess, module, &moduleName[0], cb); err != nil && err != syscall.ERROR_INSUFFICIENT_BUFFER {
|
||||
continue
|
||||
}
|
||||
exeFile := path.Base(strings.ToLower(syscall.UTF16ToString(moduleName)))
|
||||
if strings.EqualFold(exeFile, procName) {
|
||||
matches = append(matches, pid)
|
||||
}
|
||||
}
|
||||
return matches
|
||||
}
|
||||
|
||||
@@ -1,63 +0,0 @@
|
||||
package cmd
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"io"
|
||||
"net/http"
|
||||
"net/http/httptest"
|
||||
"os"
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
)
|
||||
|
||||
// Test that a warning is printed when thinking is requested but not supported.
|
||||
func TestWarnMissingThinking(t *testing.T) {
|
||||
cases := []struct {
|
||||
capabilities []model.Capability
|
||||
expectWarn bool
|
||||
}{
|
||||
{capabilities: []model.Capability{model.CapabilityThinking}, expectWarn: false},
|
||||
{capabilities: []model.Capability{}, expectWarn: true},
|
||||
}
|
||||
|
||||
for _, tc := range cases {
|
||||
srv := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||
if r.URL.Path != "/api/show" || r.Method != http.MethodPost {
|
||||
t.Fatalf("unexpected request to %s %s", r.URL.Path, r.Method)
|
||||
}
|
||||
var req api.ShowRequest
|
||||
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
|
||||
t.Fatalf("decode request: %v", err)
|
||||
}
|
||||
resp := api.ShowResponse{Capabilities: tc.capabilities}
|
||||
if err := json.NewEncoder(w).Encode(resp); err != nil {
|
||||
t.Fatalf("encode response: %v", err)
|
||||
}
|
||||
}))
|
||||
defer srv.Close()
|
||||
|
||||
t.Setenv("OLLAMA_HOST", srv.URL)
|
||||
client, err := api.ClientFromEnvironment()
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
oldStderr := os.Stderr
|
||||
r, w, _ := os.Pipe()
|
||||
os.Stderr = w
|
||||
ensureThinkingSupport(t.Context(), client, "m")
|
||||
w.Close()
|
||||
os.Stderr = oldStderr
|
||||
out, _ := io.ReadAll(r)
|
||||
|
||||
warned := strings.Contains(string(out), "warning:")
|
||||
if tc.expectWarn && !warned {
|
||||
t.Errorf("expected warning, got none")
|
||||
}
|
||||
if !tc.expectWarn && warned {
|
||||
t.Errorf("did not expect warning, got: %s", string(out))
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,13 +1,12 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"io/fs"
|
||||
"log/slog"
|
||||
"os"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
@@ -15,12 +14,13 @@ import (
|
||||
)
|
||||
|
||||
type ModelParameters struct {
|
||||
Architectures []string `json:"architectures"`
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
Architectures []string `json:"architectures"`
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
TextModel TextParameters `json:"text_config"`
|
||||
}
|
||||
|
||||
TextModel struct {
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
} `json:"text_config"`
|
||||
type TextParameters struct {
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
}
|
||||
|
||||
type AdapterParameters struct {
|
||||
@@ -53,11 +53,8 @@ func (ModelParameters) KV(t *Tokenizer) ggml.KV {
|
||||
}
|
||||
|
||||
for _, sv := range t.SpecialVocabulary {
|
||||
kv[fmt.Sprintf("tokenizer.ggml.add_%s_token", sv.Key())] = sv.AddToken
|
||||
kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID)
|
||||
if len(sv.IDs) > 0 {
|
||||
kv[fmt.Sprintf("tokenizer.ggml.%s_token_ids", sv.Key())] = sv.IDs
|
||||
}
|
||||
kv[fmt.Sprintf("tokenizer.ggml.add_%s_token", sv.Key())] = sv.AddToken
|
||||
}
|
||||
|
||||
return kv
|
||||
@@ -92,7 +89,7 @@ type ModelConverter interface {
|
||||
// KV maps parameters to LLM key-values
|
||||
KV(*Tokenizer) ggml.KV
|
||||
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
|
||||
Tensors([]Tensor) []*ggml.Tensor
|
||||
Tensors([]Tensor) []ggml.Tensor
|
||||
// Replacements returns a list of string pairs to replace in tensor names.
|
||||
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
||||
Replacements() []string
|
||||
@@ -109,13 +106,13 @@ type AdapterConverter interface {
|
||||
// KV maps parameters to LLM key-values
|
||||
KV(ggml.KV) ggml.KV
|
||||
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
|
||||
Tensors([]Tensor) []*ggml.Tensor
|
||||
Tensors([]Tensor) []ggml.Tensor
|
||||
// Replacements returns a list of string pairs to replace in tensor names.
|
||||
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
||||
Replacements() []string
|
||||
}
|
||||
|
||||
func ConvertAdapter(fsys fs.FS, f *os.File, baseKV ggml.KV) error {
|
||||
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV ggml.KV) error {
|
||||
bts, err := fs.ReadFile(fsys, "adapter_config.json")
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -150,14 +147,14 @@ func ConvertAdapter(fsys fs.FS, f *os.File, baseKV ggml.KV) error {
|
||||
return err
|
||||
}
|
||||
|
||||
return writeFile(f, conv.KV(baseKV), conv.Tensors(ts))
|
||||
return writeFile(ws, conv.KV(baseKV), conv.Tensors(ts))
|
||||
}
|
||||
|
||||
// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations
|
||||
// and files it finds in the input path.
|
||||
// Supported input model formats include safetensors.
|
||||
// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model.
|
||||
func ConvertModel(fsys fs.FS, f *os.File) error {
|
||||
func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
bts, err := fs.ReadFile(fsys, "config.json")
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -176,8 +173,6 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
|
||||
switch p.Architectures[0] {
|
||||
case "LlamaForCausalLM":
|
||||
conv = &llamaModel{}
|
||||
case "MllamaForConditionalGeneration":
|
||||
conv = &mllamaModel{}
|
||||
case "Llama4ForConditionalGeneration":
|
||||
conv = &llama4Model{}
|
||||
case "Mistral3ForConditionalGeneration":
|
||||
@@ -194,8 +189,6 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
|
||||
conv = &phi3Model{}
|
||||
case "Qwen2ForCausalLM":
|
||||
conv = &qwen2Model{}
|
||||
case "Qwen2_5_VLForConditionalGeneration":
|
||||
conv = &qwen25VLModel{}
|
||||
case "BertModel":
|
||||
conv = &bertModel{}
|
||||
case "CohereForCausalLM":
|
||||
@@ -219,22 +212,24 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
|
||||
return err
|
||||
}
|
||||
|
||||
vocabSize := int(cmp.Or(p.VocabSize, p.TextModel.VocabSize))
|
||||
vocabSize := int(p.VocabSize)
|
||||
if vocabSize == 0 {
|
||||
tVocabSize := int(p.TextModel.VocabSize)
|
||||
vocabSize = tVocabSize
|
||||
}
|
||||
|
||||
switch {
|
||||
case vocabSize == 0:
|
||||
slog.Debug("vocabulary size was not explicitly set by the model", "default size", len(t.Vocabulary.Tokens))
|
||||
slog.Warn("vocabulary size was not explicitly set by the model", "default size", len(t.Vocabulary.Tokens))
|
||||
case vocabSize > len(t.Vocabulary.Tokens):
|
||||
slog.Debug("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
|
||||
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
|
||||
for i := range vocabSize - len(t.Vocabulary.Tokens) {
|
||||
t.Vocabulary.Tokens = append(t.Vocabulary.Tokens, fmt.Sprintf("[PAD%d]", i))
|
||||
t.Vocabulary.Scores = append(t.Vocabulary.Scores, -1)
|
||||
t.Vocabulary.Types = append(t.Vocabulary.Types, tokenTypeUserDefined)
|
||||
}
|
||||
case vocabSize < len(t.Vocabulary.Tokens):
|
||||
slog.Debug("vocabulary is larger than expected", "want", vocabSize, "got", len(t.Vocabulary.Tokens))
|
||||
p.VocabSize = uint32(len(t.Vocabulary.Tokens))
|
||||
p.TextModel.VocabSize = uint32(len(t.Vocabulary.Tokens))
|
||||
return fmt.Errorf("vocabulary is larger than expected '%d' instead of '%d'", len(t.Vocabulary.Tokens), vocabSize)
|
||||
default:
|
||||
slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens))
|
||||
}
|
||||
@@ -244,13 +239,13 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
|
||||
return err
|
||||
}
|
||||
|
||||
return writeFile(f, conv.KV(t), conv.Tensors(ts))
|
||||
return writeFile(ws, conv.KV(t), conv.Tensors(ts))
|
||||
}
|
||||
|
||||
func writeFile(f *os.File, kv ggml.KV, ts []*ggml.Tensor) error {
|
||||
func writeFile(ws io.WriteSeeker, kv ggml.KV, ts []ggml.Tensor) error {
|
||||
for i := range ts {
|
||||
ts[i].Shape = slices.Clone(ts[i].Shape)
|
||||
slices.Reverse(ts[i].Shape)
|
||||
}
|
||||
return ggml.WriteGGUF(f, kv, ts)
|
||||
return ggml.WriteGGUF(ws, kv, ts)
|
||||
}
|
||||
|
||||
@@ -132,8 +132,8 @@ func (p *bertModel) KV(t *Tokenizer) ggml.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *bertModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
func (p *bertModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
for _, t := range ts {
|
||||
if slices.Contains([]string{
|
||||
"embeddings.position_ids",
|
||||
@@ -143,7 +143,7 @@ func (p *bertModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
continue
|
||||
}
|
||||
|
||||
out = append(out, &ggml.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
||||
@@ -43,10 +43,10 @@ func (p *commandrModel) KV(t *Tokenizer) ggml.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *commandrModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
func (p *commandrModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
for _, t := range ts {
|
||||
out = append(out, &ggml.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
||||
@@ -42,14 +42,14 @@ func (p *gemmaModel) KV(t *Tokenizer) ggml.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *gemmaModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
func (p *gemmaModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
for _, t := range ts {
|
||||
if !strings.HasPrefix(t.Name(), "v.") && strings.HasSuffix(t.Name(), "_norm.weight") {
|
||||
t.SetRepacker(p.addOne)
|
||||
}
|
||||
|
||||
out = append(out, &ggml.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
||||
@@ -21,8 +21,8 @@ func (p *gemma2Adapter) KV(baseKV ggml.KV) ggml.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *gemma2Adapter) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
func (p *gemma2Adapter) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
for _, t := range ts {
|
||||
shape := t.Shape()
|
||||
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
||||
@@ -31,7 +31,7 @@ func (p *gemma2Adapter) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
|
||||
out = append(out, &ggml.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
||||
@@ -126,11 +126,11 @@ func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *llamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
func (p *llamaModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
|
||||
if p.RopeScaling.factors != nil {
|
||||
out = append(out, &ggml.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: "rope_freqs.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
|
||||
@@ -139,14 +139,13 @@ func (p *llamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
}
|
||||
|
||||
for _, t := range ts {
|
||||
if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") ||
|
||||
strings.HasSuffix(t.Name(), "attn_q_proj.weight") || strings.HasSuffix(t.Name(), "attn_k_proj.weight") {
|
||||
if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") {
|
||||
if !p.skipRepack {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
}
|
||||
|
||||
out = append(out, &ggml.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
@@ -182,9 +181,9 @@ func (p *llamaModel) repack(name string, data []float32, shape []uint64) ([]floa
|
||||
}
|
||||
|
||||
var heads uint32
|
||||
if strings.HasSuffix(name, "attn_q.weight") || strings.HasSuffix(name, "attn_q_proj.weight") {
|
||||
if strings.HasSuffix(name, "attn_q.weight") {
|
||||
heads = p.NumAttentionHeads
|
||||
} else if strings.HasSuffix(name, "attn_k.weight") || strings.HasSuffix(name, "attn_k_proj.weight") {
|
||||
} else if strings.HasSuffix(name, "attn_k.weight") {
|
||||
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
|
||||
} else {
|
||||
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
|
||||
|
||||
@@ -88,13 +88,13 @@ func (p *llama4Model) Replacements() []string {
|
||||
}
|
||||
|
||||
// Tensors implements ModelConverter.
|
||||
func (p *llama4Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
func (p *llama4Model) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
|
||||
var textTensors []Tensor
|
||||
for _, t := range ts {
|
||||
if strings.HasPrefix(t.Name(), "v.") || strings.HasPrefix(t.Name(), "mm.") {
|
||||
out = append(out, &ggml.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
@@ -112,7 +112,7 @@ func (p *llama4Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
// clone tensor since we need separate repackers
|
||||
tt := t.Clone()
|
||||
tt.SetRepacker(p.repack(nil, nil, tensor.S(i*halfDim, (i+1)*halfDim)))
|
||||
out = append(out, &ggml.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: strings.ReplaceAll(tt.Name(), "ffn_gate_up_exps", name),
|
||||
Kind: tt.Kind(),
|
||||
Shape: newShape,
|
||||
@@ -125,7 +125,7 @@ func (p *llama4Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
t.SetRepacker(p.repack())
|
||||
newShape := slices.Clone(t.Shape())
|
||||
newShape[1], newShape[2] = newShape[2], newShape[1]
|
||||
out = append(out, &ggml.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: newShape,
|
||||
|
||||
@@ -29,8 +29,8 @@ func (p *llamaAdapter) KV(baseKV ggml.KV) ggml.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *llamaAdapter) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
func (p *llamaAdapter) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
for _, t := range ts {
|
||||
shape := t.Shape()
|
||||
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
||||
@@ -41,7 +41,7 @@ func (p *llamaAdapter) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
|
||||
out = append(out, &ggml.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: shape,
|
||||
|
||||
@@ -89,8 +89,8 @@ func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *mistral3Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
func (p *mistral3Model) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
|
||||
for _, t := range ts {
|
||||
if !strings.HasPrefix(t.Name(), "v.") {
|
||||
@@ -100,7 +100,7 @@ func (p *mistral3Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
}
|
||||
}
|
||||
|
||||
out = append(out, &ggml.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
||||
@@ -29,7 +29,7 @@ func (p *mixtralModel) KV(t *Tokenizer) ggml.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *mixtralModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
func (p *mixtralModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
oldnew := []string{
|
||||
"model.layers", "blk",
|
||||
"w1", "ffn_gate_exps",
|
||||
@@ -56,10 +56,10 @@ func (p *mixtralModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
return true
|
||||
})
|
||||
|
||||
var out []*ggml.Tensor
|
||||
var out []ggml.Tensor
|
||||
for n, e := range experts {
|
||||
// TODO(mxyng): sanity check experts
|
||||
out = append(out, &ggml.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: n,
|
||||
Kind: e[0].Kind(),
|
||||
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),
|
||||
|
||||
@@ -1,179 +0,0 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
)
|
||||
|
||||
type mllamaModel struct {
|
||||
ModelParameters
|
||||
TextModel struct {
|
||||
llamaModel
|
||||
|
||||
CrossAttentionLayers []int32 `json:"cross_attention_layers"`
|
||||
} `json:"text_config"`
|
||||
VisionModel struct {
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
NumGlobalLayers uint32 `json:"num_global_layers"`
|
||||
IntermediateLayersIndices []int32 `json:"intermediate_layers_indices"`
|
||||
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
|
||||
AttentionHeads uint32 `json:"attention_heads"`
|
||||
|
||||
ImageSize uint32 `json:"image_size"`
|
||||
PatchSize uint32 `json:"patch_size"`
|
||||
NumChannels uint32 `json:"num_channels"`
|
||||
MaxNumTiles uint32 `json:"max_num_tiles"`
|
||||
NormEpsilon float32 `json:"norm_eps"`
|
||||
RopeTheta float32 `json:"rope.freq_base"`
|
||||
} `json:"vision_config"`
|
||||
}
|
||||
|
||||
func (m *mllamaModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := m.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "mllama"
|
||||
|
||||
for k, v := range m.TextModel.KV(t) {
|
||||
if strings.HasPrefix(k, "llama.") {
|
||||
kv[strings.ReplaceAll(k, "llama.", "mllama.")] = v
|
||||
}
|
||||
}
|
||||
|
||||
kv["mllama.attention.cross_attention_layers"] = m.TextModel.CrossAttentionLayers
|
||||
|
||||
kv["mllama.vision.block_count"] = m.VisionModel.NumHiddenLayers
|
||||
kv["mllama.vision.global.block_count"] = m.VisionModel.NumGlobalLayers
|
||||
kv["mllama.vision.intermediate_layers_indices"] = m.VisionModel.IntermediateLayersIndices
|
||||
|
||||
kv["mllama.vision.embedding_length"] = m.VisionModel.HiddenSize
|
||||
kv["mllama.vision.feed_forward_length"] = m.VisionModel.IntermediateSize
|
||||
|
||||
kv["mllama.vision.attention.head_count"] = m.VisionModel.AttentionHeads
|
||||
kv["mllama.vision.attention.layer_norm_epsilon"] = m.VisionModel.NormEpsilon
|
||||
|
||||
kv["mllama.vision.image_size"] = m.VisionModel.ImageSize
|
||||
kv["mllama.vision.patch_size"] = m.VisionModel.PatchSize
|
||||
kv["mllama.vision.max_num_tiles"] = m.VisionModel.MaxNumTiles
|
||||
kv["mllama.vision.num_channels"] = m.VisionModel.NumChannels
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (m *mllamaModel) Replacements() []string {
|
||||
return append(
|
||||
m.TextModel.Replacements(),
|
||||
"language_model.", "",
|
||||
"gate_attn", "attn_gate",
|
||||
"gate_ffn", "ffn_gate",
|
||||
"cross_attn.", "cross_attn_",
|
||||
"vision_model", "v",
|
||||
"class_embedding", "class_embd",
|
||||
"patch_embedding", "patch_embd",
|
||||
"gated_positional_embedding.tile_embedding", "tile_position_embd",
|
||||
"gated_positional_embedding.embedding", "position_embd.weight",
|
||||
"gated_positional_embedding", "position_embd",
|
||||
"embedding.weight", "weight",
|
||||
"pre_tile_positional_embedding", "pre_tile_position_embd",
|
||||
"post_tile_positional_embedding", "post_tile_position_embd",
|
||||
"layernorm_pre", "pre_ln",
|
||||
"layernorm_post", "post_ln",
|
||||
"global_transformer.layers", "global.blk",
|
||||
"transformer.layers", "blk",
|
||||
"mlp.fc1", "ffn_up",
|
||||
"mlp.fc2", "ffn_down",
|
||||
"multi_modal_projector", "mm.0",
|
||||
)
|
||||
}
|
||||
|
||||
func (m *mllamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
var text []Tensor
|
||||
for _, t := range ts {
|
||||
if !strings.HasPrefix(t.Name(), "v.") && !strings.HasPrefix(t.Name(), "mm.") {
|
||||
text = append(text, t)
|
||||
} else if t.Name() == "v.position_embd.gate" {
|
||||
for _, name := range []string{"v.position_embd.gate", "v.tile_position_embd.gate"} {
|
||||
tt := t.Clone()
|
||||
tt.SetRepacker(m.repack(name))
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: name,
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: tt,
|
||||
})
|
||||
}
|
||||
} else {
|
||||
if t.Name() == "v.pre_tile_position_embd.gate" || t.Name() == "v.post_tile_position_embd.gate" {
|
||||
t.SetRepacker(m.repack(t.Name()))
|
||||
} else if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") {
|
||||
t.SetRepacker(m.repack(t.Name()))
|
||||
} else if strings.HasSuffix(t.Name(), "attn_gate") || strings.HasSuffix(t.Name(), "ffn_gate") {
|
||||
t.SetRepacker(m.repack(t.Name()))
|
||||
}
|
||||
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
return append(out, m.TextModel.Tensors(text)...)
|
||||
}
|
||||
|
||||
func (m *mllamaModel) repack(name string) Repacker {
|
||||
return func(_ string, data []float32, shape []uint64) (_ []float32, err error) {
|
||||
dims := make([]int, len(shape))
|
||||
for i, dim := range shape {
|
||||
dims[i] = int(dim)
|
||||
}
|
||||
|
||||
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
|
||||
if strings.HasSuffix(name, "attn_q.weight") || strings.HasSuffix(name, "attn_k.weight") {
|
||||
heads := m.VisionModel.AttentionHeads
|
||||
if err := t.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := t.T(0, 2, 1, 3); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := t.Reshape(dims...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := t.Transpose(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
} else {
|
||||
t, err = tensor.Tanh(t)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if name == "v.position_embd.gate" {
|
||||
t, err = tensor.Sub(float32(1), t)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
t = tensor.Materialize(t)
|
||||
// flatten tensor so it can be return as a vector
|
||||
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return native.VectorF32(t.(*tensor.Dense))
|
||||
}
|
||||
}
|
||||
@@ -68,19 +68,19 @@ func (p *phi3Model) KV(t *Tokenizer) ggml.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *phi3Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
func (p *phi3Model) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var addRopeFactors sync.Once
|
||||
|
||||
out := make([]*ggml.Tensor, 0, len(ts)+2)
|
||||
out := make([]ggml.Tensor, 0, len(ts)+2)
|
||||
for _, t := range ts {
|
||||
if strings.HasPrefix(t.Name(), "blk.0.") {
|
||||
addRopeFactors.Do(func() {
|
||||
out = append(out, &ggml.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: "rope_factors_long.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{uint64(len(p.RopeScaling.LongFactor))},
|
||||
WriterTo: p.RopeScaling.LongFactor,
|
||||
}, &ggml.Tensor{
|
||||
}, ggml.Tensor{
|
||||
Name: "rope_factors_short.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{uint64(len(p.RopeScaling.ShortFactor))},
|
||||
@@ -89,7 +89,7 @@ func (p *phi3Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
})
|
||||
}
|
||||
|
||||
out = append(out, &ggml.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
||||
@@ -15,7 +15,6 @@ type qwen2Model struct {
|
||||
Type string `json:"type"`
|
||||
Factor ropeFactor `json:"factor"`
|
||||
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
|
||||
MropeSection []int32 `json:"mrope_section"`
|
||||
} `json:"rope_scaling"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
}
|
||||
@@ -40,18 +39,16 @@ func (q *qwen2Model) KV(t *Tokenizer) ggml.KV {
|
||||
case "yarn":
|
||||
kv["qwen2.rope.scaling.type"] = q.RopeScaling.Type
|
||||
kv["qwen2.rope.scaling.factor"] = q.RopeScaling.Factor
|
||||
case "mrope", "default":
|
||||
kv["qwen2.rope.mrope_section"] = q.RopeScaling.MropeSection
|
||||
default:
|
||||
panic("unknown rope scaling type")
|
||||
}
|
||||
return kv
|
||||
}
|
||||
|
||||
func (q *qwen2Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
func (q *qwen2Model) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
for _, t := range ts {
|
||||
out = append(out, &ggml.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
||||
@@ -1,102 +0,0 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type qwen25VLModel struct {
|
||||
qwen2Model
|
||||
|
||||
VisionModel struct {
|
||||
Depth uint32 `json:"depth"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
NumHeads uint32 `json:"num_heads"`
|
||||
InChannels uint32 `json:"in_chans"`
|
||||
PatchSize uint32 `json:"patch_size"`
|
||||
SpatialMergeSize uint32 `json:"spatial_merge_size"`
|
||||
SpatialPatchSize uint32 `json:"spatial_patch_size"`
|
||||
WindowSize uint32 `json:"window_size"`
|
||||
RMSNormEps float32 `json:"layer_norm_epsilon"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
FullAttentionBlocks []int32 `json:"fullatt_block_indexes"`
|
||||
TemporalPatchSize uint32 `json:"temporal_patch_size"`
|
||||
} `json:"vision_config"`
|
||||
}
|
||||
|
||||
var _ ModelConverter = (*qwen25VLModel)(nil)
|
||||
|
||||
func (q *qwen25VLModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := q.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "qwen25vl"
|
||||
|
||||
for k, v := range q.qwen2Model.KV(t) {
|
||||
if strings.HasPrefix(k, "qwen2.") {
|
||||
kv[strings.Replace(k, "qwen2.", "qwen25vl.", 1)] = v
|
||||
}
|
||||
}
|
||||
|
||||
if q.VisionModel.FullAttentionBlocks == nil {
|
||||
kv["qwen25vl.vision.fullatt_block_indexes"] = []int32{7, 15, 23, 31}
|
||||
}
|
||||
|
||||
kv["qwen25vl.vision.block_count"] = cmp.Or(q.VisionModel.Depth, 32)
|
||||
kv["qwen25vl.vision.embedding_length"] = q.VisionModel.HiddenSize
|
||||
kv["qwen25vl.vision.attention.head_count"] = cmp.Or(q.VisionModel.NumHeads, 16)
|
||||
kv["qwen25vl.vision.num_channels"] = q.VisionModel.InChannels
|
||||
kv["qwen25vl.vision.patch_size"] = cmp.Or(q.VisionModel.PatchSize, 14)
|
||||
kv["qwen25vl.vision.spatial_merge_size"] = cmp.Or(q.VisionModel.SpatialMergeSize, 2)
|
||||
kv["qwen25vl.vision.spatial_patch_size"] = q.VisionModel.SpatialPatchSize
|
||||
kv["qwen25vl.vision.window_size"] = cmp.Or(q.VisionModel.WindowSize, 112)
|
||||
kv["qwen25vl.vision.attention.layer_norm_epsilon"] = cmp.Or(q.VisionModel.RMSNormEps, 1e-6)
|
||||
kv["qwen25vl.vision.rope.freq_base"] = cmp.Or(q.VisionModel.RopeTheta, 1e4)
|
||||
kv["qwen25vl.vision.fullatt_block_indexes"] = q.VisionModel.FullAttentionBlocks
|
||||
kv["qwen25vl.vision.temporal_patch_size"] = cmp.Or(q.VisionModel.TemporalPatchSize, 2)
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (q *qwen25VLModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
|
||||
for _, t := range ts {
|
||||
if strings.Contains(t.Name(), "patch_embed.proj") {
|
||||
for t := range splitDim(t, 2,
|
||||
split{Replacer: strings.NewReplacer("patch_embed.proj", "patch_embd_0")},
|
||||
split{Replacer: strings.NewReplacer("patch_embed.proj", "patch_embd_1")},
|
||||
) {
|
||||
t.Shape = slices.DeleteFunc(t.Shape, func(i uint64) bool { return i == 1 })
|
||||
out = append(out, t)
|
||||
}
|
||||
} else if strings.Contains(t.Name(), "attn.qkv") {
|
||||
out = append(out, slices.Collect(splitDim(t, 0,
|
||||
split{Replacer: strings.NewReplacer("attn.qkv", "attn_q")},
|
||||
split{Replacer: strings.NewReplacer("attn.qkv", "attn_k")},
|
||||
split{Replacer: strings.NewReplacer("attn.qkv", "attn_v")},
|
||||
))...)
|
||||
} else {
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *qwen25VLModel) Replacements() []string {
|
||||
return append(
|
||||
p.qwen2Model.Replacements(),
|
||||
"visual", "v",
|
||||
"blocks", "blk",
|
||||
"attn.proj", "attn_out",
|
||||
"norm1", "ln1",
|
||||
"norm2", "ln2",
|
||||
)
|
||||
}
|
||||
@@ -47,7 +47,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
|
||||
}
|
||||
t.Cleanup(func() { r.Close() })
|
||||
|
||||
m, err := ggml.Decode(r, -1)
|
||||
m, _, err := ggml.Decode(r, -1)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
@@ -130,7 +130,6 @@ func TestConvertModel(t *testing.T) {
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer expectFile.Close()
|
||||
|
||||
var expect map[string]string
|
||||
if err := json.NewDecoder(expectFile).Decode(&expect); err != nil {
|
||||
@@ -332,7 +331,7 @@ func TestConvertAdapter(t *testing.T) {
|
||||
}
|
||||
defer r.Close()
|
||||
|
||||
m, err := ggml.Decode(r, -1)
|
||||
m, _, err := ggml.Decode(r, -1)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
58
convert/fs.go
Normal file
58
convert/fs.go
Normal file
@@ -0,0 +1,58 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"archive/zip"
|
||||
"errors"
|
||||
"io"
|
||||
"io/fs"
|
||||
"os"
|
||||
"path/filepath"
|
||||
)
|
||||
|
||||
type ZipReader struct {
|
||||
r *zip.Reader
|
||||
p string
|
||||
|
||||
// limit is the maximum size of a file that can be read directly
|
||||
// from the zip archive. Files larger than this size will be extracted
|
||||
limit int64
|
||||
}
|
||||
|
||||
func NewZipReader(r *zip.Reader, p string, limit int64) fs.FS {
|
||||
return &ZipReader{r, p, limit}
|
||||
}
|
||||
|
||||
func (z *ZipReader) Open(name string) (fs.File, error) {
|
||||
r, err := z.r.Open(name)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer r.Close()
|
||||
|
||||
if fi, err := r.Stat(); err != nil {
|
||||
return nil, err
|
||||
} else if fi.Size() < z.limit {
|
||||
return r, nil
|
||||
}
|
||||
|
||||
if !filepath.IsLocal(name) {
|
||||
return nil, zip.ErrInsecurePath
|
||||
}
|
||||
|
||||
n := filepath.Join(z.p, name)
|
||||
if _, err := os.Stat(n); errors.Is(err, os.ErrNotExist) {
|
||||
w, err := os.Create(n)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer w.Close()
|
||||
|
||||
if _, err := io.Copy(w, r); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
} else if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return os.Open(n)
|
||||
}
|
||||
@@ -38,10 +38,7 @@ const (
|
||||
func (t tensorBase) Kind() uint32 {
|
||||
if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") ||
|
||||
t.name == "token_types.weight" ||
|
||||
t.name == "v.positional_embedding_vlm" ||
|
||||
t.name == "v.tile_position_embd.weight" ||
|
||||
t.name == "v.pre_tile_position_embd.weight" ||
|
||||
t.name == "v.post_tile_position_embd.weight" {
|
||||
t.name == "v.positional_embedding_vlm" {
|
||||
// these tensors are always F32
|
||||
return 0
|
||||
}
|
||||
|
||||
@@ -1,76 +0,0 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"iter"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type split struct {
|
||||
*strings.Replacer
|
||||
dim int
|
||||
|
||||
// fn is an optional function to apply to the tensor after slicing
|
||||
fn func(tensor.Tensor) (tensor.Tensor, error)
|
||||
}
|
||||
|
||||
// splitDim splits a tensor along a specified dimension into multiple tensors. The dimension
|
||||
// is split evenly based on the number of replacers provided unless a specific count is given.
|
||||
func splitDim(t Tensor, dim int, splits ...split) iter.Seq[*ggml.Tensor] {
|
||||
return func(yield func(*ggml.Tensor) bool) {
|
||||
var offset int
|
||||
for _, split := range splits {
|
||||
t := t.Clone()
|
||||
shape := slices.Clone(t.Shape())
|
||||
shape[dim] = cmp.Or(uint64(split.dim), shape[dim]/uint64(len(splits)))
|
||||
|
||||
slice := slices.Repeat([]tensor.Slice{nil}, len(shape))
|
||||
slice[dim] = tensor.S(offset, offset+int(shape[dim]))
|
||||
offset += int(shape[dim])
|
||||
|
||||
t.SetRepacker(func(_ string, data []float32, shape []uint64) ([]float32, error) {
|
||||
dims := make([]int, len(shape))
|
||||
for i := range shape {
|
||||
dims[i] = int(shape[i])
|
||||
}
|
||||
|
||||
var tt tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
tt, err := tt.Slice(slice...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
tt = tensor.Materialize(tt)
|
||||
|
||||
if split.fn != nil {
|
||||
tt, err = split.fn(tt)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
// flatten tensor so it can be written as a vector
|
||||
if err := tt.Reshape(tt.Shape().TotalSize()); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return native.VectorF32(tt.(*tensor.Dense))
|
||||
})
|
||||
|
||||
if !yield(&ggml.Tensor{
|
||||
Name: split.Replace(t.Name()),
|
||||
Kind: t.Kind(),
|
||||
Shape: shape,
|
||||
WriterTo: t,
|
||||
}) {
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,304 +0,0 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"io"
|
||||
"iter"
|
||||
"slices"
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
"github.com/pdevine/tensor"
|
||||
)
|
||||
|
||||
type fakeTensor struct {
|
||||
name string
|
||||
shape []uint64
|
||||
data []float32
|
||||
|
||||
repacker Repacker
|
||||
}
|
||||
|
||||
func (f fakeTensor) Name() string {
|
||||
return f.name
|
||||
}
|
||||
|
||||
func (f fakeTensor) Shape() []uint64 {
|
||||
return f.shape
|
||||
}
|
||||
|
||||
func (f fakeTensor) Kind() uint32 {
|
||||
return 0
|
||||
}
|
||||
|
||||
func (f *fakeTensor) SetRepacker(fn Repacker) {
|
||||
f.repacker = fn
|
||||
}
|
||||
|
||||
func (f fakeTensor) Clone() Tensor {
|
||||
return &fakeTensor{
|
||||
name: f.name,
|
||||
shape: slices.Clone(f.shape),
|
||||
data: slices.Clone(f.data),
|
||||
repacker: f.repacker,
|
||||
}
|
||||
}
|
||||
|
||||
func (f fakeTensor) WriteTo(w io.Writer) (n int64, err error) {
|
||||
data := f.data
|
||||
if f.repacker != nil {
|
||||
data, err = f.repacker(f.name, data, f.shape)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
}
|
||||
|
||||
if err := binary.Write(w, binary.LittleEndian, data); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
return int64(len(data) * 4), nil
|
||||
}
|
||||
|
||||
func mul(shape []uint64) int {
|
||||
n := 1
|
||||
for _, dim := range shape {
|
||||
n *= int(dim)
|
||||
}
|
||||
return n
|
||||
}
|
||||
|
||||
func TestSplitDim(t *testing.T) {
|
||||
r := fakeTensor{
|
||||
name: "a.b",
|
||||
shape: []uint64{3, 4},
|
||||
data: []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},
|
||||
}
|
||||
|
||||
t.Run("no split", func(t *testing.T) {
|
||||
for tt := range splitDim(&r, 0, split{Replacer: strings.NewReplacer("a", "x")}) {
|
||||
if tt.Name != "x.b" {
|
||||
t.Fatalf("expected name 'x', got '%s'", tt.Name)
|
||||
}
|
||||
|
||||
if !slices.Equal(tt.Shape, []uint64{3, 4}) {
|
||||
t.Fatalf("expected shape [3, 4], got %v", tt.Shape)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if !slices.Equal(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}) {
|
||||
t.Fatalf("expected data [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], got %v", f32s)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("even split", func(t *testing.T) {
|
||||
next, stop := iter.Pull(splitDim(&r, 1,
|
||||
split{Replacer: strings.NewReplacer("a", "x")},
|
||||
split{Replacer: strings.NewReplacer("b", "y")},
|
||||
))
|
||||
defer stop()
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "x.b" {
|
||||
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||
}
|
||||
|
||||
if !slices.Equal(tt.Shape, []uint64{3, 2}) {
|
||||
t.Fatal("expected shape [3, 2], got", tt.Shape)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if !slices.Equal(f32s, []float32{0, 1, 4, 5, 8, 9}) {
|
||||
t.Fatal("expected data [0, 1, 4, 5, 8, 9], got", f32s)
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "a.y" {
|
||||
t.Fatal("expected name 'a.y', got", tt.Name)
|
||||
}
|
||||
|
||||
if !slices.Equal(tt.Shape, []uint64{3, 2}) {
|
||||
t.Fatal("expected shape [3, 2], got", tt.Shape)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if !slices.Equal(f32s, []float32{2, 3, 6, 7, 10, 11}) {
|
||||
t.Fatal("expected data [2, 3, 6, 7, 10, 11], got", f32s)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("uneven split", func(t *testing.T) {
|
||||
next, stop := iter.Pull(splitDim(&r, 0,
|
||||
split{Replacer: strings.NewReplacer("a", "x"), dim: 2},
|
||||
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
|
||||
))
|
||||
defer stop()
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "x.b" {
|
||||
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||
}
|
||||
|
||||
if !slices.Equal(tt.Shape, []uint64{2, 4}) {
|
||||
t.Fatal("expected shape [2, 4], got", tt.Shape)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if !slices.Equal(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7}) {
|
||||
t.Fatal("expected data [0, 1, 2, 3, 4, 5, 6, 7], got", f32s)
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "a.y" {
|
||||
t.Fatal("expected name 'a.y', got", tt.Name)
|
||||
}
|
||||
|
||||
if !slices.Equal(tt.Shape, []uint64{1, 4}) {
|
||||
t.Fatal("expected shape [1, 4], got", tt.Shape)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if !slices.Equal(f32s, []float32{8, 9, 10, 11}) {
|
||||
t.Fatal("expected data [8, 9, 10, 11], got", f32s)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("split with transpose", func(t *testing.T) {
|
||||
next, stop := iter.Pull(splitDim(&r, 1,
|
||||
split{Replacer: strings.NewReplacer("a", "x")},
|
||||
split{Replacer: strings.NewReplacer("b", "y"), fn: func(tt tensor.Tensor) (tensor.Tensor, error) {
|
||||
return tensor.Transpose(tt, 1, 0)
|
||||
}},
|
||||
))
|
||||
defer stop()
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "x.b" {
|
||||
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||
}
|
||||
|
||||
if !slices.Equal(tt.Shape, []uint64{3, 2}) {
|
||||
t.Fatal("expected shape [3, 2], got", tt.Shape)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if !slices.Equal(f32s, []float32{0, 1, 4, 5, 8, 9}) {
|
||||
t.Fatal("expected data [0, 1, 4, 5, 8, 9], got", f32s)
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "a.y" {
|
||||
t.Fatal("expected name 'a.y', got", tt.Name)
|
||||
}
|
||||
|
||||
if !slices.Equal(tt.Shape, []uint64{3, 2}) {
|
||||
t.Fatal("expected shape [3, 2], got", tt.Shape)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if !slices.Equal(f32s, []float32{2, 6, 10, 3, 7, 11}) {
|
||||
t.Fatal("expected data [2, 6, 10, 3, 7, 11], got", f32s)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
@@ -110,7 +110,6 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
|
||||
}
|
||||
|
||||
if f, err := fsys.Open("tokenizer_config.json"); errors.Is(err, os.ErrNotExist) {
|
||||
// noop
|
||||
} else if err != nil {
|
||||
return nil, err
|
||||
} else {
|
||||
@@ -172,34 +171,6 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
|
||||
}
|
||||
}
|
||||
|
||||
if f, err := fsys.Open("generation_config.json"); errors.Is(err, os.ErrNotExist) {
|
||||
} else if err != nil {
|
||||
return nil, err
|
||||
} else {
|
||||
defer f.Close()
|
||||
|
||||
var p map[string]json.RawMessage
|
||||
if err := json.NewDecoder(f).Decode(&p); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
for _, st := range specialTokenTypes {
|
||||
if bts, ok := p[fmt.Sprintf("%s_token_id", st)]; ok {
|
||||
var ids []int32
|
||||
if err := json.Unmarshal(bts, &ids); err != nil {
|
||||
// value is not a list so the existing ID is used
|
||||
continue
|
||||
}
|
||||
|
||||
if i := slices.IndexFunc(t.SpecialVocabulary, func(sv *SpecialVocabulary) bool {
|
||||
return sv.Type == st
|
||||
}); i >= 0 {
|
||||
t.SpecialVocabulary[i].IDs = ids
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return t, nil
|
||||
}
|
||||
|
||||
@@ -309,9 +280,6 @@ type SpecialVocabulary struct {
|
||||
ID int
|
||||
Content string
|
||||
AddToken bool
|
||||
|
||||
// IDs is populated by generation_config.json
|
||||
IDs []int32
|
||||
}
|
||||
|
||||
func (sv SpecialVocabulary) Key() string {
|
||||
|
||||
@@ -247,67 +247,6 @@ func TestParseTokenizer(t *testing.T) {
|
||||
Pre: "default",
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "generation config eos token ids",
|
||||
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
|
||||
"tokenizer.json": strings.NewReader(`{
|
||||
"added_tokens": [
|
||||
{
|
||||
"id": 0,
|
||||
"content": "<bos>",
|
||||
"special": true
|
||||
},
|
||||
{
|
||||
"id": 1,
|
||||
"content": "<eos>",
|
||||
"special": true
|
||||
},
|
||||
{
|
||||
"id": 2,
|
||||
"content": "<eot>",
|
||||
"special": true
|
||||
},
|
||||
{
|
||||
"id": 3,
|
||||
"content": "<eom>",
|
||||
"special": true
|
||||
}
|
||||
],
|
||||
"model": {
|
||||
"vocab": {
|
||||
"<bos>": 0,
|
||||
"<eos>": 1,
|
||||
"<eot>": 2,
|
||||
"<eom>": 3
|
||||
}
|
||||
}
|
||||
}`),
|
||||
"tokenizer_config.json": strings.NewReader(`{
|
||||
"add_bos_token": true,
|
||||
"add_eos_token": false,
|
||||
"bos_token": "<bos>",
|
||||
"eos_token": "<eos>"
|
||||
}`),
|
||||
"generation_config.json": strings.NewReader(`{
|
||||
"bos_token_id": 0,
|
||||
"eos_token_id": [1, 2, 3]
|
||||
}`),
|
||||
}),
|
||||
specialTokenTypes: []string{"pad", "eos", "bos", "unk"},
|
||||
want: &Tokenizer{
|
||||
Vocabulary: &Vocabulary{
|
||||
Model: "gpt2",
|
||||
Tokens: []string{"<bos>", "<eos>", "<eot>", "<eom>"},
|
||||
Scores: []float32{0, 1, 2, 3},
|
||||
Types: []int32{3, 3, 3, 3},
|
||||
},
|
||||
SpecialVocabulary: []*SpecialVocabulary{
|
||||
{Type: "eos", Content: "<eos>", ID: 1, IDs: []int32{1, 2, 3}, AddToken: false},
|
||||
{Type: "bos", Content: "<bos>", ID: 0, AddToken: true},
|
||||
},
|
||||
Pre: "default",
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
|
||||
@@ -670,7 +670,7 @@ func loadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string, e
|
||||
}
|
||||
|
||||
func getVerboseState() C.uint16_t {
|
||||
if envconfig.LogLevel() < slog.LevelInfo {
|
||||
if envconfig.Debug() {
|
||||
return C.uint16_t(1)
|
||||
}
|
||||
return C.uint16_t(0)
|
||||
|
||||
@@ -27,14 +27,12 @@
|
||||
|
||||
#endif
|
||||
|
||||
#ifndef LOG
|
||||
#define LOG(verbose, ...) \
|
||||
do { \
|
||||
if (verbose) { \
|
||||
fprintf(stderr, __VA_ARGS__); \
|
||||
} \
|
||||
} while (0)
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
|
||||
|
||||
#include <string.h>
|
||||
#include <inttypes.h>
|
||||
#include "gpu_info_cudart.h"
|
||||
|
||||
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
|
||||
@@ -59,7 +58,7 @@ void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
|
||||
LOG(resp->ch.verbose, "cudaSetDevice err: %d\n", ret);
|
||||
UNLOAD_LIBRARY(resp->ch.handle);
|
||||
resp->ch.handle = NULL;
|
||||
if (ret == CUDART_ERROR_INSUFFICIENT_DRIVER) {
|
||||
if (ret == CUDA_ERROR_INSUFFICIENT_DRIVER) {
|
||||
resp->err = strdup("your nvidia driver is too old or missing. If you have a CUDA GPU please upgrade to run ollama");
|
||||
return;
|
||||
}
|
||||
@@ -169,9 +168,9 @@ void cudart_bootstrap(cudart_handle_t h, int i, mem_info_t *resp) {
|
||||
resp->free = memInfo.free;
|
||||
resp->used = memInfo.used;
|
||||
|
||||
LOG(h.verbose, "[%s] CUDA totalMem %" PRId64 "\n", resp->gpu_id, resp->total);
|
||||
LOG(h.verbose, "[%s] CUDA freeMem %" PRId64 "\n", resp->gpu_id, resp->free);
|
||||
LOG(h.verbose, "[%s] CUDA usedMem %" PRId64 "\n", resp->gpu_id, resp->used);
|
||||
LOG(h.verbose, "[%s] CUDA totalMem %lu\n", resp->gpu_id, resp->total);
|
||||
LOG(h.verbose, "[%s] CUDA freeMem %lu\n", resp->gpu_id, resp->free);
|
||||
LOG(h.verbose, "[%s] CUDA usedMem %lu\n", resp->gpu_id, resp->used);
|
||||
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
|
||||
}
|
||||
|
||||
@@ -181,4 +180,4 @@ void cudart_release(cudart_handle_t h) {
|
||||
h.handle = NULL;
|
||||
}
|
||||
|
||||
#endif // __APPLE__
|
||||
#endif // __APPLE__
|
||||
@@ -1,7 +1,6 @@
|
||||
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
|
||||
|
||||
#include <string.h>
|
||||
#include <inttypes.h>
|
||||
#include "gpu_info_nvcuda.h"
|
||||
|
||||
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
|
||||
@@ -194,8 +193,8 @@ void nvcuda_bootstrap(nvcuda_handle_t h, int i, mem_info_t *resp) {
|
||||
resp->total = memInfo.total;
|
||||
resp->free = memInfo.free;
|
||||
|
||||
LOG(h.verbose, "[%s] CUDA totalMem %" PRId64 "mb\n", resp->gpu_id, resp->total / 1024 / 1024);
|
||||
LOG(h.verbose, "[%s] CUDA freeMem %" PRId64 "mb\n", resp->gpu_id, resp->free / 1024 / 1024);
|
||||
LOG(h.verbose, "[%s] CUDA totalMem %lu mb\n", resp->gpu_id, resp->total / 1024 / 1024);
|
||||
LOG(h.verbose, "[%s] CUDA freeMem %lu mb\n", resp->gpu_id, resp->free / 1024 / 1024);
|
||||
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
|
||||
|
||||
|
||||
@@ -248,4 +247,4 @@ void nvcuda_release(nvcuda_handle_t h) {
|
||||
h.handle = NULL;
|
||||
}
|
||||
|
||||
#endif // __APPLE__
|
||||
#endif // __APPLE__
|
||||
76
docs/api.md
76
docs/api.md
@@ -19,7 +19,7 @@
|
||||
|
||||
### Model names
|
||||
|
||||
Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q8_0` and `llama3:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
|
||||
Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q4_1` and `llama3:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
|
||||
|
||||
### Durations
|
||||
|
||||
@@ -43,7 +43,6 @@ Generate a response for a given prompt with a provided model. This is a streamin
|
||||
- `prompt`: the prompt to generate a response for
|
||||
- `suffix`: the text after the model response
|
||||
- `images`: (optional) a list of base64-encoded images (for multimodal models such as `llava`)
|
||||
- `think`: (for thinking models) should the model think before responding?
|
||||
|
||||
Advanced parameters (optional):
|
||||
|
||||
@@ -395,6 +394,9 @@ curl http://localhost:11434/api/generate -d '{
|
||||
"repeat_penalty": 1.2,
|
||||
"presence_penalty": 1.5,
|
||||
"frequency_penalty": 1.0,
|
||||
"mirostat": 1,
|
||||
"mirostat_tau": 0.8,
|
||||
"mirostat_eta": 0.6,
|
||||
"penalize_newline": true,
|
||||
"stop": ["\n", "user:"],
|
||||
"numa": false,
|
||||
@@ -402,7 +404,10 @@ curl http://localhost:11434/api/generate -d '{
|
||||
"num_batch": 2,
|
||||
"num_gpu": 1,
|
||||
"main_gpu": 0,
|
||||
"low_vram": false,
|
||||
"vocab_only": false,
|
||||
"use_mmap": true,
|
||||
"use_mlock": false,
|
||||
"num_thread": 8
|
||||
}
|
||||
}'
|
||||
@@ -491,13 +496,11 @@ Generate the next message in a chat with a provided model. This is a streaming e
|
||||
- `model`: (required) the [model name](#model-names)
|
||||
- `messages`: the messages of the chat, this can be used to keep a chat memory
|
||||
- `tools`: list of tools in JSON for the model to use if supported
|
||||
- `think`: (for thinking models) should the model think before responding?
|
||||
|
||||
The `message` object has the following fields:
|
||||
|
||||
- `role`: the role of the message, either `system`, `user`, `assistant`, or `tool`
|
||||
- `content`: the content of the message
|
||||
- `thinking`: (for thinking models) the model's thinking process
|
||||
- `images` (optional): a list of images to include in the message (for multimodal models such as `llava`)
|
||||
- `tool_calls` (optional): a list of tools in JSON that the model wants to use
|
||||
|
||||
@@ -955,8 +958,19 @@ If you are creating a model from a safetensors directory or from a GGUF file, yo
|
||||
|
||||
| Type | Recommended |
|
||||
| --- | :-: |
|
||||
| q2_K | |
|
||||
| q3_K_L | |
|
||||
| q3_K_M | |
|
||||
| q3_K_S | |
|
||||
| q4_0 | |
|
||||
| q4_1 | |
|
||||
| q4_K_M | * |
|
||||
| q4_K_S | |
|
||||
| q5_0 | |
|
||||
| q5_1 | |
|
||||
| q5_K_M | |
|
||||
| q5_K_S | |
|
||||
| q6_K | |
|
||||
| q8_0 | * |
|
||||
|
||||
### Examples
|
||||
@@ -1001,8 +1015,8 @@ Quantize a non-quantized model.
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/create -d '{
|
||||
"model": "llama3.2:quantized",
|
||||
"from": "llama3.2:3b-instruct-fp16",
|
||||
"model": "llama3.1:quantized",
|
||||
"from": "llama3.1:8b-instruct-fp16",
|
||||
"quantize": "q4_K_M"
|
||||
}'
|
||||
```
|
||||
@@ -1012,14 +1026,12 @@ curl http://localhost:11434/api/create -d '{
|
||||
A stream of JSON objects is returned:
|
||||
|
||||
```json
|
||||
{"status":"quantizing F16 model to Q4_K_M","digest":"0","total":6433687776,"completed":12302}
|
||||
{"status":"quantizing F16 model to Q4_K_M","digest":"0","total":6433687776,"completed":6433687552}
|
||||
{"status":"verifying conversion"}
|
||||
{"status":"creating new layer sha256:fb7f4f211b89c6c4928ff4ddb73db9f9c0cfca3e000c3e40d6cf27ddc6ca72eb"}
|
||||
{"status":"using existing layer sha256:966de95ca8a62200913e3f8bfbf84c8494536f1b94b49166851e76644e966396"}
|
||||
{"status":"using existing layer sha256:fcc5a6bec9daf9b561a68827b67ab6088e1dba9d1fa2a50d7bbcc8384e0a265d"}
|
||||
{"status":"using existing layer sha256:a70ff7e570d97baaf4e62ac6e6ad9975e04caa6d900d3742d37698494479e0cd"}
|
||||
{"status":"quantizing F16 model to Q4_K_M"}
|
||||
{"status":"creating new layer sha256:667b0c1932bc6ffc593ed1d03f895bf2dc8dc6df21db3042284a6f4416b06a29"}
|
||||
{"status":"using existing layer sha256:11ce4ee3e170f6adebac9a991c22e22ab3f8530e154ee669954c4bc73061c258"}
|
||||
{"status":"using existing layer sha256:0ba8f0e314b4264dfd19df045cde9d4c394a52474bf92ed6a3de22a4ca31a177"}
|
||||
{"status":"using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"}
|
||||
{"status":"creating new layer sha256:455f34728c9b5dd3376378bfb809ee166c145b0b4c1f1a6feca069055066ef9a"}
|
||||
{"status":"writing manifest"}
|
||||
{"status":"success"}
|
||||
```
|
||||
@@ -1157,37 +1169,29 @@ A single JSON object will be returned.
|
||||
{
|
||||
"models": [
|
||||
{
|
||||
"name": "deepseek-r1:latest",
|
||||
"model": "deepseek-r1:latest",
|
||||
"modified_at": "2025-05-10T08:06:48.639712648-07:00",
|
||||
"size": 4683075271,
|
||||
"digest": "0a8c266910232fd3291e71e5ba1e058cc5af9d411192cf88b6d30e92b6e73163",
|
||||
"name": "codellama:13b",
|
||||
"modified_at": "2023-11-04T14:56:49.277302595-07:00",
|
||||
"size": 7365960935,
|
||||
"digest": "9f438cb9cd581fc025612d27f7c1a6669ff83a8bb0ed86c94fcf4c5440555697",
|
||||
"details": {
|
||||
"parent_model": "",
|
||||
"format": "gguf",
|
||||
"family": "qwen2",
|
||||
"families": [
|
||||
"qwen2"
|
||||
],
|
||||
"parameter_size": "7.6B",
|
||||
"quantization_level": "Q4_K_M"
|
||||
"family": "llama",
|
||||
"families": null,
|
||||
"parameter_size": "13B",
|
||||
"quantization_level": "Q4_0"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "llama3.2:latest",
|
||||
"model": "llama3.2:latest",
|
||||
"modified_at": "2025-05-04T17:37:44.706015396-07:00",
|
||||
"size": 2019393189,
|
||||
"digest": "a80c4f17acd55265feec403c7aef86be0c25983ab279d83f3bcd3abbcb5b8b72",
|
||||
"name": "llama3:latest",
|
||||
"modified_at": "2023-12-07T09:32:18.757212583-08:00",
|
||||
"size": 3825819519,
|
||||
"digest": "fe938a131f40e6f6d40083c9f0f430a515233eb2edaa6d72eb85c50d64f2300e",
|
||||
"details": {
|
||||
"parent_model": "",
|
||||
"format": "gguf",
|
||||
"family": "llama",
|
||||
"families": [
|
||||
"llama"
|
||||
],
|
||||
"parameter_size": "3.2B",
|
||||
"quantization_level": "Q4_K_M"
|
||||
"families": null,
|
||||
"parameter_size": "7B",
|
||||
"quantization_level": "Q4_0"
|
||||
}
|
||||
}
|
||||
]
|
||||
|
||||
@@ -118,7 +118,7 @@ To run tests, use `go test`:
|
||||
go test ./...
|
||||
```
|
||||
|
||||
> NOTE: In rare cirumstances, you may need to change a package using the new
|
||||
> NOTE: In rare cirumstances, you may nedd to change a package using the new
|
||||
> "synctest" package in go1.24.
|
||||
>
|
||||
> If you do not have the "synctest" package enabled, you will not see build or
|
||||
|
||||
@@ -20,7 +20,7 @@ Please refer to the [GPU docs](./gpu.md).
|
||||
|
||||
## How can I specify the context window size?
|
||||
|
||||
By default, Ollama uses a context window size of 4096 tokens.
|
||||
By default, Ollama uses a context window size of 4096 tokens, unless you have a single GPU with <= 4 GB of VRAM, in which case it will default to 2048 tokens.
|
||||
|
||||
This can be overridden with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context window to 8K, use:
|
||||
|
||||
@@ -31,7 +31,7 @@ OLLAMA_CONTEXT_LENGTH=8192 ollama serve
|
||||
To change this when using `ollama run`, use `/set parameter`:
|
||||
|
||||
```shell
|
||||
/set parameter num_ctx 4096
|
||||
/set parameter num_ctx 8192
|
||||
```
|
||||
|
||||
When using the API, specify the `num_ctx` parameter:
|
||||
@@ -41,7 +41,7 @@ curl http://localhost:11434/api/generate -d '{
|
||||
"model": "llama3.2",
|
||||
"prompt": "Why is the sky blue?",
|
||||
"options": {
|
||||
"num_ctx": 4096
|
||||
"num_ctx": 8192
|
||||
}
|
||||
}'
|
||||
```
|
||||
|
||||
@@ -132,12 +132,22 @@ success
|
||||
|
||||
### Supported Quantizations
|
||||
|
||||
- `q4_0`
|
||||
- `q4_1`
|
||||
- `q5_0`
|
||||
- `q5_1`
|
||||
- `q8_0`
|
||||
|
||||
#### K-means Quantizations
|
||||
|
||||
- `q3_K_S`
|
||||
- `q3_K_M`
|
||||
- `q3_K_L`
|
||||
- `q4_K_S`
|
||||
- `q4_K_M`
|
||||
- `q5_K_S`
|
||||
- `q5_K_M`
|
||||
- `q6_K`
|
||||
|
||||
|
||||
## Sharing your model on ollama.com
|
||||
|
||||
@@ -112,8 +112,8 @@ sudo systemctl status ollama
|
||||
> While AMD has contributed the `amdgpu` driver upstream to the official linux
|
||||
> kernel source, the version is older and may not support all ROCm features. We
|
||||
> recommend you install the latest driver from
|
||||
> [AMD](https://www.amd.com/en/support/download/linux-drivers.html) for best support
|
||||
> of your Radeon GPU.
|
||||
> https://www.amd.com/en/support/linux-drivers for best support of your Radeon
|
||||
> GPU.
|
||||
|
||||
## Customizing
|
||||
|
||||
|
||||
@@ -150,6 +150,9 @@ PARAMETER <parameter> <parametervalue>
|
||||
|
||||
| Parameter | Description | Value Type | Example Usage |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------- | -------------------- |
|
||||
| mirostat | Enable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0) | int | mirostat 0 |
|
||||
| mirostat_eta | Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1) | float | mirostat_eta 0.1 |
|
||||
| mirostat_tau | Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0) | float | mirostat_tau 5.0 |
|
||||
| num_ctx | Sets the size of the context window used to generate the next token. (Default: 2048) | int | num_ctx 4096 |
|
||||
| repeat_last_n | Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx) | int | repeat_last_n 64 |
|
||||
| repeat_penalty | Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1) | float | repeat_penalty 1.1 |
|
||||
|
||||
@@ -149,22 +149,9 @@ func Bool(k string) func() bool {
|
||||
}
|
||||
}
|
||||
|
||||
// LogLevel returns the log level for the application.
|
||||
// Values are 0 or false INFO (Default), 1 or true DEBUG, 2 TRACE
|
||||
func LogLevel() slog.Level {
|
||||
level := slog.LevelInfo
|
||||
if s := Var("OLLAMA_DEBUG"); s != "" {
|
||||
if b, _ := strconv.ParseBool(s); b {
|
||||
level = slog.LevelDebug
|
||||
} else if i, _ := strconv.ParseInt(s, 10, 64); i != 0 {
|
||||
level = slog.Level(i * -4)
|
||||
}
|
||||
}
|
||||
|
||||
return level
|
||||
}
|
||||
|
||||
var (
|
||||
// Debug enabled additional debug information.
|
||||
Debug = Bool("OLLAMA_DEBUG")
|
||||
// FlashAttention enables the experimental flash attention feature.
|
||||
FlashAttention = Bool("OLLAMA_FLASH_ATTENTION")
|
||||
// KvCacheType is the quantization type for the K/V cache.
|
||||
@@ -182,9 +169,7 @@ var (
|
||||
// Enable the new Ollama engine
|
||||
NewEngine = Bool("OLLAMA_NEW_ENGINE")
|
||||
// ContextLength sets the default context length
|
||||
ContextLength = Uint("OLLAMA_CONTEXT_LENGTH", 4096)
|
||||
// Auth enables authentication between the Ollama client and server
|
||||
UseAuth = Bool("OLLAMA_AUTH")
|
||||
ContextLength = Int64("OLLAMA_CONTEXT_LENGTH", -1)
|
||||
)
|
||||
|
||||
func String(s string) func() string {
|
||||
@@ -224,6 +209,8 @@ var (
|
||||
MaxRunners = Uint("OLLAMA_MAX_LOADED_MODELS", 0)
|
||||
// MaxQueue sets the maximum number of queued requests. MaxQueue can be configured via the OLLAMA_MAX_QUEUE environment variable.
|
||||
MaxQueue = Uint("OLLAMA_MAX_QUEUE", 512)
|
||||
// MaxVRAM sets a maximum VRAM override in bytes. MaxVRAM can be configured via the OLLAMA_MAX_VRAM environment variable.
|
||||
MaxVRAM = Uint("OLLAMA_MAX_VRAM", 0)
|
||||
)
|
||||
|
||||
func Uint64(key string, defaultValue uint64) func() uint64 {
|
||||
@@ -240,6 +227,20 @@ func Uint64(key string, defaultValue uint64) func() uint64 {
|
||||
}
|
||||
}
|
||||
|
||||
func Int64(key string, defaultValue int64) func() int64 {
|
||||
return func() int64 {
|
||||
if s := Var(key); s != "" {
|
||||
if n, err := strconv.ParseInt(s, 10, 64); err != nil {
|
||||
slog.Warn("invalid environment variable, using default", "key", key, "value", s, "default", defaultValue)
|
||||
} else {
|
||||
return n
|
||||
}
|
||||
}
|
||||
|
||||
return defaultValue
|
||||
}
|
||||
}
|
||||
|
||||
// Set aside VRAM per GPU
|
||||
var GpuOverhead = Uint64("OLLAMA_GPU_OVERHEAD", 0)
|
||||
|
||||
@@ -251,7 +252,7 @@ type EnvVar struct {
|
||||
|
||||
func AsMap() map[string]EnvVar {
|
||||
ret := map[string]EnvVar{
|
||||
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", LogLevel(), "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
|
||||
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", Debug(), "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
|
||||
"OLLAMA_FLASH_ATTENTION": {"OLLAMA_FLASH_ATTENTION", FlashAttention(), "Enabled flash attention"},
|
||||
"OLLAMA_KV_CACHE_TYPE": {"OLLAMA_KV_CACHE_TYPE", KvCacheType(), "Quantization type for the K/V cache (default: f16)"},
|
||||
"OLLAMA_GPU_OVERHEAD": {"OLLAMA_GPU_OVERHEAD", GpuOverhead(), "Reserve a portion of VRAM per GPU (bytes)"},
|
||||
@@ -268,7 +269,7 @@ func AsMap() map[string]EnvVar {
|
||||
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", AllowedOrigins(), "A comma separated list of allowed origins"},
|
||||
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread(), "Always schedule model across all GPUs"},
|
||||
"OLLAMA_MULTIUSER_CACHE": {"OLLAMA_MULTIUSER_CACHE", MultiUserCache(), "Optimize prompt caching for multi-user scenarios"},
|
||||
"OLLAMA_CONTEXT_LENGTH": {"OLLAMA_CONTEXT_LENGTH", ContextLength(), "Context length to use unless otherwise specified (default: 4096)"},
|
||||
"OLLAMA_CONTEXT_LENGTH": {"OLLAMA_CONTEXT_LENGTH", ContextLength(), "Context length to use unless otherwise specified (default 4096 or 2048 with low VRAM)"},
|
||||
"OLLAMA_NEW_ENGINE": {"OLLAMA_NEW_ENGINE", NewEngine(), "Enable the new Ollama engine"},
|
||||
|
||||
// Informational
|
||||
|
||||
@@ -1,13 +1,11 @@
|
||||
package envconfig
|
||||
|
||||
import (
|
||||
"log/slog"
|
||||
"math"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
"github.com/ollama/ollama/logutil"
|
||||
)
|
||||
|
||||
func TestHost(t *testing.T) {
|
||||
@@ -280,9 +278,9 @@ func TestVar(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestContextLength(t *testing.T) {
|
||||
cases := map[string]uint{
|
||||
"": 4096,
|
||||
"2048": 2048,
|
||||
cases := map[string]int64{
|
||||
"": -1,
|
||||
"4096": 4096,
|
||||
}
|
||||
|
||||
for k, v := range cases {
|
||||
@@ -294,34 +292,3 @@ func TestContextLength(t *testing.T) {
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestLogLevel(t *testing.T) {
|
||||
cases := map[string]slog.Level{
|
||||
// Default to INFO
|
||||
"": slog.LevelInfo,
|
||||
"false": slog.LevelInfo,
|
||||
"f": slog.LevelInfo,
|
||||
"0": slog.LevelInfo,
|
||||
|
||||
// True values enable Debug
|
||||
"true": slog.LevelDebug,
|
||||
"t": slog.LevelDebug,
|
||||
|
||||
// Positive values increase verbosity
|
||||
"1": slog.LevelDebug,
|
||||
"2": logutil.LevelTrace,
|
||||
|
||||
// Negative values decrease verbosity
|
||||
"-1": slog.LevelWarn,
|
||||
"-2": slog.LevelError,
|
||||
}
|
||||
|
||||
for k, v := range cases {
|
||||
t.Run(k, func(t *testing.T) {
|
||||
t.Setenv("OLLAMA_DEBUG", k)
|
||||
if i := LogLevel(); i != v {
|
||||
t.Errorf("%s: expected %d, got %d", k, v, i)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
118
fs/ggml/ggml.go
118
fs/ggml/ggml.go
@@ -15,7 +15,6 @@ import (
|
||||
type GGML struct {
|
||||
container
|
||||
model
|
||||
Length int64
|
||||
}
|
||||
|
||||
type model interface {
|
||||
@@ -37,12 +36,12 @@ func (kv KV) ParameterCount() uint64 {
|
||||
return keyValue(kv, "general.parameter_count", uint64(0))
|
||||
}
|
||||
|
||||
func (kv KV) FileType() FileType {
|
||||
func (kv KV) FileType() fileType {
|
||||
if t := kv.Uint("general.file_type"); t > 0 {
|
||||
return FileType(t)
|
||||
return fileType(t)
|
||||
}
|
||||
|
||||
return FileTypeUnknown
|
||||
return fileTypeUnknown
|
||||
}
|
||||
|
||||
func (kv KV) BlockCount() uint64 {
|
||||
@@ -126,8 +125,6 @@ func (kv KV) OllamaEngineRequired() bool {
|
||||
"gemma3",
|
||||
"mistral3",
|
||||
"llama4",
|
||||
"mllama",
|
||||
"qwen25vl",
|
||||
}, kv.Architecture())
|
||||
}
|
||||
|
||||
@@ -152,7 +149,7 @@ func keyValue[T valueTypes | arrayValueTypes](kv KV, key string, defaultValue ..
|
||||
return val.(T)
|
||||
}
|
||||
|
||||
slog.Debug("key not found", "key", key, "default", defaultValue[0])
|
||||
slog.Warn("key not found", "key", key, "default", defaultValue[0])
|
||||
return defaultValue[0]
|
||||
}
|
||||
|
||||
@@ -229,11 +226,7 @@ func (t Tensor) block() (n int) {
|
||||
}
|
||||
|
||||
func (t Tensor) blockSize() uint64 {
|
||||
return (TensorType)(t.Kind).BlockSize()
|
||||
}
|
||||
|
||||
func (t TensorType) BlockSize() uint64 {
|
||||
switch t {
|
||||
switch t.Kind {
|
||||
case
|
||||
0, // F32
|
||||
1, // F16
|
||||
@@ -259,77 +252,73 @@ func (t TensorType) BlockSize() uint64 {
|
||||
}
|
||||
|
||||
func (t Tensor) typeSize() uint64 {
|
||||
return TensorType(t.Kind).TypeSize()
|
||||
}
|
||||
blockSize := t.blockSize()
|
||||
|
||||
func (t TensorType) TypeSize() uint64 {
|
||||
blockSize := t.BlockSize()
|
||||
|
||||
switch t {
|
||||
case TensorTypeF32:
|
||||
switch t.Kind {
|
||||
case 0: // FP32
|
||||
return 4
|
||||
case TensorTypeF16:
|
||||
case 1: // FP16
|
||||
return 2
|
||||
case TensorTypeQ4_0:
|
||||
case 2: // Q4_0
|
||||
return 2 + blockSize/2
|
||||
case TensorTypeQ4_1:
|
||||
case 3: // Q4_1
|
||||
return 2 + 2 + blockSize/2
|
||||
case TensorTypeQ5_0:
|
||||
case 6: // Q5_0
|
||||
return 2 + 4 + blockSize/2
|
||||
case TensorTypeQ5_1:
|
||||
case 7: // Q5_1
|
||||
return 2 + 2 + 4 + blockSize/2
|
||||
case TensorTypeQ8_0:
|
||||
case 8: // Q8_0
|
||||
return 2 + blockSize
|
||||
case TensorTypeQ8_1:
|
||||
case 9: // Q8_1
|
||||
return 2 + 2 + blockSize
|
||||
case TensorTypeQ2_K:
|
||||
case 10: // Q2_K
|
||||
return blockSize/16 + blockSize/4 + 2 + 2
|
||||
case TensorTypeQ3_K:
|
||||
case 11: // Q3_K
|
||||
return blockSize/8 + blockSize/4 + 12 + 2
|
||||
case TensorTypeQ4_K:
|
||||
case 12: // Q4_K
|
||||
return 2 + 2 + 12 + blockSize/2
|
||||
case TensorTypeQ5_K:
|
||||
case 13: // Q5_K
|
||||
return 2 + 2 + 12 + blockSize/8 + blockSize/2
|
||||
case TensorTypeQ6_K:
|
||||
case 14: // Q6_K
|
||||
return blockSize/2 + blockSize/4 + blockSize/16 + 2
|
||||
case TensorTypeQ8_K:
|
||||
case 15: // Q8_K
|
||||
return 4 + blockSize + 2*blockSize/16
|
||||
case tensorTypeIQ2_XXS:
|
||||
case 16: // IQ2_XXS
|
||||
return 2 + 2*blockSize/8
|
||||
case tensorTypeIQ2_XS:
|
||||
case 17: // IQ2_XS
|
||||
return 2 + 2*blockSize/8 + blockSize/32
|
||||
case tensorTypeIQ3_XXS:
|
||||
case 18: // IQ3_XXS
|
||||
return 2 + blockSize/4 + blockSize/8
|
||||
case tensorTypeIQ1_S:
|
||||
case 19: // IQ1_S
|
||||
return 2 + blockSize/8 + blockSize/16
|
||||
case tensorTypeIQ4_NL:
|
||||
case 20: // IQ4_NL
|
||||
return 2 + blockSize/2
|
||||
case tensorTypeIQ3_S:
|
||||
case 21: // IQ3_S
|
||||
return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4
|
||||
case tensorTypeIQ2_S:
|
||||
case 22: // IQ2_S
|
||||
return 2 + blockSize/4 + blockSize/16
|
||||
case tensorTypeIQ4_XS:
|
||||
case 23: // IQ4_XS
|
||||
return 2 + 2 + blockSize/2 + blockSize/64
|
||||
case TensorTypeI8:
|
||||
case 24: // I8
|
||||
return 1
|
||||
case TensorTypeI16:
|
||||
case 25: // I16
|
||||
return 2
|
||||
case TensorTypeI32:
|
||||
case 26: // I32
|
||||
return 4
|
||||
case TensorTypeI64:
|
||||
case 27: // I64
|
||||
return 8
|
||||
case TensorTypeF64:
|
||||
case 28: // F64
|
||||
return 8
|
||||
case tensorTypeIQ1_M:
|
||||
case 29: // IQ1_M
|
||||
return blockSize/8 + blockSize/16 + blockSize/32
|
||||
case TensorTypeBF16:
|
||||
case 30: // BF16
|
||||
return 2
|
||||
default:
|
||||
return 0
|
||||
}
|
||||
}
|
||||
|
||||
func (t Tensor) Elements() uint64 {
|
||||
func (t Tensor) parameters() uint64 {
|
||||
var count uint64 = 1
|
||||
for _, n := range t.Shape {
|
||||
count *= n
|
||||
@@ -338,11 +327,11 @@ func (t Tensor) Elements() uint64 {
|
||||
}
|
||||
|
||||
func (t Tensor) Size() uint64 {
|
||||
return t.Elements() * t.typeSize() / t.blockSize()
|
||||
return t.parameters() * t.typeSize() / t.blockSize()
|
||||
}
|
||||
|
||||
func (t Tensor) Type() string {
|
||||
return TensorType(t.Kind).String()
|
||||
return fileType(t.Kind).String()
|
||||
}
|
||||
|
||||
type container interface {
|
||||
@@ -387,12 +376,12 @@ func DetectContentType(b []byte) string {
|
||||
//
|
||||
// It collects array values for arrays with a size less than or equal to
|
||||
// maxArraySize. If the maxArraySize is negative, all arrays are collected.
|
||||
func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, error) {
|
||||
func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
|
||||
rs = bufioutil.NewBufferedSeeker(rs, 32<<10)
|
||||
|
||||
var magic uint32
|
||||
if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
|
||||
return nil, err
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
var c container
|
||||
@@ -402,25 +391,24 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, error) {
|
||||
case FILE_MAGIC_GGUF_BE:
|
||||
c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
|
||||
default:
|
||||
return nil, errors.New("invalid file magic")
|
||||
return nil, 0, errors.New("invalid file magic")
|
||||
}
|
||||
|
||||
model, err := c.Decode(rs)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
offset, err := rs.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
// final model type
|
||||
return &GGML{
|
||||
container: c,
|
||||
model: model,
|
||||
Length: offset,
|
||||
}, nil
|
||||
}, offset, nil
|
||||
}
|
||||
|
||||
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string) (kv []uint64, partialOffload, fullOffload uint64) {
|
||||
@@ -492,7 +480,7 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
|
||||
var ropeFreqsCount uint64
|
||||
if ropeFreqs, ok := f.Tensors().GroupLayers()["rope_freqs"]; ok {
|
||||
if ropeFreqsWeights, ok := ropeFreqs["weights"]; ok {
|
||||
ropeFreqsCount = ropeFreqsWeights.Elements()
|
||||
ropeFreqsCount = ropeFreqsWeights.parameters()
|
||||
}
|
||||
}
|
||||
|
||||
@@ -652,20 +640,6 @@ func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
|
||||
graphSize = 4 * (imageSize*imageSize*numChannels +
|
||||
embeddingLength*patchSize +
|
||||
numPatches*numPatches*headCount)
|
||||
case "qwen25vl":
|
||||
maxPixels := uint64(llm.KV().Uint("vision.max_pixels", 28*28*1280))
|
||||
|
||||
numPatches := maxPixels / (patchSize * patchSize)
|
||||
|
||||
graphSize = 4 * (maxPixels*numChannels + // Original image storage
|
||||
// Normalized pixels
|
||||
maxPixels*numChannels +
|
||||
// Patches storage (numPatches * channels * patchSize^2)
|
||||
numPatches*numChannels*patchSize*patchSize +
|
||||
// Self-attention calculations
|
||||
numPatches*numPatches*headCount +
|
||||
// Additional buffer for processing
|
||||
embeddingLength*numPatches)
|
||||
case "llama4":
|
||||
// vision graph is computed independently in the same schedule
|
||||
// and is negligible compared to the worst case text graph
|
||||
|
||||
110
fs/ggml/gguf.go
110
fs/ggml/gguf.go
@@ -9,12 +9,8 @@ import (
|
||||
"io"
|
||||
"log/slog"
|
||||
"maps"
|
||||
"os"
|
||||
"runtime"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"golang.org/x/sync/errgroup"
|
||||
)
|
||||
|
||||
type containerGGUF struct {
|
||||
@@ -229,7 +225,7 @@ func (llm *gguf) Decode(rs io.ReadSeeker) error {
|
||||
}
|
||||
|
||||
llm.tensors = append(llm.tensors, &tensor)
|
||||
llm.parameters += tensor.Elements()
|
||||
llm.parameters += tensor.parameters()
|
||||
}
|
||||
|
||||
// patch KV with parameter count
|
||||
@@ -492,38 +488,25 @@ func writeGGUFArray[S ~[]E, E any](w io.Writer, t uint32, s S) error {
|
||||
return err
|
||||
}
|
||||
|
||||
if t == ggufTypeString {
|
||||
for _, e := range any(s).([]string) {
|
||||
if err := binary.Write(w, binary.LittleEndian, uint64(len(e))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(w, binary.LittleEndian, []byte(e)); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
return binary.Write(w, binary.LittleEndian, s)
|
||||
}
|
||||
|
||||
func WriteGGUF(f *os.File, kv KV, ts []*Tensor) error {
|
||||
func WriteGGUF(ws io.WriteSeeker, kv KV, ts []Tensor) error {
|
||||
alignment := kv.Uint("general.alignment", 32)
|
||||
|
||||
if err := binary.Write(f, binary.LittleEndian, []byte("GGUF")); err != nil {
|
||||
if err := binary.Write(ws, binary.LittleEndian, []byte("GGUF")); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(f, binary.LittleEndian, uint32(3)); err != nil {
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint32(3)); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(f, binary.LittleEndian, uint64(len(ts))); err != nil {
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(ts))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(f, binary.LittleEndian, uint64(len(kv))); err != nil {
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(kv))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
@@ -531,12 +514,12 @@ func WriteGGUF(f *os.File, kv KV, ts []*Tensor) error {
|
||||
slices.Sort(keys)
|
||||
|
||||
for _, key := range keys {
|
||||
if err := ggufWriteKV(f, key, kv[key]); err != nil {
|
||||
if err := ggufWriteKV(ws, key, kv[key]); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
slices.SortStableFunc(ts, func(a, b *Tensor) int {
|
||||
slices.SortStableFunc(ts, func(a, b Tensor) int {
|
||||
if i, j := a.block(), b.block(); i < 0 && j > 0 {
|
||||
return 1
|
||||
} else if i > 0 && j < 0 {
|
||||
@@ -547,34 +530,21 @@ func WriteGGUF(f *os.File, kv KV, ts []*Tensor) error {
|
||||
})
|
||||
|
||||
var s uint64
|
||||
for i := range ts {
|
||||
ts[i].Offset = s
|
||||
if err := ggufWriteTensorInfo(f, ts[i]); err != nil {
|
||||
for _, t := range ts {
|
||||
t.Offset = s + uint64(ggufPadding(int64(s), int64(alignment)))
|
||||
if err := ggufWriteTensorInfo(ws, t); err != nil {
|
||||
return err
|
||||
}
|
||||
s += ts[i].Size()
|
||||
s += uint64(ggufPadding(int64(s), int64(alignment)))
|
||||
s += t.Size()
|
||||
}
|
||||
|
||||
offset, err := f.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
offset += ggufPadding(offset, int64(alignment))
|
||||
|
||||
var g errgroup.Group
|
||||
g.SetLimit(runtime.GOMAXPROCS(0))
|
||||
// TODO consider reducing if tensors size * gomaxprocs is larger than free memory
|
||||
for _, t := range ts {
|
||||
t := t
|
||||
w := io.NewOffsetWriter(f, offset+int64(t.Offset))
|
||||
g.Go(func() error {
|
||||
_, err := t.WriteTo(w)
|
||||
if err := ggufWriteTensor(ws, t, int64(alignment)); err != nil {
|
||||
return err
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
return g.Wait()
|
||||
return nil
|
||||
}
|
||||
|
||||
func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
|
||||
@@ -589,10 +559,8 @@ func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
|
||||
|
||||
var err error
|
||||
switch v := v.(type) {
|
||||
case uint32, FileType:
|
||||
case uint32:
|
||||
err = writeGGUF(ws, ggufTypeUint32, v)
|
||||
case uint64:
|
||||
err = writeGGUF(ws, ggufTypeUint64, v)
|
||||
case float32:
|
||||
err = writeGGUF(ws, ggufTypeFloat32, v)
|
||||
case bool:
|
||||
@@ -601,20 +569,32 @@ func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
|
||||
err = writeGGUFString(ws, v)
|
||||
case []int32:
|
||||
err = writeGGUFArray(ws, ggufTypeInt32, v)
|
||||
case *array[int32]:
|
||||
err = writeGGUFArray(ws, ggufTypeInt32, v.values)
|
||||
case []uint32:
|
||||
err = writeGGUFArray(ws, ggufTypeUint32, v)
|
||||
case *array[uint32]:
|
||||
err = writeGGUFArray(ws, ggufTypeUint32, v.values)
|
||||
case []float32:
|
||||
err = writeGGUFArray(ws, ggufTypeFloat32, v)
|
||||
case *array[float32]:
|
||||
err = writeGGUFArray(ws, ggufTypeFloat32, v.values)
|
||||
case []string:
|
||||
err = writeGGUFArray(ws, ggufTypeString, v)
|
||||
case *array[string]:
|
||||
err = writeGGUFArray(ws, ggufTypeString, v.values)
|
||||
if err := binary.Write(ws, binary.LittleEndian, ggufTypeArray); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, ggufTypeString); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(v))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for _, e := range v {
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(e))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, []byte(e)); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
default:
|
||||
return fmt.Errorf("improper type for '%s'", k)
|
||||
}
|
||||
@@ -622,7 +602,7 @@ func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
|
||||
return err
|
||||
}
|
||||
|
||||
func ggufWriteTensorInfo(ws io.WriteSeeker, t *Tensor) error {
|
||||
func ggufWriteTensorInfo(ws io.WriteSeeker, t Tensor) error {
|
||||
slog.Debug(t.Name, "kind", t.Kind, "shape", t.Shape, "offset", t.Offset)
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(t.Name))); err != nil {
|
||||
return err
|
||||
@@ -649,6 +629,20 @@ func ggufWriteTensorInfo(ws io.WriteSeeker, t *Tensor) error {
|
||||
return binary.Write(ws, binary.LittleEndian, t.Offset)
|
||||
}
|
||||
|
||||
func ggufWriteTensor(ws io.WriteSeeker, t Tensor, alignment int64) error {
|
||||
offset, err := ws.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, bytes.Repeat([]byte{0}, int(ggufPadding(offset, alignment)))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
_, err = t.WriteTo(ws)
|
||||
return err
|
||||
}
|
||||
|
||||
func ggufPadding(offset, align int64) int64 {
|
||||
return (align - offset%align) % align
|
||||
}
|
||||
|
||||
@@ -1,63 +0,0 @@
|
||||
package ggml
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"os"
|
||||
"slices"
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
)
|
||||
|
||||
func TestWriteGGUF(t *testing.T) {
|
||||
w, err := os.CreateTemp(t.TempDir(), "*.bin")
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer w.Close()
|
||||
|
||||
if err := WriteGGUF(w, KV{
|
||||
"general.alignment": uint32(16),
|
||||
}, []*Tensor{
|
||||
{Name: "test.0", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))},
|
||||
{Name: "test.1", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))},
|
||||
{Name: "test.2", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))},
|
||||
{Name: "test.3", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))},
|
||||
{Name: "test.4", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))},
|
||||
{Name: "test.5", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))},
|
||||
}); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
r, err := os.Open(w.Name())
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer r.Close()
|
||||
|
||||
ff, err := Decode(r, 0)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(ff.KV(), KV{
|
||||
"general.alignment": uint32(16),
|
||||
"general.parameter_count": uint64(36),
|
||||
}); diff != "" {
|
||||
t.Errorf("Mismatch (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(ff.Tensors(), Tensors{
|
||||
Offset: 336,
|
||||
items: []*Tensor{
|
||||
{Name: "test.0", Offset: 0, Shape: []uint64{2, 3}},
|
||||
{Name: "test.1", Offset: 32, Shape: []uint64{2, 3}},
|
||||
{Name: "test.2", Offset: 64, Shape: []uint64{2, 3}},
|
||||
{Name: "test.3", Offset: 96, Shape: []uint64{2, 3}},
|
||||
{Name: "test.4", Offset: 128, Shape: []uint64{2, 3}},
|
||||
{Name: "test.5", Offset: 160, Shape: []uint64{2, 3}},
|
||||
},
|
||||
}, cmp.AllowUnexported(Tensors{})); diff != "" {
|
||||
t.Errorf("Mismatch (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
343
fs/ggml/type.go
343
fs/ggml/type.go
@@ -1,31 +1,26 @@
|
||||
package ggml
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"strings"
|
||||
)
|
||||
import "fmt"
|
||||
|
||||
// FileType is the Go equivalent to llama_ftype used for gguf file typing
|
||||
type FileType uint32
|
||||
type fileType uint32
|
||||
|
||||
const (
|
||||
FileTypeF32 FileType = iota
|
||||
FileTypeF16
|
||||
fileTypeF32 fileType = iota
|
||||
fileTypeF16
|
||||
fileTypeQ4_0
|
||||
fileTypeQ4_1
|
||||
fileTypeQ4_1_F16 // unused by GGML
|
||||
fileTypeQ4_2 // unused by GGML
|
||||
fileTypeQ4_3 // unused by GGML
|
||||
FileTypeQ8_0
|
||||
fileTypeQ4_1_F16
|
||||
fileTypeQ4_2 // unused
|
||||
fileTypeQ4_3 // unused
|
||||
fileTypeQ8_0
|
||||
fileTypeQ5_0
|
||||
fileTypeQ5_1
|
||||
fileTypeQ2_K
|
||||
fileTypeQ3_K_S
|
||||
fileTypeQ3_K_M
|
||||
fileTypeQ3_K_L
|
||||
FileTypeQ4_K_S
|
||||
FileTypeQ4_K_M
|
||||
fileTypeQ4_K_S
|
||||
fileTypeQ4_K_M
|
||||
fileTypeQ5_K_S
|
||||
fileTypeQ5_K_M
|
||||
fileTypeQ6_K
|
||||
@@ -42,62 +37,93 @@ const (
|
||||
fileTypeIQ2_M
|
||||
fileTypeIQ4_XS
|
||||
fileTypeIQ1_M
|
||||
FileTypeBF16
|
||||
fileTypeQ4_0_4_4 // unused by GGML
|
||||
fileTypeQ4_0_4_8 // unused by GGML
|
||||
fileTypeQ4_0_8_8 // unused by GGML
|
||||
fileTypeTQ1_0
|
||||
fileTypeTQ2_0
|
||||
fileTypeBF16
|
||||
|
||||
FileTypeUnknown = 1024
|
||||
fileTypeUnknown
|
||||
)
|
||||
|
||||
// ParseFileType parses the provided GGUF file type
|
||||
// Only Ollama supported types are considered valid
|
||||
func ParseFileType(s string) (FileType, error) {
|
||||
func ParseFileType(s string) (fileType, error) {
|
||||
switch s {
|
||||
case "F32":
|
||||
return FileTypeF32, nil
|
||||
return fileTypeF32, nil
|
||||
case "F16":
|
||||
return FileTypeF16, nil
|
||||
return fileTypeF16, nil
|
||||
case "Q4_0":
|
||||
return fileTypeQ4_0, nil
|
||||
case "Q4_1":
|
||||
return fileTypeQ4_1, nil
|
||||
case "Q4_1_F16":
|
||||
return fileTypeQ4_1_F16, nil
|
||||
case "Q8_0":
|
||||
return FileTypeQ8_0, nil
|
||||
return fileTypeQ8_0, nil
|
||||
case "Q5_0":
|
||||
return fileTypeQ5_0, nil
|
||||
case "Q5_1":
|
||||
return fileTypeQ5_1, nil
|
||||
case "Q2_K":
|
||||
return fileTypeQ2_K, nil
|
||||
case "Q3_K_S":
|
||||
return fileTypeQ3_K_S, nil
|
||||
case "Q3_K_M":
|
||||
return fileTypeQ3_K_M, nil
|
||||
case "Q3_K_L":
|
||||
return fileTypeQ3_K_L, nil
|
||||
case "Q4_K_S":
|
||||
return FileTypeQ4_K_S, nil
|
||||
case "Q4_K_M", "Q4_K":
|
||||
return FileTypeQ4_K_M, nil
|
||||
return fileTypeQ4_K_S, nil
|
||||
case "Q4_K_M":
|
||||
return fileTypeQ4_K_M, nil
|
||||
case "Q5_K_S":
|
||||
return fileTypeQ5_K_S, nil
|
||||
case "Q5_K_M":
|
||||
return fileTypeQ5_K_M, nil
|
||||
case "Q6_K":
|
||||
return fileTypeQ6_K, nil
|
||||
case "IQ2_XXS":
|
||||
return fileTypeIQ2_XXS, nil
|
||||
case "IQ2_XS":
|
||||
return fileTypeIQ2_XS, nil
|
||||
case "Q2_K_S":
|
||||
return fileTypeQ2_K_S, nil
|
||||
case "IQ3_XS":
|
||||
return fileTypeIQ3_XS, nil
|
||||
case "IQ3_XXS":
|
||||
return fileTypeIQ3_XXS, nil
|
||||
case "IQ1_S":
|
||||
return fileTypeIQ1_S, nil
|
||||
case "IQ4_NL":
|
||||
return fileTypeIQ4_NL, nil
|
||||
case "IQ3_S":
|
||||
return fileTypeIQ3_S, nil
|
||||
case "IQ3_M":
|
||||
return fileTypeIQ3_M, nil
|
||||
case "IQ2_S":
|
||||
return fileTypeIQ2_S, nil
|
||||
case "IQ2_M":
|
||||
return fileTypeIQ2_M, nil
|
||||
case "IQ4_XS":
|
||||
return fileTypeIQ4_XS, nil
|
||||
case "IQ1_M":
|
||||
return fileTypeIQ1_M, nil
|
||||
case "BF16":
|
||||
return FileTypeBF16, nil
|
||||
return fileTypeBF16, nil
|
||||
default:
|
||||
supportedFileTypes := []FileType{
|
||||
FileTypeF32,
|
||||
FileTypeF16,
|
||||
FileTypeQ4_K_S,
|
||||
FileTypeQ4_K_M,
|
||||
FileTypeQ8_0,
|
||||
// fsggml.FileTypeBF16, // TODO
|
||||
}
|
||||
strs := make([]string, len(supportedFileTypes))
|
||||
for i := range supportedFileTypes {
|
||||
strs[i] = supportedFileTypes[i].String()
|
||||
}
|
||||
|
||||
return FileTypeUnknown, fmt.Errorf("unsupported quantization type %s - supported types are %s", s, strings.Join(strs, ", "))
|
||||
return fileTypeUnknown, fmt.Errorf("unknown fileType: %s", s)
|
||||
}
|
||||
}
|
||||
|
||||
func (t FileType) String() string {
|
||||
// Note: this routine will return a broader set of file types for existing models
|
||||
func (t fileType) String() string {
|
||||
switch t {
|
||||
case FileTypeF32:
|
||||
case fileTypeF32:
|
||||
return "F32"
|
||||
case FileTypeF16:
|
||||
case fileTypeF16:
|
||||
return "F16"
|
||||
case fileTypeQ4_0:
|
||||
return "Q4_0"
|
||||
case fileTypeQ4_1:
|
||||
return "Q4_1"
|
||||
case FileTypeQ8_0:
|
||||
case fileTypeQ4_1_F16:
|
||||
return "Q4_1_F16"
|
||||
case fileTypeQ8_0:
|
||||
return "Q8_0"
|
||||
case fileTypeQ5_0:
|
||||
return "Q5_0"
|
||||
@@ -111,9 +137,9 @@ func (t FileType) String() string {
|
||||
return "Q3_K_M"
|
||||
case fileTypeQ3_K_L:
|
||||
return "Q3_K_L"
|
||||
case FileTypeQ4_K_S:
|
||||
case fileTypeQ4_K_S:
|
||||
return "Q4_K_S"
|
||||
case FileTypeQ4_K_M:
|
||||
case fileTypeQ4_K_M:
|
||||
return "Q4_K_M"
|
||||
case fileTypeQ5_K_S:
|
||||
return "Q5_K_S"
|
||||
@@ -121,198 +147,39 @@ func (t FileType) String() string {
|
||||
return "Q5_K_M"
|
||||
case fileTypeQ6_K:
|
||||
return "Q6_K"
|
||||
case fileTypeIQ2_XXS:
|
||||
return "IQ2_XXS"
|
||||
case fileTypeIQ2_XS:
|
||||
return "IQ2_XS"
|
||||
case fileTypeQ2_K_S:
|
||||
return "Q2_K_S"
|
||||
case FileTypeBF16:
|
||||
case fileTypeIQ3_XS:
|
||||
return "IQ3_XS"
|
||||
case fileTypeIQ3_XXS:
|
||||
return "IQ3_XXS"
|
||||
case fileTypeIQ1_S:
|
||||
return "IQ1_S"
|
||||
case fileTypeIQ4_NL:
|
||||
return "IQ4_NL"
|
||||
case fileTypeIQ3_S:
|
||||
return "IQ3_S"
|
||||
case fileTypeIQ3_M:
|
||||
return "IQ3_M"
|
||||
case fileTypeIQ2_S:
|
||||
return "IQ2_S"
|
||||
case fileTypeIQ4_XS:
|
||||
return "IQ4_XS"
|
||||
case fileTypeIQ2_M:
|
||||
return "IQ2_M"
|
||||
case fileTypeIQ1_M:
|
||||
return "IQ1_M"
|
||||
case fileTypeBF16:
|
||||
return "BF16"
|
||||
default:
|
||||
return "unknown"
|
||||
}
|
||||
}
|
||||
|
||||
func (t FileType) Value() uint32 {
|
||||
func (t fileType) Value() uint32 {
|
||||
return uint32(t)
|
||||
}
|
||||
|
||||
func (ftype FileType) ToTensorType() TensorType {
|
||||
switch ftype {
|
||||
case FileTypeF32:
|
||||
return TensorTypeF32
|
||||
case FileTypeF16:
|
||||
return TensorTypeF16
|
||||
case fileTypeQ4_0:
|
||||
return TensorTypeQ4_0
|
||||
case fileTypeQ4_1:
|
||||
return TensorTypeQ4_1
|
||||
case FileTypeQ8_0:
|
||||
return TensorTypeQ8_0
|
||||
case fileTypeQ5_0:
|
||||
return TensorTypeQ5_0
|
||||
case fileTypeQ5_1:
|
||||
return TensorTypeQ5_1
|
||||
case fileTypeQ2_K:
|
||||
return TensorTypeQ2_K
|
||||
case fileTypeQ3_K_S:
|
||||
return TensorTypeQ3_K
|
||||
case fileTypeQ3_K_M:
|
||||
return TensorTypeQ3_K
|
||||
case fileTypeQ3_K_L:
|
||||
return TensorTypeQ3_K
|
||||
case FileTypeQ4_K_S:
|
||||
return TensorTypeQ4_K
|
||||
case FileTypeQ4_K_M:
|
||||
return TensorTypeQ4_K
|
||||
case fileTypeQ5_K_S:
|
||||
return TensorTypeQ5_K
|
||||
case fileTypeQ5_K_M:
|
||||
return TensorTypeQ5_K
|
||||
case fileTypeQ6_K:
|
||||
return TensorTypeQ6_K
|
||||
case fileTypeQ2_K_S:
|
||||
return TensorTypeQ2_K
|
||||
case FileTypeBF16:
|
||||
return TensorTypeBF16
|
||||
default:
|
||||
slog.Warn("unsupported file type", "type", ftype)
|
||||
return 0 // F32
|
||||
}
|
||||
}
|
||||
|
||||
// TensorType is equivalent to ggml_type for individual tensor types
|
||||
// Note: these are not the same as FileType
|
||||
type TensorType uint32
|
||||
|
||||
const (
|
||||
TensorTypeF32 TensorType = iota
|
||||
TensorTypeF16
|
||||
TensorTypeQ4_0
|
||||
TensorTypeQ4_1
|
||||
tensorTypeQ4_2 // unused by GGML
|
||||
tensorTypeQ4_3 // unused by GGML
|
||||
TensorTypeQ5_0
|
||||
TensorTypeQ5_1
|
||||
TensorTypeQ8_0
|
||||
TensorTypeQ8_1
|
||||
TensorTypeQ2_K
|
||||
TensorTypeQ3_K
|
||||
TensorTypeQ4_K
|
||||
TensorTypeQ5_K
|
||||
TensorTypeQ6_K
|
||||
TensorTypeQ8_K
|
||||
tensorTypeIQ2_XXS // not supported by ollama
|
||||
tensorTypeIQ2_XS // not supported by ollama
|
||||
tensorTypeIQ3_XXS // not supported by ollama
|
||||
tensorTypeIQ1_S // not supported by ollama
|
||||
tensorTypeIQ4_NL // not supported by ollama
|
||||
tensorTypeIQ3_S // not supported by ollama
|
||||
tensorTypeIQ2_S // not supported by ollama
|
||||
tensorTypeIQ4_XS // not supported by ollama
|
||||
TensorTypeI8
|
||||
TensorTypeI16
|
||||
TensorTypeI32
|
||||
TensorTypeI64
|
||||
TensorTypeF64
|
||||
tensorTypeIQ1_M // not supported by ollama
|
||||
TensorTypeBF16
|
||||
tensorTypeQ4_0_4_4 // unused by GGML
|
||||
tensorTypeQ4_0_4_8 // unused by GGML
|
||||
tensorTypeQ4_0_8_8 // unused by GGML
|
||||
tensorTypeTQ1_0 // not supported by ollama
|
||||
tensorTypeTQ2_0 // not supported by ollama
|
||||
tensorTypeIQ4_NL_4_4 // unused by GGML
|
||||
tensorTypeIQ4_NL_4_8 // unused by GGML
|
||||
tensorTypeIQ4_NL_8_8 // unused by GGML
|
||||
)
|
||||
|
||||
// ParseFileType parses the provided GGUF file type
|
||||
// Only Ollama supported types are considered valid
|
||||
func ParseTensorType(s string) (TensorType, error) {
|
||||
switch s {
|
||||
case "F32":
|
||||
return TensorTypeF32, nil
|
||||
case "F16":
|
||||
return TensorTypeF16, nil
|
||||
case "Q4_0":
|
||||
return TensorTypeQ4_0, nil
|
||||
case "Q4_1":
|
||||
return TensorTypeQ4_1, nil
|
||||
case "Q5_0":
|
||||
return TensorTypeQ5_0, nil
|
||||
case "Q5_1":
|
||||
return TensorTypeQ5_1, nil
|
||||
case "Q8_0":
|
||||
return TensorTypeQ8_0, nil
|
||||
case "Q8_1":
|
||||
return TensorTypeQ8_1, nil
|
||||
case "Q2_K":
|
||||
return TensorTypeQ2_K, nil
|
||||
case "Q3_K":
|
||||
return TensorTypeQ3_K, nil
|
||||
case "Q4_K":
|
||||
return TensorTypeQ4_K, nil
|
||||
case "Q5_K":
|
||||
return TensorTypeQ5_K, nil
|
||||
case "Q6_K":
|
||||
return TensorTypeQ6_K, nil
|
||||
case "Q8_K":
|
||||
return TensorTypeQ8_K, nil
|
||||
case "F64":
|
||||
return TensorTypeF64, nil
|
||||
case "BF16":
|
||||
return TensorTypeBF16, nil
|
||||
default:
|
||||
return 0, fmt.Errorf("unsupported quantization type %s", s)
|
||||
}
|
||||
}
|
||||
|
||||
func (t TensorType) IsQuantized() bool {
|
||||
switch t {
|
||||
case TensorTypeF32, TensorTypeF16, TensorTypeBF16:
|
||||
return false
|
||||
default:
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
func (t TensorType) RowSize(ne uint64) uint64 {
|
||||
return t.TypeSize() * ne / t.BlockSize()
|
||||
}
|
||||
|
||||
func (t TensorType) String() string {
|
||||
switch t {
|
||||
case TensorTypeF32:
|
||||
return "F32"
|
||||
case TensorTypeF16:
|
||||
return "F16"
|
||||
case TensorTypeQ4_0:
|
||||
return "Q4_0"
|
||||
case TensorTypeQ4_1:
|
||||
return "Q4_1"
|
||||
case TensorTypeQ5_0:
|
||||
return "Q5_0"
|
||||
case TensorTypeQ5_1:
|
||||
return "Q5_1"
|
||||
case TensorTypeQ8_0:
|
||||
return "Q8_0"
|
||||
case TensorTypeQ8_1:
|
||||
return "Q8_1"
|
||||
case TensorTypeQ2_K:
|
||||
return "Q2_K"
|
||||
case TensorTypeQ3_K:
|
||||
return "Q3_K"
|
||||
case TensorTypeQ4_K:
|
||||
return "Q4_K"
|
||||
case TensorTypeQ5_K:
|
||||
return "Q5_K"
|
||||
case TensorTypeQ6_K:
|
||||
return "Q6_K"
|
||||
case TensorTypeQ8_K:
|
||||
return "Q8_K"
|
||||
case TensorTypeF64:
|
||||
return "F64"
|
||||
case TensorTypeBF16:
|
||||
return "BF16"
|
||||
default:
|
||||
return "unknown"
|
||||
}
|
||||
}
|
||||
|
||||
347
fs/gguf/gguf.go
347
fs/gguf/gguf.go
@@ -1,347 +0,0 @@
|
||||
package gguf
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"cmp"
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"iter"
|
||||
"os"
|
||||
"slices"
|
||||
"strings"
|
||||
)
|
||||
|
||||
const (
|
||||
typeUint8 uint32 = iota
|
||||
typeInt8
|
||||
typeUint16
|
||||
typeInt16
|
||||
typeUint32
|
||||
typeInt32
|
||||
typeFloat32
|
||||
typeBool
|
||||
typeString
|
||||
typeArray
|
||||
typeUint64
|
||||
typeInt64
|
||||
typeFloat64
|
||||
)
|
||||
|
||||
var ErrUnsupported = errors.New("unsupported")
|
||||
|
||||
type File struct {
|
||||
Magic [4]byte
|
||||
Version uint32
|
||||
|
||||
keyValues *lazy[KeyValue]
|
||||
tensors *lazy[TensorInfo]
|
||||
offset int64
|
||||
|
||||
file *os.File
|
||||
reader *bufferedReader
|
||||
bts []byte
|
||||
}
|
||||
|
||||
func Open(path string) (f *File, err error) {
|
||||
f = &File{bts: make([]byte, 4096)}
|
||||
f.file, err = os.Open(path)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
f.reader = newBufferedReader(f.file, 32<<10)
|
||||
|
||||
if err := binary.Read(f.reader, binary.LittleEndian, &f.Magic); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if bytes.Equal(f.Magic[:], []byte("gguf")) {
|
||||
return nil, fmt.Errorf("%w file type %v", ErrUnsupported, f.Magic)
|
||||
}
|
||||
|
||||
if err := binary.Read(f.reader, binary.LittleEndian, &f.Version); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if f.Version != 3 {
|
||||
return nil, fmt.Errorf("%w version %v", ErrUnsupported, f.Version)
|
||||
}
|
||||
|
||||
f.tensors, err = newLazy(f, f.readTensor)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
f.tensors.successFunc = func() error {
|
||||
offset := f.reader.offset
|
||||
|
||||
alignment := cmp.Or(f.KeyValue("general.alignment").Int(), 32)
|
||||
f.offset = offset + (alignment-offset%alignment)%alignment
|
||||
return nil
|
||||
}
|
||||
|
||||
f.keyValues, err = newLazy(f, f.readKeyValue)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return f, nil
|
||||
}
|
||||
|
||||
func (f *File) readTensor() (TensorInfo, error) {
|
||||
name, err := readString(f)
|
||||
if err != nil {
|
||||
return TensorInfo{}, err
|
||||
}
|
||||
|
||||
dims, err := read[uint32](f)
|
||||
if err != nil {
|
||||
return TensorInfo{}, err
|
||||
}
|
||||
|
||||
shape := make([]uint64, dims)
|
||||
for i := range dims {
|
||||
shape[i], err = read[uint64](f)
|
||||
if err != nil {
|
||||
return TensorInfo{}, err
|
||||
}
|
||||
}
|
||||
|
||||
type_, err := read[uint32](f)
|
||||
if err != nil {
|
||||
return TensorInfo{}, err
|
||||
}
|
||||
|
||||
offset, err := read[uint64](f)
|
||||
if err != nil {
|
||||
return TensorInfo{}, err
|
||||
}
|
||||
|
||||
return TensorInfo{
|
||||
Name: name,
|
||||
Offset: offset,
|
||||
Shape: shape,
|
||||
Type: TensorType(type_),
|
||||
}, nil
|
||||
}
|
||||
|
||||
func (f *File) readKeyValue() (KeyValue, error) {
|
||||
key, err := readString(f)
|
||||
if err != nil {
|
||||
return KeyValue{}, err
|
||||
}
|
||||
|
||||
t, err := read[uint32](f)
|
||||
if err != nil {
|
||||
return KeyValue{}, err
|
||||
}
|
||||
|
||||
value, err := func() (any, error) {
|
||||
switch t {
|
||||
case typeUint8:
|
||||
return read[uint8](f)
|
||||
case typeInt8:
|
||||
return read[int8](f)
|
||||
case typeUint16:
|
||||
return read[uint16](f)
|
||||
case typeInt16:
|
||||
return read[int16](f)
|
||||
case typeUint32:
|
||||
return read[uint32](f)
|
||||
case typeInt32:
|
||||
return read[int32](f)
|
||||
case typeUint64:
|
||||
return read[uint64](f)
|
||||
case typeInt64:
|
||||
return read[int64](f)
|
||||
case typeFloat32:
|
||||
return read[float32](f)
|
||||
case typeFloat64:
|
||||
return read[float64](f)
|
||||
case typeBool:
|
||||
return read[bool](f)
|
||||
case typeString:
|
||||
return readString(f)
|
||||
case typeArray:
|
||||
return readArray(f)
|
||||
default:
|
||||
return nil, fmt.Errorf("%w type %d", ErrUnsupported, t)
|
||||
}
|
||||
}()
|
||||
if err != nil {
|
||||
return KeyValue{}, err
|
||||
}
|
||||
|
||||
return KeyValue{
|
||||
Key: key,
|
||||
Value: Value{value},
|
||||
}, nil
|
||||
}
|
||||
|
||||
func read[T any](f *File) (t T, err error) {
|
||||
err = binary.Read(f.reader, binary.LittleEndian, &t)
|
||||
return t, err
|
||||
}
|
||||
|
||||
func readString(f *File) (string, error) {
|
||||
n, err := read[uint64](f)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
if int(n) > len(f.bts) {
|
||||
f.bts = make([]byte, n)
|
||||
}
|
||||
|
||||
bts := f.bts[:n]
|
||||
if _, err := io.ReadFull(f.reader, bts); err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer clear(bts)
|
||||
|
||||
return string(bts), nil
|
||||
}
|
||||
|
||||
func readArray(f *File) (any, error) {
|
||||
t, err := read[uint32](f)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
n, err := read[uint64](f)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
switch t {
|
||||
case typeUint8:
|
||||
return readArrayData[uint8](f, n)
|
||||
case typeInt8:
|
||||
return readArrayData[int8](f, n)
|
||||
case typeUint16:
|
||||
return readArrayData[uint16](f, n)
|
||||
case typeInt16:
|
||||
return readArrayData[int16](f, n)
|
||||
case typeUint32:
|
||||
return readArrayData[uint32](f, n)
|
||||
case typeInt32:
|
||||
return readArrayData[int32](f, n)
|
||||
case typeUint64:
|
||||
return readArrayData[uint64](f, n)
|
||||
case typeInt64:
|
||||
return readArrayData[int64](f, n)
|
||||
case typeFloat32:
|
||||
return readArrayData[float32](f, n)
|
||||
case typeFloat64:
|
||||
return readArrayData[float64](f, n)
|
||||
case typeBool:
|
||||
return readArrayData[bool](f, n)
|
||||
case typeString:
|
||||
return readArrayString(f, n)
|
||||
default:
|
||||
return nil, fmt.Errorf("%w type %d", ErrUnsupported, t)
|
||||
}
|
||||
}
|
||||
|
||||
func readArrayData[T any](f *File, n uint64) (s []T, err error) {
|
||||
s = make([]T, n)
|
||||
for i := range n {
|
||||
e, err := read[T](f)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
s[i] = e
|
||||
}
|
||||
|
||||
return s, nil
|
||||
}
|
||||
|
||||
func readArrayString(f *File, n uint64) (s []string, err error) {
|
||||
s = make([]string, n)
|
||||
for i := range n {
|
||||
e, err := readString(f)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
s[i] = e
|
||||
}
|
||||
|
||||
return s, nil
|
||||
}
|
||||
|
||||
func (f *File) Close() error {
|
||||
f.keyValues.stop()
|
||||
f.tensors.stop()
|
||||
return f.file.Close()
|
||||
}
|
||||
|
||||
func (f *File) KeyValue(key string) KeyValue {
|
||||
if !strings.HasPrefix(key, "general.") && !strings.HasPrefix(key, "tokenizer.") {
|
||||
key = f.KeyValue("general.architecture").String() + "." + key
|
||||
}
|
||||
|
||||
if index := slices.IndexFunc(f.keyValues.values, func(kv KeyValue) bool {
|
||||
return kv.Key == key
|
||||
}); index >= 0 {
|
||||
return f.keyValues.values[index]
|
||||
}
|
||||
|
||||
for keyValue, ok := f.keyValues.next(); ok; keyValue, ok = f.keyValues.next() {
|
||||
if keyValue.Key == key {
|
||||
return keyValue
|
||||
}
|
||||
}
|
||||
|
||||
return KeyValue{}
|
||||
}
|
||||
|
||||
func (f *File) NumKeyValues() int {
|
||||
return int(f.keyValues.count)
|
||||
}
|
||||
|
||||
func (f *File) KeyValues() iter.Seq2[int, KeyValue] {
|
||||
return f.keyValues.All()
|
||||
}
|
||||
|
||||
func (f *File) TensorInfo(name string) TensorInfo {
|
||||
if index := slices.IndexFunc(f.tensors.values, func(t TensorInfo) bool {
|
||||
return t.Name == name
|
||||
}); index >= 0 {
|
||||
return f.tensors.values[index]
|
||||
}
|
||||
|
||||
// fast-forward through key values if we haven't already
|
||||
_ = f.keyValues.rest()
|
||||
for tensor, ok := f.tensors.next(); ok; tensor, ok = f.tensors.next() {
|
||||
if tensor.Name == name {
|
||||
return tensor
|
||||
}
|
||||
}
|
||||
|
||||
return TensorInfo{}
|
||||
}
|
||||
|
||||
func (f *File) NumTensors() int {
|
||||
return int(f.tensors.count)
|
||||
}
|
||||
|
||||
func (f *File) TensorInfos() iter.Seq2[int, TensorInfo] {
|
||||
// fast forward through key values if we haven't already
|
||||
f.keyValues.rest()
|
||||
return f.tensors.All()
|
||||
}
|
||||
|
||||
func (f *File) TensorReader(name string) (TensorInfo, io.Reader, error) {
|
||||
t := f.TensorInfo(name)
|
||||
if t.NumBytes() == 0 {
|
||||
return TensorInfo{}, nil, fmt.Errorf("tensor %s not found", name)
|
||||
}
|
||||
|
||||
// fast forward through tensor info if we haven't already
|
||||
_ = f.tensors.rest()
|
||||
return t, io.NewSectionReader(f.file, f.offset+int64(t.Offset), t.NumBytes()), nil
|
||||
}
|
||||
@@ -1,249 +0,0 @@
|
||||
package gguf_test
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"os"
|
||||
"strconv"
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
"github.com/google/go-cmp/cmp/cmpopts"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/fs/gguf"
|
||||
)
|
||||
|
||||
func createBinFile(tb testing.TB) string {
|
||||
tb.Helper()
|
||||
f, err := os.CreateTemp(tb.TempDir(), "")
|
||||
if err != nil {
|
||||
tb.Fatal(err)
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
kv := ggml.KV{
|
||||
"general.architecture": "llama",
|
||||
"llama.block_count": uint32(8),
|
||||
"llama.embedding_length": uint32(3),
|
||||
"llama.attention.head_count": uint32(2),
|
||||
"llama.attention.head_count_kv": uint32(2),
|
||||
"llama.attention.key_length": uint32(3),
|
||||
"llama.rope.dimension_count": uint32(4),
|
||||
"llama.rope.freq_base": float32(10000.0),
|
||||
"llama.rope.freq_scale": float32(1.0),
|
||||
"llama.attention.layer_norm_rms_epsilon": float32(1e-6),
|
||||
"tokenizer.ggml.eos_token_id": uint32(0),
|
||||
"tokenizer.ggml.eos_token_ids": []int32{1, 2, 3},
|
||||
"tokenizer.ggml.tokens": []string{"hello", "world"},
|
||||
"tokenizer.ggml.scores": []float32{0, 1},
|
||||
}
|
||||
|
||||
tensors := []*ggml.Tensor{
|
||||
{
|
||||
Name: "token_embd.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{2, 3},
|
||||
WriterTo: bytes.NewBuffer(make([]byte, 4*2*3)),
|
||||
},
|
||||
{
|
||||
Name: "output.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{3, 2},
|
||||
WriterTo: bytes.NewBuffer(make([]byte, 4*3*2)),
|
||||
},
|
||||
}
|
||||
|
||||
for i := range 8 {
|
||||
tensors = append(tensors, &ggml.Tensor{
|
||||
Name: "blk." + strconv.Itoa(i) + ".attn_q.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{3, 3},
|
||||
WriterTo: bytes.NewBuffer(make([]byte, 4*3*3)),
|
||||
}, &ggml.Tensor{
|
||||
Name: "blk." + strconv.Itoa(i) + ".attn_k.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{3, 3},
|
||||
WriterTo: bytes.NewBuffer(make([]byte, 4*3*3)),
|
||||
}, &ggml.Tensor{
|
||||
Name: "blk." + strconv.Itoa(i) + ".attn_v.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{3, 3},
|
||||
WriterTo: bytes.NewBuffer(make([]byte, 4*3*3)),
|
||||
}, &ggml.Tensor{
|
||||
Name: "blk." + strconv.Itoa(i) + ".attn_output.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{3, 3},
|
||||
WriterTo: bytes.NewBuffer(make([]byte, 4*3*3)),
|
||||
})
|
||||
}
|
||||
|
||||
if err := ggml.WriteGGUF(f, kv, tensors); err != nil {
|
||||
tb.Fatal(err)
|
||||
}
|
||||
|
||||
return f.Name()
|
||||
}
|
||||
|
||||
func TestRead(t *testing.T) {
|
||||
f, err := gguf.Open(createBinFile(t))
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
if got := f.KeyValue("does.not.exist").Valid(); got {
|
||||
t.Errorf(`KeyValue("does.not.exist").Exists() = %v, want false`, got)
|
||||
}
|
||||
|
||||
if got := f.KeyValue("general.architecture").String(); got != "llama" {
|
||||
t.Errorf(`KeyValue("general.architecture").String() = %q, want %q`, got, "llama")
|
||||
}
|
||||
|
||||
if got := f.TensorInfo("token_embd.weight"); got.Name != "token_embd.weight" {
|
||||
t.Errorf(`TensorInfo("token_embd.weight").Name = %q, want %q`, got.Name, "token_embd.weight")
|
||||
} else if diff := cmp.Diff(got.Shape, []uint64{2, 3}); diff != "" {
|
||||
t.Errorf(`TensorInfo("token_embd.weight").Shape mismatch (-got +want):\n%s`, diff)
|
||||
} else if got.Type != gguf.TensorTypeF32 {
|
||||
t.Errorf(`TensorInfo("token_embd.weight").Type = %d, want %d`, got.Type, gguf.TensorTypeF32)
|
||||
}
|
||||
|
||||
if got := f.KeyValue("block_count").Uint(); got != 8 {
|
||||
t.Errorf(`KeyValue("block_count").Uint() = %d, want %d`, got, 8)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f.KeyValue("tokenizer.ggml.tokens").Strings(), []string{"hello", "world"}); diff != "" {
|
||||
t.Errorf("KeyValue(\"tokenizer.ggml.tokens\").Strings() mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f.KeyValue("tokenizer.ggml.scores").Floats(), []float64{0, 1}); diff != "" {
|
||||
t.Errorf("KeyValue(\"tokenizer.ggml.scores\").Ints() mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
var kvs []string
|
||||
for _, kv := range f.KeyValues() {
|
||||
if !kv.Valid() {
|
||||
t.Error("found invalid key-value pair:", kv)
|
||||
}
|
||||
|
||||
kvs = append(kvs, kv.Key)
|
||||
}
|
||||
|
||||
if len(kvs) != f.NumKeyValues() {
|
||||
t.Errorf("iterated key count = %d, want %d", len(kvs), f.NumKeyValues())
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(kvs, []string{
|
||||
"general.architecture",
|
||||
"llama.block_count",
|
||||
"llama.embedding_length",
|
||||
"llama.attention.head_count",
|
||||
"llama.attention.head_count_kv",
|
||||
"llama.attention.key_length",
|
||||
"llama.rope.dimension_count",
|
||||
"llama.rope.freq_base",
|
||||
"llama.rope.freq_scale",
|
||||
"llama.attention.layer_norm_rms_epsilon",
|
||||
"tokenizer.ggml.eos_token_id",
|
||||
"tokenizer.ggml.eos_token_ids",
|
||||
"tokenizer.ggml.tokens",
|
||||
"tokenizer.ggml.scores",
|
||||
}, cmpopts.SortSlices(strings.Compare)); diff != "" {
|
||||
t.Errorf("KeyValues() mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
var tis []string
|
||||
for _, ti := range f.TensorInfos() {
|
||||
if !ti.Valid() {
|
||||
t.Error("found invalid tensor info:", ti)
|
||||
}
|
||||
|
||||
tis = append(tis, ti.Name)
|
||||
}
|
||||
|
||||
if len(tis) != f.NumTensors() {
|
||||
t.Errorf("iterated tensor count = %d, want %d", len(tis), f.NumTensors())
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tis, []string{
|
||||
"token_embd.weight",
|
||||
"output.weight",
|
||||
"blk.0.attn_q.weight",
|
||||
"blk.0.attn_k.weight",
|
||||
"blk.0.attn_v.weight",
|
||||
"blk.0.attn_output.weight",
|
||||
"blk.1.attn_q.weight",
|
||||
"blk.1.attn_k.weight",
|
||||
"blk.1.attn_v.weight",
|
||||
"blk.1.attn_output.weight",
|
||||
"blk.2.attn_q.weight",
|
||||
"blk.2.attn_k.weight",
|
||||
"blk.2.attn_v.weight",
|
||||
"blk.2.attn_output.weight",
|
||||
"blk.3.attn_q.weight",
|
||||
"blk.3.attn_k.weight",
|
||||
"blk.3.attn_v.weight",
|
||||
"blk.3.attn_output.weight",
|
||||
"blk.4.attn_q.weight",
|
||||
"blk.4.attn_k.weight",
|
||||
"blk.4.attn_v.weight",
|
||||
"blk.4.attn_output.weight",
|
||||
"blk.5.attn_q.weight",
|
||||
"blk.5.attn_k.weight",
|
||||
"blk.5.attn_v.weight",
|
||||
"blk.5.attn_output.weight",
|
||||
"blk.6.attn_q.weight",
|
||||
"blk.6.attn_k.weight",
|
||||
"blk.6.attn_v.weight",
|
||||
"blk.6.attn_output.weight",
|
||||
"blk.7.attn_q.weight",
|
||||
"blk.7.attn_k.weight",
|
||||
"blk.7.attn_v.weight",
|
||||
"blk.7.attn_output.weight",
|
||||
}, cmpopts.SortSlices(strings.Compare)); diff != "" {
|
||||
t.Errorf("TensorInfos() mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
ti, r, err := f.TensorReader("output.weight")
|
||||
if err != nil {
|
||||
t.Fatalf(`TensorReader("output.weight") error: %v`, err)
|
||||
}
|
||||
|
||||
if ti.Name != "output.weight" {
|
||||
t.Errorf(`TensorReader("output.weight").Name = %q, want %q`, ti.Name, "output.weight")
|
||||
} else if diff := cmp.Diff(ti.Shape, []uint64{3, 2}); diff != "" {
|
||||
t.Errorf(`TensorReader("output.weight").Shape mismatch (-got +want):\n%s`, diff)
|
||||
} else if ti.Type != gguf.TensorTypeF32 {
|
||||
t.Errorf(`TensorReader("output.weight").Type = %d, want %d`, ti.Type, gguf.TensorTypeF32)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := b.ReadFrom(r); err != nil {
|
||||
t.Fatalf(`ReadFrom TensorReader("output.weight") error: %v`, err)
|
||||
}
|
||||
|
||||
if b.Len() != int(ti.NumBytes()) {
|
||||
t.Errorf(`ReadFrom TensorReader("output.weight") length = %d, want %d`, b.Len(), ti.NumBytes())
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkRead(b *testing.B) {
|
||||
b.ReportAllocs()
|
||||
|
||||
p := createBinFile(b)
|
||||
for b.Loop() {
|
||||
f, err := gguf.Open(p)
|
||||
if err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
|
||||
if got := f.KeyValue("general.architecture").String(); got != "llama" {
|
||||
b.Errorf("got = %q, want %q", got, "llama")
|
||||
}
|
||||
|
||||
// Iterate through some tensors
|
||||
for range f.TensorInfos() {
|
||||
}
|
||||
|
||||
f.Close()
|
||||
}
|
||||
}
|
||||
@@ -1,90 +0,0 @@
|
||||
package gguf
|
||||
|
||||
import (
|
||||
"reflect"
|
||||
"slices"
|
||||
)
|
||||
|
||||
type KeyValue struct {
|
||||
Key string
|
||||
Value
|
||||
}
|
||||
|
||||
func (kv KeyValue) Valid() bool {
|
||||
return kv.Key != "" && kv.Value.value != nil
|
||||
}
|
||||
|
||||
type Value struct {
|
||||
value any
|
||||
}
|
||||
|
||||
func value[T any](v Value, kinds ...reflect.Kind) (t T) {
|
||||
vv := reflect.ValueOf(v.value)
|
||||
if slices.Contains(kinds, vv.Kind()) {
|
||||
t = vv.Convert(reflect.TypeOf(t)).Interface().(T)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
func values[T any](v Value, kinds ...reflect.Kind) (ts []T) {
|
||||
switch vv := reflect.ValueOf(v.value); vv.Kind() {
|
||||
case reflect.Slice:
|
||||
if slices.Contains(kinds, vv.Type().Elem().Kind()) {
|
||||
ts = make([]T, vv.Len())
|
||||
for i := range vv.Len() {
|
||||
ts[i] = vv.Index(i).Convert(reflect.TypeOf(ts[i])).Interface().(T)
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// Int returns Value as a signed integer. If it is not a signed integer, it returns 0.
|
||||
func (v Value) Int() int64 {
|
||||
return value[int64](v, reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64)
|
||||
}
|
||||
|
||||
// Ints returns Value as a signed integer slice. If it is not a signed integer slice, it returns nil.
|
||||
func (v Value) Ints() (i64s []int64) {
|
||||
return values[int64](v, reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64)
|
||||
}
|
||||
|
||||
// Uint converts an unsigned integer value to uint64. If the value is not a unsigned integer, it returns 0.
|
||||
func (v Value) Uint() uint64 {
|
||||
return value[uint64](v, reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64)
|
||||
}
|
||||
|
||||
// Uints returns Value as a unsigned integer slice. If it is not a unsigned integer slice, it returns nil.
|
||||
func (v Value) Uints() (u64s []uint64) {
|
||||
return values[uint64](v, reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64)
|
||||
}
|
||||
|
||||
// Float returns Value as a float. If it is not a float, it returns 0.
|
||||
func (v Value) Float() float64 {
|
||||
return value[float64](v, reflect.Float32, reflect.Float64)
|
||||
}
|
||||
|
||||
// Floats returns Value as a float slice. If it is not a float slice, it returns nil.
|
||||
func (v Value) Floats() (f64s []float64) {
|
||||
return values[float64](v, reflect.Float32, reflect.Float64)
|
||||
}
|
||||
|
||||
// Bool returns Value as a boolean. If it is not a boolean, it returns false.
|
||||
func (v Value) Bool() bool {
|
||||
return value[bool](v, reflect.Bool)
|
||||
}
|
||||
|
||||
// Bools returns Value as a boolean slice. If it is not a boolean slice, it returns nil.
|
||||
func (v Value) Bools() (bools []bool) {
|
||||
return values[bool](v, reflect.Bool)
|
||||
}
|
||||
|
||||
// String returns Value as a string. If it is not a string, it returns an empty string.
|
||||
func (v Value) String() string {
|
||||
return value[string](v, reflect.String)
|
||||
}
|
||||
|
||||
// Strings returns Value as a string slice. If it is not a string slice, it returns nil.
|
||||
func (v Value) Strings() (strings []string) {
|
||||
return values[string](v, reflect.String)
|
||||
}
|
||||
@@ -1,208 +0,0 @@
|
||||
package gguf
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
)
|
||||
|
||||
func split(name string, values map[string][]any) (matched []any, unmatched []any) {
|
||||
for key, value := range values {
|
||||
if key == name {
|
||||
matched = value
|
||||
} else {
|
||||
unmatched = append(unmatched, value...)
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
func TestValue(t *testing.T) {
|
||||
values := map[string][]any{
|
||||
"int64": {int(42), int8(42), int16(42), int32(42), int64(42)},
|
||||
"uint64": {uint(42), uint8(42), uint16(42), uint32(42), uint64(42)},
|
||||
"float64": {float32(42), float64(42)},
|
||||
"string": {"42", "hello"},
|
||||
"bool": {true, false},
|
||||
}
|
||||
|
||||
t.Run("int64", func(t *testing.T) {
|
||||
matched, unmatched := split("int64", values)
|
||||
for _, v := range matched {
|
||||
kv := KeyValue{"key", Value{v}}
|
||||
if i64 := kv.Int(); i64 != 42 {
|
||||
t.Errorf("expected 42, got %d", i64)
|
||||
}
|
||||
}
|
||||
|
||||
for _, v := range unmatched {
|
||||
kv := KeyValue{"key", Value{v}}
|
||||
if i64 := kv.Int(); i64 != 0 {
|
||||
t.Errorf("expected 42, got %d", i64)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("uint64", func(t *testing.T) {
|
||||
matched, unmatched := split("uint64", values)
|
||||
for _, v := range matched {
|
||||
kv := KeyValue{"key", Value{v}}
|
||||
if u64 := kv.Uint(); u64 != 42 {
|
||||
t.Errorf("expected 42, got %d", u64)
|
||||
}
|
||||
}
|
||||
|
||||
for _, v := range unmatched {
|
||||
kv := KeyValue{"key", Value{v}}
|
||||
if u64 := kv.Uint(); u64 != 0 {
|
||||
t.Errorf("expected 42, got %d", u64)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("float64", func(t *testing.T) {
|
||||
matched, unmatched := split("float64", values)
|
||||
for _, v := range matched {
|
||||
kv := KeyValue{"key", Value{v}}
|
||||
if f64 := kv.Float(); f64 != 42 {
|
||||
t.Errorf("expected 42, got %f", f64)
|
||||
}
|
||||
}
|
||||
|
||||
for _, v := range unmatched {
|
||||
kv := KeyValue{"key", Value{v}}
|
||||
if f64 := kv.Float(); f64 != 0 {
|
||||
t.Errorf("expected 42, got %f", f64)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("string", func(t *testing.T) {
|
||||
matched, unmatched := split("string", values)
|
||||
for _, v := range matched {
|
||||
kv := KeyValue{"key", Value{v}}
|
||||
if s := kv.String(); s != v {
|
||||
t.Errorf("expected 42, got %s", s)
|
||||
}
|
||||
}
|
||||
|
||||
for _, v := range unmatched {
|
||||
kv := KeyValue{"key", Value{v}}
|
||||
if s := kv.String(); s != "" {
|
||||
t.Errorf("expected 42, got %s", s)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("bool", func(t *testing.T) {
|
||||
matched, unmatched := split("bool", values)
|
||||
for _, v := range matched {
|
||||
kv := KeyValue{"key", Value{v}}
|
||||
if b := kv.Bool(); b != v {
|
||||
t.Errorf("expected true, got %v", b)
|
||||
}
|
||||
}
|
||||
|
||||
for _, v := range unmatched {
|
||||
kv := KeyValue{"key", Value{v}}
|
||||
if b := kv.Bool(); b != false {
|
||||
t.Errorf("expected false, got %v", b)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
func TestValues(t *testing.T) {
|
||||
values := map[string][]any{
|
||||
"int64s": {[]int{42}, []int8{42}, []int16{42}, []int32{42}, []int64{42}},
|
||||
"uint64s": {[]uint{42}, []uint8{42}, []uint16{42}, []uint32{42}, []uint64{42}},
|
||||
"float64s": {[]float32{42}, []float64{42}},
|
||||
"strings": {[]string{"42"}, []string{"hello"}},
|
||||
"bools": {[]bool{true}, []bool{false}},
|
||||
}
|
||||
|
||||
t.Run("int64s", func(t *testing.T) {
|
||||
matched, unmatched := split("int64s", values)
|
||||
for _, v := range matched {
|
||||
kv := KeyValue{"key", Value{v}}
|
||||
if diff := cmp.Diff(kv.Ints(), []int64{42}); diff != "" {
|
||||
t.Errorf("diff: %s", diff)
|
||||
}
|
||||
}
|
||||
|
||||
for _, v := range unmatched {
|
||||
kv := KeyValue{"key", Value{v}}
|
||||
if i64s := kv.Ints(); i64s != nil {
|
||||
t.Errorf("expected nil, got %v", i64s)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("uint64s", func(t *testing.T) {
|
||||
matched, unmatched := split("uint64s", values)
|
||||
for _, v := range matched {
|
||||
kv := KeyValue{"key", Value{v}}
|
||||
if diff := cmp.Diff(kv.Uints(), []uint64{42}); diff != "" {
|
||||
t.Errorf("diff: %s", diff)
|
||||
}
|
||||
}
|
||||
|
||||
for _, v := range unmatched {
|
||||
kv := KeyValue{"key", Value{v}}
|
||||
if u64s := kv.Uints(); u64s != nil {
|
||||
t.Errorf("expected nil, got %v", u64s)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("float64s", func(t *testing.T) {
|
||||
matched, unmatched := split("float64s", values)
|
||||
for _, v := range matched {
|
||||
kv := KeyValue{"key", Value{v}}
|
||||
if diff := cmp.Diff(kv.Floats(), []float64{42}); diff != "" {
|
||||
t.Errorf("diff: %s", diff)
|
||||
}
|
||||
}
|
||||
|
||||
for _, v := range unmatched {
|
||||
kv := KeyValue{"key", Value{v}}
|
||||
if f64s := kv.Floats(); f64s != nil {
|
||||
t.Errorf("expected nil, got %v", f64s)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("strings", func(t *testing.T) {
|
||||
matched, unmatched := split("strings", values)
|
||||
for _, v := range matched {
|
||||
kv := KeyValue{"key", Value{v}}
|
||||
if diff := cmp.Diff(kv.Strings(), v); diff != "" {
|
||||
t.Errorf("diff: %s", diff)
|
||||
}
|
||||
}
|
||||
|
||||
for _, v := range unmatched {
|
||||
kv := KeyValue{"key", Value{v}}
|
||||
if s := kv.Strings(); s != nil {
|
||||
t.Errorf("expected nil, got %v", s)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("bools", func(t *testing.T) {
|
||||
matched, unmatched := split("bools", values)
|
||||
for _, v := range matched {
|
||||
kv := KeyValue{"key", Value{v}}
|
||||
if diff := cmp.Diff(kv.Bools(), v); diff != "" {
|
||||
t.Errorf("diff: %s", diff)
|
||||
}
|
||||
}
|
||||
|
||||
for _, v := range unmatched {
|
||||
kv := KeyValue{"key", Value{v}}
|
||||
if b := kv.Bools(); b != nil {
|
||||
t.Errorf("expected nil, got %v", b)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
@@ -1,89 +0,0 @@
|
||||
package gguf
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"iter"
|
||||
"log/slog"
|
||||
)
|
||||
|
||||
type lazy[T any] struct {
|
||||
count uint64
|
||||
next func() (T, bool)
|
||||
stop func()
|
||||
values []T
|
||||
|
||||
// successFunc is called when all values have been successfully read.
|
||||
successFunc func() error
|
||||
}
|
||||
|
||||
func newLazy[T any](f *File, fn func() (T, error)) (*lazy[T], error) {
|
||||
it := lazy[T]{}
|
||||
if err := binary.Read(f.reader, binary.LittleEndian, &it.count); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
it.values = make([]T, 0)
|
||||
it.next, it.stop = iter.Pull(func(yield func(T) bool) {
|
||||
for i := range it.count {
|
||||
t, err := fn()
|
||||
if err != nil {
|
||||
slog.Error("error reading tensor", "index", i, "error", err)
|
||||
return
|
||||
}
|
||||
|
||||
it.values = append(it.values, t)
|
||||
if !yield(t) {
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
if it.successFunc != nil {
|
||||
it.successFunc()
|
||||
}
|
||||
})
|
||||
|
||||
return &it, nil
|
||||
}
|
||||
|
||||
func (g *lazy[T]) Values() iter.Seq[T] {
|
||||
return func(yield func(T) bool) {
|
||||
for _, v := range g.All() {
|
||||
if !yield(v) {
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (g *lazy[T]) All() iter.Seq2[int, T] {
|
||||
return func(yield func(int, T) bool) {
|
||||
for i := range int(g.count) {
|
||||
if i < len(g.values) {
|
||||
if !yield(i, g.values[i]) {
|
||||
break
|
||||
}
|
||||
} else {
|
||||
t, ok := g.next()
|
||||
if !ok {
|
||||
break
|
||||
}
|
||||
|
||||
if !yield(i, t) {
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (g *lazy[T]) rest() (collected bool) {
|
||||
for {
|
||||
_, ok := g.next()
|
||||
collected = collected || ok
|
||||
if !ok {
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
return collected
|
||||
}
|
||||
@@ -1,23 +0,0 @@
|
||||
package gguf
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"io"
|
||||
)
|
||||
|
||||
type bufferedReader struct {
|
||||
offset int64
|
||||
*bufio.Reader
|
||||
}
|
||||
|
||||
func newBufferedReader(rs io.ReadSeeker, size int) *bufferedReader {
|
||||
return &bufferedReader{
|
||||
Reader: bufio.NewReaderSize(rs, size),
|
||||
}
|
||||
}
|
||||
|
||||
func (rs *bufferedReader) Read(p []byte) (n int, err error) {
|
||||
n, err = rs.Reader.Read(p)
|
||||
rs.offset += int64(n)
|
||||
return n, err
|
||||
}
|
||||
@@ -1,288 +0,0 @@
|
||||
package gguf
|
||||
|
||||
import (
|
||||
"log/slog"
|
||||
"strings"
|
||||
)
|
||||
|
||||
type TensorInfo struct {
|
||||
Name string
|
||||
Offset uint64
|
||||
Shape []uint64
|
||||
Type TensorType
|
||||
}
|
||||
|
||||
func (ti TensorInfo) Valid() bool {
|
||||
return ti.Name != "" && ti.NumBytes() > 0
|
||||
}
|
||||
|
||||
func (ti TensorInfo) NumValues() int64 {
|
||||
var numItems int64 = 1
|
||||
for _, dim := range ti.Shape {
|
||||
numItems *= int64(dim)
|
||||
}
|
||||
return numItems
|
||||
}
|
||||
|
||||
// NumBytes returns the number of bytes in the tensor.
|
||||
func (ti TensorInfo) NumBytes() int64 {
|
||||
return int64(float64(ti.NumValues()) * ti.Type.NumBytes())
|
||||
}
|
||||
|
||||
func (ti TensorInfo) LogValue() slog.Value {
|
||||
return slog.GroupValue(
|
||||
slog.String("name", ti.Name),
|
||||
slog.Int64("offset", int64(ti.Offset)),
|
||||
slog.Any("shape", ti.Shape),
|
||||
slog.Int64("num_values", ti.NumValues()),
|
||||
slog.Int64("num_bytes", ti.NumBytes()),
|
||||
slog.Any("type", ti.Type),
|
||||
)
|
||||
}
|
||||
|
||||
type TensorType uint32
|
||||
|
||||
const (
|
||||
TensorTypeF32 TensorType = iota
|
||||
TensorTypeF16
|
||||
TensorTypeQ4_0
|
||||
TensorTypeQ4_1
|
||||
|
||||
// unexported // unused in gguf
|
||||
tensorTypeQ4_2
|
||||
tensorTypeQ4_3
|
||||
|
||||
TensorTypeQ5_0
|
||||
TensorTypeQ5_1
|
||||
TensorTypeQ8_0
|
||||
TensorTypeQ8_1
|
||||
TensorTypeQ2_K
|
||||
TensorTypeQ3_K
|
||||
TensorTypeQ4_K
|
||||
TensorTypeQ5_K
|
||||
TensorTypeQ6_K
|
||||
TensorTypeQ8_K
|
||||
|
||||
// unexported // unquantizable by ollama
|
||||
tensorTypeIQ2_XXS
|
||||
tensorTypeIQ2_XS
|
||||
tensorTypeIQ3_XXS
|
||||
tensorTypeIQ1_S
|
||||
tensorTypeIQ4_NL
|
||||
tensorTypeIQ3_S
|
||||
tensorTypeIQ2_S
|
||||
tensorTypeIQ4_XS
|
||||
|
||||
TensorTypeI8
|
||||
TensorTypeI16
|
||||
TensorTypeI32
|
||||
TensorTypeI64
|
||||
TensorTypeF64
|
||||
|
||||
// unexported // unquantizable by ollama
|
||||
tensorTypeIQ1_M
|
||||
|
||||
TensorTypeBF16
|
||||
|
||||
// unexported // unused in gguf
|
||||
tensorTypeQ4_0_4_4
|
||||
tensorTypeQ4_0_4_8
|
||||
tensorTypeQ4_0_8_8
|
||||
|
||||
// unexported // unquantizable by ollama
|
||||
tensorTypeTQ1_0
|
||||
tensorTypeTQ2_0
|
||||
|
||||
// unexported // unused in gguf
|
||||
tensorTypeIQ4_NL_4_4
|
||||
tensorTypeIQ4_NL_4_8
|
||||
tensorTypeIQ4_NL_8_8
|
||||
)
|
||||
|
||||
func (tt TensorType) NumBytes() float64 {
|
||||
return float64(tt.typeSize()) / float64(tt.blockSize())
|
||||
}
|
||||
|
||||
func (tt TensorType) typeSize() int64 {
|
||||
switch tt {
|
||||
case TensorTypeF32:
|
||||
return 4
|
||||
case TensorTypeF16:
|
||||
return 2
|
||||
case TensorTypeQ4_0:
|
||||
return 2 + tt.blockSize()/2
|
||||
case TensorTypeQ4_1:
|
||||
return 2 + 2 + tt.blockSize()/2
|
||||
case TensorTypeQ5_0:
|
||||
return 2 + 4 + tt.blockSize()/2
|
||||
case TensorTypeQ5_1:
|
||||
return 2 + 2 + 4 + tt.blockSize()/2
|
||||
case TensorTypeQ8_0:
|
||||
return 2 + tt.blockSize()
|
||||
case TensorTypeQ8_1:
|
||||
return 2 + 2 + tt.blockSize()
|
||||
case TensorTypeQ2_K:
|
||||
return tt.blockSize()/16 + tt.blockSize()/4 + 2 + 2
|
||||
case TensorTypeQ3_K:
|
||||
return tt.blockSize()/8 + tt.blockSize()/4 + 12 + 2
|
||||
case TensorTypeQ4_K:
|
||||
return 2 + 2 + 12 + tt.blockSize()/2
|
||||
case TensorTypeQ5_K:
|
||||
return 2 + 2 + 12 + tt.blockSize()/8 + tt.blockSize()/2
|
||||
case TensorTypeQ6_K:
|
||||
return tt.blockSize()/2 + tt.blockSize()/4 + tt.blockSize()/16 + 2
|
||||
case TensorTypeQ8_K:
|
||||
return 4 + tt.blockSize() + 2*tt.blockSize()/16
|
||||
case tensorTypeIQ2_XXS:
|
||||
return 2 + 2*tt.blockSize()/8
|
||||
case tensorTypeIQ2_XS:
|
||||
return 2 + 2*tt.blockSize()/8 + tt.blockSize()/32
|
||||
case tensorTypeIQ3_XXS:
|
||||
return 2 + tt.blockSize()/4 + tt.blockSize()/8
|
||||
case tensorTypeIQ1_S:
|
||||
return 2 + tt.blockSize()/8 + tt.blockSize()/16
|
||||
case tensorTypeIQ4_NL:
|
||||
return 2 + tt.blockSize()/2
|
||||
case tensorTypeIQ3_S:
|
||||
return 2 + tt.blockSize()/4 + tt.blockSize()/8 + tt.blockSize()/32 + 4
|
||||
case tensorTypeIQ2_S:
|
||||
return 2 + tt.blockSize()/4 + tt.blockSize()/16
|
||||
case tensorTypeIQ4_XS:
|
||||
return 2 + 2 + tt.blockSize()/2 + tt.blockSize()/64
|
||||
case TensorTypeI8:
|
||||
return 1
|
||||
case TensorTypeI16:
|
||||
return 2
|
||||
case TensorTypeI32:
|
||||
return 4
|
||||
case TensorTypeI64:
|
||||
return 8
|
||||
case TensorTypeF64:
|
||||
return 8
|
||||
case tensorTypeIQ1_M:
|
||||
return tt.blockSize()/8 + tt.blockSize()/16 + tt.blockSize()/32
|
||||
case TensorTypeBF16:
|
||||
return 2
|
||||
default:
|
||||
return 0
|
||||
}
|
||||
}
|
||||
|
||||
func (tt TensorType) blockSize() int64 {
|
||||
switch tt {
|
||||
case TensorTypeF32,
|
||||
TensorTypeF16,
|
||||
TensorTypeI8,
|
||||
TensorTypeI16,
|
||||
TensorTypeI32,
|
||||
TensorTypeI64,
|
||||
TensorTypeF64,
|
||||
TensorTypeBF16:
|
||||
return 1
|
||||
case TensorTypeQ4_0,
|
||||
TensorTypeQ4_1,
|
||||
TensorTypeQ5_0,
|
||||
TensorTypeQ5_1,
|
||||
TensorTypeQ8_0,
|
||||
TensorTypeQ8_1,
|
||||
tensorTypeIQ4_NL:
|
||||
return 32
|
||||
default:
|
||||
return 256
|
||||
}
|
||||
}
|
||||
|
||||
func (tt TensorType) String() string {
|
||||
switch tt {
|
||||
case TensorTypeF32:
|
||||
return "f32"
|
||||
case TensorTypeF16:
|
||||
return "f16"
|
||||
case TensorTypeQ4_0:
|
||||
return "q4_0"
|
||||
case TensorTypeQ4_1:
|
||||
return "q4_1"
|
||||
case tensorTypeQ4_2:
|
||||
return "q4_2"
|
||||
case tensorTypeQ4_3:
|
||||
return "q4_3"
|
||||
case TensorTypeQ5_0:
|
||||
return "q5_0"
|
||||
case TensorTypeQ5_1:
|
||||
return "q5_1"
|
||||
case TensorTypeQ8_0:
|
||||
return "q8_0"
|
||||
case TensorTypeQ8_1:
|
||||
return "q8_1"
|
||||
case TensorTypeQ2_K:
|
||||
return "q2_k"
|
||||
case TensorTypeQ3_K:
|
||||
return "q3_k"
|
||||
case TensorTypeQ4_K:
|
||||
return "q4_k"
|
||||
case TensorTypeQ5_K:
|
||||
return "q5_k"
|
||||
case TensorTypeQ6_K:
|
||||
return "q6_k"
|
||||
case TensorTypeQ8_K:
|
||||
return "q8_k"
|
||||
case tensorTypeIQ2_XXS:
|
||||
return "iq2_xxs"
|
||||
case tensorTypeIQ2_XS:
|
||||
return "iq2_xs"
|
||||
case tensorTypeIQ3_XXS:
|
||||
return "iq3_xxs"
|
||||
case tensorTypeIQ1_S:
|
||||
return "iq1_s"
|
||||
case tensorTypeIQ4_NL:
|
||||
return "iq4_nl"
|
||||
case tensorTypeIQ3_S:
|
||||
return "iq3_s"
|
||||
case tensorTypeIQ2_S:
|
||||
return "iq2_s"
|
||||
case tensorTypeIQ4_XS:
|
||||
return "iq4_xs"
|
||||
case TensorTypeI8:
|
||||
return "i8"
|
||||
case TensorTypeI16:
|
||||
return "i16"
|
||||
case TensorTypeI32:
|
||||
return "i32"
|
||||
case TensorTypeI64:
|
||||
return "i64"
|
||||
case TensorTypeF64:
|
||||
return "f64"
|
||||
case tensorTypeIQ1_M:
|
||||
return "iq1_m"
|
||||
case TensorTypeBF16:
|
||||
return "bf16"
|
||||
case tensorTypeQ4_0_4_4:
|
||||
return "q4_0_4_4"
|
||||
case tensorTypeQ4_0_4_8:
|
||||
return "q4_0_4_8"
|
||||
case tensorTypeQ4_0_8_8:
|
||||
return "q4_0_8_8"
|
||||
case tensorTypeTQ1_0:
|
||||
return "tq1_0"
|
||||
case tensorTypeTQ2_0:
|
||||
return "tq2_0"
|
||||
case tensorTypeIQ4_NL_4_4:
|
||||
return "iq4_nl_4_4"
|
||||
case tensorTypeIQ4_NL_4_8:
|
||||
return "iq4_nl_4_8"
|
||||
case tensorTypeIQ4_NL_8_8:
|
||||
return "iq4_nl_8_8"
|
||||
default:
|
||||
return "unknown"
|
||||
}
|
||||
}
|
||||
|
||||
func (tt TensorType) LogValue() slog.Value {
|
||||
return slog.GroupValue(
|
||||
slog.Uint64("value", uint64(tt)),
|
||||
slog.String("name", strings.ToUpper(tt.String())),
|
||||
slog.Int64("size", tt.typeSize()),
|
||||
slog.Int64("block_size", tt.blockSize()),
|
||||
slog.Float64("num_bytes", tt.NumBytes()),
|
||||
)
|
||||
}
|
||||
14
go.mod
14
go.mod
@@ -11,7 +11,7 @@ require (
|
||||
github.com/spf13/cobra v1.7.0
|
||||
github.com/stretchr/testify v1.9.0
|
||||
github.com/x448/float16 v0.8.4
|
||||
golang.org/x/sync v0.12.0
|
||||
golang.org/x/sync v0.11.0
|
||||
)
|
||||
|
||||
require (
|
||||
@@ -19,7 +19,7 @@ require (
|
||||
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1
|
||||
github.com/dlclark/regexp2 v1.11.4
|
||||
github.com/emirpasic/gods/v2 v2.0.0-alpha
|
||||
github.com/google/go-cmp v0.7.0
|
||||
github.com/google/go-cmp v0.6.0
|
||||
github.com/mattn/go-runewidth v0.0.14
|
||||
github.com/nlpodyssey/gopickle v0.3.0
|
||||
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
|
||||
@@ -70,12 +70,12 @@ require (
|
||||
github.com/twitchyliquid64/golang-asm v0.15.1 // indirect
|
||||
github.com/ugorji/go/codec v1.2.12 // indirect
|
||||
golang.org/x/arch v0.8.0 // indirect
|
||||
golang.org/x/crypto v0.36.0
|
||||
golang.org/x/crypto v0.33.0
|
||||
golang.org/x/exp v0.0.0-20250218142911-aa4b98e5adaa
|
||||
golang.org/x/net v0.38.0 // indirect
|
||||
golang.org/x/sys v0.31.0
|
||||
golang.org/x/term v0.30.0
|
||||
golang.org/x/text v0.23.0
|
||||
golang.org/x/net v0.35.0 // indirect
|
||||
golang.org/x/sys v0.30.0
|
||||
golang.org/x/term v0.29.0
|
||||
golang.org/x/text v0.22.0
|
||||
google.golang.org/protobuf v1.34.1
|
||||
gopkg.in/yaml.v3 v3.0.1 // indirect
|
||||
)
|
||||
|
||||
28
go.sum
28
go.sum
@@ -112,8 +112,8 @@ github.com/google/go-cmp v0.4.0/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/
|
||||
github.com/google/go-cmp v0.5.0/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
|
||||
github.com/google/go-cmp v0.5.5/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
|
||||
github.com/google/go-cmp v0.5.6/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
|
||||
github.com/google/go-cmp v0.7.0 h1:wk8382ETsv4JYUZwIsn6YpYiWiBsYLSJiTsyBybVuN8=
|
||||
github.com/google/go-cmp v0.7.0/go.mod h1:pXiqmnSA92OHEEa9HXL2W4E7lf9JzCmGVUdgjX3N/iU=
|
||||
github.com/google/go-cmp v0.6.0 h1:ofyhxvXcZhMsU5ulbFiLKl/XBFqE1GSq7atu8tAmTRI=
|
||||
github.com/google/go-cmp v0.6.0/go.mod h1:17dUlkBOakJ0+DkrSSNjCkIjxS6bF9zb3elmeNGIjoY=
|
||||
github.com/google/gofuzz v1.0.0/go.mod h1:dBl0BpW6vV/+mYPU4Po3pmUjxk6FQPldtuIdl/M65Eg=
|
||||
github.com/google/uuid v1.1.2/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo=
|
||||
github.com/google/uuid v1.6.0 h1:NIvaJDMOsjHA8n1jAhLSgzrAzy1Hgr+hNrb57e+94F0=
|
||||
@@ -214,8 +214,8 @@ golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACk
|
||||
golang.org/x/crypto v0.0.0-20190510104115-cbcb75029529/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
|
||||
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
|
||||
golang.org/x/crypto v0.0.0-20200622213623-75b288015ac9/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
|
||||
golang.org/x/crypto v0.36.0 h1:AnAEvhDddvBdpY+uR+MyHmuZzzNqXSe/GvuDeob5L34=
|
||||
golang.org/x/crypto v0.36.0/go.mod h1:Y4J0ReaxCR1IMaabaSMugxJES1EpwhBHhv2bDHklZvc=
|
||||
golang.org/x/crypto v0.33.0 h1:IOBPskki6Lysi0lo9qQvbxiQ+FvsCC/YWOecCHAixus=
|
||||
golang.org/x/crypto v0.33.0/go.mod h1:bVdXmD7IV/4GdElGPozy6U7lWdRXA4qyRVGJV57uQ5M=
|
||||
golang.org/x/exp v0.0.0-20180321215751-8460e604b9de/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
||||
golang.org/x/exp v0.0.0-20180807140117-3d87b88a115f/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
||||
golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
||||
@@ -257,8 +257,8 @@ golang.org/x/net v0.0.0-20200822124328-c89045814202/go.mod h1:/O7V0waA8r7cgGh81R
|
||||
golang.org/x/net v0.0.0-20201021035429-f5854403a974/go.mod h1:sp8m0HH+o8qH0wwXwYZr8TS3Oi6o0r6Gce1SSxlDquU=
|
||||
golang.org/x/net v0.0.0-20210405180319-a5a99cb37ef4/go.mod h1:p54w0d4576C0XHj96bSt6lcn1PtDYWL6XObtHCRCNQM=
|
||||
golang.org/x/net v0.0.0-20210614182718-04defd469f4e/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
|
||||
golang.org/x/net v0.38.0 h1:vRMAPTMaeGqVhG5QyLJHqNDwecKTomGeqbnfZyKlBI8=
|
||||
golang.org/x/net v0.38.0/go.mod h1:ivrbrMbzFq5J41QOQh0siUuly180yBYtLp+CKbEaFx8=
|
||||
golang.org/x/net v0.35.0 h1:T5GQRQb2y08kTAByq9L4/bz8cipCdA8FbRTXewonqY8=
|
||||
golang.org/x/net v0.35.0/go.mod h1:EglIi67kWsHKlRzzVMUD93VMSWGFOMSZgxFjparz1Qk=
|
||||
golang.org/x/oauth2 v0.0.0-20180821212333-d2e6202438be/go.mod h1:N/0e6XlmueqKjAGxoOufVs8QHGRruUQn6yWY3a++T0U=
|
||||
golang.org/x/oauth2 v0.0.0-20200107190931-bf48bf16ab8d/go.mod h1:gOpvHmFTYa4IltrdGE7lF6nIHvwfUNPOp7c8zoXwtLw=
|
||||
golang.org/x/sync v0.0.0-20180314180146-1d60e4601c6f/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
@@ -268,8 +268,8 @@ golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJ
|
||||
golang.org/x/sync v0.0.0-20190911185100-cd5d95a43a6e/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
golang.org/x/sync v0.0.0-20210220032951-036812b2e83c/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
golang.org/x/sync v0.12.0 h1:MHc5BpPuC30uJk597Ri8TV3CNZcTLu6B6z4lJy+g6Jw=
|
||||
golang.org/x/sync v0.12.0/go.mod h1:1dzgHSNfp02xaA81J2MS99Qcpr2w7fw1gpm99rleRqA=
|
||||
golang.org/x/sync v0.11.0 h1:GGz8+XQP4FvTTrjZPzNKTMFtSXH80RAzG+5ghFPgK9w=
|
||||
golang.org/x/sync v0.11.0/go.mod h1:Czt+wKu1gCyEFDUtn0jG5QVvpJ6rzVqr5aXyt9drQfk=
|
||||
golang.org/x/sys v0.0.0-20180830151530-49385e6e1522/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
|
||||
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
|
||||
golang.org/x/sys v0.0.0-20190312061237-fead79001313/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
||||
@@ -285,17 +285,17 @@ golang.org/x/sys v0.0.0-20210510120138-977fb7262007/go.mod h1:oPkhp1MJrh7nUepCBc
|
||||
golang.org/x/sys v0.0.0-20210630005230-0f9fa26af87c/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.5.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.31.0 h1:ioabZlmFYtWhL+TRYpcnNlLwhyxaM9kWTDEmfnprqik=
|
||||
golang.org/x/sys v0.31.0/go.mod h1:BJP2sWEmIv4KK5OTEluFJCKSidICx8ciO85XgH3Ak8k=
|
||||
golang.org/x/sys v0.30.0 h1:QjkSwP/36a20jFYWkSue1YwXzLmsV5Gfq7Eiy72C1uc=
|
||||
golang.org/x/sys v0.30.0/go.mod h1:/VUhepiaJMQUp4+oa/7Zr1D23ma6VTLIYjOOTFZPUcA=
|
||||
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
|
||||
golang.org/x/term v0.30.0 h1:PQ39fJZ+mfadBm0y5WlL4vlM7Sx1Hgf13sMIY2+QS9Y=
|
||||
golang.org/x/term v0.30.0/go.mod h1:NYYFdzHoI5wRh/h5tDMdMqCqPJZEuNqVR5xJLd/n67g=
|
||||
golang.org/x/term v0.29.0 h1:L6pJp37ocefwRRtYPKSWOWzOtWSxVajvz2ldH/xi3iU=
|
||||
golang.org/x/term v0.29.0/go.mod h1:6bl4lRlvVuDgSf3179VpIxBF0o10JUpXWOnI7nErv7s=
|
||||
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
|
||||
golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
|
||||
golang.org/x/text v0.3.5/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
|
||||
golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
|
||||
golang.org/x/text v0.23.0 h1:D71I7dUrlY+VX0gQShAThNGHFxZ13dGLBHQLVl1mJlY=
|
||||
golang.org/x/text v0.23.0/go.mod h1:/BLNzu4aZCJ1+kcD0DNRotWKage4q2rGVAg4o22unh4=
|
||||
golang.org/x/text v0.22.0 h1:bofq7m3/HAFvbF51jz3Q9wLg3jkvSPuiZu/pD1XwgtM=
|
||||
golang.org/x/text v0.22.0/go.mod h1:YRoo4H8PVmsu+E3Ou7cqLVH8oXWIHVoX0jqUWALQhfY=
|
||||
golang.org/x/tools v0.0.0-20180525024113-a5b4c53f6e8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
|
||||
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
|
||||
golang.org/x/tools v0.0.0-20190114222345-bf090417da8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
|
||||
|
||||
@@ -34,15 +34,13 @@ func cosineSimilarity[V float32 | float64](v1, v2 []V) V {
|
||||
func TestAllMiniLMEmbeddings(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
|
||||
defer cancel()
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
|
||||
req := api.EmbeddingRequest{
|
||||
Model: "all-minilm",
|
||||
Prompt: "why is the sky blue?",
|
||||
}
|
||||
|
||||
res, err := embeddingTestHelper(ctx, client, t, req)
|
||||
res, err := embeddingTestHelper(ctx, t, req)
|
||||
|
||||
if err != nil {
|
||||
t.Fatalf("error: %v", err)
|
||||
@@ -64,15 +62,13 @@ func TestAllMiniLMEmbeddings(t *testing.T) {
|
||||
func TestAllMiniLMEmbed(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
|
||||
defer cancel()
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
|
||||
req := api.EmbedRequest{
|
||||
Model: "all-minilm",
|
||||
Input: "why is the sky blue?",
|
||||
}
|
||||
|
||||
res, err := embedTestHelper(ctx, client, t, req)
|
||||
res, err := embedTestHelper(ctx, t, req)
|
||||
|
||||
if err != nil {
|
||||
t.Fatalf("error: %v", err)
|
||||
@@ -102,15 +98,13 @@ func TestAllMiniLMEmbed(t *testing.T) {
|
||||
func TestAllMiniLMBatchEmbed(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
|
||||
defer cancel()
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
|
||||
req := api.EmbedRequest{
|
||||
Model: "all-minilm",
|
||||
Input: []string{"why is the sky blue?", "why is the grass green?"},
|
||||
}
|
||||
|
||||
res, err := embedTestHelper(ctx, client, t, req)
|
||||
res, err := embedTestHelper(ctx, t, req)
|
||||
|
||||
if err != nil {
|
||||
t.Fatalf("error: %v", err)
|
||||
@@ -150,8 +144,6 @@ func TestAllMiniLMBatchEmbed(t *testing.T) {
|
||||
func TestAllMiniLMEmbedTruncate(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
|
||||
defer cancel()
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
|
||||
truncTrue, truncFalse := true, false
|
||||
|
||||
@@ -190,7 +182,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
|
||||
res := make(map[string]*api.EmbedResponse)
|
||||
|
||||
for _, req := range reqs {
|
||||
response, err := embedTestHelper(ctx, client, t, req.Request)
|
||||
response, err := embedTestHelper(ctx, t, req.Request)
|
||||
if err != nil {
|
||||
t.Fatalf("error: %v", err)
|
||||
}
|
||||
@@ -206,7 +198,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
|
||||
}
|
||||
|
||||
// check that truncate set to false returns an error if context length is exceeded
|
||||
_, err := embedTestHelper(ctx, client, t, api.EmbedRequest{
|
||||
_, err := embedTestHelper(ctx, t, api.EmbedRequest{
|
||||
Model: "all-minilm",
|
||||
Input: "why is the sky blue?",
|
||||
Truncate: &truncFalse,
|
||||
@@ -218,7 +210,9 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
func embeddingTestHelper(ctx context.Context, client *api.Client, t *testing.T, req api.EmbeddingRequest) (*api.EmbeddingResponse, error) {
|
||||
func embeddingTestHelper(ctx context.Context, t *testing.T, req api.EmbeddingRequest) (*api.EmbeddingResponse, error) {
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
if err := PullIfMissing(ctx, client, req.Model); err != nil {
|
||||
t.Fatalf("failed to pull model %s: %v", req.Model, err)
|
||||
}
|
||||
@@ -232,7 +226,9 @@ func embeddingTestHelper(ctx context.Context, client *api.Client, t *testing.T,
|
||||
return response, nil
|
||||
}
|
||||
|
||||
func embedTestHelper(ctx context.Context, client *api.Client, t *testing.T, req api.EmbedRequest) (*api.EmbedResponse, error) {
|
||||
func embedTestHelper(ctx context.Context, t *testing.T, req api.EmbedRequest) (*api.EmbedResponse, error) {
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
if err := PullIfMissing(ctx, client, req.Model); err != nil {
|
||||
t.Fatalf("failed to pull model %s: %v", req.Model, err)
|
||||
}
|
||||
|
||||
@@ -19,7 +19,7 @@ func TestVisionModels(t *testing.T) {
|
||||
}
|
||||
testCases := []testCase{
|
||||
{
|
||||
model: "qwen2.5vl",
|
||||
model: "llava:7b",
|
||||
},
|
||||
{
|
||||
model: "llama3.2-vision",
|
||||
@@ -60,7 +60,6 @@ func TestVisionModels(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestIntegrationSplitBatch(t *testing.T) {
|
||||
skipUnderMinVRAM(t, 6)
|
||||
image, err := base64.StdEncoding.DecodeString(imageEncoding)
|
||||
require.NoError(t, err)
|
||||
req := api.GenerateRequest{
|
||||
|
||||
@@ -48,6 +48,17 @@ var (
|
||||
}
|
||||
)
|
||||
|
||||
func getTimeouts(t *testing.T) (soft time.Duration, hard time.Duration) {
|
||||
deadline, hasDeadline := t.Deadline()
|
||||
if !hasDeadline {
|
||||
return 8 * time.Minute, 10 * time.Minute
|
||||
} else if deadline.Compare(time.Now().Add(2*time.Minute)) <= 0 {
|
||||
t.Skip("too little time")
|
||||
return time.Duration(0), time.Duration(0)
|
||||
}
|
||||
return -time.Since(deadline.Add(-2 * time.Minute)), -time.Since(deadline.Add(-20 * time.Second))
|
||||
}
|
||||
|
||||
func TestModelsGenerate(t *testing.T) {
|
||||
softTimeout, hardTimeout := getTimeouts(t)
|
||||
slog.Info("Setting timeouts", "soft", softTimeout, "hard", hardTimeout)
|
||||
|
||||
@@ -1,130 +0,0 @@
|
||||
//go:build integration && models
|
||||
|
||||
package integration
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"strings"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
func TestQuantization(t *testing.T) {
|
||||
sourceModels := []string{
|
||||
"qwen2.5:0.5b-instruct-fp16",
|
||||
}
|
||||
quantizations := []string{
|
||||
"Q8_0",
|
||||
"Q4_K_S",
|
||||
"Q4_K_M",
|
||||
"Q4_K",
|
||||
}
|
||||
softTimeout, hardTimeout := getTimeouts(t)
|
||||
started := time.Now()
|
||||
slog.Info("Setting timeouts", "soft", softTimeout, "hard", hardTimeout)
|
||||
ctx, cancel := context.WithTimeout(context.Background(), hardTimeout)
|
||||
defer cancel()
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
|
||||
for _, base := range sourceModels {
|
||||
if err := PullIfMissing(ctx, client, base); err != nil {
|
||||
t.Fatalf("pull failed %s", err)
|
||||
}
|
||||
for _, quant := range quantizations {
|
||||
newName := fmt.Sprintf("%s__%s", base, quant)
|
||||
t.Run(newName, func(t *testing.T) {
|
||||
if time.Now().Sub(started) > softTimeout {
|
||||
t.Skip("skipping remaining tests to avoid excessive runtime")
|
||||
}
|
||||
req := &api.CreateRequest{
|
||||
Model: newName,
|
||||
Quantization: quant,
|
||||
From: base,
|
||||
}
|
||||
fn := func(resp api.ProgressResponse) error {
|
||||
// fmt.Print(".")
|
||||
return nil
|
||||
}
|
||||
t.Logf("quantizing: %s -> %s", base, quant)
|
||||
if err := client.Create(ctx, req, fn); err != nil {
|
||||
t.Fatalf("create failed %s", err)
|
||||
}
|
||||
defer func() {
|
||||
req := &api.DeleteRequest{
|
||||
Model: newName,
|
||||
}
|
||||
t.Logf("deleting: %s -> %s", base, quant)
|
||||
if err := client.Delete(ctx, req); err != nil {
|
||||
t.Logf("failed to clean up %s: %s", req.Model, err)
|
||||
}
|
||||
}()
|
||||
// Check metadata on the model
|
||||
resp, err := client.Show(ctx, &api.ShowRequest{Name: newName})
|
||||
if err != nil {
|
||||
t.Fatalf("unable to show model: %s", err)
|
||||
}
|
||||
if !strings.Contains(resp.Details.QuantizationLevel, quant) {
|
||||
t.Fatalf("unexpected quantization for %s:\ngot: %s", newName, resp.Details.QuantizationLevel)
|
||||
}
|
||||
|
||||
stream := true
|
||||
genReq := api.GenerateRequest{
|
||||
Model: newName,
|
||||
Prompt: "why is the sky blue?",
|
||||
KeepAlive: &api.Duration{Duration: 3 * time.Second},
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
Stream: &stream,
|
||||
}
|
||||
t.Logf("verifying: %s -> %s", base, quant)
|
||||
|
||||
// Some smaller quantizations can cause models to have poor quality
|
||||
// or get stuck in repetition loops, so we stop as soon as we have any matches
|
||||
anyResp := []string{"rayleigh", "scattering", "day", "sun", "moon", "color", "nitrogen", "oxygen"}
|
||||
reqCtx, reqCancel := context.WithCancel(ctx)
|
||||
atLeastOne := false
|
||||
var buf bytes.Buffer
|
||||
genfn := func(response api.GenerateResponse) error {
|
||||
buf.Write([]byte(response.Response))
|
||||
fullResp := strings.ToLower(buf.String())
|
||||
for _, resp := range anyResp {
|
||||
if strings.Contains(fullResp, resp) {
|
||||
atLeastOne = true
|
||||
t.Log(fullResp)
|
||||
reqCancel()
|
||||
break
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
done := make(chan int)
|
||||
var genErr error
|
||||
go func() {
|
||||
genErr = client.Generate(reqCtx, &genReq, genfn)
|
||||
done <- 0
|
||||
}()
|
||||
|
||||
select {
|
||||
case <-done:
|
||||
if genErr != nil && !atLeastOne {
|
||||
t.Fatalf("failed with %s request prompt %s ", genReq.Model, genReq.Prompt)
|
||||
}
|
||||
case <-ctx.Done():
|
||||
t.Error("outer test context done while waiting for generate")
|
||||
}
|
||||
|
||||
t.Logf("passed")
|
||||
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
1
integration/testdata/embed.json
vendored
1
integration/testdata/embed.json
vendored
File diff suppressed because one or more lines are too long
@@ -217,7 +217,6 @@ func InitServerConnection(ctx context.Context, t *testing.T) (*api.Client, strin
|
||||
slog.Error("failed to open server log", "logfile", lifecycle.ServerLogFile, "error", err)
|
||||
return
|
||||
}
|
||||
defer fp.Close()
|
||||
data, err := io.ReadAll(fp)
|
||||
if err != nil {
|
||||
slog.Error("failed to read server log", "logfile", lifecycle.ServerLogFile, "error", err)
|
||||
@@ -359,14 +358,3 @@ func skipUnderMinVRAM(t *testing.T, gb uint64) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func getTimeouts(t *testing.T) (soft time.Duration, hard time.Duration) {
|
||||
deadline, hasDeadline := t.Deadline()
|
||||
if !hasDeadline {
|
||||
return 8 * time.Minute, 10 * time.Minute
|
||||
} else if deadline.Compare(time.Now().Add(2*time.Minute)) <= 0 {
|
||||
t.Skip("too little time")
|
||||
return time.Duration(0), time.Duration(0)
|
||||
}
|
||||
return -time.Since(deadline.Add(-2 * time.Minute)), -time.Since(deadline.Add(-20 * time.Second))
|
||||
}
|
||||
|
||||
@@ -30,11 +30,6 @@ type Causal struct {
|
||||
|
||||
// ** current forward pass **
|
||||
|
||||
// curReserve indicates that this forward pass is only for
|
||||
// memory reservation and we should not update our metadata
|
||||
// based on it.
|
||||
curReserve bool
|
||||
|
||||
// the active layer for Get and Put
|
||||
curLayer int
|
||||
|
||||
@@ -164,13 +159,12 @@ func (c *Causal) Close() {
|
||||
}
|
||||
|
||||
func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
|
||||
c.curReserve = reserve
|
||||
c.curBatchSize = len(batch.Positions)
|
||||
c.curSequences = batch.Sequences
|
||||
c.curPositions = batch.Positions
|
||||
c.opts.Except = nil
|
||||
|
||||
if !c.curReserve {
|
||||
if !reserve {
|
||||
c.updateSlidingWindow()
|
||||
|
||||
var err error
|
||||
@@ -217,9 +211,10 @@ func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) e
|
||||
c.curCellRange.max = len(c.cells) - 1
|
||||
}
|
||||
|
||||
c.curMask = c.buildMask(ctx)
|
||||
var err error
|
||||
c.curMask, err = c.buildMask(ctx)
|
||||
|
||||
return nil
|
||||
return err
|
||||
}
|
||||
|
||||
func newRange() cellRange {
|
||||
@@ -244,7 +239,7 @@ func (c *Causal) findStartLoc() (int, error) {
|
||||
}
|
||||
}
|
||||
|
||||
return 0, fmt.Errorf("%w (cache: %v batch: %v)", ErrKvCacheFull, len(c.cells), c.curBatchSize)
|
||||
return 0, fmt.Errorf("%w (length: %v)", ErrKvCacheFull, len(c.cells))
|
||||
}
|
||||
|
||||
func (c *Causal) updateSlidingWindow() {
|
||||
@@ -302,7 +297,7 @@ func roundUp(length, pad int) int {
|
||||
// Builds a mask of history x batch indicating whether for each token in the batch the
|
||||
// token in the history should apply. This is based on both the sequence and causality (the
|
||||
// position of the history is not ahead of the token in the batch).
|
||||
func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
|
||||
func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
|
||||
// Align and pad the two dimensions as required by the backend
|
||||
batchSize := roundUp(c.curBatchSize, c.config.MaskBatchPadding)
|
||||
|
||||
@@ -310,11 +305,6 @@ func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
|
||||
c.curCellRange.max = roundUp(c.curCellRange.max+1, c.config.CachePadding) - 1
|
||||
|
||||
length := c.curCellRange.max - c.curCellRange.min + 1
|
||||
|
||||
if c.curReserve {
|
||||
return ctx.Input().Empty(c.config.MaskDType, length, batchSize)
|
||||
}
|
||||
|
||||
mask := make([]float32, batchSize*length)
|
||||
|
||||
for i := range c.curBatchSize {
|
||||
@@ -335,7 +325,10 @@ func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
|
||||
mask[i] = float32(math.Inf(-1))
|
||||
}
|
||||
|
||||
maskTensor := ctx.Input().FromFloatSlice(mask, length, batchSize)
|
||||
maskTensor, err := ctx.Input().FromFloatSlice(mask, length, batchSize)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if c.config.MaskDType != ml.DTypeF32 {
|
||||
out := ctx.Input().Empty(c.config.MaskDType, maskTensor.Shape()...)
|
||||
@@ -343,7 +336,7 @@ func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
|
||||
maskTensor = out
|
||||
}
|
||||
|
||||
return maskTensor
|
||||
return maskTensor, nil
|
||||
}
|
||||
|
||||
func (c *Causal) moveCells(ctx ml.Context, src, dst, length int) {
|
||||
@@ -498,7 +491,12 @@ func (c *Causal) SetCausal(ctx ml.Context, opts CausalOptions) {
|
||||
if !slices.Equal(c.opts.Except, opts.Except) {
|
||||
c.opts = opts
|
||||
if ctx != nil {
|
||||
c.curMask = c.buildMask(ctx)
|
||||
var err error
|
||||
c.curMask, err = c.buildMask(ctx)
|
||||
if err != nil {
|
||||
// This error should never occur because we have previously built a mask with the same shape
|
||||
panic(fmt.Errorf("SetCausal: %w", err))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -654,7 +652,10 @@ func (c *Causal) shift(seq int, beginIndex, offset int32) error {
|
||||
}
|
||||
}
|
||||
|
||||
kShift := ctx.Input().FromIntSlice(offsets, len(offsets))
|
||||
kShift, err := ctx.Input().FromIntSlice(offsets, len(offsets))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for i, key := range c.keys {
|
||||
if key == nil {
|
||||
|
||||
@@ -344,7 +344,7 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
|
||||
}
|
||||
|
||||
cache.SetLayer(0)
|
||||
tensor := context.FromFloatSlice(test.in, test.inShape...)
|
||||
tensor, _ := context.FromFloatSlice(test.in, test.inShape...)
|
||||
cache.Put(context, tensor, tensor)
|
||||
|
||||
out, _, mask := cache.Get(context)
|
||||
@@ -386,7 +386,7 @@ func TestCanResume(t *testing.T) {
|
||||
}
|
||||
|
||||
cache.SetLayer(0)
|
||||
tensor := context.FromFloatSlice([]float32{1, 2, 3, 4}, 1, 1, 4)
|
||||
tensor, _ := context.FromFloatSlice([]float32{1, 2, 3, 4}, 1, 1, 4)
|
||||
cache.Put(context, tensor, tensor)
|
||||
|
||||
// with window size 4, nothing has slid out of the window yet
|
||||
@@ -413,7 +413,7 @@ func TestCanResume(t *testing.T) {
|
||||
}
|
||||
|
||||
cache.SetLayer(0)
|
||||
tensor = context.FromFloatSlice([]float32{5, 6}, 1, 1, 2)
|
||||
tensor, _ = context.FromFloatSlice([]float32{5, 6}, 1, 1, 2)
|
||||
cache.Put(context, tensor, tensor)
|
||||
|
||||
// only the latest position has overlapping windows
|
||||
@@ -470,24 +470,24 @@ func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
|
||||
return c.Empty(dtype, shape...)
|
||||
}
|
||||
|
||||
func (c *testContext) FromFloatSlice(s []float32, shape ...int) ml.Tensor {
|
||||
func (c *testContext) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
|
||||
t := c.Empty(ml.DTypeF32, shape...).(*testTensor)
|
||||
|
||||
copy(t.data, s)
|
||||
|
||||
return t
|
||||
return t, nil
|
||||
}
|
||||
|
||||
func (c *testContext) FromIntSlice(s []int32, shape ...int) ml.Tensor {
|
||||
func (c *testContext) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
|
||||
f := make([]float32, len(s))
|
||||
for i := range f {
|
||||
f[i] = float32(s[i])
|
||||
}
|
||||
|
||||
out := c.FromFloatSlice(f, shape...)
|
||||
out, _ := c.FromFloatSlice(f, shape...)
|
||||
out.(*testTensor).dtype = ml.DTypeI32
|
||||
|
||||
return out
|
||||
return out, nil
|
||||
}
|
||||
|
||||
func (c *testContext) Arange(start, stop, step float32, dtype ml.DType) ml.Tensor {
|
||||
@@ -496,7 +496,7 @@ func (c *testContext) Arange(start, stop, step float32, dtype ml.DType) ml.Tenso
|
||||
s = append(s, i)
|
||||
}
|
||||
|
||||
out := c.FromFloatSlice(s, len(s))
|
||||
out, _ := c.FromFloatSlice(s, len(s))
|
||||
out.(*testTensor).dtype = dtype
|
||||
return out
|
||||
}
|
||||
@@ -508,7 +508,7 @@ func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }
|
||||
|
||||
func (c *testContext) Compute(...ml.Tensor) {}
|
||||
|
||||
func (c *testContext) Reserve() {}
|
||||
func (c *testContext) Reserve() error { return nil }
|
||||
|
||||
func (c *testContext) MaxGraphNodes() int {
|
||||
return 10
|
||||
|
||||
2
llama/build-info.cpp
generated
vendored
2
llama/build-info.cpp
generated
vendored
@@ -1,4 +1,4 @@
|
||||
int LLAMA_BUILD_NUMBER = 0;
|
||||
char const *LLAMA_COMMIT = "de4c07f93783a1a96456a44dc16b9db538ee1618";
|
||||
char const *LLAMA_COMMIT = "2016f07bd106c73699ecbaace80f55db5ed95dac";
|
||||
char const *LLAMA_COMPILER = "";
|
||||
char const *LLAMA_BUILD_TARGET = "";
|
||||
|
||||
@@ -10,11 +10,11 @@ include common/stb_image.*
|
||||
include include/
|
||||
include include/llama.*
|
||||
include include/llama-*.*
|
||||
include tools/
|
||||
include tools/mtmd/
|
||||
include tools/mtmd/clip.*
|
||||
include tools/mtmd/clip-impl.*
|
||||
include tools/mtmd/llava.*
|
||||
include examples/
|
||||
include examples/llava/
|
||||
include examples/llava/clip.*
|
||||
include examples/llava/clip-impl.*
|
||||
include examples/llava/llava.*
|
||||
include src/
|
||||
include src/llama.*
|
||||
include src/llama-*.*
|
||||
|
||||
19
llama/llama.cpp/common/common.cpp
vendored
19
llama/llama.cpp/common/common.cpp
vendored
@@ -1096,6 +1096,7 @@ struct llama_context_params common_context_params_to_llama(const common_params &
|
||||
cparams.n_threads = params.cpuparams.n_threads;
|
||||
cparams.n_threads_batch = params.cpuparams_batch.n_threads == -1 ?
|
||||
params.cpuparams.n_threads : params.cpuparams_batch.n_threads;
|
||||
cparams.logits_all = params.logits_all;
|
||||
cparams.embeddings = params.embedding;
|
||||
cparams.rope_scaling_type = params.rope_scaling_type;
|
||||
cparams.rope_freq_base = params.rope_freq_base;
|
||||
@@ -1113,7 +1114,6 @@ struct llama_context_params common_context_params_to_llama(const common_params &
|
||||
cparams.offload_kqv = !params.no_kv_offload;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
cparams.no_perf = params.no_perf;
|
||||
cparams.op_offload = !params.no_op_offload;
|
||||
|
||||
if (params.reranking) {
|
||||
cparams.embeddings = true;
|
||||
@@ -1565,20 +1565,3 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride) {
|
||||
const int64_t ne_datapoint = llama_n_ctx(ctx);
|
||||
const int64_t ndata = (tokens.size() - ne_datapoint - 1) / stride;
|
||||
ggml_opt_dataset_t result = ggml_opt_dataset_init(
|
||||
GGML_TYPE_I32, GGML_TYPE_I32, ne_datapoint, ne_datapoint, ndata, /*ndata_shard =*/ 1);
|
||||
|
||||
llama_token * data = (llama_token *) ggml_opt_dataset_data(result)->data;
|
||||
llama_token * labels = (llama_token *) ggml_opt_dataset_labels(result)->data;
|
||||
|
||||
for (int64_t idata = 0; idata < ndata; ++idata) {
|
||||
memcpy(data + idata*ne_datapoint, tokens.data() + idata*stride + 0, ne_datapoint*sizeof(llama_token));
|
||||
memcpy(labels + idata*ne_datapoint, tokens.data() + idata*stride + 1, ne_datapoint*sizeof(llama_token));
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
20
llama/llama.cpp/common/common.h
vendored
20
llama/llama.cpp/common/common.h
vendored
@@ -66,6 +66,7 @@ enum llama_example {
|
||||
LLAMA_EXAMPLE_COMMON,
|
||||
LLAMA_EXAMPLE_SPECULATIVE,
|
||||
LLAMA_EXAMPLE_MAIN,
|
||||
LLAMA_EXAMPLE_INFILL,
|
||||
LLAMA_EXAMPLE_EMBEDDING,
|
||||
LLAMA_EXAMPLE_PERPLEXITY,
|
||||
LLAMA_EXAMPLE_RETRIEVAL,
|
||||
@@ -95,7 +96,6 @@ enum common_sampler_type {
|
||||
COMMON_SAMPLER_TYPE_XTC = 8,
|
||||
COMMON_SAMPLER_TYPE_INFILL = 9,
|
||||
COMMON_SAMPLER_TYPE_PENALTIES = 10,
|
||||
COMMON_SAMPLER_TYPE_TOP_N_SIGMA = 11,
|
||||
};
|
||||
|
||||
// dimensionality reduction methods, used by cvector-generator
|
||||
@@ -161,7 +161,6 @@ struct common_params_sampling {
|
||||
std::vector<enum common_sampler_type> samplers = {
|
||||
COMMON_SAMPLER_TYPE_PENALTIES,
|
||||
COMMON_SAMPLER_TYPE_DRY,
|
||||
COMMON_SAMPLER_TYPE_TOP_N_SIGMA,
|
||||
COMMON_SAMPLER_TYPE_TOP_K,
|
||||
COMMON_SAMPLER_TYPE_TYPICAL_P,
|
||||
COMMON_SAMPLER_TYPE_TOP_P,
|
||||
@@ -324,6 +323,7 @@ struct common_params {
|
||||
bool ctx_shift = true; // context shift on inifinite text generation
|
||||
|
||||
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
|
||||
bool logits_all = false; // return logits for all tokens in the batch
|
||||
bool use_mmap = true; // use mmap for faster loads
|
||||
bool use_mlock = false; // use mlock to keep model in memory
|
||||
bool verbose_prompt = false; // print prompt tokens before generation
|
||||
@@ -332,7 +332,6 @@ struct common_params {
|
||||
bool no_kv_offload = false; // disable KV offloading
|
||||
bool warmup = true; // warmup run
|
||||
bool check_tensors = false; // validate tensor data
|
||||
bool no_op_offload = false; // globally disable offload host tensor operations to device
|
||||
|
||||
bool single_turn = false; // single turn chat conversation
|
||||
|
||||
@@ -341,10 +340,8 @@ struct common_params {
|
||||
|
||||
common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
|
||||
|
||||
// multimodal models (see tools/mtmd)
|
||||
// multimodal models (see examples/llava)
|
||||
struct common_params_model mmproj;
|
||||
bool mmproj_use_gpu = true; // use GPU for multimodal model
|
||||
bool no_mmproj = false; // explicitly disable multimodal model
|
||||
std::vector<std::string> image; // path to image file(s)
|
||||
|
||||
// embedding
|
||||
@@ -410,14 +407,13 @@ struct common_params {
|
||||
|
||||
bool process_output = false; // collect data for the output tensor
|
||||
bool compute_ppl = true; // whether to compute perplexity
|
||||
bool parse_special = false; // whether to parse special tokens during imatrix tokenization
|
||||
|
||||
// cvector-generator params
|
||||
int n_pca_batch = 100;
|
||||
int n_pca_iterations = 1000;
|
||||
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
|
||||
std::string cvector_positive_file = "tools/cvector-generator/positive.txt";
|
||||
std::string cvector_negative_file = "tools/cvector-generator/negative.txt";
|
||||
std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
|
||||
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
|
||||
|
||||
bool spm_infill = false; // suffix/prefix/middle pattern for infill
|
||||
|
||||
@@ -666,9 +662,3 @@ const char * const LLM_KV_SPLIT_COUNT = "split.count";
|
||||
const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
|
||||
|
||||
}
|
||||
|
||||
//
|
||||
// training utils
|
||||
//
|
||||
|
||||
ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride);
|
||||
|
||||
@@ -16,9 +16,6 @@ using json = nlohmann::ordered_json;
|
||||
static std::string build_repetition(const std::string & item_rule, int min_items, int max_items, const std::string & separator_rule = "") {
|
||||
auto has_max = max_items != std::numeric_limits<int>::max();
|
||||
|
||||
if (max_items == 0) {
|
||||
return "";
|
||||
}
|
||||
if (min_items == 0 && max_items == 1) {
|
||||
return item_rule + "?";
|
||||
}
|
||||
|
||||
107
llama/llama.cpp/common/sampling.cpp
vendored
107
llama/llama.cpp/common/sampling.cpp
vendored
@@ -1,7 +1,6 @@
|
||||
#include "sampling.h"
|
||||
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <unordered_map>
|
||||
@@ -230,48 +229,51 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
||||
params.logit_bias.data()));
|
||||
|
||||
if (params.mirostat == 0) {
|
||||
for (const auto & cnstr : params.samplers) {
|
||||
switch (cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_DRY:
|
||||
{
|
||||
std::vector<const char *> c_breakers;
|
||||
c_breakers.reserve(params.dry_sequence_breakers.size());
|
||||
for (const auto & str : params.dry_sequence_breakers) {
|
||||
c_breakers.push_back(str.c_str());
|
||||
}
|
||||
if (params.top_n_sigma >= 0) {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp (params.temp));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
|
||||
} else {
|
||||
for (const auto & cnstr : params.samplers) {
|
||||
switch (cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_DRY:
|
||||
{
|
||||
std::vector<const char *> c_breakers;
|
||||
c_breakers.reserve(params.dry_sequence_breakers.size());
|
||||
for (const auto & str : params.dry_sequence_breakers) {
|
||||
c_breakers.push_back(str.c_str());
|
||||
}
|
||||
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
|
||||
}
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_K:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_MIN_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_XTC:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_INFILL:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_PENALTIES:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown sampler type");
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
|
||||
}
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_K:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_MIN_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_XTC:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_INFILL:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_PENALTIES:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown sampler type");
|
||||
}
|
||||
}
|
||||
}
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
|
||||
@@ -473,7 +475,6 @@ char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_TOP_K: return 'k';
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P: return 'y';
|
||||
case COMMON_SAMPLER_TYPE_TOP_P: return 'p';
|
||||
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return 's';
|
||||
case COMMON_SAMPLER_TYPE_MIN_P: return 'm';
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
|
||||
case COMMON_SAMPLER_TYPE_XTC: return 'x';
|
||||
@@ -489,7 +490,6 @@ std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_TOP_K: return "top_k";
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
|
||||
case COMMON_SAMPLER_TYPE_TOP_P: return "top_p";
|
||||
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return "top_n_sigma";
|
||||
case COMMON_SAMPLER_TYPE_MIN_P: return "min_p";
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
|
||||
case COMMON_SAMPLER_TYPE_XTC: return "xtc";
|
||||
@@ -504,7 +504,6 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
|
||||
{ "dry", COMMON_SAMPLER_TYPE_DRY },
|
||||
{ "top_k", COMMON_SAMPLER_TYPE_TOP_K },
|
||||
{ "top_p", COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ "top_n_sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
|
||||
{ "typ_p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "min_p", COMMON_SAMPLER_TYPE_MIN_P },
|
||||
{ "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
|
||||
@@ -518,7 +517,6 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
|
||||
std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map {
|
||||
{ "top-k", COMMON_SAMPLER_TYPE_TOP_K },
|
||||
{ "top-p", COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ "top-n-sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
|
||||
{ "nucleus", COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ "typical-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typical", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
@@ -535,16 +533,14 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
|
||||
auto sampler = sampler_canonical_name_map.find(name);
|
||||
if (sampler != sampler_canonical_name_map.end()) {
|
||||
samplers.push_back(sampler->second);
|
||||
continue;
|
||||
}
|
||||
if (allow_alt_names) {
|
||||
sampler = sampler_alt_name_map.find(name);
|
||||
if (sampler != sampler_alt_name_map.end()) {
|
||||
samplers.push_back(sampler->second);
|
||||
continue;
|
||||
} else {
|
||||
if (allow_alt_names) {
|
||||
sampler = sampler_alt_name_map.find(name);
|
||||
if (sampler != sampler_alt_name_map.end()) {
|
||||
samplers.push_back(sampler->second);
|
||||
}
|
||||
}
|
||||
}
|
||||
LOG_WRN("%s: unable to match sampler by name '%s'\n", __func__, name.c_str());
|
||||
}
|
||||
|
||||
return samplers;
|
||||
@@ -556,7 +552,6 @@ std::vector<common_sampler_type> common_sampler_types_from_chars(const std::stri
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K), COMMON_SAMPLER_TYPE_TOP_K },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P), COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P), COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_N_SIGMA), COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P), COMMON_SAMPLER_TYPE_MIN_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC), COMMON_SAMPLER_TYPE_XTC },
|
||||
@@ -571,8 +566,6 @@ std::vector<common_sampler_type> common_sampler_types_from_chars(const std::stri
|
||||
const auto sampler = sampler_name_map.find(c);
|
||||
if (sampler != sampler_name_map.end()) {
|
||||
samplers.push_back(sampler->second);
|
||||
} else {
|
||||
LOG_WRN("%s: unable to match sampler by char '%c'\n", __func__, c);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -2,6 +2,8 @@
|
||||
#include "gguf.h"
|
||||
#include "clip.h"
|
||||
|
||||
#include "clip.h"
|
||||
|
||||
#include <climits>
|
||||
#include <cstdarg>
|
||||
#include <string>
|
||||
@@ -15,29 +17,33 @@
|
||||
#define KEY_FTYPE "general.file_type"
|
||||
#define KEY_NAME "general.name"
|
||||
#define KEY_DESCRIPTION "general.description"
|
||||
#define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
|
||||
#define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
|
||||
#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
|
||||
#define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector"
|
||||
#define KEY_HAS_GLM_PROJ "clip.has_glm_projector"
|
||||
#define KEY_MINICPMV_VERSION "clip.minicpmv_version"
|
||||
#define KEY_HAS_QWEN2VL_MERGER "clip.has_qwen2vl_merger"
|
||||
#define KEY_USE_GELU "clip.use_gelu"
|
||||
#define KEY_USE_SILU "clip.use_silu"
|
||||
#define KEY_N_EMBD "clip.vision.embedding_length"
|
||||
#define KEY_N_FF "clip.vision.feed_forward_length"
|
||||
#define KEY_N_BLOCK "clip.vision.block_count"
|
||||
#define KEY_N_HEAD "clip.vision.attention.head_count"
|
||||
#define KEY_LAYER_NORM_EPS "clip.vision.attention.layer_norm_epsilon"
|
||||
#define KEY_PROJ_DIM "clip.vision.projection_dim"
|
||||
#define KEY_N_EMBD "clip.%s.embedding_length"
|
||||
#define KEY_N_FF "clip.%s.feed_forward_length"
|
||||
#define KEY_N_BLOCK "clip.%s.block_count"
|
||||
#define KEY_N_HEAD "clip.%s.attention.head_count"
|
||||
#define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
|
||||
#define KEY_PROJ_DIM "clip.%s.projection_dim"
|
||||
#define KEY_TOKENS "tokenizer.ggml.tokens"
|
||||
#define KEY_N_POSITIONS "clip.text.context_length"
|
||||
#define KEY_IMAGE_SIZE "clip.vision.image_size"
|
||||
#define KEY_PATCH_SIZE "clip.vision.patch_size"
|
||||
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
|
||||
#define KEY_IMAGE_STD "clip.vision.image_std"
|
||||
#define KEY_FEATURE_LAYER "clip.vision.feature_layer"
|
||||
#define KEY_PROJ_SCALE_FACTOR "clip.vision.projector.scale_factor"
|
||||
#define KEY_PROJ_TYPE "clip.projector_type"
|
||||
#define KEY_SPATIAL_MERGE_SIZE "clip.vision.spatial_merge_size"
|
||||
#define KEY_FEATURE_LAYER "clip.vision.feature_layer"
|
||||
|
||||
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
|
||||
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
|
||||
#define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
|
||||
#define KEY_WIN_ATTN_PATTERN "clip.vision.n_wa_pattern"
|
||||
#define KEY_ATTN_WINDOW_SIZE "clip.vision.window_size"
|
||||
|
||||
|
||||
//
|
||||
@@ -53,16 +59,10 @@
|
||||
#define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
|
||||
#define TN_ATTN_V "%s.blk.%d.attn_v.%s"
|
||||
#define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
|
||||
#define TN_ATTN_K_NORM "%s.blk.%d.attn_k_norm.%s"
|
||||
#define TN_ATTN_Q_NORM "%s.blk.%d.attn_q_norm.%s"
|
||||
#define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
|
||||
#define TN_FFN_GATE "%s.blk.%d.ffn_gate.%s"
|
||||
#define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
|
||||
#define TN_FFN_GATE "%s.blk.%d.ffn_gate.%s"
|
||||
#define TN_LN_1 "%s.blk.%d.ln1.%s" // layer norm
|
||||
#define TN_LN_2 "%s.blk.%d.ln2.%s" // layer norm
|
||||
#define TN_LS_1 "%s.blk.%d.ls1.%s" // layer scale
|
||||
#define TN_LS_2 "%s.blk.%d.ls2.%s" // layer scale
|
||||
#define TN_LN_1 "%s.blk.%d.ln1.%s"
|
||||
#define TN_LN_2 "%s.blk.%d.ln2.%s"
|
||||
#define TN_LN_PRE "%s.pre_ln.%s"
|
||||
#define TN_LN_POST "%s.post_ln.%s"
|
||||
#define TN_LLAVA_PROJ "mm.%d.%s"
|
||||
@@ -70,14 +70,8 @@
|
||||
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
|
||||
#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
|
||||
#define TN_IMAGE_NEWLINE "model.image_newline"
|
||||
#define TN_MM_INP_NORM "mm.input_norm.weight"
|
||||
#define TN_MM_INP_PROJ "mm.input_projection.weight" // gemma3
|
||||
#define TN_MM_SOFT_EMB_N "mm.soft_emb_norm.weight" // gemma3
|
||||
#define TN_MM_PROJECTOR "mm.model.fc.weight" // idefics3
|
||||
#define TN_MM_PATCH_MERGER "mm.patch_merger.weight" // mistral small 3.1
|
||||
#define TN_TOK_IMG_BREAK "v.token_embd.img_break" // pixtral
|
||||
#define TN_TOK_GLM_BOI "adapter.boi" // glm-edge (these embeddings are not in text model)
|
||||
#define TN_TOK_GLM_EOI "adapter.eoi" // glm-edge (these embeddings are not in text model)
|
||||
|
||||
// mimicpmv
|
||||
#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
|
||||
@@ -93,23 +87,18 @@
|
||||
#define TN_GLM_ADAPTER_D_H_2_4H "adapter.linear.dense_h_to_4h.%s"
|
||||
#define TN_GLM_ADAPTER_GATE "adapter.linear.gate.%s"
|
||||
#define TN_GLM_ADAPTER_D_4H_2_H "adapter.linear.dense_4h_to_h.%s"
|
||||
|
||||
// align x to upper multiple of n
|
||||
#define CLIP_ALIGN(x, n) ((((x) + (n) - 1) / (n)) * (n))
|
||||
#define TN_GLM_BOI_W "adapter.boi"
|
||||
#define TN_GLM_EOI_W "adapter.eoi"
|
||||
|
||||
enum projector_type {
|
||||
PROJECTOR_TYPE_MLP,
|
||||
PROJECTOR_TYPE_MLP_NORM,
|
||||
PROJECTOR_TYPE_LDP,
|
||||
PROJECTOR_TYPE_LDPV2,
|
||||
PROJECTOR_TYPE_MINICPMV,
|
||||
PROJECTOR_TYPE_RESAMPLER,
|
||||
PROJECTOR_TYPE_GLM_EDGE,
|
||||
PROJECTOR_TYPE_QWEN2VL,
|
||||
PROJECTOR_TYPE_MERGER,
|
||||
PROJECTOR_TYPE_GEMMA3,
|
||||
PROJECTOR_TYPE_IDEFICS3,
|
||||
PROJECTOR_TYPE_PIXTRAL,
|
||||
PROJECTOR_TYPE_QWEN25VL,
|
||||
PROJECTOR_TYPE_INTERNVL,
|
||||
PROJECTOR_TYPE_UNKNOWN,
|
||||
};
|
||||
|
||||
@@ -117,14 +106,10 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
|
||||
{ PROJECTOR_TYPE_MLP, "mlp" },
|
||||
{ PROJECTOR_TYPE_LDP, "ldp" },
|
||||
{ PROJECTOR_TYPE_LDPV2, "ldpv2"},
|
||||
{ PROJECTOR_TYPE_MINICPMV, "resampler"},
|
||||
{ PROJECTOR_TYPE_RESAMPLER, "resampler"},
|
||||
{ PROJECTOR_TYPE_GLM_EDGE, "adapter"},
|
||||
{ PROJECTOR_TYPE_QWEN2VL, "qwen2vl_merger"},
|
||||
{ PROJECTOR_TYPE_QWEN25VL, "qwen2.5vl_merger"},
|
||||
{ PROJECTOR_TYPE_MERGER, "qwen2vl_merger"},
|
||||
{ PROJECTOR_TYPE_GEMMA3, "gemma3"},
|
||||
{ PROJECTOR_TYPE_IDEFICS3, "idefics3"},
|
||||
{ PROJECTOR_TYPE_PIXTRAL, "pixtral"},
|
||||
{ PROJECTOR_TYPE_INTERNVL, "internvl"},
|
||||
};
|
||||
|
||||
static projector_type clip_projector_type_from_string(const std::string & str) {
|
||||
@@ -239,15 +224,6 @@ struct clip_image_u8_batch {
|
||||
|
||||
struct clip_image_f32_batch {
|
||||
std::vector<clip_image_f32_ptr> entries;
|
||||
|
||||
clip_image_f32_batch clone() const {
|
||||
clip_image_f32_batch new_batch;
|
||||
new_batch.entries.reserve(entries.size());
|
||||
for (const auto & entry : entries) {
|
||||
new_batch.entries.emplace_back(new clip_image_f32(*entry));
|
||||
}
|
||||
return new_batch;
|
||||
}
|
||||
};
|
||||
|
||||
//
|
||||
2927
llama/llama.cpp/examples/llava/clip.cpp
vendored
Normal file
2927
llama/llama.cpp/examples/llava/clip.cpp
vendored
Normal file
File diff suppressed because it is too large
Load Diff
@@ -47,7 +47,7 @@ CLIP_API struct clip_ctx * clip_init(const char * fname, struct clip_context_par
|
||||
CLIP_API void clip_free(struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API size_t clip_embd_nbytes(const struct clip_ctx * ctx);
|
||||
CLIP_API size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h);
|
||||
CLIP_API size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w);
|
||||
|
||||
CLIP_API int32_t clip_get_image_size (const struct clip_ctx * ctx);
|
||||
CLIP_API int32_t clip_get_patch_size (const struct clip_ctx * ctx);
|
||||
@@ -59,29 +59,18 @@ CLIP_API const char * clip_patch_merge_type(const struct clip_ctx * ctx);
|
||||
CLIP_API const int32_t * clip_image_grid(const struct clip_ctx * ctx);
|
||||
CLIP_API size_t get_clip_image_grid_size(const struct clip_ctx * ctx);
|
||||
|
||||
GGML_DEPRECATED(CLIP_API int clip_n_patches(const struct clip_ctx * ctx),
|
||||
"use clip_n_output_tokens instead");
|
||||
GGML_DEPRECATED(CLIP_API int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * img),
|
||||
"use clip_n_output_tokens instead");
|
||||
|
||||
CLIP_API int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img);
|
||||
|
||||
// for M-RoPE, this will be the number of token positions in X and Y directions
|
||||
// for other models, X will be the total number of tokens and Y will be 1
|
||||
CLIP_API int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img);
|
||||
CLIP_API int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img);
|
||||
|
||||
// this should be equal to the embedding dimension of the text model
|
||||
CLIP_API int clip_n_mmproj_embd(const struct clip_ctx * ctx);
|
||||
CLIP_API int clip_n_patches (const struct clip_ctx * ctx);
|
||||
CLIP_API int clip_n_patches_by_img (const struct clip_ctx * ctx, struct clip_image_f32 * img);
|
||||
CLIP_API int clip_n_mmproj_embd (const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip);
|
||||
CLIP_API void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size);
|
||||
CLIP_API struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip);
|
||||
|
||||
CLIP_API struct clip_image_size * clip_image_size_init(void);
|
||||
CLIP_API struct clip_image_u8 * clip_image_u8_init (void);
|
||||
CLIP_API struct clip_image_f32 * clip_image_f32_init(void);
|
||||
CLIP_API struct clip_image_f32_batch * clip_image_f32_batch_init(void); // only used by libllava
|
||||
CLIP_API struct clip_image_size * clip_image_size_init();
|
||||
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
|
||||
CLIP_API struct clip_image_f32 * clip_image_f32_init();
|
||||
CLIP_API struct clip_image_f32_batch * clip_image_f32_batch_init(); // only used by libllava
|
||||
|
||||
// nx, ny are the output image dimensions
|
||||
CLIP_API unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny);
|
||||
@@ -125,6 +114,8 @@ CLIP_API bool clip_is_qwen2vl(const struct clip_ctx * ctx);
|
||||
CLIP_API bool clip_is_llava(const struct clip_ctx * ctx);
|
||||
CLIP_API bool clip_is_gemma3(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API int get_deepest_feature_layer(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec);
|
||||
|
||||
|
||||
@@ -2,7 +2,6 @@
|
||||
#include "llava.h"
|
||||
|
||||
#include "llama.h"
|
||||
#include "ggml-cpp.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cerrno>
|
||||
@@ -113,7 +112,7 @@ static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<
|
||||
}
|
||||
|
||||
// Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out)
|
||||
static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out, clip_image_f32 * img_input) {
|
||||
static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) {
|
||||
struct {
|
||||
struct ggml_context * ctx;
|
||||
} model;
|
||||
@@ -176,7 +175,7 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
|
||||
|
||||
model.ctx = ggml_init(params);
|
||||
|
||||
struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_output_tokens(ctx_clip, img_input), num_images - 1); // example: 4096 x 576 x 4
|
||||
struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4
|
||||
// ggml_tensor_printf(image_features,"image_features",__LINE__,false,false);
|
||||
// fill it with the image embeddings, ignoring the base
|
||||
for (size_t i = 1; i < num_images; i++) {
|
||||
@@ -210,17 +209,13 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
|
||||
struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0);
|
||||
// ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
|
||||
ggml_build_forward_expand(gf, flatten);
|
||||
|
||||
ggml_backend_ptr backend { ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr) };
|
||||
GGML_ASSERT(backend != nullptr && "failed to initialize CPU backend");
|
||||
ggml_backend_graph_compute(backend.get(), gf);
|
||||
|
||||
ggml_graph_compute_with_ctx(model.ctx, gf, 1);
|
||||
struct ggml_tensor* result = ggml_graph_node(gf, -1);
|
||||
|
||||
memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
|
||||
// append without newline tokens (default behavior in llava_arch when not using unpad ):
|
||||
memcpy(image_embd_out + clip_n_output_tokens(ctx_clip, img_input) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
|
||||
*n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_output_tokens(ctx_clip, img_input));
|
||||
memcpy(image_embd_out + clip_n_patches(ctx_clip) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
|
||||
*n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_patches(ctx_clip));
|
||||
|
||||
// Debug: Test single segments
|
||||
// Current findings: sending base image, sending a segment embedding all works similar to python
|
||||
@@ -318,7 +313,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip),
|
||||
image_embd_v[i],
|
||||
clip_embd_nbytes_by_img(ctx_clip, nx, ny));
|
||||
n_img_pos_out += clip_n_output_tokens(ctx_clip, img_res);
|
||||
n_img_pos_out += clip_n_patches_by_img(ctx_clip, img_res);
|
||||
}
|
||||
*n_img_pos = n_img_pos_out;
|
||||
for (size_t i = 0; i < image_embd_v.size(); i++) {
|
||||
@@ -347,8 +342,8 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
}
|
||||
else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
|
||||
// flat / default llava-1.5 type embedding
|
||||
*n_img_pos = clip_n_patches(ctx_clip);
|
||||
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), 0);
|
||||
*n_img_pos = clip_n_output_tokens(ctx_clip, img_res);
|
||||
bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd); // image_embd shape is 576 x 4096
|
||||
if (!encoded) {
|
||||
LOG_ERR("Unable to encode image\n");
|
||||
@@ -386,8 +381,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);
|
||||
|
||||
int n_img_pos_out;
|
||||
clip_image_f32 * img_input = clip_image_f32_get_img(img_res_v.get(), 0);
|
||||
clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out, img_input);
|
||||
clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out);
|
||||
*n_img_pos = n_img_pos_out;
|
||||
|
||||
for (size_t i = 0; i < image_embd_v.size(); i++) {
|
||||
@@ -462,7 +456,7 @@ struct llava_embd_batch {
|
||||
std::vector<llama_seq_id *> seq_ids;
|
||||
std::vector<int8_t> logits;
|
||||
llama_batch batch;
|
||||
llava_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
|
||||
llava_embd_batch(float * embd, int32_t n_embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
|
||||
pos .resize(n_tokens);
|
||||
n_seq_id.resize(n_tokens);
|
||||
seq_ids .resize(n_tokens + 1);
|
||||
@@ -474,6 +468,7 @@ struct llava_embd_batch {
|
||||
/*n_tokens =*/ n_tokens,
|
||||
/*tokens =*/ nullptr,
|
||||
/*embd =*/ embd,
|
||||
/*n_embd =*/ n_embd,
|
||||
/*pos =*/ pos.data(),
|
||||
/*n_seq_id =*/ n_seq_id.data(),
|
||||
/*seq_id =*/ seq_ids.data(),
|
||||
@@ -497,7 +492,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
|
||||
n_eval = n_batch;
|
||||
}
|
||||
float * embd = image_embed->embed+i*n_embd;
|
||||
llava_embd_batch llava_batch = llava_embd_batch(embd, n_eval, *n_past, 0);
|
||||
llava_embd_batch llava_batch = llava_embd_batch(embd, n_embd, n_eval, *n_past, 0);
|
||||
if (llama_decode(ctx_llama, llava_batch.batch)) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
@@ -1,4 +1,4 @@
|
||||
package mtmd
|
||||
package llava
|
||||
|
||||
// #cgo CXXFLAGS: -std=c++11
|
||||
// #cgo CPPFLAGS: -I${SRCDIR}/../../include -I${SRCDIR}/../../common
|
||||
69
llama/llama.cpp/include/llama.h
vendored
69
llama/llama.cpp/include/llama.h
vendored
@@ -4,7 +4,6 @@
|
||||
#include "ggml.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-opt.h"
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
@@ -112,8 +111,6 @@ extern "C" {
|
||||
LLAMA_VOCAB_PRE_TYPE_TRILLION = 31,
|
||||
LLAMA_VOCAB_PRE_TYPE_BAILINGMOE = 32,
|
||||
LLAMA_VOCAB_PRE_TYPE_LLAMA4 = 33,
|
||||
LLAMA_VOCAB_PRE_TYPE_PIXTRAL = 34,
|
||||
LLAMA_VOCAB_PRE_TYPE_SEED_CODER = 35,
|
||||
};
|
||||
|
||||
enum llama_rope_type {
|
||||
@@ -258,6 +255,7 @@ extern "C" {
|
||||
|
||||
llama_token * token;
|
||||
float * embd;
|
||||
int32_t n_embd;
|
||||
llama_pos * pos;
|
||||
int32_t * n_seq_id;
|
||||
llama_seq_id ** seq_id;
|
||||
@@ -353,18 +351,20 @@ extern "C" {
|
||||
enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
|
||||
enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
|
||||
|
||||
// Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value.
|
||||
// TODO: move at the end of the struct
|
||||
bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
|
||||
bool embeddings; // if true, extract embeddings (together with logits)
|
||||
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
|
||||
bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
|
||||
bool no_perf; // whether to measure performance timings
|
||||
bool cross_attn; // whether to use cross attention
|
||||
|
||||
// Abort callback
|
||||
// if it returns true, execution of llama_decode() will be aborted
|
||||
// currently works only with CPU execution
|
||||
ggml_abort_callback abort_callback;
|
||||
void * abort_callback_data;
|
||||
|
||||
// Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value.
|
||||
bool embeddings; // if true, extract embeddings (together with logits)
|
||||
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
|
||||
bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
|
||||
bool no_perf; // whether to measure performance timings
|
||||
bool op_offload; // whether to offload host tensor operations to device
|
||||
};
|
||||
|
||||
// model quantization parameters
|
||||
@@ -446,10 +446,6 @@ extern "C" {
|
||||
size_t n_paths,
|
||||
struct llama_model_params params);
|
||||
|
||||
LLAMA_API void llama_model_save_to_file(
|
||||
const struct llama_model * model,
|
||||
const char * path_model);
|
||||
|
||||
DEPRECATED(LLAMA_API void llama_free_model(struct llama_model * model),
|
||||
"use llama_model_free instead");
|
||||
|
||||
@@ -464,6 +460,10 @@ extern "C" {
|
||||
struct llama_context_params params),
|
||||
"use llama_init_from_model instead");
|
||||
|
||||
// TODO (jmorganca): this should most likely be passed in as part of a batch
|
||||
// and not set on the context for all batches.
|
||||
LLAMA_API void llama_set_cross_attention(struct llama_context * ctx, bool cross_attn_state);
|
||||
|
||||
// Frees all allocated memory
|
||||
LLAMA_API void llama_free(struct llama_context * ctx);
|
||||
|
||||
@@ -929,19 +929,14 @@ extern "C" {
|
||||
// Frees a batch of tokens allocated with llama_batch_init()
|
||||
LLAMA_API void llama_batch_free(struct llama_batch batch);
|
||||
|
||||
// Process a batch of tokens.
|
||||
// In contrast to llama_decode() - this call does not use KV cache.
|
||||
// For encode-decoder contexts, processes the batch using the encoder.
|
||||
// Can store the encoder output internally for later use by the decoder's cross-attention layers.
|
||||
// Processes a batch of tokens with the ecoder part of the encoder-decoder model.
|
||||
// Stores the encoder output internally for later use by the decoder cross-attention layers.
|
||||
// 0 - success
|
||||
// < 0 - error. the KV cache state is restored to the state before this call
|
||||
LLAMA_API int32_t llama_encode(
|
||||
struct llama_context * ctx,
|
||||
struct llama_batch batch);
|
||||
|
||||
// Process a batch of tokens.
|
||||
// Requires KV cache.
|
||||
// For encode-decoder contexts, processes the batch using the decoder.
|
||||
// Positive return values does not mean a fatal error, but rather a warning.
|
||||
// 0 - success
|
||||
// 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
|
||||
@@ -1242,7 +1237,6 @@ extern "C" {
|
||||
"will be removed in the future (see https://github.com/ggml-org/llama.cpp/pull/9896#discussion_r1800920915)");
|
||||
|
||||
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||
/// Setting k <= 0 makes this a noop
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_top_k (int32_t k);
|
||||
|
||||
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||
@@ -1438,37 +1432,6 @@ extern "C" {
|
||||
LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain);
|
||||
LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain);
|
||||
|
||||
//
|
||||
// training
|
||||
//
|
||||
|
||||
// function that returns whether or not a given tensor contains trainable parameters
|
||||
typedef bool (*llama_opt_param_filter)(const struct ggml_tensor * tensor, void * userdata);
|
||||
|
||||
// always returns true
|
||||
LLAMA_API bool llama_opt_param_filter_all(const struct ggml_tensor * tensor, void * userdata);
|
||||
|
||||
struct llama_opt_params {
|
||||
uint32_t n_ctx_train; // assumed context size post training, use context size specified in llama_context if 0
|
||||
|
||||
llama_opt_param_filter param_filter; // callback for determining which tensors contain trainable parameters
|
||||
void * param_filter_ud; // userdata for determining which tensors contain trainable parameters
|
||||
|
||||
ggml_opt_get_optimizer_params get_opt_pars; // callback for calculating optimizer parameters
|
||||
void * get_opt_pars_ud; // userdata for calculating optimizer parameters
|
||||
};
|
||||
|
||||
LLAMA_API void llama_opt_init(struct llama_context * lctx, struct llama_model * model, struct llama_opt_params lopt_params);
|
||||
|
||||
LLAMA_API void llama_opt_epoch(
|
||||
struct llama_context * lctx,
|
||||
ggml_opt_dataset_t dataset,
|
||||
ggml_opt_result_t result_train,
|
||||
ggml_opt_result_t result_eval,
|
||||
int64_t idata_split,
|
||||
ggml_opt_epoch_callback callback_train,
|
||||
ggml_opt_epoch_callback callback_eval);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
6
llama/llama.cpp/src/llama-adapter.cpp
vendored
6
llama/llama.cpp/src/llama-adapter.cpp
vendored
@@ -253,9 +253,6 @@ static void llama_adapter_lora_init_impl(llama_model & model, const char * path_
|
||||
std::vector<ggml_backend_buffer_type_t> buft_extra;
|
||||
{
|
||||
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
||||
if (!cpu_dev) {
|
||||
throw std::runtime_error(format("%s: no CPU backend found", __func__));
|
||||
}
|
||||
auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
|
||||
|
||||
auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
|
||||
@@ -294,9 +291,6 @@ static void llama_adapter_lora_init_impl(llama_model & model, const char * path_
|
||||
LLAMA_LOG_WARN("%s: lora for '%s' cannot use buft '%s', fallback to CPU\n", __func__, model_tensor->name, ggml_backend_buft_name(buft));
|
||||
|
||||
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
||||
if (!cpu_dev) {
|
||||
throw std::runtime_error(format("%s: no CPU backend found", __func__));
|
||||
}
|
||||
buft = ggml_backend_dev_buffer_type(cpu_dev);
|
||||
|
||||
break;
|
||||
|
||||
81
llama/llama.cpp/src/llama-arch.cpp
vendored
81
llama/llama.cpp/src/llama-arch.cpp
vendored
@@ -6,6 +6,7 @@
|
||||
|
||||
static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_LLAMA, "llama" },
|
||||
{ LLM_ARCH_MLLAMA, "mllama" },
|
||||
{ LLM_ARCH_LLAMA4, "llama4" },
|
||||
{ LLM_ARCH_DECI, "deci" },
|
||||
{ LLM_ARCH_FALCON, "falcon" },
|
||||
@@ -19,7 +20,6 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_REFACT, "refact" },
|
||||
{ LLM_ARCH_BERT, "bert" },
|
||||
{ LLM_ARCH_NOMIC_BERT, "nomic-bert" },
|
||||
{ LLM_ARCH_NOMIC_BERT_MOE, "nomic-bert-moe" },
|
||||
{ LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
|
||||
{ LLM_ARCH_BLOOM, "bloom" },
|
||||
{ LLM_ARCH_STABLELM, "stablelm" },
|
||||
@@ -73,6 +73,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
|
||||
{ LLM_ARCH_PLM, "plm" },
|
||||
{ LLM_ARCH_BAILINGMOE, "bailingmoe" },
|
||||
{ LLM_ARCH_MISTRAL3, "mistral3" },
|
||||
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
||||
};
|
||||
|
||||
@@ -108,7 +109,6 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
{ LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" },
|
||||
{ LLM_KV_EXPERT_WEIGHTS_NORM, "%s.expert_weights_norm" },
|
||||
{ LLM_KV_EXPERT_GATING_FUNC, "%s.expert_gating_func" },
|
||||
{ LLM_KV_MOE_EVERY_N_LAYERS, "%s.moe_every_n_layers" },
|
||||
{ LLM_KV_POOLING_TYPE, "%s.pooling_type" },
|
||||
{ LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
|
||||
{ LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" },
|
||||
@@ -144,6 +144,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
|
||||
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
|
||||
{ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
|
||||
{ LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, "%s.attention.cross_attention_layers" },
|
||||
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
|
||||
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
|
||||
|
||||
@@ -273,6 +274,40 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_MLLAMA,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
||||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
|
||||
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_K_NORM, "blk.%d.cross_attn_k_norm" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_K_PROJ, "blk.%d.cross_attn_k_proj" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_O_PROJ, "blk.%d.cross_attn_o_proj" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_Q_NORM, "blk.%d.cross_attn_q_norm" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_Q_PROJ, "blk.%d.cross_attn_q_proj" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_V_PROJ, "blk.%d.cross_attn_v_proj" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_ATTN_GATE, "blk.%d.cross_attn_attn_gate" },
|
||||
{ LLM_TENSOR_CROSS_ATTN_MLP_GATE, "blk.%d.cross_attn_mlp_gate" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_DECI,
|
||||
{
|
||||
@@ -476,24 +511,6 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_NOMIC_BERT_MOE,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
|
||||
{ LLM_TENSOR_TOKEN_TYPES, "token_types" },
|
||||
{ LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
|
||||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_JINA_BERT_V2,
|
||||
{
|
||||
@@ -1570,6 +1587,22 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_MISTRAL3,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
}
|
||||
},
|
||||
{
|
||||
LLM_ARCH_UNKNOWN,
|
||||
{
|
||||
@@ -1701,6 +1734,14 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
|
||||
// this tensor is loaded for T5, but never used
|
||||
{LLM_TENSOR_DEC_CROSS_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}},
|
||||
{LLM_TENSOR_BSKCN_TV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
{LLM_TENSOR_CROSS_ATTN_K_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
{LLM_TENSOR_CROSS_ATTN_K_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_CROSS_ATTN_O_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_CROSS_ATTN_Q_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
{LLM_TENSOR_CROSS_ATTN_Q_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_CROSS_ATTN_V_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_CROSS_ATTN_ATTN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
{LLM_TENSOR_CROSS_ATTN_MLP_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
{LLM_TENSOR_CONV1D, {LLM_TENSOR_LAYER_INPUT, GGML_OP_IM2COL}},
|
||||
{LLM_TENSOR_POS_NET_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
{LLM_TENSOR_POS_NET_NORM1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
|
||||
13
llama/llama.cpp/src/llama-arch.h
vendored
13
llama/llama.cpp/src/llama-arch.h
vendored
@@ -11,6 +11,7 @@
|
||||
enum llm_arch {
|
||||
LLM_ARCH_LLAMA,
|
||||
LLM_ARCH_LLAMA4,
|
||||
LLM_ARCH_MLLAMA,
|
||||
LLM_ARCH_DECI,
|
||||
LLM_ARCH_FALCON,
|
||||
LLM_ARCH_BAICHUAN,
|
||||
@@ -23,7 +24,6 @@ enum llm_arch {
|
||||
LLM_ARCH_REFACT,
|
||||
LLM_ARCH_BERT,
|
||||
LLM_ARCH_NOMIC_BERT,
|
||||
LLM_ARCH_NOMIC_BERT_MOE,
|
||||
LLM_ARCH_JINA_BERT_V2,
|
||||
LLM_ARCH_BLOOM,
|
||||
LLM_ARCH_STABLELM,
|
||||
@@ -75,6 +75,7 @@ enum llm_arch {
|
||||
LLM_ARCH_CHAMELEON,
|
||||
LLM_ARCH_SOLAR,
|
||||
LLM_ARCH_WAVTOKENIZER_DEC,
|
||||
LLM_ARCH_MISTRAL3,
|
||||
LLM_ARCH_PLM,
|
||||
LLM_ARCH_BAILINGMOE,
|
||||
LLM_ARCH_UNKNOWN,
|
||||
@@ -112,7 +113,6 @@ enum llm_kv {
|
||||
LLM_KV_EXPERT_WEIGHTS_SCALE,
|
||||
LLM_KV_EXPERT_WEIGHTS_NORM,
|
||||
LLM_KV_EXPERT_GATING_FUNC,
|
||||
LLM_KV_MOE_EVERY_N_LAYERS,
|
||||
LLM_KV_POOLING_TYPE,
|
||||
LLM_KV_LOGIT_SCALE,
|
||||
LLM_KV_DECODER_START_TOKEN_ID,
|
||||
@@ -148,6 +148,7 @@ enum llm_kv {
|
||||
LLM_KV_ATTENTION_SLIDING_WINDOW,
|
||||
LLM_KV_ATTENTION_SCALE,
|
||||
LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
|
||||
LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS,
|
||||
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
|
||||
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
|
||||
|
||||
@@ -349,6 +350,14 @@ enum llm_tensor {
|
||||
LLM_TENSOR_CLS,
|
||||
LLM_TENSOR_CLS_OUT,
|
||||
LLM_TENSOR_BSKCN_TV,
|
||||
LLM_TENSOR_CROSS_ATTN_K_NORM,
|
||||
LLM_TENSOR_CROSS_ATTN_K_PROJ,
|
||||
LLM_TENSOR_CROSS_ATTN_O_PROJ,
|
||||
LLM_TENSOR_CROSS_ATTN_Q_NORM,
|
||||
LLM_TENSOR_CROSS_ATTN_Q_PROJ,
|
||||
LLM_TENSOR_CROSS_ATTN_V_PROJ,
|
||||
LLM_TENSOR_CROSS_ATTN_ATTN_GATE,
|
||||
LLM_TENSOR_CROSS_ATTN_MLP_GATE,
|
||||
LLM_TENSOR_CONV1D,
|
||||
LLM_TENSOR_CONVNEXT_DW,
|
||||
LLM_TENSOR_CONVNEXT_NORM,
|
||||
|
||||
9
llama/llama.cpp/src/llama-batch.cpp
vendored
9
llama/llama.cpp/src/llama-batch.cpp
vendored
@@ -189,7 +189,7 @@ llama_ubatch llama_sbatch::split_seq(size_t n_ubatch) {
|
||||
return ubatch;
|
||||
}
|
||||
|
||||
llama_sbatch::llama_sbatch(const llama_batch & batch, size_t n_embd, bool simple_split, bool logits_all) {
|
||||
void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool simple_split, bool logits_all) {
|
||||
GGML_ASSERT(batch.n_tokens >= 0);
|
||||
this->batch = &batch;
|
||||
this->n_embd = n_embd;
|
||||
@@ -203,7 +203,6 @@ llama_sbatch::llama_sbatch(const llama_batch & batch, size_t n_embd, bool simple
|
||||
for (size_t i = 0; i < n_tokens; ++i) {
|
||||
ids[i] = i;
|
||||
}
|
||||
|
||||
if (simple_split) {
|
||||
seq.resize(1);
|
||||
llama_sbatch_seq & s = seq[0];
|
||||
@@ -213,7 +212,6 @@ llama_sbatch::llama_sbatch(const llama_batch & batch, size_t n_embd, bool simple
|
||||
s.length = n_tokens;
|
||||
return;
|
||||
}
|
||||
|
||||
std::sort(ids.begin(), ids.end(),
|
||||
[&batch](size_t a, size_t b) {
|
||||
int32_t n_seq_a = batch.n_seq_id ? batch.n_seq_id[a] : 1;
|
||||
@@ -241,7 +239,6 @@ llama_sbatch::llama_sbatch(const llama_batch & batch, size_t n_embd, bool simple
|
||||
return n_seq_a > n_seq_b;
|
||||
}
|
||||
);
|
||||
|
||||
// init seq
|
||||
llama_sbatch_seq * last_seq = nullptr;
|
||||
|
||||
@@ -265,7 +262,6 @@ llama_sbatch::llama_sbatch(const llama_batch & batch, size_t n_embd, bool simple
|
||||
seq.push_back(new_seq);
|
||||
last_seq = &seq.back();
|
||||
}
|
||||
|
||||
// keep shared prompts first at the end, then sort by length descending.
|
||||
std::sort(seq.begin(), seq.end(),
|
||||
[](llama_sbatch_seq & a, llama_sbatch_seq & b) {
|
||||
@@ -320,6 +316,7 @@ struct llama_batch llama_batch_get_one(
|
||||
/*n_tokens =*/ n_tokens,
|
||||
/*tokens =*/ tokens,
|
||||
/*embd =*/ nullptr,
|
||||
/*n_embd =*/ 0,
|
||||
/*pos =*/ nullptr,
|
||||
/*n_seq_id =*/ nullptr,
|
||||
/*seq_id =*/ nullptr,
|
||||
@@ -332,6 +329,7 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
|
||||
/*n_tokens =*/ 0,
|
||||
/*tokens =*/ nullptr,
|
||||
/*embd =*/ nullptr,
|
||||
/*n_embd =*/ 0,
|
||||
/*pos =*/ nullptr,
|
||||
/*n_seq_id =*/ nullptr,
|
||||
/*seq_id =*/ nullptr,
|
||||
@@ -340,6 +338,7 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
|
||||
|
||||
if (embd) {
|
||||
batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
|
||||
batch.n_embd = embd;
|
||||
} else {
|
||||
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
|
||||
}
|
||||
|
||||
3
llama/llama.cpp/src/llama-batch.h
vendored
3
llama/llama.cpp/src/llama-batch.h
vendored
@@ -70,8 +70,7 @@ struct llama_sbatch {
|
||||
// sequence-wise split
|
||||
llama_ubatch split_seq(size_t n_ubatch);
|
||||
|
||||
llama_sbatch() = default;
|
||||
llama_sbatch(const llama_batch & batch, size_t n_embd, bool simple_split = false, bool logits_all = false);
|
||||
void from_batch(const llama_batch & batch, size_t n_embd, bool simple_split = false, bool logits_all = false);
|
||||
};
|
||||
|
||||
// temporary allocate memory for the input batch if needed
|
||||
|
||||
55
llama/llama.cpp/src/llama-chat.cpp
vendored
55
llama/llama.cpp/src/llama-chat.cpp
vendored
@@ -35,7 +35,6 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
|
||||
{ "mistral-v3", LLM_CHAT_TEMPLATE_MISTRAL_V3 },
|
||||
{ "mistral-v3-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN },
|
||||
{ "mistral-v7", LLM_CHAT_TEMPLATE_MISTRAL_V7 },
|
||||
{ "mistral-v7-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V7_TEKKEN },
|
||||
{ "phi3", LLM_CHAT_TEMPLATE_PHI_3 },
|
||||
{ "phi4", LLM_CHAT_TEMPLATE_PHI_4 },
|
||||
{ "falcon3", LLM_CHAT_TEMPLATE_FALCON_3 },
|
||||
@@ -51,8 +50,8 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
|
||||
{ "deepseek3", LLM_CHAT_TEMPLATE_DEEPSEEK_3 },
|
||||
{ "command-r", LLM_CHAT_TEMPLATE_COMMAND_R },
|
||||
{ "llama3", LLM_CHAT_TEMPLATE_LLAMA_3 },
|
||||
{ "chatglm3", LLM_CHAT_TEMPLATE_CHATGLM_3 },
|
||||
{ "chatglm4", LLM_CHAT_TEMPLATE_CHATGLM_4 },
|
||||
{ "chatglm3", LLM_CHAT_TEMPLATE_CHATGML_3 },
|
||||
{ "chatglm4", LLM_CHAT_TEMPLATE_CHATGML_4 },
|
||||
{ "glmedge", LLM_CHAT_TEMPLATE_GLMEDGE },
|
||||
{ "minicpm", LLM_CHAT_TEMPLATE_MINICPM },
|
||||
{ "exaone3", LLM_CHAT_TEMPLATE_EXAONE_3 },
|
||||
@@ -63,7 +62,6 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
|
||||
{ "yandex", LLM_CHAT_TEMPLATE_YANDEX },
|
||||
{ "bailing", LLM_CHAT_TEMPLATE_BAILING },
|
||||
{ "llama4", LLM_CHAT_TEMPLATE_LLAMA4 },
|
||||
{ "smolvlm", LLM_CHAT_TEMPLATE_SMOLVLM },
|
||||
};
|
||||
|
||||
llm_chat_template llm_chat_template_from_str(const std::string & name) {
|
||||
@@ -83,9 +81,7 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
|
||||
if (tmpl_contains("<|im_start|>")) {
|
||||
return tmpl_contains("<|im_sep|>")
|
||||
? LLM_CHAT_TEMPLATE_PHI_4
|
||||
: tmpl_contains("<end_of_utterance>")
|
||||
? LLM_CHAT_TEMPLATE_SMOLVLM // SmolVLM uses <|im_start|> as BOS, but it is NOT chatml
|
||||
: LLM_CHAT_TEMPLATE_CHATML;
|
||||
: LLM_CHAT_TEMPLATE_CHATML;
|
||||
} else if (tmpl.find("mistral") == 0 || tmpl_contains("[INST]")) {
|
||||
if (tmpl_contains("[SYSTEM_PROMPT]")) {
|
||||
return LLM_CHAT_TEMPLATE_MISTRAL_V7;
|
||||
@@ -123,12 +119,8 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
|
||||
}
|
||||
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>")) {
|
||||
return LLM_CHAT_TEMPLATE_PHI_3;
|
||||
} else if (tmpl_contains("[gMASK]<sop>")) {
|
||||
return LLM_CHAT_TEMPLATE_CHATGLM_4;
|
||||
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|user|>")) {
|
||||
return tmpl_contains("</s>") ? LLM_CHAT_TEMPLATE_FALCON_3 : LLM_CHAT_TEMPLATE_GLMEDGE;
|
||||
} else if (tmpl_contains("<|{{ item['role'] }}|>") && tmpl_contains("<|begin_of_image|>")) {
|
||||
return LLM_CHAT_TEMPLATE_GLMEDGE;
|
||||
} else if (tmpl_contains("<|user|>") && tmpl_contains("<|endoftext|>")) {
|
||||
return LLM_CHAT_TEMPLATE_ZEPHYR;
|
||||
} else if (tmpl_contains("bos_token + message['role']")) {
|
||||
@@ -157,7 +149,9 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
|
||||
return LLM_CHAT_TEMPLATE_LLAMA_3;
|
||||
} else if (tmpl_contains("[gMASK]sop")) {
|
||||
// chatglm3-6b
|
||||
return LLM_CHAT_TEMPLATE_CHATGLM_3;
|
||||
return LLM_CHAT_TEMPLATE_CHATGML_3;
|
||||
} else if (tmpl_contains("[gMASK]<sop>")) {
|
||||
return LLM_CHAT_TEMPLATE_CHATGML_4;
|
||||
} else if (tmpl_contains(LU8("<用户>"))) {
|
||||
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
|
||||
return LLM_CHAT_TEMPLATE_MINICPM;
|
||||
@@ -203,20 +197,19 @@ int32_t llm_chat_apply_template(
|
||||
if (add_ass) {
|
||||
ss << "<|im_start|>assistant\n";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7 || tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7_TEKKEN) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7) {
|
||||
// Official mistral 'v7' template
|
||||
// See: https://huggingface.co/mistralai/Mistral-Large-Instruct-2411#basic-instruct-template-v7
|
||||
// https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503#basic-instruct-template-v7-tekken
|
||||
const char * trailing_space = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7 ? " " : "";
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
std::string content(message->content);
|
||||
if (role == "system") {
|
||||
ss << "[SYSTEM_PROMPT]" << trailing_space << content << "[/SYSTEM_PROMPT]";
|
||||
ss << "[SYSTEM_PROMPT] " << content << "[/SYSTEM_PROMPT]";
|
||||
} else if (role == "user") {
|
||||
ss << "[INST]" << trailing_space << content << "[/INST]";
|
||||
} else {
|
||||
ss << trailing_space << content << "</s>";
|
||||
ss << "[INST] " << content << "[/INST]";
|
||||
}
|
||||
else {
|
||||
ss << " " << content << "</s>";
|
||||
}
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V1
|
||||
@@ -439,7 +432,7 @@ int32_t llm_chat_apply_template(
|
||||
if (add_ass) {
|
||||
ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGLM_3) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGML_3) {
|
||||
// chatglm3-6b
|
||||
ss << "[gMASK]" << "sop";
|
||||
for (auto message : chat) {
|
||||
@@ -449,14 +442,14 @@ int32_t llm_chat_apply_template(
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGLM_4) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGML_4) {
|
||||
ss << "[gMASK]" << "<sop>";
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
ss << "<|" << role << "|>" << "\n" << message->content;
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>\n";
|
||||
ss << "<|assistant|>";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_GLMEDGE) {
|
||||
for (auto message : chat) {
|
||||
@@ -627,23 +620,7 @@ int32_t llm_chat_apply_template(
|
||||
if (add_ass) {
|
||||
ss << "<|header_start|>assistant<|header_end|>\n\n";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_SMOLVLM) {
|
||||
// SmolVLM
|
||||
ss << "<|im_start|>"; // uses <|im_start|> as BOS, but the actual content is NOT chatml
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "system") {
|
||||
ss << message->content << "\n\n";
|
||||
} else if (role == "user") {
|
||||
ss << "User: " << message->content << "<end_of_utterance>\n";
|
||||
} else {
|
||||
ss << "Assistant: " << message->content << "<end_of_utterance>\n";
|
||||
}
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "Assistant:";
|
||||
}
|
||||
} else {
|
||||
} else {
|
||||
// template not supported
|
||||
return -1;
|
||||
}
|
||||
|
||||
6
llama/llama.cpp/src/llama-chat.h
vendored
6
llama/llama.cpp/src/llama-chat.h
vendored
@@ -14,7 +14,6 @@ enum llm_chat_template {
|
||||
LLM_CHAT_TEMPLATE_MISTRAL_V3,
|
||||
LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN,
|
||||
LLM_CHAT_TEMPLATE_MISTRAL_V7,
|
||||
LLM_CHAT_TEMPLATE_MISTRAL_V7_TEKKEN,
|
||||
LLM_CHAT_TEMPLATE_PHI_3,
|
||||
LLM_CHAT_TEMPLATE_PHI_4,
|
||||
LLM_CHAT_TEMPLATE_FALCON_3,
|
||||
@@ -30,8 +29,8 @@ enum llm_chat_template {
|
||||
LLM_CHAT_TEMPLATE_DEEPSEEK_3,
|
||||
LLM_CHAT_TEMPLATE_COMMAND_R,
|
||||
LLM_CHAT_TEMPLATE_LLAMA_3,
|
||||
LLM_CHAT_TEMPLATE_CHATGLM_3,
|
||||
LLM_CHAT_TEMPLATE_CHATGLM_4,
|
||||
LLM_CHAT_TEMPLATE_CHATGML_3,
|
||||
LLM_CHAT_TEMPLATE_CHATGML_4,
|
||||
LLM_CHAT_TEMPLATE_GLMEDGE,
|
||||
LLM_CHAT_TEMPLATE_MINICPM,
|
||||
LLM_CHAT_TEMPLATE_EXAONE_3,
|
||||
@@ -42,7 +41,6 @@ enum llm_chat_template {
|
||||
LLM_CHAT_TEMPLATE_YANDEX,
|
||||
LLM_CHAT_TEMPLATE_BAILING,
|
||||
LLM_CHAT_TEMPLATE_LLAMA4,
|
||||
LLM_CHAT_TEMPLATE_SMOLVLM,
|
||||
LLM_CHAT_TEMPLATE_UNKNOWN,
|
||||
};
|
||||
|
||||
|
||||
929
llama/llama.cpp/src/llama-context.cpp
vendored
929
llama/llama.cpp/src/llama-context.cpp
vendored
File diff suppressed because it is too large
Load Diff
79
llama/llama.cpp/src/llama-context.h
vendored
79
llama/llama.cpp/src/llama-context.h
vendored
@@ -8,7 +8,6 @@
|
||||
#include "llama-kv-cache.h"
|
||||
|
||||
#include "ggml-cpp.h"
|
||||
#include "ggml-opt.h"
|
||||
|
||||
#include <map>
|
||||
#include <vector>
|
||||
@@ -29,12 +28,7 @@ struct llama_context {
|
||||
|
||||
void synchronize();
|
||||
|
||||
const llama_model & get_model() const;
|
||||
const llama_cparams & get_cparams() const;
|
||||
|
||||
ggml_backend_sched_t get_sched() const;
|
||||
|
||||
ggml_context * get_ctx_compute() const;
|
||||
const llama_model & get_model() const;
|
||||
|
||||
uint32_t n_ctx() const;
|
||||
uint32_t n_ctx_per_seq() const;
|
||||
@@ -72,6 +66,7 @@ struct llama_context {
|
||||
void set_embeddings (bool value);
|
||||
void set_causal_attn(bool value);
|
||||
void set_warmup(bool value);
|
||||
void set_cross_attn(bool value);
|
||||
|
||||
void set_adapter_lora(
|
||||
llama_adapter_lora * adapter,
|
||||
@@ -135,32 +130,6 @@ struct llama_context {
|
||||
llama_perf_context_data perf_get_data() const;
|
||||
void perf_reset();
|
||||
|
||||
//
|
||||
// training
|
||||
//
|
||||
|
||||
void opt_init(struct llama_model * model, struct llama_opt_params lopt_params);
|
||||
|
||||
void opt_epoch(
|
||||
ggml_opt_dataset_t dataset,
|
||||
ggml_opt_result_t result_train,
|
||||
ggml_opt_result_t result_eval,
|
||||
int64_t idata_split,
|
||||
ggml_opt_epoch_callback callback_train,
|
||||
ggml_opt_epoch_callback callback_eval);
|
||||
|
||||
void opt_epoch_iter(
|
||||
ggml_opt_dataset_t dataset,
|
||||
ggml_opt_result_t result,
|
||||
const std::vector<llama_token> & tokens,
|
||||
const std::vector<llama_token> & labels_sparse,
|
||||
llama_batch & batch,
|
||||
ggml_opt_epoch_callback callback,
|
||||
bool train,
|
||||
int64_t idata_in_loop,
|
||||
int64_t ndata_in_loop,
|
||||
int64_t t_loop_start);
|
||||
|
||||
private:
|
||||
//
|
||||
// output
|
||||
@@ -170,30 +139,51 @@ private:
|
||||
// Returns max number of outputs for which space was reserved.
|
||||
int32_t output_reserve(int32_t n_outputs);
|
||||
|
||||
// make the outputs have the same order they had in the user-provided batch
|
||||
// TODO: maybe remove this
|
||||
void output_reorder();
|
||||
|
||||
//
|
||||
// graph
|
||||
//
|
||||
|
||||
public:
|
||||
int32_t graph_max_nodes() const;
|
||||
|
||||
// zero-out inputs and create the ctx_compute for the compute graph
|
||||
ggml_cgraph * graph_init();
|
||||
|
||||
// returns the result of ggml_backend_sched_graph_compute_async execution
|
||||
ggml_status graph_compute(
|
||||
ggml_cgraph * gf,
|
||||
bool batched);
|
||||
|
||||
private:
|
||||
llm_graph_result_ptr graph_build(
|
||||
ggml_context * ctx,
|
||||
ggml_cgraph * gf,
|
||||
const llama_ubatch & ubatch,
|
||||
llm_graph_type gtype);
|
||||
|
||||
// returns the result of ggml_backend_sched_graph_compute_async execution
|
||||
ggml_status graph_compute(
|
||||
ggml_cgraph * gf,
|
||||
bool batched);
|
||||
|
||||
llm_graph_cb graph_get_cb() const;
|
||||
|
||||
// used by kv_self_update()
|
||||
ggml_tensor * build_rope_shift(
|
||||
ggml_context * ctx0,
|
||||
ggml_tensor * cur,
|
||||
ggml_tensor * shift,
|
||||
ggml_tensor * factors,
|
||||
float freq_base,
|
||||
float freq_scale,
|
||||
ggml_backend_buffer * bbuf) const;
|
||||
|
||||
llm_graph_result_ptr build_kv_self_shift(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * gf) const;
|
||||
|
||||
llm_graph_result_ptr build_kv_self_defrag(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * gf,
|
||||
const std::vector<struct llama_kv_defrag_move> & moves) const;
|
||||
|
||||
// TODO: read/write lora adapters and cvec
|
||||
size_t state_write_data(llama_io_write_i & io);
|
||||
size_t state_read_data (llama_io_read_i & io);
|
||||
@@ -210,10 +200,14 @@ private:
|
||||
llama_cparams cparams;
|
||||
llama_adapter_cvec cvec;
|
||||
llama_adapter_loras loras;
|
||||
llama_sbatch sbatch;
|
||||
|
||||
llama_cross cross; // TODO: tmp for handling cross-attention - need something better probably
|
||||
|
||||
std::unique_ptr<llama_memory_i> memory;
|
||||
std::unique_ptr<llama_kv_cache_unified> kv_self;
|
||||
|
||||
// TODO: remove
|
||||
bool logits_all = false;
|
||||
|
||||
// decode output (2-dimensional array: [n_outputs][n_vocab])
|
||||
size_t logits_size = 0; // capacity (of floats) for logits
|
||||
@@ -240,9 +234,6 @@ private:
|
||||
|
||||
ggml_context_ptr ctx_compute;
|
||||
|
||||
// training
|
||||
ggml_opt_context_t opt_ctx = nullptr;
|
||||
|
||||
ggml_threadpool_t threadpool = nullptr;
|
||||
ggml_threadpool_t threadpool_batch = nullptr;
|
||||
|
||||
|
||||
2
llama/llama.cpp/src/llama-cparams.h
vendored
2
llama/llama.cpp/src/llama-cparams.h
vendored
@@ -29,8 +29,8 @@ struct llama_cparams {
|
||||
bool offload_kqv;
|
||||
bool flash_attn;
|
||||
bool no_perf;
|
||||
bool cross_attn;
|
||||
bool warmup;
|
||||
bool op_offload;
|
||||
|
||||
enum llama_pooling_type pooling_type;
|
||||
|
||||
|
||||
141
llama/llama.cpp/src/llama-graph.cpp
vendored
141
llama/llama.cpp/src/llama-graph.cpp
vendored
@@ -55,21 +55,7 @@ void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) {
|
||||
if (ubatch->pos && pos) {
|
||||
const int64_t n_tokens = ubatch->n_tokens;
|
||||
|
||||
if (ubatch->token && n_pos_per_embd == 4) {
|
||||
// in case we're using M-RoPE with text tokens, convert the 1D positions to 4D
|
||||
// the 3 first dims are the same, and 4th dim is all 0
|
||||
std::vector<llama_pos> pos_data(n_tokens*n_pos_per_embd);
|
||||
// copy the first dimension
|
||||
for (int i = 0; i < n_tokens; ++i) {
|
||||
pos_data[ i] = ubatch->pos[i];
|
||||
pos_data[ n_tokens + i] = ubatch->pos[i];
|
||||
pos_data[2 * n_tokens + i] = ubatch->pos[i];
|
||||
pos_data[3 * n_tokens + i] = 0; // 4th dim is 0
|
||||
}
|
||||
ggml_backend_tensor_set(pos, pos_data.data(), 0, pos_data.size()*ggml_element_size(pos));
|
||||
} else {
|
||||
ggml_backend_tensor_set(pos, ubatch->pos, 0, n_tokens*n_pos_per_embd*ggml_element_size(pos));
|
||||
}
|
||||
ggml_backend_tensor_set(pos, ubatch->pos, 0, n_tokens*n_pos_per_token*ggml_element_size(pos));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -85,7 +71,7 @@ void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) {
|
||||
) * f_attn_temp_scale + 1.0;
|
||||
}
|
||||
|
||||
ggml_backend_tensor_set(attn_scale, attn_scale_data.data(), 0, n_tokens*ggml_element_size(attn_scale));
|
||||
ggml_backend_tensor_set(attn_scale, attn_scale_data.data(), 0, n_tokens*n_pos_per_token*ggml_element_size(attn_scale));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -284,7 +270,24 @@ void llm_graph_input_s_copy::set_input(const llama_ubatch * ubatch) {
|
||||
|
||||
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
|
||||
for (uint32_t i = 0; i < n_kv; ++i) {
|
||||
data[i] = kv_self->s_copy(i);
|
||||
const uint32_t cell_id = i + kv_self->head;
|
||||
|
||||
//////////////////////////////////////////////
|
||||
// TODO: this should not mutate the KV cache !
|
||||
llama_kv_cell & kv_cell = const_cast<class llama_kv_cache_unified *>(kv_self)->cells[i];
|
||||
|
||||
// prevent out-of-bound sources
|
||||
if (kv_cell.src < 0 || (uint32_t) kv_cell.src >= kv_self->size) {
|
||||
kv_cell.src = cell_id;
|
||||
}
|
||||
|
||||
data[i] = kv_cell.src;
|
||||
|
||||
// TODO: do not mutate the KV cache
|
||||
// ensure copy only happens once
|
||||
if (kv_cell.src != (int32_t) cell_id) {
|
||||
kv_cell.src = cell_id;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -300,7 +303,18 @@ void llm_graph_input_s_mask::set_input(const llama_ubatch * ubatch) {
|
||||
|
||||
// clear unused states
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
data[i] = kv_self->s_mask(i);
|
||||
const uint32_t cell_id = i + kv_self->head;
|
||||
|
||||
//////////////////////////////////////////////
|
||||
// TODO: this should not mutate the KV cache !
|
||||
llama_kv_cell & kv_cell = const_cast<class llama_kv_cache_unified *>(kv_self)->cells[i];
|
||||
|
||||
data[i] = (float) (kv_cell.src >= 0);
|
||||
|
||||
// only clear once
|
||||
if (kv_cell.src < 0) {
|
||||
kv_cell.src = cell_id;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -532,6 +546,12 @@ void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
|
||||
}
|
||||
}
|
||||
|
||||
void llm_graph_input_cross_attn_state::set_input(const llama_ubatch * ubatch) {
|
||||
if (ubatch->embd) {
|
||||
ggml_backend_tensor_set(cross_attn_state, ubatch->embd, 0, ggml_nbytes(cross_attn_state));
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// llm_graph_context
|
||||
//
|
||||
@@ -578,7 +598,7 @@ llm_graph_context::llm_graph_context(const llm_graph_params & params) :
|
||||
res (std::make_unique<llm_graph_result>()) {
|
||||
}
|
||||
|
||||
int64_t llm_graph_context::n_pos_per_embd() const {
|
||||
int64_t llm_graph_context::n_pos_per_token() const {
|
||||
return arch == LLM_ARCH_QWEN2VL ? 4 : 1;
|
||||
}
|
||||
|
||||
@@ -782,17 +802,13 @@ ggml_tensor * llm_graph_context::build_ffn(
|
||||
} break;
|
||||
}
|
||||
|
||||
if (gate && type_gate == LLM_FFN_PAR) {
|
||||
if (type_gate == LLM_FFN_PAR) {
|
||||
cur = ggml_mul(ctx0, cur, tmp);
|
||||
cb(cur, "ffn_gate_par", il);
|
||||
}
|
||||
|
||||
if (down) {
|
||||
cur = build_lora_mm(down, cur);
|
||||
if (arch == LLM_ARCH_GLM4) {
|
||||
// GLM4 seems to have numerical issues with half-precision accumulators
|
||||
ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
|
||||
}
|
||||
}
|
||||
|
||||
if (down_b) {
|
||||
@@ -900,35 +916,28 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
|
||||
ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
|
||||
cb(up, "ffn_moe_up", il);
|
||||
|
||||
ggml_tensor * experts = nullptr;
|
||||
if (gate_exps) {
|
||||
cur = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
|
||||
cb(cur, "ffn_moe_gate", il);
|
||||
} else {
|
||||
cur = up;
|
||||
}
|
||||
ggml_tensor * gate = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
|
||||
cb(gate, "ffn_moe_gate", il);
|
||||
|
||||
switch (type_op) {
|
||||
case LLM_FFN_SILU:
|
||||
{
|
||||
cur = ggml_silu(ctx0, cur);
|
||||
cb(cur, "ffn_moe_silu", il);
|
||||
gate = ggml_silu(ctx0, gate);
|
||||
cb(gate, "ffn_moe_silu", il);
|
||||
} break;
|
||||
case LLM_FFN_GELU:
|
||||
{
|
||||
cur = ggml_gelu(ctx0, cur);
|
||||
cb(cur, "ffn_moe_gelu", il);
|
||||
gate = ggml_gelu(ctx0, gate);
|
||||
cb(gate, "ffn_moe_gelu", il);
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
if (gate_exps) {
|
||||
cur = ggml_mul(ctx0, cur, up); // [n_ff, n_expert_used, n_tokens]
|
||||
cb(cur, "ffn_moe_gate_par", il);
|
||||
}
|
||||
ggml_tensor * par = ggml_mul(ctx0, up, gate); // [n_ff, n_expert_used, n_tokens]
|
||||
cb(par, "ffn_moe_gate_par", il);
|
||||
|
||||
experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
|
||||
ggml_tensor * experts = build_lora_mm_id(down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
|
||||
cb(experts, "ffn_moe_down", il);
|
||||
|
||||
if (!weight_before_ffn) {
|
||||
@@ -971,7 +980,6 @@ ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
|
||||
inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
|
||||
//cb(inp->tokens, "inp_tokens", -1);
|
||||
ggml_set_input(inp->tokens);
|
||||
res->t_tokens = inp->tokens;
|
||||
|
||||
cur = ggml_get_rows(ctx0, tok_embd, inp->tokens);
|
||||
|
||||
@@ -1012,11 +1020,11 @@ ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
|
||||
}
|
||||
|
||||
ggml_tensor * llm_graph_context::build_inp_pos() const {
|
||||
auto inp = std::make_unique<llm_graph_input_pos>(n_pos_per_embd());
|
||||
auto inp = std::make_unique<llm_graph_input_pos>(n_pos_per_token());
|
||||
|
||||
auto & cur = inp->pos;
|
||||
|
||||
cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens*n_pos_per_embd());
|
||||
cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens*n_pos_per_token());
|
||||
ggml_set_input(cur);
|
||||
|
||||
res->add_input(std::move(inp));
|
||||
@@ -1025,12 +1033,11 @@ ggml_tensor * llm_graph_context::build_inp_pos() const {
|
||||
}
|
||||
|
||||
ggml_tensor * llm_graph_context::build_inp_attn_scale() const {
|
||||
auto inp = std::make_unique<llm_graph_input_attn_temp>(hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale);
|
||||
auto inp = std::make_unique<llm_graph_input_attn_temp>(n_pos_per_token(), hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale);
|
||||
|
||||
auto & cur = inp->attn_scale;
|
||||
|
||||
// this need to be 1x1xN for broadcasting
|
||||
cur = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 1, 1, n_tokens);
|
||||
cur = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 1, 1, n_tokens*n_pos_per_token());
|
||||
ggml_set_input(cur);
|
||||
|
||||
res->add_input(std::move(inp));
|
||||
@@ -1078,7 +1085,7 @@ ggml_tensor * llm_graph_context::build_inp_cls() const {
|
||||
}
|
||||
|
||||
ggml_tensor * llm_graph_context::build_inp_s_copy() const {
|
||||
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
||||
|
||||
auto inp = std::make_unique<llm_graph_input_s_copy>(kv_self);
|
||||
|
||||
@@ -1095,7 +1102,7 @@ ggml_tensor * llm_graph_context::build_inp_s_copy() const {
|
||||
}
|
||||
|
||||
ggml_tensor * llm_graph_context::build_inp_s_mask() const {
|
||||
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
||||
|
||||
auto inp = std::make_unique<llm_graph_input_s_mask>(kv_self);
|
||||
|
||||
@@ -1228,19 +1235,8 @@ ggml_tensor * llm_graph_context::build_attn_mha(
|
||||
ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
|
||||
|
||||
if (v_mla) {
|
||||
#if 0
|
||||
// v_mla can be applied as a matrix-vector multiplication with broadcasting across dimension 3 == n_tokens.
|
||||
// However, the code is optimized for dimensions 0 and 1 being large, so this is ineffient.
|
||||
cur = ggml_reshape_4d(ctx0, cur, v_mla->ne[0], 1, n_head, n_tokens);
|
||||
cur = ggml_mul_mat(ctx0, v_mla, cur);
|
||||
#else
|
||||
// It's preferable to do the calculation as a matrix-matrix multiplication with n_tokens in dimension 1.
|
||||
// The permutations are noops and only change how the tensor data is interpreted.
|
||||
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
|
||||
cur = ggml_mul_mat(ctx0, v_mla, cur);
|
||||
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
|
||||
cur = ggml_cont(ctx0, cur); // Needed because ggml_reshape_2d expects contiguous inputs.
|
||||
#endif
|
||||
}
|
||||
|
||||
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
|
||||
@@ -1420,6 +1416,8 @@ ggml_tensor * llm_graph_context::build_attn(
|
||||
|
||||
// store to KV cache
|
||||
{
|
||||
GGML_ASSERT(!kv_self->recurrent);
|
||||
|
||||
const auto kv_head = kv_self->head;
|
||||
|
||||
GGML_ASSERT(kv_self->size == n_ctx);
|
||||
@@ -1514,6 +1512,25 @@ llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
|
||||
return (llm_graph_input_attn_cross *) res->add_input(std::move(inp));
|
||||
}
|
||||
|
||||
ggml_tensor * llm_graph_context::build_inp_cross_attn_state() const {
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
|
||||
auto inp = std::make_unique<llm_graph_input_cross_attn_state>();
|
||||
|
||||
ggml_tensor * cur = nullptr;
|
||||
|
||||
inp->cross_attn_state = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd, 1601, 4);
|
||||
ggml_set_input(inp->cross_attn_state);
|
||||
|
||||
cur = inp->cross_attn_state;
|
||||
|
||||
cb(cur, "inp_cross_attn_state", -1);
|
||||
|
||||
res->add_input(std::move(inp));
|
||||
|
||||
return cur;
|
||||
}
|
||||
|
||||
ggml_tensor * llm_graph_context::build_attn(
|
||||
llm_graph_input_attn_cross * inp,
|
||||
ggml_cgraph * gf,
|
||||
@@ -1569,7 +1586,7 @@ ggml_tensor * llm_graph_context::build_copy_mask_state(
|
||||
ggml_tensor * state_mask,
|
||||
int32_t n_state,
|
||||
int32_t n_seqs) const {
|
||||
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
||||
|
||||
const auto n_kv = kv_self->n;
|
||||
const auto kv_head = kv_self->head;
|
||||
@@ -1601,7 +1618,7 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
|
||||
ggml_tensor * state_mask,
|
||||
const llama_ubatch & ubatch,
|
||||
int il) const {
|
||||
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
||||
|
||||
const auto token_shift_count = hparams.token_shift_count;
|
||||
|
||||
@@ -1622,7 +1639,7 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
|
||||
ggml_tensor * token_shift,
|
||||
const llama_ubatch & ubatch,
|
||||
int il) const {
|
||||
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
||||
|
||||
const auto token_shift_count = hparams.token_shift_count;
|
||||
const auto n_embd = hparams.n_embd;
|
||||
|
||||
44
llama/llama.cpp/src/llama-graph.h
vendored
44
llama/llama.cpp/src/llama-graph.h
vendored
@@ -19,7 +19,6 @@ struct llama_cparams;
|
||||
|
||||
class llama_memory_i;
|
||||
class llama_kv_cache_unified;
|
||||
class llama_kv_cache_recurrent;
|
||||
|
||||
// certain models (typically multi-modal) can produce different types of graphs
|
||||
enum llm_graph_type {
|
||||
@@ -87,31 +86,34 @@ public:
|
||||
|
||||
ggml_tensor * tokens = nullptr; // I32 [n_batch]
|
||||
ggml_tensor * embd = nullptr; // F32 [n_embd, n_batch]
|
||||
ggml_tensor * cross_attn_state; // F32 [4, n_embd, 1061]
|
||||
};
|
||||
|
||||
class llm_graph_input_pos : public llm_graph_input_i {
|
||||
public:
|
||||
llm_graph_input_pos(int64_t n_pos_per_embd) : n_pos_per_embd(n_pos_per_embd) {}
|
||||
llm_graph_input_pos(int64_t n_pos_per_token) : n_pos_per_token(n_pos_per_token) {}
|
||||
virtual ~llm_graph_input_pos() = default;
|
||||
|
||||
void set_input(const llama_ubatch * ubatch) override;
|
||||
|
||||
ggml_tensor * pos = nullptr; // I32 [n_batch]
|
||||
|
||||
const int64_t n_pos_per_embd = 1;
|
||||
const int64_t n_pos_per_token = 1;
|
||||
};
|
||||
|
||||
// temperature tuning, used by llama4
|
||||
class llm_graph_input_attn_temp : public llm_graph_input_i {
|
||||
public:
|
||||
llm_graph_input_attn_temp(uint32_t n_attn_temp_floor_scale, float f_attn_temp_scale)
|
||||
: n_attn_temp_floor_scale(n_attn_temp_floor_scale), f_attn_temp_scale(f_attn_temp_scale) {}
|
||||
llm_graph_input_attn_temp(int64_t n_pos_per_token, uint32_t n_attn_temp_floor_scale, float f_attn_temp_scale)
|
||||
: n_pos_per_token(n_pos_per_token), n_attn_temp_floor_scale(n_attn_temp_floor_scale), f_attn_temp_scale(f_attn_temp_scale) {}
|
||||
virtual ~llm_graph_input_attn_temp() = default;
|
||||
|
||||
void set_input(const llama_ubatch * ubatch) override;
|
||||
|
||||
ggml_tensor * attn_scale = nullptr; // F32 [n_batch]
|
||||
|
||||
const int64_t n_pos_per_token = 1;
|
||||
|
||||
const uint32_t n_attn_temp_floor_scale;
|
||||
const float f_attn_temp_scale;
|
||||
};
|
||||
@@ -187,26 +189,26 @@ public:
|
||||
|
||||
class llm_graph_input_s_copy : public llm_graph_input_i {
|
||||
public:
|
||||
llm_graph_input_s_copy(const llama_kv_cache_recurrent * kv_self) : kv_self(kv_self) {}
|
||||
llm_graph_input_s_copy(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
|
||||
virtual ~llm_graph_input_s_copy() = default;
|
||||
|
||||
void set_input(const llama_ubatch * ubatch) override;
|
||||
|
||||
ggml_tensor * s_copy; // I32 [kv_size]
|
||||
|
||||
const llama_kv_cache_recurrent * kv_self;
|
||||
const llama_kv_cache_unified * kv_self;
|
||||
};
|
||||
|
||||
class llm_graph_input_s_mask : public llm_graph_input_i {
|
||||
public:
|
||||
llm_graph_input_s_mask(const llama_kv_cache_recurrent * kv_self) : kv_self(kv_self) {}
|
||||
llm_graph_input_s_mask(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
|
||||
virtual ~llm_graph_input_s_mask() = default;
|
||||
|
||||
void set_input(const llama_ubatch * ubatch) override;
|
||||
|
||||
ggml_tensor * s_mask; // F32 [1, n_kv]
|
||||
|
||||
const llama_kv_cache_recurrent * kv_self;
|
||||
const llama_kv_cache_unified * kv_self;
|
||||
};
|
||||
|
||||
class llm_graph_input_cross_embd : public llm_graph_input_i {
|
||||
@@ -284,6 +286,16 @@ public:
|
||||
const llama_cross * cross = nullptr;
|
||||
};
|
||||
|
||||
class llm_graph_input_cross_attn_state : public llm_graph_input_i {
|
||||
public:
|
||||
llm_graph_input_cross_attn_state() = default;
|
||||
virtual ~llm_graph_input_cross_attn_state() = default;
|
||||
|
||||
void set_input(const llama_ubatch * ubatch) override;
|
||||
|
||||
ggml_tensor * cross_attn_state; // F32 [4, n_embd, 1061]
|
||||
};
|
||||
|
||||
//
|
||||
// llm_graph_result
|
||||
//
|
||||
@@ -298,7 +310,6 @@ class llm_graph_result_i {
|
||||
public:
|
||||
virtual ~llm_graph_result_i() = default;
|
||||
|
||||
virtual ggml_tensor * get_tokens() = 0;
|
||||
virtual ggml_tensor * get_logits() = 0;
|
||||
virtual ggml_tensor * get_embd() = 0;
|
||||
virtual ggml_tensor * get_embd_pooled() = 0;
|
||||
@@ -313,7 +324,6 @@ class llm_graph_result : public llm_graph_result_i {
|
||||
public:
|
||||
virtual ~llm_graph_result() = default;
|
||||
|
||||
ggml_tensor * get_tokens() override { return t_tokens; }
|
||||
ggml_tensor * get_logits() override { return t_logits; }
|
||||
ggml_tensor * get_embd() override { return t_embd; }
|
||||
ggml_tensor * get_embd_pooled() override { return t_embd_pooled; }
|
||||
@@ -330,7 +340,6 @@ public:
|
||||
}
|
||||
|
||||
// important graph nodes
|
||||
ggml_tensor * t_tokens = nullptr;
|
||||
ggml_tensor * t_logits = nullptr;
|
||||
ggml_tensor * t_embd = nullptr;
|
||||
ggml_tensor * t_embd_pooled = nullptr;
|
||||
@@ -354,8 +363,8 @@ struct llm_graph_params {
|
||||
const llama_cparams & cparams;
|
||||
const llama_ubatch & ubatch;
|
||||
|
||||
ggml_backend_sched_t sched;
|
||||
ggml_backend_t backend_cpu;
|
||||
ggml_backend_sched * sched;
|
||||
ggml_backend * backend_cpu;
|
||||
|
||||
const llama_adapter_cvec * cvec;
|
||||
const llama_adapter_loras * loras;
|
||||
@@ -406,9 +415,9 @@ struct llm_graph_context {
|
||||
|
||||
ggml_context * ctx0 = nullptr;
|
||||
|
||||
ggml_backend_sched_t sched;
|
||||
ggml_backend_sched * sched;
|
||||
|
||||
ggml_backend_t backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove?
|
||||
ggml_backend * backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove?
|
||||
|
||||
const llama_adapter_cvec * cvec;
|
||||
const llama_adapter_loras * loras;
|
||||
@@ -421,7 +430,7 @@ struct llm_graph_context {
|
||||
|
||||
llm_graph_context(const llm_graph_params & params);
|
||||
|
||||
int64_t n_pos_per_embd() const;
|
||||
int64_t n_pos_per_token() const;
|
||||
|
||||
void cb(ggml_tensor * cur, const char * name, int il) const;
|
||||
|
||||
@@ -495,6 +504,7 @@ struct llm_graph_context {
|
||||
ggml_tensor * build_inp_cls() const;
|
||||
ggml_tensor * build_inp_s_copy() const;
|
||||
ggml_tensor * build_inp_s_mask() const;
|
||||
ggml_tensor * build_inp_cross_attn_state() const;
|
||||
|
||||
ggml_tensor * build_inp_cross_embd() const;
|
||||
ggml_tensor * build_inp_pos_bucket_enc() const;
|
||||
|
||||
4
llama/llama.cpp/src/llama-hparams.cpp
vendored
4
llama/llama.cpp/src/llama-hparams.cpp
vendored
@@ -85,3 +85,7 @@ bool llama_hparams::is_swa(uint32_t il) const {
|
||||
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
bool llama_hparams::cross_attention_layers(uint32_t il) const {
|
||||
return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
|
||||
}
|
||||
|
||||
8
llama/llama.cpp/src/llama-hparams.h
vendored
8
llama/llama.cpp/src/llama-hparams.h
vendored
@@ -2,6 +2,8 @@
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#include <array>
|
||||
|
||||
// bump if necessary
|
||||
@@ -42,6 +44,7 @@ struct llama_hparams {
|
||||
uint32_t n_expert = 0;
|
||||
uint32_t n_expert_used = 0;
|
||||
uint32_t n_rel_attn_bkts = 0;
|
||||
uint32_t n_vocab = 0;
|
||||
|
||||
// note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
|
||||
uint32_t n_embd_head_k_mla = 0;
|
||||
@@ -56,6 +59,7 @@ struct llama_hparams {
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
||||
|
||||
std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr = {};
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> cross_attn_layers;
|
||||
|
||||
uint32_t n_layer_dense_lead = 0;
|
||||
uint32_t n_lora_q = 0;
|
||||
@@ -68,7 +72,6 @@ struct llama_hparams {
|
||||
float expert_weights_scale = 0.0;
|
||||
bool expert_weights_norm = false;
|
||||
uint32_t expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_NONE;
|
||||
uint32_t moe_every_n_layers = 0;
|
||||
|
||||
float f_norm_eps;
|
||||
float f_norm_rms_eps;
|
||||
@@ -159,6 +162,9 @@ struct llama_hparams {
|
||||
// Block skip connection
|
||||
bool n_bskcn(uint32_t n, uint32_t il) const;
|
||||
|
||||
// cross attention layers
|
||||
bool cross_attention_layers(uint32_t il) const;
|
||||
|
||||
bool is_swa(uint32_t il) const;
|
||||
};
|
||||
|
||||
|
||||
1826
llama/llama.cpp/src/llama-kv-cache.cpp
vendored
1826
llama/llama.cpp/src/llama-kv-cache.cpp
vendored
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user