Compare commits

...

295 Commits

Author SHA1 Message Date
jmorganca
4ef2b2852d server: serve original error for remote models 2025-09-20 16:46:32 -07:00
Devon Rifkin
3677842ff1 Merge pull request #12358 from ollama/drifkin/qwen3-coder-ampersands
parsers: fix `&`s in qwen3coder parameter values
2025-09-20 12:40:33 -07:00
Devon Rifkin
242df70a75 parsers: fix &s in qwen3coder parameter values
In <https://github.com/ollama/ollama/issues/12357> we that the model
will output tool calls such as

```
<function=shell>
<parameter=command>
pwd && ls -la
</parameter>
</function>
```

We parse this using the approach of transforming into valid xml and then
using an xml parser. While we do transform the function and parameter
names, we weren't escaping the parameter values (which in this example
are invalid since `pwd && ls -la` contains unescaped ampersands).

This has been fixed by first transforming the tags in the same way, and
then walking the transformed string and escaping the text in between the
tags. This also fixes a case where `<` in the middle of a parameter
value would cause an xml parse failure.

Fixes: #12357
2025-09-20 12:11:38 -07:00
Patrick Devine
dba39b2eee gemma: fix rope scaling for qat models (#12348)
* gemma: fix rope scaling for qat models

* gofumpt yourself
2025-09-19 15:04:40 -07:00
Michael Yang
9f3a37fd36 fix: model load for unsupported embedding models (#12311)
with #12181, there's now support for embeddings in ollama engine.
this is done by mutating the architecture and adding _embed when it
detects an embedding model. however this introduced a bug where if
an embedding model was run based on an existing ollama engine model
without an embedding implementation, e.g. llama4, it will pass the
initial arch support check but fail when actually loaded.

there's currently two entrypoints to creating a model. previously this
second entrypoint was necessary because calling model.New would also
load the model. since #11818, this is no longer th case so merge them
to reduce complexity
2025-09-18 16:11:08 -07:00
Michael Yang
7460259eb3 feat: qwen3 embed (#12301)
* cleanup

* use pooling.TypeNone

* pooling test

* qwen3 embed
2025-09-18 15:50:32 -07:00
Jeffrey Morgan
22ccdd74c2 server: add unauthorized error to remote chat handler (#12338) 2025-09-18 15:40:31 -07:00
Daniel Hiltgen
0c3d0e7533 build: avoid unbounded parallel builds (#12319)
With the addition of cuda v13, on a clean setup, the level of parallelism
was causing docker desktop to become overwhelmed and compilers
were crashing.  This limits to 8 parallel per build stage, with the ability
to override if you have many more cores available.
2025-09-18 14:57:01 -07:00
Patrick Devine
eb0a5d4459 auth: check the permissions on the private key to see if it's readable (#12336) 2025-09-18 14:34:34 -07:00
Michael Yang
ceac416ec2 fix(integration): check truncated length (#12337) 2025-09-18 14:00:21 -07:00
Patrick Devine
2717dce6fe convert: convert bf16 vision weights to fp16 (#12324)
This change moves back to converting bf16 vision weights to fp16,
specifically if they start with the name "v." (such as v.blk.0.attn_k.weight).

This fixes a bug where converted images are failing because they are trying
to call `im2col` which doesn't have a bf16 kernel in ggml.
2025-09-17 17:43:17 -07:00
frob
9b8187b487 server: skip parsing initial <think> if provided in the prompt for /api/generate (#12289) 2025-09-17 16:39:04 -07:00
Patrick Devine
8b894933a7 engine: add remote proxy (#12307) 2025-09-17 14:40:53 -07:00
Daniel Hiltgen
9c5bf342bc fix: multi-cuda version skew (#12318)
Ensure that in a version skewed multi-cuda setup we use the lowest version for all GPUs
2025-09-17 13:05:09 -07:00
Michael Yang
564b558c92 fix(llama): other llama flavours (#12308)
* fix(llama): rope scale

* spm llama

* skip moe models

* cleanup
2025-09-17 12:12:21 -07:00
Michael Yang
a417ac97ee prefer ollama engine for qwen3 (#12310) 2025-09-17 09:48:21 -07:00
russcoss
05d53457af refactor: use the built-in max/min to simplify the code (#12280)
Signed-off-by: russcoss <russcoss@outlook.com>
2025-09-16 17:14:21 -07:00
Michael Yang
b225508c9b logutil: fix source field (#12279) 2025-09-16 16:18:07 -07:00
Devon Rifkin
fa1c987a29 Merge pull request #12248 from ollama/drifkin/qwen3-coder-parsing
add qwen3-coder tool support
2025-09-16 10:21:43 -07:00
Michael Yang
ad95d5b30b use split activations when possible (#12293)
* use ggml_*_split activations when possible

* forward qkv
2025-09-16 09:51:19 -07:00
Michael Yang
c253433d68 embed: cleanup (#12299)
* cleanup

* use pooling.TypeNone

* pooling test
2025-09-16 09:48:42 -07:00
Beshoy Girgis
a1cff89b30 fix: fix CUDA detection for older GPUs (#12300)
Prioritize GPU compute capability over driver version to ensure
Pascal GPUs (CC 6.1) use compatible CUDA v12 libraries instead of v13.
2025-09-16 07:47:06 -07:00
Daniel Hiltgen
93c64ea1b1 doc: show how to clear the cgo cache (#12298) 2025-09-15 15:45:35 -07:00
Michael Yang
3f6642f6fc model: implement bert in ollama engine (#9080)
* fix truncate

* s/SentencePieceModel/SentencePiece/

* bert

* wordpiece

* refactor pooling

* more tokenizers

* normalize embeddings
2025-09-15 15:35:59 -07:00
Michael Yang
6f7117145f batch: use tensors for outputs (#12185)
this cleans up the model interface slightly without too much impact in
other areas
2025-09-15 14:33:06 -07:00
Devon Rifkin
472feec2ff address comments 2025-09-15 11:46:25 -07:00
Devon Rifkin
47991940d4 add qwen3-coder tool support
The format qwen3-coder uses is relatively unique, both in rendering and
in parsing. To implement parsing, I wrote a custom parser in similar
style to harmony. For the rendering, I found that the logic would be
much more difficult to follow in a template, so I introduced the concept
of a built-in renderer that uses go code, rather than a template to
generate prompts.

I set us up for future built-in parsers and renderers by making it so
they can be specified in a Modelfile like so:

```
RENDERER "qwen3-coder"
PARSER "qwen3-coder"
```

These need to be provided explicitly because the architecture alone is
not enough to understand what format the model expects to receive, and
what format we expect it to output (e.g., qwen3-coder is `qwen3moe`,
which includes other qwen3-family models as well)

I haven't converted harmony to be one of these "built-ins" yet, since
some of it is in flux with the changes @ParthSareen has been making to
move harmony to the runner. It is likely that many other built-ins will
need to move to the runner as well, but I'm able to slightly defer that
decision since qwen3-coder doesn't have thinking (and therefore doesn't
need to be in the runner to make structured outputs work). I expect to
unify harmony with this approach very soon.

Whether a particular model supports tools or thinking was previously
inferred from templates, but without a template we now also use the
parser itself to declare what it supports. If we have future models that
re-use the same parsing format, but have different capabilities, we'll
want to parameterize them and give them different names to be specified
as a `PARSER`.

Misc changes:

- I worked on the renderer by diffing outputs from the reference
  implementation and ours. To make it easier to do this, I extended
  <https://github.com/ollama/ollama/pull/11875> to also support
  returning the prompt via the openai compat layer
2025-09-15 11:33:47 -07:00
jmorganca
92b96d54ef Revert "runner: move harmony to runner (#12052)"
This reverts commit 1a558f98e2.
2025-09-12 20:40:14 -03:00
jmorganca
9d56e63dbf Revert "runner: simplify parser entrypoints in runner (#12233)"
This reverts commit 8d6fffaead.
2025-09-12 20:40:14 -03:00
tc-mb
053092185e Fix image cannot be seen with slice image on llama engine
Ollama's recent engine update, llama.cpp, caused all models requiring a slice schema to not display images. As a result, the value of numTokens isn't always the length of the sliced ​​image embed, but rather the end length of the schema. This causes the image embed to not be correctly included during all slice processing.
2025-09-12 16:25:12 -07:00
Daniel Hiltgen
44a6792873 tests: tighten up a few flaky tests (#12271)
Sometimes the context test results are pure emoji's
Thanksgiving has too much variability, so swap for a more straight forward prompt.
2025-09-12 13:59:34 -07:00
Daniel Hiltgen
e4ce68311a cuda: remove compression for better compatibility (#12259)
This retains compatibility with driver 531 and up at the trade-off of space.
2025-09-12 07:59:14 -07:00
Jesse Gross
26214125e8 ollamarunner: Suppress stack trace during memory allocation
Allocation failures can be a normal part of new memory estimates, so
we shouldn't print a stack trace in this case.
2025-09-11 14:30:31 -07:00
Daniel Hiltgen
61fb912ca4 CI: fix windows cuda build (#12246)
* ci: adjust cuda component list

v13 has a different breakdown of the components required to build ollama

* review comments
2025-09-11 12:25:26 -07:00
Jesse Gross
aba1575315 llm: Don't try to load split vision models in the Ollama engine
If a model with a split vision projector is loaded in the Ollama
engine, the projector will be ignored and the model will hallucinate
a response. Instead, fallback and try to load the model in the llama
engine.
2025-09-11 11:41:55 -07:00
Jesse Gross
eb10390de9 llm: Enable new memory estimates by default
New memory estimates (see #11090 for more information) are now
enabled automatically for all models running on the Ollama engine,
improving both stability and performance through more accurate sizing
and allocation. Models running on the llama engine will continue to
use the original style of memory estimation.
2025-09-11 11:21:53 -07:00
Michael Yang
feb18cd710 feat: add dimensions field to embed requests (#12242)
* feat: add field to truncate embeddings

* add openai embeddings for dimensions
2025-09-11 10:36:10 -07:00
fengyuchuanshen
8a7e2055d2 cmd: use slices.Contains to simplify code (#12249) 2025-09-11 09:57:31 -07:00
Jesse Gross
29ddfc2cab ggml: Disable flash attention for gemma2
Our new engine implementation of gemma2 doesn't support flash
attention, which means that it also doesn't support KV cache
quantization. Currently, it is possible to turn these two on,
which will result in a crash.
2025-09-10 16:40:45 -07:00
Jesse Gross
71cb86af3e llm: Remove unneeded warning with flash attention enabled
If flash attention is enabled without KV cache quanitization, we will
currently always get this warning:
level=WARN source=server.go:226 msg="kv cache type not supported by model" type=""
2025-09-10 16:40:45 -07:00
CarbonatedWater.org
5198956372 docs: add ollama-co2 to community integrations (#12230) 2025-09-10 16:37:10 -07:00
Daniel Hiltgen
17a023f34b Add v12 + v13 cuda support (#12000)
* Add support for upcoming NVIDIA Jetsons

The latest Jetsons with JetPack 7 are moving to an SBSA compatible model and
will not require building a JetPack specific variant.

* cuda: bring back dual versions

This adds back dual CUDA versions for our releases,
with v11 and v13 to cover a broad set of GPUs and
driver versions.

* win: break up native builds in build_windows.ps1

* v11 build working on windows and linux

* switch to cuda v12.8 not JIT

* Set CUDA compression to size

* enhance manual install linux docs
2025-09-10 12:05:18 -07:00
Parth Sareen
8d6fffaead runner: simplify parser entrypoints in runner (#12233) 2025-09-10 11:24:42 -07:00
Parth Sareen
20b53eaa72 tests: add tool calling integration test (#12232) 2025-09-09 14:01:11 -07:00
Daniel Hiltgen
6745182885 tests: reduce stress on CPU to 2 models (#12161)
* tests: reduce stress on CPU to 2 models

This should avoid flakes due to systems getting overloaded with 3 (or more) models running concurrently

* tests: allow slow systems to pass on timeout

If a slow system is still streaming a response, and the response
will pass validation, don't fail just because the system is slow.

* test: unload embedding models more quickly
2025-09-09 09:32:15 -07:00
Kashyap Tanuku
f810ec741c readme: add Clueless to community integrations (#12188) 2025-09-08 21:31:29 -07:00
Jesse Gross
e119783e66 llm: Clamp batch size to context size
The context must always be able to store the current batch, so
if the user requests a small context then we should also shrink
the batch to match. This also fixes the TestLongInputContext
test on the new engine. (The old engine already has this behavior.)
2025-09-08 20:40:11 -07:00
Parth Sareen
1a558f98e2 runner: move harmony to runner (#12052) 2025-09-08 15:07:59 -07:00
Gabe Goodhart
7b91c9ce51 Hybrid and recurrent memory estimates (#12186)
This PR updates the memory size estimate logic to better handle recurrent and hybrid-recurrent models which are currently being badly overestimated because the default logic assumes full attention for all layers.

The logic for the sizing of the recurrent layers comes from the llama.cpp implementation

        ggml_tensor * r = ggml_new_tensor_1d(ctx, type_r, hparams.n_embd_r()*mem_size);
        ggml_tensor * s = ggml_new_tensor_1d(ctx, type_s, hparams.n_embd_s()*mem_size);

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-09-08 14:53:22 -07:00
Daniel Hiltgen
950d33aa30 docs: show how to debug nvidia init failures (#12216)
This debug setting can help troubleshoot obscure initialization failures.
2025-09-08 11:39:00 -07:00
Michael Yang
9714e38dd0 fix: nil pointer dereference if cache is nil (#12215) 2025-09-08 09:53:59 -07:00
frob
4378ae4ffa parser: don't check the file type of safetensors to prevent false negatives. (#12176)
* Don't check the file type of safetensor to prevent false negatives.

---------

Co-authored-by: Patrick Devine <patrick@infrahq.com>
2025-09-05 16:27:40 -07:00
Michael Yang
5994e8e8fd embedding gemma model (#12181)
* ollama: add embeddings
2025-09-04 09:09:07 -07:00
Michael Yang
b3e6120736 more logutil.Trace (#12177) 2025-09-03 17:24:39 -07:00
Michael Yang
fb92b61754 logutil: add Trace and TraceContext helpers (#12110) 2025-09-02 13:09:12 -07:00
Jesse Gross
8149a3c86e llm: Avoid underflow in free memory logging
If a GPU's free memory is less than the reserved amount, we might get
an underflow. Since it is an unsigned uint64, we print this as a large
number rather than the more correct 0. This only affects logging, the
actual layout code already handles this correctly.

Bug #12138
2025-09-02 12:30:26 -07:00
Daniel Hiltgen
0cc90a8186 harden uncaught exception registration (#12120) 2025-09-02 09:43:55 -07:00
pxwanglu
e42300f25b ml: fix struct field name in comment (#12123) 2025-08-31 16:26:11 -07:00
alpha-nerd-nomyo
66e73809a1 readme: add NOMYO Router to community integrations (#12129) 2025-08-31 13:49:10 -07:00
Daniel Hiltgen
517807cdf2 perf: build graph for next batch async to keep GPU busy (#11863)
* perf: build graph for next batch in parallel to keep GPU busy

This refactors the main run loop of the ollama runner to perform the main GPU
intensive tasks (Compute+Floats) in a go routine so we can prepare the next
batch in parallel to reduce the amount of time the GPU stalls waiting for the
next batch of work.

* tests: tune integration tests for ollama engine

This tunes the integration tests to focus more on models supported
by the new engine.
2025-08-29 14:20:28 -07:00
Daniel Hiltgen
ead4a9a1d0 Always filter devices (#12108)
* Always filter devices

Avoid crashing on unsupported AMD iGPUs

* Remove cuda device filtering

This interferes with mixed setups
2025-08-29 12:17:31 -07:00
ofrancon
4383a3ab7a readme: add Neuro SAN to community integrations (#12109) 2025-08-28 12:27:13 -07:00
Jesse Gross
9d97e6a9f1 ggml: Avoid allocating CUDA primary context on unused GPUs
The recent memory management changes caused all GPUs to be visible
to the runner, regardless of whether they are ultimately used. This
caused CUDA devices to allocate a primary context (~300 MB VRAM) on
each GPU, for each model. This is unnecessary, so we can both avoid
touching GPUs that we exclude in the early stage of allocation and
freeing the memory for any that we touch but don't use.

The issue will continue to exist for the old engine, since it touches
all devices during initialization.
2025-08-27 16:24:18 -07:00
Michael Yang
1081532430 fix keep alive (#12041) 2025-08-27 11:51:25 -07:00
Michael Yang
59412fbb43 convert(gptoss): mxfp4 to ggml layout to avoid jit conversion (#12018)
* convert: return bytes written

* ggml flavor mxfp4

* simplify jit conversion

* comment
2025-08-26 16:41:02 -07:00
Michael Yang
86834a2797 convert: fix tensor sorting (#12015)
there's two bugs here.

1. the check for a layer id is incorrect and should be >= 0 since layer
   0 is valid
2. if both tensors have an layer identifier, it will only compare the
   layer id which will return 0 if the tensors are in the same layer.
   instead it should fallback to comparing the full tensor name
2025-08-26 13:57:46 -07:00
Michael Yang
85ccf7354d gptoss: enable flash attention by default (#11996) 2025-08-26 13:34:45 -07:00
Michael Yang
30fb7e19f8 remove extra field attr (#11205) 2025-08-25 09:58:16 -07:00
Jeffrey Morgan
d3450dd52e api: implement stringer for ToolFunctionParameters (#12038) 2025-08-22 16:26:48 -07:00
Jeffrey Morgan
4bcb04ad88 tools: avoid matching braces that are part of tool content (#12039) 2025-08-22 15:22:14 -07:00
Devon Rifkin
e3d5708754 Merge pull request #12021 from ollama/drifkin/thinking-double-emit
thinking: fix double emit when no opening tag
2025-08-22 12:01:37 -07:00
Jeffrey Morgan
4be4dc8717 server: skip parsing initial <think> if provided in the prompt (#12024) 2025-08-22 12:00:16 -07:00
zoupingshi
109d4fc3b4 chore: remove redundant words in comment (#12028)
Signed-off-by: zoupingshi <hangfachang@outlook.com>
2025-08-22 11:00:27 -07:00
Devon Rifkin
2cb0a580f3 thinking: fix double emit when no opening tag
The thinking parser will automatically transition to being a
pass-through if non-whitespace is seen before an opening tag. However,
we weren't clearing the buffer after the first non-whitespace input, so
in practice the first token would be emitted twice.

Added a test that demonstrated this, and then fixed the bug.
2025-08-21 21:03:12 -07:00
Parth Sareen
7cce5aac76 harmony: move harmony parsing into a package (#12016) 2025-08-21 13:56:22 -07:00
Michael Yang
4ae4f47b16 gpt-oss: convert from hugging face format (#11907) 2025-08-20 15:39:18 -07:00
Jesse Gross
073fa31df5 llm: Don't always evict models in CPU-only mode
With old memory estimates, it's currently impossible to load more
than one model at a time when no GPUs are available. This is because
the check for whether we need to evict a model looks to see if all
layers of the new model can be loaded onto GPUs, which is never true
if there are no GPUs. Before the memory management changes, there
was a special code path for CPU-only systems.

This problem does not exist with new memory estimates.

Fixes #11974
2025-08-20 14:31:02 -07:00
Michael Yang
91fc3c48e3 openai: remove reasoning as an api.Options (#11993) 2025-08-20 12:21:42 -07:00
Devon Rifkin
6de62664d9 Merge pull request #11973 from ollama/drifkin/bpe
model: fix boundary in bpe
2025-08-19 22:58:33 -07:00
Devon Rifkin
463a6caad8 model: add bpe roundtripping tests 2025-08-19 22:05:48 -07:00
Devon Rifkin
fc5fb09f51 model: fix boundary in bpe
0x007e is a tilde and was getting adjusted (+0x00a2) to 0x0120 in the
encode, but then in the decode it was getting adjusted down (-0x0100) to
0x0020. The boundary for the +0x00a2 case has been adjusted to fix this

Fixes: #11966
2025-08-19 18:34:49 -07:00
Jesse Gross
05ccb17c6e kvcache: Use Cast instead of Copy for flash attention masks
Flash attention kernels require the mask of the KV cache be a F16
rather than an F32. We can use the GGML operation ggml_cast to do
this rather than doing it ourselves, which allows reuse of a
preallocated buffer in the graph rather than allocating a new one
for each batch. This improves token generation performance with
flash attention by 10-30% (with gpt-oss). This also makes performance
with flash attention better than without it, as expected.
2025-08-19 12:36:28 -07:00
Michael Yang
f804e8a460 disable output_all (#11959) 2025-08-18 17:45:40 -07:00
Kostis
9cfbffafc5 readme: add any-agent to community integrations (#11950) 2025-08-18 14:21:36 -07:00
Ruslan Suleymanov
470d580205 readme: add Andes to community integrations (#11952) 2025-08-18 14:20:28 -07:00
Devon Rifkin
b517bb1c19 Merge pull request #11910 from ollama/drifkin/harmony-fn-names
harmony: convert fn names to be valid ts identifiers
2025-08-18 14:17:47 -07:00
Jesse Gross
e3ade453a8 llm: Check for nil memory data before printing
We dump out our best memory estimate after we complete processing
for any reason, including errors. This is helpful for finding what
what stopped us in error conditions but in some cases we might not
have gotten even the first result yet.

Fixes #11957
2025-08-18 14:05:22 -07:00
Devon Rifkin
048bd4472a harmony: convert fn names to be valid ts identifiers
In <https://github.com/ollama/ollama/issues/11704#issuecomment-3177380197>
I noticed that hyphens in function names could possibly cause the model
to become confused. Later in that issue I found other explanations, but
at a minimum tool names with spaces in them are confusing to the model
because of the prompt format.

In this change I create a mapper that converts arbitrary tool names into
valid typescript identifiers. It's a little overly strict in that it
doesn't allow all unicode characters that might be valid in ts
identifiers, but it's still very permissive. Since mappings aren't
reversible, we must temporarily store this mapping in order to unmap it
if the model comes back with a call. We also handle the case where
multiple mappings collide into the same mapping and append a counter to
the end to make them unique
2025-08-18 14:05:16 -07:00
Devon Rifkin
ec8bf5e6c5 Merge pull request #11875 from ollama/drifkin/print-template
server: add debug option for printing out prompt instead of calling model
2025-08-18 14:03:14 -07:00
Kostis
709bbb0b6d readme: add any-llm to community integrations (#11956) 2025-08-18 13:13:26 -07:00
Jody Doolittle
abeec240f9 readme: add Serene Pub to community integrations (#11946) 2025-08-18 13:12:41 -07:00
Michael Yang
df335aac09 gpt-oss: disable quantized kv cache (#11929) 2025-08-15 15:01:05 -07:00
Patrick Devine
026bc29237 cli: show the default context length env setting in online help (#11928) 2025-08-15 14:59:52 -07:00
Thomas Pelster
883d031268 docs: added missing comma in 'Ollama's Javascript library'' (#11915) 2025-08-15 14:45:01 -07:00
Daniel Hiltgen
5271ff8559 handle cgo flags in docker build (#11909)
Docker build requires build-args to be defined.  This ensures the release.yaml settings will be used.
2025-08-15 14:39:35 -07:00
Daniel Hiltgen
d6f7233a1c test: improve scheduler/concurrency stress tests (#11906)
* test: improve scheduler/concurrency stress tests

The scheduler test used to use approximate memory figures and would often
over or under shoot a systems capcity leading to flaky test results.
This should improve the reliability of this scenario by leveraging
ps output to determinie exactly how many models it takes to
trigger thrashing.

The concurrency test is also refined to target num_parallel + 1 and handle
timeouts better.

With these refinements, TestMultiModelConcurrency was redundant

* test: add parallel generate with history

TestGenerateWithHistory will help verify caching and context
are properly handled while making requests

* test: focus embed tests on embedding models

remove non-embedding models from the embedding tests
2025-08-15 14:37:54 -07:00
Devon Rifkin
8de1da4767 server: add debug option for printing out prompt instead of calling model 2025-08-15 13:52:50 -07:00
Daniel Hiltgen
d925b5350c Revert "cuda: leverage JIT for smaller footprint (#11635)" (#11913)
This reverts commit dc5a645434.
2025-08-14 21:19:23 -07:00
Daniel Hiltgen
6eaf194b85 fix arm linux build when HWCAP2_SVE2 undefined (#11908) 2025-08-14 16:38:53 -07:00
Jesse Gross
d5a0d8d904 llm: New memory management
This changes the memory allocation strategy from upfront estimation to
tracking actual allocations done by the engine and reacting to that. The
goal is avoid issues caused by both under-estimation (crashing) and
over-estimation (low performance due to under-utilized GPUs).

It is currently opt-in and can be enabled for models running on the
Ollama engine by setting OLLAMA_NEW_ESTIMATES=1. Behavior in other
cases is unchanged and will continue to use the existing estimates.
2025-08-14 15:24:01 -07:00
Michael Yang
ef7d26ba2c convert: skip reading into memory when possible (#11507)
if there's no transformation to the tensor and the input and output
types match, copy directly into the writer. also read from a bufio with
a 32K buffer
2025-08-14 15:03:57 -07:00
Michael Yang
1a19df1f3a update vendored llama.cpp and ggml (#11823)
* TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch

This will be redone once my branch is merged upstream in llama.cpp

* feat: Update all patches

There are a number that are no longer needed at all:

- 0003-embeddings: Embeddings entirely overhauled on master
- 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely
    overhauled on master
- 0019-metal-add-mean-kernel-14267: Merged upstream
- 0020-CUDA-add-mean-operation-14313: Merged upstream

* feat: Sync llama.cpp and ggml

* fix: Update rsync-filter for all moved/new/removed files

* fix: Add files missing from sync

* fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs

* fix: Add ggml files missing from sync

* fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files

* fix: Remove mtmd main cpp files

* fix: Add missing include in sampling_ext.cpp

* fix: Update llama.go to use mtmd instead of clip/llava

* fix: Add patch for mtmd_input_text

* chore: Ignore *.patched in the patch directory

* fix: Fix support for arch-specific ggml-cpu source files with new arrangement

In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific
implementations were split out into a nested tree structure under
ggml-cpu/arch. This conflicts with standard CGO layout where all
arch-specific source files are expected to live in the same directory as
the parent go module and use suffixes based on GOOS and GOARCH. As such,
there were really two options for getting this to work:

1. Add a patch on top of the GGML sync to rearrange the files to match the
GO layout convention
2. Use CGO directives to conditionally include the nested source files in
the compilation units

This commit does (2) in order to minimize the set of changes needed on top
of the upstream file layout. To get this to work, there are two key things
needed:

1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in
the preprocessor directives
2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to
explicitly include the .c|.cpp files for the given architecture from the
nested directory

* fix: Use mtmd_helper to correctly load the bitmap for the image

* fix: Apply patch for mtmd_text_input

* fix: Add missing stb to llama.cpp rsync-filter

* fix: Add sync'ed stb vendored header

* fix: Use c++17 and include vendor for go wrapper modules

* fix: Update patch 0015 for upstream implementation of uuid

* feat: Bump to the latest tip of the branch

* fix: Update patches for bump

* feat: Bump back to the cenral repo and point at the latest master

This includes granite 4 and a number of other model architectures!

* fix: Revert changes to ggml export GPU UUID patch

* fix: Add patch for GGML_VERSION and GGML_COMMIT constants

* feat: Sync all patched code

* build: Include cmake/common.cmake in ggml sync

* build: Add top-level include for GNUINstallDirs in CMakeLists.txt

This is used to populate CMAKE_INSTALL_BINDIR

* fix: Add a patch to avoid power throttling API on non-msvc windows builds

* fix: Sync patch changes for ggml-cpu.c

* feat: Bump llama.cpp to 4a4f42

This picks up support for Kimi K2 and PLaMO-2

* feat: Sync llama.cpp

* fix: Handle multi-chunk image encodings from mtmd

* fix: Re-number patches after merge with `main`

* feat: Bump to 41e78c in the makefile

* fix: Fix Solar and argsort/copy patches after bump

* fix: Remove Gemma3n CUDA Graphs patch

It was implemented upstream:
https://github.com/ggml-org/llama.cpp/pull/14741

* feat: Sync llama.cpp / ggml after latest bump

* build: Remove unnecessary CFLAGS definitions in cpu.go

* fix: Remove unnecessary additions in the rsync-filter

* fix: Remove unused vendored code for chat template parsing

* Revert "fix: Remove Gemma3n CUDA Graphs patch"

This reverts commit d724caced3.

* fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes

https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394

* fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n

* unwind mxfp4 patch

Prepare to bump ggml with their impl for mxfp4

* bump

* fix windows build error

* Convert tensors at load time

Repack the mxfp4 tensors as ggmls kernels expect them to be.

* convert mlp bf16 to f32

* buffer the conversion better

* reshape earlier

* openai swiglu

* add ids

* split qkv, gate_up

* fix nested alt tags

* fast attention

* remove debug messages

* fix lint

* remove redundant test

* remap values only if source/target are different

* add back i32->i32 copy

* refactor cpu quants

* clean up vendor

* update patch instructions

* clean up patches

* remove webgpu

* update mem

* also handle gpt-oss

* revert convert changes

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-14 14:42:58 -07:00
Daniel Hiltgen
7ccfd97a93 doc: clarify both rocm and main bundle necessary (#11900)
Some users expect the rocm bundles to be self-sufficient, but are designed to be additive.
2025-08-14 12:54:55 -07:00
Daniel Hiltgen
c385ca8672 test: add valid responses (#11902)
some of the new models need a few more valid responses to pass
2025-08-14 11:07:13 -07:00
Daniel Hiltgen
837379a94c discovery: fix cudart driver version (#11614)
We prefer the nvcuda library, which reports driver versions. When we
dropped cuda v11, we added a safety check for too-old drivers.  What
we missed was the cudart fallback discovery logic didn't have driver
version wired up.  This fixes cudart discovery to expose the driver
version as well so we no longer reject all GPUs if nvcuda didn't work.
2025-08-13 15:43:33 -07:00
Daniel Hiltgen
a24f90604f int: adjust a few models for integration tests (#11872) 2025-08-13 15:42:36 -07:00
Daniel Hiltgen
dc5a645434 cuda: leverage JIT for smaller footprint (#11635)
Prior to this change our official binaries contained both JIT PTX code and
the cubin binary code for our chosen compute capabilities. This change
switches to only compile the PTX code and rely on JIT at runtime for
generating the cubin specific to the users GPU.  The cubins are cached
on the users system, so they should only see a small lag on the very
first model load for a given Ollama release.  This also adds the first
generation of Blackwell GPUs so they aren't reliant on the Hopper PTX.

This change reduces the ggml-cuda.dll from 1.2G to 460M
2025-08-13 15:42:16 -07:00
youzichuan
bb71654ebe chore: fix some inconsistent function name in comment
Signed-off-by: youzichuan <youzichuan6@outlook.com>
2025-08-13 09:50:27 -07:00
Jesse Gross
a343ae53a4 ggml: Use ordinal IDs for AMD GPUs on Linux when UUID is unavailable
Some AMD GPUs do not provide UUIDs and report only "XX". In these
cases, we should use the ordinal ID as an alternate identifier.
This is the same as we always need to do on Windows for AMD.

In addition, this prints out the ID for each GPU when enumerating
them for easier debugging in the future.
2025-08-12 16:56:14 -07:00
Michael Yang
d0cf6c8281 fix(openai): handle reasoning_effort (#11868) 2025-08-12 11:02:01 -07:00
Jesse Gross
8f4ec9ab28 discover: CPU supports flash attention
We already run flash attention on CPUs in cases where we have
partial offloading but were disabling it if running on pure CPU,
 which is unnecessary.
2025-08-11 15:00:34 -07:00
Devon Rifkin
dbfd7bd027 Merge pull request #11861 from ollama/drifkin/fix-parsing-error
server: fix error when parsing bad harmony tool calls
2025-08-11 14:59:57 -07:00
Devon Rifkin
ee04dbba51 server: fix error when parsing bad harmony tool calls
Thanks @moll for reporting!

Fixes: #11781
2025-08-11 14:09:13 -07:00
Daniel Andersen
ea7657b54a sched: Add support for grouping GPUs (#10678)
This patch modifies Ollama to allow grouping GPUs to memory-fit to the requested model, instead of the former algorithm of using one GPU distributing over all available GPUs.

Benefits:
 - Lower amount of (PCIe-)bus communication between GPUs - especially when they are not very high speed
 - Allowing unallocated GPUs to get into power-saving mode.
 - Significantly reduce VRAM allocation when using more than 2 GPUs in a system
 - Due to the reduced memory allocation, you can run more models simultaneously.
2025-08-11 13:59:38 -07:00
Michael Vorburger
2c776f0780 CONTRIBUTING: Explicitly note docs:... as a good example (#11755) 2025-08-09 18:12:30 -07:00
Jesse Gross
79f6376f5b ggml: No-alloc mode
Callers can set a backend buffer type to be no-alloc, meaning that
it does not allocate memory for tensors or operations. This can
be used for calculating memory requirements. Tensors and graphs
must be recreated with no-alloc set to false before loading data.

Defaults to false for newly created backend buffer types.
2025-08-08 14:57:13 -07:00
Jesse Gross
756c78cfc7 ggml: Support closing backends
In order to iteratively find the best memory allocation, we need to
be able to free backend memory so we can try again.
2025-08-08 14:57:13 -07:00
Jesse Gross
d7f4f788d1 ggml: Use GGML's typedef'ed pointer types
For many backend data structures, GGML defines a typedef of a pointer
type and returns these from functions. In most cases, CGo understands
that these are interchangable but some parts of Go (such as generics)
think they are two different types. We should prefer the form that
GGML uses.
2025-08-08 14:57:13 -07:00
Daniel Hiltgen
114c3f2265 tests: add integration coverage for oss-gpt (#11696)
Also wires up support to override the default "smol" model
2025-08-07 15:06:57 -07:00
Jesse Gross
f2e9c9aff5 server: Reduce gpt-oss context length for small VRAM GPUs
gpt-oss works best with a context length of at least 8k. However,
for GPUs with limited amount of VRAM, there is a significant
performance hit to this increased context. In these cases, we
switch to the Ollama default of 4k
2025-08-07 14:23:55 -07:00
Devon Rifkin
aa9d889522 Merge pull request #11765 from ollama/drifkin/thinking-without-content
openai: always provide reasoning
2025-08-06 19:02:23 -07:00
Devon Rifkin
735c41f9ca openai: always provide reasoning
We were missing passing along thinking if content was nil (as opposed
to empty string)

Also added a test for content not being passed, which was the real cause
of <https://github.com/ollama/ollama/issues/11704>, since with the way
`Content` is typed, not passing it and empty string are distinct
2025-08-06 18:54:20 -07:00
Devon Rifkin
223a619468 Merge pull request #11761 from ollama/drifkin/openai-tool-names
openai: when converting role=tool messages, propagate the tool name
2025-08-06 17:53:25 -07:00
Devon Rifkin
759dd78dd6 openai: when converting role=tool messages, propagate the tool name
Added support for converting both `name` and `tool_call_id` fields,
which different clients might provide. `name` is a legacy field from the
OpenAI completions API. For `tool_call_id` we inspect previous messages
and look for a matching tool call ID and grab its name

Issue: https://github.com/ollama/ollama/issues/11704
2025-08-06 17:00:24 -07:00
Patrick Devine
44bc36d063 docs: update the faq (#11760) 2025-08-06 16:55:57 -07:00
Devon Rifkin
8f14e1f5f6 Merge pull request #11759 from ollama/drifkin/oai-tool-calling
openai: allow for content _and_ tool calls in the same message
2025-08-06 16:11:31 -07:00
Devon Rifkin
203c137810 openai: allow for content _and_ tool calls in the same message
Previously our OpenAI chat completions compat layer assumed that tool
calls and content would never be provided together, but this is not a
correct assumption. Content is only optional when tool calls are
present, but tool calls and content can be provided together

Fixes: https://github.com/ollama/ollama/issues/11704
2025-08-06 15:50:30 -07:00
Daniel Hiltgen
fa8be9e35c clean up debugging (#11756) 2025-08-06 13:31:22 -07:00
Gao feng
8a75e9ee15 Update downloading to pulling in api.md (#11170)
update api.md to make it consist with code.
https://github.com/ollama/ollama/blob/main/server/download.go#L447
2025-08-06 11:33:09 -07:00
Parth Sareen
4742e12c23 docs: update turbo model name (#11707) 2025-08-05 17:29:08 -07:00
Devon Rifkin
2d06977ade Merge pull request #11705 from ollama/drifkin/fn-schema
tools: support anyOf types
2025-08-05 17:02:42 -07:00
Devon Rifkin
30f8a68c4c tools: support anyOf types
afaik gpt-oss is the first model that meaningfully transforms tool
function definitions in its template. We found that relatively common
definitions that include `anyOf` were not working because the template
was assuming that types were always defined via a `type` field.

anyOf allows for fully recursive types, so I exposed a
`toTypeScriptType()` function to handle this recursive logic in go and
keep the templates cleaner. The gpt-oss templates will need to be
updated to use this.

We should keep building out our function definition support to more
fully support the parts of json schema that make sense for this use
case, but in the meantime this will unblock some users (e.g., zed's
ollama integration w/ gpt-oss). Probably the most urgent is proper array
support
2025-08-05 16:46:24 -07:00
Daniel Hiltgen
e378e33421 win: static link msvc libs (#11612)
This should help reduce the runtime dependencies on windows.
2025-08-05 16:10:42 -07:00
Michael Yang
fcec04bf42 gptoss: fix memory calc (#11700) 2025-08-05 15:56:12 -07:00
Jeffrey Morgan
ee92ca3e1d docs: add docs for Ollama Turbo (#11687) 2025-08-05 13:09:10 -07:00
Jesse Gross
8253ad4d2b ggml: Prevent kv cache quanitization on gpt-oss
KV cache quantization has a dependency on the flash attention kernel.
We currently cannot use flash attention with gpt-oss as it requires
additional operations.

The model definition does not call flash attention, so it works
regardless of the setting but the cache will pick up the
quantization type. This updates the flash attention setting earlier
in the loading flow so that all downstream settings are also set correctly.

Fixes: #11671
2025-08-05 13:04:03 -07:00
Michael Yang
fa7776fd24 gpt-oss (#11672)
* bf16

* tests

* gpt-oss

* enable gptoss for engine

* rough estimate

* convert to mxfp4

* handle safetensors U8

* clamp glu/linear

* update tokenizer

* MXFP4 support

This implements the Open Compute Microscaling (MX) FP4 format
as a tensor type with backend implementations focusing
on mulmat and mulmatid on CPU, CUDA, and Metal.

* Unit tests for MXFP4 support

This exercises various operations and shapes on both CPU and GPU (if detected
on the system)

* cuda graph

* unit test adjustments

* cuda: optimize memory access

Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4

* mac: fix crash on old macos versions

cblas_sgemm is only supported on v13.3 and up, however bf16 is
only supported on v14+ so we were falling back to ggml-blas and
crashing on bf16 tensors.  Checking for the function being null
seems to be the simplest way to condittionally avoid registering the
backend.

* server: Minimum context length for gptoss

This model requires a minimum context length of 8192 to function
effectively. Users can set higher values through all normal mechanisms
but lower values will be silently reset.

* ggml: Multiply by numParallel for gptoss sliding window

When computing the graph size estimate, the context size is already
multiplied by numParallel so estimates reflect that. However, since
sliding window models use a smaller, fixed context size, they need
to manually take numParallel into account.

* gpt-oss integration

includes harmony parser and thinking levels, etc.

* fix sync

* fix tests

* fix lint

---------

Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2025-08-05 12:21:16 -07:00
Jesse Gross
0d38b66502 kvcache: Log contents of cache when unable to find a slot
There is a bug when using sliding window attention where we run
out of KV cache slots. This is likely due to not correctly removing
all of the entries as they slide out of range. This adds additional
logging when this occurs to track down the source.

Bug #10127
2025-08-04 16:59:29 -07:00
Jesse Gross
4183bb0574 kvcache: Enable SWA to retain additional entries
Models that use sliding window attention can only resume a sequence
from the cache if it falls within the saved windows. This works well
if the next message picks up where the old one left off. However, it
generally prevents a partial prefix match unless the entire conversation
falls within the sliding window.

This can be a problem with reasoning models where the traces are
supposed to be removed from future messages, forcing the entire
history to be re-evaluated.

This change allows models to specify that a larger amount of the
history be retained in memory, to allow more partial resumption.
It still respects the window that the model was trained on for
token generation.
2025-07-31 14:48:01 -07:00
Sajal Kulshreshtha
ff89ba90bc fixing broken AMD driver link (#11579) 2025-07-30 12:02:54 -07:00
Daniel Hiltgen
6dcc5dfb9c Revert "CI: switch back to x86 macos builder" (#11588)
This reverts commit 9d071e6089.
2025-07-30 08:56:01 -07:00
Daniel Hiltgen
25911a6e6b mac: disable bf16 on unsupported OS versions (#11585)
Support for bf16 was added in MacOS v14+ and attempting to enable
on older versions causes runtime failures.
2025-07-30 08:50:54 -07:00
Daniel Hiltgen
8afa6e83f2 CI: switch back to x86 macos builder (#11572) 2025-07-29 16:41:25 -07:00
Oliver Simons
ea85e27bbd Increase performance for Gemma3n models on NVGPUs by enabling CUDA Graph execution (#11525)
* Enable CUDA Graphs for gemma3n.

Similar to
https://github.com/ggml-org/llama.cpp/pull/14741,
though ollama has a slightly different model graph
than llama.cpp which requires different workaround
checks.

* Remove residual check by reshaping differently in gemma3n model

This should make the heuristics more robust
2025-07-29 12:37:06 -07:00
Jesse Gross
c116a7523d kvcache: Don't shift empty batches
When we context shift, we delete half the context and apply RoPE
with an offset to the other half. We used to RoPE across the entire
context in a single pass with a zero offset for the deleted
section. With the change to shifting in batches, we can skip any
batches where all of the offsets would be zero. This typically
reduces the number of operations by half.
2025-07-29 12:32:22 -07:00
Yoshi
3515cc377c docs: fix typos and remove trailing whitespaces (#11554) 2025-07-28 11:19:13 -07:00
Mayan EDMS
bbf66c0b96 readme: add Mayan EDMS to community integrations (#11543) 2025-07-27 15:02:52 -07:00
Jesse Gross
764be7480f kvcache: Group shift operations into batches
Currently, when we need to do a shift on the cache, it is one
RoPE operation on the entire size of the cache (per layer). In
some cases, this can create a compute graph that is larger than
the forward pass since the forward pass is working in batches.
Since we don't consider shifting in our memory estimates, it's
possible for this to cause a crash if we run out of memory.

By limiting the size of the RoPE calls to batch size chunks, we
ensure that the shift will never exceed the size of the forward
pass, since the forward pass will also contain a RoPE of the same
size. This does not have a sigificant impact on performance since
RoPE is a math operation that is mostly proportional to the size
of its inputs.

In theory defrag could have the same issue since it also creates a
compute graph outside of the forward pass, however, since it is
only copies, it does not require any working space.
2025-07-25 16:50:27 -07:00
Ruyut
b72e5adb14 CONTRIBUTING: fix typo in commit message example (#11528) 2025-07-25 14:24:06 -07:00
Patrick Devine
80b538e312 cli: catch upstream errors gracefully (#11512) 2025-07-23 22:16:55 -07:00
Jeffrey Morgan
4f8a0166cc tools: loosen tool argument parsing (#11509) 2025-07-23 21:21:29 -07:00
minxinyi
1e6eab5c33 server: use slices.Equal to simplify code (#11502) 2025-07-23 14:25:39 -07:00
Michael Yang
6c733bf0a6 s#x/exp/maps#maps# (#11506) 2025-07-23 13:23:32 -07:00
Patrick Devine
3bac5cba60 Fix GetModelInfo (#11496)
---------

Co-authored-by: Richard Lyons <frob@cloudstaff.com>
2025-07-22 13:40:47 -07:00
ycomiti
4151ef8cf7 Update linux.md (#11462) 2025-07-22 11:17:31 -07:00
Stefan Wärting
82da19c634 readme: add GMAI - Gradle Managed to community integrations (#11461) 2025-07-20 14:55:47 -07:00
Jeffrey Morgan
bdd9d22dfd tools: fix parsing issue when a tool name is a substring of another (#11456)
Co-authored-by: frob <rick+github@frob.com.au>
2025-07-20 14:55:14 -07:00
zmldndx
5fc38d042f readme: update argo description to support deep research (#11455) 2025-07-19 13:29:38 -07:00
Daniel Hiltgen
191d94289d ci: switch mac builder to arm64 (#11379)
The macos-13 is x86, while macos-13-xlarge is arm64
2025-07-17 07:33:44 -07:00
frob
802ad16ce4 docs: add the no-Modelfile function of ollama create (#9077) 2025-07-16 22:16:10 -07:00
frob
5e67f4f90e openai: allow openai endpoint to accept webp images (#11412)
Co-authored-by: Richard Lyons <frob@cloudstaff.com>
2025-07-16 21:31:49 -07:00
Haiyue Wang
e840ccb523 readme: update the llama.cpp github link (#11427) 2025-07-16 21:20:28 -07:00
Michael Yang
b4fe3adc0a compile bf16 support into ggml-metal (#11430) 2025-07-16 17:32:57 -07:00
Parth Sareen
d73f8aa8c3 cmd: add default assistant role to message construction (#11431) 2025-07-16 11:18:16 -07:00
Bruce MacDonald
92c2e8a56c api: fix unreachable status err (#11423)
StatusError was unreachable, the client always checked for error messages in the response body first, and the server always includes error messages with HTTP error status codes.
2025-07-16 11:03:28 -07:00
Marcelo Fornet
2e3fd86d48 docs: fix typo in macos.md (#11425) 2025-07-16 10:50:46 -07:00
先知
4261a3b0b2 docs: update modelfile.md to reflect current default num_ctx (#11189)
As in the commit 44b466eeb2, the default context length has been increased to 4096.
2025-07-11 15:15:00 -07:00
Jesse Gross
acef9b4c1b ggml: Use assigned layers when reporting loading stats
Reporting params.NumGPULayers can be misleading because it is the
requested number of layers, not the actual number that is loaded.
While they are often the same, there are cases where they might mismatch,
such as if the GPU backend is missing.
2025-07-11 14:21:50 -07:00
Jesse Gross
9a43994c45 ggml: Disable unused pipeline parallelism
We're not currently using it, even in cases where we could. Disabling
it improves generation performance by 10-30% with multiple GPUs.
2025-07-11 13:30:05 -07:00
Daniel Hiltgen
f8a6e88819 Only load supported models on new engine (#11362)
* Only load supported models on new engine

Verify the model is supported before trying to load

* int: testcase for all library models
2025-07-11 12:21:54 -07:00
Jesse Gross
35fda7b4af ggml: Report ordinal IDs for AMD GPUs on Windows
We don't get valid UUIDs for AMD GPUs on Windows, so the best option
is to use the ordinal IDs. This brings us in line with what we currently
do on the Ollama server - the only exception is AMD GPUs on Linux, which
falls back to using ordinal IDs. The GGML implementation has no fallback
but it doesn't appear to occur for any of the GPUs that we support.

It's also possible that there are collisions between ordinal IDs for
different libraries - however the only places where we use them are
AMD on Windows and Metal on Mac, which can never occur on the same
system.
2025-07-09 10:35:31 -07:00
Daniel Hiltgen
66fb8575ce doc: add MacOS docs (#11334)
also removes stale model dir instructions for windows
2025-07-08 15:38:04 -07:00
Daniel Hiltgen
20c3266e94 Reduce default parallelism to 1 (#11330)
The current scheduler algorithm of picking the paralellism based on available
VRAM complicates the upcoming dynamic layer memory allocation algorithm.  This
changes the default to 1, with the intent going forward that parallelism is
explicit and will no longer be dynamically determined.  Removal of the dynamic
logic will come in a follow up.
2025-07-08 12:08:37 -07:00
Daniel Hiltgen
34088dbcfb API/CLI context enhancements (#11331)
* API: expose context size of loaded models

* CLI: add context UX

This adds a column in the ps output to show the models context size.
2025-07-08 11:59:06 -07:00
Parth Sareen
43107b15b9 add tool_name to api.md (#11326) 2025-07-07 16:53:13 -07:00
Parth Sareen
1f91cb0c8c template: add tool result compatibility (#11294) 2025-07-07 15:53:42 -07:00
Daniel Hiltgen
12d8ad0d38 ci: modularization (#11324)
switch a few constants to variables
2025-07-07 14:07:43 -07:00
Jesse Gross
592d21e7db Revert "ggml: Temporarily disable reporting UUIDs"
The root cause was an unclean upgrade - this code is fine.

This reverts commit 45f216a9c7.
2025-07-07 11:31:02 -07:00
Jeffrey Morgan
5a08b01f5b readme: update Ollama icon size 2025-07-05 17:20:42 -07:00
Daniel Hiltgen
4f473e224c int: add performance integration tests (#11173)
usage example:
  go test --tags=integration,perf -count 1 ./integration -v -timeout 1h -run TestModelsPerf 2>&1 | tee int.log
  cat int.log | grep MODEL_PERF_HEADER | cut -f2- -d: > perf.csv
  cat int.log | grep MODEL_PERF_DATA | cut -f2- -d: >> perf.csv
2025-07-05 16:07:09 -07:00
Daniel Hiltgen
9d60bb44cf doc: add NVIDIA blackwell to supported list (#11307) 2025-07-05 16:06:30 -07:00
Vincent RAMPAL
f371260e75 Update base image to Ubuntu 24.04 LTS (#9681) 2025-07-05 16:02:33 -07:00
Daniel Hiltgen
c9e6d7719e doc: Update link for mac install (#11288)
Favor the dmg now.
2025-07-03 09:48:45 -07:00
Daniel Hiltgen
2c4ce40334 mimic logs for layers on new engine (#11278)
This adds some extra logs to make the new engine a bit more consistent
with the llama engine.
2025-07-02 16:38:36 -07:00
XuKecheng
5d8c173529 readme: add NativeMind to community integrations (#11242) 2025-07-01 09:46:15 -07:00
Jeffrey Morgan
44b17d2bfa tools: fix parsing tool calls with empty arguments, missing required fields (#11233) 2025-06-30 08:59:03 -07:00
Attogram Project
3b8b692218 readme: add ollama-bash-toolshed to community integrations (#11224) 2025-06-29 14:59:54 -07:00
Michael Yang
4129af9205 chore: cleanup comments + unused vars (#11225) 2025-06-27 11:45:33 -07:00
Jesse Gross
45f216a9c7 ggml: Temporarily disable reporting UUIDs
This is causing segfaults, so disable it. Currently UUIDs are only
used for debugging purposes, although they planned to be used in
additional ways in the future.

Bug #11211
2025-06-27 11:27:22 -07:00
Michael Yang
d0b32def60 skip quantizing per_layer_token_embd (#11207)
this tensor isn't compatible with cuda when quantized to q4_K so skip it
2025-06-26 21:49:35 -07:00
Daniel Hiltgen
11ffc36157 ci: multi-stage release process (#11001) 2025-06-26 10:32:48 -07:00
Jeffrey Morgan
ba04902670 fs/ggml: add multiplier in graph estimates (#11208) 2025-06-26 00:19:44 -07:00
Jeffrey Morgan
3944602f51 fs/ggml: add missing architecture to OllamaEngineRequired() (#11206) 2025-06-26 00:11:23 -07:00
Michael Yang
73b642e6f3 add new gemma model (#11204)
* update patches

* cherry pick metal mean kernel

* cherry pick cuda mean kernel

* gemma3n
2025-06-25 21:47:09 -07:00
Daniel Hiltgen
ad118d8b13 ci: arm sbsa fixes (#11194) 2025-06-24 21:00:15 -07:00
Daniel Hiltgen
f08534137b ci: include dependencies 2025-06-24 20:27:43 -07:00
Daniel Hiltgen
4b4a90f233 ci: pick up arm sbsa cuda libs (#11192) 2025-06-24 18:59:22 -07:00
Daniel Hiltgen
03274a6b2f ci: recombine linux amd64 binaries (#11188)
Glue the rocm and archive builds back together.
2025-06-24 18:45:01 -07:00
Devon Rifkin
cc6463ebca Merge pull request #10238 from ollama/drifkin/array-head-count-simple
ggml: fix crash for array head counts
2025-06-24 17:50:02 -07:00
Daniel Hiltgen
405d2f628f ci: rocm parallel builds on windows (#11187)
The preset CMAKE_HIP_FLAGS isn't getting used on Windows.
This passes the parallel flag in through the C/CXX flags, along
with suppression for some log spew warnings to quiet down the build.
2025-06-24 15:27:09 -07:00
Devon Rifkin
a3f7dd3e98 Merge branch 'main' into drifkin/array-head-count-simple 2025-06-24 14:20:05 -07:00
Daniel Hiltgen
c85c0ebf89 CI: switch windows to vs 2022 (#11184)
* CI: switch windows to vs 2022

* ci: fix regex match
2025-06-24 13:26:55 -07:00
Daniel Hiltgen
10a8e04a8d avoid context overflow (#11175)
For smaller context models, make sure we do not exceed the training size.
2025-06-23 15:52:50 -07:00
Daniel Hiltgen
1c6669e64c Re-remove cuda v11 (#10694)
* Re-remove cuda v11

Revert the revert - drop v11 support requiring drivers newer than Feb 23

This reverts commit c6bcdc4223.

* Simplify layout

With only one version of the GPU libraries, we can simplify things down somewhat.  (Jetsons still require special handling)

* distinct sbsa variant for linux arm64

This avoids accidentally trying to load the sbsa cuda libraries on
a jetson system which results in crashes.

* temporary prevent rocm+cuda mixed loading
2025-06-23 14:07:00 -07:00
Devon Rifkin
b2b270ad5d Merge branch 'main' into drifkin/array-head-count-simple 2025-06-23 10:37:31 -07:00
AJ
2bb69b40c7 readme: add ai-hub to community integrations (#11169) 2025-06-23 09:21:12 -07:00
Daniel Hiltgen
65bff664cb build speedups (#11142)
Enable parallel building of the GPU architectures.
2025-06-20 12:32:51 -07:00
Michael Yang
c088ac0e79 convert: utility for merging tensors (#11069) 2025-06-20 11:12:01 -07:00
Michael Yang
0a066cfd91 Reapply "feat: incremental gguf parser (#10822)" (#11114) (#11119)
* Reapply "feat: incremental gguf parser (#10822)" (#11114)

This reverts commit a6e64fbdf2.

* fix older ggufs
2025-06-20 11:11:40 -07:00
Jesse Gross
87b7af6cee ggml: Check return status for computation.
We don't check the return status after computing the graph, which
can silently lead to bad outputs if we try to keep going and future
computation succeeds. This appears to happens in certain cases on
Apple M2 devices.

Fixes #11070
2025-06-19 17:12:49 -07:00
Daniel Hiltgen
f2527b08fb int: add coverage for older models (#11137)
Verified these fail on 0.9.1 and pass on HEAD.
2025-06-19 12:10:19 -07:00
Jeffrey Morgan
8bcb3125c1 benchmark: remove unused benchmark test (#11120)
Removes a test under benchmark/ that is unused
2025-06-18 12:58:50 -07:00
Jeffrey Morgan
6baf1e31e2 Revert "Revert "ggml: Export GPU UUIDs" (#11115)" (#11117)
Reverts PR #11115. The original change was mistakingly reverted instead of #10822
2025-06-18 07:30:49 -07:00
Jeffrey Morgan
ed567ef43b Revert "ggml: Export GPU UUIDs" (#11115)
This reverts commit aaa7818000.
2025-06-18 05:45:00 -07:00
Jeffrey Morgan
a6e64fbdf2 Revert "feat: incremental gguf parser (#10822)" (#11114)
This reverts commit 6b04cad7e8.
2025-06-18 05:42:44 -07:00
曹家巧
60cfa2a203 cache: fix comment function name in cache.go (#11110) 2025-06-18 05:21:45 -07:00
Jeffrey Morgan
55bbf3b4a1 tools: return empty arguments object instead of null (#11113) 2025-06-18 05:20:43 -07:00
Jeffrey Morgan
6bda1d2479 tools: fix parsing tool calls without any parameters (#11101)
Fixes issue where tool calls that don't expect any parameters were
not being parsed. This also fixes two additional issues: one where
2+ tool calls would not be correctly parsed, and cases where tool calls
with invalid parameters would still get parsed
2025-06-17 10:51:43 -07:00
Jeffrey Morgan
9e125d884c model: treat 'user defined' tokens as special tokens (#11077) 2025-06-16 16:03:16 -07:00
Michael Yang
a6fbfc880c gguf: fix write order (#11068)
* ggml: test write gguf order
* ggml: fix write tensor order
2025-06-16 10:42:32 -07:00
NGC13009
502028968d readme: add ollama-launcher to community integrations (#11080) 2025-06-15 21:27:49 -07:00
Phil
5a8eb0e151 readme: add GPTranslate to community integrations (#11071) 2025-06-14 08:54:03 -07:00
Jeffrey Morgan
9f8a18ec05 tools: loosen tool parsing to allow for more formats (#11030) 2025-06-12 14:18:54 -07:00
Michael Yang
6b04cad7e8 feat: incremental gguf parser (#10822)
* incremental gguf parser
* gguf: update test to not rely on gguf on disc
* re-use existing create gguf
* read capabilities from gguf kv
* kv exists
* update tests
* s/doneFunc/successFunc/g
* new buffered reader

---------

Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
2025-06-12 11:04:11 -07:00
Michael Yang
45f56355d5 feat: uneven splits (#11048)
The current splitDim function only operates on tensors that are split evenly which isn't always the case, e.g. a QKV tensor. This change allows the function to be used for arbitrary splits
2025-06-11 12:10:54 -07:00
Michael Yang
0dabb4ef6a skip tokenizer.model if possible (#11050)
if tokenizer.json is already copied, skip tokenizer.model
2025-06-11 12:10:35 -07:00
Michael Yang
2e77aa1ae7 use nn.Linear in place of ml.Tensor (#11049)
while nn.Linear.Forward isn't applicable for sparse MLP, it's still
a nice container for the tensors
2025-06-11 12:10:15 -07:00
Attogram Project
deaabe292d readme: add ollama-multirun to community integrations (#11038) 2025-06-10 14:14:51 -07:00
Jeffrey Morgan
af21a5ac39 readme: update quickstart link text to Gemma 3 2025-06-10 09:34:23 -07:00
Jeffrey Morgan
f63d7f68eb readme: update quickstart example to Gemma 3 2025-06-10 09:33:54 -07:00
Daniel Hiltgen
82ad1dbc07 mac: handle "keep" named apps (#11031)
When a user elects to keep the existing app, the
new Ollama is named `Ollama 2.app`
This fixes the app startup flow to handle this naming pattern.
2025-06-09 16:29:57 -07:00
Daniel Hiltgen
feeabdadd2 spawn desktop quickly (#11011)
Give the desktop app a hint to start fast.
2025-06-08 09:34:52 -07:00
Krzysztof Jeziorny
fc0309615e docs: update link to AMD drivers in linux.md (#10973) 2025-06-06 23:30:04 -04:00
Jeffrey Morgan
09d308d6b6 Revert "server: add model capabilities to the list endpoint (#10174)" (#11004)
This reverts commit 0943001193.
2025-06-06 23:29:14 -04:00
Daniel Hiltgen
a8ed68bd93 launch app hidden (#10962)
When starting the app in the background, start it hidden.
2025-06-06 14:06:29 -07:00
Daniel Hiltgen
2ae65ae471 win: handle more than 2048 processes (#10997)
Fix an array out of bounds crash
2025-06-06 14:06:09 -07:00
Devon Rifkin
a3b6886b7d move thinking logic into its own package (#10990)
move thinking logic into its own package
2025-06-06 12:02:20 -07:00
Hunter Wittenborn
c6a6d7294d docs: fix typo in development.md (#10998) 2025-06-06 12:07:29 -04:00
Devon Rifkin
2cf007c9d1 Merge pull request #10987 from ollama/drifkin/export-thinking-parser
export ThinkingParser
2025-06-05 12:19:14 -07:00
Devon Rifkin
0683efa637 export ThinkingParser 2025-06-05 10:22:32 -07:00
JasonHonKL
0943001193 server: add model capabilities to the list endpoint (#10174) 2025-06-04 11:39:48 -07:00
HardCodeDev
5c42800fca readme: add SimpleOllamaUnity to community integrations (#10817) 2025-05-30 19:50:16 -07:00
Parth Sareen
65f10c2823 tools: resiliency upgrade to name and arg extraction from template (#10917) 2025-05-30 15:18:09 -07:00
Jesse Gross
aaa7818000 ggml: Export GPU UUIDs
This enables matching up devices and information reported by the backend
with system management libraries such as nvml to get accurate free
memory reporting.
2025-05-29 14:01:26 -07:00
Jesse Gross
f15ffc4320 llm: Make "POST predict" error message more informative
"POST predict" basically means that the runner has crashed, which
can have many reasons. However, many people think this is a specific
error and either report only this message or group together unrelated
bugs. This replaces it with a more friendly and helpful message.
2025-05-29 09:41:19 -07:00
Devon Rifkin
5f57b0ef42 add thinking support to the api and cli (#10584)
- Both `/api/generate` and `/api/chat` now accept a `"think"`
  option that allows specifying whether thinking mode should be on or
  not
- Templates get passed this new option so, e.g., qwen3's template can
  put `/think` or `/no_think` in the system prompt depending on the
  value of the setting
- Models' thinking support is inferred by inspecting model templates.
  The prefix and suffix the parser uses to identify thinking support is
  also automatically inferred from templates
- Thinking control & parsing is opt-in via the API to prevent breaking
  existing API consumers. If the `"think"` option is not specified, the
  behavior is unchanged from previous versions of ollama
- Add parsing for thinking blocks in both streaming/non-streaming mode
  in both `/generate` and `/chat`
- Update the CLI to make use of these changes. Users can pass `--think`
  or `--think=false` to control thinking, or during an interactive
  session they can use the commands `/set think` or `/set nothink`
- A `--hidethinking` option has also been added to the CLI. This makes
  it easy to use thinking in scripting scenarios like
  `ollama run qwen3 --think --hidethinking "my question here"` where you
  just want to see the answer but still want the benefits of thinking
  models
2025-05-28 19:38:52 -07:00
Patrick Devine
aa25aff10d client: add request signing to the client (#10881)
If OLLAMA_AUTH is set, sign each request w/ a timestamp and pass the signature in the token header
2025-05-27 16:50:57 -07:00
Jesse Gross
ea79003180 kvcache: Skip computing causal mask for worst case graph reservation
Computing an attention mask for a large context and max batch is
expensive - over 100ms. Models like Gemma3 that have multiple types
of caches and custom attention masks need to do this 4 times, so this
adds approximately 500ms to startup time when using 128k context

When we are reserving the worst case graph, we don't need the mask,
only its shape, so we can skip this.
2025-05-27 14:25:15 -07:00
Kyle Steere
9239a254e0 server: abort download on empty digest
Signed-off-by: Kyle Steere <kyle.steere@chainguard.dev>
2025-05-27 11:28:48 -07:00
Parth Sareen
066d0f4746 tools: relax JSON parse constraints for tool calling (#10872) 2025-05-26 18:59:06 -07:00
Parth Sareen
aea6fb9b58 tools: remove newline stripping (#10869) 2025-05-26 17:16:00 -07:00
RAPID ARCHITECT
012cf65340 readme: add AWS Strands Agents SDK example to community integrations (#10865) 2025-05-26 12:05:03 -07:00
Min Yoo
a45231af47 readme: Add macLlama to community integrations (#10790)
This commit updates the README to include macLlama within the community integrations section.

macLlama is a native macOS application built for lightweight and efficient LLM interaction.  Key features include:

*   **Lightweight & Native:** Designed to be resource-friendly and perform optimally on macOS.
*   **Chat-like Interface:** Provides a user-friendly, conversational interface.
*   **Multiple Window Support:** Allows users to manage multiple conversations simultaneously.

The primary goal of macLlama is to offer a simple and easy-to-run LLM experience on macOS.
2025-05-24 13:18:32 -07:00
Daniel Hiltgen
2307fc2bcd tests: drop llama3.2-vision embedding tests (#10837) 2025-05-24 13:17:53 -07:00
frob
6623898198 docs: remove unsupported quantizations (#10842) 2025-05-24 13:17:26 -07:00
frob
eda472df1b server: add hint to the error message when model path access fails (#10843) 2025-05-24 13:17:04 -07:00
Jesse Gross
f18e0cb550 ml: Improve slog formatting for BackendMemory 2025-05-23 20:08:23 -07:00
Parth Sareen
e8b981fa5d tools: refactor tool call parsing and enable streaming (#10415) 2025-05-23 14:19:31 -07:00
Parth Sareen
884d26093c llama: add minimum memory for grammar (#10820) 2025-05-22 18:53:31 -07:00
Jesse Gross
1f371ea92f ml: Panic rather than return error on tensor allocation failure
FromFloatSlice and FromIntSlice return an error if the shape doesn't
match the passed data or if memory can't be allocated. Since these
are inputs, the memory being allocated is system memory rather than VRAM.

In many cases, the caller can't really handle the error and panics.

Empty and Zeros directly panic if they can't allocate memory.

This makes things consistent by panicing for the first two cases,
removing a fair amount of error handling code. This is also consistent
with how Go typically handles these situations.
2025-05-22 14:38:09 -07:00
Jesse Gross
73d6a82cce ollamarunner: Memory usage reporting
This provides granular information about the backend memory allocations
required by the runner:
 - Per backend
 - Per layer
 - Weights, cache and graph
 - Allocation status

This can be used for debugging and validating memory estimates.
2025-05-22 14:38:09 -07:00
Jesse Gross
6db8a3771c ggml: Report graph memory for failed allocations
GGML has a function to report the allocated size of a backend buffer.
However, this returns 0 if we tried to allocate a buffer and it failed.
For memory management purposes, it's important to know how much we were
trying to allocate. This extends the API to report attempted sizes for
all buffers and whether it succeeeded.
2025-05-22 14:38:09 -07:00
Daniel Hiltgen
d950ff12c0 sched: fix runner leak during reloading unload (#10819)
When the same model is being reloaded rapidly with client connections
being canceled before the model finishes loading, the queued unload
event could cause a leak of runners by deleting a different runner from
the loaded list.
2025-05-22 14:31:36 -07:00
Michael Yang
adff143bcd fix: mllama quality (#10807)
* fix mllama convert

- transform attn_gate and ffn_gate
- swap attention heads for vision models

* fix mllama

the mlp gate which was applied in the wrong place
2025-05-22 11:30:49 -07:00
Bruce MacDonald
fbe6ae285a server: improve tensor quantization fallback logic (#10806)
Fall back to alternative quantization types when a tensor's dimensions aren't divisible by the block size required for the original desired quantization type. If retried quantization types fail, the system ultimately falls back to F16 (half-precision floating point) which has a block size of 1 and can handle any tensor dimension.
2025-05-22 10:48:08 -07:00
Daniel Hiltgen
fdd4d479a3 integration: add qwen2.5-vl (#10815)
Replace the older llava model with qwen2.5 for vision tests
Skip split-batch test on small VRAM systems to avoid excessive test time
2025-05-22 09:12:32 -07:00
Michael Yang
61aeaf7e81 remove support for multiple ggufs in a single file (#10722)
* remove support for multiple ggufs in a single file

this was an attempt to make it easier to import multimodal models into
ollama. this was rarely used and error prone so remove it

* fix: create fused model from blob
2025-05-21 13:55:31 -07:00
Daniel Hiltgen
7359b02707 win: detect background upgrade in progress (#10785)
Give the user a helpful error instead of showing
connection refused errors.
2025-05-21 10:46:56 -07:00
Michael Yang
c890011322 feat: port qwen2 model (#10782) 2025-05-21 10:21:24 -07:00
Michael Yang
e0ed984cde feat: qwen3 dense and sparse models (#10708)
* feat: qwen3 dense
* feat: qwen3moe
* fix llama4 moe
2025-05-21 10:21:07 -07:00
Michael Yang
139f84cf21 fix cmakelists (#10804)
this fixes an issue introduced in #10788
2025-05-21 09:52:52 -07:00
Michael Yang
375839ea2d chore: disable debug in binary libraries (#10788) 2025-05-21 09:39:38 -07:00
Michael Yang
69b2fe9282 fix: qwen25vl assign samebatch in multimodal input (#10789)
setting samebatch on the vision start token is problematic because it
will be shared with other inputs that also use images. this will cause
the input to be cached and the runner will not see SameBatch. SameBatch
will also be incorrect since it may be for a different image.

assigning samebatch to the input tokens resolves this by ensure it's
assigned correctly to inputs corresponding to the image.

not setting same batch correctly may cause panics during inference since
images are no longer guaranteed to be in the same batch.
2025-05-21 09:39:20 -07:00
Michael Yang
9ed8bf14cb ml: add more rope options (#10775) 2025-05-20 15:51:08 -07:00
DarkCaster
e6a800ca11 llama: fix incorrect initialization of C.struct_common_sampler_cparams.penalty_present (#10779) 2025-05-20 10:41:15 -07:00
Michael Yang
ff180c3466 fix llama and mistral3 models (#10774)
* fix llama model

* fix mistral3.1 model

do not set default vision layers
2025-05-19 15:06:35 -07:00
Jesse Gross
3fe74fba42 llm: Use first layer as memory buffer in estimation
This is a partial revert of 0478d44 "Fixed over vram allcation dure to
small initial layer sizes."

Previously we used the size of the first layer as an extra reserved
amount of space to buffer our memory estimates. The above commit
changed this to use the largest layer. However, this had performance
impacts on more models than the original commit was trying to fix.

There is just a heuristic without an ideal solution so this goes back
to the historic behavior.

Fixes: #10765, #10756, #10752, #10726
2025-05-19 14:03:34 -07:00
Daniel Hiltgen
1a0cfd080a avoid kv truncation during create (#10761) 2025-05-19 13:54:54 -07:00
Jesse Gross
94ab428e3f ggml: Seperate tensor load from backend creation
Currently, when the backend is created, the tensors are loaded at the
same time, which is a slow operation. This separates them to be two
steps:
 - Create backend, including enumerating tensors and memory allocation
 - Loading tensor data

This allows more flexibility in managing model loading.
2025-05-19 09:54:22 -07:00
Jesse Gross
d755577473 llm: Estimate projector memory correctly for Ollama engine
The Llama engine always places vision projectors on the first GPU
if one exists. However, the Ollama engine groups it with the output
layer, which means the projector is only offloaded if all other layers
are offloaded. The memory estimation code always assumes the former
layout - this changes it to use the correct layout based on the engine.

This addresses two impacts of the current behavior:
 - In multi-GPU setups, we can crash with OOM errors when we try to
   allocate memory on a full GPU while another still has space.
 - If the vision projector is large, it may prevent us from offloading
   anything when we could have fit some of the text layers.
2025-05-19 09:52:48 -07:00
Jesse Gross
a2cc8571c5 llm: Consistently track unassigned model data
In some cases, if we fail to assign a piece of the model to a GPU then
we lose track of this data. Although it doesn't change the memory
allocation, it does affect the total size of the model reported by
tools such as ollama ps (and also the percent offloaded).

This makes it look like setting num_gpu isn't reflected in ollama ps,
which isn't true but the offloading percent may appear to not change.

Spreading the model across more GPUs will continue to impact the
reported total size of the model.
2025-05-19 09:52:48 -07:00
Ronald Wilson
7edfdd2f5f readme: add TinyNotepad to community integrations (#10763)
This PR adds Tiny Notepad, a lightweight, notepad-like interface to chat with local LLMs via Ollama. 

- It’s designed as a simple, distraction-free alternative. 
- The app supports basic note-taking, timestamped logs, and model parameter controls. 
- Built with Tkinter, it runs entirely offline and available via PyPI.

Aims to provide a lightweight easy to run and install interface for ollama.
2025-05-18 12:43:22 -07:00
Michael Yang
333e360422 model: handle multiple eos tokens (#10577)
* get eos_token_id from generation_config.json

* refactor

* include both ids and strings in trace

* comments

* remove special case for gemma3 special vocab (#10743)
2025-05-16 13:40:23 -07:00
Daniel Hiltgen
27da2cddc5 Fix lingering Q4_0 help reference (#10720) 2025-05-15 16:33:23 -07:00
Bruce MacDonald
feb8923ada cmd: add ellipses to truncated show metadata (#10717)
When a piece of information has been truncated in the show output an ellipses to indicate that more data has not been displayed
2025-05-15 15:45:52 -07:00
Jesse Gross
fe623c2cf4 ollamarunner: Multi-modal worst case graph
We currently preallocate compute graph memory for the worst case
batch of text tokens. This adds support for doing the same for
images.

Note that image models are more complicated than text models in
how they process their inputs so there may be cases where this
approach isn't completely generic for all models. It covers all
currently supported models though.
2025-05-15 13:46:20 -07:00
Jesse Gross
3c14461d5d ollamarunner: Separate text and multimodal graphs
For some multimodal models (such as gemma3), we create a single
graph that generates the image embedding and then use this in the
text model. The embedding tensor is completely opaque to the runner.

However, this doesn't work if we need to use the embedding in multiple
batches. This can arise if the embedding is larger than the batch size.
In these cases (as with llama4), we would like to create views that
are more appropriately sized. However, if we do this then the original
source tensor is used in multiple graphs, which isn't allowed. To
avoid that problem, models with this pattern compute the embedding
tensor on first use and recreate the individual views. There is no
longer a single vision and text graph.

This codifies the pattern of separating vision and text graphs. The
logic of computing tensors on demand is moved to the runner, so models
no longer have to worry about this. It also gives the runner visibility
into the multimodal tensors, which is important for memory management.
2025-05-15 13:46:20 -07:00
Jesse Gross
499ae7311f ollamarunner: Base cached tokens on current prompt
When we restore a sequence from the cache, we split the prompt into
the already used tokens (stored in the cache) and new tokens that
need to be processed. Currently, the references to the used tokens
are coming from the stored previous sequence.

However, even though we know that the used tokens are semantically
equivalent to the prefix of the prompt, tokens can contain pointers
which are no longer valid. As a result, it is better to get the
used tokens from the prompt, which has currently valid pointers.

This doesn't currently have any impact because it isn't possible
to reuse the pointers (which are tensors) anyways. However, it
becomes an issue once we can.
2025-05-15 13:46:20 -07:00
Michael Yang
ef202789fa fix pixel values padding (#10718)
* panic if trying to pad 4d

* fix pixel values padding
2025-05-15 13:44:44 -07:00
Michael Yang
55760195e6 fix mllama conversion (#10716)
cross attention Q and K projections needs to have their heads swapped, similar to non-cross attention Q and K tensors
2025-05-15 12:15:01 -07:00
Bruce MacDonald
bd68d3ae50 ggml: update qwen25vl vision size estimate (#10711) 2025-05-14 16:42:30 -07:00
Daniel Hiltgen
ff80718e9c fix crash in old clients with quantization progress (#10710)
Older clients assumed the digest was at least 19 characters long so increase the size
of the dummy digest to avoid array out of bounds crashes.
2025-05-14 14:54:18 -07:00
Devon Rifkin
20c5fd39c8 Merge branch 'main' into drifkin/array-head-count-simple 2025-05-08 11:46:52 -07:00
Devon Rifkin
d2ee599dcf load arrays with up to 1024 elements when estimating
This mirrors the old behavior before #10382
2025-04-27 13:45:13 -07:00
Devon Rifkin
6ed8898590 ggml: fix crash for array head counts
If it's an array, it uses the max value in the array

If array values for head counts becomes more popular, we can consider a
more invasive change like #10225 to calculate more accurate estimates.

Fixes: #9984
2025-04-27 11:38:06 -07:00
446 changed files with 298605 additions and 39285 deletions

View File

@@ -23,7 +23,7 @@ jobs:
echo GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${GITHUB_REF_NAME#v}\" \"-X=github.com/ollama/ollama/server.mode=release\"'" >>$GITHUB_OUTPUT
darwin-build:
runs-on: macos-13
runs-on: macos-13-xlarge
environment: release
needs: setup-environment
strategy:
@@ -54,48 +54,6 @@ jobs:
name: build-${{ matrix.os }}-${{ matrix.arch }}
path: dist/*
darwin-sign:
runs-on: macos-13
environment: release
needs: darwin-build
steps:
- uses: actions/checkout@v4
- run: |
echo $MACOS_SIGNING_KEY | base64 --decode > certificate.p12
security create-keychain -p password build.keychain
security default-keychain -s build.keychain
security unlock-keychain -p password build.keychain
security import certificate.p12 -k build.keychain -P $MACOS_SIGNING_KEY_PASSWORD -T /usr/bin/codesign
security set-key-partition-list -S apple-tool:,apple:,codesign: -s -k password build.keychain
security set-keychain-settings -lut 3600 build.keychain
env:
MACOS_SIGNING_KEY: ${{ secrets.MACOS_SIGNING_KEY }}
MACOS_SIGNING_KEY_PASSWORD: ${{ secrets.MACOS_SIGNING_KEY_PASSWORD }}
- uses: actions/download-artifact@v4
with:
name: build-darwin-amd64
path: dist/darwin-amd64
- uses: actions/download-artifact@v4
with:
name: build-darwin-arm64
path: dist/darwin-arm64
- run: |
export VERSION=${GITHUB_REF_NAME#v}
./scripts/build_darwin.sh sign macapp
env:
APPLE_IDENTITY: ${{ secrets.APPLE_IDENTITY }}
APPLE_PASSWORD: ${{ secrets.APPLE_PASSWORD }}
APPLE_TEAM_ID: ${{ vars.APPLE_TEAM_ID }}
APPLE_ID: ${{ vars.APPLE_ID }}
SDKROOT: /Applications/Xcode_14.1.0.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk
DEVELOPER_DIR: /Applications/Xcode_14.1.0.app/Contents/Developer
- uses: actions/upload-artifact@v4
with:
name: dist-darwin
path: |
dist/Ollama-darwin.zip
dist/ollama-darwin.tgz
windows-depends:
strategy:
matrix:
@@ -103,21 +61,40 @@ jobs:
arch: [amd64]
preset: ['CPU']
include:
- os: windows
arch: amd64
preset: 'CUDA 11'
install: https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe
cuda-version: '11.3'
- os: windows
arch: amd64
preset: 'CUDA 12'
install: https://developer.download.nvidia.com/compute/cuda/12.8.0/local_installers/cuda_12.8.0_571.96_windows.exe
cuda-components:
- '"cudart"'
- '"nvcc"'
- '"cublas"'
- '"cublas_dev"'
cuda-version: '12.8'
flags: ''
runner_dir: 'cuda_v12'
- os: windows
arch: amd64
preset: 'CUDA 13'
install: https://developer.download.nvidia.com/compute/cuda/13.0.0/local_installers/cuda_13.0.0_windows.exe
cuda-components:
- '"cudart"'
- '"nvcc"'
- '"cublas"'
- '"cublas_dev"'
- '"crt"'
- '"nvvm"'
- '"nvptxcompiler"'
cuda-version: '13.0'
flags: ''
runner_dir: 'cuda_v13'
- os: windows
arch: amd64
preset: 'ROCm 6'
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
rocm-version: '6.2'
flags: '-DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma" -DCMAKE_CXX_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma"'
runner_dir: ''
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
environment: release
env:
@@ -141,7 +118,7 @@ jobs:
$ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
$subpackages = @("cudart", "nvcc", "cublas", "cublas_dev") | Foreach-Object {"${_}_${{ matrix.cuda-version }}"}
$subpackages = @(${{ join(matrix.cuda-components, ', ') }}) | Foreach-Object {"${_}_${{ matrix.cuda-version }}"}
Start-Process -FilePath .\install.exe -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait
}
@@ -160,6 +137,9 @@ jobs:
echo "$hipPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CC=$hipPath\bin\clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "HIPCXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "HIP_PLATFORM=amd" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CMAKE_PREFIX_PATH=$hipPath" | Out-File -FilePath $env:GITHUB_ENV -Append
- if: matrix.preset == 'CPU'
run: |
echo "CC=clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
@@ -178,9 +158,9 @@ jobs:
key: ccache-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.preset }}
- name: Build target "${{ matrix.preset }}"
run: |
Import-Module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
cmake --preset "${{ matrix.preset }}"
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }} -DOLLAMA_RUNNER_DIR="${{ matrix.runner_dir }}"
cmake --build --parallel --preset "${{ matrix.preset }}"
cmake --install build --component "${{ startsWith(matrix.preset, 'CUDA ') && 'CUDA' || startsWith(matrix.preset, 'ROCm ') && 'HIP' || 'CPU' }}" --strip --parallel 8
env:
@@ -230,61 +210,11 @@ jobs:
go-version-file: go.mod
- run: |
go build -o dist/${{ matrix.os }}-${{ matrix.arch }}/ .
- if: matrix.arch == 'arm64'
run: |
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vc_redist.arm64.exe" -OutFile "dist\windows-arm64\vc_redist.arm64.exe"
- run: |
$env:VERSION='${{ github.ref_name }}' -Replace "v(.*)", '$1'
& .\scripts\build_windows.ps1 buildApp
env:
VCToolsRedistDir: stub
- uses: actions/upload-artifact@v4
with:
name: build-${{ matrix.os }}-${{ matrix.arch }}
path: |
dist\${{ matrix.os }}-${{ matrix.arch }}\*.exe
dist\${{ matrix.os }}-${{ matrix.arch }}-app.exe
windows-sign:
runs-on: windows-2022
environment: release
needs: [windows-depends, windows-build]
steps:
- uses: actions/checkout@v4
- uses: google-github-actions/auth@v2
with:
project_id: ollama
credentials_json: ${{ secrets.GOOGLE_SIGNING_CREDENTIALS }}
- run: |
$ErrorActionPreference = "Stop"
Invoke-WebRequest -Uri "https://go.microsoft.com/fwlink/p/?LinkId=323507" -OutFile "${{ runner.temp }}\sdksetup.exe"
Start-Process "${{ runner.temp }}\sdksetup.exe" -ArgumentList @("/q") -NoNewWindow -Wait
Invoke-WebRequest -Uri "https://github.com/GoogleCloudPlatform/kms-integrations/releases/download/cng-v1.0/kmscng-1.0-windows-amd64.zip" -OutFile "${{ runner.temp }}\plugin.zip"
Expand-Archive -Path "${{ runner.temp }}\plugin.zip" -DestinationPath "${{ runner.temp }}\plugin\"
& "${{ runner.temp }}\plugin\*\kmscng.msi" /quiet
echo "${{ vars.OLLAMA_CERT }}" >ollama_inc.crt
- uses: actions/download-artifact@v4
with:
pattern: build-windows-*
path: dist\
merge-multiple: true
- uses: actions/download-artifact@v4
with:
pattern: depends-windows-amd64-*
path: dist\windows-amd64\
merge-multiple: true
- run: |
& .\scripts\build_windows.ps1 gatherDependencies sign buildInstaller distZip
env:
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
- uses: actions/upload-artifact@v4
with:
name: dist-windows
path: |
dist\OllamaSetup.exe
dist\ollama-windows-*.zip
linux-build:
strategy:
@@ -317,21 +247,26 @@ jobs:
CGO_CFLAGS=${{ env.CGO_CFLAGS }}
CGO_CXXFLAGS=${{ env.CGO_CXXFLAGS }}
outputs: type=local,dest=dist/${{ matrix.os }}-${{ matrix.arch }}
cache-from: type=registry,ref=ollama/ollama:latest
cache-from: type=registry,ref=${{ vars.DOCKER_REPO }}:latest
cache-to: type=inline
- run: |
for COMPONENT in bin/* lib/ollama/*; do
case "$COMPONENT" in
bin/ollama) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/*.so) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_v11) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_v12) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_jetpack5) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack5.tar.in ;;
lib/ollama/cuda_jetpack6) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack6.tar.in ;;
lib/ollama/rocm) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-rocm.tar.in ;;
bin/ollama) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/*.so*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_v*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_jetpack5) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack5.tar.in ;;
lib/ollama/cuda_jetpack6) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack6.tar.in ;;
lib/ollama/rocm) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-rocm.tar.in ;;
esac
done
working-directory: dist/${{ matrix.os }}-${{ matrix.arch }}
- run: |
echo "Manifests"
for ARCHIVE in dist/${{ matrix.os }}-${{ matrix.arch }}/*.tar.in ; do
echo $ARCHIVE
cat $ARCHIVE
done
- run: |
for ARCHIVE in dist/${{ matrix.os }}-${{ matrix.arch }}/*.tar.in; do
tar c -C dist/${{ matrix.os }}-${{ matrix.arch }} -T $ARCHIVE --owner 0 --group 0 | pigz -9vc >$(basename ${ARCHIVE//.*/}.tgz);
@@ -385,8 +320,8 @@ jobs:
context: .
platforms: ${{ matrix.os }}/${{ matrix.arch }}
build-args: ${{ matrix.build-args }}
outputs: type=image,name=ollama/ollama,push-by-digest=true,name-canonical=true,push=true
cache-from: type=registry,ref=ollama/ollama:latest
outputs: type=image,name=${{ vars.DOCKER_REPO }},push-by-digest=true,name-canonical=true,push=true
cache-from: type=registry,ref=${{ vars.DOCKER_REPO }}:latest
cache-to: type=inline
- run: |
mkdir -p ${{ matrix.os }}-${{ matrix.arch }}
@@ -418,7 +353,7 @@ jobs:
latest=false
suffix=${{ matrix.suffix }}
images: |
ollama/ollama
${{ vars.DOCKER_REPO }}
tags: |
type=ref,enable=true,priority=600,prefix=pr-,event=pr
type=semver,pattern={{version}}
@@ -428,56 +363,24 @@ jobs:
path: ${{ runner.temp }}
merge-multiple: true
- run: |
docker buildx imagetools create $(echo '${{ steps.metadata.outputs.json }}' | jq -cr '.tags | map("-t", .) | join(" ")') $(cat *-${{ matrix.suffix }}.txt | xargs printf 'ollama/ollama@%s ')
docker buildx imagetools inspect ollama/ollama:${{ steps.metadata.outputs.version }}
docker buildx imagetools create $(echo '${{ steps.metadata.outputs.json }}' | jq -cr '.tags | map("-t", .) | join(" ")') $(cat *-${{ matrix.suffix }}.txt | xargs printf '${{ vars.DOCKER_REPO }}@%s ')
docker buildx imagetools inspect ${{ vars.DOCKER_REPO }}:${{ steps.metadata.outputs.version }}
working-directory: ${{ runner.temp }}
# Trigger downstream release process
trigger:
runs-on: ubuntu-latest
environment: release
needs: [darwin-build, windows-build, windows-depends]
steps:
- name: Trigger downstream release process
run: |
curl -L \
-X POST \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer ${{ secrets.RELEASE_TOKEN }}" \
-H "X-GitHub-Api-Version: 2022-11-28" \
https://api.github.com/repos/ollama/${{ vars.RELEASE_REPO }}/dispatches \
-d "{\"event_type\": \"trigger-workflow\", \"client_payload\": {\"run_id\": \"${GITHUB_RUN_ID}\", \"version\": \"${GITHUB_REF_NAME#v}\"}}"
# Aggregate all the assets and ship a release
release:
needs: [darwin-sign, windows-sign, linux-build]
runs-on: linux
environment: release
needs: [darwin-build, windows-build, windows-depends, linux-build]
permissions:
contents: write
env:
GH_TOKEN: ${{ github.token }}
steps:
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
with:
name: dist-darwin
path: dist
- uses: actions/download-artifact@v4
with:
name: dist-windows
path: dist
- uses: actions/download-artifact@v4
with:
pattern: dist-linux-*
path: dist
merge-multiple: true
- run: find . -type f -not -name 'sha256sum.txt' | xargs sha256sum | tee sha256sum.txt
working-directory: dist
- name: Create or update Release
- name: Create or update Release for tag
run: |
RELEASE_VERSION="$(echo ${GITHUB_REF_NAME} | cut -f1 -d-)"
echo "Looking for existing release for ${RELEASE_VERSION}"
OLD_TAG=$(gh release ls --json name,tagName | jq -r ".[] | select(.name == \"${RELEASE_VERSION}\") | .tagName")
if [ -n "$OLD_TAG" ]; then
@@ -491,5 +394,12 @@ jobs:
--generate-notes \
--prerelease
fi
echo "Uploading artifacts for tag ${GITHUB_REF_NAME}"
gh release upload ${GITHUB_REF_NAME} dist/* --clobber
- name: Trigger downstream release process
run: |
curl -L \
-X POST \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer ${{ secrets.RELEASE_TOKEN }}" \
-H "X-GitHub-Api-Version: 2022-11-28" \
https://api.github.com/repos/ollama/${{ vars.RELEASE_REPO }}/dispatches \
-d "{\"event_type\": \"trigger-workflow\", \"client_payload\": {\"run_id\": \"${GITHUB_RUN_ID}\", \"version\": \"${GITHUB_REF_NAME#v}\", \"origin\": \"${GITHUB_REPOSITORY}\", \"publish\": \"1\"}}"

View File

@@ -36,7 +36,7 @@ jobs:
| xargs python3 -c "import sys; from pathlib import Path; print(any(Path(x).match(glob) for x in sys.argv[1:] for glob in '$*'.split(' ')))"
}
echo changed=$(changed 'llama/llama.cpp/**' 'ml/backend/ggml/ggml/**') | tee -a $GITHUB_OUTPUT
echo changed=$(changed 'llama/llama.cpp/**/*' 'ml/backend/ggml/ggml/**/*') | tee -a $GITHUB_OUTPUT
linux:
needs: [changes]
@@ -46,7 +46,7 @@ jobs:
include:
- preset: CPU
- preset: CUDA
container: nvidia/cuda:11.8.0-devel-ubuntu22.04
container: nvidia/cuda:13.0.0-devel-ubuntu22.04
flags: '-DCMAKE_CUDA_ARCHITECTURES=87'
- preset: ROCm
container: rocm/dev-ubuntu-22.04:6.1.2
@@ -78,11 +78,20 @@ jobs:
include:
- preset: CPU
- preset: CUDA
install: https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe
install: https://developer.download.nvidia.com/compute/cuda/13.0.0/local_installers/cuda_13.0.0_windows.exe
flags: '-DCMAKE_CUDA_ARCHITECTURES=80'
cuda-components:
- '"cudart"'
- '"nvcc"'
- '"cublas"'
- '"cublas_dev"'
- '"crt"'
- '"nvvm"'
- '"nvptxcompiler"'
cuda-version: '13.0'
- preset: ROCm
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
flags: '-DAMDGPU_TARGETS=gfx1010'
flags: '-DAMDGPU_TARGETS=gfx1010 -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma" -DCMAKE_CXX_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma"'
runs-on: windows
steps:
- run: |
@@ -102,7 +111,8 @@ jobs:
$ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_11.3", "nvcc_11.3", "cublas_11.3", "cublas_dev_11.3")) -NoNewWindow -Wait
$subpackages = @(${{ join(matrix.cuda-components, ', ') }}) | Foreach-Object {"${_}_${{ matrix.cuda-version }}"}
Start-Process -FilePath .\install.exe -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait
}
$cudaPath = (Resolve-Path "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*").path
@@ -120,6 +130,9 @@ jobs:
echo "$hipPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CC=$hipPath\bin\clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "HIPCXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "HIP_PLATFORM=amd" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CMAKE_PREFIX_PATH=$hipPath" | Out-File -FilePath $env:GITHUB_ENV -Append
- if: ${{ !cancelled() && steps.cache-install.outputs.cache-hit != 'true' }}
uses: actions/cache/save@v4
with:
@@ -133,8 +146,8 @@ jobs:
path: ${{ github.workspace }}\.ccache
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
- run: |
Import-Module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }}
cmake --build --parallel --preset "${{ matrix.preset }}"
env:

View File

@@ -3,6 +3,7 @@ cmake_minimum_required(VERSION 3.21)
project(Ollama C CXX)
include(CheckLanguage)
include(GNUInstallDirs)
find_package(Threads REQUIRED)
@@ -37,7 +38,7 @@ if (CMAKE_OSX_ARCHITECTURES MATCHES "x86_64")
endif()
set(OLLAMA_BUILD_DIR ${CMAKE_BINARY_DIR}/lib/ollama)
set(OLLAMA_INSTALL_DIR ${CMAKE_INSTALL_PREFIX}/lib/ollama)
set(OLLAMA_INSTALL_DIR ${CMAKE_INSTALL_PREFIX}/lib/ollama/${OLLAMA_RUNNER_DIR})
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${OLLAMA_BUILD_DIR})
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG ${OLLAMA_BUILD_DIR})
@@ -51,6 +52,8 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/include
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu)
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu/amx)
add_compile_definitions(NDEBUG GGML_VERSION=0x0 GGML_COMMIT=0x0)
set(GGML_CPU ON)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
set_property(TARGET ggml PROPERTY EXCLUDE_FROM_ALL TRUE)
@@ -76,14 +79,13 @@ if(CMAKE_CUDA_COMPILER)
find_package(CUDAToolkit)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cuda)
set(OLLAMA_CUDA_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/cuda_v${CUDAToolkit_VERSION_MAJOR})
install(TARGETS ggml-cuda
RUNTIME_DEPENDENCIES
DIRECTORIES ${CUDAToolkit_BIN_DIR} ${CUDAToolkit_LIBRARY_DIR}
DIRECTORIES ${CUDAToolkit_BIN_DIR} ${CUDAToolkit_BIN_DIR}/x64 ${CUDAToolkit_LIBRARY_DIR}
PRE_INCLUDE_REGEXES cublas cublasLt cudart
PRE_EXCLUDE_REGEXES ".*"
RUNTIME DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA
LIBRARY DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CUDA
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CUDA
)
endif()
@@ -114,7 +116,11 @@ if(CMAKE_HIP_COMPILER)
set(OLLAMA_HIP_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/rocm)
install(TARGETS ggml-hip
RUNTIME_DEPENDENCIES
RUNTIME_DEPENDENCY_SET rocm
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP
)
install(RUNTIME_DEPENDENCY_SET rocm
DIRECTORIES ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR}
PRE_INCLUDE_REGEXES hipblas rocblas amdhip64 rocsolver amd_comgr hsa-runtime64 rocsparse tinfo rocprofiler-register drm drm_amdgpu numa elf
PRE_EXCLUDE_REGEXES ".*"

View File

@@ -6,7 +6,8 @@
"binaryDir": "${sourceDir}/build",
"installDir": "${sourceDir}/dist",
"cacheVariables": {
"CMAKE_BUILD_TYPE": "Release"
"CMAKE_BUILD_TYPE": "Release",
"CMAKE_MSVC_RUNTIME_LIBRARY": "MultiThreaded"
}
},
{
@@ -21,8 +22,8 @@
"name": "CUDA 11",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "50;52;53;60;61;70;75;80;86",
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets"
"CMAKE_CUDA_ARCHITECTURES": "50-virtual;60-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-virtual;87-virtual;89-virtual;90-virtual",
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets -t 2"
}
},
{
@@ -30,7 +31,15 @@
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "50;60;61;70;75;80;86;87;89;90;90a;120",
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets"
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets -t 2"
}
},
{
"name": "CUDA 13",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "75-virtual;80-virtual;86-virtual;87-virtual;89-virtual;90-virtual;90a-virtual;100-virtual;110-virtual;120-virtual;121-virtual",
"CMAKE_CUDA_FLAGS": "-t 2"
}
},
{
@@ -58,6 +67,7 @@
"name": "ROCm 6",
"inherits": [ "ROCm" ],
"cacheVariables": {
"CMAKE_HIP_FLAGS": "-parallel-jobs=4",
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx1151;gfx1200;gfx1201;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
}
}
@@ -88,6 +98,11 @@
"inherits": [ "CUDA" ],
"configurePreset": "CUDA 12"
},
{
"name": "CUDA 13",
"inherits": [ "CUDA" ],
"configurePreset": "CUDA 13"
},
{
"name": "JetPack 5",
"inherits": [ "CUDA" ],

View File

@@ -65,7 +65,8 @@ continuation of the sentence:
Examples:
llm/backend/mlx: support the llama architecture
CONTRIBUTING: provide clairity on good commit messages, and bad
CONTRIBUTING: provide clarity on good commit messages, and bad
docs: simplify manual installation with shorter curl commands
Bad Examples:

View File

@@ -1,18 +1,20 @@
# vim: filetype=dockerfile
ARG FLAVOR=${TARGETARCH}
ARG PARALLEL=8
ARG ROCMVERSION=6.3.3
ARG JETPACK5VERSION=r35.4.1
ARG JETPACK6VERSION=r36.4.0
ARG CMAKEVERSION=3.31.2
# CUDA v11 requires gcc v10. v10.3 has regressions, so the rockylinux 8.5 AppStream has the latest compatible version
# We require gcc v10 minimum. v10.3 has regressions, so the rockylinux 8.5 AppStream has the latest compatible version
FROM --platform=linux/amd64 rocm/dev-almalinux-8:${ROCMVERSION}-complete AS base-amd64
RUN yum install -y yum-utils \
&& yum-config-manager --add-repo https://dl.rockylinux.org/vault/rocky/8.5/AppStream/\$basearch/os/ \
&& rpm --import https://dl.rockylinux.org/pub/rocky/RPM-GPG-KEY-Rocky-8 \
&& dnf install -y yum-utils ccache gcc-toolset-10-gcc-10.2.1-8.2.el8 gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 gcc-toolset-10-binutils-2.35-11.el8 \
&& dnf install -y ccache \
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/cuda-rhel8.repo
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
@@ -33,35 +35,51 @@ ENV LDFLAGS=-s
FROM base AS cpu
RUN dnf install -y gcc-toolset-11-gcc gcc-toolset-11-gcc-c++
ENV PATH=/opt/rh/gcc-toolset-11/root/usr/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CPU' \
&& cmake --build --parallel --preset 'CPU' \
&& cmake --install build --component CPU --strip --parallel 8
&& cmake --build --parallel ${PARALLEL} --preset 'CPU' \
&& cmake --install build --component CPU --strip --parallel ${PARALLEL}
FROM base AS cuda-11
ARG CUDA11VERSION=11.3
ARG CUDA11VERSION=11.8
RUN dnf install -y cuda-toolkit-${CUDA11VERSION//./-}
ENV PATH=/usr/local/cuda-11/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 11' \
&& cmake --build --parallel --preset 'CUDA 11' \
&& cmake --install build --component CUDA --strip --parallel 8
cmake --preset 'CUDA 11' -DOLLAMA_RUNNER_DIR="cuda_v11" \
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 11' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
FROM base AS cuda-12
ARG CUDA12VERSION=12.8
RUN dnf install -y cuda-toolkit-${CUDA12VERSION//./-}
ENV PATH=/usr/local/cuda-12/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 12' \
&& cmake --build --parallel --preset 'CUDA 12' \
&& cmake --install build --component CUDA --strip --parallel 8
cmake --preset 'CUDA 12' -DOLLAMA_RUNNER_DIR="cuda_v12"\
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 12' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
FROM base AS cuda-13
ARG CUDA13VERSION=13.0
RUN dnf install -y cuda-toolkit-${CUDA13VERSION//./-}
ENV PATH=/usr/local/cuda-13/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 13' -DOLLAMA_RUNNER_DIR="cuda_v13" \
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 13' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
FROM base AS rocm-6
ENV PATH=/opt/rocm/hcc/bin:/opt/rocm/hip/bin:/opt/rocm/bin:/opt/rocm/hcc/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'ROCm 6' \
&& cmake --build --parallel --preset 'ROCm 6' \
&& cmake --install build --component HIP --strip --parallel 8
&& cmake --build --parallel ${PARALLEL} --preset 'ROCm 6' \
&& cmake --install build --component HIP --strip --parallel ${PARALLEL}
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK5VERSION} AS jetpack-5
ARG CMAKEVERSION
@@ -69,10 +87,11 @@ RUN apt-get update && apt-get install -y curl ccache \
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'JetPack 5' \
&& cmake --build --parallel --preset 'JetPack 5' \
&& cmake --install build --component CUDA --strip --parallel 8
&& cmake --build --parallel ${PARALLEL} --preset 'JetPack 5' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK6VERSION} AS jetpack-6
ARG CMAKEVERSION
@@ -80,10 +99,11 @@ RUN apt-get update && apt-get install -y curl ccache \
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'JetPack 6' \
&& cmake --build --parallel --preset 'JetPack 6' \
&& cmake --install build --component CUDA --strip --parallel 8
&& cmake --build --parallel ${PARALLEL} --preset 'JetPack 6' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
FROM base AS build
WORKDIR /go/src/github.com/ollama/ollama
@@ -94,27 +114,31 @@ RUN go mod download
COPY . .
ARG GOFLAGS="'-ldflags=-w -s'"
ENV CGO_ENABLED=1
ARG CGO_CFLAGS
ARG CGO_CXXFLAGS
RUN --mount=type=cache,target=/root/.cache/go-build \
go build -trimpath -buildmode=pie -o /bin/ollama .
FROM --platform=linux/amd64 scratch AS amd64
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
# COPY --from=cuda-11 dist/lib/ollama/ /lib/ollama/
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/
COPY --from=cuda-13 dist/lib/ollama/ /lib/ollama/
FROM --platform=linux/arm64 scratch AS arm64
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_jetpack5
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_jetpack6
# COPY --from=cuda-11 dist/lib/ollama/ /lib/ollama/
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/
COPY --from=cuda-13 dist/lib/ollama/ /lib/ollama/
COPY --from=jetpack-5 dist/lib/ollama /lib/ollama/cuda_jetpack5
COPY --from=jetpack-6 dist/lib/ollama /lib/ollama/cuda_jetpack6
FROM scratch AS rocm
COPY --from=rocm-6 dist/lib/ollama/rocm /lib/ollama/rocm
COPY --from=rocm-6 dist/lib/ollama /lib/ollama
FROM ${FLAVOR} AS archive
COPY --from=cpu dist/lib/ollama /lib/ollama
COPY --from=build /bin/ollama /bin/ollama
FROM ubuntu:20.04
FROM ubuntu:24.04
RUN apt-get update \
&& apt-get install -y ca-certificates \
&& apt-get clean \

View File

@@ -1,6 +1,6 @@
UPSTREAM=https://github.com/ggerganov/llama.cpp.git
UPSTREAM=https://github.com/ggml-org/llama.cpp.git
WORKDIR=llama/vendor
FETCH_HEAD=de4c07f93783a1a96456a44dc16b9db538ee1618
FETCH_HEAD=e54d41befcc1575f4c898c5ff4ef43970cead75f
.PHONY: help
help:
@@ -12,7 +12,7 @@ help:
@echo " clean Clean local repository"
@echo
@echo "Example:"
@echo " make -f $(lastword $(MAKEFILE_LIST)) clean sync"
@echo " make -f $(lastword $(MAKEFILE_LIST)) clean apply-patches sync"
.PHONY: sync
sync: llama/build-info.cpp ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.metal
@@ -24,12 +24,12 @@ ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.metal: ml/backend/ggml/ggml
go generate ./$(@D)
.PHONY: llama/llama.cpp
llama/llama.cpp: llama/vendor/
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
llama/llama.cpp: llama/vendor
rsync -arvzc --delete -f "include LICENSE" -f "merge $@/.rsync-filter" $(addprefix $<,/LICENSE /) $@
.PHONY: ml/backend/ggml/ggml
ml/backend/ggml/ggml: llama/vendor/ggml/
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
ml/backend/ggml/ggml: llama/vendor
rsync -arvzc --delete -f "include LICENSE" -f "merge $@/.rsync-filter" $(addprefix $<,/LICENSE /ggml/) $@
PATCHES=$(wildcard llama/patches/*.patch)
PATCHED=$(join $(dir $(PATCHES)), $(addsuffix ed, $(addprefix ., $(notdir $(PATCHES)))))
@@ -39,7 +39,15 @@ PATCHED=$(join $(dir $(PATCHES)), $(addsuffix ed, $(addprefix ., $(notdir $(PATC
apply-patches: $(PATCHED)
llama/patches/.%.patched: llama/patches/%.patch
@if git -c user.name=nobody -c 'user.email=<>' -C $(WORKDIR) am -3 $(realpath $<); then touch $@; else git -C $(WORKDIR) am --abort; exit 1; fi
@if git -c user.name=nobody -c 'user.email=<>' -C $(WORKDIR) am -3 $(realpath $<); then \
touch $@; \
else \
echo "Patch failed. Resolve any conflicts then continue."; \
echo "1. Run 'git -C $(WORKDIR) am --continue'"; \
echo "2. Run 'make -f $(lastword $(MAKEFILE_LIST)) format-patches'"; \
echo "3. Run 'make -f $(lastword $(MAKEFILE_LIST)) clean apply-patches'"; \
exit 1; \
fi
.PHONY: checkout
checkout: $(WORKDIR)
@@ -60,4 +68,5 @@ format-patches: llama/patches
.PHONE: clean
clean: checkout
@git -C $(WORKDIR) am --abort || true
$(RM) llama/patches/.*.patched

View File

@@ -1,6 +1,6 @@
<div align="center">
  <a href="https://ollama.com">
<img alt="ollama" height="200px" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
<img alt="ollama" width="240" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
</a>
</div>
@@ -10,7 +10,7 @@ Get up and running with large language models.
### macOS
[Download](https://ollama.com/download/Ollama-darwin.zip)
[Download](https://ollama.com/download/Ollama.dmg)
### Windows
@@ -40,10 +40,10 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
## Quickstart
To run and chat with [Llama 3.2](https://ollama.com/library/llama3.2):
To run and chat with [Gemma 3](https://ollama.com/library/gemma3):
```shell
ollama run llama3.2
ollama run gemma3
```
## Model library
@@ -360,7 +360,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Tkinter-based client](https://github.com/chyok/ollama-gui) (Python tkinter-based Client for Ollama)
- [LLMChat](https://github.com/trendy-design/llmchat) (Privacy focused, 100% local, intuitive all-in-one chat interface)
- [Local Multimodal AI Chat](https://github.com/Leon-Sander/Local-Multimodal-AI-Chat) (Ollama-based LLM Chat with support for multiple features, including PDF RAG, voice chat, image-based interactions, and integration with OpenAI.)
- [ARGO](https://github.com/xark-argo/argo) (Locally download and run Ollama and Huggingface models with RAG on Mac/Windows/Linux)
- [ARGO](https://github.com/xark-argo/argo) (Locally download and run Ollama and Huggingface models with RAG and deep research on Mac/Windows/Linux)
- [OrionChat](https://github.com/EliasPereirah/OrionChat) - OrionChat is a web interface for chatting with different AI providers
- [G1](https://github.com/bklieger-groq/g1) (Prototype of using prompting strategies to improve the LLM's reasoning through o1-like reasoning chains.)
- [Web management](https://github.com/lemonit-eric-mao/ollama-web-management) (Web management page)
@@ -405,6 +405,16 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Writeopia](https://github.com/Writeopia/Writeopia) (Text editor with integration with Ollama)
- [AppFlowy](https://github.com/AppFlowy-IO/AppFlowy) (AI collaborative workspace with Ollama, cross-platform and self-hostable)
- [Lumina](https://github.com/cushydigit/lumina.git) (A lightweight, minimal React.js frontend for interacting with Ollama servers)
- [Tiny Notepad](https://pypi.org/project/tiny-notepad) (A lightweight, notepad-like interface to chat with ollama available on PyPI)
- [macLlama (macOS native)](https://github.com/hellotunamayo/macLlama) (A native macOS GUI application for interacting with Ollama models, featuring a chat interface.)
- [GPTranslate](https://github.com/philberndt/GPTranslate) (A fast and lightweight, AI powered desktop translation application written with Rust and Tauri. Features real-time translation with OpenAI/Azure/Ollama.)
- [ollama launcher](https://github.com/NGC13009/ollama-launcher) (A launcher for Ollama, aiming to provide users with convenient functions such as ollama server launching, management, or configuration.)
- [ai-hub](https://github.com/Aj-Seven/ai-hub) (AI Hub supports multiple models via API keys and Chat support via Ollama API.)
- [Mayan EDMS](https://gitlab.com/mayan-edms/mayan-edms) (Open source document management system to organize, tag, search, and automate your files with powerful Ollama driven workflows.)
- [Serene Pub](https://github.com/doolijb/serene-pub) (Beginner friendly, open source AI Roleplaying App for Windows, Mac OS and Linux. Search, download and use models with Ollama all inside the app.)
- [Andes](https://github.com/aqerd/andes) (A Visual Studio Code extension that provides a local UI interface for Ollama models)
- [Clueless](https://github.com/KashyapTan/clueless) (Open Source & Local Cluely: A desktop application LLM assistant to help you talk to anything on your screen using locally served Ollama models. Also undetectable to screenshare)
- [ollama-co2](https://github.com/carbonatedWaterOrg/ollama-co2) (FastAPI web interface for monitoring and managing local and remote Ollama servers with real-time model monitoring and concurrent downloads)
### Cloud
@@ -448,6 +458,9 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama.
- [orca-cli](https://github.com/molbal/orca-cli) Ollama Registry CLI Application - Browse, pull, and download models from Ollama Registry in your terminal.
- [GGUF-to-Ollama](https://github.com/jonathanhecl/gguf-to-ollama) - Importing GGUF to Ollama made easy (multiplatform)
- [AWS-Strands-With-Ollama](https://github.com/rapidarchitect/ollama_strands) - AWS Strands Agents with Ollama Examples
- [ollama-multirun](https://github.com/attogram/ollama-multirun) - A bash shell script to run a single prompt against any or all of your locally installed ollama models, saving the output and performance statistics as easily navigable web pages. ([Demo](https://attogram.github.io/ai_test_zone/))
- [ollama-bash-toolshed](https://github.com/attogram/ollama-bash-toolshed) - Bash scripts to chat with tool using models. Add new tools to your shed with ease. Runs on Ollama.
### Apple Vision Pro
@@ -528,6 +541,9 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Nichey](https://github.com/goodreasonai/nichey) is a Python package for generating custom wikis for your research topic
- [Ollama for D](https://github.com/kassane/ollama-d)
- [OllamaPlusPlus](https://github.com/HardCodeDev777/OllamaPlusPlus) (Very simple C++ library for Ollama)
- [any-llm](https://github.com/mozilla-ai/any-llm) (A single interface to use different llm providers by [mozilla.ai](https://www.mozilla.ai/))
- [any-agent](https://github.com/mozilla-ai/any-agent) (A single interface to use and evaluate different agent frameworks by [mozilla.ai](https://www.mozilla.ai/))
- [Neuro SAN](https://github.com/cognizant-ai-lab/neuro-san-studio) (Data-driven multi-agent orchestration framework) with [example](https://github.com/cognizant-ai-lab/neuro-san-studio/blob/main/docs/user_guide.md#ollama)
### Mobile
@@ -584,11 +600,15 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai)
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
- [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs)
- [SimpleOllamaUnity](https://github.com/HardCodeDev777/SimpleOllamaUnity) (Unity Engine extension for communicating with Ollama in a few lines of code. Also works at runtime)
- [UnityCodeLama](https://github.com/HardCodeDev777/UnityCodeLama) (Unity Edtior tool to analyze scripts via Ollama)
- [NativeMind](https://github.com/NativeMindBrowser/NativeMindExtension) (Private, on-device AI Assistant, no cloud dependencies)
- [GMAI - Gradle Managed AI](https://gmai.premex.se/) (Gradle plugin for automated Ollama lifecycle management during build phases)
- [NOMYO Router](https://github.com/nomyo-ai/nomyo-router) (A transparent Ollama proxy with model deployment aware routing which auto-manages multiple Ollama instances in a given network)
### Supported backends
- [llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov.
- [llama.cpp](https://github.com/ggml-org/llama.cpp) project founded by Georgi Gerganov.
### Observability
- [Opik](https://www.comet.com/docs/opik/cookbook/ollama) is an open-source platform to debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards. Opik supports native intergration to Ollama.

View File

@@ -24,7 +24,10 @@ import (
"net/http"
"net/url"
"runtime"
"strconv"
"time"
"github.com/ollama/ollama/auth"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/version"
@@ -76,6 +79,14 @@ func NewClient(base *url.URL, http *http.Client) *Client {
}
}
func getAuthorizationToken(ctx context.Context, challenge string) (string, error) {
token, err := auth.Sign(ctx, []byte(challenge))
if err != nil {
return "", err
}
return token, nil
}
func (c *Client) do(ctx context.Context, method, path string, reqData, respData any) error {
var reqBody io.Reader
var data []byte
@@ -97,6 +108,21 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
}
requestURL := c.base.JoinPath(path)
var token string
if envconfig.UseAuth() || c.base.Hostname() == "ollama.com" {
now := strconv.FormatInt(time.Now().Unix(), 10)
chal := fmt.Sprintf("%s,%s?ts=%s", method, path, now)
token, err = getAuthorizationToken(ctx, chal)
if err != nil {
return err
}
q := requestURL.Query()
q.Set("ts", now)
requestURL.RawQuery = q.Encode()
}
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), reqBody)
if err != nil {
return err
@@ -106,6 +132,10 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
request.Header.Set("Accept", "application/json")
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
if token != "" {
request.Header.Set("Authorization", token)
}
respObj, err := c.http.Do(request)
if err != nil {
return err
@@ -143,6 +173,22 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
}
requestURL := c.base.JoinPath(path)
var token string
if envconfig.UseAuth() || c.base.Hostname() == "ollama.com" {
var err error
now := strconv.FormatInt(time.Now().Unix(), 10)
chal := fmt.Sprintf("%s,%s?ts=%s", method, path, now)
token, err = getAuthorizationToken(ctx, chal)
if err != nil {
return err
}
q := requestURL.Query()
q.Set("ts", now)
requestURL.RawQuery = q.Encode()
}
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), buf)
if err != nil {
return err
@@ -152,6 +198,10 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
request.Header.Set("Accept", "application/x-ndjson")
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
if token != "" {
request.Header.Set("Authorization", token)
}
response, err := c.http.Do(request)
if err != nil {
return err
@@ -172,11 +222,17 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
return fmt.Errorf("unmarshal: %w", err)
}
if errorResponse.Error != "" {
return errors.New(errorResponse.Error)
}
if response.StatusCode >= http.StatusBadRequest {
if response.StatusCode == http.StatusUnauthorized {
pubKey, pkErr := auth.GetPublicKey()
if pkErr != nil {
return pkErr
}
return AuthorizationError{
StatusCode: response.StatusCode,
Status: response.Status,
PublicKey: pubKey,
}
} else if response.StatusCode >= http.StatusBadRequest {
return StatusError{
StatusCode: response.StatusCode,
Status: response.Status,
@@ -184,6 +240,10 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
}
}
if errorResponse.Error != "" {
return errors.New(errorResponse.Error)
}
if err := fn(bts); err != nil {
return err
}
@@ -378,3 +438,16 @@ func (c *Client) Version(ctx context.Context) (string, error) {
return version.Version, nil
}
// Signout will disconnect an ollama instance from ollama.com
func (c *Client) Signout(ctx context.Context, encodedKey string) error {
return c.do(ctx, http.MethodDelete, fmt.Sprintf("/api/user/keys/%s", encodedKey), nil, nil)
}
func (c *Client) Whoami(ctx context.Context) (*UserResponse, error) {
var resp UserResponse
if err := c.do(ctx, http.MethodPost, "/api/me", nil, &resp); err != nil {
return nil, err
}
return &resp, nil
}

View File

@@ -89,6 +89,16 @@ func TestClientStream(t *testing.T) {
},
wantErr: "mid-stream error",
},
{
name: "http status error takes precedence over general error",
responses: []any{
testError{
message: "custom error message",
statusCode: http.StatusInternalServerError,
},
},
wantErr: "500",
},
{
name: "successful stream completion",
responses: []any{

View File

@@ -11,6 +11,8 @@ import (
"strings"
"time"
"github.com/google/uuid"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/types/model"
)
@@ -36,6 +38,19 @@ func (e StatusError) Error() string {
}
}
type AuthorizationError struct {
StatusCode int
Status string
PublicKey string `json:"public_key"`
}
func (e AuthorizationError) Error() string {
if e.Status != "" {
return e.Status
}
return "something went wrong, please see the ollama server logs for details"
}
// ImageData represents the raw binary data of an image file.
type ImageData []byte
@@ -83,6 +98,17 @@ type GenerateRequest struct {
// Options lists model-specific options. For example, temperature can be
// set through this field, if the model supports it.
Options map[string]any `json:"options"`
// Think controls whether thinking/reasoning models will think before
// responding. Can be a boolean (true/false) or a string ("high", "medium", "low")
// for supported models. Needs to be a pointer so we can distinguish between false
// (request that thinking _not_ be used) and unset (use the old behavior
// before this option was introduced)
Think *ThinkValue `json:"think,omitempty"`
// DebugRenderOnly is a debug option that, when set to true, returns the rendered
// template instead of calling the model.
DebugRenderOnly bool `json:"_debug_render_only,omitempty"`
}
// ChatRequest describes a request sent by [Client.Chat].
@@ -108,6 +134,15 @@ type ChatRequest struct {
// Options lists model-specific options.
Options map[string]any `json:"options"`
// Think controls whether thinking/reasoning models will think before
// responding. Can be a boolean (true/false) or a string ("high", "medium", "low")
// for supported models.
Think *ThinkValue `json:"think,omitempty"`
// DebugRenderOnly is a debug option that, when set to true, returns the rendered
// template instead of calling the model.
DebugRenderOnly bool `json:"_debug_render_only,omitempty"`
}
type Tools []Tool
@@ -126,10 +161,14 @@ func (t Tool) String() string {
// role ("system", "user", or "assistant"), the content and an optional list
// of images.
type Message struct {
Role string `json:"role"`
Content string `json:"content"`
Role string `json:"role"`
Content string `json:"content"`
// Thinking contains the text that was inside thinking tags in the
// original model output when ChatRequest.Think is enabled.
Thinking string `json:"thinking,omitempty"`
Images []ImageData `json:"images,omitempty"`
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
ToolName string `json:"tool_name,omitempty"`
}
func (m *Message) UnmarshalJSON(b []byte) error {
@@ -209,21 +248,76 @@ func (pt PropertyType) String() string {
return fmt.Sprintf("%v", []string(pt))
}
type ToolProperty struct {
AnyOf []ToolProperty `json:"anyOf,omitempty"`
Type PropertyType `json:"type"`
Items any `json:"items,omitempty"`
Description string `json:"description"`
Enum []any `json:"enum,omitempty"`
}
// ToTypeScriptType converts a ToolProperty to a TypeScript type string
func (tp ToolProperty) ToTypeScriptType() string {
if len(tp.AnyOf) > 0 {
var types []string
for _, anyOf := range tp.AnyOf {
types = append(types, anyOf.ToTypeScriptType())
}
return strings.Join(types, " | ")
}
if len(tp.Type) == 0 {
return "any"
}
if len(tp.Type) == 1 {
return mapToTypeScriptType(tp.Type[0])
}
var types []string
for _, t := range tp.Type {
types = append(types, mapToTypeScriptType(t))
}
return strings.Join(types, " | ")
}
// mapToTypeScriptType maps JSON Schema types to TypeScript types
func mapToTypeScriptType(jsonType string) string {
switch jsonType {
case "string":
return "string"
case "number", "integer":
return "number"
case "boolean":
return "boolean"
case "array":
return "any[]"
case "object":
return "Record<string, any>"
case "null":
return "null"
default:
return "any"
}
}
type ToolFunctionParameters struct {
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required"`
Properties map[string]ToolProperty `json:"properties"`
}
func (t *ToolFunctionParameters) String() string {
bts, _ := json.Marshal(t)
return string(bts)
}
type ToolFunction struct {
Name string `json:"name"`
Description string `json:"description"`
Parameters struct {
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required"`
Properties map[string]struct {
Type PropertyType `json:"type"`
Items any `json:"items,omitempty"`
Description string `json:"description"`
Enum []any `json:"enum,omitempty"`
} `json:"properties"`
} `json:"parameters"`
Name string `json:"name"`
Description string `json:"description"`
Parameters ToolFunctionParameters `json:"parameters"`
}
func (t *ToolFunction) String() string {
@@ -234,16 +328,38 @@ func (t *ToolFunction) String() string {
// ChatResponse is the response returned by [Client.Chat]. Its fields are
// similar to [GenerateResponse].
type ChatResponse struct {
Model string `json:"model"`
CreatedAt time.Time `json:"created_at"`
Message Message `json:"message"`
DoneReason string `json:"done_reason,omitempty"`
// Model is the model name that generated the response.
Model string `json:"model"`
// RemoteModel is the name of the upstream model that generated the response.
RemoteModel string `json:"remote_model,omitempty"`
// RemoteHost is the URL of the upstream Ollama host that generated the response.
RemoteHost string `json:"remote_host,omitempty"`
// CreatedAt is the timestamp of the response.
CreatedAt time.Time `json:"created_at"`
// Message contains the message or part of a message from the model.
Message Message `json:"message"`
// Done specifies if the response is complete.
Done bool `json:"done"`
// DoneReason is the reason the model stopped generating text.
DoneReason string `json:"done_reason,omitempty"`
DebugInfo *DebugInfo `json:"_debug_info,omitempty"`
Metrics
}
// DebugInfo contains debug information for template rendering
type DebugInfo struct {
RenderedTemplate string `json:"rendered_template"`
ImageCount int `json:"image_count,omitempty"`
}
type Metrics struct {
TotalDuration time.Duration `json:"total_duration,omitempty"`
LoadDuration time.Duration `json:"load_duration,omitempty"`
@@ -296,8 +412,12 @@ type EmbedRequest struct {
// this request.
KeepAlive *Duration `json:"keep_alive,omitempty"`
// Truncate truncates the input to fit the model's max sequence length.
Truncate *bool `json:"truncate,omitempty"`
// Dimensions truncates the output embedding to the specified dimension.
Dimensions int `json:"dimensions,omitempty"`
// Options lists model-specific options.
Options map[string]any `json:"options"`
}
@@ -335,18 +455,47 @@ type EmbeddingResponse struct {
// CreateRequest is the request passed to [Client.Create].
type CreateRequest struct {
Model string `json:"model"`
Stream *bool `json:"stream,omitempty"`
// Model is the model name to create.
Model string `json:"model"`
// Stream specifies whether the response is streaming; it is true by default.
Stream *bool `json:"stream,omitempty"`
// Quantize is the quantization format for the model; leave blank to not change the quantization level.
Quantize string `json:"quantize,omitempty"`
From string `json:"from,omitempty"`
Files map[string]string `json:"files,omitempty"`
Adapters map[string]string `json:"adapters,omitempty"`
Template string `json:"template,omitempty"`
License any `json:"license,omitempty"`
System string `json:"system,omitempty"`
Parameters map[string]any `json:"parameters,omitempty"`
Messages []Message `json:"messages,omitempty"`
// From is the name of the model or file to use as the source.
From string `json:"from,omitempty"`
// RemoteHost is the URL of the upstream ollama API for the model (if any).
RemoteHost string `json:"remote_host,omitempty"`
// Files is a map of files include when creating the model.
Files map[string]string `json:"files,omitempty"`
// Adapters is a map of LoRA adapters to include when creating the model.
Adapters map[string]string `json:"adapters,omitempty"`
// Template is the template used when constructing a request to the model.
Template string `json:"template,omitempty"`
// License is a string or list of strings for licenses.
License any `json:"license,omitempty"`
// System is the system prompt for the model.
System string `json:"system,omitempty"`
// Parameters is a map of hyper-parameters which are applied to the model.
Parameters map[string]any `json:"parameters,omitempty"`
// Messages is a list of messages added to the model before chat and generation requests.
Messages []Message `json:"messages,omitempty"`
Renderer string `json:"renderer,omitempty"`
Parser string `json:"parser,omitempty"`
// Info is a map of additional information for the model
Info map[string]any `json:"info,omitempty"`
// Deprecated: set the model name with Model instead
Name string `json:"name"`
@@ -384,8 +533,12 @@ type ShowResponse struct {
Parameters string `json:"parameters,omitempty"`
Template string `json:"template,omitempty"`
System string `json:"system,omitempty"`
Renderer string `json:"renderer,omitempty"`
Parser string `json:"parser,omitempty"`
Details ModelDetails `json:"details,omitempty"`
Messages []Message `json:"messages,omitempty"`
RemoteModel string `json:"remote_model,omitempty"`
RemoteHost string `json:"remote_host,omitempty"`
ModelInfo map[string]any `json:"model_info,omitempty"`
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
Tensors []Tensor `json:"tensors,omitempty"`
@@ -444,23 +597,26 @@ type ProcessResponse struct {
// ListModelResponse is a single model description in [ListResponse].
type ListModelResponse struct {
Name string `json:"name"`
Model string `json:"model"`
ModifiedAt time.Time `json:"modified_at"`
Size int64 `json:"size"`
Digest string `json:"digest"`
Details ModelDetails `json:"details,omitempty"`
Name string `json:"name"`
Model string `json:"model"`
RemoteModel string `json:"remote_model,omitempty"`
RemoteHost string `json:"remote_host,omitempty"`
ModifiedAt time.Time `json:"modified_at"`
Size int64 `json:"size"`
Digest string `json:"digest"`
Details ModelDetails `json:"details,omitempty"`
}
// ProcessModelResponse is a single model description in [ProcessResponse].
type ProcessModelResponse struct {
Name string `json:"name"`
Model string `json:"model"`
Size int64 `json:"size"`
Digest string `json:"digest"`
Details ModelDetails `json:"details,omitempty"`
ExpiresAt time.Time `json:"expires_at"`
SizeVRAM int64 `json:"size_vram"`
Name string `json:"name"`
Model string `json:"model"`
Size int64 `json:"size"`
Digest string `json:"digest"`
Details ModelDetails `json:"details,omitempty"`
ExpiresAt time.Time `json:"expires_at"`
SizeVRAM int64 `json:"size_vram"`
ContextLength int `json:"context_length"`
}
type TokenResponse struct {
@@ -472,12 +628,22 @@ type GenerateResponse struct {
// Model is the model name that generated the response.
Model string `json:"model"`
// RemoteModel is the name of the upstream model that generated the response.
RemoteModel string `json:"remote_model,omitempty"`
// RemoteHost is the URL of the upstream Ollama host that generated the response.
RemoteHost string `json:"remote_host,omitempty"`
// CreatedAt is the timestamp of the response.
CreatedAt time.Time `json:"created_at"`
// Response is the textual response itself.
Response string `json:"response"`
// Thinking contains the text that was inside thinking tags in the
// original model output when ChatRequest.Think is enabled.
Thinking string `json:"thinking,omitempty"`
// Done specifies if the response is complete.
Done bool `json:"done"`
@@ -489,6 +655,10 @@ type GenerateResponse struct {
Context []int `json:"context,omitempty"`
Metrics
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
DebugInfo *DebugInfo `json:"_debug_info,omitempty"`
}
// ModelDetails provides details about a model.
@@ -501,6 +671,18 @@ type ModelDetails struct {
QuantizationLevel string `json:"quantization_level"`
}
// UserResponse provides information about a user.
type UserResponse struct {
ID uuid.UUID `json:"id"`
Email string `json:"email"`
Name string `json:"name"`
Bio string `json:"bio,omitempty"`
AvatarURL string `json:"avatarurl,omitempty"`
FirstName string `json:"firstname,omitempty"`
LastName string `json:"lastname,omitempty"`
Plan string `json:"plan,omitempty"`
}
// Tensor describes the metadata for a given tensor.
type Tensor struct {
Name string `json:"name"`
@@ -658,6 +840,113 @@ func DefaultOptions() Options {
}
}
// ThinkValue represents a value that can be a boolean or a string ("high", "medium", "low")
type ThinkValue struct {
// Value can be a bool or string
Value interface{}
}
// IsValid checks if the ThinkValue is valid
func (t *ThinkValue) IsValid() bool {
if t == nil || t.Value == nil {
return true // nil is valid (means not set)
}
switch v := t.Value.(type) {
case bool:
return true
case string:
return v == "high" || v == "medium" || v == "low"
default:
return false
}
}
// IsBool returns true if the value is a boolean
func (t *ThinkValue) IsBool() bool {
if t == nil || t.Value == nil {
return false
}
_, ok := t.Value.(bool)
return ok
}
// IsString returns true if the value is a string
func (t *ThinkValue) IsString() bool {
if t == nil || t.Value == nil {
return false
}
_, ok := t.Value.(string)
return ok
}
// Bool returns the value as a bool (true if enabled in any way)
func (t *ThinkValue) Bool() bool {
if t == nil || t.Value == nil {
return false
}
switch v := t.Value.(type) {
case bool:
return v
case string:
// Any string value ("high", "medium", "low") means thinking is enabled
return v == "high" || v == "medium" || v == "low"
default:
return false
}
}
// String returns the value as a string
func (t *ThinkValue) String() string {
if t == nil || t.Value == nil {
return ""
}
switch v := t.Value.(type) {
case string:
return v
case bool:
if v {
return "medium" // Default level when just true
}
return ""
default:
return ""
}
}
// UnmarshalJSON implements json.Unmarshaler
func (t *ThinkValue) UnmarshalJSON(data []byte) error {
// Try to unmarshal as bool first
var b bool
if err := json.Unmarshal(data, &b); err == nil {
t.Value = b
return nil
}
// Try to unmarshal as string
var s string
if err := json.Unmarshal(data, &s); err == nil {
// Validate string values
if s != "high" && s != "medium" && s != "low" {
return fmt.Errorf("invalid think value: %q (must be \"high\", \"medium\", \"low\", true, or false)", s)
}
t.Value = s
return nil
}
return fmt.Errorf("think must be a boolean or string (\"high\", \"medium\", \"low\")")
}
// MarshalJSON implements json.Marshaler
func (t *ThinkValue) MarshalJSON() ([]byte, error) {
if t == nil || t.Value == nil {
return []byte("null"), nil
}
return json.Marshal(t.Value)
}
type Duration struct {
time.Duration
}
@@ -682,7 +971,7 @@ func (d *Duration) UnmarshalJSON(b []byte) (err error) {
if t < 0 {
d.Duration = time.Duration(math.MaxInt64)
} else {
d.Duration = time.Duration(int(t) * int(time.Second))
d.Duration = time.Duration(t * float64(time.Second))
}
case string:
d.Duration, err = time.ParseDuration(t)

View File

@@ -17,6 +17,11 @@ func TestKeepAliveParsingFromJSON(t *testing.T) {
req string
exp *Duration
}{
{
name: "Unset",
req: `{ }`,
exp: nil,
},
{
name: "Positive Integer",
req: `{ "keep_alive": 42 }`,
@@ -25,7 +30,7 @@ func TestKeepAliveParsingFromJSON(t *testing.T) {
{
name: "Positive Float",
req: `{ "keep_alive": 42.5 }`,
exp: &Duration{42 * time.Second},
exp: &Duration{42500 * time.Millisecond},
},
{
name: "Positive Integer String",
@@ -372,3 +377,114 @@ func TestPropertyType_MarshalJSON(t *testing.T) {
})
}
}
func TestThinking_UnmarshalJSON(t *testing.T) {
tests := []struct {
name string
input string
expectedThinking *ThinkValue
expectedError bool
}{
{
name: "true",
input: `{ "think": true }`,
expectedThinking: &ThinkValue{Value: true},
},
{
name: "false",
input: `{ "think": false }`,
expectedThinking: &ThinkValue{Value: false},
},
{
name: "unset",
input: `{ }`,
expectedThinking: nil,
},
{
name: "string_high",
input: `{ "think": "high" }`,
expectedThinking: &ThinkValue{Value: "high"},
},
{
name: "string_medium",
input: `{ "think": "medium" }`,
expectedThinking: &ThinkValue{Value: "medium"},
},
{
name: "string_low",
input: `{ "think": "low" }`,
expectedThinking: &ThinkValue{Value: "low"},
},
{
name: "invalid_string",
input: `{ "think": "invalid" }`,
expectedThinking: nil,
expectedError: true,
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
var req GenerateRequest
err := json.Unmarshal([]byte(test.input), &req)
if test.expectedError {
require.Error(t, err)
} else {
require.NoError(t, err)
if test.expectedThinking == nil {
assert.Nil(t, req.Think)
} else {
require.NotNil(t, req.Think)
assert.Equal(t, test.expectedThinking.Value, req.Think.Value)
}
}
})
}
}
func TestToolFunctionParameters_String(t *testing.T) {
tests := []struct {
name string
params ToolFunctionParameters
expected string
}{
{
name: "simple object with string property",
params: ToolFunctionParameters{
Type: "object",
Required: []string{"name"},
Properties: map[string]ToolProperty{
"name": {
Type: PropertyType{"string"},
Description: "The name of the person",
},
},
},
expected: `{"type":"object","required":["name"],"properties":{"name":{"type":"string","description":"The name of the person"}}}`,
},
{
name: "marshal failure returns empty string",
params: ToolFunctionParameters{
Type: "object",
Defs: func() any {
// Create a cycle that will cause json.Marshal to fail
type selfRef struct {
Self *selfRef
}
s := &selfRef{}
s.Self = s
return s
}(),
Properties: map[string]ToolProperty{},
},
expected: "",
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
result := test.params.String()
assert.Equal(t, test.expected, result)
})
}
}

View File

@@ -0,0 +1,142 @@
package api
import (
"testing"
)
func TestToolParameterToTypeScriptType(t *testing.T) {
tests := []struct {
name string
param ToolProperty
expected string
}{
{
name: "single string type",
param: ToolProperty{
Type: PropertyType{"string"},
},
expected: "string",
},
{
name: "single number type",
param: ToolProperty{
Type: PropertyType{"number"},
},
expected: "number",
},
{
name: "integer maps to number",
param: ToolProperty{
Type: PropertyType{"integer"},
},
expected: "number",
},
{
name: "boolean type",
param: ToolProperty{
Type: PropertyType{"boolean"},
},
expected: "boolean",
},
{
name: "array type",
param: ToolProperty{
Type: PropertyType{"array"},
},
expected: "any[]",
},
{
name: "object type",
param: ToolProperty{
Type: PropertyType{"object"},
},
expected: "Record<string, any>",
},
{
name: "null type",
param: ToolProperty{
Type: PropertyType{"null"},
},
expected: "null",
},
{
name: "multiple types as union",
param: ToolProperty{
Type: PropertyType{"string", "number"},
},
expected: "string | number",
},
{
name: "string or null union",
param: ToolProperty{
Type: PropertyType{"string", "null"},
},
expected: "string | null",
},
{
name: "anyOf with single types",
param: ToolProperty{
AnyOf: []ToolProperty{
{Type: PropertyType{"string"}},
{Type: PropertyType{"number"}},
},
},
expected: "string | number",
},
{
name: "anyOf with multiple types in each branch",
param: ToolProperty{
AnyOf: []ToolProperty{
{Type: PropertyType{"string", "null"}},
{Type: PropertyType{"number"}},
},
},
expected: "string | null | number",
},
{
name: "nested anyOf",
param: ToolProperty{
AnyOf: []ToolProperty{
{Type: PropertyType{"boolean"}},
{
AnyOf: []ToolProperty{
{Type: PropertyType{"string"}},
{Type: PropertyType{"number"}},
},
},
},
},
expected: "boolean | string | number",
},
{
name: "empty type returns any",
param: ToolProperty{
Type: PropertyType{},
},
expected: "any",
},
{
name: "unknown type maps to any",
param: ToolProperty{
Type: PropertyType{"unknown_type"},
},
expected: "any",
},
{
name: "multiple types including array",
param: ToolProperty{
Type: PropertyType{"string", "array", "null"},
},
expected: "string | any[] | null",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
result := tt.param.ToTypeScriptType()
if result != tt.expected {
t.Errorf("ToTypeScriptType() = %q, want %q", result, tt.expected)
}
})
}
}

View File

@@ -19,6 +19,31 @@ import (
const defaultPrivateKey = "id_ed25519"
func keyPath() (string, error) {
fileIsReadable := func(fp string) bool {
info, err := os.Stat(fp)
if err != nil {
return false
}
// Check that it's a regular file, not a directory or other file type
if !info.Mode().IsRegular() {
return false
}
// Try to open it to check readability
file, err := os.Open(fp)
if err != nil {
return false
}
file.Close()
return true
}
systemPath := filepath.Join("/usr/share/ollama/.ollama", defaultPrivateKey)
if fileIsReadable(systemPath) {
return systemPath, nil
}
home, err := os.UserHomeDir()
if err != nil {
return "", err

View File

@@ -1,178 +0,0 @@
package benchmark
import (
"context"
"flag"
"fmt"
"testing"
"time"
"github.com/ollama/ollama/api"
)
// Command line flags
var modelFlag string
func init() {
flag.StringVar(&modelFlag, "m", "", "Name of the model to benchmark")
flag.Lookup("m").DefValue = "model"
}
// modelName returns the model name from flags, failing the test if not set
func modelName(b *testing.B) string {
if modelFlag == "" {
b.Fatal("Error: -m flag is required for benchmark tests")
}
return modelFlag
}
type TestCase struct {
name string
prompt string
maxTokens int
}
// runGenerateBenchmark contains the common generate and metrics logic
func runGenerateBenchmark(b *testing.B, ctx context.Context, client *api.Client, req *api.GenerateRequest) {
start := time.Now()
var ttft time.Duration
var metrics api.Metrics
err := client.Generate(ctx, req, func(resp api.GenerateResponse) error {
if ttft == 0 && resp.Response != "" {
ttft = time.Since(start)
}
if resp.Done {
metrics = resp.Metrics
}
return nil
})
// Report custom metrics as part of the benchmark results
b.ReportMetric(float64(ttft.Milliseconds()), "ttft_ms")
b.ReportMetric(float64(metrics.LoadDuration.Milliseconds()), "load_ms")
// Token throughput metrics
promptThroughput := float64(metrics.PromptEvalCount) / metrics.PromptEvalDuration.Seconds()
genThroughput := float64(metrics.EvalCount) / metrics.EvalDuration.Seconds()
b.ReportMetric(promptThroughput, "prompt_tok/s")
b.ReportMetric(genThroughput, "gen_tok/s")
// Token counts
b.ReportMetric(float64(metrics.PromptEvalCount), "prompt_tokens")
b.ReportMetric(float64(metrics.EvalCount), "gen_tokens")
if err != nil {
b.Fatal(err)
}
}
// BenchmarkColdStart runs benchmarks with model loading from cold state
func BenchmarkColdStart(b *testing.B) {
client := setup(b)
tests := []TestCase{
{"short_prompt", "Write a long story", 100},
{"medium_prompt", "Write a detailed economic analysis", 500},
{"long_prompt", "Write a comprehensive AI research paper", 1000},
}
m := modelName(b)
for _, tt := range tests {
b.Run(fmt.Sprintf("%s/cold/%s", m, tt.name), func(b *testing.B) {
ctx := b.Context()
// Set number of tokens as our throughput metric
b.SetBytes(int64(tt.maxTokens))
for b.Loop() {
b.StopTimer()
// Ensure model is unloaded before each iteration
unload(client, m, b)
b.StartTimer()
req := &api.GenerateRequest{
Model: m,
Prompt: tt.prompt,
Options: map[string]any{"num_predict": tt.maxTokens, "temperature": 0.1},
}
runGenerateBenchmark(b, ctx, client, req)
}
})
}
}
// BenchmarkWarmStart runs benchmarks with pre-loaded model
func BenchmarkWarmStart(b *testing.B) {
client := setup(b)
tests := []TestCase{
{"short_prompt", "Write a long story", 100},
{"medium_prompt", "Write a detailed economic analysis", 500},
{"long_prompt", "Write a comprehensive AI research paper", 1000},
}
m := modelName(b)
for _, tt := range tests {
b.Run(fmt.Sprintf("%s/warm/%s", m, tt.name), func(b *testing.B) {
ctx := b.Context()
// Pre-warm the model
warmup(client, m, tt.prompt, b)
// Set number of tokens as our throughput metric
b.SetBytes(int64(tt.maxTokens))
for b.Loop() {
req := &api.GenerateRequest{
Model: m,
Prompt: tt.prompt,
Options: map[string]any{"num_predict": tt.maxTokens, "temperature": 0.1},
}
runGenerateBenchmark(b, ctx, client, req)
}
})
}
}
// setup verifies server and model availability
func setup(b *testing.B) *api.Client {
client, err := api.ClientFromEnvironment()
if err != nil {
b.Fatal(err)
}
if _, err := client.Show(b.Context(), &api.ShowRequest{Model: modelName(b)}); err != nil {
b.Fatalf("Model unavailable: %v", err)
}
return client
}
// warmup ensures the model is loaded and warmed up
func warmup(client *api.Client, model string, prompt string, b *testing.B) {
for range 3 {
err := client.Generate(
context.Background(),
&api.GenerateRequest{
Model: model,
Prompt: prompt,
Options: map[string]any{"num_predict": 50, "temperature": 0.1},
},
func(api.GenerateResponse) error { return nil },
)
if err != nil {
b.Logf("Error during model warm-up: %v", err)
}
}
}
// unload forces model unloading using KeepAlive: 0 parameter
func unload(client *api.Client, model string, b *testing.B) {
req := &api.GenerateRequest{
Model: model,
KeepAlive: &api.Duration{Duration: 0},
}
if err := client.Generate(context.Background(), req, func(api.GenerateResponse) error { return nil }); err != nil {
b.Logf("Unload error: %v", err)
}
time.Sleep(1 * time.Second)
}

View File

@@ -5,6 +5,7 @@ import (
"context"
"crypto/ed25519"
"crypto/rand"
"encoding/base64"
"encoding/json"
"encoding/pem"
"errors"
@@ -14,6 +15,7 @@ import (
"math"
"net"
"net/http"
"net/url"
"os"
"os/signal"
"path/filepath"
@@ -35,10 +37,12 @@ import (
"golang.org/x/term"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/auth"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/progress"
"github.com/ollama/ollama/readline"
"github.com/ollama/ollama/runner"
"github.com/ollama/ollama/server"
"github.com/ollama/ollama/types/model"
@@ -46,6 +50,23 @@ import (
"github.com/ollama/ollama/version"
)
const ConnectInstructions = "To sign in, navigate to:\n https://ollama.com/connect?name=%s&key=%s\n\n"
// ensureThinkingSupport emits a warning if the model does not advertise thinking support
func ensureThinkingSupport(ctx context.Context, client *api.Client, name string) {
if name == "" {
return
}
resp, err := client.Show(ctx, &api.ShowRequest{Model: name})
if err != nil {
return
}
if slices.Contains(resp.Capabilities, model.CapabilityThinking) {
return
}
fmt.Fprintf(os.Stderr, "warning: model %q does not support thinking output\n", name)
}
var errModelfileNotFound = errors.New("specified Modelfile wasn't found")
func getModelfileName(cmd *cobra.Command) (string, error) {
@@ -265,9 +286,22 @@ func loadOrUnloadModel(cmd *cobra.Command, opts *runOptions) error {
req := &api.GenerateRequest{
Model: opts.Model,
KeepAlive: opts.KeepAlive,
// pass Think here so we fail before getting to the chat prompt if the model doesn't support it
Think: opts.Think,
}
return client.Generate(cmd.Context(), req, func(api.GenerateResponse) error { return nil })
return client.Generate(cmd.Context(), req, func(r api.GenerateResponse) error {
if r.RemoteModel != "" && opts.ShowConnect {
p.StopAndClear()
if strings.HasPrefix(r.RemoteHost, "https://ollama.com") {
fmt.Fprintf(os.Stderr, "Connecting to '%s' on 'ollama.com' ⚡\n", r.RemoteModel)
} else {
fmt.Fprintf(os.Stderr, "Connecting to '%s' on '%s'\n", r.RemoteModel, r.RemoteHost)
}
}
return nil
})
}
func StopHandler(cmd *cobra.Command, args []string) error {
@@ -288,9 +322,10 @@ func RunHandler(cmd *cobra.Command, args []string) error {
interactive := true
opts := runOptions{
Model: args[0],
WordWrap: os.Getenv("TERM") == "xterm-256color",
Options: map[string]any{},
Model: args[0],
WordWrap: os.Getenv("TERM") == "xterm-256color",
Options: map[string]any{},
ShowConnect: true,
}
format, err := cmd.Flags().GetString("format")
@@ -299,6 +334,34 @@ func RunHandler(cmd *cobra.Command, args []string) error {
}
opts.Format = format
thinkFlag := cmd.Flags().Lookup("think")
if thinkFlag.Changed {
thinkStr, err := cmd.Flags().GetString("think")
if err != nil {
return err
}
// Handle different values for --think
switch thinkStr {
case "", "true":
// --think or --think=true
opts.Think = &api.ThinkValue{Value: true}
case "false":
opts.Think = &api.ThinkValue{Value: false}
case "high", "medium", "low":
opts.Think = &api.ThinkValue{Value: thinkStr}
default:
return fmt.Errorf("invalid value for --think: %q (must be true, false, high, medium, or low)", thinkStr)
}
} else {
opts.Think = nil
}
hidethinking, err := cmd.Flags().GetBool("hidethinking")
if err != nil {
return err
}
opts.HideThinking = hidethinking
keepAlive, err := cmd.Flags().GetString("keepalive")
if err != nil {
return err
@@ -320,6 +383,7 @@ func RunHandler(cmd *cobra.Command, args []string) error {
}
prompts = append([]string{string(in)}, prompts...)
opts.ShowConnect = false
opts.WordWrap = false
interactive = false
}
@@ -362,6 +426,11 @@ func RunHandler(cmd *cobra.Command, args []string) error {
return err
}
opts.Think, err = inferThinkingOption(&info.Capabilities, &opts, thinkFlag.Changed)
if err != nil {
return err
}
opts.MultiModal = slices.Contains(info.Capabilities, model.CapabilityVision)
// TODO: remove the projector info and vision info checks below,
@@ -381,6 +450,21 @@ func RunHandler(cmd *cobra.Command, args []string) error {
if interactive {
if err := loadOrUnloadModel(cmd, &opts); err != nil {
var sErr api.AuthorizationError
if errors.As(err, &sErr) && sErr.StatusCode == http.StatusUnauthorized {
pubKey, pkErr := auth.GetPublicKey()
if pkErr != nil {
return pkErr
}
// the server and the client both have the same public key
if pubKey == sErr.PublicKey {
h, _ := os.Hostname()
encKey := base64.RawURLEncoding.EncodeToString([]byte(pubKey))
fmt.Printf("You need to be signed in to Ollama to run Cloud models.\n\n")
fmt.Printf(ConnectInstructions, url.PathEscape(h), encKey)
}
return nil
}
return err
}
@@ -401,6 +485,56 @@ func RunHandler(cmd *cobra.Command, args []string) error {
return generate(cmd, opts)
}
func SigninHandler(cmd *cobra.Command, args []string) error {
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
user, err := client.Whoami(cmd.Context())
if err != nil {
return err
}
if user != nil && user.Name != "" {
fmt.Printf("You are already signed in as user '%s'\n", user.Name)
fmt.Println()
return nil
}
pubKey, pkErr := auth.GetPublicKey()
if pkErr != nil {
return pkErr
}
encKey := base64.RawURLEncoding.EncodeToString([]byte(pubKey))
h, _ := os.Hostname()
fmt.Printf(ConnectInstructions, url.PathEscape(h), encKey)
return nil
}
func SignoutHandler(cmd *cobra.Command, args []string) error {
pubKey, pkErr := auth.GetPublicKey()
if pkErr != nil {
return pkErr
}
encKey := base64.RawURLEncoding.EncodeToString([]byte(pubKey))
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
err = client.Signout(cmd.Context(), encKey)
if err != nil {
return err
}
fmt.Println("You have signed out of ollama.com")
fmt.Println()
return nil
}
func PushHandler(cmd *cobra.Command, args []string) error {
client, err := api.ClientFromEnvironment()
if err != nil {
@@ -453,7 +587,8 @@ func PushHandler(cmd *cobra.Command, args []string) error {
if spinner != nil {
spinner.Stop()
}
if strings.Contains(err.Error(), "access denied") {
errStr := strings.ToLower(err.Error())
if strings.Contains(errStr, "access denied") || strings.Contains(errStr, "unauthorized") {
return errors.New("you are not authorized to push to this namespace, create the model under a namespace you own")
}
return err
@@ -487,7 +622,14 @@ func ListHandler(cmd *cobra.Command, args []string) error {
for _, m := range models.Models {
if len(args) == 0 || strings.HasPrefix(strings.ToLower(m.Name), strings.ToLower(args[0])) {
data = append(data, []string{m.Name, m.Digest[:12], format.HumanBytes(m.Size), format.HumanTime(m.ModifiedAt, "Never")})
var size string
if m.RemoteModel != "" {
size = "-"
} else {
size = format.HumanBytes(m.Size)
}
data = append(data, []string{m.Name, m.Digest[:12], size, format.HumanTime(m.ModifiedAt, "Never")})
}
}
@@ -541,12 +683,13 @@ func ListRunningHandler(cmd *cobra.Command, args []string) error {
} else {
until = format.HumanTime(m.ExpiresAt, "Never")
}
data = append(data, []string{m.Name, m.Digest[:12], format.HumanBytes(m.Size), procStr, until})
ctxStr := strconv.Itoa(m.ContextLength)
data = append(data, []string{m.Name, m.Digest[:12], format.HumanBytes(m.Size), procStr, ctxStr, until})
}
}
table := tablewriter.NewWriter(os.Stdout)
table.SetHeader([]string{"NAME", "ID", "SIZE", "PROCESSOR", "UNTIL"})
table.SetHeader([]string{"NAME", "ID", "SIZE", "PROCESSOR", "CONTEXT", "UNTIL"})
table.SetHeaderAlignment(tablewriter.ALIGN_LEFT)
table.SetAlignment(tablewriter.ALIGN_LEFT)
table.SetHeaderLine(false)
@@ -571,8 +714,8 @@ func DeleteHandler(cmd *cobra.Command, args []string) error {
KeepAlive: &api.Duration{Duration: 0},
}
if err := loadOrUnloadModel(cmd, opts); err != nil {
if !strings.Contains(err.Error(), "not found") {
return fmt.Errorf("unable to stop existing running model \"%s\": %s", args[0], err)
if !strings.Contains(strings.ToLower(err.Error()), "not found") {
fmt.Fprintf(os.Stderr, "Warning: unable to stop model '%s'\n", args[0])
}
}
@@ -683,12 +826,36 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
}
tableRender("Model", func() (rows [][]string) {
if resp.RemoteHost != "" {
rows = append(rows, []string{"", "Remote model", resp.RemoteModel})
rows = append(rows, []string{"", "Remote URL", resp.RemoteHost})
}
if resp.ModelInfo != nil {
arch := resp.ModelInfo["general.architecture"].(string)
rows = append(rows, []string{"", "architecture", arch})
rows = append(rows, []string{"", "parameters", format.HumanNumber(uint64(resp.ModelInfo["general.parameter_count"].(float64)))})
rows = append(rows, []string{"", "context length", strconv.FormatFloat(resp.ModelInfo[fmt.Sprintf("%s.context_length", arch)].(float64), 'f', -1, 64)})
rows = append(rows, []string{"", "embedding length", strconv.FormatFloat(resp.ModelInfo[fmt.Sprintf("%s.embedding_length", arch)].(float64), 'f', -1, 64)})
var paramStr string
if resp.Details.ParameterSize != "" {
paramStr = resp.Details.ParameterSize
} else if v, ok := resp.ModelInfo["general.parameter_count"]; ok {
if f, ok := v.(float64); ok {
paramStr = format.HumanNumber(uint64(f))
}
}
rows = append(rows, []string{"", "parameters", paramStr})
if v, ok := resp.ModelInfo[fmt.Sprintf("%s.context_length", arch)]; ok {
if f, ok := v.(float64); ok {
rows = append(rows, []string{"", "context length", strconv.FormatFloat(f, 'f', -1, 64)})
}
}
if v, ok := resp.ModelInfo[fmt.Sprintf("%s.embedding_length", arch)]; ok {
if f, ok := v.(float64); ok {
rows = append(rows, []string{"", "embedding length", strconv.FormatFloat(f, 'f', -1, 64)})
}
}
} else {
rows = append(rows, []string{"", "architecture", resp.Details.Family})
rows = append(rows, []string{"", "parameters", resp.Details.ParameterSize})
@@ -747,11 +914,38 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
case float64:
v = fmt.Sprintf("%g", vData)
case []any:
n := 3
if len(vData) < n {
n = len(vData)
targetWidth := 10 // Small width where we are displaying the data in a column
var itemsToShow int
totalWidth := 1 // Start with 1 for opening bracket
// Find how many we can fit
for i := range vData {
itemStr := fmt.Sprintf("%v", vData[i])
width := runewidth.StringWidth(itemStr)
// Add separator width (", ") for all items except the first
if i > 0 {
width += 2
}
// Check if adding this item would exceed our width limit
if totalWidth+width > targetWidth && i > 0 {
break
}
totalWidth += width
itemsToShow++
}
// Format the output
if itemsToShow < len(vData) {
v = fmt.Sprintf("%v", vData[:itemsToShow])
v = strings.TrimSuffix(v, "]")
v += fmt.Sprintf(" ...+%d more]", len(vData)-itemsToShow)
} else {
v = fmt.Sprintf("%v", vData)
}
v = fmt.Sprintf("%v", vData[:n])
default:
v = fmt.Sprintf("%T", vData)
}
@@ -772,10 +966,19 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
head := func(s string, n int) (rows [][]string) {
scanner := bufio.NewScanner(strings.NewReader(s))
for scanner.Scan() && (len(rows) < n || n < 0) {
if text := scanner.Text(); text != "" {
rows = append(rows, []string{"", strings.TrimSpace(text)})
count := 0
for scanner.Scan() {
text := strings.TrimSpace(scanner.Text())
if text == "" {
continue
}
count++
if n < 0 || count <= n {
rows = append(rows, []string{"", text})
}
}
if n >= 0 && count > n {
rows = append(rows, []string{"", "..."})
}
return
}
@@ -887,17 +1090,20 @@ func PullHandler(cmd *cobra.Command, args []string) error {
type generateContextKey string
type runOptions struct {
Model string
ParentModel string
Prompt string
Messages []api.Message
WordWrap bool
Format string
System string
Images []api.ImageData
Options map[string]any
MultiModal bool
KeepAlive *api.Duration
Model string
ParentModel string
Prompt string
Messages []api.Message
WordWrap bool
Format string
System string
Images []api.ImageData
Options map[string]any
MultiModal bool
KeepAlive *api.Duration
Think *api.ThinkValue
HideThinking bool
ShowConnect bool
}
type displayResponseState struct {
@@ -936,10 +1142,11 @@ func displayResponse(content string, wordWrap bool, state *displayResponseState)
}
switch ch {
case ' ':
case ' ', '\t':
state.wordBuffer = ""
case '\n':
case '\n', '\r':
state.lineLength = 0
state.wordBuffer = ""
default:
state.wordBuffer += string(ch)
}
@@ -953,6 +1160,26 @@ func displayResponse(content string, wordWrap bool, state *displayResponseState)
}
}
func thinkingOutputOpeningText(plainText bool) string {
text := "Thinking...\n"
if plainText {
return text
}
return readline.ColorGrey + readline.ColorBold + text + readline.ColorDefault + readline.ColorGrey
}
func thinkingOutputClosingText(plainText bool) string {
text := "...done thinking.\n\n"
if plainText {
return text
}
return readline.ColorGrey + readline.ColorBold + text + readline.ColorDefault
}
func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
client, err := api.ClientFromEnvironment()
if err != nil {
@@ -977,19 +1204,55 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
}()
var state *displayResponseState = &displayResponseState{}
var thinkingContent strings.Builder
var latest api.ChatResponse
var fullResponse strings.Builder
var role string
var thinkTagOpened bool = false
var thinkTagClosed bool = false
role := "assistant"
fn := func(response api.ChatResponse) error {
p.StopAndClear()
if response.Message.Content != "" || !opts.HideThinking {
p.StopAndClear()
}
latest = response
role = response.Message.Role
if response.Message.Thinking != "" && !opts.HideThinking {
if !thinkTagOpened {
fmt.Print(thinkingOutputOpeningText(false))
thinkTagOpened = true
thinkTagClosed = false
}
thinkingContent.WriteString(response.Message.Thinking)
displayResponse(response.Message.Thinking, opts.WordWrap, state)
}
content := response.Message.Content
if thinkTagOpened && !thinkTagClosed && (content != "" || len(response.Message.ToolCalls) > 0) {
if !strings.HasSuffix(thinkingContent.String(), "\n") {
fmt.Println()
}
fmt.Print(thinkingOutputClosingText(false))
thinkTagOpened = false
thinkTagClosed = true
state = &displayResponseState{}
}
// purposefully not putting thinking blocks in the response, which would
// only be needed if we later added tool calling to the cli (they get
// filtered out anyway since current models don't expect them unless you're
// about to finish some tool calls)
fullResponse.WriteString(content)
if response.Message.ToolCalls != nil {
toolCalls := response.Message.ToolCalls
if len(toolCalls) > 0 {
fmt.Print(renderToolCalls(toolCalls, false))
}
}
displayResponse(content, opts.WordWrap, state)
return nil
@@ -1004,6 +1267,7 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
Messages: opts.Messages,
Format: json.RawMessage(opts.Format),
Options: opts.Options,
Think: opts.Think,
}
if opts.KeepAlive != nil {
@@ -1014,6 +1278,14 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
if errors.Is(err, context.Canceled) {
return nil, nil
}
// this error should ideally be wrapped properly by the client
if strings.Contains(err.Error(), "upstream error") {
p.StopAndClear()
fmt.Println("An error occurred while processing your message. Please try again.")
fmt.Println()
return nil, nil
}
return nil, err
}
@@ -1065,15 +1337,49 @@ func generate(cmd *cobra.Command, opts runOptions) error {
}()
var state *displayResponseState = &displayResponseState{}
var thinkingContent strings.Builder
var thinkTagOpened bool = false
var thinkTagClosed bool = false
plainText := !term.IsTerminal(int(os.Stdout.Fd()))
fn := func(response api.GenerateResponse) error {
p.StopAndClear()
latest = response
content := response.Response
if response.Response != "" || !opts.HideThinking {
p.StopAndClear()
}
if response.Thinking != "" && !opts.HideThinking {
if !thinkTagOpened {
fmt.Print(thinkingOutputOpeningText(plainText))
thinkTagOpened = true
thinkTagClosed = false
}
thinkingContent.WriteString(response.Thinking)
displayResponse(response.Thinking, opts.WordWrap, state)
}
if thinkTagOpened && !thinkTagClosed && (content != "" || len(response.ToolCalls) > 0) {
if !strings.HasSuffix(thinkingContent.String(), "\n") {
fmt.Println()
}
fmt.Print(thinkingOutputClosingText(plainText))
thinkTagOpened = false
thinkTagClosed = true
state = &displayResponseState{}
}
displayResponse(content, opts.WordWrap, state)
if response.ToolCalls != nil {
toolCalls := response.ToolCalls
if len(toolCalls) > 0 {
fmt.Print(renderToolCalls(toolCalls, plainText))
}
}
return nil
}
@@ -1097,6 +1403,7 @@ func generate(cmd *cobra.Command, opts runOptions) error {
System: opts.System,
Options: opts.Options,
KeepAlive: opts.KeepAlive,
Think: opts.Think,
}
if err := client.Generate(ctx, &request, fn); err != nil {
@@ -1200,11 +1507,11 @@ func checkServerHeartbeat(cmd *cobra.Command, _ []string) error {
return err
}
if err := client.Heartbeat(cmd.Context()); err != nil {
if !strings.Contains(err.Error(), " refused") {
if !(strings.Contains(err.Error(), " refused") || strings.Contains(err.Error(), "could not connect")) {
return err
}
if err := startApp(cmd.Context(), client); err != nil {
return errors.New("could not connect to ollama app, is it running?")
return fmt.Errorf("ollama server not responding - %w", err)
}
}
return nil
@@ -1275,14 +1582,14 @@ func NewCLI() *cobra.Command {
createCmd := &cobra.Command{
Use: "create MODEL",
Short: "Create a model from a Modelfile",
Short: "Create a model",
Args: cobra.ExactArgs(1),
PreRunE: checkServerHeartbeat,
RunE: CreateHandler,
}
createCmd.Flags().StringP("file", "f", "", "Name of the Modelfile (default \"Modelfile\"")
createCmd.Flags().StringP("quantize", "q", "", "Quantize model to this level (e.g. q4_0)")
createCmd.Flags().StringP("file", "f", "", "Name of the Modelfile (default \"Modelfile\")")
createCmd.Flags().StringP("quantize", "q", "", "Quantize model to this level (e.g. q4_K_M)")
showCmd := &cobra.Command{
Use: "show MODEL",
@@ -1312,6 +1619,9 @@ func NewCLI() *cobra.Command {
runCmd.Flags().Bool("insecure", false, "Use an insecure registry")
runCmd.Flags().Bool("nowordwrap", false, "Don't wrap words to the next line automatically")
runCmd.Flags().String("format", "", "Response format (e.g. json)")
runCmd.Flags().String("think", "", "Enable thinking mode: true/false or high/medium/low for supported models")
runCmd.Flags().Lookup("think").NoOptDefVal = "true"
runCmd.Flags().Bool("hidethinking", false, "Hide thinking output (if provided)")
stopCmd := &cobra.Command{
Use: "stop MODEL",
@@ -1349,6 +1659,22 @@ func NewCLI() *cobra.Command {
pushCmd.Flags().Bool("insecure", false, "Use an insecure registry")
signinCmd := &cobra.Command{
Use: "signin",
Short: "Sign in to ollama.com",
Args: cobra.ExactArgs(0),
PreRunE: checkServerHeartbeat,
RunE: SigninHandler,
}
signoutCmd := &cobra.Command{
Use: "signout",
Short: "Sign out from ollama.com",
Args: cobra.ExactArgs(0),
PreRunE: checkServerHeartbeat,
RunE: SignoutHandler,
}
listCmd := &cobra.Command{
Use: "list",
Aliases: []string{"ls"},
@@ -1363,7 +1689,6 @@ func NewCLI() *cobra.Command {
PreRunE: checkServerHeartbeat,
RunE: ListRunningHandler,
}
copyCmd := &cobra.Command{
Use: "cp SOURCE DESTINATION",
Short: "Copy a model",
@@ -1416,6 +1741,7 @@ func NewCLI() *cobra.Command {
appendEnvDocs(cmd, []envconfig.EnvVar{
envVars["OLLAMA_DEBUG"],
envVars["OLLAMA_HOST"],
envVars["OLLAMA_CONTEXT_LENGTH"],
envVars["OLLAMA_KEEP_ALIVE"],
envVars["OLLAMA_MAX_LOADED_MODELS"],
envVars["OLLAMA_MAX_QUEUE"],
@@ -1443,6 +1769,8 @@ func NewCLI() *cobra.Command {
stopCmd,
pullCmd,
pushCmd,
signinCmd,
signoutCmd,
listCmd,
psCmd,
copyCmd,
@@ -1452,3 +1780,70 @@ func NewCLI() *cobra.Command {
return rootCmd
}
// If the user has explicitly set thinking options, either through the CLI or
// through the `/set think` or `set nothink` interactive options, then we
// respect them. Otherwise, we check model capabilities to see if the model
// supports thinking. If the model does support thinking, we enable it.
// Otherwise, we unset the thinking option (which is different than setting it
// to false).
//
// If capabilities are not provided, we fetch them from the server.
func inferThinkingOption(caps *[]model.Capability, runOpts *runOptions, explicitlySetByUser bool) (*api.ThinkValue, error) {
if explicitlySetByUser {
return runOpts.Think, nil
}
if caps == nil {
client, err := api.ClientFromEnvironment()
if err != nil {
return nil, err
}
ret, err := client.Show(context.Background(), &api.ShowRequest{
Model: runOpts.Model,
})
if err != nil {
return nil, err
}
caps = &ret.Capabilities
}
thinkingSupported := false
for _, cap := range *caps {
if cap == model.CapabilityThinking {
thinkingSupported = true
}
}
if thinkingSupported {
return &api.ThinkValue{Value: true}, nil
}
return nil, nil
}
func renderToolCalls(toolCalls []api.ToolCall, plainText bool) string {
out := ""
formatExplanation := ""
formatValues := ""
if !plainText {
formatExplanation = readline.ColorGrey + readline.ColorBold
formatValues = readline.ColorDefault
out += formatExplanation
}
for i, toolCall := range toolCalls {
argsAsJSON, err := json.Marshal(toolCall.Function.Arguments)
if err != nil {
return ""
}
if i > 0 {
out += "\n"
}
// all tool calls are unexpected since we don't currently support registering any in the CLI
out += fmt.Sprintf(" Model called a non-existent function '%s()' with arguments: %s", formatValues+toolCall.Function.Name+formatExplanation, formatValues+string(argsAsJSON)+formatExplanation)
}
if !plainText {
out += readline.ColorDefault
}
return out
}

View File

@@ -3,6 +3,7 @@ package cmd
import (
"bytes"
"encoding/json"
"fmt"
"io"
"net/http"
"net/http/httptest"
@@ -225,6 +226,7 @@ Weigh anchor!
System
You are a pirate!
Ahoy, matey!
...
`
if diff := cmp.Diff(expect, b.String()); diff != "" {
@@ -303,6 +305,8 @@ func TestDeleteHandler(t *testing.T) {
w.WriteHeader(http.StatusOK)
} else {
w.WriteHeader(http.StatusNotFound)
errPayload := `{"error":"model '%s' not found"}`
w.Write([]byte(fmt.Sprintf(errPayload, req.Name)))
}
return
}
@@ -345,7 +349,7 @@ func TestDeleteHandler(t *testing.T) {
}
err := DeleteHandler(cmd, []string{"test-model-not-found"})
if err == nil || !strings.Contains(err.Error(), "unable to stop existing running model \"test-model-not-found\"") {
if err == nil || !strings.Contains(err.Error(), "model 'test-model-not-found' not found") {
t.Fatalf("DeleteHandler failed: expected error about stopping non-existent model, got %v", err)
}
}
@@ -498,7 +502,7 @@ func TestPushHandler(t *testing.T) {
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusUnauthorized)
err := json.NewEncoder(w).Encode(map[string]string{
"error": "access denied",
"error": "403: {\"errors\":[{\"code\":\"ACCESS DENIED\", \"message\":\"access denied\"}]}",
})
if err != nil {
t.Fatal(err)
@@ -521,6 +525,7 @@ func TestPushHandler(t *testing.T) {
defer mockServer.Close()
t.Setenv("OLLAMA_HOST", mockServer.URL)
initializeKeypair()
cmd := &cobra.Command{}
cmd.Flags().Bool("insecure", false, "")

View File

@@ -62,6 +62,8 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Fprintln(os.Stderr, " /set noformat Disable formatting")
fmt.Fprintln(os.Stderr, " /set verbose Show LLM stats")
fmt.Fprintln(os.Stderr, " /set quiet Disable LLM stats")
fmt.Fprintln(os.Stderr, " /set think Enable thinking")
fmt.Fprintln(os.Stderr, " /set nothink Disable thinking")
fmt.Fprintln(os.Stderr, "")
}
@@ -128,6 +130,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
var sb strings.Builder
var multiline MultilineState
var thinkExplicitlySet bool = opts.Think != nil
for {
line, err := scanner.Readline()
@@ -195,11 +198,19 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
opts.Model = args[1]
opts.Messages = []api.Message{}
fmt.Printf("Loading model '%s'\n", opts.Model)
opts.Think, err = inferThinkingOption(nil, &opts, thinkExplicitlySet)
if err != nil {
return err
}
if err := loadOrUnloadModel(cmd, &opts); err != nil {
if strings.Contains(err.Error(), "not found") {
fmt.Printf("error: %v\n", err)
continue
}
if strings.Contains(err.Error(), "does not support thinking") {
fmt.Printf("error: %v\n", err)
continue
}
return err
}
continue
@@ -260,6 +271,35 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
return err
}
fmt.Println("Set 'quiet' mode.")
case "think":
thinkValue := api.ThinkValue{Value: true}
var maybeLevel string
if len(args) > 2 {
maybeLevel = args[2]
}
if maybeLevel != "" {
// TODO(drifkin): validate the level, could be model dependent
// though... It will also be validated on the server once a call is
// made.
thinkValue.Value = maybeLevel
}
opts.Think = &thinkValue
thinkExplicitlySet = true
if client, err := api.ClientFromEnvironment(); err == nil {
ensureThinkingSupport(cmd.Context(), client, opts.Model)
}
if maybeLevel != "" {
fmt.Printf("Set 'think' mode to '%s'.\n", maybeLevel)
} else {
fmt.Println("Set 'think' mode.")
}
case "nothink":
opts.Think = &api.ThinkValue{Value: false}
thinkExplicitlySet = true
if client, err := api.ClientFromEnvironment(); err == nil {
ensureThinkingSupport(cmd.Context(), client, opts.Model)
}
fmt.Println("Set 'nothink' mode.")
case "format":
if len(args) < 3 || args[2] != "json" {
fmt.Println("Invalid or missing format. For 'json' mode use '/set format json'")
@@ -358,18 +398,21 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
case "modelfile":
fmt.Println(resp.Modelfile)
case "parameters":
fmt.Println("Model defined parameters:")
if resp.Parameters == "" {
fmt.Println("No parameters were specified for this model.")
fmt.Println(" No additional parameters were specified for this model.")
} else {
if len(opts.Options) > 0 {
fmt.Println("User defined parameters:")
for k, v := range opts.Options {
fmt.Printf("%-*s %v\n", 30, k, v)
}
fmt.Println()
for _, l := range strings.Split(resp.Parameters, "\n") {
fmt.Printf(" %s\n", l)
}
fmt.Println("Model defined parameters:")
fmt.Println(resp.Parameters)
}
fmt.Println()
if len(opts.Options) > 0 {
fmt.Println("User defined parameters:")
for k, v := range opts.Options {
fmt.Printf(" %-*s %v\n", 30, k, v)
}
fmt.Println()
}
case "system":
switch {
@@ -448,6 +491,12 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
assistant, err := chat(cmd, opts)
if err != nil {
if strings.Contains(err.Error(), "does not support thinking") ||
strings.Contains(err.Error(), "invalid think value") {
fmt.Printf("error: %v\n", err)
sb.Reset()
continue
}
return err
}
if assistant != nil {

View File

@@ -5,7 +5,7 @@ import (
"errors"
"os"
"os/exec"
"strings"
"regexp"
"github.com/ollama/ollama/api"
)
@@ -19,11 +19,12 @@ func startApp(ctx context.Context, client *api.Client) error {
if err != nil {
return err
}
if !strings.Contains(link, "Ollama.app") {
r := regexp.MustCompile(`^.*/Ollama\s?\d*.app`)
m := r.FindStringSubmatch(link)
if len(m) != 1 {
return errors.New("could not find ollama app")
}
path := strings.Split(link, "Ollama.app")
if err := exec.Command("/usr/bin/open", "-a", path[0]+"Ollama.app").Run(); err != nil {
if err := exec.Command("/usr/bin/open", "-j", "-a", m[0], "--args", "--fast-startup").Run(); err != nil {
return err
}
return waitForServer(ctx, client)

View File

@@ -4,17 +4,27 @@ import (
"context"
"errors"
"fmt"
"log/slog"
"os"
"os/exec"
"path"
"path/filepath"
"strings"
"syscall"
"unsafe"
"github.com/ollama/ollama/api"
"golang.org/x/sys/windows"
)
const (
Installer = "OllamaSetup.exe"
)
func startApp(ctx context.Context, client *api.Client) error {
// log.Printf("XXX Attempting to find and start ollama app")
if len(isProcRunning(Installer)) > 0 {
return fmt.Errorf("upgrade in progress...")
}
AppName := "ollama app.exe"
exe, err := os.Executable()
if err != nil {
@@ -35,14 +45,11 @@ func startApp(ctx context.Context, client *api.Client) error {
}
}
}
// log.Printf("XXX attempting to start app %s", appExe)
cmd_path := "c:\\Windows\\system32\\cmd.exe"
cmd := exec.Command(cmd_path, "/c", appExe)
// TODO - these hide flags aren't working - still pops up a command window for some reason
cmd := exec.Command(cmd_path, "/c", appExe, "--hide", "--fast-startup")
cmd.SysProcAttr = &syscall.SysProcAttr{CreationFlags: 0x08000000, HideWindow: true}
// TODO this didn't help either...
cmd.Stdin = strings.NewReader("")
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
@@ -56,3 +63,50 @@ func startApp(ctx context.Context, client *api.Client) error {
}
return waitForServer(ctx, client)
}
func isProcRunning(procName string) []uint32 {
pids := make([]uint32, 2048)
var ret uint32
if err := windows.EnumProcesses(pids, &ret); err != nil || ret == 0 {
slog.Debug("failed to check for running installers", "error", err)
return nil
}
if ret > uint32(len(pids)) {
pids = make([]uint32, ret+10)
if err := windows.EnumProcesses(pids, &ret); err != nil || ret == 0 {
slog.Debug("failed to check for running installers", "error", err)
return nil
}
}
if ret < uint32(len(pids)) {
pids = pids[:ret]
}
var matches []uint32
for _, pid := range pids {
if pid == 0 {
continue
}
hProcess, err := windows.OpenProcess(windows.PROCESS_QUERY_INFORMATION|windows.PROCESS_VM_READ, false, pid)
if err != nil {
continue
}
defer windows.CloseHandle(hProcess)
var module windows.Handle
var cbNeeded uint32
cb := (uint32)(unsafe.Sizeof(module))
if err := windows.EnumProcessModules(hProcess, &module, cb, &cbNeeded); err != nil {
continue
}
var sz uint32 = 1024 * 8
moduleName := make([]uint16, sz)
cb = uint32(len(moduleName)) * (uint32)(unsafe.Sizeof(uint16(0)))
if err := windows.GetModuleBaseName(hProcess, module, &moduleName[0], cb); err != nil && err != syscall.ERROR_INSUFFICIENT_BUFFER {
continue
}
exeFile := path.Base(strings.ToLower(syscall.UTF16ToString(moduleName)))
if strings.EqualFold(exeFile, procName) {
matches = append(matches, pid)
}
}
return matches
}

63
cmd/warn_thinking_test.go Normal file
View File

@@ -0,0 +1,63 @@
package cmd
import (
"encoding/json"
"io"
"net/http"
"net/http/httptest"
"os"
"strings"
"testing"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/types/model"
)
// Test that a warning is printed when thinking is requested but not supported.
func TestWarnMissingThinking(t *testing.T) {
cases := []struct {
capabilities []model.Capability
expectWarn bool
}{
{capabilities: []model.Capability{model.CapabilityThinking}, expectWarn: false},
{capabilities: []model.Capability{}, expectWarn: true},
}
for _, tc := range cases {
srv := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if r.URL.Path != "/api/show" || r.Method != http.MethodPost {
t.Fatalf("unexpected request to %s %s", r.URL.Path, r.Method)
}
var req api.ShowRequest
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
t.Fatalf("decode request: %v", err)
}
resp := api.ShowResponse{Capabilities: tc.capabilities}
if err := json.NewEncoder(w).Encode(resp); err != nil {
t.Fatalf("encode response: %v", err)
}
}))
defer srv.Close()
t.Setenv("OLLAMA_HOST", srv.URL)
client, err := api.ClientFromEnvironment()
if err != nil {
t.Fatal(err)
}
oldStderr := os.Stderr
r, w, _ := os.Pipe()
os.Stderr = w
ensureThinkingSupport(t.Context(), client, "m")
w.Close()
os.Stderr = oldStderr
out, _ := io.ReadAll(r)
warned := strings.Contains(string(out), "warning:")
if tc.expectWarn && !warned {
t.Errorf("expected warning, got none")
}
if !tc.expectWarn && warned {
t.Errorf("did not expect warning, got: %s", string(out))
}
}
}

View File

@@ -53,8 +53,11 @@ func (ModelParameters) KV(t *Tokenizer) ggml.KV {
}
for _, sv := range t.SpecialVocabulary {
kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID)
kv[fmt.Sprintf("tokenizer.ggml.add_%s_token", sv.Key())] = sv.AddToken
kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID)
if len(sv.IDs) > 0 {
kv[fmt.Sprintf("tokenizer.ggml.%s_token_ids", sv.Key())] = sv.IDs
}
}
return kv
@@ -187,6 +190,8 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
conv = &gemma2Model{}
case "Gemma3ForCausalLM", "Gemma3ForConditionalGeneration":
conv = &gemma3Model{Architecture: p.Architectures[0]}
case "Gemma3nForConditionalGeneration":
conv = &gemma3nModel{}
case "Phi3ForCausalLM":
conv = &phi3Model{}
case "Qwen2ForCausalLM":
@@ -197,6 +202,8 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
conv = &bertModel{}
case "CohereForCausalLM":
conv = &commandrModel{}
case "GptOssForCausalLM":
conv = &gptossModel{}
default:
return fmt.Errorf("unsupported architecture %q", p.Architectures[0])
}

View File

@@ -28,6 +28,7 @@ type bertModel struct {
LayerNormEPS float32 `json:"layer_norm_eps"`
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
NormEpsilon float32 `json:"norm_epsilon"`
normalizeEmbeddings bool
PoolingType uint32
}
@@ -54,9 +55,11 @@ func (p *bertModel) parseMore(fsys fs.FS) error {
var pooling string
for _, m := range modules {
if m.Type == "sentence_transformers.models.Pooling" {
switch m.Type {
case "sentence_transformers.models.Pooling":
pooling = m.Path
break
case "sentence_transformers.models.Normalize":
p.normalizeEmbeddings = true
}
}
@@ -90,6 +93,7 @@ func (p *bertModel) KV(t *Tokenizer) ggml.KV {
kv["general.architecture"] = "bert"
kv["bert.attention.causal"] = false
kv["bert.pooling_type"] = p.PoolingType
kv["bert.normalize_embeddings"] = p.normalizeEmbeddings
kv["bert.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)

165
convert/convert_gemma3n.go Normal file
View File

@@ -0,0 +1,165 @@
package convert
import (
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"gonum.org/v1/gonum/stat/distuv"
)
type gemma3nModel struct {
ModelParameters
TextModel struct {
ActivationSparsityPattern []float32 `json:"activation_sparsity_pattern"`
AltupActiveIdx uint32 `json:"altup_active_idx"`
AltupCoefClip float32 `json:"altup_coef_clip"`
AltupCorrectScale bool `json:"altup_correct_scale"`
AltupLRMultiplier float32 `json:"altup_lr_multiplier"`
AltupNumInputs uint32 `json:"altup_num_inputs"`
HeadDim uint32 `json:"head_dim"`
HiddenSize uint32 `json:"hidden_size"`
HiddenSizePerLayerInput uint32 `json:"hidden_size_per_layer_input"`
IntermediateSize uint32 `json:"intermediate_size"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
NumKVSharedLayers uint32 `json:"num_kv_shared_layers"`
RMSNormEPS float32 `json:"rms_norm_eps"`
RopeLocalBaseFreq float32 `json:"rope_local_base_freq"`
RopeTheta float32 `json:"rope_theta"`
SlidingWindow uint32 `json:"sliding_window"`
LayerTypes []string `json:"layer_types"`
} `json:"text_config"`
VisionModel struct{} `json:"vision_config"`
}
func (m *gemma3nModel) KV(t *Tokenizer) ggml.KV {
kv := m.ModelParameters.KV(t)
kv["general.architecture"] = "gemma3n"
kv["gemma3n.activation_sparsity_scale"] = slices.Collect(func(yield func(float32) bool) {
norm := distuv.Normal{Mu: 0, Sigma: 1}
for _, v := range m.TextModel.ActivationSparsityPattern {
if !yield(float32(norm.Quantile(float64(v)))) {
break
}
}
})
kv["gemma3n.altup.active_idx"] = m.TextModel.AltupActiveIdx
kv["gemma3n.altup.correct_scale"] = m.TextModel.AltupCorrectScale
kv["gemma3n.altup.lr_multiplier"] = m.TextModel.AltupLRMultiplier
kv["gemma3n.altup.num_inputs"] = m.TextModel.AltupNumInputs
kv["gemma3n.attention.head_count_kv"] = m.TextModel.NumKeyValueHeads
kv["gemma3n.attention.head_count"] = m.TextModel.NumAttentionHeads
kv["gemma3n.attention.layer_norm_rms_epsilon"] = m.TextModel.RMSNormEPS
kv["gemma3n.attention.sliding_window"] = m.TextModel.SlidingWindow
kv["gemma3n.attention.sliding_window_pattern"] = slices.Collect(func(yield func(bool) bool) {
for _, t := range m.TextModel.LayerTypes {
if !yield(t == "sliding_attention") {
break
}
}
})
kv["gemma3n.attention.shared_kv_layers"] = m.TextModel.NumKVSharedLayers
kv["gemma3n.block_count"] = m.TextModel.NumHiddenLayers
kv["gemma3n.context_length"] = m.TextModel.MaxPositionEmbeddings
kv["gemma3n.embedding_length_per_layer_input"] = m.TextModel.HiddenSizePerLayerInput
kv["gemma3n.embedding_length"] = m.TextModel.HiddenSize
kv["gemma3n.feed_forward_length"] = m.TextModel.IntermediateSize
kv["gemma3n.head_dim"] = m.TextModel.HeadDim
kv["gemma3n.rope.freq_base_local"] = m.TextModel.RopeLocalBaseFreq
kv["gemma3n.rope.freq_base"] = m.TextModel.RopeTheta
return kv
}
func (m *gemma3nModel) Tensors(ts []Tensor) []*ggml.Tensor {
out, ts := mergeTensors(ts,
merge{"altup_proj.*.weight", "altup_proj.weight"},
merge{"altup_unembd_proj.*.weight", "altup_unembd_proj.weight"},
)
for _, t := range ts {
switch {
case strings.Contains(t.Name(), "audio_tower"),
strings.Contains(t.Name(), "embed_audio"),
strings.Contains(t.Name(), "vision_tower"),
strings.Contains(t.Name(), "embed_vision"):
// TODO: handle audio and vision towers
continue
case strings.Contains(t.Name(), "altup_predict_coef"),
strings.Contains(t.Name(), "altup_correct_coef"):
if m.TextModel.AltupCoefClip > 0 {
t.SetRepacker(func(name string, data []float32, shape []uint64) (_ []float32, err error) {
dims := make([]int, len(shape))
for i := range shape {
dims[i] = int(shape[i])
}
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
t, err = tensor.Clamp(t, -m.TextModel.AltupCoefClip, m.TextModel.AltupCoefClip)
if err != nil {
return nil, err
}
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(t.(*tensor.Dense))
})
}
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (m *gemma3nModel) Replacements() []string {
return []string{
"model.language_model.embed_tokens_per_layer", "per_layer_token_embd",
"model.language_model.embed_tokens", "token_embd",
"model.language_model.per_layer_model_projection", "per_layer_model_proj",
"model.language_model.per_layer_projection_norm", "per_layer_proj_norm", "model.language_model.altup_projections", "altup_proj",
"model.language_model.altup_unembed_projections", "altup_unembd_proj",
"model.language_model.norm", "output_norm",
"model.language_model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.q_norm", "attn_q_norm",
"self_attn.k_proj", "attn_k",
"self_attn.k_norm", "attn_k_norm",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"post_attention_layernorm", "post_attention_norm",
"pre_feedforward_layernorm", "ffn_norm",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"mlp.down_proj", "ffn_down",
"post_feedforward_layernorm", "post_ffw_norm",
"per_layer_input_gate", "inp_gate",
"per_layer_projection", "proj",
"post_per_layer_input_norm", "post_norm",
"altup.", "altup_",
"modality_router", "router",
"prediction_coefs", "predict_coef",
"correction_coefs", "correct_coef",
"correct_output_scale", "correct_scale.weight",
"laurel.", "laurel_",
"linear_left", "l",
"linear_right", "r",
"post_laurel_norm", "post_norm",
}
}

223
convert/convert_gptoss.go Normal file
View File

@@ -0,0 +1,223 @@
package convert
import (
"bytes"
"cmp"
"encoding/binary"
"io"
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
)
type gptossModel struct {
ModelParameters
HiddenLayers uint32 `json:"num_hidden_layers"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
AttentionHeads uint32 `json:"num_attention_heads"`
KeyValueHeads uint32 `json:"num_key_value_heads"`
HeadDim uint32 `json:"head_dim"`
Experts uint32 `json:"num_experts"`
LocalExperts uint32 `json:"num_local_experts"`
ExpertsPerToken uint32 `json:"experts_per_token"`
RMSNormEpsilon float32 `json:"rms_norm_eps"`
InitialContextLength uint32 `json:"initial_context_length"`
RopeTheta float32 `json:"rope_theta"`
RopeScalingFactor float32 `json:"rope_scaling_factor"`
RopeScaling struct {
Factor float32 `json:"factor"`
} `json:"rope_scaling"`
SlidingWindow uint32 `json:"sliding_window"`
}
var _ ModelConverter = (*gptossModel)(nil)
func (m *gptossModel) KV(t *Tokenizer) ggml.KV {
kv := m.ModelParameters.KV(t)
kv["general.architecture"] = "gptoss"
kv["general.file_type"] = uint32(4)
kv["gptoss.context_length"] = cmp.Or(m.MaxPositionEmbeddings, uint32(m.RopeScalingFactor*float32(m.InitialContextLength)))
kv["gptoss.block_count"] = m.HiddenLayers
kv["gptoss.embedding_length"] = m.HiddenSize
kv["gptoss.feed_forward_length"] = m.IntermediateSize
kv["gptoss.expert_count"] = cmp.Or(m.Experts, m.LocalExperts)
kv["gptoss.expert_used_count"] = m.ExpertsPerToken
kv["gptoss.attention.head_count"] = m.AttentionHeads
kv["gptoss.attention.head_count_kv"] = m.KeyValueHeads
kv["gptoss.attention.key_length"] = m.HeadDim
kv["gptoss.attention.value_length"] = m.HeadDim
kv["gptoss.attention.layer_norm_rms_epsilon"] = cmp.Or(m.RMSNormEpsilon, 1e-5)
kv["gptoss.attention.sliding_window"] = m.SlidingWindow
kv["gptoss.rope.freq_base"] = m.RopeTheta
kv["gptoss.rope.scaling.factor"] = cmp.Or(m.RopeScalingFactor, m.RopeScaling.Factor)
kv["gptoss.rope.scaling.original_context_length"] = m.InitialContextLength
kv["tokenizer.ggml.bos_token_id"] = uint32(199998) // <|startoftext|>
kv["tokenizer.ggml.add_bos_token"] = false
kv["tokenizer.ggml.eos_token_id"] = uint32(199999) // <|endoftext|>
kv["tokenizer.ggml.eos_token_ids"] = []int32{
199999, /* <|endoftext|> */
200002, /* <|return|> */
200012, /* <|call|> */
}
kv["tokenizer.ggml.add_eos_token"] = false
return kv
}
func (m *gptossModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
mxfp4s := make(map[string]*mxfp4)
for _, t := range ts {
if strings.HasSuffix(t.Name(), ".blocks") || strings.HasSuffix(t.Name(), ".scales") {
dot := strings.LastIndex(t.Name(), ".")
name, suffix := t.Name()[:dot], t.Name()[dot+1:]
if _, ok := mxfp4s[name]; !ok {
mxfp4s[name] = &mxfp4{}
}
switch suffix {
case "blocks":
mxfp4s[name].blocks = t
case "scales":
mxfp4s[name].scales = t
}
} else {
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
}
for name, mxfp4 := range mxfp4s {
dims := mxfp4.blocks.Shape()
if !strings.HasSuffix(name, ".weight") {
name += ".weight"
}
out = append(out, &ggml.Tensor{
Name: name,
Kind: uint32(ggml.TensorTypeMXFP4),
Shape: []uint64{dims[0], dims[1], dims[2] * dims[3] * 2},
WriterTo: mxfp4,
})
}
return out
}
func (m *gptossModel) Replacements() []string {
var replacements []string
if m.MaxPositionEmbeddings > 0 {
// hf flavored model
replacements = []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_out",
"self_attn.sinks", "attn_sinks",
"post_attention_layernorm", "ffn_norm",
"mlp.router", "ffn_gate_inp",
"mlp.experts.gate_up_proj_", "ffn_gate_up_exps.",
"mlp.experts.down_proj_", "ffn_down_exps.",
"model.norm", "output_norm",
}
} else {
replacements = []string{
// noop replacements so other replacements will not be applied
".blocks", ".blocks",
".scales", ".scales",
// real replacements
"block", "blk",
"attn.norm", "attn_norm",
"attn.qkv", "attn_qkv",
"attn.sinks", "attn_sinks",
"attn.out", "attn_out",
"mlp.norm", "ffn_norm",
"mlp.gate", "ffn_gate_inp",
"mlp.mlp1_", "ffn_gate_up_exps.",
"mlp.mlp2_", "ffn_down_exps.",
"embedding", "token_embd",
"norm", "output_norm",
"unembedding", "output",
"scale", "weight",
}
}
return replacements
}
type mxfp4 struct {
blocks, scales Tensor
}
func (m *mxfp4) WriteTo(w io.Writer) (int64, error) {
var b bytes.Buffer
if _, err := m.blocks.WriteTo(&b); err != nil {
return 0, err
}
blocksDims := make([]int, len(m.blocks.Shape()))
for i, d := range m.blocks.Shape() {
blocksDims[i] = int(d)
}
bts := b.Bytes()
var tmp [16]byte
for i := 0; i < b.Len(); i += 16 {
for j := range 8 {
// transform a1b2c3 ... x7y8z9 -> 71xa82yb93zc
a, b := bts[i+j], bts[i+j+8]
tmp[2*j+0] = (a & 0x0F) | (b << 4)
tmp[2*j+1] = (a >> 4) | (b & 0xF0)
}
copy(bts[i:i+16], tmp[:])
}
var blocks tensor.Tensor = tensor.New(tensor.WithShape(blocksDims...), tensor.WithBacking(bts))
var s bytes.Buffer
if _, err := m.scales.WriteTo(&s); err != nil {
return 0, err
}
scalesDims := slices.Repeat([]int{1}, len(m.blocks.Shape()))
for i, d := range m.scales.Shape() {
scalesDims[i] = int(d)
}
var scales tensor.Tensor = tensor.New(tensor.WithShape(scalesDims...), tensor.WithBacking(s.Bytes()))
out, err := tensor.Concat(3, scales, blocks)
if err != nil {
return 0, err
}
out = tensor.Materialize(out)
if err := out.Reshape(out.Shape().TotalSize()); err != nil {
return 0, err
}
u8s, err := native.VectorU8(out.(*tensor.Dense))
if err != nil {
return 0, err
}
if err := binary.Write(w, binary.LittleEndian, u8s); err != nil {
return 0, err
}
return int64(len(u8s)), nil
}

View File

@@ -139,7 +139,8 @@ func (p *llamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
}
for _, t := range ts {
if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") {
if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") ||
strings.HasSuffix(t.Name(), "attn_q_proj.weight") || strings.HasSuffix(t.Name(), "attn_k_proj.weight") {
if !p.skipRepack {
t.SetRepacker(p.repack)
}
@@ -181,9 +182,9 @@ func (p *llamaModel) repack(name string, data []float32, shape []uint64) ([]floa
}
var heads uint32
if strings.HasSuffix(name, "attn_q.weight") {
if strings.HasSuffix(name, "attn_q.weight") || strings.HasSuffix(name, "attn_q_proj.weight") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, "attn_k.weight") {
} else if strings.HasSuffix(name, "attn_k.weight") || strings.HasSuffix(name, "attn_k_proj.weight") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
} else {
return nil, fmt.Errorf("unknown tensor for repack: %s", name)

View File

@@ -2,9 +2,6 @@ package convert
import (
"fmt"
"io"
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
)
@@ -30,65 +27,38 @@ func (p *mixtralModel) KV(t *Tokenizer) ggml.KV {
}
func (p *mixtralModel) Tensors(ts []Tensor) []*ggml.Tensor {
oldnew := []string{
"model.layers", "blk",
"w1", "ffn_gate_exps",
"w2", "ffn_down_exps",
"w3", "ffn_up_exps",
}
for i := range p.NumLocalExperts {
oldnew = append(oldnew, fmt.Sprintf(".block_sparse_moe.experts.%d.", i), ".")
}
// group experts of the same layer (model.layers.%d) and type (w[123]) into a single tensor
namer := strings.NewReplacer(oldnew...)
experts := make(map[string]experts)
// merge experts into a single tensor while removing them from ts
ts = slices.DeleteFunc(ts, func(t Tensor) bool {
if !strings.Contains(t.Name(), ".block_sparse_moe.experts.") {
return false
}
name := namer.Replace(t.Name())
experts[name] = append(experts[name], t)
return true
})
var out []*ggml.Tensor
for n, e := range experts {
// TODO(mxyng): sanity check experts
out = append(out, &ggml.Tensor{
Name: n,
Kind: e[0].Kind(),
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),
WriterTo: e,
merges := make([]merge, 0, p.NumHiddenLayers*6)
for i := range p.NumHiddenLayers {
merges = append(merges, merge{
fmt.Sprintf("blk.%d.*.w1.weight", i),
fmt.Sprintf("blk.%d.ffn_gate_exps.weight", i),
}, merge{
fmt.Sprintf("blk.%d.*.w1.bias", i),
fmt.Sprintf("blk.%d.ffn_gate_exps.bias", i),
}, merge{
fmt.Sprintf("blk.%d.*.w2.weight", i),
fmt.Sprintf("blk.%d.ffn_up_exps.weight", i),
}, merge{
fmt.Sprintf("blk.%d.*.w2.bias", i),
fmt.Sprintf("blk.%d.ffn_up_exps.bias", i),
}, merge{
fmt.Sprintf("blk.%d.*.w3.weight", i),
fmt.Sprintf("blk.%d.ffn_down_exps.weight", i),
}, merge{
fmt.Sprintf("blk.%d.*.w3.bias", i),
fmt.Sprintf("blk.%d.ffn_down_exps.bias", i),
})
}
out, ts := mergeTensors(ts, merges...)
return append(out, p.llamaModel.Tensors(ts)...)
}
func (p *mixtralModel) Replacements() []string {
return append(
p.llamaModel.Replacements(),
"model.layers", "blk",
"block_sparse_moe.gate", "ffn_gate_inp",
"block_sparse_moe.experts.", ".",
)
}
type experts []Tensor
func (e experts) WriteTo(w io.Writer) (int64, error) {
// TODO(mxyng): experts _should_ be numerically sorted by expert but this should check
for _, t := range e {
// the canonical merged experts tensor stacks all experts along a new, 0 axis,
// e.g. `tensor.Stack(0, e[0], e[1:]...)`, which requires allocating temporary buffers
// this accomplishes the same thing by writing each expert tensor in sequence
if _, err := t.WriteTo(w); err != nil {
return 0, err
}
}
return 0, nil
}

View File

@@ -94,7 +94,9 @@ func (m *mllamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
var text []Tensor
for _, t := range ts {
if t.Name() == "v.position_embd.gate" {
if !strings.HasPrefix(t.Name(), "v.") && !strings.HasPrefix(t.Name(), "mm.") {
text = append(text, t)
} else if t.Name() == "v.position_embd.gate" {
for _, name := range []string{"v.position_embd.gate", "v.tile_position_embd.gate"} {
tt := t.Clone()
tt.SetRepacker(m.repack(name))
@@ -105,23 +107,21 @@ func (m *mllamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
WriterTo: tt,
})
}
} else if t.Name() == "v.pre_tile_position_embd.gate" || t.Name() == "v.post_tile_position_embd.gate" {
t.SetRepacker(m.repack(t.Name()))
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
} else if strings.HasPrefix(t.Name(), "v.") || strings.HasPrefix(t.Name(), "mm.") {
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
} else {
text = append(text, t)
if t.Name() == "v.pre_tile_position_embd.gate" || t.Name() == "v.post_tile_position_embd.gate" {
t.SetRepacker(m.repack(t.Name()))
} else if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") {
t.SetRepacker(m.repack(t.Name()))
} else if strings.HasSuffix(t.Name(), "attn_gate") || strings.HasSuffix(t.Name(), "ffn_gate") {
t.SetRepacker(m.repack(t.Name()))
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
}
@@ -137,16 +137,35 @@ func (m *mllamaModel) repack(name string) Repacker {
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
t, err = tensor.Tanh(t)
if err != nil {
return nil, err
}
if strings.HasSuffix(name, "attn_q.weight") || strings.HasSuffix(name, "attn_k.weight") {
heads := m.VisionModel.AttentionHeads
if err := t.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if name == "v.position_embd.gate" {
t, err = tensor.Sub(float32(1), t)
if err := t.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := t.Reshape(dims...); err != nil {
return nil, err
}
if err := t.Transpose(); err != nil {
return nil, err
}
} else {
t, err = tensor.Tanh(t)
if err != nil {
return nil, err
}
if name == "v.position_embd.gate" {
t, err = tensor.Sub(float32(1), t)
if err != nil {
return nil, err
}
}
}
t = tensor.Materialize(t)

View File

@@ -65,17 +65,17 @@ func (q *qwen25VLModel) Tensors(ts []Tensor) []*ggml.Tensor {
for _, t := range ts {
if strings.Contains(t.Name(), "patch_embed.proj") {
for t := range splitDim(t, 2,
strings.NewReplacer("patch_embed.proj", "patch_embd_0"),
strings.NewReplacer("patch_embed.proj", "patch_embd_1"),
split{Replacer: strings.NewReplacer("patch_embed.proj", "patch_embd_0")},
split{Replacer: strings.NewReplacer("patch_embed.proj", "patch_embd_1")},
) {
t.Shape = slices.DeleteFunc(t.Shape, func(i uint64) bool { return i == 1 })
out = append(out, t)
}
} else if strings.Contains(t.Name(), "attn.qkv") {
out = append(out, slices.Collect(splitDim(t, 0,
strings.NewReplacer("attn.qkv", "attn_q"),
strings.NewReplacer("attn.qkv", "attn_k"),
strings.NewReplacer("attn.qkv", "attn_v"),
split{Replacer: strings.NewReplacer("attn.qkv", "attn_q")},
split{Replacer: strings.NewReplacer("attn.qkv", "attn_k")},
split{Replacer: strings.NewReplacer("attn.qkv", "attn_v")},
))...)
} else {
out = append(out, &ggml.Tensor{

View File

@@ -11,14 +11,13 @@ import (
"io"
"io/fs"
"log/slog"
"maps"
"os"
"path/filepath"
"slices"
"strings"
"testing"
"golang.org/x/exp/maps"
"github.com/ollama/ollama/fs/ggml"
)
@@ -47,7 +46,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
}
t.Cleanup(func() { r.Close() })
m, _, err := ggml.Decode(r, -1)
m, err := ggml.Decode(r, -1)
if err != nil {
t.Fatal(err)
}
@@ -137,9 +136,7 @@ func TestConvertModel(t *testing.T) {
t.Fatal(err)
}
keys := maps.Keys(expect)
slices.Sort(keys)
for _, k := range keys {
for _, k := range slices.Sorted(maps.Keys(expect)) {
if v, ok := actual[k]; !ok {
t.Errorf("missing %s", k)
} else if v != expect[k] {
@@ -332,7 +329,7 @@ func TestConvertAdapter(t *testing.T) {
}
defer r.Close()
m, _, err := ggml.Decode(r, -1)
m, err := ggml.Decode(r, -1)
if err != nil {
t.Fatal(err)
}
@@ -343,9 +340,7 @@ func TestConvertAdapter(t *testing.T) {
actual := generateResultsJSON(t, r, m.KV(), m.Tensors())
keys := maps.Keys(c.Expected)
slices.Sort(keys)
for _, k := range keys {
for _, k := range slices.Sorted(maps.Keys(c.Expected)) {
if v, ok := actual[k]; !ok {
t.Errorf("missing %s", k)
} else if v != c.Expected[k] {

View File

@@ -31,28 +31,31 @@ func (t tensorBase) Shape() []uint64 {
}
const (
tensorKindF32 uint32 = iota
tensorKindF16
tensorKindFP32 uint32 = iota
tensorKindFP16
tensorKindBF16 = 30
tensorKindMXFP4 = 39
)
func (t tensorBase) Kind() uint32 {
if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") ||
strings.HasSuffix(t.name, ".bias") ||
t.name == "token_types.weight" ||
t.name == "v.positional_embedding_vlm" ||
t.name == "v.tile_position_embd.weight" ||
t.name == "v.pre_tile_position_embd.weight" ||
t.name == "v.post_tile_position_embd.weight" {
// these tensors are always F32
return 0
return tensorKindFP32
}
switch len(t.shape) {
case 0:
panic("invalid tensor shape")
case 1:
return tensorKindF32
return tensorKindFP32
default:
return tensorKindF16
return tensorKindFP16
}
}

View File

@@ -1,6 +1,7 @@
package convert
import (
"bufio"
"bytes"
"encoding/binary"
"encoding/json"
@@ -8,12 +9,12 @@ import (
"fmt"
"io"
"io/fs"
"maps"
"slices"
"strings"
"github.com/d4l3k/go-bfloat16"
"github.com/x448/float16"
"golang.org/x/exp/maps"
)
type safetensorMetadata struct {
@@ -46,8 +47,7 @@ func parseSafetensors(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]T
return nil, err
}
keys := maps.Keys(headers)
slices.Sort(keys)
keys := slices.Sorted(maps.Keys(headers))
names := make(map[string]struct{}, len(keys))
@@ -94,6 +94,15 @@ type safetensor struct {
*tensorBase
}
func (st safetensor) Kind() uint32 {
kind := st.tensorBase.Kind()
if !strings.HasPrefix(st.name, "v.") && st.dtype == "BF16" && kind != tensorKindFP32 {
kind = tensorKindBF16
}
return kind
}
func (st safetensor) Clone() Tensor {
return &safetensor{
fs: st.fs,
@@ -116,26 +125,41 @@ func (st safetensor) WriteTo(w io.Writer) (int64, error) {
}
defer f.Close()
if seeker, ok := f.(io.Seeker); ok {
if _, err := seeker.Seek(st.offset, io.SeekStart); err != nil {
return 0, err
}
} else {
if _, err := io.CopyN(io.Discard, f, st.offset); err != nil {
return 0, err
r, err := func() (io.Reader, error) {
if readerAt, ok := f.(io.ReaderAt); ok {
return io.NewSectionReader(readerAt, st.offset, st.size), nil
} else if seeker, ok := f.(io.Seeker); ok {
_, err := seeker.Seek(st.offset, io.SeekStart)
return f, err
} else {
_, err := io.CopyN(io.Discard, f, st.offset)
return f, err
}
}()
if err != nil {
return 0, err
}
br := bufio.NewReaderSize(r, min(32<<10, int(st.size)))
// special case when input and output are same type and the
// tensor doesn't need repacking
if (st.repacker == nil) &&
((st.dtype == "F32" && st.Kind() == tensorKindFP32) ||
(st.dtype == "F16" && st.Kind() == tensorKindFP16) ||
(st.dtype == "U8")) {
return io.CopyN(w, br, st.size)
}
var f32s []float32
switch st.dtype {
case "F32":
f32s = make([]float32, st.size/4)
if err = binary.Read(f, binary.LittleEndian, f32s); err != nil {
if err = binary.Read(br, binary.LittleEndian, f32s); err != nil {
return 0, err
}
case "F16":
u16s := make([]uint16, st.size/2)
if err = binary.Read(f, binary.LittleEndian, u16s); err != nil {
if err = binary.Read(br, binary.LittleEndian, u16s); err != nil {
return 0, err
}
@@ -146,7 +170,7 @@ func (st safetensor) WriteTo(w io.Writer) (int64, error) {
case "BF16":
u8s := make([]uint8, st.size)
if err = binary.Read(f, binary.LittleEndian, u8s); err != nil {
if err = binary.Read(br, binary.LittleEndian, u8s); err != nil {
return 0, err
}
@@ -163,15 +187,18 @@ func (st safetensor) WriteTo(w io.Writer) (int64, error) {
}
switch st.Kind() {
case tensorKindF32:
return 0, binary.Write(w, binary.LittleEndian, f32s)
case tensorKindF16:
case tensorKindFP32:
return int64(len(f32s) * 4), binary.Write(w, binary.LittleEndian, f32s)
case tensorKindFP16:
f16s := make([]uint16, len(f32s))
for i := range f32s {
f16s[i] = float16.Fromfloat32(f32s[i]).Bits()
}
return 0, binary.Write(w, binary.LittleEndian, f16s)
return int64(len(f16s) * 2), binary.Write(w, binary.LittleEndian, f16s)
case tensorKindBF16:
u8s := bfloat16.EncodeFloat32(f32s)
return int64(len(u8s)), binary.Write(w, binary.LittleEndian, u8s)
default:
return 0, fmt.Errorf("unknown storage type: %d", st.Kind())
}

294
convert/reader_test.go Normal file
View File

@@ -0,0 +1,294 @@
package convert
import (
"bytes"
"encoding/binary"
"os"
"path/filepath"
"testing"
"github.com/d4l3k/go-bfloat16"
"github.com/google/go-cmp/cmp"
"github.com/x448/float16"
)
func TestSafetensors(t *testing.T) {
t.Parallel()
root, err := os.OpenRoot(t.TempDir())
if err != nil {
t.Fatal(err)
}
defer root.Close()
cases := []struct {
name,
dtype string
offset,
size int64
shape []uint64
setup func(*testing.T, *os.File)
want []byte
}{
{
name: "fp32-fp32",
dtype: "F32",
size: 32 * 4, // 32 floats, each 4 bytes
shape: []uint64{32},
setup: func(t *testing.T, f *os.File) {
f32s := make([]float32, 32)
for i := range f32s {
f32s[i] = float32(i)
}
if err := binary.Write(f, binary.LittleEndian, f32s); err != nil {
t.Fatal(err)
}
},
want: []byte{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x3f, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x40, 0x40,
0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0xa0, 0x40, 0x00, 0x00, 0xc0, 0x40, 0x00, 0x00, 0xe0, 0x40,
0x00, 0x00, 0x00, 0x41, 0x00, 0x00, 0x10, 0x41, 0x00, 0x00, 0x20, 0x41, 0x00, 0x00, 0x30, 0x41,
0x00, 0x00, 0x40, 0x41, 0x00, 0x00, 0x50, 0x41, 0x00, 0x00, 0x60, 0x41, 0x00, 0x00, 0x70, 0x41,
0x00, 0x00, 0x80, 0x41, 0x00, 0x00, 0x88, 0x41, 0x00, 0x00, 0x90, 0x41, 0x00, 0x00, 0x98, 0x41,
0x00, 0x00, 0xa0, 0x41, 0x00, 0x00, 0xa8, 0x41, 0x00, 0x00, 0xb0, 0x41, 0x00, 0x00, 0xb8, 0x41,
0x00, 0x00, 0xc0, 0x41, 0x00, 0x00, 0xc8, 0x41, 0x00, 0x00, 0xd0, 0x41, 0x00, 0x00, 0xd8, 0x41,
0x00, 0x00, 0xe0, 0x41, 0x00, 0x00, 0xe8, 0x41, 0x00, 0x00, 0xf0, 0x41, 0x00, 0x00, 0xf8, 0x41,
},
},
{
name: "fp32-fp16",
dtype: "F32",
size: 32 * 4, // 32 floats, each 4 bytes
shape: []uint64{16, 2},
setup: func(t *testing.T, f *os.File) {
f32s := make([]float32, 32)
for i := range f32s {
f32s[i] = float32(i)
}
if err := binary.Write(f, binary.LittleEndian, f32s); err != nil {
t.Fatal(err)
}
},
want: []byte{
0x00, 0x00, 0x00, 0x3c, 0x00, 0x40, 0x00, 0x42, 0x00, 0x44, 0x00, 0x45, 0x00, 0x46, 0x00, 0x47,
0x00, 0x48, 0x80, 0x48, 0x00, 0x49, 0x80, 0x49, 0x00, 0x4a, 0x80, 0x4a, 0x00, 0x4b, 0x80, 0x4b,
0x00, 0x4c, 0x40, 0x4c, 0x80, 0x4c, 0xc0, 0x4c, 0x00, 0x4d, 0x40, 0x4d, 0x80, 0x4d, 0xc0, 0x4d,
0x00, 0x4e, 0x40, 0x4e, 0x80, 0x4e, 0xc0, 0x4e, 0x00, 0x4f, 0x40, 0x4f, 0x80, 0x4f, 0xc0, 0x4f,
},
},
{
name: "fp16-fp16",
dtype: "F16",
size: 32 * 2, // 32 floats, each 2 bytes
shape: []uint64{16, 2},
setup: func(t *testing.T, f *os.File) {
u16s := make([]uint16, 32)
for i := range u16s {
u16s[i] = float16.Fromfloat32(float32(i)).Bits()
}
if err := binary.Write(f, binary.LittleEndian, u16s); err != nil {
t.Fatal(err)
}
},
want: []byte{
0x00, 0x00, 0x00, 0x3c, 0x00, 0x40, 0x00, 0x42, 0x00, 0x44, 0x00, 0x45, 0x00, 0x46, 0x00, 0x47,
0x00, 0x48, 0x80, 0x48, 0x00, 0x49, 0x80, 0x49, 0x00, 0x4a, 0x80, 0x4a, 0x00, 0x4b, 0x80, 0x4b,
0x00, 0x4c, 0x40, 0x4c, 0x80, 0x4c, 0xc0, 0x4c, 0x00, 0x4d, 0x40, 0x4d, 0x80, 0x4d, 0xc0, 0x4d,
0x00, 0x4e, 0x40, 0x4e, 0x80, 0x4e, 0xc0, 0x4e, 0x00, 0x4f, 0x40, 0x4f, 0x80, 0x4f, 0xc0, 0x4f,
},
},
{
name: "fp16-fp32",
dtype: "F16",
size: 32 * 2, // 32 floats, each 2 bytes
shape: []uint64{32},
setup: func(t *testing.T, f *os.File) {
u16s := make([]uint16, 32)
for i := range u16s {
u16s[i] = float16.Fromfloat32(float32(i)).Bits()
}
if err := binary.Write(f, binary.LittleEndian, u16s); err != nil {
t.Fatal(err)
}
},
want: []byte{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x3f, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x40, 0x40,
0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0xa0, 0x40, 0x00, 0x00, 0xc0, 0x40, 0x00, 0x00, 0xe0, 0x40,
0x00, 0x00, 0x00, 0x41, 0x00, 0x00, 0x10, 0x41, 0x00, 0x00, 0x20, 0x41, 0x00, 0x00, 0x30, 0x41,
0x00, 0x00, 0x40, 0x41, 0x00, 0x00, 0x50, 0x41, 0x00, 0x00, 0x60, 0x41, 0x00, 0x00, 0x70, 0x41,
0x00, 0x00, 0x80, 0x41, 0x00, 0x00, 0x88, 0x41, 0x00, 0x00, 0x90, 0x41, 0x00, 0x00, 0x98, 0x41,
0x00, 0x00, 0xa0, 0x41, 0x00, 0x00, 0xa8, 0x41, 0x00, 0x00, 0xb0, 0x41, 0x00, 0x00, 0xb8, 0x41,
0x00, 0x00, 0xc0, 0x41, 0x00, 0x00, 0xc8, 0x41, 0x00, 0x00, 0xd0, 0x41, 0x00, 0x00, 0xd8, 0x41,
0x00, 0x00, 0xe0, 0x41, 0x00, 0x00, 0xe8, 0x41, 0x00, 0x00, 0xf0, 0x41, 0x00, 0x00, 0xf8, 0x41,
},
},
{
name: "bf16-bf16",
dtype: "BF16",
size: 32 * 2, // 32 brain floats, each 2 bytes
shape: []uint64{16, 2},
setup: func(t *testing.T, f *os.File) {
f32s := make([]float32, 32)
for i := range f32s {
f32s[i] = float32(i)
}
if err := binary.Write(f, binary.LittleEndian, bfloat16.EncodeFloat32(f32s)); err != nil {
t.Fatal(err)
}
},
want: []byte{
0x00, 0x00, 0x80, 0x3f, 0x00, 0x40, 0x40, 0x40, 0x80, 0x40, 0xa0, 0x40, 0xc0, 0x40, 0xe0, 0x40,
0x00, 0x41, 0x10, 0x41, 0x20, 0x41, 0x30, 0x41, 0x40, 0x41, 0x50, 0x41, 0x60, 0x41, 0x70, 0x41,
0x80, 0x41, 0x88, 0x41, 0x90, 0x41, 0x98, 0x41, 0xa0, 0x41, 0xa8, 0x41, 0xb0, 0x41, 0xb8, 0x41,
0xc0, 0x41, 0xc8, 0x41, 0xd0, 0x41, 0xd8, 0x41, 0xe0, 0x41, 0xe8, 0x41, 0xf0, 0x41, 0xf8, 0x41,
},
},
{
name: "bf16-fp32",
dtype: "BF16",
size: 32 * 2, // 32 brain floats, each 2 bytes
shape: []uint64{32},
setup: func(t *testing.T, f *os.File) {
f32s := make([]float32, 32)
for i := range f32s {
f32s[i] = float32(i)
}
if err := binary.Write(f, binary.LittleEndian, bfloat16.EncodeFloat32(f32s)); err != nil {
t.Fatal(err)
}
},
want: []byte{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x3f, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x40, 0x40,
0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0xa0, 0x40, 0x00, 0x00, 0xc0, 0x40, 0x00, 0x00, 0xe0, 0x40,
0x00, 0x00, 0x00, 0x41, 0x00, 0x00, 0x10, 0x41, 0x00, 0x00, 0x20, 0x41, 0x00, 0x00, 0x30, 0x41,
0x00, 0x00, 0x40, 0x41, 0x00, 0x00, 0x50, 0x41, 0x00, 0x00, 0x60, 0x41, 0x00, 0x00, 0x70, 0x41,
0x00, 0x00, 0x80, 0x41, 0x00, 0x00, 0x88, 0x41, 0x00, 0x00, 0x90, 0x41, 0x00, 0x00, 0x98, 0x41,
0x00, 0x00, 0xa0, 0x41, 0x00, 0x00, 0xa8, 0x41, 0x00, 0x00, 0xb0, 0x41, 0x00, 0x00, 0xb8, 0x41,
0x00, 0x00, 0xc0, 0x41, 0x00, 0x00, 0xc8, 0x41, 0x00, 0x00, 0xd0, 0x41, 0x00, 0x00, 0xd8, 0x41,
0x00, 0x00, 0xe0, 0x41, 0x00, 0x00, 0xe8, 0x41, 0x00, 0x00, 0xf0, 0x41, 0x00, 0x00, 0xf8, 0x41,
},
},
{
name: "u8-u8",
dtype: "U8",
size: 32, // 32 brain floats, each 1 bytes
shape: []uint64{32},
setup: func(t *testing.T, f *os.File) {
u8s := make([]uint8, 32)
for i := range u8s {
u8s[i] = uint8(i)
}
if err := binary.Write(f, binary.LittleEndian, u8s); err != nil {
t.Fatal(err)
}
},
want: []byte{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
},
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
path := filepath.Base(t.Name())
st := safetensor{
fs: root.FS(),
path: path,
dtype: tt.dtype,
offset: tt.offset,
size: tt.size,
tensorBase: &tensorBase{
name: tt.name,
shape: tt.shape,
},
}
f, err := root.Create(path)
if err != nil {
t.Fatal(err)
}
defer f.Close()
tt.setup(t, f)
var b bytes.Buffer
if _, err := st.WriteTo(&b); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(tt.want, b.Bytes()); diff != "" {
t.Errorf("safetensor.WriteTo() mismatch (-want +got):\n%s", diff)
}
})
}
}
func TestSafetensorKind(t *testing.T) {
tests := []struct {
name string
st safetensor
expected uint32
}{
{
name: "BF16 dtype with non-v. prefix and non-FP32 base kind should return BF16",
st: safetensor{
tensorBase: &tensorBase{
name: "weight.matrix",
shape: []uint64{10, 10}, // will default to FP16
},
dtype: "BF16",
},
expected: tensorKindBF16,
},
{
name: "BF16 dtype with v. prefix should return base kind",
st: safetensor{
tensorBase: &tensorBase{
name: "v.weight.matrix",
shape: []uint64{10, 10}, // will default to FP16
},
dtype: "BF16",
},
expected: tensorKindFP16,
},
{
name: "BF16 dtype with FP32 base kind should return FP32",
st: safetensor{
tensorBase: &tensorBase{
name: "weight.matrix",
shape: []uint64{10}, // will default to FP32
},
dtype: "BF16",
},
expected: tensorKindFP32,
},
{
name: "Non-BF16 dtype should return base kind",
st: safetensor{
tensorBase: &tensorBase{
name: "weight.matrix",
shape: []uint64{10, 10}, // will default to FP16
},
dtype: "FP16",
},
expected: tensorKindFP16,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
result := tt.st.Kind()
if result != tt.expected {
t.Errorf("Kind() = %d, expected %d", result, tt.expected)
}
})
}
}

View File

@@ -1,56 +1,129 @@
package convert
import (
"cmp"
"io"
"iter"
"path"
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
)
type split struct {
*strings.Replacer
dim int
// fn is an optional function to apply to the tensor after slicing
fn func(tensor.Tensor) (tensor.Tensor, error)
}
// splitDim splits a tensor along a specified dimension into multiple tensors. The dimension
// is split evenly based on the number of replacers provided.
func splitDim(t Tensor, dim int, replacers ...*strings.Replacer) iter.Seq[*ggml.Tensor] {
// is split evenly based on the number of replacers provided unless a specific count is given.
func splitDim(t Tensor, dim int, splits ...split) iter.Seq[*ggml.Tensor] {
return func(yield func(*ggml.Tensor) bool) {
for i, replacer := range replacers {
var offset int
for _, split := range splits {
t := t.Clone()
shape := slices.Clone(t.Shape())
shape[dim] = shape[dim] / uint64(len(replacers))
shape[dim] = cmp.Or(uint64(split.dim), shape[dim]/uint64(len(splits)))
slice := slices.Repeat([]tensor.Slice{nil}, len(shape))
slice[dim] = tensor.S(i*int(shape[dim]), (i+1)*int(shape[dim]))
slice[dim] = tensor.S(offset, offset+int(shape[dim]))
offset += int(shape[dim])
tt := t.Clone()
tt.SetRepacker(func(_ string, data []float32, shape []uint64) ([]float32, error) {
t.SetRepacker(func(_ string, data []float32, shape []uint64) ([]float32, error) {
dims := make([]int, len(shape))
for i := range shape {
dims[i] = int(shape[i])
}
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
t, err := t.Slice(slice...)
var tt tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
tt, err := tt.Slice(slice...)
if err != nil {
return nil, err
}
t = tensor.Materialize(t)
tt = tensor.Materialize(tt)
if split.fn != nil {
tt, err = split.fn(tt)
if err != nil {
return nil, err
}
}
// flatten tensor so it can be written as a vector
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
if err := tt.Reshape(tt.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(t.(*tensor.Dense))
return native.VectorF32(tt.(*tensor.Dense))
})
if !yield(&ggml.Tensor{
Name: replacer.Replace(t.Name()),
Name: split.Replace(t.Name()),
Kind: t.Kind(),
Shape: shape,
WriterTo: tt,
WriterTo: t,
}) {
break
}
}
}
}
type merge struct {
pattern, name string
}
// mergeTensors merges tensors that match a given pattern into a single tensor.
func mergeTensors(unmatched []Tensor, merges ...merge) (out []*ggml.Tensor, _ []Tensor) {
var matched []Tensor
for i := range merges {
matched, unmatched = slicesSplitFunc(unmatched, func(t Tensor) bool {
matched, _ := path.Match(merges[i].pattern, t.Name())
return matched
})
if len(matched) > 0 {
out = append(out, &ggml.Tensor{
Name: merges[i].name,
Kind: matched[0].Kind(),
Shape: append([]uint64{uint64(len(matched))}, matched[0].Shape()...),
WriterTo: mergeGroup(matched),
})
}
}
return out, unmatched
}
// slicesSplitFunc splits a slice into two slices based on a predicate function.
func slicesSplitFunc[S ~[]E, E comparable](s S, fn func(e E) bool) (matched, unmatched S) {
for _, e := range s {
if fn(e) {
matched = append(matched, e)
} else {
unmatched = append(unmatched, e)
}
}
return matched, unmatched
}
type mergeGroup []Tensor
func (g mergeGroup) WriteTo(w io.Writer) (int64, error) {
for _, t := range g {
if _, err := t.WriteTo(w); err != nil {
return 0, err
}
}
return 0, nil
}

953
convert/tensor_test.go Normal file
View File

@@ -0,0 +1,953 @@
package convert
import (
"bytes"
"encoding/binary"
"io"
"iter"
"slices"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/fs/ggml"
"github.com/pdevine/tensor"
)
type fakeTensor struct {
name string
shape []uint64
data []float32
repacker Repacker
}
func (f fakeTensor) Name() string {
return f.name
}
func (f fakeTensor) Shape() []uint64 {
return f.shape
}
func (f fakeTensor) Kind() uint32 {
return 0
}
func (f *fakeTensor) SetRepacker(fn Repacker) {
f.repacker = fn
}
func (f fakeTensor) Clone() Tensor {
return &fakeTensor{
name: f.name,
shape: slices.Clone(f.shape),
data: slices.Clone(f.data),
repacker: f.repacker,
}
}
func (f fakeTensor) WriteTo(w io.Writer) (n int64, err error) {
data := f.data
if f.repacker != nil {
data, err = f.repacker(f.name, data, f.shape)
if err != nil {
return 0, err
}
}
if err := binary.Write(w, binary.LittleEndian, data); err != nil {
return 0, err
}
return int64(len(data) * 4), nil
}
func mul(shape []uint64) int {
n := 1
for _, dim := range shape {
n *= int(dim)
}
return n
}
func TestSplitDim(t *testing.T) {
t.Run("2d", func(t *testing.T) {
r := fakeTensor{
name: "a.b",
shape: []uint64{3, 4},
data: []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},
}
t.Run("no split", func(t *testing.T) {
for tt := range splitDim(&r, 0, split{Replacer: strings.NewReplacer("a", "x")}) {
if tt.Name != "x.b" {
t.Fatalf("expected name 'x', got '%s'", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 4}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("even split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 1,
split{Replacer: strings.NewReplacer("a", "x")},
split{Replacer: strings.NewReplacer("b", "y")},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 4, 5, 8, 9}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'a.y', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{2, 3, 6, 7, 10, 11}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("uneven split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 0,
split{Replacer: strings.NewReplacer("a", "x"), dim: 2},
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{2, 4}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'a.y', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{1, 4}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{8, 9, 10, 11}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("three way split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 0,
split{Replacer: strings.NewReplacer("a", "x"), dim: 1},
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
split{Replacer: strings.NewReplacer("b", "z"), dim: 1},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{1, 4}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{1, 4}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{4, 5, 6, 7}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.z" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{1, 4}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{8, 9, 10, 11}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("uneven three way split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 1,
split{Replacer: strings.NewReplacer("a", "x"), dim: 2},
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
split{Replacer: strings.NewReplacer("b", "z"), dim: 1},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 4, 5, 8, 9}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 1}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{2, 6, 10}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.z" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 1}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{3, 7, 11}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("split with transpose", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 1,
split{Replacer: strings.NewReplacer("a", "x")},
split{Replacer: strings.NewReplacer("b", "y"), fn: func(tt tensor.Tensor) (tensor.Tensor, error) {
return tensor.Transpose(tt, 1, 0)
}},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 4, 5, 8, 9}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'a.y', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{2, 6, 10, 3, 7, 11}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
})
t.Run("3d", func(t *testing.T) {
r := fakeTensor{
name: "a.b",
shape: []uint64{3, 4, 2},
data: []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23},
}
t.Run("no split", func(t *testing.T) {
for tt := range splitDim(&r, 0, split{Replacer: strings.NewReplacer("a", "x")}) {
if tt.Name != "x.b" {
t.Fatalf("expected name 'x', got '%s'", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 4, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("even split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 1,
split{Replacer: strings.NewReplacer("a", "x")},
split{Replacer: strings.NewReplacer("b", "y")},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 2, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'a.y', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 2, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("uneven split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 0,
split{Replacer: strings.NewReplacer("a", "x"), dim: 2},
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{2, 4, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'a.y', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{1, 4, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{16, 17, 18, 19, 20, 21, 22, 23}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("three way split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 0,
split{Replacer: strings.NewReplacer("a", "x"), dim: 1},
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
split{Replacer: strings.NewReplacer("b", "z"), dim: 1},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{1, 4, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{1, 4, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{8, 9, 10, 11, 12, 13, 14, 15}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.z" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{1, 4, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{16, 17, 18, 19, 20, 21, 22, 23}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("uneven three way split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 1,
split{Replacer: strings.NewReplacer("a", "x"), dim: 2},
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
split{Replacer: strings.NewReplacer("b", "z"), dim: 1},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 2, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 1, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{4, 5, 12, 13, 20, 21}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.z" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 1, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{6, 7, 14, 15, 22, 23}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
})
}
func TestMerge(t *testing.T) {
unmatched := []Tensor{
&fakeTensor{
name: "a.0.b",
shape: []uint64{5, 2},
data: []float32{10, 11, 12, 13, 14, 15, 16, 17, 18, 19},
},
&fakeTensor{
name: "a.1.b",
shape: []uint64{5, 2},
data: []float32{20, 21, 22, 23, 24, 25, 26, 27, 28, 29},
},
&fakeTensor{
name: "c.0.d",
shape: []uint64{5, 2},
data: []float32{30, 31, 32, 33, 34, 35, 36, 37, 38, 39},
},
&fakeTensor{
name: "c.1.d",
shape: []uint64{5, 2},
data: []float32{40, 41, 42, 43, 44, 45, 46, 47, 48, 49},
},
&fakeTensor{
name: "e.0.f",
shape: []uint64{5, 2},
data: []float32{50, 51, 52, 53, 54, 55, 56, 57, 58, 59},
},
}
checkMatched := func(t *testing.T, n int, matched []*ggml.Tensor) {
for i := range n {
got := matched[i]
if diff := cmp.Diff([]uint64{2, 5, 2}, got.Shape); diff != "" {
t.Errorf("unexpected (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := got.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, 20)
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
offset := 10 + (i * 20)
want := make([]float32, 20)
for j := range 20 {
want[j] = float32(offset + j)
}
if diff := cmp.Diff(want, f32s); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
}
t.Run("single merge", func(t *testing.T) {
matched, unmatched := mergeTensors(unmatched, merge{"a.*.b", "a.b"})
if len(unmatched) != 3 {
t.Error("expected 3 remaining tensors, got", len(unmatched))
}
if len(matched) != 1 {
t.Error("expected 1 merged tensor, got", len(matched))
}
checkMatched(t, 1, matched)
})
t.Run("multiple merges", func(t *testing.T) {
matched, unmatched := mergeTensors(unmatched, merge{"a.*.b", "a.b"}, merge{"c.*.d", "c.d"})
if len(unmatched) != 1 {
t.Error("expected 1 remaining tensors, got", len(unmatched))
}
if len(matched) != 2 {
t.Error("expected 2 merged tensor, got", len(matched))
}
checkMatched(t, 2, matched)
})
t.Run("no match", func(t *testing.T) {
matched, unmatched := mergeTensors(unmatched, merge{"x.*.y", "x.y"})
if len(unmatched) != 5 {
t.Error("expected 5 remaining tensors, got", len(unmatched))
}
if len(matched) != 0 {
t.Error("expected no merged tensors, got", len(matched))
}
})
}

View File

@@ -8,11 +8,10 @@ import (
"fmt"
"io/fs"
"log/slog"
"maps"
"os"
"slices"
"strings"
"golang.org/x/exp/maps"
)
const (
@@ -110,6 +109,7 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
}
if f, err := fsys.Open("tokenizer_config.json"); errors.Is(err, os.ErrNotExist) {
// noop
} else if err != nil {
return nil, err
} else {
@@ -171,6 +171,34 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
}
}
if f, err := fsys.Open("generation_config.json"); errors.Is(err, os.ErrNotExist) {
} else if err != nil {
return nil, err
} else {
defer f.Close()
var p map[string]json.RawMessage
if err := json.NewDecoder(f).Decode(&p); err != nil {
return nil, err
}
for _, st := range specialTokenTypes {
if bts, ok := p[fmt.Sprintf("%s_token_id", st)]; ok {
var ids []int32
if err := json.Unmarshal(bts, &ids); err != nil {
// value is not a list so the existing ID is used
continue
}
if i := slices.IndexFunc(t.SpecialVocabulary, func(sv *SpecialVocabulary) bool {
return sv.Type == st
}); i >= 0 {
t.SpecialVocabulary[i].IDs = ids
}
}
}
}
return t, nil
}
@@ -231,11 +259,8 @@ func parseVocabularyFromTokenizer(fsys fs.FS) (*Vocabulary, error) {
tokens[token.ID] = token
}
keys := maps.Keys(tokens)
slices.Sort(keys)
v := Vocabulary{Model: "gpt2"}
for _, k := range keys {
for _, k := range slices.Sorted(maps.Keys(tokens)) {
token := tokens[k]
v.Tokens = append(v.Tokens, token.Content)
v.Scores = append(v.Scores, float32(token.ID))
@@ -280,6 +305,9 @@ type SpecialVocabulary struct {
ID int
Content string
AddToken bool
// IDs is populated by generation_config.json
IDs []int32
}
func (sv SpecialVocabulary) Key() string {

View File

@@ -247,6 +247,67 @@ func TestParseTokenizer(t *testing.T) {
Pre: "default",
},
},
{
name: "generation config eos token ids",
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
"tokenizer.json": strings.NewReader(`{
"added_tokens": [
{
"id": 0,
"content": "<bos>",
"special": true
},
{
"id": 1,
"content": "<eos>",
"special": true
},
{
"id": 2,
"content": "<eot>",
"special": true
},
{
"id": 3,
"content": "<eom>",
"special": true
}
],
"model": {
"vocab": {
"<bos>": 0,
"<eos>": 1,
"<eot>": 2,
"<eom>": 3
}
}
}`),
"tokenizer_config.json": strings.NewReader(`{
"add_bos_token": true,
"add_eos_token": false,
"bos_token": "<bos>",
"eos_token": "<eos>"
}`),
"generation_config.json": strings.NewReader(`{
"bos_token_id": 0,
"eos_token_id": [1, 2, 3]
}`),
}),
specialTokenTypes: []string{"pad", "eos", "bos", "unk"},
want: &Tokenizer{
Vocabulary: &Vocabulary{
Model: "gpt2",
Tokens: []string{"<bos>", "<eos>", "<eot>", "<eom>"},
Scores: []float32{0, 1, 2, 3},
Types: []int32{3, 3, 3, 3},
},
SpecialVocabulary: []*SpecialVocabulary{
{Type: "eos", Content: "<eos>", ID: 1, IDs: []int32{1, 2, 3}, AddToken: false},
{Type: "bos", Content: "<bos>", ID: 0, AddToken: true},
},
Pre: "default",
},
},
}
for _, tt := range cases {

View File

@@ -58,7 +58,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
driverMajor, driverMinor, err := AMDDriverVersion()
if err != nil {
// TODO - if we see users crash and burn with the upstreamed kernel this can be adjusted to hard-fail rocm support and fallback to CPU
slog.Warn("ollama recommends running the https://www.amd.com/en/support/linux-drivers", "error", err)
slog.Warn("ollama recommends running the https://www.amd.com/en/support/download/linux-drivers.html", "error", err)
}
// Determine if the user has already pre-selected which GPUs to look at, then ignore the others
@@ -97,6 +97,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
return a < b
})
gpuCount := 0
gpuOrdinalID := 0
for _, match := range matches {
slog.Debug("evaluating amdgpu node " + match)
fp, err := os.Open(match)
@@ -187,10 +188,6 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
continue
}
// Keep track of numeric IDs based on valid GPUs
gpuID := gpuCount
gpuCount += 1
// Look up the memory for the current node
totalMemory := uint64(0)
usedMemory := uint64(0)
@@ -269,7 +266,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
if uniqueID != 0 {
ID = fmt.Sprintf("GPU-%016x", uniqueID)
} else {
ID = strconv.Itoa(gpuID)
ID = strconv.Itoa(gpuOrdinalID)
}
gpuInfo := RocmGPUInfo{
@@ -280,6 +277,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
FreeMemory: (totalMemory - usedMemory),
},
ID: ID,
filterID: gpuOrdinalID,
Name: name,
Compute: fmt.Sprintf("gfx%d%x%x", major, minor, patch),
MinimumMemory: rocmMinimumMemory,
@@ -287,13 +285,40 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
DriverMinor: driverMinor,
},
usedFilepath: usedFile,
index: gpuID,
index: gpuCount,
}
// Keep track of numeric IDs based on valid GPUs
gpuCount += 1
// If the user wants to filter to a subset of devices, filter out if we aren't a match
if len(visibleDevices) > 0 {
include := false
for _, visible := range visibleDevices {
if (uniqueID != 0 && visible == gpuInfo.ID) || visible == strconv.Itoa(gpuInfo.index) {
include = true
break
}
}
if !include {
reason := "filtering out device per user request"
slog.Info(reason, "id", gpuInfo.ID, "index", gpuInfo.index, "visible_devices", visibleDevices)
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
continue
}
}
// Ordinal IDs are based on the visible GPUs
gpuOrdinalID += 1
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
if totalMemory < IGPUMemLimit {
reason := "unsupported Radeon iGPU detected skipping"
slog.Info(reason, "id", gpuID, "total", format.HumanBytes2(totalMemory))
slog.Info(reason, "id", gpuInfo.ID, "total", format.HumanBytes2(totalMemory))
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
@@ -306,7 +331,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
}
if int(major) < minVer {
reason := fmt.Sprintf("amdgpu too old gfx%d%x%x", major, minor, patch)
slog.Warn(reason, "gpu", gpuID)
slog.Warn(reason, "gpu", gpuInfo.ID)
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
@@ -315,29 +340,8 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
continue
}
slog.Debug("amdgpu memory", "gpu", gpuID, "total", format.HumanBytes2(totalMemory))
slog.Debug("amdgpu memory", "gpu", gpuID, "available", format.HumanBytes2(totalMemory-usedMemory))
// If the user wants to filter to a subset of devices, filter out if we aren't a match
if len(visibleDevices) > 0 {
include := false
for _, visible := range visibleDevices {
if visible == gpuInfo.ID || visible == strconv.Itoa(gpuInfo.index) {
include = true
break
}
}
if !include {
reason := "filtering out device per user request"
slog.Info(reason, "id", gpuInfo.ID, "visible_devices", visibleDevices)
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
continue
}
}
slog.Debug("amdgpu memory", "gpu", gpuInfo.ID, "total", format.HumanBytes2(totalMemory))
slog.Debug("amdgpu memory", "gpu", gpuInfo.ID, "available", format.HumanBytes2(totalMemory-usedMemory))
// Final validation is gfx compatibility - load the library if we haven't already loaded it
// even if the user overrides, we still need to validate the library
@@ -391,7 +395,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
// Check for env var workarounds
if name == "1002:687f" { // Vega RX 56
gpuInfo.EnvWorkarounds = append(gpuInfo.EnvWorkarounds, [2]string{"HSA_ENABLE_SDMA", "0"})
gpuInfo.EnvWorkarounds = append(gpuInfo.EnvWorkarounds, "HSA_ENABLE_SDMA=0")
}
// The GPU has passed all the verification steps and is supported
@@ -520,19 +524,26 @@ func verifyKFDDriverAccess() error {
return nil
}
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) string {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "rocm" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
continue
}
ids = append(ids, info.ID)
// If the devices requires a numeric ID, for filtering purposes, we use the unfiltered ID number
if _, err := strconv.Atoi(info.ID); err == nil {
ids = append(ids, fmt.Sprintf("%d", info.filterID))
} else {
ids = append(ids, info.ID)
}
}
if len(ids) == 0 {
return ""
}
// There are 3 potential env vars to use to select GPUs.
// ROCR_VISIBLE_DEVICES supports UUID or numeric so is our preferred on linux
// GPU_DEVICE_ORDINAL supports numeric IDs only
// HIP_VISIBLE_DEVICES supports numeric IDs only
return "ROCR_VISIBLE_DEVICES", strings.Join(ids, ",")
return "ROCR_VISIBLE_DEVICES=" + strings.Join(ids, ",")
}

View File

@@ -111,6 +111,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
UnreliableFreeMemory: true,
ID: strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices
filterID: i,
DependencyPath: []string{libDir},
MinimumMemory: rocmMinimumMemory,
Name: name,
@@ -200,19 +201,26 @@ func (gpus RocmGPUInfoList) RefreshFreeMemory() error {
return nil
}
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) string {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "rocm" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
continue
}
ids = append(ids, info.ID)
// If the devices requires a numeric ID, for filtering purposes, we use the unfiltered ID number
if _, err := strconv.Atoi(info.ID); err == nil {
ids = append(ids, fmt.Sprintf("%d", info.filterID))
} else {
ids = append(ids, info.ID)
}
}
if len(ids) == 0 {
return ""
}
// There are 3 potential env vars to use to select GPUs.
// ROCR_VISIBLE_DEVICES supports UUID or numeric but does not work on Windows
// HIP_VISIBLE_DEVICES supports numeric IDs only
// GPU_DEVICE_ORDINAL supports numeric IDs only
return "HIP_VISIBLE_DEVICES", strings.Join(ids, ",")
return "HIP_VISIBLE_DEVICES=" + strings.Join(ids, ",")
}

View File

@@ -3,6 +3,7 @@
package discover
import (
"fmt"
"log/slog"
"os"
"regexp"
@@ -15,20 +16,7 @@ import (
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK")
func cudaGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "cuda" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("cudaGetVisibleDevicesEnv skipping over non-cuda device", "library", info.Library)
continue
}
ids = append(ids, info.ID)
}
return "CUDA_VISIBLE_DEVICES", strings.Join(ids, ",")
}
func cudaVariant(gpuInfo CudaGPUInfo) string {
func cudaVariant(gpuInfos []CudaGPUInfo) string {
if runtime.GOARCH == "arm64" && runtime.GOOS == "linux" {
if CudaTegra != "" {
ver := strings.Split(CudaTegra, ".")
@@ -57,9 +45,20 @@ func cudaVariant(gpuInfo CudaGPUInfo) string {
}
}
// driver 12.0 has problems with the cuda v12 library, so run v11 on those older drivers
if gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) {
return "v11"
// Check GPU compute capability FIRST, lowest common denominator if multi-gpu
for _, gpuInfo := range gpuInfos {
if gpuInfo.computeMajor < 7 || (gpuInfo.computeMajor == 7 && gpuInfo.computeMinor < 5) {
// GPU is Pascal or older (CC <= 7.4) - use CUDA v12 (supports CC 6.1)
return "v12"
}
}
return "v12"
// GPU is Turing or newer (CC >= 7.5) - can use newer CUDA
if len(gpuInfos) > 0 && gpuInfos[0].DriverMajor < 13 {
// The detected driver is older than 580 (Aug 2025)
// Warn if their CC is compatible with v13 and they should upgrade their driver to get better performance
slog.Warn("old CUDA driver detected - please upgrade to a newer driver for best performance", "version", fmt.Sprintf("%d.%d", gpuInfos[0].DriverMajor, gpuInfos[0].DriverMinor))
return "v12"
}
return "v13"
}

View File

@@ -263,6 +263,8 @@ func GetGPUInfo() GpuInfoList {
var driverMinor int
if cHandles.cudart != nil {
C.cudart_bootstrap(*cHandles.cudart, C.int(i), &memInfo)
driverMajor = int(cHandles.cudart.driver_major)
driverMinor = int(cHandles.cudart.driver_minor)
} else {
C.nvcuda_bootstrap(*cHandles.nvcuda, C.int(i), &memInfo)
driverMajor = int(cHandles.nvcuda.driver_major)
@@ -282,18 +284,8 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.MinimumMemory = cudaMinimumMemory
gpuInfo.DriverMajor = driverMajor
gpuInfo.DriverMinor = driverMinor
variant := cudaVariant(gpuInfo)
// Start with our bundled libraries
if variant != "" {
variantPath := filepath.Join(LibOllamaPath, "cuda_"+variant)
if _, err := os.Stat(variantPath); err == nil {
// Put the variant directory first in the search path to avoid runtime linking to the wrong library
gpuInfo.DependencyPath = append([]string{variantPath}, gpuInfo.DependencyPath...)
}
}
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.Variant = variant
if int(memInfo.major) < cudaComputeMajorMin || (int(memInfo.major) == cudaComputeMajorMin && int(memInfo.minor) < cudaComputeMinorMin) {
unsupportedGPUs = append(unsupportedGPUs,
@@ -331,6 +323,24 @@ func GetGPUInfo() GpuInfoList {
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
cudaGPUs = append(cudaGPUs, gpuInfo)
}
// Second pass on NVIDIA GPUs to set lowest common denominator variant and DependencyPaths
variant := cudaVariant(cudaGPUs)
var variantPath string
// Start with our bundled libraries
if variant != "" {
variantPath = filepath.Join(LibOllamaPath, "cuda_"+variant)
if _, err := os.Stat(variantPath); err != nil {
variantPath = ""
}
}
for i := range cudaGPUs {
cudaGPUs[i].Variant = variant
if variantPath != "" {
// Put the variant directory first in the search path to avoid runtime linking to the wrong library
cudaGPUs[i].DependencyPath = append([]string{variantPath}, cudaGPUs[i].DependencyPath...)
}
}
}
// Intel
@@ -369,6 +379,15 @@ func GetGPUInfo() GpuInfoList {
}
rocmGPUs, err = AMDGetGPUInfo()
// The ID field is used in context of the filtered set of GPUS
// so we have to replace any of these numeric IDs with their
// placement in this set of GPUs
for i := range rocmGPUs {
if _, err := strconv.Atoi(rocmGPUs[i].ID); err == nil {
rocmGPUs[i].ID = strconv.Itoa(i)
}
}
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
@@ -678,23 +697,16 @@ func getVerboseState() C.uint16_t {
// Given the list of GPUs this instantiation is targeted for,
// figure out the visible devices environment variable
//
// If different libraries are detected, the first one is what we use
func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
func (l GpuInfoList) GetVisibleDevicesEnv() []string {
if len(l) == 0 {
return "", ""
return nil
}
switch l[0].Library {
case "cuda":
return cudaGetVisibleDevicesEnv(l)
case "rocm":
return rocmGetVisibleDevicesEnv(l)
case "oneapi":
return oneapiGetVisibleDevicesEnv(l)
default:
slog.Debug("no filter required for library " + l[0].Library)
return "", ""
vd := []string{}
// Only filter the AMD GPUs at this level, let all NVIDIA devices through
if tmp := rocmGetVisibleDevicesEnv(l); tmp != "" {
vd = append(vd, tmp)
}
return vd
}
func GetSystemInfo() SystemInfo {

View File

@@ -62,9 +62,9 @@ func GetCPUMem() (memInfo, error) {
}, nil
}
func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
func (l GpuInfoList) GetVisibleDevicesEnv() []string {
// No-op on darwin
return "", ""
return nil
}
func GetSystemInfo() SystemInfo {

View File

@@ -69,18 +69,15 @@ void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
}
int version = 0;
cudartDriverVersion_t driverVersion;
driverVersion.major = 0;
driverVersion.minor = 0;
// Report driver version if we're in verbose mode, ignore errors
ret = (*resp->ch.cudaDriverGetVersion)(&version);
if (ret != CUDART_SUCCESS) {
LOG(resp->ch.verbose, "cudaDriverGetVersion failed: %d\n", ret);
} else {
driverVersion.major = version / 1000;
driverVersion.minor = (version - (driverVersion.major * 1000)) / 10;
LOG(resp->ch.verbose, "CUDA driver version: %d-%d\n", driverVersion.major, driverVersion.minor);
resp->ch.driver_major = version / 1000;
resp->ch.driver_minor = (version - (resp->ch.driver_major * 1000)) / 10;
LOG(resp->ch.verbose, "CUDA driver version: %d-%d\n", resp->ch.driver_major, resp->ch.driver_minor);
}
ret = (*resp->ch.cudaGetDeviceCount)(&resp->num_devices);

View File

@@ -29,11 +29,6 @@ typedef struct cudartMemory_st {
size_t used;
} cudartMemory_t;
typedef struct cudartDriverVersion {
int major;
int minor;
} cudartDriverVersion_t;
typedef struct cudaUUID {
unsigned char bytes[16];
} cudaUUID_t;
@@ -123,6 +118,8 @@ typedef struct cudaDeviceProp {
typedef struct cudart_handle {
void *handle;
uint16_t verbose;
int driver_major;
int driver_minor;
cudartReturn_t (*cudaSetDevice)(int device);
cudartReturn_t (*cudaDeviceSynchronize)(void);
cudartReturn_t (*cudaDeviceReset)(void);

View File

@@ -1,21 +0,0 @@
//go:build linux || windows
package discover
import (
"log/slog"
"strings"
)
func oneapiGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "oneapi" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("oneapiGetVisibleDevicesEnv skipping over non-sycl device", "library", info.Library)
continue
}
ids = append(ids, info.ID)
}
return "ONEAPI_DEVICE_SELECTOR", "level_zero:" + strings.Join(ids, ",")
}

View File

@@ -12,7 +12,7 @@ import (
// '../lib/ollama' on Linux and the executable's directory on macOS
// note: distribution builds, additional GPU-specific libraries are
// found in subdirectories of the returned path, such as
// 'cuda_v11', 'cuda_v12', 'rocm', etc.
// 'cuda_v12', 'rocm', etc.
var LibOllamaPath string = func() string {
exe, err := os.Executable()
if err != nil {

View File

@@ -27,8 +27,8 @@ type GpuInfo struct { // TODO better name maybe "InferenceProcessor"?
// Any extra PATH/LD_LIBRARY_PATH dependencies required for the Library to operate properly
DependencyPath []string `json:"lib_path,omitempty"`
// Extra environment variables specific to the GPU as list of [key,value]
EnvWorkarounds [][2]string `json:"envs,omitempty"`
// Extra environment variables specific to the GPU as list of [key=value]
EnvWorkarounds []string `json:"envs,omitempty"`
// Set to true if we can NOT reliably discover FreeMemory. A value of true indicates
// the FreeMemory is best effort, and may over or under report actual memory usage
@@ -36,9 +36,10 @@ type GpuInfo struct { // TODO better name maybe "InferenceProcessor"?
UnreliableFreeMemory bool
// GPU information
ID string `json:"gpu_id"` // string to use for selection of this specific GPU
Name string `json:"name"` // user friendly name if available
Compute string `json:"compute"` // Compute Capability or gfx
ID string `json:"gpu_id"` // string to use for selection of this specific GPU
filterID int //nolint:unused,nolintlint // AMD Workaround: The numeric ID of the device used to filter out other devices
Name string `json:"name"` // user friendly name if available
Compute string `json:"compute"` // Compute Capability or gfx
// Driver Information - TODO no need to put this on each GPU
DriverMajor int `json:"driver_major,omitempty"`
@@ -171,7 +172,8 @@ func (si SystemInfo) GetOptimalThreadCount() int {
// For each GPU, check if it does NOT support flash attention
func (l GpuInfoList) FlashAttentionSupported() bool {
for _, gpu := range l {
supportsFA := gpu.Library == "metal" ||
supportsFA := gpu.Library == "cpu" ||
gpu.Library == "metal" ||
(gpu.Library == "cuda" && gpu.DriverMajor >= 7) ||
gpu.Library == "rocm"

View File

@@ -4,6 +4,7 @@
* [Quickstart](../README.md#quickstart)
* [Examples](./examples.md)
* [Importing models](./import.md)
* [MacOS Documentation](./macos.md)
* [Linux Documentation](./linux.md)
* [Windows Documentation](./windows.md)
* [Docker Documentation](./docker.md)

View File

@@ -43,6 +43,7 @@ Generate a response for a given prompt with a provided model. This is a streamin
- `prompt`: the prompt to generate a response for
- `suffix`: the text after the model response
- `images`: (optional) a list of base64-encoded images (for multimodal models such as `llava`)
- `think`: (for thinking models) should the model think before responding?
Advanced parameters (optional):
@@ -490,28 +491,39 @@ Generate the next message in a chat with a provided model. This is a streaming e
- `model`: (required) the [model name](#model-names)
- `messages`: the messages of the chat, this can be used to keep a chat memory
- `tools`: list of tools in JSON for the model to use if supported
- `think`: (for thinking models) should the model think before responding?
The `message` object has the following fields:
- `role`: the role of the message, either `system`, `user`, `assistant`, or `tool`
- `content`: the content of the message
- `thinking`: (for thinking models) the model's thinking process
- `images` (optional): a list of images to include in the message (for multimodal models such as `llava`)
- `tool_calls` (optional): a list of tools in JSON that the model wants to use
- `tool_name` (optional): add the name of the tool that was executed to inform the model of the result
Advanced parameters (optional):
- `format`: the format to return a response in. Format can be `json` or a JSON schema.
- `format`: the format to return a response in. Format can be `json` or a JSON schema.
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
### Tool calling
Tool calling is supported by providing a list of tools in the `tools` parameter. The model will generate a response that includes a list of tool calls. See the [Chat request (Streaming with tools)](#chat-request-streaming-with-tools) example below.
Models can also explain the result of the tool call in the response. See the [Chat request (With history, with tools)](#chat-request-with-history-with-tools) example below.
[See models with tool calling capabilities](https://ollama.com/search?c=tool).
### Structured outputs
Structured outputs are supported by providing a JSON schema in the `format` parameter. The model will generate a response that matches the schema. See the [Chat request (Structured outputs)](#chat-request-structured-outputs) example below.
### Examples
#### Chat Request (Streaming)
#### Chat request (Streaming)
##### Request
@@ -566,6 +578,88 @@ Final response:
}
```
#### Chat request (Streaming with tools)
##### Request
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": [
{
"role": "user",
"content": "what is the weather in tokyo?"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a given city",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "The city to get the weather for"
}
},
"required": ["city"]
}
}
}
],
"stream": true
}'
```
##### Response
A stream of JSON objects is returned:
```json
{
"model": "llama3.2",
"created_at": "2025-07-07T20:22:19.184789Z",
"message": {
"role": "assistant",
"content": "",
"tool_calls": [
{
"function": {
"name": "get_weather",
"arguments": {
"city": "Tokyo"
}
},
}
]
},
"done": false
}
```
Final response:
```json
{
"model":"llama3.2",
"created_at":"2025-07-07T20:22:19.19314Z",
"message": {
"role": "assistant",
"content": ""
},
"done_reason": "stop",
"done": true,
"total_duration": 182242375,
"load_duration": 41295167,
"prompt_eval_count": 169,
"prompt_eval_duration": 24573166,
"eval_count": 15,
"eval_duration": 115959084
}
```
#### Chat request (No streaming)
##### Request
@@ -603,6 +697,74 @@ curl http://localhost:11434/api/chat -d '{
}
```
#### Chat request (No streaming, with tools)
##### Request
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": [
{
"role": "user",
"content": "what is the weather in tokyo?"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a given city",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "The city to get the weather for"
}
},
"required": ["city"]
}
}
}
],
"stream": false
}'
```
##### Response
```json
{
"model": "llama3.2",
"created_at": "2025-07-07T20:32:53.844124Z",
"message": {
"role": "assistant",
"content": "",
"tool_calls": [
{
"function": {
"name": "get_weather",
"arguments": {
"city": "Tokyo"
}
},
}
]
},
"done_reason": "stop",
"done": true,
"total_duration": 3244883583,
"load_duration": 2969184542,
"prompt_eval_count": 169,
"prompt_eval_duration": 141656333,
"eval_count": 18,
"eval_duration": 133293625
}
```
#### Chat request (Structured outputs)
##### Request
@@ -709,6 +871,87 @@ Final response:
}
```
#### Chat request (With history, with tools)
##### Request
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": [
{
"role": "user",
"content": "what is the weather in Toronto?"
},
// the message from the model appended to history
{
"role": "assistant",
"content": "",
"tool_calls": [
{
"function": {
"name": "get_temperature",
"arguments": {
"city": "Toronto"
}
},
}
]
},
// the tool call result appended to history
{
"role": "tool",
"content": "11 degrees celsius",
"tool_name": "get_temperature",
}
],
"stream": false,
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a given city",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "The city to get the weather for"
}
},
"required": ["city"]
}
}
}
]
}'
```
##### Response
```json
{
"model": "llama3.2",
"created_at": "2025-07-07T20:43:37.688511Z",
"message": {
"role": "assistant",
"content": "The current temperature in Toronto is 11°C."
},
"done_reason": "stop",
"done": true,
"total_duration": 890771750,
"load_duration": 707634750,
"prompt_eval_count": 94,
"prompt_eval_duration": 91703208,
"eval_count": 11,
"eval_duration": 90282125
}
```
#### Chat request (with images)
##### Request
@@ -1350,7 +1593,7 @@ Then there is a series of downloading responses. Until any of the download is co
```json
{
"status": "downloading digestname",
"status": "pulling digestname",
"digest": "digestname",
"total": 2142590208,
"completed": 241970
@@ -1465,6 +1708,7 @@ Advanced parameters:
- `truncate`: truncates the end of each input to fit within context length. Returns error if `false` and context length is exceeded. Defaults to `true`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
- `dimensions`: number of dimensions for the embedding
### Examples

View File

@@ -1,59 +0,0 @@
# Benchmark
Go benchmark tests that measure end-to-end performance of a running Ollama server. Run these tests to evaluate model inference performance on your hardware and measure the impact of code changes.
## When to use
Run these benchmarks when:
- Making changes to the model inference engine
- Modifying model loading/unloading logic
- Changing prompt processing or token generation code
- Implementing a new model architecture
- Testing performance across different hardware setups
## Prerequisites
- Ollama server running locally with `ollama serve` on `127.0.0.1:11434`
## Usage and Examples
>[!NOTE]
>All commands must be run from the root directory of the Ollama project.
Basic syntax:
```bash
go test -bench=. ./benchmark/... -m $MODEL_NAME
```
Required flags:
- `-bench=.`: Run all benchmarks
- `-m`: Model name to benchmark
Optional flags:
- `-count N`: Number of times to run the benchmark (useful for statistical analysis)
- `-timeout T`: Maximum time for the benchmark to run (e.g. "10m" for 10 minutes)
Common usage patterns:
Single benchmark run with a model specified:
```bash
go test -bench=. ./benchmark/... -m llama3.3
```
## Output metrics
The benchmark reports several key metrics:
- `gen_tok/s`: Generated tokens per second
- `prompt_tok/s`: Prompt processing tokens per second
- `ttft_ms`: Time to first token in milliseconds
- `load_ms`: Model load time in milliseconds
- `gen_tokens`: Total tokens generated
- `prompt_tokens`: Total prompt tokens processed
Each benchmark runs two scenarios:
- Cold start: Model is loaded from disk for each test
- Warm start: Model is pre-loaded in memory
Three prompt lengths are tested for each scenario:
- Short prompt (100 tokens)
- Medium prompt (500 tokens)
- Long prompt (1000 tokens)

View File

@@ -11,6 +11,10 @@ Then build and run Ollama from the root directory of the repository:
go run . serve
```
> [!NOTE]
> Ollama includes native code compiled with CGO. From time to time these data structures can change and CGO can get out of sync resulting in unexpected crashes. You can force a full build of the native code by running `go clean -cache` first.
## macOS (Apple Silicon)
macOS Apple Silicon supports Metal which is built-in to the Ollama binary. No additional steps are required.
@@ -118,7 +122,7 @@ To run tests, use `go test`:
go test ./...
```
> NOTE: In rare cirumstances, you may nedd to change a package using the new
> NOTE: In rare circumstances, you may need to change a package using the new
> "synctest" package in go1.24.
>
> If you do not have the "synctest" package enabled, you will not see build or

View File

@@ -20,9 +20,9 @@ Please refer to the [GPU docs](./gpu.md).
## How can I specify the context window size?
By default, Ollama uses a context window size of 4096 tokens.
By default, Ollama uses a context window size of 4096 tokens for most models. The `gpt-oss` model has a default context window size of 8192 tokens.
This can be overridden with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context window to 8K, use:
This can be overridden in Settings in the Windows and macOS App, or with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context window to 8K, use:
```shell
OLLAMA_CONTEXT_LENGTH=8192 ollama serve
@@ -46,6 +46,8 @@ curl http://localhost:11434/api/generate -d '{
}'
```
Setting the context length higher may cause the model to not be able to fit onto the GPU which make the model run more slowly.
## How can I tell if my model was loaded onto the GPU?
Use the `ollama ps` command to see what models are currently loaded into memory.
@@ -57,8 +59,8 @@ ollama ps
> **Output**:
>
> ```
> NAME ID SIZE PROCESSOR UNTIL
> llama3:70b bcfb190ca3a7 42 GB 100% GPU 4 minutes from now
> NAME ID SIZE PROCESSOR CONTEXT UNTIL
> gpt-oss:20b 05afbac4bad6 16 GB 100% GPU 8192 4 minutes from now
> ```
The `Processor` column will show which memory the model was loaded in to:
@@ -148,9 +150,11 @@ docker build -t ollama-with-ca .
docker run -d -e HTTPS_PROXY=https://my.proxy.example.com -p 11434:11434 ollama-with-ca
```
## Does Ollama send my prompts and answers back to ollama.com?
## Does Ollama send my prompts and responses back to ollama.com?
No. Ollama runs locally, and conversation data does not leave your machine.
If you're running a model locally, your prompts and responses will always stay on your machine. Ollama Turbo in the App allows you to run your queries on Ollama's servers if you don't have a powerful enough GPU. Web search lets a model query the web, giving you more accurate and up-to-date information. Both Turbo and web search require sending your prompts and responses to Ollama.com. This data is neither logged nor stored.
If you don't want to see the Turbo and web search options in the app, you can disable them in Settings by turning on Airplane mode. In Airplane mode, all models will run locally, and your prompts and responses will stay on your machine.
## How can I expose Ollama on my network?
@@ -292,7 +296,7 @@ If too many requests are sent to the server, it will respond with a 503 error in
## How does Ollama handle concurrent requests?
Ollama supports two levels of concurrent processing. If your system has sufficient available memory (system memory when using CPU inference, or VRAM for GPU inference) then multiple models can be loaded at the same time. For a given model, if there is sufficient available memory when the model is loaded, it is configured to allow parallel request processing.
Ollama supports two levels of concurrent processing. If your system has sufficient available memory (system memory when using CPU inference, or VRAM for GPU inference) then multiple models can be loaded at the same time. For a given model, if there is sufficient available memory when the model is loaded, it can be configured to allow parallel request processing.
If there is insufficient available memory to load a new model request while one or more models are already loaded, all new requests will be queued until the new model can be loaded. As prior models become idle, one or more will be unloaded to make room for the new model. Queued requests will be processed in order. When using GPU inference new models must be able to completely fit in VRAM to allow concurrent model loads.
@@ -301,7 +305,7 @@ Parallel request processing for a given model results in increasing the context
The following server settings may be used to adjust how Ollama handles concurrent requests on most platforms:
- `OLLAMA_MAX_LOADED_MODELS` - The maximum number of models that can be loaded concurrently provided they fit in available memory. The default is 3 * the number of GPUs or 3 for CPU inference.
- `OLLAMA_NUM_PARALLEL` - The maximum number of parallel requests each model will process at the same time. The default will auto-select either 4 or 1 based on available memory.
- `OLLAMA_NUM_PARALLEL` - The maximum number of parallel requests each model will process at the same time. The default is 1, and will handle 1 request per model at a time.
- `OLLAMA_MAX_QUEUE` - The maximum number of requests Ollama will queue when busy before rejecting additional requests. The default is 512
Note: Windows with Radeon GPUs currently default to 1 model maximum due to limitations in ROCm v5.7 for available VRAM reporting. Once ROCm v6.2 is available, Windows Radeon will follow the defaults above. You may enable concurrent model loads on Radeon on Windows, but ensure you don't load more models than will fit into your GPUs VRAM.
@@ -333,3 +337,16 @@ The currently available K/V cache quantization types are:
How much the cache quantization impacts the model's response quality will depend on the model and the task. Models that have a high GQA count (e.g. Qwen2) may see a larger impact on precision from quantization than models with a low GQA count.
You may need to experiment with different quantization types to find the best balance between memory usage and quality.
## How can I stop Ollama from starting when I login to my computer
Ollama for Windows and macOS register as a login item during installation. You can disable this if you prefer not to have Ollama automatically start. Ollama will respect this setting across upgrades, unless you uninstall the application.
**Windows**
- Remove `%APPDATA%\Microsoft\Windows\Start Menu\Programs\Startup\Ollama.lnk`
**MacOS Monterey (v12)**
- Open `Settings` -> `Users & Groups` -> `Login Items` and find the `Ollama` entry, then click the `-` (minus) to remove
**MacOS Ventura (v13) and later**
- Open `Settings` and search for "Login Items", find the `Ollama` entry under "Allow in the Background`, then click the slider to disable.

View File

@@ -1,12 +1,14 @@
# GPU
## Nvidia
Ollama supports Nvidia GPUs with compute capability 5.0+.
Ollama supports Nvidia GPUs with compute capability 5.0+ and driver version 531 and newer.
Check your compute compatibility to see if your card is supported:
[https://developer.nvidia.com/cuda-gpus](https://developer.nvidia.com/cuda-gpus)
| Compute Capability | Family | Cards |
| ------------------ | ------------------- | ----------------------------------------------------------------------------------------------------------- |
| 12.0 | GeForce RTX 50xx | `RTX 5060` `RTX 5060 Ti` `RTX 5070` `RTX 5070 Ti` `RTX 5080` `RTX 5090` |
| | NVIDIA Professioal | `RTX PRO 4000 Blackwell` `RTX PRO 4500 Blackwell` `RTX PRO 5000 Blackwell` `RTX PRO 6000 Blackwell` |
| 9.0 | NVIDIA | `H200` `H100` |
| 8.9 | GeForce RTX 40xx | `RTX 4090` `RTX 4080 SUPER` `RTX 4080` `RTX 4070 Ti SUPER` `RTX 4070 Ti` `RTX 4070 SUPER` `RTX 4070` `RTX 4060 Ti` `RTX 4060` |
| | NVIDIA Professional | `L4` `L40` `RTX 6000` |

View File

@@ -53,6 +53,8 @@ FROM /path/to/safetensors/directory
If you create the Modelfile in the same directory as the weights, you can use the command `FROM .`.
If you do not create the Modelfile, ollama will act as if there was a Modelfile with the command `FROM .`.
Now run the `ollama create` command from the directory where you created the `Modelfile`:
```shell
@@ -132,22 +134,12 @@ success
### Supported Quantizations
- `q4_0`
- `q4_1`
- `q5_0`
- `q5_1`
- `q8_0`
#### K-means Quantizations
- `q3_K_S`
- `q3_K_M`
- `q3_K_L`
- `q4_K_S`
- `q4_K_M`
- `q5_K_S`
- `q5_K_M`
- `q6_K`
## Sharing your model on ollama.com

View File

@@ -11,12 +11,13 @@ curl -fsSL https://ollama.com/install.sh | sh
## Manual install
> [!NOTE]
> If you are upgrading from a prior version, you should remove the old libraries with `sudo rm -rf /usr/lib/ollama` first.
> If you are upgrading from a prior version, you **MUST** remove the old libraries with `sudo rm -rf /usr/lib/ollama` first.
Download and extract the package:
```shell
curl -L https://ollama.com/download/ollama-linux-amd64.tgz -o ollama-linux-amd64.tgz
curl -LO https://ollama.com/download/ollama-linux-amd64.tgz
sudo rm -rf /usr/lib/ollama
sudo tar -C /usr -xzf ollama-linux-amd64.tgz
```
@@ -34,7 +35,11 @@ ollama -v
### AMD GPU install
If you have an AMD GPU, also download and extract the additional ROCm package:
If you have an AMD GPU, **also** download and extract the additional ROCm package:
> [!IMPORTANT]
> The ROCm tgz contains only AMD dependent libraries. You must extract **both** `ollama-linux-amd64.tgz` and `ollama-linux-amd64-rocm.tgz` into the same location.
```shell
curl -L https://ollama.com/download/ollama-linux-amd64-rocm.tgz -o ollama-linux-amd64-rocm.tgz
@@ -112,8 +117,8 @@ sudo systemctl status ollama
> While AMD has contributed the `amdgpu` driver upstream to the official linux
> kernel source, the version is older and may not support all ROCm features. We
> recommend you install the latest driver from
> https://www.amd.com/en/support/linux-drivers for best support of your Radeon
> GPU.
> [AMD](https://www.amd.com/en/support/download/linux-drivers.html) for best support
> of your Radeon GPU.
## Customizing

42
docs/macos.md Normal file
View File

@@ -0,0 +1,42 @@
# Ollama for macOS
## System Requirements
* MacOS Monterey (v12) or newer
* Apple M series (CPU and GPU support) or x86 (CPU only)
## Filesystem Requirements
The preferred method of installation is to mount the `ollama.dmg` and drag-and-drop the Ollama application to the system-wide `Applications` folder. Upon startup, the Ollama app will verify the `ollama` CLI is present in your PATH, and if not detected, will prompt for permission to create a link in `/usr/local/bin`
Once you've installed Ollama, you'll need additional space for storing the Large Language models, which can be tens to hundreds of GB in size. If your home directory doesn't have enough space, you can change where the binaries are installed, and where the models are stored.
### Changing Install Location
To install the Ollama application somewhere other than `Applications`, place the Ollama application in the desired location, and ensure the CLI `Ollama.app/Contents/Resources/ollama` or a sym-link to the CLI can be found in your path. Upon first start decline the "Move to Applications?" request.
## Troubleshooting
Ollama on MacOS stores files in a few different locations.
- `~/.ollama` contains models and configuration
- `~/.ollama/logs` contains logs
- *app.log* contains most recent logs from the GUI application
- *server.log* contains the most recent server logs
- `<install location>/Ollama.app/Contents/Resources/ollama` the CLI binary
## Uninstall
To fully remove Ollama from your system, remove the following files and folders:
```
sudo rm -rf /Applications/Ollama.app
sudo rm /usr/local/bin/ollama
rm -rf "~/Library/Application Support/Ollama"
rm -rf "~/Library/Saved Application State/com.electron.ollama.savedState"
rm -rf ~/Library/Caches/com.electron.ollama/
rm -rf ~/Library/Caches/ollama
rm -rf ~/Library/WebKit/com.electron.ollama
rm -rf ~/.ollama
```

View File

@@ -150,7 +150,7 @@ PARAMETER <parameter> <parametervalue>
| Parameter | Description | Value Type | Example Usage |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------- | -------------------- |
| num_ctx | Sets the size of the context window used to generate the next token. (Default: 2048) | int | num_ctx 4096 |
| num_ctx | Sets the size of the context window used to generate the next token. (Default: 4096) | int | num_ctx 4096 |
| repeat_last_n | Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx) | int | repeat_last_n 64 |
| repeat_penalty | Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1) | float | repeat_penalty 1.1 |
| temperature | The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8) | float | temperature 0.7 |

View File

@@ -72,7 +72,7 @@ client = OpenAI(base_url="http://localhost:11434/v1", api_key="ollama")
# Define the schema for the response
class FriendInfo(BaseModel):
name: str
age: int
age: int
is_available: bool
class FriendList(BaseModel):

View File

@@ -9,7 +9,7 @@ cat ~/.ollama/logs/server.log
On **Linux** systems with systemd, the logs can be found with this command:
```shell
journalctl -u ollama --no-pager --follow --pager-end
journalctl -u ollama --no-pager --follow --pager-end
```
When you run Ollama in a **container**, the logs go to stdout/stderr in the container:
@@ -23,7 +23,7 @@ docker logs <container-name>
If manually running `ollama serve` in a terminal, the logs will be on that terminal.
When you run Ollama on **Windows**, there are a few different locations. You can view them in the explorer window by hitting `<cmd>+R` and type in:
- `explorer %LOCALAPPDATA%\Ollama` to view logs. The most recent server logs will be in `server.log` and older logs will be in `server-#.log`
- `explorer %LOCALAPPDATA%\Ollama` to view logs. The most recent server logs will be in `server.log` and older logs will be in `server-#.log`
- `explorer %LOCALAPPDATA%\Programs\Ollama` to browse the binaries (The installer adds this to your user PATH)
- `explorer %HOMEPATH%\.ollama` to browse where models and configuration is stored
@@ -38,12 +38,12 @@ Join the [Discord](https://discord.gg/ollama) for help interpreting the logs.
## LLM libraries
Ollama includes multiple LLM libraries compiled for different GPUs and CPU vector features. Ollama tries to pick the best one based on the capabilities of your system. If this autodetection has problems, or you run into other problems (e.g. crashes in your GPU) you can workaround this by forcing a specific LLM library. `cpu_avx2` will perform the best, followed by `cpu_avx` an the slowest but most compatible is `cpu`. Rosetta emulation under MacOS will work with the `cpu` library.
Ollama includes multiple LLM libraries compiled for different GPUs and CPU vector features. Ollama tries to pick the best one based on the capabilities of your system. If this autodetection has problems, or you run into other problems (e.g. crashes in your GPU) you can workaround this by forcing a specific LLM library. `cpu_avx2` will perform the best, followed by `cpu_avx` and the slowest but most compatible is `cpu`. Rosetta emulation under MacOS will work with the `cpu` library.
In the server log, you will see a message that looks something like this (varies from release to release):
```
Dynamic LLM libraries [rocm_v6 cpu cpu_avx cpu_avx2 cuda_v11 rocm_v5]
Dynamic LLM libraries [rocm_v6 cpu cpu_avx cpu_avx2 cuda_v12 rocm_v5]
```
**Experimental LLM Library Override**
@@ -92,12 +92,15 @@ If none of those resolve the problem, gather additional information and file an
- Set `CUDA_ERROR_LEVEL=50` and try again to get more diagnostic logs
- Check dmesg for any errors `sudo dmesg | grep -i nvrm` and `sudo dmesg | grep -i nvidia`
You may get more details for initialization failures by enabling debug prints in the uvm driver. You should only use this temporarily while troubleshooting
- `sudo rmmod nvidia_uvm` then `sudo modprobe nvidia_uvm uvm_debug_prints=1`
## AMD GPU Discovery
On linux, AMD GPU access typically requires `video` and/or `render` group membership to access the `/dev/kfd` device. If permissions are not set up correctly, Ollama will detect this and report an error in the server log.
When running in a container, in some Linux distributions and container runtimes, the ollama process may be unable to access the GPU. Use `ls -lnd /dev/kfd /dev/dri /dev/dri/*` on the host system to determine the **numeric** group IDs on your system, and pass additional `--group-add ...` arguments to the container so it can access the required devices. For example, in the following output `crw-rw---- 1 0 44 226, 0 Sep 16 16:55 /dev/dri/card0` the group ID column is `44`
When running in a container, in some Linux distributions and container runtimes, the ollama process may be unable to access the GPU. Use `ls -lnd /dev/kfd /dev/dri /dev/dri/*` on the host system to determine the **numeric** group IDs on your system, and pass additional `--group-add ...` arguments to the container so it can access the required devices. For example, in the following output `crw-rw---- 1 0 44 226, 0 Sep 16 16:55 /dev/dri/card0` the group ID column is `44`
If you are experiencing problems getting Ollama to correctly discover or use your GPU for inference, the following may help isolate the failure.
- `AMD_LOG_LEVEL=3` Enable info log levels in the AMD HIP/ROCm libraries. This can help show more detailed error codes that can help troubleshoot problems

107
docs/turbo.md Normal file
View File

@@ -0,0 +1,107 @@
# Turbo
>  Turbo is preview
Ollamas [Turbo](https://ollama.com/turbo) is a new way to run open-source models with acceleration from datacenter-grade hardware.
Currently, the following models are available in Turbo:
- `gpt-oss:20b`
- `gpt-oss:120b`
## Get started
### Ollama for macOS & Windows
Download Ollama
- Select a model such as `gpt-oss:20b` or `gpt-oss:120b`
- Click on **Turbo**. Youll be prompted to create an account or sign in
### Ollamas CLI
- [Sign up](https://ollama.com/signup) for an Ollama account
- Add your Ollama key [to ollama.com](https://ollama.com/settings/keys).
On macOS and Linux:
```shell
cat ~/.ollama/id_ed25519.pub
```
On Windows:
```
type "%USERPROFILE%\.ollama\id_ed25519.pub"
```
- Then run a model setting `OLLAMA_HOST` to `ollama.com`:
```shell
OLLAMA_HOST=ollama.com ollama run gpt-oss:120b
```
### Ollamas Python library
- Download Ollama's [Python library](https://github.com/ollama/ollama-python)
- [Sign up](https://ollama.com/signup) for an Ollama account
- Create an API key by visiting https://ollama.com/settings/keys
```python
from ollama import Client
client = Client(
host="https://ollama.com",
headers={'Authorization': '<api key>'}
)
messages = [
{
'role': 'user',
'content': 'Why is the sky blue?',
},
]
for part in client.chat('gpt-oss:120b', messages=messages, stream=True):
print(part['message']['content'], end='', flush=True)
```
### Ollamas JavaScript library
- Download Ollama's [JavaScript library](https://github.com/ollama/ollama-js)
- [Sign up](https://ollama.com/signup) for an Ollama account
- Create an API key by visiting https://ollama.com/settings/keys
```typescript
import { Ollama } from 'ollama';
const ollama = new Ollama({
host: 'https://ollama.com',
headers: {
Authorization: "Bearer <api key>"
}
});
const response = await ollama.chat({
model: 'gpt-oss:120b',
messages: [{ role: 'user', content: 'Explain quantum computing' }],
stream: true
});
for await (const part of response) {
process.stdout.write(part.message.content)
}
```
### Community integrations
Turbo mode is also compatible with several community integrations.
#### Open WebUI
- Go to **settings** → **Admin settings** → **Connections**
- Under **Ollama API,** click **+**
- For the **URL** put `https://ollama.com`
- For the **API key,** create an API key on https://ollama.com/settings/keys and add it.
- Click **Save**
Now, if you navigate to the model selector, Turbo models should be available under **External**.

View File

@@ -30,20 +30,6 @@ To install the Ollama application in a location different than your home directo
OllamaSetup.exe /DIR="d:\some\location"
```
### Changing Model Location
To change where Ollama stores the downloaded models instead of using your home directory, set the environment variable `OLLAMA_MODELS` in your user account.
1. Start the Settings (Windows 11) or Control Panel (Windows 10) application and search for _environment variables_.
2. Click on _Edit environment variables for your account_.
3. Edit or create a new variable for your user account for `OLLAMA_MODELS` where you want the models stored
4. Click OK/Apply to save.
If Ollama is already running, Quit the tray application and relaunch it from the Start menu, or a new terminal started after you saved the environment variables.
## API Access
Here's a quick example showing API access from `powershell`
@@ -82,9 +68,9 @@ If you'd like to install or integrate Ollama as a service, a standalone
`ollama-windows-amd64.zip` zip file is available containing only the Ollama CLI
and GPU library dependencies for Nvidia. If you have an AMD GPU, also download
and extract the additional ROCm package `ollama-windows-amd64-rocm.zip` into the
same directory. This allows for embedding Ollama in existing applications, or
running it as a system service via `ollama serve` with tools such as
[NSSM](https://nssm.cc/).
same directory. Both zip files are necessary for a complete AMD installation.
This allows for embedding Ollama in existing applications, or running it as a
system service via `ollama serve` with tools such as [NSSM](https://nssm.cc/).
> [!NOTE]
> If you are upgrading from a prior version, you should remove the old directories first.

View File

@@ -134,6 +134,17 @@ func LoadTimeout() (loadTimeout time.Duration) {
return loadTimeout
}
func Remotes() []string {
var r []string
raw := strings.TrimSpace(Var("OLLAMA_REMOTES"))
if raw == "" {
r = []string{"ollama.com"}
} else {
r = strings.Split(raw, ",")
}
return r
}
func Bool(k string) func() bool {
return func() bool {
if s := Var(k); s != "" {
@@ -183,6 +194,8 @@ var (
NewEngine = Bool("OLLAMA_NEW_ENGINE")
// ContextLength sets the default context length
ContextLength = Uint("OLLAMA_CONTEXT_LENGTH", 4096)
// Auth enables authentication between the Ollama client and server
UseAuth = Bool("OLLAMA_AUTH")
)
func String(s string) func() string {
@@ -217,7 +230,7 @@ func Uint(key string, defaultValue uint) func() uint {
var (
// NumParallel sets the number of parallel model requests. NumParallel can be configured via the OLLAMA_NUM_PARALLEL environment variable.
NumParallel = Uint("OLLAMA_NUM_PARALLEL", 0)
NumParallel = Uint("OLLAMA_NUM_PARALLEL", 1)
// MaxRunners sets the maximum number of loaded models. MaxRunners can be configured via the OLLAMA_MAX_LOADED_MODELS environment variable.
MaxRunners = Uint("OLLAMA_MAX_LOADED_MODELS", 0)
// MaxQueue sets the maximum number of queued requests. MaxQueue can be configured via the OLLAMA_MAX_QUEUE environment variable.
@@ -268,6 +281,7 @@ func AsMap() map[string]EnvVar {
"OLLAMA_MULTIUSER_CACHE": {"OLLAMA_MULTIUSER_CACHE", MultiUserCache(), "Optimize prompt caching for multi-user scenarios"},
"OLLAMA_CONTEXT_LENGTH": {"OLLAMA_CONTEXT_LENGTH", ContextLength(), "Context length to use unless otherwise specified (default: 4096)"},
"OLLAMA_NEW_ENGINE": {"OLLAMA_NEW_ENGINE", NewEngine(), "Enable the new Ollama engine"},
"OLLAMA_REMOTES": {"OLLAMA_REMOTES", Remotes(), "Allowed hosts for remote models (default \"ollama.com\")"},
// Informational
"HTTP_PROXY": {"HTTP_PROXY", String("HTTP_PROXY")(), "HTTP proxy"},

View File

@@ -10,4 +10,5 @@ type Config interface {
Strings(string, ...[]string) []string
Ints(string, ...[]int32) []int32
Floats(string, ...[]float32) []float32
Bools(string, ...[]bool) []bool
}

View File

@@ -1,6 +1,7 @@
package ggml
import (
"cmp"
"encoding/binary"
"errors"
"fmt"
@@ -10,12 +11,14 @@ import (
"slices"
"strings"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/util/bufioutil"
)
type GGML struct {
container
model
Length int64
}
type model interface {
@@ -34,7 +37,8 @@ func (kv KV) Kind() string {
}
func (kv KV) ParameterCount() uint64 {
return keyValue(kv, "general.parameter_count", uint64(0))
val, _ := keyValue(kv, "general.parameter_count", uint64(0))
return val
}
func (kv KV) FileType() FileType {
@@ -53,16 +57,66 @@ func (kv KV) EmbeddingLength() uint64 {
return uint64(kv.Uint("embedding_length"))
}
func (kv KV) HeadCount() uint64 {
return uint64(kv.Uint("attention.head_count"))
func (kv KV) HeadCount() []uint64 {
headCountDefault := uint32(1)
headCount := kv.UintOrArrayValueAsArray("attention.head_count", headCountDefault)
if len(headCount) == 1 {
headCountDefault = headCount[0]
}
nLayers := int(kv.BlockCount())
if len(headCount) > nLayers {
slog.Warn("got more elements of attention.head_count than layers", "len(headCount)", len(headCount), "layers", nLayers)
}
out := make([]uint64, nLayers)
for i := range nLayers {
if i >= len(headCount) {
out[i] = uint64(headCountDefault)
} else {
out[i] = uint64(headCount[i])
}
}
return out
}
func (kv KV) HeadCountKV() uint64 {
return uint64(kv.Uint("attention.head_count_kv", 1))
func (kv KV) HeadCountMax() uint64 {
return uint64(kv.UintOrMaxArrayValue("attention.head_count", 1))
}
func (kv KV) EmbeddingHeadCount() uint64 {
if heads := kv.HeadCount(); heads > 0 {
func (kv KV) HeadCountMin() uint64 {
return uint64(kv.UintOrMinArrayValue("attention.head_count", 1))
}
func (kv KV) HeadCountKV() []uint64 {
headCountKVDefault := uint32(1)
headCountKV := kv.UintOrArrayValueAsArray("attention.head_count_kv", headCountKVDefault)
if len(headCountKV) == 1 {
headCountKVDefault = headCountKV[0]
}
nLayers := int(kv.BlockCount())
if len(headCountKV) > nLayers {
slog.Warn("got more elements of attention.head_count than layers", "len(headCountKV)", len(headCountKV), "layers", nLayers)
}
out := make([]uint64, nLayers)
for i := range nLayers {
if i >= len(headCountKV) {
out[i] = uint64(headCountKVDefault)
} else {
out[i] = uint64(headCountKV[i])
}
}
return out
}
func (kv KV) HeadCountKVMax() uint64 {
return uint64(kv.UintOrMaxArrayValue("attention.head_count_kv", 1))
}
func (kv KV) HeadCountKVMin() uint64 {
return uint64(kv.UintOrMinArrayValue("attention.head_count_kv", 1))
}
func (kv KV) EmbeddingHeadCountMax() uint64 {
if heads := kv.HeadCountMin(); heads > 0 {
return kv.EmbeddingLength() / heads
}
@@ -70,15 +124,11 @@ func (kv KV) EmbeddingHeadCount() uint64 {
}
func (kv KV) EmbeddingHeadCountK() uint64 {
return uint64(kv.Uint("attention.key_length", uint32(kv.EmbeddingHeadCount())))
return uint64(kv.Uint("attention.key_length", uint32(kv.EmbeddingHeadCountMax())))
}
func (kv KV) EmbeddingHeadCountV() uint64 {
return uint64(kv.Uint("attention.value_length", uint32(kv.EmbeddingHeadCount())))
}
func (kv KV) GQA() uint64 {
return kv.HeadCount() / kv.HeadCountKV()
return uint64(kv.Uint("attention.value_length", uint32(kv.EmbeddingHeadCountMax())))
}
func (kv KV) ContextLength() uint64 {
@@ -89,45 +139,115 @@ func (kv KV) ChatTemplate() string {
return kv.String("tokenizer.chat_template")
}
// ssm architecture parameters
func (kv KV) SSMConvKernel() uint64 {
return uint64(kv.Uint("ssm.conv_kernel"))
}
func (kv KV) SSMInnerSize() uint64 {
return uint64(kv.Uint("ssm.inner_size"))
}
func (kv KV) SSMStateSize() uint64 {
return uint64(kv.Uint("ssm.state_size"))
}
func (kv KV) SSMGroupCount() uint64 {
return uint64(kv.Uint("ssm.group_count"))
}
// general types
func (kv KV) String(key string, defaultValue ...string) string {
return keyValue(kv, key, append(defaultValue, "")...)
val, _ := keyValue(kv, key, append(defaultValue, "")...)
return val
}
func (kv KV) Uint(key string, defaultValue ...uint32) uint32 {
return keyValue(kv, key, append(defaultValue, 0)...)
val, _ := keyValue(kv, key, append(defaultValue, 0)...)
return val
}
func (kv KV) Float(key string, defaultValue ...float32) float32 {
return keyValue(kv, key, append(defaultValue, 0)...)
val, _ := keyValue(kv, key, append(defaultValue, 0)...)
return val
}
func (kv KV) Bool(key string, defaultValue ...bool) bool {
return keyValue(kv, key, append(defaultValue, false)...)
val, _ := keyValue(kv, key, append(defaultValue, false)...)
return val
}
func (kv KV) UintOrMaxArrayValue(key string, defaultValue uint32) uint32 {
_, max := kv.UintOrArrayValue(key, defaultValue)
return max
}
func (kv KV) UintOrMinArrayValue(key string, defaultValue uint32) uint32 {
min, _ := kv.UintOrArrayValue(key, defaultValue)
return min
}
func (kv KV) UintOrArrayValue(key string, defaultValue uint32) (uint32, uint32) {
arrVal := kv.UintOrArrayValueAsArray(key, defaultValue)
return slices.Min(arrVal), slices.Max(arrVal)
}
func (kv KV) UintOrArrayValueAsArray(key string, defaultValue uint32) []uint32 {
if u32, ok := keyValue(kv, key, uint32(0)); ok {
return []uint32{u32}
} else if u32s, ok := keyValue(kv, key, &array[uint32]{}); ok {
return u32s.values
} else if i32s, ok := keyValue(kv, key, &array[int32]{}); ok {
dst := make([]uint32, len(i32s.values))
for i, v := range i32s.values {
if v < 0 {
slog.Warn("array values are unexpectedly negative", "key", key, "i", i, "v", v)
}
dst[i] = uint32(v)
}
return dst
}
return []uint32{defaultValue}
}
func (kv KV) Strings(key string, defaultValue ...[]string) []string {
return keyValue(kv, key, &array[string]{values: append(defaultValue, []string(nil))[0]}).values
val, _ := keyValue(kv, key, &array[string]{values: append(defaultValue, []string(nil))[0]})
return val.values
}
func (kv KV) Ints(key string, defaultValue ...[]int32) []int32 {
return keyValue(kv, key, &array[int32]{values: append(defaultValue, []int32(nil))[0]}).values
val, _ := keyValue(kv, key, &array[int32]{values: append(defaultValue, []int32(nil))[0]})
return val.values
}
func (kv KV) Uints(key string, defaultValue ...[]uint32) []uint32 {
return keyValue(kv, key, &array[uint32]{values: append(defaultValue, []uint32(nil))[0]}).values
val, _ := keyValue(kv, key, &array[uint32]{values: append(defaultValue, []uint32(nil))[0]})
return val.values
}
func (kv KV) Floats(key string, defaultValue ...[]float32) []float32 {
return keyValue(kv, key, &array[float32]{values: append(defaultValue, []float32(nil))[0]}).values
val, _ := keyValue(kv, key, &array[float32]{values: append(defaultValue, []float32(nil))[0]})
return val.values
}
func (kv KV) Bools(key string, defaultValue ...[]bool) []bool {
val, _ := keyValue(kv, key, &array[bool]{values: append(defaultValue, []bool(nil))[0]})
return val.values
}
func (kv KV) OllamaEngineRequired() bool {
return slices.Contains([]string{
"gemma3",
"gemma3n",
"mistral3",
"qwen3",
"llama4",
"mllama",
"qwen25vl",
"gptoss", "gpt-oss",
}, kv.Architecture())
}
@@ -143,17 +263,17 @@ type arrayValueTypes interface {
*array[string] | *array[float32] | *array[float64] | *array[bool]
}
func keyValue[T valueTypes | arrayValueTypes](kv KV, key string, defaultValue ...T) T {
func keyValue[T valueTypes | arrayValueTypes](kv KV, key string, defaultValue ...T) (T, bool) {
if !strings.HasPrefix(key, "tokenizer.") && !strings.HasPrefix(key, "general.") {
key = kv.Architecture() + "." + key
}
if val, ok := kv[key]; ok {
return val.(T)
if val, ok := kv[key].(T); ok {
return val, true
}
slog.Debug("key not found", "key", key, "default", defaultValue[0])
return defaultValue[0]
slog.Debug("key with type not found", "key", key, "default", defaultValue[0])
return defaultValue[0], false
}
type Tensors struct {
@@ -222,36 +342,37 @@ type Tensor struct {
func (t Tensor) block() (n int) {
if _, err := fmt.Sscanf(t.Name, "blk.%d.", &n); err != nil {
return -1
return math.MaxInt
}
return
}
func (t Tensor) blockSize() uint64 {
return (TensorType)(t.Kind).BlockSize()
return TensorType(t.Kind).BlockSize()
}
func (t TensorType) BlockSize() uint64 {
switch t {
case
0, // F32
1, // F16
24, // I8
25, // I16
26, // I32
27, // I64
28, // F64
30: // BF16
TensorTypeF32,
TensorTypeF16,
TensorTypeI8,
TensorTypeI16,
TensorTypeI32,
TensorTypeI64,
TensorTypeF64,
TensorTypeBF16:
return 1
case
2, // Q4_0
3, // Q4_1
6, // Q5_0
7, // Q5_1
8, // Q8_0
9, // Q8_1
20: // IQ4_NL
TensorTypeQ4_0,
TensorTypeQ4_1,
TensorTypeQ5_0,
TensorTypeQ5_1,
TensorTypeQ8_0,
TensorTypeQ8_1,
tensorTypeIQ4_NL,
4, TensorTypeMXFP4:
return 32
default:
return 256
@@ -324,6 +445,8 @@ func (t TensorType) TypeSize() uint64 {
return blockSize/8 + blockSize/16 + blockSize/32
case TensorTypeBF16:
return 2
case 4, TensorTypeMXFP4:
return 1 + blockSize/2
default:
return 0
}
@@ -387,12 +510,12 @@ func DetectContentType(b []byte) string {
//
// It collects array values for arrays with a size less than or equal to
// maxArraySize. If the maxArraySize is negative, all arrays are collected.
func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, error) {
rs = bufioutil.NewBufferedSeeker(rs, 32<<10)
var magic uint32
if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
return nil, 0, err
return nil, err
}
var c container
@@ -402,43 +525,89 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
case FILE_MAGIC_GGUF_BE:
c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
default:
return nil, 0, errors.New("invalid file magic")
return nil, errors.New("invalid file magic")
}
model, err := c.Decode(rs)
if err != nil {
return nil, 0, err
return nil, err
}
offset, err := rs.Seek(0, io.SeekCurrent)
if err != nil {
return nil, 0, err
return nil, err
}
// final model type
return &GGML{
container: c,
model: model,
}, offset, nil
Length: offset,
}, nil
}
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string) (kv []uint64, partialOffload, fullOffload uint64) {
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string, useFlashAttention bool) (kv []uint64, partialOffload, fullOffload uint64) {
context *= uint64(numParallel)
embedding := f.KV().EmbeddingLength()
heads := f.KV().HeadCount()
headsKV := f.KV().HeadCountKV()
heads := f.KV().HeadCountMax()
headsArr := f.KV().HeadCount()
headsKV := f.KV().HeadCountKVMax()
headsKVArr := f.KV().HeadCountKV()
vocab := uint64(f.KV()["tokenizer.ggml.tokens"].(*array[string]).size)
embeddingHeads := f.KV().EmbeddingHeadCount()
embeddingHeads := f.KV().EmbeddingHeadCountMax()
embeddingHeadsK := f.KV().EmbeddingHeadCountK()
embeddingHeadsV := f.KV().EmbeddingHeadCountV()
layers := f.Tensors().GroupLayers()
bytesPerElement := kvCacheBytesPerElement(kvCacheType)
// Default for models unless special-cased below. These defaults mirror the
// cache usage in llama.cpp under the assumption that models without special
// cases below will use the llamarunner and caching will be handled by the
// llama.cpp layer.
//
// This also assumes that a layer without heads or headsKV set is recurrent
// which is usually the case. Some models (eg nemotronh) use "blocks" in
// place of layers where some are MLP blocks that don't have any cache.
// Models like this will need a special case below to be accurately
// estimated.
var kvTotal uint64
kv = make([]uint64, f.KV().BlockCount())
kvSizeAttn := uint64(0)
kvSizeRecurrent := uint64(0)
for i := range kv {
kv[i] = uint64(float64(context*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
headsL := headsArr[i]
headsKVL := headsKVArr[i]
if headsL > 0 && headsKVL > 0 {
// full attention layer
// NOTE: Assumes uniform values for all attn layers
kv[i] = uint64(float64(context*(embeddingHeadsK+embeddingHeadsV)*headsKVL) * bytesPerElement)
kvSizeAttn += kv[i]
} else {
// recurrent layer
ssmDConv := f.KV().SSMConvKernel()
ssmDState := f.KV().SSMStateSize()
ssmDInner := f.KV().SSMInnerSize()
ssmNGroups := f.KV().SSMGroupCount()
nEmbdR := uint64(0)
if ssmDConv > 0 {
nEmbdR = (ssmDConv - 1) * (ssmDInner + 2*ssmNGroups*ssmDState)
}
nEmbdS := ssmDState * ssmDInner
// recurrent always uses F32 in llama.cpp backend
// https://github.com/ggml-org/llama.cpp/blob/master/src/llama-model.cpp#L18644
bytesPerElementRecurrent := kvCacheBytesPerElement("f32")
kv[i] = (nEmbdR + nEmbdS) * uint64(bytesPerElementRecurrent)
kvSizeRecurrent += kv[i]
}
kvTotal += kv[i]
}
slog.Debug("default cache size estimate", "attention MiB", float32(kvSizeAttn)/(1024.*1024.), "attention bytes", kvSizeAttn, "recurrent MiB", float32(kvSizeRecurrent)/(1024.*1024.), "recurrent bytes", kvSizeRecurrent)
switch f.KV().Architecture() {
case "llama", "llama4":
@@ -503,7 +672,7 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
// vocab graph
4*batch*(embedding+vocab)+embedding*vocab*105/128,
)
case "gemma", "gemma2", "gemma3":
case "gemma", "gemma2", "gemma3", "gemma3n":
fullOffload = max(
4*batch*(embedding+vocab),
4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
@@ -516,6 +685,11 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
embedding*embeddingHeadsK*heads*9/16,
)
if f.KV().Architecture() == "gemma3n" {
fullOffload *= 4
partialOffload *= 4
}
// Gemma2 also has sliding window attention but we only have an optimized implementation in the Ollama
// engine. Gemma3 always uses the Ollama engine.
if f.KV().Architecture() == "gemma3" {
@@ -601,6 +775,22 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
4*qkvBias.Shape[0],
)
}
case "gptoss", "gpt-oss":
kv = make([]uint64, f.KV().BlockCount())
for i := range kv {
kv[i] = uint64(float64((embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
if i%2 == 0 {
kv[i] *= (uint64(numParallel)*4096 + batch)
} else {
kv[i] *= context
}
}
partialOffload = 2 * f.KV().HeadCountMax() / cmp.Or(f.KV().HeadCountKVMin(), 1) * kvTotal / 6
if useFlashAttention {
// rough estimate of graph size with flash attention on
partialOffload = (4*uint64(numParallel) + context>>10 + 110) * format.MebiByte
}
}
return
@@ -653,24 +843,15 @@ func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
numPatches*numPatches*headCount)
case "qwen25vl":
maxPixels := uint64(llm.KV().Uint("vision.max_pixels", 28*28*1280))
mergeSize := uint64(llm.KV().Uint("vision.spatial_merge_size", 2))
temporalPatchSize := uint64(2)
// Calculate max possible patches based on max_pixels
maxHeight := uint64(math.Sqrt(float64(maxPixels)))
maxWidth := maxPixels / maxHeight
maxGridHeight := maxHeight / patchSize
maxGridWidth := maxWidth / patchSize
// Account for merged patches (2x2 grid)
numPatches := (maxGridHeight * maxGridWidth) / (mergeSize * mergeSize)
numPatches := maxPixels / (patchSize * patchSize)
// Calculate graph size based on typical operations in ProcessImage and createPatches
graphSize = 4 * (maxPixels*numChannels + // Original image storage
// Normalized pixels
maxPixels*numChannels +
// Patches storage (numPatches * channels * temporalPatchSize * patchSize^2)
numPatches*numChannels*temporalPatchSize*patchSize*patchSize +
// Self-attention calculations (similar to other architectures)
// Patches storage (numPatches * channels * patchSize^2)
numPatches*numChannels*patchSize*patchSize +
// Self-attention calculations
numPatches*numPatches*headCount +
// Additional buffer for processing
embeddingLength*numPatches)
@@ -684,7 +865,16 @@ func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
// SupportsKVCacheType checks if the requested cache type is supported
func (f GGML) SupportsKVCacheType(cacheType string) bool {
return slices.Contains([]string{"f16", "q8_0", "q4_0"}, cacheType)
if cacheType == "" || cacheType == "f16" {
return true
}
if arch := f.KV().Architecture(); slices.Contains([]string{"gptoss", "gpt-oss"}, arch) {
// gpt-oss uses attention with sinks which does not support quantized cache types
slog.Warn("model only supports non-quantized cache types", "model", arch)
return false
}
return slices.Contains([]string{"q8_0", "q4_0"}, cacheType)
}
// SupportsFlashAttention checks if the model supports flash attention
@@ -694,12 +884,23 @@ func (f GGML) SupportsFlashAttention() bool {
return false
}
if arch := f.KV().Architecture(); slices.Contains([]string{"gemma2"}, arch) {
return false
}
// Check head counts match and are non-zero
headCountK := f.KV().EmbeddingHeadCountK()
headCountV := f.KV().EmbeddingHeadCountV()
return headCountK != 0 && headCountV != 0 && headCountK == headCountV
}
// FlashAttention checks if the model should enable flash attention
func (f GGML) FlashAttention() bool {
return slices.Contains([]string{
"gptoss", "gpt-oss",
}, f.KV().String("general.architecture"))
}
// kvCacheBytesPerElement returns the number of bytes per element for a given KV cache type
func kvCacheBytesPerElement(cacheType string) float64 {
switch cacheType {
@@ -707,6 +908,8 @@ func kvCacheBytesPerElement(cacheType string) float64 {
return 1 // 1/2 of fp16
case "q4_0":
return 0.5 // 1/4 of fp16
case "f32":
return 4 // f32 (default for recurrent)
default:
return 2 // f16 (default)
}

View File

@@ -269,3 +269,33 @@ func TestKeyValue(t *testing.T) {
t.Errorf("unexpected uint8s (-got +want):\n%s", diff)
}
}
func TestHeadCount(t *testing.T) {
valuesArray := []int32{1, 5, 3, 4}
cases := []struct {
kv KV
want uint64
}{
{
kv: KV{
"general.architecture": "abc",
"abc.attention.head_count": &array[int32]{values: valuesArray, size: len(valuesArray)},
},
want: uint64(5),
},
{
kv: KV{
"general.architecture": "abc",
"abc.attention.head_count": uint32(3),
},
want: uint64(3),
},
}
for _, tt := range cases {
got := tt.kv.HeadCountMax()
if got != tt.want {
t.Errorf("unexpected max value: got=%d want=%d", got, tt.want)
}
}
}

View File

@@ -527,24 +527,21 @@ func WriteGGUF(f *os.File, kv KV, ts []*Tensor) error {
return err
}
keys := slices.Collect(maps.Keys(kv))
slices.Sort(keys)
for _, key := range keys {
for _, key := range slices.Sorted(maps.Keys(kv)) {
if err := ggufWriteKV(f, key, kv[key]); err != nil {
return err
}
}
slices.SortStableFunc(ts, func(a, b *Tensor) int {
if i, j := a.block(), b.block(); i < 0 && j > 0 {
return 1
} else if i > 0 && j < 0 {
return -1
} else {
return cmp.Compare(i, j)
}
})
slices.SortStableFunc(
ts,
func(a, b *Tensor) int {
return cmp.Or(
cmp.Compare(a.block(), b.block()),
cmp.Compare(a.Name, b.Name),
)
},
)
var s uint64
for i := range ts {
@@ -615,6 +612,10 @@ func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
err = writeGGUFArray(ws, ggufTypeString, v)
case *array[string]:
err = writeGGUFArray(ws, ggufTypeString, v.values)
case []bool:
err = writeGGUFArray(ws, ggufTypeBool, v)
case *array[bool]:
err = writeGGUFArray(ws, ggufTypeBool, v.values)
default:
return fmt.Errorf("improper type for '%s'", k)
}

View File

@@ -2,62 +2,82 @@ package ggml
import (
"bytes"
"math/rand/v2"
"os"
"slices"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
)
func TestWriteGGUF(t *testing.T) {
w, err := os.CreateTemp(t.TempDir(), "*.bin")
if err != nil {
t.Fatal(err)
}
defer w.Close()
b := bytes.NewBuffer(make([]byte, 2*3))
for range 8 {
t.Run("shuffle", func(t *testing.T) {
t.Parallel()
if err := WriteGGUF(w, KV{
"general.alignment": uint32(16),
}, []*Tensor{
{Name: "test.0", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))},
{Name: "test.1", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))},
{Name: "test.2", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))},
{Name: "test.3", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))},
{Name: "test.4", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))},
{Name: "test.5", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))},
}); err != nil {
t.Fatal(err)
}
ts := []*Tensor{
{Name: "token_embd.weight", Shape: []uint64{2, 3}, WriterTo: b},
{Name: "blk.0.ffn_norm.weight", Shape: []uint64{2, 3}, WriterTo: b},
{Name: "blk.0.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: b},
{Name: "blk.1.ffn_up.weight", Shape: []uint64{2, 3}, WriterTo: b},
{Name: "blk.2.ffn_norm.weight", Shape: []uint64{2, 3}, WriterTo: b},
{Name: "blk.1.ffn_down.weight", Shape: []uint64{2, 3}, WriterTo: b},
{Name: "blk.0.attn_k.weight", Shape: []uint64{2, 3}, WriterTo: b},
{Name: "output_norm.weight", Shape: []uint64{3, 2}, WriterTo: b},
{Name: "output.weight", Shape: []uint64{3, 2}, WriterTo: b},
}
r, err := os.Open(w.Name())
if err != nil {
t.Fatal(err)
}
defer r.Close()
rand.Shuffle(len(ts), func(i, j int) {
ts[i], ts[j] = ts[j], ts[i]
})
ff, _, err := Decode(r, 0)
if err != nil {
t.Fatal(err)
}
w, err := os.CreateTemp(t.TempDir(), strings.ReplaceAll(t.Name(), "/", "_")+"*.bin")
if err != nil {
t.Fatal(err)
}
defer w.Close()
if diff := cmp.Diff(ff.KV(), KV{
"general.alignment": uint32(16),
"general.parameter_count": uint64(36),
}); diff != "" {
t.Errorf("Mismatch (-want +got):\n%s", diff)
}
if err := WriteGGUF(w, KV{
"general.alignment": uint32(16),
}, ts); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(ff.Tensors(), Tensors{
Offset: 336,
items: []*Tensor{
{Name: "test.0", Offset: 0, Shape: []uint64{2, 3}},
{Name: "test.1", Offset: 32, Shape: []uint64{2, 3}},
{Name: "test.2", Offset: 64, Shape: []uint64{2, 3}},
{Name: "test.3", Offset: 96, Shape: []uint64{2, 3}},
{Name: "test.4", Offset: 128, Shape: []uint64{2, 3}},
{Name: "test.5", Offset: 160, Shape: []uint64{2, 3}},
},
}, cmp.AllowUnexported(Tensors{})); diff != "" {
t.Errorf("Mismatch (-want +got):\n%s", diff)
r, err := os.Open(w.Name())
if err != nil {
t.Fatal(err)
}
defer r.Close()
ff, err := Decode(r, 0)
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(KV{
"general.alignment": uint32(16),
"general.parameter_count": uint64(54),
}, ff.KV()); diff != "" {
t.Errorf("Mismatch (-want +got):\n%s", diff)
}
if diff := cmp.Diff(Tensors{
Offset: 592,
items: []*Tensor{
{Name: "blk.0.attn_k.weight", Offset: 0, Shape: []uint64{2, 3}},
{Name: "blk.0.attn_norm.weight", Offset: 32, Shape: []uint64{2, 3}},
{Name: "blk.0.ffn_norm.weight", Offset: 64, Shape: []uint64{2, 3}},
{Name: "blk.1.ffn_down.weight", Offset: 96, Shape: []uint64{2, 3}},
{Name: "blk.1.ffn_up.weight", Offset: 128, Shape: []uint64{2, 3}},
{Name: "blk.2.ffn_norm.weight", Offset: 160, Shape: []uint64{2, 3}},
{Name: "output.weight", Offset: 192, Shape: []uint64{3, 2}},
{Name: "output_norm.weight", Offset: 224, Shape: []uint64{3, 2}},
{Name: "token_embd.weight", Offset: 256, Shape: []uint64{2, 3}},
},
}, ff.Tensors(), cmp.AllowUnexported(Tensors{})); diff != "" {
t.Errorf("Mismatch (-want +got):\n%s", diff)
}
})
}
}

View File

@@ -14,9 +14,9 @@ const (
FileTypeF16
fileTypeQ4_0
fileTypeQ4_1
fileTypeQ4_1_F16 // unused by GGML
fileTypeQ4_2 // unused by GGML
fileTypeQ4_3 // unused by GGML
fileTypeMXFP4 // originally fileTypeQ4_1_F16 // unused by GGML
fileTypeQ4_2 // unused by GGML
fileTypeQ4_3 // unused by GGML
FileTypeQ8_0
fileTypeQ5_0
fileTypeQ5_1
@@ -97,6 +97,8 @@ func (t FileType) String() string {
return "Q4_0"
case fileTypeQ4_1:
return "Q4_1"
case fileTypeMXFP4:
return "MXFP4"
case FileTypeQ8_0:
return "Q8_0"
case fileTypeQ5_0:
@@ -172,6 +174,8 @@ func (ftype FileType) ToTensorType() TensorType {
return TensorTypeQ2_K
case FileTypeBF16:
return TensorTypeBF16
case fileTypeMXFP4:
return TensorTypeMXFP4
default:
slog.Warn("unsupported file type", "type", ftype)
return 0 // F32
@@ -187,7 +191,7 @@ const (
TensorTypeF16
TensorTypeQ4_0
TensorTypeQ4_1
tensorTypeQ4_2 // unused by GGML
tensorTypeQ4_2
tensorTypeQ4_3 // unused by GGML
TensorTypeQ5_0
TensorTypeQ5_1
@@ -222,6 +226,7 @@ const (
tensorTypeIQ4_NL_4_4 // unused by GGML
tensorTypeIQ4_NL_4_8 // unused by GGML
tensorTypeIQ4_NL_8_8 // unused by GGML
TensorTypeMXFP4
)
// ParseFileType parses the provided GGUF file type
@@ -260,6 +265,8 @@ func ParseTensorType(s string) (TensorType, error) {
return TensorTypeF64, nil
case "BF16":
return TensorTypeBF16, nil
case "MXFP4":
return TensorTypeMXFP4, nil
default:
return 0, fmt.Errorf("unsupported quantization type %s", s)
}
@@ -312,6 +319,8 @@ func (t TensorType) String() string {
return "F64"
case TensorTypeBF16:
return "BF16"
case 4, TensorTypeMXFP4:
return "MXFP4"
default:
return "unknown"
}

347
fs/gguf/gguf.go Normal file
View File

@@ -0,0 +1,347 @@
package gguf
import (
"bytes"
"cmp"
"encoding/binary"
"errors"
"fmt"
"io"
"iter"
"os"
"slices"
"strings"
)
const (
typeUint8 uint32 = iota
typeInt8
typeUint16
typeInt16
typeUint32
typeInt32
typeFloat32
typeBool
typeString
typeArray
typeUint64
typeInt64
typeFloat64
)
var ErrUnsupported = errors.New("unsupported")
type File struct {
Magic [4]byte
Version uint32
keyValues *lazy[KeyValue]
tensors *lazy[TensorInfo]
offset int64
file *os.File
reader *bufferedReader
bts []byte
}
func Open(path string) (f *File, err error) {
f = &File{bts: make([]byte, 4096)}
f.file, err = os.Open(path)
if err != nil {
return nil, err
}
f.reader = newBufferedReader(f.file, 32<<10)
if err := binary.Read(f.reader, binary.LittleEndian, &f.Magic); err != nil {
return nil, err
}
if bytes.Equal(f.Magic[:], []byte("gguf")) {
return nil, fmt.Errorf("%w file type %v", ErrUnsupported, f.Magic)
}
if err := binary.Read(f.reader, binary.LittleEndian, &f.Version); err != nil {
return nil, err
}
if f.Version < 2 {
return nil, fmt.Errorf("%w version %v", ErrUnsupported, f.Version)
}
f.tensors, err = newLazy(f, f.readTensor)
if err != nil {
return nil, err
}
f.tensors.successFunc = func() error {
offset := f.reader.offset
alignment := cmp.Or(f.KeyValue("general.alignment").Int(), 32)
f.offset = offset + (alignment-offset%alignment)%alignment
return nil
}
f.keyValues, err = newLazy(f, f.readKeyValue)
if err != nil {
return nil, err
}
return f, nil
}
func (f *File) readTensor() (TensorInfo, error) {
name, err := readString(f)
if err != nil {
return TensorInfo{}, err
}
dims, err := read[uint32](f)
if err != nil {
return TensorInfo{}, err
}
shape := make([]uint64, dims)
for i := range dims {
shape[i], err = read[uint64](f)
if err != nil {
return TensorInfo{}, err
}
}
type_, err := read[uint32](f)
if err != nil {
return TensorInfo{}, err
}
offset, err := read[uint64](f)
if err != nil {
return TensorInfo{}, err
}
return TensorInfo{
Name: name,
Offset: offset,
Shape: shape,
Type: TensorType(type_),
}, nil
}
func (f *File) readKeyValue() (KeyValue, error) {
key, err := readString(f)
if err != nil {
return KeyValue{}, err
}
t, err := read[uint32](f)
if err != nil {
return KeyValue{}, err
}
value, err := func() (any, error) {
switch t {
case typeUint8:
return read[uint8](f)
case typeInt8:
return read[int8](f)
case typeUint16:
return read[uint16](f)
case typeInt16:
return read[int16](f)
case typeUint32:
return read[uint32](f)
case typeInt32:
return read[int32](f)
case typeUint64:
return read[uint64](f)
case typeInt64:
return read[int64](f)
case typeFloat32:
return read[float32](f)
case typeFloat64:
return read[float64](f)
case typeBool:
return read[bool](f)
case typeString:
return readString(f)
case typeArray:
return readArray(f)
default:
return nil, fmt.Errorf("%w type %d", ErrUnsupported, t)
}
}()
if err != nil {
return KeyValue{}, err
}
return KeyValue{
Key: key,
Value: Value{value},
}, nil
}
func read[T any](f *File) (t T, err error) {
err = binary.Read(f.reader, binary.LittleEndian, &t)
return t, err
}
func readString(f *File) (string, error) {
n, err := read[uint64](f)
if err != nil {
return "", err
}
if int(n) > len(f.bts) {
f.bts = make([]byte, n)
}
bts := f.bts[:n]
if _, err := io.ReadFull(f.reader, bts); err != nil {
return "", err
}
defer clear(bts)
return string(bts), nil
}
func readArray(f *File) (any, error) {
t, err := read[uint32](f)
if err != nil {
return nil, err
}
n, err := read[uint64](f)
if err != nil {
return nil, err
}
switch t {
case typeUint8:
return readArrayData[uint8](f, n)
case typeInt8:
return readArrayData[int8](f, n)
case typeUint16:
return readArrayData[uint16](f, n)
case typeInt16:
return readArrayData[int16](f, n)
case typeUint32:
return readArrayData[uint32](f, n)
case typeInt32:
return readArrayData[int32](f, n)
case typeUint64:
return readArrayData[uint64](f, n)
case typeInt64:
return readArrayData[int64](f, n)
case typeFloat32:
return readArrayData[float32](f, n)
case typeFloat64:
return readArrayData[float64](f, n)
case typeBool:
return readArrayData[bool](f, n)
case typeString:
return readArrayString(f, n)
default:
return nil, fmt.Errorf("%w type %d", ErrUnsupported, t)
}
}
func readArrayData[T any](f *File, n uint64) (s []T, err error) {
s = make([]T, n)
for i := range n {
e, err := read[T](f)
if err != nil {
return nil, err
}
s[i] = e
}
return s, nil
}
func readArrayString(f *File, n uint64) (s []string, err error) {
s = make([]string, n)
for i := range n {
e, err := readString(f)
if err != nil {
return nil, err
}
s[i] = e
}
return s, nil
}
func (f *File) Close() error {
f.keyValues.stop()
f.tensors.stop()
return f.file.Close()
}
func (f *File) KeyValue(key string) KeyValue {
if !strings.HasPrefix(key, "general.") && !strings.HasPrefix(key, "tokenizer.") {
key = f.KeyValue("general.architecture").String() + "." + key
}
if index := slices.IndexFunc(f.keyValues.values, func(kv KeyValue) bool {
return kv.Key == key
}); index >= 0 {
return f.keyValues.values[index]
}
for keyValue, ok := f.keyValues.next(); ok; keyValue, ok = f.keyValues.next() {
if keyValue.Key == key {
return keyValue
}
}
return KeyValue{}
}
func (f *File) NumKeyValues() int {
return int(f.keyValues.count)
}
func (f *File) KeyValues() iter.Seq2[int, KeyValue] {
return f.keyValues.All()
}
func (f *File) TensorInfo(name string) TensorInfo {
if index := slices.IndexFunc(f.tensors.values, func(t TensorInfo) bool {
return t.Name == name
}); index >= 0 {
return f.tensors.values[index]
}
// fast-forward through key values if we haven't already
_ = f.keyValues.rest()
for tensor, ok := f.tensors.next(); ok; tensor, ok = f.tensors.next() {
if tensor.Name == name {
return tensor
}
}
return TensorInfo{}
}
func (f *File) NumTensors() int {
return int(f.tensors.count)
}
func (f *File) TensorInfos() iter.Seq2[int, TensorInfo] {
// fast forward through key values if we haven't already
f.keyValues.rest()
return f.tensors.All()
}
func (f *File) TensorReader(name string) (TensorInfo, io.Reader, error) {
t := f.TensorInfo(name)
if t.NumBytes() == 0 {
return TensorInfo{}, nil, fmt.Errorf("tensor %s not found", name)
}
// fast forward through tensor info if we haven't already
_ = f.tensors.rest()
return t, io.NewSectionReader(f.file, f.offset+int64(t.Offset), t.NumBytes()), nil
}

249
fs/gguf/gguf_test.go Normal file
View File

@@ -0,0 +1,249 @@
package gguf_test
import (
"bytes"
"os"
"strconv"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/google/go-cmp/cmp/cmpopts"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/fs/gguf"
)
func createBinFile(tb testing.TB) string {
tb.Helper()
f, err := os.CreateTemp(tb.TempDir(), "")
if err != nil {
tb.Fatal(err)
}
defer f.Close()
kv := ggml.KV{
"general.architecture": "llama",
"llama.block_count": uint32(8),
"llama.embedding_length": uint32(3),
"llama.attention.head_count": uint32(2),
"llama.attention.head_count_kv": uint32(2),
"llama.attention.key_length": uint32(3),
"llama.rope.dimension_count": uint32(4),
"llama.rope.freq_base": float32(10000.0),
"llama.rope.freq_scale": float32(1.0),
"llama.attention.layer_norm_rms_epsilon": float32(1e-6),
"tokenizer.ggml.eos_token_id": uint32(0),
"tokenizer.ggml.eos_token_ids": []int32{1, 2, 3},
"tokenizer.ggml.tokens": []string{"hello", "world"},
"tokenizer.ggml.scores": []float32{0, 1},
}
tensors := []*ggml.Tensor{
{
Name: "token_embd.weight",
Kind: 0,
Shape: []uint64{2, 3},
WriterTo: bytes.NewBuffer(make([]byte, 4*2*3)),
},
{
Name: "output.weight",
Kind: 0,
Shape: []uint64{3, 2},
WriterTo: bytes.NewBuffer(make([]byte, 4*3*2)),
},
}
for i := range 8 {
tensors = append(tensors, &ggml.Tensor{
Name: "blk." + strconv.Itoa(i) + ".attn_q.weight",
Kind: 0,
Shape: []uint64{3, 3},
WriterTo: bytes.NewBuffer(make([]byte, 4*3*3)),
}, &ggml.Tensor{
Name: "blk." + strconv.Itoa(i) + ".attn_k.weight",
Kind: 0,
Shape: []uint64{3, 3},
WriterTo: bytes.NewBuffer(make([]byte, 4*3*3)),
}, &ggml.Tensor{
Name: "blk." + strconv.Itoa(i) + ".attn_v.weight",
Kind: 0,
Shape: []uint64{3, 3},
WriterTo: bytes.NewBuffer(make([]byte, 4*3*3)),
}, &ggml.Tensor{
Name: "blk." + strconv.Itoa(i) + ".attn_output.weight",
Kind: 0,
Shape: []uint64{3, 3},
WriterTo: bytes.NewBuffer(make([]byte, 4*3*3)),
})
}
if err := ggml.WriteGGUF(f, kv, tensors); err != nil {
tb.Fatal(err)
}
return f.Name()
}
func TestRead(t *testing.T) {
f, err := gguf.Open(createBinFile(t))
if err != nil {
t.Fatal(err)
}
defer f.Close()
if got := f.KeyValue("does.not.exist").Valid(); got {
t.Errorf(`KeyValue("does.not.exist").Exists() = %v, want false`, got)
}
if got := f.KeyValue("general.architecture").String(); got != "llama" {
t.Errorf(`KeyValue("general.architecture").String() = %q, want %q`, got, "llama")
}
if got := f.TensorInfo("token_embd.weight"); got.Name != "token_embd.weight" {
t.Errorf(`TensorInfo("token_embd.weight").Name = %q, want %q`, got.Name, "token_embd.weight")
} else if diff := cmp.Diff(got.Shape, []uint64{2, 3}); diff != "" {
t.Errorf(`TensorInfo("token_embd.weight").Shape mismatch (-got +want):\n%s`, diff)
} else if got.Type != gguf.TensorTypeF32 {
t.Errorf(`TensorInfo("token_embd.weight").Type = %d, want %d`, got.Type, gguf.TensorTypeF32)
}
if got := f.KeyValue("block_count").Uint(); got != 8 {
t.Errorf(`KeyValue("block_count").Uint() = %d, want %d`, got, 8)
}
if diff := cmp.Diff(f.KeyValue("tokenizer.ggml.tokens").Strings(), []string{"hello", "world"}); diff != "" {
t.Errorf("KeyValue(\"tokenizer.ggml.tokens\").Strings() mismatch (-got +want):\n%s", diff)
}
if diff := cmp.Diff(f.KeyValue("tokenizer.ggml.scores").Floats(), []float64{0, 1}); diff != "" {
t.Errorf("KeyValue(\"tokenizer.ggml.scores\").Ints() mismatch (-got +want):\n%s", diff)
}
var kvs []string
for _, kv := range f.KeyValues() {
if !kv.Valid() {
t.Error("found invalid key-value pair:", kv)
}
kvs = append(kvs, kv.Key)
}
if len(kvs) != f.NumKeyValues() {
t.Errorf("iterated key count = %d, want %d", len(kvs), f.NumKeyValues())
}
if diff := cmp.Diff(kvs, []string{
"general.architecture",
"llama.block_count",
"llama.embedding_length",
"llama.attention.head_count",
"llama.attention.head_count_kv",
"llama.attention.key_length",
"llama.rope.dimension_count",
"llama.rope.freq_base",
"llama.rope.freq_scale",
"llama.attention.layer_norm_rms_epsilon",
"tokenizer.ggml.eos_token_id",
"tokenizer.ggml.eos_token_ids",
"tokenizer.ggml.tokens",
"tokenizer.ggml.scores",
}, cmpopts.SortSlices(strings.Compare)); diff != "" {
t.Errorf("KeyValues() mismatch (-got +want):\n%s", diff)
}
var tis []string
for _, ti := range f.TensorInfos() {
if !ti.Valid() {
t.Error("found invalid tensor info:", ti)
}
tis = append(tis, ti.Name)
}
if len(tis) != f.NumTensors() {
t.Errorf("iterated tensor count = %d, want %d", len(tis), f.NumTensors())
}
if diff := cmp.Diff(tis, []string{
"token_embd.weight",
"output.weight",
"blk.0.attn_q.weight",
"blk.0.attn_k.weight",
"blk.0.attn_v.weight",
"blk.0.attn_output.weight",
"blk.1.attn_q.weight",
"blk.1.attn_k.weight",
"blk.1.attn_v.weight",
"blk.1.attn_output.weight",
"blk.2.attn_q.weight",
"blk.2.attn_k.weight",
"blk.2.attn_v.weight",
"blk.2.attn_output.weight",
"blk.3.attn_q.weight",
"blk.3.attn_k.weight",
"blk.3.attn_v.weight",
"blk.3.attn_output.weight",
"blk.4.attn_q.weight",
"blk.4.attn_k.weight",
"blk.4.attn_v.weight",
"blk.4.attn_output.weight",
"blk.5.attn_q.weight",
"blk.5.attn_k.weight",
"blk.5.attn_v.weight",
"blk.5.attn_output.weight",
"blk.6.attn_q.weight",
"blk.6.attn_k.weight",
"blk.6.attn_v.weight",
"blk.6.attn_output.weight",
"blk.7.attn_q.weight",
"blk.7.attn_k.weight",
"blk.7.attn_v.weight",
"blk.7.attn_output.weight",
}, cmpopts.SortSlices(strings.Compare)); diff != "" {
t.Errorf("TensorInfos() mismatch (-got +want):\n%s", diff)
}
ti, r, err := f.TensorReader("output.weight")
if err != nil {
t.Fatalf(`TensorReader("output.weight") error: %v`, err)
}
if ti.Name != "output.weight" {
t.Errorf(`TensorReader("output.weight").Name = %q, want %q`, ti.Name, "output.weight")
} else if diff := cmp.Diff(ti.Shape, []uint64{3, 2}); diff != "" {
t.Errorf(`TensorReader("output.weight").Shape mismatch (-got +want):\n%s`, diff)
} else if ti.Type != gguf.TensorTypeF32 {
t.Errorf(`TensorReader("output.weight").Type = %d, want %d`, ti.Type, gguf.TensorTypeF32)
}
var b bytes.Buffer
if _, err := b.ReadFrom(r); err != nil {
t.Fatalf(`ReadFrom TensorReader("output.weight") error: %v`, err)
}
if b.Len() != int(ti.NumBytes()) {
t.Errorf(`ReadFrom TensorReader("output.weight") length = %d, want %d`, b.Len(), ti.NumBytes())
}
}
func BenchmarkRead(b *testing.B) {
b.ReportAllocs()
p := createBinFile(b)
for b.Loop() {
f, err := gguf.Open(p)
if err != nil {
b.Fatal(err)
}
if got := f.KeyValue("general.architecture").String(); got != "llama" {
b.Errorf("got = %q, want %q", got, "llama")
}
// Iterate through some tensors
for range f.TensorInfos() {
}
f.Close()
}
}

90
fs/gguf/keyvalue.go Normal file
View File

@@ -0,0 +1,90 @@
package gguf
import (
"reflect"
"slices"
)
type KeyValue struct {
Key string
Value
}
func (kv KeyValue) Valid() bool {
return kv.Key != "" && kv.Value.value != nil
}
type Value struct {
value any
}
func value[T any](v Value, kinds ...reflect.Kind) (t T) {
vv := reflect.ValueOf(v.value)
if slices.Contains(kinds, vv.Kind()) {
t = vv.Convert(reflect.TypeOf(t)).Interface().(T)
}
return
}
func values[T any](v Value, kinds ...reflect.Kind) (ts []T) {
switch vv := reflect.ValueOf(v.value); vv.Kind() {
case reflect.Slice:
if slices.Contains(kinds, vv.Type().Elem().Kind()) {
ts = make([]T, vv.Len())
for i := range vv.Len() {
ts[i] = vv.Index(i).Convert(reflect.TypeOf(ts[i])).Interface().(T)
}
}
}
return
}
// Int returns Value as a signed integer. If it is not a signed integer, it returns 0.
func (v Value) Int() int64 {
return value[int64](v, reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64)
}
// Ints returns Value as a signed integer slice. If it is not a signed integer slice, it returns nil.
func (v Value) Ints() (i64s []int64) {
return values[int64](v, reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64)
}
// Uint converts an unsigned integer value to uint64. If the value is not a unsigned integer, it returns 0.
func (v Value) Uint() uint64 {
return value[uint64](v, reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64)
}
// Uints returns Value as a unsigned integer slice. If it is not a unsigned integer slice, it returns nil.
func (v Value) Uints() (u64s []uint64) {
return values[uint64](v, reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64)
}
// Float returns Value as a float. If it is not a float, it returns 0.
func (v Value) Float() float64 {
return value[float64](v, reflect.Float32, reflect.Float64)
}
// Floats returns Value as a float slice. If it is not a float slice, it returns nil.
func (v Value) Floats() (f64s []float64) {
return values[float64](v, reflect.Float32, reflect.Float64)
}
// Bool returns Value as a boolean. If it is not a boolean, it returns false.
func (v Value) Bool() bool {
return value[bool](v, reflect.Bool)
}
// Bools returns Value as a boolean slice. If it is not a boolean slice, it returns nil.
func (v Value) Bools() (bools []bool) {
return values[bool](v, reflect.Bool)
}
// String returns Value as a string. If it is not a string, it returns an empty string.
func (v Value) String() string {
return value[string](v, reflect.String)
}
// Strings returns Value as a string slice. If it is not a string slice, it returns nil.
func (v Value) Strings() (strings []string) {
return values[string](v, reflect.String)
}

208
fs/gguf/keyvalue_test.go Normal file
View File

@@ -0,0 +1,208 @@
package gguf
import (
"testing"
"github.com/google/go-cmp/cmp"
)
func split(name string, values map[string][]any) (matched []any, unmatched []any) {
for key, value := range values {
if key == name {
matched = value
} else {
unmatched = append(unmatched, value...)
}
}
return
}
func TestValue(t *testing.T) {
values := map[string][]any{
"int64": {int(42), int8(42), int16(42), int32(42), int64(42)},
"uint64": {uint(42), uint8(42), uint16(42), uint32(42), uint64(42)},
"float64": {float32(42), float64(42)},
"string": {"42", "hello"},
"bool": {true, false},
}
t.Run("int64", func(t *testing.T) {
matched, unmatched := split("int64", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if i64 := kv.Int(); i64 != 42 {
t.Errorf("expected 42, got %d", i64)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if i64 := kv.Int(); i64 != 0 {
t.Errorf("expected 42, got %d", i64)
}
}
})
t.Run("uint64", func(t *testing.T) {
matched, unmatched := split("uint64", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if u64 := kv.Uint(); u64 != 42 {
t.Errorf("expected 42, got %d", u64)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if u64 := kv.Uint(); u64 != 0 {
t.Errorf("expected 42, got %d", u64)
}
}
})
t.Run("float64", func(t *testing.T) {
matched, unmatched := split("float64", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if f64 := kv.Float(); f64 != 42 {
t.Errorf("expected 42, got %f", f64)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if f64 := kv.Float(); f64 != 0 {
t.Errorf("expected 42, got %f", f64)
}
}
})
t.Run("string", func(t *testing.T) {
matched, unmatched := split("string", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if s := kv.String(); s != v {
t.Errorf("expected 42, got %s", s)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if s := kv.String(); s != "" {
t.Errorf("expected 42, got %s", s)
}
}
})
t.Run("bool", func(t *testing.T) {
matched, unmatched := split("bool", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if b := kv.Bool(); b != v {
t.Errorf("expected true, got %v", b)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if b := kv.Bool(); b != false {
t.Errorf("expected false, got %v", b)
}
}
})
}
func TestValues(t *testing.T) {
values := map[string][]any{
"int64s": {[]int{42}, []int8{42}, []int16{42}, []int32{42}, []int64{42}},
"uint64s": {[]uint{42}, []uint8{42}, []uint16{42}, []uint32{42}, []uint64{42}},
"float64s": {[]float32{42}, []float64{42}},
"strings": {[]string{"42"}, []string{"hello"}},
"bools": {[]bool{true}, []bool{false}},
}
t.Run("int64s", func(t *testing.T) {
matched, unmatched := split("int64s", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if diff := cmp.Diff(kv.Ints(), []int64{42}); diff != "" {
t.Errorf("diff: %s", diff)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if i64s := kv.Ints(); i64s != nil {
t.Errorf("expected nil, got %v", i64s)
}
}
})
t.Run("uint64s", func(t *testing.T) {
matched, unmatched := split("uint64s", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if diff := cmp.Diff(kv.Uints(), []uint64{42}); diff != "" {
t.Errorf("diff: %s", diff)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if u64s := kv.Uints(); u64s != nil {
t.Errorf("expected nil, got %v", u64s)
}
}
})
t.Run("float64s", func(t *testing.T) {
matched, unmatched := split("float64s", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if diff := cmp.Diff(kv.Floats(), []float64{42}); diff != "" {
t.Errorf("diff: %s", diff)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if f64s := kv.Floats(); f64s != nil {
t.Errorf("expected nil, got %v", f64s)
}
}
})
t.Run("strings", func(t *testing.T) {
matched, unmatched := split("strings", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if diff := cmp.Diff(kv.Strings(), v); diff != "" {
t.Errorf("diff: %s", diff)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if s := kv.Strings(); s != nil {
t.Errorf("expected nil, got %v", s)
}
}
})
t.Run("bools", func(t *testing.T) {
matched, unmatched := split("bools", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if diff := cmp.Diff(kv.Bools(), v); diff != "" {
t.Errorf("diff: %s", diff)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if b := kv.Bools(); b != nil {
t.Errorf("expected nil, got %v", b)
}
}
})
}

89
fs/gguf/lazy.go Normal file
View File

@@ -0,0 +1,89 @@
package gguf
import (
"encoding/binary"
"iter"
"log/slog"
)
type lazy[T any] struct {
count uint64
next func() (T, bool)
stop func()
values []T
// successFunc is called when all values have been successfully read.
successFunc func() error
}
func newLazy[T any](f *File, fn func() (T, error)) (*lazy[T], error) {
it := lazy[T]{}
if err := binary.Read(f.reader, binary.LittleEndian, &it.count); err != nil {
return nil, err
}
it.values = make([]T, 0)
it.next, it.stop = iter.Pull(func(yield func(T) bool) {
for i := range it.count {
t, err := fn()
if err != nil {
slog.Error("error reading tensor", "index", i, "error", err)
return
}
it.values = append(it.values, t)
if !yield(t) {
break
}
}
if it.successFunc != nil {
it.successFunc()
}
})
return &it, nil
}
func (g *lazy[T]) Values() iter.Seq[T] {
return func(yield func(T) bool) {
for _, v := range g.All() {
if !yield(v) {
break
}
}
}
}
func (g *lazy[T]) All() iter.Seq2[int, T] {
return func(yield func(int, T) bool) {
for i := range int(g.count) {
if i < len(g.values) {
if !yield(i, g.values[i]) {
break
}
} else {
t, ok := g.next()
if !ok {
break
}
if !yield(i, t) {
break
}
}
}
}
}
func (g *lazy[T]) rest() (collected bool) {
for {
_, ok := g.next()
collected = collected || ok
if !ok {
break
}
}
return collected
}

23
fs/gguf/reader.go Normal file
View File

@@ -0,0 +1,23 @@
package gguf
import (
"bufio"
"io"
)
type bufferedReader struct {
offset int64
*bufio.Reader
}
func newBufferedReader(rs io.ReadSeeker, size int) *bufferedReader {
return &bufferedReader{
Reader: bufio.NewReaderSize(rs, size),
}
}
func (rs *bufferedReader) Read(p []byte) (n int, err error) {
n, err = rs.Reader.Read(p)
rs.offset += int64(n)
return n, err
}

288
fs/gguf/tensor.go Normal file
View File

@@ -0,0 +1,288 @@
package gguf
import (
"log/slog"
"strings"
)
type TensorInfo struct {
Name string
Offset uint64
Shape []uint64
Type TensorType
}
func (ti TensorInfo) Valid() bool {
return ti.Name != "" && ti.NumBytes() > 0
}
func (ti TensorInfo) NumValues() int64 {
var numItems int64 = 1
for _, dim := range ti.Shape {
numItems *= int64(dim)
}
return numItems
}
// NumBytes returns the number of bytes in the tensor.
func (ti TensorInfo) NumBytes() int64 {
return int64(float64(ti.NumValues()) * ti.Type.NumBytes())
}
func (ti TensorInfo) LogValue() slog.Value {
return slog.GroupValue(
slog.String("name", ti.Name),
slog.Int64("offset", int64(ti.Offset)),
slog.Any("shape", ti.Shape),
slog.Int64("num_values", ti.NumValues()),
slog.Int64("num_bytes", ti.NumBytes()),
slog.Any("type", ti.Type),
)
}
type TensorType uint32
const (
TensorTypeF32 TensorType = iota
TensorTypeF16
TensorTypeQ4_0
TensorTypeQ4_1
// unexported // unused in gguf
tensorTypeQ4_2
tensorTypeQ4_3
TensorTypeQ5_0
TensorTypeQ5_1
TensorTypeQ8_0
TensorTypeQ8_1
TensorTypeQ2_K
TensorTypeQ3_K
TensorTypeQ4_K
TensorTypeQ5_K
TensorTypeQ6_K
TensorTypeQ8_K
// unexported // unquantizable by ollama
tensorTypeIQ2_XXS
tensorTypeIQ2_XS
tensorTypeIQ3_XXS
tensorTypeIQ1_S
tensorTypeIQ4_NL
tensorTypeIQ3_S
tensorTypeIQ2_S
tensorTypeIQ4_XS
TensorTypeI8
TensorTypeI16
TensorTypeI32
TensorTypeI64
TensorTypeF64
// unexported // unquantizable by ollama
tensorTypeIQ1_M
TensorTypeBF16
// unexported // unused in gguf
tensorTypeQ4_0_4_4
tensorTypeQ4_0_4_8
tensorTypeQ4_0_8_8
// unexported // unquantizable by ollama
tensorTypeTQ1_0
tensorTypeTQ2_0
// unexported // unused in gguf
tensorTypeIQ4_NL_4_4
tensorTypeIQ4_NL_4_8
tensorTypeIQ4_NL_8_8
)
func (tt TensorType) NumBytes() float64 {
return float64(tt.typeSize()) / float64(tt.blockSize())
}
func (tt TensorType) typeSize() int64 {
switch tt {
case TensorTypeF32:
return 4
case TensorTypeF16:
return 2
case TensorTypeQ4_0:
return 2 + tt.blockSize()/2
case TensorTypeQ4_1:
return 2 + 2 + tt.blockSize()/2
case TensorTypeQ5_0:
return 2 + 4 + tt.blockSize()/2
case TensorTypeQ5_1:
return 2 + 2 + 4 + tt.blockSize()/2
case TensorTypeQ8_0:
return 2 + tt.blockSize()
case TensorTypeQ8_1:
return 2 + 2 + tt.blockSize()
case TensorTypeQ2_K:
return tt.blockSize()/16 + tt.blockSize()/4 + 2 + 2
case TensorTypeQ3_K:
return tt.blockSize()/8 + tt.blockSize()/4 + 12 + 2
case TensorTypeQ4_K:
return 2 + 2 + 12 + tt.blockSize()/2
case TensorTypeQ5_K:
return 2 + 2 + 12 + tt.blockSize()/8 + tt.blockSize()/2
case TensorTypeQ6_K:
return tt.blockSize()/2 + tt.blockSize()/4 + tt.blockSize()/16 + 2
case TensorTypeQ8_K:
return 4 + tt.blockSize() + 2*tt.blockSize()/16
case tensorTypeIQ2_XXS:
return 2 + 2*tt.blockSize()/8
case tensorTypeIQ2_XS:
return 2 + 2*tt.blockSize()/8 + tt.blockSize()/32
case tensorTypeIQ3_XXS:
return 2 + tt.blockSize()/4 + tt.blockSize()/8
case tensorTypeIQ1_S:
return 2 + tt.blockSize()/8 + tt.blockSize()/16
case tensorTypeIQ4_NL:
return 2 + tt.blockSize()/2
case tensorTypeIQ3_S:
return 2 + tt.blockSize()/4 + tt.blockSize()/8 + tt.blockSize()/32 + 4
case tensorTypeIQ2_S:
return 2 + tt.blockSize()/4 + tt.blockSize()/16
case tensorTypeIQ4_XS:
return 2 + 2 + tt.blockSize()/2 + tt.blockSize()/64
case TensorTypeI8:
return 1
case TensorTypeI16:
return 2
case TensorTypeI32:
return 4
case TensorTypeI64:
return 8
case TensorTypeF64:
return 8
case tensorTypeIQ1_M:
return tt.blockSize()/8 + tt.blockSize()/16 + tt.blockSize()/32
case TensorTypeBF16:
return 2
default:
return 0
}
}
func (tt TensorType) blockSize() int64 {
switch tt {
case TensorTypeF32,
TensorTypeF16,
TensorTypeI8,
TensorTypeI16,
TensorTypeI32,
TensorTypeI64,
TensorTypeF64,
TensorTypeBF16:
return 1
case TensorTypeQ4_0,
TensorTypeQ4_1,
TensorTypeQ5_0,
TensorTypeQ5_1,
TensorTypeQ8_0,
TensorTypeQ8_1,
tensorTypeIQ4_NL:
return 32
default:
return 256
}
}
func (tt TensorType) String() string {
switch tt {
case TensorTypeF32:
return "f32"
case TensorTypeF16:
return "f16"
case TensorTypeQ4_0:
return "q4_0"
case TensorTypeQ4_1:
return "q4_1"
case tensorTypeQ4_2:
return "q4_2"
case tensorTypeQ4_3:
return "q4_3"
case TensorTypeQ5_0:
return "q5_0"
case TensorTypeQ5_1:
return "q5_1"
case TensorTypeQ8_0:
return "q8_0"
case TensorTypeQ8_1:
return "q8_1"
case TensorTypeQ2_K:
return "q2_k"
case TensorTypeQ3_K:
return "q3_k"
case TensorTypeQ4_K:
return "q4_k"
case TensorTypeQ5_K:
return "q5_k"
case TensorTypeQ6_K:
return "q6_k"
case TensorTypeQ8_K:
return "q8_k"
case tensorTypeIQ2_XXS:
return "iq2_xxs"
case tensorTypeIQ2_XS:
return "iq2_xs"
case tensorTypeIQ3_XXS:
return "iq3_xxs"
case tensorTypeIQ1_S:
return "iq1_s"
case tensorTypeIQ4_NL:
return "iq4_nl"
case tensorTypeIQ3_S:
return "iq3_s"
case tensorTypeIQ2_S:
return "iq2_s"
case tensorTypeIQ4_XS:
return "iq4_xs"
case TensorTypeI8:
return "i8"
case TensorTypeI16:
return "i16"
case TensorTypeI32:
return "i32"
case TensorTypeI64:
return "i64"
case TensorTypeF64:
return "f64"
case tensorTypeIQ1_M:
return "iq1_m"
case TensorTypeBF16:
return "bf16"
case tensorTypeQ4_0_4_4:
return "q4_0_4_4"
case tensorTypeQ4_0_4_8:
return "q4_0_4_8"
case tensorTypeQ4_0_8_8:
return "q4_0_8_8"
case tensorTypeTQ1_0:
return "tq1_0"
case tensorTypeTQ2_0:
return "tq2_0"
case tensorTypeIQ4_NL_4_4:
return "iq4_nl_4_4"
case tensorTypeIQ4_NL_4_8:
return "iq4_nl_4_8"
case tensorTypeIQ4_NL_8_8:
return "iq4_nl_8_8"
default:
return "unknown"
}
}
func (tt TensorType) LogValue() slog.Value {
return slog.GroupValue(
slog.Uint64("value", uint64(tt)),
slog.String("name", strings.ToUpper(tt.String())),
slog.Int64("size", tt.typeSize()),
slog.Int64("block_size", tt.blockSize()),
slog.Float64("num_bytes", tt.NumBytes()),
)
}

6
go.mod
View File

@@ -19,12 +19,13 @@ require (
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1
github.com/dlclark/regexp2 v1.11.4
github.com/emirpasic/gods/v2 v2.0.0-alpha
github.com/google/go-cmp v0.6.0
github.com/google/go-cmp v0.7.0
github.com/mattn/go-runewidth v0.0.14
github.com/nlpodyssey/gopickle v0.3.0
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
golang.org/x/image v0.22.0
golang.org/x/tools v0.30.0
gonum.org/v1/gonum v0.15.0
)
require (
@@ -44,7 +45,6 @@ require (
github.com/xtgo/set v1.0.0 // indirect
go4.org/unsafe/assume-no-moving-gc v0.0.0-20231121144256-b99613f794b6 // indirect
golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1 // indirect
gonum.org/v1/gonum v0.15.0 // indirect
gorgonia.org/vecf32 v0.9.0 // indirect
gorgonia.org/vecf64 v0.9.0 // indirect
)
@@ -71,7 +71,7 @@ require (
github.com/ugorji/go/codec v1.2.12 // indirect
golang.org/x/arch v0.8.0 // indirect
golang.org/x/crypto v0.36.0
golang.org/x/exp v0.0.0-20250218142911-aa4b98e5adaa
golang.org/x/exp v0.0.0-20250218142911-aa4b98e5adaa // indirect
golang.org/x/net v0.38.0 // indirect
golang.org/x/sys v0.31.0
golang.org/x/term v0.30.0

4
go.sum
View File

@@ -112,8 +112,8 @@ github.com/google/go-cmp v0.4.0/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/
github.com/google/go-cmp v0.5.0/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
github.com/google/go-cmp v0.5.5/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
github.com/google/go-cmp v0.5.6/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
github.com/google/go-cmp v0.6.0 h1:ofyhxvXcZhMsU5ulbFiLKl/XBFqE1GSq7atu8tAmTRI=
github.com/google/go-cmp v0.6.0/go.mod h1:17dUlkBOakJ0+DkrSSNjCkIjxS6bF9zb3elmeNGIjoY=
github.com/google/go-cmp v0.7.0 h1:wk8382ETsv4JYUZwIsn6YpYiWiBsYLSJiTsyBybVuN8=
github.com/google/go-cmp v0.7.0/go.mod h1:pXiqmnSA92OHEEa9HXL2W4E7lf9JzCmGVUdgjX3N/iU=
github.com/google/gofuzz v1.0.0/go.mod h1:dBl0BpW6vV/+mYPU4Po3pmUjxk6FQPldtuIdl/M65Eg=
github.com/google/uuid v1.1.2/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo=
github.com/google/uuid v1.6.0 h1:NIvaJDMOsjHA8n1jAhLSgzrAzy1Hgr+hNrb57e+94F0=

463
harmony/harmonyparser.go Normal file
View File

@@ -0,0 +1,463 @@
package harmony
import (
"fmt"
"log/slog"
"strings"
"unicode"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/logutil"
)
type harmonyParserState int
const (
harmonyParserState_LookingForMessageStart harmonyParserState = iota
harmonyParserState_ParsingHeader
harmonyParserState_ParsingContent
)
func (s harmonyParserState) String() string {
switch s {
// we're looking for the message start tag
case harmonyParserState_LookingForMessageStart:
return "LookingForMessageStart"
case harmonyParserState_ParsingHeader:
return "ParsingHeader"
case harmonyParserState_ParsingContent:
return "ParsingContent"
default:
return "Unknown"
}
}
type HarmonyParser struct {
state harmonyParserState
MessageStartTag string
MessageEndTag string
HeaderEndTag string
acc strings.Builder
lifetimeAcc strings.Builder
}
type HarmonyEvent interface {
isHarmonyEvent()
}
type HarmonyEventMessageStart struct{}
func (HarmonyEventMessageStart) isHarmonyEvent() {}
type HarmonyEventHeaderComplete struct {
Header HarmonyHeader
}
func (HarmonyEventHeaderComplete) isHarmonyEvent() {}
type HarmonyEventContentEmitted struct {
Content string
}
func (HarmonyEventContentEmitted) isHarmonyEvent() {}
type HarmonyEventMessageEnd struct{}
func (HarmonyEventMessageEnd) isHarmonyEvent() {}
type HarmonyHeader struct {
Role string
Channel string
Recipient string
}
func (s *HarmonyParser) AddImplicitStart() {
s.acc.WriteString("<|start|>assistant")
}
func (s *HarmonyParser) AddImplicitStartOrPrefill(lastMessage *api.Message) {
if lastMessage != nil && lastMessage.Role == "assistant" {
// handle prefilling conditions
if lastMessage.Content != "" {
s.acc.WriteString("<|start|>assistant<|channel|>final<|message|>")
return
} else if lastMessage.Thinking != "" {
s.acc.WriteString("<|start|>assistant<|channel|>analysis<|message|>")
return
}
}
s.AddImplicitStart()
}
func (s *HarmonyParser) AddContent(content string) []HarmonyEvent {
s.lifetimeAcc.WriteString(content)
s.acc.WriteString(content)
var events []HarmonyEvent
keepLooping := true
// we loop because we might pass through multiple parsing states in a single
// call to addContent, and we want to make sure callers don't have to wait for
// data that's already unambiguous
for keepLooping {
var newEvents []HarmonyEvent
newEvents, keepLooping = eat(s)
events = append(events, newEvents...)
}
return events
}
// the additional bool return is true iff we should continue eating
func eat(s *HarmonyParser) ([]HarmonyEvent, bool) {
switch s.state {
case harmonyParserState_LookingForMessageStart:
// does the acc contain the message start tag?
if strings.Contains(s.acc.String(), s.MessageStartTag) {
// split the acc into the message start tag and the rest
split := strings.SplitN(s.acc.String(), s.MessageStartTag, 2)
before := split[0]
if before != "" {
slog.Warn("harmony parser: found message start tag in the middle of the content", "content", s.acc.String())
}
after := split[1]
s.acc.Reset()
s.acc.WriteString(after)
s.state = harmonyParserState_ParsingHeader
return []HarmonyEvent{HarmonyEventMessageStart{}}, true
}
// no match, so we keep accumulating
return nil, false
case harmonyParserState_ParsingHeader:
if strings.Contains(s.acc.String(), s.HeaderEndTag) {
split := strings.SplitN(s.acc.String(), s.HeaderEndTag, 2)
header := split[0]
after := split[1]
s.acc.Reset()
s.acc.WriteString(after)
s.state = harmonyParserState_ParsingContent
return []HarmonyEvent{HarmonyEventHeaderComplete{Header: s.parseHeader(header)}}, true
}
return nil, false
case harmonyParserState_ParsingContent:
if strings.Contains(s.acc.String(), s.MessageEndTag) {
// if we already have the message end tag, we can emit the content up to it
split := strings.SplitN(s.acc.String(), s.MessageEndTag, 2)
content := split[0]
after := split[1]
s.acc.Reset()
s.acc.WriteString(after)
s.state = harmonyParserState_LookingForMessageStart
events := []HarmonyEvent{}
if content != "" {
events = append(events, HarmonyEventContentEmitted{Content: content})
}
events = append(events, HarmonyEventMessageEnd{})
return events, true
} else if overlapLen := overlap(s.acc.String(), s.MessageEndTag); overlapLen > 0 {
// if our suffix contains the start of the message end tag, we can emit
// the content up to the start of the message end tag
content := s.acc.String()[:len(s.acc.String())-overlapLen]
remaining := s.acc.String()[len(s.acc.String())-overlapLen:]
s.acc.Reset()
s.acc.WriteString(remaining)
// emit the content we know isn't part of the message end tag, and keep
// accumulating to disambiguate the rest
if content == "" {
return nil, false
}
return []HarmonyEvent{HarmonyEventContentEmitted{Content: content}}, false
} else {
// no end tag, so it's still normal content that we can immediately emit
content := s.acc.String()
if content == "" {
return nil, false
}
s.acc.Reset()
return []HarmonyEvent{HarmonyEventContentEmitted{Content: content}}, false
}
}
return nil, false
}
func (s *HarmonyParser) parseHeader(raw string) HarmonyHeader {
harmonyHeader := HarmonyHeader{}
// if `<|constrain|>` is present, ensure it has a space before it so it gets
// parsed as a separate token, even if the model didn't include the space
if strings.Contains(raw, "<|constrain|>") {
raw = strings.Replace(raw, "<|constrain|>", " <|constrain|>", 1)
raw = strings.TrimSpace(raw)
}
// look for the optional channel tag, which is `<|channel|>` followed by the
// channel name, all without any whitespace
channelIndex := strings.Index(raw, "<|channel|>")
if channelIndex != -1 {
before := raw[:channelIndex]
after := raw[channelIndex+len("<|channel|>"):]
// the channel name is `after` all the way up to the first (if any) whitespace character
idx := strings.IndexFunc(after, func(r rune) bool {
return unicode.IsSpace(r)
})
if idx == -1 {
idx = len(after)
}
harmonyHeader.Channel = after[:idx]
after = after[idx:]
// now we remove the channel tag from the raw string to further process
raw = before + after
raw = strings.TrimSpace(raw)
}
// split the header into whitespace-separated tokens
tokens := strings.Fields(raw)
// the first token is treated as the role
if len(tokens) == 0 {
slog.Error("harmony parser: missing role in header", "header", raw)
return harmonyHeader
}
role := tokens[0]
tokens = tokens[1:]
// special case: if role starts with to= then it's a tool call
if strings.HasPrefix(role, "to=") {
harmonyHeader.Recipient = role[3:]
harmonyHeader.Role = "tool"
} else {
harmonyHeader.Role = role
}
// the recipient (if any) can be specified before or after the channel tag, so
// we check it at the end once we've already parsed the channel and role
if harmonyHeader.Recipient == "" && len(tokens) > 0 && strings.HasPrefix(tokens[0], "to=") {
harmonyHeader.Recipient = tokens[0][3:]
}
return harmonyHeader
}
// longest overlap between suffix of s and prefix of delim
func overlap(s, delim string) int {
max := min(len(delim), len(s))
for i := max; i > 0; i-- {
if strings.HasSuffix(s, delim[:i]) {
return i
}
}
return 0
}
// harmonyMessageState represents the current state of message processing
type harmonyMessageState int
const (
harmonyMessageState_Normal harmonyMessageState = iota
harmonyMessageState_Thinking
harmonyMessageState_ToolCalling
)
// HarmonyMessageHandler processes harmony events and accumulates content appropriately.
// This is a higher level interface that maps harmony concepts into ollama concepts
type HarmonyMessageHandler struct {
state harmonyMessageState
HarmonyParser *HarmonyParser
FunctionNameMap *FunctionNameMap
}
// NewHarmonyMessageHandler creates a new message handler
func NewHarmonyMessageHandler() *HarmonyMessageHandler {
return &HarmonyMessageHandler{
state: harmonyMessageState_Normal,
HarmonyParser: &HarmonyParser{
MessageStartTag: "<|start|>",
MessageEndTag: "<|end|>",
HeaderEndTag: "<|message|>",
},
FunctionNameMap: NewFunctionNameMap(),
}
}
// AddContent processes the content and returns the content, thinking, and tool content.
// content and thinking are already fully parsed, but tool content still needs to be passed to the tool parser
func (h *HarmonyMessageHandler) AddContent(content string, toolParser *HarmonyToolCallAccumulator) (string, string, string) {
contentSb := strings.Builder{}
thinkingSb := strings.Builder{}
toolContentSb := strings.Builder{}
events := h.HarmonyParser.AddContent(content)
for _, event := range events {
switch event := event.(type) {
case HarmonyEventHeaderComplete:
logutil.Trace("harmony event header complete", "header", event.Header)
switch event.Header.Channel {
case "analysis":
if event.Header.Recipient != "" {
h.state = harmonyMessageState_ToolCalling
// event.Header.Recipient is the tool name, something like
// "browser.search" for a built-in, or "functions.calc" for a
// custom one
toolParser.SetToolName(event.Header.Recipient)
} else {
h.state = harmonyMessageState_Thinking
}
case "commentary":
if event.Header.Recipient != "" {
h.state = harmonyMessageState_ToolCalling
toolParser.SetToolName(event.Header.Recipient)
} else {
h.state = harmonyMessageState_Normal
}
case "final":
h.state = harmonyMessageState_Normal
}
case HarmonyEventContentEmitted:
logutil.Trace("harmony event content", "content", event.Content, "state", h.state)
if h.state == harmonyMessageState_Normal {
contentSb.WriteString(event.Content)
} else if h.state == harmonyMessageState_Thinking {
thinkingSb.WriteString(event.Content)
} else if h.state == harmonyMessageState_ToolCalling {
toolContentSb.WriteString(event.Content)
}
case HarmonyEventMessageEnd:
h.state = harmonyMessageState_Normal
}
}
return contentSb.String(), thinkingSb.String(), toolContentSb.String()
}
func (h *HarmonyMessageHandler) CreateToolParser() *HarmonyToolCallAccumulator {
return &HarmonyToolCallAccumulator{
state: harmonyToolCallState_Normal,
currentToolName: nil,
}
}
type harmonyToolCallState int
const (
harmonyToolCallState_Normal harmonyToolCallState = iota
harmonyToolCallState_ToolCalling
)
type HarmonyToolCallAccumulator struct {
state harmonyToolCallState
acc strings.Builder
currentToolName *string
}
func (a *HarmonyToolCallAccumulator) SetToolName(toolName string) {
a.currentToolName = &toolName
}
func (a *HarmonyToolCallAccumulator) Add(content string) {
a.acc.WriteString(content)
}
func (a *HarmonyToolCallAccumulator) Drain() (*string, string) {
str := a.acc.String()
a.state = harmonyToolCallState_Normal
a.acc.Reset()
return a.currentToolName, str
}
func (a *HarmonyToolCallAccumulator) Content() string {
return a.acc.String()
}
// FunctionNameMap maps a user-specified function name to a valid function
// name for harmony (which look like TypeScript identifiers). This is needed to
// transform user-specified function names, which might contain characters that
// are not allowed in TypeScript identifiers
type FunctionNameMap struct {
userToHarmony map[string]string
harmonyToUser map[string]string
}
func NewFunctionNameMap() *FunctionNameMap {
return &FunctionNameMap{
userToHarmony: make(map[string]string),
harmonyToUser: make(map[string]string),
}
}
func (m *FunctionNameMap) ConvertAndAdd(userFunctionName string) string {
harmonyFunctionName := m.deriveName(userFunctionName)
m.userToHarmony[userFunctionName] = harmonyFunctionName
m.harmonyToUser[harmonyFunctionName] = userFunctionName
return harmonyFunctionName
}
// OriginalFromConverted looks up the reverse-mapping of a previously-converted
// user->harmony function name. To unmap reliably, the mapping must exist, as
// the conversion process is not reversible without the appropriate state
func (m *FunctionNameMap) OriginalFromConverted(harmonyFunctionName string) string {
if userFunctionName, ok := m.harmonyToUser[harmonyFunctionName]; ok {
return userFunctionName
}
slog.Warn("harmony parser: no reverse mapping found for function name", "harmonyFunctionName", harmonyFunctionName)
// fallback to the original function name if we can't find a mapping
return harmonyFunctionName
}
// convertToValidChars converts a user-specified function name to a valid
// TypeScript identifier.
//
// Limitations:
//
// - This doesn't restrict reserved TypeScript keywords.
// - We don't perform a real ID_Start/ID_Continue check, and instead use the more
// restrictive unicode.IsLetter/unicode.IsDigit check. Unclear what kind of
// identifiers these models were trained on, so in the end we might want to
// convert unicode-heavy identifiers to their closest ASCII equivalents.
func (m *FunctionNameMap) convertToValidChars(userFunctionName string) string {
mapper := func(r rune) rune {
// first, replace certain characters with underscores
if r == ' ' || r == '-' || r == '.' {
return '_'
}
if unicode.IsLetter(r) || unicode.IsDigit(r) || r == '_' || r == '$' {
return r
}
// finally, remove any other characters
return -1
}
candidate := strings.Map(mapper, userFunctionName)
// set a default name if we end up with nothing left
if candidate == "" {
return "unnamed"
}
// if the candidate starts with a number, prepend an underscore to make it a
// valid identifier
if unicode.IsDigit(rune(candidate[0])) {
candidate = "_" + candidate
}
return candidate
}
func (m *FunctionNameMap) deriveName(userFunctionName string) string {
originalCandidate := m.convertToValidChars(userFunctionName)
candidate := originalCandidate
// Check for dupes, and if so, add a number to the end.
// We start at 2 because if we have dupes and the first is never renamed, it
// makes sense for them to be named, say, `f`, `f_2`, `f_3`
count := 2
for {
if _, exists := m.harmonyToUser[candidate]; !exists {
break
}
candidate = fmt.Sprintf("%s_%d", originalCandidate, count)
count++
}
return candidate
}

View File

@@ -0,0 +1,537 @@
package harmony
import (
"fmt"
"reflect"
"testing"
)
func TestHeaderParsing(t *testing.T) {
tests := []struct {
in, wantRole, wantChannel, wantRecipient string
}{
{
in: "assistant<|channel|>analysis",
wantRole: "assistant",
wantChannel: "analysis",
wantRecipient: "",
},
{
in: "assistant<|channel|>analysis to=functions.get_weather",
wantRole: "assistant",
wantChannel: "analysis",
wantRecipient: "functions.get_weather",
},
{
in: "assistant to=functions.get_weather<|channel|>analysis",
wantRole: "assistant",
wantChannel: "analysis",
wantRecipient: "functions.get_weather",
},
// special case where the role is replaced by the recipient (matches reference code)
{
in: "to=functions.get_weather<|channel|>analysis",
wantRole: "tool",
wantChannel: "analysis",
wantRecipient: "functions.get_weather",
},
// extra token after the recipient is ignored
{
in: "assistant to=functions.get_weather abc<|channel|>analysis",
wantRole: "assistant",
wantChannel: "analysis",
wantRecipient: "functions.get_weather",
},
// with constrain tag, recipient after channel tag
{
in: "assistant<|channel|>commentary to=functions.get_weather <|constrain|>json",
wantRole: "assistant",
wantChannel: "commentary",
wantRecipient: "functions.get_weather",
},
// with constrain tag, recipient before channel tag
{
in: "assistant to=functions.get_weather<|channel|>commentary <|constrain|>json",
wantRole: "assistant",
wantChannel: "commentary",
wantRecipient: "functions.get_weather",
},
// constrain tag without space
{
in: "assistant<|channel|>commentary to=functions.get_weather<|constrain|>json",
wantRole: "assistant",
wantChannel: "commentary",
wantRecipient: "functions.get_weather",
},
// constrain tag without space, different order
{
in: "assistant to=functions.get_weather<|channel|>commentary<|constrain|>json",
wantRole: "assistant",
wantChannel: "commentary",
wantRecipient: "functions.get_weather",
},
}
for i, tt := range tests {
parser := HarmonyParser{
MessageStartTag: "<|start|>",
MessageEndTag: "<|end|>",
HeaderEndTag: "<|message|>",
}
header := parser.parseHeader(tt.in)
if header.Role != tt.wantRole {
t.Errorf("case %d: got role \"%s\", want \"%s\"", i, header.Role, tt.wantRole)
}
if header.Channel != tt.wantChannel {
t.Errorf("case %d: got channel \"%s\", want \"%s\"", i, header.Channel, tt.wantChannel)
}
if header.Recipient != tt.wantRecipient {
t.Errorf("case %d: got recipient \"%s\", want \"%s\"", i, header.Recipient, tt.wantRecipient)
}
}
}
func TestHarmonyParserHeaderEvent(t *testing.T) {
tests := []struct {
in, wantRole, wantChannel, wantRecipient string
implicitStart bool
}{
{
in: "<|start|>user<|message|>What is 2 + 2?<|end|>",
wantRole: "user",
wantChannel: "",
wantRecipient: "",
},
{
in: "<|start|>assistant<|channel|>analysis<|message|>What is 2 + 2?<|end|>",
wantRole: "assistant",
wantChannel: "analysis",
wantRecipient: "",
},
{
in: "<|start|>assistant<|channel|>commentary to=functions.get_weather <|constrain|>json<|message|>{\"location\":\"San Francisco\"}<|call|><|start|>functions.get_weather to=assistant<|message|>{\"sunny\": true, \"temperature\": 20}<|end|>",
wantRole: "assistant",
wantChannel: "commentary",
wantRecipient: "functions.get_weather",
},
{
in: "<|channel|>analysis<|message|>User asks weather in SF. We need location. Use get_current_weather with location \"San Francisco, CA\".<|end|><|start|>assistant<|channel|>commentary to=functions.get_current_weather <|constrain|>json<|message|>{\"location\":\"San Francisco, CA\"}<|call|>",
wantRole: "assistant",
wantChannel: "analysis",
wantRecipient: "",
implicitStart: true,
},
}
for i, tt := range tests {
parser := HarmonyParser{
MessageStartTag: "<|start|>",
MessageEndTag: "<|end|>",
HeaderEndTag: "<|message|>",
}
if tt.implicitStart {
parser.AddImplicitStart()
}
gotEvents := parser.AddContent(tt.in)
if len(gotEvents) == 0 {
t.Errorf("case %d: got no events, want at least one", i)
}
var firstHeaderEvent *HarmonyEventHeaderComplete
// print events
for _, event := range gotEvents {
fmt.Printf("event: %+v\n", event)
}
for _, event := range gotEvents {
if event, ok := event.(HarmonyEventHeaderComplete); ok {
firstHeaderEvent = &event
break
}
}
if firstHeaderEvent == nil {
t.Errorf("case %d: got no header complete event, want one", i)
continue
}
gotHeader := firstHeaderEvent.Header
if gotHeader.Role != tt.wantRole || gotHeader.Channel != tt.wantChannel || gotHeader.Recipient != tt.wantRecipient {
t.Errorf("case %d: got header %+v, want role=%s channel=%s recipient=%s", i, gotHeader, tt.wantRole, tt.wantChannel, tt.wantRecipient)
}
}
}
func TestHarmonyParserNonStreaming(t *testing.T) {
tests := []struct {
in string
implicitStart bool
wantEvents []HarmonyEvent
}{
{
in: "<|start|>user<|message|>What is 2 + 2?<|end|>",
wantEvents: []HarmonyEvent{
HarmonyEventMessageStart{},
HarmonyEventHeaderComplete{Header: HarmonyHeader{Role: "user", Channel: "", Recipient: ""}},
HarmonyEventContentEmitted{Content: "What is 2 + 2?"},
HarmonyEventMessageEnd{},
},
},
{
in: "<|start|>assistant<|channel|>analysis<|message|>The answer is 4<|end|>",
wantEvents: []HarmonyEvent{
HarmonyEventMessageStart{},
HarmonyEventHeaderComplete{Header: HarmonyHeader{Role: "assistant", Channel: "analysis", Recipient: ""}},
HarmonyEventContentEmitted{Content: "The answer is 4"},
HarmonyEventMessageEnd{},
},
},
{
in: "<|start|>assistant<|channel|>commentary to=functions.calc<|message|>Computing...<|end|>",
wantEvents: []HarmonyEvent{
HarmonyEventMessageStart{},
HarmonyEventHeaderComplete{Header: HarmonyHeader{Role: "assistant", Channel: "commentary", Recipient: "functions.calc"}},
HarmonyEventContentEmitted{Content: "Computing..."},
HarmonyEventMessageEnd{},
},
},
{
in: "<|start|>user<|message|><|end|>",
wantEvents: []HarmonyEvent{
HarmonyEventMessageStart{},
HarmonyEventHeaderComplete{Header: HarmonyHeader{Role: "user", Channel: "", Recipient: ""}},
HarmonyEventMessageEnd{},
},
},
{
in: "<|start|>user<|message|>Hello<|end|><|start|>assistant<|message|>Hi!<|end|>",
wantEvents: []HarmonyEvent{
HarmonyEventMessageStart{},
HarmonyEventHeaderComplete{Header: HarmonyHeader{Role: "user", Channel: "", Recipient: ""}},
HarmonyEventContentEmitted{Content: "Hello"},
HarmonyEventMessageEnd{},
HarmonyEventMessageStart{},
HarmonyEventHeaderComplete{Header: HarmonyHeader{Role: "assistant", Channel: "", Recipient: ""}},
HarmonyEventContentEmitted{Content: "Hi!"},
HarmonyEventMessageEnd{},
},
},
{
in: "<|channel|>analysis<|message|>Thinking about the request<|end|>",
implicitStart: true,
wantEvents: []HarmonyEvent{HarmonyEventMessageStart{}, HarmonyEventHeaderComplete{Header: HarmonyHeader{Role: "assistant", Channel: "analysis", Recipient: ""}}, HarmonyEventContentEmitted{Content: "Thinking about the request"}, HarmonyEventMessageEnd{}},
},
}
for i, tt := range tests {
parser := HarmonyParser{
MessageStartTag: "<|start|>",
MessageEndTag: "<|end|>",
HeaderEndTag: "<|message|>",
}
if tt.implicitStart {
parser.AddImplicitStart()
}
gotEvents := parser.AddContent(tt.in)
if !reflect.DeepEqual(gotEvents, tt.wantEvents) {
t.Errorf("case %d: got events %#v, want %#v", i, gotEvents, tt.wantEvents)
}
}
}
func TestHarmonyParserStreaming(t *testing.T) {
type step struct {
input string
wantEvents []HarmonyEvent
}
cases := []struct {
desc string
implicitStart bool
steps []step
}{
{
desc: "simple message streamed character by character",
steps: []step{
{
input: "<",
wantEvents: nil,
},
{
input: "|",
wantEvents: nil,
},
{
input: "start|>u",
wantEvents: []HarmonyEvent{HarmonyEventMessageStart{}},
},
{
input: "ser<|mess",
wantEvents: nil,
},
{
input: "age|>Hi",
wantEvents: []HarmonyEvent{
HarmonyEventHeaderComplete{Header: HarmonyHeader{Role: "user", Channel: "", Recipient: ""}},
HarmonyEventContentEmitted{Content: "Hi"},
},
},
{
input: " there",
wantEvents: []HarmonyEvent{HarmonyEventContentEmitted{Content: " there"}},
},
{
input: "<|e",
wantEvents: nil,
},
{
input: "nd|>",
wantEvents: []HarmonyEvent{HarmonyEventMessageEnd{}},
},
},
},
{
desc: "message with channel streamed",
steps: []step{
{
input: "<|start|>assistant",
wantEvents: []HarmonyEvent{HarmonyEventMessageStart{}},
},
{
input: "<|chan",
wantEvents: nil,
},
{
input: "nel|>analysis",
wantEvents: nil,
},
{
input: "<|message|>",
wantEvents: []HarmonyEvent{HarmonyEventHeaderComplete{Header: HarmonyHeader{Role: "assistant", Channel: "analysis", Recipient: ""}}},
},
{
input: "Thinking",
wantEvents: []HarmonyEvent{HarmonyEventContentEmitted{Content: "Thinking"}},
},
{
input: "...",
wantEvents: []HarmonyEvent{HarmonyEventContentEmitted{Content: "..."}},
},
{
input: "<|end|>",
wantEvents: []HarmonyEvent{HarmonyEventMessageEnd{}},
},
},
},
{
desc: "message with channel and recipient",
steps: []step{
{
input: "<|start|>assistant<|channel|>commentary to=functions.calc<|message|>",
wantEvents: []HarmonyEvent{
HarmonyEventMessageStart{},
HarmonyEventHeaderComplete{Header: HarmonyHeader{Role: "assistant", Channel: "commentary", Recipient: "functions.calc"}},
},
},
{
input: "{\"x\": 5}",
wantEvents: []HarmonyEvent{HarmonyEventContentEmitted{Content: "{\"x\": 5}"}},
},
{
input: "<|end|>",
wantEvents: []HarmonyEvent{HarmonyEventMessageEnd{}},
},
},
},
{
desc: "message with channel and recipient (receipient before channel)",
steps: []step{
{
input: "<|start|>assistant to=functions.calc<|channel|>commentary<|message|>",
wantEvents: []HarmonyEvent{
HarmonyEventMessageStart{},
HarmonyEventHeaderComplete{Header: HarmonyHeader{Role: "assistant", Channel: "commentary", Recipient: "functions.calc"}},
},
},
{
input: "{\"x\": 5}",
wantEvents: []HarmonyEvent{HarmonyEventContentEmitted{Content: "{\"x\": 5}"}},
},
{
input: "<|end|>",
wantEvents: []HarmonyEvent{HarmonyEventMessageEnd{}},
},
},
},
{
desc: "implicit start with channel",
implicitStart: true,
steps: []step{
{
input: "<|channel|>thinking",
wantEvents: []HarmonyEvent{HarmonyEventMessageStart{}},
},
{
input: "<|message|>",
wantEvents: []HarmonyEvent{HarmonyEventHeaderComplete{Header: HarmonyHeader{Role: "assistant", Channel: "thinking", Recipient: ""}}},
},
{
input: "Processing request",
wantEvents: []HarmonyEvent{HarmonyEventContentEmitted{Content: "Processing request"}},
},
{
input: "<|end|>",
wantEvents: []HarmonyEvent{HarmonyEventMessageEnd{}},
},
},
},
{
desc: "multiple messages streamed",
steps: []step{
{
input: "<|start|>user<|message|>Hello<|end|>",
wantEvents: []HarmonyEvent{
HarmonyEventMessageStart{},
HarmonyEventHeaderComplete{Header: HarmonyHeader{Role: "user", Channel: "", Recipient: ""}},
HarmonyEventContentEmitted{Content: "Hello"},
HarmonyEventMessageEnd{},
},
},
{
input: "<|start|>",
wantEvents: []HarmonyEvent{HarmonyEventMessageStart{}},
},
{
input: "assistant<|message|>",
wantEvents: []HarmonyEvent{HarmonyEventHeaderComplete{Header: HarmonyHeader{Role: "assistant", Channel: "", Recipient: ""}}},
},
{
input: "Hi!",
wantEvents: []HarmonyEvent{HarmonyEventContentEmitted{Content: "Hi!"}},
},
{
input: "<|end|>",
wantEvents: []HarmonyEvent{HarmonyEventMessageEnd{}},
},
},
},
{
desc: "empty message",
steps: []step{
{
input: "<|start|>system<|message|><|end|>",
wantEvents: []HarmonyEvent{
HarmonyEventMessageStart{},
HarmonyEventHeaderComplete{Header: HarmonyHeader{Role: "system", Channel: "", Recipient: ""}},
HarmonyEventMessageEnd{},
},
},
},
},
{
desc: "partial tag that looks like end but isn't",
steps: []step{
{
input: "<|start|>user<|message|>test<|e",
wantEvents: []HarmonyEvent{
HarmonyEventMessageStart{},
HarmonyEventHeaderComplete{Header: HarmonyHeader{Role: "user", Channel: "", Recipient: ""}},
HarmonyEventContentEmitted{Content: "test"},
},
},
{
input: "xample|>more",
wantEvents: []HarmonyEvent{HarmonyEventContentEmitted{Content: "<|example|>more"}},
},
{
input: "<|end|>",
wantEvents: []HarmonyEvent{HarmonyEventMessageEnd{}},
},
},
},
}
for _, tc := range cases {
t.Run(tc.desc, func(t *testing.T) {
parser := HarmonyParser{
MessageStartTag: "<|start|>",
MessageEndTag: "<|end|>",
HeaderEndTag: "<|message|>",
}
if tc.implicitStart {
parser.AddImplicitStart()
}
for i, step := range tc.steps {
gotEvents := parser.AddContent(step.input)
if !reflect.DeepEqual(gotEvents, step.wantEvents) {
t.Errorf("step %d: input %q: got events %#v, want %#v", i, step.input, gotEvents, step.wantEvents)
}
}
})
}
}
// TestFunctionConvertToValidChars tests only FunctionNameMap.convert(), which doesn't
// handle any saving (and therefore no dupe handling)
func TestFunctionConvertToValidChars(t *testing.T) {
tests := []struct {
name string
in string
want string
}{
{name: "replace spaces with underscores", in: "get weather", want: "get_weather"},
{name: "replace hyphens with underscores", in: "get-weather", want: "get_weather"},
{name: "replace periods with underscores", in: "get.weather", want: "get_weather"},
{name: "disallow non-word characters", in: "get weather!", want: "get_weather"},
{name: "strip out invalid non-alphanumeric unicode characters", in: "a🫠bc", want: "abc"},
{name: "names that only contain invalid characters", in: "🫠", want: "unnamed"},
{name: "leading number", in: "123", want: "_123"},
{name: "$ allowed", in: "$", want: "$"},
// show that we allow weird unicode letter characters, though we might want
// to convert them to their closest ASCII equivalents in the future
{name: "allow weird unicode letter characters", in: "𝓸𝓵𝓵𝓪𝓶𝓪", want: "𝓸𝓵𝓵𝓪𝓶𝓪"},
// names that look like words but are invalid (i.e., not ID_Start/ID_Continue)
{name: "disallow non-word characters that look like words", in: "ⓞⓛⓛⓐⓜⓐ123", want: "_123"},
}
for i, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
parser := NewFunctionNameMap()
got := parser.convertToValidChars(tt.in)
if got != tt.want {
t.Errorf("case %d: got %q, want %q", i, got, tt.want)
}
})
}
}
func TestFunctionConvertAndAdd(t *testing.T) {
// make a fresh map for each test, but within a test use the same map so we can test for dupe handling
tests := []struct {
name string
in []string
want []string
}{
{name: "basic dupe handling", in: []string{"get weather", "get weather"}, want: []string{"get_weather", "get_weather_2"}},
{name: "dupes from different user-specified names", in: []string{"get weather", "get_weather", "get-weather"}, want: []string{"get_weather", "get_weather_2", "get_weather_3"}},
{name: "non dupes after dupes", in: []string{"get weather", "get_weather", "get-weather", "something-different"}, want: []string{"get_weather", "get_weather_2", "get_weather_3", "something_different"}},
{name: "multiple sets of dupes", in: []string{"a", "a", "b", "a", "a", "b", "a"}, want: []string{"a", "a_2", "b", "a_3", "a_4", "b_2", "a_5"}},
}
for i, tt := range tests {
parser := NewFunctionNameMap()
t.Run(tt.name, func(t *testing.T) {
for j, in := range tt.in {
got := parser.ConvertAndAdd(in)
want := tt.want[j]
if got != want {
t.Errorf("case %d: got %q, want %q", i, got, want)
}
// check that the maps are correct
if parser.userToHarmony[in] != want {
t.Errorf("case %d: userToHarmony[%q] = %q, want %q", i, in, parser.userToHarmony[in], want)
}
if parser.harmonyToUser[want] != in {
t.Errorf("case %d: harmonyToUser[%q] = %q, want %q", i, want, parser.harmonyToUser[want], in)
}
}
})
}
}

View File

@@ -2,10 +2,13 @@
This directory contains integration tests to exercise Ollama end-to-end to verify behavior
By default, these tests are disabled so `go test ./...` will exercise only unit tests. To run integration tests you must pass the integration tag. `go test -tags=integration ./...`
By default, these tests are disabled so `go test ./...` will exercise only unit tests. To run integration tests you must pass the integration tag. `go test -tags=integration ./...` Some tests require additional tags to enable to allow scoped testing to keep the duration reasonable. For example, testing a broad set of models requires `-tags=integration,models` and a longer timeout (~60m or more depending on the speed of your GPU.). To view the current set of tag combinations use `find integration -type f | xargs grep "go:build"`
The integration tests have 2 modes of operating.
1. By default, they will start the server on a random port, run the tests, and then shutdown the server.
2. If `OLLAMA_TEST_EXISTING` is set to a non-empty string, the tests will run against an existing running server, which can be remote
2. If `OLLAMA_TEST_EXISTING` is set to a non-empty string, the tests will run against an existing running server, which can be remote based on your `OLLAMA_HOST` environment variable
> [!IMPORTANT]
> Before running the tests locally without the "test existing" setting, compile ollama from the top of the source tree `go build .` in addition to GPU support with cmake if applicable on your platform. The integration tests expect to find an ollama binary at the top of the tree.

View File

@@ -390,7 +390,7 @@ func TestAPIEmbeddings(t *testing.T) {
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
req := api.EmbeddingRequest{
Model: "orca-mini",
Model: libraryEmbedModels[0],
Prompt: "why is the sky blue?",
Options: map[string]interface{}{
"temperature": 0,
@@ -410,3 +410,99 @@ func TestAPIEmbeddings(t *testing.T) {
t.Errorf("zero length embedding response")
}
}
func TestAPIToolCalling(t *testing.T) {
initialTimeout := 60 * time.Second
streamTimeout := 30 * time.Second
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
modelName := "qwen3:0.6b"
if err := PullIfMissing(ctx, client, modelName); err != nil {
t.Fatalf("pull failed %s", err)
}
tools := []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get the current weather in a given location",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"location"},
Properties: map[string]api.ToolProperty{
"location": {
Type: api.PropertyType{"string"},
Description: "The city and state, e.g. San Francisco, CA",
},
},
},
},
},
}
req := api.ChatRequest{
Model: modelName,
Messages: []api.Message{
{
Role: "user",
Content: "Call get_weather with location set to San Francisco.",
},
},
Tools: tools,
Options: map[string]any{
"temperature": 0,
},
}
stallTimer := time.NewTimer(initialTimeout)
var gotToolCall bool
var lastToolCall api.ToolCall
fn := func(response api.ChatResponse) error {
if len(response.Message.ToolCalls) > 0 {
gotToolCall = true
lastToolCall = response.Message.ToolCalls[len(response.Message.ToolCalls)-1]
}
if !stallTimer.Reset(streamTimeout) {
return fmt.Errorf("stall was detected while streaming response, aborting")
}
return nil
}
stream := true
req.Stream = &stream
done := make(chan int)
var genErr error
go func() {
genErr = client.Chat(ctx, &req, fn)
done <- 0
}()
select {
case <-stallTimer.C:
t.Errorf("tool-calling chat never started. Timed out after: %s", initialTimeout.String())
case <-done:
if genErr != nil {
t.Fatalf("chat failed: %v", genErr)
}
if !gotToolCall {
t.Fatalf("expected at least one tool call, got none")
}
if lastToolCall.Function.Name != "get_weather" {
t.Errorf("unexpected tool called: got %q want %q", lastToolCall.Function.Name, "get_weather")
}
if _, ok := lastToolCall.Function.Arguments["location"]; !ok {
t.Errorf("expected tool arguments to include 'location', got: %s", lastToolCall.Function.Arguments.String())
}
case <-ctx.Done():
t.Error("outer test context done while waiting for tool-calling chat")
}
}

View File

@@ -11,7 +11,6 @@ import (
"time"
"github.com/ollama/ollama/api"
"github.com/stretchr/testify/require"
)
func TestBlueSky(t *testing.T) {
@@ -37,8 +36,8 @@ func TestUnicode(t *testing.T) {
// Set up the test data
req := api.GenerateRequest{
// DeepSeek has a Unicode tokenizer regex, making it a unicode torture test
Model: "deepseek-coder-v2:16b-lite-instruct-q2_K",
Prompt: "天空为什么是蓝色的?",
Model: "deepseek-coder-v2:16b-lite-instruct-q2_K", // TODO is there an ollama-engine model we can switch to and keep the coverage?
Prompt: "天空为什么是蓝色的?", // Why is the sky blue?
Stream: &stream,
Options: map[string]any{
"temperature": 0,
@@ -50,8 +49,20 @@ func TestUnicode(t *testing.T) {
}
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
require.NoError(t, PullIfMissing(ctx, client, req.Model))
DoGenerate(ctx, t, client, req, []string{"散射", "频率"}, 120*time.Second, 120*time.Second)
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatal(err)
}
slog.Info("loading", "model", req.Model)
err := client.Generate(ctx, &api.GenerateRequest{Model: req.Model}, func(response api.GenerateResponse) error { return nil })
if err != nil {
t.Fatalf("failed to load model %s: %s", req.Model, err)
}
skipIfNotGPULoaded(ctx, t, client, req.Model, 100)
DoGenerate(ctx, t, client, req, []string{
"散射", // scattering
"频率", // frequency
}, 120*time.Second, 120*time.Second)
}
func TestExtendedUnicodeOutput(t *testing.T) {
@@ -69,7 +80,9 @@ func TestExtendedUnicodeOutput(t *testing.T) {
}
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
require.NoError(t, PullIfMissing(ctx, client, req.Model))
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatal(err)
}
DoGenerate(ctx, t, client, req, []string{"😀", "😊", "😁", "😂", "😄", "😃"}, 120*time.Second, 120*time.Second)
}
@@ -84,7 +97,9 @@ func TestUnicodeModelDir(t *testing.T) {
}
modelDir, err := os.MkdirTemp("", "ollama_埃")
require.NoError(t, err)
if err != nil {
t.Fatal(err)
}
defer os.RemoveAll(modelDir)
slog.Info("unicode", "OLLAMA_MODELS", modelDir)

View File

@@ -4,257 +4,184 @@ package integration
import (
"context"
"fmt"
"log/slog"
"math"
"math/rand"
"os"
"strconv"
"sync"
"testing"
"time"
"github.com/stretchr/testify/require"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
)
func TestMultiModelConcurrency(t *testing.T) {
var (
req = [2]api.GenerateRequest{
{
Model: "llama3.2:1b",
Prompt: "why is the ocean blue?",
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
}, {
Model: "tinydolphin",
Prompt: "what is the origin of the us thanksgiving holiday?",
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
},
}
resp = [2][]string{
{"sunlight"},
{"england", "english", "massachusetts", "pilgrims", "british", "festival"},
}
)
var wg sync.WaitGroup
wg.Add(len(req))
ctx, cancel := context.WithTimeout(context.Background(), time.Second*240)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
for i := 0; i < len(req); i++ {
require.NoError(t, PullIfMissing(ctx, client, req[i].Model))
}
for i := 0; i < len(req); i++ {
go func(i int) {
defer wg.Done()
// Note: CPU based inference can crawl so don't give up too quickly
DoGenerate(ctx, t, client, req[i], resp[i], 90*time.Second, 30*time.Second)
}(i)
}
wg.Wait()
}
func TestIntegrationConcurrentPredict(t *testing.T) {
// Send multiple requests in parallel (concurrently) to a single model and ensure responses are expected
func TestConcurrentGenerate(t *testing.T) {
// Assumes all requests have the same model
req, resp := GenerateRequests()
reqLimit := len(req)
iterLimit := 5
numParallel := int(envconfig.NumParallel() + 1)
iterLimit := 3
if s := os.Getenv("OLLAMA_MAX_VRAM"); s != "" {
maxVram, err := strconv.ParseUint(s, 10, 64)
require.NoError(t, err)
// Don't hammer on small VRAM cards...
if maxVram < 4*format.GibiByte {
reqLimit = min(reqLimit, 2)
iterLimit = 2
}
}
ctx, cancel := context.WithTimeout(context.Background(), 9*time.Minute)
softTimeout, hardTimeout := getTimeouts(t)
ctx, cancel := context.WithTimeout(context.Background(), hardTimeout)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
// Get the server running (if applicable) warm the model up with a single initial request
DoGenerate(ctx, t, client, req[0], resp[0], 60*time.Second, 10*time.Second)
slog.Info("loading", "model", req[0].Model)
err := client.Generate(ctx,
&api.GenerateRequest{Model: req[0].Model, KeepAlive: &api.Duration{Duration: 10 * time.Second}},
func(response api.GenerateResponse) error { return nil },
)
if err != nil {
t.Fatalf("failed to load model %s: %s", req[0].Model, err)
}
var wg sync.WaitGroup
wg.Add(reqLimit)
for i := 0; i < reqLimit; i++ {
r := rand.New(rand.NewSource(0))
wg.Add(numParallel)
for i := range numParallel {
go func(i int) {
defer wg.Done()
for j := 0; j < iterLimit; j++ {
slog.Info("Starting", "req", i, "iter", j)
if time.Now().Sub(started) > softTimeout {
slog.Info("exceeded soft timeout, winding down test")
return
}
k := r.Int() % len(req)
slog.Info("Starting", "thread", i, "iter", j)
// On slower GPUs it can take a while to process the concurrent requests
// so we allow a much longer initial timeout
DoGenerate(ctx, t, client, req[i], resp[i], 120*time.Second, 20*time.Second)
DoGenerate(ctx, t, client, req[k], resp[k], 120*time.Second, 20*time.Second)
}
}(i)
}
wg.Wait()
}
// Stress the system if we know how much VRAM it has, and attempt to load more models than will fit
// Stress the scheduler and attempt to load more models than will fit to cause thrashing
// This test will always load at least 2 models even on CPU based systems
func TestMultiModelStress(t *testing.T) {
s := os.Getenv("OLLAMA_MAX_VRAM") // TODO - discover actual VRAM
s := os.Getenv("OLLAMA_MAX_VRAM")
if s == "" {
t.Skip("OLLAMA_MAX_VRAM not specified, can't pick the right models for the stress test")
s = "0"
}
maxVram, err := strconv.ParseUint(s, 10, 64)
if err != nil {
t.Fatal(err)
}
if maxVram < 2*format.GibiByte {
t.Skip("VRAM less than 2G, skipping model stress tests")
// All models compatible with ollama-engine
smallModels := []string{
"llama3.2:1b",
"qwen3:0.6b",
"gemma2:2b",
"deepseek-r1:1.5b", // qwen2 arch
"gemma3:270m",
}
mediumModels := []string{
"llama3.2:3b", // ~3.4G
"qwen3:8b", // ~6.6G
"gpt-oss:20b", // ~15G
"deepseek-r1:7b", // ~5.6G
"gemma3:4b", // ~5.8G
"gemma2:9b", // ~8.1G
}
type model struct {
name string
size uint64 // Approximate amount of VRAM they typically use when fully loaded in VRAM
}
smallModels := []model{
{
name: "llama3.2:1b",
size: 2876 * format.MebiByte,
},
{
name: "phi",
size: 2616 * format.MebiByte,
},
{
name: "gemma:2b",
size: 2364 * format.MebiByte,
},
{
name: "stable-code:3b",
size: 2608 * format.MebiByte,
},
{
name: "starcoder2:3b",
size: 2166 * format.MebiByte,
},
}
mediumModels := []model{
{
name: "llama2",
size: 5118 * format.MebiByte,
},
{
name: "mistral",
size: 4620 * format.MebiByte,
},
{
name: "orca-mini:7b",
size: 5118 * format.MebiByte,
},
{
name: "dolphin-mistral",
size: 4620 * format.MebiByte,
},
{
name: "gemma:7b",
size: 5000 * format.MebiByte,
},
{
name: "codellama:7b",
size: 5118 * format.MebiByte,
},
}
// These seem to be too slow to be useful...
// largeModels := []model{
// {
// name: "llama2:13b",
// size: 7400 * format.MebiByte,
// },
// {
// name: "codellama:13b",
// size: 7400 * format.MebiByte,
// },
// {
// name: "orca-mini:13b",
// size: 7400 * format.MebiByte,
// },
// {
// name: "gemma:7b",
// size: 5000 * format.MebiByte,
// },
// {
// name: "starcoder2:15b",
// size: 9100 * format.MebiByte,
// },
// }
var chosenModels []model
var chosenModels []string
switch {
case maxVram < 10000*format.MebiByte:
slog.Info("selecting small models")
chosenModels = smallModels
// case maxVram < 30000*format.MebiByte:
default:
slog.Info("selecting medium models")
chosenModels = mediumModels
// default:
// slog.Info("selecting large models")
// chosenModels = largeModels
}
req, resp := GenerateRequests()
for i := range req {
if i > len(chosenModels) {
break
}
req[i].Model = chosenModels[i].name
}
ctx, cancel := context.WithTimeout(context.Background(), 15*time.Minute) // TODO baseline -- 10m too short
softTimeout, hardTimeout := getTimeouts(t)
ctx, cancel := context.WithTimeout(context.Background(), hardTimeout)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
// Make sure all the models are pulled before we get started
for _, r := range req {
require.NoError(t, PullIfMissing(ctx, client, r.Model))
for _, model := range chosenModels {
if err := PullIfMissing(ctx, client, model); err != nil {
t.Fatal(err)
}
}
var wg sync.WaitGroup
consumed := uint64(256 * format.MebiByte) // Assume some baseline usage
for i := 0; i < len(req); i++ {
// Always get at least 2 models, but don't overshoot VRAM too much or we'll take too long
if i > 1 && consumed > maxVram {
slog.Info("achieved target vram exhaustion", "count", i, "vram", format.HumanBytes2(maxVram), "models", format.HumanBytes2(consumed))
break
// Determine how many models we can load in parallel before we exceed VRAM
// The intent is to go 1 over what can fit so we force the scheduler to thrash
targetLoadCount := 0
slog.Info("Loading models to find how many can fit in VRAM before overflowing")
chooseModels:
for i, model := range chosenModels {
req := &api.GenerateRequest{Model: model}
slog.Info("loading", "model", model)
err = client.Generate(ctx, req, func(response api.GenerateResponse) error { return nil })
if err != nil {
t.Fatalf("failed to load model %s: %s", model, err)
}
consumed += chosenModels[i].size
slog.Info("target vram", "count", i, "vram", format.HumanBytes2(maxVram), "models", format.HumanBytes2(consumed))
targetLoadCount++
if i > 0 {
models, err := client.ListRunning(ctx)
if err != nil {
t.Fatalf("failed to list running models: %s", err)
}
if len(models.Models) < targetLoadCount {
loaded := []string{}
for _, m := range models.Models {
loaded = append(loaded, m.Name)
}
slog.Info("found model load capacity", "target", targetLoadCount, "current", loaded, "chosen", chosenModels[:targetLoadCount])
break
}
// Effectively limit model count to 2 on CPU only systems to avoid thrashing and timeouts
for _, m := range models.Models {
if m.SizeVRAM == 0 {
slog.Info("model running on CPU", "name", m.Name, "target", targetLoadCount, "chosen", chosenModels[:targetLoadCount])
break chooseModels
}
}
}
}
if targetLoadCount == len(chosenModels) {
// TODO consider retrying the medium models
slog.Warn("all models being used without exceeding VRAM, set OLLAMA_MAX_VRAM so test can pick larger models")
}
r := rand.New(rand.NewSource(0))
var wg sync.WaitGroup
for i := range targetLoadCount {
wg.Add(1)
go func(i int) {
defer wg.Done()
reqs, resps := GenerateRequests()
for j := 0; j < 3; j++ {
slog.Info("Starting", "req", i, "iter", j, "model", req[i].Model)
DoGenerate(ctx, t, client, req[i], resp[i], 120*time.Second, 5*time.Second)
if time.Now().Sub(started) > softTimeout {
slog.Info("exceeded soft timeout, winding down test")
return
}
k := r.Int() % len(reqs)
reqs[k].Model = chosenModels[i]
slog.Info("Starting", "model", reqs[k].Model, "iteration", j, "request", reqs[k].Prompt)
DoGenerate(ctx, t, client, reqs[k], resps[k],
120*time.Second, // Be extra patient for the model to load initially
10*time.Second, // Once results start streaming, fail if they stall
)
}
}(i)
}
go func() {
for {
time.Sleep(2 * time.Second)
time.Sleep(10 * time.Second)
select {
case <-ctx.Done():
return
@@ -265,7 +192,21 @@ func TestMultiModelStress(t *testing.T) {
continue
}
for _, m := range models.Models {
slog.Info("loaded model snapshot", "model", m)
var procStr string
switch {
case m.SizeVRAM == 0:
procStr = "100% CPU"
case m.SizeVRAM == m.Size:
procStr = "100% GPU"
case m.SizeVRAM > m.Size || m.Size == 0:
procStr = "Unknown"
default:
sizeCPU := m.Size - m.SizeVRAM
cpuPercent := math.Round(float64(sizeCPU) / float64(m.Size) * 100)
procStr = fmt.Sprintf("%d%%/%d%%", int(cpuPercent), int(100-cpuPercent))
}
slog.Info("loaded model snapshot", "model", m.Name, "CPU/GPU", procStr, "expires", format.HumanTime(m.ExpiresAt, "Never"))
}
}
}

View File

@@ -4,6 +4,8 @@ package integration
import (
"context"
"log/slog"
"sync"
"testing"
"time"
@@ -20,7 +22,7 @@ func TestLongInputContext(t *testing.T) {
defer cancel()
// Set up the test data
req := api.GenerateRequest{
Model: "llama2",
Model: smol,
Prompt: "Oh, dont speak to me of Austria. Perhaps I dont understand things, but Austria never has wished, and does not wish, for war. She is betraying us! Russia alone must save Europe. Our gracious sovereign recognizes his high vocation and will be true to it. That is the one thing I have faith in! Our good and wonderful sovereign has to perform the noblest role on earth, and he is so virtuous and noble that God will not forsake him. He will fulfill his vocation and crush the hydra of revolution, which has become more terrible than ever in the person of this murderer and villain! We alone must avenge the blood of the just one.... Whom, I ask you, can we rely on?... England with her commercial spirit will not and cannot understand the Emperor Alexanders loftiness of soul. She has refused to evacuate Malta. She wanted to find, and still seeks, some secret motive in our actions. What answer did Novosíltsev get? None. The English have not understood and cannot understand the self-abnegation of our Emperor who wants nothing for himself, but only desires the good of mankind. And what have they promised? Nothing! And what little they have promised they will not perform! Prussia has always declared that Buonaparte is invincible, and that all Europe is powerless before him.... And I dont believe a word that Hardenburg says, or Haugwitz either. This famous Prussian neutrality is just a trap. I have faith only in God and the lofty destiny of our adored monarch. He will save Europe! What country is this referring to?",
Stream: &stream,
Options: map[string]any{
@@ -34,7 +36,7 @@ func TestLongInputContext(t *testing.T) {
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatalf("PullIfMissing failed: %v", err)
}
DoGenerate(ctx, t, client, req, []string{"russia", "germany", "france", "england", "austria", "prussia"}, 120*time.Second, 10*time.Second)
DoGenerate(ctx, t, client, req, []string{"russia", "germany", "france", "england", "austria", "prussia", "europe", "individuals", "coalition", "conflict"}, 120*time.Second, 10*time.Second)
}
func TestContextExhaustion(t *testing.T) {
@@ -47,8 +49,8 @@ func TestContextExhaustion(t *testing.T) {
defer cancel()
// Set up the test data
req := api.GenerateRequest{
Model: "llama2",
Prompt: "Write me a story with a ton of emojis?",
Model: smol,
Prompt: "Write me a story in english with a lot of emojis",
Stream: &stream,
Options: map[string]any{
"temperature": 0,
@@ -61,5 +63,104 @@ func TestContextExhaustion(t *testing.T) {
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatalf("PullIfMissing failed: %v", err)
}
DoGenerate(ctx, t, client, req, []string{"once", "upon", "lived"}, 120*time.Second, 10*time.Second)
DoGenerate(ctx, t, client, req, []string{"once", "upon", "lived", "sunny", "cloudy", "clear", "water"}, 120*time.Second, 10*time.Second)
}
// Send multiple generate requests with prior context and ensure the response is coherant and expected
func TestGenerateWithHistory(t *testing.T) {
modelOverride := ollamaEngineChatModels[0] // Most recent ollama engine model
req, resp := GenerateRequests()
numParallel := 2
iterLimit := 2
softTimeout, hardTimeout := getTimeouts(t)
ctx, cancel := context.WithTimeout(context.Background(), hardTimeout)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
// Get the server running (if applicable) warm the model up with a single initial request
slog.Info("loading", "model", modelOverride)
err := client.Generate(ctx,
&api.GenerateRequest{Model: modelOverride, KeepAlive: &api.Duration{Duration: 10 * time.Second}},
func(response api.GenerateResponse) error { return nil },
)
if err != nil {
t.Fatalf("failed to load model %s: %s", modelOverride, err)
}
var wg sync.WaitGroup
wg.Add(numParallel)
for i := range numParallel {
go func(i int) {
defer wg.Done()
k := i % len(req)
req[k].Model = modelOverride
for j := 0; j < iterLimit; j++ {
if time.Now().Sub(started) > softTimeout {
slog.Info("exceeded soft timeout, winding down test")
return
}
slog.Info("Starting", "thread", i, "iter", j)
// On slower GPUs it can take a while to process the concurrent requests
// so we allow a much longer initial timeout
c := DoGenerate(ctx, t, client, req[k], resp[k], 120*time.Second, 20*time.Second)
req[k].Context = c
req[k].Prompt = "tell me more!"
}
}(i)
}
wg.Wait()
}
// Send multiple chat requests with prior context and ensure the response is coherant and expected
func TestChatWithHistory(t *testing.T) {
modelOverride := ollamaEngineChatModels[0] // Most recent ollama engine model
req, resp := ChatRequests()
numParallel := 2
iterLimit := 2
softTimeout, hardTimeout := getTimeouts(t)
ctx, cancel := context.WithTimeout(context.Background(), hardTimeout)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
// Get the server running (if applicable) warm the model up with a single initial empty request
slog.Info("loading", "model", modelOverride)
err := client.Generate(ctx,
&api.GenerateRequest{Model: modelOverride, KeepAlive: &api.Duration{Duration: 10 * time.Second}},
func(response api.GenerateResponse) error { return nil },
)
if err != nil {
t.Fatalf("failed to load model %s: %s", modelOverride, err)
}
var wg sync.WaitGroup
wg.Add(numParallel)
for i := range numParallel {
go func(i int) {
defer wg.Done()
k := i % len(req)
req[k].Model = modelOverride
for j := 0; j < iterLimit; j++ {
if time.Now().Sub(started) > softTimeout {
slog.Info("exceeded soft timeout, winding down test")
return
}
slog.Info("Starting", "thread", i, "iter", j)
// On slower GPUs it can take a while to process the concurrent requests
// so we allow a much longer initial timeout
assistant := DoChat(ctx, t, client, req[k], resp[k], 120*time.Second, 20*time.Second)
if assistant == nil {
t.Fatalf("didn't get an assistant response for context")
}
req[k].Messages = append(req[k].Messages,
*assistant,
api.Message{Role: "user", Content: "tell me more!"},
)
}
}(i)
}
wg.Wait()
}

View File

@@ -8,6 +8,7 @@ import (
"testing"
"time"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
)
@@ -38,14 +39,14 @@ func TestAllMiniLMEmbeddings(t *testing.T) {
defer cleanup()
req := api.EmbeddingRequest{
Model: "all-minilm",
Prompt: "why is the sky blue?",
Model: "all-minilm",
Prompt: "why is the sky blue?",
KeepAlive: &api.Duration{Duration: 10 * time.Second},
}
res, err := embeddingTestHelper(ctx, client, t, req)
if err != nil {
t.Fatalf("error: %v", err)
t.Fatal(err)
}
if len(res.Embedding) != 384 {
@@ -73,9 +74,8 @@ func TestAllMiniLMEmbed(t *testing.T) {
}
res, err := embedTestHelper(ctx, client, t, req)
if err != nil {
t.Fatalf("error: %v", err)
t.Fatal(err)
}
if len(res.Embeddings) != 1 {
@@ -111,9 +111,8 @@ func TestAllMiniLMBatchEmbed(t *testing.T) {
}
res, err := embedTestHelper(ctx, client, t, req)
if err != nil {
t.Fatalf("error: %v", err)
t.Fatal(err)
}
if len(res.Embeddings) != 2 {
@@ -155,93 +154,135 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
truncTrue, truncFalse := true, false
type testReq struct {
Name string
Request api.EmbedRequest
want, err := embedTestHelper(ctx, client, t, api.EmbedRequest{
Model: "all-minilm",
Input: "why",
})
if err != nil {
t.Fatal(err)
}
reqs := []testReq{
cases := []struct {
name string
request api.EmbedRequest
check func(*api.EmbedResponse, error)
}{
{
Name: "Target Truncation",
Request: api.EmbedRequest{
name: "target truncation",
request: api.EmbedRequest{
Model: "all-minilm",
Input: "why",
},
},
{
Name: "Default Truncate",
Request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Options: map[string]any{"num_ctx": 1},
check: func(got *api.EmbedResponse, err error) {
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(want.Embeddings[0], got.Embeddings[0]); diff != "" {
t.Errorf("embedding mismatch (-want +got):\n%s", diff)
}
},
},
{
Name: "Explicit Truncate",
Request: api.EmbedRequest{
name: "default truncate",
request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Options: map[string]any{"num_ctx": 3},
},
check: func(got *api.EmbedResponse, err error) {
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(want.Embeddings[0], got.Embeddings[0]); diff != "" {
t.Errorf("embedding mismatch (-want +got):\n%s", diff)
}
},
},
{
name: "explicit truncate",
request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 3},
},
check: func(got *api.EmbedResponse, err error) {
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(want.Embeddings[0], got.Embeddings[0]); diff != "" {
t.Errorf("embedding mismatch (-want +got):\n%s", diff)
}
},
},
{
name: "truncate error",
request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncFalse,
Options: map[string]any{"num_ctx": 3},
},
check: func(res *api.EmbedResponse, err error) {
if err.Error() != "input exceeds maximum context length" {
t.Fatalf("expected truncation error, got: %v", err)
}
},
},
{
name: "input after truncate error",
request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 1},
},
check: func(res *api.EmbedResponse, err error) {
if err.Error() != "input after truncation exceeds maximum context length" {
t.Fatalf("expected truncation error, got: %v", err)
}
},
},
{
name: "input after truncate error",
request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 0},
},
check: func(res *api.EmbedResponse, err error) {
if err.Error() != "input after truncation exceeds maximum context length" {
t.Fatalf("expected truncation error, got: %v", err)
}
},
},
}
res := make(map[string]*api.EmbedResponse)
for _, req := range reqs {
response, err := embedTestHelper(ctx, client, t, req.Request)
if err != nil {
t.Fatalf("error: %v", err)
}
res[req.Name] = response
}
if res["Target Truncation"].Embeddings[0][0] != res["Default Truncate"].Embeddings[0][0] {
t.Fatal("expected default request to truncate correctly")
}
if res["Default Truncate"].Embeddings[0][0] != res["Explicit Truncate"].Embeddings[0][0] {
t.Fatal("expected default request and truncate true request to be the same")
}
// check that truncate set to false returns an error if context length is exceeded
_, err := embedTestHelper(ctx, client, t, api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncFalse,
Options: map[string]any{"num_ctx": 1},
})
if err == nil {
t.Fatal("expected error, got nil")
for _, req := range cases {
t.Run(req.name, func(t *testing.T) {
req.check(embedTestHelper(ctx, client, t, req.request))
})
}
}
func embeddingTestHelper(ctx context.Context, client *api.Client, t *testing.T, req api.EmbeddingRequest) (*api.EmbeddingResponse, error) {
t.Helper()
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatalf("failed to pull model %s: %v", req.Model, err)
t.Fatal(err)
}
response, err := client.Embeddings(ctx, &req)
if err != nil {
return nil, err
}
return response, nil
return client.Embeddings(ctx, &req)
}
func embedTestHelper(ctx context.Context, client *api.Client, t *testing.T, req api.EmbedRequest) (*api.EmbedResponse, error) {
t.Helper()
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatalf("failed to pull model %s: %v", req.Model, err)
t.Fatal(err)
}
response, err := client.Embed(ctx, &req)
if err != nil {
return nil, err
}
return response, nil
return client.Embed(ctx, &req)
}

View File

@@ -0,0 +1,57 @@
//go:build integration && library
package integration
import (
"context"
"log/slog"
"testing"
"time"
"github.com/ollama/ollama/api"
)
// First run of this scenario on a target system will take a long time to download
// ~1.5TB of models. Set a sufficiently large -timeout for your network speed
func TestLibraryModelsGenerate(t *testing.T) {
softTimeout, hardTimeout := getTimeouts(t)
slog.Info("Setting timeouts", "soft", softTimeout, "hard", hardTimeout)
ctx, cancel := context.WithTimeout(context.Background(), hardTimeout)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
chatModels := libraryChatModels
for _, model := range chatModels {
t.Run(model, func(t *testing.T) {
if time.Now().Sub(started) > softTimeout {
t.Skip("skipping remaining tests to avoid excessive runtime")
}
if err := PullIfMissing(ctx, client, model); err != nil {
t.Fatalf("pull failed %s", err)
}
req := api.GenerateRequest{
Model: model,
Prompt: "why is the sky blue?",
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]interface{}{
"temperature": 0.1,
"seed": 123,
},
}
anyResp := []string{"rayleigh", "scatter", "atmosphere", "nitrogen", "oxygen", "wavelength"}
// Special cases
if model == "duckdb-nsql" {
anyResp = []string{"select", "from"}
} else if model == "granite3-guardian" || model == "shieldgemma" || model == "llama-guard3" || model == "bespoke-minicheck" {
anyResp = []string{"yes", "no", "safe", "unsafe"}
} else if model == "openthinker" || model == "nexusraven" {
anyResp = []string{"plugin", "im_sep", "components", "function call"}
} else if model == "starcoder" || model == "starcoder2" || model == "magicoder" || model == "deepseek-coder" {
req.Prompt = "def fibonacci():"
anyResp = []string{"f(n)", "sequence", "n-1", "main()", "__main__", "while"}
}
DoGenerate(ctx, t, client, req, anyResp, 120*time.Second, 30*time.Second)
})
}
}

View File

@@ -9,7 +9,6 @@ import (
"time"
"github.com/ollama/ollama/api"
"github.com/stretchr/testify/require"
)
func TestVisionModels(t *testing.T) {
@@ -19,7 +18,7 @@ func TestVisionModels(t *testing.T) {
}
testCases := []testCase{
{
model: "llava:7b",
model: "qwen2.5vl",
},
{
model: "llama3.2-vision",
@@ -32,7 +31,9 @@ func TestVisionModels(t *testing.T) {
for _, v := range testCases {
t.Run(v.model, func(t *testing.T) {
image, err := base64.StdEncoding.DecodeString(imageEncoding)
require.NoError(t, err)
if err != nil {
t.Fatal(err)
}
req := api.GenerateRequest{
Model: v.model,
Prompt: "what does the text in this image say?",
@@ -52,7 +53,9 @@ func TestVisionModels(t *testing.T) {
// Note: sometimes it returns "the ollamas" sometimes "the ollams"
resp := "the ollam"
defer cleanup()
require.NoError(t, PullIfMissing(ctx, client, req.Model))
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatal(err)
}
// llava models on CPU can be quite slow to start
DoGenerate(ctx, t, client, req, []string{resp}, 240*time.Second, 30*time.Second)
})
@@ -60,8 +63,11 @@ func TestVisionModels(t *testing.T) {
}
func TestIntegrationSplitBatch(t *testing.T) {
skipUnderMinVRAM(t, 6)
image, err := base64.StdEncoding.DecodeString(imageEncoding)
require.NoError(t, err)
if err != nil {
t.Fatal(err)
}
req := api.GenerateRequest{
Model: "gemma3:4b",
// Fill up a chunk of the batch so the image will partially spill over into the next one
@@ -83,7 +89,9 @@ func TestIntegrationSplitBatch(t *testing.T) {
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
require.NoError(t, PullIfMissing(ctx, client, req.Model))
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatal(err)
}
// llava models on CPU can be quite slow to start,
DoGenerate(ctx, t, client, req, []string{resp}, 120*time.Second, 30*time.Second)
}

View File

@@ -1,47 +0,0 @@
//go:build integration
package integration
import (
"context"
"testing"
"time"
"github.com/ollama/ollama/api"
)
// TODO - this would ideally be in the llm package, but that would require some refactoring of interfaces in the server
// package to avoid circular dependencies
var (
stream = false
req = [2]api.GenerateRequest{
{
Model: smol,
Prompt: "why is the ocean blue?",
Stream: &stream,
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
}, {
Model: smol,
Prompt: "what is the origin of the us thanksgiving holiday?",
Stream: &stream,
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
},
}
resp = [2][]string{
{"sunlight", "scattering", "interact"},
{"england", "english", "massachusetts", "pilgrims"},
}
)
func TestIntegrationSimple(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), time.Second*120)
defer cancel()
GenerateTestHelper(ctx, t, req[0], resp[0])
}

View File

@@ -13,12 +13,12 @@ import (
"testing"
"time"
"github.com/stretchr/testify/require"
"github.com/ollama/ollama/api"
)
func TestMaxQueue(t *testing.T) {
t.Skip("this test needs to be re-evaluated to use a proper embedding model")
if os.Getenv("OLLAMA_TEST_EXISTING") != "" {
t.Skip("Max Queue test requires spawning a local server so we can adjust the queue size")
return
@@ -45,7 +45,9 @@ func TestMaxQueue(t *testing.T) {
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
require.NoError(t, PullIfMissing(ctx, client, req.Model))
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatal(err)
}
// Context for the worker threads so we can shut them down
// embedCtx, embedCancel := context.WithCancel(ctx)
@@ -89,7 +91,9 @@ func TestMaxQueue(t *testing.T) {
switch {
case genErr == nil:
successCount++
require.Greater(t, len(resp.Embedding), 5) // somewhat arbitrary, but sufficient to be reasonable
if len(resp.Embedding) < 5 { // somewhat arbitrary, but sufficient to be reasonable
t.Fatalf("embeddings shorter than expected: %d", len(resp.Embedding))
}
case errors.Is(genErr, context.Canceled):
canceledCount++
case strings.Contains(genErr.Error(), "busy"):
@@ -97,7 +101,9 @@ func TestMaxQueue(t *testing.T) {
case strings.Contains(genErr.Error(), "connection reset by peer"):
resetByPeerCount++
default:
require.NoError(t, genErr, "%d request failed", i)
if genErr != nil {
t.Fatalf("%d request failed", i)
}
}
slog.Info("embed finished", "id", i)
@@ -108,8 +114,13 @@ func TestMaxQueue(t *testing.T) {
embedwg.Wait()
slog.Info("embeds completed", "success", successCount, "busy", busyCount, "reset", resetByPeerCount, "canceled", canceledCount)
require.Equal(t, resetByPeerCount, 0, "Connections reset by peer, have you updated your fd and socket limits?")
require.True(t, busyCount > 0, "no requests hit busy error but some should have")
require.True(t, canceledCount == 0, "no requests should have been canceled due to timeout")
if resetByPeerCount != 0 {
t.Fatalf("Connections reset by peer, have you updated your fd and socket limits? %d", resetByPeerCount)
}
if busyCount == 0 {
t.Fatalf("no requests hit busy error but some should have")
}
if canceledCount > 0 {
t.Fatalf("no requests should have been canceled due to timeout %d", canceledCount)
}
}

View File

@@ -19,35 +19,6 @@ import (
"github.com/ollama/ollama/format"
)
var (
started = time.Now()
chatModels = []string{
"granite3-moe:latest",
"granite-code:latest",
"nemotron-mini:latest",
"command-r:latest",
"gemma2:latest",
"gemma:latest",
"internlm2:latest",
"phi3.5:latest",
"phi3:latest",
// "phi:latest", // flaky, sometimes generates no response on first query
"stablelm2:latest", // Predictions are off, crashes on small VRAM GPUs
"falcon:latest",
"falcon2:latest",
"minicpm-v:latest",
"mistral:latest",
"orca-mini:latest",
"llama2:latest",
"llama3.1:latest",
"llama3.2:latest",
"llama3.2-vision:latest",
"qwen2.5-coder:latest",
"qwen:latest",
"solar-pro:latest",
}
)
func TestModelsGenerate(t *testing.T) {
softTimeout, hardTimeout := getTimeouts(t)
slog.Info("Setting timeouts", "soft", softTimeout, "hard", hardTimeout)
@@ -68,6 +39,13 @@ func TestModelsGenerate(t *testing.T) {
slog.Warn("No VRAM info available, testing all models, so larger ones might timeout...")
}
var chatModels []string
if s := os.Getenv("OLLAMA_NEW_ENGINE"); s != "" {
chatModels = ollamaEngineChatModels
} else {
chatModels = append(ollamaEngineChatModels, llamaRunnerChatModels...)
}
for _, model := range chatModels {
t.Run(model, func(t *testing.T) {
if time.Now().Sub(started) > softTimeout {

View File

@@ -0,0 +1,266 @@
//go:build integration && perf
package integration
import (
"context"
"fmt"
"io/ioutil"
"log/slog"
"math"
"os"
"path/filepath"
"strconv"
"strings"
"testing"
"time"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/format"
)
var (
// Models that don't work reliably with the large context prompt in this test case
longContextFlakes = []string{
"granite-code:latest",
"nemotron-mini:latest",
"falcon:latest", // 2k model
"falcon2:latest", // 2k model
"minicpm-v:latest",
"qwen:latest",
"solar-pro:latest",
}
)
// Note: this test case can take a long time to run, particularly on models with
// large contexts. Run with -timeout set to a large value to get reasonable coverage
// Example usage:
//
// go test --tags=integration,perf -count 1 ./integration -v -timeout 90m -run TestModelsPerf 2>&1 | tee int.log
// cat int.log | grep MODEL_PERF_HEADER | head -1| cut -f2- -d: > perf.csv
// cat int.log | grep MODEL_PERF_DATA | cut -f2- -d: >> perf.csv
func TestModelsPerf(t *testing.T) {
softTimeout, hardTimeout := getTimeouts(t)
slog.Info("Setting timeouts", "soft", softTimeout, "hard", hardTimeout)
ctx, cancel := context.WithTimeout(context.Background(), hardTimeout)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
// TODO use info API eventually
var maxVram uint64
var err error
if s := os.Getenv("OLLAMA_MAX_VRAM"); s != "" {
maxVram, err = strconv.ParseUint(s, 10, 64)
if err != nil {
t.Fatalf("invalid OLLAMA_MAX_VRAM %v", err)
}
} else {
slog.Warn("No VRAM info available, testing all models, so larger ones might timeout...")
}
data, err := ioutil.ReadFile(filepath.Join("testdata", "shakespeare.txt"))
if err != nil {
t.Fatalf("failed to open test data file: %s", err)
}
longPrompt := "summarize the following: " + string(data)
var chatModels []string
if s := os.Getenv("OLLAMA_NEW_ENGINE"); s != "" {
chatModels = ollamaEngineChatModels
} else {
chatModels = append(ollamaEngineChatModels, llamaRunnerChatModels...)
}
for _, model := range chatModels {
t.Run(model, func(t *testing.T) {
if time.Now().Sub(started) > softTimeout {
t.Skip("skipping remaining tests to avoid excessive runtime")
}
if err := PullIfMissing(ctx, client, model); err != nil {
t.Fatalf("pull failed %s", err)
}
var maxContext int
resp, err := client.Show(ctx, &api.ShowRequest{Model: model})
if err != nil {
t.Fatalf("show failed: %s", err)
}
arch := resp.ModelInfo["general.architecture"].(string)
maxContext = int(resp.ModelInfo[fmt.Sprintf("%s.context_length", arch)].(float64))
if maxVram > 0 {
resp, err := client.List(ctx)
if err != nil {
t.Fatalf("list models failed %v", err)
}
for _, m := range resp.Models {
// For these tests we want to exercise a some amount of overflow on the CPU
if m.Name == model && float32(m.Size)*0.75 > float32(maxVram) {
t.Skipf("model %s is too large %s for available VRAM %s", model, format.HumanBytes(m.Size), format.HumanBytes(int64(maxVram)))
}
}
}
slog.Info("scneario", "model", model, "max_context", maxContext)
loaded := false
defer func() {
// best effort unload once we're done with the model
if loaded {
client.Generate(ctx, &api.GenerateRequest{Model: model, KeepAlive: &api.Duration{Duration: 0}}, func(rsp api.GenerateResponse) error { return nil })
}
}()
// Some models don't handle the long context data well so skip them to avoid flaky test results
longContextFlake := false
for _, flake := range longContextFlakes {
if model == flake {
longContextFlake = true
break
}
}
// iterate through a few context sizes for coverage without excessive runtime
var contexts []int
keepGoing := true
if maxContext > 16384 {
contexts = []int{4096, 8192, 16384, maxContext}
} else if maxContext > 8192 {
contexts = []int{4096, 8192, maxContext}
} else if maxContext > 4096 {
contexts = []int{4096, maxContext}
} else if maxContext > 0 {
contexts = []int{maxContext}
} else {
t.Fatal("unknown max context size")
}
for _, numCtx := range contexts {
if !keepGoing && numCtx > 8192 { // Always try up to 8k before bailing out
break
}
skipLongPrompt := false
// Workaround bug 11172 temporarily...
maxPrompt := longPrompt
// If we fill the context too full with the prompt, many models
// quickly hit context shifting and go bad.
if len(maxPrompt) > numCtx*2 { // typically yields ~1/2 full context
maxPrompt = maxPrompt[:numCtx*2]
}
testCases := []struct {
prompt string
anyResp []string
}{
{"why is the sky blue?", []string{"rayleigh", "scattering", "atmosphere", "nitrogen", "oxygen"}},
{maxPrompt, []string{"shakespeare", "oppression", "sorrows", "gutenberg", "child", "license", "sonnet", "melancholy"}},
}
var gpuPercent int
for _, tc := range testCases {
if len(tc.prompt) > 100 && (longContextFlake || skipLongPrompt) {
slog.Info("skipping long prompt", "model", model, "num_ctx", numCtx, "gpu_percent", gpuPercent)
continue
}
req := api.GenerateRequest{
Model: model,
Prompt: tc.prompt,
KeepAlive: &api.Duration{Duration: 20 * time.Second}, // long enough to ensure a ps returns
Options: map[string]interface{}{
"temperature": 0,
"seed": 123,
"num_ctx": numCtx,
},
}
atLeastOne := false
var resp api.GenerateResponse
stream := false
req.Stream = &stream
// Avoid potentially getting stuck indefinitely
limit := 5 * time.Minute
genCtx, cancel := context.WithDeadlineCause(
ctx,
time.Now().Add(limit),
fmt.Errorf("generate on model %s with ctx %d took longer than %v", model, numCtx, limit),
)
defer cancel()
err = client.Generate(genCtx, &req, func(rsp api.GenerateResponse) error {
resp = rsp
return nil
})
if err != nil {
// Avoid excessive test runs, but don't consider a failure with massive context
if numCtx > 16384 && strings.Contains(err.Error(), "took longer") {
slog.Warn("max context was taking too long, skipping", "error", err)
keepGoing = false
skipLongPrompt = true
continue
}
t.Fatalf("generate error: ctx:%d err:%s", numCtx, err)
}
loaded = true
for _, expResp := range tc.anyResp {
if strings.Contains(strings.ToLower(resp.Response), expResp) {
atLeastOne = true
break
}
}
if !atLeastOne {
t.Fatalf("response didn't contain expected values: ctx:%d expected:%v response:%s ", numCtx, tc.anyResp, resp.Response)
}
models, err := client.ListRunning(ctx)
if err != nil {
slog.Warn("failed to list running models", "error", err)
continue
}
if len(models.Models) > 1 {
slog.Warn("multiple models loaded, may impact performance results", "loaded", models.Models)
}
for _, m := range models.Models {
if m.Name == model {
if m.SizeVRAM == 0 {
slog.Info("Model fully loaded into CPU")
gpuPercent = 0
keepGoing = false
skipLongPrompt = true
} else if m.SizeVRAM == m.Size {
slog.Info("Model fully loaded into GPU")
gpuPercent = 100
} else {
sizeCPU := m.Size - m.SizeVRAM
cpuPercent := math.Round(float64(sizeCPU) / float64(m.Size) * 100)
gpuPercent = int(100 - cpuPercent)
slog.Info("Model split between CPU/GPU", "CPU", cpuPercent, "GPU", gpuPercent)
keepGoing = false
// Heuristic to avoid excessive test run time
if gpuPercent < 90 {
skipLongPrompt = true
}
}
}
}
fmt.Fprintf(os.Stderr, "MODEL_PERF_HEADER:%s,%s,%s,%s,%s,%s,%s\n",
"MODEL",
"CONTEXT",
"GPU PERCENT",
"PROMPT COUNT",
"LOAD TIME",
"PROMPT EVAL TPS",
"EVAL TPS",
)
fmt.Fprintf(os.Stderr, "MODEL_PERF_DATA:%s,%d,%d,%d,%0.2f,%0.2f,%0.2f\n",
model,
numCtx,
gpuPercent,
resp.PromptEvalCount,
float64(resp.LoadDuration)/1000000000.0,
float64(resp.PromptEvalCount)/(float64(resp.PromptEvalDuration)/1000000000.0),
float64(resp.EvalCount)/(float64(resp.EvalDuration)/1000000000.0),
)
}
}
})
}
}

View File

File diff suppressed because one or more lines are too long

124456
integration/testdata/shakespeare.txt vendored Normal file
View File

File diff suppressed because it is too large Load Diff

View File

@@ -9,6 +9,7 @@ import (
"fmt"
"io"
"log/slog"
"math"
"math/rand"
"net"
"net/http"
@@ -25,15 +26,245 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/app/lifecycle"
"github.com/ollama/ollama/format"
"github.com/stretchr/testify/require"
)
const (
smol = "llama3.2:1b"
var (
smol = "llama3.2:1b"
stream = false
)
func Init() {
var (
started = time.Now()
// Note: add newer models at the top of the list to test them first
ollamaEngineChatModels = []string{
"gpt-oss:20b",
"gemma3n:e2b",
"mistral-small3.2:latest",
"deepseek-r1:1.5b",
"llama3.2-vision:latest",
"qwen2.5-coder:latest",
"qwen2.5vl:3b",
"qwen3:0.6b", // dense
"qwen3:30b", // MOE
"gemma3:1b",
"llama3.1:latest",
"llama3.2:latest",
"gemma2:latest",
"minicpm-v:latest", // arch=qwen2
"granite-code:latest", // arch=llama
}
llamaRunnerChatModels = []string{
"mistral:latest",
"falcon3:latest",
"granite3-moe:latest",
"command-r:latest",
"nemotron-mini:latest",
"phi3.5:latest",
"solar-pro:latest",
"internlm2:latest",
"codellama:latest", // arch=llama
"phi3:latest",
"falcon2:latest",
"gemma:latest",
"llama2:latest",
"nous-hermes:latest",
"orca-mini:latest",
"qwen:latest",
"stablelm2:latest", // Predictions are off, crashes on small VRAM GPUs
"falcon:latest",
}
// Some library models are quite large - ensure large VRAM and sufficient disk space
// before running scenarios based on this set
libraryChatModels = []string{
"alfred",
"athene-v2",
"aya-expanse",
"aya",
"bakllava",
"bespoke-minicheck",
"codebooga",
"codegeex4",
"codegemma",
"codellama",
"codeqwen",
"codestral",
"codeup",
"cogito",
"command-a",
"command-r-plus",
"command-r",
"command-r7b-arabic",
"command-r7b",
"dbrx",
"deepcoder",
"deepscaler",
"deepseek-coder-v2",
"deepseek-coder",
"deepseek-llm",
"deepseek-r1",
// "deepseek-v2.5", // requires 155 GB VRAM
"deepseek-v2",
// "deepseek-v3", // requires 482 GB VRAM
"devstral",
"dolphin-llama3",
"dolphin-mistral",
"dolphin-mixtral",
"dolphin-phi",
"dolphin3",
"dolphincoder",
"duckdb-nsql",
"everythinglm",
"exaone-deep",
"exaone3.5",
"falcon",
"falcon2",
"falcon3",
"firefunction-v2",
"gemma",
"gemma2",
"gemma3",
"gemma3n",
"glm4",
"goliath",
"gpt-oss:20b",
"granite-code",
"granite3-dense",
"granite3-guardian",
"granite3-moe",
"granite3.1-dense",
"granite3.1-moe",
"granite3.2-vision",
"granite3.2",
"granite3.3",
"hermes3",
"internlm2",
"llama-guard3",
"llama-pro",
"llama2-chinese",
"llama2-uncensored",
"llama2",
"llama3-chatqa",
"llama3-gradient",
"llama3-groq-tool-use",
"llama3.1",
"llama3.2-vision",
"llama3.2",
"llama3.3",
"llama3",
"llama4",
"llava-llama3",
"llava-phi3",
"llava",
"magicoder",
"magistral",
"marco-o1",
"mathstral",
"meditron",
"medllama2",
"megadolphin",
"minicpm-v",
"mistral-large",
"mistral-nemo",
"mistral-openorca",
"mistral-small",
"mistral-small3.1",
"mistral-small3.2",
"mistral",
"mistrallite",
"mixtral",
"moondream",
"nemotron-mini",
"nemotron",
"neural-chat",
"nexusraven",
"notus",
"nous-hermes",
"nous-hermes2-mixtral",
"nous-hermes2",
"nuextract",
"olmo2",
"open-orca-platypus2",
"openchat",
"opencoder",
"openhermes",
"openthinker",
"orca-mini",
"orca2",
// "phi", // unreliable
"phi3.5",
"phi3",
"phi4-mini-reasoning",
"phi4-mini",
"phi4-reasoning",
"phi4",
"phind-codellama",
"qwen",
"qwen2-math",
"qwen2.5-coder",
"qwen2.5",
"qwen2.5vl",
"qwen2",
"qwen3:0.6b", // dense
"qwen3:30b", // MOE
"qwq",
"r1-1776",
"reader-lm",
"reflection",
"sailor2",
"samantha-mistral",
"shieldgemma",
"smallthinker",
"smollm",
"smollm2",
"solar-pro",
"solar",
"sqlcoder",
"stable-beluga",
"stable-code",
"stablelm-zephyr",
"stablelm2",
"starcoder",
"starcoder2",
"starling-lm",
"tinydolphin",
"tinyllama",
"tulu3",
"vicuna",
"wizard-math",
"wizard-vicuna-uncensored",
"wizard-vicuna",
"wizardcoder",
"wizardlm-uncensored",
"wizardlm2",
"xwinlm",
"yarn-llama2",
"yarn-mistral",
"yi-coder",
"yi",
"zephyr",
}
libraryEmbedModels = []string{
"all-minilm",
"bge-large",
"bge-m3",
"granite-embedding",
"mxbai-embed-large",
"nomic-embed-text",
"paraphrase-multilingual",
"snowflake-arctic-embed",
"snowflake-arctic-embed2",
}
)
func init() {
lifecycle.InitLogging()
custom := os.Getenv("OLLAMA_TEST_SMOL_MODEL")
if custom != "" {
slog.Info("setting smol test model to " + custom)
smol = custom
}
}
func FindPort() string {
@@ -205,7 +436,9 @@ func InitServerConnection(ctx context.Context, t *testing.T) (*api.Client, strin
}
lifecycle.ServerLogFile = fp.Name()
fp.Close()
require.NoError(t, startServer(t, ctx, testEndpoint))
if err := startServer(t, ctx, testEndpoint); err != nil {
t.Fatal(err)
}
}
return client, testEndpoint, func() {
@@ -238,19 +471,25 @@ func InitServerConnection(ctx context.Context, t *testing.T) (*api.Client, strin
func GenerateTestHelper(ctx context.Context, t *testing.T, genReq api.GenerateRequest, anyResp []string) {
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
require.NoError(t, PullIfMissing(ctx, client, genReq.Model))
if err := PullIfMissing(ctx, client, genReq.Model); err != nil {
t.Fatal(err)
}
DoGenerate(ctx, t, client, genReq, anyResp, 30*time.Second, 10*time.Second)
}
func DoGenerate(ctx context.Context, t *testing.T, client *api.Client, genReq api.GenerateRequest, anyResp []string, initialTimeout, streamTimeout time.Duration) {
func DoGenerate(ctx context.Context, t *testing.T, client *api.Client, genReq api.GenerateRequest, anyResp []string, initialTimeout, streamTimeout time.Duration) []int {
stallTimer := time.NewTimer(initialTimeout)
var buf bytes.Buffer
var context []int
fn := func(response api.GenerateResponse) error {
// fmt.Print(".")
buf.Write([]byte(response.Response))
if !stallTimer.Reset(streamTimeout) {
return errors.New("stall was detected while streaming response, aborting")
}
if len(response.Context) > 0 {
context = response.Context
}
return nil
}
@@ -263,6 +502,22 @@ func DoGenerate(ctx context.Context, t *testing.T, client *api.Client, genReq ap
done <- 0
}()
var response string
verify := func() {
// Verify the response contains the expected data
response = buf.String()
atLeastOne := false
for _, resp := range anyResp {
if strings.Contains(strings.ToLower(response), resp) {
atLeastOne = true
break
}
}
if !atLeastOne {
t.Fatalf("%s: none of %v found in %s", genReq.Model, anyResp, response)
}
}
select {
case <-stallTimer.C:
if buf.Len() == 0 {
@@ -271,21 +526,23 @@ func DoGenerate(ctx context.Context, t *testing.T, client *api.Client, genReq ap
t.Errorf("generate stalled. Response so far:%s", buf.String())
}
case <-done:
require.NoError(t, genErr, "failed with %s request prompt %s ", genReq.Model, genReq.Prompt)
// Verify the response contains the expected data
response := buf.String()
atLeastOne := false
for _, resp := range anyResp {
if strings.Contains(strings.ToLower(response), resp) {
atLeastOne = true
break
}
if genErr != nil && strings.Contains(genErr.Error(), "model requires more system memory") {
slog.Warn("model is too large for the target test system", "model", genReq.Model, "error", genErr)
return context
}
require.True(t, atLeastOne, "%s: none of %v found in %s", genReq.Model, anyResp, response)
if genErr != nil {
t.Fatalf("%s failed with %s request prompt %s", genErr, genReq.Model, genReq.Prompt)
}
verify()
slog.Info("test pass", "model", genReq.Model, "prompt", genReq.Prompt, "contains", anyResp, "response", response)
case <-ctx.Done():
t.Error("outer test context done while waiting for generate")
// On slow systems, we might timeout before some models finish rambling, so check what we have so far to see
// if it's considered a pass - the stallTimer will detect hangs, but we want to consider slow systems a pass
// if they are still generating valid responses
slog.Warn("outer test context done while waiting for generate")
verify()
}
return context
}
// Generate a set of requests
@@ -294,65 +551,132 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
return []api.GenerateRequest{
{
Model: smol,
Prompt: "why is the ocean blue?",
Prompt: "why is the ocean blue? Be brief but factual in your reply",
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
}, {
Model: smol,
Prompt: "why is the color of dirt brown?",
Prompt: "why is the color of dirt brown? Be brief but factual in your reply",
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
}, {
Model: smol,
Prompt: "what is the origin of the us thanksgiving holiday?",
Prompt: "how do rainbows form? Be brief but factual in your reply",
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
}, {
Model: smol,
Prompt: "what is the origin of independence day?",
Prompt: "what is the origin of independence day? Be brief but factual in your reply",
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
}, {
Model: smol,
Prompt: "what is the composition of air?",
Prompt: "what is the composition of air? Be brief but factual in your reply",
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
},
},
[][]string{
{"sunlight"},
{"soil", "organic", "earth", "black", "tan"},
{"england", "english", "massachusetts", "pilgrims", "british"},
{"sunlight", "scattering", "interact", "color", "surface", "depth", "red", "orange", "yellow", "absorbs", "wavelength"},
{"soil", "organic", "earth", "black", "tan", "chemical", "processes", "pigments", "particles", "iron oxide", "rust", "air", "water", "mixture", "mixing"},
{"water", "droplet", "refracted", "reflect", "color", "spectrum"},
{"fourth", "july", "declaration", "independence"},
{"nitrogen", "oxygen", "carbon", "dioxide"},
{"nitrogen", "oxygen", "carbon", "dioxide", "water", "vapor"},
}
}
func DoChat(ctx context.Context, t *testing.T, client *api.Client, req api.ChatRequest, anyResp []string, initialTimeout, streamTimeout time.Duration) *api.Message {
stallTimer := time.NewTimer(initialTimeout)
var buf bytes.Buffer
role := "assistant"
fn := func(response api.ChatResponse) error {
// fmt.Print(".")
role = response.Message.Role
buf.Write([]byte(response.Message.Content))
if !stallTimer.Reset(streamTimeout) {
return errors.New("stall was detected while streaming response, aborting")
}
return nil
}
stream := true
req.Stream = &stream
done := make(chan int)
var genErr error
go func() {
genErr = client.Chat(ctx, &req, fn)
done <- 0
}()
var response string
verify := func() {
// Verify the response contains the expected data
response = buf.String()
atLeastOne := false
for _, resp := range anyResp {
if strings.Contains(strings.ToLower(response), resp) {
atLeastOne = true
break
}
}
if !atLeastOne {
t.Fatalf("%s: none of %v found in \"%s\" -- request was:%v", req.Model, anyResp, response, req.Messages)
}
}
select {
case <-stallTimer.C:
if buf.Len() == 0 {
t.Errorf("generate never started. Timed out after :%s", initialTimeout.String())
} else {
t.Errorf("generate stalled. Response so far:%s", buf.String())
}
case <-done:
if genErr != nil && strings.Contains(genErr.Error(), "model requires more system memory") {
slog.Warn("model is too large for the target test system", "model", req.Model, "error", genErr)
return nil
}
if genErr != nil {
t.Fatalf("%s failed with %s request prompt %v", genErr, req.Model, req.Messages)
}
verify()
slog.Info("test pass", "model", req.Model, "messages", req.Messages, "contains", anyResp, "response", response)
case <-ctx.Done():
// On slow systems, we might timeout before some models finish rambling, so check what we have so far to see
// if it's considered a pass - the stallTimer will detect hangs, but we want to consider slow systems a pass
// if they are still generating valid responses
slog.Warn("outer test context done while waiting for chat")
verify()
}
return &api.Message{Role: role, Content: buf.String()}
}
func ChatRequests() ([]api.ChatRequest, [][]string) {
genReqs, results := GenerateRequests()
reqs := make([]api.ChatRequest, len(genReqs))
// think := api.ThinkValue{Value: "low"}
for i := range reqs {
reqs[i].Model = genReqs[i].Model
reqs[i].Stream = genReqs[i].Stream
reqs[i].KeepAlive = genReqs[i].KeepAlive
// reqs[i].Think = &think
reqs[i].Messages = []api.Message{
{
Role: "user",
Content: genReqs[i].Prompt,
},
}
}
return reqs, results
}
func skipUnderMinVRAM(t *testing.T, gb uint64) {
// TODO use info API in the future
if s := os.Getenv("OLLAMA_MAX_VRAM"); s != "" {
maxVram, err := strconv.ParseUint(s, 10, 64)
require.NoError(t, err)
if err != nil {
t.Fatal(err)
}
// Don't hammer on small VRAM cards...
if maxVram < gb*format.GibiByte {
t.Skip("skipping with small VRAM to avoid timeouts")
@@ -360,6 +684,39 @@ func skipUnderMinVRAM(t *testing.T, gb uint64) {
}
}
// Skip if the target model isn't X% GPU loaded to avoid excessive runtime
func skipIfNotGPULoaded(ctx context.Context, t *testing.T, client *api.Client, model string, minPercent int) {
models, err := client.ListRunning(ctx)
if err != nil {
t.Fatalf("failed to list running models: %s", err)
}
loaded := []string{}
for _, m := range models.Models {
loaded = append(loaded, m.Name)
if m.Name != model {
continue
}
gpuPercent := 0
switch {
case m.SizeVRAM == 0:
gpuPercent = 0
case m.SizeVRAM == m.Size:
gpuPercent = 100
case m.SizeVRAM > m.Size || m.Size == 0:
t.Logf("unexpected size detected: %d", m.SizeVRAM)
default:
sizeCPU := m.Size - m.SizeVRAM
cpuPercent := math.Round(float64(sizeCPU) / float64(m.Size) * 110)
gpuPercent = int(100 - cpuPercent)
}
if gpuPercent < minPercent {
t.Skip(fmt.Sprintf("test requires minimum %d%% GPU load, but model %s only has %d%%", minPercent, model, gpuPercent))
}
return
}
t.Skip(fmt.Sprintf("model %s not loaded - actually loaded: %v", model, loaded))
}
func getTimeouts(t *testing.T) (soft time.Duration, hard time.Duration) {
deadline, hasDeadline := t.Deadline()
if !hasDeadline {

View File

@@ -19,17 +19,32 @@ type shiftFn func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, e
// The tensors are of shape embed dim, kv heads, batch size
// The mask is of shape history size, batch size
type Causal struct {
DType ml.DType
windowSize int32
chunkSize int32
DType ml.DType
// swaWindowSize is the number of tokens that will be included in the mask
// during attention operations. swaMemorySize is the number of tokens that
// will be retained in memory for partial prefix caching. Set to math.MaxInt32
// for unlimited or if sliding window attention is not being used.
swaWindowSize int32
swaMemorySize int32
chunkSize int32
opts CausalOptions
// maxBatch is the largest batch that we might receive
maxBatch int
// config controls mostly backend-specific optimizations
config *ml.CacheConfig
// ** current forward pass **
// curReserve indicates that this forward pass is only for
// memory reservation and we should not update our metadata
// based on it.
curReserve bool
// the active layer for Get and Put
curLayer int
@@ -80,32 +95,41 @@ type cellRange struct {
func NewCausalCache(shift shiftFn) *Causal {
return &Causal{
windowSize: math.MaxInt32,
shiftFn: shift,
ctxs: make(map[int]ml.Context),
keys: make(map[int]ml.Tensor),
values: make(map[int]ml.Tensor),
shiftFn: shift,
ctxs: make(map[int]ml.Context),
keys: make(map[int]ml.Tensor),
values: make(map[int]ml.Tensor),
}
}
func NewSWACache(windowSize int32, shift shiftFn) *Causal {
return &Causal{
windowSize: windowSize,
shiftFn: shift,
ctxs: make(map[int]ml.Context),
keys: make(map[int]ml.Tensor),
values: make(map[int]ml.Tensor),
swaWindowSize: windowSize,
shiftFn: shift,
ctxs: make(map[int]ml.Context),
keys: make(map[int]ml.Tensor),
values: make(map[int]ml.Tensor),
}
}
func NewSWAMemCache(windowSize int32, memorySize int32, shift shiftFn) *Causal {
return &Causal{
swaWindowSize: windowSize,
swaMemorySize: memorySize,
shiftFn: shift,
ctxs: make(map[int]ml.Context),
keys: make(map[int]ml.Tensor),
values: make(map[int]ml.Tensor),
}
}
func NewChunkedAttentionCache(chunkSize int32, shift shiftFn) *Causal {
return &Causal{
windowSize: math.MaxInt32,
chunkSize: chunkSize,
shiftFn: shift,
ctxs: make(map[int]ml.Context),
keys: make(map[int]ml.Tensor),
values: make(map[int]ml.Tensor),
chunkSize: chunkSize,
shiftFn: shift,
ctxs: make(map[int]ml.Context),
keys: make(map[int]ml.Tensor),
values: make(map[int]ml.Tensor),
}
}
@@ -130,11 +154,25 @@ func (c *Causal) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity
c.config.MaskDType = ml.DTypeF32
}
if c.swaWindowSize == 0 {
c.swaWindowSize = math.MaxInt32
}
if c.swaMemorySize == 0 {
c.swaMemorySize = c.swaWindowSize
}
if int(c.swaMemorySize) > capacity {
c.swaMemorySize = math.MaxInt32
}
if c.swaMemorySize < c.swaWindowSize {
panic(fmt.Errorf("sliding window memory (%v) must be at least as large as the window (%v)", c.swaMemorySize, c.swaWindowSize))
}
var cacheSize int
if c.windowSize == math.MaxInt32 || capacity < int(c.windowSize) {
if c.swaMemorySize == math.MaxInt32 {
cacheSize = maxSequences * capacity
} else {
cacheSize = (maxSequences * int(c.windowSize)) + maxBatch
cacheSize = (maxSequences * int(c.swaMemorySize)) + maxBatch
}
cacheSize = roundUp(cacheSize, c.config.CachePadding)
c.cells = make([]cacheCell, cacheSize)
@@ -142,6 +180,7 @@ func (c *Causal) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity
c.DType = dtype
c.cellRanges = make(map[int]cellRange)
c.backend = backend
c.maxBatch = maxBatch
}
func (c *Causal) SetConfig(config ml.CacheConfig) {
@@ -159,12 +198,13 @@ func (c *Causal) Close() {
}
func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
c.curReserve = reserve
c.curBatchSize = len(batch.Positions)
c.curSequences = batch.Sequences
c.curPositions = batch.Positions
c.opts.Except = nil
if !reserve {
if !c.curReserve {
c.updateSlidingWindow()
var err error
@@ -174,10 +214,10 @@ func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) e
c.curLoc, err = c.findStartLoc()
}
if err != nil {
slog.Warn("unable to find a kv cache slot", "cache", c)
return err
}
c.curCellRange = newRange()
for i, pos := range batch.Positions {
seq := batch.Sequences[i]
@@ -188,19 +228,12 @@ func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) e
seqRange = newRange()
}
if c.curLoc+i > seqRange.max {
seqRange.max = c.curLoc + i
}
if seqRange.max > c.curCellRange.max {
c.curCellRange.max = seqRange.max
}
seqRange.min = min(seqRange.min, c.curLoc+i)
c.curCellRange.min = min(c.curCellRange.min, c.curLoc+i)
seqRange.max = max(seqRange.max, c.curLoc+i)
c.curCellRange.max = max(c.curCellRange.max, c.curLoc+i)
if c.curLoc+i < seqRange.min {
seqRange.min = c.curLoc + i
}
if seqRange.min < c.curCellRange.min {
c.curCellRange.min = seqRange.min
}
c.cellRanges[seq] = seqRange
}
} else {
@@ -211,10 +244,9 @@ func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) e
c.curCellRange.max = len(c.cells) - 1
}
var err error
c.curMask, err = c.buildMask(ctx)
c.curMask = c.buildMask(ctx)
return err
return nil
}
func newRange() cellRange {
@@ -243,7 +275,16 @@ func (c *Causal) findStartLoc() (int, error) {
}
func (c *Causal) updateSlidingWindow() {
if c.windowSize == math.MaxInt32 {
c.curCellRange = newRange()
if c.swaMemorySize == math.MaxInt32 {
for _, seq := range c.curSequences {
if seqRange, ok := c.cellRanges[seq]; ok {
c.curCellRange.min = min(c.curCellRange.min, seqRange.min)
c.curCellRange.max = max(c.curCellRange.max, seqRange.max)
}
}
return
}
@@ -273,12 +314,16 @@ func (c *Causal) updateSlidingWindow() {
for i := oldRange.min; i <= oldRange.max; i++ {
if slices.Contains(c.cells[i].sequences, seq) {
if c.cells[i].pos < pos-c.windowSize {
if c.cells[i].pos < pos-c.swaMemorySize {
c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == seq })
} else {
newRange.min = min(newRange.min, i)
newRange.max = max(newRange.max, i)
}
if c.cells[i].pos >= pos-c.swaWindowSize {
c.curCellRange.min = min(c.curCellRange.min, i)
c.curCellRange.max = max(c.curCellRange.max, i)
}
}
}
@@ -297,7 +342,7 @@ func roundUp(length, pad int) int {
// Builds a mask of history x batch indicating whether for each token in the batch the
// token in the history should apply. This is based on both the sequence and causality (the
// position of the history is not ahead of the token in the batch).
func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
// Align and pad the two dimensions as required by the backend
batchSize := roundUp(c.curBatchSize, c.config.MaskBatchPadding)
@@ -305,6 +350,11 @@ func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
c.curCellRange.max = roundUp(c.curCellRange.max+1, c.config.CachePadding) - 1
length := c.curCellRange.max - c.curCellRange.min + 1
if c.curReserve {
return ctx.Input().Empty(c.config.MaskDType, length, batchSize)
}
mask := make([]float32, batchSize*length)
for i := range c.curBatchSize {
@@ -313,7 +363,7 @@ func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
if !slices.Contains(c.cells[j].sequences, c.curSequences[i]) ||
(enabled && c.cells[j].pos > c.curPositions[i]) ||
c.chunkSize > 0 && c.cells[j].pos < c.curPositions[i]-c.curPositions[i]%c.chunkSize ||
c.cells[j].pos < c.curPositions[i]-c.windowSize {
c.cells[j].pos < c.curPositions[i]-c.swaWindowSize {
mask[i*length+(j-c.curCellRange.min)] = float32(math.Inf(-1))
}
}
@@ -325,18 +375,13 @@ func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
mask[i] = float32(math.Inf(-1))
}
maskTensor, err := ctx.Input().FromFloatSlice(mask, length, batchSize)
if err != nil {
return nil, err
}
maskTensor := ctx.Input().FromFloatSlice(mask, length, batchSize)
if c.config.MaskDType != ml.DTypeF32 {
out := ctx.Input().Empty(c.config.MaskDType, maskTensor.Shape()...)
ctx.Forward(maskTensor.Copy(ctx, out))
maskTensor = out
maskTensor = maskTensor.Cast(ctx, c.config.MaskDType)
}
return maskTensor, nil
return maskTensor
}
func (c *Causal) moveCells(ctx ml.Context, src, dst, length int) {
@@ -474,6 +519,8 @@ func (c *Causal) defrag() {
c.cellRanges[seq] = seqRange
}
c.updateSlidingWindow()
}
func (c *Causal) SetLayer(layer int) {
@@ -491,12 +538,7 @@ func (c *Causal) SetCausal(ctx ml.Context, opts CausalOptions) {
if !slices.Equal(c.opts.Except, opts.Except) {
c.opts = opts
if ctx != nil {
var err error
c.curMask, err = c.buildMask(ctx)
if err != nil {
// This error should never occur because we have previously built a mask with the same shape
panic(fmt.Errorf("SetCausal: %w", err))
}
c.curMask = c.buildMask(ctx)
}
}
}
@@ -604,7 +646,7 @@ func (c *Causal) CopyPrefix(srcSeq, dstSeq int, len int32) {
}
func (c *Causal) CanResume(seq int, pos int32) bool {
if c.windowSize == math.MaxInt32 {
if c.swaMemorySize == math.MaxInt32 {
return true
}
@@ -626,8 +668,8 @@ func (c *Causal) CanResume(seq int, pos int32) bool {
return false
}
lastWindowStart := max(0, last-c.windowSize)
posWindowStart := max(0, pos-c.windowSize)
lastWindowStart := max(0, last-c.swaMemorySize)
posWindowStart := max(0, pos-c.swaWindowSize)
return posWindowStart >= lastWindowStart
}
@@ -637,51 +679,64 @@ func (c *Causal) shift(seq int, beginIndex, offset int32) error {
return ErrNotSupported
}
ctx := c.backend.NewContext()
defer ctx.Close()
seqRange := c.cellRanges[seq]
size := seqRange.max - seqRange.min + 1
offsets := make([]int32, size)
for i := range offsets {
cell := c.cells[seqRange.min+i]
for start := seqRange.min; start <= seqRange.max; start += c.maxBatch {
size := min(seqRange.max-start+1, c.maxBatch)
offsets := make([]int32, size)
if slices.Contains(cell.sequences, seq) && cell.pos >= beginIndex {
offsets[i] = offset
var batchFirst, batchLast int
batchFirst = -1
for i := range offsets {
cell := c.cells[start+i]
if slices.Contains(cell.sequences, seq) && cell.pos >= beginIndex {
offsets[i] = offset
if batchFirst < 0 {
batchFirst = i
}
batchLast = i
}
}
}
kShift, err := ctx.Input().FromIntSlice(offsets, len(offsets))
if err != nil {
return err
}
for i, key := range c.keys {
if key == nil {
if batchFirst < 0 {
continue
}
kHeadDim := key.Dim(0)
numKVHeads := key.Dim(1)
rowSize := key.Stride(2)
offsets = offsets[batchFirst : batchLast+1]
key = key.View(ctx, rowSize*seqRange.min,
kHeadDim, key.Stride(1),
numKVHeads, key.Stride(2),
size,
)
ctx := c.backend.NewContext()
kShift := ctx.Input().FromIntSlice(offsets, len(offsets))
roped, err := c.shiftFn(ctx, i, key, kShift)
if err != nil {
return err
for i, key := range c.keys {
if key == nil {
continue
}
kHeadDim := key.Dim(0)
numKVHeads := key.Dim(1)
rowSize := key.Stride(2)
key = key.View(ctx, rowSize*(start+batchFirst),
kHeadDim, key.Stride(1),
numKVHeads, key.Stride(2),
len(offsets),
)
roped, err := c.shiftFn(ctx, i, key, kShift)
if err != nil {
ctx.Close()
return err
}
ctx.Forward(roped.Copy(ctx, key))
}
ctx.Forward(roped.Copy(ctx, key))
ctx.Compute()
ctx.Close()
}
ctx.Compute()
return nil
}

View File

@@ -60,6 +60,8 @@ func TestSWA(t *testing.T) {
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
x := float32(math.Inf(-1))
tests := []testCase{
{
name: "FirstBatch",
@@ -69,7 +71,12 @@ func TestSWA(t *testing.T) {
pos: []int32{0, 1, 2, 3},
expected: []float32{1, 2, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
expectedMask: []float32{
0, x, x, x,
0, 0, x, x,
x, 0, 0, x,
x, x, 0, 0,
},
},
{
name: "SecondBatch",
@@ -79,7 +86,53 @@ func TestSWA(t *testing.T) {
pos: []int32{4, 5},
expected: []float32{5, 6, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1))},
expectedMask: []float32{
0, x, x, 0,
0, 0, x, x,
},
},
}
testCache(t, backend, cache, tests)
}
func TestSWAMem(t *testing.T) {
backend := &testBackend{}
cache := NewSWAMemCache(1, 3, nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
x := float32(math.Inf(-1))
tests := []testCase{
{
name: "FirstBatch",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 0, 0},
pos: []int32{0, 1, 2, 3},
expected: []float32{1, 2, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{
0, x, x, x,
0, 0, x, x,
x, 0, 0, x,
x, x, 0, 0,
},
},
{
name: "SecondBatch",
in: []float32{5, 6},
inShape: []int{1, 1, 2},
seqs: []int{0, 0},
pos: []int32{4, 5},
expected: []float32{4, 5, 6},
expectedShape: []int{1, 1, 3},
expectedMask: []float32{
0, 0, x,
x, 0, 0,
},
},
}
@@ -344,7 +397,7 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
}
cache.SetLayer(0)
tensor, _ := context.FromFloatSlice(test.in, test.inShape...)
tensor := context.FromFloatSlice(test.in, test.inShape...)
cache.Put(context, tensor, tensor)
out, _, mask := cache.Get(context)
@@ -386,7 +439,7 @@ func TestCanResume(t *testing.T) {
}
cache.SetLayer(0)
tensor, _ := context.FromFloatSlice([]float32{1, 2, 3, 4}, 1, 1, 4)
tensor := context.FromFloatSlice([]float32{1, 2, 3, 4}, 1, 1, 4)
cache.Put(context, tensor, tensor)
// with window size 4, nothing has slid out of the window yet
@@ -413,7 +466,7 @@ func TestCanResume(t *testing.T) {
}
cache.SetLayer(0)
tensor, _ = context.FromFloatSlice([]float32{5, 6}, 1, 1, 2)
tensor = context.FromFloatSlice([]float32{5, 6}, 1, 1, 2)
cache.Put(context, tensor, tensor)
// only the latest position has overlapping windows
@@ -437,6 +490,70 @@ func TestCanResume(t *testing.T) {
}
}
func TestCanResumeSWAMem(t *testing.T) {
backend := &testBackend{}
windowSize := int32(4)
memSize := int32(5)
cache := NewSWAMemCache(windowSize, memSize, nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
context := backend.NewContext()
defer context.Close()
err := cache.StartForward(context, input.Batch{
Positions: []int32{0, 1, 2, 3, 4, 5},
Sequences: []int{0, 0, 0, 0, 0, 0},
}, false)
if err != nil {
t.Fatalf("StartForward failed: %v", err)
}
cache.SetLayer(0)
tensor := context.FromFloatSlice([]float32{1, 2, 3, 4, 5, 6}, 1, 1, 6)
cache.Put(context, tensor, tensor)
// shift window by adding position 6
err = cache.StartForward(context, input.Batch{
Positions: []int32{6, 7},
Sequences: []int{0, 0},
}, false)
if err != nil {
t.Fatalf("StartForward failed: %v", err)
}
cache.SetLayer(0)
tensor = context.FromFloatSlice([]float32{7, 8}, 1, 1, 2)
cache.Put(context, tensor, tensor)
// only the latest position has overlapping windows
if cache.CanResume(0, 0) {
t.Errorf("after shift: CanResume(0, 0) = true, want false (outside window)")
}
if cache.CanResume(0, 1) {
t.Errorf("after shift: CanResume(0, 1) = true, want false (outside window)")
}
if cache.CanResume(0, 2) {
t.Errorf("after shift: CanResume(0, 2) = true, want false (outside window)")
}
if cache.CanResume(0, 3) {
t.Errorf("after shift: CanResume(0, 3) = true, want false (outside window)")
}
if cache.CanResume(0, 4) {
t.Errorf("after shift: CanResume(0, 4) = true, want false (outside window)")
}
if cache.CanResume(0, 5) {
t.Errorf("after shift: CanResume(0, 5) = true, want false (outside window)")
}
if !cache.CanResume(0, 6) {
t.Errorf("after shift: CanResume(0, 6) = false, want true (inside window)")
}
if !cache.CanResume(0, 7) {
t.Errorf("after shift: CanResume(0, 7) = false, want true (latest position)")
}
}
type testBackend struct {
ml.Backend
}
@@ -470,24 +587,24 @@ func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
return c.Empty(dtype, shape...)
}
func (c *testContext) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
func (c *testContext) FromFloatSlice(s []float32, shape ...int) ml.Tensor {
t := c.Empty(ml.DTypeF32, shape...).(*testTensor)
copy(t.data, s)
return t, nil
return t
}
func (c *testContext) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
func (c *testContext) FromIntSlice(s []int32, shape ...int) ml.Tensor {
f := make([]float32, len(s))
for i := range f {
f[i] = float32(s[i])
}
out, _ := c.FromFloatSlice(f, shape...)
out := c.FromFloatSlice(f, shape...)
out.(*testTensor).dtype = ml.DTypeI32
return out, nil
return out
}
func (c *testContext) Arange(start, stop, step float32, dtype ml.DType) ml.Tensor {
@@ -496,7 +613,7 @@ func (c *testContext) Arange(start, stop, step float32, dtype ml.DType) ml.Tenso
s = append(s, i)
}
out, _ := c.FromFloatSlice(s, len(s))
out := c.FromFloatSlice(s, len(s))
out.(*testTensor).dtype = dtype
return out
}
@@ -508,7 +625,7 @@ func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }
func (c *testContext) Compute(...ml.Tensor) {}
func (c *testContext) Reserve() error { return nil }
func (c *testContext) Reserve() {}
func (c *testContext) MaxGraphNodes() int {
return 10

2
llama/build-info.cpp generated vendored
View File

@@ -1,4 +1,4 @@
int LLAMA_BUILD_NUMBER = 0;
char const *LLAMA_COMMIT = "de4c07f93783a1a96456a44dc16b9db538ee1618";
char const *LLAMA_COMMIT = "e54d41befcc1575f4c898c5ff4ef43970cead75f";
char const *LLAMA_COMPILER = "";
char const *LLAMA_BUILD_TARGET = "";

View File

@@ -1,23 +1,32 @@
protect **/*.go
include common/
include common/base64.*
include common/common.*
include common/json-schema-to-grammar.*
include common/json.*
include common/log.*
include common/sampling.*
include common/stb_image.*
include include/
include include/llama.*
include include/llama-*.*
include tools/
include tools/mtmd/
include tools/mtmd/clip.*
include tools/mtmd/clip-impl.*
include tools/mtmd/llava.*
include src/
include src/llama.*
include src/llama-*.*
include src/unicode-data.*
include src/unicode.*
exclude *
protect .rsync-filter
protect *.go
include /common/
include /common/base64.*
include /common/common.*
include /common/json-schema-to-grammar.*
include /common/json.*
include /common/log.*
include /common/sampling.*
include /include/
include /include/llama.*
include /include/llama-*.*
include /tools/
include /tools/mtmd/
include /tools/mtmd/*.h
include /tools/mtmd/clip.cpp
include /tools/mtmd/mtmd.cpp
include /tools/mtmd/mtmd-audio.cpp
include /tools/mtmd/mtmd-helper.cpp
include /src/
include /src/llama.*
include /src/llama-*.*
include /src/unicode-data.*
include /src/unicode.*
include /vendor/
include /vendor/miniaudio/
include /vendor/miniaudio/*.h
include /vendor/nlohmann/
include /vendor/nlohmann/*.hpp
include /vendor/stb/
include /vendor/stb/*.h
hide *

View File

@@ -203,6 +203,7 @@ bool set_process_priority(enum ggml_sched_priority prio) {
DWORD p = NORMAL_PRIORITY_CLASS;
switch (prio) {
case GGML_SCHED_PRIO_LOW: p = BELOW_NORMAL_PRIORITY_CLASS; break;
case GGML_SCHED_PRIO_NORMAL: p = NORMAL_PRIORITY_CLASS; break;
case GGML_SCHED_PRIO_MEDIUM: p = ABOVE_NORMAL_PRIORITY_CLASS; break;
case GGML_SCHED_PRIO_HIGH: p = HIGH_PRIORITY_CLASS; break;
@@ -228,6 +229,7 @@ bool set_process_priority(enum ggml_sched_priority prio) {
int p = 0;
switch (prio) {
case GGML_SCHED_PRIO_LOW: p = 5; break;
case GGML_SCHED_PRIO_NORMAL: p = 0; break;
case GGML_SCHED_PRIO_MEDIUM: p = -5; break;
case GGML_SCHED_PRIO_HIGH: p = -10; break;
@@ -443,9 +445,37 @@ void string_replace_all(std::string & s, const std::string & search, const std::
s = std::move(builder);
}
bool string_ends_with(const std::string_view & str, const std::string_view & suffix) {
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
}
bool string_remove_suffix(std::string & str, const std::string_view & suffix) {
bool has_suffix = string_ends_with(str, suffix);
if (has_suffix) {
str = str.substr(0, str.size() - suffix.size());
}
return has_suffix;
}
size_t string_find_partial_stop(const std::string_view & str, const std::string_view & stop) {
if (!str.empty() && !stop.empty()) {
const char text_last_char = str.back();
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) {
if (stop[char_index] == text_last_char) {
const auto current_partial = stop.substr(0, char_index + 1);
if (string_ends_with(str, current_partial)) {
return str.size() - char_index - 1;
}
}
}
}
return std::string::npos;
}
std::string regex_escape(const std::string & s) {
static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
return std::regex_replace(s, special_chars, "\\$0");
return std::regex_replace(s, special_chars, "\\$&");
}
std::string string_join(const std::vector<std::string> & values, const std::string & separator) {
@@ -685,11 +715,17 @@ bool fs_validate_filename(const std::string & filename) {
// disable C++17 deprecation warning for std::codecvt_utf8
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
#elif defined(__GNUC__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
#if defined(__clang__)
# pragma clang diagnostic pop
#elif defined(__GNUC__)
# pragma GCC diagnostic pop
#endif
filename_utf32 = converter.from_bytes(filename);
@@ -746,6 +782,9 @@ bool fs_validate_filename(const std::string & filename) {
return true;
}
#include <iostream>
// returns true if successful, false otherwise
bool fs_create_directory_with_parents(const std::string & path) {
#ifdef _WIN32
@@ -763,9 +802,16 @@ bool fs_create_directory_with_parents(const std::string & path) {
// process path from front to back, procedurally creating directories
while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
const std::wstring subpath = wpath.substr(0, pos_slash);
const wchar_t * test = subpath.c_str();
const bool success = CreateDirectoryW(test, NULL);
pos_slash += 1;
// skip the drive letter, in some systems it can return an access denied error
if (subpath.length() == 2 && subpath[1] == ':') {
continue;
}
const bool success = CreateDirectoryW(subpath.c_str(), NULL);
if (!success) {
const DWORD error = GetLastError();
@@ -779,8 +825,6 @@ bool fs_create_directory_with_parents(const std::string & path) {
return false;
}
}
pos_slash += 1;
}
return true;
@@ -830,7 +874,7 @@ std::string fs_get_cache_directory() {
if (getenv("LLAMA_CACHE")) {
cache_directory = std::getenv("LLAMA_CACHE");
} else {
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX)
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX) || defined(__OpenBSD__)
if (std::getenv("XDG_CACHE_HOME")) {
cache_directory = std::getenv("XDG_CACHE_HOME");
} else {
@@ -876,31 +920,6 @@ struct common_init_result common_init_from_params(common_params & params) {
const llama_vocab * vocab = llama_model_get_vocab(model);
if (params.reranking) {
bool ok = true;
if (llama_vocab_bos(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have a BOS token, reranking will not work\n", __func__);
ok = false;
}
if (llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have an EOS token, reranking will not work\n", __func__);
ok = false;
}
if (llama_vocab_sep(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
ok = false;
}
if (!ok) {
llama_model_free(model);
return iparams;
}
}
auto cparams = common_context_params_to_llama(params);
llama_context * lctx = llama_init_from_model(model, cparams);
@@ -910,7 +929,7 @@ struct common_init_result common_init_from_params(common_params & params) {
return iparams;
}
if (params.ctx_shift && !llama_kv_self_can_shift(lctx)) {
if (params.ctx_shift && !llama_memory_can_shift(llama_get_memory(lctx))) {
LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__);
params.ctx_shift = false;
}
@@ -942,6 +961,35 @@ struct common_init_result common_init_from_params(common_params & params) {
}
}
if (llama_pooling_type(lctx) == LLAMA_POOLING_TYPE_RANK) {
bool ok = true;
if (llama_vocab_bos(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have a BOS token, reranking will not work\n", __func__);
ok = false;
}
bool has_eos = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
bool has_sep = llama_vocab_sep(vocab) != LLAMA_TOKEN_NULL;
if (!has_eos && !has_sep) {
LOG_WRN("%s: warning: vocab does not have an EOS token or SEP token, reranking will not work\n", __func__);
ok = false;
} else if (!has_eos) {
LOG_WRN("%s: warning: vocab does not have an EOS token, using SEP token as fallback\n", __func__);
} else if (!has_sep) {
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
ok = false;
}
if (!ok) {
llama_free(lctx);
llama_model_free(model);
return iparams;
}
}
// load and optionally apply lora adapters
for (auto & la : params.lora_adapters) {
llama_adapter_lora_ptr lora;
@@ -966,15 +1014,21 @@ struct common_init_result common_init_from_params(common_params & params) {
params.sampling.ignore_eos = false;
}
if (params.sampling.ignore_eos) {
for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
if (llama_vocab_is_eog(vocab, i)) {
LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(lctx, i).c_str(), -INFINITY);
params.sampling.logit_bias.push_back({i, -INFINITY});
}
// initialize once
for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
if (llama_vocab_is_eog(vocab, i)) {
LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(lctx, i).c_str(), -INFINITY);
params.sampling.logit_bias_eog.push_back({i, -INFINITY});
}
}
if (params.sampling.ignore_eos) {
// add EOG biases to the active set of logit biases
params.sampling.logit_bias.insert(
params.sampling.logit_bias.end(),
params.sampling.logit_bias_eog.begin(), params.sampling.logit_bias_eog.end());
}
if (params.sampling.penalty_last_n == -1) {
LOG_INF("%s: setting penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
params.sampling.penalty_last_n = llama_n_ctx(lctx);
@@ -1017,7 +1071,7 @@ struct common_init_result common_init_from_params(common_params & params) {
if (llama_model_has_decoder(model)) {
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
}
llama_kv_self_clear(lctx);
llama_memory_clear(llama_get_memory(lctx), true);
llama_synchronize(lctx);
llama_perf_context_reset(lctx);
llama_set_warmup(lctx, false);
@@ -1068,6 +1122,7 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
mparams.use_mmap = params.use_mmap;
mparams.use_mlock = params.use_mlock;
mparams.check_tensors = params.check_tensors;
mparams.use_extra_bufts = !params.no_extra_bufts;
if (params.kv_overrides.empty()) {
mparams.kv_overrides = NULL;
@@ -1083,6 +1138,9 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
mparams.tensor_buft_overrides = params.tensor_buft_overrides.data();
}
mparams.progress_callback = params.load_progress_callback;
mparams.progress_callback_user_data = params.load_progress_callback_user_data;
return mparams;
}
@@ -1114,11 +1172,8 @@ struct llama_context_params common_context_params_to_llama(const common_params &
cparams.flash_attn = params.flash_attn;
cparams.no_perf = params.no_perf;
cparams.op_offload = !params.no_op_offload;
if (params.reranking) {
cparams.embeddings = true;
cparams.pooling_type = LLAMA_POOLING_TYPE_RANK;
}
cparams.swa_full = params.swa_full;
cparams.kv_unified = params.kv_unified;
cparams.type_k = params.cache_type_k;
cparams.type_v = params.cache_type_v;
@@ -1252,6 +1307,9 @@ std::vector<llama_token> common_tokenize(
int n_tokens = text.length() + 2 * add_special;
std::vector<llama_token> result(n_tokens);
n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
if (n_tokens == std::numeric_limits<int32_t>::min()) {
throw std::runtime_error("Tokenization failed: input text too large, tokenization result exceeds int32_t limit");
}
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
@@ -1306,81 +1364,6 @@ std::string common_detokenize(const struct llama_vocab * vocab, const std::vecto
return text;
}
//
// KV cache utils
//
void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) {
static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
llama_kv_cache_view_cell * c_curr = view.cells;
llama_seq_id * cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
if (i % row_size == 0) {
printf("\n%5d: ", i);
}
int seq_count = 0;
for (int j = 0; j < view.n_seq_max; j++) {
if (cs_curr[j] >= 0) { seq_count++; }
}
putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]);
}
printf("\n=== Done dumping\n");
}
void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size) {
static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
std::unordered_map<llama_seq_id, size_t> seqs;
llama_kv_cache_view_cell * c_curr = view.cells;
llama_seq_id * cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
for (int j = 0; j < view.n_seq_max; j++) {
if (cs_curr[j] < 0) { continue; }
if (seqs.find(cs_curr[j]) == seqs.end()) {
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
const size_t sz = seqs.size();
seqs[cs_curr[j]] = sz;
}
}
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
}
printf("=== Sequence legend: ");
for (const auto & it : seqs) {
printf("%zu=%d, ", it.second, it.first);
}
printf("'+'=other sequence ids");
c_curr = view.cells;
cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
if (i % row_size == 0) {
printf("\n%5d: ", i);
}
for (int j = 0; j < view.n_seq_max; j++) {
if (cs_curr[j] >= 0) {
const auto & it = seqs.find(cs_curr[j]);
putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+');
} else {
putchar('.');
}
}
putchar(' ');
}
printf("\n=== Done dumping\n");
}
//
// Embedding utils
//

View File

@@ -1,6 +1,6 @@
package common
// #cgo CXXFLAGS: -std=c++11
// #cgo CPPFLAGS: -I${SRCDIR}/../include
// #cgo CXXFLAGS: -std=c++17
// #cgo CPPFLAGS: -I${SRCDIR}/../include -I${SRCDIR}/../vendor
// #cgo CPPFLAGS: -I${SRCDIR}/../../../ml/backend/ggml/ggml/include
import "C"

Some files were not shown because too many files have changed in this diff Show More