Compare commits

...

6 Commits

Author SHA1 Message Date
Daniel Hiltgen
86f9b582d5 Merge pull request #4323 from dhiltgen/sort_by_free
Always use the sorted list of GPUs
2024-05-10 14:12:15 -07:00
Daniel Hiltgen
4142c3ef7c Always use the sorted list of GPUs
Make sure the first GPU has the most free space
2024-05-10 13:53:21 -07:00
Jeffrey Morgan
6602e793c0 Use --quantize flag and quantize api parameter (#4321)
* rename `--quantization` to `--quantize`

* backwards

* Update api/types.go

Co-authored-by: Michael Yang <mxyng@pm.me>

---------

Co-authored-by: Michael Yang <mxyng@pm.me>
2024-05-10 13:06:13 -07:00
Michael Yang
ea0fdaed28 Merge pull request #4320 from ollama/mxyng/phi2-mem
add phi2 mem
2024-05-10 12:35:08 -07:00
Michael Yang
1eb382da5a add phi2 mem 2024-05-10 12:13:28 -07:00
Jeffrey Morgan
bb6fd02298 Don't clamp ctx size in PredictServerFit (#4317)
* dont clamp ctx size in `PredictServerFit`

* minimum 4 context

* remove context warning
2024-05-10 10:17:12 -07:00
7 changed files with 30 additions and 32 deletions

View File

@@ -197,14 +197,17 @@ type EmbeddingResponse struct {
// CreateRequest is the request passed to [Client.Create].
type CreateRequest struct {
Model string `json:"model"`
Path string `json:"path"`
Modelfile string `json:"modelfile"`
Stream *bool `json:"stream,omitempty"`
Quantization string `json:"quantization,omitempty"`
Model string `json:"model"`
Path string `json:"path"`
Modelfile string `json:"modelfile"`
Stream *bool `json:"stream,omitempty"`
Quantize string `json:"quantize,omitempty"`
// Name is deprecated, see Model
Name string `json:"name"`
// Quantization is deprecated, see Quantize
Quantization string `json:"quantization,omitempty"`
}
// DeleteRequest is the request passed to [Client.Delete].

View File

@@ -142,9 +142,9 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
return nil
}
quantization, _ := cmd.Flags().GetString("quantization")
quantize, _ := cmd.Flags().GetString("quantize")
request := api.CreateRequest{Name: args[0], Modelfile: modelfile.String(), Quantization: quantization}
request := api.CreateRequest{Name: args[0], Modelfile: modelfile.String(), Quantize: quantize}
if err := client.Create(cmd.Context(), &request, fn); err != nil {
return err
}
@@ -1051,7 +1051,7 @@ func NewCLI() *cobra.Command {
}
createCmd.Flags().StringP("file", "f", "Modelfile", "Name of the Modelfile (default \"Modelfile\")")
createCmd.Flags().StringP("quantization", "q", "", "Quantization level.")
createCmd.Flags().StringP("quantize", "q", "", "Quantize model to this level (e.g. q4_0)")
showCmd := &cobra.Command{
Use: "show MODEL",

View File

@@ -329,7 +329,10 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
4*batch*(1+4*embedding+context+context*heads),
)
partialOffload = 4*batch*(2*embedding+vocab) + embedding*vocab*105/128
partialOffload = max(
4*batch*(2*embedding+vocab)+embedding*vocab*105/128,
4*batch*(2+3*embedding+context+context*heads),
)
case "stablelm":
fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
partialOffload = max(

View File

@@ -12,17 +12,8 @@ import (
// This algorithm looks for a complete fit to determine if we need to unload other models
func PredictServerFit(allGpus gpu.GpuInfoList, ggml *GGML, adapters, projectors []string, opts api.Options) (bool, uint64) {
var estimatedVRAM uint64
if opts.NumCtx > int(ggml.KV().ContextLength()) {
slog.Warn("requested context length is greater than model max context length", "requested", opts.NumCtx, "model", ggml.KV().ContextLength())
opts.NumCtx = int(ggml.KV().ContextLength())
}
if opts.NumCtx < 4 {
opts.NumCtx = 4
}
// Split up the GPUs by type and try them
var estimatedVRAM uint64
for _, gpus := range allGpus.ByLibrary() {
var layerCount int
layerCount, estimatedVRAM, _ = EstimateGPULayers(gpus, ggml, projectors, opts)

View File

@@ -77,15 +77,7 @@ func LoadModel(model string) (*GGML, error) {
// The gpu list must be a single family.
func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, projectors []string, opts api.Options) (LlamaServer, error) {
var err error
if opts.NumCtx > int(ggml.KV().ContextLength()) {
slog.Warn("requested context length is greater than the model's training context window size", "requested", opts.NumCtx, "training size", ggml.KV().ContextLength())
}
if opts.NumCtx < 4 {
opts.NumCtx = 4
}
cpuRunner := ""
var cpuRunner string
var estimatedVRAM uint64
var estimatedTotal uint64
var systemMemory uint64

View File

@@ -554,7 +554,12 @@ func (s *Server) CreateModelHandler(c *gin.Context) {
ctx, cancel := context.WithCancel(c.Request.Context())
defer cancel()
if err := CreateModel(ctx, name.String(), filepath.Dir(req.Path), strings.ToUpper(req.Quantization), modelfile, fn); err != nil {
quantization := req.Quantization
if req.Quantize != "" {
quantization = req.Quantize
}
if err := CreateModel(ctx, name.String(), filepath.Dir(req.Path), strings.ToUpper(quantization), modelfile, fn); err != nil {
ch <- gin.H{"error": err.Error()}
}
}()

View File

@@ -61,6 +61,10 @@ func InitScheduler(ctx context.Context) *Scheduler {
// context must be canceled to decrement ref count and release the runner
func (s *Scheduler) GetRunner(c context.Context, model *Model, opts api.Options, sessionDuration time.Duration) (chan *runnerRef, chan error) {
// allocate a large enough kv cache for all parallel requests
if opts.NumCtx < 4 {
opts.NumCtx = 4
}
opts.NumCtx = opts.NumCtx * envconfig.NumParallel
req := &LlmRequest{
@@ -563,9 +567,9 @@ func pickBestFitGPUs(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList) gpu.
// - try subsets of GPUs instead of just falling back to 1 or all in a family
// Now try all the GPUs
if ok, estimatedVRAM = llm.PredictServerFit(gl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
slog.Debug("new model will fit in available VRAM, loading", "model", req.model.ModelPath, "library", gl[0].Library, "required", format.HumanBytes2(estimatedVRAM))
return gl
if ok, estimatedVRAM = llm.PredictServerFit(sgl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
slog.Debug("new model will fit in available VRAM, loading", "model", req.model.ModelPath, "library", sgl[0].Library, "required", format.HumanBytes2(estimatedVRAM))
return sgl
}
}
return nil