Compare commits

..

1 Commits

Author SHA1 Message Date
jmorganca
ad7e641815 add batch embeddings 2024-04-26 20:13:33 -04:00
112 changed files with 2582 additions and 4742 deletions

3
.gitignore vendored
View File

@@ -11,5 +11,4 @@ ggml-metal.metal
.idea
test_data
*.crt
llm/build
__debug_bin*
llm/build

View File

@@ -1,5 +1,5 @@
<div align="center">
 <img alt="ollama" height="200px" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
<img alt="ollama" height="200px" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
</div>
# Ollama
@@ -51,7 +51,7 @@ Here are some example models that can be downloaded:
| ------------------ | ---------- | ----- | ------------------------------ |
| Llama 3 | 8B | 4.7GB | `ollama run llama3` |
| Llama 3 | 70B | 40GB | `ollama run llama3:70b` |
| Phi-3 | 3.8B | 2.3GB | `ollama run phi3` |
| Phi-3 | 3,8B | 2.3GB | `ollama run phi3` |
| Mistral | 7B | 4.1GB | `ollama run mistral` |
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
| Starling | 7B | 4.1GB | `ollama run starling-lm` |
@@ -173,7 +173,7 @@ I'm a basic program that prints the famous "Hello, world!" message to the consol
The image features a yellow smiley face, which is likely the central focus of the picture.
```
### Pass the prompt as an argument
### Pass in prompt as arguments
```
$ ollama run llama3 "Summarize this file: $(cat README.md)"
@@ -258,7 +258,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Open WebUI](https://github.com/open-webui/open-webui)
- [Enchanted (macOS native)](https://github.com/AugustDev/enchanted)
- [Hollama](https://github.com/fmaclen/hollama)
- [Lollms-Webui](https://github.com/ParisNeo/lollms-webui)
- [LibreChat](https://github.com/danny-avila/LibreChat)
- [Bionic GPT](https://github.com/bionic-gpt/bionic-gpt)
@@ -285,20 +284,17 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [OllamaGUI](https://github.com/enoch1118/ollamaGUI)
- [OpenAOE](https://github.com/InternLM/OpenAOE)
- [Odin Runes](https://github.com/leonid20000/OdinRunes)
- [LLM-X](https://github.com/mrdjohnson/llm-x) (Progressive Web App)
- [LLM-X: Progressive Web App](https://github.com/mrdjohnson/llm-x)
- [AnythingLLM (Docker + MacOs/Windows/Linux native app)](https://github.com/Mintplex-Labs/anything-llm)
- [Ollama Basic Chat: Uses HyperDiv Reactive UI](https://github.com/rapidarchitect/ollama_basic_chat)
- [Ollama-chats RPG](https://github.com/drazdra/ollama-chats)
- [QA-Pilot](https://github.com/reid41/QA-Pilot) (Chat with Code Repository)
- [ChatOllama](https://github.com/sugarforever/chat-ollama) (Open Source Chatbot based on Ollama with Knowledge Bases)
- [CRAG Ollama Chat](https://github.com/Nagi-ovo/CRAG-Ollama-Chat) (Simple Web Search with Corrective RAG)
- [RAGFlow](https://github.com/infiniflow/ragflow) (Open-source Retrieval-Augmented Generation engine based on deep document understanding)
- [StreamDeploy](https://github.com/StreamDeploy-DevRel/streamdeploy-llm-app-scaffold) (LLM Application Scaffold)
- [chat](https://github.com/swuecho/chat) (chat web app for teams)
- [QA-Pilot: Chat with Code Repository](https://github.com/reid41/QA-Pilot)
- [ChatOllama: Open Source Chatbot based on Ollama with Knowledge Bases](https://github.com/sugarforever/chat-ollama)
- [CRAG Ollama Chat: Simple Web Search with Corrective RAG](https://github.com/Nagi-ovo/CRAG-Ollama-Chat)
- [RAGFlow: Open-source Retrieval-Augmented Generation engine based on deep document understanding](https://github.com/infiniflow/ragflow)
- [chat: chat web app for teams](https://github.com/swuecho/chat)
- [Lobe Chat](https://github.com/lobehub/lobe-chat) with [Integrating Doc](https://lobehub.com/docs/self-hosting/examples/ollama)
- [Ollama RAG Chatbot](https://github.com/datvodinh/rag-chatbot.git) (Local Chat with multiple PDFs using Ollama and RAG)
- [BrainSoup](https://www.nurgo-software.com/products/brainsoup) (Flexible native client with RAG & multi-agent automation)
- [macai](https://github.com/Renset/macai) (macOS client for Ollama, ChatGPT, and other compatible API back-ends)
- [Ollama RAG Chatbot: Local Chat with multiples PDFs using Ollama and RAG.](https://github.com/datvodinh/rag-chatbot.git)
### Terminal
@@ -331,7 +327,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Pacman](https://archlinux.org/packages/extra/x86_64/ollama/)
- [Helm Chart](https://artifacthub.io/packages/helm/ollama-helm/ollama)
- [Guix channel](https://codeberg.org/tusharhero/ollama-guix)
### Libraries
@@ -353,13 +348,10 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Haystack](https://github.com/deepset-ai/haystack-integrations/blob/main/integrations/ollama.md)
- [Elixir LangChain](https://github.com/brainlid/langchain)
- [Ollama for R - rollama](https://github.com/JBGruber/rollama)
- [Ollama for R - ollama-r](https://github.com/hauselin/ollama-r)
- [Ollama-ex for Elixir](https://github.com/lebrunel/ollama-ex)
- [Ollama Connector for SAP ABAP](https://github.com/b-tocs/abap_btocs_ollama)
- [Testcontainers](https://testcontainers.com/modules/ollama/)
- [Portkey](https://portkey.ai/docs/welcome/integration-guides/ollama)
- [PromptingTools.jl](https://github.com/svilupp/PromptingTools.jl) with an [example](https://svilupp.github.io/PromptingTools.jl/dev/examples/working_with_ollama)
- [LlamaScript](https://github.com/WolfTheDeveloper/llamascript)
### Mobile
- [Enchanted](https://github.com/AugustDev/enchanted)
@@ -378,13 +370,12 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Ollama Telegram Bot](https://github.com/ruecat/ollama-telegram)
- [Hass Ollama Conversation](https://github.com/ej52/hass-ollama-conversation)
- [Rivet plugin](https://github.com/abrenneke/rivet-plugin-ollama)
- [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama)
- [Obsidian BMO Chatbot plugin](https://github.com/longy2k/obsidian-bmo-chatbot)
- [Cliobot](https://github.com/herval/cliobot) (Telegram bot with Ollama support)
- [Copilot for Obsidian plugin](https://github.com/logancyang/obsidian-copilot)
- [Obsidian Local GPT plugin](https://github.com/pfrankov/obsidian-local-gpt)
- [Open Interpreter](https://docs.openinterpreter.com/language-model-setup/local-models/ollama)
- [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama)
- [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) (Proxy that allows you to use ollama as a copilot like Github copilot)
- [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama)
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and HuggingFace)
- [Page Assist](https://github.com/n4ze3m/page-assist) (Chrome Extension)
@@ -393,5 +384,4 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Discord-Ollama Chat Bot](https://github.com/kevinthedang/discord-ollama) (Generalized TypeScript Discord Bot w/ Tuning Documentation)
### Supported backends
- [llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov.
- [llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov.

View File

@@ -1,16 +1,9 @@
// Package api implements the client-side API for code wishing to interact
// with the ollama service. The methods of the [Client] type correspond to
// the ollama REST API as described in [the API documentation].
// the ollama REST API as described in https://github.com/ollama/ollama/blob/main/docs/api.md
//
// The ollama command-line client itself uses this package to interact with
// the backend service.
//
// # Examples
//
// Several examples of using this package are available [in the GitHub
// repository].
//
// [the API documentation]: https://github.com/ollama/ollama/blob/main/docs/api.md
// [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/examples
package api
import (
@@ -25,7 +18,6 @@ import (
"net/url"
"os"
"runtime"
"strconv"
"strings"
"github.com/ollama/ollama/format"
@@ -65,36 +57,12 @@ func checkError(resp *http.Response, body []byte) error {
// If the variable is not specified, a default ollama host and port will be
// used.
func ClientFromEnvironment() (*Client, error) {
ollamaHost, err := GetOllamaHost()
if err != nil {
return nil, err
}
return &Client{
base: &url.URL{
Scheme: ollamaHost.Scheme,
Host: net.JoinHostPort(ollamaHost.Host, ollamaHost.Port),
},
http: http.DefaultClient,
}, nil
}
type OllamaHost struct {
Scheme string
Host string
Port string
}
func GetOllamaHost() (OllamaHost, error) {
defaultPort := "11434"
hostVar := os.Getenv("OLLAMA_HOST")
hostVar = strings.TrimSpace(strings.Trim(strings.TrimSpace(hostVar), "\"'"))
scheme, hostport, ok := strings.Cut(hostVar, "://")
scheme, hostport, ok := strings.Cut(os.Getenv("OLLAMA_HOST"), "://")
switch {
case !ok:
scheme, hostport = "http", hostVar
scheme, hostport = "http", os.Getenv("OLLAMA_HOST")
case scheme == "http":
defaultPort = "80"
case scheme == "https":
@@ -114,14 +82,12 @@ func GetOllamaHost() (OllamaHost, error) {
}
}
if portNum, err := strconv.ParseInt(port, 10, 32); err != nil || portNum > 65535 || portNum < 0 {
return OllamaHost{}, ErrInvalidHostPort
}
return OllamaHost{
Scheme: scheme,
Host: host,
Port: port,
return &Client{
base: &url.URL{
Scheme: scheme,
Host: net.JoinHostPort(host, port),
},
http: http.DefaultClient,
}, nil
}
@@ -306,14 +272,8 @@ func (c *Client) Pull(ctx context.Context, req *PullRequest, fn PullProgressFunc
})
}
// PushProgressFunc is a function that [Client.Push] invokes when progress is
// made.
// It's similar to other progress function types like [PullProgressFunc].
type PushProgressFunc func(ProgressResponse) error
// Push uploads a model to the model library; requires registering for ollama.ai
// and adding a public key first. fn is called each time progress is made on
// the request and can be used to display a progress bar, etc.
func (c *Client) Push(ctx context.Context, req *PushRequest, fn PushProgressFunc) error {
return c.stream(ctx, http.MethodPost, "/api/push", req, func(bts []byte) error {
var resp ProgressResponse
@@ -325,15 +285,8 @@ func (c *Client) Push(ctx context.Context, req *PushRequest, fn PushProgressFunc
})
}
// CreateProgressFunc is a function that [Client.Create] invokes when progress
// is made.
// It's similar to other progress function types like [PullProgressFunc].
type CreateProgressFunc func(ProgressResponse) error
// Create creates a model from a [Modelfile]. fn is a progress function that
// behaves similarly to other methods (see [Client.Pull]).
//
// [Modelfile]: https://github.com/ollama/ollama/blob/main/docs/modelfile.md
func (c *Client) Create(ctx context.Context, req *CreateRequest, fn CreateProgressFunc) error {
return c.stream(ctx, http.MethodPost, "/api/create", req, func(bts []byte) error {
var resp ProgressResponse
@@ -345,7 +298,6 @@ func (c *Client) Create(ctx context.Context, req *CreateRequest, fn CreateProgre
})
}
// List lists models that are available locally.
func (c *Client) List(ctx context.Context) (*ListResponse, error) {
var lr ListResponse
if err := c.do(ctx, http.MethodGet, "/api/tags", nil, &lr); err != nil {
@@ -354,8 +306,6 @@ func (c *Client) List(ctx context.Context) (*ListResponse, error) {
return &lr, nil
}
// Copy copies a model - creating a model with another name from an existing
// model.
func (c *Client) Copy(ctx context.Context, req *CopyRequest) error {
if err := c.do(ctx, http.MethodPost, "/api/copy", req, nil); err != nil {
return err
@@ -363,7 +313,6 @@ func (c *Client) Copy(ctx context.Context, req *CopyRequest) error {
return nil
}
// Delete deletes a model and its data.
func (c *Client) Delete(ctx context.Context, req *DeleteRequest) error {
if err := c.do(ctx, http.MethodDelete, "/api/delete", req, nil); err != nil {
return err
@@ -371,7 +320,6 @@ func (c *Client) Delete(ctx context.Context, req *DeleteRequest) error {
return nil
}
// Show obtains model information, including details, modelfile, license etc.
func (c *Client) Show(ctx context.Context, req *ShowRequest) (*ShowResponse, error) {
var resp ShowResponse
if err := c.do(ctx, http.MethodPost, "/api/show", req, &resp); err != nil {
@@ -380,16 +328,12 @@ func (c *Client) Show(ctx context.Context, req *ShowRequest) (*ShowResponse, err
return &resp, nil
}
// Hearbeat checks if the server has started and is responsive; if yes, it
// returns nil, otherwise an error.
func (c *Client) Heartbeat(ctx context.Context) error {
if err := c.do(ctx, http.MethodHead, "/", nil, nil); err != nil {
return err
}
return nil
}
// Embeddings generates embeddings from a model.
func (c *Client) Embeddings(ctx context.Context, req *EmbeddingRequest) (*EmbeddingResponse, error) {
var resp EmbeddingResponse
if err := c.do(ctx, http.MethodPost, "/api/embeddings", req, &resp); err != nil {
@@ -398,13 +342,10 @@ func (c *Client) Embeddings(ctx context.Context, req *EmbeddingRequest) (*Embedd
return &resp, nil
}
// CreateBlob creates a blob from a file on the server. digest is the
// expected SHA256 digest of the file, and r represents the file.
func (c *Client) CreateBlob(ctx context.Context, digest string, r io.Reader) error {
return c.do(ctx, http.MethodPost, fmt.Sprintf("/api/blobs/%s", digest), r, nil)
}
// Version returns the Ollama server version as a string.
func (c *Client) Version(ctx context.Context) (string, error) {
var version struct {
Version string `json:"version"`

View File

@@ -1,12 +1,6 @@
package api
import (
"fmt"
"net"
"testing"
"github.com/stretchr/testify/assert"
)
import "testing"
func TestClientFromEnvironment(t *testing.T) {
type testCase struct {
@@ -46,40 +40,4 @@ func TestClientFromEnvironment(t *testing.T) {
}
})
}
hostTestCases := map[string]*testCase{
"empty": {value: "", expect: "127.0.0.1:11434"},
"only address": {value: "1.2.3.4", expect: "1.2.3.4:11434"},
"only port": {value: ":1234", expect: ":1234"},
"address and port": {value: "1.2.3.4:1234", expect: "1.2.3.4:1234"},
"hostname": {value: "example.com", expect: "example.com:11434"},
"hostname and port": {value: "example.com:1234", expect: "example.com:1234"},
"zero port": {value: ":0", expect: ":0"},
"too large port": {value: ":66000", err: ErrInvalidHostPort},
"too small port": {value: ":-1", err: ErrInvalidHostPort},
"ipv6 localhost": {value: "[::1]", expect: "[::1]:11434"},
"ipv6 world open": {value: "[::]", expect: "[::]:11434"},
"ipv6 no brackets": {value: "::1", expect: "[::1]:11434"},
"ipv6 + port": {value: "[::1]:1337", expect: "[::1]:1337"},
"extra space": {value: " 1.2.3.4 ", expect: "1.2.3.4:11434"},
"extra quotes": {value: "\"1.2.3.4\"", expect: "1.2.3.4:11434"},
"extra space+quotes": {value: " \" 1.2.3.4 \" ", expect: "1.2.3.4:11434"},
"extra single quotes": {value: "'1.2.3.4'", expect: "1.2.3.4:11434"},
}
for k, v := range hostTestCases {
t.Run(k, func(t *testing.T) {
t.Setenv("OLLAMA_HOST", v.value)
oh, err := GetOllamaHost()
if err != v.err {
t.Fatalf("expected %s, got %s", v.err, err)
}
if err == nil {
host := net.JoinHostPort(oh.Host, oh.Port)
assert.Equal(t, v.expect, host, fmt.Sprintf("%s: expected %s, got %s", k, v.expect, host))
}
})
}
}

View File

@@ -4,7 +4,6 @@ import (
"encoding/json"
"errors"
"fmt"
"log/slog"
"math"
"os"
"reflect"
@@ -13,7 +12,6 @@ import (
"time"
)
// StatusError is an error with and HTTP status code.
type StatusError struct {
StatusCode int
Status string
@@ -34,7 +32,6 @@ func (e StatusError) Error() string {
}
}
// ImageData represents the raw binary data of an image file.
type ImageData []byte
// GenerateRequest describes a request sent by [Client.Generate]. While you
@@ -80,44 +77,26 @@ type GenerateRequest struct {
Options map[string]interface{} `json:"options"`
}
// ChatRequest describes a request sent by [Client.Chat].
type ChatRequest struct {
// Model is the model name, as in [GenerateRequest].
Model string `json:"model"`
// Messages is the messages of the chat - can be used to keep a chat memory.
Messages []Message `json:"messages"`
// Stream enable streaming of returned response; true by default.
Stream *bool `json:"stream,omitempty"`
// Format is the format to return the response in (e.g. "json").
Format string `json:"format"`
// KeepAlive controls how long the model will stay loaded into memory
// followin the request.
Model string `json:"model"`
Messages []Message `json:"messages"`
Stream *bool `json:"stream,omitempty"`
Format string `json:"format"`
KeepAlive *Duration `json:"keep_alive,omitempty"`
// Options lists model-specific options.
Options map[string]interface{} `json:"options"`
}
// Message is a single message in a chat sequence. The message contains the
// role ("system", "user", or "assistant"), the content and an optional list
// of images.
type Message struct {
Role string `json:"role"`
Role string `json:"role"` // one of ["system", "user", "assistant"]
Content string `json:"content"`
Images []ImageData `json:"images,omitempty"`
}
// ChatResponse is the response returned by [Client.Chat]. Its fields are
// similar to [GenerateResponse].
type ChatResponse struct {
Model string `json:"model"`
CreatedAt time.Time `json:"created_at"`
Message Message `json:"message"`
DoneReason string `json:"done_reason,omitempty"`
Model string `json:"model"`
CreatedAt time.Time `json:"created_at"`
Message Message `json:"message"`
Done bool `json:"done"`
@@ -133,8 +112,7 @@ type Metrics struct {
EvalDuration time.Duration `json:"eval_duration,omitempty"`
}
// Options specified in [GenerateRequest], if you add a new option here add it
// to the API docs also.
// Options specified in GenerateRequest, if you add a new option here add it to the API docs also
type Options struct {
Runner
@@ -163,6 +141,7 @@ type Runner struct {
UseNUMA bool `json:"numa,omitempty"`
NumCtx int `json:"num_ctx,omitempty"`
NumBatch int `json:"num_batch,omitempty"`
NumGQA int `json:"num_gqa,omitempty"`
NumGPU int `json:"num_gpu,omitempty"`
MainGPU int `json:"main_gpu,omitempty"`
LowVRAM bool `json:"low_vram,omitempty"`
@@ -172,42 +151,27 @@ type Runner struct {
UseMMap bool `json:"use_mmap,omitempty"`
UseMLock bool `json:"use_mlock,omitempty"`
NumThread int `json:"num_thread,omitempty"`
// Unused: RopeFrequencyBase is ignored. Instead the value in the model will be used
RopeFrequencyBase float32 `json:"rope_frequency_base,omitempty"`
// Unused: RopeFrequencyScale is ignored. Instead the value in the model will be used
RopeFrequencyScale float32 `json:"rope_frequency_scale,omitempty"`
}
// EmbeddingRequest is the request passed to [Client.Embeddings].
type EmbeddingRequest struct {
// Model is the model name.
Model string `json:"model"`
Model string `json:"model"`
Prompt string `json:"prompt,omitempty"`
PromptBatch []string `json:"prompt_batch,omitempty"`
KeepAlive *Duration `json:"keep_alive,omitempty"`
// Prompt is the textual prompt to embed.
Prompt string `json:"prompt"`
// KeepAlive controls how long the model will stay loaded in memory following
// this request.
KeepAlive *Duration `json:"keep_alive,omitempty"`
// Options lists model-specific options.
Options map[string]interface{} `json:"options"`
}
// EmbeddingResponse is the response from [Client.Embeddings].
type EmbeddingResponse struct {
Embedding []float64 `json:"embedding"`
Embedding []float64 `json:"embedding,omitempty"`
EmbeddingBatch [][]float64 `json:"embedding_batch,omitempty"`
}
type TokenizeRequest struct {
Model string `json:"model"`
Prompt string `json:"prompt"`
KeepAlive *Duration `json:"keep_alive,omitempty"`
Options map[string]interface{} `json:"options"`
}
type TokenizeResponse struct {
Tokens []int `json:"tokens"`
}
// CreateRequest is the request passed to [Client.Create].
type CreateRequest struct {
Model string `json:"model"`
Path string `json:"path"`
@@ -219,7 +183,6 @@ type CreateRequest struct {
Name string `json:"name"`
}
// DeleteRequest is the request passed to [Client.Delete].
type DeleteRequest struct {
Model string `json:"model"`
@@ -227,7 +190,6 @@ type DeleteRequest struct {
Name string `json:"name"`
}
// ShowRequest is the request passed to [Client.Show].
type ShowRequest struct {
Model string `json:"model"`
System string `json:"system"`
@@ -239,7 +201,6 @@ type ShowRequest struct {
Name string `json:"name"`
}
// ShowResponse is the response returned from [Client.Show].
type ShowResponse struct {
License string `json:"license,omitempty"`
Modelfile string `json:"modelfile,omitempty"`
@@ -250,13 +211,11 @@ type ShowResponse struct {
Messages []Message `json:"messages,omitempty"`
}
// CopyRequest is the request passed to [Client.Copy].
type CopyRequest struct {
Source string `json:"source"`
Destination string `json:"destination"`
}
// PullRequest is the request passed to [Client.Pull].
type PullRequest struct {
Model string `json:"model"`
Insecure bool `json:"insecure,omitempty"`
@@ -268,8 +227,6 @@ type PullRequest struct {
Name string `json:"name"`
}
// ProgressResponse is the response passed to progress functions like
// [PullProgressFunc] and [PushProgressFunc].
type ProgressResponse struct {
Status string `json:"status"`
Digest string `json:"digest,omitempty"`
@@ -277,7 +234,6 @@ type ProgressResponse struct {
Completed int64 `json:"completed,omitempty"`
}
// PushRequest is the request passed to [Client.Push].
type PushRequest struct {
Model string `json:"model"`
Insecure bool `json:"insecure,omitempty"`
@@ -289,12 +245,10 @@ type PushRequest struct {
Name string `json:"name"`
}
// ListResponse is the response from [Client.List].
type ListResponse struct {
Models []ModelResponse `json:"models"`
}
// ModelResponse is a single model description in [ListResponse].
type ModelResponse struct {
Name string `json:"name"`
Model string `json:"model"`
@@ -308,31 +262,17 @@ type TokenResponse struct {
Token string `json:"token"`
}
// GenerateResponse is the response passed into [GenerateResponseFunc].
type GenerateResponse struct {
// Model is the model name that generated the response.
Model string `json:"model"`
//CreatedAt is the timestamp of the response.
Model string `json:"model"`
CreatedAt time.Time `json:"created_at"`
Response string `json:"response"`
// Response is the textual response itself.
Response string `json:"response"`
// Done specifies if the response is complete.
Done bool `json:"done"`
// DoneReason is the reason the model stopped generating text.
DoneReason string `json:"done_reason,omitempty"`
// Context is an encoding of the conversation used in this response; this
// can be sent in the next request to keep a conversational memory.
Done bool `json:"done"`
Context []int `json:"context,omitempty"`
Metrics
}
// ModelDetails provides details about a model.
type ModelDetails struct {
ParentModel string `json:"parent_model"`
Format string `json:"format"`
@@ -370,7 +310,7 @@ func (m *Metrics) Summary() {
}
}
var ErrInvalidHostPort = errors.New("invalid port specified in OLLAMA_HOST")
var ErrInvalidOpts = errors.New("invalid options")
func (opts *Options) FromMap(m map[string]interface{}) error {
valueOpts := reflect.ValueOf(opts).Elem() // names of the fields in the options struct
@@ -385,76 +325,76 @@ func (opts *Options) FromMap(m map[string]interface{}) error {
}
}
invalidOpts := []string{}
for key, val := range m {
opt, ok := jsonOpts[key]
if !ok {
slog.Warn("invalid option provided", "option", opt.Name)
continue
}
if opt, ok := jsonOpts[key]; ok {
field := valueOpts.FieldByName(opt.Name)
if field.IsValid() && field.CanSet() {
if val == nil {
continue
}
field := valueOpts.FieldByName(opt.Name)
if field.IsValid() && field.CanSet() {
if val == nil {
continue
}
switch field.Kind() {
case reflect.Int:
switch t := val.(type) {
case int64:
field.SetInt(t)
case float64:
// when JSON unmarshals numbers, it uses float64, not int
field.SetInt(int64(t))
default:
return fmt.Errorf("option %q must be of type integer", key)
}
case reflect.Bool:
val, ok := val.(bool)
if !ok {
return fmt.Errorf("option %q must be of type boolean", key)
}
field.SetBool(val)
case reflect.Float32:
// JSON unmarshals to float64
val, ok := val.(float64)
if !ok {
return fmt.Errorf("option %q must be of type float32", key)
}
field.SetFloat(val)
case reflect.String:
val, ok := val.(string)
if !ok {
return fmt.Errorf("option %q must be of type string", key)
}
field.SetString(val)
case reflect.Slice:
// JSON unmarshals to []interface{}, not []string
val, ok := val.([]interface{})
if !ok {
return fmt.Errorf("option %q must be of type array", key)
}
// convert []interface{} to []string
slice := make([]string, len(val))
for i, item := range val {
str, ok := item.(string)
if !ok {
return fmt.Errorf("option %q must be of an array of strings", key)
switch field.Kind() {
case reflect.Int:
switch t := val.(type) {
case int64:
field.SetInt(t)
case float64:
// when JSON unmarshals numbers, it uses float64, not int
field.SetInt(int64(t))
default:
return fmt.Errorf("option %q must be of type integer", key)
}
slice[i] = str
case reflect.Bool:
val, ok := val.(bool)
if !ok {
return fmt.Errorf("option %q must be of type boolean", key)
}
field.SetBool(val)
case reflect.Float32:
// JSON unmarshals to float64
val, ok := val.(float64)
if !ok {
return fmt.Errorf("option %q must be of type float32", key)
}
field.SetFloat(val)
case reflect.String:
val, ok := val.(string)
if !ok {
return fmt.Errorf("option %q must be of type string", key)
}
field.SetString(val)
case reflect.Slice:
// JSON unmarshals to []interface{}, not []string
val, ok := val.([]interface{})
if !ok {
return fmt.Errorf("option %q must be of type array", key)
}
// convert []interface{} to []string
slice := make([]string, len(val))
for i, item := range val {
str, ok := item.(string)
if !ok {
return fmt.Errorf("option %q must be of an array of strings", key)
}
slice[i] = str
}
field.Set(reflect.ValueOf(slice))
default:
return fmt.Errorf("unknown type loading config params: %v", field.Kind())
}
field.Set(reflect.ValueOf(slice))
default:
return fmt.Errorf("unknown type loading config params: %v", field.Kind())
}
} else {
invalidOpts = append(invalidOpts, key)
}
}
if len(invalidOpts) > 0 {
return fmt.Errorf("%w: %v", ErrInvalidOpts, strings.Join(invalidOpts, ", "))
}
return nil
}
// DefaultOptions is the default set of options for [GenerateRequest]; these
// values are used unless the user specifies other values explicitly.
func DefaultOptions() Options {
return Options{
// options set on request to runner
@@ -482,7 +422,8 @@ func DefaultOptions() Options {
NumCtx: 2048,
NumBatch: 512,
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
NumThread: 0, // let the runtime decide
NumGQA: 1,
NumThread: 0, // let the runtime decide
LowVRAM: false,
F16KV: true,
UseMLock: false,
@@ -496,13 +437,6 @@ type Duration struct {
time.Duration
}
func (d Duration) MarshalJSON() ([]byte, error) {
if d.Duration < 0 {
return []byte("-1"), nil
}
return []byte("\"" + d.Duration.String() + "\""), nil
}
func (d *Duration) UnmarshalJSON(b []byte) (err error) {
var v any
if err := json.Unmarshal(b, &v); err != nil {
@@ -516,7 +450,7 @@ func (d *Duration) UnmarshalJSON(b []byte) (err error) {
if t < 0 {
d.Duration = time.Duration(math.MaxInt64)
} else {
d.Duration = time.Duration(int(t) * int(time.Second))
d.Duration = time.Duration(t * float64(time.Second))
}
case string:
d.Duration, err = time.ParseDuration(t)
@@ -526,8 +460,6 @@ func (d *Duration) UnmarshalJSON(b []byte) (err error) {
if d.Duration < 0 {
d.Duration = time.Duration(math.MaxInt64)
}
default:
return fmt.Errorf("Unsupported type: '%s'", reflect.TypeOf(v))
}
return nil

View File

@@ -21,11 +21,6 @@ func TestKeepAliveParsingFromJSON(t *testing.T) {
req: `{ "keep_alive": 42 }`,
exp: &Duration{42 * time.Second},
},
{
name: "Positive Float",
req: `{ "keep_alive": 42.5 }`,
exp: &Duration{42 * time.Second},
},
{
name: "Positive Integer String",
req: `{ "keep_alive": "42m" }`,
@@ -36,11 +31,6 @@ func TestKeepAliveParsingFromJSON(t *testing.T) {
req: `{ "keep_alive": -1 }`,
exp: &Duration{math.MaxInt64},
},
{
name: "Negative Float",
req: `{ "keep_alive": -3.14 }`,
exp: &Duration{math.MaxInt64},
},
{
name: "Negative Integer String",
req: `{ "keep_alive": "-1m" }`,
@@ -58,50 +48,3 @@ func TestKeepAliveParsingFromJSON(t *testing.T) {
})
}
}
func TestDurationMarshalUnmarshal(t *testing.T) {
tests := []struct {
name string
input time.Duration
expected time.Duration
}{
{
"negative duration",
time.Duration(-1),
time.Duration(math.MaxInt64),
},
{
"positive duration",
time.Duration(42 * time.Second),
time.Duration(42 * time.Second),
},
{
"another positive duration",
time.Duration(42 * time.Minute),
time.Duration(42 * time.Minute),
},
{
"zero duration",
time.Duration(0),
time.Duration(0),
},
{
"max duration",
time.Duration(math.MaxInt64),
time.Duration(math.MaxInt64),
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
b, err := json.Marshal(Duration{test.input})
require.NoError(t, err)
var d Duration
err = json.Unmarshal(b, &d)
require.NoError(t, err)
assert.Equal(t, test.expected, d.Duration, "input %v, marshalled %v, got %v", test.input, string(b), d.Duration)
})
}
}

View File

@@ -5,14 +5,12 @@ import (
"log/slog"
"os"
"path/filepath"
"github.com/ollama/ollama/server/envconfig"
)
func InitLogging() {
level := slog.LevelInfo
if envconfig.Debug {
if debug := os.Getenv("OLLAMA_DEBUG"); debug != "" {
level = slog.LevelDebug
}

View File

@@ -43,36 +43,37 @@ func getCLIFullPath(command string) string {
return command
}
func start(ctx context.Context, command string) (*exec.Cmd, error) {
func SpawnServer(ctx context.Context, command string) (chan int, error) {
done := make(chan int)
logDir := filepath.Dir(ServerLogFile)
_, err := os.Stat(logDir)
if errors.Is(err, os.ErrNotExist) {
if err := os.MkdirAll(logDir, 0o755); err != nil {
return done, fmt.Errorf("create ollama server log dir %s: %v", logDir, err)
}
}
cmd := getCmd(ctx, getCLIFullPath(command))
// send stdout and stderr to a file
stdout, err := cmd.StdoutPipe()
if err != nil {
return nil, fmt.Errorf("failed to spawn server stdout pipe: %w", err)
return done, fmt.Errorf("failed to spawn server stdout pipe %s", err)
}
stderr, err := cmd.StderrPipe()
if err != nil {
return nil, fmt.Errorf("failed to spawn server stderr pipe: %w", err)
return done, fmt.Errorf("failed to spawn server stderr pipe %s", err)
}
stdin, err := cmd.StdinPipe()
if err != nil {
return done, fmt.Errorf("failed to spawn server stdin pipe %s", err)
}
// TODO - rotation
logFile, err := os.OpenFile(ServerLogFile, os.O_APPEND|os.O_WRONLY|os.O_CREATE, 0755)
if err != nil {
return nil, fmt.Errorf("failed to create server log: %w", err)
return done, fmt.Errorf("failed to create server log %w", err)
}
logDir := filepath.Dir(ServerLogFile)
_, err = os.Stat(logDir)
if err != nil {
if !errors.Is(err, os.ErrNotExist) {
return nil, fmt.Errorf("stat ollama server log dir %s: %v", logDir, err)
}
if err := os.MkdirAll(logDir, 0o755); err != nil {
return nil, fmt.Errorf("create ollama server log dir %s: %v", logDir, err)
}
}
go func() {
defer logFile.Close()
io.Copy(logFile, stdout) //nolint:errcheck
@@ -116,33 +117,19 @@ func start(ctx context.Context, command string) (*exec.Cmd, error) {
// run the command and wait for it to finish
if err := cmd.Start(); err != nil {
return nil, fmt.Errorf("failed to start server %w", err)
return done, fmt.Errorf("failed to start server %w", err)
}
if cmd.Process != nil {
slog.Info(fmt.Sprintf("started ollama server with pid %d", cmd.Process.Pid))
}
slog.Info(fmt.Sprintf("ollama server logs %s", ServerLogFile))
return cmd, nil
}
func SpawnServer(ctx context.Context, command string) (chan int, error) {
done := make(chan int)
go func() {
// Keep the server running unless we're shuttind down the app
crashCount := 0
for {
slog.Info("starting server...")
cmd, err := start(ctx, command)
if err != nil {
crashCount++
slog.Error(fmt.Sprintf("failed to start server %s", err))
time.Sleep(500 * time.Millisecond * time.Duration(crashCount))
continue
}
cmd.Wait() //nolint:errcheck
stdin.Close()
var code int
if cmd.ProcessState != nil {
code = cmd.ProcessState.ExitCode()
@@ -156,12 +143,15 @@ func SpawnServer(ctx context.Context, command string) (chan int, error) {
default:
crashCount++
slog.Warn(fmt.Sprintf("server crash %d - exit code %d - respawning", crashCount, code))
time.Sleep(500 * time.Millisecond * time.Duration(crashCount))
break
time.Sleep(500 * time.Millisecond)
if err := cmd.Start(); err != nil {
slog.Error(fmt.Sprintf("failed to restart server %s", err))
// Keep trying, but back off if we keep failing
time.Sleep(time.Duration(crashCount) * time.Second)
}
}
}
}()
return done, nil
}

View File

@@ -31,13 +31,16 @@ func DoUpgrade(cancel context.CancelFunc, done chan int) error {
"/LOG=" + filepath.Base(UpgradeLogFile), // Only relative seems reliable, so set pwd
"/FORCECLOSEAPPLICATIONS", // Force close the tray app - might be needed
}
// make the upgrade as quiet as possible (no GUI, no prompts)
// When we're not in debug mode, make the upgrade as quiet as possible (no GUI, no prompts)
// TODO - temporarily disable since we're pinning in debug mode for the preview
// if debug := os.Getenv("OLLAMA_DEBUG"); debug == "" {
installArgs = append(installArgs,
"/SP", // Skip the "This will install... Do you wish to continue" prompt
"/SUPPRESSMSGBOXES",
"/SILENT",
"/VERYSILENT",
)
// }
// Safeguard in case we have requests in flight that need to drain...
slog.Info("Waiting for server to shutdown")

View File

@@ -88,8 +88,8 @@ DialogFontSize=12
[Files]
Source: ".\app.exe"; DestDir: "{app}"; DestName: "{#MyAppExeName}" ; Flags: ignoreversion 64bit
Source: "..\ollama.exe"; DestDir: "{app}"; Flags: ignoreversion 64bit
Source: "..\dist\windows-{#ARCH}\*.dll"; DestDir: "{app}"; Flags: ignoreversion 64bit
Source: "..\dist\windows-{#ARCH}\ollama_runners\*"; DestDir: "{app}\ollama_runners"; Flags: ignoreversion 64bit recursesubdirs
Source: "..\dist\windows-amd64\*.dll"; DestDir: "{app}"; Flags: ignoreversion 64bit
Source: "..\dist\windows-amd64\ollama_runners\*"; DestDir: "{app}\ollama_runners"; Flags: ignoreversion 64bit recursesubdirs
Source: "..\dist\ollama_welcome.ps1"; DestDir: "{app}"; Flags: ignoreversion
Source: ".\assets\app.ico"; DestDir: "{app}"; Flags: ignoreversion
#if DirExists("..\dist\windows-amd64\rocm")

View File

@@ -1,71 +1,71 @@
//go:build windows
package wintray
import (
"fmt"
"log/slog"
"unsafe"
"golang.org/x/sys/windows"
)
const (
updatAvailableMenuID = 1
updateMenuID = updatAvailableMenuID + 1
separatorMenuID = updateMenuID + 1
diagLogsMenuID = separatorMenuID + 1
diagSeparatorMenuID = diagLogsMenuID + 1
quitMenuID = diagSeparatorMenuID + 1
)
func (t *winTray) initMenus() error {
if err := t.addOrUpdateMenuItem(diagLogsMenuID, 0, diagLogsMenuTitle, false); err != nil {
return fmt.Errorf("unable to create menu entries %w\n", err)
}
if err := t.addSeparatorMenuItem(diagSeparatorMenuID, 0); err != nil {
return fmt.Errorf("unable to create menu entries %w", err)
}
if err := t.addOrUpdateMenuItem(quitMenuID, 0, quitMenuTitle, false); err != nil {
return fmt.Errorf("unable to create menu entries %w\n", err)
}
return nil
}
func (t *winTray) UpdateAvailable(ver string) error {
if !t.updateNotified {
slog.Debug("updating menu and sending notification for new update")
if err := t.addOrUpdateMenuItem(updatAvailableMenuID, 0, updateAvailableMenuTitle, true); err != nil {
return fmt.Errorf("unable to create menu entries %w", err)
}
if err := t.addOrUpdateMenuItem(updateMenuID, 0, updateMenutTitle, false); err != nil {
return fmt.Errorf("unable to create menu entries %w", err)
}
if err := t.addSeparatorMenuItem(separatorMenuID, 0); err != nil {
return fmt.Errorf("unable to create menu entries %w", err)
}
iconFilePath, err := iconBytesToFilePath(wt.updateIcon)
if err != nil {
return fmt.Errorf("unable to write icon data to temp file: %w", err)
}
if err := wt.setIcon(iconFilePath); err != nil {
return fmt.Errorf("unable to set icon: %w", err)
}
t.updateNotified = true
t.pendingUpdate = true
// Now pop up the notification
t.muNID.Lock()
defer t.muNID.Unlock()
copy(t.nid.InfoTitle[:], windows.StringToUTF16(updateTitle))
copy(t.nid.Info[:], windows.StringToUTF16(fmt.Sprintf(updateMessage, ver)))
t.nid.Flags |= NIF_INFO
t.nid.Timeout = 10
t.nid.Size = uint32(unsafe.Sizeof(*wt.nid))
err = t.nid.modify()
if err != nil {
return err
}
}
return nil
}
//go:build windows
package wintray
import (
"fmt"
"log/slog"
"unsafe"
"golang.org/x/sys/windows"
)
const (
updatAvailableMenuID = 1
updateMenuID = updatAvailableMenuID + 1
separatorMenuID = updateMenuID + 1
diagLogsMenuID = separatorMenuID + 1
diagSeparatorMenuID = diagLogsMenuID + 1
quitMenuID = diagSeparatorMenuID + 1
)
func (t *winTray) initMenus() error {
if err := t.addOrUpdateMenuItem(diagLogsMenuID, 0, diagLogsMenuTitle, false); err != nil {
return fmt.Errorf("unable to create menu entries %w\n", err)
}
if err := t.addSeparatorMenuItem(diagSeparatorMenuID, 0); err != nil {
return fmt.Errorf("unable to create menu entries %w", err)
}
if err := t.addOrUpdateMenuItem(quitMenuID, 0, quitMenuTitle, false); err != nil {
return fmt.Errorf("unable to create menu entries %w\n", err)
}
return nil
}
func (t *winTray) UpdateAvailable(ver string) error {
if !t.updateNotified {
slog.Debug("updating menu and sending notification for new update")
if err := t.addOrUpdateMenuItem(updatAvailableMenuID, 0, updateAvailableMenuTitle, true); err != nil {
return fmt.Errorf("unable to create menu entries %w", err)
}
if err := t.addOrUpdateMenuItem(updateMenuID, 0, updateMenutTitle, false); err != nil {
return fmt.Errorf("unable to create menu entries %w", err)
}
if err := t.addSeparatorMenuItem(separatorMenuID, 0); err != nil {
return fmt.Errorf("unable to create menu entries %w", err)
}
iconFilePath, err := iconBytesToFilePath(wt.updateIcon)
if err != nil {
return fmt.Errorf("unable to write icon data to temp file: %w", err)
}
if err := wt.setIcon(iconFilePath); err != nil {
return fmt.Errorf("unable to set icon: %w", err)
}
t.updateNotified = true
t.pendingUpdate = true
// Now pop up the notification
t.muNID.Lock()
defer t.muNID.Unlock()
copy(t.nid.InfoTitle[:], windows.StringToUTF16(updateTitle))
copy(t.nid.Info[:], windows.StringToUTF16(fmt.Sprintf(updateMessage, ver)))
t.nid.Flags |= NIF_INFO
t.nid.Timeout = 10
t.nid.Size = uint32(unsafe.Sizeof(*wt.nid))
err = t.nid.modify()
if err != nil {
return err
}
}
return nil
}

View File

@@ -10,44 +10,12 @@ import (
"log/slog"
"os"
"path/filepath"
"strings"
"golang.org/x/crypto/ssh"
)
const defaultPrivateKey = "id_ed25519"
func keyPath() (string, error) {
home, err := os.UserHomeDir()
if err != nil {
return "", err
}
return filepath.Join(home, ".ollama", defaultPrivateKey), nil
}
func GetPublicKey() (string, error) {
keyPath, err := keyPath()
if err != nil {
return "", err
}
privateKeyFile, err := os.ReadFile(keyPath)
if err != nil {
slog.Info(fmt.Sprintf("Failed to load private key: %v", err))
return "", err
}
privateKey, err := ssh.ParsePrivateKey(privateKeyFile)
if err != nil {
return "", err
}
publicKey := ssh.MarshalAuthorizedKey(privateKey.PublicKey())
return strings.TrimSpace(string(publicKey)), nil
}
func NewNonce(r io.Reader, length int) (string, error) {
nonce := make([]byte, length)
if _, err := io.ReadFull(r, nonce); err != nil {
@@ -58,11 +26,13 @@ func NewNonce(r io.Reader, length int) (string, error) {
}
func Sign(ctx context.Context, bts []byte) (string, error) {
keyPath, err := keyPath()
home, err := os.UserHomeDir()
if err != nil {
return "", err
}
keyPath := filepath.Join(home, ".ollama", defaultPrivateKey)
privateKeyFile, err := os.ReadFile(keyPath)
if err != nil {
slog.Info(fmt.Sprintf("Failed to load private key: %v", err))

View File

@@ -32,12 +32,10 @@ import (
"golang.org/x/term"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/auth"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/progress"
"github.com/ollama/ollama/server"
"github.com/ollama/ollama/types/errtypes"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/version"
)
@@ -56,13 +54,12 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
p := progress.NewProgress(os.Stderr)
defer p.Stop()
f, err := os.Open(filename)
modelfile, err := os.ReadFile(filename)
if err != nil {
return err
}
defer f.Close()
modelfile, err := model.ParseFile(f)
commands, err := parser.Parse(bytes.NewReader(modelfile))
if err != nil {
return err
}
@@ -76,10 +73,10 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
spinner := progress.NewSpinner(status)
p.Add(status, spinner)
for i := range modelfile.Commands {
switch modelfile.Commands[i].Name {
for _, c := range commands {
switch c.Name {
case "model", "adapter":
path := modelfile.Commands[i].Args
path := c.Args
if path == "~" {
path = home
} else if strings.HasPrefix(path, "~/") {
@@ -91,7 +88,7 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
}
fi, err := os.Stat(path)
if errors.Is(err, os.ErrNotExist) && modelfile.Commands[i].Name == "model" {
if errors.Is(err, os.ErrNotExist) && c.Name == "model" {
continue
} else if err != nil {
return err
@@ -114,7 +111,13 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
return err
}
modelfile.Commands[i].Args = "@" + digest
name := c.Name
if c.Name == "model" {
name = "from"
}
re := regexp.MustCompile(fmt.Sprintf(`(?im)^(%s)\s+%s\s*$`, name, c.Args))
modelfile = re.ReplaceAll(modelfile, []byte("$1 @"+digest))
}
}
@@ -144,7 +147,7 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
quantization, _ := cmd.Flags().GetString("quantization")
request := api.CreateRequest{Name: args[0], Modelfile: modelfile.String(), Quantization: quantization}
request := api.CreateRequest{Name: args[0], Modelfile: string(modelfile), Quantization: quantization}
if err := client.Create(cmd.Context(), &request, fn); err != nil {
return err
}
@@ -354,47 +357,6 @@ func RunHandler(cmd *cobra.Command, args []string) error {
return generateInteractive(cmd, opts)
}
func errFromUnknownKey(unknownKeyErr error) error {
// find SSH public key in the error message
sshKeyPattern := `ssh-\w+ [^\s"]+`
re := regexp.MustCompile(sshKeyPattern)
matches := re.FindStringSubmatch(unknownKeyErr.Error())
if len(matches) > 0 {
serverPubKey := matches[0]
localPubKey, err := auth.GetPublicKey()
if err != nil {
return unknownKeyErr
}
if runtime.GOOS == "linux" && serverPubKey != localPubKey {
// try the ollama service public key
svcPubKey, err := os.ReadFile("/usr/share/ollama/.ollama/id_ed25519.pub")
if err != nil {
return unknownKeyErr
}
localPubKey = strings.TrimSpace(string(svcPubKey))
}
// check if the returned public key matches the local public key, this prevents adding a remote key to the user's account
if serverPubKey != localPubKey {
return unknownKeyErr
}
var msg strings.Builder
msg.WriteString(unknownKeyErr.Error())
msg.WriteString("\n\nYour ollama key is:\n")
msg.WriteString(localPubKey)
msg.WriteString("\nAdd your key at:\n")
msg.WriteString("https://ollama.com/settings/keys")
return errors.New(msg.String())
}
return unknownKeyErr
}
func PushHandler(cmd *cobra.Command, args []string) error {
client, err := api.ClientFromEnvironment()
if err != nil {
@@ -442,20 +404,6 @@ func PushHandler(cmd *cobra.Command, args []string) error {
request := api.PushRequest{Name: args[0], Insecure: insecure}
if err := client.Push(cmd.Context(), &request, fn); err != nil {
if spinner != nil {
spinner.Stop()
}
if strings.Contains(err.Error(), "access denied") {
return errors.New("you are not authorized to push to this namespace, create the model under a namespace you own")
}
host := model.ParseName(args[0]).Host
isOllamaHost := strings.HasSuffix(host, ".ollama.ai") || strings.HasSuffix(host, ".ollama.com")
if strings.Contains(err.Error(), errtypes.UnknownOllamaKeyErrMsg) && isOllamaHost {
// the user has not added their ollama key to ollama.com
// re-throw an error with a more user-friendly message
return errFromUnknownKey(err)
}
return err
}
@@ -883,27 +831,24 @@ func generate(cmd *cobra.Command, opts runOptions) error {
}
func RunServer(cmd *cobra.Command, _ []string) error {
// retrieve the OLLAMA_HOST environment variable
ollamaHost, err := api.GetOllamaHost()
host, port, err := net.SplitHostPort(strings.Trim(os.Getenv("OLLAMA_HOST"), "\"'"))
if err != nil {
return err
host, port = "127.0.0.1", "11434"
if ip := net.ParseIP(strings.Trim(os.Getenv("OLLAMA_HOST"), "[]")); ip != nil {
host = ip.String()
}
}
if err := initializeKeypair(); err != nil {
return err
}
ln, err := net.Listen("tcp", net.JoinHostPort(ollamaHost.Host, ollamaHost.Port))
ln, err := net.Listen("tcp", net.JoinHostPort(host, port))
if err != nil {
return err
}
err = server.Serve(ln)
if errors.Is(err, http.ErrServerClosed) {
return nil
}
return err
return server.Serve(ln)
}
func initializeKeypair() error {
@@ -1124,7 +1069,7 @@ Environment Variables:
RunE: ListHandler,
}
copyCmd := &cobra.Command{
Use: "cp SOURCE DESTINATION",
Use: "cp SOURCE TARGET",
Short: "Copy a model",
Args: cobra.ExactArgs(2),
PreRunE: checkServerHeartbeat,

View File

@@ -94,7 +94,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Fprintln(os.Stderr, " /show Show model information")
fmt.Fprintln(os.Stderr, " /load <model> Load a session or model")
fmt.Fprintln(os.Stderr, " /save <model> Save your current session")
fmt.Fprintln(os.Stderr, " /clear Clear session context")
fmt.Fprintln(os.Stderr, " /bye Exit")
fmt.Fprintln(os.Stderr, " /?, /help Help for a command")
fmt.Fprintln(os.Stderr, " /? shortcuts Help for keyboard shortcuts")
@@ -162,7 +161,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Fprintln(os.Stderr, " /set parameter repeat_penalty <float> How strongly to penalize repetitions")
fmt.Fprintln(os.Stderr, " /set parameter repeat_last_n <int> Set how far back to look for repetitions")
fmt.Fprintln(os.Stderr, " /set parameter num_gpu <int> The number of layers to send to the GPU")
fmt.Fprintln(os.Stderr, " /set parameter stop <string> <string> ... Set the stop parameters")
fmt.Fprintln(os.Stderr, " /set parameter stop \"<string>\", ... Set the stop parameters")
fmt.Fprintln(os.Stderr, "")
}
@@ -281,10 +280,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
}
fmt.Printf("Created new model '%s'\n", args[1])
continue
case strings.HasPrefix(line, "/clear"):
opts.Messages = []api.Message{}
fmt.Println("Cleared session context")
continue
case strings.HasPrefix(line, "/set"):
args := strings.Fields(line)
if len(args) > 1 {

View File

@@ -5,7 +5,6 @@ import (
"encoding/binary"
"encoding/json"
"fmt"
"io"
"log/slog"
"os"
"path/filepath"
@@ -48,7 +47,7 @@ type ByteOrder interface {
type ModelArch interface {
GetTensors() error
LoadVocab() error
WriteGGUF(io.WriteSeeker) error
WriteGGUF() (string, error)
}
type ModelFormat interface {

View File

@@ -94,7 +94,7 @@ func (m *GemmaModel) LoadVocab() error {
return nil
}
func (m *GemmaModel) WriteGGUF(ws io.WriteSeeker) error {
func (m *GemmaModel) WriteGGUF() (string, error) {
kv := llm.KV{
"general.architecture": "gemma",
"general.name": m.Name,
@@ -122,5 +122,16 @@ func (m *GemmaModel) WriteGGUF(ws io.WriteSeeker) error {
"tokenizer.ggml.add_eos_token": false,
}
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
f, err := os.CreateTemp("", "ollama-gguf")
if err != nil {
return "", err
}
defer f.Close()
mod := llm.NewGGUFV3(m.Params.ByteOrder)
if err := mod.Encode(f, kv, m.Tensors); err != nil {
return "", err
}
return f.Name(), nil
}

View File

@@ -5,6 +5,7 @@ import (
"fmt"
"io"
"log/slog"
"os"
"regexp"
"strings"
@@ -131,7 +132,7 @@ func (m *LlamaModel) LoadVocab() error {
return nil
}
func (m *LlamaModel) WriteGGUF(ws io.WriteSeeker) error {
func (m *LlamaModel) WriteGGUF() (string, error) {
kv := llm.KV{
"general.architecture": "llama",
"general.name": m.Name,
@@ -158,5 +159,18 @@ func (m *LlamaModel) WriteGGUF(ws io.WriteSeeker) error {
"tokenizer.ggml.add_eos_token": false,
}
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
f, err := os.CreateTemp("", "ollama-gguf")
if err != nil {
return "", err
}
defer f.Close()
mod := llm.NewGGUFV3(m.Params.ByteOrder)
if err := mod.Encode(f, kv, m.Tensors); err != nil {
return "", err
}
slog.Debug(fmt.Sprintf("gguf file = %s", f.Name()))
return f.Name(), nil
}

View File

@@ -132,7 +132,7 @@ func (m *MistralModel) LoadVocab() error {
return nil
}
func (m *MistralModel) WriteGGUF(ws io.WriteSeeker) error {
func (m *MistralModel) WriteGGUF() (string, error) {
kv := llm.KV{
"general.architecture": "llama",
"general.name": m.Name,
@@ -158,5 +158,16 @@ func (m *MistralModel) WriteGGUF(ws io.WriteSeeker) error {
"tokenizer.ggml.unknown_token_id": uint32(0),
}
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
f, err := os.CreateTemp("", "ollama-gguf")
if err != nil {
return "", err
}
defer f.Close()
mod := llm.NewGGUFV3(m.Params.ByteOrder)
if err := mod.Encode(f, kv, m.Tensors); err != nil {
return "", err
}
return f.Name(), nil
}

View File

@@ -1,7 +1,7 @@
package convert
import (
"io"
"os"
"regexp"
"github.com/ollama/ollama/llm"
@@ -47,7 +47,7 @@ func (m *MixtralModel) LoadVocab() error {
return nil
}
func (m *MixtralModel) WriteGGUF(ws io.WriteSeeker) error {
func (m *MixtralModel) WriteGGUF() (string, error) {
kv := llm.KV{
"general.architecture": "llama",
"general.name": m.Name,
@@ -81,5 +81,16 @@ func (m *MixtralModel) WriteGGUF(ws io.WriteSeeker) error {
"tokenizer.ggml.add_eos_token": false,
}
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
f, err := os.CreateTemp("", "ollama-gguf")
if err != nil {
return "", err
}
defer f.Close()
mod := llm.NewGGUFV3(m.Params.ByteOrder)
if err := mod.Encode(f, kv, m.Tensors); err != nil {
return "", err
}
return f.Name(), nil
}

View File

@@ -53,7 +53,7 @@ func (m *SafetensorFormat) GetTensors(dirpath string, params *Params) ([]llm.Ten
var err error
t, offset, err = m.readTensors(f, offset, params)
if err != nil {
slog.Error(err.Error())
slog.Error("%v", err)
return nil, err
}
tensors = append(tensors, t...)
@@ -122,7 +122,7 @@ func (m *SafetensorFormat) readTensors(fn string, offset uint64, params *Params)
ggufName, err := m.GetLayerName(k)
if err != nil {
slog.Error(err.Error())
slog.Error("%v", err)
return nil, 0, err
}

View File

@@ -74,7 +74,7 @@ func (tf *TorchFormat) GetTensors(dirpath string, params *Params) ([]llm.Tensor,
ggufName, err := tf.GetLayerName(k.(string))
if err != nil {
slog.Error(err.Error())
slog.Error("%v", err)
return nil, err
}
slog.Debug(fmt.Sprintf("finding name for '%s' -> '%s'", k.(string), ggufName))

View File

@@ -6,7 +6,7 @@
* [Importing models](./import.md)
* [Linux Documentation](./linux.md)
* [Windows Documentation](./windows.md)
* [Docker Documentation](./docker.md)
* [Docker Documentation](https://hub.docker.com/r/ollama/ollama)
### Reference

View File

@@ -17,7 +17,7 @@
### Model names
Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q4_1` and `llama3:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q4_1` and `llama2:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
### Durations
@@ -66,7 +66,7 @@ Enable JSON mode by setting the `format` parameter to `json`. This will structur
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3",
"model": "llama2",
"prompt": "Why is the sky blue?"
}'
```
@@ -77,7 +77,7 @@ A stream of JSON objects is returned:
```json
{
"model": "llama3",
"model": "llama2",
"created_at": "2023-08-04T08:52:19.385406455-07:00",
"response": "The",
"done": false
@@ -95,11 +95,11 @@ The final response in the stream also includes additional data about the generat
- `context`: an encoding of the conversation used in this response, this can be sent in the next request to keep a conversational memory
- `response`: empty if the response was streamed, if not streamed, this will contain the full response
To calculate how fast the response is generated in tokens per second (token/s), divide `eval_count` / `eval_duration` * `10^9`.
To calculate how fast the response is generated in tokens per second (token/s), divide `eval_count` / `eval_duration`.
```json
{
"model": "llama3",
"model": "llama2",
"created_at": "2023-08-04T19:22:45.499127Z",
"response": "",
"done": true,
@@ -121,7 +121,7 @@ A response can be received in one reply when streaming is off.
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3",
"model": "llama2",
"prompt": "Why is the sky blue?",
"stream": false
}'
@@ -133,7 +133,7 @@ If `stream` is set to `false`, the response will be a single JSON object:
```json
{
"model": "llama3",
"model": "llama2",
"created_at": "2023-08-04T19:22:45.499127Z",
"response": "The sky is blue because it is the color of the sky.",
"done": true,
@@ -155,7 +155,7 @@ If `stream` is set to `false`, the response will be a single JSON object:
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3",
"model": "llama2",
"prompt": "What color is the sky at different times of the day? Respond using JSON",
"format": "json",
"stream": false
@@ -166,7 +166,7 @@ curl http://localhost:11434/api/generate -d '{
```json
{
"model": "llama3",
"model": "llama2",
"created_at": "2023-11-09T21:07:55.186497Z",
"response": "{\n\"morning\": {\n\"color\": \"blue\"\n},\n\"noon\": {\n\"color\": \"blue-gray\"\n},\n\"afternoon\": {\n\"color\": \"warm gray\"\n},\n\"evening\": {\n\"color\": \"orange\"\n}\n}\n",
"done": true,
@@ -289,7 +289,7 @@ If you want to set custom options for the model at runtime rather than in the Mo
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3",
"model": "llama2",
"prompt": "Why is the sky blue?",
"stream": false,
"options": {
@@ -313,6 +313,7 @@ curl http://localhost:11434/api/generate -d '{
"numa": false,
"num_ctx": 1024,
"num_batch": 2,
"num_gqa": 1,
"num_gpu": 1,
"main_gpu": 0,
"low_vram": false,
@@ -320,6 +321,8 @@ curl http://localhost:11434/api/generate -d '{
"vocab_only": false,
"use_mmap": true,
"use_mlock": false,
"rope_frequency_base": 1.1,
"rope_frequency_scale": 0.8,
"num_thread": 8
}
}'
@@ -329,7 +332,7 @@ curl http://localhost:11434/api/generate -d '{
```json
{
"model": "llama3",
"model": "llama2",
"created_at": "2023-08-04T19:22:45.499127Z",
"response": "The sky is blue because it is the color of the sky.",
"done": true,
@@ -351,7 +354,7 @@ If an empty prompt is provided, the model will be loaded into memory.
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3"
"model": "llama2"
}'
```
@@ -361,7 +364,7 @@ A single JSON object is returned:
```json
{
"model": "llama3",
"model": "llama2",
"created_at": "2023-12-18T19:52:07.071755Z",
"response": "",
"done": true
@@ -404,7 +407,7 @@ Send a chat message with a streaming response.
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3",
"model": "llama2",
"messages": [
{
"role": "user",
@@ -420,7 +423,7 @@ A stream of JSON objects is returned:
```json
{
"model": "llama3",
"model": "llama2",
"created_at": "2023-08-04T08:52:19.385406455-07:00",
"message": {
"role": "assistant",
@@ -435,7 +438,7 @@ Final response:
```json
{
"model": "llama3",
"model": "llama2",
"created_at": "2023-08-04T19:22:45.499127Z",
"done": true,
"total_duration": 4883583458,
@@ -453,7 +456,7 @@ Final response:
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3",
"model": "llama2",
"messages": [
{
"role": "user",
@@ -468,7 +471,7 @@ curl http://localhost:11434/api/chat -d '{
```json
{
"model": "registry.ollama.ai/library/llama3:latest",
"model": "registry.ollama.ai/library/llama2:latest",
"created_at": "2023-12-12T14:13:43.416799Z",
"message": {
"role": "assistant",
@@ -492,7 +495,7 @@ Send a chat message with a conversation history. You can use this same approach
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3",
"model": "llama2",
"messages": [
{
"role": "user",
@@ -516,7 +519,7 @@ A stream of JSON objects is returned:
```json
{
"model": "llama3",
"model": "llama2",
"created_at": "2023-08-04T08:52:19.385406455-07:00",
"message": {
"role": "assistant",
@@ -530,7 +533,7 @@ Final response:
```json
{
"model": "llama3",
"model": "llama2",
"created_at": "2023-08-04T19:22:45.499127Z",
"done": true,
"total_duration": 8113331500,
@@ -588,7 +591,7 @@ curl http://localhost:11434/api/chat -d '{
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3",
"model": "llama2",
"messages": [
{
"role": "user",
@@ -606,7 +609,7 @@ curl http://localhost:11434/api/chat -d '{
```json
{
"model": "registry.ollama.ai/library/llama3:latest",
"model": "registry.ollama.ai/library/llama2:latest",
"created_at": "2023-12-12T14:13:43.416799Z",
"message": {
"role": "assistant",
@@ -648,7 +651,7 @@ Create a new model from a `Modelfile`.
```shell
curl http://localhost:11434/api/create -d '{
"name": "mario",
"modelfile": "FROM llama3\nSYSTEM You are mario from Super Mario Bros."
"modelfile": "FROM llama2\nSYSTEM You are mario from Super Mario Bros."
}'
```
@@ -755,7 +758,7 @@ A single JSON object will be returned.
}
},
{
"name": "llama3:latest",
"name": "llama2:latest",
"modified_at": "2023-12-07T09:32:18.757212583-08:00",
"size": 3825819519,
"digest": "fe938a131f40e6f6d40083c9f0f430a515233eb2edaa6d72eb85c50d64f2300e",
@@ -789,7 +792,7 @@ Show information about a model including details, modelfile, template, parameter
```shell
curl http://localhost:11434/api/show -d '{
"name": "llama3"
"name": "llama2"
}'
```
@@ -824,8 +827,8 @@ Copy a model. Creates a model with another name from an existing model.
```shell
curl http://localhost:11434/api/copy -d '{
"source": "llama3",
"destination": "llama3-backup"
"source": "llama2",
"destination": "llama2-backup"
}'
```
@@ -851,7 +854,7 @@ Delete a model and its data.
```shell
curl -X DELETE http://localhost:11434/api/delete -d '{
"name": "llama3:13b"
"name": "llama2:13b"
}'
```
@@ -879,7 +882,7 @@ Download a model from the ollama library. Cancelled pulls are resumed from where
```shell
curl http://localhost:11434/api/pull -d '{
"name": "llama3"
"name": "llama2"
}'
```
@@ -1007,7 +1010,8 @@ Generate embeddings from a model
### Parameters
- `model`: name of model to generate embeddings from
- `prompt`: text to generate embeddings for
- `prompt`: string to generate the embedding for
- `prompts`: array of strings to generate a batch of embeddings for
Advanced parameters:
@@ -1035,3 +1039,33 @@ curl http://localhost:11434/api/embeddings -d '{
]
}
```
#### Request (batch)
```shell
curl http://localhost:11434/api/embeddings -d '{
"model": "all-minilm",
"prompt_batch": [
"Here is an article about llamas...",
"Here is another article about llamas..."
]
}'
```
#### Response
```json
{
"embedding_batch": [
[
0.5670403838157654, 0.009260174818336964, 0.23178744316101074, -0.2916173040866852, -0.8924556970596313,
0.8785552978515625, -0.34576427936553955, 0.5742510557174683, -0.04222835972905159, -0.137906014919281
],
[
0.5670403838157654, 0.009260174818336964, 0.23178744316101074, -0.2916173040866852, -0.8924556970596313,
0.8785552978515625, -0.34576427936553955, 0.5742510557174683, -0.04222835972905159, -0.137906014919281
],
]
}
```

View File

@@ -51,7 +51,7 @@ Typically the build scripts will auto-detect CUDA, however, if your Linux distro
or installation approach uses unusual paths, you can specify the location by
specifying an environment variable `CUDA_LIB_DIR` to the location of the shared
libraries, and `CUDACXX` to the location of the nvcc compiler. You can customize
a set of target CUDA architectures by setting `CMAKE_CUDA_ARCHITECTURES` (e.g. "50;60;70")
set set of target CUDA architectues by setting `CMAKE_CUDA_ARCHITECTURES` (e.g. "50;60;70")
Then generate dependencies:
@@ -142,4 +142,4 @@ In addition to the common Windows development tools described above, install AMD
- [AMD HIP](https://www.amd.com/en/developer/resources/rocm-hub/hip-sdk.html)
- [Strawberry Perl](https://strawberryperl.com/)
Lastly, add `ninja.exe` included with MSVC to the system path (e.g. `C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\Common7\IDE\CommonExtensions\Microsoft\CMake\Ninja`).
Lastly, add `ninja.exe` included with MSVC to the system path (e.g. `C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\Common7\IDE\CommonExtensions\Microsoft\CMake\Ninja`).

View File

@@ -1,71 +0,0 @@
# Ollama Docker image
### CPU only
```bash
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
```
### Nvidia GPU
Install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installation).
#### Install with Apt
1. Configure the repository
```bash
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey \
| sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list \
| sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' \
| sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
```
2. Install the NVIDIA Container Toolkit packages
```bash
sudo apt-get install -y nvidia-container-toolkit
```
#### Install with Yum or Dnf
1. Configure the repository
```bash
curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo \
| sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
```
2. Install the NVIDIA Container Toolkit packages
```bash
sudo yum install -y nvidia-container-toolkit
```
#### Configure Docker to use Nvidia driver
```
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker
```
#### Start the container
```bash
docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
```
### AMD GPU
To run Ollama using Docker with AMD GPUs, use the `rocm` tag and the following command:
```
docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama:rocm
```
### Run model locally
Now you can run a model:
```
docker exec -it ollama ollama run llama3
```
### Try different models
More models can be found on the [Ollama library](https://ollama.com/library).

View File

@@ -32,7 +32,7 @@ When using the API, specify the `num_ctx` parameter:
```
curl http://localhost:11434/api/generate -d '{
"model": "llama3",
"model": "llama2",
"prompt": "Why is the sky blue?",
"options": {
"num_ctx": 4096
@@ -88,9 +88,9 @@ On windows, Ollama inherits your user and system environment variables.
3. Edit or create New variable(s) for your user account for `OLLAMA_HOST`, `OLLAMA_MODELS`, etc.
4. Click OK/Apply to save
4. Click OK/Apply to save
5. Run `ollama` from a new terminal window
5. Run `ollama` from a new terminal window
## How can I expose Ollama on my network?
@@ -140,7 +140,7 @@ Refer to the section [above](#how-do-i-configure-ollama-server) for how to set e
- macOS: `~/.ollama/models`
- Linux: `/usr/share/ollama/.ollama/models`
- Windows: `C:\Users\%username%\.ollama\models`
- Windows: `C:\Users\<username>\.ollama\models`
### How do I set them to a different location?
@@ -221,20 +221,14 @@ The `keep_alive` parameter can be set to:
For example, to preload a model and leave it in memory use:
```shell
curl http://localhost:11434/api/generate -d '{"model": "llama3", "keep_alive": -1}'
curl http://localhost:11434/api/generate -d '{"model": "llama2", "keep_alive": -1}'
```
To unload the model and free up memory use:
```shell
curl http://localhost:11434/api/generate -d '{"model": "llama3", "keep_alive": 0}'
curl http://localhost:11434/api/generate -d '{"model": "llama2", "keep_alive": 0}'
```
Alternatively, you can change the amount of time all models are loaded into memory by setting the `OLLAMA_KEEP_ALIVE` environment variable when starting the Ollama server. The `OLLAMA_KEEP_ALIVE` variable uses the same parameter types as the `keep_alive` parameter types mentioned above. Refer to section explaining [how to configure the Ollama server](#how-do-i-configure-ollama-server) to correctly set the environment variable.
If you wish to override the `OLLAMA_KEEP_ALIVE` setting, use the `keep_alive` API parameter with the `/api/generate` or `/api/chat` API endpoints.
## How do I manage the maximum number of requests the server can queue
If too many requests are sent to the server, it will respond with a 503 error
indicating the server is overloaded. You can adjust how many requests may be
queue by setting `OLLAMA_MAX_QUEUE`

View File

@@ -125,7 +125,7 @@ Publishing models is in early alpha. If you'd like to publish your model to shar
1. Create [an account](https://ollama.com/signup)
2. Copy your Ollama public key:
- macOS: `cat ~/.ollama/id_ed25519.pub | pbcopy`
- macOS: `cat ~/.ollama/id_ed25519.pub`
- Windows: `type %USERPROFILE%\.ollama\id_ed25519.pub`
- Linux: `cat /usr/share/ollama/.ollama/id_ed25519.pub`
3. Add your public key to your [Ollama account](https://ollama.com/settings/keys)
@@ -136,8 +136,6 @@ Next, copy your model to your username's namespace:
ollama cp example <your username>/example
```
> Note: model names may only contain lowercase letters, digits, and the characters `.`, `-`, and `_`.
Then push the model:
```

View File

@@ -105,7 +105,7 @@ sudo chmod +x /usr/bin/ollama
To view logs of Ollama running as a startup service, run:
```bash
journalctl -e -u ollama
journalctl -u ollama
```
## Uninstall

View File

@@ -10,7 +10,7 @@ A model file is the blueprint to create and share models with Ollama.
- [Examples](#examples)
- [Instructions](#instructions)
- [FROM (Required)](#from-required)
- [Build from llama3](#build-from-llama3)
- [Build from llama2](#build-from-llama2)
- [Build from a bin file](#build-from-a-bin-file)
- [PARAMETER](#parameter)
- [Valid Parameters and Values](#valid-parameters-and-values)
@@ -48,7 +48,7 @@ INSTRUCTION arguments
An example of a `Modelfile` creating a mario blueprint:
```modelfile
FROM llama3
FROM llama2
# sets the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
# sets the context window size to 4096, this controls how many tokens the LLM can use as context to generate the next token
@@ -67,25 +67,33 @@ To use this:
More examples are available in the [examples directory](../examples).
To view the Modelfile of a given model, use the `ollama show --modelfile` command.
### `Modelfile`s in [ollama.com/library][1]
There are two ways to view `Modelfile`s underlying the models in [ollama.com/library][1]:
- Option 1: view a details page from a model's tags page:
1. Go to a particular model's tags (e.g. https://ollama.com/library/llama2/tags)
2. Click on a tag (e.g. https://ollama.com/library/llama2:13b)
3. Scroll down to "Layers"
- Note: if the [`FROM` instruction](#from-required) is not present,
it means the model was created from a local file
- Option 2: use `ollama show` to print the `Modelfile` for any local models like so:
```bash
> ollama show --modelfile llama3
> ollama show --modelfile llama2:13b
# Modelfile generated by "ollama show"
# To build a new Modelfile based on this one, replace the FROM line with:
# FROM llama3:latest
FROM /Users/pdevine/.ollama/models/blobs/sha256-00e1317cbf74d901080d7100f57580ba8dd8de57203072dc6f668324ba545f29
TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|>
# FROM llama2:13b
{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>
FROM /root/.ollama/models/blobs/sha256:123abc
TEMPLATE """[INST] {{ if .System }}<<SYS>>{{ .System }}<</SYS>>
{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>
{{ .Response }}<|eot_id|>"""
PARAMETER stop "<|start_header_id|>"
PARAMETER stop "<|end_header_id|>"
PARAMETER stop "<|eot_id|>"
PARAMETER stop "<|reserved_special_token"
{{ end }}{{ .Prompt }} [/INST] """
SYSTEM """"""
PARAMETER stop [INST]
PARAMETER stop [/INST]
PARAMETER stop <<SYS>>
PARAMETER stop <</SYS>>
```
## Instructions
@@ -98,10 +106,10 @@ The `FROM` instruction defines the base model to use when creating a model.
FROM <model name>:<tag>
```
#### Build from llama3
#### Build from llama2
```modelfile
FROM llama3
FROM llama2
```
A list of available base models:

View File

@@ -25,7 +25,7 @@ chat_completion = client.chat.completions.create(
'content': 'Say this is a test',
}
],
model='llama3',
model='llama2',
)
```
@@ -43,7 +43,7 @@ const openai = new OpenAI({
const chatCompletion = await openai.chat.completions.create({
messages: [{ role: 'user', content: 'Say this is a test' }],
model: 'llama3',
model: 'llama2',
})
```
@@ -53,7 +53,7 @@ const chatCompletion = await openai.chat.completions.create({
curl http://localhost:11434/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "llama3",
"model": "llama2",
"messages": [
{
"role": "system",
@@ -113,7 +113,7 @@ curl http://localhost:11434/v1/chat/completions \
Before using a model, pull it locally `ollama pull`:
```shell
ollama pull llama3
ollama pull llama2
```
### Default model names
@@ -121,7 +121,7 @@ ollama pull llama3
For tooling that relies on default OpenAI model names such as `gpt-3.5-turbo`, use `ollama cp` to copy an existing model name to a temporary name:
```
ollama cp llama3 gpt-3.5-turbo
ollama cp llama2 gpt-3.5-turbo
```
Afterwards, this new model name can be specified the `model` field:

View File

@@ -82,23 +82,4 @@ curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION="0.1.29" sh
If your system is configured with the "noexec" flag where Ollama stores its
temporary executable files, you can specify an alternate location by setting
OLLAMA_TMPDIR to a location writable by the user ollama runs as. For example
OLLAMA_TMPDIR=/usr/share/ollama/
## Container fails to run on NVIDIA GPU
Make sure you've set up the conatiner runtime first as described in [docker.md](./docker.md)
Sometimes the container runtime can have difficulties initializing the GPU.
When you check the server logs, this can show up as various error codes, such
as "3" (not initialized), "46" (device unavailable), "100" (no device), "999"
(unknown), or others. The following troubleshooting techniques may help resolve
the problem
- Is the uvm driver not loaded? `sudo nvidia-modprobe -u`
- Try reloading the nvidia_uvm driver - `sudo rmmod nvidia_uvm` then `sudo modprobe nvidia_uvm`
- Try rebooting
- Make sure you're running the latest nvidia drivers
If none of those resolve the problem, gather additional information and file an issue:
- Set `CUDA_ERROR_LEVEL=50` and try again to get more diagnostic logs
- Check dmesg for any errors `sudo dmesg | grep -i nvrm` and `sudo dmesg | grep -i nvidia`
OLLAMA_TMPDIR=/usr/share/ollama/

View File

@@ -5,17 +5,17 @@ In this tutorial, we are going to use JavaScript with LangChain and Ollama to le
To get started, let's just use **LangChain** to ask a simple question to a model. To do this with JavaScript, we need to install **LangChain**:
```bash
npm install @langchain/community
npm install langchain
```
Now we can start building out our JavaScript:
```javascript
import { Ollama } from "@langchain/community/llms/ollama";
import { Ollama } from "langchain/llms/ollama";
const ollama = new Ollama({
baseUrl: "http://localhost:11434",
model: "llama3",
model: "llama2",
});
const answer = await ollama.invoke(`why is the sky blue?`);
@@ -23,10 +23,10 @@ const answer = await ollama.invoke(`why is the sky blue?`);
console.log(answer);
```
That will get us the same thing as if we ran `ollama run llama3 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
That will get us the same thing as if we ran `ollama run llama2 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
```bash
npm install cheerio
npm install cheerio
```
```javascript

View File

@@ -12,17 +12,15 @@ So let's figure out how we can use **LangChain** with Ollama to ask our question
Let's start by asking a simple question that we can get an answer to from the **Llama2** model using **Ollama**. First, we need to install the **LangChain** package:
`pip install langchain_community`
`pip install langchain`
Then we can create a model and ask the question:
```python
from langchain_community.llms import Ollama
ollama = Ollama(
base_url='http://localhost:11434',
model="llama3"
)
print(ollama.invoke("why is the sky blue"))
from langchain.llms import Ollama
ollama = Ollama(base_url='http://localhost:11434',
model="llama2")
print(ollama("why is the sky blue"))
```
Notice that we are defining the model and the base URL for Ollama.

View File

@@ -1,61 +1,47 @@
# Ollama Windows Preview
Welcome to the Ollama Windows preview.
No more WSL required!
Ollama now runs as a native Windows application, including NVIDIA and AMD Radeon GPU support.
After installing Ollama Windows Preview, Ollama will run in the background and
the `ollama` command line is available in `cmd`, `powershell` or your favorite
terminal application. As usual the Ollama [api](./api.md) will be served on
`http://localhost:11434`.
As this is a preview release, you should expect a few bugs here and there. If
you run into a problem you can reach out on
[Discord](https://discord.gg/ollama), or file an
[issue](https://github.com/ollama/ollama/issues).
Logs will often be helpful in diagnosing the problem (see
[Troubleshooting](#troubleshooting) below)
## System Requirements
* Windows 10 or newer, Home or Pro
* NVIDIA 452.39 or newer Drivers if you have an NVIDIA card
* AMD Radeon Driver https://www.amd.com/en/support if you have a Radeon card
## API Access
Here's a quick example showing API access from `powershell`
```powershell
(Invoke-WebRequest -method POST -Body '{"model":"llama3", "prompt":"Why is the sky blue?", "stream": false}' -uri http://localhost:11434/api/generate ).Content | ConvertFrom-json
```
## Troubleshooting
While we're in preview, `OLLAMA_DEBUG` is always enabled, which adds
a "view logs" menu item to the app, and increses logging for the GUI app and
server.
Ollama on Windows stores files in a few different locations. You can view them in
the explorer window by hitting `<cmd>+R` and type in:
- `explorer %LOCALAPPDATA%\Ollama` contains logs, and downloaded updates
- *app.log* contains logs from the GUI application
- *server.log* contains the server logs
- *upgrade.log* contains log output for upgrades
- `explorer %LOCALAPPDATA%\Programs\Ollama` contains the binaries (The installer adds this to your user PATH)
- `explorer %HOMEPATH%\.ollama` contains models and configuration
- `explorer %TEMP%` contains temporary executable files in one or more `ollama*` directories
## Standalone CLI
The easiest way to install Ollama on Windows is to use the `OllamaSetup.exe`
installer. It installs in your account without requiring Administrator rights.
We update Ollama regularly to support the latest models, and this installer will
help you keep up to date.
If you'd like to install or integrate Ollama as a service, a standalone
`ollama-windows-amd64.zip` zip file is available containing only the Ollama CLI
and GPU library dependencies for Nvidia and AMD. This allows for embedding
Ollama in existing applications, or running it as a system service via `ollama
serve` with tools such as [NSSM](https://nssm.cc/).
# Ollama Windows Preview
Welcome to the Ollama Windows preview.
No more WSL required!
Ollama now runs as a native Windows application, including NVIDIA and AMD Radeon GPU support.
After installing Ollama Windows Preview, Ollama will run in the background and
the `ollama` command line is available in `cmd`, `powershell` or your favorite
terminal application. As usual the Ollama [api](./api.md) will be served on
`http://localhost:11434`.
As this is a preview release, you should expect a few bugs here and there. If
you run into a problem you can reach out on
[Discord](https://discord.gg/ollama), or file an
[issue](https://github.com/ollama/ollama/issues).
Logs will often be helpful in diagnosing the problem (see
[Troubleshooting](#troubleshooting) below)
## System Requirements
* Windows 10 or newer, Home or Pro
* NVIDIA 452.39 or newer Drivers if you have an NVIDIA card
* AMD Radeon Driver https://www.amd.com/en/support if you have a Radeon card
## API Access
Here's a quick example showing API access from `powershell`
```powershell
(Invoke-WebRequest -method POST -Body '{"model":"llama2", "prompt":"Why is the sky blue?", "stream": false}' -uri http://localhost:11434/api/generate ).Content | ConvertFrom-json
```
## Troubleshooting
While we're in preview, `OLLAMA_DEBUG` is always enabled, which adds
a "view logs" menu item to the app, and increses logging for the GUI app and
server.
Ollama on Windows stores files in a few different locations. You can view them in
the explorer window by hitting `<cmd>+R` and type in:
- `explorer %LOCALAPPDATA%\Ollama` contains logs, and downloaded updates
- *app.log* contains logs from the GUI application
- *server.log* contains the server logs
- *upgrade.log* contains log output for upgrades
- `explorer %LOCALAPPDATA%\Programs\Ollama` contains the binaries (The installer adds this to your user PATH)
- `explorer %HOMEPATH%\.ollama` contains models and configuration
- `explorer %TEMP%` contains temporary executable files in one or more `ollama*` directories

View File

@@ -0,0 +1,10 @@
# Bash Shell examples
When calling `ollama`, you can pass it a file to run all the prompts in the file, one after the other:
`ollama run llama2 < sourcequestions.txt`
This concept is used in the following example.
## Compare Models
`comparemodels.sh` is a script that runs all the questions in `sourcequestions.txt` using any 4 models you choose that you have already pulled from the Ollama library or have created locally.

View File

@@ -0,0 +1,64 @@
#! /usr/bin/env bash
# Compare multiple models by running them with the same questions
NUMBEROFCHOICES=4
SELECTIONS=()
declare -a SUMS=()
# Get the list of models
CHOICES=$(ollama list | awk '{print $1}')
# Select which models to run as a comparison
echo "Select $NUMBEROFCHOICES models to compare:"
select ITEM in $CHOICES; do
if [[ -n $ITEM ]]; then
echo "You have selected $ITEM"
SELECTIONS+=("$ITEM")
((COUNT++))
if [[ $COUNT -eq $NUMBEROFCHOICES ]]; then
break
fi
else
echo "Invalid selection"
fi
done
# Loop through each of the selected models
for ITEM in "${SELECTIONS[@]}"; do
echo "--------------------------------------------------------------"
echo "Loading the model $ITEM into memory"
ollama run "$ITEM" ""
echo "--------------------------------------------------------------"
echo "Running the questions through the model $ITEM"
COMMAND_OUTPUT=$(ollama run "$ITEM" --verbose < sourcequestions.txt 2>&1| tee /dev/stderr)
# eval duration is sometimes listed in seconds and sometimes in milliseconds.
# Add up the values for each model
SUM=$(echo "$COMMAND_OUTPUT" | awk '
/eval duration:/ {
value = $3
if (index(value, "ms") > 0) {
gsub("ms", "", value)
value /= 1000
} else {
gsub("s", "", value)
}
sum += value
}
END { print sum }')
SUMS+=("All questions for $ITEM completed in $SUM seconds")
done
echo ""
echo "--------------------------------------------------------------"
echo -e "Sums of eval durations for each run:"
for val in "${SUMS[@]}"; do
echo "$val"
done
echo "--------------------------------------------------------------"
echo "Comparison complete. Now you can decide"
echo "which model is best."
echo "--------------------------------------------------------------"

View File

@@ -0,0 +1,7 @@
Why is the sky blue
What is a black hole
Explain the big bang theory like I am 5?
What is the quickest way to win a game of Monopoly with 3 others?
Why does a vacuum bottle keep my coffee hot and my milkshake cold?
What is the difference between a meteor, a meteorite, and a meteoroid?
Create an array with 5 items and print to the console. Do this in Python, C#, Typescript, and Rust.

View File

@@ -1 +0,0 @@
fly.toml

View File

@@ -1,67 +0,0 @@
# Deploy Ollama to Fly.io
> Note: this example exposes a public endpoint and does not configure authentication. Use with care.
## Prerequisites
- Ollama: https://ollama.com/download
- Fly.io account. Sign up for a free account: https://fly.io/app/sign-up
## Steps
1. Login to Fly.io
```bash
fly auth login
```
1. Create a new Fly app
```bash
fly launch --name <name> --image ollama/ollama --internal-port 11434 --vm-size shared-cpu-8x --now
```
1. Pull and run `orca-mini:3b`
```bash
OLLAMA_HOST=https://<name>.fly.dev ollama run orca-mini:3b
```
`shared-cpu-8x` is a free-tier eligible machine type. For better performance, switch to a `performance` or `dedicated` machine type or attach a GPU for hardware acceleration (see below).
## (Optional) Persistent Volume
By default Fly Machines use ephemeral storage which is problematic if you want to use the same model across restarts without pulling it again. Create and attach a persistent volume to store the downloaded models:
1. Create the Fly Volume
```bash
fly volume create ollama
```
1. Update `fly.toml` and add `[mounts]`
```toml
[mounts]
source = "ollama"
destination = "/mnt/ollama/models"
```
1. Update `fly.toml` and add `[env]`
```toml
[env]
OLLAMA_MODELS = "/mnt/ollama/models"
```
1. Deploy your app
```bash
fly deploy
```
## (Optional) Hardware Acceleration
Fly.io GPU is currently in waitlist. Sign up for the waitlist: https://fly.io/gpu
Once you've been accepted, create the app with the additional flags `--vm-gpu-kind a100-pcie-40gb` or `--vm-gpu-kind a100-pcie-80gb`.

View File

@@ -35,7 +35,7 @@ func main() {
ctx := context.Background()
req := &api.ChatRequest{
Model: "llama3",
Model: "llama2",
Messages: messages,
}

View File

@@ -19,7 +19,7 @@ func main() {
}
defer resp.Body.Close()
responseData, err := io.ReadAll(resp.Body)
if err != nil {
log.Fatal(err)

View File

@@ -7,24 +7,12 @@
## Steps
1. Create the Ollama namespace, deployment, and service
1. Create the Ollama namespace, daemon set, and service
```bash
kubectl apply -f cpu.yaml
```
## (Optional) Hardware Acceleration
Hardware acceleration in Kubernetes requires NVIDIA's [`k8s-device-plugin`](https://github.com/NVIDIA/k8s-device-plugin) which is deployed in Kubernetes in form of daemonset. Follow the link for more details.
Once configured, create a GPU enabled Ollama deployment.
```bash
kubectl apply -f gpu.yaml
```
## Test
1. Port forward the Ollama service to connect and use it locally
```bash
@@ -35,4 +23,14 @@ kubectl apply -f gpu.yaml
```bash
ollama run orca-mini:3b
```
```
## (Optional) Hardware Acceleration
Hardware acceleration in Kubernetes requires NVIDIA's [`k8s-device-plugin`](https://github.com/NVIDIA/k8s-device-plugin). Follow the link for more details.
Once configured, create a GPU enabled Ollama deployment.
```bash
kubectl apply -f gpu.yaml
```

View File

@@ -40,9 +40,9 @@ while True:
continue
# Prompt
template = """Use the following pieces of context to answer the question at the end.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
Use three sentences maximum and keep the answer as concise as possible.
template = """Use the following pieces of context to answer the question at the end.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
Use three sentences maximum and keep the answer as concise as possible.
{context}
Question: {question}
Helpful Answer:"""
@@ -51,11 +51,11 @@ while True:
template=template,
)
llm = Ollama(model="llama3:8b", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
llm = Ollama(model="llama2:13b", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
qa_chain = RetrievalQA.from_chain_type(
llm,
retriever=vectorstore.as_retriever(),
chain_type_kwargs={"prompt": QA_CHAIN_PROMPT},
)
result = qa_chain({"query": query})
result = qa_chain({"query": query})

View File

@@ -1,12 +1,12 @@
from langchain_community.llms import Ollama
from langchain_community.document_loaders import WebBaseLoader
from langchain.llms import Ollama
from langchain.document_loaders import WebBaseLoader
from langchain.chains.summarize import load_summarize_chain
loader = WebBaseLoader("https://ollama.com/blog/run-llama2-uncensored-locally")
docs = loader.load()
llm = Ollama(model="llama3")
llm = Ollama(model="llama2")
chain = load_summarize_chain(llm, chain_type="stuff")
result = chain.invoke(docs)
result = chain.run(docs)
print(result)

View File

@@ -4,10 +4,10 @@ This example is a basic "hello world" of using LangChain with Ollama.
## Running the Example
1. Ensure you have the `llama3` model installed:
1. Ensure you have the `llama2` model installed:
```bash
ollama pull llama3
ollama pull llama2
```
2. Install the Python Requirements.
@@ -21,3 +21,4 @@ This example is a basic "hello world" of using LangChain with Ollama.
```bash
python main.py
```

View File

@@ -1,6 +1,6 @@
from langchain.llms import Ollama
input = input("What is your question?")
llm = Ollama(model="llama3")
llm = Ollama(model="llama2")
res = llm.predict(input)
print (res)

View File

@@ -1,4 +1,4 @@
FROM llama3
FROM llama2
PARAMETER temperature 1
SYSTEM """
You are Mario from super mario bros, acting as an assistant.

View File

@@ -2,12 +2,12 @@
# Example character: Mario
This example shows how to create a basic character using Llama3 as the base model.
This example shows how to create a basic character using Llama2 as the base model.
To run this example:
1. Download the Modelfile
2. `ollama pull llama3` to get the base model used in the model file.
2. `ollama pull llama2` to get the base model used in the model file.
3. `ollama create NAME -f ./Modelfile`
4. `ollama run NAME`
@@ -18,7 +18,7 @@ Ask it some questions like "Who are you?" or "Is Peach in trouble again?"
What the model file looks like:
```
FROM llama3
FROM llama2
PARAMETER temperature 1
SYSTEM """
You are Mario from Super Mario Bros, acting as an assistant.

View File

@@ -2,16 +2,16 @@ import requests
import json
import random
model = "llama3"
model = "llama2"
template = {
"firstName": "",
"lastName": "",
"firstName": "",
"lastName": "",
"address": {
"street": "",
"city": "",
"state": "",
"street": "",
"city": "",
"state": "",
"zipCode": ""
},
},
"phoneNumber": ""
}

View File

@@ -12,7 +12,7 @@ countries = [
"France",
]
country = random.choice(countries)
model = "llama3"
model = "llama2"
prompt = f"generate one realistically believable sample data set of a persons first name, last name, address in {country}, and phone number. Do not use common names. Respond using JSON. Key names should have no backslashes, values should use plain ascii with no special characters."

View File

@@ -6,10 +6,10 @@ There are two python scripts in this example. `randomaddresses.py` generates ran
## Running the Example
1. Ensure you have the `llama3` model installed:
1. Ensure you have the `llama2` model installed:
```bash
ollama pull llama3
ollama pull llama2
```
2. Install the Python Requirements.

View File

@@ -2,7 +2,7 @@ import json
import requests
# NOTE: ollama must be running for this to work, start the ollama app or run `ollama serve`
model = "llama3" # TODO: update this for whatever model you wish to use
model = "llama2" # TODO: update this for whatever model you wish to use
def chat(messages):

View File

@@ -4,10 +4,10 @@ The **chat** endpoint is one of two ways to generate text from an LLM with Ollam
## Running the Example
1. Ensure you have the `llama3` model installed:
1. Ensure you have the `llama2` model installed:
```bash
ollama pull llama3
ollama pull llama2
```
2. Install the Python Requirements.

View File

@@ -4,10 +4,10 @@ This example demonstrates how one would create a set of 'mentors' you can have a
## Usage
1. Add llama3 to have the mentors ask your questions:
1. Add llama2 to have the mentors ask your questions:
```bash
ollama pull llama3
ollama pull llama2
```
2. Install prerequisites:

View File

@@ -15,7 +15,7 @@ async function characterGenerator() {
ollama.setModel("stablebeluga2:70b-q4_K_M");
const bio = await ollama.generate(`create a bio of ${character} in a single long paragraph. Instead of saying '${character} is...' or '${character} was...' use language like 'You are...' or 'You were...'. Then create a paragraph describing the speaking mannerisms and style of ${character}. Don't include anything about how ${character} looked or what they sounded like, just focus on the words they said. Instead of saying '${character} would say...' use language like 'You should say...'. If you use quotes, always use single quotes instead of double quotes. If there are any specific words or phrases you used a lot, show how you used them. `);
const thecontents = `FROM llama3\nSYSTEM """\n${bio.response.replace(/(\r\n|\n|\r)/gm, " ").replace('would', 'should')} All answers to questions should be related back to what you are most known for.\n"""`;
const thecontents = `FROM llama2\nSYSTEM """\n${bio.response.replace(/(\r\n|\n|\r)/gm, " ").replace('would', 'should')} All answers to questions should be related back to what you are most known for.\n"""`;
fs.writeFile(path.join(directory, 'Modelfile'), thecontents, (err: any) => {
if (err) throw err;
@@ -23,4 +23,4 @@ async function characterGenerator() {
});
}
characterGenerator();
characterGenerator();

View File

@@ -1,6 +1,6 @@
import * as readline from "readline";
const model = "llama3";
const model = "llama2";
type Message = {
role: "assistant" | "user" | "system";
content: string;
@@ -74,4 +74,4 @@ async function main() {
}
main();
main();

View File

@@ -53,8 +53,6 @@ func HumanBytes(b int64) string {
func HumanBytes2(b uint64) string {
switch {
case b >= GibiByte:
return fmt.Sprintf("%.1f GiB", float64(b)/GibiByte)
case b >= MebiByte:
return fmt.Sprintf("%.1f MiB", float64(b)/MebiByte)
case b >= KibiByte:

View File

@@ -13,20 +13,12 @@ const (
func HumanNumber(b uint64) string {
switch {
case b >= Billion:
number := float64(b) / Billion
if number == math.Floor(number) {
return fmt.Sprintf("%.0fB", number) // no decimals if whole number
}
return fmt.Sprintf("%.1fB", number) // one decimal if not a whole number
case b >= Million:
number := float64(b) / Million
if number == math.Floor(number) {
return fmt.Sprintf("%.0fM", number) // no decimals if whole number
}
return fmt.Sprintf("%.2fM", number) // two decimals if not a whole number
case b >= Thousand:
return fmt.Sprintf("%.0fK", float64(b)/Thousand)
case b > Billion:
return fmt.Sprintf("%.0fB", math.Round(float64(b)/Billion))
case b > Million:
return fmt.Sprintf("%.0fM", math.Round(float64(b)/Million))
case b > Thousand:
return fmt.Sprintf("%.0fK", math.Round(float64(b)/Thousand))
default:
return fmt.Sprintf("%d", b)
}

View File

@@ -1,34 +0,0 @@
package format
import (
"testing"
)
func TestHumanNumber(t *testing.T) {
type testCase struct {
input uint64
expected string
}
testCases := []testCase{
{0, "0"},
{1000000, "1M"},
{125000000, "125M"},
{500500000, "500.50M"},
{500550000, "500.55M"},
{1000000000, "1B"},
{2800000000, "2.8B"},
{2850000000, "2.9B"},
{1000000000000, "1000B"},
}
for _, tc := range testCases {
t.Run(tc.expected, func(t *testing.T) {
result := HumanNumber(tc.input)
if result != tc.expected {
t.Errorf("Expected %s, got %s", tc.expected, result)
}
})
}
}

View File

@@ -81,10 +81,8 @@ func commonAMDValidateLibDir() (string, error) {
}
// Well known location(s)
for _, path := range RocmStandardLocations {
if rocmLibUsable(path) {
return path, nil
}
if rocmLibUsable(RocmStandardLocation) {
return RocmStandardLocation, nil
}
// Installer payload location if we're running the installed binary

View File

@@ -3,6 +3,7 @@ package gpu
import (
"fmt"
"log/slog"
"strconv"
"syscall"
"unsafe"
@@ -73,22 +74,16 @@ func (hl *HipLib) Release() {
hl.dll = 0
}
func (hl *HipLib) AMDDriverVersion() (driverMajor, driverMinor int, err error) {
func (hl *HipLib) AMDDriverVersion() (string, error) {
if hl.dll == 0 {
return 0, 0, fmt.Errorf("dll has been unloaded")
return "", fmt.Errorf("dll has been unloaded")
}
var version int
status, _, err := syscall.SyscallN(hl.hipDriverGetVersion, uintptr(unsafe.Pointer(&version)))
if status != hipSuccess {
return 0, 0, fmt.Errorf("failed call to hipDriverGetVersion: %d %s", status, err)
return "", fmt.Errorf("failed call to hipDriverGetVersion: %d %s", status, err)
}
slog.Debug("hipDriverGetVersion", "version", version)
// TODO - this isn't actually right, but the docs claim hipDriverGetVersion isn't accurate anyway...
driverMajor = version / 1000
driverMinor = (version - (driverMajor * 1000)) / 10
return driverMajor, driverMinor, nil
return strconv.Itoa(version), nil
}
func (hl *HipLib) HipGetDeviceCount() int {

View File

@@ -8,7 +8,6 @@ import (
"log/slog"
"os"
"path/filepath"
"regexp"
"slices"
"strconv"
"strings"
@@ -26,12 +25,12 @@ const (
// Prefix with the node dir
GPUTotalMemoryFileGlob = "mem_banks/*/properties" // size_in_bytes line
GPUUsedMemoryFileGlob = "mem_banks/*/used_memory"
RocmStandardLocation = "/opt/rocm/lib"
)
var (
// Used to validate if the given ROCm lib is usable
ROCmLibGlobs = []string{"libhipblas.so.2*", "rocblas"} // TODO - probably include more coverage of files here...
RocmStandardLocations = []string{"/opt/rocm/lib", "/usr/lib64"}
ROCmLibGlobs = []string{"libhipblas.so.2*", "rocblas"} // TODO - probably include more coverage of files here...
)
// Gather GPU information from the amdgpu driver if any supported GPUs are detected
@@ -42,8 +41,10 @@ func AMDGetGPUInfo() []GpuInfo {
}
// Opportunistic logging of driver version to aid in troubleshooting
driverMajor, driverMinor, err := AMDDriverVersion()
if err != nil {
ver, err := AMDDriverVersion()
if err == nil {
slog.Info("AMD Driver: " + ver)
} else {
// TODO - if we see users crash and burn with the upstreamed kernel this can be adjusted to hard-fail rocm support and fallback to CPU
slog.Warn("ollama recommends running the https://www.amd.com/en/support/linux-drivers", "error", err)
}
@@ -90,7 +91,6 @@ func AMDGetGPUInfo() []GpuInfo {
scanner := bufio.NewScanner(fp)
isCPU := false
var major, minor, patch uint64
var vendor, device uint64
for scanner.Scan() {
line := strings.TrimSpace(scanner.Text())
// Note: we could also use "cpu_cores_count X" where X is greater than zero to detect CPUs
@@ -118,26 +118,6 @@ func AMDGetGPUInfo() []GpuInfo {
slog.Debug("malformed int " + line)
continue
}
} else if strings.HasPrefix(line, "vendor_id") {
ver := strings.Fields(line)
if len(ver) != 2 {
slog.Debug("malformed vendor_id", "vendor_id", line)
continue
}
vendor, err = strconv.ParseUint(ver[1], 10, 32)
if err != nil {
slog.Debug("malformed vendor_id" + line)
}
} else if strings.HasPrefix(line, "device_id") {
ver := strings.Fields(line)
if len(ver) != 2 {
slog.Debug("malformed device_id", "device_id", line)
continue
}
device, err = strconv.ParseUint(ver[1], 10, 32)
if err != nil {
slog.Debug("malformed device_id" + line)
}
}
// TODO - any other properties we want to extract and record?
@@ -160,7 +140,7 @@ func AMDGetGPUInfo() []GpuInfo {
}
if int(major) < RocmComputeMin {
slog.Warn(fmt.Sprintf("amdgpu too old gfx%d%x%x", major, minor, patch), "gpu", gpuID)
slog.Warn(fmt.Sprintf("amdgpu too old gfx%d%d%x", major, minor, patch), "gpu", gpuID)
continue
}
@@ -230,29 +210,24 @@ func AMDGetGPUInfo() []GpuInfo {
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
if totalMemory < IGPUMemLimit {
slog.Info("unsupported Radeon iGPU detected skipping", "id", gpuID, "total", format.HumanBytes2(totalMemory))
slog.Info("amdgpu appears to be an iGPU, skipping", "gpu", gpuID, "total", format.HumanBytes2(totalMemory))
continue
}
var name string
// TODO - PCI ID lookup
if vendor > 0 && device > 0 {
name = fmt.Sprintf("%04x:%04x", vendor, device)
}
slog.Debug("amdgpu memory", "gpu", gpuID, "total", format.HumanBytes2(totalMemory))
slog.Debug("amdgpu memory", "gpu", gpuID, "available", format.HumanBytes2(totalMemory-usedMemory))
slog.Info("amdgpu memory", "gpu", gpuID, "total", format.HumanBytes2(totalMemory))
slog.Info("amdgpu memory", "gpu", gpuID, "available", format.HumanBytes2(totalMemory-usedMemory))
gpuInfo := GpuInfo{
Library: "rocm",
memInfo: memInfo{
TotalMemory: totalMemory,
FreeMemory: (totalMemory - usedMemory),
},
ID: fmt.Sprintf("%d", gpuID),
Name: name,
Compute: fmt.Sprintf("gfx%d%x%x", major, minor, patch),
ID: fmt.Sprintf("%d", gpuID),
// Name: not exposed in sysfs directly, would require pci device id lookup
Major: int(major),
Minor: int(minor),
Patch: int(patch),
MinimumMemory: rocmMinimumMemory,
DriverMajor: driverMajor,
DriverMinor: driverMinor,
}
// If the user wants to filter to a subset of devices, filter out if we aren't a match
@@ -291,7 +266,7 @@ func AMDGetGPUInfo() []GpuInfo {
}
slog.Debug("rocm supported GPUs", "types", supported)
}
gfx := gpuInfo.Compute
gfx := fmt.Sprintf("gfx%d%d%x", gpuInfo.Major, gpuInfo.Minor, gpuInfo.Patch)
if !slices.Contains[[]string, string](supported, gfx) {
slog.Warn("amdgpu is not supported", "gpu", gpuInfo.ID, "gpu_type", gfx, "library", libDir, "supported_types", supported)
// TODO - consider discrete markdown just for ROCM troubleshooting?
@@ -301,7 +276,7 @@ func AMDGetGPUInfo() []GpuInfo {
slog.Info("amdgpu is supported", "gpu", gpuInfo.ID, "gpu_type", gfx)
}
} else {
slog.Info("skipping rocm gfx compatibility check", "HSA_OVERRIDE_GFX_VERSION", gfxOverride)
slog.Debug("skipping rocm gfx compatibility check with HSA_OVERRIDE_GFX_VERSION=" + gfxOverride)
}
// The GPU has passed all the verification steps and is supported
@@ -347,34 +322,19 @@ func AMDValidateLibDir() (string, error) {
return "", fmt.Errorf("no suitable rocm found, falling back to CPU")
}
func AMDDriverVersion() (driverMajor, driverMinor int, err error) {
_, err = os.Stat(DriverVersionFile)
func AMDDriverVersion() (string, error) {
_, err := os.Stat(DriverVersionFile)
if err != nil {
return 0, 0, fmt.Errorf("amdgpu version file missing: %s %w", DriverVersionFile, err)
return "", fmt.Errorf("amdgpu version file missing: %s %w", DriverVersionFile, err)
}
fp, err := os.Open(DriverVersionFile)
if err != nil {
return 0, 0, err
return "", err
}
defer fp.Close()
verString, err := io.ReadAll(fp)
if err != nil {
return 0, 0, err
return "", err
}
pattern := `\A(\d+)\.(\d+).*`
regex := regexp.MustCompile(pattern)
match := regex.FindStringSubmatch(string(verString))
if len(match) < 2 {
return 0, 0, fmt.Errorf("malformed version string %s", string(verString))
}
driverMajor, err = strconv.Atoi(match[1])
if err != nil {
return 0, 0, err
}
driverMinor, err = strconv.Atoi(match[2])
if err != nil {
return 0, 0, err
}
return driverMajor, driverMinor, nil
return strings.TrimSpace(string(verString)), nil
}

View File

@@ -7,12 +7,14 @@ import (
"os"
"path/filepath"
"slices"
"strconv"
"strings"
"github.com/ollama/ollama/format"
)
const (
RocmStandardLocation = "C:\\Program Files\\AMD\\ROCm\\5.7\\bin" // TODO glob?
// TODO We're lookinng for this exact name to detect iGPUs since hipGetDeviceProperties never reports integrated==true
iGPUName = "AMD Radeon(TM) Graphics"
@@ -20,8 +22,7 @@ const (
var (
// Used to validate if the given ROCm lib is usable
ROCmLibGlobs = []string{"hipblas.dll", "rocblas"} // TODO - probably include more coverage of files here...
RocmStandardLocations = []string{"C:\\Program Files\\AMD\\ROCm\\5.7\\bin"} // TODO glob?
ROCmLibGlobs = []string{"hipblas.dll", "rocblas"} // TODO - probably include more coverage of files here...
)
func AMDGetGPUInfo() []GpuInfo {
@@ -33,12 +34,13 @@ func AMDGetGPUInfo() []GpuInfo {
}
defer hl.Release()
// TODO - this reports incorrect version information, so omitting for now
// driverMajor, driverMinor, err := hl.AMDDriverVersion()
// if err != nil {
// // For now this is benign, but we may eventually need to fail compatibility checks
// slog.Debug("error looking up amd driver version", "error", err)
// }
ver, err := hl.AMDDriverVersion()
if err == nil {
slog.Info("AMD Driver: " + ver)
} else {
// For now this is benign, but we may eventually need to fail compatibility checks
slog.Debug("error looking up amd driver version", "error", err)
}
// Note: the HIP library automatically handles subsetting to any HIP_VISIBLE_DEVICES the user specified
count := hl.HipGetDeviceCount()
@@ -60,10 +62,10 @@ func AMDGetGPUInfo() []GpuInfo {
return nil
}
} else {
slog.Info("skipping rocm gfx compatibility check", "HSA_OVERRIDE_GFX_VERSION", gfxOverride)
slog.Debug("skipping rocm gfx compatibility check with HSA_OVERRIDE_GFX_VERSION=" + gfxOverride)
}
slog.Debug("detected hip devices", "count", count)
slog.Info("detected hip devices", "count", count)
// TODO how to determine the underlying device ID when visible devices is causing this to subset?
for i := 0; i < count; i++ {
err = hl.HipSetDevice(i)
@@ -83,11 +85,18 @@ func AMDGetGPUInfo() []GpuInfo {
// Can luid be used on windows for setting visible devices (and is it actually set?)
n = bytes.IndexByte(props.GcnArchName[:], 0)
gfx := string(props.GcnArchName[:n])
slog.Debug("hip device", "id", i, "name", name, "gfx", gfx)
slog.Info("hip device", "id", i, "name", name, "gfx", gfx)
var major, minor, patch string
switch len(gfx) {
case 6:
major, minor, patch = gfx[3:4], gfx[4:5], gfx[5:]
case 7:
major, minor, patch = gfx[3:5], gfx[5:6], gfx[6:]
}
//slog.Info(fmt.Sprintf("[%d] Integrated: %d", i, props.iGPU)) // DOESN'T REPORT CORRECTLY! Always 0
// TODO Why isn't props.iGPU accurate!?
if strings.EqualFold(name, iGPUName) {
slog.Info("unsupported Radeon iGPU detected skipping", "id", i, "name", name, "gfx", gfx)
slog.Info("iGPU detected skipping", "id", i)
continue
}
if gfxOverride == "" {
@@ -97,7 +106,7 @@ func AMDGetGPUInfo() []GpuInfo {
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for HSA_OVERRIDE_GFX_VERSION usage")
continue
} else {
slog.Debug("amdgpu is supported", "gpu", i, "gpu_type", gfx)
slog.Info("amdgpu is supported", "gpu", i, "gpu_type", gfx)
}
}
@@ -115,8 +124,8 @@ func AMDGetGPUInfo() []GpuInfo {
// TODO revisit this once ROCm v6 is available on windows.
// v5.7 only reports VRAM used by this process, so it's completely wrong and unusable
slog.Debug("amdgpu memory", "gpu", i, "total", format.HumanBytes2(totalMemory))
slog.Debug("amdgpu memory", "gpu", i, "available", format.HumanBytes2(freeMemory))
slog.Info("amdgpu memory", "gpu", i, "total", format.HumanBytes2(totalMemory))
slog.Info("amdgpu memory", "gpu", i, "available", format.HumanBytes2(freeMemory))
gpuInfo := GpuInfo{
Library: "rocm",
memInfo: memInfo{
@@ -126,12 +135,31 @@ func AMDGetGPUInfo() []GpuInfo {
ID: fmt.Sprintf("%d", i), // TODO this is probably wrong if we specify visible devices
DependencyPath: libDir,
MinimumMemory: rocmMinimumMemory,
Name: name,
Compute: gfx,
// TODO - this information isn't accurate on windows, so don't report it until we find the right way to retrieve
// DriverMajor: driverMajor,
// DriverMinor: driverMinor,
}
if major != "" {
gpuInfo.Major, err = strconv.Atoi(major)
if err != nil {
slog.Info("failed to parse version", "version", gfx, "error", err)
}
}
if minor != "" {
gpuInfo.Minor, err = strconv.Atoi(minor)
if err != nil {
slog.Info("failed to parse version", "version", gfx, "error", err)
}
}
if patch != "" {
// Patch rev is hex; e.g. gfx90a
p, err := strconv.ParseInt(patch, 16, 0)
if err != nil {
slog.Info("failed to parse version", "version", gfx, "error", err)
} else {
gpuInfo.Patch = int(p)
}
}
if gpuInfo.Major < RocmComputeMin {
slog.Warn(fmt.Sprintf("amdgpu [%s] too old gfx%d%d%x", gpuInfo.ID, gpuInfo.Major, gpuInfo.Minor, gpuInfo.Patch))
continue
}
resp = append(resp, gpuInfo)

View File

@@ -12,8 +12,6 @@ import (
"sync"
"syscall"
"time"
"github.com/ollama/ollama/server/envconfig"
)
var (
@@ -26,8 +24,29 @@ func PayloadsDir() (string, error) {
defer lock.Unlock()
var err error
if payloadsDir == "" {
runnersDir := envconfig.RunnersDir
runnersDir := os.Getenv("OLLAMA_RUNNERS_DIR")
// On Windows we do not carry the payloads inside the main executable
if runtime.GOOS == "windows" && runnersDir == "" {
appExe, err := os.Executable()
if err != nil {
slog.Error("failed to lookup executable path", "error", err)
return "", err
}
// Try a few variations to improve developer experience when building from source in the local tree
for _, d := range []string{".", "windows-" + runtime.GOARCH, "dist\\windows-" + runtime.GOARCH} {
candidate := filepath.Join(filepath.Dir(appExe), d, "ollama_runners")
_, err := os.Stat(candidate)
if err == nil {
runnersDir = candidate
break
}
}
if runnersDir == "" {
err = fmt.Errorf("unable to locate llm runner directory. Set OLLAMA_RUNNERS_DIR to the location of 'ollama_runners'")
slog.Error("incomplete distribution", "error", err)
return "", err
}
}
if runnersDir != "" {
payloadsDir = runnersDir
return payloadsDir, nil
@@ -35,7 +54,7 @@ func PayloadsDir() (string, error) {
// The remainder only applies on non-windows where we still carry payloads in the main executable
cleanupTmpDirs()
tmpDir := envconfig.TmpDir
tmpDir := os.Getenv("OLLAMA_TMPDIR")
if tmpDir == "" {
tmpDir, err = os.MkdirTemp("", "ollama")
if err != nil {
@@ -98,7 +117,7 @@ func cleanupTmpDirs() {
func Cleanup() {
lock.Lock()
defer lock.Unlock()
runnersDir := envconfig.RunnersDir
runnersDir := os.Getenv("OLLAMA_RUNNERS_DIR")
if payloadsDir != "" && runnersDir == "" && runtime.GOOS != "windows" {
// We want to fully clean up the tmpdir parent of the payloads dir
tmpDir := filepath.Clean(filepath.Join(payloadsDir, ".."))

View File

@@ -8,14 +8,14 @@ import (
func GetCPUVariant() string {
if cpu.X86.HasAVX2 {
slog.Debug("CPU has AVX2")
slog.Info("CPU has AVX2")
return "avx2"
}
if cpu.X86.HasAVX {
slog.Debug("CPU has AVX")
slog.Info("CPU has AVX")
return "avx"
}
slog.Debug("CPU does not have vector extensions")
slog.Info("CPU does not have vector extensions")
// else LCD
return ""
}

View File

@@ -21,13 +21,11 @@ import (
"unsafe"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/server/envconfig"
)
type handles struct {
deviceCount int
cudart *C.cudart_handle_t
nvcuda *C.nvcuda_handle_t
}
const (
@@ -64,22 +62,6 @@ var CudartWindowsGlobs = []string{
"c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll",
}
var NvcudaLinuxGlobs = []string{
"/usr/local/cuda*/targets/*/lib/libcuda.so*",
"/usr/lib/*-linux-gnu/nvidia/current/libcuda.so*",
"/usr/lib/*-linux-gnu/libcuda.so*",
"/usr/lib/wsl/lib/libcuda.so*",
"/usr/lib/wsl/drivers/*/libcuda.so*",
"/opt/cuda/lib*/libcuda.so*",
"/usr/local/cuda/lib*/libcuda.so*",
"/usr/lib*/libcuda.so*",
"/usr/local/lib*/libcuda.so*",
}
var NvcudaWindowsGlobs = []string{
"c:\\windows\\system*\\nvcuda.dll",
}
// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK")
@@ -92,8 +74,6 @@ func initGPUHandles() *handles {
gpuHandles := &handles{}
var cudartMgmtName string
var cudartMgmtPatterns []string
var nvcudaMgmtName string
var nvcudaMgmtPatterns []string
tmpDir, _ := PayloadsDir()
switch runtime.GOOS {
@@ -102,9 +82,6 @@ func initGPUHandles() *handles {
localAppData := os.Getenv("LOCALAPPDATA")
cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", cudartMgmtName)}
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartWindowsGlobs...)
// Aligned with driver, we can't carry as payloads
nvcudaMgmtName = "nvcuda.dll"
nvcudaMgmtPatterns = NvcudaWindowsGlobs
case "linux":
cudartMgmtName = "libcudart.so*"
if tmpDir != "" {
@@ -112,30 +89,16 @@ func initGPUHandles() *handles {
cudartMgmtPatterns = []string{filepath.Join(tmpDir, "cuda*", cudartMgmtName)}
}
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartLinuxGlobs...)
// Aligned with driver, we can't carry as payloads
nvcudaMgmtName = "libcuda.so*"
nvcudaMgmtPatterns = NvcudaLinuxGlobs
default:
return gpuHandles
}
slog.Debug("Detecting GPUs")
nvcudaLibPaths := FindGPULibs(nvcudaMgmtName, nvcudaMgmtPatterns)
if len(nvcudaLibPaths) > 0 {
deviceCount, nvcuda, libPath := LoadNVCUDAMgmt(nvcudaLibPaths)
if nvcuda != nil {
slog.Debug("detected GPUs", "count", deviceCount, "library", libPath)
gpuHandles.nvcuda = nvcuda
gpuHandles.deviceCount = deviceCount
return gpuHandles
}
}
slog.Info("Detecting GPUs")
cudartLibPaths := FindGPULibs(cudartMgmtName, cudartMgmtPatterns)
if len(cudartLibPaths) > 0 {
deviceCount, cudart, libPath := LoadCUDARTMgmt(cudartLibPaths)
if cudart != nil {
slog.Debug("detected GPUs", "library", libPath, "count", deviceCount)
slog.Info("detected GPUs", "library", libPath, "count", deviceCount)
gpuHandles.cudart = cudart
gpuHandles.deviceCount = deviceCount
return gpuHandles
@@ -155,9 +118,6 @@ func GetGPUInfo() GpuInfoList {
if gpuHandles.cudart != nil {
C.cudart_release(*gpuHandles.cudart)
}
if gpuHandles.nvcuda != nil {
C.nvcuda_release(*gpuHandles.nvcuda)
}
}()
// All our GPU builds on x86 have AVX enabled, so fallback to CPU if we don't detect at least AVX
@@ -166,12 +126,6 @@ func GetGPUInfo() GpuInfoList {
slog.Warn("CPU does not have AVX or AVX2, disabling GPU support.")
}
// On windows we bundle the nvidia library one level above the runner dir
depPath := ""
if runtime.GOOS == "windows" && envconfig.RunnersDir != "" {
depPath = filepath.Dir(envconfig.RunnersDir)
}
var memInfo C.mem_info_t
resp := []GpuInfo{}
@@ -184,15 +138,7 @@ func GetGPUInfo() GpuInfoList {
gpuInfo := GpuInfo{
Library: "cuda",
}
var driverMajor int
var driverMinor int
if gpuHandles.cudart != nil {
C.cudart_check_vram(*gpuHandles.cudart, C.int(i), &memInfo)
} else {
C.nvcuda_check_vram(*gpuHandles.nvcuda, C.int(i), &memInfo)
driverMajor = int(gpuHandles.nvcuda.driver_major)
driverMinor = int(gpuHandles.nvcuda.driver_minor)
}
C.cudart_check_vram(*gpuHandles.cudart, C.int(i), &memInfo)
if memInfo.err != nil {
slog.Info("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
@@ -205,12 +151,9 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.TotalMemory = uint64(memInfo.total)
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Compute = fmt.Sprintf("%d.%d", memInfo.major, memInfo.minor)
gpuInfo.Major = int(memInfo.major)
gpuInfo.Minor = int(memInfo.minor)
gpuInfo.MinimumMemory = cudaMinimumMemory
gpuInfo.DependencyPath = depPath
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.DriverMajor = int(driverMajor)
gpuInfo.DriverMinor = int(driverMinor)
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
resp = append(resp, gpuInfo)
@@ -253,10 +196,9 @@ func GetCPUMem() (memInfo, error) {
return ret, nil
}
func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
func FindGPULibs(baseLibName string, patterns []string) []string {
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
var ldPaths []string
var patterns []string
gpuLibPaths := []string{}
slog.Debug("Searching for GPU library", "name", baseLibName)
@@ -276,14 +218,8 @@ func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
}
patterns = append(patterns, filepath.Join(d, baseLibName+"*"))
}
patterns = append(patterns, defaultPatterns...)
slog.Debug("gpu library search", "globs", patterns)
for _, pattern := range patterns {
// Nvidia PhysX known to return bogus results
if strings.Contains(pattern, "PhysX") {
slog.Debug("skipping PhysX cuda library path", "path", pattern)
}
// Ignore glob discovery errors
matches, _ := filepath.Glob(pattern)
for _, match := range matches {
@@ -331,25 +267,8 @@ func LoadCUDARTMgmt(cudartLibPaths []string) (int, *C.cudart_handle_t, string) {
return 0, nil, ""
}
func LoadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string) {
var resp C.nvcuda_init_resp_t
resp.ch.verbose = getVerboseState()
for _, libPath := range nvcudaLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.nvcuda_init(lib, &resp)
if resp.err != nil {
slog.Debug("Unable to load nvcuda", "library", libPath, "error", C.GoString(resp.err))
C.free(unsafe.Pointer(resp.err))
} else {
return int(resp.num_devices), &resp.ch, libPath
}
}
return 0, nil, ""
}
func getVerboseState() C.uint16_t {
if envconfig.Debug {
if debug := os.Getenv("OLLAMA_DEBUG"); debug != "" {
return C.uint16_t(1)
}
return C.uint16_t(0)

View File

@@ -10,12 +10,6 @@ package gpu
import "C"
import (
"runtime"
"github.com/ollama/ollama/format"
)
const (
metalMinimumMemory = 512 * format.MebiByte
)
func GetGPUInfo() GpuInfoList {
@@ -38,7 +32,7 @@ func GetGPUInfo() GpuInfoList {
// TODO is there a way to gather actual allocated video memory? (currentAllocatedSize doesn't work)
info.FreeMemory = info.TotalMemory
info.MinimumMemory = metalMinimumMemory
info.MinimumMemory = 0
return []GpuInfo{info}
}

View File

@@ -39,19 +39,16 @@ extern "C" {
#endif
#define GPU_ID_LEN 64
#define GPU_NAME_LEN 96
typedef struct mem_info {
char *err; // If non-nill, caller responsible for freeing
char gpu_id[GPU_ID_LEN];
char gpu_name[GPU_NAME_LEN];
uint64_t total;
uint64_t free;
// Compute Capability
int major;
int minor;
int patch;
} mem_info_t;
void cpu_check_ram(mem_info_t *resp);
@@ -61,7 +58,6 @@ void cpu_check_ram(mem_info_t *resp);
#endif
#include "gpu_info_cudart.h"
#include "gpu_info_nvcuda.h"
#endif // __GPU_INFO_H__
#endif // __APPLE__

View File

@@ -10,6 +10,8 @@ void cpu_check_ram(mem_info_t *resp) {
if (GlobalMemoryStatusEx(&info) != 0) {
resp->total = info.ullTotalPhys;
resp->free = info.ullAvailPhys;
resp->major = 0;
resp->minor = 0;
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "0");
} else {
resp->err = LOAD_ERR();
@@ -29,6 +31,8 @@ void cpu_check_ram(mem_info_t *resp) {
} else {
resp->total = info.totalram * info.mem_unit;
resp->free = info.freeram * info.mem_unit;
resp->major = 0;
resp->minor = 0;
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "0");
}
return;

View File

@@ -6,9 +6,9 @@
// Just enough typedef's to dlopen/dlsym for memory information
typedef enum cudartReturn_enum {
CUDART_SUCCESS = 0,
CUDART_ERROR_INVALID_VALUE = 1,
CUDART_ERROR_MEMORY_ALLOCATION = 2,
CUDART_ERROR_INSUFFICIENT_DRIVER = 35,
CUDA_ERROR_INVALID_VALUE = 1,
CUDA_ERROR_MEMORY_ALLOCATION = 2,
CUDA_ERROR_INSUFFICIENT_DRIVER = 35,
// Other values omitted for now...
} cudartReturn_t;

View File

@@ -1,207 +0,0 @@
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
#include <string.h>
#include "gpu_info_nvcuda.h"
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
CUresult ret;
resp->err = NULL;
resp->num_devices = 0;
const int buflen = 256;
char buf[buflen + 1];
int i;
struct lookup {
char *s;
void **p;
} l[] = {
{"cuInit", (void *)&resp->ch.cuInit},
{"cuDriverGetVersion", (void *)&resp->ch.cuDriverGetVersion},
{"cuDeviceGetCount", (void *)&resp->ch.cuDeviceGetCount},
{"cuDeviceGet", (void *)&resp->ch.cuDeviceGet},
{"cuDeviceGetAttribute", (void *)&resp->ch.cuDeviceGetAttribute},
{"cuDeviceGetUuid", (void *)&resp->ch.cuDeviceGetUuid},
{"cuDeviceGetName", (void *)&resp->ch.cuDeviceGetName},
{"cuCtxCreate_v3", (void *)&resp->ch.cuCtxCreate_v3},
{"cuMemGetInfo_v2", (void *)&resp->ch.cuMemGetInfo_v2},
{"cuCtxDestroy", (void *)&resp->ch.cuCtxDestroy},
{NULL, NULL},
};
resp->ch.handle = LOAD_LIBRARY(nvcuda_lib_path, RTLD_LAZY);
if (!resp->ch.handle) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "library %s load err: %s\n", nvcuda_lib_path, msg);
snprintf(buf, buflen,
"Unable to load %s library to query for Nvidia GPUs: %s",
nvcuda_lib_path, msg);
free(msg);
resp->err = strdup(buf);
return;
}
for (i = 0; l[i].s != NULL; i++) {
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
if (!*l[i].p) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "dlerr: %s\n", msg);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "symbol lookup for %s failed: %s", l[i].s,
msg);
free(msg);
resp->err = strdup(buf);
return;
}
}
ret = (*resp->ch.cuInit)(0);
if (ret != CUDA_SUCCESS) {
LOG(resp->ch.verbose, "cuInit err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
if (ret == CUDA_ERROR_INSUFFICIENT_DRIVER) {
resp->err = strdup("your nvidia driver is too old or missing. If you have a CUDA GPU please upgrade to run ollama");
return;
}
snprintf(buf, buflen, "nvcuda init failure: %d", ret);
resp->err = strdup(buf);
return;
}
int version = 0;
resp->ch.driver_major = 0;
resp->ch.driver_minor = 0;
// Report driver version if we're in verbose mode, ignore errors
ret = (*resp->ch.cuDriverGetVersion)(&version);
if (ret != CUDA_SUCCESS) {
LOG(resp->ch.verbose, "cuDriverGetVersion failed: %d\n", ret);
} else {
resp->ch.driver_major = version / 1000;
resp->ch.driver_minor = (version - (resp->ch.driver_major * 1000)) / 10;
LOG(resp->ch.verbose, "CUDA driver version: %d.%d\n", resp->ch.driver_major, resp->ch.driver_minor);
}
ret = (*resp->ch.cuDeviceGetCount)(&resp->num_devices);
if (ret != CUDA_SUCCESS) {
LOG(resp->ch.verbose, "cuDeviceGetCount err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "unable to get device count: %d", ret);
resp->err = strdup(buf);
return;
}
}
const int buflen = 256;
void nvcuda_check_vram(nvcuda_handle_t h, int i, mem_info_t *resp) {
resp->err = NULL;
nvcudaMemory_t memInfo = {0,0};
CUresult ret;
CUdevice device = -1;
CUcontext ctx = NULL;
char buf[buflen + 1];
CUuuid uuid = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
if (h.handle == NULL) {
resp->err = strdup("nvcuda handle isn't initialized");
return;
}
ret = (*h.cuDeviceGet)(&device, i);
if (ret != CUDA_SUCCESS) {
snprintf(buf, buflen, "nvcuda device failed to initialize");
resp->err = strdup(buf);
return;
}
int major = 0;
int minor = 0;
ret = (*h.cuDeviceGetAttribute)(&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, device);
if (ret != CUDA_SUCCESS) {
LOG(h.verbose, "[%d] device major lookup failure: %d\n", i, ret);
} else {
ret = (*h.cuDeviceGetAttribute)(&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, device);
if (ret != CUDA_SUCCESS) {
LOG(h.verbose, "[%d] device minor lookup failure: %d\n", i, ret);
} else {
resp->minor = minor;
resp->major = major;
}
}
ret = (*h.cuDeviceGetUuid)(&uuid, device);
if (ret != CUDA_SUCCESS) {
LOG(h.verbose, "[%d] device uuid lookup failure: %d\n", i, ret);
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "%d", i);
} else {
// GPU-d110a105-ac29-1d54-7b49-9c90440f215b
snprintf(&resp->gpu_id[0], GPU_ID_LEN,
"GPU-%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x",
uuid.bytes[0],
uuid.bytes[1],
uuid.bytes[2],
uuid.bytes[3],
uuid.bytes[4],
uuid.bytes[5],
uuid.bytes[6],
uuid.bytes[7],
uuid.bytes[8],
uuid.bytes[9],
uuid.bytes[10],
uuid.bytes[11],
uuid.bytes[12],
uuid.bytes[13],
uuid.bytes[14],
uuid.bytes[15]
);
}
ret = (*h.cuDeviceGetName)(&resp->gpu_name[0], GPU_NAME_LEN, device);
if (ret != CUDA_SUCCESS) {
LOG(h.verbose, "[%d] device name lookup failure: %d\n", i, ret);
resp->gpu_name[0] = '\0';
}
// To get memory we have to set (and release) a context
ret = (*h.cuCtxCreate_v3)(&ctx, NULL, 0, 0, device);
if (ret != CUDA_SUCCESS) {
snprintf(buf, buflen, "nvcuda failed to get primary device context %d", ret);
resp->err = strdup(buf);
return;
}
ret = (*h.cuMemGetInfo_v2)(&memInfo.free, &memInfo.total);
if (ret != CUDA_SUCCESS) {
snprintf(buf, buflen, "nvcuda device memory info lookup failure %d", ret);
resp->err = strdup(buf);
// Best effort on failure...
(*h.cuCtxDestroy)(ctx);
return;
}
resp->total = memInfo.total;
resp->free = memInfo.free;
LOG(h.verbose, "[%s] CUDA totalMem %lu mb\n", resp->gpu_id, resp->total / 1024 / 1024);
LOG(h.verbose, "[%s] CUDA freeMem %lu mb\n", resp->gpu_id, resp->free / 1024 / 1024);
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
ret = (*h.cuCtxDestroy)(ctx);
if (ret != CUDA_SUCCESS) {
LOG(1, "nvcuda failed to release primary device context %d", ret);
}
}
void nvcuda_release(nvcuda_handle_t h) {
LOG(h.verbose, "releasing nvcuda library\n");
UNLOAD_LIBRARY(h.handle);
// TODO and other context release logic?
h.handle = NULL;
}
#endif // __APPLE__

View File

@@ -1,74 +0,0 @@
#ifndef __APPLE__
#ifndef __GPU_INFO_NVCUDA_H__
#define __GPU_INFO_NVCUDA_H__
#include "gpu_info.h"
// Just enough typedef's to dlopen/dlsym for memory information
typedef enum cudaError_enum {
CUDA_SUCCESS = 0,
CUDA_ERROR_INVALID_VALUE = 1,
CUDA_ERROR_MEMORY_ALLOCATION = 2,
CUDA_ERROR_NOT_INITIALIZED = 3,
CUDA_ERROR_INSUFFICIENT_DRIVER = 35,
// Other values omitted for now...
} CUresult;
typedef enum CUdevice_attribute_enum {
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR = 75,
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR = 76,
// TODO - not yet wired up but may be useful for Jetson or other
// integrated GPU scenarios with shared memory
CU_DEVICE_ATTRIBUTE_INTEGRATED = 18
} CUdevice_attribute;
typedef void *nvcudaDevice_t; // Opaque is sufficient
typedef struct nvcudaMemory_st {
uint64_t total;
uint64_t free;
} nvcudaMemory_t;
typedef struct nvcudaDriverVersion {
int major;
int minor;
} nvcudaDriverVersion_t;
typedef struct CUuuid_st {
unsigned char bytes[16];
} CUuuid;
typedef int CUdevice;
typedef void* CUcontext;
typedef struct nvcuda_handle {
void *handle;
uint16_t verbose;
int driver_major;
int driver_minor;
CUresult (*cuInit)(unsigned int Flags);
CUresult (*cuDriverGetVersion)(int *driverVersion);
CUresult (*cuDeviceGetCount)(int *);
CUresult (*cuDeviceGet)(CUdevice* device, int ordinal);
CUresult (*cuDeviceGetAttribute)(int* pi, CUdevice_attribute attrib, CUdevice dev);
CUresult (*cuDeviceGetUuid)(CUuuid* uuid, CUdevice dev); // signature compatible with cuDeviceGetUuid_v2
CUresult (*cuDeviceGetName)(char *name, int len, CUdevice dev);
// Context specific aspects
CUresult (*cuCtxCreate_v3)(CUcontext* pctx, void *params, int len, unsigned int flags, CUdevice dev);
CUresult (*cuMemGetInfo_v2)(uint64_t* free, uint64_t* total);
CUresult (*cuCtxDestroy)(CUcontext ctx);
} nvcuda_handle_t;
typedef struct nvcuda_init_resp {
char *err; // If err is non-null handle is invalid
nvcuda_handle_t ch;
int num_devices;
} nvcuda_init_resp_t;
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp);
void nvcuda_check_vram(nvcuda_handle_t ch, int device_id, mem_info_t *resp);
void nvcuda_release(nvcuda_handle_t ch);
#endif // __GPU_INFO_NVCUDA_H__
#endif // __APPLE__

View File

@@ -1,12 +1,5 @@
package gpu
import (
"fmt"
"log/slog"
"github.com/ollama/ollama/format"
)
type memInfo struct {
TotalMemory uint64 `json:"total_memory,omitempty"`
FreeMemory uint64 `json:"free_memory,omitempty"`
@@ -27,13 +20,11 @@ type GpuInfo struct {
DependencyPath string `json:"lib_path,omitempty"`
// GPU information
ID string `json:"gpu_id"` // string to use for selection of this specific GPU
Name string `json:"name"` // user friendly name if available
Compute string `json:"compute"` // Compute Capability or gfx
// Driver Information - TODO no need to put this on each GPU
DriverMajor int `json:"driver_major,omitempty"`
DriverMinor int `json:"driver_minor,omitempty"`
ID string `json:"gpu_id"` // string to use for selection of this specific GPU
Name string `json:"name"` // user friendly name if available
Major int `json:"major,omitempty"` // Major compatibility version (CC or gfx)
Minor int `json:"minor,omitempty"` // Minor compatibility version (CC or gfx)
Patch int `json:"patch,omitempty"` // Patch compatibility only matters on AMD
// TODO other performance capability info to help in scheduling decisions
}
@@ -65,21 +56,6 @@ func (l GpuInfoList) ByLibrary() []GpuInfoList {
return resp
}
// Report the GPU information into the log an Info level
func (l GpuInfoList) LogDetails() {
for _, g := range l {
slog.Info("inference compute",
"id", g.ID,
"library", g.Library,
"compute", g.Compute,
"driver", fmt.Sprintf("%d.%d", g.DriverMajor, g.DriverMinor),
"name", g.Name,
"total", format.HumanBytes2(g.TotalMemory),
"available", format.HumanBytes2(g.FreeMemory),
)
}
}
// Sort by Free Space
type ByFreeMemory []GpuInfo

View File

@@ -0,0 +1,64 @@
//go:build integration
package integration
import (
"context"
"net/http"
"testing"
"time"
"github.com/ollama/ollama/api"
)
func TestAllMiniLMEmbedding(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
defer cancel()
req := api.EmbeddingRequest{
Model: "all-minilm",
Prompt: "why is the sky blue?",
Options: map[string]interface{}{
"temperature": 0,
"seed": 123,
},
}
res := EmbeddingTestHelper(ctx, t, &http.Client{}, req)
if len(res.Embedding) != 384 {
t.Fatalf("Expected 384 floats to be returned, got %v", len(res.Embedding))
}
if res.Embedding[0] != 0.146763876080513 {
t.Fatalf("Expected first embedding float to be 0.146763876080513, got %v", res.Embedding[0])
}
}
func TestAllMiniLMEmbeddings(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
defer cancel()
req := api.EmbeddingRequest{
Model: "all-minilm",
Prompts: []string{"why is the sky blue?", "why is the sky blue?"},
Options: map[string]interface{}{
"temperature": 0,
"seed": 123,
},
}
res := EmbeddingTestHelper(ctx, t, &http.Client{}, req)
if len(res.Embeddings) != 2 {
t.Fatal("Expected 2 embeddings to be returned")
}
if len(res.Embeddings[0]) != 384 {
t.Fatalf("Expected first embedding to have 384 floats, got %v", len(res.Embeddings[0]))
}
if res.Embeddings[0][0] != 0.146763876080513 && res.Embeddings[1][0] != 0.146763876080513 {
t.Fatalf("Expected first embedding floats to be 0.146763876080513, got %v, %v", res.Embeddings[0][0], res.Embeddings[1][0])
}
}

View File

@@ -1,117 +0,0 @@
//go:build integration
package integration
import (
"context"
"errors"
"fmt"
"log/slog"
"os"
"strconv"
"strings"
"sync"
"testing"
"time"
"github.com/ollama/ollama/api"
"github.com/stretchr/testify/require"
)
func TestMaxQueue(t *testing.T) {
// Note: This test can be quite slow when running in CPU mode, so keep the threadCount low unless your on GPU
// Also note that by default Darwin can't sustain > ~128 connections without adjusting limits
threadCount := 32
mq := os.Getenv("OLLAMA_MAX_QUEUE")
if mq != "" {
var err error
threadCount, err = strconv.Atoi(mq)
require.NoError(t, err)
} else {
os.Setenv("OLLAMA_MAX_QUEUE", fmt.Sprintf("%d", threadCount))
}
req := api.GenerateRequest{
Model: "orca-mini",
Prompt: "write a long historical fiction story about christopher columbus. use at least 10 facts from his actual journey",
Options: map[string]interface{}{
"seed": 42,
"temperature": 0.0,
},
}
resp := []string{"explore", "discover", "ocean"}
// CPU mode takes much longer at the limit with a large queue setting
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Minute)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
require.NoError(t, PullIfMissing(ctx, client, req.Model))
// Context for the worker threads so we can shut them down
// embedCtx, embedCancel := context.WithCancel(ctx)
embedCtx := ctx
var genwg sync.WaitGroup
go func() {
genwg.Add(1)
defer genwg.Done()
slog.Info("Starting generate request")
DoGenerate(ctx, t, client, req, resp, 45*time.Second, 5*time.Second)
slog.Info("generate completed")
}()
// Give the generate a chance to get started before we start hammering on embed requests
time.Sleep(5 * time.Millisecond)
threadCount += 10 // Add a few extra to ensure we push the queue past its limit
busyCount := 0
resetByPeerCount := 0
canceledCount := 0
succesCount := 0
counterMu := sync.Mutex{}
var embedwg sync.WaitGroup
for i := 0; i < threadCount; i++ {
go func(i int) {
embedwg.Add(1)
defer embedwg.Done()
slog.Info("embed started", "id", i)
embedReq := api.EmbeddingRequest{
Model: req.Model,
Prompt: req.Prompt,
Options: req.Options,
}
// Fresh client for every request
client, _ = GetTestEndpoint()
resp, genErr := client.Embeddings(embedCtx, &embedReq)
counterMu.Lock()
defer counterMu.Unlock()
switch {
case genErr == nil:
succesCount++
require.Greater(t, len(resp.Embedding), 5) // somewhat arbitrary, but sufficient to be reasonable
case errors.Is(genErr, context.Canceled):
canceledCount++
case strings.Contains(genErr.Error(), "busy"):
busyCount++
case strings.Contains(genErr.Error(), "connection reset by peer"):
resetByPeerCount++
default:
require.NoError(t, genErr, "%d request failed", i)
}
slog.Info("embed finished", "id", i)
}(i)
}
genwg.Wait()
slog.Info("generate done, waiting for embeds")
embedwg.Wait()
require.Equal(t, resetByPeerCount, 0, "Connections reset by peer, have you updated your fd and socket limits?")
require.True(t, busyCount > 0, "no requests hit busy error but some should have")
require.True(t, canceledCount == 0, "no requests should have been canceled due to timeout")
slog.Info("embeds completed", "success", succesCount, "busy", busyCount, "reset", resetByPeerCount, "canceled", canceledCount)
}

View File

@@ -5,6 +5,7 @@ package integration
import (
"bytes"
"context"
"encoding/json"
"errors"
"fmt"
"io"
@@ -24,6 +25,7 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/app/lifecycle"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
@@ -107,7 +109,7 @@ func startServer(ctx context.Context, ollamaHost string) error {
if tmp := os.Getenv("OLLAMA_HOST"); tmp != ollamaHost {
slog.Info("setting env", "OLLAMA_HOST", ollamaHost)
t.Setenv("OLLAMA_HOST", ollamaHost)
os.Setenv("OLLAMA_HOST", ollamaHost)
}
slog.Info("starting server", "url", ollamaHost)
@@ -285,6 +287,7 @@ func DoGenerate(ctx context.Context, t *testing.T, client *api.Client, genReq ap
// Generate a set of requests
// By default each request uses orca-mini as the model
func GenerateRequests() ([]api.GenerateRequest, [][]string) {
stream := false
return []api.GenerateRequest{
{
Model: "orca-mini",
@@ -336,3 +339,83 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
[]string{"nitrogen", "oxygen", "carbon", "dioxide"},
}
}
func EmbeddingTestHelper(ctx context.Context, t *testing.T, client *http.Client, req api.EmbeddingRequest) api.EmbeddingResponse {
// TODO maybe stuff in an init routine?
lifecycle.InitLogging()
requestJSON, err := json.Marshal(req)
if err != nil {
t.Fatalf("Error serializing request: %v", err)
}
defer func() {
if os.Getenv("OLLAMA_TEST_EXISTING") == "" {
defer serverProcMutex.Unlock()
if t.Failed() {
fp, err := os.Open(lifecycle.ServerLogFile)
if err != nil {
slog.Error("failed to open server log", "logfile", lifecycle.ServerLogFile, "error", err)
return
}
data, err := io.ReadAll(fp)
if err != nil {
slog.Error("failed to read server log", "logfile", lifecycle.ServerLogFile, "error", err)
return
}
slog.Warn("SERVER LOG FOLLOWS")
os.Stderr.Write(data)
slog.Warn("END OF SERVER")
}
err = os.Remove(lifecycle.ServerLogFile)
if err != nil && !os.IsNotExist(err) {
slog.Warn("failed to cleanup", "logfile", lifecycle.ServerLogFile, "error", err)
}
}
}()
scheme, testEndpoint := GetTestEndpoint()
if os.Getenv("OLLAMA_TEST_EXISTING") == "" {
serverProcMutex.Lock()
fp, err := os.CreateTemp("", "ollama-server-*.log")
if err != nil {
t.Fatalf("failed to generate log file: %s", err)
}
lifecycle.ServerLogFile = fp.Name()
fp.Close()
assert.NoError(t, StartServer(ctx, testEndpoint))
}
err = PullIfMissing(ctx, client, scheme, testEndpoint, req.Model)
if err != nil {
t.Fatalf("Error pulling model: %v", err)
}
// Make the request and get the response
httpReq, err := http.NewRequest("POST", scheme+"://"+testEndpoint+"/api/embeddings", bytes.NewReader(requestJSON))
if err != nil {
t.Fatalf("Error creating request: %v", err)
}
// Set the content type for the request
httpReq.Header.Set("Content-Type", "application/json")
// Make the request with the HTTP client
response, err := client.Do(httpReq.WithContext(ctx))
if err != nil {
t.Fatalf("Error making request: %v", err)
}
defer response.Body.Close()
body, err := io.ReadAll(response.Body)
assert.NoError(t, err)
assert.Equal(t, response.StatusCode, 200, string(body))
// Verify the response is valid JSON
var res api.EmbeddingResponse
err = json.Unmarshal(body, &res)
if err != nil {
assert.NoError(t, err, body)
}
return res
}

View File

@@ -66,7 +66,7 @@ struct server_params {
};
bool server_verbose = false;
bool server_log_json = false;
bool server_log_json = true;
enum stop_type {
STOP_FULL,
@@ -266,7 +266,7 @@ struct server_slot {
sprintf(buffer, "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
t_prompt_processing, n_prompt_tokens_processed,
t_token, n_tokens_second);
LOG_DEBUG(buffer, {
LOG_INFO(buffer, {
{"slot_id", id},
{"task_id", task_id},
{"t_prompt_processing", t_prompt_processing},
@@ -280,7 +280,7 @@ struct server_slot {
sprintf(buffer, "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)",
t_token_generation, n_decoded,
t_token, n_tokens_second);
LOG_DEBUG(buffer, {
LOG_INFO(buffer, {
{"slot_id", id},
{"task_id", task_id},
{"t_token_generation", t_token_generation},
@@ -290,7 +290,7 @@ struct server_slot {
});
sprintf(buffer, " total time = %10.2f ms", t_prompt_processing + t_token_generation);
LOG_DEBUG(buffer, {
LOG_INFO(buffer, {
{"slot_id", id},
{"task_id", task_id},
{"t_prompt_processing", t_prompt_processing},
@@ -371,7 +371,7 @@ struct llama_server_context
{
if (clp_ctx)
{
LOG_DEBUG("freeing clip model", {});
LOG_INFO("freeing clip model", {});
clip_free(clp_ctx);
clp_ctx = nullptr;
}
@@ -392,7 +392,7 @@ struct llama_server_context
params = params_;
if (!params.mmproj.empty()) {
multimodal = true;
LOG_DEBUG("Multi Modal Mode Enabled", {});
LOG_INFO("Multi Modal Mode Enabled", {});
clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1);
if(clp_ctx == nullptr) {
LOG_ERROR("unable to load clip model", {{"model", params.mmproj}});
@@ -445,7 +445,7 @@ struct llama_server_context
const int32_t n_ctx_slot = n_ctx / params.n_parallel;
LOG_DEBUG("initializing slots", {{"n_slots", params.n_parallel}});
LOG_INFO("initializing slots", {{"n_slots", params.n_parallel}});
for (int i = 0; i < params.n_parallel; i++)
{
server_slot slot;
@@ -454,7 +454,7 @@ struct llama_server_context
slot.n_ctx = n_ctx_slot;
slot.n_predict = params.n_predict;
LOG_DEBUG("new slot", {
LOG_INFO("new slot", {
{"slot_id", slot.id},
{"n_ctx_slot", slot.n_ctx}
});
@@ -468,7 +468,7 @@ struct llama_server_context
//GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
//GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
LOG_DEBUG("slot self-extend", {
LOG_INFO("slot self-extend", {
{"slot_id", slot.id},
{"ga_n", ga_n},
{"ga_w", ga_w}
@@ -827,7 +827,7 @@ struct llama_server_context
all_slots_are_idle = false;
LOG_DEBUG("slot is processing task", {
LOG_INFO("slot is processing task", {
{"slot_id", slot->id},
{"task_id", slot->task_id},
});
@@ -1032,7 +1032,7 @@ struct llama_server_context
slot.has_next_token = false;
}
if (!slot.cache_tokens.empty() && llama_token_is_eog(model, result.tok))
if (!slot.cache_tokens.empty() && result.tok == llama_token_eos(model))
{
slot.stopped_eos = true;
slot.has_next_token = false;
@@ -1144,15 +1144,12 @@ struct llama_server_context
res.result_json = json
{
{"content", tkn.text_to_send},
{"stop", false},
{"slot_id", slot.id},
{"multimodal", multimodal}
};
if (!llama_token_is_eog(model, tkn.tok)) {
res.result_json["content"] = tkn.text_to_send;
}
if (slot.sparams.n_probs > 0)
{
std::vector<completion_token_output> probs_output = {};
@@ -1186,6 +1183,8 @@ struct llama_server_context
{"model", params.model_alias},
{"tokens_predicted", slot.n_decoded},
{"tokens_evaluated", slot.n_prompt_tokens},
{"generation_settings", get_formated_generation(slot)},
{"prompt", slot.prompt},
{"truncated", slot.truncated},
{"stopped_eos", slot.stopped_eos},
{"stopped_word", slot.stopped_word},
@@ -1504,7 +1503,7 @@ struct llama_server_context
}
slots_data.push_back(slot_data);
}
LOG_DEBUG("slot data", {
LOG_INFO("slot data", {
{"task_id", task.id},
{"n_idle_slots", n_idle_slots},
{"n_processing_slots", n_processing_slots}
@@ -1566,7 +1565,7 @@ struct llama_server_context
bool update_slots() {
if (system_need_update)
{
LOG_DEBUG("updating system prompt", {});
LOG_INFO("updating system prompt", {});
system_prompt_update();
}
@@ -1576,7 +1575,7 @@ struct llama_server_context
{
if (system_prompt.empty() && clean_kv_cache)
{
LOG_DEBUG("all slots are idle and system prompt is empty, clear the KV cache", {});
LOG_INFO("all slots are idle and system prompt is empty, clear the KV cache", {});
kv_cache_clear();
}
return true;
@@ -1599,7 +1598,7 @@ struct llama_server_context
const int n_left = (int) system_tokens.size() + slot.n_past - n_keep;
const int n_discard = n_left / 2;
LOG_DEBUG("slot context shift", {
LOG_INFO("slot context shift", {
{"slot_id", slot.id},
{"task_id", slot.task_id},
{"n_keep", n_keep},
@@ -1638,7 +1637,7 @@ struct llama_server_context
slot.command = NONE;
slot.t_last_used = ggml_time_us();
LOG_DEBUG("slot released", {
LOG_INFO("slot released", {
{"slot_id", slot.id},
{"task_id", slot.task_id},
{"n_ctx", n_ctx},
@@ -1807,7 +1806,7 @@ struct llama_server_context
slot.ga_i = ga_i;
}
LOG_DEBUG("slot progression", {
LOG_INFO("slot progression", {
{ "slot_id", slot.id },
{ "task_id", slot.task_id },
{ "n_past", slot.n_past },
@@ -1822,7 +1821,7 @@ struct llama_server_context
if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0)
{
// we have to evaluate at least 1 token to generate logits.
LOG_DEBUG("we have to evaluate at least 1 token to generate logits", {
LOG_INFO("we have to evaluate at least 1 token to generate logits", {
{ "slot_id", slot.id },
{ "task_id", slot.task_id }
});
@@ -1834,7 +1833,7 @@ struct llama_server_context
}
int p0 = (int) system_tokens.size() + slot.n_past;
LOG_DEBUG("kv cache rm [p0, end)", {
LOG_INFO("kv cache rm [p0, end)", {
{ "slot_id", slot.id },
{ "task_id", slot.task_id },
{ "p0", p0 }
@@ -2491,7 +2490,11 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
}
else if (arg == "-v" || arg == "--verbose")
{
#if SERVER_VERBOSE != 1
LOG_WARNING("server.cpp is not built with verbose logging.", {});
#else
server_verbose = true;
#endif
}
else if (arg == "--mlock")
{
@@ -2597,7 +2600,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
else if (arg == "--log-disable")
{
log_set_target(stdout);
LOG_DEBUG("logging to file is disabled.", {});
LOG_INFO("logging to file is disabled.", {});
}
else if (arg == "--slots-endpoint-disable")
{
@@ -2641,18 +2644,18 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
if (strncmp(sep, "int:", 4) == 0) {
sep += 4;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
kvo.val_i64 = std::atol(sep);
kvo.int_value = std::atol(sep);
} else if (strncmp(sep, "float:", 6) == 0) {
sep += 6;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
kvo.val_f64 = std::atof(sep);
kvo.float_value = std::atof(sep);
} else if (strncmp(sep, "bool:", 5) == 0) {
sep += 5;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
if (std::strcmp(sep, "true") == 0) {
kvo.val_bool = true;
kvo.bool_value = true;
} else if (std::strcmp(sep, "false") == 0) {
kvo.val_bool = false;
kvo.bool_value = false;
} else {
fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
invalid_param = true;
@@ -2723,12 +2726,12 @@ static json format_detokenized_response(std::string content)
static void log_server_request(const httplib::Request &req, const httplib::Response &res)
{
// skip GH copilot requests when using default port
if (req.path == "/health" || req.path == "/v1/health" || req.path == "/v1/completions")
if (req.path == "/v1/health" || req.path == "/v1/completions")
{
return;
}
LOG_DEBUG("request", {
LOG_INFO("request", {
{"remote_addr", req.remote_addr},
{"remote_port", req.remote_port},
{"status", res.status},
@@ -3050,26 +3053,6 @@ int main(int argc, char **argv) {
log_data["api_key"] = "api_key: " + std::to_string(sparams.api_keys.size()) + " keys loaded";
}
if (sparams.n_threads_http < 1) {
// +2 threads for monitoring endpoints
sparams.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
}
log_data["n_threads_http"] = std::to_string(sparams.n_threads_http);
svr.new_task_queue = [&sparams] { return new httplib::ThreadPool(sparams.n_threads_http); };
LOG_INFO("HTTP server listening", log_data);
// run the HTTP server in a thread - see comment below
std::thread t([&]()
{
if (!svr.listen_after_bind())
{
state.store(SERVER_STATE_ERROR);
return 1;
}
return 0;
});
// load the model
if (!llama.load_model(params))
{
@@ -3226,53 +3209,46 @@ int main(int argc, char **argv) {
return res.set_content(data.dump(), "application/json; charset=utf-8");
});
svr.Post("/embedding", [&llama](const httplib::Request &req, httplib::Response &res)
svr.Post("/embeddings", [&llama](const httplib::Request &req, httplib::Response &res)
{
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
const json body = json::parse(req.body);
json prompt;
if (body.count("content") != 0)
{
prompt = body["content"];
}
else
{
prompt = "";
const int id = llama.queue_tasks.get_new_id();
llama.queue_results.add_waiting_task_id(id);
llama.request_completion(id, {{"prompt", body["contents"]}}, false, true, -1);
task_result recv = llama.queue_results.recv(id);
llama.queue_results.remove_waiting_task_id(id);
json embeddings = json::array();
for (auto & elem : recv.result_json["results"]) {
embeddings.push_back(json_value(elem, "embedding", json::array()));
}
json image_data;
if (body.count("image_data") != 0) {
image_data = body["image_data"];
}
else
{
image_data = "";
}
// create and queue the task
const int task_id = llama.queue_tasks.get_new_id();
llama.queue_results.add_waiting_task_id(task_id);
llama.request_completion(task_id, { {"prompt", prompt}, { "n_predict", 0}, {"image_data", image_data} }, false, true, -1);
// get the result
task_result result = llama.queue_results.recv(task_id);
llama.queue_results.remove_waiting_task_id(task_id);
// send the result
return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
json result = json{{"embeddings", embeddings}};
return res.set_content(result.dump(), "application/json; charset=utf-8");
});
// GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!?
// "Bus error: 10" - this is on macOS, it does not crash on Linux
//std::thread t2([&]()
/*{
bool running = true;
while (running)
{
running = llama.update_slots();
}
}*/
//);
if (sparams.n_threads_http < 1) {
// +2 threads for monitoring endpoints
sparams.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
}
log_data["n_threads_http"] = std::to_string(sparams.n_threads_http);
svr.new_task_queue = [&sparams] { return new httplib::ThreadPool(sparams.n_threads_http); };
LOG_INFO("HTTP server listening", log_data);
// run the HTTP server in a thread - see comment below
std::thread t([&]()
{
if (!svr.listen_after_bind())
{
state.store(SERVER_STATE_ERROR);
return 1;
}
return 0;
});
llama.queue_tasks.on_new_task(std::bind(
&llama_server_context::process_single_task, &llama, std::placeholders::_1));

View File

@@ -55,10 +55,9 @@ extern bool server_log_json;
} while (0)
#endif
#define LOG_ERROR( MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_ERROR( MSG, ...) server_log("ERR", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_WARNING(MSG, ...) server_log("WARN", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_DEBUG( MSG, ...) server_log("DEBUG", __func__, __LINE__, MSG, __VA_ARGS__)
enum server_state {
SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
@@ -124,10 +123,6 @@ static inline void server_log(const char *level, const char *function, int line,
{"timestamp", time(nullptr)},
};
if (strncmp("DEBUG", level, strlen(level)) == 0 && !server_verbose) {
return;
}
if (server_log_json) {
log.merge_patch(
{
@@ -142,12 +137,14 @@ static inline void server_log(const char *level, const char *function, int line,
std::cout << log.dump(-1, ' ', false, json::error_handler_t::replace) << "\n" << std::flush;
} else {
char buf[1024];
snprintf(buf, 1024, "%4s [%24s] %s", level, function, message);
if (!extra.empty()) {
log.merge_patch(extra);
}
std::stringstream ss;
ss << level << " [" << function << "] " << message << " |";
ss << buf << " |";
for (const auto& el : log.items())
{
const std::string value = el.value().dump(-1, ' ', false, json::error_handler_t::replace);

View File

@@ -1,140 +0,0 @@
package llm
import "fmt"
type fileType uint32
const (
fileTypeF32 fileType = iota
fileTypeF16
fileTypeQ4_0
fileTypeQ4_1
fileTypeQ4_1_F16
fileTypeQ4_2 // unused
fileTypeQ4_3 // unused
fileTypeQ8_0
fileTypeQ5_0
fileTypeQ5_1
fileTypeQ2_K
fileTypeQ3_K_S
fileTypeQ3_K_M
fileTypeQ3_K_L
fileTypeQ4_K_S
fileTypeQ4_K_M
fileTypeQ5_K_S
fileTypeQ5_K_M
fileTypeQ6_K
fileTypeIQ2_XXS
fileTypeIQ2_XS
fileTypeQ2_K_S
fileTypeQ3_K_XS
fileTypeIQ3_XXS
fileTypeUnknown
)
func ParseFileType(s string) (fileType, error) {
switch s {
case "F32":
return fileTypeF32, nil
case "F16":
return fileTypeF16, nil
case "Q4_0":
return fileTypeQ4_0, nil
case "Q4_1":
return fileTypeQ4_1, nil
case "Q4_1_F16":
return fileTypeQ4_1_F16, nil
case "Q8_0":
return fileTypeQ8_0, nil
case "Q5_0":
return fileTypeQ5_0, nil
case "Q5_1":
return fileTypeQ5_1, nil
case "Q2_K":
return fileTypeQ2_K, nil
case "Q3_K_S":
return fileTypeQ3_K_S, nil
case "Q3_K_M":
return fileTypeQ3_K_M, nil
case "Q3_K_L":
return fileTypeQ3_K_L, nil
case "Q4_K_S":
return fileTypeQ4_K_S, nil
case "Q4_K_M":
return fileTypeQ4_K_M, nil
case "Q5_K_S":
return fileTypeQ5_K_S, nil
case "Q5_K_M":
return fileTypeQ5_K_M, nil
case "Q6_K":
return fileTypeQ6_K, nil
case "IQ2_XXS":
return fileTypeIQ2_XXS, nil
case "IQ2_XS":
return fileTypeIQ2_XS, nil
case "Q2_K_S":
return fileTypeQ2_K_S, nil
case "Q3_K_XS":
return fileTypeQ3_K_XS, nil
case "IQ3_XXS":
return fileTypeIQ3_XXS, nil
default:
return fileTypeUnknown, fmt.Errorf("unknown fileType: %s", s)
}
}
func (t fileType) String() string {
switch t {
case fileTypeF32:
return "F32"
case fileTypeF16:
return "F16"
case fileTypeQ4_0:
return "Q4_0"
case fileTypeQ4_1:
return "Q4_1"
case fileTypeQ4_1_F16:
return "Q4_1_F16"
case fileTypeQ8_0:
return "Q8_0"
case fileTypeQ5_0:
return "Q5_0"
case fileTypeQ5_1:
return "Q5_1"
case fileTypeQ2_K:
return "Q2_K"
case fileTypeQ3_K_S:
return "Q3_K_S"
case fileTypeQ3_K_M:
return "Q3_K_M"
case fileTypeQ3_K_L:
return "Q3_K_L"
case fileTypeQ4_K_S:
return "Q4_K_S"
case fileTypeQ4_K_M:
return "Q4_K_M"
case fileTypeQ5_K_S:
return "Q5_K_S"
case fileTypeQ5_K_M:
return "Q5_K_M"
case fileTypeQ6_K:
return "Q6_K"
case fileTypeIQ2_XXS:
return "IQ2_XXS"
case fileTypeIQ2_XS:
return "IQ2_XS"
case fileTypeQ2_K_S:
return "Q2_K_S"
case fileTypeQ3_K_XS:
return "Q3_K_XS"
case fileTypeIQ3_XXS:
return "IQ3_XXS"
default:
return "unknown"
}
}
func (t fileType) Value() uint32 {
return uint32(t)
}

View File

@@ -42,9 +42,8 @@ function init_vars {
"-DLLAMA_NATIVE=off"
)
$script:commonCpuDefs = @("-DCMAKE_POSITION_INDEPENDENT_CODE=on")
$script:ARCH = $Env:PROCESSOR_ARCHITECTURE.ToLower()
$script:ARCH = "amd64" # arm not yet supported.
$script:DIST_BASE = "${script:SRC_DIR}\dist\windows-${script:ARCH}\ollama_runners"
md "$script:DIST_BASE" -ea 0 > $null
if ($env:CGO_CFLAGS -contains "-g") {
$script:cmakeDefs += @("-DCMAKE_VERBOSE_MAKEFILE=on", "-DLLAMA_SERVER_VERBOSE=on", "-DCMAKE_BUILD_TYPE=RelWithDebInfo")
$script:config = "RelWithDebInfo"
@@ -182,7 +181,7 @@ function cleanup {
function build_static() {
if ((-not "${env:OLLAMA_SKIP_STATIC_GENERATE}") -and ((-not "${env:OLLAMA_CPU_TARGET}") -or ("${env:OLLAMA_CPU_TARGET}" -eq "static"))) {
if ($null -eq ${env:OLLAMA_SKIP_CPU_GENERATE}) {
# GCC build for direct linking into the Go binary
init_vars
# cmake will silently fallback to msvc compilers if mingw isn't in the path, so detect and fail fast
@@ -213,11 +212,11 @@ function build_static() {
}
}
function build_cpu($gen_arch) {
if ((-not "${env:OLLAMA_SKIP_CPU_GENERATE}" ) -and ((-not "${env:OLLAMA_CPU_TARGET}") -or ("${env:OLLAMA_CPU_TARGET}" -eq "cpu"))) {
function build_cpu() {
if ($null -eq ${env:OLLAMA_SKIP_CPU_GENERATE}) {
# remaining llama.cpp builds use MSVC
init_vars
$script:cmakeDefs = $script:commonCpuDefs + @("-A", $gen_arch, "-DLLAMA_AVX=off", "-DLLAMA_AVX2=off", "-DLLAMA_AVX512=off", "-DLLAMA_FMA=off", "-DLLAMA_F16C=off") + $script:cmakeDefs
$script:cmakeDefs = $script:commonCpuDefs + @("-A", "x64", "-DLLAMA_AVX=off", "-DLLAMA_AVX2=off", "-DLLAMA_AVX512=off", "-DLLAMA_FMA=off", "-DLLAMA_F16C=off") + $script:cmakeDefs
$script:buildDir="../build/windows/${script:ARCH}/cpu"
$script:distDir="$script:DIST_BASE\cpu"
write-host "Building LCD CPU"
@@ -230,7 +229,7 @@ function build_cpu($gen_arch) {
}
function build_cpu_avx() {
if ((-not "${env:OLLAMA_SKIP_CPU_GENERATE}" ) -and ((-not "${env:OLLAMA_CPU_TARGET}") -or ("${env:OLLAMA_CPU_TARGET}" -eq "cpu_avx"))) {
if ($null -eq ${env:OLLAMA_SKIP_CPU_GENERATE}) {
init_vars
$script:cmakeDefs = $script:commonCpuDefs + @("-A", "x64", "-DLLAMA_AVX=on", "-DLLAMA_AVX2=off", "-DLLAMA_AVX512=off", "-DLLAMA_FMA=off", "-DLLAMA_F16C=off") + $script:cmakeDefs
$script:buildDir="../build/windows/${script:ARCH}/cpu_avx"
@@ -240,12 +239,12 @@ function build_cpu_avx() {
sign
install
} else {
write-host "Skipping CPU AVX generation step as requested"
write-host "Skipping CPU generation step as requested"
}
}
function build_cpu_avx2() {
if ((-not "${env:OLLAMA_SKIP_CPU_GENERATE}" ) -and ((-not "${env:OLLAMA_CPU_TARGET}") -or ("${env:OLLAMA_CPU_TARGET}" -eq "cpu_avx2"))) {
if ($null -eq ${env:OLLAMA_SKIP_CPU_GENERATE}) {
init_vars
$script:cmakeDefs = $script:commonCpuDefs + @("-A", "x64", "-DLLAMA_AVX=on", "-DLLAMA_AVX2=on", "-DLLAMA_AVX512=off", "-DLLAMA_FMA=on", "-DLLAMA_F16C=on") + $script:cmakeDefs
$script:buildDir="../build/windows/${script:ARCH}/cpu_avx2"
@@ -255,12 +254,12 @@ function build_cpu_avx2() {
sign
install
} else {
write-host "Skipping CPU AVX2 generation step as requested"
write-host "Skipping CPU generation step as requested"
}
}
function build_cuda() {
if ((-not "${env:OLLAMA_SKIP_CUDA_GENERATE}") -and ("${script:CUDA_LIB_DIR}")) {
if ($null -ne $script:CUDA_LIB_DIR) {
# Then build cuda as a dynamically loaded library
$nvcc = "$script:CUDA_LIB_DIR\nvcc.exe"
$script:CUDA_VERSION=(get-item ($nvcc | split-path | split-path)).Basename
@@ -284,13 +283,11 @@ function build_cuda() {
cp "${script:CUDA_LIB_DIR}\cudart64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\"
cp "${script:CUDA_LIB_DIR}\cublas64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\"
cp "${script:CUDA_LIB_DIR}\cublasLt64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\"
} else {
write-host "Skipping CUDA generation step"
}
}
function build_rocm() {
if ((-not "${env:OLLAMA_SKIP_ROCM_GENERATE}") -and ("${env:HIP_PATH}")) {
if ($null -ne $env:HIP_PATH) {
$script:ROCM_VERSION=(get-item $env:HIP_PATH).Basename
if ($null -ne $script:ROCM_VERSION) {
$script:ROCM_VARIANT="_v"+$script:ROCM_VERSION
@@ -339,8 +336,6 @@ function build_rocm() {
cp "${env:HIP_PATH}\bin\rocblas.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\"
# amdhip64.dll dependency comes from the driver and must be installed on the host to use AMD GPUs
cp "${env:HIP_PATH}\bin\rocblas\library\*" "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\rocblas\library\"
} else {
write-host "Skipping ROCm generation step"
}
}
@@ -349,15 +344,11 @@ if ($($args.count) -eq 0) {
git_module_setup
apply_patches
build_static
if ($script:ARCH -eq "arm64") {
build_cpu("ARM64")
} else { # amd64
build_cpu("x64")
build_cpu_avx
build_cpu_avx2
build_cuda
build_rocm
}
build_cpu
build_cpu_avx
build_cpu_avx2
build_cuda
build_rocm
cleanup
write-host "`ngo generate completed. LLM runners: $(get-childitem -path $script:DIST_BASE)"

View File

@@ -13,6 +13,82 @@ type GGML struct {
model
}
const (
fileTypeF32 uint32 = iota
fileTypeF16
fileTypeQ4_0
fileTypeQ4_1
fileTypeQ4_1_F16
fileTypeQ8_0 uint32 = iota + 2
fileTypeQ5_0
fileTypeQ5_1
fileTypeQ2_K
fileTypeQ3_K_S
fileTypeQ3_K_M
fileTypeQ3_K_L
fileTypeQ4_K_S
fileTypeQ4_K_M
fileTypeQ5_K_S
fileTypeQ5_K_M
fileTypeQ6_K
fileTypeIQ2_XXS
fileTypeIQ2_XS
fileTypeQ2_K_S
fileTypeQ3_K_XS
fileTypeIQ3_XXS
)
func fileType(fileType uint32) string {
switch fileType {
case fileTypeF32:
return "F32"
case fileTypeF16:
return "F16"
case fileTypeQ4_0:
return "Q4_0"
case fileTypeQ4_1:
return "Q4_1"
case fileTypeQ4_1_F16:
return "Q4_1_F16"
case fileTypeQ8_0:
return "Q8_0"
case fileTypeQ5_0:
return "Q5_0"
case fileTypeQ5_1:
return "Q5_1"
case fileTypeQ2_K:
return "Q2_K"
case fileTypeQ3_K_S:
return "Q3_K_S"
case fileTypeQ3_K_M:
return "Q3_K_M"
case fileTypeQ3_K_L:
return "Q3_K_L"
case fileTypeQ4_K_S:
return "Q4_K_S"
case fileTypeQ4_K_M:
return "Q4_K_M"
case fileTypeQ5_K_S:
return "Q5_K_S"
case fileTypeQ5_K_M:
return "Q5_K_M"
case fileTypeQ6_K:
return "Q6_K"
case fileTypeIQ2_XXS:
return "IQ2_XXS"
case fileTypeIQ2_XS:
return "IQ2_XS"
case fileTypeQ2_K_S:
return "Q2_K_S"
case fileTypeQ3_K_XS:
return "Q3_K_XS"
case fileTypeIQ3_XXS:
return "IQ3_XXS"
default:
return "unknown"
}
}
type model interface {
KV() KV
Tensors() Tensors
@@ -45,12 +121,12 @@ func (kv KV) ParameterCount() uint64 {
return kv.u64("general.parameter_count")
}
func (kv KV) FileType() fileType {
func (kv KV) FileType() string {
if u64 := kv.u64("general.file_type"); u64 > 0 {
return fileType(uint32(u64))
}
return fileTypeUnknown
return "unknown"
}
func (kv KV) BlockCount() uint64 {
@@ -210,23 +286,6 @@ const (
var ErrUnsupportedFormat = errors.New("unsupported model format")
func DetectGGMLType(b []byte) string {
switch binary.LittleEndian.Uint32(b[:4]) {
case FILE_MAGIC_GGML:
return "ggml"
case FILE_MAGIC_GGMF:
return "ggmf"
case FILE_MAGIC_GGJT:
return "ggjt"
case FILE_MAGIC_GGLA:
return "ggla"
case FILE_MAGIC_GGUF_LE, FILE_MAGIC_GGUF_BE:
return "gguf"
default:
return ""
}
}
func DecodeGGML(rs io.ReadSeeker) (*GGML, int64, error) {
var magic uint32
if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {

View File

@@ -4,7 +4,6 @@ package llm
// #cgo darwin,arm64 LDFLAGS: ${SRCDIR}/build/darwin/arm64_static/libllama.a -lstdc++
// #cgo darwin,amd64 LDFLAGS: ${SRCDIR}/build/darwin/x86_64_static/libllama.a -lstdc++
// #cgo windows,amd64 LDFLAGS: ${SRCDIR}/build/windows/amd64_static/libllama.a -static -lstdc++
// #cgo windows,arm64 LDFLAGS: ${SRCDIR}/build/windows/arm64_static/libllama.a -static -lstdc++
// #cgo linux,amd64 LDFLAGS: ${SRCDIR}/build/linux/x86_64_static/libllama.a -lstdc++
// #cgo linux,arm64 LDFLAGS: ${SRCDIR}/build/linux/arm64_static/libllama.a -lstdc++
// #include <stdlib.h>
@@ -20,7 +19,7 @@ func SystemInfo() string {
return C.GoString(C.llama_print_system_info())
}
func Quantize(infile, outfile string, ftype fileType) error {
func Quantize(infile, outfile, filetype string) error {
cinfile := C.CString(infile)
defer C.free(unsafe.Pointer(cinfile))
@@ -29,10 +28,58 @@ func Quantize(infile, outfile string, ftype fileType) error {
params := C.llama_model_quantize_default_params()
params.nthread = -1
params.ftype = ftype.Value()
if rc := C.llama_model_quantize(cinfile, coutfile, &params); rc != 0 {
return fmt.Errorf("llama_model_quantize: %d", rc)
switch filetype {
case "F32":
params.ftype = fileTypeF32
case "F16":
params.ftype = fileTypeF16
case "Q4_0":
params.ftype = fileTypeQ4_0
case "Q4_1":
params.ftype = fileTypeQ4_1
case "Q4_1_F16":
params.ftype = fileTypeQ4_1_F16
case "Q8_0":
params.ftype = fileTypeQ8_0
case "Q5_0":
params.ftype = fileTypeQ5_0
case "Q5_1":
params.ftype = fileTypeQ5_1
case "Q2_K":
params.ftype = fileTypeQ2_K
case "Q3_K_S":
params.ftype = fileTypeQ3_K_S
case "Q3_K_M":
params.ftype = fileTypeQ3_K_M
case "Q3_K_L":
params.ftype = fileTypeQ3_K_L
case "Q4_K_S":
params.ftype = fileTypeQ4_K_S
case "Q4_K_M":
params.ftype = fileTypeQ4_K_M
case "Q5_K_S":
params.ftype = fileTypeQ5_K_S
case "Q5_K_M":
params.ftype = fileTypeQ5_K_M
case "Q6_K":
params.ftype = fileTypeQ6_K
case "IQ2_XXS":
params.ftype = fileTypeIQ2_XXS
case "IQ2_XS":
params.ftype = fileTypeIQ2_XS
case "Q2_K_S":
params.ftype = fileTypeQ2_K_S
case "Q3_K_XS":
params.ftype = fileTypeQ3_K_XS
case "IQ3_XXS":
params.ftype = fileTypeIQ3_XXS
default:
return fmt.Errorf("unknown filetype: %s", filetype)
}
if retval := C.llama_model_quantize(cinfile, coutfile, &params); retval != 0 {
return fmt.Errorf("llama_model_quantize: %d", retval)
}
return nil

View File

@@ -3,11 +3,12 @@ package llm
import (
"fmt"
"log/slog"
"os"
"strconv"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/gpu"
"github.com/ollama/ollama/server/envconfig"
)
// This algorithm looks for a complete fit to determine if we need to unload other models
@@ -25,7 +26,7 @@ func PredictServerFit(allGpus gpu.GpuInfoList, ggml *GGML, adapters, projectors
// Split up the GPUs by type and try them
for _, gpus := range allGpus.ByLibrary() {
var layerCount int
layerCount, estimatedVRAM, _ = EstimateGPULayers(gpus, ggml, projectors, opts)
layerCount, estimatedVRAM = EstimateGPULayers(gpus, ggml, projectors, opts)
if opts.NumGPU < 0 {
if layerCount > 0 && layerCount >= int(ggml.KV().BlockCount()+1) {
return true, estimatedVRAM
@@ -39,15 +40,25 @@ func PredictServerFit(allGpus gpu.GpuInfoList, ggml *GGML, adapters, projectors
return false, estimatedVRAM
}
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
// Given a model and one or more GPU targets, predict how many layers and bytes we can load
// The GPUs provided must all be the same Library
func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts api.Options) (int, uint64, uint64) {
func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts api.Options) (int, uint64) {
if gpus[0].Library == "cpu" {
return 0, 0
}
var memoryAvailable uint64
for _, info := range gpus {
memoryAvailable += info.FreeMemory
}
if envconfig.MaxVRAM > 0 {
memoryAvailable = envconfig.MaxVRAM
userLimit := os.Getenv("OLLAMA_MAX_VRAM")
if userLimit != "" {
avail, err := strconv.ParseUint(userLimit, 10, 64)
if err != nil {
slog.Error("invalid setting, ignoring", "OLLAMA_MAX_VRAM", userLimit, "error", err)
} else {
slog.Info("user override memory limit", "OLLAMA_MAX_VRAM", avail, "actual", memoryAvailable)
memoryAvailable = avail
}
}
slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", format.HumanBytes2(memoryAvailable))
@@ -77,19 +88,19 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
graphFullOffload *= uint64(len(gpus))
graphPartialOffload *= uint64(len(gpus))
// on metal there's no partial offload overhead
if gpus[0].Library == "metal" {
graphPartialOffload = graphFullOffload
// memoryRequiredTotal represents the memory required for full GPU offloading (all layers)
memoryRequiredTotal := memoryMinimum + graphFullOffload
// memoryRequiredPartial represents the memory required for partial GPU offloading (n > 0, n < layers)
memoryRequiredPartial := memoryMinimum + graphPartialOffload
if memoryRequiredPartial > memoryAvailable {
slog.Debug("insufficient VRAM to load any model layers")
return 0, 0
}
layers := ggml.Tensors().Layers()
// memoryRequiredTotal represents the memory required for full GPU offloading (all layers)
memoryRequiredTotal := memoryMinimum + graphFullOffload + layers["blk.0"].size()
// memoryRequiredPartial represents the memory required for partial GPU offloading (n > 0, n < layers)
memoryRequiredPartial := memoryMinimum + graphPartialOffload + layers["blk.0"].size()
var memoryLayerOutput uint64
if layer, ok := layers["output_norm"]; ok {
memoryLayerOutput += layer.size()
@@ -173,13 +184,5 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
),
),
)
if gpus[0].Library == "cpu" {
return 0, 0, memoryRequiredTotal
}
if memoryRequiredPartial > memoryAvailable {
slog.Debug("insufficient VRAM to load any model layers")
return 0, 0, memoryRequiredTotal
}
return layerCount, memoryRequiredPartial, memoryRequiredTotal
return layerCount, uint64(memoryRequiredPartial)
}

View File

@@ -1,24 +0,0 @@
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index e3c9bcd4..b43f892d 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -573,14 +573,16 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
struct ggml_tensor * embeddings = inp;
if (ctx->has_class_embedding) {
embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
+ }
+ ggml_set_name(embeddings, "embeddings");
+ ggml_set_input(embeddings);
+
+ if (ctx->has_class_embedding) {
embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
embeddings = ggml_acc(ctx0, embeddings, inp,
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
}
- ggml_set_name(embeddings, "embeddings");
- ggml_set_input(embeddings);
-
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
ggml_set_name(positions, "positions");

View File

@@ -26,14 +26,13 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/gpu"
"github.com/ollama/ollama/server/envconfig"
)
type LlamaServer interface {
Ping(ctx context.Context) error
WaitUntilRunning(ctx context.Context) error
Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error
Embedding(ctx context.Context, prompt string) ([]float64, error)
Embeddings(ctx context.Context, prompt []string) ([][]float64, error)
Tokenize(ctx context.Context, content string) ([]int, error)
Detokenize(ctx context.Context, tokens []int) (string, error)
Close() error
@@ -49,11 +48,7 @@ type llmServer struct {
options api.Options
// TODO - this should be broken down by GPU
estimatedVRAM uint64 // Estimated usage of VRAM by the loaded model
estimatedTotal uint64 // Total size of model
totalLayers uint64
gpuCount int
loadDuration time.Duration // Record how long it took the model to load
estimatedVRAM uint64 // Estimated usage of VRAM by the loaded model
sem *semaphore.Weighted
}
@@ -78,7 +73,8 @@ func LoadModel(model string) (*GGML, error) {
func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, projectors []string, opts api.Options) (LlamaServer, error) {
var err error
if opts.NumCtx > int(ggml.KV().ContextLength()) {
slog.Warn("requested context length is greater than the model's training context window size", "requested", opts.NumCtx, "training size", ggml.KV().ContextLength())
slog.Warn("requested context length is greater than model max context length", "requested", opts.NumCtx, "model", ggml.KV().ContextLength())
opts.NumCtx = int(ggml.KV().ContextLength())
}
if opts.NumCtx < 4 {
@@ -87,15 +83,12 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
cpuRunner := ""
var estimatedVRAM uint64
var estimatedTotal uint64
var systemMemory uint64
gpuCount := len(gpus)
if (len(gpus) == 1 && gpus[0].Library == "cpu") || opts.NumGPU == 0 {
// TODO evaluate system memory to see if we should block the load, or force an unload of another CPU runner
cpuRunner = serverForCpu()
gpuCount = 0
} else {
if gpus[0].Library == "metal" {
memInfo, err := gpu.GetCPUMem()
@@ -107,7 +100,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
}
}
var layers int
layers, estimatedVRAM, estimatedTotal = EstimateGPULayers(gpus, ggml, projectors, opts)
layers, estimatedVRAM = EstimateGPULayers(gpus, ggml, projectors, opts)
if gpus[0].Library == "metal" && estimatedVRAM > systemMemory {
// disable partial offloading when model is greater than total system memory as this
@@ -132,7 +125,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
} else {
servers = serversForGpu(gpus[0]) // All GPUs in the list are matching Library and Variant
}
demandLib := envconfig.LLMLibrary
demandLib := strings.Trim(os.Getenv("OLLAMA_LLM_LIBRARY"), "\"' ")
if demandLib != "" {
serverPath := availableServers[demandLib]
if serverPath == "" {
@@ -140,10 +133,6 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
} else {
slog.Info("user override", "OLLAMA_LLM_LIBRARY", demandLib, "path", serverPath)
servers = []string{demandLib}
if strings.HasPrefix(demandLib, "cpu") {
// Omit the GPU flag to silence the warning
opts.NumGPU = -1
}
}
}
@@ -157,14 +146,17 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
"--batch-size", fmt.Sprintf("%d", opts.NumBatch),
"--embedding",
}
params = append(params, "--log-disable")
if debug := os.Getenv("OLLAMA_DEBUG"); debug != "" {
params = append(params, "--log-format", "json")
} else {
params = append(params, "--log-disable")
}
if opts.NumGPU >= 0 {
params = append(params, "--n-gpu-layers", fmt.Sprintf("%d", opts.NumGPU))
}
if envconfig.Debug {
if debug := os.Getenv("OLLAMA_DEBUG"); debug != "" {
params = append(params, "--verbose")
}
@@ -202,15 +194,16 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
params = append(params, "--numa")
}
numParallel := envconfig.NumParallel
// TODO (jmorganca): multimodal models don't support parallel yet
// see https://github.com/ollama/ollama/issues/4165
if len(projectors) > 0 {
numParallel = 1
slog.Warn("multimodal models don't support parallel requests yet")
// "--cont-batching", // TODO - doesn't seem to have any noticeable perf change for multiple requests
numParallel := 1
if onp := os.Getenv("OLLAMA_NUM_PARALLEL"); onp != "" {
numParallel, err = strconv.Atoi(onp)
if err != nil || numParallel <= 0 {
err = fmt.Errorf("invalid OLLAMA_NUM_PARALLEL=%s must be greater than zero - %w", onp, err)
slog.Error("misconfiguration", "error", err)
return nil, err
}
}
params = append(params, "--parallel", fmt.Sprintf("%d", numParallel))
for i := 0; i < len(servers); i++ {
@@ -218,15 +211,10 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
if dir == "" {
// Shouldn't happen
finalErr = fmt.Errorf("[%d] server %s not listed in available servers %v", i, servers[i], availableServers)
slog.Error("server list inconsistent", "error", finalErr)
slog.Error("sever list inconsistent", "error", finalErr)
continue
}
if strings.HasPrefix(servers[i], "cpu") {
// TODO if we tried a gpu runner first, and it failed, record the error and bubble that back up
gpuCount = 0
}
// Find an availableServers port, retry on each iterration in case the failure was a port conflict race
port := 0
if a, err := net.ResolveTCPAddr("tcp", "localhost:0"); err == nil {
@@ -246,13 +234,13 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
if runtime.GOOS == "windows" {
pathEnv = "PATH"
}
// prepend the server directory to LD_LIBRARY_PATH/PATH
// append the server directory to LD_LIBRARY_PATH/PATH
libraryPaths := []string{dir}
if libraryPath, ok := os.LookupEnv(pathEnv); ok {
// Append our runner directory to the path
// This will favor system libraries over our bundled library dependencies
libraryPaths = append(libraryPaths, filepath.SplitList(libraryPath)...)
libraryPaths = append(filepath.SplitList(libraryPath), libraryPaths...)
}
// Note: we always put the dependency path first
@@ -280,37 +268,23 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
}
s := &llmServer{
port: port,
cmd: exec.Command(server, finalParams...),
status: NewStatusWriter(os.Stderr),
options: opts,
estimatedVRAM: estimatedVRAM,
estimatedTotal: estimatedTotal,
sem: semaphore.NewWeighted(int64(numParallel)),
totalLayers: ggml.KV().BlockCount() + 1,
gpuCount: gpuCount,
done: make(chan error, 1),
port: port,
cmd: exec.Command(server, finalParams...),
status: NewStatusWriter(os.Stderr),
options: opts,
estimatedVRAM: estimatedVRAM,
sem: semaphore.NewWeighted(int64(numParallel)),
}
libEnv := fmt.Sprintf("%s=%s", pathEnv, strings.Join(libraryPaths, string(filepath.ListSeparator)))
s.cmd.Env = append(os.Environ(), libEnv)
s.cmd.Stdout = os.Stdout
s.cmd.Stderr = s.status
if v := strings.Join(libraryPaths, string(filepath.ListSeparator)); v != "" {
s.cmd.Env = append(s.cmd.Env, pathEnv+"="+v)
}
if k, v := gpu.GpuInfoList(gpus).GetVisibleDevicesEnv(); k != "" {
s.cmd.Env = append(s.cmd.Env, k+"="+v)
}
for _, ev := range os.Environ() {
if strings.HasPrefix(ev, "CUDA_") ||
strings.HasPrefix(ev, "ROCM_") ||
strings.HasPrefix(ev, "HIP_") ||
strings.HasPrefix(ev, "HSA_") ||
strings.HasPrefix(ev, "GGML_") {
s.cmd.Env = append(s.cmd.Env, ev)
}
// TODO - multiple GPU selection logic...
key, val := gpu.GpuInfoList(gpus).GetVisibleDevicesEnv()
if key != "" {
s.cmd.Env = append(s.cmd.Env, key+"="+val)
}
slog.Info("starting llama server", "cmd", s.cmd.String())
@@ -318,11 +292,6 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
slog.Debug("subprocess", "environment", s.cmd.Env)
if err = s.cmd.Start(); err != nil {
// Detect permission denied and augment them essage about noexec
if errors.Is(err, os.ErrPermission) {
finalErr = fmt.Errorf("unable to start server %w. %s may have noexec set. Set OLLAMA_TMPDIR for server to a writable executable directory", err, dir)
continue
}
msg := ""
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
@@ -334,9 +303,17 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
// reap subprocess when it exits
go func() {
s.done <- s.cmd.Wait()
// Exit status managed via getServerStatus
_ = s.cmd.Wait()
}()
// TODO - make sure this is all wired up correctly
// if err = s.WaitUntilRunning(); err != nil {
// slog.Error("error starting llama server", "server", servers[i], "error", err)
// s.Close()
// finalErr = err
// continue
// }
return s, nil
}
@@ -368,7 +345,7 @@ type ServerStatus int
const ( // iota is reset to 0
ServerStatusReady ServerStatus = iota
ServerStatusNoSlotsAvailable
ServerStatusNoSlotsAvaialble
ServerStatusLoadingModel
ServerStatusNotResponding
ServerStatusError
@@ -378,7 +355,7 @@ func (s ServerStatus) ToString() string {
switch s {
case ServerStatusReady:
return "llm server ready"
case ServerStatusNoSlotsAvailable:
case ServerStatusNoSlotsAvaialble:
return "llm busy - no slots available"
case ServerStatusLoadingModel:
return "llm server loading model"
@@ -403,10 +380,6 @@ func (s *llmServer) getServerStatus(ctx context.Context) (ServerStatus, error) {
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
if s.cmd.ProcessState.ExitCode() == -1 {
// Most likely a signal killed it, log some more details to try to help troubleshoot
slog.Warn("llama runner process no longer running", "sys", s.cmd.ProcessState.Sys(), "string", s.cmd.ProcessState.String())
}
return ServerStatusError, fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
}
@@ -439,7 +412,7 @@ func (s *llmServer) getServerStatus(ctx context.Context) (ServerStatus, error) {
case "ok":
return ServerStatusReady, nil
case "no slot available":
return ServerStatusNoSlotsAvailable, nil
return ServerStatusNoSlotsAvaialble, nil
case "loading model":
return ServerStatusLoadingModel, nil
default:
@@ -447,29 +420,6 @@ func (s *llmServer) getServerStatus(ctx context.Context) (ServerStatus, error) {
}
}
// getServerStatusRetry will retry if ServerStatusNoSlotsAvailable is received
func (s *llmServer) getServerStatusRetry(ctx context.Context) (ServerStatus, error) {
var retries int
for {
status, err := s.getServerStatus(ctx)
if err != nil {
return status, err
}
if status == ServerStatusNoSlotsAvailable {
if retries >= 10 {
return status, fmt.Errorf("no slots available after %d retries", retries)
}
time.Sleep(5 * time.Millisecond)
retries++
continue
}
return status, nil
}
}
func (s *llmServer) Ping(ctx context.Context) error {
_, err := s.getServerStatus(ctx)
if err != nil {
@@ -481,11 +431,13 @@ func (s *llmServer) Ping(ctx context.Context) error {
func (s *llmServer) WaitUntilRunning(ctx context.Context) error {
start := time.Now()
// TODO we need to wire up a better way to detect hangs during model load and startup of the server
expiresAt := time.Now().Add(10 * time.Minute) // be generous with timeout, large models can take a while to load
ticker := time.NewTicker(50 * time.Millisecond)
defer ticker.Stop()
slog.Info("waiting for llama runner to start responding")
var lastStatus ServerStatus = -1
for {
select {
case <-ctx.Done():
@@ -497,39 +449,41 @@ func (s *llmServer) WaitUntilRunning(ctx context.Context) error {
msg = s.status.LastErrMsg
}
return fmt.Errorf("llama runner process has terminated: %v %s", err, msg)
default:
}
if time.Now().After(expiresAt) {
// timeout
msg := ""
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
case <-ticker.C:
if time.Now().After(expiresAt) {
// timeout
msg := ""
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
return fmt.Errorf("timed out waiting for llama runner to start: %s", msg)
}
return fmt.Errorf("timed out waiting for llama runner to start: %s", msg)
}
if s.cmd.ProcessState != nil {
msg := ""
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
if s.cmd.ProcessState != nil {
msg := ""
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
return fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
}
c, cancel := context.WithTimeout(ctx, 200*time.Millisecond)
defer cancel()
status, err := s.getServerStatus(c)
if err != nil && lastStatus != status {
slog.Debug("server not yet available", "error", err)
lastStatus = status
continue
}
switch status {
case ServerStatusLoadingModel:
// TODO - this state never seems to happen with the current server.cpp code (bug?)
// it doesn't respond to the health endpoint until after the model is loaded
slog.Debug("loading model")
case ServerStatusReady:
slog.Debug(fmt.Sprintf("llama runner started in %f seconds", time.Since(start).Seconds()))
return nil
}
return fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
}
ctx, cancel := context.WithTimeout(ctx, 200*time.Millisecond)
defer cancel()
status, _ := s.getServerStatus(ctx)
if lastStatus != status && status != ServerStatusReady {
// Only log on status changes
slog.Info("waiting for server to become available", "status", status.ToString())
}
switch status {
case ServerStatusReady:
s.loadDuration = time.Since(start)
slog.Info(fmt.Sprintf("llama runner started in %0.2f seconds", s.loadDuration.Seconds()))
return nil
default:
lastStatus = status
time.Sleep(time.Millisecond * 250)
continue
}
}
}
@@ -563,6 +517,7 @@ ws ::= ([ \t\n] ws)?
`
const maxBufferSize = 512 * format.KiloByte
const maxRetries = 3
type ImageData struct {
Data []byte `json:"data"`
@@ -570,11 +525,10 @@ type ImageData struct {
}
type completion struct {
Content string `json:"content"`
Model string `json:"model"`
Prompt string `json:"prompt"`
Stop bool `json:"stop"`
StoppedLimit bool `json:"stopped_limit"`
Content string `json:"content"`
Model string `json:"model"`
Prompt string `json:"prompt"`
Stop bool `json:"stop"`
Timings struct {
PredictedN int `json:"predicted_n"`
@@ -593,7 +547,6 @@ type CompletionRequest struct {
type CompletionResponse struct {
Content string
DoneReason string
Done bool
PromptEvalCount int
PromptEvalDuration time.Duration
@@ -640,7 +593,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
}
// Make sure the server is ready
status, err := s.getServerStatusRetry(ctx)
status, err := s.getServerStatus(ctx)
if err != nil {
return err
} else if status != ServerStatusReady {
@@ -654,150 +607,163 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
}
}
// Handling JSON marshaling with special characters unescaped.
buffer := &bytes.Buffer{}
enc := json.NewEncoder(buffer)
enc.SetEscapeHTML(false)
if err := enc.Encode(request); err != nil {
return fmt.Errorf("failed to marshal data: %v", err)
}
endpoint := fmt.Sprintf("http://127.0.0.1:%d/completion", s.port)
serverReq, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, buffer)
if err != nil {
return fmt.Errorf("error creating POST request: %v", err)
}
serverReq.Header.Set("Content-Type", "application/json")
res, err := http.DefaultClient.Do(serverReq)
if err != nil {
return fmt.Errorf("POST predict: %v", err)
}
defer res.Body.Close()
if res.StatusCode >= 400 {
bodyBytes, err := io.ReadAll(res.Body)
if err != nil {
return fmt.Errorf("failed reading llm error response: %w", err)
retryDelay := 100 * time.Microsecond
for retries := 0; retries < maxRetries; retries++ {
if retries > 0 {
time.Sleep(retryDelay) // wait before retrying
retryDelay *= 2 // exponential backoff
}
log.Printf("llm predict error: %s", bodyBytes)
return fmt.Errorf("%s", bodyBytes)
}
scanner := bufio.NewScanner(res.Body)
buf := make([]byte, 0, maxBufferSize)
scanner.Buffer(buf, maxBufferSize)
// Handling JSON marshaling with special characters unescaped.
buffer := &bytes.Buffer{}
enc := json.NewEncoder(buffer)
enc.SetEscapeHTML(false)
// keep track of the last token generated, this is used to abort if the model starts looping
var lastToken string
var tokenRepeat int
if err := enc.Encode(request); err != nil {
return fmt.Errorf("failed to marshal data: %v", err)
}
for scanner.Scan() {
select {
case <-ctx.Done():
// This handles the request cancellation
return ctx.Err()
default:
line := scanner.Bytes()
if len(line) == 0 {
continue
endpoint := fmt.Sprintf("http://127.0.0.1:%d/completion", s.port)
req, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, buffer)
if err != nil {
return fmt.Errorf("error creating POST request: %v", err)
}
req.Header.Set("Content-Type", "application/json")
resp, err := http.DefaultClient.Do(req)
if err != nil {
return fmt.Errorf("POST predict: %v", err)
}
defer resp.Body.Close()
if resp.StatusCode >= 400 {
bodyBytes, err := io.ReadAll(resp.Body)
if err != nil {
return fmt.Errorf("failed reading llm error response: %w", err)
}
log.Printf("llm predict error: %s", bodyBytes)
return fmt.Errorf("%s", bodyBytes)
}
evt, ok := bytes.CutPrefix(line, []byte("data: "))
if !ok {
return fmt.Errorf("error parsing llm response stream: %s", line)
}
scanner := bufio.NewScanner(resp.Body)
buf := make([]byte, 0, maxBufferSize)
scanner.Buffer(buf, maxBufferSize)
var c completion
if err := json.Unmarshal(evt, &c); err != nil {
return fmt.Errorf("error unmarshaling llm prediction response: %v", err)
}
retryNeeded := false
// keep track of the last token generated, this is used to abort if the model starts looping
var lastToken string
var tokenRepeat int
switch {
case strings.TrimSpace(c.Content) == lastToken:
tokenRepeat++
default:
lastToken = strings.TrimSpace(c.Content)
tokenRepeat = 0
}
// 30 picked as an arbitrary max token repeat limit, modify as needed
if tokenRepeat > 30 {
slog.Debug("prediction aborted, token repeat limit reached")
for scanner.Scan() {
select {
case <-ctx.Done():
// This handles the request cancellation
return ctx.Err()
}
if c.Content != "" {
fn(CompletionResponse{
Content: c.Content,
})
}
if c.Stop {
doneReason := "stop"
if c.StoppedLimit {
doneReason = "length"
default:
line := scanner.Bytes()
if len(line) == 0 {
continue
}
fn(CompletionResponse{
Done: true,
DoneReason: doneReason,
PromptEvalCount: c.Timings.PromptN,
PromptEvalDuration: parseDurationMs(c.Timings.PromptMS),
EvalCount: c.Timings.PredictedN,
EvalDuration: parseDurationMs(c.Timings.PredictedMS),
})
return nil
// try again on slot unavailable
if bytes.Contains(line, []byte("slot unavailable")) {
retryNeeded = true
break
}
evt, ok := bytes.CutPrefix(line, []byte("data: "))
if !ok {
return fmt.Errorf("error parsing llm response stream: %s", line)
}
var c completion
if err := json.Unmarshal(evt, &c); err != nil {
return fmt.Errorf("error unmarshaling llm prediction response: %v", err)
}
switch {
case strings.TrimSpace(c.Content) == lastToken:
tokenRepeat++
default:
lastToken = strings.TrimSpace(c.Content)
tokenRepeat = 0
}
// 30 picked as an arbitrary max token repeat limit, modify as needed
if tokenRepeat > 30 {
slog.Debug("prediction aborted, token repeat limit reached")
return ctx.Err()
}
if c.Content != "" {
fn(CompletionResponse{
Content: c.Content,
})
}
if c.Stop {
fn(CompletionResponse{
Done: true,
PromptEvalCount: c.Timings.PromptN,
PromptEvalDuration: parseDurationMs(c.Timings.PromptMS),
EvalCount: c.Timings.PredictedN,
EvalDuration: parseDurationMs(c.Timings.PredictedMS),
})
return nil
}
}
}
if err := scanner.Err(); err != nil {
if strings.Contains(err.Error(), "unexpected EOF") {
s.Close()
msg := ""
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
return fmt.Errorf("an unknown error was encountered while running the model %s", msg)
}
return fmt.Errorf("error reading llm response: %v", err)
}
if !retryNeeded {
return nil // success
}
}
if err := scanner.Err(); err != nil {
if strings.Contains(err.Error(), "unexpected EOF") {
s.Close()
msg := ""
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
return fmt.Errorf("an unknown error was encountered while running the model %s", msg)
}
return fmt.Errorf("error reading llm response: %v", err)
}
return nil
// should never reach here ideally
return fmt.Errorf("max retries exceeded")
}
type EmbeddingRequest struct {
Content string `json:"content"`
type EmbeddingsRequest struct {
Contents []string `json:"contents"`
}
type EmbeddingResponse struct {
Embedding []float64 `json:"embedding"`
type EmbeddingsResponse struct {
Embeddings [][]float64 `json:"embeddings"`
}
func (s *llmServer) Embedding(ctx context.Context, prompt string) ([]float64, error) {
func (s *llmServer) Embeddings(ctx context.Context, prompts []string) ([][]float64, error) {
if err := s.sem.Acquire(ctx, 1); err != nil {
slog.Error("Failed to acquire semaphore", "error", err)
return nil, err
}
defer s.sem.Release(1)
// Make sure the server is ready
status, err := s.getServerStatusRetry(ctx)
status, err := s.getServerStatus(ctx)
if err != nil {
return nil, err
} else if status != ServerStatusReady {
return nil, fmt.Errorf("unexpected server status: %s", status.ToString())
}
data, err := json.Marshal(TokenizeRequest{Content: prompt})
data, err := json.Marshal(EmbeddingsRequest{Contents: prompts})
if err != nil {
return nil, fmt.Errorf("error marshaling embed data: %w", err)
}
req, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/embedding", s.port), bytes.NewBuffer(data))
req, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/embeddings", s.port), bytes.NewBuffer(data))
if err != nil {
return nil, fmt.Errorf("error creating embed request: %w", err)
}
@@ -814,17 +780,19 @@ func (s *llmServer) Embedding(ctx context.Context, prompt string) ([]float64, er
return nil, fmt.Errorf("error reading embed response: %w", err)
}
fmt.Println("embeddings response", string(body))
if resp.StatusCode >= 400 {
log.Printf("llm encode error: %s", body)
return nil, fmt.Errorf("%s", body)
}
var embedding EmbeddingResponse
var embedding EmbeddingsResponse
if err := json.Unmarshal(body, &embedding); err != nil {
return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
}
return embedding.Embedding, nil
return embedding.Embeddings, nil
}
type TokenizeRequest struct {
@@ -840,7 +808,7 @@ func (s *llmServer) Tokenize(ctx context.Context, content string) ([]int, error)
status, err := s.getServerStatus(ctx)
if err != nil {
return nil, err
} else if status != ServerStatusReady && status != ServerStatusNoSlotsAvailable {
} else if status != ServerStatusReady && status != ServerStatusNoSlotsAvaialble {
return nil, fmt.Errorf("unexpected server status: %s", status.ToString())
}
@@ -892,7 +860,7 @@ func (s *llmServer) Detokenize(ctx context.Context, tokens []int) (string, error
status, err := s.getServerStatus(ctx)
if err != nil {
return "", err
} else if status != ServerStatusReady && status != ServerStatusNoSlotsAvailable {
} else if status != ServerStatusReady && status != ServerStatusNoSlotsAvaialble {
return "", fmt.Errorf("unexpected server status: %s", status.ToString())
}
@@ -934,16 +902,7 @@ func (s *llmServer) Detokenize(ctx context.Context, tokens []int) (string, error
func (s *llmServer) Close() error {
if s.cmd != nil {
slog.Debug("stopping llama server")
if err := s.cmd.Process.Kill(); err != nil {
return err
}
// if ProcessState is already populated, Wait already completed, no need to wait again
if s.cmd.ProcessState == nil {
slog.Debug("waiting for llama server to exit")
<-s.done
}
slog.Debug("llama server stopped")
return s.cmd.Process.Kill()
}
return nil

View File

@@ -19,7 +19,7 @@ export default function () {
const [step, setStep] = useState<Step>(Step.WELCOME)
const [commandCopied, setCommandCopied] = useState<boolean>(false)
const command = 'ollama run llama3'
const command = 'ollama run llama2'
return (
<div className='drag'>

View File

@@ -107,9 +107,15 @@ func toChatCompletion(id string, r api.ChatResponse) ChatCompletion {
Model: r.Model,
SystemFingerprint: "fp_ollama",
Choices: []Choice{{
Index: 0,
Message: Message{Role: r.Message.Role, Content: r.Message.Content},
FinishReason: &r.DoneReason,
Index: 0,
Message: Message{Role: r.Message.Role, Content: r.Message.Content},
FinishReason: func(done bool) *string {
if done {
reason := "stop"
return &reason
}
return nil
}(r.Done),
}},
Usage: Usage{
// TODO: ollama returns 0 for prompt eval if the prompt was cached, but openai returns the actual count
@@ -129,9 +135,15 @@ func toChunk(id string, r api.ChatResponse) ChatCompletionChunk {
SystemFingerprint: "fp_ollama",
Choices: []ChunkChoice{
{
Index: 0,
Delta: Message{Role: "assistant", Content: r.Message.Content},
FinishReason: &r.DoneReason,
Index: 0,
Delta: Message{Role: "assistant", Content: r.Message.Content},
FinishReason: func(done bool) *string {
if done {
reason := "stop"
return &reason
}
return nil
}(r.Done),
},
},
}

132
parser/parser.go Normal file
View File

@@ -0,0 +1,132 @@
package parser
import (
"bufio"
"bytes"
"errors"
"fmt"
"io"
"log/slog"
"slices"
)
type Command struct {
Name string
Args string
}
func (c *Command) Reset() {
c.Name = ""
c.Args = ""
}
func Parse(reader io.Reader) ([]Command, error) {
var commands []Command
var command, modelCommand Command
scanner := bufio.NewScanner(reader)
scanner.Buffer(make([]byte, 0, bufio.MaxScanTokenSize), bufio.MaxScanTokenSize)
scanner.Split(scanModelfile)
for scanner.Scan() {
line := scanner.Bytes()
fields := bytes.SplitN(line, []byte(" "), 2)
if len(fields) == 0 || len(fields[0]) == 0 {
continue
}
switch string(bytes.ToUpper(fields[0])) {
case "FROM":
command.Name = "model"
command.Args = string(bytes.TrimSpace(fields[1]))
// copy command for validation
modelCommand = command
case "ADAPTER":
command.Name = string(bytes.ToLower(fields[0]))
command.Args = string(bytes.TrimSpace(fields[1]))
case "LICENSE", "TEMPLATE", "SYSTEM", "PROMPT":
command.Name = string(bytes.ToLower(fields[0]))
command.Args = string(fields[1])
case "PARAMETER":
fields = bytes.SplitN(fields[1], []byte(" "), 2)
if len(fields) < 2 {
return nil, fmt.Errorf("missing value for %s", fields)
}
command.Name = string(fields[0])
command.Args = string(bytes.TrimSpace(fields[1]))
case "EMBED":
return nil, fmt.Errorf("deprecated command: EMBED is no longer supported, use the /embed API endpoint instead")
case "MESSAGE":
command.Name = string(bytes.ToLower(fields[0]))
fields = bytes.SplitN(fields[1], []byte(" "), 2)
if len(fields) < 2 {
return nil, fmt.Errorf("should be in the format <role> <message>")
}
if !slices.Contains([]string{"system", "user", "assistant"}, string(bytes.ToLower(fields[0]))) {
return nil, fmt.Errorf("role must be one of \"system\", \"user\", or \"assistant\"")
}
command.Args = fmt.Sprintf("%s: %s", string(bytes.ToLower(fields[0])), string(fields[1]))
default:
if !bytes.HasPrefix(fields[0], []byte("#")) {
// log a warning for unknown commands
slog.Warn(fmt.Sprintf("Unknown command: %s", fields[0]))
}
continue
}
commands = append(commands, command)
command.Reset()
}
if modelCommand.Args == "" {
return nil, errors.New("no FROM line for the model was specified")
}
return commands, scanner.Err()
}
func scanModelfile(data []byte, atEOF bool) (advance int, token []byte, err error) {
advance, token, err = scan([]byte(`"""`), []byte(`"""`), data, atEOF)
if err != nil {
return 0, nil, err
}
if advance > 0 && token != nil {
return advance, token, nil
}
advance, token, err = scan([]byte(`"`), []byte(`"`), data, atEOF)
if err != nil {
return 0, nil, err
}
if advance > 0 && token != nil {
return advance, token, nil
}
return bufio.ScanLines(data, atEOF)
}
func scan(openBytes, closeBytes, data []byte, atEOF bool) (advance int, token []byte, err error) {
newline := bytes.IndexByte(data, '\n')
if start := bytes.Index(data, openBytes); start >= 0 && start < newline {
end := bytes.Index(data[start+len(openBytes):], closeBytes)
if end < 0 {
if atEOF {
return 0, nil, fmt.Errorf("unterminated %s: expecting %s", openBytes, closeBytes)
} else {
return 0, nil, nil
}
}
n := start + len(openBytes) + end + len(closeBytes)
newData := data[:start]
newData = append(newData, data[start+len(openBytes):n-len(closeBytes)]...)
return n, newData, nil
}
return 0, nil, nil
}

98
parser/parser_test.go Normal file
View File

@@ -0,0 +1,98 @@
package parser
import (
"strings"
"testing"
"github.com/stretchr/testify/assert"
)
func Test_Parser(t *testing.T) {
input := `
FROM model1
ADAPTER adapter1
LICENSE MIT
PARAMETER param1 value1
PARAMETER param2 value2
TEMPLATE template1
`
reader := strings.NewReader(input)
commands, err := Parse(reader)
assert.Nil(t, err)
expectedCommands := []Command{
{Name: "model", Args: "model1"},
{Name: "adapter", Args: "adapter1"},
{Name: "license", Args: "MIT"},
{Name: "param1", Args: "value1"},
{Name: "param2", Args: "value2"},
{Name: "template", Args: "template1"},
}
assert.Equal(t, expectedCommands, commands)
}
func Test_Parser_NoFromLine(t *testing.T) {
input := `
PARAMETER param1 value1
PARAMETER param2 value2
`
reader := strings.NewReader(input)
_, err := Parse(reader)
assert.ErrorContains(t, err, "no FROM line")
}
func Test_Parser_MissingValue(t *testing.T) {
input := `
FROM foo
PARAMETER param1
`
reader := strings.NewReader(input)
_, err := Parse(reader)
assert.ErrorContains(t, err, "missing value for [param1]")
}
func Test_Parser_Messages(t *testing.T) {
input := `
FROM foo
MESSAGE system You are a Parser. Always Parse things.
MESSAGE user Hey there!
MESSAGE assistant Hello, I want to parse all the things!
`
reader := strings.NewReader(input)
commands, err := Parse(reader)
assert.Nil(t, err)
expectedCommands := []Command{
{Name: "model", Args: "foo"},
{Name: "message", Args: "system: You are a Parser. Always Parse things."},
{Name: "message", Args: "user: Hey there!"},
{Name: "message", Args: "assistant: Hello, I want to parse all the things!"},
}
assert.Equal(t, expectedCommands, commands)
}
func Test_Parser_Messages_BadRole(t *testing.T) {
input := `
FROM foo
MESSAGE badguy I'm a bad guy!
`
reader := strings.NewReader(input)
_, err := Parse(reader)
assert.ErrorContains(t, err, "role must be one of \"system\", \"user\", or \"assistant\"")
}

View File

@@ -218,7 +218,7 @@ func (i *Instance) Readline() (string, error) {
case CharCtrlZ:
fd := int(syscall.Stdin)
return handleCharCtrlZ(fd, i.Terminal.termios)
case CharEnter, CharCtrlJ:
case CharEnter:
output := buf.String()
if output != "" {
i.History.Add([]rune(output))
@@ -232,7 +232,7 @@ func (i *Instance) Readline() (string, error) {
metaDel = false
continue
}
if r >= CharSpace || r == CharEnter || r == CharCtrlJ {
if r >= CharSpace || r == CharEnter {
buf.Add(r)
}
}

View File

@@ -7,8 +7,6 @@
$ErrorActionPreference = "Stop"
function checkEnv() {
$script:TARGET_ARCH=$Env:PROCESSOR_ARCHITECTURE.ToLower()
Write-host "Building for ${script:TARGET_ARCH}"
write-host "Locating required tools and paths"
$script:SRC_DIR=$PWD
if (!$env:VCToolsRedistDir) {
@@ -32,7 +30,7 @@ function checkEnv() {
$script:INNO_SETUP_DIR=(get-item "C:\Program Files*\Inno Setup*\")[0]
$script:DEPS_DIR="${script:SRC_DIR}\dist\windows-${script:TARGET_ARCH}"
$script:DEPS_DIR="${script:SRC_DIR}\dist\windows-amd64"
$env:CGO_ENABLED="1"
echo "Checking version"
if (!$env:VERSION) {
@@ -83,8 +81,8 @@ function buildOllama() {
/csp "Google Cloud KMS Provider" /kc ${env:KEY_CONTAINER} ollama.exe
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
New-Item -ItemType Directory -Path .\dist\windows-${script:TARGET_ARCH}\ -Force
cp .\ollama.exe .\dist\windows-${script:TARGET_ARCH}\
New-Item -ItemType Directory -Path .\dist\windows-amd64\ -Force
cp .\ollama.exe .\dist\windows-amd64\
}
function buildApp() {
@@ -129,16 +127,16 @@ function buildInstaller() {
cd "${script:SRC_DIR}\app"
$env:PKG_VERSION=$script:PKG_VERSION
if ("${env:KEY_CONTAINER}") {
& "${script:INNO_SETUP_DIR}\ISCC.exe" /DARCH=$script:TARGET_ARCH /SMySignTool="${script:SignTool} sign /fd sha256 /t http://timestamp.digicert.com /f ${script:OLLAMA_CERT} /csp `$qGoogle Cloud KMS Provider`$q /kc ${env:KEY_CONTAINER} `$f" .\ollama.iss
& "${script:INNO_SETUP_DIR}\ISCC.exe" /SMySignTool="${script:SignTool} sign /fd sha256 /t http://timestamp.digicert.com /f ${script:OLLAMA_CERT} /csp `$qGoogle Cloud KMS Provider`$q /kc ${env:KEY_CONTAINER} `$f" .\ollama.iss
} else {
& "${script:INNO_SETUP_DIR}\ISCC.exe" /DARCH=$script:TARGET_ARCH .\ollama.iss
& "${script:INNO_SETUP_DIR}\ISCC.exe" .\ollama.iss
}
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
function distZip() {
write-host "Generating stand-alone distribution zip file ${script:SRC_DIR}\dist\ollama-windows-${script:TARGET_ARCH}.zip"
Compress-Archive -Path "${script:SRC_DIR}\dist\windows-${script:TARGET_ARCH}\*" -DestinationPath "${script:SRC_DIR}\dist\ollama-windows-${script:TARGET_ARCH}.zip" -Force
write-host "Generating stand-alone distribution zip file ${script:SRC_DIR}\dist\ollama-windows-amd64.zip"
Compress-Archive -Path "${script:SRC_DIR}\dist\windows-amd64\*" -DestinationPath "${script:SRC_DIR}\dist\ollama-windows-amd64.zip" -Force
}
try {

View File

@@ -166,8 +166,8 @@ fi
if check_gpu lspci amdgpu || check_gpu lshw amdgpu; then
# Look for pre-existing ROCm v6 before downloading the dependencies
for search in "${HIP_PATH:-''}" "${ROCM_PATH:-''}" "/opt/rocm" "/usr/lib64"; do
if [ -n "${search}" ] && [ -e "${search}/libhipblas.so.2" -o -e "${search}/lib/libhipblas.so.2" ]; then
for search in "${HIP_PATH:-''}" "${ROCM_PATH:-''}" "/opt/rocm"; do
if [ -n "${search}" ] && [ -e "${search}/lib/libhipblas.so.2" ]; then
status "Compatible AMD GPU ROCm library detected at ${search}"
install_success
exit 0

View File

@@ -1,174 +0,0 @@
package envconfig
import (
"fmt"
"log/slog"
"os"
"path/filepath"
"runtime"
"strconv"
"strings"
)
var (
// Set via OLLAMA_ORIGINS in the environment
AllowOrigins []string
// Set via OLLAMA_DEBUG in the environment
Debug bool
// Set via OLLAMA_LLM_LIBRARY in the environment
LLMLibrary string
// Set via OLLAMA_MAX_LOADED_MODELS in the environment
MaxRunners int
// Set via OLLAMA_MAX_QUEUE in the environment
MaxQueuedRequests int
// Set via OLLAMA_MAX_VRAM in the environment
MaxVRAM uint64
// Set via OLLAMA_NOPRUNE in the environment
NoPrune bool
// Set via OLLAMA_NUM_PARALLEL in the environment
NumParallel int
// Set via OLLAMA_RUNNERS_DIR in the environment
RunnersDir string
// Set via OLLAMA_TMPDIR in the environment
TmpDir string
)
func AsMap() map[string]string {
return map[string]string{
"OLLAMA_ORIGINS": fmt.Sprintf("%v", AllowOrigins),
"OLLAMA_DEBUG": fmt.Sprintf("%v", Debug),
"OLLAMA_LLM_LIBRARY": fmt.Sprintf("%v", LLMLibrary),
"OLLAMA_MAX_LOADED_MODELS": fmt.Sprintf("%v", MaxRunners),
"OLLAMA_MAX_QUEUE": fmt.Sprintf("%v", MaxQueuedRequests),
"OLLAMA_MAX_VRAM": fmt.Sprintf("%v", MaxVRAM),
"OLLAMA_NOPRUNE": fmt.Sprintf("%v", NoPrune),
"OLLAMA_NUM_PARALLEL": fmt.Sprintf("%v", NumParallel),
"OLLAMA_RUNNERS_DIR": fmt.Sprintf("%v", RunnersDir),
"OLLAMA_TMPDIR": fmt.Sprintf("%v", TmpDir),
}
}
var defaultAllowOrigins = []string{
"localhost",
"127.0.0.1",
"0.0.0.0",
}
// Clean quotes and spaces from the value
func clean(key string) string {
return strings.Trim(os.Getenv(key), "\"' ")
}
func init() {
// default values
NumParallel = 1
MaxRunners = 1
MaxQueuedRequests = 512
LoadConfig()
}
func LoadConfig() {
if debug := clean("OLLAMA_DEBUG"); debug != "" {
d, err := strconv.ParseBool(debug)
if err == nil {
Debug = d
} else {
Debug = true
}
}
RunnersDir = clean("OLLAMA_RUNNERS_DIR")
if runtime.GOOS == "windows" && RunnersDir == "" {
// On Windows we do not carry the payloads inside the main executable
appExe, err := os.Executable()
if err != nil {
slog.Error("failed to lookup executable path", "error", err)
}
cwd, err := os.Getwd()
if err != nil {
slog.Error("failed to lookup working directory", "error", err)
}
var paths []string
for _, root := range []string{filepath.Dir(appExe), cwd} {
paths = append(paths,
filepath.Join(root),
filepath.Join(root, "windows-"+runtime.GOARCH),
filepath.Join(root, "dist", "windows-"+runtime.GOARCH),
)
}
// Try a few variations to improve developer experience when building from source in the local tree
for _, p := range paths {
candidate := filepath.Join(p, "ollama_runners")
_, err := os.Stat(candidate)
if err == nil {
RunnersDir = candidate
break
}
}
if RunnersDir == "" {
slog.Error("unable to locate llm runner directory. Set OLLAMA_RUNNERS_DIR to the location of 'ollama_runners'")
}
}
TmpDir = clean("OLLAMA_TMPDIR")
userLimit := clean("OLLAMA_MAX_VRAM")
if userLimit != "" {
avail, err := strconv.ParseUint(userLimit, 10, 64)
if err != nil {
slog.Error("invalid setting, ignoring", "OLLAMA_MAX_VRAM", userLimit, "error", err)
} else {
MaxVRAM = avail
}
}
LLMLibrary = clean("OLLAMA_LLM_LIBRARY")
if onp := clean("OLLAMA_NUM_PARALLEL"); onp != "" {
val, err := strconv.Atoi(onp)
if err != nil || val <= 0 {
slog.Error("invalid setting must be greater than zero", "OLLAMA_NUM_PARALLEL", onp, "error", err)
} else {
NumParallel = val
}
}
if noprune := clean("OLLAMA_NOPRUNE"); noprune != "" {
NoPrune = true
}
if origins := clean("OLLAMA_ORIGINS"); origins != "" {
AllowOrigins = strings.Split(origins, ",")
}
for _, allowOrigin := range defaultAllowOrigins {
AllowOrigins = append(AllowOrigins,
fmt.Sprintf("http://%s", allowOrigin),
fmt.Sprintf("https://%s", allowOrigin),
fmt.Sprintf("http://%s:*", allowOrigin),
fmt.Sprintf("https://%s:*", allowOrigin),
)
}
maxRunners := clean("OLLAMA_MAX_LOADED_MODELS")
if maxRunners != "" {
m, err := strconv.Atoi(maxRunners)
if err != nil {
slog.Error("invalid setting", "OLLAMA_MAX_LOADED_MODELS", maxRunners, "error", err)
} else {
MaxRunners = m
}
}
if onp := os.Getenv("OLLAMA_MAX_QUEUE"); onp != "" {
p, err := strconv.Atoi(onp)
if err != nil || p <= 0 {
slog.Error("invalid setting", "OLLAMA_MAX_QUEUE", onp, "error", err)
} else {
MaxQueuedRequests = p
}
}
}

View File

@@ -1,20 +0,0 @@
package envconfig
import (
"os"
"testing"
"github.com/stretchr/testify/require"
)
func TestConfig(t *testing.T) {
os.Setenv("OLLAMA_DEBUG", "")
LoadConfig()
require.False(t, Debug)
os.Setenv("OLLAMA_DEBUG", "false")
LoadConfig()
require.False(t, Debug)
os.Setenv("OLLAMA_DEBUG", "1")
LoadConfig()
require.True(t, Debug)
}

View File

File diff suppressed because it is too large Load Diff

View File

@@ -5,14 +5,39 @@ import (
"fmt"
"io"
"os"
"strings"
"golang.org/x/exp/slices"
)
type Layers struct {
items []*Layer
}
func (ls *Layers) Add(layer *Layer) {
if layer.Size > 0 {
ls.items = append(ls.items, layer)
}
}
func (ls *Layers) Replace(layer *Layer) {
if layer.Size > 0 {
mediatype := layer.MediaType
layers := slices.DeleteFunc(ls.items, func(l *Layer) bool {
return l.MediaType == mediatype
})
ls.items = append(layers, layer)
}
}
type Layer struct {
MediaType string `json:"mediaType"`
Digest string `json:"digest"`
Size int64 `json:"size"`
From string `json:"from,omitempty"`
status string
tempFileName string
}
func NewLayer(r io.Reader, mediatype string) (*Layer, error) {
@@ -21,12 +46,14 @@ func NewLayer(r io.Reader, mediatype string) (*Layer, error) {
return nil, err
}
temp, err := os.CreateTemp(blobs, "sha256-")
const delimiter = "-"
pattern := strings.Join([]string{"sha256", "*-partial"}, delimiter)
temp, err := os.CreateTemp(blobs, pattern)
if err != nil {
return nil, err
}
defer temp.Close()
defer os.Remove(temp.Name())
sha256sum := sha256.New()
n, err := io.Copy(io.MultiWriter(temp, sha256sum), r)
@@ -34,29 +61,11 @@ func NewLayer(r io.Reader, mediatype string) (*Layer, error) {
return nil, err
}
if err := temp.Close(); err != nil {
return nil, err
}
digest := fmt.Sprintf("sha256:%x", sha256sum.Sum(nil))
blob, err := GetBlobsPath(digest)
if err != nil {
return nil, err
}
status := "using existing layer"
if _, err := os.Stat(blob); err != nil {
status = "creating new layer"
if err := os.Rename(temp.Name(), blob); err != nil {
return nil, err
}
}
return &Layer{
MediaType: mediatype,
Digest: digest,
Size: n,
status: fmt.Sprintf("%s %s", status, digest),
MediaType: mediatype,
Digest: fmt.Sprintf("sha256:%x", sha256sum.Sum(nil)),
Size: n,
tempFileName: temp.Name(),
}, nil
}
@@ -76,15 +85,21 @@ func NewLayerFromLayer(digest, mediatype, from string) (*Layer, error) {
Digest: digest,
Size: fi.Size(),
From: from,
status: fmt.Sprintf("using existing layer %s", digest),
}, nil
}
func (l *Layer) Open() (io.ReadCloser, error) {
func (l *Layer) Commit() (bool, error) {
// always remove temp
defer os.Remove(l.tempFileName)
blob, err := GetBlobsPath(l.Digest)
if err != nil {
return nil, err
return false, err
}
return os.Open(blob)
if _, err := os.Stat(blob); err != nil {
return true, os.Rename(l.tempFileName, blob)
}
return false, nil
}

View File

@@ -1,79 +0,0 @@
package server
import (
"bytes"
"crypto/sha256"
"encoding/json"
"fmt"
"io"
"os"
"path/filepath"
"github.com/ollama/ollama/types/model"
)
type Manifest struct {
ManifestV2
Digest string `json:"-"`
}
func (m *Manifest) Size() (size int64) {
for _, layer := range append(m.Layers, m.Config) {
size += layer.Size
}
return
}
func ParseNamedManifest(name model.Name) (*Manifest, error) {
if !name.IsFullyQualified() {
return nil, model.Unqualified(name)
}
manifests, err := GetManifestPath()
if err != nil {
return nil, err
}
var manifest ManifestV2
manifestfile, err := os.Open(filepath.Join(manifests, name.Filepath()))
if err != nil {
return nil, err
}
sha256sum := sha256.New()
if err := json.NewDecoder(io.TeeReader(manifestfile, sha256sum)).Decode(&manifest); err != nil {
return nil, err
}
return &Manifest{
ManifestV2: manifest,
Digest: fmt.Sprintf("%x", sha256sum.Sum(nil)),
}, nil
}
func WriteManifest(name string, config *Layer, layers []*Layer) error {
manifest := ManifestV2{
SchemaVersion: 2,
MediaType: "application/vnd.docker.distribution.manifest.v2+json",
Config: config,
Layers: layers,
}
var b bytes.Buffer
if err := json.NewEncoder(&b).Encode(manifest); err != nil {
return err
}
modelpath := ParseModelPath(name)
manifestPath, err := modelpath.GetManifestPath()
if err != nil {
return err
}
if err := os.MkdirAll(filepath.Dir(manifestPath), 0o755); err != nil {
return err
}
return os.WriteFile(manifestPath, b.Bytes(), 0o644)
}

34
server/manifests.go Normal file
View File

@@ -0,0 +1,34 @@
package server
import (
"bytes"
"encoding/json"
"os"
"path/filepath"
)
func WriteManifest(name string, config *Layer, layers []*Layer) error {
manifest := ManifestV2{
SchemaVersion: 2,
MediaType: "application/vnd.docker.distribution.manifest.v2+json",
Config: config,
Layers: layers,
}
var b bytes.Buffer
if err := json.NewEncoder(&b).Encode(manifest); err != nil {
return err
}
modelpath := ParseModelPath(name)
manifestPath, err := modelpath.GetManifestPath()
if err != nil {
return err
}
if err := os.MkdirAll(filepath.Dir(manifestPath), 0o755); err != nil {
return err
}
return os.WriteFile(manifestPath, b.Bytes(), 0o644)
}

View File

@@ -1,261 +0,0 @@
package server
import (
"archive/zip"
"bytes"
"context"
"errors"
"fmt"
"io"
"net/http"
"os"
"path/filepath"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/convert"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/types/model"
)
type layerWithGGML struct {
*Layer
*llm.GGML
}
func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressResponse)) (layers []*layerWithGGML, err error) {
modelpath := ParseModelPath(name.String())
manifest, _, err := GetManifest(modelpath)
switch {
case errors.Is(err, os.ErrNotExist):
if err := PullModel(ctx, name.String(), &registryOptions{}, fn); err != nil {
return nil, err
}
modelpath = ParseModelPath(name.String())
manifest, _, err = GetManifest(modelpath)
if err != nil {
return nil, err
}
case err != nil:
return nil, err
}
for _, layer := range manifest.Layers {
layer, err := NewLayerFromLayer(layer.Digest, layer.MediaType, modelpath.GetShortTagname())
if err != nil {
return nil, err
}
switch layer.MediaType {
case "application/vnd.ollama.image.model",
"application/vnd.ollama.image.projector",
"application/vnd.ollama.image.adapter":
blobpath, err := GetBlobsPath(layer.Digest)
if err != nil {
return nil, err
}
blob, err := os.Open(blobpath)
if err != nil {
return nil, err
}
defer blob.Close()
ggml, _, err := llm.DecodeGGML(blob)
if err != nil {
return nil, err
}
layers = append(layers, &layerWithGGML{layer, ggml})
default:
layers = append(layers, &layerWithGGML{layer, nil})
}
}
return layers, nil
}
func parseFromZipFile(_ context.Context, file *os.File, fn func(api.ProgressResponse)) (layers []*layerWithGGML, err error) {
stat, err := file.Stat()
if err != nil {
return nil, err
}
r, err := zip.NewReader(file, stat.Size())
if err != nil {
return nil, err
}
tempdir, err := os.MkdirTemp(filepath.Dir(file.Name()), "")
if err != nil {
return nil, err
}
defer os.RemoveAll(tempdir)
fn(api.ProgressResponse{Status: "unpacking model metadata"})
for _, f := range r.File {
// TODO(mxyng): this should not write out all files to disk
outfile, err := os.Create(filepath.Join(tempdir, f.Name))
if err != nil {
return nil, err
}
defer outfile.Close()
infile, err := f.Open()
if err != nil {
return nil, err
}
defer infile.Close()
if _, err = io.Copy(outfile, infile); err != nil {
return nil, err
}
if err := outfile.Close(); err != nil {
return nil, err
}
if err := infile.Close(); err != nil {
return nil, err
}
}
mf, err := convert.GetModelFormat(tempdir)
if err != nil {
return nil, err
}
params, err := mf.GetParams(tempdir)
if err != nil {
return nil, err
}
mArch, err := mf.GetModelArch("", tempdir, params)
if err != nil {
return nil, err
}
fn(api.ProgressResponse{Status: "processing tensors"})
if err := mArch.GetTensors(); err != nil {
return nil, err
}
if err := mArch.LoadVocab(); err != nil {
return nil, err
}
fn(api.ProgressResponse{Status: "converting model"})
// TODO(mxyng): this should write directly into a layer
// e.g. NewLayer(arch.Reader(), "application/vnd.ollama.image.model")
temp, err := os.CreateTemp(tempdir, "fp16")
if err != nil {
return nil, err
}
defer temp.Close()
defer os.Remove(temp.Name())
if err = mArch.WriteGGUF(temp); err != nil {
return nil, err
}
if _, err := temp.Seek(0, io.SeekStart); err != nil {
return nil, err
}
layer, err := NewLayer(temp, "application/vnd.ollama.image.model")
if err != nil {
return nil, fmt.Errorf("aaa: %w", err)
}
blobpath, err := GetBlobsPath(layer.Digest)
if err != nil {
return nil, err
}
bin, err := os.Open(blobpath)
if err != nil {
return nil, err
}
defer bin.Close()
ggml, _, err := llm.DecodeGGML(bin)
if err != nil {
return nil, err
}
layer, err = NewLayerFromLayer(layer.Digest, layer.MediaType, "")
if err != nil {
return nil, err
}
layers = append(layers, &layerWithGGML{layer, ggml})
return layers, nil
}
func parseFromFile(ctx context.Context, file *os.File, fn func(api.ProgressResponse)) (layers []*layerWithGGML, err error) {
sr := io.NewSectionReader(file, 0, 512)
contentType, err := detectContentType(sr)
if err != nil {
return nil, err
}
switch contentType {
case "gguf", "ggla":
// noop
case "application/zip":
return parseFromZipFile(ctx, file, fn)
default:
return nil, fmt.Errorf("unsupported content type: %s", contentType)
}
stat, err := file.Stat()
if err != nil {
return nil, err
}
var offset int64
for offset < stat.Size() {
ggml, n, err := llm.DecodeGGML(file)
if errors.Is(err, io.EOF) {
break
} else if err != nil {
return nil, err
}
mediatype := "application/vnd.ollama.image.model"
if ggml.Name() == "ggla" {
mediatype = "application/vnd.ollama.image.adapter"
} else if ggml.KV().Architecture() == "clip" {
mediatype = "application/vnd.ollama.image.projector"
}
layer, err := NewLayer(io.NewSectionReader(file, offset, n), mediatype)
if err != nil {
return nil, err
}
layers = append(layers, &layerWithGGML{layer, ggml})
offset = n
}
return layers, nil
}
func detectContentType(r io.Reader) (string, error) {
var b bytes.Buffer
if _, err := io.Copy(&b, r); err != nil {
return "", err
}
if contentType := llm.DetectGGMLType(b.Bytes()); contentType != "" {
return contentType, nil
}
if contentType := http.DetectContentType(b.Bytes()); contentType != "application/octet-stream" {
return contentType, nil
}
return "unknown", nil
}

Some files were not shown because too many files have changed in this diff Show More