mirror of
https://github.com/ollama/ollama.git
synced 2026-01-23 23:09:15 -05:00
Compare commits
7 Commits
grace/deep
...
v0.13.4
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
89eb795293 | ||
|
|
7e3ea813c1 | ||
|
|
7b95087b9d | ||
|
|
971d62595a | ||
|
|
ffbe8e076d | ||
|
|
2c639431b1 | ||
|
|
aacd1cb394 |
@@ -54,6 +54,13 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cp
|
||||
|
||||
add_compile_definitions(NDEBUG GGML_VERSION=0x0 GGML_COMMIT=0x0)
|
||||
|
||||
# Define GGML version variables for shared library SOVERSION
|
||||
# These are required by ggml/src/CMakeLists.txt for proper library versioning
|
||||
set(GGML_VERSION_MAJOR 0)
|
||||
set(GGML_VERSION_MINOR 0)
|
||||
set(GGML_VERSION_PATCH 0)
|
||||
set(GGML_VERSION "${GGML_VERSION_MAJOR}.${GGML_VERSION_MINOR}.${GGML_VERSION_PATCH}")
|
||||
|
||||
set(GGML_CPU ON)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
|
||||
set_property(TARGET ggml PROPERTY EXCLUDE_FROM_ALL TRUE)
|
||||
|
||||
@@ -202,6 +202,8 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
|
||||
conv = &qwen25VLModel{}
|
||||
case "Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration":
|
||||
conv = &qwen3VLModel{}
|
||||
case "Olmo3ForCausalLM":
|
||||
conv = &olmoModel{}
|
||||
case "BertModel":
|
||||
conv = &bertModel{}
|
||||
case "NomicBertModel", "NomicBertMoEModel":
|
||||
|
||||
117
convert/convert_olmo.go
Normal file
117
convert/convert_olmo.go
Normal file
@@ -0,0 +1,117 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type ropeScaling struct {
|
||||
Factor float32 `json:"factor"`
|
||||
OriginalMaxPositionEmbeds uint32 `json:"original_max_position_embeddings"`
|
||||
AttentionFactor float32 `json:"attention_factor"`
|
||||
BetaFast float32 `json:"beta_fast"`
|
||||
BetaSlow float32 `json:"beta_slow"`
|
||||
RopeType string `json:"rope_type"`
|
||||
ExtrapolationFactor float32 `json:"extrapolation_factor"`
|
||||
}
|
||||
|
||||
type olmoModel struct {
|
||||
ModelParameters
|
||||
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
RopeScaling *ropeScaling `json:"rope_scaling"`
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
LayerTypes []string `json:"layer_types"`
|
||||
}
|
||||
|
||||
var _ ModelConverter = (*olmoModel)(nil)
|
||||
|
||||
func (p *olmoModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "olmo3"
|
||||
kv["olmo3.block_count"] = p.NumHiddenLayers
|
||||
kv["olmo3.context_length"] = p.MaxPositionEmbeddings
|
||||
kv["olmo3.embedding_length"] = p.HiddenSize
|
||||
kv["olmo3.feed_forward_length"] = p.IntermediateSize
|
||||
kv["olmo3.attention.head_count"] = p.NumAttentionHeads
|
||||
kv["olmo3.attention.head_count_kv"] = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
|
||||
|
||||
if p.RopeTheta > 0 {
|
||||
kv["olmo3.rope.freq_base"] = p.RopeTheta
|
||||
}
|
||||
|
||||
if p.RopeScaling != nil {
|
||||
if p.RopeScaling.Factor > 0 {
|
||||
kv["olmo3.rope.scaling.factor"] = p.RopeScaling.Factor
|
||||
}
|
||||
if p.RopeScaling.OriginalMaxPositionEmbeds > 0 {
|
||||
kv["olmo3.rope.scaling.original_context_length"] = p.RopeScaling.OriginalMaxPositionEmbeds
|
||||
}
|
||||
if p.RopeScaling.AttentionFactor > 0 {
|
||||
kv["olmo3.rope.scaling.attn_factor"] = p.RopeScaling.AttentionFactor
|
||||
}
|
||||
if p.RopeScaling.RopeType != "" {
|
||||
kv["olmo3.rope.scaling.type"] = p.RopeScaling.RopeType
|
||||
}
|
||||
}
|
||||
|
||||
if p.RMSNormEPS > 0 {
|
||||
kv["olmo3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
||||
}
|
||||
|
||||
if p.SlidingWindow > 0 {
|
||||
kv["olmo3.attention.sliding_window"] = p.SlidingWindow
|
||||
}
|
||||
|
||||
if len(p.LayerTypes) > 0 {
|
||||
slidingPattern := make([]bool, len(p.LayerTypes))
|
||||
for i, layerType := range p.LayerTypes {
|
||||
slidingPattern[i] = (layerType == "sliding_attention")
|
||||
}
|
||||
kv["olmo3.attention.sliding_window_pattern"] = slidingPattern
|
||||
}
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *olmoModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
out := make([]*ggml.Tensor, 0, len(ts))
|
||||
for _, t := range ts {
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *olmoModel) Replacements() []string {
|
||||
return []string{
|
||||
"lm_head", "output",
|
||||
"model.embed_tokens", "token_embd",
|
||||
"model.layers", "blk",
|
||||
"model.norm", "output_norm",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"self_attn.q_norm", "attn_q_norm",
|
||||
"self_attn.k_norm", "attn_k_norm",
|
||||
"post_attention_layernorm", "post_attention_norm",
|
||||
"post_feedforward_layernorm", "post_ffw_norm",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
}
|
||||
}
|
||||
@@ -253,6 +253,7 @@ func (kv KV) OllamaEngineRequired() bool {
|
||||
"deepseekocr",
|
||||
"deepseek2",
|
||||
"nomic-bert",
|
||||
"olmo3",
|
||||
}, kv.Architecture())
|
||||
}
|
||||
|
||||
@@ -841,6 +842,7 @@ func (f GGML) FlashAttention() bool {
|
||||
"gemma3",
|
||||
"gptoss", "gpt-oss",
|
||||
"mistral3",
|
||||
"olmo3",
|
||||
"qwen3", "qwen3moe",
|
||||
"qwen3vl", "qwen3vlmoe",
|
||||
}, f.KV().String("general.architecture"))
|
||||
|
||||
35
llama/llama.cpp/src/llama-arch.cpp
vendored
35
llama/llama.cpp/src/llama-arch.cpp
vendored
@@ -75,6 +75,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_JAIS, "jais" },
|
||||
{ LLM_ARCH_NEMOTRON, "nemotron" },
|
||||
{ LLM_ARCH_NEMOTRON_H, "nemotron_h" },
|
||||
{ LLM_ARCH_NEMOTRON_H_MOE, "nemotron_h_moe" },
|
||||
{ LLM_ARCH_EXAONE, "exaone" },
|
||||
{ LLM_ARCH_EXAONE4, "exaone4" },
|
||||
{ LLM_ARCH_RWKV6, "rwkv6" },
|
||||
@@ -1765,6 +1766,39 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_NEMOTRON_H_MOE,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
// mamba(2) ssm layers
|
||||
{ LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
|
||||
{ LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
|
||||
{ LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
|
||||
{ LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
|
||||
{ LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
|
||||
{ LLM_TENSOR_SSM_NORM, "blk.%d.ssm_norm" },
|
||||
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
|
||||
// attention layers
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
// dense FFN
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
// MoE FFN (for MoE layers)
|
||||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
{ LLM_TENSOR_FFN_EXP_PROBS_B,"blk.%d.exp_probs_b" },
|
||||
// MoE shared expert layer
|
||||
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
|
||||
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_EXAONE,
|
||||
{
|
||||
@@ -2838,6 +2872,7 @@ bool llm_arch_is_hybrid(const llm_arch & arch) {
|
||||
case LLM_ARCH_LFM2:
|
||||
case LLM_ARCH_LFM2MOE:
|
||||
case LLM_ARCH_NEMOTRON_H:
|
||||
case LLM_ARCH_NEMOTRON_H_MOE:
|
||||
case LLM_ARCH_QWEN3NEXT:
|
||||
return true;
|
||||
default:
|
||||
|
||||
1
llama/llama.cpp/src/llama-arch.h
vendored
1
llama/llama.cpp/src/llama-arch.h
vendored
@@ -79,6 +79,7 @@ enum llm_arch {
|
||||
LLM_ARCH_JAIS,
|
||||
LLM_ARCH_NEMOTRON,
|
||||
LLM_ARCH_NEMOTRON_H,
|
||||
LLM_ARCH_NEMOTRON_H_MOE,
|
||||
LLM_ARCH_EXAONE,
|
||||
LLM_ARCH_EXAONE4,
|
||||
LLM_ARCH_RWKV6,
|
||||
|
||||
10
llama/llama.cpp/src/llama-graph.cpp
vendored
10
llama/llama.cpp/src/llama-graph.cpp
vendored
@@ -1089,6 +1089,16 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
|
||||
cur = ggml_relu(ctx0, cur);
|
||||
cb(cur, "ffn_moe_relu", il);
|
||||
} break;
|
||||
case LLM_FFN_RELU_SQR:
|
||||
if (gate_exps) {
|
||||
// TODO: add support for gated squared relu
|
||||
GGML_ABORT("fatal error: gated squared relu not implemented");
|
||||
} else {
|
||||
cur = ggml_relu(ctx0, cur);
|
||||
cur = ggml_sqr(ctx0, cur);
|
||||
cb(cur, "ffn_moe_relu_sqr", il);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
50
llama/llama.cpp/src/llama-model.cpp
vendored
50
llama/llama.cpp/src/llama-model.cpp
vendored
@@ -120,6 +120,8 @@ const char * llm_type_name(llm_type type) {
|
||||
case LLM_TYPE_16B_A1B: return "16B.A1B";
|
||||
case LLM_TYPE_21B_A3B: return "21B.A3B";
|
||||
case LLM_TYPE_30B_A3B: return "30B.A3B";
|
||||
case LLM_TYPE_31B_A3_5B: return "31B.A3.5B";
|
||||
case LLM_TYPE_80B_A3B: return "80B.A3B";
|
||||
case LLM_TYPE_100B_A6B: return "100B.A6B";
|
||||
case LLM_TYPE_106B_A12B: return "106B.A12B";
|
||||
case LLM_TYPE_230B_A10B: return "230B.A10B";
|
||||
@@ -1788,6 +1790,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_NEMOTRON_H:
|
||||
case LLM_ARCH_NEMOTRON_H_MOE:
|
||||
{
|
||||
ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
|
||||
ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
|
||||
@@ -1803,7 +1806,14 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
||||
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
|
||||
ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
|
||||
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared, false);
|
||||
ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
|
||||
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale, false);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 52: type = LLM_TYPE_31B_A3_5B; break; // Nemotron-H_MOE 31B
|
||||
case 56: type = LLM_TYPE_9B; break;
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
@@ -5175,6 +5185,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_NEMOTRON_H:
|
||||
case LLM_ARCH_NEMOTRON_H_MOE:
|
||||
{
|
||||
// mamba2 Mixer SSM params
|
||||
// NOTE: int64_t for tensor dimensions
|
||||
@@ -5185,6 +5196,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
const int64_t n_group = hparams.ssm_n_group;
|
||||
const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_ssm_head;
|
||||
|
||||
const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
|
||||
const int64_t n_ff_shexp = hparams.n_ff_shexp;
|
||||
|
||||
// embeddings
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
|
||||
@@ -5234,12 +5248,26 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_k_gqa_i}, TENSOR_NOT_REQUIRED);
|
||||
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_v_gqa_i}, TENSOR_NOT_REQUIRED);
|
||||
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
|
||||
} else {
|
||||
// mlp layers
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { hparams.n_ff(i), n_embd}, 0);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, hparams.n_ff(i)}, 0);
|
||||
layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
|
||||
layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {hparams.n_ff(i)}, TENSOR_NOT_REQUIRED);
|
||||
} else {
|
||||
if (n_expert != 0) {
|
||||
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert}, 0);
|
||||
layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert }, 0);
|
||||
|
||||
// MoE branch
|
||||
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
|
||||
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
|
||||
|
||||
// Shared expert branch
|
||||
layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
|
||||
layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp}, 0);
|
||||
|
||||
} else {
|
||||
// mlp layers
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { hparams.n_ff(i), n_embd}, 0);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, hparams.n_ff(i)}, 0);
|
||||
layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
|
||||
layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {hparams.n_ff(i)}, TENSOR_NOT_REQUIRED);
|
||||
}
|
||||
}
|
||||
}
|
||||
} break;
|
||||
@@ -6870,7 +6898,8 @@ void llama_model::print_info() const {
|
||||
arch == LLM_ARCH_PLAMO2 ||
|
||||
arch == LLM_ARCH_GRANITE_HYBRID ||
|
||||
arch == LLM_ARCH_QWEN3NEXT ||
|
||||
arch == LLM_ARCH_NEMOTRON_H) {
|
||||
arch == LLM_ARCH_NEMOTRON_H ||
|
||||
arch == LLM_ARCH_NEMOTRON_H_MOE) {
|
||||
LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
|
||||
LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
|
||||
LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
|
||||
@@ -6926,7 +6955,8 @@ void llama_model::print_info() const {
|
||||
if (arch == LLM_ARCH_MINICPM ||
|
||||
arch == LLM_ARCH_GRANITE ||
|
||||
arch == LLM_ARCH_GRANITE_MOE ||
|
||||
arch == LLM_ARCH_GRANITE_HYBRID) {
|
||||
arch == LLM_ARCH_GRANITE_HYBRID ||
|
||||
arch == LLM_ARCH_NEMOTRON_H_MOE) {
|
||||
LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
|
||||
LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
|
||||
LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
|
||||
@@ -7107,7 +7137,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
||||
if (arch == LLM_ARCH_FALCON_H1) {
|
||||
filter_attn = [&](int32_t) { return true; };
|
||||
filter_recr = [&](int32_t) { return true; };
|
||||
} else if (arch == LLM_ARCH_NEMOTRON_H) {
|
||||
} else if (arch == LLM_ARCH_NEMOTRON_H || arch == LLM_ARCH_NEMOTRON_H_MOE) {
|
||||
filter_attn = [&](int32_t il) {
|
||||
return !hparams.is_recurrent(il) && hparams.n_ff(il) == 0;
|
||||
};
|
||||
@@ -7478,6 +7508,7 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
||||
llm = std::make_unique<llm_build_nemotron>(*this, params);
|
||||
} break;
|
||||
case LLM_ARCH_NEMOTRON_H:
|
||||
case LLM_ARCH_NEMOTRON_H_MOE:
|
||||
{
|
||||
llm = std::make_unique<llm_build_nemotron_h>(*this, params);
|
||||
} break;
|
||||
@@ -7765,6 +7796,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
||||
case LLM_ARCH_ARWKV7:
|
||||
case LLM_ARCH_WAVTOKENIZER_DEC:
|
||||
case LLM_ARCH_NEMOTRON_H:
|
||||
case LLM_ARCH_NEMOTRON_H_MOE:
|
||||
return LLAMA_ROPE_TYPE_NONE;
|
||||
|
||||
// use what we call a normal RoPE, operating on pairs of consecutive head values
|
||||
|
||||
1
llama/llama.cpp/src/llama-model.h
vendored
1
llama/llama.cpp/src/llama-model.h
vendored
@@ -114,6 +114,7 @@ enum llm_type {
|
||||
LLM_TYPE_16B_A1B,
|
||||
LLM_TYPE_21B_A3B, // Ernie MoE small
|
||||
LLM_TYPE_30B_A3B,
|
||||
LLM_TYPE_31B_A3_5B,
|
||||
LLM_TYPE_80B_A3B, // Qwen3 Next
|
||||
LLM_TYPE_100B_A6B,
|
||||
LLM_TYPE_106B_A12B, // GLM-4.5-Air
|
||||
|
||||
41
llama/llama.cpp/src/models/nemotron-h.cpp
vendored
41
llama/llama.cpp/src/models/nemotron-h.cpp
vendored
@@ -107,12 +107,41 @@ ggml_tensor * llm_build_nemotron_h::build_attention_layer(ggml_tensor *
|
||||
}
|
||||
|
||||
ggml_tensor * llm_build_nemotron_h::build_ffn_layer(ggml_tensor * cur, const llama_model & model, const int il) {
|
||||
cur = build_ffn(cur,
|
||||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||||
NULL, NULL, NULL,
|
||||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||||
NULL, LLM_FFN_RELU_SQR, LLM_FFN_PAR, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
if (model.layers[il].ffn_gate_inp == nullptr) {
|
||||
cur = build_ffn(cur,
|
||||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||||
NULL, NULL, NULL,
|
||||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||||
NULL,
|
||||
LLM_FFN_RELU_SQR, LLM_FFN_PAR, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
} else {
|
||||
ggml_tensor * ffn_inp = cur;
|
||||
ggml_tensor * moe_out =
|
||||
build_moe_ffn(ffn_inp,
|
||||
model.layers[il].ffn_gate_inp,
|
||||
model.layers[il].ffn_up_exps,
|
||||
nullptr, // no gate
|
||||
model.layers[il].ffn_down_exps,
|
||||
model.layers[il].ffn_exp_probs_b,
|
||||
n_expert, n_expert_used,
|
||||
LLM_FFN_RELU_SQR, hparams.expert_weights_norm,
|
||||
true, hparams.expert_weights_scale,
|
||||
LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID,
|
||||
il);
|
||||
cb(moe_out, "ffn_moe_out", il);
|
||||
|
||||
ggml_tensor * ffn_shexp = build_ffn(ffn_inp,
|
||||
model.layers[il].ffn_up_shexp, NULL, NULL,
|
||||
NULL /* no gate */ , NULL, NULL,
|
||||
model.layers[il].ffn_down_shexp, NULL, NULL,
|
||||
NULL,
|
||||
LLM_FFN_RELU_SQR, LLM_FFN_PAR, il);
|
||||
cb(ffn_shexp, "ffn_shexp", il);
|
||||
|
||||
cur = ggml_add(ctx0, moe_out, ffn_shexp);
|
||||
cb(cur, "ffn_out", il);
|
||||
}
|
||||
|
||||
cur = build_cvec(cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
@@ -0,0 +1,586 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: Daniel Bevenius <daniel.bevenius@gmail.com>
|
||||
Date: Mon, 15 Dec 2025 15:13:49 +0100
|
||||
Subject: [PATCH] llama : add support for NVIDIA Nemotron Nano 3
|
||||
|
||||
This commit adds support for the NVIDIA Nemotron Nano 3 model, enabling
|
||||
the conversion and running of this model.
|
||||
|
||||
fix indentation in llama-graph.cpp
|
||||
|
||||
fix indentation and move ffn_inp
|
||||
|
||||
convert : fix modify_tensors in NemotronHModel to call super()
|
||||
|
||||
fix pyright error
|
||||
|
||||
fix flake8 errors
|
||||
---
|
||||
convert_hf_to_gguf.py | 116 +++++++++++++++++++++++++++++++--
|
||||
gguf-py/gguf/constants.py | 29 +++++++++
|
||||
gguf-py/gguf/tensor_mapping.py | 9 ++-
|
||||
src/llama-arch.cpp | 35 ++++++++++
|
||||
src/llama-arch.h | 1 +
|
||||
src/llama-graph.cpp | 10 +++
|
||||
src/llama-model.cpp | 50 +++++++++++---
|
||||
src/llama-model.h | 1 +
|
||||
src/models/nemotron-h.cpp | 41 ++++++++++--
|
||||
9 files changed, 269 insertions(+), 23 deletions(-)
|
||||
|
||||
diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py
|
||||
index 867bc9053..57ec2faac 100755
|
||||
--- a/convert_hf_to_gguf.py
|
||||
+++ b/convert_hf_to_gguf.py
|
||||
@@ -8601,8 +8601,18 @@ class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
|
||||
class NemotronHModel(GraniteHybridModel):
|
||||
"""Hybrid mamba2/attention model from NVIDIA"""
|
||||
model_arch = gguf.MODEL_ARCH.NEMOTRON_H
|
||||
+ is_moe: bool = False
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
+ # We have to determine the correct model architecture (MoE vs non-MoE) before
|
||||
+ # calling the parent __init__. This is because the parent constructor
|
||||
+ # uses self.model_arch to build the tensor name map, and all MoE-specific
|
||||
+ # mappings would be missed if it were called with the default non-MoE arch.
|
||||
+ hparams = ModelBase.load_hparams(args[0], self.is_mistral_format)
|
||||
+ if "num_experts_per_tok" in hparams:
|
||||
+ self.model_arch = gguf.MODEL_ARCH.NEMOTRON_H_MOE
|
||||
+ self.is_moe = True
|
||||
+
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
# Save the top-level head_dim for later
|
||||
@@ -8614,9 +8624,11 @@ class NemotronHModel(GraniteHybridModel):
|
||||
|
||||
# Update the ssm / attn / mlp layers
|
||||
# M: Mamba2, *: Attention, -: MLP
|
||||
+ # MoE:
|
||||
+ # M: Mamba2, *: Attention, E: Expert
|
||||
hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
|
||||
self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
|
||||
- self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "-"]
|
||||
+ self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == ("E" if self.is_moe else "-")]
|
||||
|
||||
def get_attn_layers(self):
|
||||
hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
|
||||
@@ -8632,10 +8644,28 @@ class NemotronHModel(GraniteHybridModel):
|
||||
# Set feed_forward_length
|
||||
# NOTE: This will trigger an override warning. This is preferrable to
|
||||
# duplicating all the parent logic
|
||||
- n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
|
||||
- self.gguf_writer.add_feed_forward_length([
|
||||
- n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
|
||||
- ])
|
||||
+ if not self.is_moe:
|
||||
+ n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
|
||||
+ self.gguf_writer.add_feed_forward_length([
|
||||
+ n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
|
||||
+ ])
|
||||
+ else:
|
||||
+ moe_intermediate_size = self.hparams["moe_intermediate_size"]
|
||||
+ self.gguf_writer.add_feed_forward_length([
|
||||
+ moe_intermediate_size if i in self._mlp_layers else 0 for i in range(self.block_count)
|
||||
+ ])
|
||||
+ self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
|
||||
+ self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
|
||||
+ self.gguf_writer.add_expert_shared_feed_forward_length(self.hparams["moe_shared_expert_intermediate_size"])
|
||||
+ self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
|
||||
+ self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
|
||||
+ self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
|
||||
+ self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
|
||||
+ self.gguf_writer.add_expert_group_count(self.hparams["n_group"])
|
||||
+
|
||||
+ # number of experts used per token (top-k)
|
||||
+ if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
|
||||
+ self.gguf_writer.add_expert_used_count(n_experts_used)
|
||||
|
||||
def set_vocab(self):
|
||||
super().set_vocab()
|
||||
@@ -8643,7 +8673,81 @@ class NemotronHModel(GraniteHybridModel):
|
||||
# The tokenizer _does_ add a BOS token (via post_processor type
|
||||
# TemplateProcessing) but does not set add_bos_token to true in the
|
||||
# config, so we need to explicitly override it here.
|
||||
- self.gguf_writer.add_add_bos_token(True)
|
||||
+ if not self.is_moe:
|
||||
+ self.gguf_writer.add_add_bos_token(True)
|
||||
+
|
||||
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
+ if self.is_moe and bid is not None:
|
||||
+ if name.endswith("mixer.gate.e_score_correction_bias"):
|
||||
+ new_name = name.replace("e_score_correction_bias", "e_score_correction_bias.bias")
|
||||
+ mapped_name = self.map_tensor_name(new_name)
|
||||
+ return [(mapped_name, data_torch)]
|
||||
+
|
||||
+ if name.endswith("mixer.dt_bias"):
|
||||
+ new_name = name.replace("dt_bias", "dt.bias")
|
||||
+ mapped_name = self.map_tensor_name(new_name)
|
||||
+ return [(mapped_name, data_torch)]
|
||||
+
|
||||
+ if name.endswith("mixer.conv1d.weight"):
|
||||
+ squeezed_data = data_torch.squeeze()
|
||||
+ mapped_name = self.map_tensor_name(name)
|
||||
+ return [(mapped_name, squeezed_data)]
|
||||
+
|
||||
+ if name.endswith("mixer.A_log"):
|
||||
+ transformed_data = -torch.exp(data_torch)
|
||||
+ reshaped_data = transformed_data.squeeze().reshape(-1, 1)
|
||||
+ mapped_name = self.map_tensor_name(name)
|
||||
+ return [(mapped_name, reshaped_data)]
|
||||
+
|
||||
+ if name.endswith("mixer.D"):
|
||||
+ reshaped_data = data_torch.squeeze().reshape(-1, 1)
|
||||
+ mapped_name = self.map_tensor_name(name)
|
||||
+ return [(mapped_name, reshaped_data)]
|
||||
+
|
||||
+ if name.endswith("mixer.norm.weight"):
|
||||
+ reshaped_data = data_torch.reshape(8, 512)
|
||||
+ mapped_name = self.map_tensor_name(name)
|
||||
+ return [(mapped_name, reshaped_data)]
|
||||
+
|
||||
+ if name.find("mixer.experts") != -1:
|
||||
+ n_experts = self.hparams["n_routed_experts"]
|
||||
+ assert bid is not None
|
||||
+
|
||||
+ if self._experts is None:
|
||||
+ self._experts = [{} for _ in range(self.block_count)]
|
||||
+
|
||||
+ self._experts[bid][name] = data_torch
|
||||
+
|
||||
+ if len(self._experts[bid]) >= n_experts * 2:
|
||||
+ # merge the experts into a single tensor
|
||||
+ tensors: list[tuple[str, Tensor]] = []
|
||||
+ for w_name in ["down_proj", "up_proj"]:
|
||||
+ datas: list[Tensor] = []
|
||||
+
|
||||
+ for xid in range(n_experts):
|
||||
+ ename = f"backbone.layers.{bid}.mixer.experts.{xid}.{w_name}.weight"
|
||||
+ datas.append(self._experts[bid][ename])
|
||||
+ del self._experts[bid][ename]
|
||||
+
|
||||
+ data_torch = torch.stack(datas, dim=0)
|
||||
+ merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
|
||||
+ new_name = self.map_tensor_name(merged_name)
|
||||
+ tensors.append((new_name, data_torch))
|
||||
+
|
||||
+ return tensors
|
||||
+ else:
|
||||
+ return []
|
||||
+
|
||||
+ return super().modify_tensors(data_torch, name, bid)
|
||||
+
|
||||
+ def prepare_tensors(self):
|
||||
+ super().prepare_tensors()
|
||||
+
|
||||
+ if self._experts is not None:
|
||||
+ # flatten `list[dict[str, Tensor]]` into `list[str]`
|
||||
+ experts = [k for d in self._experts for k in d.keys()]
|
||||
+ if len(experts) > 0:
|
||||
+ raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@ModelBase.register("BailingMoeForCausalLM")
|
||||
diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py
|
||||
index 2b8489c59..1852428b4 100644
|
||||
--- a/gguf-py/gguf/constants.py
|
||||
+++ b/gguf-py/gguf/constants.py
|
||||
@@ -413,6 +413,7 @@ class MODEL_ARCH(IntEnum):
|
||||
JAIS = auto()
|
||||
NEMOTRON = auto()
|
||||
NEMOTRON_H = auto()
|
||||
+ NEMOTRON_H_MOE = auto()
|
||||
EXAONE = auto()
|
||||
EXAONE4 = auto()
|
||||
GRANITE = auto()
|
||||
@@ -786,6 +787,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.JAIS: "jais",
|
||||
MODEL_ARCH.NEMOTRON: "nemotron",
|
||||
MODEL_ARCH.NEMOTRON_H: "nemotron_h",
|
||||
+ MODEL_ARCH.NEMOTRON_H_MOE: "nemotron_h_moe",
|
||||
MODEL_ARCH.EXAONE: "exaone",
|
||||
MODEL_ARCH.EXAONE4: "exaone4",
|
||||
MODEL_ARCH.GRANITE: "granite",
|
||||
@@ -2529,6 +2531,33 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
+ MODEL_ARCH.NEMOTRON_H_MOE: [
|
||||
+ MODEL_TENSOR.TOKEN_EMBD,
|
||||
+ MODEL_TENSOR.OUTPUT_NORM,
|
||||
+ MODEL_TENSOR.OUTPUT,
|
||||
+ MODEL_TENSOR.ATTN_NORM,
|
||||
+ MODEL_TENSOR.SSM_IN,
|
||||
+ MODEL_TENSOR.SSM_CONV1D,
|
||||
+ MODEL_TENSOR.SSM_DT,
|
||||
+ MODEL_TENSOR.SSM_A,
|
||||
+ MODEL_TENSOR.SSM_D,
|
||||
+ MODEL_TENSOR.SSM_NORM,
|
||||
+ MODEL_TENSOR.SSM_OUT,
|
||||
+ MODEL_TENSOR.ATTN_Q,
|
||||
+ MODEL_TENSOR.ATTN_K,
|
||||
+ MODEL_TENSOR.ATTN_V,
|
||||
+ MODEL_TENSOR.ATTN_OUT,
|
||||
+ MODEL_TENSOR.FFN_DOWN,
|
||||
+ MODEL_TENSOR.FFN_UP,
|
||||
+ # experts
|
||||
+ MODEL_TENSOR.FFN_GATE_INP,
|
||||
+ MODEL_TENSOR.FFN_UP_EXP,
|
||||
+ MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
+ # shared expert
|
||||
+ MODEL_TENSOR.FFN_DOWN_SHEXP,
|
||||
+ MODEL_TENSOR.FFN_UP_SHEXP,
|
||||
+ MODEL_TENSOR.FFN_EXP_PROBS_B,
|
||||
+ ],
|
||||
MODEL_ARCH.EXAONE: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py
|
||||
index d9c87da19..7a3c7c5e0 100644
|
||||
--- a/gguf-py/gguf/tensor_mapping.py
|
||||
+++ b/gguf-py/gguf/tensor_mapping.py
|
||||
@@ -377,6 +377,7 @@ class TensorNameMap:
|
||||
"model.layers.{bid}.feed_forward.gate", # lfm2moe
|
||||
"model.layers.{bid}.mlp.router.gate", # afmoe
|
||||
"layers.{bid}.gate", # mistral-large
|
||||
+ "backbone.layers.{bid}.mixer.gate", # nemotron-h-moe
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
|
||||
@@ -390,6 +391,7 @@ class TensorNameMap:
|
||||
"model.layers.{bid}.mlp.expert_bias", # afmoe
|
||||
"model.layers.{bid}.feed_forward.expert_bias", # lfm2moe
|
||||
"model.layers.{bid}.block_sparse_moe.e_score_correction", # minimax-m2
|
||||
+ "backbone.layers.{bid}.mixer.gate.e_score_correction_bias" # nemotron-h-moe
|
||||
),
|
||||
|
||||
# Feed-forward up
|
||||
@@ -438,7 +440,7 @@ class TensorNameMap:
|
||||
"layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
|
||||
"transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
|
||||
- "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) ernie4.5-moe
|
||||
+ "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) ernie4.5-moe, nemotron-h-moe (merged)
|
||||
"model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
|
||||
"model.layers.{bid}.feed_forward.experts.up_proj", # llama4
|
||||
"encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
|
||||
@@ -452,6 +454,7 @@ class TensorNameMap:
|
||||
"model.layers.{bid}.feed_forward.down_proj",
|
||||
"model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
|
||||
"layers.{bid}.shared_experts.w3", # mistral-large
|
||||
+ "backbone.layers.{bid}.mixer.shared_experts.up_proj", # nemotron-h-moe
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_UP_CHEXP: (
|
||||
@@ -546,7 +549,7 @@ class TensorNameMap:
|
||||
"layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
|
||||
"transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
|
||||
- "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) ernie4.5-moe
|
||||
+ "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) ernie4.5-moe nemotron-h-moe (merged)
|
||||
"model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
|
||||
"model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
|
||||
"model.layers.{bid}.feed_forward.experts.down_proj", # llama4
|
||||
@@ -561,6 +564,7 @@ class TensorNameMap:
|
||||
"model.layers.{bid}.shared_mlp.output_linear", # granitemoe
|
||||
"model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
|
||||
"layers.{bid}.shared_experts.w2", # mistral-large
|
||||
+ "backbone.layers.{bid}.mixer.shared_experts.down_proj", # nemotron-h-moe
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_DOWN_CHEXP: (
|
||||
@@ -704,6 +708,7 @@ class TensorNameMap:
|
||||
"model.layers.{bid}.mamba.dt_proj", # jamba falcon-h1 granite-hybrid
|
||||
"model.layers.layers.{bid}.mixer.dt_proj", # plamo2
|
||||
"model.layers.{bid}.linear_attn.dt_proj", # qwen3next
|
||||
+ "backbone.layers.{bid}.mixer.dt", # nemotron-h-moe
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_DT_NORM: (
|
||||
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
|
||||
index a5fe4f66c..ac8b5e033 100644
|
||||
--- a/src/llama-arch.cpp
|
||||
+++ b/src/llama-arch.cpp
|
||||
@@ -75,6 +75,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_JAIS, "jais" },
|
||||
{ LLM_ARCH_NEMOTRON, "nemotron" },
|
||||
{ LLM_ARCH_NEMOTRON_H, "nemotron_h" },
|
||||
+ { LLM_ARCH_NEMOTRON_H_MOE, "nemotron_h_moe" },
|
||||
{ LLM_ARCH_EXAONE, "exaone" },
|
||||
{ LLM_ARCH_EXAONE4, "exaone4" },
|
||||
{ LLM_ARCH_RWKV6, "rwkv6" },
|
||||
@@ -1765,6 +1766,39 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
+ {
|
||||
+ LLM_ARCH_NEMOTRON_H_MOE,
|
||||
+ {
|
||||
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
+ { LLM_TENSOR_OUTPUT, "output" },
|
||||
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
+ // mamba(2) ssm layers
|
||||
+ { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
|
||||
+ { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
|
||||
+ { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
|
||||
+ { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
|
||||
+ { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
|
||||
+ { LLM_TENSOR_SSM_NORM, "blk.%d.ssm_norm" },
|
||||
+ { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
|
||||
+ // attention layers
|
||||
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
+ // dense FFN
|
||||
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
+ // MoE FFN (for MoE layers)
|
||||
+ { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
+ { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
+ { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
+ { LLM_TENSOR_FFN_EXP_PROBS_B,"blk.%d.exp_probs_b" },
|
||||
+ // MoE shared expert layer
|
||||
+ { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
|
||||
+ { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
|
||||
+ },
|
||||
+ },
|
||||
{
|
||||
LLM_ARCH_EXAONE,
|
||||
{
|
||||
@@ -2838,6 +2872,7 @@ bool llm_arch_is_hybrid(const llm_arch & arch) {
|
||||
case LLM_ARCH_LFM2:
|
||||
case LLM_ARCH_LFM2MOE:
|
||||
case LLM_ARCH_NEMOTRON_H:
|
||||
+ case LLM_ARCH_NEMOTRON_H_MOE:
|
||||
case LLM_ARCH_QWEN3NEXT:
|
||||
return true;
|
||||
default:
|
||||
diff --git a/src/llama-arch.h b/src/llama-arch.h
|
||||
index ec9e3a6df..61d73786c 100644
|
||||
--- a/src/llama-arch.h
|
||||
+++ b/src/llama-arch.h
|
||||
@@ -79,6 +79,7 @@ enum llm_arch {
|
||||
LLM_ARCH_JAIS,
|
||||
LLM_ARCH_NEMOTRON,
|
||||
LLM_ARCH_NEMOTRON_H,
|
||||
+ LLM_ARCH_NEMOTRON_H_MOE,
|
||||
LLM_ARCH_EXAONE,
|
||||
LLM_ARCH_EXAONE4,
|
||||
LLM_ARCH_RWKV6,
|
||||
diff --git a/src/llama-graph.cpp b/src/llama-graph.cpp
|
||||
index 43620df78..763202d87 100644
|
||||
--- a/src/llama-graph.cpp
|
||||
+++ b/src/llama-graph.cpp
|
||||
@@ -1089,6 +1089,16 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
|
||||
cur = ggml_relu(ctx0, cur);
|
||||
cb(cur, "ffn_moe_relu", il);
|
||||
} break;
|
||||
+ case LLM_FFN_RELU_SQR:
|
||||
+ if (gate_exps) {
|
||||
+ // TODO: add support for gated squared relu
|
||||
+ GGML_ABORT("fatal error: gated squared relu not implemented");
|
||||
+ } else {
|
||||
+ cur = ggml_relu(ctx0, cur);
|
||||
+ cur = ggml_sqr(ctx0, cur);
|
||||
+ cb(cur, "ffn_moe_relu_sqr", il);
|
||||
+ }
|
||||
+ break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
|
||||
index 3c503b424..94dee78c3 100644
|
||||
--- a/src/llama-model.cpp
|
||||
+++ b/src/llama-model.cpp
|
||||
@@ -120,6 +120,8 @@ const char * llm_type_name(llm_type type) {
|
||||
case LLM_TYPE_16B_A1B: return "16B.A1B";
|
||||
case LLM_TYPE_21B_A3B: return "21B.A3B";
|
||||
case LLM_TYPE_30B_A3B: return "30B.A3B";
|
||||
+ case LLM_TYPE_31B_A3_5B: return "31B.A3.5B";
|
||||
+ case LLM_TYPE_80B_A3B: return "80B.A3B";
|
||||
case LLM_TYPE_100B_A6B: return "100B.A6B";
|
||||
case LLM_TYPE_106B_A12B: return "106B.A12B";
|
||||
case LLM_TYPE_230B_A10B: return "230B.A10B";
|
||||
@@ -1788,6 +1790,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_NEMOTRON_H:
|
||||
+ case LLM_ARCH_NEMOTRON_H_MOE:
|
||||
{
|
||||
ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
|
||||
ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
|
||||
@@ -1803,7 +1806,14 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
||||
+ ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
|
||||
+ ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
|
||||
+ ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared, false);
|
||||
+ ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
|
||||
+ ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale, false);
|
||||
+
|
||||
switch (hparams.n_layer) {
|
||||
+ case 52: type = LLM_TYPE_31B_A3_5B; break; // Nemotron-H_MOE 31B
|
||||
case 56: type = LLM_TYPE_9B; break;
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
@@ -5175,6 +5185,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_NEMOTRON_H:
|
||||
+ case LLM_ARCH_NEMOTRON_H_MOE:
|
||||
{
|
||||
// mamba2 Mixer SSM params
|
||||
// NOTE: int64_t for tensor dimensions
|
||||
@@ -5185,6 +5196,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
const int64_t n_group = hparams.ssm_n_group;
|
||||
const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_ssm_head;
|
||||
|
||||
+ const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
|
||||
+ const int64_t n_ff_shexp = hparams.n_ff_shexp;
|
||||
+
|
||||
// embeddings
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
|
||||
@@ -5234,12 +5248,26 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_k_gqa_i}, TENSOR_NOT_REQUIRED);
|
||||
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_v_gqa_i}, TENSOR_NOT_REQUIRED);
|
||||
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
|
||||
- } else {
|
||||
- // mlp layers
|
||||
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { hparams.n_ff(i), n_embd}, 0);
|
||||
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, hparams.n_ff(i)}, 0);
|
||||
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
|
||||
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {hparams.n_ff(i)}, TENSOR_NOT_REQUIRED);
|
||||
+ } else {
|
||||
+ if (n_expert != 0) {
|
||||
+ layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert}, 0);
|
||||
+ layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert }, 0);
|
||||
+
|
||||
+ // MoE branch
|
||||
+ layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
|
||||
+ layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
|
||||
+
|
||||
+ // Shared expert branch
|
||||
+ layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
|
||||
+ layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp}, 0);
|
||||
+
|
||||
+ } else {
|
||||
+ // mlp layers
|
||||
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { hparams.n_ff(i), n_embd}, 0);
|
||||
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, hparams.n_ff(i)}, 0);
|
||||
+ layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
|
||||
+ layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {hparams.n_ff(i)}, TENSOR_NOT_REQUIRED);
|
||||
+ }
|
||||
}
|
||||
}
|
||||
} break;
|
||||
@@ -6870,7 +6898,8 @@ void llama_model::print_info() const {
|
||||
arch == LLM_ARCH_PLAMO2 ||
|
||||
arch == LLM_ARCH_GRANITE_HYBRID ||
|
||||
arch == LLM_ARCH_QWEN3NEXT ||
|
||||
- arch == LLM_ARCH_NEMOTRON_H) {
|
||||
+ arch == LLM_ARCH_NEMOTRON_H ||
|
||||
+ arch == LLM_ARCH_NEMOTRON_H_MOE) {
|
||||
LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
|
||||
LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
|
||||
LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
|
||||
@@ -6926,7 +6955,8 @@ void llama_model::print_info() const {
|
||||
if (arch == LLM_ARCH_MINICPM ||
|
||||
arch == LLM_ARCH_GRANITE ||
|
||||
arch == LLM_ARCH_GRANITE_MOE ||
|
||||
- arch == LLM_ARCH_GRANITE_HYBRID) {
|
||||
+ arch == LLM_ARCH_GRANITE_HYBRID ||
|
||||
+ arch == LLM_ARCH_NEMOTRON_H_MOE) {
|
||||
LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
|
||||
LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
|
||||
LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
|
||||
@@ -7107,7 +7137,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
||||
if (arch == LLM_ARCH_FALCON_H1) {
|
||||
filter_attn = [&](int32_t) { return true; };
|
||||
filter_recr = [&](int32_t) { return true; };
|
||||
- } else if (arch == LLM_ARCH_NEMOTRON_H) {
|
||||
+ } else if (arch == LLM_ARCH_NEMOTRON_H || arch == LLM_ARCH_NEMOTRON_H_MOE) {
|
||||
filter_attn = [&](int32_t il) {
|
||||
return !hparams.is_recurrent(il) && hparams.n_ff(il) == 0;
|
||||
};
|
||||
@@ -7478,6 +7508,7 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
||||
llm = std::make_unique<llm_build_nemotron>(*this, params);
|
||||
} break;
|
||||
case LLM_ARCH_NEMOTRON_H:
|
||||
+ case LLM_ARCH_NEMOTRON_H_MOE:
|
||||
{
|
||||
llm = std::make_unique<llm_build_nemotron_h>(*this, params);
|
||||
} break;
|
||||
@@ -7765,6 +7796,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
||||
case LLM_ARCH_ARWKV7:
|
||||
case LLM_ARCH_WAVTOKENIZER_DEC:
|
||||
case LLM_ARCH_NEMOTRON_H:
|
||||
+ case LLM_ARCH_NEMOTRON_H_MOE:
|
||||
return LLAMA_ROPE_TYPE_NONE;
|
||||
|
||||
// use what we call a normal RoPE, operating on pairs of consecutive head values
|
||||
diff --git a/src/llama-model.h b/src/llama-model.h
|
||||
index cbf4e1bfa..b378b23ec 100644
|
||||
--- a/src/llama-model.h
|
||||
+++ b/src/llama-model.h
|
||||
@@ -114,6 +114,7 @@ enum llm_type {
|
||||
LLM_TYPE_16B_A1B,
|
||||
LLM_TYPE_21B_A3B, // Ernie MoE small
|
||||
LLM_TYPE_30B_A3B,
|
||||
+ LLM_TYPE_31B_A3_5B,
|
||||
LLM_TYPE_80B_A3B, // Qwen3 Next
|
||||
LLM_TYPE_100B_A6B,
|
||||
LLM_TYPE_106B_A12B, // GLM-4.5-Air
|
||||
diff --git a/src/models/nemotron-h.cpp b/src/models/nemotron-h.cpp
|
||||
index 541434888..eb135e63f 100644
|
||||
--- a/src/models/nemotron-h.cpp
|
||||
+++ b/src/models/nemotron-h.cpp
|
||||
@@ -107,12 +107,41 @@ ggml_tensor * llm_build_nemotron_h::build_attention_layer(ggml_tensor *
|
||||
}
|
||||
|
||||
ggml_tensor * llm_build_nemotron_h::build_ffn_layer(ggml_tensor * cur, const llama_model & model, const int il) {
|
||||
- cur = build_ffn(cur,
|
||||
- model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||||
- NULL, NULL, NULL,
|
||||
- model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||||
- NULL, LLM_FFN_RELU_SQR, LLM_FFN_PAR, il);
|
||||
- cb(cur, "ffn_out", il);
|
||||
+ if (model.layers[il].ffn_gate_inp == nullptr) {
|
||||
+ cur = build_ffn(cur,
|
||||
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||||
+ NULL, NULL, NULL,
|
||||
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||||
+ NULL,
|
||||
+ LLM_FFN_RELU_SQR, LLM_FFN_PAR, il);
|
||||
+ cb(cur, "ffn_out", il);
|
||||
+ } else {
|
||||
+ ggml_tensor * ffn_inp = cur;
|
||||
+ ggml_tensor * moe_out =
|
||||
+ build_moe_ffn(ffn_inp,
|
||||
+ model.layers[il].ffn_gate_inp,
|
||||
+ model.layers[il].ffn_up_exps,
|
||||
+ nullptr, // no gate
|
||||
+ model.layers[il].ffn_down_exps,
|
||||
+ model.layers[il].ffn_exp_probs_b,
|
||||
+ n_expert, n_expert_used,
|
||||
+ LLM_FFN_RELU_SQR, hparams.expert_weights_norm,
|
||||
+ true, hparams.expert_weights_scale,
|
||||
+ LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID,
|
||||
+ il);
|
||||
+ cb(moe_out, "ffn_moe_out", il);
|
||||
+
|
||||
+ ggml_tensor * ffn_shexp = build_ffn(ffn_inp,
|
||||
+ model.layers[il].ffn_up_shexp, NULL, NULL,
|
||||
+ NULL /* no gate */ , NULL, NULL,
|
||||
+ model.layers[il].ffn_down_shexp, NULL, NULL,
|
||||
+ NULL,
|
||||
+ LLM_FFN_RELU_SQR, LLM_FFN_PAR, il);
|
||||
+ cb(ffn_shexp, "ffn_shexp", il);
|
||||
+
|
||||
+ cur = ggml_add(ctx0, moe_out, ffn_shexp);
|
||||
+ cb(cur, "ffn_out", il);
|
||||
+ }
|
||||
|
||||
cur = build_cvec(cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
@@ -1534,7 +1534,8 @@ func (t *Tensor) RoPE(ctx ml.Context, positions ml.Tensor, ropeDim int, ropeBase
|
||||
unsafe.SliceData(mropeSections),
|
||||
C.int(opts.Type),
|
||||
cmp.Or(C.int(opts.YaRN.OriginalContextLength), 128<<10),
|
||||
C.float(ropeBase), C.float(ropeScale),
|
||||
C.float(ropeBase),
|
||||
C.float(ropeScale),
|
||||
C.float(opts.YaRN.ExtrapolationFactor),
|
||||
cmp.Or(C.float(opts.YaRN.AttentionFactor), 1),
|
||||
cmp.Or(C.float(opts.YaRN.BetaFast), 32),
|
||||
@@ -1546,9 +1547,11 @@ func (t *Tensor) RoPE(ctx ml.Context, positions ml.Tensor, ropeDim int, ropeBase
|
||||
dequant,
|
||||
positions.(*Tensor).t,
|
||||
opts.Factors.(*Tensor).t,
|
||||
C.int(ropeDim), C.int(opts.Type),
|
||||
C.int(ropeDim),
|
||||
C.int(opts.Type),
|
||||
cmp.Or(C.int(opts.YaRN.OriginalContextLength), 128<<10),
|
||||
C.float(ropeBase), C.float(ropeScale),
|
||||
C.float(ropeBase),
|
||||
C.float(ropeScale),
|
||||
C.float(opts.YaRN.ExtrapolationFactor),
|
||||
cmp.Or(C.float(opts.YaRN.AttentionFactor), 1),
|
||||
cmp.Or(C.float(opts.YaRN.BetaFast), 32),
|
||||
|
||||
@@ -77,6 +77,13 @@ func WithMRoPE(sections []int) func(*Options) {
|
||||
}
|
||||
}
|
||||
|
||||
func WithVision(sections []int) func(*Options) {
|
||||
return func(opts *Options) {
|
||||
opts.Type |= 1<<3 | 1<<4
|
||||
opts.MRoPE.Sections = sections
|
||||
}
|
||||
}
|
||||
|
||||
func WithInterleaveMRoPE(sections []int) func(*Options) {
|
||||
return func(opts *Options) {
|
||||
opts.Type |= 1<<3 | 1<<5
|
||||
|
||||
@@ -13,6 +13,7 @@ import (
|
||||
_ "github.com/ollama/ollama/model/models/mistral3"
|
||||
_ "github.com/ollama/ollama/model/models/mllama"
|
||||
_ "github.com/ollama/ollama/model/models/nomicbert"
|
||||
_ "github.com/ollama/ollama/model/models/olmo3"
|
||||
_ "github.com/ollama/ollama/model/models/qwen2"
|
||||
_ "github.com/ollama/ollama/model/models/qwen25vl"
|
||||
_ "github.com/ollama/ollama/model/models/qwen3"
|
||||
|
||||
223
model/models/olmo3/model.go
Normal file
223
model/models/olmo3/model.go
Normal file
@@ -0,0 +1,223 @@
|
||||
package olmo3
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
const (
|
||||
cacheTypeSWA = 0
|
||||
cacheTypeCausal = 1
|
||||
)
|
||||
|
||||
type Options struct {
|
||||
hiddenSize, numHeads, numKVHeads int
|
||||
eps, ropeBase, ropeScale float32
|
||||
|
||||
originalContextLength int
|
||||
attnFactor float32
|
||||
|
||||
ropeType string
|
||||
ropeExtrapolation float32
|
||||
|
||||
slidingWindowPattern []bool
|
||||
}
|
||||
|
||||
type Model struct {
|
||||
model.Base
|
||||
model.TextProcessor
|
||||
|
||||
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
||||
Layers []Layer `gguf:"blk"`
|
||||
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
||||
Output *nn.Linear `gguf:"output,alt:token_embd"`
|
||||
|
||||
Options
|
||||
}
|
||||
|
||||
func New(c fs.Config) (model.Model, error) {
|
||||
vocabulary := model.Vocabulary{
|
||||
Values: c.Strings("tokenizer.ggml.tokens"),
|
||||
Scores: c.Floats("tokenizer.ggml.scores"),
|
||||
Types: c.Ints("tokenizer.ggml.token_type"),
|
||||
Merges: c.Strings("tokenizer.ggml.merges"),
|
||||
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", false),
|
||||
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
|
||||
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
||||
EOS: append(
|
||||
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
|
||||
c.Ints("tokenizer.ggml.eos_token_ids")...,
|
||||
),
|
||||
}
|
||||
|
||||
processor := model.NewBytePairEncoding(
|
||||
&vocabulary,
|
||||
"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
||||
)
|
||||
|
||||
m := Model{
|
||||
TextProcessor: processor,
|
||||
Layers: make([]Layer, c.Uint("block_count")),
|
||||
Options: Options{
|
||||
hiddenSize: int(c.Uint("embedding_length")),
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
||||
ropeBase: c.Float("rope.freq_base", 1e4),
|
||||
ropeScale: c.Float("rope.scaling.factor", 1),
|
||||
originalContextLength: int(c.Uint("rope.scaling.original_context_length")),
|
||||
attnFactor: c.Float("rope.scaling.attn_factor", 1),
|
||||
ropeType: c.String("rope.scaling.type"),
|
||||
ropeExtrapolation: c.Float("rope.scaling.extrapolation_factor", 1.0),
|
||||
slidingWindowPattern: c.Bools("attention.sliding_window_pattern"),
|
||||
},
|
||||
}
|
||||
|
||||
m.Cache = kvcache.NewWrapperCache(
|
||||
kvcache.NewSWACache(int32(c.Uint("attention.sliding_window")), m.Shift),
|
||||
kvcache.NewCausalCache(m.Shift),
|
||||
)
|
||||
|
||||
return &m, nil
|
||||
}
|
||||
|
||||
type SelfAttention struct {
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
Output *nn.Linear `gguf:"attn_output"`
|
||||
QNorm *nn.RMSNorm `gguf:"attn_q_norm"`
|
||||
KNorm *nn.RMSNorm `gguf:"attn_k_norm"`
|
||||
}
|
||||
|
||||
func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor, isSWA bool) ml.Tensor {
|
||||
freqScale := float32(1.0)
|
||||
ropeOpts := []func(*rope.Options){rope.WithTypeNeoX()}
|
||||
|
||||
if !isSWA {
|
||||
freqScale = 1. / o.ropeScale
|
||||
if o.originalContextLength > 0 {
|
||||
ropeOpts = append(ropeOpts,
|
||||
rope.WithOriginalContextLength(o.originalContextLength),
|
||||
rope.WithExtrapolationFactor(o.ropeExtrapolation),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
return nn.RoPE(ctx, states, positions, o.hiddenSize/o.numHeads, o.ropeBase, freqScale, ropeOpts...)
|
||||
}
|
||||
|
||||
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tensor, cache kvcache.Cache, m *Model, isSWA bool) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
headDim := m.hiddenSize / m.numHeads
|
||||
|
||||
query := sa.Query.Forward(ctx, hiddenState)
|
||||
query = sa.QNorm.Forward(ctx, query, m.eps)
|
||||
query = query.Reshape(ctx, headDim, m.numHeads, batchSize)
|
||||
query = m.Options.applyRotaryPositionEmbeddings(ctx, query, positions, isSWA)
|
||||
|
||||
key := sa.Key.Forward(ctx, hiddenState)
|
||||
key = sa.KNorm.Forward(ctx, key, m.eps)
|
||||
key = key.Reshape(ctx, headDim, m.numKVHeads, batchSize)
|
||||
key = m.Options.applyRotaryPositionEmbeddings(ctx, key, positions, isSWA)
|
||||
|
||||
value := sa.Value.Forward(ctx, hiddenState)
|
||||
value = value.Reshape(ctx, headDim, m.numKVHeads, batchSize)
|
||||
|
||||
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), cache)
|
||||
attention = attention.Reshape(ctx, m.hiddenSize, batchSize)
|
||||
|
||||
return sa.Output.Forward(ctx, attention)
|
||||
}
|
||||
|
||||
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
isSWA := m.isSWALayer(layer)
|
||||
return m.Options.applyRotaryPositionEmbeddings(ctx, key, shift, isSWA), nil
|
||||
}
|
||||
|
||||
type MLP struct {
|
||||
Up *nn.Linear `gguf:"ffn_up"`
|
||||
Down *nn.Linear `gguf:"ffn_down"`
|
||||
Gate *nn.Linear `gguf:"ffn_gate"`
|
||||
}
|
||||
|
||||
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, m *Model) ml.Tensor {
|
||||
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
|
||||
return mlp.Down.Forward(ctx, hiddenState)
|
||||
}
|
||||
|
||||
type Layer struct {
|
||||
SelfAttention *SelfAttention
|
||||
PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
|
||||
MLP *MLP
|
||||
PostFFWNorm *nn.RMSNorm `gguf:"post_ffw_norm"`
|
||||
}
|
||||
|
||||
func (l *Layer) Forward(ctx ml.Context, hiddenState, positions, outputs ml.Tensor, cache kvcache.Cache, m *Model, isSWA bool) ml.Tensor {
|
||||
residual := hiddenState
|
||||
|
||||
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positions, cache, m, isSWA)
|
||||
|
||||
if outputs != nil {
|
||||
hiddenState = hiddenState.Rows(ctx, outputs)
|
||||
residual = residual.Rows(ctx, outputs)
|
||||
}
|
||||
hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, m.eps)
|
||||
|
||||
hiddenState = hiddenState.Add(ctx, residual)
|
||||
residual = hiddenState
|
||||
|
||||
hiddenState = l.MLP.Forward(ctx, hiddenState, m)
|
||||
hiddenState = l.PostFFWNorm.Forward(ctx, hiddenState, m.eps)
|
||||
|
||||
return hiddenState.Add(ctx, residual)
|
||||
}
|
||||
|
||||
// OLMo3 has Sliding Window Attention (SWA) for 3 out of every 4 layers.
|
||||
func (m *Model) isSWALayer(layerIdx int) bool {
|
||||
return m.Options.slidingWindowPattern[layerIdx]
|
||||
}
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
|
||||
|
||||
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
|
||||
|
||||
for i, layer := range m.Layers {
|
||||
m.Cache.SetLayer(i)
|
||||
cacheType := cacheTypeSWA
|
||||
|
||||
isSWA := m.isSWALayer(i)
|
||||
if !isSWA {
|
||||
cacheType = cacheTypeCausal
|
||||
}
|
||||
|
||||
wc, ok := m.Cache.(*kvcache.WrapperCache)
|
||||
if !ok {
|
||||
return nil, fmt.Errorf("expected *kvcache.WrapperCache, got %T", m.Cache)
|
||||
}
|
||||
wc.SetLayerType(cacheType)
|
||||
|
||||
var outputs ml.Tensor
|
||||
if i == len(m.Layers)-1 {
|
||||
outputs = batch.Outputs
|
||||
}
|
||||
|
||||
hiddenState = layer.Forward(ctx, hiddenState, positions, outputs, m.Cache, m, isSWA)
|
||||
}
|
||||
|
||||
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
|
||||
return m.Output.Forward(ctx, hiddenState), nil
|
||||
}
|
||||
|
||||
func init() {
|
||||
model.Register("olmo3", New)
|
||||
}
|
||||
@@ -2,7 +2,6 @@ package qwen25vl
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
"image"
|
||||
"slices"
|
||||
|
||||
@@ -33,7 +32,7 @@ func New(c fs.Config) (model.Model, error) {
|
||||
Values: c.Strings("tokenizer.ggml.tokens"),
|
||||
Types: c.Ints("tokenizer.ggml.token_type"),
|
||||
Merges: c.Strings("tokenizer.ggml.merges"),
|
||||
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
||||
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", false),
|
||||
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
|
||||
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
||||
EOS: append(
|
||||
@@ -54,19 +53,18 @@ func New(c fs.Config) (model.Model, error) {
|
||||
}
|
||||
|
||||
func (m *Model) PixelValues(ctx ml.Context, multimodalData []byte) (ml.Tensor, *Grid, error) {
|
||||
image, _, err := image.Decode(bytes.NewReader(multimodalData))
|
||||
img, _, err := image.Decode(bytes.NewReader(multimodalData))
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
f32s, grid, err := m.ImageProcessor.ProcessImage(image)
|
||||
f32s, grid, err := m.ImageProcessor.ProcessImage(img)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
// Calculate tensor dimensions
|
||||
patchDim := m.ImageProcessor.numChannels * m.ImageProcessor.temporalPatchSize *
|
||||
m.ImageProcessor.patchSize * m.ImageProcessor.patchSize
|
||||
patchDim := m.numChannels * m.temporalPatchSize * m.patchSize * m.patchSize
|
||||
numPatches := grid.Temporal * grid.Height * grid.Width
|
||||
|
||||
pixelValues := ctx.Input().FromFloats(f32s, patchDim, numPatches)
|
||||
@@ -85,11 +83,13 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
|
||||
}
|
||||
|
||||
visionOutputs := m.VisionModel.Forward(ctx, pixels, grid)
|
||||
return []input.Multimodal{{Tensor: visionOutputs}}, nil
|
||||
return []input.Multimodal{{Tensor: visionOutputs, Data: grid}}, nil
|
||||
}
|
||||
|
||||
// PostTokenize arranges Qwen-2.5-VL's inputs for the forward pass
|
||||
func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
|
||||
// Reset position cache
|
||||
m.positionCache = m.positionCache[:0]
|
||||
var result []*input.Input
|
||||
|
||||
var (
|
||||
@@ -98,40 +98,37 @@ func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
|
||||
visionEndToken int32 = 151653
|
||||
)
|
||||
|
||||
nImg := 0
|
||||
appendInput := func(i *input.Input, p int) int {
|
||||
result = append(result, i)
|
||||
m.positionCache = append(m.positionCache, int32(p))
|
||||
return p + 1
|
||||
}
|
||||
|
||||
var p int
|
||||
for _, inp := range inputs {
|
||||
if inp.Multimodal == nil {
|
||||
// If not a multimodal input, add it to the result unchanged
|
||||
result = append(result, inp)
|
||||
p = appendInput(inp, p)
|
||||
} else {
|
||||
// Adding the 'Picture' prefix is a hack, at the time of writing there is no way to prefix
|
||||
// the image tokens with a prompt, so we add a prefix here
|
||||
nImg++
|
||||
pre, err := m.Encode(fmt.Sprintf(" Picture %d: ", nImg), true)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed to encode image prompt: %w", err)
|
||||
}
|
||||
for i := range pre {
|
||||
result = append(result, &input.Input{Token: pre[i]})
|
||||
}
|
||||
|
||||
patchesPerChunk := inp.Multimodal[0].Tensor.Dim(1)
|
||||
|
||||
// First add the vision start token
|
||||
result = append(result, &input.Input{Token: visionStartToken})
|
||||
p = appendInput(&input.Input{Token: visionStartToken}, p)
|
||||
|
||||
// Add the image token with the multimodal tensor data at the first position
|
||||
result = append(result, &input.Input{
|
||||
tokensPerGrid := inp.Multimodal[0].Tensor.Dim(1)
|
||||
appendInput(&input.Input{
|
||||
Token: imageToken,
|
||||
Multimodal: inp.Multimodal,
|
||||
MultimodalHash: inp.MultimodalHash,
|
||||
SameBatch: patchesPerChunk,
|
||||
})
|
||||
SameBatch: tokensPerGrid,
|
||||
}, p)
|
||||
|
||||
// Add the placeholder tokens for the remaining positions (tokensPerGrid-1)
|
||||
result = append(result, slices.Repeat([]*input.Input{{Token: imageToken}}, patchesPerChunk-1)...)
|
||||
for range tokensPerGrid - 1 {
|
||||
appendInput(&input.Input{Token: imageToken}, p)
|
||||
}
|
||||
|
||||
result = append(result, &input.Input{Token: visionEndToken})
|
||||
grid := inp.Multimodal[0].Data.(*Grid)
|
||||
p = appendInput(&input.Input{Token: visionEndToken}, p+max(grid.Width/m.spatialMergeSize, grid.Height/m.spatialMergeSize))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -139,9 +136,58 @@ func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
|
||||
}
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
|
||||
// Initial token embedding
|
||||
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs).Duplicate(ctx)
|
||||
|
||||
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, batch, m.Cache)
|
||||
positionSlice := func() [][]int32 {
|
||||
s := [][]int32{
|
||||
make([]int32, len(batch.Positions)),
|
||||
make([]int32, len(batch.Positions)),
|
||||
make([]int32, len(batch.Positions)),
|
||||
make([]int32, len(batch.Positions)),
|
||||
}
|
||||
for i, position := range batch.Positions {
|
||||
if position < int32(len(m.positionCache)) {
|
||||
position = m.positionCache[position]
|
||||
} else if len(m.positionCache) > 0 {
|
||||
position = position - int32(len(m.positionCache)) + m.positionCache[len(m.positionCache)-1] + 1
|
||||
}
|
||||
|
||||
s[0][i] = position
|
||||
s[1][i] = position
|
||||
s[2][i] = position
|
||||
}
|
||||
return s
|
||||
}()
|
||||
|
||||
for _, mi := range batch.Multimodal {
|
||||
img := mi.Multimodal[0].Tensor
|
||||
ctx.Forward(img.Copy(ctx, hiddenStates.View(ctx, mi.Index*hiddenStates.Stride(1), img.Dim(0)*img.Dim(1))))
|
||||
if grid, ok := mi.Multimodal[0].Data.(*Grid); ok {
|
||||
for i := range img.Dim(1) {
|
||||
w := grid.Width / m.spatialMergeSize
|
||||
positionSlice[1][mi.Index+i] += int32(i / w)
|
||||
positionSlice[2][mi.Index+i] += int32(i % w)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
positions := ctx.Input().FromInts(slices.Concat(positionSlice...), len(positionSlice[0])*len(positionSlice))
|
||||
|
||||
// Process through transformer layers
|
||||
for i, layer := range m.TextModel.Layers {
|
||||
m.Cache.SetLayer(i)
|
||||
|
||||
var lastLayerOutputs ml.Tensor
|
||||
if i == len(m.TextModel.Layers)-1 {
|
||||
lastLayerOutputs = batch.Outputs
|
||||
}
|
||||
|
||||
hiddenStates = layer.Forward(ctx, hiddenStates, positions, lastLayerOutputs, m.Cache, m.TextOptions)
|
||||
}
|
||||
|
||||
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.TextModel.eps)
|
||||
return m.Output.Forward(ctx, hiddenStates), nil
|
||||
}
|
||||
|
||||
func init() {
|
||||
|
||||
@@ -8,20 +8,17 @@ import (
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type TextOptions struct {
|
||||
hiddenSize, numHeads, numKVHeads int
|
||||
ropeDim, originalContextLength int
|
||||
eps, ropeBase, ropeScale float32
|
||||
mropeSections []int
|
||||
}
|
||||
|
||||
func (o TextOptions) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
|
||||
return nn.RoPE(ctx, states, positions, o.ropeDim, o.ropeBase, 1./o.ropeScale,
|
||||
rope.WithOriginalContextLength(o.originalContextLength),
|
||||
rope.WithTypeNeoX(),
|
||||
)
|
||||
return nn.RoPE(ctx, states, positions, o.ropeDim, o.ropeBase, 1./o.ropeScale, rope.WithMRoPE(o.mropeSections))
|
||||
}
|
||||
|
||||
type TextModel struct {
|
||||
@@ -31,6 +28,7 @@ type TextModel struct {
|
||||
Output *nn.Linear `gguf:"output,alt:token_embd"`
|
||||
|
||||
*TextOptions
|
||||
positionCache []int32
|
||||
}
|
||||
|
||||
func NewTextModel(c fs.Config) *TextModel {
|
||||
@@ -45,6 +43,14 @@ func NewTextModel(c fs.Config) *TextModel {
|
||||
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
||||
ropeBase: c.Float("rope.freq_base"),
|
||||
ropeScale: c.Float("rope.scaling.factor", 1),
|
||||
mropeSections: func() []int {
|
||||
sections := c.Ints("rope.mrope_section")
|
||||
s := make([]int, len(sections))
|
||||
for i, section := range sections {
|
||||
s[i] = int(section)
|
||||
}
|
||||
return s
|
||||
}(),
|
||||
},
|
||||
}
|
||||
|
||||
@@ -84,6 +90,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
|
||||
|
||||
// Shift applies rotary position embeddings to the key tensor for causal attention caching
|
||||
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
m.positionCache = nil
|
||||
return m.applyRotaryPositionEmbeddings(ctx, key, shift), nil
|
||||
}
|
||||
|
||||
@@ -130,28 +137,3 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Ten
|
||||
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
|
||||
return hiddenState.Add(ctx, residual)
|
||||
}
|
||||
|
||||
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) (ml.Tensor, error) {
|
||||
// Initial token embedding
|
||||
hiddenStates := m.TokenEmbedding.Forward(ctx, inputs).Duplicate(ctx)
|
||||
|
||||
for _, mi := range batch.Multimodal {
|
||||
img := mi.Multimodal[0].Tensor
|
||||
ctx.Forward(img.Copy(ctx, hiddenStates.View(ctx, mi.Index*hiddenStates.Stride(1), img.Dim(0)*img.Dim(1))))
|
||||
}
|
||||
|
||||
// Process through transformer layers
|
||||
for i, layer := range m.Layers {
|
||||
cache.SetLayer(i)
|
||||
|
||||
var lastLayerOutputs ml.Tensor
|
||||
if i == len(m.Layers)-1 {
|
||||
lastLayerOutputs = outputs
|
||||
}
|
||||
|
||||
hiddenStates = layer.Forward(ctx, hiddenStates, positions, lastLayerOutputs, cache, m.TextOptions)
|
||||
}
|
||||
|
||||
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
|
||||
return m.Output.Forward(ctx, hiddenStates), nil
|
||||
}
|
||||
|
||||
@@ -7,48 +7,28 @@ import (
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
)
|
||||
|
||||
// We only support batch size of 1
|
||||
var batchSize int = 1
|
||||
|
||||
func rotateHalf(ctx ml.Context, t ml.Tensor) ml.Tensor {
|
||||
x1 := t.Slice(ctx, 0, 0, t.Dim(0)/2, 1)
|
||||
x2 := t.Slice(ctx, 0, t.Dim(0)/2, t.Dim(0), 1).Contiguous(ctx)
|
||||
return x2.Scale(ctx, -1).Concat(ctx, x1, 0)
|
||||
}
|
||||
|
||||
func applyRotaryPositionEmbeddings(ctx ml.Context, states, cos, sin ml.Tensor) ml.Tensor {
|
||||
return states.Mul(ctx, cos).Add(ctx, rotateHalf(ctx, states).Mul(ctx, sin))
|
||||
}
|
||||
|
||||
func blockDiagonalMask(ctx ml.Context, seqLength int, bounds []int, numHeads int) ml.Tensor {
|
||||
// Create a flat slice for the mask (all -inf initially to block all attention)
|
||||
flat := make([]float32, seqLength*seqLength)
|
||||
for i := range flat {
|
||||
flat[i] = float32(math.Inf(-1)) // Negative infinity to block attention
|
||||
func blockDiagonalMask(ctx ml.Context, seqLength int, bounds []int) ml.Tensor {
|
||||
// Initialize a 2D mask with -Inf
|
||||
s := make([][]float32, seqLength)
|
||||
for i := range s {
|
||||
s[i] = slices.Repeat([]float32{float32(math.Inf(-1))}, seqLength)
|
||||
}
|
||||
|
||||
// Fill in the mask with zeros for tokens that CAN attend to each other
|
||||
for i := 1; i < len(bounds); i++ {
|
||||
start := bounds[i-1]
|
||||
end := bounds[i]
|
||||
|
||||
// Enable attention within this sequence block by setting values to 0
|
||||
start, end := bounds[i-1], bounds[i]
|
||||
// Enable attention within this sequence block
|
||||
for row := start; row < end; row++ {
|
||||
for col := start; col < end; col++ {
|
||||
idx := row*seqLength + col
|
||||
flat[idx] = 0.0 // 0 allows attention, -inf blocks it
|
||||
s[row][col] = 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
mask := ctx.Input().FromFloats(flat, seqLength, seqLength)
|
||||
|
||||
// Reshape to match [seqLength, seqLength, 1] for broadcasting
|
||||
mask = mask.Reshape(ctx, seqLength, seqLength, 1)
|
||||
|
||||
return mask
|
||||
return ctx.Input().FromFloats(slices.Concat(s...), seqLength, seqLength)
|
||||
}
|
||||
|
||||
type VisionSelfAttention struct {
|
||||
@@ -58,17 +38,17 @@ type VisionSelfAttention struct {
|
||||
Output *nn.Linear `gguf:"attn_out"`
|
||||
}
|
||||
|
||||
func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenStates, cos, sin, mask ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenStates, positions, mask ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
query := sa.Query.Forward(ctx, hiddenStates)
|
||||
key := sa.Key.Forward(ctx, hiddenStates)
|
||||
value := sa.Value.Forward(ctx, hiddenStates)
|
||||
|
||||
query = query.Reshape(ctx, opts.headDim, opts.numHeads, query.Dim(1), batchSize)
|
||||
key = key.Reshape(ctx, opts.headDim, opts.numHeads, key.Dim(1), batchSize)
|
||||
value = value.Reshape(ctx, opts.headDim, opts.numHeads, value.Dim(1), batchSize)
|
||||
query = query.Reshape(ctx, opts.headDim, opts.numHeads, query.Dim(1))
|
||||
key = key.Reshape(ctx, opts.headDim, opts.numHeads, key.Dim(1))
|
||||
value = value.Reshape(ctx, opts.headDim, opts.numHeads, value.Dim(1))
|
||||
|
||||
query = applyRotaryPositionEmbeddings(ctx, query, cos, sin)
|
||||
key = applyRotaryPositionEmbeddings(ctx, key, cos, sin)
|
||||
query = opts.applyRotaryPositionEmbeddings(ctx, query, positions)
|
||||
key = opts.applyRotaryPositionEmbeddings(ctx, key, positions)
|
||||
|
||||
// Scale factor for scaled dot-product attention
|
||||
scale := 1.0 / math.Sqrt(float64(opts.headDim))
|
||||
@@ -77,6 +57,7 @@ func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenStates, cos, sin, m
|
||||
query = query.Permute(ctx, 0, 2, 1, 3)
|
||||
key = key.Permute(ctx, 0, 2, 1, 3)
|
||||
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
|
||||
|
||||
kq := key.MulmatFullPrec(ctx, query)
|
||||
kq = kq.Scale(ctx, scale)
|
||||
if mask != nil {
|
||||
@@ -85,7 +66,7 @@ func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenStates, cos, sin, m
|
||||
kq = kq.Softmax(ctx)
|
||||
kqv := value.Mulmat(ctx, kq)
|
||||
attention := kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), batchSize)
|
||||
attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2))
|
||||
|
||||
return sa.Output.Forward(ctx, attention)
|
||||
}
|
||||
@@ -98,10 +79,7 @@ type VisionMLP struct {
|
||||
}
|
||||
|
||||
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
// Using activation as specified in config (likely GELU or SiLU/Swish)
|
||||
gateOutput := mlp.Gate.Forward(ctx, hiddenStates)
|
||||
hiddenStates = gateOutput.SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
|
||||
|
||||
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
|
||||
return mlp.Down.Forward(ctx, hiddenStates)
|
||||
}
|
||||
|
||||
@@ -112,10 +90,10 @@ type VisionEncoderLayer struct {
|
||||
MLP *VisionMLP
|
||||
}
|
||||
|
||||
func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenStates, cos, sin, mask ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenStates, positions, mask ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
residual := hiddenStates
|
||||
hiddenStates = e.Norm1.Forward(ctx, hiddenStates, opts.eps)
|
||||
hiddenStates = e.SelfAttention.Forward(ctx, hiddenStates, cos, sin, mask, opts)
|
||||
hiddenStates = e.SelfAttention.Forward(ctx, hiddenStates, positions, mask, opts)
|
||||
hiddenStates = hiddenStates.Add(ctx, residual)
|
||||
|
||||
residual = hiddenStates
|
||||
@@ -139,6 +117,17 @@ type VisionModelOptions struct {
|
||||
temporalPatchSize int
|
||||
}
|
||||
|
||||
func (o VisionModelOptions) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
|
||||
return nn.RoPE(ctx, states, positions, o.headDim/2, o.ropeTheta, 1,
|
||||
rope.WithVision([]int{
|
||||
o.headDim / 4,
|
||||
o.headDim / 4,
|
||||
o.headDim / 4,
|
||||
o.headDim / 4,
|
||||
}),
|
||||
)
|
||||
}
|
||||
|
||||
type PatchEmbedding struct {
|
||||
PatchConv0 *nn.Conv2D `gguf:"patch_embd_0"`
|
||||
PatchConv1 *nn.Conv2D `gguf:"patch_embd_1"`
|
||||
@@ -186,7 +175,7 @@ func (pm *VisionPatchMerger) Forward(ctx ml.Context, visionOutputs ml.Tensor, op
|
||||
hiddenSize := visionOutputs.Dim(0) * (opts.spatialMergeSize * opts.spatialMergeSize)
|
||||
|
||||
// Reshape the normalized output to view the hidden size dimension
|
||||
reshaped := normalized.Reshape(ctx, hiddenSize, normalized.Dim(1)/(opts.spatialMergeSize*opts.spatialMergeSize), batchSize)
|
||||
reshaped := normalized.Reshape(ctx, hiddenSize, normalized.Dim(1)/(opts.spatialMergeSize*opts.spatialMergeSize))
|
||||
hidden := pm.MLP0.Forward(ctx, reshaped)
|
||||
activated := hidden.GELU(ctx)
|
||||
|
||||
@@ -209,36 +198,53 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor, grid *Grid)
|
||||
// Extract patch embeddings
|
||||
hiddenStates := m.PatchEmbedding.Forward(ctx, pixelValues, m.VisionModelOptions)
|
||||
|
||||
positionEmbedding := m.PositionalEmbedding(ctx, grid)
|
||||
|
||||
windowIndex, bounds := m.WindowIndex(ctx, grid)
|
||||
|
||||
index, bounds := m.windowIndex(grid)
|
||||
spatialMergeUnit := m.spatialMergeSize * m.spatialMergeSize
|
||||
|
||||
windowIndex := ctx.Input().FromInts(index, len(index))
|
||||
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0)*spatialMergeUnit, hiddenStates.Dim(1)/spatialMergeUnit)
|
||||
hiddenStates = hiddenStates.Rows(ctx, windowIndex)
|
||||
hiddenStates = hiddenStates.Rows(ctx, windowIndex.Argsort(ctx))
|
||||
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0)/spatialMergeUnit, hiddenStates.Dim(1)*spatialMergeUnit)
|
||||
|
||||
positionEmbedding = positionEmbedding.Reshape(ctx, positionEmbedding.Dim(0)*spatialMergeUnit, positionEmbedding.Dim(1)/spatialMergeUnit)
|
||||
positionEmbedding = positionEmbedding.Rows(ctx, windowIndex)
|
||||
positionEmbedding = positionEmbedding.Reshape(ctx, positionEmbedding.Dim(0)/spatialMergeUnit, positionEmbedding.Dim(1)*spatialMergeUnit)
|
||||
positionEmbedding = positionEmbedding.Concat(ctx, positionEmbedding, 0)
|
||||
positions := ctx.Input().FromInts(func() []int32 {
|
||||
s := [][]int32{
|
||||
make([]int32, grid.Height*grid.Width),
|
||||
make([]int32, grid.Height*grid.Width),
|
||||
make([]int32, grid.Height*grid.Width),
|
||||
make([]int32, grid.Height*grid.Width),
|
||||
}
|
||||
|
||||
cos, sin := positionEmbedding.Cos(ctx), positionEmbedding.Sin(ctx)
|
||||
cos = cos.Reshape(ctx, cos.Dim(0), 1, cos.Dim(1))
|
||||
sin = sin.Reshape(ctx, sin.Dim(0), 1, sin.Dim(1))
|
||||
var cur int
|
||||
for y := 0; y < grid.Height; y += m.spatialMergeSize {
|
||||
for x := 0; x < grid.Width; x += m.spatialMergeSize {
|
||||
for dy := range 2 {
|
||||
for dx := range 2 {
|
||||
i := int(index[cur/spatialMergeUnit]) * spatialMergeUnit
|
||||
i += cur % spatialMergeUnit
|
||||
s[0][i] = int32(y + dy)
|
||||
s[1][i] = int32(x + dx)
|
||||
s[2][i] = int32(y + dy)
|
||||
s[3][i] = int32(x + dx)
|
||||
cur++
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return slices.Concat(s...)
|
||||
}(), grid.Height*grid.Width*4)
|
||||
|
||||
mask := blockDiagonalMask(ctx, hiddenStates.Dim(1), bounds)
|
||||
|
||||
mask := blockDiagonalMask(ctx, hiddenStates.Dim(1), bounds, m.VisionModelOptions.numHeads)
|
||||
// Apply encoder layers
|
||||
for i, layer := range m.Layers {
|
||||
if slices.Contains(m.fullAttnBlocks, int32(i)) {
|
||||
hiddenStates = layer.Forward(ctx, hiddenStates, cos, sin, nil, m.VisionModelOptions)
|
||||
hiddenStates = layer.Forward(ctx, hiddenStates, positions, nil, m.VisionModelOptions)
|
||||
} else {
|
||||
hiddenStates = layer.Forward(
|
||||
ctx,
|
||||
hiddenStates,
|
||||
cos,
|
||||
sin,
|
||||
positions,
|
||||
mask,
|
||||
m.VisionModelOptions,
|
||||
)
|
||||
@@ -246,102 +252,43 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor, grid *Grid)
|
||||
}
|
||||
|
||||
hiddenStates = m.PatchMerger.Forward(ctx, hiddenStates, m.VisionModelOptions)
|
||||
reverseWindowIndex := windowIndex.Argsort(ctx)
|
||||
return hiddenStates.Rows(ctx, reverseWindowIndex)
|
||||
return hiddenStates.Rows(ctx, windowIndex)
|
||||
}
|
||||
|
||||
// WindowIndex divides the grid into windows and returns:
|
||||
// 1. A tensor containing flattened indices of all grid points organized by windows
|
||||
// windowIndex divides the grid into windows and returns:
|
||||
// 1. A slice of grid point indices organized by windows
|
||||
// 2. A slice of boundaries that mark where each window's data begins and ends
|
||||
// in the flattened representation, scaled by spatialMergeSize squared
|
||||
//
|
||||
// The boundaries slice always starts with 0 and contains cumulative ending
|
||||
// positions for each window, allowing downstream processing to identify
|
||||
// window boundaries in the tensor data.
|
||||
func (m *VisionModel) WindowIndex(ctx ml.Context, grid *Grid) (ml.Tensor, []int) {
|
||||
vitMergerWindowSize := m.windowSize / m.spatialMergeSize / m.patchSize
|
||||
func (m *VisionModel) windowIndex(grid *Grid) (index []int32, bounds []int) {
|
||||
height := grid.Height / m.spatialMergeSize
|
||||
width := grid.Width / m.spatialMergeSize
|
||||
window := m.windowSize / m.patchSize / m.spatialMergeSize
|
||||
|
||||
llmGridH := grid.Height / m.spatialMergeSize
|
||||
llmGridW := grid.Width / m.spatialMergeSize
|
||||
index = make([]int32, height*width)
|
||||
|
||||
// Calculate window parameters
|
||||
numWindowsH := int(math.Ceil(float64(llmGridH) / float64(vitMergerWindowSize)))
|
||||
numWindowsW := int(math.Ceil(float64(llmGridW) / float64(vitMergerWindowSize)))
|
||||
bounds = make([]int, 0, ((height+window-1)/window)*((width+window-1)/window)+1)
|
||||
bounds = append(bounds, 0)
|
||||
|
||||
// Initialize index_new slice
|
||||
var index []int32
|
||||
|
||||
// Initialize bounds with the first element as 0
|
||||
bounds := []int{0}
|
||||
totalSeqLen := 0
|
||||
|
||||
// Process each window without padding
|
||||
for wh := range numWindowsH {
|
||||
for ww := range numWindowsW {
|
||||
// Calculate window boundaries
|
||||
hStart := wh * vitMergerWindowSize
|
||||
wStart := ww * vitMergerWindowSize
|
||||
hEnd := min(hStart+vitMergerWindowSize, llmGridH)
|
||||
wEnd := min(wStart+vitMergerWindowSize, llmGridW)
|
||||
|
||||
// Calculate sequence length for this window
|
||||
seqLen := (hEnd - hStart) * (wEnd - wStart)
|
||||
|
||||
// Collect indices for this window
|
||||
for h := hStart; h < hEnd; h++ {
|
||||
for w := wStart; w < wEnd; w++ {
|
||||
index = append(index, int32(h*llmGridW+w))
|
||||
var cur int32
|
||||
for y := 0; y < height; y += window {
|
||||
for x := 0; x < width; x += window {
|
||||
h1 := min(window, height-y)
|
||||
w1 := min(window, width-x)
|
||||
for dy := range h1 {
|
||||
for dx := range w1 {
|
||||
win := (y+dy)*width + (x + dx)
|
||||
index[win] = cur
|
||||
cur++
|
||||
}
|
||||
}
|
||||
|
||||
totalSeqLen += seqLen
|
||||
bounds = append(bounds, totalSeqLen*(m.spatialMergeSize*m.spatialMergeSize)+bounds[0])
|
||||
bounds = append(bounds, int(cur)*window)
|
||||
}
|
||||
}
|
||||
|
||||
t := ctx.Input().FromInts(index, len(index))
|
||||
|
||||
return t, bounds
|
||||
}
|
||||
|
||||
// PositionalEmbedding generates rotary position embeddings for attention mechanisms
|
||||
func (m *VisionModel) PositionalEmbedding(ctx ml.Context, grid *Grid) ml.Tensor {
|
||||
dim := m.headDim / 2
|
||||
freq := dim / 2
|
||||
theta := float64(m.ropeTheta)
|
||||
merge := m.spatialMergeSize
|
||||
|
||||
// Create frequency patterns for position encoding
|
||||
maxGridSize := max(grid.Height, grid.Width)
|
||||
freqVals := make([]float32, freq*maxGridSize)
|
||||
for i := range maxGridSize {
|
||||
for j := range freq {
|
||||
freqVals[i*freq+j] = float32(i) / float32(math.Pow(theta, float64(j*2)/float64(dim)))
|
||||
}
|
||||
}
|
||||
freqs := ctx.Input().FromFloats(freqVals, freq, maxGridSize)
|
||||
|
||||
// Create position coordinates (y,x pairs) for the grid
|
||||
// In PyTorch: Equivalent to generating position ids with torch.arange()
|
||||
coords := make([]int32, 0, grid.Height*grid.Width*2)
|
||||
for y := range grid.Height {
|
||||
for x := range grid.Width {
|
||||
coords = append(coords, int32(y), int32(x))
|
||||
}
|
||||
}
|
||||
pos := ctx.Input().FromInts(coords, 2, grid.Width, grid.Height)
|
||||
|
||||
// Reshape and permute positions to match spatial merging pattern
|
||||
pos = pos.Reshape(ctx, 2, grid.Width, merge, grid.Height/merge)
|
||||
pos = pos.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
pos = pos.Reshape(ctx, 2, merge, merge, grid.Width/merge*grid.Height/merge)
|
||||
pos = pos.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
pos = pos.Reshape(ctx, 2*merge*merge*grid.Width/merge*grid.Height/merge)
|
||||
|
||||
// Use position indices to look up corresponding frequency values
|
||||
positionalEmbedding := freqs.Rows(ctx, pos)
|
||||
positionalEmbedding = positionalEmbedding.Reshape(ctx, positionalEmbedding.Dim(0)*2, positionalEmbedding.Dim(1)/2)
|
||||
return positionalEmbedding
|
||||
return index, bounds
|
||||
}
|
||||
|
||||
// newVisionModel creates a new instance of the Qwen vision model
|
||||
|
||||
@@ -19,8 +19,8 @@ type ImageProcessor struct {
|
||||
maxPixels int
|
||||
factor int
|
||||
rescaleFactor float32
|
||||
imageMean []float32
|
||||
imageStd []float32
|
||||
imageMean [3]float32
|
||||
imageStd [3]float32
|
||||
}
|
||||
|
||||
// newImageProcessor creates a new image processor with default values
|
||||
@@ -34,11 +34,11 @@ func newImageProcessor(c fs.Config) ImageProcessor {
|
||||
temporalPatchSize: 2,
|
||||
mergeSize: mergeSize,
|
||||
minPixels: 56 * 56,
|
||||
maxPixels: int(c.Uint("vision.max_pixels", 28*28*1280)), // 1MP limit
|
||||
maxPixels: int(c.Uint("vision.max_pixels", 2<<20)), // 2M limit
|
||||
factor: patchSize * mergeSize,
|
||||
rescaleFactor: 1.0 / 255.0,
|
||||
imageMean: imageproc.ClipDefaultMean[:],
|
||||
imageStd: imageproc.ClipDefaultSTD[:],
|
||||
imageMean: imageproc.ClipDefaultMean,
|
||||
imageStd: imageproc.ClipDefaultSTD,
|
||||
}
|
||||
}
|
||||
|
||||
@@ -90,13 +90,7 @@ func (p *ImageProcessor) ProcessImage(img image.Image) ([]float32, *Grid, error)
|
||||
// Resize image using existing functions
|
||||
resizedImg := imageproc.Resize(img, image.Point{X: resizedWidth, Y: resizedHeight}, imageproc.ResizeBilinear)
|
||||
|
||||
normalizedPixels := imageproc.Normalize(
|
||||
resizedImg,
|
||||
[3]float32{p.imageMean[0], p.imageMean[1], p.imageMean[2]},
|
||||
[3]float32{p.imageStd[0], p.imageStd[1], p.imageStd[2]},
|
||||
true, // rescale
|
||||
true, // channelFirst
|
||||
)
|
||||
normalizedPixels := imageproc.Normalize(resizedImg, p.imageMean, p.imageStd, true, true)
|
||||
|
||||
// Calculate grid dimensions
|
||||
grid := &Grid{
|
||||
|
||||
254
model/parsers/nemotron3nano.go
Normal file
254
model/parsers/nemotron3nano.go
Normal file
@@ -0,0 +1,254 @@
|
||||
package parsers
|
||||
|
||||
import (
|
||||
"regexp"
|
||||
"strings"
|
||||
"unicode"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
type Nemotron3NanoParserState int
|
||||
|
||||
const (
|
||||
Nemotron3NanoCollectingThinking Nemotron3NanoParserState = iota
|
||||
Nemotron3NanoSkipWhitespaceAfterThinking
|
||||
Nemotron3NanoCollectingContent
|
||||
Nemotron3NanoCollectingToolCalls
|
||||
)
|
||||
|
||||
const (
|
||||
nemotronThinkClose = "</think>"
|
||||
nemotronToolCallOpen = "<tool_call>"
|
||||
nemotronToolCallClose = "</tool_call>"
|
||||
)
|
||||
|
||||
type Nemotron3NanoParser struct {
|
||||
state Nemotron3NanoParserState
|
||||
buffer strings.Builder
|
||||
tools []api.Tool
|
||||
}
|
||||
|
||||
func (p *Nemotron3NanoParser) HasToolSupport() bool { return true }
|
||||
func (p *Nemotron3NanoParser) HasThinkingSupport() bool { return true }
|
||||
|
||||
func (p *Nemotron3NanoParser) Init(tools []api.Tool, lastMessage *api.Message, thinkValue *api.ThinkValue) []api.Tool {
|
||||
p.tools = tools
|
||||
|
||||
// thinking is enabled if user requests it
|
||||
thinkingEnabled := thinkValue != nil && thinkValue.Bool()
|
||||
|
||||
prefill := lastMessage != nil && lastMessage.Role == "assistant"
|
||||
|
||||
if !thinkingEnabled {
|
||||
p.state = Nemotron3NanoCollectingContent
|
||||
return tools
|
||||
}
|
||||
|
||||
if prefill && lastMessage.Content != "" {
|
||||
p.state = Nemotron3NanoCollectingContent
|
||||
return tools
|
||||
}
|
||||
|
||||
p.state = Nemotron3NanoCollectingThinking
|
||||
return tools
|
||||
}
|
||||
|
||||
type nemotronEvent interface {
|
||||
isNemotronEvent()
|
||||
}
|
||||
|
||||
type nemotronEventThinkingContent struct {
|
||||
content string
|
||||
}
|
||||
|
||||
type nemotronEventContent struct {
|
||||
content string
|
||||
}
|
||||
|
||||
type nemotronEventToolCall struct {
|
||||
toolCall api.ToolCall
|
||||
}
|
||||
|
||||
func (nemotronEventThinkingContent) isNemotronEvent() {}
|
||||
func (nemotronEventContent) isNemotronEvent() {}
|
||||
func (nemotronEventToolCall) isNemotronEvent() {}
|
||||
|
||||
func (p *Nemotron3NanoParser) Add(s string, done bool) (content string, thinking string, calls []api.ToolCall, err error) {
|
||||
p.buffer.WriteString(s)
|
||||
events := p.parseEvents()
|
||||
|
||||
var toolCalls []api.ToolCall
|
||||
var contentSb strings.Builder
|
||||
var thinkingSb strings.Builder
|
||||
for _, event := range events {
|
||||
switch event := event.(type) {
|
||||
case nemotronEventToolCall:
|
||||
toolCalls = append(toolCalls, event.toolCall)
|
||||
case nemotronEventThinkingContent:
|
||||
thinkingSb.WriteString(event.content)
|
||||
case nemotronEventContent:
|
||||
contentSb.WriteString(event.content)
|
||||
}
|
||||
}
|
||||
|
||||
return contentSb.String(), thinkingSb.String(), toolCalls, nil
|
||||
}
|
||||
|
||||
func (p *Nemotron3NanoParser) parseEvents() []nemotronEvent {
|
||||
var all []nemotronEvent
|
||||
|
||||
keepLooping := true
|
||||
for keepLooping {
|
||||
var events []nemotronEvent
|
||||
events, keepLooping = p.eat()
|
||||
if len(events) > 0 {
|
||||
all = append(all, events...)
|
||||
}
|
||||
}
|
||||
|
||||
return all
|
||||
}
|
||||
|
||||
// emitWithPartialCheck extracts unambiguous content before a potential partial tag
|
||||
func (p *Nemotron3NanoParser) emitWithPartialCheck(bufStr, tag string) (unambiguous, ambiguous string) {
|
||||
if overlapLen := overlap(bufStr, tag); overlapLen > 0 {
|
||||
beforePartialTag := bufStr[:len(bufStr)-overlapLen]
|
||||
trailingLen := trailingWhitespaceLen(beforePartialTag)
|
||||
return bufStr[:len(beforePartialTag)-trailingLen], bufStr[len(beforePartialTag)-trailingLen:]
|
||||
}
|
||||
wsLen := trailingWhitespaceLen(bufStr)
|
||||
return bufStr[:len(bufStr)-wsLen], bufStr[len(bufStr)-wsLen:]
|
||||
}
|
||||
|
||||
func (p *Nemotron3NanoParser) eat() ([]nemotronEvent, bool) {
|
||||
bufStr := p.buffer.String()
|
||||
if bufStr == "" {
|
||||
return nil, false
|
||||
}
|
||||
|
||||
switch p.state {
|
||||
case Nemotron3NanoCollectingThinking:
|
||||
if strings.Contains(bufStr, nemotronThinkClose) {
|
||||
split := strings.SplitN(bufStr, nemotronThinkClose, 2)
|
||||
thinking := strings.TrimRightFunc(split[0], unicode.IsSpace)
|
||||
p.buffer.Reset()
|
||||
remainder := strings.TrimLeftFunc(split[1], unicode.IsSpace)
|
||||
p.buffer.WriteString(remainder)
|
||||
// Transition to whitespace-skipping state if buffer is empty,
|
||||
// otherwise go directly to content collection
|
||||
if remainder == "" {
|
||||
p.state = Nemotron3NanoSkipWhitespaceAfterThinking
|
||||
} else {
|
||||
p.state = Nemotron3NanoCollectingContent
|
||||
}
|
||||
if thinking != "" {
|
||||
return []nemotronEvent{nemotronEventThinkingContent{content: thinking}}, true
|
||||
}
|
||||
return nil, true
|
||||
}
|
||||
unambig, ambig := p.emitWithPartialCheck(bufStr, nemotronThinkClose)
|
||||
p.buffer.Reset()
|
||||
p.buffer.WriteString(ambig)
|
||||
if unambig != "" {
|
||||
return []nemotronEvent{nemotronEventThinkingContent{content: unambig}}, false
|
||||
}
|
||||
return nil, false
|
||||
|
||||
// We only want to skip whitespace between thinking and content
|
||||
case Nemotron3NanoSkipWhitespaceAfterThinking:
|
||||
bufStr = strings.TrimLeftFunc(bufStr, unicode.IsSpace)
|
||||
p.buffer.Reset()
|
||||
p.buffer.WriteString(bufStr)
|
||||
if bufStr == "" {
|
||||
return nil, false
|
||||
}
|
||||
p.state = Nemotron3NanoCollectingContent
|
||||
return nil, true
|
||||
|
||||
case Nemotron3NanoCollectingContent:
|
||||
if strings.Contains(bufStr, nemotronToolCallOpen) {
|
||||
split := strings.SplitN(bufStr, nemotronToolCallOpen, 2)
|
||||
content := strings.TrimRightFunc(split[0], unicode.IsSpace)
|
||||
p.buffer.Reset()
|
||||
p.buffer.WriteString(split[1])
|
||||
p.state = Nemotron3NanoCollectingToolCalls
|
||||
if content != "" {
|
||||
return []nemotronEvent{nemotronEventContent{content: content}}, true
|
||||
}
|
||||
return nil, true
|
||||
}
|
||||
unambig, ambig := p.emitWithPartialCheck(bufStr, nemotronToolCallOpen)
|
||||
p.buffer.Reset()
|
||||
p.buffer.WriteString(ambig)
|
||||
if unambig != "" {
|
||||
return []nemotronEvent{nemotronEventContent{content: unambig}}, false
|
||||
}
|
||||
return nil, false
|
||||
|
||||
case Nemotron3NanoCollectingToolCalls:
|
||||
if strings.Contains(bufStr, nemotronToolCallClose) {
|
||||
split := strings.SplitN(bufStr, nemotronToolCallClose, 2)
|
||||
remaining := strings.TrimLeftFunc(split[1], unicode.IsSpace)
|
||||
p.buffer.Reset()
|
||||
p.buffer.WriteString(remaining)
|
||||
|
||||
var events []nemotronEvent
|
||||
if tc, err := p.parseToolCall(split[0]); err == nil {
|
||||
events = append(events, nemotronEventToolCall{toolCall: tc})
|
||||
}
|
||||
|
||||
if !strings.Contains(remaining, nemotronToolCallOpen) {
|
||||
p.state = Nemotron3NanoCollectingContent
|
||||
}
|
||||
return events, true
|
||||
}
|
||||
return nil, false
|
||||
}
|
||||
|
||||
return nil, false
|
||||
}
|
||||
|
||||
var (
|
||||
nemotronFunctionRegex = regexp.MustCompile(`<function=([^>]+)>`)
|
||||
nemotronParameterRegex = regexp.MustCompile(`<parameter=([^>]+)>\n?([\s\S]*?)\n?</parameter>`)
|
||||
)
|
||||
|
||||
func (p *Nemotron3NanoParser) parseToolCall(content string) (api.ToolCall, error) {
|
||||
toolCall := api.ToolCall{}
|
||||
|
||||
// Extract function name
|
||||
fnMatch := nemotronFunctionRegex.FindStringSubmatch(content)
|
||||
if len(fnMatch) < 2 {
|
||||
return toolCall, nil
|
||||
}
|
||||
toolCall.Function.Name = fnMatch[1]
|
||||
|
||||
// Extract parameters
|
||||
toolCall.Function.Arguments = make(api.ToolCallFunctionArguments)
|
||||
paramMatches := nemotronParameterRegex.FindAllStringSubmatch(content, -1)
|
||||
for _, match := range paramMatches {
|
||||
if len(match) >= 3 {
|
||||
paramName := match[1]
|
||||
paramValue := strings.TrimSpace(match[2])
|
||||
|
||||
// Try to parse as typed value based on tool definition
|
||||
toolCall.Function.Arguments[paramName] = p.parseParamValue(paramName, paramValue)
|
||||
}
|
||||
}
|
||||
|
||||
return toolCall, nil
|
||||
}
|
||||
|
||||
func (p *Nemotron3NanoParser) parseParamValue(paramName string, raw string) any {
|
||||
// Find the matching tool to get parameter type
|
||||
var paramType api.PropertyType
|
||||
for _, tool := range p.tools {
|
||||
if prop, ok := tool.Function.Parameters.Properties[paramName]; ok {
|
||||
paramType = prop.Type
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
return parseValue(raw, paramType)
|
||||
}
|
||||
574
model/parsers/nemotron3nano_test.go
Normal file
574
model/parsers/nemotron3nano_test.go
Normal file
@@ -0,0 +1,574 @@
|
||||
package parsers
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
func TestNemotron3NanoParser(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
input string
|
||||
thinkValue *api.ThinkValue
|
||||
expectedContent string
|
||||
expectedThinking string
|
||||
expectedCalls []api.ToolCall
|
||||
}{
|
||||
{
|
||||
name: "simple content - no thinking",
|
||||
input: "Hello, how can I help you?",
|
||||
thinkValue: nil,
|
||||
expectedContent: "Hello, how can I help you?",
|
||||
},
|
||||
{
|
||||
name: "simple content - thinking disabled",
|
||||
input: "Hello, how can I help you?",
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expectedContent: "Hello, how can I help you?",
|
||||
},
|
||||
{
|
||||
name: "thinking then content",
|
||||
input: "Let me think about this...</think>\nHere is my answer.",
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expectedThinking: "Let me think about this...",
|
||||
expectedContent: "Here is my answer.",
|
||||
},
|
||||
{
|
||||
name: "thinking with newlines",
|
||||
input: "Step 1: Analyze\nStep 2: Process\nStep 3: Conclude</think>\nThe answer is 42.",
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expectedThinking: "Step 1: Analyze\nStep 2: Process\nStep 3: Conclude",
|
||||
expectedContent: "The answer is 42.",
|
||||
},
|
||||
{
|
||||
name: "simple tool call",
|
||||
input: "<tool_call>\n<function=get_weather>\n<parameter=city>\nParis\n</parameter>\n</function>\n</tool_call>",
|
||||
thinkValue: nil,
|
||||
expectedCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: map[string]any{"city": "Paris"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "content then tool call",
|
||||
input: "Let me check the weather.\n<tool_call>\n<function=get_weather>\n<parameter=city>\nNYC\n</parameter>\n</function>\n</tool_call>",
|
||||
thinkValue: nil,
|
||||
expectedContent: "Let me check the weather.",
|
||||
expectedCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: map[string]any{"city": "NYC"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "tool call with multiple parameters",
|
||||
input: "<tool_call>\n<function=book_flight>\n<parameter=from>\nSFO\n</parameter>\n<parameter=to>\nNYC\n</parameter>\n</function>\n</tool_call>",
|
||||
thinkValue: nil,
|
||||
expectedCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "book_flight",
|
||||
Arguments: map[string]any{
|
||||
"from": "SFO",
|
||||
"to": "NYC",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "multiple tool calls",
|
||||
input: "<tool_call>\n<function=get_weather>\n<parameter=city>\nSan Francisco\n</parameter>\n</function>\n</tool_call>\n" +
|
||||
"<tool_call>\n<function=get_weather>\n<parameter=city>\nNew York\n</parameter>\n</function>\n</tool_call>",
|
||||
thinkValue: nil,
|
||||
expectedCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: map[string]any{"city": "San Francisco"},
|
||||
},
|
||||
},
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: map[string]any{"city": "New York"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "thinking then tool call",
|
||||
input: "I should check the weather...</think>\n<tool_call>\n<function=get_weather>\n<parameter=city>\nParis\n</parameter>\n</function>\n</tool_call>",
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expectedThinking: "I should check the weather...",
|
||||
expectedCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: map[string]any{"city": "Paris"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "thinking content then tool call",
|
||||
input: "Let me think...</think>\nI'll check for you.\n<tool_call>\n<function=search>\n<parameter=query>\ntest\n</parameter>\n</function>\n</tool_call>",
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expectedThinking: "Let me think...",
|
||||
expectedContent: "I'll check for you.",
|
||||
expectedCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "search",
|
||||
Arguments: map[string]any{"query": "test"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "tool call with multiline parameter value",
|
||||
input: "<tool_call>\n<function=create_note>\n<parameter=content>\nLine 1\nLine 2\nLine 3\n</parameter>\n</function>\n</tool_call>",
|
||||
thinkValue: nil,
|
||||
expectedCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "create_note",
|
||||
Arguments: map[string]any{"content": "Line 1\nLine 2\nLine 3"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "empty thinking block - immediate close",
|
||||
input: "</think>\nHere is my answer.",
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expectedThinking: "",
|
||||
expectedContent: "Here is my answer.",
|
||||
},
|
||||
{
|
||||
name: "thinking disabled but model outputs think close anyway",
|
||||
input: "</think>\nSome content after spurious tag.",
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expectedContent: "</think>\nSome content after spurious tag.",
|
||||
},
|
||||
{
|
||||
name: "tool call with no function name - returns empty tool call",
|
||||
input: "<tool_call>\n<function=>\n</function>\n</tool_call>",
|
||||
thinkValue: nil,
|
||||
expectedCalls: []api.ToolCall{{Function: api.ToolCallFunction{Name: "", Arguments: nil}}},
|
||||
},
|
||||
{
|
||||
name: "content with newlines preserved",
|
||||
input: "Line 1\n\nLine 2\n\n\nLine 3",
|
||||
thinkValue: nil,
|
||||
expectedContent: "Line 1\n\nLine 2\n\n\nLine 3",
|
||||
},
|
||||
{
|
||||
name: "thinking with only whitespace after close tag",
|
||||
input: "My thoughts...</think> \n\t\n Content here.",
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expectedThinking: "My thoughts...",
|
||||
expectedContent: "Content here.",
|
||||
},
|
||||
{
|
||||
name: "unicode content",
|
||||
input: "Hello 世界! 🌍 Ñoño",
|
||||
thinkValue: nil,
|
||||
expectedContent: "Hello 世界! 🌍 Ñoño",
|
||||
},
|
||||
{
|
||||
name: "tool call with numeric parameter",
|
||||
input: "<tool_call>\n<function=set_temp>\n<parameter=value>\n42\n</parameter>\n</function>\n</tool_call>",
|
||||
thinkValue: nil,
|
||||
expectedCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "set_temp",
|
||||
Arguments: map[string]any{"value": "42"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
p := &Nemotron3NanoParser{}
|
||||
p.Init(nil, nil, tt.thinkValue)
|
||||
|
||||
content, thinking, calls, err := p.Add(tt.input, false)
|
||||
if err != nil {
|
||||
t.Fatalf("unexpected error: %v", err)
|
||||
}
|
||||
|
||||
// Drain remaining content
|
||||
finalContent, finalThinking, finalCalls, err := p.Add("", true)
|
||||
if err != nil {
|
||||
t.Fatalf("unexpected error on done: %v", err)
|
||||
}
|
||||
content += finalContent
|
||||
thinking += finalThinking
|
||||
calls = append(calls, finalCalls...)
|
||||
|
||||
if diff := cmp.Diff(content, tt.expectedContent); diff != "" {
|
||||
t.Errorf("content mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
if diff := cmp.Diff(thinking, tt.expectedThinking); diff != "" {
|
||||
t.Errorf("thinking mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
if diff := cmp.Diff(calls, tt.expectedCalls); diff != "" {
|
||||
t.Errorf("calls mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestNemotron3NanoParser_Streaming(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
chunks []string
|
||||
thinkValue *api.ThinkValue
|
||||
expectedContent string
|
||||
expectedThinking string
|
||||
expectedCalls []api.ToolCall
|
||||
}{
|
||||
{
|
||||
name: "streaming content character by character",
|
||||
chunks: []string{"H", "e", "l", "l", "o", ",", " ", "w", "o", "r", "l", "d", "!"},
|
||||
thinkValue: nil,
|
||||
expectedContent: "Hello, world!",
|
||||
},
|
||||
{
|
||||
name: "streaming content small tokens",
|
||||
chunks: []string{"Hel", "lo", ", ", "how ", "can", " I", " help", " you", " today", "?"},
|
||||
thinkValue: nil,
|
||||
expectedContent: "Hello, how can I help you today?",
|
||||
},
|
||||
{
|
||||
name: "streaming thinking then content - granular",
|
||||
chunks: []string{"Let", " me", " th", "ink", " about", " this", "...", "<", "/", "think", ">", "\n", "Here", " is", " my", " answer", "."},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expectedThinking: "Let me think about this...",
|
||||
expectedContent: "Here is my answer.",
|
||||
},
|
||||
{
|
||||
name: "streaming thinking with newlines - granular",
|
||||
chunks: []string{"Step", " 1", ":", " Ana", "lyze\n", "Step", " 2", ":", " Pro", "cess", "</", "thi", "nk>", "\n", "The", " ans", "wer."},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expectedThinking: "Step 1: Analyze\nStep 2: Process",
|
||||
expectedContent: "The answer.",
|
||||
},
|
||||
{
|
||||
name: "streaming tool call - highly granular",
|
||||
chunks: []string{"<", "tool", "_", "call", ">", "\n", "<", "func", "tion", "=", "get", "_", "weather", ">", "\n", "<", "param", "eter", "=", "city", ">", "\n", "Par", "is", "\n", "</", "param", "eter", ">", "\n", "</", "func", "tion", ">", "\n", "</", "tool", "_", "call", ">"},
|
||||
thinkValue: nil,
|
||||
expectedCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: map[string]any{"city": "Paris"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "streaming content then tool call - granular",
|
||||
chunks: []string{"Let", " me", " check", " the", " weather", ".", "\n<", "tool_call", ">", "\n", "<function=", "get_weather", ">", "\n", "<parameter=", "city", ">", "\n", "NYC", "\n", "</parameter>", "\n", "</function>", "\n", "</tool_call>"},
|
||||
thinkValue: nil,
|
||||
expectedContent: "Let me check the weather.",
|
||||
expectedCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: map[string]any{"city": "NYC"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "tool call tag split character by character",
|
||||
chunks: []string{"<", "t", "o", "o", "l", "_", "c", "a", "l", "l", ">", "\n", "<", "f", "u", "n", "c", "t", "i", "o", "n", "=", "t", "e", "s", "t", ">", "\n", "<", "/", "f", "u", "n", "c", "t", "i", "o", "n", ">", "\n", "<", "/", "t", "o", "o", "l", "_", "c", "a", "l", "l", ">"},
|
||||
expectedCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "test",
|
||||
Arguments: map[string]any{},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "thinking close tag split character by character",
|
||||
chunks: []string{"I", "'", "m", " ", "t", "h", "i", "n", "k", "i", "n", "g", ".", ".", ".", "<", "/", "t", "h", "i", "n", "k", ">", "\n", "D", "o", "n", "e", "!"},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expectedThinking: "I'm thinking...",
|
||||
expectedContent: "Done!",
|
||||
},
|
||||
{
|
||||
name: "multiple whitespace after think tag - separate chunks",
|
||||
chunks: []string{"Thinking...", "</think>", "\n", "\n", " ", "Content here."},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expectedThinking: "Thinking...",
|
||||
expectedContent: "Content here.",
|
||||
},
|
||||
{
|
||||
name: "tool call with multiple parameters - streaming",
|
||||
chunks: []string{"<tool_", "call>\n", "<function", "=book_", "flight>", "\n<para", "meter=", "from>\n", "SFO\n", "</param", "eter>", "\n<param", "eter=to", ">\nNYC", "\n</para", "meter>", "\n</func", "tion>\n", "</tool_", "call>"},
|
||||
thinkValue: nil,
|
||||
expectedCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "book_flight",
|
||||
Arguments: map[string]any{
|
||||
"from": "SFO",
|
||||
"to": "NYC",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "thinking then content then tool call - streaming",
|
||||
chunks: []string{"Ana", "lyzing", " your", " request", "...", "</", "think", ">\n", "I'll", " check", " that", " for", " you", ".", "\n", "<tool", "_call", ">\n", "<function", "=search", ">\n", "<parameter", "=query", ">\n", "test", " query", "\n</", "parameter", ">\n", "</function", ">\n", "</tool", "_call", ">"},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expectedThinking: "Analyzing your request...",
|
||||
expectedContent: "I'll check that for you.",
|
||||
expectedCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "search",
|
||||
Arguments: map[string]any{"query": "test query"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "multiple tool calls - streaming",
|
||||
chunks: []string{
|
||||
"<tool_call>", "\n", "<function=", "get_weather>", "\n",
|
||||
"<parameter=", "city>\n", "San Fran", "cisco\n", "</parameter>", "\n",
|
||||
"</function>", "\n", "</tool_call>", "\n",
|
||||
"<tool_", "call>\n", "<function", "=get_weather", ">\n",
|
||||
"<param", "eter=city", ">\nNew", " York\n", "</parameter>\n",
|
||||
"</function>\n", "</tool_call>",
|
||||
},
|
||||
thinkValue: nil,
|
||||
expectedCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: map[string]any{"city": "San Francisco"},
|
||||
},
|
||||
},
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: map[string]any{"city": "New York"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "tool call with multiline parameter - streaming",
|
||||
chunks: []string{"<tool_call>\n", "<function=", "create_note>\n", "<parameter=", "content>\n", "Line 1", "\nLine", " 2\n", "Line 3", "\n</parameter>\n", "</function>\n", "</tool_call>"},
|
||||
thinkValue: nil,
|
||||
expectedCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "create_note",
|
||||
Arguments: map[string]any{"content": "Line 1\nLine 2\nLine 3"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "empty thinking block",
|
||||
chunks: []string{"</think>", "\n", "Just content."},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expectedThinking: "",
|
||||
expectedContent: "Just content.",
|
||||
},
|
||||
{
|
||||
name: "empty input chunks interspersed",
|
||||
chunks: []string{"Hello", "", " ", "", "world", "", "!"},
|
||||
thinkValue: nil,
|
||||
expectedContent: "Hello world!",
|
||||
},
|
||||
{
|
||||
name: "tool call immediately after think close - no content",
|
||||
chunks: []string{"Analyzing...", "</think>", "\n", "<tool_call>", "\n<function=test>\n</function>\n", "</tool_call>"},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expectedThinking: "Analyzing...",
|
||||
expectedCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "test",
|
||||
Arguments: map[string]any{},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "tool call with empty parameter value",
|
||||
chunks: []string{"<tool_call>\n<function=test>\n<parameter=name>\n", "\n</parameter>\n</function>\n</tool_call>"},
|
||||
thinkValue: nil,
|
||||
expectedCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "test",
|
||||
Arguments: map[string]any{"name": ""},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "partial tool call tag at end - buffered",
|
||||
chunks: []string{"Here's some content", "<tool"},
|
||||
thinkValue: nil,
|
||||
expectedContent: "Here's some content",
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
p := &Nemotron3NanoParser{}
|
||||
p.Init(nil, nil, tt.thinkValue)
|
||||
|
||||
var allContent string
|
||||
var allThinking string
|
||||
var allCalls []api.ToolCall
|
||||
|
||||
for _, chunk := range tt.chunks {
|
||||
content, thinking, calls, err := p.Add(chunk, false)
|
||||
if err != nil {
|
||||
t.Fatalf("unexpected error: %v", err)
|
||||
}
|
||||
allContent += content
|
||||
allThinking += thinking
|
||||
allCalls = append(allCalls, calls...)
|
||||
}
|
||||
|
||||
// Drain
|
||||
content, thinking, calls, err := p.Add("", true)
|
||||
if err != nil {
|
||||
t.Fatalf("unexpected error on done: %v", err)
|
||||
}
|
||||
allContent += content
|
||||
allThinking += thinking
|
||||
allCalls = append(allCalls, calls...)
|
||||
|
||||
if diff := cmp.Diff(allContent, tt.expectedContent); diff != "" {
|
||||
t.Errorf("content mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
if diff := cmp.Diff(allThinking, tt.expectedThinking); diff != "" {
|
||||
t.Errorf("thinking mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
if diff := cmp.Diff(allCalls, tt.expectedCalls); diff != "" {
|
||||
t.Errorf("calls mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestNemotron3NanoParser_HasToolSupport(t *testing.T) {
|
||||
p := &Nemotron3NanoParser{}
|
||||
if !p.HasToolSupport() {
|
||||
t.Error("expected HasToolSupport to return true")
|
||||
}
|
||||
}
|
||||
|
||||
func TestNemotron3NanoParser_HasThinkingSupport(t *testing.T) {
|
||||
p := &Nemotron3NanoParser{}
|
||||
if !p.HasThinkingSupport() {
|
||||
t.Error("expected HasThinkingSupport to return true")
|
||||
}
|
||||
}
|
||||
|
||||
func TestNemotron3NanoParser_Init(t *testing.T) {
|
||||
t.Run("starts in thinking state when enabled", func(t *testing.T) {
|
||||
p := &Nemotron3NanoParser{}
|
||||
p.Init(nil, nil, &api.ThinkValue{Value: true})
|
||||
if p.state != Nemotron3NanoCollectingThinking {
|
||||
t.Errorf("expected state Nemotron3NanoCollectingThinking, got %v", p.state)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("starts in content state when thinking disabled", func(t *testing.T) {
|
||||
p := &Nemotron3NanoParser{}
|
||||
p.Init(nil, nil, &api.ThinkValue{Value: false})
|
||||
if p.state != Nemotron3NanoCollectingContent {
|
||||
t.Errorf("expected state Nemotron3NanoCollectingContent, got %v", p.state)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("starts in content state when nil thinkValue", func(t *testing.T) {
|
||||
p := &Nemotron3NanoParser{}
|
||||
p.Init(nil, nil, nil)
|
||||
if p.state != Nemotron3NanoCollectingContent {
|
||||
t.Errorf("expected state Nemotron3NanoCollectingContent, got %v", p.state)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("starts in content state with assistant prefill", func(t *testing.T) {
|
||||
p := &Nemotron3NanoParser{}
|
||||
prefill := &api.Message{Role: "assistant", Content: "Starting..."}
|
||||
p.Init(nil, prefill, &api.ThinkValue{Value: true})
|
||||
if p.state != Nemotron3NanoCollectingContent {
|
||||
t.Errorf("expected state Nemotron3NanoCollectingContent, got %v", p.state)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
func TestNemotron3NanoParser_WithTools(t *testing.T) {
|
||||
tools := []api.Tool{
|
||||
{
|
||||
Type: "function",
|
||||
Function: api.ToolFunction{
|
||||
Name: "get_weather",
|
||||
Parameters: api.ToolFunctionParameters{
|
||||
Type: "object",
|
||||
Properties: map[string]api.ToolProperty{
|
||||
"city": {Type: api.PropertyType{"string"}},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
p := &Nemotron3NanoParser{}
|
||||
returnedTools := p.Init(tools, nil, nil)
|
||||
|
||||
if diff := cmp.Diff(returnedTools, tools); diff != "" {
|
||||
t.Errorf("tools mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
// Parse a tool call
|
||||
input := "<tool_call>\n<function=get_weather>\n<parameter=city>\nParis\n</parameter>\n</function>\n</tool_call>"
|
||||
_, _, calls, err := p.Add(input, true)
|
||||
if err != nil {
|
||||
t.Fatalf("unexpected error: %v", err)
|
||||
}
|
||||
|
||||
expectedCalls := []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: map[string]any{"city": "Paris"},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(calls, expectedCalls); diff != "" {
|
||||
t.Errorf("calls mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
}
|
||||
@@ -62,6 +62,8 @@ func ParserForName(name string) Parser {
|
||||
return &Olmo3Parser{}
|
||||
case "olmo3-think":
|
||||
return &Olmo3ThinkParser{}
|
||||
case "nemotron-3-nano":
|
||||
return &Nemotron3NanoParser{}
|
||||
default:
|
||||
return nil
|
||||
}
|
||||
|
||||
146
model/renderers/deepseek3.go
Normal file
146
model/renderers/deepseek3.go
Normal file
@@ -0,0 +1,146 @@
|
||||
package renderers
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
type DeepSeek3Variant int
|
||||
|
||||
const (
|
||||
Deepseek31 DeepSeek3Variant = iota
|
||||
)
|
||||
|
||||
type DeepSeek3Renderer struct {
|
||||
IsThinking bool
|
||||
Variant DeepSeek3Variant
|
||||
}
|
||||
|
||||
func (r *DeepSeek3Renderer) Render(messages []api.Message, tools []api.Tool, thinkValue *api.ThinkValue) (string, error) {
|
||||
var sb strings.Builder
|
||||
|
||||
// thinking is enabled: model must support it AND user must request it
|
||||
thinking := r.IsThinking && (thinkValue != nil && thinkValue.Bool())
|
||||
|
||||
// extract system messages first
|
||||
var systemPrompt strings.Builder
|
||||
isFirstSystemPrompt := true
|
||||
|
||||
for _, message := range messages {
|
||||
if message.Role == "system" {
|
||||
if isFirstSystemPrompt {
|
||||
systemPrompt.WriteString(message.Content)
|
||||
isFirstSystemPrompt = false
|
||||
} else {
|
||||
systemPrompt.WriteString("\n\n" + message.Content)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
sb.WriteString("<|begin▁of▁sentence|>")
|
||||
sb.WriteString(systemPrompt.String())
|
||||
|
||||
// tool definitions
|
||||
if len(tools) > 0 {
|
||||
sb.WriteString("\n\n## Tools\nYou have access to the following tools:\n")
|
||||
|
||||
for _, tool := range tools {
|
||||
sb.WriteString("\n### " + tool.Function.Name)
|
||||
sb.WriteString("\nDescription: " + tool.Function.Description)
|
||||
|
||||
// parameters as JSON
|
||||
parametersJSON, err := json.Marshal(tool.Function.Parameters)
|
||||
if err == nil {
|
||||
sb.WriteString("\n\nParameters: " + string(parametersJSON) + "\n")
|
||||
}
|
||||
}
|
||||
|
||||
// usage instructions
|
||||
sb.WriteString("\nIMPORTANT: ALWAYS adhere to this exact format for tool use:\n")
|
||||
sb.WriteString("<|tool▁calls▁begin|><|tool▁call▁begin|>tool_call_name<|tool▁sep|>tool_call_arguments<|tool▁call▁end|>{{additional_tool_calls}}<|tool▁calls▁end|>\n\n")
|
||||
sb.WriteString("Where:\n\n")
|
||||
sb.WriteString("- `tool_call_name` must be an exact match to one of the available tools\n")
|
||||
sb.WriteString("- `tool_call_arguments` must be valid JSON that strictly follows the tool's Parameters Schema\n")
|
||||
sb.WriteString("- For multiple tool calls, chain them directly without separators or spaces\n")
|
||||
}
|
||||
|
||||
// state tracking
|
||||
isTool := false
|
||||
isLastUser := false
|
||||
|
||||
for _, message := range messages {
|
||||
switch message.Role {
|
||||
case "user":
|
||||
isTool = false
|
||||
isLastUser = true
|
||||
sb.WriteString("<|User|>" + message.Content)
|
||||
|
||||
case "assistant":
|
||||
if len(message.ToolCalls) > 0 {
|
||||
if isLastUser {
|
||||
sb.WriteString("<|Assistant|></think>")
|
||||
}
|
||||
isLastUser = false
|
||||
isTool = false
|
||||
|
||||
if message.Content != "" {
|
||||
sb.WriteString(message.Content)
|
||||
}
|
||||
|
||||
sb.WriteString("<|tool▁calls▁begin|>")
|
||||
for _, toolCall := range message.ToolCalls {
|
||||
sb.WriteString("<|tool▁call▁begin|>" + toolCall.Function.Name + "<|tool▁sep|>")
|
||||
|
||||
argsJSON, _ := json.Marshal(toolCall.Function.Arguments)
|
||||
sb.WriteString(string(argsJSON))
|
||||
sb.WriteString("<|tool▁call▁end|>")
|
||||
}
|
||||
sb.WriteString("<|tool▁calls▁end|><|end▁of▁sentence|>")
|
||||
} else {
|
||||
if isLastUser {
|
||||
sb.WriteString("<|Assistant|>")
|
||||
// message["prefix"] is defined and message["prefix"] and thinking
|
||||
// message.Thinking != "" represents message["prefix"] being defined
|
||||
if message.Thinking != "" && thinking {
|
||||
sb.WriteString("<think>")
|
||||
} else {
|
||||
sb.WriteString("</think>")
|
||||
}
|
||||
}
|
||||
isLastUser = false
|
||||
|
||||
content := message.Content
|
||||
if isTool {
|
||||
sb.WriteString(content + "<|end▁of▁sentence|>")
|
||||
isTool = false
|
||||
} else {
|
||||
if strings.Contains(content, "</think>") {
|
||||
parts := strings.SplitN(content, "</think>", 2)
|
||||
if len(parts) > 1 {
|
||||
content = parts[1]
|
||||
}
|
||||
}
|
||||
sb.WriteString(content + "<|end▁of▁sentence|>")
|
||||
}
|
||||
}
|
||||
|
||||
case "tool":
|
||||
isLastUser = false
|
||||
isTool = true
|
||||
sb.WriteString("<|tool▁output▁begin|>" + message.Content + "<|tool▁output▁end|>")
|
||||
}
|
||||
}
|
||||
|
||||
if isLastUser && !isTool {
|
||||
sb.WriteString("<|Assistant|>")
|
||||
if thinking {
|
||||
sb.WriteString("<think>")
|
||||
} else {
|
||||
sb.WriteString("</think>")
|
||||
}
|
||||
}
|
||||
|
||||
return sb.String(), nil
|
||||
}
|
||||
976
model/renderers/deepseek3_test.go
Normal file
976
model/renderers/deepseek3_test.go
Normal file
@@ -0,0 +1,976 @@
|
||||
package renderers
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
func TestDeepSeekRenderer(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
messages []api.Message
|
||||
tools []api.Tool
|
||||
thinkValue *api.ThinkValue
|
||||
expected string
|
||||
}{
|
||||
{
|
||||
name: "basic user message",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "Hello, how are you?"},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|><|User|>Hello, how are you?<|Assistant|></think>`,
|
||||
},
|
||||
{
|
||||
name: "basic with system message",
|
||||
messages: []api.Message{
|
||||
{Role: "system", Content: "You are a helpful assistant."},
|
||||
{Role: "user", Content: "Hello, how are you?"},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|>You are a helpful assistant.<|User|>Hello, how are you?<|Assistant|></think>`,
|
||||
},
|
||||
{
|
||||
name: "multiple system messages",
|
||||
messages: []api.Message{
|
||||
{Role: "system", Content: "First instruction"},
|
||||
{Role: "system", Content: "Second instruction"},
|
||||
{Role: "user", Content: "Hello"},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|>First instruction
|
||||
|
||||
Second instruction<|User|>Hello<|Assistant|></think>`,
|
||||
},
|
||||
{
|
||||
name: "thinking enabled",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "Hello, how are you?"},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expected: `<|begin▁of▁sentence|><|User|>Hello, how are you?<|Assistant|><think>`,
|
||||
},
|
||||
{
|
||||
name: "thinking enabled with system",
|
||||
messages: []api.Message{
|
||||
{Role: "system", Content: "You are a helpful assistant."},
|
||||
{Role: "user", Content: "Hello, how are you?"},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expected: `<|begin▁of▁sentence|>You are a helpful assistant.<|User|>Hello, how are you?<|Assistant|><think>`,
|
||||
},
|
||||
{
|
||||
name: "conversation with assistant response",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "What is the capital of France?"},
|
||||
{Role: "assistant", Content: "The capital of France is Paris."},
|
||||
{Role: "user", Content: "Fantastic!"},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|><|User|>What is the capital of France?<|Assistant|></think>The capital of France is Paris.<|end▁of▁sentence|><|User|>Fantastic!<|Assistant|></think>`,
|
||||
},
|
||||
{
|
||||
name: "assistant with tool calls",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "What's the weather?"},
|
||||
{
|
||||
Role: "assistant",
|
||||
ToolCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: api.ToolCallFunctionArguments{
|
||||
"location": "Paris",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|><|User|>What's the weather?<|Assistant|></think><|tool▁calls▁begin|><|tool▁call▁begin|>get_weather<|tool▁sep|>{"location":"Paris"}<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|>`,
|
||||
},
|
||||
{
|
||||
name: "assistant with content and tool calls",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "What's the weather in Paris?"},
|
||||
{
|
||||
Role: "assistant",
|
||||
Content: "I'll check the weather for you.",
|
||||
ToolCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: api.ToolCallFunctionArguments{
|
||||
"location": "Paris",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|><|User|>What's the weather in Paris?<|Assistant|></think>I'll check the weather for you.<|tool▁calls▁begin|><|tool▁call▁begin|>get_weather<|tool▁sep|>{"location":"Paris"}<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|>`,
|
||||
},
|
||||
{
|
||||
name: "tool response",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "What's the weather?"},
|
||||
{
|
||||
Role: "assistant",
|
||||
ToolCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: api.ToolCallFunctionArguments{
|
||||
"location": "Paris",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{Role: "tool", Content: "Temperature: 22°C, Sunny"},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|><|User|>What's the weather?<|Assistant|></think><|tool▁calls▁begin|><|tool▁call▁begin|>get_weather<|tool▁sep|>{"location":"Paris"}<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|><|tool▁output▁begin|>Temperature: 22°C, Sunny<|tool▁output▁end|>`,
|
||||
},
|
||||
{
|
||||
name: "multiple tool calls",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "Get weather for Paris and London"},
|
||||
{
|
||||
Role: "assistant",
|
||||
ToolCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: api.ToolCallFunctionArguments{
|
||||
"location": "Paris",
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: api.ToolCallFunctionArguments{
|
||||
"location": "London",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{Role: "tool", Content: "Paris: 22°C, Sunny"},
|
||||
{Role: "tool", Content: "London: 18°C, Cloudy"},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|><|User|>Get weather for Paris and London<|Assistant|></think><|tool▁calls▁begin|><|tool▁call▁begin|>get_weather<|tool▁sep|>{"location":"Paris"}<|tool▁call▁end|><|tool▁call▁begin|>get_weather<|tool▁sep|>{"location":"London"}<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|><|tool▁output▁begin|>Paris: 22°C, Sunny<|tool▁output▁end|><|tool▁output▁begin|>London: 18°C, Cloudy<|tool▁output▁end|>`,
|
||||
},
|
||||
{
|
||||
name: "content with </think> tag removal",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "Think about this"},
|
||||
{Role: "assistant", Content: "I'm thinking about this.</think>The answer is 42."},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|><|User|>Think about this<|Assistant|></think>The answer is 42.<|end▁of▁sentence|>`,
|
||||
},
|
||||
{
|
||||
name: "empty system message",
|
||||
messages: []api.Message{
|
||||
{Role: "system", Content: ""},
|
||||
{Role: "user", Content: "Hello"},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|><|User|>Hello<|Assistant|></think>`,
|
||||
},
|
||||
{
|
||||
name: "empty assistant content",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "Hello"},
|
||||
{Role: "assistant", Content: ""},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|><|User|>Hello<|Assistant|></think><|end▁of▁sentence|>`,
|
||||
},
|
||||
{
|
||||
name: "special characters",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "What about <|special|> tokens and \"quotes\"?"},
|
||||
{Role: "assistant", Content: "They're handled normally."},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|><|User|>What about <|special|> tokens and "quotes"?<|Assistant|></think>They're handled normally.<|end▁of▁sentence|>`,
|
||||
},
|
||||
{
|
||||
name: "tool calls with null content",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "Get weather"},
|
||||
{
|
||||
Role: "assistant",
|
||||
ToolCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: api.ToolCallFunctionArguments{
|
||||
"location": "Paris",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|><|User|>Get weather<|Assistant|></think><|tool▁calls▁begin|><|tool▁call▁begin|>get_weather<|tool▁sep|>{"location":"Paris"}<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|>`,
|
||||
},
|
||||
{
|
||||
name: "assistant after tool context",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "Process data"},
|
||||
{
|
||||
Role: "assistant",
|
||||
ToolCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "process",
|
||||
Arguments: api.ToolCallFunctionArguments{
|
||||
"data": "test",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{Role: "tool", Content: "Success"},
|
||||
{Role: "assistant", Content: "Done"},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|><|User|>Process data<|Assistant|></think><|tool▁calls▁begin|><|tool▁call▁begin|>process<|tool▁sep|>{"data":"test"}<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|><|tool▁output▁begin|>Success<|tool▁output▁end|>Done<|end▁of▁sentence|>`,
|
||||
},
|
||||
{
|
||||
name: "no messages",
|
||||
messages: []api.Message{},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|>`,
|
||||
},
|
||||
{
|
||||
name: "only system messages",
|
||||
messages: []api.Message{
|
||||
{Role: "system", Content: "System instruction"},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|>System instruction`,
|
||||
},
|
||||
{
|
||||
name: "multiple think tags in content",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "Complex question"},
|
||||
{Role: "assistant", Content: "First thought</think>Second thought</think>Final answer"},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|><|User|>Complex question<|Assistant|></think>Second thought</think>Final answer<|end▁of▁sentence|>`,
|
||||
},
|
||||
{
|
||||
name: "thinking enabled after tool call - should render thinking",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "What's the weather in Paris?"},
|
||||
{
|
||||
Role: "assistant",
|
||||
ToolCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: api.ToolCallFunctionArguments{
|
||||
"location": "Paris",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{Role: "tool", Content: "Temperature: 22°C, Sunny"},
|
||||
{Role: "assistant", Content: "Based on the weather data, it's sunny in Paris."},
|
||||
{Role: "user", Content: "Now tell me about London weather too."},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expected: `<|begin▁of▁sentence|><|User|>What's the weather in Paris?<|Assistant|></think><|tool▁calls▁begin|><|tool▁call▁begin|>get_weather<|tool▁sep|>{"location":"Paris"}<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|><|tool▁output▁begin|>Temperature: 22°C, Sunny<|tool▁output▁end|>Based on the weather data, it's sunny in Paris.<|end▁of▁sentence|><|User|>Now tell me about London weather too.<|Assistant|><think>`,
|
||||
},
|
||||
{
|
||||
name: "thinking disabled after tool call - should not render thinking",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "What's the weather in Paris?"},
|
||||
{
|
||||
Role: "assistant",
|
||||
ToolCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: api.ToolCallFunctionArguments{
|
||||
"location": "Paris",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{Role: "tool", Content: "Temperature: 22°C, Sunny"},
|
||||
{Role: "assistant", Content: "Based on the weather data, it's sunny in Paris."},
|
||||
{Role: "user", Content: "Now tell me about London weather too."},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|><|User|>What's the weather in Paris?<|Assistant|></think><|tool▁calls▁begin|><|tool▁call▁begin|>get_weather<|tool▁sep|>{"location":"Paris"}<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|><|tool▁output▁begin|>Temperature: 22°C, Sunny<|tool▁output▁end|>Based on the weather data, it's sunny in Paris.<|end▁of▁sentence|><|User|>Now tell me about London weather too.<|Assistant|></think>`,
|
||||
},
|
||||
{
|
||||
name: "thinking enabled but messages without thinking content",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "First question about cats"},
|
||||
{Role: "assistant", Content: "Cats are wonderful pets."},
|
||||
{Role: "user", Content: "What about dogs?"},
|
||||
{Role: "assistant", Content: "Dogs are loyal companions."},
|
||||
{Role: "user", Content: "Final question about birds"},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expected: `<|begin▁of▁sentence|><|User|>First question about cats<|Assistant|></think>Cats are wonderful pets.<|end▁of▁sentence|><|User|>What about dogs?<|Assistant|></think>Dogs are loyal companions.<|end▁of▁sentence|><|User|>Final question about birds<|Assistant|><think>`,
|
||||
},
|
||||
{
|
||||
name: "thinking disabled for all assistant responses",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "First question about cats"},
|
||||
{Role: "assistant", Content: "Cats are wonderful pets."},
|
||||
{Role: "user", Content: "What about dogs?"},
|
||||
{Role: "assistant", Content: "Dogs are loyal companions."},
|
||||
{Role: "user", Content: "Final question about birds"},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|><|User|>First question about cats<|Assistant|></think>Cats are wonderful pets.<|end▁of▁sentence|><|User|>What about dogs?<|Assistant|></think>Dogs are loyal companions.<|end▁of▁sentence|><|User|>Final question about birds<|Assistant|></think>`,
|
||||
},
|
||||
{
|
||||
name: "complex conversation with tool calls and thinking enabled",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "Tell me about the weather"},
|
||||
{Role: "assistant", Content: "I'll check the weather for you."},
|
||||
{Role: "user", Content: "Actually, get Paris weather specifically"},
|
||||
{
|
||||
Role: "assistant",
|
||||
ToolCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: api.ToolCallFunctionArguments{
|
||||
"location": "Paris",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{Role: "tool", Content: "Paris: 22°C, Sunny"},
|
||||
{Role: "assistant", Content: "The weather in Paris is great!"},
|
||||
{Role: "user", Content: "What about the forecast for tomorrow?"},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expected: `<|begin▁of▁sentence|><|User|>Tell me about the weather<|Assistant|></think>I'll check the weather for you.<|end▁of▁sentence|><|User|>Actually, get Paris weather specifically<|Assistant|></think><|tool▁calls▁begin|><|tool▁call▁begin|>get_weather<|tool▁sep|>{"location":"Paris"}<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|><|tool▁output▁begin|>Paris: 22°C, Sunny<|tool▁output▁end|>The weather in Paris is great!<|end▁of▁sentence|><|User|>What about the forecast for tomorrow?<|Assistant|><think>`,
|
||||
},
|
||||
{
|
||||
name: "tool call without subsequent user message - no thinking",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "Get the weather"},
|
||||
{
|
||||
Role: "assistant",
|
||||
ToolCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: api.ToolCallFunctionArguments{
|
||||
"location": "Paris",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{Role: "tool", Content: "22°C, Sunny"},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expected: `<|begin▁of▁sentence|><|User|>Get the weather<|Assistant|></think><|tool▁calls▁begin|><|tool▁call▁begin|>get_weather<|tool▁sep|>{"location":"Paris"}<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|><|tool▁output▁begin|>22°C, Sunny<|tool▁output▁end|>`,
|
||||
},
|
||||
{
|
||||
name: "messages with thinking content, no thinking in render",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "Solve this math problem: 15 * 23"},
|
||||
{
|
||||
Role: "assistant",
|
||||
Content: "The answer is 345.",
|
||||
Thinking: "Let me calculate 15 * 23. I can break this down: 15 * 20 = 300, and 15 * 3 = 45, so 300 + 45 = 345.",
|
||||
},
|
||||
{Role: "user", Content: "What about 12 * 34?"},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|><|User|>Solve this math problem: 15 * 23<|Assistant|></think>The answer is 345.<|end▁of▁sentence|><|User|>What about 12 * 34?<|Assistant|></think>`,
|
||||
},
|
||||
{
|
||||
name: "conversation with mix of thinking and no thinking",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "Explain quantum physics"},
|
||||
{
|
||||
Role: "assistant",
|
||||
Content: "Quantum physics is the study of matter and energy at the smallest scales.",
|
||||
Thinking: "This is a complex topic. I should start with basic concepts and avoid overwhelming technical details.",
|
||||
},
|
||||
{Role: "user", Content: "What about photons?"},
|
||||
{
|
||||
Role: "assistant",
|
||||
Content: "Photons are particles of light with no mass.",
|
||||
},
|
||||
{Role: "user", Content: "How do they interact with matter?"},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expected: `<|begin▁of▁sentence|><|User|>Explain quantum physics<|Assistant|><think>Quantum physics is the study of matter and energy at the smallest scales.<|end▁of▁sentence|><|User|>What about photons?<|Assistant|></think>Photons are particles of light with no mass.<|end▁of▁sentence|><|User|>How do they interact with matter?<|Assistant|><think>`,
|
||||
},
|
||||
{
|
||||
name: "tool call with thinking content in response",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "What's the weather in Tokyo and New York?"},
|
||||
{
|
||||
Role: "assistant",
|
||||
Content: "I'll check the weather for both cities.",
|
||||
Thinking: "I need to call the weather API for two different cities. Let me make parallel calls.",
|
||||
ToolCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: api.ToolCallFunctionArguments{
|
||||
"location": "Tokyo",
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: api.ToolCallFunctionArguments{
|
||||
"location": "New York",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{Role: "tool", Content: "Tokyo: 18°C, Cloudy"},
|
||||
{Role: "tool", Content: "New York: 22°C, Sunny"},
|
||||
{
|
||||
Role: "assistant",
|
||||
Content: "Based on the weather data: Tokyo is cloudy at 18°C, while New York is sunny at 22°C.",
|
||||
Thinking: "The data shows a nice contrast between the two cities. Tokyo is cooler and overcast while NYC has better weather.",
|
||||
},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expected: `<|begin▁of▁sentence|><|User|>What's the weather in Tokyo and New York?<|Assistant|></think>I'll check the weather for both cities.<|tool▁calls▁begin|><|tool▁call▁begin|>get_weather<|tool▁sep|>{"location":"Tokyo"}<|tool▁call▁end|><|tool▁call▁begin|>get_weather<|tool▁sep|>{"location":"New York"}<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|><|tool▁output▁begin|>Tokyo: 18°C, Cloudy<|tool▁output▁end|><|tool▁output▁begin|>New York: 22°C, Sunny<|tool▁output▁end|>Based on the weather data: Tokyo is cloudy at 18°C, while New York is sunny at 22°C.<|end▁of▁sentence|>`,
|
||||
},
|
||||
{
|
||||
name: "empty thinking field",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "Simple question"},
|
||||
{
|
||||
Role: "assistant",
|
||||
Content: "Simple answer.",
|
||||
Thinking: "", // Empty thinking content
|
||||
},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expected: `<|begin▁of▁sentence|><|User|>Simple question<|Assistant|></think>Simple answer.<|end▁of▁sentence|>`,
|
||||
},
|
||||
{
|
||||
name: "with tools definitions",
|
||||
messages: []api.Message{
|
||||
{Role: "system", Content: "You are a helpful assistant."},
|
||||
{Role: "user", Content: "What's the weather like?"},
|
||||
},
|
||||
tools: []api.Tool{
|
||||
{
|
||||
Type: "function",
|
||||
Function: api.ToolFunction{
|
||||
Name: "get_weather",
|
||||
Description: "Get current weather information",
|
||||
Parameters: api.ToolFunctionParameters{
|
||||
Type: "object",
|
||||
Properties: map[string]api.ToolProperty{
|
||||
"location": {
|
||||
Type: api.PropertyType{"string"},
|
||||
Description: "City name",
|
||||
},
|
||||
},
|
||||
Required: []string{"location"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|>You are a helpful assistant.
|
||||
|
||||
## Tools
|
||||
You have access to the following tools:
|
||||
|
||||
### get_weather
|
||||
Description: Get current weather information
|
||||
|
||||
Parameters: {"type":"object","required":["location"],"properties":{"location":{"type":"string","description":"City name"}}}
|
||||
|
||||
IMPORTANT: ALWAYS adhere to this exact format for tool use:
|
||||
<|tool▁calls▁begin|><|tool▁call▁begin|>tool_call_name<|tool▁sep|>tool_call_arguments<|tool▁call▁end|>{{additional_tool_calls}}<|tool▁calls▁end|>
|
||||
|
||||
Where:
|
||||
|
||||
- ` + "`tool_call_name`" + ` must be an exact match to one of the available tools
|
||||
- ` + "`tool_call_arguments`" + ` must be valid JSON that strictly follows the tool's Parameters Schema
|
||||
- For multiple tool calls, chain them directly without separators or spaces
|
||||
<|User|>What's the weather like?<|Assistant|></think>`,
|
||||
},
|
||||
{
|
||||
name: "tools definitions with thinking enabled",
|
||||
messages: []api.Message{
|
||||
{Role: "system", Content: "You are a helpful assistant."},
|
||||
{Role: "user", Content: "What's the weather in Paris?"},
|
||||
},
|
||||
tools: []api.Tool{
|
||||
{
|
||||
Type: "function",
|
||||
Function: api.ToolFunction{
|
||||
Name: "get_weather",
|
||||
Description: "Get current weather information",
|
||||
Parameters: api.ToolFunctionParameters{
|
||||
Type: "object",
|
||||
Properties: map[string]api.ToolProperty{
|
||||
"location": {
|
||||
Type: api.PropertyType{"string"},
|
||||
Description: "City name",
|
||||
},
|
||||
},
|
||||
Required: []string{"location"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expected: `<|begin▁of▁sentence|>You are a helpful assistant.
|
||||
|
||||
## Tools
|
||||
You have access to the following tools:
|
||||
|
||||
### get_weather
|
||||
Description: Get current weather information
|
||||
|
||||
Parameters: {"type":"object","required":["location"],"properties":{"location":{"type":"string","description":"City name"}}}
|
||||
|
||||
IMPORTANT: ALWAYS adhere to this exact format for tool use:
|
||||
<|tool▁calls▁begin|><|tool▁call▁begin|>tool_call_name<|tool▁sep|>tool_call_arguments<|tool▁call▁end|>{{additional_tool_calls}}<|tool▁calls▁end|>
|
||||
|
||||
Where:
|
||||
|
||||
- ` + "`tool_call_name`" + ` must be an exact match to one of the available tools
|
||||
- ` + "`tool_call_arguments`" + ` must be valid JSON that strictly follows the tool's Parameters Schema
|
||||
- For multiple tool calls, chain them directly without separators or spaces
|
||||
<|User|>What's the weather in Paris?<|Assistant|><think>`,
|
||||
},
|
||||
{
|
||||
name: "tools definitions with actual tool call",
|
||||
messages: []api.Message{
|
||||
{Role: "system", Content: "You are a helpful assistant."},
|
||||
{Role: "user", Content: "What's the weather in Paris?"},
|
||||
{
|
||||
Role: "assistant",
|
||||
ToolCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: api.ToolCallFunctionArguments{
|
||||
"location": "Paris",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
tools: []api.Tool{
|
||||
{
|
||||
Type: "function",
|
||||
Function: api.ToolFunction{
|
||||
Name: "get_weather",
|
||||
Description: "Get current weather information",
|
||||
Parameters: api.ToolFunctionParameters{
|
||||
Type: "object",
|
||||
Properties: map[string]api.ToolProperty{
|
||||
"location": {
|
||||
Type: api.PropertyType{"string"},
|
||||
Description: "City name",
|
||||
},
|
||||
},
|
||||
Required: []string{"location"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|>You are a helpful assistant.
|
||||
|
||||
## Tools
|
||||
You have access to the following tools:
|
||||
|
||||
### get_weather
|
||||
Description: Get current weather information
|
||||
|
||||
Parameters: {"type":"object","required":["location"],"properties":{"location":{"type":"string","description":"City name"}}}
|
||||
|
||||
IMPORTANT: ALWAYS adhere to this exact format for tool use:
|
||||
<|tool▁calls▁begin|><|tool▁call▁begin|>tool_call_name<|tool▁sep|>tool_call_arguments<|tool▁call▁end|>{{additional_tool_calls}}<|tool▁calls▁end|>
|
||||
|
||||
Where:
|
||||
|
||||
- ` + "`tool_call_name`" + ` must be an exact match to one of the available tools
|
||||
- ` + "`tool_call_arguments`" + ` must be valid JSON that strictly follows the tool's Parameters Schema
|
||||
- For multiple tool calls, chain them directly without separators or spaces
|
||||
<|User|>What's the weather in Paris?<|Assistant|></think><|tool▁calls▁begin|><|tool▁call▁begin|>get_weather<|tool▁sep|>{"location":"Paris"}<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|>`,
|
||||
},
|
||||
{
|
||||
name: "tools definitions with full conversation cycle",
|
||||
messages: []api.Message{
|
||||
{Role: "system", Content: "You are a helpful assistant."},
|
||||
{Role: "user", Content: "What's the weather in Paris?"},
|
||||
{
|
||||
Role: "assistant",
|
||||
Content: "I'll check the weather for you.",
|
||||
ToolCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: api.ToolCallFunctionArguments{
|
||||
"location": "Paris",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{Role: "tool", Content: "Temperature: 22°C, Sunny"},
|
||||
{Role: "assistant", Content: "The weather in Paris is 22°C and sunny!"},
|
||||
},
|
||||
tools: []api.Tool{
|
||||
{
|
||||
Type: "function",
|
||||
Function: api.ToolFunction{
|
||||
Name: "get_weather",
|
||||
Description: "Get current weather information",
|
||||
Parameters: api.ToolFunctionParameters{
|
||||
Type: "object",
|
||||
Properties: map[string]api.ToolProperty{
|
||||
"location": {
|
||||
Type: api.PropertyType{"string"},
|
||||
Description: "City name",
|
||||
},
|
||||
},
|
||||
Required: []string{"location"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|>You are a helpful assistant.
|
||||
|
||||
## Tools
|
||||
You have access to the following tools:
|
||||
|
||||
### get_weather
|
||||
Description: Get current weather information
|
||||
|
||||
Parameters: {"type":"object","required":["location"],"properties":{"location":{"type":"string","description":"City name"}}}
|
||||
|
||||
IMPORTANT: ALWAYS adhere to this exact format for tool use:
|
||||
<|tool▁calls▁begin|><|tool▁call▁begin|>tool_call_name<|tool▁sep|>tool_call_arguments<|tool▁call▁end|>{{additional_tool_calls}}<|tool▁calls▁end|>
|
||||
|
||||
Where:
|
||||
|
||||
- ` + "`tool_call_name`" + ` must be an exact match to one of the available tools
|
||||
- ` + "`tool_call_arguments`" + ` must be valid JSON that strictly follows the tool's Parameters Schema
|
||||
- For multiple tool calls, chain them directly without separators or spaces
|
||||
<|User|>What's the weather in Paris?<|Assistant|></think>I'll check the weather for you.<|tool▁calls▁begin|><|tool▁call▁begin|>get_weather<|tool▁sep|>{"location":"Paris"}<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|><|tool▁output▁begin|>Temperature: 22°C, Sunny<|tool▁output▁end|>The weather in Paris is 22°C and sunny!<|end▁of▁sentence|>`,
|
||||
},
|
||||
{
|
||||
name: "tools with thinking and full conversation",
|
||||
messages: []api.Message{
|
||||
{Role: "system", Content: "You are a helpful assistant."},
|
||||
{Role: "user", Content: "Check the weather in Tokyo"},
|
||||
{
|
||||
Role: "assistant",
|
||||
Thinking: "The user wants weather info for Tokyo. I should use the get_weather tool.",
|
||||
Content: "Let me check that for you.",
|
||||
ToolCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: api.ToolCallFunctionArguments{
|
||||
"location": "Tokyo",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{Role: "tool", Content: "Temperature: 18°C, Cloudy"},
|
||||
{
|
||||
Role: "assistant",
|
||||
Thinking: "The weather data shows it's cloudy and cool. I should present this clearly.",
|
||||
Content: "In Tokyo, it's currently 18°C and cloudy.",
|
||||
},
|
||||
{Role: "user", Content: "What about London?"},
|
||||
},
|
||||
tools: []api.Tool{
|
||||
{
|
||||
Type: "function",
|
||||
Function: api.ToolFunction{
|
||||
Name: "get_weather",
|
||||
Description: "Get current weather information",
|
||||
Parameters: api.ToolFunctionParameters{
|
||||
Type: "object",
|
||||
Properties: map[string]api.ToolProperty{
|
||||
"location": {
|
||||
Type: api.PropertyType{"string"},
|
||||
Description: "City name",
|
||||
},
|
||||
},
|
||||
Required: []string{"location"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expected: `<|begin▁of▁sentence|>You are a helpful assistant.
|
||||
|
||||
## Tools
|
||||
You have access to the following tools:
|
||||
|
||||
### get_weather
|
||||
Description: Get current weather information
|
||||
|
||||
Parameters: {"type":"object","required":["location"],"properties":{"location":{"type":"string","description":"City name"}}}
|
||||
|
||||
IMPORTANT: ALWAYS adhere to this exact format for tool use:
|
||||
<|tool▁calls▁begin|><|tool▁call▁begin|>tool_call_name<|tool▁sep|>tool_call_arguments<|tool▁call▁end|>{{additional_tool_calls}}<|tool▁calls▁end|>
|
||||
|
||||
Where:
|
||||
|
||||
- ` + "`tool_call_name`" + ` must be an exact match to one of the available tools
|
||||
- ` + "`tool_call_arguments`" + ` must be valid JSON that strictly follows the tool's Parameters Schema
|
||||
- For multiple tool calls, chain them directly without separators or spaces
|
||||
<|User|>Check the weather in Tokyo<|Assistant|></think>Let me check that for you.<|tool▁calls▁begin|><|tool▁call▁begin|>get_weather<|tool▁sep|>{"location":"Tokyo"}<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|><|tool▁output▁begin|>Temperature: 18°C, Cloudy<|tool▁output▁end|>In Tokyo, it's currently 18°C and cloudy.<|end▁of▁sentence|><|User|>What about London?<|Assistant|><think>`,
|
||||
},
|
||||
{
|
||||
name: "multiple tools definitions",
|
||||
messages: []api.Message{
|
||||
{Role: "system", Content: "You are a helpful assistant with access to multiple tools."},
|
||||
{Role: "user", Content: "What can you help me with?"},
|
||||
},
|
||||
tools: []api.Tool{
|
||||
{
|
||||
Type: "function",
|
||||
Function: api.ToolFunction{
|
||||
Name: "get_weather",
|
||||
Description: "Get current weather information",
|
||||
Parameters: api.ToolFunctionParameters{
|
||||
Type: "object",
|
||||
Properties: map[string]api.ToolProperty{
|
||||
"location": {
|
||||
Type: api.PropertyType{"string"},
|
||||
Description: "City name",
|
||||
},
|
||||
},
|
||||
Required: []string{"location"},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
Type: "function",
|
||||
Function: api.ToolFunction{
|
||||
Name: "calculate",
|
||||
Description: "Perform mathematical calculations",
|
||||
Parameters: api.ToolFunctionParameters{
|
||||
Type: "object",
|
||||
Properties: map[string]api.ToolProperty{
|
||||
"expression": {
|
||||
Type: api.PropertyType{"string"},
|
||||
Description: "Mathematical expression to evaluate",
|
||||
},
|
||||
},
|
||||
Required: []string{"expression"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|>You are a helpful assistant with access to multiple tools.
|
||||
|
||||
## Tools
|
||||
You have access to the following tools:
|
||||
|
||||
### get_weather
|
||||
Description: Get current weather information
|
||||
|
||||
Parameters: {"type":"object","required":["location"],"properties":{"location":{"type":"string","description":"City name"}}}
|
||||
|
||||
### calculate
|
||||
Description: Perform mathematical calculations
|
||||
|
||||
Parameters: {"type":"object","required":["expression"],"properties":{"expression":{"type":"string","description":"Mathematical expression to evaluate"}}}
|
||||
|
||||
IMPORTANT: ALWAYS adhere to this exact format for tool use:
|
||||
<|tool▁calls▁begin|><|tool▁call▁begin|>tool_call_name<|tool▁sep|>tool_call_arguments<|tool▁call▁end|>{{additional_tool_calls}}<|tool▁calls▁end|>
|
||||
|
||||
Where:
|
||||
|
||||
- ` + "`tool_call_name`" + ` must be an exact match to one of the available tools
|
||||
- ` + "`tool_call_arguments`" + ` must be valid JSON that strictly follows the tool's Parameters Schema
|
||||
- For multiple tool calls, chain them directly without separators or spaces
|
||||
<|User|>What can you help me with?<|Assistant|></think>`,
|
||||
},
|
||||
{
|
||||
name: "multiple tools with multiple tool calls",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "Get weather for Paris and calculate 25 * 4"},
|
||||
{
|
||||
Role: "assistant",
|
||||
ToolCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: api.ToolCallFunctionArguments{
|
||||
"location": "Paris",
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "calculate",
|
||||
Arguments: api.ToolCallFunctionArguments{
|
||||
"expression": "25 * 4",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{Role: "tool", Content: "Temperature: 22°C, Sunny"},
|
||||
{Role: "tool", Content: "Result: 100"},
|
||||
},
|
||||
tools: []api.Tool{
|
||||
{
|
||||
Type: "function",
|
||||
Function: api.ToolFunction{
|
||||
Name: "get_weather",
|
||||
Description: "Get current weather information",
|
||||
Parameters: api.ToolFunctionParameters{
|
||||
Type: "object",
|
||||
Properties: map[string]api.ToolProperty{
|
||||
"location": {
|
||||
Type: api.PropertyType{"string"},
|
||||
Description: "City name",
|
||||
},
|
||||
},
|
||||
Required: []string{"location"},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
Type: "function",
|
||||
Function: api.ToolFunction{
|
||||
Name: "calculate",
|
||||
Description: "Perform mathematical calculations",
|
||||
Parameters: api.ToolFunctionParameters{
|
||||
Type: "object",
|
||||
Properties: map[string]api.ToolProperty{
|
||||
"expression": {
|
||||
Type: api.PropertyType{"string"},
|
||||
Description: "Mathematical expression to evaluate",
|
||||
},
|
||||
},
|
||||
Required: []string{"expression"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|>
|
||||
|
||||
## Tools
|
||||
You have access to the following tools:
|
||||
|
||||
### get_weather
|
||||
Description: Get current weather information
|
||||
|
||||
Parameters: {"type":"object","required":["location"],"properties":{"location":{"type":"string","description":"City name"}}}
|
||||
|
||||
### calculate
|
||||
Description: Perform mathematical calculations
|
||||
|
||||
Parameters: {"type":"object","required":["expression"],"properties":{"expression":{"type":"string","description":"Mathematical expression to evaluate"}}}
|
||||
|
||||
IMPORTANT: ALWAYS adhere to this exact format for tool use:
|
||||
<|tool▁calls▁begin|><|tool▁call▁begin|>tool_call_name<|tool▁sep|>tool_call_arguments<|tool▁call▁end|>{{additional_tool_calls}}<|tool▁calls▁end|>
|
||||
|
||||
Where:
|
||||
|
||||
- ` + "`tool_call_name`" + ` must be an exact match to one of the available tools
|
||||
- ` + "`tool_call_arguments`" + ` must be valid JSON that strictly follows the tool's Parameters Schema
|
||||
- For multiple tool calls, chain them directly without separators or spaces
|
||||
<|User|>Get weather for Paris and calculate 25 * 4<|Assistant|></think><|tool▁calls▁begin|><|tool▁call▁begin|>get_weather<|tool▁sep|>{"location":"Paris"}<|tool▁call▁end|><|tool▁call▁begin|>calculate<|tool▁sep|>{"expression":"25 * 4"}<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|><|tool▁output▁begin|>Temperature: 22°C, Sunny<|tool▁output▁end|><|tool▁output▁begin|>Result: 100<|tool▁output▁end|>`,
|
||||
},
|
||||
{
|
||||
name: "tools without system message",
|
||||
messages: []api.Message{
|
||||
{Role: "user", Content: "What's the weather?"},
|
||||
},
|
||||
tools: []api.Tool{
|
||||
{
|
||||
Type: "function",
|
||||
Function: api.ToolFunction{
|
||||
Name: "get_weather",
|
||||
Description: "Get current weather information",
|
||||
Parameters: api.ToolFunctionParameters{
|
||||
Type: "object",
|
||||
Properties: map[string]api.ToolProperty{
|
||||
"location": {
|
||||
Type: api.PropertyType{"string"},
|
||||
Description: "City name",
|
||||
},
|
||||
},
|
||||
Required: []string{"location"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: false},
|
||||
expected: `<|begin▁of▁sentence|>
|
||||
|
||||
## Tools
|
||||
You have access to the following tools:
|
||||
|
||||
### get_weather
|
||||
Description: Get current weather information
|
||||
|
||||
Parameters: {"type":"object","required":["location"],"properties":{"location":{"type":"string","description":"City name"}}}
|
||||
|
||||
IMPORTANT: ALWAYS adhere to this exact format for tool use:
|
||||
<|tool▁calls▁begin|><|tool▁call▁begin|>tool_call_name<|tool▁sep|>tool_call_arguments<|tool▁call▁end|>{{additional_tool_calls}}<|tool▁calls▁end|>
|
||||
|
||||
Where:
|
||||
|
||||
- ` + "`tool_call_name`" + ` must be an exact match to one of the available tools
|
||||
- ` + "`tool_call_arguments`" + ` must be valid JSON that strictly follows the tool's Parameters Schema
|
||||
- For multiple tool calls, chain them directly without separators or spaces
|
||||
<|User|>What's the weather?<|Assistant|></think>`,
|
||||
},
|
||||
}
|
||||
|
||||
renderer := &DeepSeek3Renderer{IsThinking: true, Variant: Deepseek31}
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
rendered, err := renderer.Render(tt.messages, tt.tools, tt.thinkValue)
|
||||
if err != nil {
|
||||
t.Fatalf("Render() error = %v", err)
|
||||
}
|
||||
if diff := cmp.Diff(tt.expected, rendered); diff != "" {
|
||||
t.Errorf("Render() mismatch (-want +got):\n%s", diff)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
220
model/renderers/nemotron3nano.go
Normal file
220
model/renderers/nemotron3nano.go
Normal file
@@ -0,0 +1,220 @@
|
||||
package renderers
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
type Nemotron3NanoRenderer struct{}
|
||||
|
||||
func (r *Nemotron3NanoRenderer) Render(messages []api.Message, tools []api.Tool, thinkValue *api.ThinkValue) (string, error) {
|
||||
var sb strings.Builder
|
||||
|
||||
// thinking is enabled if user requests it
|
||||
enableThinking := thinkValue != nil && thinkValue.Bool()
|
||||
|
||||
// Extract system message if present
|
||||
var systemMessage string
|
||||
var loopMessages []api.Message
|
||||
if len(messages) > 0 && messages[0].Role == "system" {
|
||||
systemMessage = messages[0].Content
|
||||
loopMessages = messages[1:]
|
||||
} else {
|
||||
loopMessages = messages
|
||||
}
|
||||
|
||||
// Find last user message index for thinking truncation
|
||||
lastUserIdx := -1
|
||||
for i, msg := range loopMessages {
|
||||
if msg.Role == "user" {
|
||||
lastUserIdx = i
|
||||
}
|
||||
}
|
||||
|
||||
sb.WriteString("<|im_start|>system\n")
|
||||
if systemMessage != "" {
|
||||
sb.WriteString(systemMessage)
|
||||
}
|
||||
|
||||
if len(tools) > 0 {
|
||||
if systemMessage != "" {
|
||||
sb.WriteString("\n\n")
|
||||
}
|
||||
sb.WriteString(r.renderTools(tools))
|
||||
}
|
||||
sb.WriteString("<|im_end|>\n")
|
||||
|
||||
for i, message := range loopMessages {
|
||||
switch message.Role {
|
||||
case "assistant":
|
||||
// Build content with thinking tags
|
||||
content := r.buildContent(message)
|
||||
shouldTruncate := i < lastUserIdx
|
||||
|
||||
if len(message.ToolCalls) > 0 {
|
||||
sb.WriteString("<|im_start|>assistant\n")
|
||||
sb.WriteString(r.formatContent(content, shouldTruncate, true))
|
||||
r.writeToolCalls(&sb, message.ToolCalls)
|
||||
sb.WriteString("<|im_end|>\n")
|
||||
} else {
|
||||
formatted := r.formatContent(content, shouldTruncate, false)
|
||||
sb.WriteString("<|im_start|>assistant\n" + formatted + "<|im_end|>\n")
|
||||
}
|
||||
|
||||
case "user", "system":
|
||||
sb.WriteString("<|im_start|>" + message.Role + "\n")
|
||||
sb.WriteString(message.Content)
|
||||
sb.WriteString("<|im_end|>\n")
|
||||
|
||||
case "tool":
|
||||
// Check if previous message was also a tool message
|
||||
prevWasTool := i > 0 && loopMessages[i-1].Role == "tool"
|
||||
nextIsTool := i+1 < len(loopMessages) && loopMessages[i+1].Role == "tool"
|
||||
|
||||
if !prevWasTool {
|
||||
sb.WriteString("<|im_start|>user\n")
|
||||
}
|
||||
sb.WriteString("<tool_response>\n")
|
||||
sb.WriteString(message.Content)
|
||||
sb.WriteString("\n</tool_response>\n")
|
||||
|
||||
if !nextIsTool {
|
||||
sb.WriteString("<|im_end|>\n")
|
||||
}
|
||||
|
||||
default:
|
||||
sb.WriteString("<|im_start|>" + message.Role + "\n" + message.Content + "<|im_end|>\n")
|
||||
}
|
||||
}
|
||||
|
||||
// Add generation prompt
|
||||
if enableThinking {
|
||||
sb.WriteString("<|im_start|>assistant\n<think>\n")
|
||||
} else {
|
||||
sb.WriteString("<|im_start|>assistant\n<think></think>")
|
||||
}
|
||||
|
||||
return sb.String(), nil
|
||||
}
|
||||
|
||||
func (r *Nemotron3NanoRenderer) renderTools(tools []api.Tool) string {
|
||||
var sb strings.Builder
|
||||
sb.WriteString("# Tools\n\nYou have access to the following functions:\n\n<tools>")
|
||||
|
||||
for _, tool := range tools {
|
||||
fn := tool.Function
|
||||
sb.WriteString("\n<function>\n<name>" + fn.Name + "</name>")
|
||||
|
||||
if fn.Description != "" {
|
||||
sb.WriteString("\n<description>" + strings.TrimSpace(fn.Description) + "</description>")
|
||||
}
|
||||
|
||||
sb.WriteString("\n<parameters>")
|
||||
if fn.Parameters.Properties != nil {
|
||||
for paramName, paramFields := range fn.Parameters.Properties {
|
||||
sb.WriteString("\n<parameter>")
|
||||
sb.WriteString("\n<name>" + paramName + "</name>")
|
||||
|
||||
if len(paramFields.Type) > 0 {
|
||||
sb.WriteString("\n<type>" + strings.Join(paramFields.Type, ", ") + "</type>")
|
||||
}
|
||||
|
||||
if paramFields.Description != "" {
|
||||
sb.WriteString("\n<description>" + strings.TrimSpace(paramFields.Description) + "</description>")
|
||||
}
|
||||
|
||||
if len(paramFields.Enum) > 0 {
|
||||
enumJSON, _ := json.Marshal(paramFields.Enum)
|
||||
sb.WriteString("\n<enum>" + string(enumJSON) + "</enum>")
|
||||
}
|
||||
|
||||
sb.WriteString("\n</parameter>")
|
||||
}
|
||||
}
|
||||
|
||||
if len(fn.Parameters.Required) > 0 {
|
||||
reqJSON, _ := json.Marshal(fn.Parameters.Required)
|
||||
sb.WriteString("\n<required>" + string(reqJSON) + "</required>")
|
||||
}
|
||||
|
||||
sb.WriteString("\n</parameters>")
|
||||
sb.WriteString("\n</function>")
|
||||
}
|
||||
|
||||
sb.WriteString("\n</tools>")
|
||||
|
||||
sb.WriteString("\n\nIf you choose to call a function ONLY reply in the following format with NO suffix:\n\n" +
|
||||
"<tool_call>\n<function=example_function_name>\n<parameter=example_parameter_1>\nvalue_1\n</parameter>\n" +
|
||||
"<parameter=example_parameter_2>\nThis is the value for the second parameter\nthat can span\nmultiple lines\n" +
|
||||
"</parameter>\n</function>\n</tool_call>\n\n<IMPORTANT>\nReminder:\n" +
|
||||
"- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags\n" +
|
||||
"- Required parameters MUST be specified\n" +
|
||||
"- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after\n" +
|
||||
"- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls\n</IMPORTANT>")
|
||||
|
||||
return sb.String()
|
||||
}
|
||||
|
||||
func (r *Nemotron3NanoRenderer) buildContent(message api.Message) string {
|
||||
// The parser always extracts thinking into the Thinking field,
|
||||
// so Content will never have <think> tags embedded
|
||||
if message.Thinking != "" {
|
||||
return "<think>\n" + message.Thinking + "\n</think>\n" + message.Content
|
||||
}
|
||||
return "<think></think>" + message.Content
|
||||
}
|
||||
|
||||
func (r *Nemotron3NanoRenderer) formatContent(content string, truncate bool, addNewline bool) string {
|
||||
if content == "" {
|
||||
return "<think></think>"
|
||||
}
|
||||
|
||||
if !truncate {
|
||||
if addNewline {
|
||||
return strings.TrimSpace(content) + "\n"
|
||||
}
|
||||
return strings.TrimSpace(content)
|
||||
}
|
||||
|
||||
// Truncate thinking - keep only content after </think>
|
||||
c := content
|
||||
if strings.Contains(c, "</think>") {
|
||||
parts := strings.Split(c, "</think>")
|
||||
c = parts[len(parts)-1]
|
||||
} else if strings.Contains(c, "<think>") {
|
||||
parts := strings.Split(c, "<think>")
|
||||
c = parts[0]
|
||||
}
|
||||
c = "<think></think>" + strings.TrimSpace(c)
|
||||
|
||||
if addNewline && len(c) > len("<think></think>") {
|
||||
return c + "\n"
|
||||
}
|
||||
if c == "<think></think>" {
|
||||
return c
|
||||
}
|
||||
return strings.TrimSpace(c)
|
||||
}
|
||||
|
||||
func (r *Nemotron3NanoRenderer) writeToolCalls(sb *strings.Builder, toolCalls []api.ToolCall) {
|
||||
for _, tc := range toolCalls {
|
||||
sb.WriteString("<tool_call>\n<function=" + tc.Function.Name + ">\n")
|
||||
for name, value := range tc.Function.Arguments {
|
||||
sb.WriteString("<parameter=" + name + ">\n" + r.formatArgValue(value) + "\n</parameter>\n")
|
||||
}
|
||||
sb.WriteString("</function>\n</tool_call>\n")
|
||||
}
|
||||
}
|
||||
|
||||
func (r *Nemotron3NanoRenderer) formatArgValue(value any) string {
|
||||
switch v := value.(type) {
|
||||
case map[string]any, []any:
|
||||
jsonBytes, _ := json.Marshal(v)
|
||||
return string(jsonBytes)
|
||||
default:
|
||||
return fmt.Sprintf("%v", v)
|
||||
}
|
||||
}
|
||||
569
model/renderers/nemotron3nano_test.go
Normal file
569
model/renderers/nemotron3nano_test.go
Normal file
@@ -0,0 +1,569 @@
|
||||
package renderers
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
func TestNemotron3NanoRenderer(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
msgs []api.Message
|
||||
tools []api.Tool
|
||||
thinkValue *api.ThinkValue
|
||||
expected string
|
||||
}{
|
||||
{
|
||||
name: "basic user message - thinking mode",
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "Hello!"},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expected: "<|im_start|>system\n<|im_end|>\n" +
|
||||
"<|im_start|>user\nHello!<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think>\n",
|
||||
},
|
||||
{
|
||||
name: "basic user message - no thinking",
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "Hello!"},
|
||||
},
|
||||
thinkValue: nil,
|
||||
expected: "<|im_start|>system\n<|im_end|>\n" +
|
||||
"<|im_start|>user\nHello!<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think></think>",
|
||||
},
|
||||
{
|
||||
name: "with system message",
|
||||
msgs: []api.Message{
|
||||
{Role: "system", Content: "You are a helpful assistant."},
|
||||
{Role: "user", Content: "Hello!"},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expected: "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n" +
|
||||
"<|im_start|>user\nHello!<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think>\n",
|
||||
},
|
||||
{
|
||||
name: "multi-turn conversation",
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "Hi"},
|
||||
{Role: "assistant", Content: "Hello! How can I help?"},
|
||||
{Role: "user", Content: "Tell me a joke"},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expected: "<|im_start|>system\n<|im_end|>\n" +
|
||||
"<|im_start|>user\nHi<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think></think>Hello! How can I help?<|im_end|>\n" +
|
||||
"<|im_start|>user\nTell me a joke<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think>\n",
|
||||
},
|
||||
{
|
||||
name: "with tools",
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "What's the weather in Paris?"},
|
||||
},
|
||||
tools: []api.Tool{
|
||||
{
|
||||
Type: "function",
|
||||
Function: api.ToolFunction{
|
||||
Name: "get_weather",
|
||||
Description: "Get the current weather",
|
||||
Parameters: api.ToolFunctionParameters{
|
||||
Type: "object",
|
||||
Required: []string{"city"},
|
||||
Properties: map[string]api.ToolProperty{
|
||||
"city": {Type: api.PropertyType{"string"}, Description: "The city name"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expected: "<|im_start|>system\n" +
|
||||
"# Tools\n\nYou have access to the following functions:\n\n<tools>\n" +
|
||||
"<function>\n<name>get_weather</name>\n" +
|
||||
"<description>Get the current weather</description>\n" +
|
||||
"<parameters>\n" +
|
||||
"<parameter>\n<name>city</name>\n<type>string</type>\n<description>The city name</description>\n</parameter>\n" +
|
||||
"<required>[\"city\"]</required>\n" +
|
||||
"</parameters>\n</function>\n</tools>\n\n" +
|
||||
"If you choose to call a function ONLY reply in the following format with NO suffix:\n\n" +
|
||||
"<tool_call>\n<function=example_function_name>\n<parameter=example_parameter_1>\nvalue_1\n</parameter>\n" +
|
||||
"<parameter=example_parameter_2>\nThis is the value for the second parameter\nthat can span\nmultiple lines\n" +
|
||||
"</parameter>\n</function>\n</tool_call>\n\n<IMPORTANT>\nReminder:\n" +
|
||||
"- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags\n" +
|
||||
"- Required parameters MUST be specified\n" +
|
||||
"- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after\n" +
|
||||
"- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls\n" +
|
||||
"</IMPORTANT><|im_end|>\n" +
|
||||
"<|im_start|>user\nWhat's the weather in Paris?<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think>\n",
|
||||
},
|
||||
{
|
||||
name: "tool call with response",
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "What's the weather in Paris?"},
|
||||
{
|
||||
Role: "assistant",
|
||||
ToolCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: map[string]any{"city": "Paris"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{Role: "tool", Content: "Sunny, 72F"},
|
||||
},
|
||||
tools: []api.Tool{
|
||||
{
|
||||
Type: "function",
|
||||
Function: api.ToolFunction{
|
||||
Name: "get_weather",
|
||||
Description: "Get the current weather",
|
||||
Parameters: api.ToolFunctionParameters{
|
||||
Type: "object",
|
||||
Required: []string{"city"},
|
||||
Properties: map[string]api.ToolProperty{
|
||||
"city": {Type: api.PropertyType{"string"}, Description: "The city name"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expected: "<|im_start|>system\n" +
|
||||
"# Tools\n\nYou have access to the following functions:\n\n<tools>\n" +
|
||||
"<function>\n<name>get_weather</name>\n" +
|
||||
"<description>Get the current weather</description>\n" +
|
||||
"<parameters>\n" +
|
||||
"<parameter>\n<name>city</name>\n<type>string</type>\n<description>The city name</description>\n</parameter>\n" +
|
||||
"<required>[\"city\"]</required>\n" +
|
||||
"</parameters>\n</function>\n</tools>\n\n" +
|
||||
"If you choose to call a function ONLY reply in the following format with NO suffix:\n\n" +
|
||||
"<tool_call>\n<function=example_function_name>\n<parameter=example_parameter_1>\nvalue_1\n</parameter>\n" +
|
||||
"<parameter=example_parameter_2>\nThis is the value for the second parameter\nthat can span\nmultiple lines\n" +
|
||||
"</parameter>\n</function>\n</tool_call>\n\n<IMPORTANT>\nReminder:\n" +
|
||||
"- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags\n" +
|
||||
"- Required parameters MUST be specified\n" +
|
||||
"- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after\n" +
|
||||
"- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls\n" +
|
||||
"</IMPORTANT><|im_end|>\n" +
|
||||
"<|im_start|>user\nWhat's the weather in Paris?<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think></think>\n" +
|
||||
"<tool_call>\n<function=get_weather>\n<parameter=city>\nParis\n</parameter>\n</function>\n</tool_call>\n<|im_end|>\n" +
|
||||
"<|im_start|>user\n<tool_response>\nSunny, 72F\n</tool_response>\n<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think>\n",
|
||||
},
|
||||
{
|
||||
name: "assistant with content and tool call",
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "What's the weather?"},
|
||||
{
|
||||
Role: "assistant",
|
||||
Content: "Let me check that for you.",
|
||||
ToolCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: map[string]any{"city": "Paris"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{Role: "tool", Content: "Sunny"},
|
||||
},
|
||||
tools: []api.Tool{
|
||||
{
|
||||
Type: "function",
|
||||
Function: api.ToolFunction{
|
||||
Name: "get_weather",
|
||||
Parameters: api.ToolFunctionParameters{
|
||||
Type: "object",
|
||||
Properties: map[string]api.ToolProperty{
|
||||
"city": {Type: api.PropertyType{"string"}},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expected: "<|im_start|>system\n" +
|
||||
"# Tools\n\nYou have access to the following functions:\n\n<tools>\n" +
|
||||
"<function>\n<name>get_weather</name>\n" +
|
||||
"<parameters>\n" +
|
||||
"<parameter>\n<name>city</name>\n<type>string</type>\n</parameter>\n" +
|
||||
"</parameters>\n</function>\n</tools>\n\n" +
|
||||
"If you choose to call a function ONLY reply in the following format with NO suffix:\n\n" +
|
||||
"<tool_call>\n<function=example_function_name>\n<parameter=example_parameter_1>\nvalue_1\n</parameter>\n" +
|
||||
"<parameter=example_parameter_2>\nThis is the value for the second parameter\nthat can span\nmultiple lines\n" +
|
||||
"</parameter>\n</function>\n</tool_call>\n\n<IMPORTANT>\nReminder:\n" +
|
||||
"- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags\n" +
|
||||
"- Required parameters MUST be specified\n" +
|
||||
"- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after\n" +
|
||||
"- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls\n" +
|
||||
"</IMPORTANT><|im_end|>\n" +
|
||||
"<|im_start|>user\nWhat's the weather?<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think></think>Let me check that for you.\n" +
|
||||
"<tool_call>\n<function=get_weather>\n<parameter=city>\nParis\n</parameter>\n</function>\n</tool_call>\n<|im_end|>\n" +
|
||||
"<|im_start|>user\n<tool_response>\nSunny\n</tool_response>\n<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think>\n",
|
||||
},
|
||||
{
|
||||
name: "thinking in history is truncated",
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "Hi"},
|
||||
{Role: "assistant", Content: "Hello!", Thinking: "Let me think about this..."},
|
||||
{Role: "user", Content: "How are you?"},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expected: "<|im_start|>system\n<|im_end|>\n" +
|
||||
"<|im_start|>user\nHi<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think></think>Hello!<|im_end|>\n" +
|
||||
"<|im_start|>user\nHow are you?<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think>\n",
|
||||
},
|
||||
{
|
||||
name: "parallel tool calls",
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "Weather in Paris and London?"},
|
||||
{
|
||||
Role: "assistant",
|
||||
ToolCalls: []api.ToolCall{
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: map[string]any{"city": "Paris"},
|
||||
},
|
||||
},
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_weather",
|
||||
Arguments: map[string]any{"city": "London"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{Role: "tool", Content: "Sunny"},
|
||||
{Role: "tool", Content: "Rainy"},
|
||||
},
|
||||
tools: []api.Tool{
|
||||
{
|
||||
Type: "function",
|
||||
Function: api.ToolFunction{
|
||||
Name: "get_weather",
|
||||
Parameters: api.ToolFunctionParameters{
|
||||
Type: "object",
|
||||
Properties: map[string]api.ToolProperty{
|
||||
"city": {Type: api.PropertyType{"string"}},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expected: "<|im_start|>system\n" +
|
||||
"# Tools\n\nYou have access to the following functions:\n\n<tools>\n" +
|
||||
"<function>\n<name>get_weather</name>\n" +
|
||||
"<parameters>\n" +
|
||||
"<parameter>\n<name>city</name>\n<type>string</type>\n</parameter>\n" +
|
||||
"</parameters>\n</function>\n</tools>\n\n" +
|
||||
"If you choose to call a function ONLY reply in the following format with NO suffix:\n\n" +
|
||||
"<tool_call>\n<function=example_function_name>\n<parameter=example_parameter_1>\nvalue_1\n</parameter>\n" +
|
||||
"<parameter=example_parameter_2>\nThis is the value for the second parameter\nthat can span\nmultiple lines\n" +
|
||||
"</parameter>\n</function>\n</tool_call>\n\n<IMPORTANT>\nReminder:\n" +
|
||||
"- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags\n" +
|
||||
"- Required parameters MUST be specified\n" +
|
||||
"- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after\n" +
|
||||
"- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls\n" +
|
||||
"</IMPORTANT><|im_end|>\n" +
|
||||
"<|im_start|>user\nWeather in Paris and London?<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think></think>\n" +
|
||||
"<tool_call>\n<function=get_weather>\n<parameter=city>\nParis\n</parameter>\n</function>\n</tool_call>\n" +
|
||||
"<tool_call>\n<function=get_weather>\n<parameter=city>\nLondon\n</parameter>\n</function>\n</tool_call>\n<|im_end|>\n" +
|
||||
"<|im_start|>user\n<tool_response>\nSunny\n</tool_response>\n<tool_response>\nRainy\n</tool_response>\n<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think>\n",
|
||||
},
|
||||
{
|
||||
name: "thinking disabled when user doesn't request it",
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "Hello!"},
|
||||
},
|
||||
thinkValue: nil,
|
||||
expected: "<|im_start|>system\n<|im_end|>\n" +
|
||||
"<|im_start|>user\nHello!<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think></think>",
|
||||
},
|
||||
{
|
||||
name: "complex message history with thinking, tools, tool calls, tool results and content",
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "What's the weather in Paris and London? Also, what's 2+2?"},
|
||||
{Role: "assistant", Content: "", Thinking: "I need to check the weather for both cities and calculate 2+2. Let me start with the weather calls.", ToolCalls: []api.ToolCall{
|
||||
{Function: api.ToolCallFunction{Name: "get_weather", Arguments: api.ToolCallFunctionArguments{"city": "Paris"}}},
|
||||
{Function: api.ToolCallFunction{Name: "get_weather", Arguments: api.ToolCallFunctionArguments{"city": "London"}}},
|
||||
}},
|
||||
{Role: "tool", Content: "Sunny, 22°C", ToolCallID: "call1"},
|
||||
{Role: "tool", Content: "Rainy, 15°C", ToolCallID: "call2"},
|
||||
{Role: "assistant", Content: "", Thinking: "Now I have the weather data. Let me calculate 2+2.", ToolCalls: []api.ToolCall{
|
||||
{Function: api.ToolCallFunction{Name: "calculate", Arguments: api.ToolCallFunctionArguments{"expression": "2+2"}}},
|
||||
}},
|
||||
{Role: "tool", Content: "4", ToolCallID: "call3"},
|
||||
{Role: "assistant", Content: "Based on the weather data, Paris is sunny at 22°C and London is rainy at 15°C. Also, 2+2 equals 4.", Thinking: "Perfect! I have all the information needed to provide a complete answer."},
|
||||
},
|
||||
tools: []api.Tool{
|
||||
{
|
||||
Type: "function",
|
||||
Function: api.ToolFunction{
|
||||
Name: "get_weather",
|
||||
Parameters: api.ToolFunctionParameters{
|
||||
Type: "object",
|
||||
Properties: map[string]api.ToolProperty{
|
||||
"city": {Type: api.PropertyType{"string"}},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
Type: "function",
|
||||
Function: api.ToolFunction{
|
||||
Name: "calculate",
|
||||
Parameters: api.ToolFunctionParameters{
|
||||
Type: "object",
|
||||
Properties: map[string]api.ToolProperty{
|
||||
"expression": {Type: api.PropertyType{"string"}},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expected: "<|im_start|>system\n" +
|
||||
"# Tools\n\nYou have access to the following functions:\n\n<tools>\n" +
|
||||
"<function>\n<name>get_weather</name>\n" +
|
||||
"<parameters>\n" +
|
||||
"<parameter>\n<name>city</name>\n<type>string</type>\n</parameter>\n" +
|
||||
"</parameters>\n</function>\n" +
|
||||
"<function>\n<name>calculate</name>\n" +
|
||||
"<parameters>\n" +
|
||||
"<parameter>\n<name>expression</name>\n<type>string</type>\n</parameter>\n" +
|
||||
"</parameters>\n</function>\n</tools>\n\n" +
|
||||
"If you choose to call a function ONLY reply in the following format with NO suffix:\n\n" +
|
||||
"<tool_call>\n<function=example_function_name>\n<parameter=example_parameter_1>\nvalue_1\n</parameter>\n" +
|
||||
"<parameter=example_parameter_2>\nThis is the value for the second parameter\nthat can span\nmultiple lines\n" +
|
||||
"</parameter>\n</function>\n</tool_call>\n\n<IMPORTANT>\nReminder:\n" +
|
||||
"- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags\n" +
|
||||
"- Required parameters MUST be specified\n" +
|
||||
"- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after\n" +
|
||||
"- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls\n" +
|
||||
"</IMPORTANT><|im_end|>\n" +
|
||||
"<|im_start|>user\nWhat's the weather in Paris and London? Also, what's 2+2?<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n" +
|
||||
"<think>\nI need to check the weather for both cities and calculate 2+2. Let me start with the weather calls.\n</think>\n" +
|
||||
"<tool_call>\n<function=get_weather>\n<parameter=city>\nParis\n</parameter>\n</function>\n</tool_call>\n" +
|
||||
"<tool_call>\n<function=get_weather>\n<parameter=city>\nLondon\n</parameter>\n</function>\n</tool_call>\n<|im_end|>\n" +
|
||||
"<|im_start|>user\n<tool_response>\nSunny, 22°C\n</tool_response>\n<tool_response>\nRainy, 15°C\n</tool_response>\n<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n" +
|
||||
"<think>\nNow I have the weather data. Let me calculate 2+2.\n</think>\n" +
|
||||
"<tool_call>\n<function=calculate>\n<parameter=expression>\n2+2\n</parameter>\n</function>\n</tool_call>\n<|im_end|>\n" +
|
||||
"<|im_start|>user\n<tool_response>\n4\n</tool_response>\n<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n" +
|
||||
"<think>\nPerfect! I have all the information needed to provide a complete answer.\n</think>\n" +
|
||||
"Based on the weather data, Paris is sunny at 22°C and London is rainy at 15°C. Also, 2+2 equals 4.<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think>\n",
|
||||
},
|
||||
{
|
||||
name: "empty messages list",
|
||||
msgs: []api.Message{},
|
||||
thinkValue: nil,
|
||||
expected: "<|im_start|>system\n<|im_end|>\n<|im_start|>assistant\n<think></think>",
|
||||
},
|
||||
{
|
||||
name: "tool result with JSON content",
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "Get user info"},
|
||||
{
|
||||
Role: "assistant",
|
||||
ToolCalls: []api.ToolCall{
|
||||
{Function: api.ToolCallFunction{Name: "get_user", Arguments: map[string]any{"id": "123"}}},
|
||||
},
|
||||
},
|
||||
{Role: "tool", Content: `{"name": "John", "age": 30, "active": true}`},
|
||||
},
|
||||
tools: []api.Tool{
|
||||
{
|
||||
Type: "function",
|
||||
Function: api.ToolFunction{
|
||||
Name: "get_user",
|
||||
Parameters: api.ToolFunctionParameters{
|
||||
Type: "object",
|
||||
Properties: map[string]api.ToolProperty{"id": {Type: api.PropertyType{"string"}}},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expected: "<|im_start|>system\n" +
|
||||
"# Tools\n\nYou have access to the following functions:\n\n<tools>\n" +
|
||||
"<function>\n<name>get_user</name>\n<parameters>\n" +
|
||||
"<parameter>\n<name>id</name>\n<type>string</type>\n</parameter>\n" +
|
||||
"</parameters>\n</function>\n</tools>\n\n" +
|
||||
"If you choose to call a function ONLY reply in the following format with NO suffix:\n\n" +
|
||||
"<tool_call>\n<function=example_function_name>\n<parameter=example_parameter_1>\nvalue_1\n</parameter>\n" +
|
||||
"<parameter=example_parameter_2>\nThis is the value for the second parameter\nthat can span\nmultiple lines\n" +
|
||||
"</parameter>\n</function>\n</tool_call>\n\n<IMPORTANT>\nReminder:\n" +
|
||||
"- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags\n" +
|
||||
"- Required parameters MUST be specified\n" +
|
||||
"- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after\n" +
|
||||
"- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls\n" +
|
||||
"</IMPORTANT><|im_end|>\n" +
|
||||
"<|im_start|>user\nGet user info<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think></think>\n" +
|
||||
"<tool_call>\n<function=get_user>\n<parameter=id>\n123\n</parameter>\n</function>\n</tool_call>\n<|im_end|>\n" +
|
||||
"<|im_start|>user\n<tool_response>\n{\"name\": \"John\", \"age\": 30, \"active\": true}\n</tool_response>\n<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think>\n",
|
||||
},
|
||||
{
|
||||
name: "assistant message with only thinking no content",
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "Think about this"},
|
||||
{Role: "assistant", Thinking: "Deep thoughts here...", Content: ""},
|
||||
{Role: "user", Content: "What did you think?"},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expected: "<|im_start|>system\n<|im_end|>\n" +
|
||||
"<|im_start|>user\nThink about this<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think></think><|im_end|>\n" +
|
||||
"<|im_start|>user\nWhat did you think?<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think>\n",
|
||||
},
|
||||
{
|
||||
name: "tool call with complex nested argument",
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "Create data"},
|
||||
{
|
||||
Role: "assistant",
|
||||
ToolCalls: []api.ToolCall{
|
||||
{Function: api.ToolCallFunction{
|
||||
Name: "create",
|
||||
Arguments: map[string]any{
|
||||
"data": map[string]any{"nested": "value", "count": 42},
|
||||
},
|
||||
}},
|
||||
},
|
||||
},
|
||||
{Role: "tool", Content: "Created"},
|
||||
},
|
||||
tools: []api.Tool{
|
||||
{
|
||||
Type: "function",
|
||||
Function: api.ToolFunction{
|
||||
Name: "create",
|
||||
Parameters: api.ToolFunctionParameters{
|
||||
Type: "object",
|
||||
Properties: map[string]api.ToolProperty{"data": {Type: api.PropertyType{"object"}}},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expected: "<|im_start|>system\n" +
|
||||
"# Tools\n\nYou have access to the following functions:\n\n<tools>\n" +
|
||||
"<function>\n<name>create</name>\n<parameters>\n" +
|
||||
"<parameter>\n<name>data</name>\n<type>object</type>\n</parameter>\n" +
|
||||
"</parameters>\n</function>\n</tools>\n\n" +
|
||||
"If you choose to call a function ONLY reply in the following format with NO suffix:\n\n" +
|
||||
"<tool_call>\n<function=example_function_name>\n<parameter=example_parameter_1>\nvalue_1\n</parameter>\n" +
|
||||
"<parameter=example_parameter_2>\nThis is the value for the second parameter\nthat can span\nmultiple lines\n" +
|
||||
"</parameter>\n</function>\n</tool_call>\n\n<IMPORTANT>\nReminder:\n" +
|
||||
"- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags\n" +
|
||||
"- Required parameters MUST be specified\n" +
|
||||
"- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after\n" +
|
||||
"- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls\n" +
|
||||
"</IMPORTANT><|im_end|>\n" +
|
||||
"<|im_start|>user\nCreate data<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think></think>\n" +
|
||||
"<tool_call>\n<function=create>\n<parameter=data>\n{\"count\":42,\"nested\":\"value\"}\n</parameter>\n</function>\n</tool_call>\n<|im_end|>\n" +
|
||||
"<|im_start|>user\n<tool_response>\nCreated\n</tool_response>\n<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think>\n",
|
||||
},
|
||||
{
|
||||
name: "content explaining the format itself",
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "How do I format a tool call?"},
|
||||
{Role: "assistant", Content: "To call a tool, use <tool_call> tags with <function=name> inside."},
|
||||
{Role: "user", Content: "Thanks!"},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expected: "<|im_start|>system\n<|im_end|>\n" +
|
||||
"<|im_start|>user\nHow do I format a tool call?<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think></think>To call a tool, use <tool_call> tags with <function=name> inside.<|im_end|>\n" +
|
||||
"<|im_start|>user\nThanks!<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think>\n",
|
||||
},
|
||||
{
|
||||
name: "unicode in content and tool args",
|
||||
msgs: []api.Message{
|
||||
{Role: "user", Content: "Translate 你好"},
|
||||
{
|
||||
Role: "assistant",
|
||||
ToolCalls: []api.ToolCall{
|
||||
{Function: api.ToolCallFunction{Name: "translate", Arguments: map[string]any{"text": "你好"}}},
|
||||
},
|
||||
},
|
||||
{Role: "tool", Content: "Hello"},
|
||||
},
|
||||
tools: []api.Tool{
|
||||
{
|
||||
Type: "function",
|
||||
Function: api.ToolFunction{
|
||||
Name: "translate",
|
||||
Parameters: api.ToolFunctionParameters{
|
||||
Type: "object",
|
||||
Properties: map[string]api.ToolProperty{
|
||||
"text": {Type: api.PropertyType{"string"}},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
thinkValue: &api.ThinkValue{Value: true},
|
||||
expected: "<|im_start|>system\n" +
|
||||
"# Tools\n\nYou have access to the following functions:\n\n<tools>\n" +
|
||||
"<function>\n<name>translate</name>\n<parameters>\n" +
|
||||
"<parameter>\n<name>text</name>\n<type>string</type>\n</parameter>\n" +
|
||||
"</parameters>\n</function>\n</tools>\n\n" +
|
||||
"If you choose to call a function ONLY reply in the following format with NO suffix:\n\n" +
|
||||
"<tool_call>\n<function=example_function_name>\n<parameter=example_parameter_1>\nvalue_1\n</parameter>\n" +
|
||||
"<parameter=example_parameter_2>\nThis is the value for the second parameter\nthat can span\nmultiple lines\n" +
|
||||
"</parameter>\n</function>\n</tool_call>\n\n<IMPORTANT>\nReminder:\n" +
|
||||
"- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags\n" +
|
||||
"- Required parameters MUST be specified\n" +
|
||||
"- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after\n" +
|
||||
"- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls\n" +
|
||||
"</IMPORTANT><|im_end|>\n" +
|
||||
"<|im_start|>user\nTranslate 你好<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think></think>\n" +
|
||||
"<tool_call>\n<function=translate>\n<parameter=text>\n你好\n</parameter>\n</function>\n</tool_call>\n<|im_end|>\n" +
|
||||
"<|im_start|>user\n<tool_response>\nHello\n</tool_response>\n<|im_end|>\n" +
|
||||
"<|im_start|>assistant\n<think>\n",
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
renderer := &Nemotron3NanoRenderer{}
|
||||
rendered, err := renderer.Render(tt.msgs, tt.tools, tt.thinkValue)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
if diff := cmp.Diff(rendered, tt.expected); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
@@ -59,6 +59,9 @@ func rendererForName(name string) Renderer {
|
||||
case "cogito":
|
||||
renderer := &CogitoRenderer{isThinking: true}
|
||||
return renderer
|
||||
case "deepseek-v3.1":
|
||||
renderer := &DeepSeek3Renderer{IsThinking: true, Variant: Deepseek31}
|
||||
return renderer
|
||||
case "olmo3":
|
||||
renderer := &Olmo3Renderer{UseExtendedSystemMessage: false}
|
||||
return renderer
|
||||
@@ -73,6 +76,8 @@ func rendererForName(name string) Renderer {
|
||||
// Used for Olmo-3-32B-Think
|
||||
renderer := &Olmo3ThinkRenderer{Variant: Olmo3Think32B}
|
||||
return renderer
|
||||
case "nemotron-3-nano":
|
||||
return &Nemotron3NanoRenderer{}
|
||||
default:
|
||||
return nil
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user