Compare commits

...

6 Commits

Author SHA1 Message Date
next-n
d6dd430abd x/imagegen: respect OLLAMA_MODELS for manifests and blobs (#13797) 2026-01-20 13:01:52 -08:00
Daniel Hiltgen
ae78112c50 test: add lfm2.5-thinking coverage (#13802) 2026-01-20 12:57:02 -08:00
Jeffrey Morgan
01cf7445f3 model: add lfm2 architecture and LFM2.5-1.2B-Thinking support (#13792)
Co-Authored-By: TommyBoiss <165361500+TommyBoiss@users.noreply.github.com>
2026-01-20 12:20:53 -08:00
Jeffrey Morgan
31085d5e53 fix: use api.GenerateRequest for image generation test (#13793)
Remove non-existent x/imagegen/api import and use the standard
api.GenerateRequest/GenerateResponse with the Image field instead.
2026-01-20 03:23:31 -08:00
Daniel Hiltgen
c42e9d244f test: add image gen test case (#13698)
* test: fix type regression in tools test.

* test: add image gen integration test
2026-01-19 16:01:31 -08:00
Devon Rifkin
e98b5e8b4e /api/show: default to empty model_info (#13785)
For `/api/show`, a fully missing `model_info` field trips up various
integrators (including a recent Android Studio integration).

The primary source of missing info tends to come from models with a
remote that are also missing other data. It seems better to me to return
an empty `model_info` than making up some other fields within
`model_info` (like saying the architecture is `remote` or something like
that). So this does slightly change `/api/show`'s behavior that possibly
someone is relying on, but it seems more important to ensure the field
is always there (from a quick sampling integrations seem to be robust to
missing fields _within_ it).

Fixes: https://github.com/ollama/ollama/issues/13783
2026-01-19 15:26:17 -08:00
24 changed files with 3629 additions and 25 deletions

View File

@@ -749,7 +749,7 @@ type ShowResponse struct {
Messages []Message `json:"messages,omitempty"`
RemoteModel string `json:"remote_model,omitempty"`
RemoteHost string `json:"remote_host,omitempty"`
ModelInfo map[string]any `json:"model_info,omitempty"`
ModelInfo map[string]any `json:"model_info"`
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
Tensors []Tensor `json:"tensors,omitempty"`
Capabilities []model.Capability `json:"capabilities,omitempty"`

View File

@@ -313,6 +313,8 @@ func LoadModelMetadata(fsys fs.FS) (ModelKV, *Tokenizer, error) {
conv = &deepseek2Model{}
case "Glm4MoeLiteForCausalLM":
conv = &glm4MoeLiteModel{}
case "Lfm2ForCausalLM":
conv = &lfm2Model{}
default:
return nil, nil, fmt.Errorf("unsupported architecture %q", p.Architectures[0])
}

100
convert/convert_lfm2.go Normal file
View File

@@ -0,0 +1,100 @@
package convert
import (
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
)
type lfm2Model struct {
ModelParameters
HiddenSize uint32 `json:"hidden_size"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"`
NormEps float32 `json:"norm_eps"`
ConvLCache uint32 `json:"conv_L_cache"`
LayerTypes []string `json:"layer_types"`
TieEmbedding bool `json:"tie_embedding"`
}
var _ ModelConverter = (*lfm2Model)(nil)
func (p *lfm2Model) KV(t *Tokenizer) KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "lfm2"
kv["lfm2.vocab_size"] = p.VocabSize
kv["lfm2.block_count"] = p.NumHiddenLayers
kv["lfm2.embedding_length"] = p.HiddenSize
kv["lfm2.feed_forward_length"] = p.IntermediateSize
kv["lfm2.context_length"] = p.MaxPositionEmbeddings
// Build per-layer KV head count array based on layer_types
// (0 = shortconv layer, non-zero = attention layer with that many KV heads)
kvHeadCounts := make([]uint32, p.NumHiddenLayers)
for i := range p.NumHiddenLayers {
if int(i) < len(p.LayerTypes) && p.LayerTypes[i] == "full_attention" {
kvHeadCounts[i] = p.NumKeyValueHeads
}
}
kv["lfm2.attention.head_count"] = p.NumAttentionHeads
kv["lfm2.attention.head_count_kv"] = kvHeadCounts
kv["lfm2.attention.key_length"] = p.HiddenSize / p.NumAttentionHeads
kv["lfm2.attention.value_length"] = p.HiddenSize / p.NumAttentionHeads
kv["lfm2.attention.layer_norm_rms_epsilon"] = p.NormEps
kv["lfm2.rope.freq_base"] = p.RopeTheta
kv["lfm2.shortconv.l_cache"] = p.ConvLCache
return kv
}
func (p *lfm2Model) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
shape := t.Shape()
// Squeeze conv weights: [D, 1, K] -> [D, K]
if strings.HasSuffix(t.Name(), "shortconv.conv.weight") {
if len(shape) == 3 && shape[1] == 1 {
shape = []uint64{shape[0], shape[2]}
}
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: slices.Clone(shape),
WriterTo: t,
})
}
return out
}
func (p *lfm2Model) Replacements() []string {
return []string{
"model.embed_tokens", "token_embd",
"model.embedding_norm", "output_norm",
"model.layers", "blk",
"operator_norm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.out_proj", "attn_output",
"self_attn.q_layernorm", "attn_q_norm",
"self_attn.k_layernorm", "attn_k_norm",
"conv.conv", "shortconv.conv",
"conv.in_proj", "shortconv.in_proj",
"conv.out_proj", "shortconv.out_proj",
"feed_forward.w1", "ffn_gate",
"feed_forward.w2", "ffn_down",
"feed_forward.w3", "ffn_up",
"ffn_norm", "ffn_norm",
}
}

View File

@@ -40,6 +40,7 @@ const (
func (t tensorBase) Kind() uint32 {
if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") ||
strings.HasSuffix(t.name, ".bias") ||
strings.HasSuffix(t.name, ".shortconv.conv.weight") ||
t.name == "token_types.weight" ||
t.name == "v.positional_embedding_vlm" ||
t.name == "v.tile_position_embd.weight" ||

View File

@@ -270,6 +270,7 @@ func (kv KV) OllamaEngineRequired() bool {
"qwen3", "qwen3moe",
"qwen3vl", "qwen3vlmoe",
"glm4moelite",
"lfm2",
}, kv.Architecture())
}
@@ -859,6 +860,7 @@ func (f GGML) FlashAttention() bool {
"gemma3",
"glm4moelite",
"gptoss", "gpt-oss",
"lfm2",
"mistral3",
"olmo3",
"qwen3", "qwen3moe",

View File

@@ -0,0 +1,148 @@
//go:build integration
package integration
import (
"context"
"encoding/base64"
"fmt"
"strings"
"testing"
"time"
"github.com/ollama/ollama/api"
)
func TestImageGeneration(t *testing.T) {
skipUnderMinVRAM(t, 8)
type testCase struct {
imageGenModel string
visionModel string
prompt string
expectedWords []string
}
testCases := []testCase{
{
imageGenModel: "jmorgan/z-image-turbo",
visionModel: "llama3.2-vision",
prompt: "A cartoon style llama flying like a superhero through the air with clouds in the background",
expectedWords: []string{"llama", "flying", "cartoon", "cloud", "sky", "superhero", "air", "animal", "camelid"},
},
}
for _, tc := range testCases {
t.Run(fmt.Sprintf("%s->%s", tc.imageGenModel, tc.visionModel), func(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 10*time.Minute)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
// Pull both models
if err := PullIfMissing(ctx, client, tc.imageGenModel); err != nil {
t.Fatalf("failed to pull image gen model: %v", err)
}
if err := PullIfMissing(ctx, client, tc.visionModel); err != nil {
t.Fatalf("failed to pull vision model: %v", err)
}
// Generate the image
t.Logf("Generating image with prompt: %s", tc.prompt)
imageBase64, err := generateImage(ctx, client, tc.imageGenModel, tc.prompt)
if err != nil {
if strings.Contains(err.Error(), "image generation not available") {
t.Skip("Target system does not support image generation")
} else if strings.Contains(err.Error(), "executable file not found in") { // Windows pattern, not yet supported
t.Skip("Windows does not support image generation yet")
} else if strings.Contains(err.Error(), "CUDA driver version is insufficient") {
t.Skip("Driver is too old")
} else if strings.Contains(err.Error(), "insufficient memory for image generation") {
t.Skip("insufficient memory for image generation")
} else if strings.Contains(err.Error(), "error while loading shared libraries: libcuda.so.1") { // AMD GPU or CPU
t.Skip("CUDA GPU is not available")
} else if strings.Contains(err.Error(), "ollama-mlx: no such file or directory") {
// most likely linux arm - not supported yet
t.Skip("unsupported architecture")
}
t.Fatalf("failed to generate image: %v", err)
}
imageData, err := base64.StdEncoding.DecodeString(imageBase64)
if err != nil {
t.Fatalf("failed to decode image: %v", err)
}
t.Logf("Generated image: %d bytes", len(imageData))
// Preload vision model and check GPU loading
err = client.Generate(ctx, &api.GenerateRequest{Model: tc.visionModel}, func(response api.GenerateResponse) error { return nil })
if err != nil {
t.Fatalf("failed to load vision model: %v", err)
}
// Use vision model to describe the image
chatReq := api.ChatRequest{
Model: tc.visionModel,
Messages: []api.Message{
{
Role: "user",
Content: "Describe this image in detail. What is shown? What style is it? What is the main subject doing?",
Images: []api.ImageData{imageData},
},
},
Stream: &stream,
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
}
// Verify the vision model's response contains expected keywords
response := DoChat(ctx, t, client, chatReq, tc.expectedWords, 240*time.Second, 30*time.Second)
if response != nil {
t.Logf("Vision model response: %s", response.Content)
// Additional detailed check for keywords
content := strings.ToLower(response.Content)
foundWords := []string{}
missingWords := []string{}
for _, word := range tc.expectedWords {
if strings.Contains(content, word) {
foundWords = append(foundWords, word)
} else {
missingWords = append(missingWords, word)
}
}
t.Logf("Found keywords: %v", foundWords)
if len(missingWords) > 0 {
t.Logf("Missing keywords (at least one was found so test passed): %v", missingWords)
}
}
})
}
}
// generateImage calls the Ollama API to generate an image and returns the base64 image data
func generateImage(ctx context.Context, client *api.Client, model, prompt string) (string, error) {
var imageBase64 string
err := client.Generate(ctx, &api.GenerateRequest{
Model: model,
Prompt: prompt,
}, func(resp api.GenerateResponse) error {
if resp.Image != "" {
imageBase64 = resp.Image
}
return nil
})
if err != nil {
return "", fmt.Errorf("failed to generate image: %w", err)
}
if imageBase64 == "" {
return "", fmt.Errorf("no image data in response")
}
return imageBase64, nil
}

View File

@@ -38,6 +38,7 @@ var (
// Note: add newer models at the top of the list to test them first
ollamaEngineChatModels = []string{
"lfm2.5-thinking",
"ministral-3",
"qwen3-coder:30b",
"gpt-oss:20b",
@@ -143,6 +144,7 @@ var (
"granite3.3",
"hermes3",
"internlm2",
"lfm2.5-thinking",
"llama-guard3",
"llama-pro",
"llama2-chinese",
@@ -263,6 +265,7 @@ var (
"snowflake-arctic-embed2",
}
libraryToolsModels = []string{
"lfm2.5-thinking",
"qwen3-vl",
"gpt-oss:20b",
"gpt-oss:120b",

View File

@@ -162,6 +162,7 @@ type Tensor interface {
AvgPool2D(ctx Context, k, s int, p float32) Tensor
Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
Conv3D(ctx Context, weight Tensor, c, s0, s1, s2, p0, p1, p2, d0, d1, d2 int) Tensor
SSMConv(ctx Context, kernel Tensor) Tensor
IM2Col(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor

View File

@@ -1641,6 +1641,13 @@ func (t *Tensor) Conv3D(ctx ml.Context, t2 ml.Tensor, c, s0, s1, s2, p0, p1, p2,
return tt
}
func (t *Tensor) SSMConv(ctx ml.Context, kernel ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_ssm_conv(ctx.(*Context).ctx, t.t, kernel.(*Tensor).t),
}
}
func (t *Tensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
return &Tensor{
b: t.b,

410
model/models/lfm2/cache.go Normal file
View File

@@ -0,0 +1,410 @@
package lfm2
import (
"slices"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
var _ kvcache.Cache = (*HybridCache)(nil)
// HybridCache stores:
// - a standard causal KV cache for attention layers
// - a per-sequence recurrent conv state for shortconv layers
//
// Conv state shape (per layer, per sequence): [dConv, hiddenSize] where dConv = L_cache - 1.
// Stored internally as a tensor of shape [dConv * hiddenSize, maxSlots].
type HybridCache struct {
kv *kvcache.Causal
backend ml.Backend
dtype ml.DType
maxSequences int
hiddenSize int
dConv int
// slot mapping for recurrent state
slotForSeq map[int]int
refCount []int
freeSlots []int
// per-layer conv state buffers (allocated lazily)
convCtxs map[int]ml.Context
convStates map[int]ml.Tensor // [dConv*hiddenSize, maxSlots]
// current forward batch (derived in StartForward)
curSeqs []int
curSlots []int
curSlotsInput ml.Tensor
curSeqTokens int
// track if EnsureWritable has been called for this forward pass
writableEnsured bool
// track any error from EnsureWritable to propagate later
writableError error
}
func NewHybridCache(shift func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error), hiddenSize, dConv int) *HybridCache {
return &HybridCache{
kv: kvcache.NewCausalCache(shift),
hiddenSize: hiddenSize,
dConv: dConv,
slotForSeq: make(map[int]int),
convCtxs: make(map[int]ml.Context),
convStates: make(map[int]ml.Tensor),
}
}
func (c *HybridCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
c.backend = backend
c.dtype = dtype
c.maxSequences = maxSequences
// initialize slot allocator
c.refCount = make([]int, maxSequences)
c.freeSlots = c.freeSlots[:0]
for i := maxSequences - 1; i >= 0; i-- {
c.freeSlots = append(c.freeSlots, i)
}
c.kv.Init(backend, dtype, maxSequences, capacity, maxBatch)
}
func (c *HybridCache) Close() {
for _, ctx := range c.convCtxs {
ctx.Close()
}
c.kv.Close()
}
func (c *HybridCache) SetConfig(config ml.CacheConfig) {
c.kv.SetConfig(config)
}
func (c *HybridCache) SetLayer(layer int) {
c.kv.SetLayer(layer)
}
func (c *HybridCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
return c.kv.Get(ctx)
}
func (c *HybridCache) Put(ctx ml.Context, key, value ml.Tensor) {
c.kv.Put(ctx, key, value)
}
func (c *HybridCache) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
if err := c.kv.StartForward(ctx, batch, reserve); err != nil {
return err
}
// Derive equal-length sequence layout for shortconv.
// LFM2 shortconv assumes tokens form a [seq_tokens, seqs] grid.
seqCounts := make(map[int]int)
c.curSeqs = c.curSeqs[:0]
for _, s := range batch.Sequences {
if _, ok := seqCounts[s]; !ok {
c.curSeqs = append(c.curSeqs, s)
}
seqCounts[s]++
}
if len(c.curSeqs) == 0 {
return nil
}
nTokens := len(batch.Sequences)
nSeqs := len(c.curSeqs)
want := nTokens / nSeqs
for _, s := range c.curSeqs {
if seqCounts[s] != want {
return kvcache.ErrNotSupported
}
}
c.curSeqTokens = want
// When reserving memory for estimation, use fake slot assignments
// without modifying permanent state (slotForSeq, refCount)
if reserve {
c.curSlots = c.curSlots[:0]
slots := make([]int32, nSeqs)
for i := range nSeqs {
c.curSlots = append(c.curSlots, i)
slots[i] = int32(i)
}
c.curSlotsInput = ctx.Input().FromInts(slots, len(slots))
return nil
}
// Ensure slots exist for sequences in this batch
c.curSlots = c.curSlots[:0]
var newSlots []int // track newly allocated slots that need zeroing
for _, s := range c.curSeqs {
slot, ok := c.slotForSeq[s]
if !ok {
var err error
slot, err = c.allocSlot()
if err != nil {
return err
}
c.slotForSeq[s] = slot
c.refCount[slot] = 1
newSlots = append(newSlots, slot)
}
c.curSlots = append(c.curSlots, slot)
}
// Zero conv state for newly allocated slots to clear stale data from previous sequences
if len(newSlots) > 0 {
c.zeroConvSlots(ctx, newSlots)
}
// Create a tensor for the current slots
slots := make([]int32, len(c.curSlots))
for i, v := range c.curSlots {
slots[i] = int32(v)
}
c.curSlotsInput = ctx.Input().FromInts(slots, len(slots))
// Reset writable state for new forward pass
c.writableEnsured = false
c.writableError = nil
return nil
}
func (c *HybridCache) allocSlot() (int, error) {
if len(c.freeSlots) == 0 {
return 0, kvcache.ErrKvCacheFull
}
slot := c.freeSlots[len(c.freeSlots)-1]
c.freeSlots = c.freeSlots[:len(c.freeSlots)-1]
return slot, nil
}
func (c *HybridCache) freeSlot(slot int) {
// Bounds check before freeing
if slot >= 0 && slot < c.maxSequences {
c.freeSlots = append(c.freeSlots, slot)
}
}
// zeroConvSlots zeros the conv state for the given slots across all layers.
// This must be called when recycling slots to prevent stale state from affecting new sequences.
func (c *HybridCache) zeroConvSlots(ctx ml.Context, slots []int) {
if len(slots) == 0 || len(c.convStates) == 0 {
return
}
// Use input context for creating tensors
inputCtx := ctx.Input()
// Create slot indices tensor
slotIndices := make([]int32, len(slots))
for i, s := range slots {
slotIndices[i] = int32(s)
}
slotsTensor := inputCtx.FromInts(slotIndices, len(slotIndices))
// Create zero tensor for the slots (SetRows requires F32 source)
zeros := inputCtx.Zeros(ml.DTypeF32, c.dConv*c.hiddenSize, len(slots))
// Zero each layer's conv state for these slots
for _, buf := range c.convStates {
ctx.Forward(buf.SetRows(ctx, zeros, slotsTensor))
}
}
// EnsureWritable ensures that sequences in the current batch have private (non-shared) conv slots.
// Returns an error if slot allocation fails.
func (c *HybridCache) EnsureWritable(ctx ml.Context) error {
for i, seq := range c.curSeqs {
slot, ok := c.slotForSeq[seq]
if !ok {
continue
}
// Bounds check
if slot < 0 || slot >= len(c.refCount) {
continue
}
if c.refCount[slot] <= 1 {
continue
}
newSlot, err := c.allocSlot()
if err != nil {
return err
}
c.refCount[slot]--
c.refCount[newSlot] = 1
c.slotForSeq[seq] = newSlot
c.curSlots[i] = newSlot
// Copy existing conv state for all initialized layers
for _, buf := range c.convStates {
// buf: [dConv*hiddenSize, maxSlots]
src := buf.Rows(ctx, ctx.Input().FromInts([]int32{int32(slot)}, 1))
// SetRows requires F32 source
srcF32 := src.Cast(ctx, ml.DTypeF32)
ctx.Forward(buf.SetRows(ctx, srcF32, ctx.Input().FromInts([]int32{int32(newSlot)}, 1)))
}
}
// Rebuild current slots tensor
slots := make([]int32, len(c.curSlots))
for i, v := range c.curSlots {
slots[i] = int32(v)
}
c.curSlotsInput = ctx.Input().FromInts(slots, len(slots))
return nil
}
func (c *HybridCache) CopyPrefix(srcSeq, dstSeq int, prefixLen int32) {
// KV cache shares prefix metadata (no copy) which is correct for prefix reuse.
c.kv.CopyPrefix(srcSeq, dstSeq, prefixLen)
// For shortconv state we implement copy-on-write: dst shares the same slot as src.
// On the first write to dst, EnsureWritable will create a private slot.
if dstSlot, ok := c.slotForSeq[dstSeq]; ok {
// Bounds check before decrementing
if dstSlot >= 0 && dstSlot < len(c.refCount) {
c.refCount[dstSlot]--
if c.refCount[dstSlot] <= 0 {
c.refCount[dstSlot] = 0
c.freeSlot(dstSlot)
}
}
delete(c.slotForSeq, dstSeq)
}
srcSlot, ok := c.slotForSeq[srcSeq]
if !ok {
// src may not have a slot yet; dst will allocate on demand
return
}
// Bounds check before incrementing
if srcSlot >= 0 && srcSlot < len(c.refCount) {
c.slotForSeq[dstSeq] = srcSlot
c.refCount[srcSlot]++
}
}
func (c *HybridCache) CanResume(seq int, pos int32) bool {
return c.kv.CanResume(seq, pos)
}
func (c *HybridCache) Remove(seq int, beginIndex, endIndex int32) error {
if err := c.kv.Remove(seq, beginIndex, endIndex); err != nil {
return err
}
// For recurrent state, any removal invalidates the state because
// the state at position N depends on all previous positions.
// Drop the slot mapping so it resets on next use.
slot, ok := c.slotForSeq[seq]
if !ok {
return nil
}
// Bounds check
if slot < 0 || slot >= len(c.refCount) {
delete(c.slotForSeq, seq)
return nil
}
c.refCount[slot]--
if c.refCount[slot] <= 0 {
c.refCount[slot] = 0
c.freeSlot(slot)
}
delete(c.slotForSeq, seq)
return nil
}
func (c *HybridCache) slotsTensor() ml.Tensor {
return c.curSlotsInput
}
func (c *HybridCache) seqTokens() int {
return c.curSeqTokens
}
func (c *HybridCache) numSeqs() int {
return len(c.curSeqs)
}
func (c *HybridCache) convBuffer(ctx ml.Context, layer int) ml.Tensor {
if buf, ok := c.convStates[layer]; ok {
return buf
}
if _, ok := c.convCtxs[layer]; !ok {
c.convCtxs[layer] = c.backend.NewContextSize(1).Layer(layer)
}
buf := c.convCtxs[layer].Zeros(c.dtype, c.dConv*c.hiddenSize, c.maxSequences)
c.convStates[layer] = buf
return buf
}
// ConvState returns the conv state for current batch sequences as shape [dConv, hiddenSize, nSeqs].
// Returns an error if copy-on-write allocation fails.
func (c *HybridCache) ConvState(ctx ml.Context, layer int) (ml.Tensor, error) {
if !c.writableEnsured {
needsWritable := false
for _, seq := range c.curSeqs {
slot, ok := c.slotForSeq[seq]
if !ok {
continue
}
if slot >= 0 && slot < len(c.refCount) && c.refCount[slot] > 1 {
needsWritable = true
break
}
}
if needsWritable {
if err := c.EnsureWritable(ctx); err != nil {
c.writableError = err
}
}
c.writableEnsured = true
}
if c.writableError != nil {
return nil, c.writableError
}
buf := c.convBuffer(ctx, layer)
cur := buf.Rows(ctx, c.slotsTensor())
return cur.Reshape(ctx, c.dConv, c.hiddenSize, c.numSeqs()), nil
}
// UpdateConvState writes a new conv state for current batch sequences.
// newState must have shape [dConv, hiddenSize, nSeqs].
func (c *HybridCache) UpdateConvState(ctx ml.Context, layer int, newState ml.Tensor) {
buf := c.convBuffer(ctx, layer)
src := newState.Reshape(ctx, c.dConv*c.hiddenSize, c.numSeqs())
// SetRows requires F32 source
srcF32 := src.Cast(ctx, ml.DTypeF32)
ctx.Forward(buf.SetRows(ctx, srcF32, c.slotsTensor()))
}
// IsSupportedForBatch returns true if the current batch layout supports shortconv.
func (c *HybridCache) IsSupportedForBatch() bool {
return c.curSeqTokens > 0 && len(c.curSeqs) > 0
}
// Seqs returns the ordered unique sequences for the current forward pass.
func (c *HybridCache) Seqs() []int {
return slices.Clone(c.curSeqs)
}

View File

@@ -0,0 +1,444 @@
package lfm2
import (
"testing"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
)
// TestHybridCache tests verify the slot management logic of HybridCache.
// These tests focus on the recurrent state slot allocation, reference counting,
// and copy-on-write semantics without requiring a full ML backend.
// createSlotOnlyCache creates a HybridCache with only the slot management
// fields initialized. Used to test slot logic in isolation.
func createSlotOnlyCache(maxSequences int) *HybridCache {
return &HybridCache{
hiddenSize: 256,
dConv: 3,
maxSequences: maxSequences,
refCount: make([]int, maxSequences),
freeSlots: initFreeSlots(maxSequences),
slotForSeq: make(map[int]int),
convCtxs: make(map[int]ml.Context),
convStates: make(map[int]ml.Tensor),
}
}
func initFreeSlots(n int) []int {
slots := make([]int, 0, n)
for i := n - 1; i >= 0; i-- {
slots = append(slots, i)
}
return slots
}
func TestHybridCache_SlotAllocation(t *testing.T) {
cache := createSlotOnlyCache(4)
// Verify initial state
if len(cache.freeSlots) != 4 {
t.Errorf("expected 4 free slots, got %d", len(cache.freeSlots))
}
// Allocate all slots
for range 4 {
slot, err := cache.allocSlot()
if err != nil {
t.Fatalf("allocSlot failed: %v", err)
}
cache.refCount[slot] = 1
}
// Should be full now
if len(cache.freeSlots) != 0 {
t.Errorf("expected 0 free slots, got %d", len(cache.freeSlots))
}
// Trying to allocate another should fail
_, err := cache.allocSlot()
if err != kvcache.ErrKvCacheFull {
t.Errorf("expected ErrKvCacheFull, got %v", err)
}
}
func TestHybridCache_SlotReuse(t *testing.T) {
cache := createSlotOnlyCache(4)
// Allocate a slot
slot1, _ := cache.allocSlot()
cache.refCount[slot1] = 1
// Free it
cache.refCount[slot1] = 0
cache.freeSlot(slot1)
// Allocate again - should get the same slot back (LIFO)
slot2, _ := cache.allocSlot()
if slot2 != slot1 {
t.Errorf("expected slot %d to be reused, got %d", slot1, slot2)
}
}
func TestHybridCache_SlotRefCounting_ShareSlot(t *testing.T) {
cache := createSlotOnlyCache(4)
// Allocate slot for seq 1
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
// Simulate sharing slot with seq 2 (copy-on-write style)
cache.slotForSeq[2] = slot1
cache.refCount[slot1]++
// Should share the same slot
if cache.slotForSeq[2] != slot1 {
t.Errorf("expected seq 2 to share slot %d, got %d", slot1, cache.slotForSeq[2])
}
// Ref count should be 2
if cache.refCount[slot1] != 2 {
t.Errorf("expected refCount 2, got %d", cache.refCount[slot1])
}
}
func TestHybridCache_SlotRefCounting_DecRef(t *testing.T) {
cache := createSlotOnlyCache(4)
// Allocate slot for seq 1
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
// Share with seq 2
cache.slotForSeq[2] = slot1
cache.refCount[slot1]++
// Unshare seq 2
cache.refCount[slot1]--
delete(cache.slotForSeq, 2)
// Ref count should be back to 1
if cache.refCount[slot1] != 1 {
t.Errorf("expected refCount 1 after unshare, got %d", cache.refCount[slot1])
}
// Seq 2 should no longer have a slot
if _, ok := cache.slotForSeq[2]; ok {
t.Error("seq 2 should not have a slot after unshare")
}
}
func TestHybridCache_SlotFreeWhenUnused(t *testing.T) {
cache := createSlotOnlyCache(4)
initialFreeSlots := len(cache.freeSlots)
// Allocate slot for seq 1
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
// Free the slot when refCount drops to 0
cache.refCount[slot1]--
if cache.refCount[slot1] <= 0 {
cache.refCount[slot1] = 0
cache.freeSlot(slot1)
}
delete(cache.slotForSeq, 1)
// Slot should be freed
if len(cache.freeSlots) != initialFreeSlots {
t.Errorf("expected %d free slots, got %d", initialFreeSlots, len(cache.freeSlots))
}
// Ref count should be 0
if cache.refCount[slot1] != 0 {
t.Errorf("expected refCount 0, got %d", cache.refCount[slot1])
}
}
func TestHybridCache_SlotOverwrite(t *testing.T) {
cache := createSlotOnlyCache(4)
// Allocate slots for seq 1 and seq 2
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
slot2, _ := cache.allocSlot()
cache.slotForSeq[2] = slot2
cache.refCount[slot2] = 1
initialFreeSlots := len(cache.freeSlots)
// Simulate overwriting seq 2's slot with slot1 (sharing)
// First free the old slot
cache.refCount[slot2]--
if cache.refCount[slot2] <= 0 {
cache.refCount[slot2] = 0
cache.freeSlot(slot2)
}
// Then share slot1
cache.slotForSeq[2] = slot1
cache.refCount[slot1]++
// Seq 2 should now share slot1
if cache.slotForSeq[2] != slot1 {
t.Errorf("expected seq 2 to share slot %d, got %d", slot1, cache.slotForSeq[2])
}
// Old slot2 should be freed
if len(cache.freeSlots) != initialFreeSlots+1 {
t.Errorf("expected %d free slots, got %d", initialFreeSlots+1, len(cache.freeSlots))
}
}
func TestHybridCache_BoundsChecking(t *testing.T) {
cache := createSlotOnlyCache(4)
// Test freeing invalid slot (should not panic)
cache.freeSlot(-1)
cache.freeSlot(100) // out of bounds
// freeSlot does bounds checking, so invalid slots should be ignored
if len(cache.freeSlots) != 4 {
t.Errorf("invalid slots should not affect free list, got %d slots", len(cache.freeSlots))
}
}
func TestHybridCache_MultipleSequences_RefCounting(t *testing.T) {
cache := createSlotOnlyCache(8)
// Allocate slot for seq 1
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
// Fork to seq 2, 3, 4 (all share slot1)
for _, seq := range []int{2, 3, 4} {
cache.slotForSeq[seq] = slot1
cache.refCount[slot1]++
}
// Ref count should be 4
if cache.refCount[slot1] != 4 {
t.Errorf("expected refCount 4, got %d", cache.refCount[slot1])
}
// Remove seq 2, 3
for _, seq := range []int{2, 3} {
delete(cache.slotForSeq, seq)
cache.refCount[slot1]--
}
if cache.refCount[slot1] != 2 {
t.Errorf("expected refCount 2, got %d", cache.refCount[slot1])
}
// Slot should still be allocated (not in free list)
found := false
for _, s := range cache.freeSlots {
if s == slot1 {
found = true
break
}
}
if found {
t.Error("slot1 should not be in free list yet")
}
// Remove remaining sequences
for _, seq := range []int{1, 4} {
delete(cache.slotForSeq, seq)
cache.refCount[slot1]--
}
if cache.refCount[slot1] != 0 {
t.Errorf("expected refCount 0, got %d", cache.refCount[slot1])
}
}
func TestHybridCache_ChainedSharing(t *testing.T) {
cache := createSlotOnlyCache(8)
// Create seq 1
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
// Share 1 -> 2
cache.slotForSeq[2] = slot1
cache.refCount[slot1]++
// Share 2 -> 3 (should still share slot1)
cache.slotForSeq[3] = cache.slotForSeq[2] // which is slot1
cache.refCount[slot1]++
// All should share slot1
if cache.slotForSeq[1] != slot1 || cache.slotForSeq[2] != slot1 || cache.slotForSeq[3] != slot1 {
t.Error("all sequences should share slot1")
}
if cache.refCount[slot1] != 3 {
t.Errorf("expected refCount 3, got %d", cache.refCount[slot1])
}
}
func TestHybridCache_CacheParameters(t *testing.T) {
cache := NewHybridCache(nil, 512, 5) // hiddenSize=512, dConv=5
if cache.hiddenSize != 512 {
t.Errorf("expected hiddenSize 512, got %d", cache.hiddenSize)
}
if cache.dConv != 5 {
t.Errorf("expected dConv 5, got %d", cache.dConv)
}
}
func TestHybridCache_NumSeqs(t *testing.T) {
cache := createSlotOnlyCache(4)
// Initially no sequences
if cache.numSeqs() != 0 {
t.Errorf("expected 0 seqs, got %d", cache.numSeqs())
}
// Manually set up current batch state
cache.curSeqs = []int{1, 2, 3}
if cache.numSeqs() != 3 {
t.Errorf("expected 3 seqs, got %d", cache.numSeqs())
}
}
func TestHybridCache_SeqTokens(t *testing.T) {
cache := createSlotOnlyCache(4)
// Initially 0
if cache.seqTokens() != 0 {
t.Errorf("expected 0 seqTokens, got %d", cache.seqTokens())
}
// Manually set up current batch state
cache.curSeqTokens = 16
if cache.seqTokens() != 16 {
t.Errorf("expected 16 seqTokens, got %d", cache.seqTokens())
}
}
// Test that Seqs returns a clone of curSeqs
func TestHybridCache_Seqs_ReturnsClone(t *testing.T) {
cache := createSlotOnlyCache(4)
cache.curSeqs = []int{1, 2, 3}
seqs := cache.Seqs()
// Modify returned slice
seqs[0] = 999
// Original should be unchanged
if cache.curSeqs[0] != 1 {
t.Error("Seqs should return a clone, not the original slice")
}
}
func TestHybridCache_IsSupportedForBatch(t *testing.T) {
cache := createSlotOnlyCache(4)
// Initially not supported (no batch set up)
if cache.IsSupportedForBatch() {
t.Error("expected IsSupportedForBatch to be false initially")
}
// Set up a valid batch
cache.curSeqTokens = 1
cache.curSeqs = []int{1}
if !cache.IsSupportedForBatch() {
t.Error("expected IsSupportedForBatch to be true with valid batch")
}
}
func TestHybridCache_ZeroConvSlots_EmptyInputs(t *testing.T) {
cache := createSlotOnlyCache(4)
// zeroConvSlots should handle empty slots without panicking
cache.zeroConvSlots(nil, nil)
cache.zeroConvSlots(nil, []int{})
// zeroConvSlots should handle empty convStates without panicking
cache.zeroConvSlots(nil, []int{0, 1, 2})
}
func TestHybridCache_SlotRecycling_TracksNewSlots(t *testing.T) {
cache := createSlotOnlyCache(4)
// Allocate slot for seq 1
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
// Free the slot (simulating sequence removal)
cache.refCount[slot1]--
cache.freeSlot(slot1)
delete(cache.slotForSeq, 1)
// Verify slot is in free list
if len(cache.freeSlots) != 4 {
t.Errorf("expected 4 free slots after freeing, got %d", len(cache.freeSlots))
}
// Allocate for new seq 2 - should get recycled slot
slot2, _ := cache.allocSlot()
if slot2 != slot1 {
t.Errorf("expected recycled slot %d, got %d", slot1, slot2)
}
// This recycled slot would need zeroing in the real implementation
// The actual zeroing is tested via integration tests since it requires ML context
}
func TestHybridCache_NewSequence_GetsTrackedForZeroing(t *testing.T) {
cache := createSlotOnlyCache(4)
// Simulate the slot allocation flow from StartForward
// When a sequence doesn't have a slot, it gets allocated and tracked as "new"
newSlots := []int{}
// Seq 1 doesn't have a slot - allocate and track
seq := 1
if _, ok := cache.slotForSeq[seq]; !ok {
slot, err := cache.allocSlot()
if err != nil {
t.Fatalf("allocSlot failed: %v", err)
}
cache.slotForSeq[seq] = slot
cache.refCount[slot] = 1
newSlots = append(newSlots, slot)
}
// Verify newSlots contains the allocated slot
if len(newSlots) != 1 {
t.Errorf("expected 1 new slot, got %d", len(newSlots))
}
// Seq 1 already has a slot - should NOT be tracked as new
newSlots2 := []int{}
if _, ok := cache.slotForSeq[seq]; !ok {
slot, _ := cache.allocSlot()
cache.slotForSeq[seq] = slot
cache.refCount[slot] = 1
newSlots2 = append(newSlots2, slot)
}
// Verify no new slots for existing sequence
if len(newSlots2) != 0 {
t.Errorf("expected 0 new slots for existing sequence, got %d", len(newSlots2))
}
}

253
model/models/lfm2/model.go Normal file
View File

@@ -0,0 +1,253 @@
package lfm2
import (
"cmp"
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Options struct {
hiddenSize int
headDim, ropeDim int
eps, ropeBase, ropeScale float32
ropeType string
originalContextLength int
// per-layer head counts (LFM2 alternates attention and recurrent layers)
numHeadsByLayer []int
numKVHeadsByLayer []int
}
func (o Options) headDimValue() int {
// Head dim is shared across layers; fall back to first attention layer head count.
for _, h := range o.numHeadsByLayer {
if h > 0 {
return cmp.Or(o.headDim, o.hiddenSize/h)
}
}
return cmp.Or(o.headDim, o.hiddenSize)
}
func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
opts := []func(*rope.Options){rope.WithTypeNeoX()}
if o.ropeType == "yarn" {
attnFactor := float32(1.0 / (1.0 + 0.1*math.Log(float64(o.ropeScale))))
opts = append(opts,
rope.WithOriginalContextLength(o.originalContextLength),
rope.WithExtrapolationFactor(1.),
rope.WithAttentionFactor(attnFactor),
)
}
headCount := 1
for _, h := range o.numHeadsByLayer {
if h > 0 {
headCount = h
break
}
}
return nn.RoPE(ctx, states, positions, cmp.Or(o.ropeDim, o.headDim, o.hiddenSize/headCount), o.ropeBase, 1./o.ropeScale, opts...)
}
type Model struct {
model.Base
model.TextProcessor
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm,alt:token_embd_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
Options
}
func New(c fs.Config) (model.Model, error) {
if c.Uint("expert_count") > 0 {
return nil, model.ErrUnsupportedModel
}
if c.String("tokenizer.ggml.model") != "gpt2" {
return nil, model.ErrUnsupportedTokenizer
}
vocabulary := model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
}
var pretokenizers []string
switch c.String("tokenizer.ggml.pre") {
case "default":
// use default BPE pretokenizer
default:
// llama-bpe style (default for LFM2)
pretokenizers = []string{
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
}
}
m := Model{
TextProcessor: model.NewBytePairEncoding(&vocabulary, pretokenizers...),
Layers: make([]Layer, c.Uint("block_count")),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),
headDim: int(c.Uint("attention.key_length")),
ropeDim: int(c.Uint("rope.dimension_count")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeType: c.String("rope.scaling.type"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1),
originalContextLength: int(c.Uint("rope.scaling.original_context_length")),
},
}
type headCounts interface {
HeadCount() []uint64
HeadCountKV() []uint64
}
hc, ok := c.(headCounts)
if !ok {
return nil, model.ErrUnsupportedModel
}
headCount := hc.HeadCount()
headCountKV := hc.HeadCountKV()
m.numHeadsByLayer = make([]int, len(m.Layers))
m.numKVHeadsByLayer = make([]int, len(m.Layers))
for i := range m.Layers {
m.numHeadsByLayer[i] = int(headCount[i])
m.numKVHeadsByLayer[i] = int(headCountKV[i])
if m.numKVHeadsByLayer[i] == 0 {
m.Layers[i].Operator = &ShortConv{}
} else {
m.Layers[i].Operator = &Attention{}
}
}
lCache := int(c.Uint("shortconv.l_cache"))
dConv := max(0, lCache-1)
m.Cache = NewHybridCache(m.Shift, m.hiddenSize, dConv)
return &m, nil
}
type Operator interface {
Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache *HybridCache, layer int, opts *Options) ml.Tensor
}
type Attention struct {
Query *nn.Linear `gguf:"attn_q"`
QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
Key *nn.Linear `gguf:"attn_k"`
KeyNorm *nn.RMSNorm `gguf:"attn_k_norm"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output,alt:attn_out"`
}
func (sa *Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache *HybridCache, layer int, opts *Options) ml.Tensor {
batchSize := hiddenStates.Dim(1)
headDim := opts.headDimValue()
numHeads := opts.numHeadsByLayer[layer]
numKVHeads := opts.numKVHeadsByLayer[layer]
query := sa.Query.Forward(ctx, hiddenStates)
key := sa.Key.Forward(ctx, hiddenStates)
value := sa.Value.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, headDim, numHeads, batchSize)
key = key.Reshape(ctx, headDim, numKVHeads, batchSize)
value = value.Reshape(ctx, headDim, numKVHeads, batchSize)
query = sa.QueryNorm.Forward(ctx, query, opts.eps)
key = sa.KeyNorm.Forward(ctx, key, opts.eps)
query = opts.applyRotaryPositionEmbeddings(ctx, query, positions)
key = opts.applyRotaryPositionEmbeddings(ctx, key, positions)
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(headDim)), cache)
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
return sa.Output.Forward(ctx, attention)
}
type MLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
Gate *nn.Linear `gguf:"ffn_gate"`
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
type Layer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
Operator Operator
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP *MLP
}
func (l *Layer) Forward(ctx ml.Context, layer int, hiddenState, positions, outputs ml.Tensor, cache *HybridCache, opts *Options) ml.Tensor {
residual := hiddenState
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.Operator.Forward(ctx, hiddenState, positions, cache, layer, opts)
if outputs != nil {
hiddenState = hiddenState.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
return hiddenState.Add(ctx, residual)
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return m.applyRotaryPositionEmbeddings(ctx, key, shift), nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
for i, layer := range m.Layers {
m.Cache.SetLayer(i)
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = batch.Outputs
}
hiddenState = layer.Forward(ctx, i, hiddenState, positions, outputs, m.Cache.(*HybridCache), &m.Options)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
return m.Output.Forward(ctx, hiddenState), nil
}
func init() {
model.Register("lfm2", New)
}

View File

@@ -0,0 +1,50 @@
package lfm2
import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
)
type shortConvKernel struct {
Weight ml.Tensor `gguf:"weight"`
}
// ShortConv implements the LFM2 short-convolution block (GGML_OP_SSM_CONV) with a recurrent
// state stored in the HybridCache.
type ShortConv struct {
Conv *shortConvKernel `gguf:"shortconv.conv"`
InProj *nn.Linear `gguf:"shortconv.in_proj"`
OutProj *nn.Linear `gguf:"shortconv.out_proj"`
}
func (sc *ShortConv) Forward(ctx ml.Context, hiddenStates ml.Tensor, _ ml.Tensor, cache *HybridCache, layer int, opts *Options) ml.Tensor {
nSeqs := cache.numSeqs()
seqTokens := cache.seqTokens()
hiddenSize := hiddenStates.Dim(0)
if nSeqs <= 0 || seqTokens <= 0 || hiddenStates.Dim(1) != nSeqs*seqTokens {
panic("lfm2: unsupported batch layout for shortconv")
}
bcx := sc.InProj.Forward(ctx, hiddenStates).Reshape(ctx, 3*hiddenSize, seqTokens, nSeqs)
elementSize := bcx.Stride(0)
b := bcx.View(ctx, 0*hiddenSize*elementSize, hiddenSize, bcx.Stride(1), seqTokens, bcx.Stride(2), nSeqs)
c := bcx.View(ctx, 1*hiddenSize*elementSize, hiddenSize, bcx.Stride(1), seqTokens, bcx.Stride(2), nSeqs)
x := bcx.View(ctx, 2*hiddenSize*elementSize, hiddenSize, bcx.Stride(1), seqTokens, bcx.Stride(2), nSeqs)
bx := b.Mul(ctx, x).Permute(ctx, 1, 0, 2, 3)
state, err := cache.ConvState(ctx, layer)
if err != nil {
panic("lfm2: failed to get conv state: " + err.Error())
}
sx := state.Concat(ctx, bx, 0)
convOut := sx.SSMConv(ctx, sc.Conv.Weight)
y := c.Mul(ctx, convOut)
dConv := sx.Dim(0) - seqTokens
cache.UpdateConvState(ctx, layer, sx.Slice(ctx, 0, sx.Dim(0)-dConv, sx.Dim(0), 1))
return sc.OutProj.Forward(ctx, y.Reshape(ctx, hiddenSize, seqTokens*nSeqs))
}

View File

@@ -9,6 +9,7 @@ import (
_ "github.com/ollama/ollama/model/models/gemma3n"
_ "github.com/ollama/ollama/model/models/glm4moelite"
_ "github.com/ollama/ollama/model/models/gptoss"
_ "github.com/ollama/ollama/model/models/lfm2"
_ "github.com/ollama/ollama/model/models/llama"
_ "github.com/ollama/ollama/model/models/llama4"
_ "github.com/ollama/ollama/model/models/mistral3"

498
model/parsers/lfm2.go Normal file
View File

@@ -0,0 +1,498 @@
package parsers
import (
"encoding/json"
"errors"
"log/slog"
"strconv"
"strings"
"unicode"
"github.com/ollama/ollama/api"
)
type LFM2ParserState int
const (
LFM2CollectingThinking LFM2ParserState = iota
LFM2CollectingContent
LFM2CollectingToolCalls
)
const (
lfm2ThinkingOpenTag = "<think>"
lfm2ThinkingCloseTag = "</think>"
lfm2ToolCallStartTag = "<|tool_call_start|>"
lfm2ToolCallEndTag = "<|tool_call_end|>"
)
type LFM2Parser struct {
state LFM2ParserState
buffer strings.Builder
hasThinkingSupport bool
needsThinkingLeadingTrim bool // trim leading whitespace after <think> tag
needsContentLeadingTrim bool // trim leading whitespace after </think> tag
}
func (p *LFM2Parser) HasToolSupport() bool {
return true
}
func (p *LFM2Parser) HasThinkingSupport() bool {
return p.hasThinkingSupport
}
func (p *LFM2Parser) setInitialState(lastMessage *api.Message, thinkValue *api.ThinkValue) {
prefill := lastMessage != nil && lastMessage.Role == "assistant"
// Check both model capability AND request preference
thinkingEnabled := p.HasThinkingSupport() && (thinkValue != nil && thinkValue.Bool())
if !thinkingEnabled {
p.state = LFM2CollectingContent
return
}
if prefill && lastMessage.Content != "" {
p.state = LFM2CollectingContent
return
}
p.state = LFM2CollectingThinking
p.needsThinkingLeadingTrim = true
}
func (p *LFM2Parser) Init(tools []api.Tool, lastMessage *api.Message, thinkValue *api.ThinkValue) []api.Tool {
p.setInitialState(lastMessage, thinkValue)
return tools
}
type lfm2Event interface {
isLFM2Event()
}
type lfm2EventThinkingContent struct {
content string
}
type lfm2EventContent struct {
content string
}
type lfm2EventToolCall struct {
toolCall api.ToolCall
}
func (lfm2EventThinkingContent) isLFM2Event() {}
func (lfm2EventContent) isLFM2Event() {}
func (lfm2EventToolCall) isLFM2Event() {}
func (p *LFM2Parser) Add(s string, done bool) (content string, thinking string, calls []api.ToolCall, err error) {
p.buffer.WriteString(s)
events := p.parseEvents()
var toolCalls []api.ToolCall
var contentSb strings.Builder
var thinkingSb strings.Builder
for _, event := range events {
switch event := event.(type) {
case lfm2EventToolCall:
toolCalls = append(toolCalls, event.toolCall)
case lfm2EventThinkingContent:
thinkingSb.WriteString(event.content)
case lfm2EventContent:
contentSb.WriteString(event.content)
}
}
return contentSb.String(), thinkingSb.String(), toolCalls, nil
}
func (p *LFM2Parser) parseEvents() []lfm2Event {
var all []lfm2Event
keepLooping := true
for keepLooping {
var events []lfm2Event
events, keepLooping = p.eat()
if len(events) > 0 {
all = append(all, events...)
}
}
return all
}
func (p *LFM2Parser) eat() ([]lfm2Event, bool) {
var events []lfm2Event
bufStr := p.buffer.String()
if bufStr == "" {
return events, false
}
switch p.state {
case LFM2CollectingThinking:
// Strip opening <think> tag if present
if strings.HasPrefix(bufStr, lfm2ThinkingOpenTag) {
bufStr = bufStr[len(lfm2ThinkingOpenTag):]
p.needsThinkingLeadingTrim = true
p.buffer.Reset()
p.buffer.WriteString(bufStr)
}
// Trim leading whitespace after <think> tag (may span multiple chunks)
if p.needsThinkingLeadingTrim {
if trimmed := strings.TrimLeftFunc(bufStr, unicode.IsSpace); trimmed != bufStr {
bufStr = trimmed
p.buffer.Reset()
p.buffer.WriteString(bufStr)
}
// Clear flag once we have non-whitespace content or buffer is empty
if len(bufStr) > 0 {
p.needsThinkingLeadingTrim = false
}
}
if strings.Contains(bufStr, lfm2ThinkingCloseTag) { // thinking[</think>] -> content
split := strings.SplitN(bufStr, lfm2ThinkingCloseTag, 2)
thinking := split[0]
thinking = strings.TrimRightFunc(thinking, unicode.IsSpace)
remaining := split[1]
remaining = strings.TrimLeftFunc(remaining, unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(remaining)
p.state = LFM2CollectingContent
p.needsThinkingLeadingTrim = false
// Set flag to trim any additional whitespace that may arrive in later chunks
p.needsContentLeadingTrim = len(remaining) == 0
if len(thinking) > 0 {
events = append(events, lfm2EventThinkingContent{content: thinking})
}
return events, true
} else if overlapLen := overlap(bufStr, lfm2ThinkingCloseTag); overlapLen > 0 { // partial </think>
beforePartialTag := bufStr[:len(bufStr)-overlapLen]
trailingLen := trailingWhitespaceLen(beforePartialTag)
ambiguousStart := len(beforePartialTag) - trailingLen
unambiguous := bufStr[:ambiguousStart]
ambiguous := bufStr[ambiguousStart:]
p.buffer.Reset()
p.buffer.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, lfm2EventThinkingContent{content: unambiguous})
}
return events, false
} else { // otherwise its thinking content
whitespaceLen := trailingWhitespaceLen(bufStr)
ambiguousStart := len(bufStr) - whitespaceLen
unambiguous := bufStr[:ambiguousStart]
ambiguous := bufStr[ambiguousStart:]
p.buffer.Reset()
p.buffer.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, lfm2EventThinkingContent{content: unambiguous})
}
return events, false
}
case LFM2CollectingContent:
// Trim leading whitespace after </think> tag (may span multiple chunks)
if p.needsContentLeadingTrim {
if trimmed := strings.TrimLeftFunc(bufStr, unicode.IsSpace); trimmed != bufStr {
bufStr = trimmed
p.buffer.Reset()
p.buffer.WriteString(bufStr)
}
// Clear flag once we have non-whitespace content
if len(bufStr) > 0 {
p.needsContentLeadingTrim = false
}
}
if strings.Contains(bufStr, lfm2ToolCallStartTag) { // content[<|tool_call_start|>] -> tool calls
split := strings.SplitN(bufStr, lfm2ToolCallStartTag, 2)
contentBefore := strings.TrimRightFunc(split[0], unicode.IsSpace)
remaining := split[1]
p.buffer.Reset()
p.buffer.WriteString(remaining)
p.state = LFM2CollectingToolCalls
if len(contentBefore) > 0 {
events = append(events, lfm2EventContent{content: contentBefore})
}
return events, true
} else { // otherwise its content
p.buffer.Reset()
if len(bufStr) > 0 {
events = append(events, lfm2EventContent{content: bufStr})
}
return events, false
}
case LFM2CollectingToolCalls:
// Look for complete tool call JSON between tags
if idx := strings.Index(bufStr, lfm2ToolCallEndTag); idx != -1 {
toolCallContent := bufStr[:idx]
if toolCalls, err := p.parseToolCallsContent(toolCallContent); err == nil && len(toolCalls) > 0 {
remaining := bufStr[idx+len(lfm2ToolCallEndTag):]
// Check if there's another tool call
if strings.HasPrefix(remaining, lfm2ToolCallStartTag) {
remaining = remaining[len(lfm2ToolCallStartTag):]
} else {
// No more tool calls, go back to content
remaining = strings.TrimLeftFunc(remaining, unicode.IsSpace)
p.state = LFM2CollectingContent
}
p.buffer.Reset()
p.buffer.WriteString(remaining)
for _, tc := range toolCalls {
events = append(events, lfm2EventToolCall{toolCall: tc})
}
return events, true
} else if err != nil {
slog.Warn("lfm2 tool call parsing failed", "error", err, "content", toolCallContent)
}
}
return events, false
}
return events, false
}
// parseToolCallsContent parses one or more tool calls from content
// Supports JSON format and Python-style format including multiple calls: [func1(...),func2(...)]
func (p *LFM2Parser) parseToolCallsContent(content string) ([]api.ToolCall, error) {
content = strings.TrimSpace(content)
// Try JSON format first: {"name": "func", "arguments": {...}}
var parsed struct {
Name string `json:"name"`
Arguments json.RawMessage `json:"arguments"`
}
if err := json.Unmarshal([]byte(content), &parsed); err == nil && parsed.Name != "" {
var args api.ToolCallFunctionArguments
if len(parsed.Arguments) > 0 {
if err := json.Unmarshal(parsed.Arguments, &args); err != nil {
return nil, err
}
} else {
args = api.NewToolCallFunctionArguments()
}
return []api.ToolCall{{
Function: api.ToolCallFunction{
Name: parsed.Name,
Arguments: args,
},
}}, nil
}
// Try Python-style format: [func(arg1='val1'),func2(arg2='val2')] or func(arg1='val1')
return p.parsePythonStyleToolCalls(content)
}
// parsePythonStyleToolCalls parses one or more Python-style tool calls
// Examples: [bash(command='ls'),bash(command='pwd')] or bash(command='ls')
func (p *LFM2Parser) parsePythonStyleToolCalls(content string) ([]api.ToolCall, error) {
content = strings.TrimSpace(content)
// Strip outer brackets if present: [func(...)] -> func(...)
if strings.HasPrefix(content, "[") && strings.HasSuffix(content, "]") {
content = content[1 : len(content)-1]
}
var toolCalls []api.ToolCall
// Parse multiple function calls separated by commas at the top level
for len(content) > 0 {
content = strings.TrimSpace(content)
if content == "" {
break
}
// Skip leading comma from previous iteration
if strings.HasPrefix(content, ",") {
content = strings.TrimSpace(content[1:])
if content == "" {
break
}
}
// Find function name
parenIdx := strings.Index(content, "(")
if parenIdx == -1 {
return nil, errors.New("invalid tool call: no opening parenthesis")
}
funcName := strings.TrimSpace(content[:parenIdx])
if funcName == "" {
return nil, errors.New("invalid tool call: empty function name")
}
// Find matching closing parenthesis
closeIdx := findMatchingParen(content, parenIdx)
if closeIdx == -1 {
return nil, errors.New("invalid tool call: no matching closing parenthesis")
}
argsStr := content[parenIdx+1 : closeIdx]
args := api.NewToolCallFunctionArguments()
if argsStr != "" {
if err := parsePythonArgs(argsStr, &args); err != nil {
return nil, err
}
}
toolCalls = append(toolCalls, api.ToolCall{
Function: api.ToolCallFunction{
Name: funcName,
Arguments: args,
},
})
// Move past this function call
content = content[closeIdx+1:]
}
if len(toolCalls) == 0 {
return nil, errors.New("no tool calls found")
}
return toolCalls, nil
}
// findMatchingParen finds the index of the closing parenthesis matching the one at openIdx
// Returns -1 if not found. Handles nested parentheses and quoted strings.
func findMatchingParen(s string, openIdx int) int {
depth := 1
i := openIdx + 1
for i < len(s) && depth > 0 {
switch s[i] {
case '(':
depth++
case ')':
depth--
if depth == 0 {
return i
}
case '\'', '"':
// Skip quoted string
quote := s[i]
i++
for i < len(s) && s[i] != quote {
if s[i] == '\\' && i+1 < len(s) {
i++ // skip escaped char
}
i++
}
}
i++
}
return -1
}
// parseToolCallContent parses a single tool call (for backward compatibility with tests)
func (p *LFM2Parser) parseToolCallContent(content string) (api.ToolCall, error) {
calls, err := p.parseToolCallsContent(content)
if err != nil {
return api.ToolCall{}, err
}
if len(calls) == 0 {
return api.ToolCall{}, errors.New("no tool call found")
}
return calls[0], nil
}
// parsePythonArgs parses Python-style keyword arguments: key='value', key2="value2"
func parsePythonArgs(argsStr string, args *api.ToolCallFunctionArguments) error {
// Simple state machine to parse key='value' pairs
// Handles: command='ls', flag="-la", count=42, enabled=true
var key string
i := 0
for i < len(argsStr) {
// Skip whitespace
for i < len(argsStr) && (argsStr[i] == ' ' || argsStr[i] == '\t' || argsStr[i] == '\n') {
i++
}
if i >= len(argsStr) {
break
}
// Parse key
keyStart := i
for i < len(argsStr) && argsStr[i] != '=' && argsStr[i] != ',' {
i++
}
if i >= len(argsStr) || argsStr[i] != '=' {
return errors.New("invalid argument: expected '='")
}
key = strings.TrimSpace(argsStr[keyStart:i])
i++ // skip '='
// Skip whitespace after =
for i < len(argsStr) && (argsStr[i] == ' ' || argsStr[i] == '\t') {
i++
}
// Parse value
var value string
if i < len(argsStr) && (argsStr[i] == '\'' || argsStr[i] == '"') {
// Quoted string
quote := argsStr[i]
i++
valueStart := i
for i < len(argsStr) && argsStr[i] != quote {
if argsStr[i] == '\\' && i+1 < len(argsStr) {
i += 2 // skip escaped char
} else {
i++
}
}
value = argsStr[valueStart:i]
if i < len(argsStr) {
i++ // skip closing quote
}
args.Set(key, value)
} else {
// Unquoted value (number, bool, etc)
valueStart := i
for i < len(argsStr) && argsStr[i] != ',' {
i++
}
value = strings.TrimSpace(argsStr[valueStart:i])
// Try to parse as number or bool
if v, err := strconv.ParseInt(value, 10, 64); err == nil {
args.Set(key, v)
} else if v, err := strconv.ParseFloat(value, 64); err == nil {
args.Set(key, v)
} else if value == "true" {
args.Set(key, true)
} else if value == "false" {
args.Set(key, false)
} else {
args.Set(key, value)
}
}
// Skip comma and whitespace
for i < len(argsStr) && (argsStr[i] == ',' || argsStr[i] == ' ' || argsStr[i] == '\t' || argsStr[i] == '\n') {
i++
}
}
return nil
}

1088
model/parsers/lfm2_test.go Normal file
View File

File diff suppressed because it is too large Load Diff

View File

@@ -70,6 +70,10 @@ func ParserForName(name string) Parser {
return &FunctionGemmaParser{}
case "glm-4.7":
return &GLM47Parser{}
case "lfm2":
return &LFM2Parser{hasThinkingSupport: false}
case "lfm2-thinking":
return &LFM2Parser{hasThinkingSupport: true}
default:
return nil
}

144
model/renderers/lfm2.go Normal file
View File

@@ -0,0 +1,144 @@
package renderers
import (
"encoding/json"
"strings"
"github.com/ollama/ollama/api"
)
type LFM2Renderer struct {
IsThinking bool
}
func (r *LFM2Renderer) Render(messages []api.Message, tools []api.Tool, thinkValue *api.ThinkValue) (string, error) {
var sb strings.Builder
// Note: BOS token is added by the tokenizer (add_bos_token: true), not the renderer
// Extract first system message if present (to combine with tools)
var firstSystemContent string
startIdx := 0
if len(messages) > 0 && messages[0].Role == "system" {
firstSystemContent = messages[0].Content
startIdx = 1
}
// Append tools to first system content
if len(tools) > 0 {
if firstSystemContent != "" {
firstSystemContent += "\n"
}
firstSystemContent += "List of tools: ["
for i, tool := range tools {
toolJSON, err := json.Marshal(tool)
if err != nil {
return "", err
}
firstSystemContent += string(toolJSON)
if i < len(tools)-1 {
firstSystemContent += ", "
}
}
firstSystemContent += "]"
}
// Output first system block if it has content
if firstSystemContent != "" {
sb.WriteString("<|im_start|>system\n")
sb.WriteString(firstSystemContent)
sb.WriteString("<|im_end|>\n")
}
// Find the index of the last assistant message for thinking stripping
lastAssistantIndex := -1
for i := len(messages) - 1; i >= startIdx; i-- {
if messages[i].Role == "assistant" {
lastAssistantIndex = i
break
}
}
// Track whether we need to add generation prompt
needsGenerationPrompt := len(messages) > 0
for i := startIdx; i < len(messages); i++ {
message := messages[i]
switch message.Role {
case "system":
// Additional system messages (after the first) are rendered normally
sb.WriteString("<|im_start|>system\n")
sb.WriteString(message.Content)
sb.WriteString("<|im_end|>\n")
case "user":
sb.WriteString("<|im_start|>user\n")
sb.WriteString(message.Content)
sb.WriteString("<|im_end|>\n")
needsGenerationPrompt = true
case "assistant":
sb.WriteString("<|im_start|>assistant\n")
// Check if this is the last assistant message
isLastAssistant := i == lastAssistantIndex
// Process content (may need thinking stripped)
content := message.Content
// Handle thinking tags in assistant content
keepPastThinking := r.IsThinking && (thinkValue != nil && thinkValue.Bool())
if strings.Contains(content, "</think>") {
parts := strings.SplitN(content, "</think>", 2)
if len(parts) > 1 {
if !isLastAssistant && !keepPastThinking {
// Strip thinking entirely for past assistant messages
content = strings.TrimSpace(parts[1])
} else {
// Preserve thinking but trim whitespace after </think>
content = parts[0] + "</think>" + strings.TrimLeft(parts[1], " \t\n\r")
}
}
}
if len(message.ToolCalls) > 0 {
// Assistant with tool calls - write content first (if any after stripping)
if content != "" {
sb.WriteString(content)
}
for _, toolCall := range message.ToolCalls {
sb.WriteString("<|tool_call_start|>")
toolCallJSON := map[string]any{
"name": toolCall.Function.Name,
"arguments": toolCall.Function.Arguments,
}
callJSON, _ := json.Marshal(toolCallJSON)
sb.WriteString(string(callJSON))
sb.WriteString("<|tool_call_end|>")
}
} else {
sb.WriteString(content)
}
sb.WriteString("<|im_end|>\n")
needsGenerationPrompt = true // Always add gen prompt after assistant when add_generation_prompt=true
case "tool":
// Tool responses are rendered as plain messages per the chat template
sb.WriteString("<|im_start|>tool\n")
sb.WriteString(message.Content)
sb.WriteString("<|im_end|>\n")
needsGenerationPrompt = true
}
}
// Add generation prompt
if needsGenerationPrompt {
sb.WriteString("<|im_start|>assistant\n")
// Note: Model is a "thinking-only" model - it will output <think> itself
// We don't add <think> tag to the prompt
}
return sb.String(), nil
}

View File

@@ -0,0 +1,427 @@
package renderers
import (
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
)
func TestLFM2Renderer(t *testing.T) {
tests := []struct {
name string
messages []api.Message
tools []api.Tool
thinkValue *api.ThinkValue
expected string
}{
{
name: "basic user message",
messages: []api.Message{
{Role: "user", Content: "Hello!"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nHello!<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "basic with system message",
messages: []api.Message{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "Hello!"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\nHello!<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "multiple system messages rendered separately",
messages: []api.Message{
{Role: "system", Content: "First instruction."},
{Role: "system", Content: "Second instruction."},
{Role: "user", Content: "Hello!"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>system\nFirst instruction.<|im_end|>\n<|im_start|>system\nSecond instruction.<|im_end|>\n<|im_start|>user\nHello!<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "multi-turn conversation",
messages: []api.Message{
{Role: "user", Content: "What is 2+2?"},
{Role: "assistant", Content: "The answer is 4."},
{Role: "user", Content: "Thanks!"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nWhat is 2+2?<|im_end|>\n<|im_start|>assistant\nThe answer is 4.<|im_end|>\n<|im_start|>user\nThanks!<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "only system message",
messages: []api.Message{
{Role: "system", Content: "You are helpful."},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>system\nYou are helpful.<|im_end|>\n<|im_start|>assistant\n",
},
{
// When assistant is the LAST assistant, thinking is preserved (even with keep_past_thinking=false)
name: "user-assistant-user: last assistant preserves thinking",
messages: []api.Message{
{Role: "user", Content: "Q1"},
{Role: "assistant", Content: "<think>reasoning</think>A1"},
{Role: "user", Content: "Q2"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nQ1<|im_end|>\n<|im_start|>assistant\n<think>reasoning</think>A1<|im_end|>\n<|im_start|>user\nQ2<|im_end|>\n<|im_start|>assistant\n",
},
{
// With two assistants, first is stripped (not last), second preserved (is last)
name: "multi-turn thinking: first stripped, second preserved",
messages: []api.Message{
{Role: "user", Content: "Q1"},
{Role: "assistant", Content: "<think>reason1</think>A1"},
{Role: "user", Content: "Q2"},
{Role: "assistant", Content: "<think>reason2</think>A2"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nQ1<|im_end|>\n<|im_start|>assistant\nA1<|im_end|>\n<|im_start|>user\nQ2<|im_end|>\n<|im_start|>assistant\n<think>reason2</think>A2<|im_end|>\n<|im_start|>assistant\n",
},
{
// With thinking enabled (keep_past_thinking=true), both preserved
name: "multi-turn thinking: both preserved when thinking enabled",
messages: []api.Message{
{Role: "user", Content: "Q1"},
{Role: "assistant", Content: "<think>reason1</think>A1"},
{Role: "user", Content: "Q2"},
{Role: "assistant", Content: "<think>reason2</think>A2"},
},
thinkValue: &api.ThinkValue{Value: true},
expected: "<|im_start|>user\nQ1<|im_end|>\n<|im_start|>assistant\n<think>reason1</think>A1<|im_end|>\n<|im_start|>user\nQ2<|im_end|>\n<|im_start|>assistant\n<think>reason2</think>A2<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "assistant with tool calls",
messages: []api.Message{
{Role: "user", Content: "What's the weather?"},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<|im_start|>user` + "\n" + `What's the weather?<|im_end|>` + "\n" + `<|im_start|>assistant` + "\n" + `<|tool_call_start|>{"arguments":{"location":"Paris"},"name":"get_weather"}<|tool_call_end|><|im_end|>` + "\n" + `<|im_start|>assistant` + "\n",
},
{
name: "assistant with content and tool calls",
messages: []api.Message{
{Role: "user", Content: "What's the weather in Paris?"},
{
Role: "assistant",
Content: "Let me check.",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<|im_start|>user` + "\n" + `What's the weather in Paris?<|im_end|>` + "\n" + `<|im_start|>assistant` + "\n" + `Let me check.<|tool_call_start|>{"arguments":{"location":"Paris"},"name":"get_weather"}<|tool_call_end|><|im_end|>` + "\n" + `<|im_start|>assistant` + "\n",
},
{
name: "tool response",
messages: []api.Message{
{Role: "user", Content: "What's the weather?"},
{Role: "assistant", Content: "Let me check."},
{Role: "tool", Content: "22C, Sunny"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nWhat's the weather?<|im_end|>\n<|im_start|>assistant\nLet me check.<|im_end|>\n<|im_start|>tool\n22C, Sunny<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "multiple tool calls",
messages: []api.Message{
{Role: "user", Content: "Get weather for Paris and London"},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "London",
}),
},
},
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<|im_start|>user` + "\n" + `Get weather for Paris and London<|im_end|>` + "\n" + `<|im_start|>assistant` + "\n" + `<|tool_call_start|>{"arguments":{"location":"Paris"},"name":"get_weather"}<|tool_call_end|><|tool_call_start|>{"arguments":{"location":"London"},"name":"get_weather"}<|tool_call_end|><|im_end|>` + "\n" + `<|im_start|>assistant` + "\n",
},
{
name: "tools definitions with system message",
messages: []api.Message{
{Role: "system", Content: "You are helpful."},
{Role: "user", Content: "What's the weather?"},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get current weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Properties: testPropsMap(map[string]api.ToolProperty{
"location": {
Type: api.PropertyType{"string"},
Description: "City name",
},
}),
Required: []string{"location"},
},
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<|im_start|>system` + "\n" + `You are helpful.` + "\n" + `List of tools: [{"type":"function","function":{"name":"get_weather","description":"Get current weather","parameters":{"type":"object","required":["location"],"properties":{"location":{"type":"string","description":"City name"}}}}}]<|im_end|>` + "\n" + `<|im_start|>user` + "\n" + `What's the weather?<|im_end|>` + "\n" + `<|im_start|>assistant` + "\n",
},
{
name: "tools definitions without system message",
messages: []api.Message{
{Role: "user", Content: "What's the weather?"},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get current weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Properties: testPropsMap(map[string]api.ToolProperty{
"location": {
Type: api.PropertyType{"string"},
Description: "City name",
},
}),
Required: []string{"location"},
},
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<|im_start|>system` + "\n" + `List of tools: [{"type":"function","function":{"name":"get_weather","description":"Get current weather","parameters":{"type":"object","required":["location"],"properties":{"location":{"type":"string","description":"City name"}}}}}]<|im_end|>` + "\n" + `<|im_start|>user` + "\n" + `What's the weather?<|im_end|>` + "\n" + `<|im_start|>assistant` + "\n",
},
{
name: "multiple tools without system message",
messages: []api.Message{
{Role: "user", Content: "Hello"},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get weather",
},
},
{
Type: "function",
Function: api.ToolFunction{
Name: "get_time",
Description: "Get time",
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>system\nList of tools: [{\"type\":\"function\",\"function\":{\"name\":\"get_weather\",\"description\":\"Get weather\",\"parameters\":{\"type\":\"\",\"properties\":null}}}, {\"type\":\"function\",\"function\":{\"name\":\"get_time\",\"description\":\"Get time\",\"parameters\":{\"type\":\"\",\"properties\":null}}}]<|im_end|>\n<|im_start|>user\nHello<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "user-tool sequence",
messages: []api.Message{
{Role: "user", Content: "Check weather"},
{Role: "tool", Content: "22C"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nCheck weather<|im_end|>\n<|im_start|>tool\n22C<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "full tool call cycle",
messages: []api.Message{
{Role: "user", Content: "Check weather"},
{Role: "assistant", Content: "Let me check"},
{Role: "tool", Content: "22C"},
{Role: "assistant", Content: "It's 22C"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nCheck weather<|im_end|>\n<|im_start|>assistant\nLet me check<|im_end|>\n<|im_start|>tool\n22C<|im_end|>\n<|im_start|>assistant\nIt's 22C<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "unicode content",
messages: []api.Message{
{Role: "user", Content: "你好世界! مرحبا 🌍"},
{Role: "assistant", Content: "Hello! 👋"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\n你好世界! مرحبا 🌍<|im_end|>\n<|im_start|>assistant\nHello! 👋<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "newlines in content",
messages: []api.Message{
{Role: "user", Content: "Line 1\nLine 2\n\nLine 4"},
{Role: "assistant", Content: "Response with\nmultiple\nlines"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nLine 1\nLine 2\n\nLine 4<|im_end|>\n<|im_start|>assistant\nResponse with\nmultiple\nlines<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "empty assistant content",
messages: []api.Message{
{Role: "user", Content: "Hello"},
{Role: "assistant", Content: ""},
{Role: "user", Content: "OK"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nHello<|im_end|>\n<|im_start|>assistant\n<|im_end|>\n<|im_start|>user\nOK<|im_end|>\n<|im_start|>assistant\n",
},
{
// Generation prompt does NOT include <think> - model outputs it
name: "generation prompt has no think tag",
messages: []api.Message{
{Role: "user", Content: "Think hard"},
},
thinkValue: &api.ThinkValue{Value: true},
expected: "<|im_start|>user\nThink hard<|im_end|>\n<|im_start|>assistant\n",
},
{
// Interleaved: thinking before tool call - last assistant preserves thinking
name: "thinking before tool call (last assistant)",
messages: []api.Message{
{Role: "user", Content: "What's the weather?"},
{
Role: "assistant",
Content: "<think>I need to check the weather</think>",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nWhat's the weather?<|im_end|>\n<|im_start|>assistant\n<think>I need to check the weather</think><|tool_call_start|>{\"arguments\":{\"location\":\"Paris\"},\"name\":\"get_weather\"}<|tool_call_end|><|im_end|>\n<|im_start|>assistant\n",
},
{
// Two assistants with tool calls - first has thinking stripped
name: "two assistants with tools: first thinking stripped",
messages: []api.Message{
{Role: "user", Content: "What's the weather?"},
{
Role: "assistant",
Content: "<think>checking</think>",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
},
},
{Role: "tool", Content: "22C"},
{Role: "assistant", Content: "<think>got result</think>It's 22C!"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nWhat's the weather?<|im_end|>\n<|im_start|>assistant\n<|tool_call_start|>{\"arguments\":{\"location\":\"Paris\"},\"name\":\"get_weather\"}<|tool_call_end|><|im_end|>\n<|im_start|>tool\n22C<|im_end|>\n<|im_start|>assistant\n<think>got result</think>It's 22C!<|im_end|>\n<|im_start|>assistant\n",
},
{
// Two assistants with tools - both preserved when thinking enabled
name: "two assistants with tools: both preserved when thinking enabled",
messages: []api.Message{
{Role: "user", Content: "What's the weather?"},
{
Role: "assistant",
Content: "<think>checking</think>",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
},
},
{Role: "tool", Content: "22C"},
{Role: "assistant", Content: "<think>got result</think>It's 22C!"},
},
thinkValue: &api.ThinkValue{Value: true},
expected: "<|im_start|>user\nWhat's the weather?<|im_end|>\n<|im_start|>assistant\n<think>checking</think><|tool_call_start|>{\"arguments\":{\"location\":\"Paris\"},\"name\":\"get_weather\"}<|tool_call_end|><|im_end|>\n<|im_start|>tool\n22C<|im_end|>\n<|im_start|>assistant\n<think>got result</think>It's 22C!<|im_end|>\n<|im_start|>assistant\n",
},
{
// Content before thinking before tool call
name: "content then thinking then tool call",
messages: []api.Message{
{Role: "user", Content: "What's the weather?"},
{
Role: "assistant",
Content: "Let me check.<think>Using weather API</think>",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nWhat's the weather?<|im_end|>\n<|im_start|>assistant\nLet me check.<think>Using weather API</think><|tool_call_start|>{\"arguments\":{\"location\":\"Paris\"},\"name\":\"get_weather\"}<|tool_call_end|><|im_end|>\n<|im_start|>assistant\n",
},
}
renderer := &LFM2Renderer{IsThinking: true}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
rendered, err := renderer.Render(tt.messages, tt.tools, tt.thinkValue)
if err != nil {
t.Fatalf("Render() error = %v", err)
}
if diff := cmp.Diff(tt.expected, rendered); diff != "" {
t.Errorf("Render() mismatch (-want +got):\n%s", diff)
}
})
}
}

View File

@@ -82,6 +82,10 @@ func rendererForName(name string) Renderer {
return &FunctionGemmaRenderer{}
case "glm-4.7":
return &GLM47Renderer{}
case "lfm2":
return &LFM2Renderer{IsThinking: false}
case "lfm2-thinking":
return &LFM2Renderer{IsThinking: true}
default:
return nil
}

View File

@@ -198,8 +198,8 @@ func newType(t *fsggml.Tensor, kv fsggml.KV, qs *quantizeState, ftype fsggml.Fil
name := t.Name
quantize := strings.HasSuffix(name, "weight")
// don't quantize vision stuff
quantize = quantize && (!strings.Contains(name, "v.") || strings.Contains(name, "_v."))
// don't quantize vision encoder tensors (named with "v." prefix)
quantize = quantize && !strings.HasPrefix(name, "v.")
quantize = quantize && !strings.Contains(name, "mm.")
// quantize only 2D and 3D tensors (experts)
@@ -219,6 +219,9 @@ func newType(t *fsggml.Tensor, kv fsggml.KV, qs *quantizeState, ftype fsggml.Fil
// NOTE: can't use LLM_TN here because the layer number is not known
quantize = quantize && !strings.Contains(name, "ssm_conv1d.weight")
// do not quantize LFM2's shortconv kernel weights
quantize = quantize && !strings.Contains(name, "shortconv.conv.weight")
// do not quantize RWKV's time_mix_first tensors
quantize = quantize && !strings.Contains(name, "time_mix_first.weight")
quantize = quantize && !strings.Contains(name, "time_mix_w1.weight")

View File

@@ -1149,6 +1149,9 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
Capabilities: m.Capabilities(),
ModifiedAt: manifest.fi.ModTime(),
Requires: m.Config.Requires,
// Several integrations crash on a nil/omitempty+empty ModelInfo, so by
// default we return an empty map.
ModelInfo: make(map[string]any),
}
if m.Config.RemoteHost != "" {

View File

@@ -6,8 +6,9 @@ import (
"io"
"os"
"path/filepath"
"runtime"
"strings"
"github.com/ollama/ollama/envconfig"
)
// ManifestLayer represents a layer in the manifest.
@@ -32,31 +33,15 @@ type ModelManifest struct {
BlobDir string
}
// DefaultBlobDir returns the default blob storage directory.
func DefaultBlobDir() string {
home, err := os.UserHomeDir()
if err != nil {
home = "."
}
switch runtime.GOOS {
case "darwin":
return filepath.Join(home, ".ollama", "models", "blobs")
case "linux":
return filepath.Join(home, ".ollama", "models", "blobs")
case "windows":
return filepath.Join(home, ".ollama", "models", "blobs")
default:
return filepath.Join(home, ".ollama", "models", "blobs")
}
return filepath.Join(envconfig.Models(), "blobs")
}
// DefaultManifestDir returns the default manifest storage directory.
// DefaultManifestDir returns the manifest storage directory.
// Respects OLLAMA_MODELS.
func DefaultManifestDir() string {
home, err := os.UserHomeDir()
if err != nil {
home = "."
}
return filepath.Join(home, ".ollama", "models", "manifests")
return filepath.Join(envconfig.Models(), "manifests")
}
// LoadManifest loads a manifest for the given model name.

View File

@@ -0,0 +1,26 @@
package imagegen
import (
"path/filepath"
"testing"
)
func TestManifestAndBlobDirsRespectOLLAMAModels(t *testing.T) {
modelsDir := filepath.Join(t.TempDir(), "models")
// Simulate packaged/systemd environment
t.Setenv("OLLAMA_MODELS", modelsDir)
t.Setenv("HOME", "/usr/share/ollama")
// Manifest dir must respect OLLAMA_MODELS
wantManifest := filepath.Join(modelsDir, "manifests")
if got := DefaultManifestDir(); got != wantManifest {
t.Fatalf("DefaultManifestDir() = %q, want %q", got, wantManifest)
}
// Blob dir must respect OLLAMA_MODELS
wantBlobs := filepath.Join(modelsDir, "blobs")
if got := DefaultBlobDir(); got != wantBlobs {
t.Fatalf("DefaultBlobDir() = %q, want %q", got, wantBlobs)
}
}