Compare commits
1 Commits
imagegen-f
...
pdevine/x-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
3b95add4e3 |
@@ -290,7 +290,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
|
||||
### Web & Desktop
|
||||
|
||||
- [Onyx](https://github.com/onyx-dot-app/onyx)
|
||||
- [Open WebUI](https://github.com/open-webui/open-webui)
|
||||
- [SwiftChat (macOS with ReactNative)](https://github.com/aws-samples/swift-chat)
|
||||
- [Enchanted (macOS native)](https://github.com/AugustDev/enchanted)
|
||||
|
||||
@@ -127,10 +127,6 @@ type GenerateRequest struct {
|
||||
// each with an associated log probability. Only applies when Logprobs is true.
|
||||
// Valid values are 0-20. Default is 0 (only return the selected token's logprob).
|
||||
TopLogprobs int `json:"top_logprobs,omitempty"`
|
||||
|
||||
// Size specifies the image dimensions for image generation models.
|
||||
// Format: "WxH" (e.g., "1024x1024"). OpenAI-compatible.
|
||||
Size string `json:"size,omitempty"`
|
||||
}
|
||||
|
||||
// ChatRequest describes a request sent by [Client.Chat].
|
||||
|
||||
91
cmd/cmd.go
@@ -46,8 +46,9 @@ import (
|
||||
"github.com/ollama/ollama/types/syncmap"
|
||||
"github.com/ollama/ollama/version"
|
||||
xcmd "github.com/ollama/ollama/x/cmd"
|
||||
"github.com/ollama/ollama/x/create"
|
||||
xcreateclient "github.com/ollama/ollama/x/create/client"
|
||||
"github.com/ollama/ollama/x/imagegen"
|
||||
imagegenclient "github.com/ollama/ollama/x/imagegen/client"
|
||||
)
|
||||
|
||||
const ConnectInstructions = "To sign in, navigate to:\n %s\n\n"
|
||||
@@ -93,15 +94,82 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
|
||||
p := progress.NewProgress(os.Stderr)
|
||||
defer p.Stop()
|
||||
|
||||
// Check for --experimental flag for safetensors model creation
|
||||
experimental, _ := cmd.Flags().GetBool("experimental")
|
||||
if experimental {
|
||||
modelName := args[0]
|
||||
|
||||
// Get Modelfile content - either from -f flag or default to "FROM ."
|
||||
var reader io.Reader
|
||||
filename, err := getModelfileName(cmd)
|
||||
if os.IsNotExist(err) || filename == "" {
|
||||
// No Modelfile specified or found - use default
|
||||
reader = strings.NewReader("FROM .\n")
|
||||
} else if err != nil {
|
||||
return err
|
||||
} else {
|
||||
f, err := os.Open(filename)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer f.Close()
|
||||
reader = f
|
||||
}
|
||||
|
||||
// Parse the Modelfile
|
||||
modelfile, err := parser.ParseFile(reader)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to parse Modelfile: %w", err)
|
||||
}
|
||||
|
||||
// Extract FROM path and configuration
|
||||
var modelDir string
|
||||
mfConfig := &xcreateclient.ModelfileConfig{}
|
||||
|
||||
for _, cmd := range modelfile.Commands {
|
||||
switch cmd.Name {
|
||||
case "model":
|
||||
modelDir = cmd.Args
|
||||
case "template":
|
||||
mfConfig.Template = cmd.Args
|
||||
case "system":
|
||||
mfConfig.System = cmd.Args
|
||||
case "license":
|
||||
mfConfig.License = cmd.Args
|
||||
}
|
||||
}
|
||||
|
||||
if modelDir == "" {
|
||||
modelDir = "."
|
||||
}
|
||||
|
||||
// Resolve relative paths based on Modelfile location
|
||||
if !filepath.IsAbs(modelDir) && filename != "" {
|
||||
modelDir = filepath.Join(filepath.Dir(filename), modelDir)
|
||||
}
|
||||
|
||||
quantize, _ := cmd.Flags().GetString("quantize")
|
||||
return xcreateclient.CreateModel(xcreateclient.CreateOptions{
|
||||
ModelName: modelName,
|
||||
ModelDir: modelDir,
|
||||
Quantize: quantize,
|
||||
Modelfile: mfConfig,
|
||||
}, p)
|
||||
}
|
||||
|
||||
var reader io.Reader
|
||||
|
||||
filename, err := getModelfileName(cmd)
|
||||
if os.IsNotExist(err) {
|
||||
if filename == "" {
|
||||
// No Modelfile found - check if current directory is an image gen model
|
||||
if imagegen.IsTensorModelDir(".") {
|
||||
if create.IsTensorModelDir(".") {
|
||||
quantize, _ := cmd.Flags().GetString("quantize")
|
||||
return imagegenclient.CreateModel(args[0], ".", quantize, p)
|
||||
return xcreateclient.CreateModel(xcreateclient.CreateOptions{
|
||||
ModelName: args[0],
|
||||
ModelDir: ".",
|
||||
Quantize: quantize,
|
||||
}, p)
|
||||
}
|
||||
reader = strings.NewReader("FROM .\n")
|
||||
} else {
|
||||
@@ -1742,15 +1810,22 @@ func NewCLI() *cobra.Command {
|
||||
rootCmd.Flags().BoolP("version", "v", false, "Show version information")
|
||||
|
||||
createCmd := &cobra.Command{
|
||||
Use: "create MODEL",
|
||||
Short: "Create a model",
|
||||
Args: cobra.ExactArgs(1),
|
||||
PreRunE: checkServerHeartbeat,
|
||||
RunE: CreateHandler,
|
||||
Use: "create MODEL",
|
||||
Short: "Create a model",
|
||||
Args: cobra.ExactArgs(1),
|
||||
PreRunE: func(cmd *cobra.Command, args []string) error {
|
||||
// Skip server check for experimental mode (writes directly to disk)
|
||||
if experimental, _ := cmd.Flags().GetBool("experimental"); experimental {
|
||||
return nil
|
||||
}
|
||||
return checkServerHeartbeat(cmd, args)
|
||||
},
|
||||
RunE: CreateHandler,
|
||||
}
|
||||
|
||||
createCmd.Flags().StringP("file", "f", "", "Name of the Modelfile (default \"Modelfile\")")
|
||||
createCmd.Flags().StringP("quantize", "q", "", "Quantize model to this level (e.g. q4_K_M)")
|
||||
createCmd.Flags().Bool("experimental", false, "Enable experimental safetensors model creation")
|
||||
|
||||
showCmd := &cobra.Command{
|
||||
Use: "show MODEL",
|
||||
|
||||
@@ -111,9 +111,7 @@
|
||||
"/integrations/zed",
|
||||
"/integrations/roo-code",
|
||||
"/integrations/n8n",
|
||||
"/integrations/xcode",
|
||||
"/integrations/onyx",
|
||||
"/integrations/marimo"
|
||||
"/integrations/xcode"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
|
Before Width: | Height: | Size: 174 KiB |
|
Before Width: | Height: | Size: 80 KiB |
|
Before Width: | Height: | Size: 230 KiB |
|
Before Width: | Height: | Size: 178 KiB |
|
Before Width: | Height: | Size: 186 KiB |
|
Before Width: | Height: | Size: 100 KiB |
|
Before Width: | Height: | Size: 306 KiB |
|
Before Width: | Height: | Size: 300 KiB |
|
Before Width: | Height: | Size: 211 KiB |
@@ -1,73 +0,0 @@
|
||||
---
|
||||
title: marimo
|
||||
---
|
||||
|
||||
## Install
|
||||
|
||||
Install [marimo](https://marimo.io). You can use `pip` or `uv` for this. You
|
||||
can also use `uv` to create a sandboxed environment for marimo by running:
|
||||
|
||||
```
|
||||
uvx marimo edit --sandbox notebook.py
|
||||
```
|
||||
|
||||
## Usage with Ollama
|
||||
|
||||
1. In marimo, go to the user settings and go to the AI tab. From here
|
||||
you can find and configure Ollama as an AI provider. For local use you
|
||||
would typically point the base url to `http://localhost:11434/v1`.
|
||||
|
||||
<div style={{ display: 'flex', justifyContent: 'center' }}>
|
||||
<img
|
||||
src="/images/marimo-settings.png"
|
||||
alt="Ollama settings in marimo"
|
||||
width="50%"
|
||||
/>
|
||||
</div>
|
||||
|
||||
2. Once the AI provider is set up, you can turn on/off specific AI models you'd like to access.
|
||||
|
||||
<div style={{ display: 'flex', justifyContent: 'center' }}>
|
||||
<img
|
||||
src="/images/marimo-models.png"
|
||||
alt="Selecting an Ollama model"
|
||||
width="50%"
|
||||
/>
|
||||
</div>
|
||||
|
||||
3. You can also add a model to the list of available models by scrolling to the bottom and using the UI there.
|
||||
|
||||
<div style={{ display: 'flex', justifyContent: 'center' }}>
|
||||
<img
|
||||
src="/images/marimo-add-model.png"
|
||||
alt="Adding a new Ollama model"
|
||||
width="50%"
|
||||
/>
|
||||
</div>
|
||||
|
||||
4. Once configured, you can now use Ollama for AI chats in marimo.
|
||||
|
||||
<div style={{ display: 'flex', justifyContent: 'center' }}>
|
||||
<img
|
||||
src="/images/marimo-chat.png"
|
||||
alt="Configure code completion"
|
||||
width="50%"
|
||||
/>
|
||||
</div>
|
||||
|
||||
4. Alternatively, you can now use Ollama for **inline code completion** in marimo. This can be configured in the "AI Features" tab.
|
||||
|
||||
<div style={{ display: 'flex', justifyContent: 'center' }}>
|
||||
<img
|
||||
src="/images/marimo-code-completion.png"
|
||||
alt="Configure code completion"
|
||||
width="50%"
|
||||
/>
|
||||
</div>
|
||||
|
||||
|
||||
## Connecting to ollama.com
|
||||
|
||||
1. Sign in to ollama cloud via `ollama signin`
|
||||
2. In the ollama model settings add a model that ollama hosts, like `gpt-oss:120b`.
|
||||
3. You can now refer to this model in marimo!
|
||||
@@ -1,63 +0,0 @@
|
||||
---
|
||||
title: Onyx
|
||||
---
|
||||
|
||||
## Overview
|
||||
[Onyx](http://onyx.app/) is a self-hostable Chat UI that integrates with all Ollama models. Features include:
|
||||
- Creating custom Agents
|
||||
- Web search
|
||||
- Deep Research
|
||||
- RAG over uploaded documents and connected apps
|
||||
- Connectors to applications like Google Drive, Email, Slack, etc.
|
||||
- MCP and OpenAPI Actions support
|
||||
- Image generation
|
||||
- User/Groups management, RBAC, SSO, etc.
|
||||
|
||||
Onyx can be deployed for single users or large organizations.
|
||||
|
||||
## Install Onyx
|
||||
|
||||
Deploy Onyx with the [quickstart guide](https://docs.onyx.app/deployment/getting_started/quickstart).
|
||||
|
||||
<Info>
|
||||
Resourcing/scaling docs [here](https://docs.onyx.app/deployment/getting_started/resourcing).
|
||||
</Info>
|
||||
|
||||
## Usage with Ollama
|
||||
|
||||
1. Login to your Onyx deployment (create an account first).
|
||||
<div style={{ display: 'flex', justifyContent: 'center' }}>
|
||||
<img
|
||||
src="/images/onyx-login.png"
|
||||
alt="Onyx Login Page"
|
||||
width="75%"
|
||||
/>
|
||||
</div>
|
||||
2. In the set-up process select `Ollama` as the LLM provider.
|
||||
<div style={{ display: 'flex', justifyContent: 'center' }}>
|
||||
<img
|
||||
src="/images/onyx-ollama-llm.png"
|
||||
alt="Onyx Set Up Form"
|
||||
width="75%"
|
||||
/>
|
||||
</div>
|
||||
3. Provide your **Ollama API URL** and select your models.
|
||||
<Note>If you're running Onyx in Docker, to access your computer's local network use `http://host.docker.internal` instead of `http://127.0.0.1`.</Note>
|
||||
<div style={{ display: 'flex', justifyContent: 'center' }}>
|
||||
<img
|
||||
src="/images/onyx-ollama-form.png"
|
||||
alt="Selecting Ollama Models"
|
||||
width="75%"
|
||||
/>
|
||||
</div>
|
||||
|
||||
You can also easily connect up Onyx Cloud with the `Ollama Cloud` tab of the setup.
|
||||
|
||||
## Send your first query
|
||||
<div style={{ display: 'flex', justifyContent: 'center' }}>
|
||||
<img
|
||||
src="/images/onyx-query.png"
|
||||
alt="Onyx Query Example"
|
||||
width="75%"
|
||||
/>
|
||||
</div>
|
||||
@@ -1464,10 +1464,6 @@ type CompletionRequest struct {
|
||||
|
||||
// TopLogprobs specifies the number of most likely alternative tokens to return (0-20)
|
||||
TopLogprobs int
|
||||
|
||||
// Size specifies image dimensions for image generation models.
|
||||
// Format: "WxH" (e.g., "1024x1024"). OpenAI-compatible.
|
||||
Size string
|
||||
}
|
||||
|
||||
// DoneReason represents the reason why a completion response is done
|
||||
|
||||
@@ -52,6 +52,7 @@ import (
|
||||
"github.com/ollama/ollama/version"
|
||||
"github.com/ollama/ollama/x/imagegen"
|
||||
imagegenapi "github.com/ollama/ollama/x/imagegen/api"
|
||||
xserver "github.com/ollama/ollama/x/server"
|
||||
)
|
||||
|
||||
const signinURLStr = "https://ollama.com/connect?name=%s&key=%s"
|
||||
@@ -216,7 +217,7 @@ func (s *Server) GenerateHandler(c *gin.Context) {
|
||||
|
||||
// Check if this is a known image generation model
|
||||
if imagegen.ResolveModelName(req.Model) != "" {
|
||||
imagegenapi.HandleGenerateRequest(c, s, &req, streamResponse)
|
||||
imagegenapi.HandleGenerateRequest(c, s, req.Model, req.Prompt, req.KeepAlive, streamResponse)
|
||||
return
|
||||
}
|
||||
|
||||
@@ -1133,6 +1134,22 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
|
||||
}
|
||||
}
|
||||
|
||||
// For safetensors LLM models (experimental), populate details from config.json
|
||||
if m.Config.ModelFormat == "safetensors" && slices.Contains(m.Config.Capabilities, "completion") {
|
||||
if info, err := xserver.GetSafetensorsLLMInfo(name.String()); err == nil {
|
||||
if arch, ok := info["general.architecture"].(string); ok && arch != "" {
|
||||
modelDetails.Family = arch
|
||||
}
|
||||
if paramCount, ok := info["general.parameter_count"].(int64); ok && paramCount > 0 {
|
||||
modelDetails.ParameterSize = format.HumanNumber(uint64(paramCount))
|
||||
}
|
||||
}
|
||||
// Get torch_dtype directly from config.json for quantization level
|
||||
if dtype, err := xserver.GetSafetensorsDtype(name.String()); err == nil && dtype != "" {
|
||||
modelDetails.QuantizationLevel = dtype
|
||||
}
|
||||
}
|
||||
|
||||
if req.System != "" {
|
||||
m.System = req.System
|
||||
}
|
||||
@@ -1219,6 +1236,20 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
|
||||
return resp, nil
|
||||
}
|
||||
|
||||
// For safetensors LLM models (experimental), populate ModelInfo from config.json
|
||||
if m.Config.ModelFormat == "safetensors" && slices.Contains(m.Config.Capabilities, "completion") {
|
||||
if info, err := xserver.GetSafetensorsLLMInfo(name.String()); err == nil {
|
||||
resp.ModelInfo = info
|
||||
}
|
||||
// Populate tensor info if verbose
|
||||
if req.Verbose {
|
||||
if tensors, err := xserver.GetSafetensorsTensorInfo(name.String()); err == nil {
|
||||
resp.Tensors = tensors
|
||||
}
|
||||
}
|
||||
return resp, nil
|
||||
}
|
||||
|
||||
kvData, tensors, err := getModelData(m.ModelPath, req.Verbose)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
|
||||
@@ -574,6 +574,7 @@ func (s *Scheduler) loadImageGen(req *LlmRequest) bool {
|
||||
Options: &req.opts,
|
||||
loading: false,
|
||||
sessionDuration: sessionDuration,
|
||||
refCount: 1,
|
||||
}
|
||||
|
||||
s.loadedMu.Lock()
|
||||
|
||||
282
x/create/client/create.go
Normal file
@@ -0,0 +1,282 @@
|
||||
// Package client provides client-side model creation for safetensors-based models.
|
||||
//
|
||||
// This package is in x/ because the safetensors model storage format is under development.
|
||||
// It also exists to break an import cycle: server imports x/create, so x/create
|
||||
// cannot import server. This sub-package can import server because server doesn't
|
||||
// import it.
|
||||
package client
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
|
||||
"github.com/ollama/ollama/progress"
|
||||
"github.com/ollama/ollama/server"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
"github.com/ollama/ollama/x/create"
|
||||
)
|
||||
|
||||
// MinOllamaVersion is the minimum Ollama version required for safetensors models.
|
||||
const MinOllamaVersion = "0.14.0"
|
||||
|
||||
// ModelfileConfig holds configuration extracted from a Modelfile.
|
||||
type ModelfileConfig struct {
|
||||
Template string
|
||||
System string
|
||||
License string
|
||||
}
|
||||
|
||||
// CreateOptions holds all options for model creation.
|
||||
type CreateOptions struct {
|
||||
ModelName string
|
||||
ModelDir string
|
||||
Quantize string // "fp8" for quantization
|
||||
Modelfile *ModelfileConfig // template/system/license from Modelfile
|
||||
}
|
||||
|
||||
// CreateModel imports a model from a local directory.
|
||||
// This creates blobs and manifest directly on disk, bypassing the HTTP API.
|
||||
// Automatically detects model type (safetensors LLM vs image gen) and routes accordingly.
|
||||
func CreateModel(opts CreateOptions, p *progress.Progress) error {
|
||||
// Detect model type
|
||||
isSafetensors := create.IsSafetensorsModelDir(opts.ModelDir)
|
||||
isImageGen := create.IsTensorModelDir(opts.ModelDir)
|
||||
|
||||
if !isSafetensors && !isImageGen {
|
||||
return fmt.Errorf("%s is not a supported model directory (needs config.json + *.safetensors or model_index.json)", opts.ModelDir)
|
||||
}
|
||||
|
||||
// Determine model type settings
|
||||
var modelType, spinnerKey string
|
||||
var capabilities []string
|
||||
if isSafetensors {
|
||||
modelType = "safetensors model"
|
||||
spinnerKey = "create"
|
||||
capabilities = []string{"completion"}
|
||||
} else {
|
||||
modelType = "image generation model"
|
||||
spinnerKey = "imagegen"
|
||||
capabilities = []string{"image"}
|
||||
}
|
||||
|
||||
// Set up progress spinner
|
||||
statusMsg := "importing " + modelType
|
||||
spinner := progress.NewSpinner(statusMsg)
|
||||
p.Add(spinnerKey, spinner)
|
||||
|
||||
progressFn := func(msg string) {
|
||||
spinner.Stop()
|
||||
statusMsg = msg
|
||||
spinner = progress.NewSpinner(statusMsg)
|
||||
p.Add(spinnerKey, spinner)
|
||||
}
|
||||
|
||||
// Create the model using shared callbacks
|
||||
var err error
|
||||
if isSafetensors {
|
||||
err = create.CreateSafetensorsModel(
|
||||
opts.ModelName, opts.ModelDir, opts.Quantize,
|
||||
newLayerCreator(), newTensorLayerCreator(),
|
||||
newManifestWriter(opts, capabilities),
|
||||
progressFn,
|
||||
)
|
||||
} else {
|
||||
err = create.CreateImageGenModel(
|
||||
opts.ModelName, opts.ModelDir, opts.Quantize,
|
||||
newLayerCreator(), newTensorLayerCreator(),
|
||||
newManifestWriter(opts, capabilities),
|
||||
progressFn,
|
||||
)
|
||||
}
|
||||
|
||||
spinner.Stop()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
fmt.Printf("Created %s '%s'\n", modelType, opts.ModelName)
|
||||
return nil
|
||||
}
|
||||
|
||||
// newLayerCreator returns a LayerCreator callback for creating config/JSON layers.
|
||||
func newLayerCreator() create.LayerCreator {
|
||||
return func(r io.Reader, mediaType, name string) (create.LayerInfo, error) {
|
||||
layer, err := server.NewLayer(r, mediaType)
|
||||
if err != nil {
|
||||
return create.LayerInfo{}, err
|
||||
}
|
||||
|
||||
return create.LayerInfo{
|
||||
Digest: layer.Digest,
|
||||
Size: layer.Size,
|
||||
MediaType: layer.MediaType,
|
||||
Name: name,
|
||||
}, nil
|
||||
}
|
||||
}
|
||||
|
||||
// newTensorLayerCreator returns a QuantizingTensorLayerCreator callback for creating tensor layers.
|
||||
// When doQuantize is true, returns multiple layers (weight + scales + optional qbias).
|
||||
func newTensorLayerCreator() create.QuantizingTensorLayerCreator {
|
||||
return func(r io.Reader, name, dtype string, shape []int32, doQuantize bool) ([]create.LayerInfo, error) {
|
||||
if doQuantize {
|
||||
return createQuantizedLayers(r, name, dtype, shape)
|
||||
}
|
||||
return createUnquantizedLayer(r, name)
|
||||
}
|
||||
}
|
||||
|
||||
// createQuantizedLayers quantizes a tensor and returns the resulting layers.
|
||||
func createQuantizedLayers(r io.Reader, name, dtype string, shape []int32) ([]create.LayerInfo, error) {
|
||||
if !QuantizeSupported() {
|
||||
return nil, fmt.Errorf("quantization requires MLX support")
|
||||
}
|
||||
|
||||
// Quantize the tensor (affine mode returns weight, scales, qbiases)
|
||||
qweightData, scalesData, qbiasData, _, _, _, err := quantizeTensor(r, name, dtype, shape)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed to quantize %s: %w", name, err)
|
||||
}
|
||||
|
||||
// Create layer for quantized weight
|
||||
weightLayer, err := server.NewLayer(bytes.NewReader(qweightData), server.MediaTypeImageTensor)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// Create layer for scales
|
||||
scalesLayer, err := server.NewLayer(bytes.NewReader(scalesData), server.MediaTypeImageTensor)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
layers := []create.LayerInfo{
|
||||
{
|
||||
Digest: weightLayer.Digest,
|
||||
Size: weightLayer.Size,
|
||||
MediaType: weightLayer.MediaType,
|
||||
Name: name,
|
||||
},
|
||||
{
|
||||
Digest: scalesLayer.Digest,
|
||||
Size: scalesLayer.Size,
|
||||
MediaType: scalesLayer.MediaType,
|
||||
Name: name + "_scale",
|
||||
},
|
||||
}
|
||||
|
||||
// Add qbiases layer if present (affine mode)
|
||||
if qbiasData != nil {
|
||||
qbiasLayer, err := server.NewLayer(bytes.NewReader(qbiasData), server.MediaTypeImageTensor)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
layers = append(layers, create.LayerInfo{
|
||||
Digest: qbiasLayer.Digest,
|
||||
Size: qbiasLayer.Size,
|
||||
MediaType: qbiasLayer.MediaType,
|
||||
Name: name + "_qbias",
|
||||
})
|
||||
}
|
||||
|
||||
return layers, nil
|
||||
}
|
||||
|
||||
// createUnquantizedLayer creates a single tensor layer without quantization.
|
||||
func createUnquantizedLayer(r io.Reader, name string) ([]create.LayerInfo, error) {
|
||||
layer, err := server.NewLayer(r, server.MediaTypeImageTensor)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return []create.LayerInfo{
|
||||
{
|
||||
Digest: layer.Digest,
|
||||
Size: layer.Size,
|
||||
MediaType: layer.MediaType,
|
||||
Name: name,
|
||||
},
|
||||
}, nil
|
||||
}
|
||||
|
||||
// newManifestWriter returns a ManifestWriter callback for writing the model manifest.
|
||||
func newManifestWriter(opts CreateOptions, capabilities []string) create.ManifestWriter {
|
||||
return func(modelName string, config create.LayerInfo, layers []create.LayerInfo) error {
|
||||
name := model.ParseName(modelName)
|
||||
if !name.IsValid() {
|
||||
return fmt.Errorf("invalid model name: %s", modelName)
|
||||
}
|
||||
|
||||
// Create config blob with version requirement
|
||||
configData := model.ConfigV2{
|
||||
ModelFormat: "safetensors",
|
||||
Capabilities: capabilities,
|
||||
Requires: MinOllamaVersion,
|
||||
}
|
||||
configJSON, err := json.Marshal(configData)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to marshal config: %w", err)
|
||||
}
|
||||
|
||||
// Create config layer blob
|
||||
configLayer, err := server.NewLayer(bytes.NewReader(configJSON), "application/vnd.docker.container.image.v1+json")
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to create config layer: %w", err)
|
||||
}
|
||||
|
||||
// Convert LayerInfo to server.Layer
|
||||
serverLayers := make([]server.Layer, len(layers))
|
||||
for i, l := range layers {
|
||||
serverLayers[i] = server.Layer{
|
||||
MediaType: l.MediaType,
|
||||
Digest: l.Digest,
|
||||
Size: l.Size,
|
||||
Name: l.Name,
|
||||
}
|
||||
}
|
||||
|
||||
// Add Modelfile layers if present
|
||||
if opts.Modelfile != nil {
|
||||
modelfileLayers, err := createModelfileLayers(opts.Modelfile)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
serverLayers = append(serverLayers, modelfileLayers...)
|
||||
}
|
||||
|
||||
return server.WriteManifest(name, configLayer, serverLayers)
|
||||
}
|
||||
}
|
||||
|
||||
// createModelfileLayers creates layers for template, system, and license from Modelfile config.
|
||||
func createModelfileLayers(mf *ModelfileConfig) ([]server.Layer, error) {
|
||||
var layers []server.Layer
|
||||
|
||||
if mf.Template != "" {
|
||||
layer, err := server.NewLayer(bytes.NewReader([]byte(mf.Template)), "application/vnd.ollama.image.template")
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed to create template layer: %w", err)
|
||||
}
|
||||
layers = append(layers, layer)
|
||||
}
|
||||
|
||||
if mf.System != "" {
|
||||
layer, err := server.NewLayer(bytes.NewReader([]byte(mf.System)), "application/vnd.ollama.image.system")
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed to create system layer: %w", err)
|
||||
}
|
||||
layers = append(layers, layer)
|
||||
}
|
||||
|
||||
if mf.License != "" {
|
||||
layer, err := server.NewLayer(bytes.NewReader([]byte(mf.License)), "application/vnd.ollama.image.license")
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed to create license layer: %w", err)
|
||||
}
|
||||
layers = append(layers, layer)
|
||||
}
|
||||
|
||||
return layers, nil
|
||||
}
|
||||
146
x/create/client/create_test.go
Normal file
@@ -0,0 +1,146 @@
|
||||
package client
|
||||
|
||||
import (
|
||||
"testing"
|
||||
)
|
||||
|
||||
func TestModelfileConfig(t *testing.T) {
|
||||
// Test that ModelfileConfig struct works as expected
|
||||
config := &ModelfileConfig{
|
||||
Template: "{{ .Prompt }}",
|
||||
System: "You are a helpful assistant.",
|
||||
License: "MIT",
|
||||
}
|
||||
|
||||
if config.Template != "{{ .Prompt }}" {
|
||||
t.Errorf("Template = %q, want %q", config.Template, "{{ .Prompt }}")
|
||||
}
|
||||
if config.System != "You are a helpful assistant." {
|
||||
t.Errorf("System = %q, want %q", config.System, "You are a helpful assistant.")
|
||||
}
|
||||
if config.License != "MIT" {
|
||||
t.Errorf("License = %q, want %q", config.License, "MIT")
|
||||
}
|
||||
}
|
||||
|
||||
func TestModelfileConfig_Empty(t *testing.T) {
|
||||
config := &ModelfileConfig{}
|
||||
|
||||
if config.Template != "" {
|
||||
t.Errorf("Template should be empty, got %q", config.Template)
|
||||
}
|
||||
if config.System != "" {
|
||||
t.Errorf("System should be empty, got %q", config.System)
|
||||
}
|
||||
if config.License != "" {
|
||||
t.Errorf("License should be empty, got %q", config.License)
|
||||
}
|
||||
}
|
||||
|
||||
func TestModelfileConfig_PartialFields(t *testing.T) {
|
||||
// Test config with only some fields set
|
||||
config := &ModelfileConfig{
|
||||
Template: "{{ .Prompt }}",
|
||||
// System and License intentionally empty
|
||||
}
|
||||
|
||||
if config.Template == "" {
|
||||
t.Error("Template should not be empty")
|
||||
}
|
||||
if config.System != "" {
|
||||
t.Error("System should be empty")
|
||||
}
|
||||
if config.License != "" {
|
||||
t.Error("License should be empty")
|
||||
}
|
||||
}
|
||||
|
||||
func TestMinOllamaVersion(t *testing.T) {
|
||||
// Verify the minimum version constant is set
|
||||
if MinOllamaVersion == "" {
|
||||
t.Error("MinOllamaVersion should not be empty")
|
||||
}
|
||||
if MinOllamaVersion != "0.14.0" {
|
||||
t.Errorf("MinOllamaVersion = %q, want %q", MinOllamaVersion, "0.14.0")
|
||||
}
|
||||
}
|
||||
|
||||
func TestCreateModel_InvalidDir(t *testing.T) {
|
||||
// Test that CreateModel returns error for invalid directory
|
||||
err := CreateModel(CreateOptions{
|
||||
ModelName: "test-model",
|
||||
ModelDir: "/nonexistent/path",
|
||||
}, nil)
|
||||
if err == nil {
|
||||
t.Error("expected error for nonexistent directory, got nil")
|
||||
}
|
||||
}
|
||||
|
||||
func TestCreateModel_NotSafetensorsDir(t *testing.T) {
|
||||
// Test that CreateModel returns error for directory without safetensors
|
||||
dir := t.TempDir()
|
||||
|
||||
err := CreateModel(CreateOptions{
|
||||
ModelName: "test-model",
|
||||
ModelDir: dir,
|
||||
}, nil)
|
||||
if err == nil {
|
||||
t.Error("expected error for empty directory, got nil")
|
||||
}
|
||||
}
|
||||
|
||||
func TestCreateOptions(t *testing.T) {
|
||||
opts := CreateOptions{
|
||||
ModelName: "my-model",
|
||||
ModelDir: "/path/to/model",
|
||||
Quantize: "fp8",
|
||||
Modelfile: &ModelfileConfig{
|
||||
Template: "test",
|
||||
System: "system",
|
||||
License: "MIT",
|
||||
},
|
||||
}
|
||||
|
||||
if opts.ModelName != "my-model" {
|
||||
t.Errorf("ModelName = %q, want %q", opts.ModelName, "my-model")
|
||||
}
|
||||
if opts.ModelDir != "/path/to/model" {
|
||||
t.Errorf("ModelDir = %q, want %q", opts.ModelDir, "/path/to/model")
|
||||
}
|
||||
if opts.Quantize != "fp8" {
|
||||
t.Errorf("Quantize = %q, want %q", opts.Quantize, "fp8")
|
||||
}
|
||||
if opts.Modelfile == nil {
|
||||
t.Error("Modelfile should not be nil")
|
||||
}
|
||||
if opts.Modelfile.Template != "test" {
|
||||
t.Errorf("Modelfile.Template = %q, want %q", opts.Modelfile.Template, "test")
|
||||
}
|
||||
}
|
||||
|
||||
func TestCreateOptions_Defaults(t *testing.T) {
|
||||
opts := CreateOptions{
|
||||
ModelName: "test",
|
||||
ModelDir: "/tmp",
|
||||
}
|
||||
|
||||
// Quantize should default to empty
|
||||
if opts.Quantize != "" {
|
||||
t.Errorf("Quantize should be empty by default, got %q", opts.Quantize)
|
||||
}
|
||||
|
||||
// Modelfile should default to nil
|
||||
if opts.Modelfile != nil {
|
||||
t.Error("Modelfile should be nil by default")
|
||||
}
|
||||
}
|
||||
|
||||
func TestQuantizeSupported(t *testing.T) {
|
||||
// This just verifies the function exists and returns a boolean
|
||||
// The actual value depends on build tags (mlx vs non-mlx)
|
||||
supported := QuantizeSupported()
|
||||
|
||||
// In non-mlx builds, this should be false
|
||||
// We can't easily test both cases, so just verify it returns something
|
||||
_ = supported
|
||||
}
|
||||
391
x/create/create.go
Normal file
@@ -0,0 +1,391 @@
|
||||
package create
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/x/imagegen/safetensors"
|
||||
)
|
||||
|
||||
// ModelConfig represents the config blob stored with a model.
|
||||
type ModelConfig struct {
|
||||
ModelFormat string `json:"model_format"`
|
||||
Capabilities []string `json:"capabilities"`
|
||||
}
|
||||
|
||||
// Manifest represents the manifest JSON structure.
|
||||
type Manifest struct {
|
||||
SchemaVersion int `json:"schemaVersion"`
|
||||
MediaType string `json:"mediaType"`
|
||||
Config ManifestLayer `json:"config"`
|
||||
Layers []ManifestLayer `json:"layers"`
|
||||
}
|
||||
|
||||
// ManifestLayer represents a layer in the manifest.
|
||||
type ManifestLayer struct {
|
||||
MediaType string `json:"mediaType"`
|
||||
Digest string `json:"digest"`
|
||||
Size int64 `json:"size"`
|
||||
Name string `json:"name,omitempty"`
|
||||
}
|
||||
|
||||
// defaultManifestDir returns the manifest storage directory.
|
||||
func defaultManifestDir() string {
|
||||
return filepath.Join(envconfig.Models(), "manifests")
|
||||
}
|
||||
|
||||
// defaultBlobDir returns the blob storage directory.
|
||||
func defaultBlobDir() string {
|
||||
return filepath.Join(envconfig.Models(), "blobs")
|
||||
}
|
||||
|
||||
// resolveManifestPath converts a model name to a manifest file path.
|
||||
func resolveManifestPath(modelName string) string {
|
||||
host := "registry.ollama.ai"
|
||||
namespace := "library"
|
||||
name := modelName
|
||||
tag := "latest"
|
||||
|
||||
if idx := strings.LastIndex(name, ":"); idx != -1 {
|
||||
tag = name[idx+1:]
|
||||
name = name[:idx]
|
||||
}
|
||||
|
||||
parts := strings.Split(name, "/")
|
||||
switch len(parts) {
|
||||
case 3:
|
||||
host = parts[0]
|
||||
namespace = parts[1]
|
||||
name = parts[2]
|
||||
case 2:
|
||||
namespace = parts[0]
|
||||
name = parts[1]
|
||||
}
|
||||
|
||||
return filepath.Join(defaultManifestDir(), host, namespace, name, tag)
|
||||
}
|
||||
|
||||
// loadManifest loads a manifest for the given model name.
|
||||
func loadManifest(modelName string) (*Manifest, error) {
|
||||
manifestPath := resolveManifestPath(modelName)
|
||||
|
||||
data, err := os.ReadFile(manifestPath)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var manifest Manifest
|
||||
if err := json.Unmarshal(data, &manifest); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return &manifest, nil
|
||||
}
|
||||
|
||||
// loadModelConfig loads the config blob for a model.
|
||||
func loadModelConfig(modelName string) (*ModelConfig, error) {
|
||||
manifest, err := loadManifest(modelName)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// Read the config blob
|
||||
blobName := strings.Replace(manifest.Config.Digest, ":", "-", 1)
|
||||
blobPath := filepath.Join(defaultBlobDir(), blobName)
|
||||
|
||||
data, err := os.ReadFile(blobPath)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var config ModelConfig
|
||||
if err := json.Unmarshal(data, &config); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return &config, nil
|
||||
}
|
||||
|
||||
// IsSafetensorsModel checks if a model was created with the experimental
|
||||
// safetensors builder by checking the model format in the config.
|
||||
func IsSafetensorsModel(modelName string) bool {
|
||||
config, err := loadModelConfig(modelName)
|
||||
if err != nil {
|
||||
return false
|
||||
}
|
||||
return config.ModelFormat == "safetensors"
|
||||
}
|
||||
|
||||
// IsSafetensorsLLMModel checks if a model is a safetensors LLM model
|
||||
// (has completion capability, not image generation).
|
||||
func IsSafetensorsLLMModel(modelName string) bool {
|
||||
config, err := loadModelConfig(modelName)
|
||||
if err != nil {
|
||||
return false
|
||||
}
|
||||
return config.ModelFormat == "safetensors" && slices.Contains(config.Capabilities, "completion")
|
||||
}
|
||||
|
||||
// IsImageGenModel checks if a model is an image generation model
|
||||
// (has image capability).
|
||||
func IsImageGenModel(modelName string) bool {
|
||||
config, err := loadModelConfig(modelName)
|
||||
if err != nil {
|
||||
return false
|
||||
}
|
||||
return config.ModelFormat == "safetensors" && slices.Contains(config.Capabilities, "image")
|
||||
}
|
||||
|
||||
// GetModelArchitecture returns the architecture from the model's config.json layer.
|
||||
func GetModelArchitecture(modelName string) (string, error) {
|
||||
manifest, err := loadManifest(modelName)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
// Find the config.json layer
|
||||
for _, layer := range manifest.Layers {
|
||||
if layer.Name == "config.json" && layer.MediaType == "application/vnd.ollama.image.json" {
|
||||
blobName := strings.Replace(layer.Digest, ":", "-", 1)
|
||||
blobPath := filepath.Join(defaultBlobDir(), blobName)
|
||||
|
||||
data, err := os.ReadFile(blobPath)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
var cfg struct {
|
||||
Architectures []string `json:"architectures"`
|
||||
ModelType string `json:"model_type"`
|
||||
}
|
||||
if err := json.Unmarshal(data, &cfg); err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
// Prefer model_type, fall back to first architecture
|
||||
if cfg.ModelType != "" {
|
||||
return cfg.ModelType, nil
|
||||
}
|
||||
if len(cfg.Architectures) > 0 {
|
||||
return cfg.Architectures[0], nil
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return "", fmt.Errorf("architecture not found in model config")
|
||||
}
|
||||
|
||||
// IsTensorModelDir checks if the directory contains a diffusers-style tensor model
|
||||
// by looking for model_index.json, which is the standard diffusers pipeline config.
|
||||
func IsTensorModelDir(dir string) bool {
|
||||
_, err := os.Stat(filepath.Join(dir, "model_index.json"))
|
||||
return err == nil
|
||||
}
|
||||
|
||||
// IsSafetensorsModelDir checks if the directory contains a standard safetensors model
|
||||
// by looking for config.json and at least one .safetensors file.
|
||||
func IsSafetensorsModelDir(dir string) bool {
|
||||
// Must have config.json
|
||||
if _, err := os.Stat(filepath.Join(dir, "config.json")); err != nil {
|
||||
return false
|
||||
}
|
||||
|
||||
// Must have at least one .safetensors file
|
||||
entries, err := os.ReadDir(dir)
|
||||
if err != nil {
|
||||
return false
|
||||
}
|
||||
|
||||
for _, entry := range entries {
|
||||
if strings.HasSuffix(entry.Name(), ".safetensors") {
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
return false
|
||||
}
|
||||
|
||||
// LayerInfo holds metadata for a created layer.
|
||||
type LayerInfo struct {
|
||||
Digest string
|
||||
Size int64
|
||||
MediaType string
|
||||
Name string // Path-style name: "component/tensor" or "path/to/config.json"
|
||||
}
|
||||
|
||||
// LayerCreator is called to create a blob layer.
|
||||
// name is the path-style name (e.g., "tokenizer/tokenizer.json")
|
||||
type LayerCreator func(r io.Reader, mediaType, name string) (LayerInfo, error)
|
||||
|
||||
// TensorLayerCreator creates a tensor blob layer with metadata.
|
||||
// name is the path-style name including component (e.g., "text_encoder/model.embed_tokens.weight")
|
||||
type TensorLayerCreator func(r io.Reader, name, dtype string, shape []int32) (LayerInfo, error)
|
||||
|
||||
// QuantizingTensorLayerCreator creates tensor layers with optional quantization.
|
||||
// When quantize is true, returns multiple layers (weight + scales + biases).
|
||||
type QuantizingTensorLayerCreator func(r io.Reader, name, dtype string, shape []int32, quantize bool) ([]LayerInfo, error)
|
||||
|
||||
// ManifestWriter writes the manifest file.
|
||||
type ManifestWriter func(modelName string, config LayerInfo, layers []LayerInfo) error
|
||||
|
||||
// ShouldQuantize returns true if a tensor should be quantized.
|
||||
// For image gen models (component non-empty): quantizes linear weights, skipping VAE, embeddings, norms.
|
||||
// For LLM models (component empty): quantizes linear weights, skipping embeddings, norms, and small tensors.
|
||||
func ShouldQuantize(name, component string) bool {
|
||||
// Image gen specific: skip VAE entirely
|
||||
if component == "vae" {
|
||||
return false
|
||||
}
|
||||
|
||||
// Skip embeddings
|
||||
if strings.Contains(name, "embed") {
|
||||
return false
|
||||
}
|
||||
|
||||
// Skip layer norms and RMS norms
|
||||
if strings.Contains(name, "norm") || strings.Contains(name, "ln_") || strings.Contains(name, "layernorm") {
|
||||
return false
|
||||
}
|
||||
|
||||
// Skip biases
|
||||
if strings.HasSuffix(name, ".bias") {
|
||||
return false
|
||||
}
|
||||
|
||||
// Only quantize weights
|
||||
return strings.HasSuffix(name, ".weight")
|
||||
}
|
||||
|
||||
// ShouldQuantizeTensor returns true if a tensor should be quantized based on name and shape.
|
||||
// This is a more detailed check that also considers tensor dimensions.
|
||||
func ShouldQuantizeTensor(name string, shape []int32) bool {
|
||||
// Use basic name-based check first
|
||||
if !ShouldQuantize(name, "") {
|
||||
return false
|
||||
}
|
||||
|
||||
// Only quantize 2D tensors (linear layers) - skip 1D (biases, norms) and higher-D (convolutions if any)
|
||||
if len(shape) != 2 {
|
||||
return false
|
||||
}
|
||||
|
||||
// Skip small tensors (less than 1024 elements) - not worth quantizing
|
||||
if len(shape) >= 2 && int64(shape[0])*int64(shape[1]) < 1024 {
|
||||
return false
|
||||
}
|
||||
|
||||
return true
|
||||
}
|
||||
|
||||
// CreateSafetensorsModel imports a standard safetensors model from a directory.
|
||||
// This handles Hugging Face style models with config.json and *.safetensors files.
|
||||
// Stores each tensor as a separate blob for fine-grained deduplication.
|
||||
// If quantize is non-empty (e.g., "fp8"), eligible tensors will be quantized.
|
||||
func CreateSafetensorsModel(modelName, modelDir, quantize string, createLayer LayerCreator, createTensorLayer QuantizingTensorLayerCreator, writeManifest ManifestWriter, fn func(status string)) error {
|
||||
var layers []LayerInfo
|
||||
var configLayer LayerInfo
|
||||
|
||||
entries, err := os.ReadDir(modelDir)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to read directory: %w", err)
|
||||
}
|
||||
|
||||
// Process all safetensors files
|
||||
for _, entry := range entries {
|
||||
if entry.IsDir() || !strings.HasSuffix(entry.Name(), ".safetensors") {
|
||||
continue
|
||||
}
|
||||
|
||||
stPath := filepath.Join(modelDir, entry.Name())
|
||||
|
||||
// Extract individual tensors from safetensors file
|
||||
extractor, err := safetensors.OpenForExtraction(stPath)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to open %s: %w", stPath, err)
|
||||
}
|
||||
|
||||
tensorNames := extractor.ListTensors()
|
||||
quantizeMsg := ""
|
||||
if quantize != "" {
|
||||
quantizeMsg = fmt.Sprintf(", quantizing to %s", quantize)
|
||||
}
|
||||
fn(fmt.Sprintf("importing %s (%d tensors%s)", entry.Name(), len(tensorNames), quantizeMsg))
|
||||
|
||||
for _, tensorName := range tensorNames {
|
||||
td, err := extractor.GetTensor(tensorName)
|
||||
if err != nil {
|
||||
extractor.Close()
|
||||
return fmt.Errorf("failed to get tensor %s: %w", tensorName, err)
|
||||
}
|
||||
|
||||
// Determine if this tensor should be quantized
|
||||
doQuantize := quantize != "" && ShouldQuantizeTensor(tensorName, td.Shape)
|
||||
|
||||
// Store as minimal safetensors format (88 bytes header overhead)
|
||||
// This enables native mmap loading via mlx_load_safetensors
|
||||
// createTensorLayer returns multiple layers if quantizing (weight + scales)
|
||||
newLayers, err := createTensorLayer(td.SafetensorsReader(), tensorName, td.Dtype, td.Shape, doQuantize)
|
||||
if err != nil {
|
||||
extractor.Close()
|
||||
return fmt.Errorf("failed to create layer for %s: %w", tensorName, err)
|
||||
}
|
||||
layers = append(layers, newLayers...)
|
||||
}
|
||||
|
||||
extractor.Close()
|
||||
}
|
||||
|
||||
// Process all JSON config files
|
||||
for _, entry := range entries {
|
||||
if entry.IsDir() || !strings.HasSuffix(entry.Name(), ".json") {
|
||||
continue
|
||||
}
|
||||
|
||||
// Skip the index file as we don't need it after extraction
|
||||
if entry.Name() == "model.safetensors.index.json" {
|
||||
continue
|
||||
}
|
||||
|
||||
cfgPath := entry.Name()
|
||||
fullPath := filepath.Join(modelDir, cfgPath)
|
||||
|
||||
fn(fmt.Sprintf("importing config %s", cfgPath))
|
||||
|
||||
f, err := os.Open(fullPath)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to open %s: %w", cfgPath, err)
|
||||
}
|
||||
|
||||
layer, err := createLayer(f, "application/vnd.ollama.image.json", cfgPath)
|
||||
f.Close()
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to create layer for %s: %w", cfgPath, err)
|
||||
}
|
||||
|
||||
// Use config.json as the config layer
|
||||
if cfgPath == "config.json" {
|
||||
configLayer = layer
|
||||
}
|
||||
|
||||
layers = append(layers, layer)
|
||||
}
|
||||
|
||||
if configLayer.Digest == "" {
|
||||
return fmt.Errorf("config.json not found in %s", modelDir)
|
||||
}
|
||||
|
||||
fn(fmt.Sprintf("writing manifest for %s", modelName))
|
||||
|
||||
if err := writeManifest(modelName, configLayer, layers); err != nil {
|
||||
return fmt.Errorf("failed to write manifest: %w", err)
|
||||
}
|
||||
|
||||
fn(fmt.Sprintf("successfully imported %s with %d layers", modelName, len(layers)))
|
||||
return nil
|
||||
}
|
||||
752
x/create/create_test.go
Normal file
@@ -0,0 +1,752 @@
|
||||
package create
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"encoding/json"
|
||||
"io"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
"testing"
|
||||
)
|
||||
|
||||
func TestIsTensorModelDir(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
setup func(dir string) error
|
||||
expected bool
|
||||
}{
|
||||
{
|
||||
name: "valid diffusers model with model_index.json",
|
||||
setup: func(dir string) error {
|
||||
return os.WriteFile(filepath.Join(dir, "model_index.json"), []byte(`{"_class_name": "FluxPipeline"}`), 0644)
|
||||
},
|
||||
expected: true,
|
||||
},
|
||||
{
|
||||
name: "empty directory",
|
||||
setup: func(dir string) error {
|
||||
return nil
|
||||
},
|
||||
expected: false,
|
||||
},
|
||||
{
|
||||
name: "directory with other files but no model_index.json",
|
||||
setup: func(dir string) error {
|
||||
return os.WriteFile(filepath.Join(dir, "config.json"), []byte(`{}`), 0644)
|
||||
},
|
||||
expected: false,
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
dir := t.TempDir()
|
||||
if err := tt.setup(dir); err != nil {
|
||||
t.Fatalf("setup failed: %v", err)
|
||||
}
|
||||
|
||||
got := IsTensorModelDir(dir)
|
||||
if got != tt.expected {
|
||||
t.Errorf("IsTensorModelDir() = %v, want %v", got, tt.expected)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestIsSafetensorsModelDir(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
setup func(dir string) error
|
||||
expected bool
|
||||
}{
|
||||
{
|
||||
name: "valid safetensors model with config.json and .safetensors file",
|
||||
setup: func(dir string) error {
|
||||
if err := os.WriteFile(filepath.Join(dir, "config.json"), []byte(`{"model_type": "gemma3"}`), 0644); err != nil {
|
||||
return err
|
||||
}
|
||||
return os.WriteFile(filepath.Join(dir, "model.safetensors"), []byte("dummy"), 0644)
|
||||
},
|
||||
expected: true,
|
||||
},
|
||||
{
|
||||
name: "config.json only, no safetensors files",
|
||||
setup: func(dir string) error {
|
||||
return os.WriteFile(filepath.Join(dir, "config.json"), []byte(`{}`), 0644)
|
||||
},
|
||||
expected: false,
|
||||
},
|
||||
{
|
||||
name: "safetensors file only, no config.json",
|
||||
setup: func(dir string) error {
|
||||
return os.WriteFile(filepath.Join(dir, "model.safetensors"), []byte("dummy"), 0644)
|
||||
},
|
||||
expected: false,
|
||||
},
|
||||
{
|
||||
name: "empty directory",
|
||||
setup: func(dir string) error {
|
||||
return nil
|
||||
},
|
||||
expected: false,
|
||||
},
|
||||
{
|
||||
name: "multiple safetensors files with config.json",
|
||||
setup: func(dir string) error {
|
||||
if err := os.WriteFile(filepath.Join(dir, "config.json"), []byte(`{}`), 0644); err != nil {
|
||||
return err
|
||||
}
|
||||
if err := os.WriteFile(filepath.Join(dir, "model-00001-of-00002.safetensors"), []byte("dummy"), 0644); err != nil {
|
||||
return err
|
||||
}
|
||||
return os.WriteFile(filepath.Join(dir, "model-00002-of-00002.safetensors"), []byte("dummy"), 0644)
|
||||
},
|
||||
expected: true,
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
dir := t.TempDir()
|
||||
if err := tt.setup(dir); err != nil {
|
||||
t.Fatalf("setup failed: %v", err)
|
||||
}
|
||||
|
||||
got := IsSafetensorsModelDir(dir)
|
||||
if got != tt.expected {
|
||||
t.Errorf("IsSafetensorsModelDir() = %v, want %v", got, tt.expected)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestIsSafetensorsModelDir_NonexistentDir(t *testing.T) {
|
||||
got := IsSafetensorsModelDir("/nonexistent/path/that/does/not/exist")
|
||||
if got != false {
|
||||
t.Errorf("IsSafetensorsModelDir() = %v for nonexistent dir, want false", got)
|
||||
}
|
||||
}
|
||||
|
||||
// createMinimalSafetensors creates a minimal valid safetensors file with one tensor
|
||||
func createMinimalSafetensors(t *testing.T, path string) {
|
||||
t.Helper()
|
||||
|
||||
// Create a minimal safetensors file with a single float32 tensor
|
||||
header := map[string]interface{}{
|
||||
"test_tensor": map[string]interface{}{
|
||||
"dtype": "F32",
|
||||
"shape": []int{2, 2},
|
||||
"data_offsets": []int{0, 16}, // 4 float32 values = 16 bytes
|
||||
},
|
||||
}
|
||||
headerJSON, err := json.Marshal(header)
|
||||
if err != nil {
|
||||
t.Fatalf("failed to marshal header: %v", err)
|
||||
}
|
||||
|
||||
// Pad header to 8-byte alignment
|
||||
padding := (8 - len(headerJSON)%8) % 8
|
||||
headerJSON = append(headerJSON, bytes.Repeat([]byte(" "), padding)...)
|
||||
|
||||
// Write file
|
||||
f, err := os.Create(path)
|
||||
if err != nil {
|
||||
t.Fatalf("failed to create file: %v", err)
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
// Write header size (8 bytes, little endian)
|
||||
if err := binary.Write(f, binary.LittleEndian, uint64(len(headerJSON))); err != nil {
|
||||
t.Fatalf("failed to write header size: %v", err)
|
||||
}
|
||||
|
||||
// Write header
|
||||
if _, err := f.Write(headerJSON); err != nil {
|
||||
t.Fatalf("failed to write header: %v", err)
|
||||
}
|
||||
|
||||
// Write tensor data (16 bytes of zeros for 4 float32 values)
|
||||
if _, err := f.Write(make([]byte, 16)); err != nil {
|
||||
t.Fatalf("failed to write tensor data: %v", err)
|
||||
}
|
||||
}
|
||||
|
||||
func TestCreateSafetensorsModel(t *testing.T) {
|
||||
dir := t.TempDir()
|
||||
|
||||
// Create config.json
|
||||
configJSON := `{"model_type": "test", "architectures": ["TestModel"]}`
|
||||
if err := os.WriteFile(filepath.Join(dir, "config.json"), []byte(configJSON), 0644); err != nil {
|
||||
t.Fatalf("failed to write config.json: %v", err)
|
||||
}
|
||||
|
||||
// Create a minimal safetensors file
|
||||
createMinimalSafetensors(t, filepath.Join(dir, "model.safetensors"))
|
||||
|
||||
// Track what was created
|
||||
var createdLayers []LayerInfo
|
||||
var manifestWritten bool
|
||||
var manifestModelName string
|
||||
var manifestConfigLayer LayerInfo
|
||||
var manifestLayers []LayerInfo
|
||||
var statusMessages []string
|
||||
|
||||
// Mock callbacks
|
||||
createLayer := func(r io.Reader, mediaType, name string) (LayerInfo, error) {
|
||||
data, err := io.ReadAll(r)
|
||||
if err != nil {
|
||||
return LayerInfo{}, err
|
||||
}
|
||||
layer := LayerInfo{
|
||||
Digest: "sha256:test",
|
||||
Size: int64(len(data)),
|
||||
MediaType: mediaType,
|
||||
Name: name,
|
||||
}
|
||||
createdLayers = append(createdLayers, layer)
|
||||
return layer, nil
|
||||
}
|
||||
|
||||
createTensorLayer := func(r io.Reader, name, dtype string, shape []int32, quantize bool) ([]LayerInfo, error) {
|
||||
data, err := io.ReadAll(r)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
layer := LayerInfo{
|
||||
Digest: "sha256:tensor_" + name,
|
||||
Size: int64(len(data)),
|
||||
MediaType: "application/vnd.ollama.image.tensor",
|
||||
Name: name,
|
||||
}
|
||||
createdLayers = append(createdLayers, layer)
|
||||
return []LayerInfo{layer}, nil
|
||||
}
|
||||
|
||||
writeManifest := func(modelName string, config LayerInfo, layers []LayerInfo) error {
|
||||
manifestWritten = true
|
||||
manifestModelName = modelName
|
||||
manifestConfigLayer = config
|
||||
manifestLayers = layers
|
||||
return nil
|
||||
}
|
||||
|
||||
progressFn := func(status string) {
|
||||
statusMessages = append(statusMessages, status)
|
||||
}
|
||||
|
||||
// Run CreateSafetensorsModel
|
||||
err := CreateSafetensorsModel("test-model", dir, "", createLayer, createTensorLayer, writeManifest, progressFn)
|
||||
if err != nil {
|
||||
t.Fatalf("CreateSafetensorsModel failed: %v", err)
|
||||
}
|
||||
|
||||
// Verify manifest was written
|
||||
if !manifestWritten {
|
||||
t.Error("manifest was not written")
|
||||
}
|
||||
|
||||
if manifestModelName != "test-model" {
|
||||
t.Errorf("manifest model name = %q, want %q", manifestModelName, "test-model")
|
||||
}
|
||||
|
||||
// Verify config layer was set
|
||||
if manifestConfigLayer.Name != "config.json" {
|
||||
t.Errorf("config layer name = %q, want %q", manifestConfigLayer.Name, "config.json")
|
||||
}
|
||||
|
||||
// Verify we have at least one tensor and one config layer
|
||||
hasTensor := false
|
||||
hasConfig := false
|
||||
for _, layer := range manifestLayers {
|
||||
if layer.Name == "test_tensor" {
|
||||
hasTensor = true
|
||||
}
|
||||
if layer.Name == "config.json" {
|
||||
hasConfig = true
|
||||
}
|
||||
}
|
||||
|
||||
if !hasTensor {
|
||||
t.Error("no tensor layer found in manifest")
|
||||
}
|
||||
if !hasConfig {
|
||||
t.Error("no config layer found in manifest")
|
||||
}
|
||||
|
||||
// Verify status messages were sent
|
||||
if len(statusMessages) == 0 {
|
||||
t.Error("no status messages received")
|
||||
}
|
||||
}
|
||||
|
||||
func TestCreateSafetensorsModel_NoConfigJson(t *testing.T) {
|
||||
dir := t.TempDir()
|
||||
|
||||
// Create only a safetensors file, no config.json
|
||||
createMinimalSafetensors(t, filepath.Join(dir, "model.safetensors"))
|
||||
|
||||
// Mock callbacks (minimal)
|
||||
createLayer := func(r io.Reader, mediaType, name string) (LayerInfo, error) {
|
||||
io.ReadAll(r)
|
||||
return LayerInfo{Name: name}, nil
|
||||
}
|
||||
createTensorLayer := func(r io.Reader, name, dtype string, shape []int32, quantize bool) ([]LayerInfo, error) {
|
||||
io.ReadAll(r)
|
||||
return []LayerInfo{{Name: name}}, nil
|
||||
}
|
||||
writeManifest := func(modelName string, config LayerInfo, layers []LayerInfo) error {
|
||||
return nil
|
||||
}
|
||||
progressFn := func(status string) {}
|
||||
|
||||
err := CreateSafetensorsModel("test-model", dir, "", createLayer, createTensorLayer, writeManifest, progressFn)
|
||||
if err == nil {
|
||||
t.Error("expected error for missing config.json, got nil")
|
||||
}
|
||||
}
|
||||
|
||||
func TestCreateSafetensorsModel_EmptyDir(t *testing.T) {
|
||||
dir := t.TempDir()
|
||||
|
||||
// Mock callbacks
|
||||
createLayer := func(r io.Reader, mediaType, name string) (LayerInfo, error) {
|
||||
return LayerInfo{}, nil
|
||||
}
|
||||
createTensorLayer := func(r io.Reader, name, dtype string, shape []int32, quantize bool) ([]LayerInfo, error) {
|
||||
return []LayerInfo{{}}, nil
|
||||
}
|
||||
writeManifest := func(modelName string, config LayerInfo, layers []LayerInfo) error {
|
||||
return nil
|
||||
}
|
||||
progressFn := func(status string) {}
|
||||
|
||||
err := CreateSafetensorsModel("test-model", dir, "", createLayer, createTensorLayer, writeManifest, progressFn)
|
||||
if err == nil {
|
||||
t.Error("expected error for empty directory, got nil")
|
||||
}
|
||||
}
|
||||
|
||||
func TestCreateSafetensorsModel_SkipsIndexJson(t *testing.T) {
|
||||
dir := t.TempDir()
|
||||
|
||||
// Create config.json
|
||||
if err := os.WriteFile(filepath.Join(dir, "config.json"), []byte(`{}`), 0644); err != nil {
|
||||
t.Fatalf("failed to write config.json: %v", err)
|
||||
}
|
||||
|
||||
// Create model.safetensors.index.json (should be skipped)
|
||||
indexJSON := `{"metadata": {"total_size": 100}, "weight_map": {}}`
|
||||
if err := os.WriteFile(filepath.Join(dir, "model.safetensors.index.json"), []byte(indexJSON), 0644); err != nil {
|
||||
t.Fatalf("failed to write index.json: %v", err)
|
||||
}
|
||||
|
||||
// Create a minimal safetensors file
|
||||
createMinimalSafetensors(t, filepath.Join(dir, "model.safetensors"))
|
||||
|
||||
var configNames []string
|
||||
|
||||
createLayer := func(r io.Reader, mediaType, name string) (LayerInfo, error) {
|
||||
io.ReadAll(r)
|
||||
configNames = append(configNames, name)
|
||||
return LayerInfo{Name: name, Digest: "sha256:test"}, nil
|
||||
}
|
||||
createTensorLayer := func(r io.Reader, name, dtype string, shape []int32, quantize bool) ([]LayerInfo, error) {
|
||||
io.ReadAll(r)
|
||||
return []LayerInfo{{Name: name}}, nil
|
||||
}
|
||||
writeManifest := func(modelName string, config LayerInfo, layers []LayerInfo) error {
|
||||
return nil
|
||||
}
|
||||
progressFn := func(status string) {}
|
||||
|
||||
err := CreateSafetensorsModel("test-model", dir, "", createLayer, createTensorLayer, writeManifest, progressFn)
|
||||
if err != nil {
|
||||
t.Fatalf("CreateSafetensorsModel failed: %v", err)
|
||||
}
|
||||
|
||||
// Verify model.safetensors.index.json was not included
|
||||
for _, name := range configNames {
|
||||
if name == "model.safetensors.index.json" {
|
||||
t.Error("model.safetensors.index.json should have been skipped")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestResolveManifestPath(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
modelName string
|
||||
wantParts []string // Parts that should appear in the path
|
||||
}{
|
||||
{
|
||||
name: "simple model name",
|
||||
modelName: "llama2",
|
||||
wantParts: []string{"registry.ollama.ai", "library", "llama2", "latest"},
|
||||
},
|
||||
{
|
||||
name: "model name with tag",
|
||||
modelName: "llama2:7b",
|
||||
wantParts: []string{"registry.ollama.ai", "library", "llama2", "7b"},
|
||||
},
|
||||
{
|
||||
name: "model name with namespace",
|
||||
modelName: "myuser/mymodel",
|
||||
wantParts: []string{"registry.ollama.ai", "myuser", "mymodel", "latest"},
|
||||
},
|
||||
{
|
||||
name: "model name with namespace and tag",
|
||||
modelName: "myuser/mymodel:v1",
|
||||
wantParts: []string{"registry.ollama.ai", "myuser", "mymodel", "v1"},
|
||||
},
|
||||
{
|
||||
name: "fully qualified model name",
|
||||
modelName: "registry.example.com/namespace/model:tag",
|
||||
wantParts: []string{"registry.example.com", "namespace", "model", "tag"},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
got := resolveManifestPath(tt.modelName)
|
||||
|
||||
for _, part := range tt.wantParts {
|
||||
if !strings.Contains(got, part) {
|
||||
t.Errorf("resolveManifestPath(%q) = %q, missing part %q", tt.modelName, got, part)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestLayerInfo(t *testing.T) {
|
||||
layer := LayerInfo{
|
||||
Digest: "sha256:abc123",
|
||||
Size: 1024,
|
||||
MediaType: "application/vnd.ollama.image.tensor",
|
||||
Name: "model.weight",
|
||||
}
|
||||
|
||||
if layer.Digest != "sha256:abc123" {
|
||||
t.Errorf("Digest = %q, want %q", layer.Digest, "sha256:abc123")
|
||||
}
|
||||
if layer.Size != 1024 {
|
||||
t.Errorf("Size = %d, want %d", layer.Size, 1024)
|
||||
}
|
||||
if layer.MediaType != "application/vnd.ollama.image.tensor" {
|
||||
t.Errorf("MediaType = %q, want %q", layer.MediaType, "application/vnd.ollama.image.tensor")
|
||||
}
|
||||
if layer.Name != "model.weight" {
|
||||
t.Errorf("Name = %q, want %q", layer.Name, "model.weight")
|
||||
}
|
||||
}
|
||||
|
||||
func TestModelConfig(t *testing.T) {
|
||||
config := ModelConfig{
|
||||
ModelFormat: "safetensors",
|
||||
Capabilities: []string{"completion", "chat"},
|
||||
}
|
||||
|
||||
if config.ModelFormat != "safetensors" {
|
||||
t.Errorf("ModelFormat = %q, want %q", config.ModelFormat, "safetensors")
|
||||
}
|
||||
if len(config.Capabilities) != 2 {
|
||||
t.Errorf("Capabilities length = %d, want %d", len(config.Capabilities), 2)
|
||||
}
|
||||
}
|
||||
|
||||
func TestManifest(t *testing.T) {
|
||||
manifest := Manifest{
|
||||
SchemaVersion: 2,
|
||||
MediaType: "application/vnd.oci.image.manifest.v1+json",
|
||||
Config: ManifestLayer{
|
||||
MediaType: "application/vnd.docker.container.image.v1+json",
|
||||
Digest: "sha256:config",
|
||||
Size: 100,
|
||||
},
|
||||
Layers: []ManifestLayer{
|
||||
{
|
||||
MediaType: "application/vnd.ollama.image.tensor",
|
||||
Digest: "sha256:layer1",
|
||||
Size: 1000,
|
||||
Name: "weight.bin",
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
if manifest.SchemaVersion != 2 {
|
||||
t.Errorf("SchemaVersion = %d, want %d", manifest.SchemaVersion, 2)
|
||||
}
|
||||
if manifest.Config.Digest != "sha256:config" {
|
||||
t.Errorf("Config.Digest = %q, want %q", manifest.Config.Digest, "sha256:config")
|
||||
}
|
||||
if len(manifest.Layers) != 1 {
|
||||
t.Errorf("Layers length = %d, want %d", len(manifest.Layers), 1)
|
||||
}
|
||||
if manifest.Layers[0].Name != "weight.bin" {
|
||||
t.Errorf("Layers[0].Name = %q, want %q", manifest.Layers[0].Name, "weight.bin")
|
||||
}
|
||||
}
|
||||
|
||||
func TestShouldQuantize(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
tensor string
|
||||
component string
|
||||
want bool
|
||||
}{
|
||||
// VAE component should never be quantized
|
||||
{"vae weight", "decoder.weight", "vae", false},
|
||||
{"vae bias", "decoder.bias", "vae", false},
|
||||
|
||||
// Embeddings should not be quantized
|
||||
{"embedding weight", "embed_tokens.weight", "", false},
|
||||
{"embedding in name", "token_embedding.weight", "", false},
|
||||
|
||||
// Norms should not be quantized
|
||||
{"layer norm", "layer_norm.weight", "", false},
|
||||
{"rms norm", "rms_norm.weight", "", false},
|
||||
{"ln prefix", "ln_1.weight", "", false},
|
||||
{"layernorm in name", "input_layernorm.weight", "", false},
|
||||
|
||||
// Biases should not be quantized
|
||||
{"bias tensor", "attention.bias", "", false},
|
||||
{"proj bias", "o_proj.bias", "", false},
|
||||
|
||||
// Linear weights should be quantized
|
||||
{"linear weight", "q_proj.weight", "", true},
|
||||
{"attention weight", "self_attn.weight", "", true},
|
||||
{"mlp weight", "mlp.gate_proj.weight", "", true},
|
||||
|
||||
// Transformer component weights should be quantized
|
||||
{"transformer weight", "layers.0.weight", "transformer", true},
|
||||
{"text_encoder weight", "encoder.weight", "text_encoder", true},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
got := ShouldQuantize(tt.tensor, tt.component)
|
||||
if got != tt.want {
|
||||
t.Errorf("ShouldQuantize(%q, %q) = %v, want %v", tt.tensor, tt.component, got, tt.want)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestShouldQuantizeTensor(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
tensor string
|
||||
shape []int32
|
||||
want bool
|
||||
}{
|
||||
// 2D tensors with sufficient size should be quantized
|
||||
{"large 2D weight", "q_proj.weight", []int32{4096, 4096}, true},
|
||||
{"medium 2D weight", "small_proj.weight", []int32{128, 128}, true},
|
||||
|
||||
// Small tensors should not be quantized (< 1024 elements)
|
||||
{"tiny 2D weight", "tiny.weight", []int32{16, 16}, false},
|
||||
{"small 2D weight", "small.weight", []int32{31, 31}, false},
|
||||
|
||||
// 1D tensors should not be quantized
|
||||
{"1D tensor", "layer_norm.weight", []int32{4096}, false},
|
||||
|
||||
// 3D+ tensors should not be quantized
|
||||
{"3D tensor", "conv.weight", []int32{64, 64, 3}, false},
|
||||
{"4D tensor", "conv2d.weight", []int32{64, 64, 3, 3}, false},
|
||||
|
||||
// Embeddings should not be quantized regardless of shape
|
||||
{"embedding 2D", "embed_tokens.weight", []int32{32000, 4096}, false},
|
||||
|
||||
// Norms should not be quantized regardless of shape
|
||||
{"norm 2D", "layer_norm.weight", []int32{4096, 1}, false},
|
||||
|
||||
// Biases should not be quantized
|
||||
{"bias 2D", "proj.bias", []int32{4096, 1}, false},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
got := ShouldQuantizeTensor(tt.tensor, tt.shape)
|
||||
if got != tt.want {
|
||||
t.Errorf("ShouldQuantizeTensor(%q, %v) = %v, want %v", tt.tensor, tt.shape, got, tt.want)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestCreateSafetensorsModel_WithQuantize(t *testing.T) {
|
||||
dir := t.TempDir()
|
||||
|
||||
// Create config.json
|
||||
configJSON := `{"model_type": "test", "architectures": ["TestModel"]}`
|
||||
if err := os.WriteFile(filepath.Join(dir, "config.json"), []byte(configJSON), 0644); err != nil {
|
||||
t.Fatalf("failed to write config.json: %v", err)
|
||||
}
|
||||
|
||||
// Create a minimal safetensors file
|
||||
createMinimalSafetensors(t, filepath.Join(dir, "model.safetensors"))
|
||||
|
||||
var quantizeRequested []bool
|
||||
|
||||
createLayer := func(r io.Reader, mediaType, name string) (LayerInfo, error) {
|
||||
io.ReadAll(r)
|
||||
return LayerInfo{Name: name, Digest: "sha256:test"}, nil
|
||||
}
|
||||
|
||||
createTensorLayer := func(r io.Reader, name, dtype string, shape []int32, quantize bool) ([]LayerInfo, error) {
|
||||
io.ReadAll(r)
|
||||
quantizeRequested = append(quantizeRequested, quantize)
|
||||
return []LayerInfo{{Name: name}}, nil
|
||||
}
|
||||
|
||||
writeManifest := func(modelName string, config LayerInfo, layers []LayerInfo) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
progressFn := func(status string) {}
|
||||
|
||||
// Run with quantize enabled
|
||||
err := CreateSafetensorsModel("test-model", dir, "fp8", createLayer, createTensorLayer, writeManifest, progressFn)
|
||||
if err != nil {
|
||||
t.Fatalf("CreateSafetensorsModel failed: %v", err)
|
||||
}
|
||||
|
||||
// Verify quantize was passed to callback (will be false for small test tensor)
|
||||
if len(quantizeRequested) == 0 {
|
||||
t.Error("no tensors processed")
|
||||
}
|
||||
}
|
||||
|
||||
// createMinimalImageGenModel creates a minimal diffusers-style model directory
|
||||
func createMinimalImageGenModel(t *testing.T, dir string) {
|
||||
t.Helper()
|
||||
|
||||
// Create model_index.json
|
||||
modelIndex := `{"_class_name": "FluxPipeline", "_diffusers_version": "0.30.0"}`
|
||||
if err := os.WriteFile(filepath.Join(dir, "model_index.json"), []byte(modelIndex), 0644); err != nil {
|
||||
t.Fatalf("failed to write model_index.json: %v", err)
|
||||
}
|
||||
|
||||
// Create transformer directory with a safetensors file
|
||||
transformerDir := filepath.Join(dir, "transformer")
|
||||
if err := os.MkdirAll(transformerDir, 0755); err != nil {
|
||||
t.Fatalf("failed to create transformer dir: %v", err)
|
||||
}
|
||||
createMinimalSafetensors(t, filepath.Join(transformerDir, "model.safetensors"))
|
||||
|
||||
// Create transformer config
|
||||
transformerConfig := `{"hidden_size": 3072}`
|
||||
if err := os.WriteFile(filepath.Join(transformerDir, "config.json"), []byte(transformerConfig), 0644); err != nil {
|
||||
t.Fatalf("failed to write transformer config: %v", err)
|
||||
}
|
||||
}
|
||||
|
||||
func TestCreateImageGenModel(t *testing.T) {
|
||||
dir := t.TempDir()
|
||||
createMinimalImageGenModel(t, dir)
|
||||
|
||||
var manifestWritten bool
|
||||
var manifestModelName string
|
||||
var statusMessages []string
|
||||
|
||||
createLayer := func(r io.Reader, mediaType, name string) (LayerInfo, error) {
|
||||
io.ReadAll(r)
|
||||
return LayerInfo{Name: name, Digest: "sha256:test"}, nil
|
||||
}
|
||||
|
||||
createTensorLayer := func(r io.Reader, name, dtype string, shape []int32, quantize bool) ([]LayerInfo, error) {
|
||||
io.ReadAll(r)
|
||||
return []LayerInfo{{Name: name, Digest: "sha256:tensor"}}, nil
|
||||
}
|
||||
|
||||
writeManifest := func(modelName string, config LayerInfo, layers []LayerInfo) error {
|
||||
manifestWritten = true
|
||||
manifestModelName = modelName
|
||||
return nil
|
||||
}
|
||||
|
||||
progressFn := func(status string) {
|
||||
statusMessages = append(statusMessages, status)
|
||||
}
|
||||
|
||||
err := CreateImageGenModel("test-imagegen", dir, "", createLayer, createTensorLayer, writeManifest, progressFn)
|
||||
if err != nil {
|
||||
t.Fatalf("CreateImageGenModel failed: %v", err)
|
||||
}
|
||||
|
||||
if !manifestWritten {
|
||||
t.Error("manifest was not written")
|
||||
}
|
||||
|
||||
if manifestModelName != "test-imagegen" {
|
||||
t.Errorf("manifest model name = %q, want %q", manifestModelName, "test-imagegen")
|
||||
}
|
||||
|
||||
if len(statusMessages) == 0 {
|
||||
t.Error("no status messages received")
|
||||
}
|
||||
}
|
||||
|
||||
func TestCreateImageGenModel_NoModelIndex(t *testing.T) {
|
||||
dir := t.TempDir()
|
||||
|
||||
// Create only transformer without model_index.json
|
||||
transformerDir := filepath.Join(dir, "transformer")
|
||||
if err := os.MkdirAll(transformerDir, 0755); err != nil {
|
||||
t.Fatalf("failed to create transformer dir: %v", err)
|
||||
}
|
||||
createMinimalSafetensors(t, filepath.Join(transformerDir, "model.safetensors"))
|
||||
|
||||
createLayer := func(r io.Reader, mediaType, name string) (LayerInfo, error) {
|
||||
io.ReadAll(r)
|
||||
return LayerInfo{Name: name}, nil
|
||||
}
|
||||
createTensorLayer := func(r io.Reader, name, dtype string, shape []int32, quantize bool) ([]LayerInfo, error) {
|
||||
io.ReadAll(r)
|
||||
return []LayerInfo{{Name: name}}, nil
|
||||
}
|
||||
writeManifest := func(modelName string, config LayerInfo, layers []LayerInfo) error {
|
||||
return nil
|
||||
}
|
||||
progressFn := func(status string) {}
|
||||
|
||||
err := CreateImageGenModel("test-imagegen", dir, "", createLayer, createTensorLayer, writeManifest, progressFn)
|
||||
if err == nil {
|
||||
t.Error("expected error for missing model_index.json, got nil")
|
||||
}
|
||||
}
|
||||
|
||||
func TestCreateImageGenModel_WithQuantize(t *testing.T) {
|
||||
dir := t.TempDir()
|
||||
createMinimalImageGenModel(t, dir)
|
||||
|
||||
var quantizeRequested []bool
|
||||
|
||||
createLayer := func(r io.Reader, mediaType, name string) (LayerInfo, error) {
|
||||
io.ReadAll(r)
|
||||
return LayerInfo{Name: name, Digest: "sha256:test"}, nil
|
||||
}
|
||||
|
||||
createTensorLayer := func(r io.Reader, name, dtype string, shape []int32, quantize bool) ([]LayerInfo, error) {
|
||||
io.ReadAll(r)
|
||||
quantizeRequested = append(quantizeRequested, quantize)
|
||||
return []LayerInfo{{Name: name}}, nil
|
||||
}
|
||||
|
||||
writeManifest := func(modelName string, config LayerInfo, layers []LayerInfo) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
progressFn := func(status string) {}
|
||||
|
||||
err := CreateImageGenModel("test-imagegen", dir, "fp8", createLayer, createTensorLayer, writeManifest, progressFn)
|
||||
if err != nil {
|
||||
t.Fatalf("CreateImageGenModel failed: %v", err)
|
||||
}
|
||||
|
||||
if len(quantizeRequested) == 0 {
|
||||
t.Error("no tensors processed")
|
||||
}
|
||||
}
|
||||
@@ -1,4 +1,4 @@
|
||||
package imagegen
|
||||
package create
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
@@ -12,37 +12,11 @@ import (
|
||||
"github.com/ollama/ollama/x/imagegen/safetensors"
|
||||
)
|
||||
|
||||
// IsTensorModelDir checks if the directory contains a tensor model
|
||||
// by looking for model_index.json, which is the standard diffusers pipeline config.
|
||||
func IsTensorModelDir(dir string) bool {
|
||||
_, err := os.Stat(filepath.Join(dir, "model_index.json"))
|
||||
return err == nil
|
||||
}
|
||||
|
||||
// LayerInfo holds metadata for a created layer.
|
||||
type LayerInfo struct {
|
||||
Digest string
|
||||
Size int64
|
||||
MediaType string
|
||||
Name string // Path-style name: "component/tensor" or "path/to/config.json"
|
||||
}
|
||||
|
||||
// LayerCreator is called to create a blob layer.
|
||||
// name is the path-style name (e.g., "tokenizer/tokenizer.json")
|
||||
type LayerCreator func(r io.Reader, mediaType, name string) (LayerInfo, error)
|
||||
|
||||
// TensorLayerCreator creates a tensor blob layer with metadata.
|
||||
// name is the path-style name including component (e.g., "text_encoder/model.embed_tokens.weight")
|
||||
type TensorLayerCreator func(r io.Reader, name, dtype string, shape []int32) (LayerInfo, error)
|
||||
|
||||
// ManifestWriter writes the manifest file.
|
||||
type ManifestWriter func(modelName string, config LayerInfo, layers []LayerInfo) error
|
||||
|
||||
// CreateModel imports an image generation model from a directory.
|
||||
// CreateImageGenModel imports an image generation model from a directory.
|
||||
// Stores each tensor as a separate blob for fine-grained deduplication.
|
||||
// If quantize is "fp8", linear weights in transformer/text_encoder are quantized to mxfp8 format.
|
||||
// Layer creation and manifest writing are done via callbacks to avoid import cycles.
|
||||
func CreateModel(modelName, modelDir, quantize string, createLayer LayerCreator, createTensorLayer QuantizingTensorLayerCreator, writeManifest ManifestWriter, fn func(status string)) error {
|
||||
func CreateImageGenModel(modelName, modelDir, quantize string, createLayer LayerCreator, createTensorLayer QuantizingTensorLayerCreator, writeManifest ManifestWriter, fn func(status string)) error {
|
||||
var layers []LayerInfo
|
||||
var configLayer LayerInfo
|
||||
var totalParams int64 // Count parameters from original tensor shapes
|
||||
@@ -2,8 +2,8 @@ package api
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"net/http"
|
||||
"strconv"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
@@ -50,7 +50,7 @@ func ImageGenerationHandler(c *gin.Context, scheduler RunnerScheduler) {
|
||||
req.N = 1
|
||||
}
|
||||
if req.Size == "" {
|
||||
req.Size = fmt.Sprintf("%dx%d", imagegen.DefaultWidth, imagegen.DefaultHeight)
|
||||
req.Size = "1024x1024"
|
||||
}
|
||||
if req.ResponseFormat == "" {
|
||||
req.ResponseFormat = "b64_json"
|
||||
@@ -62,8 +62,16 @@ func ImageGenerationHandler(c *gin.Context, scheduler RunnerScheduler) {
|
||||
return
|
||||
}
|
||||
|
||||
// Parse size
|
||||
width, height := parseSize(req.Size)
|
||||
|
||||
// Build options - we repurpose NumCtx/NumGPU for width/height
|
||||
opts := api.Options{}
|
||||
opts.NumCtx = int(width)
|
||||
opts.NumGPU = int(height)
|
||||
|
||||
// Schedule runner
|
||||
runner, err := scheduler.ScheduleImageGenRunner(c, req.Model, api.Options{}, nil)
|
||||
runner, err := scheduler.ScheduleImageGenRunner(c, req.Model, opts, nil)
|
||||
if err != nil {
|
||||
status := http.StatusInternalServerError
|
||||
if strings.Contains(err.Error(), "not found") {
|
||||
@@ -73,10 +81,10 @@ func ImageGenerationHandler(c *gin.Context, scheduler RunnerScheduler) {
|
||||
return
|
||||
}
|
||||
|
||||
// Build completion request with size (OpenAI format)
|
||||
// Build completion request
|
||||
completionReq := llm.CompletionRequest{
|
||||
Prompt: req.Prompt,
|
||||
Size: req.Size,
|
||||
Prompt: req.Prompt,
|
||||
Options: &opts,
|
||||
}
|
||||
|
||||
if req.Stream {
|
||||
@@ -126,6 +134,22 @@ func handleNonStreamingResponse(c *gin.Context, runner llm.LlamaServer, req llm.
|
||||
c.JSON(http.StatusOK, buildResponse(imageBase64, format))
|
||||
}
|
||||
|
||||
func parseSize(size string) (int32, int32) {
|
||||
parts := strings.Split(size, "x")
|
||||
if len(parts) != 2 {
|
||||
return 1024, 1024
|
||||
}
|
||||
w, _ := strconv.Atoi(parts[0])
|
||||
h, _ := strconv.Atoi(parts[1])
|
||||
if w == 0 {
|
||||
w = 1024
|
||||
}
|
||||
if h == 0 {
|
||||
h = 1024
|
||||
}
|
||||
return int32(w), int32(h)
|
||||
}
|
||||
|
||||
func extractBase64(content string) string {
|
||||
if strings.HasPrefix(content, "IMAGE_BASE64:") {
|
||||
return content[13:]
|
||||
@@ -161,18 +185,20 @@ func buildResponse(imageBase64, format string) ImageGenerationResponse {
|
||||
|
||||
// HandleGenerateRequest handles Ollama /api/generate requests for image gen models.
|
||||
// This allows routes.go to delegate image generation with minimal code.
|
||||
func HandleGenerateRequest(c *gin.Context, scheduler RunnerScheduler, req *api.GenerateRequest, streamFn func(c *gin.Context, ch chan any)) {
|
||||
func HandleGenerateRequest(c *gin.Context, scheduler RunnerScheduler, modelName, prompt string, keepAlive *api.Duration, streamFn func(c *gin.Context, ch chan any)) {
|
||||
opts := api.Options{}
|
||||
|
||||
// Schedule runner
|
||||
runner, err := scheduler.ScheduleImageGenRunner(c, req.Model, api.Options{}, req.KeepAlive)
|
||||
runner, err := scheduler.ScheduleImageGenRunner(c, modelName, opts, keepAlive)
|
||||
if err != nil {
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
|
||||
return
|
||||
}
|
||||
|
||||
// Build completion request with size (OpenAI format)
|
||||
// Build completion request
|
||||
completionReq := llm.CompletionRequest{
|
||||
Prompt: req.Prompt,
|
||||
Size: req.Size,
|
||||
Prompt: prompt,
|
||||
Options: &opts,
|
||||
}
|
||||
|
||||
// Stream responses via channel
|
||||
@@ -181,14 +207,15 @@ func HandleGenerateRequest(c *gin.Context, scheduler RunnerScheduler, req *api.G
|
||||
defer close(ch)
|
||||
err := runner.Completion(c.Request.Context(), completionReq, func(resp llm.CompletionResponse) {
|
||||
ch <- GenerateResponse{
|
||||
Model: req.Model,
|
||||
Model: modelName,
|
||||
CreatedAt: time.Now().UTC(),
|
||||
Response: resp.Content,
|
||||
Done: resp.Done,
|
||||
}
|
||||
})
|
||||
if err != nil {
|
||||
slog.Error("image generation failed", "model", req.Model, "error", err)
|
||||
// Log error but don't block - channel is already being consumed
|
||||
_ = err
|
||||
}
|
||||
}()
|
||||
|
||||
|
||||
@@ -37,9 +37,9 @@ type ImageGenOptions struct {
|
||||
// DefaultOptions returns the default image generation options.
|
||||
func DefaultOptions() ImageGenOptions {
|
||||
return ImageGenOptions{
|
||||
Width: DefaultWidth,
|
||||
Height: DefaultHeight,
|
||||
Steps: 0, // 0 means model default
|
||||
Width: 1024,
|
||||
Height: 1024,
|
||||
Steps: 9,
|
||||
Seed: 0, // 0 means random
|
||||
}
|
||||
}
|
||||
@@ -107,9 +107,9 @@ func GetModelInfo(modelName string) (*ModelInfo, error) {
|
||||
// RegisterFlags adds image generation flags to the given command.
|
||||
// Flags are hidden since they only apply to image generation models.
|
||||
func RegisterFlags(cmd *cobra.Command) {
|
||||
cmd.Flags().Int("width", DefaultWidth, "Image width")
|
||||
cmd.Flags().Int("height", DefaultHeight, "Image height")
|
||||
cmd.Flags().Int("steps", 0, "Denoising steps (0 = model default)")
|
||||
cmd.Flags().Int("width", 1024, "Image width")
|
||||
cmd.Flags().Int("height", 1024, "Image height")
|
||||
cmd.Flags().Int("steps", 9, "Denoising steps")
|
||||
cmd.Flags().Int("seed", 0, "Random seed (0 for random)")
|
||||
cmd.Flags().String("negative", "", "Negative prompt")
|
||||
cmd.Flags().MarkHidden("width")
|
||||
@@ -158,10 +158,17 @@ func generateImageWithOptions(cmd *cobra.Command, modelName, prompt string, keep
|
||||
return err
|
||||
}
|
||||
|
||||
// Build request with image gen options encoded in Options fields
|
||||
// NumCtx=width, NumGPU=height, NumPredict=steps, Seed=seed
|
||||
req := &api.GenerateRequest{
|
||||
Model: modelName,
|
||||
Prompt: prompt,
|
||||
Size: fmt.Sprintf("%dx%d", opts.Width, opts.Height),
|
||||
Options: map[string]any{
|
||||
"num_ctx": opts.Width,
|
||||
"num_gpu": opts.Height,
|
||||
"num_predict": opts.Steps,
|
||||
"seed": opts.Seed,
|
||||
},
|
||||
}
|
||||
if keepAlive != nil {
|
||||
req.KeepAlive = keepAlive
|
||||
|
||||
@@ -1,190 +0,0 @@
|
||||
// Package client provides client-side model creation for tensor-based models.
|
||||
//
|
||||
// This package is in x/ because the tensor model storage format is under development.
|
||||
// It also exists to break an import cycle: server imports x/imagegen, so x/imagegen
|
||||
// cannot import server. This sub-package can import server because server doesn't
|
||||
// import it.
|
||||
//
|
||||
// TODO (jmorganca): This is temporary. When tensor models are promoted to production:
|
||||
// 1. Add proper API endpoints for tensor model creation
|
||||
// 2. Move tensor extraction to server-side
|
||||
// 3. Remove this package
|
||||
// 4. Follow the same client→server pattern as regular model creation
|
||||
package client
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
|
||||
"github.com/ollama/ollama/progress"
|
||||
"github.com/ollama/ollama/server"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
"github.com/ollama/ollama/x/imagegen"
|
||||
)
|
||||
|
||||
// MinOllamaVersion is the minimum Ollama version required for image generation models.
|
||||
const MinOllamaVersion = "0.14.0"
|
||||
|
||||
// CreateModel imports a tensor-based model from a local directory.
|
||||
// This creates blobs and manifest directly on disk, bypassing the HTTP API.
|
||||
// If quantize is "fp8", weights will be quantized to mxfp8 format during import.
|
||||
//
|
||||
// TODO (jmorganca): Replace with API-based creation when promoted to production.
|
||||
func CreateModel(modelName, modelDir, quantize string, p *progress.Progress) error {
|
||||
if !imagegen.IsTensorModelDir(modelDir) {
|
||||
return fmt.Errorf("%s is not an image generation model directory (model_index.json not found)", modelDir)
|
||||
}
|
||||
|
||||
status := "importing image generation model"
|
||||
spinner := progress.NewSpinner(status)
|
||||
p.Add("imagegen", spinner)
|
||||
|
||||
// Create layer callback for config files
|
||||
createLayer := func(r io.Reader, mediaType, name string) (imagegen.LayerInfo, error) {
|
||||
layer, err := server.NewLayer(r, mediaType)
|
||||
if err != nil {
|
||||
return imagegen.LayerInfo{}, err
|
||||
}
|
||||
layer.Name = name
|
||||
|
||||
return imagegen.LayerInfo{
|
||||
Digest: layer.Digest,
|
||||
Size: layer.Size,
|
||||
MediaType: layer.MediaType,
|
||||
Name: name,
|
||||
}, nil
|
||||
}
|
||||
|
||||
// Create tensor layer callback for individual tensors
|
||||
// name is path-style: "component/tensor_name"
|
||||
// When quantize is true, returns multiple layers (weight + scales)
|
||||
createTensorLayer := func(r io.Reader, name, dtype string, shape []int32, doQuantize bool) ([]imagegen.LayerInfo, error) {
|
||||
if doQuantize {
|
||||
// Check if quantization is supported
|
||||
if !QuantizeSupported() {
|
||||
return nil, fmt.Errorf("quantization requires MLX support")
|
||||
}
|
||||
|
||||
// Quantize the tensor (affine mode returns weight, scales, qbiases)
|
||||
qweightData, scalesData, qbiasData, _, _, _, err := quantizeTensor(r, name, dtype, shape)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed to quantize %s: %w", name, err)
|
||||
}
|
||||
|
||||
// Create layer for quantized weight
|
||||
weightLayer, err := server.NewLayer(bytes.NewReader(qweightData), server.MediaTypeImageTensor)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// Create layer for scales (use _scale suffix convention)
|
||||
scalesLayer, err := server.NewLayer(bytes.NewReader(scalesData), server.MediaTypeImageTensor)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
layers := []imagegen.LayerInfo{
|
||||
{
|
||||
Digest: weightLayer.Digest,
|
||||
Size: weightLayer.Size,
|
||||
MediaType: weightLayer.MediaType,
|
||||
Name: name, // Keep original name for weight
|
||||
},
|
||||
{
|
||||
Digest: scalesLayer.Digest,
|
||||
Size: scalesLayer.Size,
|
||||
MediaType: scalesLayer.MediaType,
|
||||
Name: name + "_scale", // Add _scale suffix
|
||||
},
|
||||
}
|
||||
|
||||
// Add qbiases layer if present (affine mode)
|
||||
if qbiasData != nil {
|
||||
qbiasLayer, err := server.NewLayer(bytes.NewReader(qbiasData), server.MediaTypeImageTensor)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
layers = append(layers, imagegen.LayerInfo{
|
||||
Digest: qbiasLayer.Digest,
|
||||
Size: qbiasLayer.Size,
|
||||
MediaType: qbiasLayer.MediaType,
|
||||
Name: name + "_qbias", // Add _qbias suffix
|
||||
})
|
||||
}
|
||||
|
||||
return layers, nil
|
||||
}
|
||||
|
||||
// Non-quantized path: just create a single layer
|
||||
layer, err := server.NewLayer(r, server.MediaTypeImageTensor)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return []imagegen.LayerInfo{
|
||||
{
|
||||
Digest: layer.Digest,
|
||||
Size: layer.Size,
|
||||
MediaType: layer.MediaType,
|
||||
Name: name,
|
||||
},
|
||||
}, nil
|
||||
}
|
||||
|
||||
// Create manifest writer callback
|
||||
writeManifest := func(modelName string, config imagegen.LayerInfo, layers []imagegen.LayerInfo) error {
|
||||
name := model.ParseName(modelName)
|
||||
if !name.IsValid() {
|
||||
return fmt.Errorf("invalid model name: %s", modelName)
|
||||
}
|
||||
|
||||
// Create a proper config blob with version requirement
|
||||
configData := model.ConfigV2{
|
||||
ModelFormat: "safetensors",
|
||||
Capabilities: []string{"image"},
|
||||
Requires: MinOllamaVersion,
|
||||
}
|
||||
configJSON, err := json.Marshal(configData)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to marshal config: %w", err)
|
||||
}
|
||||
|
||||
// Create config layer blob
|
||||
configLayer, err := server.NewLayer(bytes.NewReader(configJSON), "application/vnd.docker.container.image.v1+json")
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to create config layer: %w", err)
|
||||
}
|
||||
|
||||
// Convert LayerInfo to server.Layer (include the original model_index.json in layers)
|
||||
serverLayers := make([]server.Layer, len(layers))
|
||||
for i, l := range layers {
|
||||
serverLayers[i] = server.Layer{
|
||||
MediaType: l.MediaType,
|
||||
Digest: l.Digest,
|
||||
Size: l.Size,
|
||||
Name: l.Name,
|
||||
}
|
||||
}
|
||||
|
||||
return server.WriteManifest(name, configLayer, serverLayers)
|
||||
}
|
||||
|
||||
// Progress callback
|
||||
progressFn := func(msg string) {
|
||||
spinner.Stop()
|
||||
status = msg
|
||||
spinner = progress.NewSpinner(status)
|
||||
p.Add("imagegen", spinner)
|
||||
}
|
||||
|
||||
err := imagegen.CreateModel(modelName, modelDir, quantize, createLayer, createTensorLayer, writeManifest, progressFn)
|
||||
spinner.Stop()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
fmt.Printf("Created image generation model '%s'\n", modelName)
|
||||
return nil
|
||||
}
|
||||
@@ -12,7 +12,6 @@ import (
|
||||
"path/filepath"
|
||||
"runtime/pprof"
|
||||
|
||||
"github.com/ollama/ollama/x/imagegen"
|
||||
"github.com/ollama/ollama/x/imagegen/mlx"
|
||||
"github.com/ollama/ollama/x/imagegen/models/gemma3"
|
||||
"github.com/ollama/ollama/x/imagegen/models/gpt_oss"
|
||||
@@ -47,9 +46,9 @@ func main() {
|
||||
imagePath := flag.String("image", "", "Image path for multimodal models")
|
||||
|
||||
// Image generation params
|
||||
width := flag.Int("width", imagegen.DefaultWidth, "Image width")
|
||||
height := flag.Int("height", imagegen.DefaultHeight, "Image height")
|
||||
steps := flag.Int("steps", 0, "Denoising steps (0 = model default)")
|
||||
width := flag.Int("width", 1024, "Image width")
|
||||
height := flag.Int("height", 1024, "Image height")
|
||||
steps := flag.Int("steps", 9, "Denoising steps")
|
||||
seed := flag.Int64("seed", 42, "Random seed")
|
||||
out := flag.String("output", "output.png", "Output path")
|
||||
|
||||
@@ -150,10 +149,10 @@ func main() {
|
||||
// unless explicitly overridden from defaults
|
||||
editWidth := int32(0)
|
||||
editHeight := int32(0)
|
||||
if *width != imagegen.DefaultWidth {
|
||||
if *width != 1024 {
|
||||
editWidth = int32(*width)
|
||||
}
|
||||
if *height != imagegen.DefaultHeight {
|
||||
if *height != 1024 {
|
||||
editHeight = int32(*height)
|
||||
}
|
||||
|
||||
|
||||
@@ -1,7 +0,0 @@
|
||||
package imagegen
|
||||
|
||||
// Default image generation parameters.
|
||||
const (
|
||||
DefaultWidth = 1024
|
||||
DefaultHeight = 1024
|
||||
)
|
||||
@@ -95,3 +95,8 @@ func EstimateVRAM(modelName string) uint64 {
|
||||
}
|
||||
return 21 * GB
|
||||
}
|
||||
|
||||
// HasTensorLayers checks if the given model has tensor layers.
|
||||
func HasTensorLayers(modelName string) bool {
|
||||
return ResolveModelName(modelName) != ""
|
||||
}
|
||||
|
||||
@@ -94,6 +94,13 @@ func TestEstimateVRAMDefault(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
func TestHasTensorLayers(t *testing.T) {
|
||||
// Non-existent model should return false
|
||||
if HasTensorLayers("nonexistent-model") {
|
||||
t.Error("HasTensorLayers() should return false for non-existent model")
|
||||
}
|
||||
}
|
||||
|
||||
func TestResolveModelName(t *testing.T) {
|
||||
// Non-existent model should return empty string
|
||||
result := ResolveModelName("nonexistent-model")
|
||||
|
||||
@@ -9,7 +9,6 @@ import (
|
||||
"path/filepath"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/x/imagegen"
|
||||
"github.com/ollama/ollama/x/imagegen/cache"
|
||||
"github.com/ollama/ollama/x/imagegen/mlx"
|
||||
"github.com/ollama/ollama/x/imagegen/tokenizer"
|
||||
@@ -167,13 +166,13 @@ func (m *Model) GenerateImage(ctx context.Context, prompt string, width, height
|
||||
func (m *Model) generate(cfg *GenerateConfig) (*mlx.Array, error) {
|
||||
// Apply defaults
|
||||
if cfg.Width <= 0 {
|
||||
cfg.Width = imagegen.DefaultWidth
|
||||
cfg.Width = 1024
|
||||
}
|
||||
if cfg.Height <= 0 {
|
||||
cfg.Height = imagegen.DefaultHeight
|
||||
cfg.Height = 1024
|
||||
}
|
||||
if cfg.Steps <= 0 {
|
||||
cfg.Steps = 50
|
||||
cfg.Steps = 30
|
||||
}
|
||||
if cfg.CFGScale <= 0 {
|
||||
cfg.CFGScale = 4.0
|
||||
|
||||
@@ -188,13 +188,13 @@ func (m *Model) GenerateImage(ctx context.Context, prompt string, width, height
|
||||
func (m *Model) generate(ctx context.Context, cfg *GenerateConfig) (*mlx.Array, error) {
|
||||
// Apply defaults
|
||||
if cfg.Width <= 0 {
|
||||
cfg.Width = imagegen.DefaultWidth
|
||||
cfg.Width = 1024
|
||||
}
|
||||
if cfg.Height <= 0 {
|
||||
cfg.Height = imagegen.DefaultHeight
|
||||
cfg.Height = 1024
|
||||
}
|
||||
if cfg.Steps <= 0 {
|
||||
cfg.Steps = 9 // Z-Image turbo default
|
||||
cfg.Steps = 9 // Turbo default
|
||||
}
|
||||
if cfg.CFGScale <= 0 {
|
||||
cfg.CFGScale = 4.0
|
||||
|
||||
@@ -1,22 +0,0 @@
|
||||
package imagegen
|
||||
|
||||
import (
|
||||
"io"
|
||||
"strings"
|
||||
)
|
||||
|
||||
// QuantizingTensorLayerCreator creates tensor layers with optional quantization.
|
||||
// When quantize is true, returns multiple layers (weight + scales + biases).
|
||||
type QuantizingTensorLayerCreator func(r io.Reader, name, dtype string, shape []int32, quantize bool) ([]LayerInfo, error)
|
||||
|
||||
// ShouldQuantize returns true if a tensor should be quantized.
|
||||
// Quantizes linear weights only, skipping VAE, embeddings, norms, and biases.
|
||||
func ShouldQuantize(name, component string) bool {
|
||||
if component == "vae" {
|
||||
return false
|
||||
}
|
||||
if strings.Contains(name, "embed") || strings.Contains(name, "norm") {
|
||||
return false
|
||||
}
|
||||
return strings.HasSuffix(name, ".weight")
|
||||
}
|
||||
@@ -136,8 +136,16 @@ func (s *Server) completionHandler(w http.ResponseWriter, r *http.Request) {
|
||||
s.mu.Lock()
|
||||
defer s.mu.Unlock()
|
||||
|
||||
// Model applies its own defaults for width/height/steps
|
||||
// Only seed needs to be set here if not provided
|
||||
// Apply defaults
|
||||
if req.Width <= 0 {
|
||||
req.Width = 1024
|
||||
}
|
||||
if req.Height <= 0 {
|
||||
req.Height = 1024
|
||||
}
|
||||
if req.Steps <= 0 {
|
||||
req.Steps = 9
|
||||
}
|
||||
if req.Seed <= 0 {
|
||||
req.Seed = time.Now().UnixNano()
|
||||
}
|
||||
|
||||
@@ -33,12 +33,10 @@ type Server struct {
|
||||
vramSize uint64
|
||||
done chan error
|
||||
client *http.Client
|
||||
stderrLines []string // Recent stderr lines for error reporting (max 10)
|
||||
stderrLock sync.Mutex
|
||||
lastErr string // Last stderr line for error reporting
|
||||
lastErrLock sync.Mutex
|
||||
}
|
||||
|
||||
const maxStderrLines = 10
|
||||
|
||||
// completionRequest is sent to the subprocess
|
||||
type completionRequest struct {
|
||||
Prompt string `json:"prompt"`
|
||||
@@ -141,13 +139,10 @@ func NewServer(modelName string) (*Server, error) {
|
||||
for scanner.Scan() {
|
||||
line := scanner.Text()
|
||||
slog.Warn("image-runner", "msg", line)
|
||||
// Capture recent stderr lines for error reporting
|
||||
s.stderrLock.Lock()
|
||||
s.stderrLines = append(s.stderrLines, line)
|
||||
if len(s.stderrLines) > maxStderrLines {
|
||||
s.stderrLines = s.stderrLines[1:]
|
||||
}
|
||||
s.stderrLock.Unlock()
|
||||
// Capture last error line for better error reporting
|
||||
s.lastErrLock.Lock()
|
||||
s.lastErr = line
|
||||
s.lastErrLock.Unlock()
|
||||
}
|
||||
}()
|
||||
|
||||
@@ -176,9 +171,7 @@ func (s *Server) ModelPath() string {
|
||||
return s.modelName
|
||||
}
|
||||
|
||||
// Load is a no-op for image generation models.
|
||||
// Unlike LLM models, imagegen models are loaded by the subprocess at startup
|
||||
// rather than through this interface method.
|
||||
// Load is called by the scheduler after the server is created.
|
||||
func (s *Server) Load(ctx context.Context, systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, requireFull bool) ([]ml.DeviceID, error) {
|
||||
return nil, nil
|
||||
}
|
||||
@@ -211,16 +204,20 @@ func (s *Server) waitUntilRunning() error {
|
||||
for {
|
||||
select {
|
||||
case err := <-s.done:
|
||||
// Include recent stderr lines for better error context
|
||||
stderrContext := s.getStderrContext()
|
||||
if stderrContext != "" {
|
||||
return fmt.Errorf("image runner failed: %s (exit: %v)", stderrContext, err)
|
||||
// Include last stderr line for better error context
|
||||
s.lastErrLock.Lock()
|
||||
lastErr := s.lastErr
|
||||
s.lastErrLock.Unlock()
|
||||
if lastErr != "" {
|
||||
return fmt.Errorf("image runner failed: %s (exit: %v)", lastErr, err)
|
||||
}
|
||||
return fmt.Errorf("image runner exited unexpectedly: %w", err)
|
||||
case <-timeout:
|
||||
stderrContext := s.getStderrContext()
|
||||
if stderrContext != "" {
|
||||
return fmt.Errorf("timeout waiting for image runner: %s", stderrContext)
|
||||
s.lastErrLock.Lock()
|
||||
lastErr := s.lastErr
|
||||
s.lastErrLock.Unlock()
|
||||
if lastErr != "" {
|
||||
return fmt.Errorf("timeout waiting for image runner: %s", lastErr)
|
||||
}
|
||||
return errors.New("timeout waiting for image runner to start")
|
||||
case <-ticker.C:
|
||||
@@ -232,36 +229,34 @@ func (s *Server) waitUntilRunning() error {
|
||||
}
|
||||
}
|
||||
|
||||
// getStderrContext returns recent stderr lines joined as a single string.
|
||||
func (s *Server) getStderrContext() string {
|
||||
s.stderrLock.Lock()
|
||||
defer s.stderrLock.Unlock()
|
||||
if len(s.stderrLines) == 0 {
|
||||
return ""
|
||||
}
|
||||
return strings.Join(s.stderrLines, "; ")
|
||||
}
|
||||
|
||||
// WaitUntilRunning is a no-op for image generation models.
|
||||
// NewServer already blocks until the subprocess is ready, so this method
|
||||
// returns immediately. Required by the llm.LlamaServer interface.
|
||||
// WaitUntilRunning implements the LlamaServer interface (no-op since NewServer waits).
|
||||
func (s *Server) WaitUntilRunning(ctx context.Context) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
// Completion generates an image from the prompt via the subprocess.
|
||||
func (s *Server) Completion(ctx context.Context, req llm.CompletionRequest, fn func(llm.CompletionResponse)) error {
|
||||
// Build request - let the model apply its own defaults for unspecified values
|
||||
// Build request
|
||||
creq := completionRequest{
|
||||
Prompt: req.Prompt,
|
||||
Width: 1024,
|
||||
Height: 1024,
|
||||
Steps: 9,
|
||||
Seed: time.Now().UnixNano(),
|
||||
}
|
||||
|
||||
// Parse size string (OpenAI format: "WxH") - only set if provided
|
||||
if req.Size != "" {
|
||||
if w, h := parseSize(req.Size); w > 0 && h > 0 {
|
||||
creq.Width = w
|
||||
creq.Height = h
|
||||
if req.Options != nil {
|
||||
if req.Options.NumCtx > 0 && req.Options.NumCtx <= 4096 {
|
||||
creq.Width = int32(req.Options.NumCtx)
|
||||
}
|
||||
if req.Options.NumGPU > 0 && req.Options.NumGPU <= 4096 {
|
||||
creq.Height = int32(req.Options.NumGPU)
|
||||
}
|
||||
if req.Options.NumPredict > 0 && req.Options.NumPredict <= 100 {
|
||||
creq.Steps = req.Options.NumPredict
|
||||
}
|
||||
if req.Options.Seed > 0 {
|
||||
creq.Seed = int64(req.Options.Seed)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -351,20 +346,17 @@ func (s *Server) VRAMByGPU(id ml.DeviceID) uint64 {
|
||||
return s.vramSize
|
||||
}
|
||||
|
||||
// Embedding returns an error as image generation models don't produce embeddings.
|
||||
// Required by the llm.LlamaServer interface.
|
||||
// Embedding is not supported for image generation models.
|
||||
func (s *Server) Embedding(ctx context.Context, input string) ([]float32, int, error) {
|
||||
return nil, 0, errors.New("embedding not supported for image generation models")
|
||||
}
|
||||
|
||||
// Tokenize returns an error as image generation uses internal tokenization.
|
||||
// Required by the llm.LlamaServer interface.
|
||||
// Tokenize is not supported for image generation models.
|
||||
func (s *Server) Tokenize(ctx context.Context, content string) ([]int, error) {
|
||||
return nil, errors.New("tokenize not supported for image generation models")
|
||||
}
|
||||
|
||||
// Detokenize returns an error as image generation uses internal tokenization.
|
||||
// Required by the llm.LlamaServer interface.
|
||||
// Detokenize is not supported for image generation models.
|
||||
func (s *Server) Detokenize(ctx context.Context, tokens []int) (string, error) {
|
||||
return "", errors.New("detokenize not supported for image generation models")
|
||||
}
|
||||
@@ -384,8 +376,7 @@ func (s *Server) GetPort() int {
|
||||
return s.port
|
||||
}
|
||||
|
||||
// GetDeviceInfos returns nil as GPU tracking is handled by the subprocess.
|
||||
// Required by the llm.LlamaServer interface.
|
||||
// GetDeviceInfos returns nil since we don't track GPU info.
|
||||
func (s *Server) GetDeviceInfos(ctx context.Context) []ml.DeviceInfo {
|
||||
return nil
|
||||
}
|
||||
@@ -402,14 +393,3 @@ func (s *Server) HasExited() bool {
|
||||
|
||||
// Ensure Server implements llm.LlamaServer
|
||||
var _ llm.LlamaServer = (*Server)(nil)
|
||||
|
||||
// parseSize parses an OpenAI-style size string "WxH" into width and height.
|
||||
func parseSize(size string) (int32, int32) {
|
||||
parts := strings.Split(size, "x")
|
||||
if len(parts) != 2 {
|
||||
return 0, 0
|
||||
}
|
||||
w, _ := strconv.Atoi(parts[0])
|
||||
h, _ := strconv.Atoi(parts[1])
|
||||
return int32(w), int32(h)
|
||||
}
|
||||
|
||||
271
x/server/show.go
Normal file
@@ -0,0 +1,271 @@
|
||||
package server
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"os"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/x/imagegen"
|
||||
)
|
||||
|
||||
// modelConfig represents the HuggingFace config.json structure
|
||||
type modelConfig struct {
|
||||
Architectures []string `json:"architectures"`
|
||||
ModelType string `json:"model_type"`
|
||||
HiddenSize int `json:"hidden_size"`
|
||||
NumHiddenLayers int `json:"num_hidden_layers"`
|
||||
MaxPositionEmbeddings int `json:"max_position_embeddings"`
|
||||
IntermediateSize int `json:"intermediate_size"`
|
||||
NumAttentionHeads int `json:"num_attention_heads"`
|
||||
NumKeyValueHeads int `json:"num_key_value_heads"`
|
||||
VocabSize int `json:"vocab_size"`
|
||||
RMSNormEps float64 `json:"rms_norm_eps"`
|
||||
RopeTheta float64 `json:"rope_theta"`
|
||||
TorchDtype string `json:"torch_dtype"`
|
||||
TextConfig *struct {
|
||||
HiddenSize int `json:"hidden_size"`
|
||||
MaxPositionEmbeddings int `json:"max_position_embeddings"`
|
||||
NumHiddenLayers int `json:"num_hidden_layers"`
|
||||
} `json:"text_config"`
|
||||
}
|
||||
|
||||
// GetSafetensorsLLMInfo extracts model information from safetensors LLM models.
|
||||
// It reads the config.json layer and returns a map compatible with GGML's KV format.
|
||||
func GetSafetensorsLLMInfo(modelName string) (map[string]any, error) {
|
||||
manifest, err := imagegen.LoadManifest(modelName)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed to load manifest: %w", err)
|
||||
}
|
||||
|
||||
var config modelConfig
|
||||
if err := manifest.ReadConfigJSON("config.json", &config); err != nil {
|
||||
return nil, fmt.Errorf("failed to read config.json: %w", err)
|
||||
}
|
||||
|
||||
// Calculate total tensor bytes from manifest layers
|
||||
var totalBytes int64
|
||||
var tensorCount int64
|
||||
for _, layer := range manifest.Manifest.Layers {
|
||||
if layer.MediaType == "application/vnd.ollama.image.tensor" {
|
||||
totalBytes += layer.Size
|
||||
tensorCount++
|
||||
}
|
||||
}
|
||||
|
||||
return buildModelInfo(config, totalBytes, tensorCount), nil
|
||||
}
|
||||
|
||||
// buildModelInfo constructs the model info map from config and tensor stats.
|
||||
// This is separated for testability.
|
||||
func buildModelInfo(config modelConfig, totalTensorBytes, tensorCount int64) map[string]any {
|
||||
// Determine architecture
|
||||
arch := config.ModelType
|
||||
if arch == "" && len(config.Architectures) > 0 {
|
||||
// Convert HuggingFace architecture name to Ollama format
|
||||
// e.g., "Gemma3ForCausalLM" -> "gemma3"
|
||||
hfArch := config.Architectures[0]
|
||||
arch = strings.ToLower(hfArch)
|
||||
arch = strings.TrimSuffix(arch, "forcausallm")
|
||||
arch = strings.TrimSuffix(arch, "forconditionalgeneration")
|
||||
}
|
||||
|
||||
// Use text_config values if they exist (for multimodal models)
|
||||
hiddenSize := config.HiddenSize
|
||||
maxPosEmbed := config.MaxPositionEmbeddings
|
||||
numLayers := config.NumHiddenLayers
|
||||
|
||||
if config.TextConfig != nil {
|
||||
if config.TextConfig.HiddenSize > 0 {
|
||||
hiddenSize = config.TextConfig.HiddenSize
|
||||
}
|
||||
if config.TextConfig.MaxPositionEmbeddings > 0 {
|
||||
maxPosEmbed = config.TextConfig.MaxPositionEmbeddings
|
||||
}
|
||||
if config.TextConfig.NumHiddenLayers > 0 {
|
||||
numLayers = config.TextConfig.NumHiddenLayers
|
||||
}
|
||||
}
|
||||
|
||||
// Get dtype to determine bytes per parameter for count calculation
|
||||
dtype := config.TorchDtype
|
||||
|
||||
// Determine bytes per parameter based on dtype
|
||||
var bytesPerParam int64 = 2 // default to float16/bfloat16
|
||||
switch strings.ToLower(dtype) {
|
||||
case "float32":
|
||||
bytesPerParam = 4
|
||||
case "float16", "bfloat16":
|
||||
bytesPerParam = 2
|
||||
case "int8", "uint8":
|
||||
bytesPerParam = 1
|
||||
}
|
||||
|
||||
// Subtract safetensors header overhead (88 bytes per tensor file)
|
||||
// Each tensor is stored as a minimal safetensors file
|
||||
totalBytes := totalTensorBytes - tensorCount*88
|
||||
|
||||
paramCount := totalBytes / bytesPerParam
|
||||
|
||||
info := map[string]any{
|
||||
"general.architecture": arch,
|
||||
}
|
||||
|
||||
if maxPosEmbed > 0 {
|
||||
info[fmt.Sprintf("%s.context_length", arch)] = maxPosEmbed
|
||||
}
|
||||
|
||||
if hiddenSize > 0 {
|
||||
info[fmt.Sprintf("%s.embedding_length", arch)] = hiddenSize
|
||||
}
|
||||
|
||||
if numLayers > 0 {
|
||||
info[fmt.Sprintf("%s.block_count", arch)] = numLayers
|
||||
}
|
||||
|
||||
if config.NumAttentionHeads > 0 {
|
||||
info[fmt.Sprintf("%s.attention.head_count", arch)] = config.NumAttentionHeads
|
||||
}
|
||||
|
||||
if config.NumKeyValueHeads > 0 {
|
||||
info[fmt.Sprintf("%s.attention.head_count_kv", arch)] = config.NumKeyValueHeads
|
||||
}
|
||||
|
||||
if config.IntermediateSize > 0 {
|
||||
info[fmt.Sprintf("%s.feed_forward_length", arch)] = config.IntermediateSize
|
||||
}
|
||||
|
||||
if config.VocabSize > 0 {
|
||||
info[fmt.Sprintf("%s.vocab_size", arch)] = config.VocabSize
|
||||
}
|
||||
|
||||
if paramCount > 0 {
|
||||
info["general.parameter_count"] = paramCount
|
||||
}
|
||||
|
||||
return info
|
||||
}
|
||||
|
||||
// GetSafetensorsTensorInfo extracts tensor information from safetensors model layers.
|
||||
// Each tensor is stored as a minimal safetensors file with an 88-byte header containing metadata.
|
||||
func GetSafetensorsTensorInfo(modelName string) ([]api.Tensor, error) {
|
||||
manifest, err := imagegen.LoadManifest(modelName)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed to load manifest: %w", err)
|
||||
}
|
||||
|
||||
return getTensorInfoFromManifest(manifest)
|
||||
}
|
||||
|
||||
// getTensorInfoFromManifest extracts tensor info from a manifest.
|
||||
// This is separated for testability.
|
||||
func getTensorInfoFromManifest(manifest *imagegen.ModelManifest) ([]api.Tensor, error) {
|
||||
var tensors []api.Tensor
|
||||
|
||||
for _, layer := range manifest.Manifest.Layers {
|
||||
if layer.MediaType != "application/vnd.ollama.image.tensor" {
|
||||
continue
|
||||
}
|
||||
|
||||
// Read the safetensors header from the blob
|
||||
blobPath := manifest.BlobPath(layer.Digest)
|
||||
info, err := readSafetensorsHeader(blobPath)
|
||||
if err != nil {
|
||||
// Skip tensors we can't read
|
||||
continue
|
||||
}
|
||||
|
||||
// Convert shape from int to uint64
|
||||
shape := make([]uint64, len(info.Shape))
|
||||
for i, s := range info.Shape {
|
||||
shape[i] = uint64(s)
|
||||
}
|
||||
|
||||
tensors = append(tensors, api.Tensor{
|
||||
Name: layer.Name,
|
||||
Type: info.Dtype,
|
||||
Shape: shape,
|
||||
})
|
||||
}
|
||||
|
||||
return tensors, nil
|
||||
}
|
||||
|
||||
// GetSafetensorsDtype returns the torch_dtype from config.json for a safetensors model.
|
||||
func GetSafetensorsDtype(modelName string) (string, error) {
|
||||
manifest, err := imagegen.LoadManifest(modelName)
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("failed to load manifest: %w", err)
|
||||
}
|
||||
|
||||
var cfg struct {
|
||||
TorchDtype string `json:"torch_dtype"`
|
||||
}
|
||||
if err := manifest.ReadConfigJSON("config.json", &cfg); err != nil {
|
||||
return "", fmt.Errorf("failed to read config.json: %w", err)
|
||||
}
|
||||
|
||||
return cfg.TorchDtype, nil
|
||||
}
|
||||
|
||||
// safetensorsTensorInfo holds metadata about a tensor from a safetensors header
|
||||
type safetensorsTensorInfo struct {
|
||||
Dtype string `json:"dtype"`
|
||||
Shape []int64 `json:"shape"`
|
||||
}
|
||||
|
||||
// readSafetensorsHeader reads the JSON header from a safetensors file to get tensor metadata.
|
||||
// Safetensors format: 8-byte header size (little endian) + JSON header + tensor data
|
||||
func readSafetensorsHeader(path string) (*safetensorsTensorInfo, error) {
|
||||
f, err := os.Open(path)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
return parseSafetensorsHeader(f)
|
||||
}
|
||||
|
||||
// parseSafetensorsHeader parses a safetensors header from a reader.
|
||||
// This is separated for testability.
|
||||
func parseSafetensorsHeader(r io.Reader) (*safetensorsTensorInfo, error) {
|
||||
// Read header size (8 bytes, little endian)
|
||||
var headerSize uint64
|
||||
if err := binary.Read(r, binary.LittleEndian, &headerSize); err != nil {
|
||||
return nil, fmt.Errorf("failed to read header size: %w", err)
|
||||
}
|
||||
|
||||
// Sanity check - header shouldn't be too large
|
||||
if headerSize > 1024*1024 {
|
||||
return nil, fmt.Errorf("header size too large: %d", headerSize)
|
||||
}
|
||||
|
||||
// Read header JSON
|
||||
headerBytes := make([]byte, headerSize)
|
||||
if _, err := io.ReadFull(r, headerBytes); err != nil {
|
||||
return nil, fmt.Errorf("failed to read header: %w", err)
|
||||
}
|
||||
|
||||
// Parse as map of tensor name -> info
|
||||
var header map[string]json.RawMessage
|
||||
if err := json.Unmarshal(headerBytes, &header); err != nil {
|
||||
return nil, fmt.Errorf("failed to parse header: %w", err)
|
||||
}
|
||||
|
||||
// Find the first (and should be only) tensor entry
|
||||
for name, raw := range header {
|
||||
if name == "__metadata__" {
|
||||
continue
|
||||
}
|
||||
var info safetensorsTensorInfo
|
||||
if err := json.Unmarshal(raw, &info); err != nil {
|
||||
return nil, fmt.Errorf("failed to parse tensor info: %w", err)
|
||||
}
|
||||
return &info, nil
|
||||
}
|
||||
|
||||
return nil, fmt.Errorf("no tensor found in header")
|
||||
}
|
||||
605
x/server/show_test.go
Normal file
@@ -0,0 +1,605 @@
|
||||
package server
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"encoding/json"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"testing"
|
||||
|
||||
"github.com/ollama/ollama/x/imagegen"
|
||||
)
|
||||
|
||||
func TestBuildModelInfo(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
config modelConfig
|
||||
totalTensorBytes int64
|
||||
tensorCount int64
|
||||
wantArch string
|
||||
wantContextLen int
|
||||
wantEmbedLen int
|
||||
wantBlockCount int
|
||||
wantParamCount int64
|
||||
}{
|
||||
{
|
||||
name: "gemma3 model with model_type",
|
||||
config: modelConfig{
|
||||
ModelType: "gemma3",
|
||||
HiddenSize: 2560,
|
||||
NumHiddenLayers: 34,
|
||||
MaxPositionEmbeddings: 131072,
|
||||
IntermediateSize: 10240,
|
||||
NumAttentionHeads: 8,
|
||||
NumKeyValueHeads: 4,
|
||||
VocabSize: 262144,
|
||||
TorchDtype: "bfloat16",
|
||||
},
|
||||
totalTensorBytes: 8_600_000_088, // ~4.3B params * 2 bytes + 88 bytes header
|
||||
tensorCount: 1,
|
||||
wantArch: "gemma3",
|
||||
wantContextLen: 131072,
|
||||
wantEmbedLen: 2560,
|
||||
wantBlockCount: 34,
|
||||
wantParamCount: 4_300_000_000,
|
||||
},
|
||||
{
|
||||
name: "llama model with architectures array",
|
||||
config: modelConfig{
|
||||
Architectures: []string{"LlamaForCausalLM"},
|
||||
HiddenSize: 4096,
|
||||
NumHiddenLayers: 32,
|
||||
MaxPositionEmbeddings: 4096,
|
||||
IntermediateSize: 11008,
|
||||
NumAttentionHeads: 32,
|
||||
NumKeyValueHeads: 32,
|
||||
VocabSize: 32000,
|
||||
TorchDtype: "float16",
|
||||
},
|
||||
totalTensorBytes: 14_000_000_088, // ~7B params * 2 bytes + 88 bytes header
|
||||
tensorCount: 1,
|
||||
wantArch: "llama",
|
||||
wantContextLen: 4096,
|
||||
wantEmbedLen: 4096,
|
||||
wantBlockCount: 32,
|
||||
wantParamCount: 7_000_000_000,
|
||||
},
|
||||
{
|
||||
name: "multimodal model with text_config",
|
||||
config: modelConfig{
|
||||
Architectures: []string{"Gemma3ForConditionalGeneration"},
|
||||
HiddenSize: 1152, // vision hidden size
|
||||
TextConfig: &struct {
|
||||
HiddenSize int `json:"hidden_size"`
|
||||
MaxPositionEmbeddings int `json:"max_position_embeddings"`
|
||||
NumHiddenLayers int `json:"num_hidden_layers"`
|
||||
}{
|
||||
HiddenSize: 2560,
|
||||
MaxPositionEmbeddings: 131072,
|
||||
NumHiddenLayers: 34,
|
||||
},
|
||||
NumAttentionHeads: 8,
|
||||
NumKeyValueHeads: 4,
|
||||
VocabSize: 262144,
|
||||
TorchDtype: "bfloat16",
|
||||
},
|
||||
totalTensorBytes: 8_600_000_088,
|
||||
tensorCount: 1,
|
||||
wantArch: "gemma3",
|
||||
wantContextLen: 131072,
|
||||
wantEmbedLen: 2560,
|
||||
wantBlockCount: 34,
|
||||
wantParamCount: 4_300_000_000,
|
||||
},
|
||||
{
|
||||
name: "float32 model",
|
||||
config: modelConfig{
|
||||
ModelType: "test",
|
||||
HiddenSize: 512,
|
||||
NumHiddenLayers: 6,
|
||||
MaxPositionEmbeddings: 2048,
|
||||
TorchDtype: "float32",
|
||||
},
|
||||
totalTensorBytes: 400_000_088, // 100M params * 4 bytes + 88 bytes header
|
||||
tensorCount: 1,
|
||||
wantArch: "test",
|
||||
wantContextLen: 2048,
|
||||
wantEmbedLen: 512,
|
||||
wantBlockCount: 6,
|
||||
wantParamCount: 100_000_000,
|
||||
},
|
||||
{
|
||||
name: "multiple tensors with header overhead",
|
||||
config: modelConfig{
|
||||
ModelType: "test",
|
||||
HiddenSize: 256,
|
||||
NumHiddenLayers: 4,
|
||||
MaxPositionEmbeddings: 1024,
|
||||
TorchDtype: "bfloat16",
|
||||
},
|
||||
totalTensorBytes: 2_000_880, // 1M params * 2 bytes + 10 tensors * 88 bytes
|
||||
tensorCount: 10,
|
||||
wantArch: "test",
|
||||
wantContextLen: 1024,
|
||||
wantEmbedLen: 256,
|
||||
wantBlockCount: 4,
|
||||
wantParamCount: 1_000_000,
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
info := buildModelInfo(tt.config, tt.totalTensorBytes, tt.tensorCount)
|
||||
|
||||
// Check architecture
|
||||
if arch, ok := info["general.architecture"].(string); !ok || arch != tt.wantArch {
|
||||
t.Errorf("architecture = %v, want %v", info["general.architecture"], tt.wantArch)
|
||||
}
|
||||
|
||||
// Check context length
|
||||
contextKey := tt.wantArch + ".context_length"
|
||||
if contextLen, ok := info[contextKey].(int); !ok || contextLen != tt.wantContextLen {
|
||||
t.Errorf("context_length = %v, want %v", info[contextKey], tt.wantContextLen)
|
||||
}
|
||||
|
||||
// Check embedding length
|
||||
embedKey := tt.wantArch + ".embedding_length"
|
||||
if embedLen, ok := info[embedKey].(int); !ok || embedLen != tt.wantEmbedLen {
|
||||
t.Errorf("embedding_length = %v, want %v", info[embedKey], tt.wantEmbedLen)
|
||||
}
|
||||
|
||||
// Check block count
|
||||
blockKey := tt.wantArch + ".block_count"
|
||||
if blockCount, ok := info[blockKey].(int); !ok || blockCount != tt.wantBlockCount {
|
||||
t.Errorf("block_count = %v, want %v", info[blockKey], tt.wantBlockCount)
|
||||
}
|
||||
|
||||
// Check parameter count
|
||||
if paramCount, ok := info["general.parameter_count"].(int64); !ok || paramCount != tt.wantParamCount {
|
||||
t.Errorf("parameter_count = %v, want %v", info["general.parameter_count"], tt.wantParamCount)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestBuildModelInfo_ArchitectureConversion(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
architectures []string
|
||||
modelType string
|
||||
wantArch string
|
||||
}{
|
||||
{
|
||||
name: "LlamaForCausalLM",
|
||||
architectures: []string{"LlamaForCausalLM"},
|
||||
wantArch: "llama",
|
||||
},
|
||||
{
|
||||
name: "Gemma3ForCausalLM",
|
||||
architectures: []string{"Gemma3ForCausalLM"},
|
||||
wantArch: "gemma3",
|
||||
},
|
||||
{
|
||||
name: "Gemma3ForConditionalGeneration",
|
||||
architectures: []string{"Gemma3ForConditionalGeneration"},
|
||||
wantArch: "gemma3",
|
||||
},
|
||||
{
|
||||
name: "Qwen2ForCausalLM",
|
||||
architectures: []string{"Qwen2ForCausalLM"},
|
||||
wantArch: "qwen2",
|
||||
},
|
||||
{
|
||||
name: "model_type takes precedence",
|
||||
architectures: []string{"LlamaForCausalLM"},
|
||||
modelType: "custom",
|
||||
wantArch: "custom",
|
||||
},
|
||||
{
|
||||
name: "empty architectures with model_type",
|
||||
architectures: nil,
|
||||
modelType: "mymodel",
|
||||
wantArch: "mymodel",
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
config := modelConfig{
|
||||
Architectures: tt.architectures,
|
||||
ModelType: tt.modelType,
|
||||
}
|
||||
info := buildModelInfo(config, 0, 0)
|
||||
|
||||
if arch, ok := info["general.architecture"].(string); !ok || arch != tt.wantArch {
|
||||
t.Errorf("architecture = %v, want %v", info["general.architecture"], tt.wantArch)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestBuildModelInfo_BytesPerParam(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
dtype string
|
||||
totalBytes int64
|
||||
tensorCount int64
|
||||
wantParamCount int64
|
||||
}{
|
||||
{
|
||||
name: "bfloat16",
|
||||
dtype: "bfloat16",
|
||||
totalBytes: 2_000_088, // 1M * 2 + 88
|
||||
tensorCount: 1,
|
||||
wantParamCount: 1_000_000,
|
||||
},
|
||||
{
|
||||
name: "float16",
|
||||
dtype: "float16",
|
||||
totalBytes: 2_000_088,
|
||||
tensorCount: 1,
|
||||
wantParamCount: 1_000_000,
|
||||
},
|
||||
{
|
||||
name: "float32",
|
||||
dtype: "float32",
|
||||
totalBytes: 4_000_088, // 1M * 4 + 88
|
||||
tensorCount: 1,
|
||||
wantParamCount: 1_000_000,
|
||||
},
|
||||
{
|
||||
name: "int8",
|
||||
dtype: "int8",
|
||||
totalBytes: 1_000_088, // 1M * 1 + 88
|
||||
tensorCount: 1,
|
||||
wantParamCount: 1_000_000,
|
||||
},
|
||||
{
|
||||
name: "unknown dtype defaults to 2 bytes",
|
||||
dtype: "unknown",
|
||||
totalBytes: 2_000_088,
|
||||
tensorCount: 1,
|
||||
wantParamCount: 1_000_000,
|
||||
},
|
||||
{
|
||||
name: "empty dtype defaults to 2 bytes",
|
||||
dtype: "",
|
||||
totalBytes: 2_000_088,
|
||||
tensorCount: 1,
|
||||
wantParamCount: 1_000_000,
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
config := modelConfig{
|
||||
ModelType: "test",
|
||||
TorchDtype: tt.dtype,
|
||||
}
|
||||
info := buildModelInfo(config, tt.totalBytes, tt.tensorCount)
|
||||
|
||||
if paramCount, ok := info["general.parameter_count"].(int64); !ok || paramCount != tt.wantParamCount {
|
||||
t.Errorf("parameter_count = %v, want %v", info["general.parameter_count"], tt.wantParamCount)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestParseSafetensorsHeader(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
header map[string]any
|
||||
wantDtype string
|
||||
wantShape []int64
|
||||
wantErr bool
|
||||
}{
|
||||
{
|
||||
name: "simple tensor",
|
||||
header: map[string]any{
|
||||
"weight": map[string]any{
|
||||
"dtype": "BF16",
|
||||
"shape": []int64{2560, 262144},
|
||||
"data_offsets": []int64{0, 1342177280},
|
||||
},
|
||||
},
|
||||
wantDtype: "BF16",
|
||||
wantShape: []int64{2560, 262144},
|
||||
},
|
||||
{
|
||||
name: "with metadata",
|
||||
header: map[string]any{
|
||||
"__metadata__": map[string]any{
|
||||
"format": "pt",
|
||||
},
|
||||
"bias": map[string]any{
|
||||
"dtype": "F32",
|
||||
"shape": []int64{1024},
|
||||
"data_offsets": []int64{0, 4096},
|
||||
},
|
||||
},
|
||||
wantDtype: "F32",
|
||||
wantShape: []int64{1024},
|
||||
},
|
||||
{
|
||||
name: "float16 tensor",
|
||||
header: map[string]any{
|
||||
"layer.weight": map[string]any{
|
||||
"dtype": "F16",
|
||||
"shape": []int64{512, 512, 3, 3},
|
||||
"data_offsets": []int64{0, 4718592},
|
||||
},
|
||||
},
|
||||
wantDtype: "F16",
|
||||
wantShape: []int64{512, 512, 3, 3},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
// Create safetensors format: 8-byte size + JSON header
|
||||
headerJSON, err := json.Marshal(tt.header)
|
||||
if err != nil {
|
||||
t.Fatalf("failed to marshal header: %v", err)
|
||||
}
|
||||
|
||||
var buf bytes.Buffer
|
||||
if err := binary.Write(&buf, binary.LittleEndian, uint64(len(headerJSON))); err != nil {
|
||||
t.Fatalf("failed to write header size: %v", err)
|
||||
}
|
||||
buf.Write(headerJSON)
|
||||
|
||||
info, err := parseSafetensorsHeader(&buf)
|
||||
if (err != nil) != tt.wantErr {
|
||||
t.Errorf("parseSafetensorsHeader() error = %v, wantErr %v", err, tt.wantErr)
|
||||
return
|
||||
}
|
||||
if tt.wantErr {
|
||||
return
|
||||
}
|
||||
|
||||
if info.Dtype != tt.wantDtype {
|
||||
t.Errorf("Dtype = %v, want %v", info.Dtype, tt.wantDtype)
|
||||
}
|
||||
|
||||
if len(info.Shape) != len(tt.wantShape) {
|
||||
t.Errorf("Shape length = %v, want %v", len(info.Shape), len(tt.wantShape))
|
||||
} else {
|
||||
for i, s := range info.Shape {
|
||||
if s != tt.wantShape[i] {
|
||||
t.Errorf("Shape[%d] = %v, want %v", i, s, tt.wantShape[i])
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestParseSafetensorsHeader_Errors(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
data []byte
|
||||
wantErr string
|
||||
}{
|
||||
{
|
||||
name: "empty data",
|
||||
data: []byte{},
|
||||
wantErr: "failed to read header size",
|
||||
},
|
||||
{
|
||||
name: "truncated header size",
|
||||
data: []byte{0x01, 0x02, 0x03},
|
||||
wantErr: "failed to read header size",
|
||||
},
|
||||
{
|
||||
name: "header size too large",
|
||||
data: func() []byte {
|
||||
var buf bytes.Buffer
|
||||
binary.Write(&buf, binary.LittleEndian, uint64(2*1024*1024)) // 2MB
|
||||
return buf.Bytes()
|
||||
}(),
|
||||
wantErr: "header size too large",
|
||||
},
|
||||
{
|
||||
name: "truncated header",
|
||||
data: func() []byte {
|
||||
var buf bytes.Buffer
|
||||
binary.Write(&buf, binary.LittleEndian, uint64(100))
|
||||
buf.Write([]byte("short"))
|
||||
return buf.Bytes()
|
||||
}(),
|
||||
wantErr: "failed to read header",
|
||||
},
|
||||
{
|
||||
name: "invalid JSON",
|
||||
data: func() []byte {
|
||||
var buf bytes.Buffer
|
||||
binary.Write(&buf, binary.LittleEndian, uint64(10))
|
||||
buf.Write([]byte("not json!!"))
|
||||
return buf.Bytes()
|
||||
}(),
|
||||
wantErr: "failed to parse header",
|
||||
},
|
||||
{
|
||||
name: "no tensors in header",
|
||||
data: func() []byte {
|
||||
header := map[string]any{
|
||||
"__metadata__": map[string]any{"format": "pt"},
|
||||
}
|
||||
headerJSON, _ := json.Marshal(header)
|
||||
var buf bytes.Buffer
|
||||
binary.Write(&buf, binary.LittleEndian, uint64(len(headerJSON)))
|
||||
buf.Write(headerJSON)
|
||||
return buf.Bytes()
|
||||
}(),
|
||||
wantErr: "no tensor found in header",
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
_, err := parseSafetensorsHeader(bytes.NewReader(tt.data))
|
||||
if err == nil {
|
||||
t.Error("expected error, got nil")
|
||||
return
|
||||
}
|
||||
if !bytes.Contains([]byte(err.Error()), []byte(tt.wantErr)) {
|
||||
t.Errorf("error = %v, want error containing %v", err, tt.wantErr)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestGetTensorInfoFromManifest(t *testing.T) {
|
||||
// Create a temp directory for blobs
|
||||
tempDir, err := os.MkdirTemp("", "ollama-test-*")
|
||||
if err != nil {
|
||||
t.Fatalf("failed to create temp dir: %v", err)
|
||||
}
|
||||
defer os.RemoveAll(tempDir)
|
||||
|
||||
// Create test tensor blobs
|
||||
tensors := []struct {
|
||||
name string
|
||||
digest string
|
||||
dtype string
|
||||
shape []int64
|
||||
}{
|
||||
{
|
||||
name: "model.embed_tokens.weight",
|
||||
digest: "sha256:abc123",
|
||||
dtype: "BF16",
|
||||
shape: []int64{262144, 2560},
|
||||
},
|
||||
{
|
||||
name: "model.layers.0.self_attn.q_proj.weight",
|
||||
digest: "sha256:def456",
|
||||
dtype: "BF16",
|
||||
shape: []int64{2560, 2560},
|
||||
},
|
||||
{
|
||||
name: "model.norm.weight",
|
||||
digest: "sha256:ghi789",
|
||||
dtype: "F32",
|
||||
shape: []int64{2560},
|
||||
},
|
||||
}
|
||||
|
||||
// Create blob files
|
||||
var layers []imagegen.ManifestLayer
|
||||
for _, tensor := range tensors {
|
||||
// Create safetensors blob
|
||||
header := map[string]any{
|
||||
tensor.name: map[string]any{
|
||||
"dtype": tensor.dtype,
|
||||
"shape": tensor.shape,
|
||||
"data_offsets": []int64{0, 1000},
|
||||
},
|
||||
}
|
||||
headerJSON, _ := json.Marshal(header)
|
||||
|
||||
var buf bytes.Buffer
|
||||
binary.Write(&buf, binary.LittleEndian, uint64(len(headerJSON)))
|
||||
buf.Write(headerJSON)
|
||||
|
||||
// Write blob file
|
||||
blobName := "sha256-" + tensor.digest[7:]
|
||||
blobPath := filepath.Join(tempDir, blobName)
|
||||
if err := os.WriteFile(blobPath, buf.Bytes(), 0644); err != nil {
|
||||
t.Fatalf("failed to write blob: %v", err)
|
||||
}
|
||||
|
||||
layers = append(layers, imagegen.ManifestLayer{
|
||||
MediaType: "application/vnd.ollama.image.tensor",
|
||||
Digest: tensor.digest,
|
||||
Size: int64(buf.Len() + 1000), // header + fake data
|
||||
Name: tensor.name,
|
||||
})
|
||||
}
|
||||
|
||||
// Add a non-tensor layer (should be skipped)
|
||||
layers = append(layers, imagegen.ManifestLayer{
|
||||
MediaType: "application/vnd.ollama.image.json",
|
||||
Digest: "sha256:config",
|
||||
Size: 100,
|
||||
Name: "config.json",
|
||||
})
|
||||
|
||||
manifest := &imagegen.ModelManifest{
|
||||
Manifest: &imagegen.Manifest{
|
||||
Layers: layers,
|
||||
},
|
||||
BlobDir: tempDir,
|
||||
}
|
||||
|
||||
result, err := getTensorInfoFromManifest(manifest)
|
||||
if err != nil {
|
||||
t.Fatalf("getTensorInfoFromManifest() error = %v", err)
|
||||
}
|
||||
|
||||
if len(result) != 3 {
|
||||
t.Errorf("got %d tensors, want 3", len(result))
|
||||
}
|
||||
|
||||
// Verify each tensor
|
||||
for i, tensor := range tensors {
|
||||
if i >= len(result) {
|
||||
break
|
||||
}
|
||||
if result[i].Name != tensor.name {
|
||||
t.Errorf("tensor[%d].Name = %v, want %v", i, result[i].Name, tensor.name)
|
||||
}
|
||||
if result[i].Type != tensor.dtype {
|
||||
t.Errorf("tensor[%d].Type = %v, want %v", i, result[i].Type, tensor.dtype)
|
||||
}
|
||||
if len(result[i].Shape) != len(tensor.shape) {
|
||||
t.Errorf("tensor[%d].Shape length = %v, want %v", i, len(result[i].Shape), len(tensor.shape))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestReadSafetensorsHeader(t *testing.T) {
|
||||
// Create a temp file with a valid safetensors header
|
||||
tempDir, err := os.MkdirTemp("", "ollama-test-*")
|
||||
if err != nil {
|
||||
t.Fatalf("failed to create temp dir: %v", err)
|
||||
}
|
||||
defer os.RemoveAll(tempDir)
|
||||
|
||||
header := map[string]any{
|
||||
"test_tensor": map[string]any{
|
||||
"dtype": "BF16",
|
||||
"shape": []int64{1024, 768},
|
||||
"data_offsets": []int64{0, 1572864},
|
||||
},
|
||||
}
|
||||
headerJSON, _ := json.Marshal(header)
|
||||
|
||||
var buf bytes.Buffer
|
||||
binary.Write(&buf, binary.LittleEndian, uint64(len(headerJSON)))
|
||||
buf.Write(headerJSON)
|
||||
|
||||
filePath := filepath.Join(tempDir, "test.safetensors")
|
||||
if err := os.WriteFile(filePath, buf.Bytes(), 0644); err != nil {
|
||||
t.Fatalf("failed to write test file: %v", err)
|
||||
}
|
||||
|
||||
info, err := readSafetensorsHeader(filePath)
|
||||
if err != nil {
|
||||
t.Fatalf("readSafetensorsHeader() error = %v", err)
|
||||
}
|
||||
|
||||
if info.Dtype != "BF16" {
|
||||
t.Errorf("Dtype = %v, want BF16", info.Dtype)
|
||||
}
|
||||
if len(info.Shape) != 2 || info.Shape[0] != 1024 || info.Shape[1] != 768 {
|
||||
t.Errorf("Shape = %v, want [1024, 768]", info.Shape)
|
||||
}
|
||||
}
|
||||
|
||||
func TestReadSafetensorsHeader_FileNotFound(t *testing.T) {
|
||||
_, err := readSafetensorsHeader("/nonexistent/path/file.safetensors")
|
||||
if err == nil {
|
||||
t.Error("expected error for nonexistent file")
|
||||
}
|
||||
}
|
||||