Compare commits

..

1 Commits

Author SHA1 Message Date
jmorganca
bb9c1b2561 parsers: refactor Nemotron parser to reuse Qwen3Coder for tool calls
Simplify Nemotron3NanoParser by delegating tool call parsing to
Qwen3CoderParser instead of duplicating the parsing logic. The
Nemotron parser now only handles the thinking state machine and
transitions to Qwen3CoderParser for content and tool call parsing.

This also fixes an issue where tool calls without </think> would
cause the parser to get stuck in thinking mode.
2026-01-17 12:36:23 -08:00
19 changed files with 295 additions and 1009 deletions

View File

@@ -127,25 +127,6 @@ type GenerateRequest struct {
// each with an associated log probability. Only applies when Logprobs is true.
// Valid values are 0-20. Default is 0 (only return the selected token's logprob).
TopLogprobs int `json:"top_logprobs,omitempty"`
// Experimental: Image generation fields (may change or be removed)
// Width is the width of the generated image in pixels.
// Only used for image generation models.
Width int32 `json:"width,omitempty"`
// Height is the height of the generated image in pixels.
// Only used for image generation models.
Height int32 `json:"height,omitempty"`
// Steps is the number of diffusion steps for image generation.
// Only used for image generation models.
Steps int32 `json:"steps,omitempty"`
// Seed is the random seed for reproducible image generation.
// If 0 or not specified, a random seed will be used.
// Only used for image generation models.
Seed int64 `json:"seed,omitempty"`
}
// ChatRequest describes a request sent by [Client.Chat].
@@ -879,20 +860,6 @@ type GenerateResponse struct {
// Logprobs contains log probability information for the generated tokens,
// if requested via the Logprobs parameter.
Logprobs []Logprob `json:"logprobs,omitempty"`
// Experimental: Image generation fields (may change or be removed)
// Images contains base64-encoded generated images.
// Only present for image generation models.
Images []string `json:"images,omitempty"`
// Completed is the number of completed steps in image generation.
// Only present for image generation models during streaming.
Completed int64 `json:"completed,omitempty"`
// Total is the total number of steps for image generation.
// Only present for image generation models during streaming.
Total int64 `json:"total,omitempty"`
}
// ModelDetails provides details about a model.

View File

@@ -600,7 +600,7 @@ func RunHandler(cmd *cobra.Command, args []string) error {
}
// Check if this is an image generation model
if slices.Contains(info.Capabilities, model.CapabilityImage) {
if slices.Contains(info.Capabilities, model.CapabilityImageGeneration) {
if opts.Prompt == "" && !interactive {
return errors.New("image generation models require a prompt. Usage: ollama run " + name + " \"your prompt here\"")
}
@@ -1985,7 +1985,6 @@ func NewCLI() *cobra.Command {
} {
switch cmd {
case runCmd:
imagegen.AppendFlagsDocs(cmd)
appendEnvDocs(cmd, []envconfig.EnvVar{envVars["OLLAMA_HOST"], envVars["OLLAMA_NOHISTORY"]})
case serveCmd:
appendEnvDocs(cmd, []envconfig.EnvVar{

View File

@@ -1555,7 +1555,7 @@ func TestShowInfoImageGen(t *testing.T) {
ParameterSize: "10.3B",
QuantizationLevel: "FP8",
},
Capabilities: []model.Capability{model.CapabilityImage},
Capabilities: []model.Capability{model.CapabilityImageGeneration},
Requires: "0.14.0",
}, false, &b)
if err != nil {

View File

@@ -16,7 +16,6 @@
- [Generate Embeddings](#generate-embeddings)
- [List Running Models](#list-running-models)
- [Version](#version)
- [Experimental: Image Generation](#image-generation-experimental)
## Conventions
@@ -59,16 +58,6 @@ Advanced parameters (optional):
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
- `context` (deprecated): the context parameter returned from a previous request to `/generate`, this can be used to keep a short conversational memory
Experimental image generation parameters (for image generation models only):
> [!WARNING]
> These parameters are experimental and may change in future versions.
- `width`: width of the generated image in pixels (default: model-specific, typically 1024)
- `height`: height of the generated image in pixels (default: model-specific, typically 1024)
- `steps`: number of diffusion steps (default: model-specific)
- `seed`: random seed for reproducible image generation (default: random)
#### Structured outputs
Structured outputs are supported by providing a JSON schema in the `format` parameter. The model will generate a response that matches the schema. See the [structured outputs](#request-structured-outputs) example below.
@@ -1878,55 +1867,3 @@ curl http://localhost:11434/api/version
"version": "0.5.1"
}
```
## Experimental Features
### Image Generation (Experimental)
> [!WARNING]
> Image generation is experimental and may change in future versions.
Image generation is now supported through the standard `/api/generate` endpoint when using image generation models (such as Flux). The API automatically detects when an image generation model is being used.
See the [Generate a completion](#generate-a-completion) section for the full API documentation. The experimental image generation parameters (`width`, `height`, `steps`, `seed`) are documented there.
#### Example
##### Request
```shell
curl http://localhost:11434/api/generate -d '{
"model": "flux",
"prompt": "a sunset over mountains",
"width": 1024,
"height": 768
}'
```
##### Response (streaming)
Progress updates during generation:
```json
{
"model": "flux",
"created_at": "2024-01-15T10:30:00.000000Z",
"completed": 5,
"total": 20,
"done": false
}
```
##### Final Response
```json
{
"model": "flux",
"created_at": "2024-01-15T10:30:15.000000Z",
"images": ["iVBORw0KGgoAAAANSUhEUg..."],
"done": true,
"done_reason": "stop",
"total_duration": 15000000000,
"load_duration": 2000000000
}
```

View File

@@ -1468,7 +1468,6 @@ type CompletionRequest struct {
// Image generation fields
Width int32 `json:"width,omitempty"`
Height int32 `json:"height,omitempty"`
Steps int32 `json:"steps,omitempty"`
Seed int64 `json:"seed,omitempty"`
}
@@ -1519,14 +1518,10 @@ type CompletionResponse struct {
// Logprobs contains log probability information if requested
Logprobs []Logprob `json:"logprobs,omitempty"`
// Image contains base64-encoded image data for image generation
Image string `json:"image,omitempty"`
// Step is the current step in image generation
Step int `json:"step,omitempty"`
// TotalSteps is the total number of steps for image generation
TotalSteps int `json:"total_steps,omitempty"`
// Image generation fields
Image []byte `json:"image,omitempty"` // Generated image
Step int `json:"step,omitempty"` // Current generation step
Total int `json:"total,omitempty"` // Total generation steps
}
func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error {

View File

@@ -546,66 +546,3 @@ func ResponsesMiddleware() gin.HandlerFunc {
c.Next()
}
}
type ImageWriter struct {
BaseWriter
}
func (w *ImageWriter) writeResponse(data []byte) (int, error) {
var generateResponse api.GenerateResponse
if err := json.Unmarshal(data, &generateResponse); err != nil {
return 0, err
}
// Only write response when done with images
if generateResponse.Done && len(generateResponse.Images) > 0 {
w.ResponseWriter.Header().Set("Content-Type", "application/json")
return len(data), json.NewEncoder(w.ResponseWriter).Encode(openai.ToImageGenerationResponse(generateResponse))
}
return len(data), nil
}
func (w *ImageWriter) Write(data []byte) (int, error) {
code := w.ResponseWriter.Status()
if code != http.StatusOK {
return w.writeError(data)
}
return w.writeResponse(data)
}
func ImageGenerationsMiddleware() gin.HandlerFunc {
return func(c *gin.Context) {
var req openai.ImageGenerationRequest
if err := c.ShouldBindJSON(&req); err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, openai.NewError(http.StatusBadRequest, err.Error()))
return
}
if req.Prompt == "" {
c.AbortWithStatusJSON(http.StatusBadRequest, openai.NewError(http.StatusBadRequest, "prompt is required"))
return
}
if req.Model == "" {
c.AbortWithStatusJSON(http.StatusBadRequest, openai.NewError(http.StatusBadRequest, "model is required"))
return
}
var b bytes.Buffer
if err := json.NewEncoder(&b).Encode(openai.FromImageGenerationRequest(req)); err != nil {
c.AbortWithStatusJSON(http.StatusInternalServerError, openai.NewError(http.StatusInternalServerError, err.Error()))
return
}
c.Request.Body = io.NopCloser(&b)
w := &ImageWriter{
BaseWriter: BaseWriter{ResponseWriter: c.Writer},
}
c.Writer = w
c.Next()
}
}

View File

@@ -961,154 +961,3 @@ func TestRetrieveMiddleware(t *testing.T) {
}
}
}
func TestImageGenerationsMiddleware(t *testing.T) {
type testCase struct {
name string
body string
req api.GenerateRequest
err openai.ErrorResponse
}
var capturedRequest *api.GenerateRequest
testCases := []testCase{
{
name: "image generation basic",
body: `{
"model": "test-model",
"prompt": "a beautiful sunset"
}`,
req: api.GenerateRequest{
Model: "test-model",
Prompt: "a beautiful sunset",
},
},
{
name: "image generation with size",
body: `{
"model": "test-model",
"prompt": "a beautiful sunset",
"size": "512x768"
}`,
req: api.GenerateRequest{
Model: "test-model",
Prompt: "a beautiful sunset",
Width: 512,
Height: 768,
},
},
{
name: "image generation missing prompt",
body: `{
"model": "test-model"
}`,
err: openai.ErrorResponse{
Error: openai.Error{
Message: "prompt is required",
Type: "invalid_request_error",
},
},
},
{
name: "image generation missing model",
body: `{
"prompt": "a beautiful sunset"
}`,
err: openai.ErrorResponse{
Error: openai.Error{
Message: "model is required",
Type: "invalid_request_error",
},
},
},
}
endpoint := func(c *gin.Context) {
c.Status(http.StatusOK)
}
gin.SetMode(gin.TestMode)
router := gin.New()
router.Use(ImageGenerationsMiddleware(), captureRequestMiddleware(&capturedRequest))
router.Handle(http.MethodPost, "/api/generate", endpoint)
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
req, _ := http.NewRequest(http.MethodPost, "/api/generate", strings.NewReader(tc.body))
req.Header.Set("Content-Type", "application/json")
defer func() { capturedRequest = nil }()
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
if tc.err.Error.Message != "" {
var errResp openai.ErrorResponse
if err := json.Unmarshal(resp.Body.Bytes(), &errResp); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(tc.err, errResp); diff != "" {
t.Fatalf("errors did not match:\n%s", diff)
}
return
}
if resp.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d: %s", resp.Code, resp.Body.String())
}
if diff := cmp.Diff(&tc.req, capturedRequest); diff != "" {
t.Fatalf("requests did not match:\n%s", diff)
}
})
}
}
func TestImageWriterResponse(t *testing.T) {
gin.SetMode(gin.TestMode)
// Test that ImageWriter transforms GenerateResponse to OpenAI format
endpoint := func(c *gin.Context) {
resp := api.GenerateResponse{
Model: "test-model",
CreatedAt: time.Unix(1234567890, 0).UTC(),
Done: true,
Images: []string{"dGVzdC1pbWFnZS1kYXRh"}, // base64 of "test-image-data"
}
data, _ := json.Marshal(resp)
c.Writer.Write(append(data, '\n'))
}
router := gin.New()
router.Use(ImageGenerationsMiddleware())
router.Handle(http.MethodPost, "/api/generate", endpoint)
body := `{"model": "test-model", "prompt": "test"}`
req, _ := http.NewRequest(http.MethodPost, "/api/generate", strings.NewReader(body))
req.Header.Set("Content-Type", "application/json")
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
if resp.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d: %s", resp.Code, resp.Body.String())
}
var imageResp openai.ImageGenerationResponse
if err := json.Unmarshal(resp.Body.Bytes(), &imageResp); err != nil {
t.Fatalf("failed to unmarshal response: %v", err)
}
if imageResp.Created != 1234567890 {
t.Errorf("expected created 1234567890, got %d", imageResp.Created)
}
if len(imageResp.Data) != 1 {
t.Fatalf("expected 1 image, got %d", len(imageResp.Data))
}
if imageResp.Data[0].B64JSON != "dGVzdC1pbWFnZS1kYXRh" {
t.Errorf("expected image data 'dGVzdC1pbWFnZS1kYXRh', got %s", imageResp.Data[0].B64JSON)
}
}

View File

@@ -1,7 +1,6 @@
package parsers
import (
"regexp"
"strings"
"unicode"
@@ -14,243 +13,114 @@ const (
Nemotron3NanoCollectingThinking Nemotron3NanoParserState = iota
Nemotron3NanoSkipWhitespaceAfterThinking
Nemotron3NanoCollectingContent
Nemotron3NanoCollectingToolCalls
)
const (
nemotronThinkClose = "</think>"
nemotronToolCallOpen = "<tool_call>"
nemotronToolCallClose = "</tool_call>"
nemotronThinkClose = "</think>"
nemotronToolCallOpen = "<tool_call>"
)
type Nemotron3NanoParser struct {
state Nemotron3NanoParserState
buffer strings.Builder
tools []api.Tool
state Nemotron3NanoParserState
buffer strings.Builder
toolParser *Qwen3CoderParser
}
func (p *Nemotron3NanoParser) HasToolSupport() bool { return true }
func (p *Nemotron3NanoParser) HasThinkingSupport() bool { return true }
func (p *Nemotron3NanoParser) Init(tools []api.Tool, lastMessage *api.Message, thinkValue *api.ThinkValue) []api.Tool {
p.tools = tools
p.toolParser = &Qwen3CoderParser{}
p.toolParser.Init(tools, nil, nil)
// thinking is enabled if user requests it
thinkingEnabled := thinkValue != nil && thinkValue.Bool()
prefill := lastMessage != nil && lastMessage.Role == "assistant"
if !thinkingEnabled {
if !thinkingEnabled || (prefill && lastMessage.Content != "") {
p.state = Nemotron3NanoCollectingContent
return tools
} else {
p.state = Nemotron3NanoCollectingThinking
}
if prefill && lastMessage.Content != "" {
p.state = Nemotron3NanoCollectingContent
return tools
}
p.state = Nemotron3NanoCollectingThinking
return tools
}
type nemotronEvent interface {
isNemotronEvent()
}
type nemotronEventThinkingContent struct {
content string
}
type nemotronEventContent struct {
content string
}
type nemotronEventToolCall struct {
toolCall api.ToolCall
}
func (nemotronEventThinkingContent) isNemotronEvent() {}
func (nemotronEventContent) isNemotronEvent() {}
func (nemotronEventToolCall) isNemotronEvent() {}
func (p *Nemotron3NanoParser) Add(s string, done bool) (content string, thinking string, calls []api.ToolCall, err error) {
p.buffer.WriteString(s)
events := p.parseEvents()
var toolCalls []api.ToolCall
var contentSb strings.Builder
var thinkingSb strings.Builder
for _, event := range events {
switch event := event.(type) {
case nemotronEventToolCall:
toolCalls = append(toolCalls, event.toolCall)
case nemotronEventThinkingContent:
thinkingSb.WriteString(event.content)
case nemotronEventContent:
contentSb.WriteString(event.content)
}
if p.state == Nemotron3NanoCollectingContent {
return p.toolParser.Add(s, done)
}
return contentSb.String(), thinkingSb.String(), toolCalls, nil
}
func (p *Nemotron3NanoParser) parseEvents() []nemotronEvent {
var all []nemotronEvent
keepLooping := true
for keepLooping {
var events []nemotronEvent
events, keepLooping = p.eat()
if len(events) > 0 {
all = append(all, events...)
}
}
return all
}
// emitWithPartialCheck extracts unambiguous content before a potential partial tag
func (p *Nemotron3NanoParser) emitWithPartialCheck(bufStr, tag string) (unambiguous, ambiguous string) {
if overlapLen := overlap(bufStr, tag); overlapLen > 0 {
beforePartialTag := bufStr[:len(bufStr)-overlapLen]
trailingLen := trailingWhitespaceLen(beforePartialTag)
return bufStr[:len(beforePartialTag)-trailingLen], bufStr[len(beforePartialTag)-trailingLen:]
}
wsLen := trailingWhitespaceLen(bufStr)
return bufStr[:len(bufStr)-wsLen], bufStr[len(bufStr)-wsLen:]
}
func (p *Nemotron3NanoParser) eat() ([]nemotronEvent, bool) {
bufStr := p.buffer.String()
if bufStr == "" {
return nil, false
}
switch p.state {
case Nemotron3NanoCollectingThinking:
if strings.Contains(bufStr, nemotronThinkClose) {
split := strings.SplitN(bufStr, nemotronThinkClose, 2)
thinking := strings.TrimRightFunc(split[0], unicode.IsSpace)
p.buffer.Reset()
remainder := strings.TrimLeftFunc(split[1], unicode.IsSpace)
p.buffer.WriteString(remainder)
// Transition to whitespace-skipping state if buffer is empty,
// otherwise go directly to content collection
if remainder == "" {
p.state = Nemotron3NanoSkipWhitespaceAfterThinking
} else {
p.state = Nemotron3NanoCollectingContent
}
if thinking != "" {
return []nemotronEvent{nemotronEventThinkingContent{content: thinking}}, true
}
return nil, true
}
unambig, ambig := p.emitWithPartialCheck(bufStr, nemotronThinkClose)
p.buffer.Reset()
p.buffer.WriteString(ambig)
if unambig != "" {
return []nemotronEvent{nemotronEventThinkingContent{content: unambig}}, false
}
return nil, false
// We only want to skip whitespace between thinking and content
case Nemotron3NanoSkipWhitespaceAfterThinking:
bufStr = strings.TrimLeftFunc(bufStr, unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(bufStr)
if bufStr == "" {
return nil, false
if p.state == Nemotron3NanoSkipWhitespaceAfterThinking {
s = strings.TrimLeftFunc(s, unicode.IsSpace)
if s == "" {
return "", "", nil, nil
}
p.state = Nemotron3NanoCollectingContent
return nil, true
return p.toolParser.Add(s, done)
}
case Nemotron3NanoCollectingContent:
if strings.Contains(bufStr, nemotronToolCallOpen) {
split := strings.SplitN(bufStr, nemotronToolCallOpen, 2)
content := strings.TrimRightFunc(split[0], unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(split[1])
p.state = Nemotron3NanoCollectingToolCalls
if content != "" {
return []nemotronEvent{nemotronEventContent{content: content}}, true
}
return nil, true
}
unambig, ambig := p.emitWithPartialCheck(bufStr, nemotronToolCallOpen)
// Nemotron3NanoCollectingThinking - buffer and look for end markers
p.buffer.WriteString(s)
bufStr := p.buffer.String()
// Look for end of thinking: </think> or <tool_call> (model may skip </think>)
thinkIdx := strings.Index(bufStr, nemotronThinkClose)
toolIdx := strings.Index(bufStr, nemotronToolCallOpen)
var endIdx int = -1
var remainder string
if thinkIdx != -1 && (toolIdx == -1 || thinkIdx < toolIdx) {
endIdx = thinkIdx
remainder = strings.TrimLeftFunc(bufStr[thinkIdx+len(nemotronThinkClose):], unicode.IsSpace)
} else if toolIdx != -1 {
endIdx = toolIdx
remainder = bufStr[toolIdx:] // Include <tool_call> tag
}
if endIdx != -1 {
thinking = strings.TrimRightFunc(bufStr[:endIdx], unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(ambig)
if unambig != "" {
return []nemotronEvent{nemotronEventContent{content: unambig}}, false
if remainder == "" {
p.state = Nemotron3NanoSkipWhitespaceAfterThinking
} else {
p.state = Nemotron3NanoCollectingContent
content, _, calls, err = p.toolParser.Add(remainder, done)
}
return nil, false
case Nemotron3NanoCollectingToolCalls:
if strings.Contains(bufStr, nemotronToolCallClose) {
split := strings.SplitN(bufStr, nemotronToolCallClose, 2)
remaining := strings.TrimLeftFunc(split[1], unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(remaining)
var events []nemotronEvent
if tc, err := p.parseToolCall(split[0]); err == nil {
events = append(events, nemotronEventToolCall{toolCall: tc})
}
if !strings.Contains(remaining, nemotronToolCallOpen) {
p.state = Nemotron3NanoCollectingContent
}
return events, true
}
return nil, false
return content, thinking, calls, err
}
return nil, false
// No end marker - emit unambiguous thinking
thinking = p.emitThinking(bufStr)
return "", thinking, nil, nil
}
var (
nemotronFunctionRegex = regexp.MustCompile(`<function=([^>]+)>`)
nemotronParameterRegex = regexp.MustCompile(`<parameter=([^>]+)>\n?([\s\S]*?)\n?</parameter>`)
)
// emitThinking returns unambiguous thinking content, keeping potential partial tags in buffer
func (p *Nemotron3NanoParser) emitThinking(bufStr string) string {
// Check for partial </think> or <tool_call> at end
thinkOverlap := overlap(bufStr, nemotronThinkClose)
toolOverlap := overlap(bufStr, nemotronToolCallOpen)
maxOverlap := max(thinkOverlap, toolOverlap)
func (p *Nemotron3NanoParser) parseToolCall(content string) (api.ToolCall, error) {
toolCall := api.ToolCall{}
// Extract function name
fnMatch := nemotronFunctionRegex.FindStringSubmatch(content)
if len(fnMatch) < 2 {
return toolCall, nil
}
toolCall.Function.Name = fnMatch[1]
// Extract parameters
toolCall.Function.Arguments = api.NewToolCallFunctionArguments()
paramMatches := nemotronParameterRegex.FindAllStringSubmatch(content, -1)
for _, match := range paramMatches {
if len(match) >= 3 {
paramName := match[1]
paramValue := strings.TrimSpace(match[2])
// Try to parse as typed value based on tool definition
toolCall.Function.Arguments.Set(paramName, p.parseParamValue(paramName, paramValue))
}
if maxOverlap > 0 {
unambiguous := bufStr[:len(bufStr)-maxOverlap]
unambiguous = strings.TrimRightFunc(unambiguous, unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(bufStr[len(bufStr)-maxOverlap:])
return unambiguous
}
return toolCall, nil
}
func (p *Nemotron3NanoParser) parseParamValue(paramName string, raw string) any {
// Find the matching tool to get parameter type
var paramType api.PropertyType
for _, tool := range p.tools {
if tool.Function.Parameters.Properties != nil {
if prop, ok := tool.Function.Parameters.Properties.Get(paramName); ok {
paramType = prop.Type
break
}
}
}
return parseValue(raw, paramType)
// No partial tags - emit all but trailing whitespace
wsLen := trailingWhitespaceLen(bufStr)
if wsLen > 0 {
unambiguous := bufStr[:len(bufStr)-wsLen]
p.buffer.Reset()
p.buffer.WriteString(bufStr[len(bufStr)-wsLen:])
return unambiguous
}
// Nothing to hold back
p.buffer.Reset()
return bufStr
}

View File

@@ -8,6 +8,8 @@ import (
"github.com/ollama/ollama/api"
)
// TestNemotron3NanoParser tests Nemotron-specific behavior (thinking support).
// Tool call parsing is tested in qwen3coder_test.go since Nemotron delegates to Qwen3CoderParser.
func TestNemotron3NanoParser(t *testing.T) {
tests := []struct {
name string
@@ -17,18 +19,6 @@ func TestNemotron3NanoParser(t *testing.T) {
expectedThinking string
expectedCalls []api.ToolCall
}{
{
name: "simple content - no thinking",
input: "Hello, how can I help you?",
thinkValue: nil,
expectedContent: "Hello, how can I help you?",
},
{
name: "simple content - thinking disabled",
input: "Hello, how can I help you?",
thinkValue: &api.ThinkValue{Value: false},
expectedContent: "Hello, how can I help you?",
},
{
name: "thinking then content",
input: "Let me think about this...</think>\nHere is my answer.",
@@ -43,69 +33,6 @@ func TestNemotron3NanoParser(t *testing.T) {
expectedThinking: "Step 1: Analyze\nStep 2: Process\nStep 3: Conclude",
expectedContent: "The answer is 42.",
},
{
name: "simple tool call",
input: "<tool_call>\n<function=get_weather>\n<parameter=city>\nParis\n</parameter>\n</function>\n</tool_call>",
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{"city": "Paris"}),
},
},
},
},
{
name: "content then tool call",
input: "Let me check the weather.\n<tool_call>\n<function=get_weather>\n<parameter=city>\nNYC\n</parameter>\n</function>\n</tool_call>",
thinkValue: nil,
expectedContent: "Let me check the weather.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{"city": "NYC"}),
},
},
},
},
{
name: "tool call with multiple parameters",
input: "<tool_call>\n<function=book_flight>\n<parameter=from>\nSFO\n</parameter>\n<parameter=to>\nNYC\n</parameter>\n</function>\n</tool_call>",
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "book_flight",
Arguments: testArgs(map[string]any{
"from": "SFO",
"to": "NYC",
}),
},
},
},
},
{
name: "multiple tool calls",
input: "<tool_call>\n<function=get_weather>\n<parameter=city>\nSan Francisco\n</parameter>\n</function>\n</tool_call>\n" +
"<tool_call>\n<function=get_weather>\n<parameter=city>\nNew York\n</parameter>\n</function>\n</tool_call>",
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{"city": "San Francisco"}),
},
},
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{"city": "New York"}),
},
},
},
},
{
name: "thinking then tool call",
input: "I should check the weather...</think>\n<tool_call>\n<function=get_weather>\n<parameter=city>\nParis\n</parameter>\n</function>\n</tool_call>",
@@ -135,19 +62,6 @@ func TestNemotron3NanoParser(t *testing.T) {
},
},
},
{
name: "tool call with multiline parameter value",
input: "<tool_call>\n<function=create_note>\n<parameter=content>\nLine 1\nLine 2\nLine 3\n</parameter>\n</function>\n</tool_call>",
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "create_note",
Arguments: testArgs(map[string]any{"content": "Line 1\nLine 2\nLine 3"}),
},
},
},
},
{
name: "empty thinking block - immediate close",
input: "</think>\nHere is my answer.",
@@ -161,18 +75,6 @@ func TestNemotron3NanoParser(t *testing.T) {
thinkValue: &api.ThinkValue{Value: false},
expectedContent: "</think>\nSome content after spurious tag.",
},
{
name: "tool call with no function name - returns empty tool call",
input: "<tool_call>\n<function=>\n</function>\n</tool_call>",
thinkValue: nil,
expectedCalls: []api.ToolCall{{Function: api.ToolCallFunction{Name: "", Arguments: api.NewToolCallFunctionArguments()}}},
},
{
name: "content with newlines preserved",
input: "Line 1\n\nLine 2\n\n\nLine 3",
thinkValue: nil,
expectedContent: "Line 1\n\nLine 2\n\n\nLine 3",
},
{
name: "thinking with only whitespace after close tag",
input: "My thoughts...</think> \n\t\n Content here.",
@@ -180,25 +82,6 @@ func TestNemotron3NanoParser(t *testing.T) {
expectedThinking: "My thoughts...",
expectedContent: "Content here.",
},
{
name: "unicode content",
input: "Hello 世界! 🌍 Ñoño",
thinkValue: nil,
expectedContent: "Hello 世界! 🌍 Ñoño",
},
{
name: "tool call with numeric parameter",
input: "<tool_call>\n<function=set_temp>\n<parameter=value>\n42\n</parameter>\n</function>\n</tool_call>",
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "set_temp",
Arguments: testArgs(map[string]any{"value": "42"}),
},
},
},
},
}
for _, tt := range tests {
@@ -233,6 +116,8 @@ func TestNemotron3NanoParser(t *testing.T) {
}
}
// TestNemotron3NanoParser_Streaming tests streaming behavior for thinking support.
// Tool call streaming is tested in qwen3coder_test.go.
func TestNemotron3NanoParser_Streaming(t *testing.T) {
tests := []struct {
name string
@@ -242,18 +127,6 @@ func TestNemotron3NanoParser_Streaming(t *testing.T) {
expectedThinking string
expectedCalls []api.ToolCall
}{
{
name: "streaming content character by character",
chunks: []string{"H", "e", "l", "l", "o", ",", " ", "w", "o", "r", "l", "d", "!"},
thinkValue: nil,
expectedContent: "Hello, world!",
},
{
name: "streaming content small tokens",
chunks: []string{"Hel", "lo", ", ", "how ", "can", " I", " help", " you", " today", "?"},
thinkValue: nil,
expectedContent: "Hello, how can I help you today?",
},
{
name: "streaming thinking then content - granular",
chunks: []string{"Let", " me", " th", "ink", " about", " this", "...", "<", "/", "think", ">", "\n", "Here", " is", " my", " answer", "."},
@@ -268,45 +141,6 @@ func TestNemotron3NanoParser_Streaming(t *testing.T) {
expectedThinking: "Step 1: Analyze\nStep 2: Process",
expectedContent: "The answer.",
},
{
name: "streaming tool call - highly granular",
chunks: []string{"<", "tool", "_", "call", ">", "\n", "<", "func", "tion", "=", "get", "_", "weather", ">", "\n", "<", "param", "eter", "=", "city", ">", "\n", "Par", "is", "\n", "</", "param", "eter", ">", "\n", "</", "func", "tion", ">", "\n", "</", "tool", "_", "call", ">"},
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{"city": "Paris"}),
},
},
},
},
{
name: "streaming content then tool call - granular",
chunks: []string{"Let", " me", " check", " the", " weather", ".", "\n<", "tool_call", ">", "\n", "<function=", "get_weather", ">", "\n", "<parameter=", "city", ">", "\n", "NYC", "\n", "</parameter>", "\n", "</function>", "\n", "</tool_call>"},
thinkValue: nil,
expectedContent: "Let me check the weather.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{"city": "NYC"}),
},
},
},
},
{
name: "tool call tag split character by character",
chunks: []string{"<", "t", "o", "o", "l", "_", "c", "a", "l", "l", ">", "\n", "<", "f", "u", "n", "c", "t", "i", "o", "n", "=", "t", "e", "s", "t", ">", "\n", "<", "/", "f", "u", "n", "c", "t", "i", "o", "n", ">", "\n", "<", "/", "t", "o", "o", "l", "_", "c", "a", "l", "l", ">"},
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "test",
Arguments: api.NewToolCallFunctionArguments(),
},
},
},
},
{
name: "thinking close tag split character by character",
chunks: []string{"I", "'", "m", " ", "t", "h", "i", "n", "k", "i", "n", "g", ".", ".", ".", "<", "/", "t", "h", "i", "n", "k", ">", "\n", "D", "o", "n", "e", "!"},
@@ -321,22 +155,6 @@ func TestNemotron3NanoParser_Streaming(t *testing.T) {
expectedThinking: "Thinking...",
expectedContent: "Content here.",
},
{
name: "tool call with multiple parameters - streaming",
chunks: []string{"<tool_", "call>\n", "<function", "=book_", "flight>", "\n<para", "meter=", "from>\n", "SFO\n", "</param", "eter>", "\n<param", "eter=to", ">\nNYC", "\n</para", "meter>", "\n</func", "tion>\n", "</tool_", "call>"},
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "book_flight",
Arguments: testArgs(map[string]any{
"from": "SFO",
"to": "NYC",
}),
},
},
},
},
{
name: "thinking then content then tool call - streaming",
chunks: []string{"Ana", "lyzing", " your", " request", "...", "</", "think", ">\n", "I'll", " check", " that", " for", " you", ".", "\n", "<tool", "_call", ">\n", "<function", "=search", ">\n", "<parameter", "=query", ">\n", "test", " query", "\n</", "parameter", ">\n", "</function", ">\n", "</tool", "_call", ">"},
@@ -352,45 +170,6 @@ func TestNemotron3NanoParser_Streaming(t *testing.T) {
},
},
},
{
name: "multiple tool calls - streaming",
chunks: []string{
"<tool_call>", "\n", "<function=", "get_weather>", "\n",
"<parameter=", "city>\n", "San Fran", "cisco\n", "</parameter>", "\n",
"</function>", "\n", "</tool_call>", "\n",
"<tool_", "call>\n", "<function", "=get_weather", ">\n",
"<param", "eter=city", ">\nNew", " York\n", "</parameter>\n",
"</function>\n", "</tool_call>",
},
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{"city": "San Francisco"}),
},
},
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{"city": "New York"}),
},
},
},
},
{
name: "tool call with multiline parameter - streaming",
chunks: []string{"<tool_call>\n", "<function=", "create_note>\n", "<parameter=", "content>\n", "Line 1", "\nLine", " 2\n", "Line 3", "\n</parameter>\n", "</function>\n", "</tool_call>"},
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "create_note",
Arguments: testArgs(map[string]any{"content": "Line 1\nLine 2\nLine 3"}),
},
},
},
},
{
name: "empty thinking block",
chunks: []string{"</think>", "\n", "Just content."},
@@ -398,12 +177,6 @@ func TestNemotron3NanoParser_Streaming(t *testing.T) {
expectedThinking: "",
expectedContent: "Just content.",
},
{
name: "empty input chunks interspersed",
chunks: []string{"Hello", "", " ", "", "world", "", "!"},
thinkValue: nil,
expectedContent: "Hello world!",
},
{
name: "tool call immediately after think close - no content",
chunks: []string{"Analyzing...", "</think>", "\n", "<tool_call>", "\n<function=test>\n</function>\n", "</tool_call>"},
@@ -418,25 +191,6 @@ func TestNemotron3NanoParser_Streaming(t *testing.T) {
},
},
},
{
name: "tool call with empty parameter value",
chunks: []string{"<tool_call>\n<function=test>\n<parameter=name>\n", "\n</parameter>\n</function>\n</tool_call>"},
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "test",
Arguments: testArgs(map[string]any{"name": ""}),
},
},
},
},
{
name: "partial tool call tag at end - buffered",
chunks: []string{"Here's some content", "<tool"},
thinkValue: nil,
expectedContent: "Here's some content",
},
}
for _, tt := range tests {
@@ -572,3 +326,65 @@ func TestNemotron3NanoParser_WithTools(t *testing.T) {
t.Errorf("calls mismatch (-got +want):\n%s", diff)
}
}
// TestNemotron3NanoParser_ToolCallWithoutThinkClose tests the case where thinking is enabled
// but the model outputs content + tool call WITHOUT the </think> tag.
// The parser should still parse the tool call (content before is treated as thinking).
func TestNemotron3NanoParser_ToolCallWithoutThinkClose(t *testing.T) {
chunks := []string{
"Let", " me", " analyze", " this", ".", "\n",
"<tool_call>", "\n",
"<function=get_weather>", "\n",
"<parameter=city>", "Paris", "</parameter>", "\n",
"</function>", "\n",
"</tool_call>",
}
p := &Nemotron3NanoParser{}
p.Init(nil, nil, &api.ThinkValue{Value: true}) // thinking ENABLED but model doesn't output </think>
var allContent string
var allThinking string
var allCalls []api.ToolCall
for _, chunk := range chunks {
content, thinking, calls, err := p.Add(chunk, false)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
allContent += content
allThinking += thinking
allCalls = append(allCalls, calls...)
}
// Drain
content, thinking, calls, err := p.Add("", true)
if err != nil {
t.Fatalf("unexpected error on done: %v", err)
}
allContent += content
allThinking += thinking
allCalls = append(allCalls, calls...)
// The parser was in thinking mode, so text before <tool_call> is emitted as thinking.
expectedThinking := "Let me analyze this."
expectedCalls := []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{"city": "Paris"}),
},
},
}
if allContent != "" {
t.Errorf("expected no content (text was streamed as thinking), got: %q", allContent)
}
if diff := cmp.Diff(allThinking, expectedThinking); diff != "" {
t.Errorf("thinking mismatch (-got +want):\n%s", diff)
}
if diff := cmp.Diff(allCalls, expectedCalls, argsComparer); diff != "" {
t.Errorf("calls mismatch (-got +want):\n%s", diff)
}
}

View File

@@ -91,6 +91,37 @@ func TestQwenParserStreaming(t *testing.T) {
},
},
},
{
desc: "tool call tags split character by character",
steps: []step{
{input: "<", wantEvents: []qwenEvent{}},
{input: "t", wantEvents: []qwenEvent{}},
{input: "o", wantEvents: []qwenEvent{}},
{input: "o", wantEvents: []qwenEvent{}},
{input: "l", wantEvents: []qwenEvent{}},
{input: "_", wantEvents: []qwenEvent{}},
{input: "c", wantEvents: []qwenEvent{}},
{input: "a", wantEvents: []qwenEvent{}},
{input: "l", wantEvents: []qwenEvent{}},
{input: "l", wantEvents: []qwenEvent{}},
{input: ">", wantEvents: []qwenEvent{}},
{input: "a", wantEvents: []qwenEvent{}},
{input: "b", wantEvents: []qwenEvent{}},
{input: "c", wantEvents: []qwenEvent{}},
{input: "<", wantEvents: []qwenEvent{}},
{input: "/", wantEvents: []qwenEvent{}},
{input: "t", wantEvents: []qwenEvent{}},
{input: "o", wantEvents: []qwenEvent{}},
{input: "o", wantEvents: []qwenEvent{}},
{input: "l", wantEvents: []qwenEvent{}},
{input: "_", wantEvents: []qwenEvent{}},
{input: "c", wantEvents: []qwenEvent{}},
{input: "a", wantEvents: []qwenEvent{}},
{input: "l", wantEvents: []qwenEvent{}},
{input: "l", wantEvents: []qwenEvent{}},
{input: ">", wantEvents: []qwenEvent{qwenEventRawToolCall{raw: "abc"}}},
},
},
{
desc: "trailing whitespace between content and tool call",
steps: []step{

View File

@@ -737,57 +737,3 @@ func FromCompleteRequest(r CompletionRequest) (api.GenerateRequest, error) {
DebugRenderOnly: r.DebugRenderOnly,
}, nil
}
// ImageGenerationRequest is an OpenAI-compatible image generation request.
type ImageGenerationRequest struct {
Model string `json:"model"`
Prompt string `json:"prompt"`
N int `json:"n,omitempty"`
Size string `json:"size,omitempty"`
ResponseFormat string `json:"response_format,omitempty"`
Seed *int64 `json:"seed,omitempty"`
}
// ImageGenerationResponse is an OpenAI-compatible image generation response.
type ImageGenerationResponse struct {
Created int64 `json:"created"`
Data []ImageURLOrData `json:"data"`
}
// ImageURLOrData contains either a URL or base64-encoded image data.
type ImageURLOrData struct {
URL string `json:"url,omitempty"`
B64JSON string `json:"b64_json,omitempty"`
}
// FromImageGenerationRequest converts an OpenAI image generation request to an Ollama GenerateRequest.
func FromImageGenerationRequest(r ImageGenerationRequest) api.GenerateRequest {
req := api.GenerateRequest{
Model: r.Model,
Prompt: r.Prompt,
}
// Parse size if provided (e.g., "1024x768")
if r.Size != "" {
var w, h int32
if _, err := fmt.Sscanf(r.Size, "%dx%d", &w, &h); err == nil {
req.Width = w
req.Height = h
}
}
if r.Seed != nil {
req.Seed = *r.Seed
}
return req
}
// ToImageGenerationResponse converts an Ollama GenerateResponse to an OpenAI ImageGenerationResponse.
func ToImageGenerationResponse(resp api.GenerateResponse) ImageGenerationResponse {
data := make([]ImageURLOrData, 0)
for _, img := range resp.Images {
data = append(data, ImageURLOrData{B64JSON: img})
}
return ImageGenerationResponse{
Created: resp.CreatedAt.Unix(),
Data: data,
}
}

View File

@@ -41,7 +41,6 @@ var (
errCapabilityVision = errors.New("vision")
errCapabilityEmbedding = errors.New("embedding")
errCapabilityThinking = errors.New("thinking")
errCapabilityImage = errors.New("image generation")
errInsecureProtocol = errors.New("insecure protocol http")
)
@@ -77,7 +76,7 @@ func (m *Model) Capabilities() []model.Capability {
// Check for image generation model via config capabilities
if slices.Contains(m.Config.Capabilities, "image") {
return []model.Capability{model.CapabilityImage}
return []model.Capability{model.CapabilityImageGeneration}
}
// Check for completion capability
@@ -160,7 +159,6 @@ func (m *Model) CheckCapabilities(want ...model.Capability) error {
model.CapabilityVision: errCapabilityVision,
model.CapabilityEmbedding: errCapabilityEmbedding,
model.CapabilityThinking: errCapabilityThinking,
model.CapabilityImage: errCapabilityImage,
}
for _, cap := range want {

View File

@@ -54,7 +54,7 @@ func TestModelCapabilities(t *testing.T) {
Capabilities: []string{"image"},
},
},
expectedCaps: []model.Capability{model.CapabilityImage},
expectedCaps: []model.Capability{model.CapabilityImageGeneration},
},
{
name: "model with completion capability",
@@ -242,24 +242,6 @@ func TestModelCheckCapabilities(t *testing.T) {
checkCaps: []model.Capability{"unknown"},
expectedErrMsg: "unknown capability",
},
{
name: "model missing image generation capability",
model: Model{
ModelPath: completionModelPath,
Template: chatTemplate,
},
checkCaps: []model.Capability{model.CapabilityImage},
expectedErrMsg: "does not support image generation",
},
{
name: "model with image generation capability",
model: Model{
Config: model.ConfigV2{
Capabilities: []string{"image"},
},
},
checkCaps: []model.Capability{model.CapabilityImage},
},
}
for _, tt := range tests {

View File

@@ -220,12 +220,6 @@ func (s *Server) GenerateHandler(c *gin.Context) {
return
}
// Handle image generation models
if slices.Contains(m.Capabilities(), model.CapabilityImage) {
s.handleImageGenerate(c, req, name.String(), checkpointStart)
return
}
if req.TopLogprobs < 0 || req.TopLogprobs > 20 {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "top_logprobs must be between 0 and 20"})
return
@@ -1102,7 +1096,7 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
}
// For image generation models, populate details from imagegen package
if slices.Contains(m.Capabilities(), model.CapabilityImage) {
if slices.Contains(m.Capabilities(), model.CapabilityImageGeneration) {
if info, err := imagegen.GetModelInfo(name.String()); err == nil {
modelDetails.Family = info.Architecture
modelDetails.ParameterSize = format.HumanNumber(uint64(info.ParameterCount))
@@ -1208,7 +1202,7 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
return resp, nil
}
if slices.Contains(m.Capabilities(), model.CapabilityImage) {
if slices.Contains(m.Capabilities(), model.CapabilityImageGeneration) {
// Populate tensor info if verbose
if req.Verbose {
if tensors, err := xserver.GetSafetensorsTensorInfo(name.String()); err == nil {
@@ -1600,8 +1594,8 @@ func (s *Server) GenerateRoutes(rc *ollama.Registry) (http.Handler, error) {
r.GET("/v1/models", middleware.ListMiddleware(), s.ListHandler)
r.GET("/v1/models/:model", middleware.RetrieveMiddleware(), s.ShowHandler)
r.POST("/v1/responses", middleware.ResponsesMiddleware(), s.ChatHandler)
// OpenAI-compatible image generation endpoint
r.POST("/v1/images/generations", middleware.ImageGenerationsMiddleware(), s.GenerateHandler)
// Experimental OpenAI-compatible image generation endpoint
r.POST("/v1/images/generations", s.handleImageGeneration)
// Inference (Anthropic compatibility)
r.POST("/v1/messages", middleware.AnthropicMessagesMiddleware(), s.ChatHandler)
@@ -1923,6 +1917,62 @@ func toolCallId() string {
return "call_" + strings.ToLower(string(b))
}
func (s *Server) handleImageGeneration(c *gin.Context) {
var req struct {
Model string `json:"model"`
Prompt string `json:"prompt"`
Size string `json:"size"`
}
if err := c.ShouldBindJSON(&req); err != nil {
c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
return
}
m, err := GetModel(req.Model)
if err != nil {
c.JSON(http.StatusNotFound, gin.H{"error": err.Error()})
return
}
runnerCh, errCh := s.sched.GetRunner(c.Request.Context(), m, api.Options{}, nil)
var runner *runnerRef
select {
case runner = <-runnerCh:
case err := <-errCh:
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
// Parse size (e.g., "1024x768") into width and height
width, height := int32(1024), int32(1024)
if req.Size != "" {
if _, err := fmt.Sscanf(req.Size, "%dx%d", &width, &height); err != nil {
c.JSON(http.StatusBadRequest, gin.H{"error": "invalid size format, expected WxH"})
return
}
}
var image []byte
err = runner.llama.Completion(c.Request.Context(), llm.CompletionRequest{
Prompt: req.Prompt,
Width: width,
Height: height,
}, func(resp llm.CompletionResponse) {
if len(resp.Image) > 0 {
image = resp.Image
}
})
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
c.JSON(http.StatusOK, gin.H{
"created": time.Now().Unix(),
"data": []gin.H{{"b64_json": base64.StdEncoding.EncodeToString(image)}},
})
}
func (s *Server) ChatHandler(c *gin.Context) {
checkpointStart := time.Now()
@@ -2472,78 +2522,3 @@ func filterThinkTags(msgs []api.Message, m *Model) []api.Message {
}
return msgs
}
// handleImageGenerate handles image generation requests within GenerateHandler.
// This is called when the model has the ImageGeneration capability.
func (s *Server) handleImageGenerate(c *gin.Context, req api.GenerateRequest, modelName string, checkpointStart time.Time) {
// Validate image dimensions
const maxDimension int32 = 4096
if req.Width > maxDimension || req.Height > maxDimension {
c.JSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("width and height must be <= %d", maxDimension)})
return
}
// Schedule the runner for image generation
runner, _, _, err := s.scheduleRunner(c.Request.Context(), modelName, []model.Capability{model.CapabilityImage}, nil, req.KeepAlive)
if err != nil {
handleScheduleError(c, req.Model, err)
return
}
checkpointLoaded := time.Now()
// Handle load-only request (empty prompt)
if req.Prompt == "" {
c.JSON(http.StatusOK, api.GenerateResponse{
Model: req.Model,
CreatedAt: time.Now().UTC(),
Done: true,
DoneReason: "load",
})
return
}
// Set headers for streaming response
c.Header("Content-Type", "application/x-ndjson")
var streamStarted bool
if err := runner.Completion(c.Request.Context(), llm.CompletionRequest{
Prompt: req.Prompt,
Width: req.Width,
Height: req.Height,
Steps: req.Steps,
Seed: req.Seed,
}, func(cr llm.CompletionResponse) {
streamStarted = true
res := api.GenerateResponse{
Model: req.Model,
CreatedAt: time.Now().UTC(),
Done: cr.Done,
}
if cr.TotalSteps > 0 {
res.Completed = int64(cr.Step)
res.Total = int64(cr.TotalSteps)
}
if cr.Image != "" {
res.Images = []string{cr.Image}
}
if cr.Done {
res.DoneReason = cr.DoneReason.String()
res.Metrics.TotalDuration = time.Since(checkpointStart)
res.Metrics.LoadDuration = checkpointLoaded.Sub(checkpointStart)
}
data, _ := json.Marshal(res)
c.Writer.Write(append(data, '\n'))
c.Writer.Flush()
}); err != nil {
// Only send JSON error if streaming hasn't started yet
// (once streaming starts, headers are committed and we can't change status code)
if !streamStarted {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
}
}
}

View File

@@ -571,10 +571,10 @@ func (s *Scheduler) loadImageGen(req *LlmRequest) bool {
model: req.model,
modelPath: req.model.ModelPath,
llama: server,
Options: &req.opts,
loading: false,
sessionDuration: sessionDuration,
totalSize: server.TotalSize(),
vramSize: server.VRAMSize(),
refCount: 1,
}
s.loadedMu.Lock()

View File

@@ -9,7 +9,7 @@ const (
CapabilityVision = Capability("vision")
CapabilityEmbedding = Capability("embedding")
CapabilityThinking = Capability("thinking")
CapabilityImage = Capability("image")
CapabilityImageGeneration = Capability("image")
)
func (c Capability) String() string {

View File

@@ -51,7 +51,6 @@ func RegisterFlags(cmd *cobra.Command) {
cmd.Flags().Int("steps", 0, "Denoising steps (0 = model default)")
cmd.Flags().Int("seed", 0, "Random seed (0 for random)")
cmd.Flags().String("negative", "", "Negative prompt")
// Hide from main flags section - shown in separate section via AppendFlagsDocs
cmd.Flags().MarkHidden("width")
cmd.Flags().MarkHidden("height")
cmd.Flags().MarkHidden("steps")
@@ -59,19 +58,6 @@ func RegisterFlags(cmd *cobra.Command) {
cmd.Flags().MarkHidden("negative")
}
// AppendFlagsDocs appends image generation flags documentation to the command's usage template.
func AppendFlagsDocs(cmd *cobra.Command) {
usage := `
Image Generation Flags (experimental):
--width int Image width
--height int Image height
--steps int Denoising steps
--seed int Random seed
--negative str Negative prompt
`
cmd.SetUsageTemplate(cmd.UsageTemplate() + usage)
}
// RunCLI handles the CLI for image generation models.
// Returns true if it handled the request, false if the caller should continue with normal flow.
// Supports flags: --width, --height, --steps, --seed, --negative
@@ -105,7 +91,9 @@ func RunCLI(cmd *cobra.Command, name string, prompt string, interactive bool, ke
}
// generateImageWithOptions generates an image with the given options.
func generateImageWithOptions(cmd *cobra.Command, modelName, prompt string, keepAlive *api.Duration, opts ImageGenOptions) error {
// Note: opts are currently unused as the native API doesn't support size parameters.
// Use OpenAI-compatible endpoint (/v1/images/generations) for dimension control.
func generateImageWithOptions(cmd *cobra.Command, modelName, prompt string, keepAlive *api.Duration, _ ImageGenOptions) error {
client, err := api.ClientFromEnvironment()
if err != nil {
return err
@@ -114,10 +102,7 @@ func generateImageWithOptions(cmd *cobra.Command, modelName, prompt string, keep
req := &api.GenerateRequest{
Model: modelName,
Prompt: prompt,
Width: int32(opts.Width),
Height: int32(opts.Height),
Steps: int32(opts.Steps),
Seed: int64(opts.Seed),
// Note: Size is only available via OpenAI-compatible /v1/images/generations endpoint
}
if keepAlive != nil {
req.KeepAlive = keepAlive
@@ -131,25 +116,32 @@ func generateImageWithOptions(cmd *cobra.Command, modelName, prompt string, keep
var stepBar *progress.StepBar
var imageBase64 string
err = client.Generate(cmd.Context(), req, func(resp api.GenerateResponse) error {
// Handle progress updates using structured fields
if resp.Total > 0 {
if stepBar == nil {
content := resp.Response
// Handle progress updates - parse step info and switch to step bar
if strings.HasPrefix(content, "\rGenerating:") {
var step, total int
fmt.Sscanf(content, "\rGenerating: step %d/%d", &step, &total)
if stepBar == nil && total > 0 {
spinner.Stop()
stepBar = progress.NewStepBar("Generating", int(resp.Total))
stepBar = progress.NewStepBar("Generating", total)
p.Add("", stepBar)
}
stepBar.Set(int(resp.Completed))
if stepBar != nil {
stepBar.Set(step)
}
return nil
}
// Handle final response with image data
if resp.Done && len(resp.Images) > 0 {
imageBase64 = resp.Images[0]
// Handle final response with base64 image data
if resp.Done && strings.HasPrefix(content, "IMAGE_BASE64:") {
imageBase64 = content[13:]
}
return nil
})
p.StopAndClear()
p.Stop()
if err != nil {
return err
}
@@ -187,23 +179,6 @@ func runInteractive(cmd *cobra.Command, modelName string, keepAlive *api.Duratio
return err
}
// Preload the model with the specified keepalive
p := progress.NewProgress(os.Stderr)
spinner := progress.NewSpinner("")
p.Add("", spinner)
preloadReq := &api.GenerateRequest{
Model: modelName,
KeepAlive: keepAlive,
}
if err := client.Generate(cmd.Context(), preloadReq, func(resp api.GenerateResponse) error {
return nil
}); err != nil {
p.StopAndClear()
return fmt.Errorf("failed to load model: %w", err)
}
p.StopAndClear()
scanner, err := readline.New(readline.Prompt{
Prompt: ">>> ",
Placeholder: "Describe an image to generate (/help for commands)",
@@ -260,10 +235,12 @@ func runInteractive(cmd *cobra.Command, modelName string, keepAlive *api.Duratio
req := &api.GenerateRequest{
Model: modelName,
Prompt: line,
Width: int32(opts.Width),
Height: int32(opts.Height),
Steps: int32(opts.Steps),
Seed: int64(opts.Seed),
Options: map[string]any{
"num_ctx": opts.Width,
"num_gpu": opts.Height,
"num_predict": opts.Steps,
"seed": opts.Seed,
},
}
if keepAlive != nil {
req.KeepAlive = keepAlive
@@ -278,25 +255,32 @@ func runInteractive(cmd *cobra.Command, modelName string, keepAlive *api.Duratio
var imageBase64 string
err = client.Generate(cmd.Context(), req, func(resp api.GenerateResponse) error {
// Handle progress updates using structured fields
if resp.Total > 0 {
if stepBar == nil {
content := resp.Response
// Handle progress updates - parse step info and switch to step bar
if strings.HasPrefix(content, "\rGenerating:") {
var step, total int
fmt.Sscanf(content, "\rGenerating: step %d/%d", &step, &total)
if stepBar == nil && total > 0 {
spinner.Stop()
stepBar = progress.NewStepBar("Generating", int(resp.Total))
stepBar = progress.NewStepBar("Generating", total)
p.Add("", stepBar)
}
stepBar.Set(int(resp.Completed))
if stepBar != nil {
stepBar.Set(step)
}
return nil
}
// Handle final response with image data
if resp.Done && len(resp.Images) > 0 {
imageBase64 = resp.Images[0]
// Handle final response with base64 image data
if resp.Done && strings.HasPrefix(content, "IMAGE_BASE64:") {
imageBase64 = content[13:]
}
return nil
})
p.StopAndClear()
p.Stop()
if err != nil {
fmt.Fprintf(os.Stderr, "Error: %v\n", err)
continue

View File

@@ -36,8 +36,6 @@ type Response struct {
Content string `json:"content,omitempty"`
Image string `json:"image,omitempty"` // Base64-encoded PNG
Done bool `json:"done"`
Step int `json:"step,omitempty"`
Total int `json:"total,omitempty"`
}
// Server holds the model and handles requests
@@ -169,9 +167,8 @@ func (s *Server) completionHandler(w http.ResponseWriter, r *http.Request) {
Seed: req.Seed,
Progress: func(step, total int) {
resp := Response{
Step: step,
Total: total,
Done: false,
Content: fmt.Sprintf("\rGenerating: step %d/%d", step, total),
Done: false,
}
data, _ := json.Marshal(resp)
w.Write(data)

View File

@@ -4,6 +4,7 @@ import (
"bufio"
"bytes"
"context"
"encoding/base64"
"encoding/json"
"errors"
"fmt"
@@ -231,13 +232,11 @@ func (s *Server) Completion(ctx context.Context, req llm.CompletionRequest, fn f
Prompt string `json:"prompt"`
Width int32 `json:"width,omitempty"`
Height int32 `json:"height,omitempty"`
Steps int32 `json:"steps,omitempty"`
Seed int64 `json:"seed,omitempty"`
}{
Prompt: req.Prompt,
Width: req.Width,
Height: req.Height,
Steps: req.Steps,
Seed: seed,
}
@@ -280,11 +279,15 @@ func (s *Server) Completion(ctx context.Context, req llm.CompletionRequest, fn f
// Convert to llm.CompletionResponse
cresp := llm.CompletionResponse{
Content: raw.Content,
Done: raw.Done,
Step: raw.Step,
TotalSteps: raw.Total,
Image: raw.Image,
Content: raw.Content,
Done: raw.Done,
Step: raw.Step,
Total: raw.Total,
}
if raw.Image != "" {
if data, err := base64.StdEncoding.DecodeString(raw.Image); err == nil {
cresp.Image = data
}
}
fn(cresp)