mirror of
https://github.com/ollama/ollama.git
synced 2026-01-02 04:29:51 -05:00
Compare commits
7 Commits
implement-
...
nicole/olm
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
03abdb4969 | ||
|
|
57c1d7db9a | ||
|
|
91d6370a62 | ||
|
|
38a2a6468f | ||
|
|
064ec63ddf | ||
|
|
fd959fbf7a | ||
|
|
cfc9729edf |
@@ -200,6 +200,8 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
|
||||
conv = &qwen25VLModel{}
|
||||
case "Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration":
|
||||
conv = &qwen3VLModel{}
|
||||
case "OLMo2ForCausalLM", "Olmo2ForCausalLM", "OLMo3ForCausalLM", "Olmo3ForCausalLM":
|
||||
conv = &olmoModel{}
|
||||
case "BertModel":
|
||||
conv = &bertModel{}
|
||||
case "CohereForCausalLM":
|
||||
|
||||
94
convert/convert_olmo.go
Normal file
94
convert/convert_olmo.go
Normal file
@@ -0,0 +1,94 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type olmoModel struct {
|
||||
ModelParameters
|
||||
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
ClampKQV float32 `json:"f_clamp_kqv"`
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
LayerTypes []string `json:"layer_types"`
|
||||
}
|
||||
|
||||
var _ ModelConverter = (*olmoModel)(nil)
|
||||
|
||||
func (p *olmoModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "olmo"
|
||||
kv["olmo.block_count"] = p.NumHiddenLayers
|
||||
kv["olmo.context_length"] = p.MaxPositionEmbeddings
|
||||
kv["olmo.embedding_length"] = p.HiddenSize
|
||||
kv["olmo.feed_forward_length"] = p.IntermediateSize
|
||||
kv["olmo.attention.head_count"] = p.NumAttentionHeads
|
||||
kv["olmo.attention.head_count_kv"] = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
|
||||
|
||||
if p.RopeTheta > 0 {
|
||||
kv["olmo.rope.freq_base"] = p.RopeTheta
|
||||
} else {
|
||||
kv["olmo.rope.freq_base"] = float32(10000.0)
|
||||
}
|
||||
|
||||
if p.RMSNormEPS > 0 {
|
||||
kv["olmo.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
||||
}
|
||||
|
||||
if p.ClampKQV > 0 {
|
||||
kv["olmo.attention.clamp_kqv"] = p.ClampKQV
|
||||
}
|
||||
|
||||
if p.SlidingWindow > 0 {
|
||||
kv["olmo.attention.sliding_window"] = p.SlidingWindow
|
||||
}
|
||||
|
||||
if len(p.LayerTypes) > 0 {
|
||||
kv["olmo.attention.layer_types"] = p.LayerTypes
|
||||
}
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *olmoModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
out := make([]*ggml.Tensor, 0, len(ts))
|
||||
for _, t := range ts {
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *olmoModel) Replacements() []string {
|
||||
return []string{
|
||||
"lm_head", "output",
|
||||
"model.embed_tokens", "token_embd",
|
||||
"model.layers", "blk",
|
||||
"model.norm", "output_norm",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"self_attn.q_norm", "attn_q_norm",
|
||||
"self_attn.k_norm", "attn_k_norm",
|
||||
"post_attention_layernorm", "post_attention_norm",
|
||||
"post_feedforward_layernorm", "post_ffw_norm",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
}
|
||||
}
|
||||
@@ -13,6 +13,7 @@ import (
|
||||
_ "github.com/ollama/ollama/model/models/mistral3"
|
||||
_ "github.com/ollama/ollama/model/models/mllama"
|
||||
_ "github.com/ollama/ollama/model/models/nomicbert"
|
||||
_ "github.com/ollama/ollama/model/models/olmo"
|
||||
_ "github.com/ollama/ollama/model/models/qwen2"
|
||||
_ "github.com/ollama/ollama/model/models/qwen25vl"
|
||||
_ "github.com/ollama/ollama/model/models/qwen3"
|
||||
|
||||
233
model/models/olmo/model.go
Normal file
233
model/models/olmo/model.go
Normal file
@@ -0,0 +1,233 @@
|
||||
package olmo
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/fast"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type Options struct {
|
||||
hiddenSize, numHeads, numKVHeads int
|
||||
headDim, ropeDim int
|
||||
eps, ropeBase, ropeScale float32
|
||||
clampKQV float32
|
||||
|
||||
originalContextLength int
|
||||
attnFactor float32
|
||||
}
|
||||
|
||||
type Model struct {
|
||||
model.Base
|
||||
model.TextProcessor
|
||||
|
||||
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
||||
Layers []Layer `gguf:"blk"`
|
||||
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
||||
Output *nn.Linear `gguf:"output,alt:token_embd"`
|
||||
|
||||
Options
|
||||
}
|
||||
|
||||
func New(c fs.Config) (model.Model, error) {
|
||||
vocabulary := model.Vocabulary{
|
||||
Values: c.Strings("tokenizer.ggml.tokens"),
|
||||
Scores: c.Floats("tokenizer.ggml.scores"),
|
||||
Types: c.Ints("tokenizer.ggml.token_type"),
|
||||
Merges: c.Strings("tokenizer.ggml.merges"),
|
||||
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
||||
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
|
||||
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
||||
EOS: append(
|
||||
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
|
||||
c.Ints("tokenizer.ggml.eos_token_ids")...,
|
||||
),
|
||||
}
|
||||
|
||||
if c.String("tokenizer.ggml.model") != "gpt2" {
|
||||
return nil, model.ErrUnsupportedTokenizer
|
||||
}
|
||||
|
||||
var pretokenizers []string
|
||||
if c.String("tokenizer.ggml.pre") != "default" {
|
||||
pretokenizers = []string{
|
||||
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+`,
|
||||
}
|
||||
}
|
||||
processor := model.NewBytePairEncoding(&vocabulary, pretokenizers...)
|
||||
|
||||
m := Model{
|
||||
TextProcessor: processor,
|
||||
Layers: make([]Layer, c.Uint("block_count")),
|
||||
Options: Options{
|
||||
hiddenSize: int(c.Uint("embedding_length")),
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
headDim: int(c.Uint("attention.key_length")),
|
||||
ropeDim: int(c.Uint("rope.dimension_count")),
|
||||
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
||||
ropeBase: c.Float("rope.freq_base", 1e4),
|
||||
ropeScale: c.Float("rope.scaling.factor", 1),
|
||||
clampKQV: c.Float("attention.clamp_kqv", 0),
|
||||
originalContextLength: int(c.Uint("rope.scaling.original_context_length")),
|
||||
attnFactor: c.Float("rope.scaling.attn_factor", 1),
|
||||
},
|
||||
}
|
||||
|
||||
m.Cache = kvcache.NewCausalCache(m.Shift)
|
||||
|
||||
return &m, nil
|
||||
}
|
||||
|
||||
type SelfAttention struct {
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
Output *nn.Linear `gguf:"attn_output"`
|
||||
QNorm *nn.RMSNorm `gguf:"attn_q_norm"`
|
||||
KNorm *nn.RMSNorm `gguf:"attn_k_norm"`
|
||||
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
|
||||
}
|
||||
|
||||
func (o *Options) ropeOptions(factors ml.Tensor, isSWA bool) []func(*rope.Options) {
|
||||
opts := []func(*rope.Options){
|
||||
rope.WithFactors(factors),
|
||||
}
|
||||
|
||||
if !isSWA && o.originalContextLength > 0 {
|
||||
opts = append(opts,
|
||||
rope.WithOriginalContextLength(o.originalContextLength),
|
||||
rope.WithExtrapolationFactor(1.),
|
||||
rope.WithAttentionFactor(o.attnFactor),
|
||||
)
|
||||
}
|
||||
|
||||
return opts
|
||||
}
|
||||
|
||||
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tensor, cache kvcache.Cache, opts *Options, isSWA bool) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
headDim := cmp.Or(opts.headDim, opts.hiddenSize/opts.numHeads)
|
||||
ropeDim := cmp.Or(opts.ropeDim, headDim)
|
||||
|
||||
query := sa.Query.Forward(ctx, hiddenState)
|
||||
if sa.QNorm != nil {
|
||||
query = sa.QNorm.Forward(ctx, query, opts.eps)
|
||||
}
|
||||
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
|
||||
key := sa.Key.Forward(ctx, hiddenState)
|
||||
if sa.KNorm != nil {
|
||||
key = sa.KNorm.Forward(ctx, key, opts.eps)
|
||||
}
|
||||
key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
|
||||
value := sa.Value.Forward(ctx, hiddenState)
|
||||
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
|
||||
freqScale := float32(1.0)
|
||||
if !isSWA {
|
||||
freqScale = 1. / opts.ropeScale
|
||||
}
|
||||
|
||||
ropeOpts := opts.ropeOptions(sa.RopeFactors, isSWA)
|
||||
query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, freqScale, ropeOpts...)
|
||||
key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, freqScale, ropeOpts...)
|
||||
|
||||
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), cache)
|
||||
attention = attention.Reshape(ctx, headDim*opts.numHeads, batchSize)
|
||||
return sa.Output.Forward(ctx, attention)
|
||||
}
|
||||
|
||||
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
ropeDim := cmp.Or(m.ropeDim, m.hiddenSize/m.numHeads)
|
||||
isSWA := isSWALayer(layer)
|
||||
|
||||
freqScale := float32(1.0)
|
||||
if !isSWA {
|
||||
freqScale = 1. / m.ropeScale
|
||||
}
|
||||
|
||||
ropeOpts := m.Options.ropeOptions(m.Layers[layer].SelfAttention.RopeFactors, isSWA)
|
||||
return fast.RoPE(ctx, key, shift, ropeDim, m.ropeBase, freqScale, ropeOpts...), nil
|
||||
}
|
||||
|
||||
type MLP struct {
|
||||
Up *nn.Linear `gguf:"ffn_up"`
|
||||
Down *nn.Linear `gguf:"ffn_down"`
|
||||
Gate *nn.Linear `gguf:"ffn_gate"`
|
||||
}
|
||||
|
||||
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
|
||||
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
|
||||
return mlp.Down.Forward(ctx, hiddenState)
|
||||
}
|
||||
|
||||
type Layer struct {
|
||||
SelfAttention *SelfAttention
|
||||
PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
|
||||
MLP *MLP
|
||||
PostFFWNorm *nn.RMSNorm `gguf:"post_ffw_norm"`
|
||||
}
|
||||
|
||||
func (l *Layer) Forward(ctx ml.Context, hiddenState, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options, isSWA bool) ml.Tensor {
|
||||
residual := hiddenState
|
||||
|
||||
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positions, cache, opts, isSWA)
|
||||
|
||||
if outputs != nil {
|
||||
hiddenState = hiddenState.Rows(ctx, outputs)
|
||||
residual = residual.Rows(ctx, outputs)
|
||||
}
|
||||
|
||||
if l.PostAttentionNorm != nil {
|
||||
hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
}
|
||||
|
||||
ffnInput := hiddenState.Add(ctx, residual)
|
||||
|
||||
hiddenState = l.MLP.Forward(ctx, ffnInput, opts)
|
||||
|
||||
if l.PostFFWNorm != nil {
|
||||
hiddenState = l.PostFFWNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
}
|
||||
|
||||
return hiddenState.Add(ctx, ffnInput)
|
||||
}
|
||||
|
||||
func isSWALayer(layerIdx int) bool {
|
||||
return (layerIdx+1)%4 != 0
|
||||
}
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
|
||||
|
||||
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
|
||||
|
||||
for i, layer := range m.Layers {
|
||||
m.Cache.SetLayer(i)
|
||||
|
||||
isSWA := isSWALayer(i)
|
||||
|
||||
var outputs ml.Tensor
|
||||
if i == len(m.Layers)-1 {
|
||||
outputs = batch.Outputs
|
||||
}
|
||||
|
||||
hiddenState = layer.Forward(ctx, hiddenState, positions, outputs, m.Cache, &m.Options, isSWA)
|
||||
}
|
||||
|
||||
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
|
||||
return m.Output.Forward(ctx, hiddenState), nil
|
||||
}
|
||||
|
||||
func init() {
|
||||
model.Register("olmo2", New)
|
||||
}
|
||||
Reference in New Issue
Block a user