Compare commits

...

7 Commits

Author SHA1 Message Date
nicole pardal
03abdb4969 fixed pretokenizer 2025-12-09 10:02:17 -08:00
nicole pardal
57c1d7db9a fixed generation issue 2025-12-08 00:35:49 -08:00
nicole pardal
91d6370a62 removed original olmo support 2025-12-01 14:17:46 -08:00
nicole pardal
38a2a6468f removed olmo1 support 2025-12-01 14:14:31 -08:00
nicole pardal
064ec63ddf lint 2025-11-26 20:05:25 -08:00
nicole pardal
fd959fbf7a updated converter 2025-11-26 19:42:34 -08:00
nicole pardal
cfc9729edf olmo model initial 2025-11-25 15:49:09 -08:00
4 changed files with 330 additions and 0 deletions

View File

@@ -200,6 +200,8 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
conv = &qwen25VLModel{}
case "Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration":
conv = &qwen3VLModel{}
case "OLMo2ForCausalLM", "Olmo2ForCausalLM", "OLMo3ForCausalLM", "Olmo3ForCausalLM":
conv = &olmoModel{}
case "BertModel":
conv = &bertModel{}
case "CohereForCausalLM":

94
convert/convert_olmo.go Normal file
View File

@@ -0,0 +1,94 @@
package convert
import (
"cmp"
"github.com/ollama/ollama/fs/ggml"
)
type olmoModel struct {
ModelParameters
HiddenSize uint32 `json:"hidden_size"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
RMSNormEPS float32 `json:"rms_norm_eps"`
RopeTheta float32 `json:"rope_theta"`
ClampKQV float32 `json:"f_clamp_kqv"`
SlidingWindow uint32 `json:"sliding_window"`
LayerTypes []string `json:"layer_types"`
}
var _ ModelConverter = (*olmoModel)(nil)
func (p *olmoModel) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "olmo"
kv["olmo.block_count"] = p.NumHiddenLayers
kv["olmo.context_length"] = p.MaxPositionEmbeddings
kv["olmo.embedding_length"] = p.HiddenSize
kv["olmo.feed_forward_length"] = p.IntermediateSize
kv["olmo.attention.head_count"] = p.NumAttentionHeads
kv["olmo.attention.head_count_kv"] = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
if p.RopeTheta > 0 {
kv["olmo.rope.freq_base"] = p.RopeTheta
} else {
kv["olmo.rope.freq_base"] = float32(10000.0)
}
if p.RMSNormEPS > 0 {
kv["olmo.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
}
if p.ClampKQV > 0 {
kv["olmo.attention.clamp_kqv"] = p.ClampKQV
}
if p.SlidingWindow > 0 {
kv["olmo.attention.sliding_window"] = p.SlidingWindow
}
if len(p.LayerTypes) > 0 {
kv["olmo.attention.layer_types"] = p.LayerTypes
}
return kv
}
func (p *olmoModel) Tensors(ts []Tensor) []*ggml.Tensor {
out := make([]*ggml.Tensor, 0, len(ts))
for _, t := range ts {
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *olmoModel) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.layers", "blk",
"model.norm", "output_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"self_attn.q_norm", "attn_q_norm",
"self_attn.k_norm", "attn_k_norm",
"post_attention_layernorm", "post_attention_norm",
"post_feedforward_layernorm", "post_ffw_norm",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
}
}

View File

@@ -13,6 +13,7 @@ import (
_ "github.com/ollama/ollama/model/models/mistral3"
_ "github.com/ollama/ollama/model/models/mllama"
_ "github.com/ollama/ollama/model/models/nomicbert"
_ "github.com/ollama/ollama/model/models/olmo"
_ "github.com/ollama/ollama/model/models/qwen2"
_ "github.com/ollama/ollama/model/models/qwen25vl"
_ "github.com/ollama/ollama/model/models/qwen3"

233
model/models/olmo/model.go Normal file
View File

@@ -0,0 +1,233 @@
package olmo
import (
"cmp"
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Options struct {
hiddenSize, numHeads, numKVHeads int
headDim, ropeDim int
eps, ropeBase, ropeScale float32
clampKQV float32
originalContextLength int
attnFactor float32
}
type Model struct {
model.Base
model.TextProcessor
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
Options
}
func New(c fs.Config) (model.Model, error) {
vocabulary := model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
}
if c.String("tokenizer.ggml.model") != "gpt2" {
return nil, model.ErrUnsupportedTokenizer
}
var pretokenizers []string
if c.String("tokenizer.ggml.pre") != "default" {
pretokenizers = []string{
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+`,
}
}
processor := model.NewBytePairEncoding(&vocabulary, pretokenizers...)
m := Model{
TextProcessor: processor,
Layers: make([]Layer, c.Uint("block_count")),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
headDim: int(c.Uint("attention.key_length")),
ropeDim: int(c.Uint("rope.dimension_count")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base", 1e4),
ropeScale: c.Float("rope.scaling.factor", 1),
clampKQV: c.Float("attention.clamp_kqv", 0),
originalContextLength: int(c.Uint("rope.scaling.original_context_length")),
attnFactor: c.Float("rope.scaling.attn_factor", 1),
},
}
m.Cache = kvcache.NewCausalCache(m.Shift)
return &m, nil
}
type SelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
QNorm *nn.RMSNorm `gguf:"attn_q_norm"`
KNorm *nn.RMSNorm `gguf:"attn_k_norm"`
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
}
func (o *Options) ropeOptions(factors ml.Tensor, isSWA bool) []func(*rope.Options) {
opts := []func(*rope.Options){
rope.WithFactors(factors),
}
if !isSWA && o.originalContextLength > 0 {
opts = append(opts,
rope.WithOriginalContextLength(o.originalContextLength),
rope.WithExtrapolationFactor(1.),
rope.WithAttentionFactor(o.attnFactor),
)
}
return opts
}
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tensor, cache kvcache.Cache, opts *Options, isSWA bool) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := cmp.Or(opts.headDim, opts.hiddenSize/opts.numHeads)
ropeDim := cmp.Or(opts.ropeDim, headDim)
query := sa.Query.Forward(ctx, hiddenState)
if sa.QNorm != nil {
query = sa.QNorm.Forward(ctx, query, opts.eps)
}
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
key := sa.Key.Forward(ctx, hiddenState)
if sa.KNorm != nil {
key = sa.KNorm.Forward(ctx, key, opts.eps)
}
key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
value := sa.Value.Forward(ctx, hiddenState)
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
freqScale := float32(1.0)
if !isSWA {
freqScale = 1. / opts.ropeScale
}
ropeOpts := opts.ropeOptions(sa.RopeFactors, isSWA)
query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, freqScale, ropeOpts...)
key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, freqScale, ropeOpts...)
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), cache)
attention = attention.Reshape(ctx, headDim*opts.numHeads, batchSize)
return sa.Output.Forward(ctx, attention)
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
ropeDim := cmp.Or(m.ropeDim, m.hiddenSize/m.numHeads)
isSWA := isSWALayer(layer)
freqScale := float32(1.0)
if !isSWA {
freqScale = 1. / m.ropeScale
}
ropeOpts := m.Options.ropeOptions(m.Layers[layer].SelfAttention.RopeFactors, isSWA)
return fast.RoPE(ctx, key, shift, ropeDim, m.ropeBase, freqScale, ropeOpts...), nil
}
type MLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
Gate *nn.Linear `gguf:"ffn_gate"`
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
type Layer struct {
SelfAttention *SelfAttention
PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
MLP *MLP
PostFFWNorm *nn.RMSNorm `gguf:"post_ffw_norm"`
}
func (l *Layer) Forward(ctx ml.Context, hiddenState, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options, isSWA bool) ml.Tensor {
residual := hiddenState
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positions, cache, opts, isSWA)
if outputs != nil {
hiddenState = hiddenState.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
if l.PostAttentionNorm != nil {
hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, opts.eps)
}
ffnInput := hiddenState.Add(ctx, residual)
hiddenState = l.MLP.Forward(ctx, ffnInput, opts)
if l.PostFFWNorm != nil {
hiddenState = l.PostFFWNorm.Forward(ctx, hiddenState, opts.eps)
}
return hiddenState.Add(ctx, ffnInput)
}
func isSWALayer(layerIdx int) bool {
return (layerIdx+1)%4 != 0
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
for i, layer := range m.Layers {
m.Cache.SetLayer(i)
isSWA := isSWALayer(i)
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = batch.Outputs
}
hiddenState = layer.Forward(ctx, hiddenState, positions, outputs, m.Cache, &m.Options, isSWA)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
return m.Output.Forward(ctx, hiddenState), nil
}
func init() {
model.Register("olmo2", New)
}