Compare commits

...

93 Commits

Author SHA1 Message Date
jmorganca
d6e30481af add experimental image generation runtime 2026-01-07 16:16:31 -08:00
Daniel Hiltgen
e16578d6bb MLX: add cmake and go tag build toggles
To build the new MLX backend code:
  cmake --preset MLX
  cmake --build --preset MLX --parallel
  cmake --install build --component MLX
  go build -tags mlx .

Note: the main.go entrypoint for the MLX engine will change in a follow up commit.
2026-01-07 14:39:04 -08:00
Daniel Hiltgen
3d90a542a3 WIP - MLX backend with gemma3 2026-01-07 10:49:58 -08:00
Parth Sareen
12e2b3514a x: agent loop ux improvements (#13635) 2026-01-07 01:27:15 -08:00
Devon Rifkin
626af2d809 template: fix args-as-json rendering (#13636)
In #13525, I accidentally broke templates' ability to automatically
render tool call function arguments as JSON.

We do need these to be proper maps because we need templates to be able
to call range, which can't be done on custom types.
2026-01-06 18:33:57 -08:00
Parth Sareen
76912c062a x: add experimental agent loop (#13628) 2026-01-05 23:38:40 -08:00
Devon Rifkin
6c3faafed2 olmo3: fix flaky test (#13629)
I introduced this in <https://github.com/ollama/ollama/pull/13525>
2026-01-05 22:37:20 -08:00
Devon Rifkin
e51dead636 preserve tool definition and call JSON ordering (#13525)
* preserve tool definition and call JSON ordering

This is another iteration of
<https://github.com/ollama/ollama/pull/12518>, but this time we've
simplified things by relaxing the competing requirements of being
compatible AND order-preserving with templates (vs. renderers). We
maintain backwards compatibility at the cost of not guaranteeing order
for templates. We plan on moving more and more models to renderers,
which have been updated to use these new data types, and additionally
we could add an opt-in way of templates getting an order-preserved list
(e.g., via sibling template vars)

* orderedmap_test: remove testify
2026-01-05 18:03:36 -08:00
Harry V. Kiselev
d087e46bd1 docs/capabilities/vision: fix curl related code snippet (#13615) 2026-01-03 17:27:46 -05:00
lif
37f6f3af24 server: return error when embedding contains NaN or Inf values (#13599)
The normalize function now checks for NaN and Inf values in the
embedding vector before processing. This prevents JSON encoding
failures when models produce invalid floating-point values.

Fixes #13572

Signed-off-by: majiayu000 <1835304752@qq.com>
2026-01-03 02:20:12 -05:00
Nhan Nguyen
e1bdc23dd2 docs: fix tool name mismatch and trailing commas in api.md example (#13559)
The tool calling example used "get_temperature" for tool_calls but
defined the tool as "get_weather". Also removed trailing commas that
made the JSON invalid.

Fixes #13031
2026-01-03 02:14:53 -05:00
lif
2e78653ff9 app/ui: add swift syntax highlighting support (#13574)
Fixes #13476

Signed-off-by: majiayu000 <1835304752@qq.com>
2026-01-03 02:12:08 -05:00
lif
f5f74e12c1 docs: add version note for /v1/responses API (#13596)
Signed-off-by: majiayu000 <1835304752@qq.com>
2026-01-03 01:58:20 -05:00
Vallabh Mahajan
18fdcc94e5 docs: fix broken .md links and render issues (#13550) 2025-12-23 12:44:55 -05:00
Daniel Hiltgen
7ad036992f amd: use GTT on iGPUs on linux (#13196)
On Linux, look at the GTT memory information for iGPUs.
2025-12-23 09:30:05 -08:00
Jesse Gross
172b5924af llm: Avoid integer underflow on llama engine memory layout
On the llama engine, when we compute the memory layout, we reserve
a buffer to allow for some flexibility for incorrect estimates.
This is subtracted from GPU free memory and on GPUs with limited
memory, it may underflow.

Fixes #13494
2025-12-19 15:48:15 -08:00
Jeffrey Morgan
8852220f59 add REQUIRES command to Modelfile (#13361) 2025-12-18 13:21:29 -08:00
Parth Sareen
7325791599 parsers/renderers: functiongemma (#13521) 2025-12-18 07:55:37 -08:00
Grace
522c11a763 Revert "Omit args and params in tool function def and calls (#13516)" (#13518)
This reverts commit 0fadeffaee.
2025-12-17 19:06:56 -08:00
Grace
0fadeffaee Omit args and params in tool function def and calls (#13516) 2025-12-17 18:42:21 -08:00
Daniel Hiltgen
49a9c9ba6a GGML update to ec98e2002 (#13451)
* Revert "add support for NVIDIA Nemotron 3 Nano"

This reverts commit e7d2ae9d69.

* GGML update to 380b4c984

Remove MaskBatchPadding as GGML_KQ_MASK_PAD is no longer present (no
padding required)

* update to c45f89d55

* ec98e2002

solar pro needed more adjusting - needs verification

* review comments
2025-12-17 13:13:55 -08:00
Parth Sareen
1c094038bc types: add nested property support for tool definitions (#13508) 2025-12-17 11:54:09 -08:00
Grace
a013693f80 DeepseekV3 Family Parser (#13484) 2025-12-16 18:56:30 -08:00
Michael Yang
f6a016f49d revert granite-embedding (#13505) 2025-12-16 15:44:52 -08:00
Bruce MacDonald
45c4739374 types: ConfigV2 and RootFS (#13504)
Refactored the ConfigV2 and RootFS types from server/images.go to a new types/model/config.go file under the model package. Updated all references to use model.ConfigV2 and model.RootFS. This allows for use in other projects without worrying about compiling the c code in the llama package.
2025-12-16 15:18:17 -08:00
Michael Yang
2dd029de12 remove unnecessary code (#13502)
slog is already lazily evaluated so this code is completely redundant
2025-12-16 15:11:26 -08:00
Michael Yang
903b1fc97f use ollama engine for bert models (#13501)
register bpe tokenizer which enables granite-embedding
2025-12-16 11:29:19 -08:00
Parth Sareen
89eb795293 parsers/renderers: use think from user for nemotron (#13492) 2025-12-15 18:55:17 -08:00
Parth Sareen
7e3ea813c1 llama/parsers/renderers: nemotron 3 nano (#13489)
---------

Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-12-15 18:00:08 -08:00
Grace
7b95087b9d Adding tool definitions to DeepseekV3 renderer (#13491) 2025-12-15 17:57:06 -08:00
Michael Yang
971d62595a fix: qwen2.5 vl rope (#13486)
* qwen25vl: bump max pixels

* qwen25vl: mrope

fix qwen2.5vl window

* qwen25vl: vision rope
2025-12-15 17:30:33 -08:00
Parth Sareen
ffbe8e076d model: add olmo3 and olmo3.1 (#13415) 2025-12-15 15:20:04 -08:00
Grace
2c639431b1 DeepseekV3 family renderer (#13180) 2025-12-15 14:50:52 -08:00
Nhan Nguyen
aacd1cb394 fix: define GGML_VERSION variables for proper SOVERSION expansion (#13469)
The ggml/src/CMakeLists.txt uses GGML_VERSION_MAJOR for the shared
library SOVERSION property, but these variables were not defined when
building from ollama's CMakeLists.txt.

This caused libggml-base.so to be named with a literal "SOVERSION"
suffix (libggml-base.so.SOVERSION) instead of the actual version
number (libggml-base.so.0).

The fix adds the required GGML_VERSION_* variables before including
the ggml subdirectory.

Fixes #13436
2025-12-15 14:42:15 -08:00
Parth Sareen
e3731fb160 renderers: add olmo3.1 and olmo3 fixes (#13447) 2025-12-15 11:26:43 -08:00
Eva H
8dbc9e7b68 app/ui: handle unspecified bind addresses and wait for server in ollama proxy (#13159) 2025-12-15 13:33:09 -05:00
Daniel Hiltgen
abe67acf8a Revert "Enable Ollama engine by default" (#13481)
This reverts commit 56f754f46b.
2025-12-15 09:55:45 -08:00
Jeffrey Morgan
4ff8a691bc model: default gemma 3 rope scale to 1.0, apply corrections based on layer counts (#13453) 2025-12-12 17:51:56 -08:00
Jeffrey Morgan
1b308e1d2a model: fix global layer rope scale values for gemma 3 (#13452) 2025-12-12 16:29:01 -08:00
Daniel Hiltgen
bd6c1d6b49 flash attn: add auto mode for llama engine (#13052)
* flash attn: add auto mode for llama engine

If the user does not specify fa in the environment, use auto-mode.

* review comments

* ensure kv cache quantized types have FA explicitly enabled

additional review comments
2025-12-12 13:27:19 -08:00
Jeffrey Morgan
3af5d3b738 model: force rope factor 1.0 for Gemma 3 (#13445) 2025-12-12 13:27:08 -08:00
Daniel Hiltgen
7730895158 Enable Ollama engine by default (#13443)
This changes the default behavior to use the Ollama engine for supported
models, while retaining the ability to disable the Ollama engine and
fall back to the Llama engine.  Models in the OllamaEngineRequired list
will always run on the Ollama engine.
2025-12-12 11:48:43 -08:00
Eva H
de9ecfd01c tidy up lint warnings on windows (#13430) 2025-12-12 11:43:35 -05:00
Eva H
95fdd8d619 fix: select and update models folder in settings (#13412) 2025-12-12 11:09:37 -05:00
Devon Rifkin
9f7822851c docs: add docs for v1/responses and rework openai compat section (#13416)
* docs: add docs for v1/responses and rework openai compat section

I reworked the examples to be separated by topic and to be fully
runnable (i.e., they now log output instead of just suggesting how a
call might be made).

We now use `<CodeGroup>`s so that each example has a dropdown on the
docs site for users to choose, which makes the examples a lot more
digestible (since you only see approx 1/3 of the code you used to).

I also added a new tool to extract code examples into files so that it's
easier to actually run them and check that they work.

## Example

```shell
go run docs/tools/extract-examples/main.go docs/api/openai-compatibility.mdx
```

Output:

```
Extracting code examples to: /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368

  - 01_basic.py
  - 01_basic.js
  - 01_basic.sh
  - 02_responses.py
  - 02_responses.js
  - 02_responses.sh
  - 03_vision.py
  - 03_vision.js
  - 03_vision.sh

Extracted 9 file(s) to /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368

To run examples:

  cd /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368
  npm install   # for JS examples

then run individual files with `node file.js`, `python file.py`, `bash file.sh`
```

In the future we should consider actually running the examples in CI and
having some sort of acceptance test so we can automatically detect when
our examples break. So this is just a start in that direction.

* Update docs/api/openai-compatibility.mdx

Co-authored-by: Parth Sareen <parth.sareen@ollama.com>

* Update docs/api/openai-compatibility.mdx

Co-authored-by: Parth Sareen <parth.sareen@ollama.com>

---------

Co-authored-by: Parth Sareen <parth.sareen@ollama.com>
2025-12-11 17:39:40 -08:00
Parth Sareen
9b2035d194 openai: add tool call appending to previous assistant message (#13434)
* openai: add tool call appending to previous asst message

* add tests for thinking appending
2025-12-11 17:30:12 -08:00
Alexander Gusak
93d45d7a04 docs: fix link to modelfile.mdx (#13220) 2025-12-11 16:14:45 -08:00
JJ
709f842457 Update README.md (#13373)
Correct Markdown syntax for Swollama GitHub and DocC documentation links
2025-12-11 16:08:57 -08:00
Jeffrey Morgan
2dfb74410d model: fix rotary embeddings for ministral 3 (#13432) 2025-12-11 16:02:05 -08:00
Devon Rifkin
1eb5e75972 openai: add v1/responses support (#13351)
Only supporting the stateless part of the API.

Doc updates to come once this is shipped.

Closes: #9659
2025-12-11 15:37:10 -08:00
nicole pardal
3475d915cb embeddings: modified batch size (#13429)
This PR detects embedding models and sets batch_size = context_size so the full input fits in a single batch.
Previously, if batch size was smaller than the input, tokens could be split across batches and cause a SIGTRAP crash.
This change ensures all tokens stay in one batch and prevents crashes.
Fixes: #12938 #13054

Co-authored-by: Jesse Gross <jesse@ollama.com>
2025-12-11 15:36:31 -08:00
Jeffrey Morgan
48e78e9be1 template: add yesterdayDate helper function (#13431) 2025-12-11 14:47:55 -08:00
Jeffrey Morgan
a838421ea3 model: conversion and hyperparameter fixes for ministral and devstral (#13424) 2025-12-11 13:04:00 -08:00
EasonLin
1c4e85b4df routes: add logprobs in tool calls (#13238) 2025-12-10 17:28:41 -08:00
Eloi Torrents
dac4f17fea cmd/bench: fix binary name in README (#13276) 2025-12-10 14:16:58 -08:00
Julia Scheaffer
56b8fb024c cmd/bench: fix options table in cmd/bench/README.md (#13216) 2025-12-10 14:07:48 -08:00
Gabe Goodhart
b95693056c feat: llama.cpp bump (17f7f4) for SSM performance improvements (#13408)
* feat: Bump llama.cpp to the latest master (17f7f4b)

This brings in significant improvements to prefill performance for all
models using the SSM_CONV and SSM_SCAN ops (granite4, jamba, falcon-h,
nemotron-h, Qwen3 Next) on Apple Metal.

See https://github.com/ggml-org/llama.cpp/pull/17876

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update patches 1-4

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Update patches 5-12

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update patches 13-18

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update patch 20

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update patches 21-31

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Sync vendored code

The two files I'm not sure about here are the swap from gemma3-iswa.cpp to
gemma3.cpp (I chose to include this because I think it's required), and the
inclusion of `ggml-zendnn.h` which I chose to omit.

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-12-10 12:59:27 -08:00
Eva H
c34fc64688 app/ui: use requestAnimationFrame to prevent bottom line cutoff in streaming thinking display (#13137) 2025-12-10 15:29:48 -05:00
Eva H
7cf6f18c1f app/ui: refactor to use Ollama endpoints for user auth and health checks (#13081) 2025-12-10 15:24:31 -05:00
Eva H
bbbb6b2a01 app/ui: fix model capabilities not updating after download completion (#13179) 2025-12-10 14:40:02 -05:00
nicole pardal
76f88caf43 nomic-embed-text:v2: model implementation (#13162) 2025-12-09 14:24:51 -08:00
Parth Sareen
2bccf8c624 renderers/parsers: olmo3 instruct (#13383) 2025-12-09 11:12:27 -08:00
Parth Sareen
0c5e5f6630 parsers/renderers: olmo3 think (#13290) 2025-12-09 10:41:47 -08:00
Michael Yang
d475d1f081 fix: qwen2.5vl metal argsort 2025-12-08 17:18:24 -08:00
Jeffrey Morgan
d2f334c1f7 model: add rnj-1 inference support (#13354) 2025-12-08 16:49:17 -08:00
Michael Yang
603ceefaa6 refactor rope
change to a flatter directory structure and group the options with the
function

update models to call rope in one place
2025-12-08 14:42:22 -08:00
nicole pardal
e082d60a24 truncation: fixed runner truncation logic + removed server truncation (#12839)
This PR consolidates all embedding prompt-length checking, truncation, and prompt token counting into the runner to ensure a single source of truth.
2025-12-08 11:20:28 -08:00
Daniel Hiltgen
5dae738067 CI: use vendor base commit in cache keys (#13348)
Prevent CGO from accidentally reusing old object files from the cache
across vendor updates
2025-12-08 09:48:49 -08:00
JJ
0c78723174 readme: fix broken Swollama link in community integrations (#13370) 2025-12-07 21:49:52 -08:00
Jeffrey Morgan
5a41d69b2a fs/ggml: write int32 and int64 values to gguf files (#13335) 2025-12-07 21:49:14 -08:00
Daniel Hiltgen
c146a138e3 ggml: handle all streams (#13350)
Follow up from #12992

Free all streams, and keep the alloc logic aligned across streams.
2025-12-05 16:10:33 -08:00
Sos Pogosyan
31b8c6a214 fix(api): correct Content-Type header for /api/chat and /api/generate when using cloud models (#13279)
---------

Co-authored-by: Pogosyan Sos <sos_pogosyan@MacBook-Pro-Sos.local>
Co-authored-by: Patrick Devine <patrick@infrahq.com>
2025-12-04 21:33:07 -08:00
Jesse Gross
9191dfaf05 llm: Enable flash attention for mistral3 by default 2025-12-04 15:19:06 -08:00
Jesse Gross
1108d8b34e ggml: Enable flash attention for vision encoders
Although the vision component of multimodal models typically already
call the optimized nn.Attention, it is converted into non-fused
operations. That is because the backend-specific fused kernels may
have requirements, such as padding, and they is performed by the
cache, which vision encoders don't use.

This implements a fallback path in the backend, softening the
requirements into optimizations. In turn, this allows flash attention
to be used for vision encoders, saving a significant amount of VRAM
and improving performance.
2025-12-04 15:19:06 -08:00
Jesse Gross
7837a5bc7e ggml: Always set cache padding to 256
We currently use cache padding of 32 when not using flash attention
and 256 with flash attention, which is based on the historic alignment
requirements of these kernels. The restrictions have since been
loosened but there are still performance benefits, such as better
CUDA graph reuse.

Since the requirement is no longer kernel-specific, set the padding
uniformly to 256, as llama.cpp has.
2025-12-04 15:19:06 -08:00
Patrick Devine
0a844f8e96 convert: add deepseek converter (#12980)
This change adds the ability for `ollama create` to convert models that use
the DeepSeek2 architecture (specifically DeepSeekV3 and DeepSeek-R1).
2025-12-04 13:49:30 -08:00
Eloi Torrents
a03223b86f cmd/bench: support writing benchmark output to file (#13263)
* cmd/bench: support writing benchmark output to file

This changes Ollama to allow the bench command to write benchmark
results to a user-specified output file instead of stdout when the
--output flag is provided.

---------

Co-authored-by: Patrick Devine <patrick@infrahq.com>
2025-12-04 13:22:41 -08:00
Daniel Hiltgen
0cf7794b16 ggml update to b7108 (#12992)
* Revert "vulkan: temporary cary of vulkan fixes (#12971)"

This reverts commit 3a9e8e9fd4.

* ggml update to b7087

* fix argsort on metal

* update to b7108

* fix bakllava regression

This model lacks the metadata for the projector type.

* update to b7209

* fix TopK perf

* only build arm code on arm
2025-12-03 19:43:29 -08:00
Jeffrey Morgan
854d40edc5 ci: restore previous linter rules (#13322) 2025-12-03 18:55:02 -08:00
Bruce MacDonald
84a2cedf18 app: relay thinking false to server (#13319)
This fixes a bug where disabling thinking on deepseek-v3.1 did not stop the model from thinking.

When thinking is not defined it should not be sent to the server since this will cause error responses in some cases where the model does not support thinking. However if it is defined as false it should still be sent.
2025-12-03 15:06:55 -08:00
Daniel Hiltgen
3f30836734 CUDA: filter devices on secondary discovery (#13317)
We now do a deeper probe of CUDA devices to verify the library version has
the correct compute capability coverage for the device.  Due to ROCm also
interpreting the CUDA env var to filter AMD devices, we try to avoid setting
it which leads to problems in mixed vendor systems.  However without setting
it for this deeper probe, each CUDA library subprocess discovers all CUDA GPUs
and on systems with lots of GPUs, this can lead to hitting timeouts.  The fix is
to turn on the CUDA visibility env var just for this deeper probe use-case.
2025-12-03 12:58:16 -08:00
Nathan Hook
cc9555aff0 Update user message format for temperature query (#13256) 2025-12-02 15:08:39 -08:00
hello_world
20aee96706 Add Vulkan GPU support instructions in development.md (#13265)
Added Vulkan SDK installation instructions and environment variable setup for building with Vulkan support.
2025-12-02 13:37:32 -08:00
Daniel Hiltgen
18b5958d46 test: avoid ministral tools test on low vram (#13302)
Avoid hitting test timeouts
2025-12-02 13:18:55 -08:00
Jesse Gross
5317202c38 llm: Don't always evict models on CPU-only systems
Model eviction happens when we have at least one other model
loaded and are unable to load all layers into VRAM. However, on
CPU-only systems we can never load layers into VRAM, so this
constantly triggered eviction.

Fixes #13227
2025-12-02 10:58:08 -08:00
Daniel Hiltgen
d771043e88 test: add ministral-3 (#13300) 2025-12-02 09:52:16 -08:00
Daniel Hiltgen
f8f1071818 CUDA: verify CC is supported by target library (#13298) 2025-12-02 09:28:41 -08:00
Patrick Devine
d3e0a0dee4 model: ministral w/ llama4 scaling (#13292)
This change:

* fixes rope scaling in the mistral converter
* updates ministral to include llama4 scaling
* includes a new ministral parser for parsing reasoning and tool calling

---------

Co-authored-by: jmorganca <jmorganca@gmail.com>
2025-12-01 23:20:14 -08:00
Daniel Hiltgen
554172759c win: warn if ggml-base detected in PATH (#13289)
If the user has somehow installed another GGML based app which places a
ggml-base lib somewhere in their PATH, we can experience runtime problems
due to incompatibilities.  This change adds a warning message if we detect
a ggml-base outside of our install location to aid in troubleshooting.
2025-12-01 15:36:47 -08:00
Bruce MacDonald
5b6a8e6001 api/client: handle non-json streaming errors (#13007)
While processing the response stream during a chat or generation if an error is occurred it is parsed and returned to the user. The issue with the existing code is that this assumed the response would be valid JSON, which is not a safe assumption and caused cryptic error messages to be displayed due to parsing failures:
`invalid character 'i' looking for beginning of value`

This change updates the stream function to return the raw error string if it cant be parsed as JSON. This should help with debugging issues by making sure the actual error reaches the user.
2025-12-01 15:10:16 -08:00
Daniel Hiltgen
467bbc0dd5 jetpack: require exact match or skip cuda_jetpack* (#13288)
The cuda_jetpack libs will enumerate discrete GPUs on SBSA systems
which leads to runtime failures of missing kernels.  This fix
requires an exact match to enable jetpacks instead of relying on
enumeration to filter out supported libraries.
2025-12-01 12:48:16 -08:00
Jeffrey Morgan
6d9f9323c5 .gitattributes: add app/webview to linguist-vendored (#13274) 2025-11-29 23:46:10 -05:00
Ondrej Kokes
0c2489605d docs: fix output formatting in faq.mdx (#13231)
There were a few Markdown typos in one FAQ answer. It now renders as a proper ascii table.
2025-11-28 19:19:21 -05:00
658 changed files with 91783 additions and 32246 deletions

2
.gitattributes vendored
View File

@@ -19,6 +19,8 @@ ml/backend/**/*.comp linguist-vendored
ml/backend/**/*.glsl linguist-vendored
ml/backend/**/CMakeLists.txt linguist-vendored
app/webview linguist-vendored
llama/build-info.cpp linguist-generated
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.s linguist-generated

View File

@@ -16,13 +16,15 @@ jobs:
outputs:
GOFLAGS: ${{ steps.goflags.outputs.GOFLAGS }}
VERSION: ${{ steps.goflags.outputs.VERSION }}
vendorsha: ${{ steps.changes.outputs.vendorsha }}
steps:
- uses: actions/checkout@v4
- name: Set environment
id: goflags
run: |
echo GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${GITHUB_REF_NAME#v}\" \"-X=github.com/ollama/ollama/server.mode=release\"'" >>$GITHUB_OUTPUT
echo VERSION="${GITHUB_REF_NAME#v}" >>$GITHUB_OUTPUT
echo GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${GITHUB_REF_NAME#v}\" \"-X=github.com/ollama/ollama/server.mode=release\"'" | tee -a $GITHUB_OUTPUT
echo VERSION="${GITHUB_REF_NAME#v}" | tee -a $GITHUB_OUTPUT
echo vendorsha=$(make -f Makefile.sync print-base) | tee -a $GITHUB_OUTPUT
darwin-build:
runs-on: macos-14-xlarge
@@ -53,6 +55,9 @@ jobs:
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
cache-dependency-path: |
go.sum
Makefile.sync
- run: |
./scripts/build_darwin.sh
- name: Log build results
@@ -185,7 +190,7 @@ jobs:
- uses: actions/cache@v4
with:
path: ${{ github.workspace }}\.ccache
key: ccache-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.preset }}
key: ccache-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.preset }}-${{ needs.setup-environment.outputs.vendorsha }}
- name: Build target "${{ matrix.preset }}"
run: |
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
@@ -249,6 +254,9 @@ jobs:
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
cache-dependency-path: |
go.sum
Makefile.sync
- name: Verify gcc is actually clang
run: |
$ErrorActionPreference='Continue'
@@ -302,6 +310,9 @@ jobs:
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
cache-dependency-path: |
go.sum
Makefile.sync
- uses: actions/download-artifact@v4
with:
pattern: depends-windows*

View File

@@ -22,6 +22,7 @@ jobs:
runs-on: ubuntu-latest
outputs:
changed: ${{ steps.changes.outputs.changed }}
vendorsha: ${{ steps.changes.outputs.vendorsha }}
steps:
- uses: actions/checkout@v4
with:
@@ -37,6 +38,7 @@ jobs:
}
echo changed=$(changed 'llama/llama.cpp/**/*' 'ml/backend/ggml/ggml/**/*') | tee -a $GITHUB_OUTPUT
echo vendorsha=$(make -f Makefile.sync print-base) | tee -a $GITHUB_OUTPUT
linux:
needs: [changes]
@@ -83,7 +85,7 @@ jobs:
- uses: actions/cache@v4
with:
path: /github/home/.cache/ccache
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}-${{ needs.changes.outputs.vendorsha }}
- run: |
cmake --preset ${{ matrix.preset }} ${{ matrix.flags }}
cmake --build --preset ${{ matrix.preset }} --parallel
@@ -178,7 +180,7 @@ jobs:
- uses: actions/cache@v4
with:
path: ${{ github.workspace }}\.ccache
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}-${{ needs.changes.outputs.vendorsha }}
- run: |
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
@@ -206,6 +208,9 @@ jobs:
- uses: actions/setup-go@v5
with:
go-version-file: 'go.mod'
cache-dependency-path: |
go.sum
Makefile.sync
- uses: actions/setup-node@v4
with:
node-version: '20'

View File

@@ -1,77 +1,51 @@
version: "2"
linters:
default: none
enable:
- asasalint
- bidichk
- bodyclose
- containedctx
- copyloopvar
- errcheck
- errorlint
- exptostd
- gocheckcompilerdirectives
- gocritic
- govet
- ineffassign
- intrange
- makezero
- misspell
- modernize
- nilerr
- nilnil
- nolintlint
- nosprintfhostport
- perfsprint
- prealloc
- sloglint
- staticcheck
- unconvert
- unused
- usestdlibvars
- usetesting
- wastedassign
- whitespace
disable:
- errcheck
- usestdlibvars
settings:
errcheck:
exclude-functions:
- fmt.Fprintf
perfsprint:
strconcat: false
concat-loop: false
govet:
disable:
- unusedresult
staticcheck:
checks:
- all
# Using a deprecated function, variable, constant or field.
# https://staticcheck.dev/docs/checks/#SA1019
- -QF* # disable quick fix suggestions
- -SA1019
# Incorrect or missing package comment.
# https://staticcheck.dev/docs/checks/#ST1000
- -ST1000
# Poorly chosen identifier.
# https://staticcheck.dev/docs/checks/#ST1003
- -ST1003
# The documentation of an exported function should start with the function's name.
# https://staticcheck.dev/docs/checks/#ST1020
- -ST1020
# The documentation of an exported type should start with type's name.
# https://staticcheck.dev/docs/checks/#ST1021
- -ST1021
# The documentation of an exported variable or constant should start with variable's name.
# https://staticcheck.dev/docs/checks/#ST1022
- -ST1022
usestdlibvars:
http-method: false
http-status-code: false
- -ST1000 # package comment format
- -ST1003 # underscores in package names
- -ST1005 # error strings should not be capitalized
- -ST1012 # error var naming (ErrFoo)
- -ST1016 # receiver name consistency
- -ST1020 # comment on exported function format
- -ST1021 # comment on exported type format
- -ST1022 # comment on exported var format
- -ST1023 # omit type from declaration
severity:
default: error
rules:
- linters:
- gofmt
- goimports
- intrange
severity: info
formatters:
enable:
- gci
- gofmt
- gofumpt
settings:
gci:
sections:
- standard
- default
- localmodule

View File

@@ -12,7 +12,7 @@ set(BUILD_SHARED_LIBS ON)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)
set(CMAKE_CXX_EXTENSIONS ON) # Recent versions of MLX Requires gnu++17 extensions to compile properly
set(GGML_BUILD ON)
set(GGML_SHARED ON)
@@ -54,6 +54,13 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cp
add_compile_definitions(NDEBUG GGML_VERSION=0x0 GGML_COMMIT=0x0)
# Define GGML version variables for shared library SOVERSION
# These are required by ggml/src/CMakeLists.txt for proper library versioning
set(GGML_VERSION_MAJOR 0)
set(GGML_VERSION_MINOR 0)
set(GGML_VERSION_PATCH 0)
set(GGML_VERSION "${GGML_VERSION_MAJOR}.${GGML_VERSION_MINOR}.${GGML_VERSION_PATCH}")
set(GGML_CPU ON)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
set_property(TARGET ggml PROPERTY EXCLUDE_FROM_ALL TRUE)
@@ -140,14 +147,30 @@ if(CMAKE_HIP_COMPILER)
endif()
endif()
find_package(Vulkan)
if(Vulkan_FOUND)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-vulkan)
install(TARGETS ggml-vulkan
RUNTIME_DEPENDENCIES
PRE_INCLUDE_REGEXES vulkan
PRE_EXCLUDE_REGEXES ".*"
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT Vulkan
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT Vulkan
)
if(NOT APPLE)
find_package(Vulkan)
if(Vulkan_FOUND)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-vulkan)
install(TARGETS ggml-vulkan
RUNTIME_DEPENDENCIES
PRE_INCLUDE_REGEXES vulkan
PRE_EXCLUDE_REGEXES ".*"
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT Vulkan
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT Vulkan
)
endif()
endif()
option(MLX_ENGINE "Enable MLX backend" OFF)
if(MLX_ENGINE)
message(STATUS "Setting up MLX (this takes a while...)")
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/x/ml/backend/mlx)
install(TARGETS mlx mlxc
RUNTIME_DEPENDENCIES
PRE_EXCLUDE_REGEXES ".*"
RUNTIME DESTINATION ${CMAKE_INSTALL_PREFIX}/lib/ollama COMPONENT MLX
LIBRARY DESTINATION ${CMAKE_INSTALL_PREFIX}/lib/ollama COMPONENT MLX
FRAMEWORK DESTINATION ${CMAKE_INSTALL_PREFIX}/lib/ollama COMPONENT MLX
)
endif()

View File

@@ -83,6 +83,14 @@
"cacheVariables": {
"OLLAMA_RUNNER_DIR": "vulkan"
}
},
{
"name": "MLX",
"inherits": [ "Default" ],
"cacheVariables": {
"MLX_ENGINE": "ON",
"OLLAMA_RUNNER_DIR": "mlx"
}
}
],
"buildPresets": [
@@ -140,6 +148,11 @@
"name": "Vulkan",
"targets": [ "ggml-vulkan" ],
"configurePreset": "Vulkan"
},
{
"name": "MLX",
"targets": [ "mlx", "mlxc" ],
"configurePreset": "MLX"
}
]
}

View File

@@ -131,7 +131,36 @@ COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'Vulkan' \
&& cmake --build --parallel --preset 'Vulkan' \
&& cmake --install build --component Vulkan --strip --parallel 8
&& cmake --install build --component Vulkan --strip --parallel 8
FROM base AS mlx
ARG CUDA13VERSION=13.0
RUN dnf install -y cuda-toolkit-${CUDA13VERSION//./-} \
&& dnf install -y openblas-devel lapack-devel
ENV PATH=/usr/local/cuda-13/bin:$PATH
ENV BLAS_INCLUDE_DIRS=/usr/include/openblas
ENV LAPACK_INCLUDE_DIRS=/usr/include/openblas
ARG PARALLEL
WORKDIR /go/src/github.com/ollama/ollama
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
COPY x/ml/backend/mlx x/ml/backend/mlx
COPY go.mod go.sum .
RUN curl -fsSL https://golang.org/dl/go$(awk '/^go/ { print $2 }' go.mod).linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
ENV PATH=/usr/local/go/bin:$PATH
RUN go mod download
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'MLX' -DBLAS_INCLUDE_DIRS=/usr/include/openblas -DLAPACK_INCLUDE_DIRS=/usr/include/openblas \
&& cmake --build --parallel ${PARALLEL} --preset 'MLX' \
&& cmake --install build --component MLX --strip --parallel ${PARALLEL}
COPY . .
ARG GOFLAGS="'-ldflags=-w -s'"
ENV CGO_ENABLED=1
ARG CGO_CFLAGS
ARG CGO_CXXFLAGS
# TODO wire up the actual MLX engine here instead of building the main binary...
RUN go build -tags mlx -trimpath -buildmode=pie -o /bin/ollama-mlx-engine .
RUN go build -trimpath -buildmode=pie -o /bin/imagegen ./x/imagegen/cmd/engine
FROM base AS build
@@ -153,6 +182,8 @@ FROM --platform=linux/amd64 scratch AS amd64
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/
COPY --from=cuda-13 dist/lib/ollama /lib/ollama/
COPY --from=vulkan dist/lib/ollama /lib/ollama/
COPY --from=mlx /go/src/github.com/ollama/ollama/dist/lib/ollama /lib/ollama/
COPY --from=mlx /bin/ /bin/
FROM --platform=linux/arm64 scratch AS arm64
# COPY --from=cuda-11 dist/lib/ollama/ /lib/ollama/

View File

@@ -1,6 +1,6 @@
UPSTREAM=https://github.com/ggml-org/llama.cpp.git
WORKDIR=llama/vendor
FETCH_HEAD=3cfa9c3f125763305b4226bc032f1954f08990dc
FETCH_HEAD=ec98e2002
.PHONY: help
help:
@@ -57,7 +57,7 @@ checkout: $(WORKDIR)
$(WORKDIR):
git clone $(UPSTREAM) $(WORKDIR)
.PHONE: format-patches
.PHONY: format-patches
format-patches: llama/patches
git -C $(WORKDIR) format-patch \
--no-signature \
@@ -66,7 +66,11 @@ format-patches: llama/patches
-o $(realpath $<) \
$(FETCH_HEAD)
.PHONE: clean
.PHONY: clean
clean: checkout
@git -C $(WORKDIR) am --abort || true
$(RM) llama/patches/.*.patched
.PHONY: print-base
print-base:
@echo $(FETCH_HEAD)

View File

@@ -555,7 +555,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Parakeet](https://github.com/parakeet-nest/parakeet) is a GoLang library, made to simplify the development of small generative AI applications with Ollama.
- [Haverscript](https://github.com/andygill/haverscript) with [examples](https://github.com/andygill/haverscript/tree/main/examples)
- [Ollama for Swift](https://github.com/mattt/ollama-swift)
- [Swollama for Swift](https://github.com/marcusziade/Swollama) with [DocC](https://marcusziade.github.io/Swollama/documentation/swollama/)
- [Swollama for Swift](https://github.com/guitaripod/Swollama) with [DocC](https://guitaripod.github.io/Swollama/documentation/swollama)
- [GoLamify](https://github.com/prasad89/golamify)
- [Ollama for Haskell](https://github.com/tusharad/ollama-haskell)
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in a unified API)

View File

@@ -226,7 +226,14 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
bts := scanner.Bytes()
if err := json.Unmarshal(bts, &errorResponse); err != nil {
return fmt.Errorf("unmarshal: %w", err)
if response.StatusCode >= http.StatusBadRequest {
return StatusError{
StatusCode: response.StatusCode,
Status: response.Status,
ErrorMessage: string(bts),
}
}
return errors.New(string(bts))
}
if response.StatusCode == http.StatusUnauthorized {
@@ -340,7 +347,7 @@ type CreateProgressFunc func(ProgressResponse) error
// Create creates a model from a [Modelfile]. fn is a progress function that
// behaves similarly to other methods (see [Client.Pull]).
//
// [Modelfile]: https://github.com/ollama/ollama/blob/main/docs/modelfile.md
// [Modelfile]: https://github.com/ollama/ollama/blob/main/docs/modelfile.mdx
func (c *Client) Create(ctx context.Context, req *CreateRequest, fn CreateProgressFunc) error {
return c.stream(ctx, http.MethodPost, "/api/create", req, func(bts []byte) error {
var resp ProgressResponse

View File

@@ -55,6 +55,7 @@ func TestClientFromEnvironment(t *testing.T) {
type testError struct {
message string
statusCode int
raw bool // if true, write message as-is instead of JSON encoding
}
func (e testError) Error() string {
@@ -111,6 +112,20 @@ func TestClientStream(t *testing.T) {
},
},
},
{
name: "plain text error response",
responses: []any{
"internal server error",
},
wantErr: "internal server error",
},
{
name: "HTML error page",
responses: []any{
"<html><body>404 Not Found</body></html>",
},
wantErr: "404 Not Found",
},
}
for _, tc := range testCases {
@@ -135,6 +150,12 @@ func TestClientStream(t *testing.T) {
return
}
if str, ok := resp.(string); ok {
fmt.Fprintln(w, str)
flusher.Flush()
continue
}
if err := json.NewEncoder(w).Encode(resp); err != nil {
t.Fatalf("failed to encode response: %v", err)
}
@@ -173,9 +194,10 @@ func TestClientStream(t *testing.T) {
func TestClientDo(t *testing.T) {
testCases := []struct {
name string
response any
wantErr string
name string
response any
wantErr string
wantStatusCode int
}{
{
name: "immediate error response",
@@ -183,7 +205,8 @@ func TestClientDo(t *testing.T) {
message: "test error message",
statusCode: http.StatusBadRequest,
},
wantErr: "test error message",
wantErr: "test error message",
wantStatusCode: http.StatusBadRequest,
},
{
name: "server error response",
@@ -191,7 +214,8 @@ func TestClientDo(t *testing.T) {
message: "internal error",
statusCode: http.StatusInternalServerError,
},
wantErr: "internal error",
wantErr: "internal error",
wantStatusCode: http.StatusInternalServerError,
},
{
name: "successful response",
@@ -203,6 +227,26 @@ func TestClientDo(t *testing.T) {
Success: true,
},
},
{
name: "plain text error response",
response: testError{
message: "internal server error",
statusCode: http.StatusInternalServerError,
raw: true,
},
wantErr: "internal server error",
wantStatusCode: http.StatusInternalServerError,
},
{
name: "HTML error page",
response: testError{
message: "<html><body>404 Not Found</body></html>",
statusCode: http.StatusNotFound,
raw: true,
},
wantErr: "<html><body>404 Not Found</body></html>",
wantStatusCode: http.StatusNotFound,
},
}
for _, tc := range testCases {
@@ -210,11 +254,16 @@ func TestClientDo(t *testing.T) {
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if errResp, ok := tc.response.(testError); ok {
w.WriteHeader(errResp.statusCode)
err := json.NewEncoder(w).Encode(map[string]string{
"error": errResp.message,
})
if err != nil {
t.Fatal("failed to encode error response:", err)
if !errResp.raw {
err := json.NewEncoder(w).Encode(map[string]string{
"error": errResp.message,
})
if err != nil {
t.Fatal("failed to encode error response:", err)
}
} else {
// Write raw message (simulates non-JSON error responses)
fmt.Fprint(w, errResp.message)
}
return
}
@@ -241,6 +290,15 @@ func TestClientDo(t *testing.T) {
if err.Error() != tc.wantErr {
t.Errorf("error message mismatch: got %q, want %q", err.Error(), tc.wantErr)
}
if tc.wantStatusCode != 0 {
if statusErr, ok := err.(StatusError); ok {
if statusErr.StatusCode != tc.wantStatusCode {
t.Errorf("status code mismatch: got %d, want %d", statusErr.StatusCode, tc.wantStatusCode)
}
} else {
t.Errorf("expected StatusError, got %T", err)
}
}
return
}

View File

@@ -15,19 +15,19 @@ func main() {
}
messages := []api.Message{
api.Message{
{
Role: "system",
Content: "Provide very brief, concise responses",
},
api.Message{
{
Role: "user",
Content: "Name some unusual animals",
},
api.Message{
{
Role: "assistant",
Content: "Monotreme, platypus, echidna",
},
api.Message{
{
Role: "user",
Content: "which of these is the most dangerous?",
},

View File

@@ -3,6 +3,7 @@ package api
import (
"encoding/json"
"fmt"
"iter"
"log/slog"
"math"
"os"
@@ -14,6 +15,7 @@ import (
"github.com/google/uuid"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/internal/orderedmap"
"github.com/ollama/ollama/types/model"
)
@@ -227,13 +229,79 @@ type ToolCallFunction struct {
Arguments ToolCallFunctionArguments `json:"arguments"`
}
type ToolCallFunctionArguments map[string]any
// ToolCallFunctionArguments holds tool call arguments in insertion order.
type ToolCallFunctionArguments struct {
om *orderedmap.Map[string, any]
}
// NewToolCallFunctionArguments creates a new empty ToolCallFunctionArguments.
func NewToolCallFunctionArguments() ToolCallFunctionArguments {
return ToolCallFunctionArguments{om: orderedmap.New[string, any]()}
}
// Get retrieves a value by key.
func (t *ToolCallFunctionArguments) Get(key string) (any, bool) {
if t == nil || t.om == nil {
return nil, false
}
return t.om.Get(key)
}
// Set sets a key-value pair, preserving insertion order.
func (t *ToolCallFunctionArguments) Set(key string, value any) {
if t == nil {
return
}
if t.om == nil {
t.om = orderedmap.New[string, any]()
}
t.om.Set(key, value)
}
// Len returns the number of arguments.
func (t *ToolCallFunctionArguments) Len() int {
if t == nil || t.om == nil {
return 0
}
return t.om.Len()
}
// All returns an iterator over all key-value pairs in insertion order.
func (t *ToolCallFunctionArguments) All() iter.Seq2[string, any] {
if t == nil || t.om == nil {
return func(yield func(string, any) bool) {}
}
return t.om.All()
}
// ToMap returns a regular map (order not preserved).
func (t *ToolCallFunctionArguments) ToMap() map[string]any {
if t == nil || t.om == nil {
return nil
}
return t.om.ToMap()
}
func (t *ToolCallFunctionArguments) String() string {
bts, _ := json.Marshal(t)
if t == nil || t.om == nil {
return "{}"
}
bts, _ := json.Marshal(t.om)
return string(bts)
}
func (t *ToolCallFunctionArguments) UnmarshalJSON(data []byte) error {
t.om = orderedmap.New[string, any]()
return json.Unmarshal(data, t.om)
}
func (t ToolCallFunctionArguments) MarshalJSON() ([]byte, error) {
if t.om == nil {
return []byte("{}"), nil
}
return json.Marshal(t.om)
}
type Tool struct {
Type string `json:"type"`
Items any `json:"items,omitempty"`
@@ -282,12 +350,78 @@ func (pt PropertyType) String() string {
return fmt.Sprintf("%v", []string(pt))
}
// ToolPropertiesMap holds tool properties in insertion order.
type ToolPropertiesMap struct {
om *orderedmap.Map[string, ToolProperty]
}
// NewToolPropertiesMap creates a new empty ToolPropertiesMap.
func NewToolPropertiesMap() *ToolPropertiesMap {
return &ToolPropertiesMap{om: orderedmap.New[string, ToolProperty]()}
}
// Get retrieves a property by name.
func (t *ToolPropertiesMap) Get(key string) (ToolProperty, bool) {
if t == nil || t.om == nil {
return ToolProperty{}, false
}
return t.om.Get(key)
}
// Set sets a property, preserving insertion order.
func (t *ToolPropertiesMap) Set(key string, value ToolProperty) {
if t == nil {
return
}
if t.om == nil {
t.om = orderedmap.New[string, ToolProperty]()
}
t.om.Set(key, value)
}
// Len returns the number of properties.
func (t *ToolPropertiesMap) Len() int {
if t == nil || t.om == nil {
return 0
}
return t.om.Len()
}
// All returns an iterator over all properties in insertion order.
func (t *ToolPropertiesMap) All() iter.Seq2[string, ToolProperty] {
if t == nil || t.om == nil {
return func(yield func(string, ToolProperty) bool) {}
}
return t.om.All()
}
// ToMap returns a regular map (order not preserved).
func (t *ToolPropertiesMap) ToMap() map[string]ToolProperty {
if t == nil || t.om == nil {
return nil
}
return t.om.ToMap()
}
func (t ToolPropertiesMap) MarshalJSON() ([]byte, error) {
if t.om == nil {
return []byte("null"), nil
}
return json.Marshal(t.om)
}
func (t *ToolPropertiesMap) UnmarshalJSON(data []byte) error {
t.om = orderedmap.New[string, ToolProperty]()
return json.Unmarshal(data, t.om)
}
type ToolProperty struct {
AnyOf []ToolProperty `json:"anyOf,omitempty"`
Type PropertyType `json:"type,omitempty"`
Items any `json:"items,omitempty"`
Description string `json:"description,omitempty"`
Enum []any `json:"enum,omitempty"`
AnyOf []ToolProperty `json:"anyOf,omitempty"`
Type PropertyType `json:"type,omitempty"`
Items any `json:"items,omitempty"`
Description string `json:"description,omitempty"`
Enum []any `json:"enum,omitempty"`
Properties *ToolPropertiesMap `json:"properties,omitempty"`
}
// ToTypeScriptType converts a ToolProperty to a TypeScript type string
@@ -336,11 +470,11 @@ func mapToTypeScriptType(jsonType string) string {
}
type ToolFunctionParameters struct {
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required,omitempty"`
Properties map[string]ToolProperty `json:"properties"`
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required,omitempty"`
Properties *ToolPropertiesMap `json:"properties"`
}
func (t *ToolFunctionParameters) String() string {
@@ -553,6 +687,9 @@ type CreateRequest struct {
Renderer string `json:"renderer,omitempty"`
Parser string `json:"parser,omitempty"`
// Requires is the minimum version of Ollama required by the model.
Requires string `json:"requires,omitempty"`
// Info is a map of additional information for the model
Info map[string]any `json:"info,omitempty"`
@@ -603,6 +740,7 @@ type ShowResponse struct {
Tensors []Tensor `json:"tensors,omitempty"`
Capabilities []model.Capability `json:"capabilities,omitempty"`
ModifiedAt time.Time `json:"modified_at,omitempty"`
Requires string `json:"requires,omitempty"`
}
// CopyRequest is the request passed to [Client.Copy].

View File

@@ -11,6 +11,24 @@ import (
"github.com/stretchr/testify/require"
)
// testPropsMap creates a ToolPropertiesMap from a map (convenience function for tests, order not preserved)
func testPropsMap(m map[string]ToolProperty) *ToolPropertiesMap {
props := NewToolPropertiesMap()
for k, v := range m {
props.Set(k, v)
}
return props
}
// testArgs creates ToolCallFunctionArguments from a map (convenience function for tests, order not preserved)
func testArgs(m map[string]any) ToolCallFunctionArguments {
args := NewToolCallFunctionArguments()
for k, v := range m {
args.Set(k, v)
}
return args
}
func TestKeepAliveParsingFromJSON(t *testing.T) {
tests := []struct {
name string
@@ -309,9 +327,9 @@ func TestToolFunctionParameters_MarshalJSON(t *testing.T) {
input: ToolFunctionParameters{
Type: "object",
Required: []string{"name"},
Properties: map[string]ToolProperty{
Properties: testPropsMap(map[string]ToolProperty{
"name": {Type: PropertyType{"string"}},
},
}),
},
expected: `{"type":"object","required":["name"],"properties":{"name":{"type":"string"}}}`,
},
@@ -319,9 +337,9 @@ func TestToolFunctionParameters_MarshalJSON(t *testing.T) {
name: "no required",
input: ToolFunctionParameters{
Type: "object",
Properties: map[string]ToolProperty{
Properties: testPropsMap(map[string]ToolProperty{
"name": {Type: PropertyType{"string"}},
},
}),
},
expected: `{"type":"object","properties":{"name":{"type":"string"}}}`,
},
@@ -339,7 +357,7 @@ func TestToolFunctionParameters_MarshalJSON(t *testing.T) {
func TestToolCallFunction_IndexAlwaysMarshals(t *testing.T) {
fn := ToolCallFunction{
Name: "echo",
Arguments: ToolCallFunctionArguments{"message": "hi"},
Arguments: testArgs(map[string]any{"message": "hi"}),
}
data, err := json.Marshal(fn)
@@ -504,6 +522,116 @@ func TestThinking_UnmarshalJSON(t *testing.T) {
}
}
func TestToolPropertyNestedProperties(t *testing.T) {
tests := []struct {
name string
input string
expected ToolProperty
}{
{
name: "nested object properties",
input: `{
"type": "object",
"description": "Location details",
"properties": {
"address": {
"type": "string",
"description": "Street address"
},
"city": {
"type": "string",
"description": "City name"
}
}
}`,
expected: ToolProperty{
Type: PropertyType{"object"},
Description: "Location details",
Properties: testPropsMap(map[string]ToolProperty{
"address": {
Type: PropertyType{"string"},
Description: "Street address",
},
"city": {
Type: PropertyType{"string"},
Description: "City name",
},
}),
},
},
{
name: "deeply nested properties",
input: `{
"type": "object",
"description": "Event",
"properties": {
"location": {
"type": "object",
"description": "Location",
"properties": {
"coordinates": {
"type": "object",
"description": "GPS coordinates",
"properties": {
"lat": {"type": "number", "description": "Latitude"},
"lng": {"type": "number", "description": "Longitude"}
}
}
}
}
}
}`,
expected: ToolProperty{
Type: PropertyType{"object"},
Description: "Event",
Properties: testPropsMap(map[string]ToolProperty{
"location": {
Type: PropertyType{"object"},
Description: "Location",
Properties: testPropsMap(map[string]ToolProperty{
"coordinates": {
Type: PropertyType{"object"},
Description: "GPS coordinates",
Properties: testPropsMap(map[string]ToolProperty{
"lat": {Type: PropertyType{"number"}, Description: "Latitude"},
"lng": {Type: PropertyType{"number"}, Description: "Longitude"},
}),
},
}),
},
}),
},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
var prop ToolProperty
err := json.Unmarshal([]byte(tt.input), &prop)
require.NoError(t, err)
// Compare JSON representations since pointer comparison doesn't work
expectedJSON, err := json.Marshal(tt.expected)
require.NoError(t, err)
actualJSON, err := json.Marshal(prop)
require.NoError(t, err)
assert.JSONEq(t, string(expectedJSON), string(actualJSON))
// Round-trip test: marshal and unmarshal again
data, err := json.Marshal(prop)
require.NoError(t, err)
var prop2 ToolProperty
err = json.Unmarshal(data, &prop2)
require.NoError(t, err)
prop2JSON, err := json.Marshal(prop2)
require.NoError(t, err)
assert.JSONEq(t, string(expectedJSON), string(prop2JSON))
})
}
}
func TestToolFunctionParameters_String(t *testing.T) {
tests := []struct {
name string
@@ -515,12 +643,12 @@ func TestToolFunctionParameters_String(t *testing.T) {
params: ToolFunctionParameters{
Type: "object",
Required: []string{"name"},
Properties: map[string]ToolProperty{
Properties: testPropsMap(map[string]ToolProperty{
"name": {
Type: PropertyType{"string"},
Description: "The name of the person",
},
},
}),
},
expected: `{"type":"object","required":["name"],"properties":{"name":{"type":"string","description":"The name of the person"}}}`,
},
@@ -537,7 +665,7 @@ func TestToolFunctionParameters_String(t *testing.T) {
s.Self = s
return s
}(),
Properties: map[string]ToolProperty{},
Properties: testPropsMap(map[string]ToolProperty{}),
},
expected: "",
},
@@ -550,3 +678,235 @@ func TestToolFunctionParameters_String(t *testing.T) {
})
}
}
func TestToolCallFunctionArguments_OrderPreservation(t *testing.T) {
t.Run("marshal preserves insertion order", func(t *testing.T) {
args := NewToolCallFunctionArguments()
args.Set("zebra", "z")
args.Set("apple", "a")
args.Set("mango", "m")
data, err := json.Marshal(args)
require.NoError(t, err)
// Should preserve insertion order, not alphabetical
assert.Equal(t, `{"zebra":"z","apple":"a","mango":"m"}`, string(data))
})
t.Run("unmarshal preserves JSON order", func(t *testing.T) {
jsonData := `{"zebra":"z","apple":"a","mango":"m"}`
var args ToolCallFunctionArguments
err := json.Unmarshal([]byte(jsonData), &args)
require.NoError(t, err)
// Verify iteration order matches JSON order
var keys []string
for k := range args.All() {
keys = append(keys, k)
}
assert.Equal(t, []string{"zebra", "apple", "mango"}, keys)
})
t.Run("round trip preserves order", func(t *testing.T) {
original := `{"z":1,"a":2,"m":3,"b":4}`
var args ToolCallFunctionArguments
err := json.Unmarshal([]byte(original), &args)
require.NoError(t, err)
data, err := json.Marshal(args)
require.NoError(t, err)
assert.Equal(t, original, string(data))
})
t.Run("String method returns ordered JSON", func(t *testing.T) {
args := NewToolCallFunctionArguments()
args.Set("c", 3)
args.Set("a", 1)
args.Set("b", 2)
assert.Equal(t, `{"c":3,"a":1,"b":2}`, args.String())
})
t.Run("Get retrieves correct values", func(t *testing.T) {
args := NewToolCallFunctionArguments()
args.Set("key1", "value1")
args.Set("key2", 42)
v, ok := args.Get("key1")
assert.True(t, ok)
assert.Equal(t, "value1", v)
v, ok = args.Get("key2")
assert.True(t, ok)
assert.Equal(t, 42, v)
_, ok = args.Get("nonexistent")
assert.False(t, ok)
})
t.Run("Len returns correct count", func(t *testing.T) {
args := NewToolCallFunctionArguments()
assert.Equal(t, 0, args.Len())
args.Set("a", 1)
assert.Equal(t, 1, args.Len())
args.Set("b", 2)
assert.Equal(t, 2, args.Len())
})
t.Run("empty args marshal to empty object", func(t *testing.T) {
args := NewToolCallFunctionArguments()
data, err := json.Marshal(args)
require.NoError(t, err)
assert.Equal(t, `{}`, string(data))
})
t.Run("zero value args marshal to empty object", func(t *testing.T) {
var args ToolCallFunctionArguments
assert.Equal(t, "{}", args.String())
})
}
func TestToolPropertiesMap_OrderPreservation(t *testing.T) {
t.Run("marshal preserves insertion order", func(t *testing.T) {
props := NewToolPropertiesMap()
props.Set("zebra", ToolProperty{Type: PropertyType{"string"}})
props.Set("apple", ToolProperty{Type: PropertyType{"number"}})
props.Set("mango", ToolProperty{Type: PropertyType{"boolean"}})
data, err := json.Marshal(props)
require.NoError(t, err)
// Should preserve insertion order, not alphabetical
expected := `{"zebra":{"type":"string"},"apple":{"type":"number"},"mango":{"type":"boolean"}}`
assert.Equal(t, expected, string(data))
})
t.Run("unmarshal preserves JSON order", func(t *testing.T) {
jsonData := `{"zebra":{"type":"string"},"apple":{"type":"number"},"mango":{"type":"boolean"}}`
var props ToolPropertiesMap
err := json.Unmarshal([]byte(jsonData), &props)
require.NoError(t, err)
// Verify iteration order matches JSON order
var keys []string
for k := range props.All() {
keys = append(keys, k)
}
assert.Equal(t, []string{"zebra", "apple", "mango"}, keys)
})
t.Run("round trip preserves order", func(t *testing.T) {
original := `{"z":{"type":"string"},"a":{"type":"number"},"m":{"type":"boolean"}}`
var props ToolPropertiesMap
err := json.Unmarshal([]byte(original), &props)
require.NoError(t, err)
data, err := json.Marshal(props)
require.NoError(t, err)
assert.Equal(t, original, string(data))
})
t.Run("Get retrieves correct values", func(t *testing.T) {
props := NewToolPropertiesMap()
props.Set("name", ToolProperty{Type: PropertyType{"string"}, Description: "The name"})
props.Set("age", ToolProperty{Type: PropertyType{"integer"}, Description: "The age"})
v, ok := props.Get("name")
assert.True(t, ok)
assert.Equal(t, "The name", v.Description)
v, ok = props.Get("age")
assert.True(t, ok)
assert.Equal(t, "The age", v.Description)
_, ok = props.Get("nonexistent")
assert.False(t, ok)
})
t.Run("Len returns correct count", func(t *testing.T) {
props := NewToolPropertiesMap()
assert.Equal(t, 0, props.Len())
props.Set("a", ToolProperty{})
assert.Equal(t, 1, props.Len())
props.Set("b", ToolProperty{})
assert.Equal(t, 2, props.Len())
})
t.Run("nil props marshal to null", func(t *testing.T) {
var props *ToolPropertiesMap
data, err := json.Marshal(props)
require.NoError(t, err)
assert.Equal(t, `null`, string(data))
})
t.Run("ToMap returns regular map", func(t *testing.T) {
props := NewToolPropertiesMap()
props.Set("a", ToolProperty{Type: PropertyType{"string"}})
props.Set("b", ToolProperty{Type: PropertyType{"number"}})
m := props.ToMap()
assert.Equal(t, 2, len(m))
assert.Equal(t, PropertyType{"string"}, m["a"].Type)
assert.Equal(t, PropertyType{"number"}, m["b"].Type)
})
}
func TestToolCallFunctionArguments_ComplexValues(t *testing.T) {
t.Run("nested objects preserve order", func(t *testing.T) {
jsonData := `{"outer":{"z":1,"a":2},"simple":"value"}`
var args ToolCallFunctionArguments
err := json.Unmarshal([]byte(jsonData), &args)
require.NoError(t, err)
// Outer keys should be in order
var keys []string
for k := range args.All() {
keys = append(keys, k)
}
assert.Equal(t, []string{"outer", "simple"}, keys)
})
t.Run("arrays as values", func(t *testing.T) {
args := NewToolCallFunctionArguments()
args.Set("items", []string{"a", "b", "c"})
args.Set("numbers", []int{1, 2, 3})
data, err := json.Marshal(args)
require.NoError(t, err)
assert.Equal(t, `{"items":["a","b","c"],"numbers":[1,2,3]}`, string(data))
})
}
func TestToolPropertiesMap_NestedProperties(t *testing.T) {
t.Run("nested properties preserve order", func(t *testing.T) {
props := NewToolPropertiesMap()
nestedProps := NewToolPropertiesMap()
nestedProps.Set("z_field", ToolProperty{Type: PropertyType{"string"}})
nestedProps.Set("a_field", ToolProperty{Type: PropertyType{"number"}})
props.Set("outer", ToolProperty{
Type: PropertyType{"object"},
Properties: nestedProps,
})
data, err := json.Marshal(props)
require.NoError(t, err)
// Both outer and inner should preserve order
expected := `{"outer":{"type":"object","properties":{"z_field":{"type":"string"},"a_field":{"type":"number"}}}}`
assert.Equal(t, expected, string(data))
})
}

View File

@@ -273,10 +273,6 @@ func main() {
Handler: uiServer.Handler(),
}
if _, err := uiServer.UserData(ctx); err != nil {
slog.Warn("failed to load user data", "error", err)
}
// Start the UI server
slog.Info("starting ui server", "port", port)
go func() {
@@ -320,6 +316,17 @@ func main() {
slog.Debug("no URL scheme request to handle")
}
go func() {
slog.Debug("waiting for ollama server to be ready")
if err := ui.WaitForServer(ctx, 10*time.Second); err != nil {
slog.Warn("ollama server not ready, continuing anyway", "error", err)
}
if _, err := uiServer.UserData(ctx); err != nil {
slog.Warn("failed to load user data", "error", err)
}
}()
osRun(cancel, hasCompletedFirstRun, startHidden)
slog.Info("shutting down desktop server")
@@ -361,7 +368,7 @@ func checkUserLoggedIn(uiServerPort int) bool {
return false
}
resp, err := http.Get(fmt.Sprintf("http://127.0.0.1:%d/api/v1/me", uiServerPort))
resp, err := http.Post(fmt.Sprintf("http://127.0.0.1:%d/api/me", uiServerPort), "application/json", nil)
if err != nil {
slog.Debug("failed to call local auth endpoint", "error", err)
return false

View File

@@ -191,13 +191,6 @@ func LaunchNewApp() {
C.launchApp(appName)
}
// Send a request to the main app thread to load a UI page
func sendUIRequestMessage(path string) {
p := C.CString(path)
defer C.free(unsafe.Pointer(p))
C.uiRequest(p)
}
func registerLaunchAgent(hasCompletedFirstRun bool) {
// Remove any stale Login Item registrations
C.unregisterSelfFromLoginItem()

View File

@@ -263,11 +263,6 @@ func createLoginShortcut() error {
return nil
}
// Send a request to the main app thread to load a UI page
func sendUIRequestMessage(path string) {
wintray.SendUIRequestMessage(path)
}
func LaunchNewApp() {
}

View File

@@ -169,37 +169,47 @@ DlgResult fileDlg(FileDlgParams* params) {
}
NSArray* urls = [panel URLs];
if(self->params->allowMultiple && [urls count] >= 1) {
if([urls count] == 0) {
return DLG_CANCEL;
}
if(self->params->allowMultiple) {
// For multiple files, we need to return all paths separated by null bytes
char* bufPtr = self->params->buf;
int remainingBuf = self->params->nbuf;
// Calculate total required buffer size first
int totalSize = 0;
for(NSURL* url in urls) {
char tempBuf[PATH_MAX];
if(![url getFileSystemRepresentation:tempBuf maxLength:PATH_MAX]) {
return DLG_URLFAIL;
}
totalSize += strlen(tempBuf) + 1; // +1 for null terminator
}
totalSize += 1; // Final null terminator
// Calculate total required buffer size first
int totalSize = 0;
for(NSURL* url in urls) {
char tempBuf[PATH_MAX];
if(![url getFileSystemRepresentation:tempBuf maxLength:PATH_MAX]) {
return DLG_URLFAIL;
}
totalSize += strlen(tempBuf) + 1; // +1 for null terminator
}
totalSize += 1; // Final null terminator
if(totalSize > self->params->nbuf) {
// Not enough buffer space
return DLG_URLFAIL;
}
if(totalSize > self->params->nbuf) {
// Not enough buffer space
return DLG_URLFAIL;
}
// Now actually copy the paths (we know we have space)
bufPtr = self->params->buf;
for(NSURL* url in urls) {
char tempBuf[PATH_MAX];
[url getFileSystemRepresentation:tempBuf maxLength:PATH_MAX];
int pathLen = strlen(tempBuf);
strcpy(bufPtr, tempBuf);
bufPtr += pathLen + 1;
}
*bufPtr = '\0'; // Final null terminator
// Now actually copy the paths (we know we have space)
bufPtr = self->params->buf;
for(NSURL* url in urls) {
char tempBuf[PATH_MAX];
[url getFileSystemRepresentation:tempBuf maxLength:PATH_MAX];
int pathLen = strlen(tempBuf);
strcpy(bufPtr, tempBuf);
bufPtr += pathLen + 1;
}
*bufPtr = '\0'; // Final null terminator
} else {
// Single file/directory selection - write path to buffer
NSURL* url = [urls firstObject];
if(![url getFileSystemRepresentation:self->params->buf maxLength:self->params->nbuf]) {
return DLG_URLFAIL;
}
}
return DLG_OK;

View File

@@ -15,7 +15,7 @@ const multiFileBufferSize = w32.MAX_PATH * 10
type WinDlgError int
func (e WinDlgError) Error() string {
return fmt.Sprintf("CommDlgExtendedError: %#x", e)
return fmt.Sprintf("CommDlgExtendedError: %#x", int(e))
}
func err() error {

View File

@@ -224,9 +224,7 @@ func (s *Server) cmd(ctx context.Context) (*exec.Cmd, error) {
if _, err := os.Stat(settings.Models); err == nil {
env["OLLAMA_MODELS"] = settings.Models
} else {
slog.Warn("models path not accessible, clearing models setting", "path", settings.Models, "err", err)
settings.Models = ""
s.store.SetSettings(settings)
slog.Warn("models path not accessible, using default", "path", settings.Models, "err", err)
}
}
if settings.ContextLength > 0 {

View File

@@ -469,26 +469,24 @@ export class HealthResponse {
}
export class User {
id: string;
name: string;
email: string;
avatarURL: string;
plan: string;
bio: string;
firstName: string;
lastName: string;
overThreshold: boolean;
name: string;
bio?: string;
avatarurl?: string;
firstname?: string;
lastname?: string;
plan?: string;
constructor(source: any = {}) {
if ('string' === typeof source) source = JSON.parse(source);
this.id = source["id"];
this.name = source["name"];
this.email = source["email"];
this.avatarURL = source["avatarURL"];
this.plan = source["plan"];
this.name = source["name"];
this.bio = source["bio"];
this.firstName = source["firstName"];
this.lastName = source["lastName"];
this.overThreshold = source["overThreshold"];
this.avatarurl = source["avatarurl"];
this.firstname = source["firstname"];
this.lastname = source["lastname"];
this.plan = source["plan"];
}
}
export class Attachment {

View File

@@ -15,7 +15,7 @@ import {
import { parseJsonlFromResponse } from "./util/jsonl-parsing";
import { ollamaClient as ollama } from "./lib/ollama-client";
import type { ModelResponse } from "ollama/browser";
import { API_BASE } from "./lib/config";
import { API_BASE, OLLAMA_DOT_COM } from "./lib/config";
// Extend Model class with utility methods
declare module "@/gotypes" {
@@ -27,7 +27,6 @@ declare module "@/gotypes" {
Model.prototype.isCloud = function (): boolean {
return this.model.endsWith("cloud");
};
// Helper function to convert Uint8Array to base64
function uint8ArrayToBase64(uint8Array: Uint8Array): string {
const chunkSize = 0x8000; // 32KB chunks to avoid stack overflow
@@ -42,44 +41,50 @@ function uint8ArrayToBase64(uint8Array: Uint8Array): string {
}
export async function fetchUser(): Promise<User | null> {
try {
const response = await fetch(`${API_BASE}/api/v1/me`, {
method: "GET",
headers: {
"Content-Type": "application/json",
},
});
if (response.ok) {
const userData: User = await response.json();
return userData;
}
return null;
} catch (error) {
console.error("Error fetching user:", error);
return null;
}
}
export async function fetchConnectUrl(): Promise<string> {
const response = await fetch(`${API_BASE}/api/v1/connect`, {
method: "GET",
const response = await fetch(`${API_BASE}/api/me`, {
method: "POST",
headers: {
"Content-Type": "application/json",
},
});
if (!response.ok) {
throw new Error("Failed to fetch connect URL");
if (response.ok) {
const userData: User = await response.json();
if (userData.avatarurl && !userData.avatarurl.startsWith("http")) {
userData.avatarurl = `${OLLAMA_DOT_COM}${userData.avatarurl}`;
}
return userData;
}
const data = await response.json();
return data.connect_url;
if (response.status === 401 || response.status === 403) {
return null;
}
throw new Error(`Failed to fetch user: ${response.status}`);
}
export async function fetchConnectUrl(): Promise<string> {
const response = await fetch(`${API_BASE}/api/me`, {
method: "POST",
headers: {
"Content-Type": "application/json",
},
});
if (response.status === 401) {
const data = await response.json();
if (data.signin_url) {
return data.signin_url;
}
}
throw new Error("Failed to fetch connect URL");
}
export async function disconnectUser(): Promise<void> {
const response = await fetch(`${API_BASE}/api/v1/disconnect`, {
const response = await fetch(`${API_BASE}/api/signout`, {
method: "POST",
headers: {
"Content-Type": "application/json",
@@ -204,12 +209,10 @@ export async function* sendMessage(
data: uint8ArrayToBase64(att.data),
}));
// Only send think parameter when actually requesting thinking
// Don't send false as it causes issues with some providers
// Send think parameter when it's explicitly set (true, false, or a non-empty string).
const shouldSendThink =
think !== undefined &&
((typeof think === "boolean" && think) ||
(typeof think === "string" && think !== ""));
(typeof think === "boolean" || (typeof think === "string" && think !== ""));
const response = await fetch(`${API_BASE}/api/v1/chat/${chatId}`, {
method: "POST",
@@ -391,7 +394,8 @@ export async function getInferenceCompute(): Promise<InferenceCompute[]> {
export async function fetchHealth(): Promise<boolean> {
try {
const response = await fetch(`${API_BASE}/api/v1/health`, {
// Use the /api/version endpoint as a health check
const response = await fetch(`${API_BASE}/api/version`, {
method: "GET",
headers: {
"Content-Type": "application/json",
@@ -400,7 +404,8 @@ export async function fetchHealth(): Promise<boolean> {
if (response.ok) {
const data = await response.json();
return data.healthy || false;
// If we get a version back, the server is healthy
return !!data.version;
}
return false;

View File

@@ -299,9 +299,9 @@ export default function Settings() {
</Button>
</div>
</div>
{user?.avatarURL && (
{user?.avatarurl && (
<img
src={user.avatarURL}
src={user.avatarurl}
alt={user?.name}
className="h-10 w-10 rounded-full bg-neutral-200 dark:bg-neutral-700 flex-shrink-0"
onError={(e) => {

View File

@@ -50,21 +50,33 @@ export default function Thinking({
// Position content to show bottom when collapsed
useEffect(() => {
if (isCollapsed && contentRef.current && wrapperRef.current) {
const contentHeight = contentRef.current.scrollHeight;
const wrapperHeight = wrapperRef.current.clientHeight;
if (contentHeight > wrapperHeight) {
const translateY = -(contentHeight - wrapperHeight);
contentRef.current.style.transform = `translateY(${translateY}px)`;
setHasOverflow(true);
} else {
setHasOverflow(false);
}
requestAnimationFrame(() => {
if (!contentRef.current || !wrapperRef.current) return;
const contentHeight = contentRef.current.scrollHeight;
const wrapperHeight = wrapperRef.current.clientHeight;
if (contentHeight > wrapperHeight) {
const translateY = -(contentHeight - wrapperHeight);
contentRef.current.style.transform = `translateY(${translateY}px)`;
setHasOverflow(true);
} else {
contentRef.current.style.transform = "translateY(0)";
setHasOverflow(false);
}
});
} else if (contentRef.current) {
contentRef.current.style.transform = "translateY(0)";
setHasOverflow(false);
}
}, [thinking, isCollapsed]);
useEffect(() => {
if (activelyThinking && wrapperRef.current && !isCollapsed) {
// When expanded and actively thinking, scroll to bottom
wrapperRef.current.scrollTop = wrapperRef.current.scrollHeight;
}
}, [thinking, activelyThinking, isCollapsed]);
const handleToggle = () => {
setIsCollapsed(!isCollapsed);
setHasUserInteracted(true);

View File

@@ -7,6 +7,7 @@ import { createQueryBatcher } from "./useQueryBatcher";
import { useRefetchModels } from "./useModels";
import { useStreamingContext } from "@/contexts/StreamingContext";
import { useSettings } from "./useSettings";
import { getModelCapabilities } from "@/api";
export const useChats = () => {
return useQuery({
@@ -606,6 +607,24 @@ export const useSendMessage = (chatId: string) => {
queryClient.setQueryData(["staleModels"], newStaleMap);
queryClient.invalidateQueries({ queryKey: ["models"] });
// Fetch fresh capabilities for the downloaded model
getModelCapabilities(selectedModel.model)
.then((capabilities) => {
queryClient.setQueryData(
["modelCapabilities", selectedModel.model],
capabilities,
);
})
.catch((error) => {
console.error(
"Failed to fetch capabilities after download:",
error,
);
queryClient.invalidateQueries({
queryKey: ["modelCapabilities", selectedModel.model],
});
});
}
break;
}

View File

@@ -1,114 +0,0 @@
import { useMutation, useQueryClient } from "@tanstack/react-query";
import { useState } from "react";
import { pullModel } from "@/api";
import { useSelectedModel } from "./useSelectedModel";
import { useSettings } from "./useSettings";
interface DownloadProgress {
status: string;
digest?: string;
total?: number;
completed?: number;
done?: boolean;
}
export function useDownloadModel(chatId?: string) {
const queryClient = useQueryClient();
const { selectedModel } = useSelectedModel(chatId);
const { setSettings } = useSettings();
const [downloadProgress, setDownloadProgress] =
useState<DownloadProgress | null>(null);
const [abortController, setAbortController] =
useState<AbortController | null>(null);
const [downloadingChatIds, setDownloadingChatIds] = useState<Set<string>>(
new Set(),
);
const mutation = useMutation({
mutationFn: async (modelName: string) => {
const controller = new AbortController();
setAbortController(controller);
setDownloadProgress({ status: "Starting download..." });
if (chatId) {
setDownloadingChatIds((prev) => new Set(prev).add(chatId));
}
try {
for await (const progress of pullModel(modelName, controller.signal)) {
setDownloadProgress(progress);
if (progress.status === "success") {
// Update selected model to indicate it's now available locally
if (selectedModel && selectedModel.model === modelName) {
setSettings({ SelectedModel: modelName });
}
// Invalidate models query to refresh the list
await queryClient.invalidateQueries({ queryKey: ["models"] });
break;
}
}
} finally {
setAbortController(null);
if (chatId) {
setDownloadingChatIds((prev) => {
const newSet = new Set(prev);
newSet.delete(chatId);
return newSet;
});
}
}
},
onSuccess: () => {
setDownloadProgress(null);
if (chatId) {
setDownloadingChatIds((prev) => {
const newSet = new Set(prev);
newSet.delete(chatId);
return newSet;
});
}
},
onError: (error: Error) => {
const status =
error.name === "AbortError" ? "Download cancelled" : "Download failed";
setDownloadProgress({ status, done: true });
// Clear error message after delay
const delay = error.name === "AbortError" ? 1500 : 3000;
setTimeout(() => {
setDownloadProgress(null);
if (chatId) {
setDownloadingChatIds((prev) => {
const newSet = new Set(prev);
newSet.delete(chatId);
return newSet;
});
}
}, delay);
},
});
const cancelDownload = () => {
if (abortController) {
abortController.abort();
setAbortController(null);
if (chatId) {
setDownloadingChatIds((prev) => {
const newSet = new Set(prev);
newSet.delete(chatId);
return newSet;
});
}
}
};
return {
downloadModel: mutation.mutate,
isDownloading:
mutation.isPending && chatId ? downloadingChatIds.has(chatId) : false,
downloadProgress:
chatId && downloadingChatIds.has(chatId) ? downloadProgress : null,
error: mutation.error,
cancelDownload,
};
}

View File

@@ -1,29 +1,20 @@
import { useQuery, useMutation, useQueryClient } from "@tanstack/react-query";
import { useEffect, useState } from "react";
import { fetchUser, fetchConnectUrl, disconnectUser } from "@/api";
export function useUser() {
const queryClient = useQueryClient();
const [initialDataLoaded, setInitialDataLoaded] = useState(false);
// Wait for initial data to be loaded
useEffect(() => {
const initialPromise = window.__initialUserDataPromise;
if (initialPromise) {
initialPromise.finally(() => {
setInitialDataLoaded(true);
});
} else {
setInitialDataLoaded(true);
}
}, []);
const userQuery = useQuery({
queryKey: ["user"],
queryFn: () => fetchUser(),
queryFn: async () => {
const result = await fetchUser();
return result;
},
staleTime: 5 * 60 * 1000, // Consider data stale after 5 minutes
gcTime: 10 * 60 * 1000, // Keep in cache for 10 minutes
initialData: null, // Start with null to prevent flashing
retry: 10,
retryDelay: (attemptIndex) => Math.min(500 * attemptIndex, 2000),
refetchOnMount: true, // Always fetch when component mounts
});
// Mutation to refresh user data
@@ -49,14 +40,15 @@ export function useUser() {
},
});
const isLoading = userQuery.isLoading || userQuery.isFetching;
const isAuthenticated = Boolean(userQuery.data?.name);
return {
user: userQuery.data,
isLoading:
!initialDataLoaded ||
(userQuery.isLoading && userQuery.data === undefined), // Show loading until initial data is loaded
isLoading,
isError: userQuery.isError,
error: userQuery.error,
isAuthenticated: Boolean(userQuery.data?.name),
isAuthenticated,
refreshUser: refreshUser.mutate,
isRefreshing: refreshUser.isPending,
refetchUser: userQuery.refetch,

View File

@@ -8,3 +8,6 @@ export const API_BASE = import.meta.env.DEV ? DEV_API_URL : "";
export const OLLAMA_HOST = import.meta.env.DEV
? DEV_API_URL
: window.location.origin;
export const OLLAMA_DOT_COM =
import.meta.env.VITE_OLLAMA_DOT_COM_URL || "https://ollama.com";

View File

@@ -147,6 +147,7 @@ export const highlighterPromise = createHighlighter({
"c",
"cpp",
"sql",
"swift",
"yaml",
"markdown",
],

View File

@@ -5,13 +5,6 @@ import { QueryClient, QueryClientProvider } from "@tanstack/react-query";
import { routeTree } from "./routeTree.gen";
import { fetchUser } from "./api";
import { StreamingProvider } from "./contexts/StreamingContext";
import { User } from "@/gotypes";
declare global {
interface Window {
__initialUserDataPromise?: Promise<User | null>;
}
}
const queryClient = new QueryClient({
defaultOptions: {
@@ -24,27 +17,11 @@ const queryClient = new QueryClient({
},
});
// Track initial user data fetch
let initialUserDataPromise: Promise<User | null> | null = null;
// Initialize user data on app startup
const initializeUserData = async () => {
try {
const userData = await fetchUser();
fetchUser().then((userData) => {
if (userData) {
queryClient.setQueryData(["user"], userData);
return userData;
} catch (error) {
console.error("Error initializing user data:", error);
queryClient.setQueryData(["user"], null);
return null;
}
};
// Start initialization immediately and track the promise
initialUserDataPromise = initializeUserData();
// Export the promise so hooks can await it
window.__initialUserDataPromise = initialUserDataPromise;
});
const router = createRouter({
routeTree,

View File

@@ -101,15 +101,14 @@ type HealthResponse struct {
}
type User struct {
ID string `json:"id"`
Name string `json:"name"`
Email string `json:"email"`
AvatarURL string `json:"avatarURL"`
Plan string `json:"plan"`
Bio string `json:"bio"`
FirstName string `json:"firstName"`
LastName string `json:"lastName"`
OverThreshold bool `json:"overThreshold"`
ID string `json:"id"`
Email string `json:"email"`
Name string `json:"name"`
Bio string `json:"bio,omitempty"`
AvatarURL string `json:"avatarurl,omitempty"`
FirstName string `json:"firstname,omitempty"`
LastName string `json:"lastname,omitempty"`
Plan string `json:"plan,omitempty"`
}
type Attachment struct {

View File

@@ -12,18 +12,17 @@ import (
"log/slog"
"net/http"
"net/http/httputil"
"net/url"
"os"
"runtime"
"runtime/debug"
"slices"
"strconv"
"strings"
"sync"
"time"
"github.com/google/uuid"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/app/auth"
"github.com/ollama/ollama/app/server"
"github.com/ollama/ollama/app/store"
"github.com/ollama/ollama/app/tools"
@@ -118,40 +117,66 @@ func (s *Server) log() *slog.Logger {
// ollamaProxy creates a reverse proxy handler to the Ollama server
func (s *Server) ollamaProxy() http.Handler {
ollamaHost := os.Getenv("OLLAMA_HOST")
if ollamaHost == "" {
ollamaHost = "http://127.0.0.1:11434"
}
var (
proxy http.Handler
proxyMu sync.Mutex
)
if !strings.HasPrefix(ollamaHost, "http://") && !strings.HasPrefix(ollamaHost, "https://") {
ollamaHost = "http://" + ollamaHost
}
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
proxyMu.Lock()
p := proxy
proxyMu.Unlock()
target, err := url.Parse(ollamaHost)
if err != nil {
s.log().Error("failed to parse OLLAMA_HOST", "error", err, "host", ollamaHost)
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
http.Error(w, "failed to configure proxy", http.StatusInternalServerError)
})
}
if p == nil {
proxyMu.Lock()
if proxy == nil {
var err error
for i := range 2 {
if i > 0 {
s.log().Warn("ollama server not ready, retrying", "attempt", i+1)
time.Sleep(1 * time.Second)
}
s.log().Info("configuring ollama proxy", "target", target.String())
err = WaitForServer(context.Background(), 10*time.Second)
if err == nil {
break
}
}
proxy := httputil.NewSingleHostReverseProxy(target)
if err != nil {
proxyMu.Unlock()
s.log().Error("ollama server not ready after retries", "error", err)
http.Error(w, "Ollama server is not ready", http.StatusServiceUnavailable)
return
}
originalDirector := proxy.Director
proxy.Director = func(req *http.Request) {
originalDirector(req)
req.Host = target.Host
s.log().Debug("proxying request", "method", req.Method, "path", req.URL.Path, "target", target.Host)
}
target := envconfig.Host()
s.log().Info("configuring ollama proxy", "target", target.String())
proxy.ErrorHandler = func(w http.ResponseWriter, r *http.Request, err error) {
s.log().Error("proxy error", "error", err, "path", r.URL.Path, "target", target.String())
http.Error(w, "proxy error: "+err.Error(), http.StatusBadGateway)
}
newProxy := httputil.NewSingleHostReverseProxy(target)
return proxy
originalDirector := newProxy.Director
newProxy.Director = func(req *http.Request) {
originalDirector(req)
req.Host = target.Host
s.log().Debug("proxying request", "method", req.Method, "path", req.URL.Path, "target", target.Host)
}
newProxy.ErrorHandler = func(w http.ResponseWriter, r *http.Request, err error) {
s.log().Error("proxy error", "error", err, "path", r.URL.Path, "target", target.String())
http.Error(w, "proxy error: "+err.Error(), http.StatusBadGateway)
}
proxy = newProxy
p = newProxy
} else {
p = proxy
}
proxyMu.Unlock()
}
p.ServeHTTP(w, r)
})
}
type errHandlerFunc func(http.ResponseWriter, *http.Request) error
@@ -264,11 +289,10 @@ func (s *Server) Handler() http.Handler {
ollamaProxy := s.ollamaProxy()
mux.Handle("GET /api/tags", ollamaProxy)
mux.Handle("POST /api/show", ollamaProxy)
mux.Handle("GET /api/v1/me", handle(s.me))
mux.Handle("POST /api/v1/disconnect", handle(s.disconnect))
mux.Handle("GET /api/v1/connect", handle(s.connectURL))
mux.Handle("GET /api/v1/health", handle(s.health))
mux.Handle("GET /api/version", ollamaProxy)
mux.Handle("HEAD /api/version", ollamaProxy)
mux.Handle("POST /api/me", ollamaProxy)
mux.Handle("POST /api/signout", ollamaProxy)
// React app - catch all non-API routes and serve the React app
mux.Handle("GET /", s.appHandler())
@@ -338,7 +362,7 @@ func (s *Server) doSelfSigned(ctx context.Context, method, path string) (*http.R
}
// UserData fetches user data from ollama.com API for the current ollama key
func (s *Server) UserData(ctx context.Context) (*responses.User, error) {
func (s *Server) UserData(ctx context.Context) (*api.UserResponse, error) {
resp, err := s.doSelfSigned(ctx, http.MethodPost, "/api/me")
if err != nil {
return nil, fmt.Errorf("failed to call ollama.com/api/me: %w", err)
@@ -349,7 +373,7 @@ func (s *Server) UserData(ctx context.Context) (*responses.User, error) {
return nil, fmt.Errorf("unexpected status code: %d", resp.StatusCode)
}
var user responses.User
var user api.UserResponse
if err := json.NewDecoder(resp.Body).Decode(&user); err != nil {
return nil, fmt.Errorf("failed to parse user response: %w", err)
}
@@ -368,29 +392,27 @@ func (s *Server) UserData(ctx context.Context) (*responses.User, error) {
return &user, nil
}
func waitForServer(ctx context.Context) error {
timeout := time.Now().Add(10 * time.Second)
// TODO: this avoids an error on first load of the app
// however we should either show a loading state or
// wait for the Ollama server to be ready before redirecting
for {
// WaitForServer waits for the Ollama server to be ready
func WaitForServer(ctx context.Context, timeout time.Duration) error {
deadline := time.Now().Add(timeout)
for time.Now().Before(deadline) {
c, err := api.ClientFromEnvironment()
if err != nil {
return err
}
if _, err := c.Version(ctx); err == nil {
break
}
if time.Now().After(timeout) {
return fmt.Errorf("timeout waiting for Ollama server to be ready")
slog.Debug("ollama server is ready")
return nil
}
time.Sleep(10 * time.Millisecond)
}
return nil
return errors.New("timeout waiting for Ollama server to be ready")
}
func (s *Server) createChat(w http.ResponseWriter, r *http.Request) error {
waitForServer(r.Context())
if err := WaitForServer(r.Context(), 10*time.Second); err != nil {
return err
}
id, err := uuid.NewV7()
if err != nil {
@@ -975,7 +997,7 @@ func (s *Server) chat(w http.ResponseWriter, r *http.Request) error {
for _, toolCall := range res.Message.ToolCalls {
// continues loop as tools were executed
toolsExecuted = true
result, content, err := registry.Execute(ctx, toolCall.Function.Name, toolCall.Function.Arguments)
result, content, err := registry.Execute(ctx, toolCall.Function.Name, toolCall.Function.Arguments.ToMap())
if err != nil {
errContent := fmt.Sprintf("Error: %v", err)
toolErrMsg := store.NewMessage("tool", errContent, nil)
@@ -1438,129 +1460,6 @@ func (s *Server) settings(w http.ResponseWriter, r *http.Request) error {
})
}
func (s *Server) me(w http.ResponseWriter, r *http.Request) error {
if r.Method != http.MethodGet {
http.Error(w, "Method Not Allowed", http.StatusMethodNotAllowed)
return nil
}
user, err := s.UserData(r.Context())
if err != nil {
// If fetching from API fails, try to return cached user data if available
if cachedUser, cacheErr := s.Store.User(); cacheErr == nil && cachedUser != nil {
s.log().Info("API request failed, returning cached user data", "error", err)
responseUser := &responses.User{
Name: cachedUser.Name,
Email: cachedUser.Email,
Plan: cachedUser.Plan,
}
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusOK)
return json.NewEncoder(w).Encode(responseUser)
}
s.log().Error("failed to get user data", "error", err)
w.WriteHeader(http.StatusInternalServerError)
return json.NewEncoder(w).Encode(responses.Error{
Error: "failed to get user data",
})
}
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusOK)
return json.NewEncoder(w).Encode(user)
}
func (s *Server) disconnect(w http.ResponseWriter, r *http.Request) error {
if r.Method != http.MethodPost {
http.Error(w, "Method Not Allowed", http.StatusMethodNotAllowed)
return nil
}
if err := s.Store.ClearUser(); err != nil {
s.log().Warn("failed to clear cached user data", "error", err)
}
// Get the SSH public key to encode for the delete request
pubKey, err := ollamaAuth.GetPublicKey()
if err != nil {
s.log().Error("failed to get public key", "error", err)
w.WriteHeader(http.StatusInternalServerError)
return json.NewEncoder(w).Encode(responses.Error{
Error: "failed to get public key",
})
}
// Encode the key using base64 URL encoding
encodedKey := base64.RawURLEncoding.EncodeToString([]byte(pubKey))
// Call the /api/user/keys/{encodedKey} endpoint with DELETE
resp, err := s.doSelfSigned(r.Context(), http.MethodDelete, fmt.Sprintf("/api/user/keys/%s", encodedKey))
if err != nil {
s.log().Error("failed to call ollama.com/api/user/keys", "error", err)
w.WriteHeader(http.StatusInternalServerError)
return json.NewEncoder(w).Encode(responses.Error{
Error: "failed to disconnect from ollama.com",
})
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
s.log().Error("disconnect request failed", "status", resp.StatusCode)
w.WriteHeader(http.StatusInternalServerError)
return json.NewEncoder(w).Encode(responses.Error{
Error: "failed to disconnect from ollama.com",
})
}
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusOK)
return json.NewEncoder(w).Encode(map[string]string{"status": "disconnected"})
}
func (s *Server) connectURL(w http.ResponseWriter, r *http.Request) error {
if r.Method != http.MethodGet {
http.Error(w, "Method Not Allowed", http.StatusMethodNotAllowed)
return nil
}
connectURL, err := auth.BuildConnectURL(OllamaDotCom)
if err != nil {
s.log().Error("failed to build connect URL", "error", err)
w.WriteHeader(http.StatusInternalServerError)
return json.NewEncoder(w).Encode(responses.Error{
Error: "failed to build connect URL",
})
}
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusOK)
return json.NewEncoder(w).Encode(map[string]string{
"connect_url": connectURL,
})
}
func (s *Server) health(w http.ResponseWriter, r *http.Request) error {
if r.Method != http.MethodGet {
http.Error(w, "Method Not Allowed", http.StatusMethodNotAllowed)
return nil
}
healthy := false
c, err := api.ClientFromEnvironment()
if err == nil {
if _, err := c.Version(r.Context()); err == nil {
healthy = true
}
}
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusOK)
return json.NewEncoder(w).Encode(responses.HealthResponse{
Healthy: healthy,
})
}
func (s *Server) getInferenceCompute(w http.ResponseWriter, r *http.Request) error {
ctx, cancel := context.WithTimeout(r.Context(), 500*time.Millisecond)
defer cancel()
@@ -1659,13 +1558,13 @@ func convertToOllamaTool(toolSchema map[string]any) api.Tool {
tool.Function.Parameters.Type = "object"
tool.Function.Parameters.Required = []string{}
tool.Function.Parameters.Properties = make(map[string]api.ToolProperty)
tool.Function.Parameters.Properties = api.NewToolPropertiesMap()
if schemaProps, ok := toolSchema["schema"].(map[string]any); ok {
tool.Function.Parameters.Type = getStringFromMap(schemaProps, "type", "object")
if props, ok := schemaProps["properties"].(map[string]any); ok {
tool.Function.Parameters.Properties = make(map[string]api.ToolProperty)
tool.Function.Parameters.Properties = api.NewToolPropertiesMap()
for propName, propDef := range props {
if propMap, ok := propDef.(map[string]any); ok {
@@ -1673,7 +1572,7 @@ func convertToOllamaTool(toolSchema map[string]any) api.Tool {
Type: api.PropertyType{getStringFromMap(propMap, "type", "string")},
Description: getStringFromMap(propMap, "description", ""),
}
tool.Function.Parameters.Properties[propName] = prop
tool.Function.Parameters.Properties.Set(propName, prop)
}
}
}

View File

@@ -158,16 +158,16 @@ func (t *winTray) wndProc(hWnd windows.Handle, message uint32, wParam, lParam ui
case uint32(UI_REQUEST_MSG_ID):
// Requests for the UI must always come from the main event thread
l := int(wParam)
path := unsafe.String((*byte)(unsafe.Pointer(lParam)), l)
path := unsafe.String((*byte)(unsafe.Pointer(lParam)), l) //nolint:govet,gosec
t.app.UIRun(path)
case WM_COPYDATA:
// Handle URL scheme requests from other instances
if lParam != 0 {
cds := (*COPYDATASTRUCT)(unsafe.Pointer(lParam))
if cds.DwData == 1 { // Our identifier for URL scheme messages
cds := (*COPYDATASTRUCT)(unsafe.Pointer(lParam)) //nolint:govet,gosec
if cds.DwData == 1 { // Our identifier for URL scheme messages
// Convert the data back to string
data := make([]byte, cds.CbData)
copy(data, (*[1 << 30]byte)(unsafe.Pointer(cds.LpData))[:cds.CbData:cds.CbData])
copy(data, (*[1 << 30]byte)(unsafe.Pointer(cds.LpData))[:cds.CbData:cds.CbData]) //nolint:govet,gosec
urlScheme := string(data)
handleURLSchemeRequest(urlScheme)
lResult = 1 // Return non-zero to indicate success

View File

@@ -15,7 +15,7 @@ A Go-based command-line tool for benchmarking Ollama models with configurable pa
```
go build -o ollama-bench bench.go
./bench -model gpt-oss:20b -epochs 6 -format csv
./ollama-bench -model gpt-oss:20b -epochs 6 -format csv
```
Using Go Run (without building)
@@ -29,31 +29,32 @@ go run bench.go -model gpt-oss:20b -epochs 3
### Basic Example
```
./bench -model gemma3 -epochs 6
./ollama-bench -model gemma3 -epochs 6
```
### Benchmark Multiple Models
```
./bench -model gemma3,gemma3n -epochs 6 -max-tokens 100 -p "Write me a short story" | tee gemma.bench
./ollama-bench -model gemma3,gemma3n -epochs 6 -max-tokens 100 -p "Write me a short story" | tee gemma.bench
benchstat -col /name gemma.bench
```
### With Image Prompt
```
./bench -model qwen3-vl -image photo.jpg -epochs 6 -max-tokens 100 -p "Describe this image"
./ollama-bench -model qwen3-vl -image photo.jpg -epochs 6 -max-tokens 100 -p "Describe this image"
```
### Advanced Example
```
./bench -model llama3 -epochs 10 -temperature 0.7 -max-tokens 500 -seed 42 -format csv -output results.csv
./ollama-bench -model llama3 -epochs 10 -temperature 0.7 -max-tokens 500 -seed 42 -format csv -output results.csv
```
## Command Line Options
| Option | Description | Default |
|----------|-------------|---------|
| -model | Comma-separated list of models to benchmark | (required) |
| -epochs | Number of iterations per model | 1 |
| -max-tokens | Maximum tokens for model response | 0 (unlimited) |

View File

@@ -48,8 +48,8 @@ func OutputMetrics(w io.Writer, format string, metrics []Metrics, verbose bool)
case "benchstat":
if verbose {
printHeader := func() {
fmt.Printf("sysname: %s\n", runtime.GOOS)
fmt.Printf("machine: %s\n", runtime.GOARCH)
fmt.Fprintf(w, "sysname: %s\n", runtime.GOOS)
fmt.Fprintf(w, "machine: %s\n", runtime.GOARCH)
}
once.Do(printHeader)
}
@@ -147,6 +147,17 @@ func BenchmarkChat(fOpt flagOptions) error {
return err
}
var out io.Writer = os.Stdout
if fOpt.outputFile != nil && *fOpt.outputFile != "" {
f, err := os.OpenFile(*fOpt.outputFile, os.O_CREATE|os.O_WRONLY, 0o644)
if err != nil {
fmt.Fprintf(os.Stderr, "ERROR: cannot open output file %s: %v\n", *fOpt.outputFile, err)
return err
}
defer f.Close()
out = f
}
for _, model := range models {
for range *fOpt.epochs {
options := make(map[string]interface{})
@@ -241,13 +252,14 @@ func BenchmarkChat(fOpt flagOptions) error {
},
}
OutputMetrics(os.Stdout, *fOpt.format, metrics, *fOpt.verbose)
OutputMetrics(out, *fOpt.format, metrics, *fOpt.verbose)
if *fOpt.keepAlive > 0 {
time.Sleep(time.Duration(*fOpt.keepAlive*float64(time.Second)) + 200*time.Millisecond)
}
}
}
return nil
}

View File

@@ -45,6 +45,7 @@ import (
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/types/syncmap"
"github.com/ollama/ollama/version"
xcmd "github.com/ollama/ollama/x/cmd"
)
const ConnectInstructions = "To sign in, navigate to:\n %s\n\n"
@@ -517,6 +518,10 @@ func RunHandler(cmd *cobra.Command, args []string) error {
return generateEmbedding(cmd, name, opts.Prompt, opts.KeepAlive, truncate, dimensions)
}
// Check for experimental flag
isExperimental, _ := cmd.Flags().GetBool("experimental")
yoloMode, _ := cmd.Flags().GetBool("yolo")
if interactive {
if err := loadOrUnloadModel(cmd, &opts); err != nil {
var sErr api.AuthorizationError
@@ -543,6 +548,11 @@ func RunHandler(cmd *cobra.Command, args []string) error {
}
}
// Use experimental agent loop with tools
if isExperimental {
return xcmd.GenerateInteractive(cmd, opts.Model, opts.WordWrap, opts.Options, opts.Think, opts.HideThinking, opts.KeepAlive, yoloMode)
}
return generateInteractive(cmd, opts)
}
return generate(cmd, opts)
@@ -943,6 +953,9 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
rows = append(rows, []string{"", "parameters", resp.Details.ParameterSize})
}
rows = append(rows, []string{"", "quantization", resp.Details.QuantizationLevel})
if resp.Requires != "" {
rows = append(rows, []string{"", "requires", resp.Requires})
}
return
})
@@ -1430,7 +1443,7 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
latest.Summary()
}
return &api.Message{Role: role, Content: fullResponse.String()}, nil
return &api.Message{Role: role, Thinking: thinkingContent.String(), Content: fullResponse.String()}, nil
}
func generate(cmd *cobra.Command, opts runOptions) error {
@@ -1751,6 +1764,8 @@ func NewCLI() *cobra.Command {
runCmd.Flags().Bool("hidethinking", false, "Hide thinking output (if provided)")
runCmd.Flags().Bool("truncate", false, "For embedding models: truncate inputs exceeding context length (default: true). Set --truncate=false to error instead")
runCmd.Flags().Int("dimensions", 0, "Truncate output embeddings to specified dimension (embedding models only)")
runCmd.Flags().Bool("experimental", false, "Enable experimental agent loop with tools")
runCmd.Flags().BoolP("yolo", "y", false, "Skip all tool approval prompts (use with caution)")
stopCmd := &cobra.Command{
Use: "stop MODEL",

View File

@@ -291,6 +291,31 @@ Weigh anchor!
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
t.Run("min version", func(t *testing.T) {
var b bytes.Buffer
if err := showInfo(&api.ShowResponse{
Details: api.ModelDetails{
Family: "test",
ParameterSize: "7B",
QuantizationLevel: "FP16",
},
Requires: "0.14.0",
}, false, &b); err != nil {
t.Fatal(err)
}
expect := ` Model
architecture test
parameters 7B
quantization FP16
requires 0.14.0
`
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
}
func TestDeleteHandler(t *testing.T) {

View File

@@ -40,6 +40,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Fprintln(os.Stderr, " /bye Exit")
fmt.Fprintln(os.Stderr, " /?, /help Help for a command")
fmt.Fprintln(os.Stderr, " /? shortcuts Help for keyboard shortcuts")
fmt.Fprintln(os.Stderr, "")
fmt.Fprintln(os.Stderr, "Use \"\"\" to begin a multi-line message.")

View File

@@ -6,11 +6,14 @@ import (
"errors"
"fmt"
"io/fs"
"iter"
"log/slog"
"maps"
"os"
"slices"
"strings"
ofs "github.com/ollama/ollama/fs"
"github.com/ollama/ollama/fs/ggml"
)
@@ -18,9 +21,28 @@ type ModelParameters struct {
Architectures []string `json:"architectures"`
VocabSize uint32 `json:"vocab_size"`
// TODO is this needed?
ModelType string `json:"model_type"`
TextModel struct {
VocabSize uint32 `json:"vocab_size"`
VocabSize uint32 `json:"vocab_size"`
HiddenSize uint32 `json:"hidden_size"`
ModelType string `json:"model_type"`
} `json:"text_config"`
// TODO vision config
/*
"vision_config": {
"hidden_size": 1152,
"image_size": 896,
"intermediate_size": 4304,
"model_type": "siglip_vision_model",
"num_attention_heads": 16,
"num_hidden_layers": 27,
"patch_size": 14,
"vision_use_head": false
}
*/
}
type AdapterParameters struct {
@@ -33,8 +55,91 @@ type AdapterParameters struct {
} `json:"lora_parameters"`
}
func (ModelParameters) KV(t *Tokenizer) ggml.KV {
kv := ggml.KV{
type KV map[string]any
func (kv KV) Architecture() string {
return kv.String("general.architecture", "unknown")
}
type valueTypes interface {
uint8 | int8 | uint16 | int16 |
uint32 | int32 | uint64 | int64 |
string | float32 | float64 | bool
}
type arrayValueTypes interface {
[]uint8 | []int8 | []uint16 | []int16 |
[]uint32 | []int32 | []uint64 | []int64 |
[]string | []float32 | []float64 | []bool
}
func keyValue[T valueTypes | arrayValueTypes](kv KV, key string, defaultValue ...T) (T, bool) {
if !strings.HasPrefix(key, "tokenizer.") && !strings.HasPrefix(key, "general.") {
key = kv.Architecture() + "." + key
}
if val, ok := kv[key].(T); ok {
return val, true
}
return defaultValue[0], false
}
func (kv KV) String(key string, defaultValue ...string) string {
val, _ := keyValue(kv, key, append(defaultValue, "")...)
return val
}
func (kv KV) Uint(key string, defaultValue ...uint32) uint32 {
val, _ := keyValue(kv, key, append(defaultValue, 0)...)
return val
}
func (kv KV) Float(key string, defaultValue ...float32) float32 {
val, _ := keyValue(kv, key, append(defaultValue, 0)...)
return val
}
func (kv KV) Bool(key string, defaultValue ...bool) bool {
val, _ := keyValue(kv, key, append(defaultValue, false)...)
return val
}
func (kv KV) Strings(key string, defaultValue ...[]string) []string {
val, _ := keyValue(kv, key, append(defaultValue, []string{""})...)
return val
}
func (kv KV) Ints(key string, defaultValue ...[]int32) []int32 {
val, _ := keyValue(kv, key, append(defaultValue, []int32{0})...)
return val
}
func (kv KV) Uints(key string, defaultValue ...[]uint32) []uint32 {
val, _ := keyValue(kv, key, append(defaultValue, []uint32{0})...)
return val
}
func (kv KV) Floats(key string, defaultValue ...[]float32) []float32 {
val, _ := keyValue(kv, key, append(defaultValue, []float32{0})...)
return val
}
func (kv KV) Bools(key string, defaultValue ...[]bool) []bool {
val, _ := keyValue(kv, key, append(defaultValue, []bool{false})...)
return val
}
func (kv KV) Len() int {
return len(kv)
}
func (kv KV) Keys() iter.Seq[string] {
return maps.Keys(kv)
}
func (kv KV) Value(key string) any {
return kv[key]
}
func (ModelParameters) KV(t *Tokenizer) KV {
kv := KV{
"general.file_type": uint32(1),
"general.quantization_version": uint32(2),
"tokenizer.ggml.pre": t.Pre,
@@ -63,7 +168,7 @@ func (ModelParameters) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p AdapterParameters) KV() ggml.KV {
func (p AdapterParameters) KV() KV {
var alpha float32
if p.LoraParameters.Alpha == 0 {
alpha = float32(p.Alpha)
@@ -71,7 +176,7 @@ func (p AdapterParameters) KV() ggml.KV {
alpha = p.LoraParameters.Alpha
}
kv := ggml.KV{
kv := KV{
"adapter.lora.alpha": alpha,
"adapter.type": "lora",
"general.file_type": uint32(1),
@@ -88,9 +193,14 @@ func (ModelParameters) specialTokenTypes() []string {
}
}
type ModelConverter interface {
type ModelKV interface {
// KV maps parameters to LLM key-values
KV(*Tokenizer) ggml.KV
KV(*Tokenizer) KV
}
type ModelConverter interface {
ModelKV
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
Tensors([]Tensor) []*ggml.Tensor
// Replacements returns a list of string pairs to replace in tensor names.
@@ -107,7 +217,7 @@ type moreParser interface {
type AdapterConverter interface {
// KV maps parameters to LLM key-values
KV(ggml.KV) ggml.KV
KV(ofs.Config) KV
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
Tensors([]Tensor) []*ggml.Tensor
// Replacements returns a list of string pairs to replace in tensor names.
@@ -115,7 +225,7 @@ type AdapterConverter interface {
Replacements() []string
}
func ConvertAdapter(fsys fs.FS, f *os.File, baseKV ggml.KV) error {
func ConvertAdapter(fsys fs.FS, f *os.File, baseKV ofs.Config) error {
bts, err := fs.ReadFile(fsys, "adapter_config.json")
if err != nil {
return err
@@ -126,8 +236,8 @@ func ConvertAdapter(fsys fs.FS, f *os.File, baseKV ggml.KV) error {
return err
}
arch, ok := baseKV["general.architecture"]
if !ok {
arch := baseKV.Architecture()
if arch == "" {
return errors.New("architecture not set for the base model")
}
@@ -153,23 +263,19 @@ func ConvertAdapter(fsys fs.FS, f *os.File, baseKV ggml.KV) error {
return writeFile(f, conv.KV(baseKV), conv.Tensors(ts))
}
// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations
// and files it finds in the input path.
// Supported input model formats include safetensors.
// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model.
func ConvertModel(fsys fs.FS, f *os.File) error {
func LoadModelMetadata(fsys fs.FS) (ModelKV, *Tokenizer, error) {
bts, err := fs.ReadFile(fsys, "config.json")
if err != nil {
return err
return nil, nil, err
}
var p ModelParameters
if err := json.Unmarshal(bts, &p); err != nil {
return err
return nil, nil, err
}
if len(p.Architectures) < 1 {
return errors.New("unknown architecture")
return nil, nil, errors.New("unknown architecture")
}
var conv ModelConverter
@@ -182,6 +288,8 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
conv = &llama4Model{}
case "Mistral3ForConditionalGeneration":
conv = &mistral3Model{}
case "Ministral3ForCausalLM":
conv = &mistral3CausalModel{}
case "MixtralForCausalLM":
conv = &mixtralModel{}
case "GemmaForCausalLM":
@@ -200,31 +308,37 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
conv = &qwen25VLModel{}
case "Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration":
conv = &qwen3VLModel{}
case "Olmo3ForCausalLM":
conv = &olmoModel{}
case "BertModel":
conv = &bertModel{}
case "NomicBertModel", "NomicBertMoEModel":
conv = &nomicbertModel{}
case "CohereForCausalLM":
conv = &commandrModel{}
case "GptOssForCausalLM":
conv = &gptossModel{}
case "DeepseekOCRForCausalLM":
conv = &deepseekocr{}
case "DeepseekV3ForCausalLM":
conv = &deepseek2Model{}
default:
return fmt.Errorf("unsupported architecture %q", p.Architectures[0])
return nil, nil, fmt.Errorf("unsupported architecture %q", p.Architectures[0])
}
if err := json.Unmarshal(bts, conv); err != nil {
return err
return nil, nil, err
}
if t, ok := conv.(moreParser); ok {
if err := t.parseMore(fsys); err != nil {
return err
return nil, nil, err
}
}
t, err := parseTokenizer(fsys, conv.specialTokenTypes())
if err != nil {
return err
return nil, nil, err
}
vocabSize := int(cmp.Or(p.VocabSize, p.TextModel.VocabSize))
@@ -246,6 +360,19 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
default:
slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens))
}
return conv, t, nil
}
// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations
// and files it finds in the input path.
// Supported input model formats include safetensors.
// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model.
func ConvertModel(fsys fs.FS, f *os.File) error {
kv, t, err := LoadModelMetadata(fsys)
if err != nil {
return err
}
conv := kv.(ModelConverter)
ts, err := parseTensors(fsys, strings.NewReplacer(conv.Replacements()...))
if err != nil {
@@ -255,7 +382,7 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
return writeFile(f, conv.KV(t), conv.Tensors(ts))
}
func writeFile(f *os.File, kv ggml.KV, ts []*ggml.Tensor) error {
func writeFile(f *os.File, kv KV, ts []*ggml.Tensor) error {
for i := range ts {
ts[i].Shape = slices.Clone(ts[i].Shape)
slices.Reverse(ts[i].Shape)

View File

@@ -88,7 +88,7 @@ func (p *bertModel) parseMore(fsys fs.FS) error {
return nil
}
func (p *bertModel) KV(t *Tokenizer) ggml.KV {
func (p *bertModel) KV(t *Tokenizer) KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "bert"
kv["bert.attention.causal"] = false

View File

@@ -24,7 +24,7 @@ type commandrModel struct {
var _ ModelConverter = (*commandrModel)(nil)
func (p *commandrModel) KV(t *Tokenizer) ggml.KV {
func (p *commandrModel) KV(t *Tokenizer) KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "command-r"
kv["general.name"] = "command-r"

View File

@@ -0,0 +1,173 @@
package convert
import (
"cmp"
"fmt"
"log/slog"
"regexp"
"strconv"
"github.com/ollama/ollama/fs/ggml"
)
type deepseek2Model struct {
ModelParameters // architectures, vocab_size
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RMSNormEPS float32 `json:"rms_norm_eps"`
RopeTheta float32 `json:"rope_theta"`
QKNopeHeadDim uint32 `json:"qk_nope_head_dim"`
QKRopeHeadDim uint32 `json:"qk_rope_head_dim"`
KVLoraRank uint32 `json:"kv_lora_rank"`
QLoraRank uint32 `json:"q_lora_rank"`
VHeadDim uint32 `json:"v_head_dim"`
ExpertCount uint32 `json:"n_routed_experts"`
ExpertSharedCount uint32 `json:"n_shared_experts"`
ExpertIntermediateSize uint32 `json:"moe_intermediate_size"`
ExpertUsedCount uint32 `json:"num_experts_per_tok"`
ExpertWeightsNorm bool `json:"norm_topk_prob"`
ExpertWeightsScale float32 `json:"routed_scaling_factor"`
ScoringFunc string `json:"scoring_func"`
LeadingDenseBlockCount uint32 `json:"first_k_dense_replace"`
RopeScaling struct {
Factor float32 `json:"factor"`
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
Type string `json:"type"`
MScaleAllDim float32 `json:"mscale_all_dim"`
} `json:"rope_scaling"`
Architecture string
}
func (p *deepseek2Model) KV(t *Tokenizer) KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "deepseek2"
kv["general.type"] = "model"
kv["deepseek2.block_count"] = p.HiddenLayers
numHeads := p.NumAttentionHeads
numKVHeads := p.NumKeyValueHeads
kv["deepseek2.attention.head_count"] = numHeads
kv["deepseek2.attention.head_count_kv"] = numKVHeads
kv["deepseek2.attention.key_length"] = p.QKNopeHeadDim + p.QKRopeHeadDim
kv["deepseek2.attention.kv_lora_rank"] = p.KVLoraRank
kv["deepseek2.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["deepseek2.attention.q_lora_rank"] = p.QLoraRank
kv["deepseek2.attention.value_length"] = p.VHeadDim
kv["deepseek2.context_length"] = p.MaxPositionEmbeddings
kv["deepseek2.embedding_length"] = p.HiddenSize
kv["deepseek2.expert_count"] = p.ExpertCount
kv["deepseek2.expert_feed_forward_length"] = p.ExpertIntermediateSize
kv["deepseek2.expert_shared_count"] = p.ExpertSharedCount
var scoringFunc uint32
switch p.ScoringFunc {
case "softmax":
// not currently supported in the model, but needed for Deepseek-OCR
scoringFunc = 1
case "sigmoid":
scoringFunc = 2
}
kv["deepseek2.expert_gating_func"] = scoringFunc
kv["deepseek2.expert_used_count"] = p.ExpertUsedCount
kv["deepseek2.expert_weights_norm"] = p.ExpertWeightsNorm
kv["deepseek2.expert_weights_scale"] = p.ExpertWeightsScale
kv["deepseek2.feed_forward_length"] = p.IntermediateSize
kv["deepseek2.leading_dense_block_count"] = p.LeadingDenseBlockCount
kv["deepseek2.rope.dimension_count"] = p.QKRopeHeadDim
kv["deepseek2.rope.freq_base"] = cmp.Or(p.RopeTheta, 10000.0)
kv["deepseek2.rope.scaling.factor"] = p.RopeScaling.Factor
kv["deepseek2.rope.scaling.original_context_length"] = p.RopeScaling.OriginalMaxPositionEmbeddings
kv["deepseek2.rope.scaling.type"] = p.RopeScaling.Type
kv["deepseek2.rope.scaling.yarn_log_multiplier"] = 0.1 * p.RopeScaling.MScaleAllDim
kv["tokenizer.ggml.pre"] = "deepseek-v3"
return kv
}
func (p *deepseek2Model) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"language_model.", "",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.kv_a_proj_with_mqa", "attn_kv_a_mqa",
"self_attn.kv_a_layernorm", "attn_kv_a_norm",
"self_attn.kv_b_proj", "attn_kv_b",
"self_attn.q_a_proj", "attn_q_a",
"self_attn.q_a_layernorm", "attn_q_a_norm",
"self_attn.q_b_proj", "attn_q_b",
"self_attn.o_proj", "attn_output",
"post_attention_layernorm", "ffn_norm",
"mlp.shared_experts.down_proj", "ffn_down_shexp",
"mlp.shared_experts.gate_proj", "ffn_gate_shexp",
"mlp.shared_experts.up_proj", "ffn_up_shexp",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"mlp.gate.e_score_correction_bias", "exp_probs_b.bias",
"mlp.gate", "ffn_gate_inp",
}
}
func (p *deepseek2Model) Tensors(s []Tensor) (out []*ggml.Tensor) {
merges := make([]merge, p.HiddenLayers*3)
for i := range p.HiddenLayers {
merges[i*3+0] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.gate_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_gate_exps.weight", i),
}
merges[i*3+1] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.up_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_up_exps.weight", i),
}
merges[i*3+2] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.down_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_down_exps.weight", i),
}
}
skipLayer := func(n string, minValue uint32) bool {
re := regexp.MustCompile(`^blk\.(\d+)`)
matches := re.FindStringSubmatch(n)
if matches == nil {
return false
}
blkNum, err := strconv.Atoi(matches[1])
if err != nil {
return false
}
return uint32(blkNum) >= minValue
}
out, s = mergeTensors(s, merges...)
for _, t := range s {
// skip any additional layers (such as the Multi-Token Prediction layer)
if skipLayer(t.Name(), p.HiddenLayers) {
slog.Debug("skipping layer", "name", t.Name())
continue
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}

View File

@@ -41,7 +41,7 @@ type deepseekocr struct {
} `json:"vision_config"`
}
func (m *deepseekocr) KV(t *Tokenizer) ggml.KV {
func (m *deepseekocr) KV(t *Tokenizer) KV {
kv := m.ModelParameters.KV(t)
kv["general.architecture"] = "deepseekocr"
kv["block_count"] = m.LanguageConfig.HiddenLayers

View File

@@ -23,7 +23,7 @@ type gemmaModel struct {
var _ ModelConverter = (*gemmaModel)(nil)
func (p *gemmaModel) KV(t *Tokenizer) ggml.KV {
func (p *gemmaModel) KV(t *Tokenizer) KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma"
kv["gemma.context_length"] = p.MaxPositionEmbeddings

View File

@@ -1,7 +1,5 @@
package convert
import "github.com/ollama/ollama/fs/ggml"
type gemma2Model struct {
gemmaModel
SlidingWindow uint32 `json:"sliding_window"`
@@ -9,7 +7,7 @@ type gemma2Model struct {
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
}
func (p *gemma2Model) KV(t *Tokenizer) ggml.KV {
func (p *gemma2Model) KV(t *Tokenizer) KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma2"
kv["gemma2.context_length"] = p.MaxPositionEmbeddings

View File

@@ -6,6 +6,7 @@ import (
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/fs/ggml"
)
@@ -15,7 +16,7 @@ type gemma2Adapter struct {
var _ AdapterConverter = (*gemma2Adapter)(nil)
func (p *gemma2Adapter) KV(baseKV ggml.KV) ggml.KV {
func (p *gemma2Adapter) KV(baseKV fs.Config) KV {
kv := p.AdapterParameters.KV()
kv["general.architecture"] = "gemma2"
return kv

View File

@@ -2,8 +2,7 @@ package convert
import (
"cmp"
"github.com/ollama/ollama/fs/ggml"
"slices"
)
type gemma3Model struct {
@@ -26,16 +25,26 @@ type gemma3Model struct {
NumChannels uint32 `json:"num_channels"` // num_channels 3
PatchSize uint32 `json:"patch_size"` // patch_size 14
} `json:"vision_config"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
RopeLocalTheta float32 `json:"rope_local_base_freq"`
RopeGlobalTheta float32 `json:"rope_global_base_freq"`
SlidingWindow uint32 `json:"sliding_window"`
MultiModalTokensPerImage uint32 `json:"mm_tokens_per_image"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
RopeLocalTheta float32 `json:"rope_local_base_freq"`
RopeTheta float32 `json:"rope_theta"`
SlidingWindow uint32 `json:"sliding_window"`
SlidingWindowPattern *uint32 `json:"sliding_window_pattern"`
LayerTypes []string `json:"layer_types"`
MultiModalTokensPerImage uint32 `json:"mm_tokens_per_image"`
RopeScaling *struct {
Type string `json:"rope_type"`
Factor float32 `json:"factor"`
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
ExtrapolationFactor float32 `json:"extrapolation_factor"`
BetaFast float32 `json:"beta_fast"`
BetaSlow float32 `json:"beta_slow"`
} `json:"rope_scaling"`
}
const (
@@ -44,7 +53,7 @@ const (
gemma27BLayerCount = 62
)
func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
func (p *gemma3Model) KV(t *Tokenizer) KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma3"
@@ -81,9 +90,38 @@ func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
kv["gemma3.attention.key_length"] = p.HeadDim
kv["gemma3.attention.value_length"] = p.HeadDim
kv["gemma3.attention.sliding_window"] = p.SlidingWindow
kv["gemma3.final_logit_softcapping"] = cmp.Or(p.FinalLogitSoftcap, 30)
// The sliding window pattern is either provided as the sliding_window_pattern
// key (an int) or as the layer_types key (a list of strings).
if p.SlidingWindowPattern != nil || len(p.LayerTypes) > 0 {
kv["gemma3.attention.sliding_window_pattern"] = slices.Collect(func(yield func(bool) bool) {
for i := range numBlocks {
var isLocal bool
if len(p.LayerTypes) > 0 && int(i) < len(p.LayerTypes) {
isLocal = p.LayerTypes[i] == "sliding_attention"
} else if p.SlidingWindowPattern != nil && *p.SlidingWindowPattern > 0 {
isLocal = (i+1)%*p.SlidingWindowPattern != 0
}
if !yield(isLocal) {
break
}
}
})
}
if p.FinalLogitSoftcap > 0 {
kv["gemma3.final_logit_softcapping"] = p.FinalLogitSoftcap
}
kv["gemma3.rope.local.freq_base"] = cmp.Or(p.RopeLocalTheta, 10000.0)
kv["gemma3.rope.global.freq_base"] = cmp.Or(p.RopeGlobalTheta, 1000000.0)
kv["gemma3.rope.freq_base"] = cmp.Or(p.RopeTheta, 1000000.0)
if p.RopeScaling != nil && p.RopeScaling.Type == "yarn" && p.RopeScaling.Factor > 0 {
kv["gemma3.rope.scaling.type"] = "yarn"
kv["gemma3.rope.scaling.factor"] = p.RopeScaling.Factor
kv["gemma3.rope.scaling.original_context_length"] = p.RopeScaling.OriginalMaxPositionEmbeddings
kv["gemma3.rope.scaling.extrapolation_factor"] = cmp.Or(p.RopeScaling.ExtrapolationFactor, float32(1.0))
kv["gemma3.rope.scaling.beta_fast"] = cmp.Or(p.RopeScaling.BetaFast, float32(64.0))
kv["gemma3.rope.scaling.beta_slow"] = cmp.Or(p.RopeScaling.BetaSlow, float32(1.0))
}
kv["gemma3.embedding_length"] = p.HiddenSize
kv["gemma3.feed_forward_length"] = p.IntermediateSize
default:

View File

@@ -38,7 +38,7 @@ type gemma3nModel struct {
VisionModel struct{} `json:"vision_config"`
}
func (m *gemma3nModel) KV(t *Tokenizer) ggml.KV {
func (m *gemma3nModel) KV(t *Tokenizer) KV {
kv := m.ModelParameters.KV(t)
kv["general.architecture"] = "gemma3n"
kv["gemma3n.activation_sparsity_scale"] = slices.Collect(func(yield func(float32) bool) {

View File

@@ -37,7 +37,7 @@ type gptossModel struct {
var _ ModelConverter = (*gptossModel)(nil)
func (m *gptossModel) KV(t *Tokenizer) ggml.KV {
func (m *gptossModel) KV(t *Tokenizer) KV {
kv := m.ModelParameters.KV(t)
kv["general.architecture"] = "gptoss"
kv["general.file_type"] = uint32(4)

View File

@@ -48,7 +48,7 @@ type llamaModel struct {
var _ ModelConverter = (*llamaModel)(nil)
func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
func (p *llamaModel) KV(t *Tokenizer) KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "llama"
kv["llama.vocab_size"] = p.VocabSize

View File

@@ -35,7 +35,7 @@ type llama4Model struct {
}
// KV implements ModelConverter.
func (p *llama4Model) KV(t *Tokenizer) ggml.KV {
func (p *llama4Model) KV(t *Tokenizer) KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "llama4"

View File

@@ -7,6 +7,7 @@ import (
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/fs/ggml"
)
@@ -18,13 +19,13 @@ type llamaAdapter struct {
var _ AdapterConverter = (*llamaAdapter)(nil)
func (p *llamaAdapter) KV(baseKV ggml.KV) ggml.KV {
func (p *llamaAdapter) KV(baseKV fs.Config) KV {
kv := p.AdapterParameters.KV()
kv["general.architecture"] = "llama"
kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
kv["llama.attention.head_count_kv"] = baseKV["llama.attention.head_count_kv"]
kv["llama.attention.head_count"] = baseKV.Value("llama.attention.head_count")
kv["llama.attention.head_count_kv"] = baseKV.Value("llama.attention.head_count_kv")
p.NumAttentionHeads = baseKV["llama.attention.head_count"].(uint32)
p.NumAttentionHeads = baseKV.Value("llama.attention.head_count").(uint32)
return kv
}

View File

@@ -29,6 +29,17 @@ type mistral3Model struct {
SlidingWindow *uint32 `json:"sliding_window"`
HiddenAct string `json:"hidden_act"`
VocabSize uint32 `json:"vocab_size"`
RopeParameters struct {
BetaFast float32 `json:"beta_fast"`
BetaSlow float32 `json:"beta_slow"`
Factor float32 `json:"factor"`
Llama4ScalingBeta *float32 `json:"llama_4_scaling_beta"`
OrigMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
RopeType string `json:"rope_type"`
RopeTheta float32 `json:"rope_theta"`
Mscale *float32 `json:"mscale"`
MscaleAllDim *float32 `json:"mscale_all_dim"`
} `json:"rope_parameters"`
} `json:"text_config"`
VisionModel struct {
NumAttentionHeads uint32 `json:"num_attention_heads"`
@@ -41,12 +52,15 @@ type mistral3Model struct {
HeadDim uint32 `json:"head_dim"`
HiddenAct string `json:"hidden_act"`
RopeTheta float32 `json:"rope_theta"`
RopeParameters struct {
RopeTheta float32 `json:"rope_theta"`
} `json:"rope_parameters"`
} `json:"vision_config"`
MultiModalProjectorBias bool `json:"multimodal_projector_bias"`
ProjectorHiddenAct string `json:"projector_hidden_act"`
}
func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
func (p *mistral3Model) KV(t *Tokenizer) KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "mistral3"
kv["mistral3.vocab_size"] = p.TextModel.VocabSize
@@ -61,8 +75,25 @@ func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
kv["mistral3.attention.layer_norm_rms_epsilon"] = p.TextModel.RMSNormEPS
kv["mistral3.attention.key_length"] = p.TextModel.HeadDim
kv["mistral3.attention.value_length"] = p.TextModel.HeadDim
kv["mistral3.rope.dimension_count"] = p.TextModel.HiddenSize / p.TextModel.NumHiddenLayers
kv["mistral3.rope.freq_base"] = p.TextModel.RopeTheta
kv["mistral3.rope.dimension_count"] = cmp.Or(p.TextModel.HeadDim, p.TextModel.HiddenSize/p.TextModel.NumAttentionHeads)
kv["mistral3.rope.freq_base"] = cmp.Or(p.TextModel.RopeTheta, p.TextModel.RopeParameters.RopeTheta)
kv["mistral3.rope.scaling.factor"] = p.TextModel.RopeParameters.Factor
kv["mistral3.rope.scaling.type"] = p.TextModel.RopeParameters.RopeType
kv["mistral3.rope.scaling.beta_fast"] = p.TextModel.RopeParameters.BetaFast
kv["mistral3.rope.scaling.beta_slow"] = p.TextModel.RopeParameters.BetaSlow
if p.TextModel.RopeParameters.Mscale != nil {
kv["mistral3.rope.scaling.mscale"] = *p.TextModel.RopeParameters.Mscale
}
if p.TextModel.RopeParameters.MscaleAllDim != nil {
kv["mistral3.rope.scaling.mscale_all_dim"] = *p.TextModel.RopeParameters.MscaleAllDim
}
if p.TextModel.RopeParameters.OrigMaxPositionEmbeddings > 0 {
kv["mistral3.rope.scaling.original_context_length"] = p.TextModel.RopeParameters.OrigMaxPositionEmbeddings
}
if p.TextModel.RopeParameters.Llama4ScalingBeta != nil {
kv["mistral3.rope.scaling_beta"] = *p.TextModel.RopeParameters.Llama4ScalingBeta
}
// Vision configuration
kv["mistral3.vision.block_count"] = p.VisionModel.NumHiddenLayers
@@ -74,7 +105,7 @@ func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
kv["mistral3.vision.patch_size"] = p.VisionModel.PatchSize
kv["mistral3.vision.num_channels"] = p.VisionModel.NumChannels
// kv["mistral3.vision.attention.layer_norm_epsilon"] = 1e-05 // Default value
kv["mistral3.vision.rope.freq_base"] = p.VisionModel.RopeTheta
kv["mistral3.vision.rope.freq_base"] = cmp.Or(p.VisionModel.RopeTheta, p.VisionModel.RopeParameters.RopeTheta)
// Multimodal configuration
kv["mistral3.image_token_index"] = p.ImageTokenIndex

View File

@@ -0,0 +1,181 @@
package convert
import (
"cmp"
"fmt"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
)
type mistral3CausalModel struct {
ModelParameters
NumHiddenLayers uint32 `json:"num_hidden_layers"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
SlidingWindow *uint32 `json:"sliding_window"`
HiddenAct string `json:"hidden_act"`
VocabSize uint32 `json:"vocab_size"`
RopeParameters struct {
BetaFast float32 `json:"beta_fast"`
BetaSlow float32 `json:"beta_slow"`
Factor float32 `json:"factor"`
Llama4ScalingBeta *float32 `json:"llama_4_scaling_beta"`
OrigMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
RopeType string `json:"rope_type"`
RopeTheta float32 `json:"rope_theta"`
Mscale *float32 `json:"mscale"`
MscaleAllDim *float32 `json:"mscale_all_dim"`
} `json:"rope_parameters"`
}
func (p *mistral3CausalModel) KV(t *Tokenizer) KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "mistral3"
kv["mistral3.vocab_size"] = p.VocabSize
// Text configuration
kv["mistral3.block_count"] = p.NumHiddenLayers
kv["mistral3.context_length"] = p.MaxPositionEmbeddings
kv["mistral3.embedding_length"] = p.HiddenSize
kv["mistral3.feed_forward_length"] = p.IntermediateSize
kv["mistral3.attention.head_count"] = p.NumAttentionHeads
kv["mistral3.attention.head_count_kv"] = p.NumKeyValueHeads
kv["mistral3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["mistral3.attention.key_length"] = p.HeadDim
kv["mistral3.attention.value_length"] = p.HeadDim
kv["mistral3.rope.dimension_count"] = cmp.Or(p.HeadDim, p.HiddenSize/p.NumAttentionHeads)
kv["mistral3.rope.freq_base"] = cmp.Or(p.RopeTheta, p.RopeParameters.RopeTheta)
kv["mistral3.rope.scaling.factor"] = p.RopeParameters.Factor
kv["mistral3.rope.scaling.type"] = p.RopeParameters.RopeType
kv["mistral3.rope.scaling.beta_fast"] = p.RopeParameters.BetaFast
kv["mistral3.rope.scaling.beta_slow"] = p.RopeParameters.BetaSlow
if p.RopeParameters.Mscale != nil {
kv["mistral3.rope.scaling.mscale"] = *p.RopeParameters.Mscale
}
if p.RopeParameters.MscaleAllDim != nil {
kv["mistral3.rope.scaling.mscale_all_dim"] = *p.RopeParameters.MscaleAllDim
}
if p.RopeParameters.OrigMaxPositionEmbeddings > 0 {
kv["mistral3.rope.scaling.original_context_length"] = p.RopeParameters.OrigMaxPositionEmbeddings
kv["mistral3.rope.scaling_beta"] = *p.RopeParameters.Llama4ScalingBeta
}
if p.RopeParameters.Llama4ScalingBeta != nil {
kv["mistral3.rope.scaling_beta"] = *p.RopeParameters.Llama4ScalingBeta
}
return kv
}
func (p *mistral3CausalModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
if !strings.HasPrefix(t.Name(), "v.") {
if strings.HasSuffix(t.Name(), ".attn_q.weight") ||
strings.HasSuffix(t.Name(), ".attn_k.weight") {
t.SetRepacker(p.repack)
}
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *mistral3CausalModel) Replacements() []string {
return []string{
"model.norm", "output_norm",
"model.", "",
"layers", "blk",
"transformer.layers", "blk",
"vision_tower", "v",
"ln_pre", "encoder_norm",
"input_layernorm", "attn_norm",
"post_attention_layernorm", "ffn_norm",
"embed_tokens", "token_embd",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.down_proj", "ffn_down",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"attention.q_proj", "attn_q",
"attention.k_proj", "attn_k",
"attention.v_proj", "attn_v",
"attention.o_proj", "attn_output",
"attention_norm", "attn_norm",
"feed_forward.gate_proj", "ffn_gate",
"feed_forward.down_proj", "ffn_down",
"feed_forward.up_proj", "ffn_up",
"multi_modal_projector", "mm",
"ffn_norm", "ffn_norm",
"lm_head", "output",
}
}
func (p *mistral3CausalModel) repack(name string, data []float32, shape []uint64) ([]float32, error) {
var dims []int
for _, dim := range shape {
dims = append(dims, int(dim))
}
var heads uint32
if strings.HasSuffix(name, ".attn_q.weight") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, ".attn_k.weight") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
} else {
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@@ -12,7 +12,7 @@ type mixtralModel struct {
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
}
func (p *mixtralModel) KV(t *Tokenizer) ggml.KV {
func (p *mixtralModel) KV(t *Tokenizer) KV {
kv := p.llamaModel.KV(t)
if p.NumLocalExperts > 0 {

View File

@@ -34,7 +34,7 @@ type mllamaModel struct {
} `json:"vision_config"`
}
func (m *mllamaModel) KV(t *Tokenizer) ggml.KV {
func (m *mllamaModel) KV(t *Tokenizer) KV {
kv := m.ModelParameters.KV(t)
kv["general.architecture"] = "mllama"

View File

@@ -0,0 +1,213 @@
package convert
import (
"cmp"
"encoding/json"
"io/fs"
"path/filepath"
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
)
type nomicbertModel struct {
ModelParameters
NLayers uint32 `json:"n_layers"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
LayerNormEPS float32 `json:"layer_norm_eps"`
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
RopeFreqBase float32 `json:"rope_theta"`
normalizeEmbeddings bool
PoolingType uint32
// MoE parameters (only present in v2 models)
NumExperts uint32 `json:"num_local_experts"`
NumExpertsUsed uint32 `json:"num_experts_per_tok"`
MoEEveryNLayers uint32 `json:"moe_every_n_layers"`
}
var (
_ ModelConverter = (*nomicbertModel)(nil)
_ moreParser = (*nomicbertModel)(nil)
)
func (p *nomicbertModel) parseMore(fsys fs.FS) error {
bts, err := fs.ReadFile(fsys, "modules.json")
if err != nil {
return err
}
var modules []struct {
Type string `json:"type"`
Path string `json:"path"`
}
if err := json.Unmarshal(bts, &modules); err != nil {
return err
}
var pooling string
for _, m := range modules {
switch m.Type {
case "sentence_transformers.models.Pooling":
pooling = m.Path
case "sentence_transformers.models.Normalize":
p.normalizeEmbeddings = true
}
}
if pooling != "" {
bts, err := fs.ReadFile(fsys, filepath.Join(pooling, "config.json"))
if err != nil {
return err
}
var pc struct {
PoolingModeCLSToken bool `json:"pooling_mode_cls_token"`
PoolingModeMeanTokens bool `json:"pooling_mode_mean_tokens"`
}
if err := json.Unmarshal(bts, &pc); err != nil {
return err
}
if pc.PoolingModeMeanTokens {
p.PoolingType = 1
} else if pc.PoolingModeCLSToken {
p.PoolingType = 2
}
}
return nil
}
func (p *nomicbertModel) KV(t *Tokenizer) KV {
kv := p.ModelParameters.KV(t)
// Determine architecture based on MoE parameters (following qwen3 pattern)
arch := "nomic-bert"
if p.MoEEveryNLayers > 0 {
arch += "-moe"
}
kv["general.architecture"] = arch
kv["attention.causal"] = false
kv["pooling_type"] = p.PoolingType
kv["normalize_embeddings"] = p.normalizeEmbeddings
kv["block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers)
if contextLength := p.MaxPositionEmbeddings; contextLength > 0 {
kv["context_length"] = contextLength
}
if embeddingLength := p.HiddenSize; embeddingLength > 0 {
kv["embedding_length"] = p.HiddenSize
}
if feedForwardLength := p.IntermediateSize; feedForwardLength > 0 {
kv["feed_forward_length"] = p.IntermediateSize
}
if headCount := p.NumAttentionHeads; headCount > 0 {
kv["attention.head_count"] = p.NumAttentionHeads
}
if kvHeadCount := p.NumKeyValueHeads; kvHeadCount > 0 {
kv["attention.head_count_kv"] = p.NumKeyValueHeads
}
if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon); layerNormEpsilon > 0 {
kv["attention.layer_norm_epsilon"] = layerNormEpsilon
}
if p.RopeFreqBase > 0 {
kv["rope.freq_base"] = p.RopeFreqBase
}
// MoE specific parameters (only if MoE is enabled)
if p.NumExperts > 0 {
kv["expert_count"] = p.NumExperts
}
if p.NumExpertsUsed > 0 {
kv["expert_used_count"] = p.NumExpertsUsed
}
if p.MoEEveryNLayers > 0 {
kv["moe_every_n_layers"] = p.MoEEveryNLayers
}
kv["tokenizer.ggml.model"] = "bert"
kv["tokenizer.ggml.token_type_count"] = uint32(2)
// convert to phantom space tokens
for i, e := range t.Tokens {
switch {
case strings.HasPrefix(e, "[") && strings.HasSuffix(e, "]"):
// noop - keep special tokens as-is
case strings.HasPrefix(e, "##"):
t.Tokens[i] = e[2:]
default:
t.Tokens[i] = "\u2581" + e
}
}
kv["tokenizer.ggml.tokens"] = t.Tokens
return kv
}
func (p *nomicbertModel) Tensors(ts []Tensor) []*ggml.Tensor {
out := make([]*ggml.Tensor, 0, len(ts))
for _, t := range ts {
if slices.Contains([]string{
"embeddings.position_ids",
"pooler.dense.weight",
"pooler.dense.bias",
}, t.Name()) {
continue
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (nomicbertModel) Replacements() []string {
return []string{
"encoder.layer", "blk",
"encoder.layers", "blk",
"embeddings.word_embeddings", "token_embd",
"embeddings.token_type_embeddings", "token_types",
"embeddings.LayerNorm", "token_embd_norm",
"attention.self.qkv", "attn_qkv",
"attention.output.dense", "attn_output",
"attention.output.LayerNorm", "attn_output_norm",
"mlp.up", "ffn_up",
"mlp.down", "ffn_down",
"mlp.router", "ffn_gate_inp",
"mlp.experts.up", "ffn_up_exps",
"mlp.experts.down", "ffn_down_exps",
"intermediate.dense", "ffn_up",
"output.dense", "ffn_down",
"output.LayerNorm", "layer_output_norm",
}
}

117
convert/convert_olmo.go Normal file
View File

@@ -0,0 +1,117 @@
package convert
import (
"cmp"
"github.com/ollama/ollama/fs/ggml"
)
type ropeScaling struct {
Factor float32 `json:"factor"`
OriginalMaxPositionEmbeds uint32 `json:"original_max_position_embeddings"`
AttentionFactor float32 `json:"attention_factor"`
BetaFast float32 `json:"beta_fast"`
BetaSlow float32 `json:"beta_slow"`
RopeType string `json:"rope_type"`
ExtrapolationFactor float32 `json:"extrapolation_factor"`
}
type olmoModel struct {
ModelParameters
HiddenSize uint32 `json:"hidden_size"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
RMSNormEPS float32 `json:"rms_norm_eps"`
RopeTheta float32 `json:"rope_theta"`
RopeScaling *ropeScaling `json:"rope_scaling"`
SlidingWindow uint32 `json:"sliding_window"`
LayerTypes []string `json:"layer_types"`
}
var _ ModelConverter = (*olmoModel)(nil)
func (p *olmoModel) KV(t *Tokenizer) KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "olmo3"
kv["olmo3.block_count"] = p.NumHiddenLayers
kv["olmo3.context_length"] = p.MaxPositionEmbeddings
kv["olmo3.embedding_length"] = p.HiddenSize
kv["olmo3.feed_forward_length"] = p.IntermediateSize
kv["olmo3.attention.head_count"] = p.NumAttentionHeads
kv["olmo3.attention.head_count_kv"] = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
if p.RopeTheta > 0 {
kv["olmo3.rope.freq_base"] = p.RopeTheta
}
if p.RopeScaling != nil {
if p.RopeScaling.Factor > 0 {
kv["olmo3.rope.scaling.factor"] = p.RopeScaling.Factor
}
if p.RopeScaling.OriginalMaxPositionEmbeds > 0 {
kv["olmo3.rope.scaling.original_context_length"] = p.RopeScaling.OriginalMaxPositionEmbeds
}
if p.RopeScaling.AttentionFactor > 0 {
kv["olmo3.rope.scaling.attn_factor"] = p.RopeScaling.AttentionFactor
}
if p.RopeScaling.RopeType != "" {
kv["olmo3.rope.scaling.type"] = p.RopeScaling.RopeType
}
}
if p.RMSNormEPS > 0 {
kv["olmo3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
}
if p.SlidingWindow > 0 {
kv["olmo3.attention.sliding_window"] = p.SlidingWindow
}
if len(p.LayerTypes) > 0 {
slidingPattern := make([]bool, len(p.LayerTypes))
for i, layerType := range p.LayerTypes {
slidingPattern[i] = (layerType == "sliding_attention")
}
kv["olmo3.attention.sliding_window_pattern"] = slidingPattern
}
return kv
}
func (p *olmoModel) Tensors(ts []Tensor) []*ggml.Tensor {
out := make([]*ggml.Tensor, 0, len(ts))
for _, t := range ts {
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *olmoModel) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.layers", "blk",
"model.norm", "output_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"self_attn.q_norm", "attn_q_norm",
"self_attn.k_norm", "attn_k_norm",
"post_attention_layernorm", "post_attention_norm",
"post_feedforward_layernorm", "post_ffw_norm",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
}
}

View File

@@ -37,7 +37,7 @@ type phi3Model struct {
var _ ModelConverter = (*phi3Model)(nil)
func (p *phi3Model) KV(t *Tokenizer) ggml.KV {
func (p *phi3Model) KV(t *Tokenizer) KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "phi3"
kv["phi3.context_length"] = p.MaxPositionEmbeddings

View File

@@ -22,7 +22,7 @@ type qwen2Model struct {
var _ ModelConverter = (*qwen2Model)(nil)
func (q *qwen2Model) KV(t *Tokenizer) ggml.KV {
func (q *qwen2Model) KV(t *Tokenizer) KV {
kv := q.ModelParameters.KV(t)
kv["general.architecture"] = "qwen2"
kv["qwen2.block_count"] = q.HiddenLayers

View File

@@ -29,7 +29,7 @@ type qwen25VLModel struct {
var _ ModelConverter = (*qwen25VLModel)(nil)
func (q *qwen25VLModel) KV(t *Tokenizer) ggml.KV {
func (q *qwen25VLModel) KV(t *Tokenizer) KV {
kv := q.ModelParameters.KV(t)
kv["general.architecture"] = "qwen25vl"

View File

@@ -32,7 +32,7 @@ type qwen3Model struct {
}
// KV implements ModelConverter.
func (q *qwen3Model) KV(t *Tokenizer) ggml.KV {
func (q *qwen3Model) KV(t *Tokenizer) KV {
arch := "qwen3"
if q.NumExperts > 0 {
arch += "moe"

View File

@@ -45,7 +45,7 @@ func (m *qwen3VLModel) parseMore(fsys fs.FS) error {
return json.Unmarshal(bts, &m.VisionModel)
}
func (m *qwen3VLModel) KV(t *Tokenizer) ggml.KV {
func (m *qwen3VLModel) KV(t *Tokenizer) KV {
kv := m.qwen3Model.KV(t)
arch := "qwen3vl"

View File

@@ -19,6 +19,7 @@ import (
"testing"
"github.com/google/go-cmp/cmp"
fsc "github.com/ollama/ollama/fs"
"github.com/ollama/ollama/fs/ggml"
)
@@ -28,7 +29,7 @@ type tensorData struct {
Shape []int `json:"shape"`
}
func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
func convertFull(t *testing.T, fsys fs.FS) (*os.File, fsc.Config, ggml.Tensors) {
t.Helper()
f, err := os.CreateTemp(t.TempDir(), "f16")
@@ -59,9 +60,10 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
return r, m.KV(), m.Tensors()
}
func generateResultsJSON(t *testing.T, f *os.File, kv ggml.KV, tensors ggml.Tensors) map[string]string {
func generateResultsJSON(t *testing.T, f *os.File, kv fsc.Config, tensors ggml.Tensors) map[string]string {
actual := make(map[string]string)
for k, v := range kv {
for k := range kv.Keys() {
v := kv.Value(k)
if s, ok := v.(json.Marshaler); !ok {
actual[k] = fmt.Sprintf("%v", v)
} else {
@@ -277,7 +279,7 @@ func generateSafetensorTestData(t *testing.T, tempDir string, tensorData map[str
func TestConvertAdapter(t *testing.T) {
type AdapterCase struct {
Name string
BaseKV map[string]any
BaseKV KV
Expected map[string]string
}

View File

@@ -49,7 +49,8 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
tt := int32(sentencepiece.ModelProto_SentencePiece_NORMAL)
// temporary fix to handle gemma3 broken configs
if slices.Contains([]string{"<end_of_turn>", "<start_of_turn>"}, piece.GetPiece()) {
// TODO(parthsareen): allow reading of tokenizer.json to allow managing special tokens when using spm
if slices.Contains([]string{"<end_of_turn>", "<start_of_turn>", "<start_function_declaration>", "<end_function_declaration>", "<start_function_call>", "<end_function_call>", "<start_function_response>", "<end_function_response>", "<escape>"}, piece.GetPiece()) {
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
}

View File

@@ -65,6 +65,7 @@ func GPUDevices(ctx context.Context, runners []ml.FilteredRunnerDiscovery) []ml.
}
slog.Info("discovering available GPUs...")
detectIncompatibleLibraries()
// Warn if any user-overrides are set which could lead to incorrect GPU discovery
overrideWarnings()
@@ -98,6 +99,9 @@ func GPUDevices(ctx context.Context, runners []ml.FilteredRunnerDiscovery) []ml.
continue
} else if jetpack != "" && filepath.Base(dir) != "cuda_"+jetpack {
continue
} else if jetpack == "" && strings.Contains(filepath.Base(dir), "cuda_jetpack") {
slog.Debug("jetpack not detected (set JETSON_JETPACK or OLLAMA_LLM_LIBRARY to override), skipping", "libDir", dir)
continue
} else if !envconfig.EnableVulkan() && strings.Contains(filepath.Base(dir), "vulkan") {
slog.Info("experimental Vulkan support disabled. To enable, set OLLAMA_VULKAN=1")
continue
@@ -143,7 +147,7 @@ func GPUDevices(ctx context.Context, runners []ml.FilteredRunnerDiscovery) []ml.
wg.Add(1)
go func(i int) {
defer wg.Done()
extraEnvs := ml.GetVisibleDevicesEnv(devices[i : i+1])
extraEnvs := ml.GetVisibleDevicesEnv(devices[i:i+1], true)
devices[i].AddInitValidation(extraEnvs)
if len(bootstrapDevices(ctx2ndPass, devices[i].LibraryPath, extraEnvs)) == 0 {
slog.Debug("filtering device which didn't fully initialize",
@@ -329,7 +333,8 @@ func GPUDevices(ctx context.Context, runners []ml.FilteredRunnerDiscovery) []ml.
defer cancel()
// Apply any dev filters to avoid re-discovering unsupported devices, and get IDs correct
devFilter := ml.GetVisibleDevicesEnv(devices)
// We avoid CUDA filters here to keep ROCm from failing to discover GPUs in a mixed environment
devFilter := ml.GetVisibleDevicesEnv(devices, false)
for dir := range libDirs {
updatedDevices := bootstrapDevices(ctx, []string{ml.LibOllamaPath, dir}, devFilter)
@@ -484,3 +489,16 @@ func overrideWarnings() {
slog.Warn("if GPUs are not correctly discovered, unset and try again")
}
}
func detectIncompatibleLibraries() {
if runtime.GOOS != "windows" {
return
}
basePath, err := exec.LookPath("ggml-base.dll")
if err != nil || basePath == "" {
return
}
if !strings.HasPrefix(basePath, ml.LibOllamaPath) {
slog.Warn("potentially incompatible library detected in PATH", "location", basePath)
}
}

View File

@@ -50,7 +50,7 @@ Generate a response for a given prompt with a provided model. This is a streamin
Advanced parameters (optional):
- `format`: the format to return a response in. Format can be `json` or a JSON schema
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.mdx#valid-parameters-and-values) such as `temperature`
- `system`: system message to (overrides what is defined in the `Modelfile`)
- `template`: the prompt template to use (overrides what is defined in the `Modelfile`)
- `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects
@@ -507,7 +507,7 @@ The `message` object has the following fields:
Advanced parameters (optional):
- `format`: the format to return a response in. Format can be `json` or a JSON schema.
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.mdx#valid-parameters-and-values) such as `temperature`
- `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
@@ -895,11 +895,11 @@ curl http://localhost:11434/api/chat -d '{
"tool_calls": [
{
"function": {
"name": "get_temperature",
"name": "get_weather",
"arguments": {
"city": "Toronto"
}
},
}
}
]
},
@@ -907,7 +907,7 @@ curl http://localhost:11434/api/chat -d '{
{
"role": "tool",
"content": "11 degrees celsius",
"tool_name": "get_temperature",
"tool_name": "get_weather"
}
],
"stream": false,
@@ -1189,7 +1189,7 @@ If you are creating a model from a safetensors directory or from a GGUF file, yo
- `template`: (optional) the prompt template for the model
- `license`: (optional) a string or list of strings containing the license or licenses for the model
- `system`: (optional) a string containing the system prompt for the model
- `parameters`: (optional) a dictionary of parameters for the model (see [Modelfile](./modelfile.md#valid-parameters-and-values) for a list of parameters)
- `parameters`: (optional) a dictionary of parameters for the model (see [Modelfile](./modelfile.mdx#valid-parameters-and-values) for a list of parameters)
- `messages`: (optional) a list of message objects used to create a conversation
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
- `quantize` (optional): quantize a non-quantized (e.g. float16) model
@@ -1698,7 +1698,7 @@ Generate embeddings from a model
Advanced parameters:
- `truncate`: truncates the end of each input to fit within context length. Returns error if `false` and context length is exceeded. Defaults to `true`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.mdx#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
- `dimensions`: number of dimensions for the embedding
@@ -1817,7 +1817,7 @@ Generate embeddings from a model
Advanced parameters:
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.mdx#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
### Examples

View File

File diff suppressed because one or more lines are too long

View File

@@ -15,7 +15,7 @@ Also known as "single-shot" tool calling.
```shell
curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "qwen3",
"messages": [{"role": "user", "content": "What's the temperature in New York?"}],
"messages": [{"role": "user", "content": "What is the temperature in New York?"}],
"stream": false,
"tools": [
{
@@ -41,7 +41,7 @@ Also known as "single-shot" tool calling.
curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "qwen3",
"messages": [
{"role": "user", "content": "What's the temperature in New York?"},
{"role": "user", "content": "What is the temperature in New York?"},
{
"role": "assistant",
"tool_calls": [
@@ -90,7 +90,7 @@ Also known as "single-shot" tool calling.
}
return temperatures.get(city, "Unknown")
messages = [{"role": "user", "content": "What's the temperature in New York?"}]
messages = [{"role": "user", "content": "What is the temperature in New York?"}]
# pass functions directly as tools in the tools list or as a JSON schema
response = chat(model="qwen3", messages=messages, tools=[get_temperature], think=True)
@@ -146,7 +146,7 @@ Also known as "single-shot" tool calling.
},
]
const messages = [{ role: 'user', content: "What's the temperature in New York?" }]
const messages = [{ role: 'user', content: "What is the temperature in New York?" }]
const response = await ollama.chat({
model: 'qwen3',
@@ -609,7 +609,7 @@ def get_temperature(city: str) -> str:
return temperatures.get(city, 'Unknown')
messages = [{'role': 'user', 'content': "What's the temperature in New York?"}]
messages = [{'role': 'user', 'content': "What is the temperature in New York?"}]
while True:
stream = chat(
@@ -684,7 +684,7 @@ const getTemperatureTool = {
}
async function agentLoop() {
const messages = [{ role: 'user', content: "What's the temperature in New York?" }]
const messages = [{ role: 'user', content: "What is the temperature in New York?" }]
while (true) {
const stream = await ollama.chat({

View File

@@ -36,7 +36,6 @@ Provide an `images` array. SDKs accept file paths, URLs or raw bytes while the R
}],
"stream": false
}'
"
```
</Tab>
<Tab title="Python">

View File

@@ -49,6 +49,8 @@ Install prerequisites:
- [Ninja](https://github.com/ninja-build/ninja/releases)
- (Optional) NVIDIA GPU support
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network)
- (Optional) VULKAN GPU support
- [VULKAN SDK](https://vulkan.lunarg.com/sdk/home) - useful for AMD/Intel GPUs
Then, configure and build the project:
@@ -57,6 +59,17 @@ cmake -B build
cmake --build build --config Release
```
> Building for Vulkan requires VULKAN_SDK environment variable:
>
> PowerShell
> ```powershell
> $env:VULKAN_SDK="C:\VulkanSDK\<version>"
> ```
> CMD
> ```cmd
> set VULKAN_SDK=C:\VulkanSDK\<version>
> ```
> [!IMPORTANT]
> Building for ROCm requires additional flags:
> ```
@@ -65,6 +78,7 @@ cmake --build build --config Release
> ```
Lastly, run Ollama:
```shell
@@ -84,7 +98,9 @@ Install prerequisites:
- [ROCm](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/quick-start.html)
- (Optional) NVIDIA GPU support
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads)
- (Optional) VULKAN GPU support
- [VULKAN SDK](https://vulkan.lunarg.com/sdk/home) - useful for AMD/Intel GPUs
- Or install via package manager: `sudo apt install vulkan-sdk` (Ubuntu/Debian) or `sudo dnf install vulkan-sdk` (Fedora/CentOS)
> [!IMPORTANT]
> Ensure prerequisites are in `PATH` before running CMake.

View File

@@ -14,11 +14,11 @@ curl -fsSL https://ollama.com/install.sh | sh
## How can I view the logs?
Review the [Troubleshooting](./troubleshooting.md) docs for more about using logs.
Review the [Troubleshooting](./troubleshooting) docs for more about using logs.
## Is my GPU compatible with Ollama?
Please refer to the [GPU docs](./gpu.md).
Please refer to the [GPU docs](./gpu).
## How can I specify the context window size?
@@ -57,8 +57,13 @@ ollama ps
```
<Info>
**Output**: ``` NAME ID SIZE PROCESSOR UNTIL llama3:70b bcfb190ca3a7 42 GB
100% GPU 4 minutes from now ```
**Output**:
```
NAME ID SIZE PROCESSOR UNTIL
llama3:70b bcfb190ca3a7 42 GB 100% GPU 4 minutes from now
```
</Info>
The `Processor` column will show which memory the model was loaded in to:
@@ -385,4 +390,4 @@ Ollama for Windows and macOS register as a login item during installation. You
- In `Task Manager` go to the `Startup apps` tab, search for `ollama` then click `Disable`
**MacOS**
- Open `Settings` and search for "Login Items", find the `Ollama` entry under "Allow in the Background`, then click the slider to disable.
- Open `Settings` and search for "Login Items", find the `Ollama` entry under "Allow in the Background`, then click the slider to disable.

View File

@@ -33,7 +33,7 @@ Check your compute compatibility to see if your card is supported:
| 5.0 | GeForce GTX | `GTX 750 Ti` `GTX 750` `NVS 810` |
| | Quadro | `K2200` `K1200` `K620` `M1200` `M520` `M5000M` `M4000M` `M3000M` `M2000M` `M1000M` `K620M` `M600M` `M500M` |
For building locally to support older GPUs, see [developer.md](./development.md#linux-cuda-nvidia)
For building locally to support older GPUs, see [developer](./development#linux-cuda-nvidia)
### GPU Selection
@@ -54,7 +54,7 @@ sudo modprobe nvidia_uvm`
Ollama supports the following AMD GPUs via the ROCm library:
> [!NOTE]
> **NOTE:**
> Additional AMD GPU support is provided by the Vulkan Library - see below.
@@ -132,9 +132,9 @@ Ollama supports GPU acceleration on Apple devices via the Metal API.
## Vulkan GPU Support
> [!NOTE]
> **NOTE:**
> Vulkan is currently an Experimental feature. To enable, you must set OLLAMA_VULKAN=1 for the Ollama server as
described in the [FAQ](faq.md#how-do-i-configure-ollama-server)
described in the [FAQ](faq#how-do-i-configure-ollama-server)
Additional GPU support on Windows and Linux is provided via
[Vulkan](https://www.vulkan.org/). On Windows most GPU vendors drivers come
@@ -161,6 +161,6 @@ sudo setcap cap_perfmon+ep /usr/local/bin/ollama
To select specific Vulkan GPU(s), you can set the environment variable
`GGML_VK_VISIBLE_DEVICES` to one or more numeric IDs on the Ollama server as
described in the [FAQ](faq.md#how-do-i-configure-ollama-server). If you
described in the [FAQ](faq#how-do-i-configure-ollama-server). If you
encounter any problems with Vulkan based GPUs, you can disable all Vulkan GPUs
by setting `GGML_VK_VISIBLE_DEVICES=-1`

View File

@@ -41,6 +41,7 @@ INSTRUCTION arguments
| [`ADAPTER`](#adapter) | Defines the (Q)LoRA adapters to apply to the model. |
| [`LICENSE`](#license) | Specifies the legal license. |
| [`MESSAGE`](#message) | Specify message history. |
| [`REQUIRES`](#requires) | Specify the minimum version of Ollama required by the model. |
## Examples
@@ -248,6 +249,16 @@ MESSAGE user Is Ontario in Canada?
MESSAGE assistant yes
```
### REQUIRES
The `REQUIRES` instruction allows you to specify the minimum version of Ollama required by the model.
```
REQUIRES <version>
```
The version should be a valid Ollama version (e.g. 0.14.0).
## Notes
- the **`Modelfile` is not case sensitive**. In the examples, uppercase instructions are used to make it easier to distinguish it from arguments.

View File

@@ -0,0 +1,46 @@
# extract-examples
Extracts code examples from MDX files to a temp directory so you can run them.
## Usage
```shell
go run docs/tools/extract-examples/main.go <mdx-file>
```
## Example
```shell
go run docs/tools/extract-examples/main.go docs/api/openai-compatibility.mdx
```
Output:
```
Extracting code examples to: /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368
- 01_basic.py
- 01_basic.js
- 01_basic.sh
- 02_responses.py
- 02_responses.js
- 02_responses.sh
- 03_vision.py
- 03_vision.js
- 03_vision.sh
Extracted 9 file(s) to /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368
To run examples:
cd /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368
npm install # for JS examples
then run individual files with `node file.js`, `python file.py`, `bash file.sh`
```
## How it works
- Parses MDX files looking for fenced code blocks with filenames (e.g., ` ```python basic.py `)
- Groups examples by their `<CodeGroup>` and prefixes filenames with `01_`, `02_`, etc.
- Writes all extracted files to a temp directory

View File

@@ -0,0 +1,137 @@
package main
import (
"bufio"
"fmt"
"os"
"path/filepath"
"regexp"
"strings"
)
func main() {
if len(os.Args) < 2 {
fmt.Fprintln(os.Stderr, "Usage: go run extract-examples.go <mdx-file>")
os.Exit(1)
}
mdxFile := os.Args[1]
f, err := os.Open(mdxFile)
if err != nil {
fmt.Fprintf(os.Stderr, "Error: %v\n", err)
os.Exit(1)
}
defer f.Close()
// Create temp directory
tempDir, err := os.MkdirTemp("", "mdx-examples-*")
if err != nil {
fmt.Fprintf(os.Stderr, "Error creating temp dir: %v\n", err)
os.Exit(1)
}
fmt.Printf("Extracting code examples to: %s\n\n", tempDir)
// Patterns
codeBlockStart := regexp.MustCompile("^```([a-zA-Z0-9_-]+)\\s+([^\\s]+)$")
codeGroupStart := regexp.MustCompile("^<CodeGroup")
codeGroupEnd := regexp.MustCompile("^</CodeGroup>")
scanner := bufio.NewScanner(f)
inCodeBlock := false
inCodeGroup := false
var currentFile string
var content strings.Builder
count := 0
codeGroupNum := 0
for scanner.Scan() {
line := scanner.Text()
// Track CodeGroup boundaries
if codeGroupStart.MatchString(line) {
inCodeGroup = true
codeGroupNum++
continue
}
if codeGroupEnd.MatchString(line) {
inCodeGroup = false
continue
}
if inCodeBlock {
if line == "```" {
// End of code block - write file
if currentFile != "" {
outPath := filepath.Join(tempDir, currentFile)
if err := os.WriteFile(outPath, []byte(content.String()), 0o644); err != nil {
fmt.Fprintf(os.Stderr, "Error writing %s: %v\n", currentFile, err)
} else {
fmt.Printf(" - %s\n", currentFile)
count++
}
}
inCodeBlock = false
currentFile = ""
content.Reset()
} else {
content.WriteString(line)
content.WriteString("\n")
}
} else {
if matches := codeBlockStart.FindStringSubmatch(line); matches != nil {
inCodeBlock = true
filename := matches[2]
// Prefix with CodeGroup number if inside a CodeGroup
if inCodeGroup {
currentFile = fmt.Sprintf("%02d_%s", codeGroupNum, filename)
} else {
currentFile = filename
}
content.Reset()
}
}
}
if err := scanner.Err(); err != nil {
fmt.Fprintf(os.Stderr, "Error reading file: %v\n", err)
os.Exit(1)
}
// Write package.json for JavaScript dependencies
packageJSON := `{
"name": "mdx-examples",
"type": "module",
"dependencies": {
"openai": "^4",
"ollama": "^0.5"
}
}
`
if err := os.WriteFile(filepath.Join(tempDir, "package.json"), []byte(packageJSON), 0o644); err != nil {
fmt.Fprintf(os.Stderr, "Error writing package.json: %v\n", err)
}
// Write pyproject.toml for Python dependencies
pyprojectTOML := `[project]
name = "mdx-examples"
version = "0.0.0"
dependencies = [
"openai",
"ollama",
]
`
if err := os.WriteFile(filepath.Join(tempDir, "pyproject.toml"), []byte(pyprojectTOML), 0o644); err != nil {
fmt.Fprintf(os.Stderr, "Error writing pyproject.toml: %v\n", err)
}
fmt.Printf("\n")
fmt.Printf("Extracted %d file(s) to %s\n", count, tempDir)
fmt.Printf("\n")
fmt.Printf("To run examples:\n")
fmt.Printf("\n")
fmt.Printf(" cd %s\n npm install # for JS examples\n", tempDir)
fmt.Printf("\n")
fmt.Printf("then run individual files with `node file.js`, `python file.py`, `bash file.sh`\n")
}

View File

@@ -87,7 +87,7 @@ When Ollama starts up, it takes inventory of the GPUs present in the system to d
### Linux NVIDIA Troubleshooting
If you are using a container to run Ollama, make sure you've set up the container runtime first as described in [docker.md](./docker.md)
If you are using a container to run Ollama, make sure you've set up the container runtime first as described in [docker](./docker)
Sometimes the Ollama can have difficulties initializing the GPU. When you check the server logs, this can show up as various error codes, such as "3" (not initialized), "46" (device unavailable), "100" (no device), "999" (unknown), or others. The following troubleshooting techniques may help resolve the problem

View File

@@ -1,5 +1,7 @@
package fs
import "iter"
type Config interface {
Architecture() string
String(string, ...string) string
@@ -11,4 +13,8 @@ type Config interface {
Ints(string, ...[]int32) []int32
Floats(string, ...[]float32) []float32
Bools(string, ...[]bool) []bool
Len() int
Keys() iter.Seq[string]
Value(key string) any
}

View File

@@ -6,13 +6,16 @@ import (
"errors"
"fmt"
"io"
"iter"
"log/slog"
"maps"
"math"
"slices"
"strings"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/util/bufioutil"
"github.com/ollama/ollama/ml"
)
type GGML struct {
@@ -238,20 +241,34 @@ func (kv KV) Bools(key string, defaultValue ...[]bool) []bool {
return val.values
}
func (kv KV) Len() int {
return len(kv)
}
func (kv KV) Keys() iter.Seq[string] {
return maps.Keys(kv)
}
func (kv KV) Value(key string) any {
return kv[key]
}
func (kv KV) OllamaEngineRequired() bool {
return slices.Contains([]string{
"bert",
"deepseek2",
"deepseekocr",
"gemma3",
"gemma3n",
"gptoss", "gpt-oss",
"llama4",
"mistral3",
"mllama",
"nomic-bert",
"olmo3",
"qwen25vl",
"qwen3", "qwen3moe",
"qwen3vl", "qwen3vlmoe",
"deepseekocr",
"deepseek2",
"nomic-bert",
}, kv.Architecture())
}
@@ -550,7 +567,7 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, error) {
}, nil
}
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string, useFlashAttention bool) (kv []uint64, partialOffload, fullOffload uint64) {
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string, useFlashAttention ml.FlashAttentionType) (kv []uint64, partialOffload, fullOffload uint64) {
context *= uint64(numParallel)
embedding := f.KV().EmbeddingLength()
@@ -791,7 +808,7 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
}
partialOffload = 2 * f.KV().HeadCountMax() / cmp.Or(f.KV().HeadCountKVMin(), 1) * kvTotal / 6
if useFlashAttention {
if useFlashAttention == ml.FlashAttentionEnabled {
// rough estimate of graph size with flash attention on
partialOffload = (4*uint64(numParallel) + context>>10 + 110) * format.MebiByte
}
@@ -809,6 +826,14 @@ func (f GGML) SupportsKVCacheType(cacheType string) bool {
return slices.Contains([]string{"q8_0", "q4_0"}, cacheType)
}
// KVCacheTypeIsQuantized checks if the requested cache type is a quantized type
func (f GGML) KVCacheTypeIsQuantized(cacheType string) bool {
if cacheType == "" || cacheType == "f16" || cacheType == "f32" || cacheType == "bf16" {
return false
}
return true
}
// SupportsFlashAttention checks if the model supports flash attention
func (f GGML) SupportsFlashAttention() bool {
_, isEmbedding := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]
@@ -829,8 +854,11 @@ func (f GGML) SupportsFlashAttention() bool {
// FlashAttention checks if the model should enable flash attention
func (f GGML) FlashAttention() bool {
return slices.Contains([]string{
"bert",
"gemma3",
"gptoss", "gpt-oss",
"mistral3",
"olmo3",
"qwen3", "qwen3moe",
"qwen3vl", "qwen3vlmoe",
}, f.KV().String("general.architecture"))

View File

@@ -8,12 +8,12 @@ import (
"fmt"
"io"
"log/slog"
"maps"
"os"
"runtime"
"slices"
"strings"
"github.com/ollama/ollama/fs"
"golang.org/x/sync/errgroup"
)
@@ -508,7 +508,7 @@ func writeGGUFArray[S ~[]E, E any](w io.Writer, t uint32, s S) error {
return binary.Write(w, binary.LittleEndian, s)
}
func WriteGGUF(f *os.File, kv KV, ts []*Tensor) error {
func WriteGGUF(f *os.File, kv fs.Config, ts []*Tensor) error {
arch := kv.String("general.architecture")
if arch == "" {
return fmt.Errorf("architecture not set")
@@ -526,12 +526,12 @@ func WriteGGUF(f *os.File, kv KV, ts []*Tensor) error {
return err
}
if err := binary.Write(f, binary.LittleEndian, uint64(len(kv))); err != nil {
if err := binary.Write(f, binary.LittleEndian, uint64(kv.Len())); err != nil {
return err
}
for _, key := range slices.Sorted(maps.Keys(kv)) {
if err := ggufWriteKV(f, arch, key, kv[key]); err != nil {
for _, key := range slices.Sorted(kv.Keys()) {
if err := ggufWriteKV(f, arch, key, kv.Value(key)); err != nil {
return err
}
}
@@ -597,6 +597,10 @@ func ggufWriteKV(ws io.WriteSeeker, arch, k string, v any) error {
var err error
switch v := v.(type) {
case int32:
err = writeGGUF(ws, ggufTypeInt32, v)
case int64:
err = writeGGUF(ws, ggufTypeInt64, v)
case uint32, FileType:
err = writeGGUF(ws, ggufTypeUint32, v)
case uint64:
@@ -611,6 +615,10 @@ func ggufWriteKV(ws io.WriteSeeker, arch, k string, v any) error {
err = writeGGUFArray(ws, ggufTypeInt32, v)
case *array[int32]:
err = writeGGUFArray(ws, ggufTypeInt32, v.values)
case []int64:
err = writeGGUFArray(ws, ggufTypeInt64, v)
case *array[int64]:
err = writeGGUFArray(ws, ggufTypeInt64, v.values)
case []uint32:
err = writeGGUFArray(ws, ggufTypeUint32, v)
case *array[uint32]:

View File

@@ -42,6 +42,10 @@ func TestWriteGGUF(t *testing.T) {
"general.architecture": "test",
"general.alignment": uint32(16),
"test.key": "value",
"test.int32_key": int32(-42),
"test.int64_key": int64(-9223372036854775808),
"test.int32_array": []int32{-1, 0, 1, 2147483647, -2147483648},
"test.int64_array": []int64{-1, 0, 1, 9223372036854775807, -9223372036854775808},
"attention.key": "value2",
"tokenizer.key": "value3",
"adapter.key": "value4",
@@ -55,7 +59,7 @@ func TestWriteGGUF(t *testing.T) {
}
defer r.Close()
ff, err := Decode(r, 0)
ff, err := Decode(r, -1)
if err != nil {
t.Fatal(err)
}
@@ -65,15 +69,19 @@ func TestWriteGGUF(t *testing.T) {
"general.alignment": uint32(16),
"general.parameter_count": uint64(54),
"test.key": "value",
"test.int32_key": int32(-42),
"test.int64_key": int64(-9223372036854775808),
"test.int32_array": &array[int32]{size: 5, values: []int32{-1, 0, 1, 2147483647, -2147483648}},
"test.int64_array": &array[int64]{size: 5, values: []int64{-1, 0, 1, 9223372036854775807, -9223372036854775808}},
"test.attention.key": "value2",
"tokenizer.key": "value3",
"adapter.key": "value4",
}, ff.KV()); diff != "" {
}, ff.KV(), cmp.AllowUnexported(array[int32]{}, array[int64]{})); diff != "" {
t.Errorf("Mismatch (-want +got):\n%s", diff)
}
if diff := cmp.Diff(Tensors{
Offset: 800,
Offset: 992,
items: []*Tensor{
{Name: "blk.0.attn_k.weight", Offset: 0, Shape: []uint64{2, 3}},
{Name: "blk.0.attn_norm.weight", Offset: 32, Shape: []uint64{2, 3}},

19
go.mod
View File

@@ -15,8 +15,8 @@ require (
github.com/spf13/cobra v1.7.0
github.com/stretchr/testify v1.9.0
github.com/x448/float16 v0.8.4
golang.org/x/sync v0.12.0
golang.org/x/sys v0.36.0
golang.org/x/sync v0.17.0
golang.org/x/sys v0.37.0
)
require (
@@ -28,13 +28,17 @@ require (
github.com/nlpodyssey/gopickle v0.3.0
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
github.com/tkrajina/typescriptify-golang-structs v0.2.0
github.com/wk8/go-ordered-map/v2 v2.1.8
golang.org/x/image v0.22.0
golang.org/x/tools v0.30.0
golang.org/x/mod v0.30.0
golang.org/x/tools v0.38.0
gonum.org/v1/gonum v0.15.0
)
require (
github.com/apache/arrow/go/arrow v0.0.0-20211112161151-bc219186db40 // indirect
github.com/bahlo/generic-list-go v0.2.0 // indirect
github.com/buger/jsonparser v1.1.1 // indirect
github.com/bytedance/sonic/loader v0.1.1 // indirect
github.com/chewxy/hm v1.0.0 // indirect
github.com/chewxy/math32 v1.11.0 // indirect
@@ -44,6 +48,7 @@ require (
github.com/gogo/protobuf v1.3.2 // indirect
github.com/google/flatbuffers v24.3.25+incompatible // indirect
github.com/kr/text v0.2.0 // indirect
github.com/mailru/easyjson v0.7.7 // indirect
github.com/pkg/errors v0.9.1 // indirect
github.com/pmezard/go-difflib v1.0.0 // indirect
github.com/rivo/uniseg v0.2.0 // indirect
@@ -76,11 +81,11 @@ require (
github.com/twitchyliquid64/golang-asm v0.15.1 // indirect
github.com/ugorji/go/codec v1.2.12 // indirect
golang.org/x/arch v0.8.0 // indirect
golang.org/x/crypto v0.36.0
golang.org/x/crypto v0.43.0
golang.org/x/exp v0.0.0-20250218142911-aa4b98e5adaa // indirect
golang.org/x/net v0.38.0 // indirect
golang.org/x/term v0.30.0
golang.org/x/text v0.23.0
golang.org/x/net v0.46.0 // indirect
golang.org/x/term v0.36.0
golang.org/x/text v0.30.0
google.golang.org/protobuf v1.34.1
gopkg.in/yaml.v3 v3.0.1 // indirect
)

39
go.sum
View File

@@ -14,7 +14,11 @@ github.com/apache/arrow/go/arrow v0.0.0-20211112161151-bc219186db40 h1:q4dksr6IC
github.com/apache/arrow/go/arrow v0.0.0-20211112161151-bc219186db40/go.mod h1:Q7yQnSMnLvcXlZ8RV+jwz/6y1rQTqbX6C82SndT52Zs=
github.com/arbovm/levenshtein v0.0.0-20160628152529-48b4e1c0c4d0 h1:jfIu9sQUG6Ig+0+Ap1h4unLjW6YQJpKZVmUzxsD4E/Q=
github.com/arbovm/levenshtein v0.0.0-20160628152529-48b4e1c0c4d0/go.mod h1:t2tdKJDJF9BV14lnkjHmOQgcvEKgtqs5a1N3LNdJhGE=
github.com/bahlo/generic-list-go v0.2.0 h1:5sz/EEAK+ls5wF+NeqDpk5+iNdMDXrh3z3nPnH1Wvgk=
github.com/bahlo/generic-list-go v0.2.0/go.mod h1:2KvAjgMlE5NNynlg/5iLrrCCZ2+5xWbdbCW3pNTGyYg=
github.com/boombuler/barcode v1.0.0/go.mod h1:paBWMcWSl3LHKBqUq+rly7CNSldXjb2rDl3JlRe0mD8=
github.com/buger/jsonparser v1.1.1 h1:2PnMjfWD7wBILjqQbt530v576A/cAbQvEW9gGIpYMUs=
github.com/buger/jsonparser v1.1.1/go.mod h1:6RYKKt7H4d4+iWqouImQ9R2FZql3VbhNgx27UK13J/0=
github.com/bytedance/sonic v1.11.6 h1:oUp34TzMlL+OY1OUWxHqsdkgC/Zfc85zGqw9siXjrc0=
github.com/bytedance/sonic v1.11.6/go.mod h1:LysEHSvpvDySVdC2f87zGWf6CIKJcAvqab1ZaiQtds4=
github.com/bytedance/sonic/loader v0.1.1 h1:c+e5Pt1k/cy5wMveRDyk2X4B9hF4g7an8N3zCYjJFNM=
@@ -123,6 +127,7 @@ github.com/google/uuid v1.6.0/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+
github.com/grpc-ecosystem/grpc-gateway v1.16.0/go.mod h1:BDjrQk3hbvj6Nolgz8mAMFbcEtjT1g+wF4CSlocrBnw=
github.com/inconshreveable/mousetrap v1.1.0 h1:wN+x4NVGpMsO7ErUn/mUI3vEoE6Jt13X2s0bqwp9tc8=
github.com/inconshreveable/mousetrap v1.1.0/go.mod h1:vpF70FUmC8bwa3OWnCshd2FqLfsEA9PFc4w1p2J65bw=
github.com/josharian/intern v1.0.0/go.mod h1:5DoeVV0s6jJacbCEi61lwdGj/aVlrQvzHFFd8Hwg//Y=
github.com/json-iterator/go v1.1.12 h1:PV8peI4a0ysnczrg+LtxykD8LfKY9ML6u2jnxaEnrnM=
github.com/json-iterator/go v1.1.12/go.mod h1:e30LSqwooZae/UwlEbR2852Gd8hjQvJoHmT4TnhNGBo=
github.com/jung-kurt/gofpdf v1.0.0/go.mod h1:7Id9E/uU8ce6rXgefFLlgrJj/GYY22cpxn+r32jIOes=
@@ -143,6 +148,8 @@ github.com/ledongthuc/pdf v0.0.0-20250511090121-5959a4027728 h1:QwWKgMY28TAXaDl+
github.com/ledongthuc/pdf v0.0.0-20250511090121-5959a4027728/go.mod h1:1fEHWurg7pvf5SG6XNE5Q8UZmOwex51Mkx3SLhrW5B4=
github.com/leodido/go-urn v1.4.0 h1:WT9HwE9SGECu3lg4d/dIA+jxlljEa1/ffXKmRjqdmIQ=
github.com/leodido/go-urn v1.4.0/go.mod h1:bvxc+MVxLKB4z00jd1z+Dvzr47oO32F/QSNjSBOlFxI=
github.com/mailru/easyjson v0.7.7 h1:UGYAvKxe3sBsEDzO8ZeWOSlIQfWFlxbzLZe7hwFURr0=
github.com/mailru/easyjson v0.7.7/go.mod h1:xzfreul335JAWq5oZzymOObrkdz5UnU4kGfJJLY9Nlc=
github.com/mattn/go-isatty v0.0.20 h1:xfD0iDuEKnDkl03q4limB+vH+GxLEtL/jb4xVJSWWEY=
github.com/mattn/go-isatty v0.0.20/go.mod h1:W+V8PltTTMOvKvAeJH7IuucS94S2C6jfK/D7dTCTo3Y=
github.com/mattn/go-runewidth v0.0.9/go.mod h1:H031xJmbD/WCDINGzjvQ9THkh0rPKHF+m2gUSrubnMI=
@@ -207,6 +214,8 @@ github.com/twitchyliquid64/golang-asm v0.15.1 h1:SU5vSMR7hnwNxj24w34ZyCi/FmDZTkS
github.com/twitchyliquid64/golang-asm v0.15.1/go.mod h1:a1lVb/DtPvCB8fslRZhAngC2+aY1QWCk3Cedj/Gdt08=
github.com/ugorji/go/codec v1.2.12 h1:9LC83zGrHhuUA9l16C9AHXAqEV/2wBQ4nkvumAE65EE=
github.com/ugorji/go/codec v1.2.12/go.mod h1:UNopzCgEMSXjBc6AOMqYvWC1ktqTAfzJZUZgYf6w6lg=
github.com/wk8/go-ordered-map/v2 v2.1.8 h1:5h/BUHu93oj4gIdvHHHGsScSTMijfx5PeYkE/fJgbpc=
github.com/wk8/go-ordered-map/v2 v2.1.8/go.mod h1:5nJHM5DyteebpVlHnWMV0rPz6Zp7+xBAnxjb1X5vnTw=
github.com/x448/float16 v0.8.4 h1:qLwI1I70+NjRFUR3zs1JPUCgaCXSh3SW62uAKT1mSBM=
github.com/x448/float16 v0.8.4/go.mod h1:14CWIYCyZA/cWjXOioeEpHeN/83MdbZDRQHoFcYsOfg=
github.com/xtgo/set v1.0.0 h1:6BCNBRv3ORNDQ7fyoJXRv+tstJz3m1JVFQErfeZz2pY=
@@ -224,8 +233,8 @@ golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACk
golang.org/x/crypto v0.0.0-20190510104115-cbcb75029529/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/crypto v0.0.0-20200622213623-75b288015ac9/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
golang.org/x/crypto v0.36.0 h1:AnAEvhDddvBdpY+uR+MyHmuZzzNqXSe/GvuDeob5L34=
golang.org/x/crypto v0.36.0/go.mod h1:Y4J0ReaxCR1IMaabaSMugxJES1EpwhBHhv2bDHklZvc=
golang.org/x/crypto v0.43.0 h1:dduJYIi3A3KOfdGOHX8AVZ/jGiyPa3IbBozJ5kNuE04=
golang.org/x/crypto v0.43.0/go.mod h1:BFbav4mRNlXJL4wNeejLpWxB7wMbc79PdRGhWKncxR0=
golang.org/x/exp v0.0.0-20180321215751-8460e604b9de/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20180807140117-3d87b88a115f/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
@@ -255,6 +264,8 @@ golang.org/x/mod v0.1.1-0.20191105210325-c90efee705ee/go.mod h1:QqPTAvyqsEbceGzB
golang.org/x/mod v0.2.0/go.mod h1:s0Qsj1ACt9ePp/hMypM3fl4fZqREWJwdYDEqhRiZZUA=
golang.org/x/mod v0.3.0/go.mod h1:s0Qsj1ACt9ePp/hMypM3fl4fZqREWJwdYDEqhRiZZUA=
golang.org/x/mod v0.4.2/go.mod h1:s0Qsj1ACt9ePp/hMypM3fl4fZqREWJwdYDEqhRiZZUA=
golang.org/x/mod v0.30.0 h1:fDEXFVZ/fmCKProc/yAXXUijritrDzahmwwefnjoPFk=
golang.org/x/mod v0.30.0/go.mod h1:lAsf5O2EvJeSFMiBxXDki7sCgAxEUcZHXoXMKT4GJKc=
golang.org/x/net v0.0.0-20180724234803-3673e40ba225/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20180826012351-8a410e7b638d/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20190108225652-1e06a53dbb7e/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
@@ -267,8 +278,8 @@ golang.org/x/net v0.0.0-20200822124328-c89045814202/go.mod h1:/O7V0waA8r7cgGh81R
golang.org/x/net v0.0.0-20201021035429-f5854403a974/go.mod h1:sp8m0HH+o8qH0wwXwYZr8TS3Oi6o0r6Gce1SSxlDquU=
golang.org/x/net v0.0.0-20210405180319-a5a99cb37ef4/go.mod h1:p54w0d4576C0XHj96bSt6lcn1PtDYWL6XObtHCRCNQM=
golang.org/x/net v0.0.0-20210614182718-04defd469f4e/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
golang.org/x/net v0.38.0 h1:vRMAPTMaeGqVhG5QyLJHqNDwecKTomGeqbnfZyKlBI8=
golang.org/x/net v0.38.0/go.mod h1:ivrbrMbzFq5J41QOQh0siUuly180yBYtLp+CKbEaFx8=
golang.org/x/net v0.46.0 h1:giFlY12I07fugqwPuWJi68oOnpfqFnJIJzaIIm2JVV4=
golang.org/x/net v0.46.0/go.mod h1:Q9BGdFy1y4nkUwiLvT5qtyhAnEHgnQ/zd8PfU6nc210=
golang.org/x/oauth2 v0.0.0-20180821212333-d2e6202438be/go.mod h1:N/0e6XlmueqKjAGxoOufVs8QHGRruUQn6yWY3a++T0U=
golang.org/x/oauth2 v0.0.0-20200107190931-bf48bf16ab8d/go.mod h1:gOpvHmFTYa4IltrdGE7lF6nIHvwfUNPOp7c8zoXwtLw=
golang.org/x/sync v0.0.0-20180314180146-1d60e4601c6f/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
@@ -278,8 +289,8 @@ golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJ
golang.org/x/sync v0.0.0-20190911185100-cd5d95a43a6e/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20210220032951-036812b2e83c/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.12.0 h1:MHc5BpPuC30uJk597Ri8TV3CNZcTLu6B6z4lJy+g6Jw=
golang.org/x/sync v0.12.0/go.mod h1:1dzgHSNfp02xaA81J2MS99Qcpr2w7fw1gpm99rleRqA=
golang.org/x/sync v0.17.0 h1:l60nONMj9l5drqw6jlhIELNv9I0A4OFgRsG9k2oT9Ug=
golang.org/x/sync v0.17.0/go.mod h1:9KTHXmSnoGruLpwFjVSX0lNNA75CykiMECbovNTZqGI=
golang.org/x/sys v0.0.0-20180830151530-49385e6e1522/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190312061237-fead79001313/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
@@ -295,17 +306,17 @@ golang.org/x/sys v0.0.0-20210510120138-977fb7262007/go.mod h1:oPkhp1MJrh7nUepCBc
golang.org/x/sys v0.0.0-20210630005230-0f9fa26af87c/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.5.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.36.0 h1:KVRy2GtZBrk1cBYA7MKu5bEZFxQk4NIDV6RLVcC8o0k=
golang.org/x/sys v0.36.0/go.mod h1:OgkHotnGiDImocRcuBABYBEXf8A9a87e/uXjp9XT3ks=
golang.org/x/sys v0.37.0 h1:fdNQudmxPjkdUTPnLn5mdQv7Zwvbvpaxqs831goi9kQ=
golang.org/x/sys v0.37.0/go.mod h1:OgkHotnGiDImocRcuBABYBEXf8A9a87e/uXjp9XT3ks=
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
golang.org/x/term v0.30.0 h1:PQ39fJZ+mfadBm0y5WlL4vlM7Sx1Hgf13sMIY2+QS9Y=
golang.org/x/term v0.30.0/go.mod h1:NYYFdzHoI5wRh/h5tDMdMqCqPJZEuNqVR5xJLd/n67g=
golang.org/x/term v0.36.0 h1:zMPR+aF8gfksFprF/Nc/rd1wRS1EI6nDBGyWAvDzx2Q=
golang.org/x/term v0.36.0/go.mod h1:Qu394IJq6V6dCBRgwqshf3mPF85AqzYEzofzRdZkWss=
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.5/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.23.0 h1:D71I7dUrlY+VX0gQShAThNGHFxZ13dGLBHQLVl1mJlY=
golang.org/x/text v0.23.0/go.mod h1:/BLNzu4aZCJ1+kcD0DNRotWKage4q2rGVAg4o22unh4=
golang.org/x/text v0.30.0 h1:yznKA/E9zq54KzlzBEAWn1NXSQ8DIp/NYMy88xJjl4k=
golang.org/x/text v0.30.0/go.mod h1:yDdHFIX9t+tORqspjENWgzaCVXgk0yYnYuSZ8UzzBVM=
golang.org/x/tools v0.0.0-20180525024113-a5b4c53f6e8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20190114222345-bf090417da8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
@@ -319,8 +330,8 @@ golang.org/x/tools v0.0.0-20200130002326-2f3ba24bd6e7/go.mod h1:TB2adYChydJhpapK
golang.org/x/tools v0.0.0-20200619180055-7c47624df98f/go.mod h1:EkVYQZoAsY45+roYkvgYkIh4xh/qjgUK9TdY2XT94GE=
golang.org/x/tools v0.0.0-20210106214847-113979e3529a/go.mod h1:emZCQorbCU4vsT4fOWvOPXz4eW1wZW4PmDk9uLelYpA=
golang.org/x/tools v0.1.4/go.mod h1:o0xws9oXOQQZyjljx8fwUC0k7L1pTE6eaCbjGeHmOkk=
golang.org/x/tools v0.30.0 h1:BgcpHewrV5AUp2G9MebG4XPFI1E2W41zU1SaqVA9vJY=
golang.org/x/tools v0.30.0/go.mod h1:c347cR/OJfw5TI+GfX7RUPNMdDRRbjvYTS0jPyvsVtY=
golang.org/x/tools v0.38.0 h1:Hx2Xv8hISq8Lm16jvBZ2VQf+RLmbd7wVUsALibYI/IQ=
golang.org/x/tools v0.38.0/go.mod h1:yEsQ/d/YK8cjh0L6rZlY8tgtlKiBNTL14pGDJPJpYQs=
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=

View File

@@ -4,7 +4,9 @@ package integration
import (
"context"
"errors"
"math"
"strings"
"testing"
"time"
@@ -204,8 +206,8 @@ func TestAllMiniLMEmbed(t *testing.T) {
t.Fatalf("expected %v, got %v (similarity: %f)", expected[0:5], res.Embeddings[0][0:5], sim)
}
if res.PromptEvalCount != 6 {
t.Fatalf("expected 6 prompt tokens, got %d", res.PromptEvalCount)
if res.PromptEvalCount != 8 {
t.Fatalf("expected 8 prompt tokens, got %d", res.PromptEvalCount)
}
}
@@ -251,8 +253,8 @@ func TestAllMiniLMBatchEmbed(t *testing.T) {
t.Fatalf("expected %v, got %v (similarity: %f)", expected[1][0:5], res.Embeddings[1][0:5], sim)
}
if res.PromptEvalCount != 12 {
t.Fatalf("expected 12 prompt tokens, got %d", res.PromptEvalCount)
if res.PromptEvalCount != 16 {
t.Fatalf("expected 16 prompt tokens, got %d", res.PromptEvalCount)
}
}
@@ -275,7 +277,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
cases := []struct {
name string
request api.EmbedRequest
check func(*api.EmbedResponse, error)
check func(*testing.T, *api.EmbedResponse, error)
}{
{
name: "target truncation",
@@ -283,7 +285,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
Model: "all-minilm",
Input: "why",
},
check: func(got *api.EmbedResponse, err error) {
check: func(t *testing.T, got *api.EmbedResponse, err error) {
if err != nil {
t.Fatal(err)
}
@@ -300,10 +302,11 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
Input: "why is the sky blue?",
Options: map[string]any{"num_ctx": 3},
},
check: func(got *api.EmbedResponse, err error) {
check: func(t *testing.T, got *api.EmbedResponse, err error) {
if err != nil {
t.Fatal(err)
}
t.Logf("PromptEvalCount: want=%d got=%d", want.PromptEvalCount, got.PromptEvalCount)
if diff := cmp.Diff(want.Embeddings[0], got.Embeddings[0]); diff != "" {
t.Errorf("embedding mismatch (-want +got):\n%s", diff)
}
@@ -317,10 +320,11 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 3},
},
check: func(got *api.EmbedResponse, err error) {
check: func(t *testing.T, got *api.EmbedResponse, err error) {
if err != nil {
t.Fatal(err)
}
t.Logf("PromptEvalCount: want=%d got=%d", want.PromptEvalCount, got.PromptEvalCount)
if diff := cmp.Diff(want.Embeddings[0], got.Embeddings[0]); diff != "" {
t.Errorf("embedding mismatch (-want +got):\n%s", diff)
}
@@ -334,21 +338,21 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
Truncate: &truncFalse,
Options: map[string]any{"num_ctx": 3},
},
check: func(res *api.EmbedResponse, err error) {
if err.Error() != "input exceeds maximum context length" {
check: func(t *testing.T, res *api.EmbedResponse, err error) {
if err.Error() != "the input length exceeds the context length" {
t.Fatalf("expected truncation error, got: %v", err)
}
},
},
{
name: "input after truncate error",
name: "input after truncate error with context length of 1",
request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 1},
},
check: func(res *api.EmbedResponse, err error) {
check: func(t *testing.T, res *api.EmbedResponse, err error) {
if err.Error() != "input after truncation exceeds maximum context length" {
t.Fatalf("expected truncation error, got: %v", err)
}
@@ -362,7 +366,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 0},
},
check: func(res *api.EmbedResponse, err error) {
check: func(t *testing.T, res *api.EmbedResponse, err error) {
if err.Error() != "input after truncation exceeds maximum context length" {
t.Fatalf("expected truncation error, got: %v", err)
}
@@ -375,7 +379,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
Input: "why is the sky blue? Why is the sky blue? hi there my",
Options: map[string]any{"num_ctx": 16},
},
check: func(res *api.EmbedResponse, err error) {
check: func(t *testing.T, res *api.EmbedResponse, err error) {
if err != nil {
t.Fatal(err)
}
@@ -385,7 +389,8 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
for _, req := range cases {
t.Run(req.name, func(t *testing.T) {
req.check(embedTestHelper(ctx, client, t, req.request))
resp, err := embedTestHelper(ctx, client, t, req.request)
req.check(t, resp, err)
})
}
}
@@ -409,3 +414,230 @@ func embedTestHelper(ctx context.Context, client *api.Client, t *testing.T, req
return client.Embed(ctx, &req)
}
func TestEmbedTruncation(t *testing.T) {
// Use test deadline if set, otherwise default to 2 minutes
timeout := 2 * time.Minute
if deadline, ok := t.Deadline(); ok {
timeout = time.Until(deadline) - 10*time.Second // Reserve 10s buffer
}
ctx, cancel := context.WithTimeout(context.Background(), timeout)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
for _, model := range libraryEmbedModels {
model := model
t.Run(model, func(t *testing.T) {
// Check if we're running out of time (reserve 20s for current model)
if deadline, ok := t.Deadline(); ok && time.Until(deadline) < 20*time.Second {
t.Skip("skipping remaining tests to avoid timeout")
}
// Give each model its own budget to account for first-time pulls/loads
mctx, mcancel := context.WithTimeout(ctx, 3*time.Minute)
defer mcancel()
t.Run("truncation batch", func(t *testing.T) {
truncTrue := true
req := api.EmbedRequest{
Model: model,
Input: []string{"short", strings.Repeat("long ", 100), "medium text"},
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 30},
}
res, err := embedTestHelper(mctx, client, t, req)
if err != nil {
t.Fatal(err)
}
if len(res.Embeddings) != 3 {
t.Fatalf("expected 3 embeddings, got %d", len(res.Embeddings))
}
if res.PromptEvalCount > 90 {
t.Fatalf("expected tokens <= 90 (3 × 30 max), got %d", res.PromptEvalCount)
}
})
t.Run("runner token count accuracy", func(t *testing.T) {
baseline := api.EmbedRequest{Model: model, Input: "test"}
baseRes, err := embedTestHelper(mctx, client, t, baseline)
if err != nil {
t.Fatal(err)
}
batch := api.EmbedRequest{
Model: model,
Input: []string{"test", "test", "test"},
}
batchRes, err := embedTestHelper(mctx, client, t, batch)
if err != nil {
t.Fatal(err)
}
expectedCount := baseRes.PromptEvalCount * 3
if batchRes.PromptEvalCount < expectedCount-2 || batchRes.PromptEvalCount > expectedCount+2 {
t.Fatalf("expected ~%d tokens (3 × %d), got %d",
expectedCount, baseRes.PromptEvalCount, batchRes.PromptEvalCount)
}
})
})
}
}
// TestEmbedLargeInput tests that embedding models can handle large inputs that would exceed typical batch sizes.
func TestEmbedLargeInput(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Minute)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
for _, model := range libraryEmbedModels {
model := model
t.Run(model, func(t *testing.T) {
mctx, mcancel := context.WithTimeout(ctx, 2*time.Minute)
defer mcancel()
// Test with progressively larger inputs
testCases := []struct {
name string
inputWords int
}{
{"medium_input_256_words", 256},
{"large_input_512_words", 512},
{"very_large_input_800_words", 800},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
words := make([]string, tc.inputWords)
for i := range words {
words[i] = "word"
}
input := strings.Join(words, " ")
req := api.EmbedRequest{
Model: model,
Input: input,
KeepAlive: &api.Duration{Duration: 30 * time.Second},
}
res, err := embedTestHelper(mctx, client, t, req)
if err != nil {
t.Fatalf("embedding failed for %d words: %v", tc.inputWords, err)
}
if len(res.Embeddings) != 1 {
t.Fatalf("expected 1 embedding, got %d", len(res.Embeddings))
}
if len(res.Embeddings[0]) == 0 {
t.Fatal("expected non-empty embedding")
}
t.Logf("Successfully embedded %d words (%d tokens)", tc.inputWords, res.PromptEvalCount)
})
}
})
}
}
// TestEmbedStatusCode tests that errors from the embedding endpoint
// properly preserve their HTTP status codes when returned to the client.
// This test specifically checks the error handling path in EmbedHandler
// where api.StatusError errors should maintain their original status code.
func TestEmbedStatusCode(t *testing.T) {
// Use test deadline if set, otherwise default to 2 minutes
timeout := 2 * time.Minute
if deadline, ok := t.Deadline(); ok {
timeout = time.Until(deadline) - 10*time.Second // Reserve 10s buffer
}
ctx, cancel := context.WithTimeout(context.Background(), timeout)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
for _, model := range libraryEmbedModels {
model := model
t.Run(model, func(t *testing.T) {
// Check if we're running out of time (reserve 20s for current model)
if deadline, ok := t.Deadline(); ok && time.Until(deadline) < 20*time.Second {
t.Skip("skipping remaining tests to avoid timeout")
}
mctx, mcancel := context.WithTimeout(ctx, 3*time.Minute)
defer mcancel()
// Pull the model if needed
if err := PullIfMissing(mctx, client, model); err != nil {
t.Fatal(err)
}
t.Run("truncation error status code", func(t *testing.T) {
truncFalse := false
longInput := strings.Repeat("word ", 100)
req := api.EmbedRequest{
Model: model,
Input: longInput,
Truncate: &truncFalse,
Options: map[string]any{"num_ctx": 10},
}
_, err := embedTestHelper(mctx, client, t, req)
if err == nil {
t.Fatal("expected error when truncate=false with long input")
}
// Check that it's a StatusError with the correct status code
var statusErr api.StatusError
if !errors.As(err, &statusErr) {
t.Fatalf("expected api.StatusError, got %T: %v", err, err)
}
// The error should be a 4xx client error (likely 400 Bad Request)
// not a 500 Internal Server Error
if statusErr.StatusCode < 400 || statusErr.StatusCode >= 500 {
t.Errorf("expected 4xx status code, got %d", statusErr.StatusCode)
}
// Verify the error message is meaningful
if !strings.Contains(err.Error(), "context length") {
t.Errorf("expected error message to mention context length, got: %v", err)
}
})
t.Run("batch truncation error status code", func(t *testing.T) {
truncFalse := false
req := api.EmbedRequest{
Model: model,
Input: []string{
"short input",
strings.Repeat("very long input ", 100),
"another short input",
},
Truncate: &truncFalse,
Options: map[string]any{"num_ctx": 10},
}
_, err := embedTestHelper(mctx, client, t, req)
if err == nil {
t.Fatal("expected error when one input exceeds context with truncate=false")
}
// Check that it's a StatusError with the correct status code
var statusErr api.StatusError
if !errors.As(err, &statusErr) {
t.Fatalf("expected api.StatusError, got %T: %v", err, err)
}
// The error should be a 4xx client error, not a 500 Internal Server Error
if statusErr.StatusCode < 400 || statusErr.StatusCode >= 500 {
t.Errorf("expected 4xx status code, got %d", statusErr.StatusCode)
}
})
})
}
}

View File

@@ -33,6 +33,9 @@ func TestVisionModels(t *testing.T) {
// Qwen 3 VL mixture of experts
model: "qwen3-vl:30b",
},
{
model: "ministral-3",
},
}
for _, v := range testCases {

View File

@@ -11,6 +11,15 @@ import (
"github.com/ollama/ollama/api"
)
// testPropsMap creates a ToolPropertiesMap from a map (convenience function for tests)
func testPropsMap(m map[string]api.ToolProperty) *api.ToolPropertiesMap {
props := api.NewToolPropertiesMap()
for k, v := range m {
props.Set(k, v)
}
return props
}
func TestAPIToolCalling(t *testing.T) {
initialTimeout := 60 * time.Second
streamTimeout := 60 * time.Second
@@ -30,6 +39,7 @@ func TestAPIToolCalling(t *testing.T) {
"mistral": 6,
"qwen2.5": 6,
"qwen2": 6,
"ministral-3": 20,
"mistral-nemo": 9,
"mistral-small": 16,
"mixtral:8x22b": 80,
@@ -56,12 +66,12 @@ func TestAPIToolCalling(t *testing.T) {
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"location"},
Properties: map[string]api.ToolProperty{
Properties: testPropsMap(map[string]api.ToolProperty{
"location": {
Type: api.PropertyType{"string"},
Description: "The city and state, e.g. San Francisco, CA",
},
},
}),
},
},
},

View File

@@ -38,6 +38,7 @@ var (
// Note: add newer models at the top of the list to test them first
ollamaEngineChatModels = []string{
"ministral-3",
"qwen3-coder:30b",
"gpt-oss:20b",
"gemma3n:e2b",
@@ -167,6 +168,7 @@ var (
"medllama2",
"megadolphin",
"minicpm-v",
"ministral-3",
"mistral-large",
"mistral-nemo",
"mistral-openorca",
@@ -270,6 +272,7 @@ var (
"mistral",
"qwen2.5",
"qwen2",
"ministral-3",
"mistral-nemo",
"mistral-small",
"mixtral:8x22b",

View File

@@ -0,0 +1,94 @@
// Package orderedmap provides a generic ordered map that maintains insertion order.
// It wraps github.com/wk8/go-ordered-map/v2 to encapsulate the dependency.
package orderedmap
import (
"encoding/json"
"iter"
orderedmap "github.com/wk8/go-ordered-map/v2"
)
// Map is a generic ordered map that maintains insertion order.
type Map[K comparable, V any] struct {
om *orderedmap.OrderedMap[K, V]
}
// New creates a new empty ordered map.
func New[K comparable, V any]() *Map[K, V] {
return &Map[K, V]{
om: orderedmap.New[K, V](),
}
}
// Get retrieves a value by key.
func (m *Map[K, V]) Get(key K) (V, bool) {
if m == nil || m.om == nil {
var zero V
return zero, false
}
return m.om.Get(key)
}
// Set sets a key-value pair. If the key already exists, its value is updated
// but its position in the iteration order is preserved. If the key is new,
// it is appended to the end.
func (m *Map[K, V]) Set(key K, value V) {
if m == nil {
return
}
if m.om == nil {
m.om = orderedmap.New[K, V]()
}
m.om.Set(key, value)
}
// Len returns the number of entries.
func (m *Map[K, V]) Len() int {
if m == nil || m.om == nil {
return 0
}
return m.om.Len()
}
// All returns an iterator over all key-value pairs in insertion order.
func (m *Map[K, V]) All() iter.Seq2[K, V] {
return func(yield func(K, V) bool) {
if m == nil || m.om == nil {
return
}
for pair := m.om.Oldest(); pair != nil; pair = pair.Next() {
if !yield(pair.Key, pair.Value) {
return
}
}
}
}
// ToMap converts to a regular Go map.
// Note: The resulting map does not preserve order.
func (m *Map[K, V]) ToMap() map[K]V {
if m == nil || m.om == nil {
return nil
}
result := make(map[K]V, m.om.Len())
for pair := m.om.Oldest(); pair != nil; pair = pair.Next() {
result[pair.Key] = pair.Value
}
return result
}
// MarshalJSON implements json.Marshaler. The JSON output preserves key order.
func (m *Map[K, V]) MarshalJSON() ([]byte, error) {
if m == nil || m.om == nil {
return []byte("null"), nil
}
return json.Marshal(m.om)
}
// UnmarshalJSON implements json.Unmarshaler. The insertion order matches the
// order of keys in the JSON input.
func (m *Map[K, V]) UnmarshalJSON(data []byte) error {
m.om = orderedmap.New[K, V]()
return json.Unmarshal(data, &m.om)
}

View File

@@ -0,0 +1,348 @@
package orderedmap
import (
"encoding/json"
"slices"
"testing"
)
func TestMap_BasicOperations(t *testing.T) {
m := New[string, int]()
// Test empty map
if m.Len() != 0 {
t.Errorf("expected Len() = 0, got %d", m.Len())
}
v, ok := m.Get("a")
if ok {
t.Error("expected Get on empty map to return false")
}
if v != 0 {
t.Errorf("expected zero value, got %d", v)
}
// Test Set and Get
m.Set("a", 1)
m.Set("b", 2)
m.Set("c", 3)
if m.Len() != 3 {
t.Errorf("expected Len() = 3, got %d", m.Len())
}
v, ok = m.Get("a")
if !ok || v != 1 {
t.Errorf("expected Get(a) = (1, true), got (%d, %v)", v, ok)
}
v, ok = m.Get("b")
if !ok || v != 2 {
t.Errorf("expected Get(b) = (2, true), got (%d, %v)", v, ok)
}
v, ok = m.Get("c")
if !ok || v != 3 {
t.Errorf("expected Get(c) = (3, true), got (%d, %v)", v, ok)
}
// Test updating existing key preserves position
m.Set("a", 10)
v, ok = m.Get("a")
if !ok || v != 10 {
t.Errorf("expected Get(a) = (10, true), got (%d, %v)", v, ok)
}
if m.Len() != 3 {
t.Errorf("expected Len() = 3 after update, got %d", m.Len())
}
}
func TestMap_InsertionOrderPreserved(t *testing.T) {
m := New[string, int]()
// Insert in non-alphabetical order
m.Set("z", 1)
m.Set("a", 2)
m.Set("m", 3)
m.Set("b", 4)
// Verify iteration order matches insertion order
var keys []string
var values []int
for k, v := range m.All() {
keys = append(keys, k)
values = append(values, v)
}
expectedKeys := []string{"z", "a", "m", "b"}
expectedValues := []int{1, 2, 3, 4}
if !slices.Equal(keys, expectedKeys) {
t.Errorf("expected keys %v, got %v", expectedKeys, keys)
}
if !slices.Equal(values, expectedValues) {
t.Errorf("expected values %v, got %v", expectedValues, values)
}
}
func TestMap_UpdatePreservesPosition(t *testing.T) {
m := New[string, int]()
m.Set("first", 1)
m.Set("second", 2)
m.Set("third", 3)
// Update middle element
m.Set("second", 20)
var keys []string
for k := range m.All() {
keys = append(keys, k)
}
// Order should still be first, second, third
expected := []string{"first", "second", "third"}
if !slices.Equal(keys, expected) {
t.Errorf("expected keys %v, got %v", expected, keys)
}
}
func TestMap_MarshalJSON_PreservesOrder(t *testing.T) {
m := New[string, int]()
// Insert in non-alphabetical order
m.Set("z", 1)
m.Set("a", 2)
m.Set("m", 3)
data, err := json.Marshal(m)
if err != nil {
t.Fatalf("Marshal failed: %v", err)
}
// JSON should preserve insertion order, not alphabetical
expected := `{"z":1,"a":2,"m":3}`
if string(data) != expected {
t.Errorf("expected %s, got %s", expected, string(data))
}
}
func TestMap_UnmarshalJSON_PreservesOrder(t *testing.T) {
// JSON with non-alphabetical key order
jsonData := `{"z":1,"a":2,"m":3}`
m := New[string, int]()
if err := json.Unmarshal([]byte(jsonData), m); err != nil {
t.Fatalf("Unmarshal failed: %v", err)
}
// Verify iteration order matches JSON order
var keys []string
for k := range m.All() {
keys = append(keys, k)
}
expected := []string{"z", "a", "m"}
if !slices.Equal(keys, expected) {
t.Errorf("expected keys %v, got %v", expected, keys)
}
}
func TestMap_JSONRoundTrip(t *testing.T) {
// Test that unmarshal -> marshal produces identical JSON
original := `{"zebra":"z","apple":"a","mango":"m","banana":"b"}`
m := New[string, string]()
if err := json.Unmarshal([]byte(original), m); err != nil {
t.Fatalf("Unmarshal failed: %v", err)
}
data, err := json.Marshal(m)
if err != nil {
t.Fatalf("Marshal failed: %v", err)
}
if string(data) != original {
t.Errorf("round trip failed: expected %s, got %s", original, string(data))
}
}
func TestMap_ToMap(t *testing.T) {
m := New[string, int]()
m.Set("a", 1)
m.Set("b", 2)
regular := m.ToMap()
if len(regular) != 2 {
t.Errorf("expected len 2, got %d", len(regular))
}
if regular["a"] != 1 {
t.Errorf("expected regular[a] = 1, got %d", regular["a"])
}
if regular["b"] != 2 {
t.Errorf("expected regular[b] = 2, got %d", regular["b"])
}
}
func TestMap_NilSafety(t *testing.T) {
var m *Map[string, int]
// All operations should be safe on nil
if m.Len() != 0 {
t.Errorf("expected Len() = 0 on nil map, got %d", m.Len())
}
v, ok := m.Get("a")
if ok {
t.Error("expected Get on nil map to return false")
}
if v != 0 {
t.Errorf("expected zero value from nil map, got %d", v)
}
// Set on nil is a no-op
m.Set("a", 1)
if m.Len() != 0 {
t.Errorf("expected Len() = 0 after Set on nil, got %d", m.Len())
}
// All returns empty iterator
var keys []string
for k := range m.All() {
keys = append(keys, k)
}
if len(keys) != 0 {
t.Errorf("expected empty iteration on nil map, got %v", keys)
}
// ToMap returns nil
if m.ToMap() != nil {
t.Error("expected ToMap to return nil on nil map")
}
// MarshalJSON returns null
data, err := json.Marshal(m)
if err != nil {
t.Fatalf("Marshal failed: %v", err)
}
if string(data) != "null" {
t.Errorf("expected null, got %s", string(data))
}
}
func TestMap_EmptyMapMarshal(t *testing.T) {
m := New[string, int]()
data, err := json.Marshal(m)
if err != nil {
t.Fatalf("Marshal failed: %v", err)
}
if string(data) != "{}" {
t.Errorf("expected {}, got %s", string(data))
}
}
func TestMap_NestedValues(t *testing.T) {
m := New[string, any]()
m.Set("string", "hello")
m.Set("number", 42)
m.Set("bool", true)
m.Set("nested", map[string]int{"x": 1})
data, err := json.Marshal(m)
if err != nil {
t.Fatalf("Marshal failed: %v", err)
}
expected := `{"string":"hello","number":42,"bool":true,"nested":{"x":1}}`
if string(data) != expected {
t.Errorf("expected %s, got %s", expected, string(data))
}
}
func TestMap_AllIteratorEarlyExit(t *testing.T) {
m := New[string, int]()
m.Set("a", 1)
m.Set("b", 2)
m.Set("c", 3)
m.Set("d", 4)
// Collect only first 2
var keys []string
for k := range m.All() {
keys = append(keys, k)
if len(keys) == 2 {
break
}
}
expected := []string{"a", "b"}
if !slices.Equal(keys, expected) {
t.Errorf("expected %v, got %v", expected, keys)
}
}
func TestMap_IntegerKeys(t *testing.T) {
m := New[int, string]()
m.Set(3, "three")
m.Set(1, "one")
m.Set(2, "two")
var keys []int
for k := range m.All() {
keys = append(keys, k)
}
// Should preserve insertion order, not numerical order
expected := []int{3, 1, 2}
if !slices.Equal(keys, expected) {
t.Errorf("expected %v, got %v", expected, keys)
}
}
func TestMap_UnmarshalIntoExisting(t *testing.T) {
m := New[string, int]()
m.Set("existing", 999)
// Unmarshal should replace contents
if err := json.Unmarshal([]byte(`{"new":1}`), m); err != nil {
t.Fatalf("Unmarshal failed: %v", err)
}
_, ok := m.Get("existing")
if ok {
t.Error("existing key should be gone after unmarshal")
}
v, ok := m.Get("new")
if !ok || v != 1 {
t.Errorf("expected Get(new) = (1, true), got (%d, %v)", v, ok)
}
}
func TestMap_LargeOrderPreservation(t *testing.T) {
m := New[string, int]()
// Create many keys in specific order
keys := make([]string, 100)
for i := range 100 {
keys[i] = string(rune('a' + (99 - i))) // reverse order: 'd', 'c', 'b', 'a' (extended)
if i >= 26 {
keys[i] = string(rune('A'+i-26)) + string(rune('a'+i%26))
}
}
for i, k := range keys {
m.Set(k, i)
}
// Verify order preserved
var resultKeys []string
for k := range m.All() {
resultKeys = append(resultKeys, k)
}
if !slices.Equal(keys, resultKeys) {
t.Error("large map should preserve insertion order")
}
}

View File

@@ -140,10 +140,6 @@ func (c *Causal) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity
c.config.CachePadding = 1
}
if c.config.MaskBatchPadding == 0 {
c.config.MaskBatchPadding = 1
}
if c.config.MaskDType == ml.DTypeOther {
c.config.MaskDType = ml.DTypeF32
}
@@ -364,15 +360,12 @@ func roundUp(length, pad int) int {
// token in the history should apply. This is based on both the sequence and causality (the
// position of the history is not ahead of the token in the batch).
func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
// Align and pad the two dimensions as required by the backend
batchSize := roundUp(c.curBatchSize, c.config.MaskBatchPadding)
c.curCellRange.min = roundDown(c.curCellRange.min, c.config.CachePadding)
c.curCellRange.max = roundUp(c.curCellRange.max+1, c.config.CachePadding) - 1
length := c.curCellRange.max - c.curCellRange.min + 1
mask := make([]float32, batchSize*length)
mask := make([]float32, c.curBatchSize*length)
for i := range c.curBatchSize {
enabled := !slices.Contains(c.opts.Except, i)
@@ -386,13 +379,7 @@ func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
}
}
// Mask out any padding tokens we added. For padding that we added to the cache history, this
// has already been masked out because the sequence doesn't match.
for i := c.curBatchSize * length; i < len(mask); i++ {
mask[i] = float32(math.Inf(-1))
}
maskTensor := ctx.Input().FromFloats(mask, length, batchSize)
maskTensor := ctx.Input().FromFloats(mask, length, c.curBatchSize)
if c.config.MaskDType != ml.DTypeF32 {
maskTensor = maskTensor.Cast(ctx, c.config.MaskDType)

2
llama/build-info.cpp generated vendored
View File

@@ -1,4 +1,4 @@
int LLAMA_BUILD_NUMBER = 0;
char const *LLAMA_COMMIT = "3cfa9c3f125763305b4226bc032f1954f08990dc";
char const *LLAMA_COMMIT = "ec98e2002";
char const *LLAMA_COMPILER = "";
char const *LLAMA_BUILD_TARGET = "";

View File

@@ -17,11 +17,17 @@ include /tools/mtmd/clip.cpp
include /tools/mtmd/mtmd.cpp
include /tools/mtmd/mtmd-audio.cpp
include /tools/mtmd/mtmd-helper.cpp
include /tools/mtmd/models/
include /tools/mtmd/models/*.h
include /tools/mtmd/models/*.cpp
include /src/
include /src/llama.*
include /src/llama-*.*
include /src/unicode-data.*
include /src/unicode.*
include /src/models/
include /src/models/*.h
include /src/models/*.cpp
include /vendor/
include /vendor/miniaudio/
include /vendor/miniaudio/*.h

View File

@@ -8,6 +8,7 @@
#include "common.h"
#include "log.h"
#include "llama.h"
#include "sampling.h"
#include <algorithm>
#include <cinttypes>
@@ -26,7 +27,6 @@
#include <sstream>
#include <string>
#include <thread>
#include <unordered_map>
#include <unordered_set>
#include <vector>
@@ -60,6 +60,14 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
common_time_meas::common_time_meas(int64_t & t_acc, bool disable) : t_start_us(disable ? -1 : ggml_time_us()), t_acc(t_acc) {}
common_time_meas::~common_time_meas() {
if (t_start_us >= 0) {
t_acc += ggml_time_us() - t_start_us;
}
}
//
// CPU utils
//
@@ -355,11 +363,7 @@ bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREAD
}
void common_init() {
llama_log_set([](ggml_log_level level, const char * text, void * /*user_data*/) {
if (LOG_DEFAULT_LLAMA <= common_log_verbosity_thold) {
common_log_add(common_log_main(), level, "%s", text);
}
}, NULL);
llama_log_set(common_log_default_callback, NULL);
#ifdef NDEBUG
const char * build_type = "";
@@ -690,7 +694,7 @@ bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_over
// Validate if a filename is safe to use
// To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
bool fs_validate_filename(const std::string & filename) {
bool fs_validate_filename(const std::string & filename, bool allow_subdirs) {
if (!filename.length()) {
// Empty filename invalid
return false;
@@ -750,10 +754,14 @@ bool fs_validate_filename(const std::string & filename) {
|| (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
|| c == 0xFFFD // Replacement Character (UTF-8)
|| c == 0xFEFF // Byte Order Mark (BOM)
|| c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
|| c == ':' || c == '*' // Illegal characters
|| c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
return false;
}
if (!allow_subdirs && (c == '/' || c == '\\')) {
// Subdirectories not allowed, reject path separators
return false;
}
}
// Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
@@ -778,11 +786,29 @@ bool fs_validate_filename(const std::string & filename) {
#include <iostream>
#ifdef _WIN32
static std::wstring utf8_to_wstring(const std::string & str) {
if (str.empty()) {
return std::wstring();
}
int size = MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), NULL, 0);
if (size <= 0) {
return std::wstring();
}
std::wstring wstr(size, 0);
MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), &wstr[0], size);
return wstr;
}
#endif
// returns true if successful, false otherwise
bool fs_create_directory_with_parents(const std::string & path) {
#ifdef _WIN32
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
std::wstring wpath = converter.from_bytes(path);
std::wstring wpath = utf8_to_wstring(path);
// if the path already exists, check whether it's a directory
const DWORD attributes = GetFileAttributesW(wpath.c_str());
@@ -855,6 +881,11 @@ bool fs_create_directory_with_parents(const std::string & path) {
#endif // _WIN32
}
bool fs_is_directory(const std::string & path) {
std::filesystem::path dir(path);
return std::filesystem::exists(dir) && std::filesystem::is_directory(dir);
}
std::string fs_get_cache_directory() {
std::string cache_directory = "";
auto ensure_trailing_slash = [](std::string p) {
@@ -889,6 +920,8 @@ std::string fs_get_cache_directory() {
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
#elif defined(_WIN32)
cache_directory = std::getenv("LOCALAPPDATA");
#elif defined(__EMSCRIPTEN__)
GGML_ABORT("not implemented on this platform");
#else
# error Unknown architecture
#endif
@@ -908,34 +941,258 @@ std::string fs_get_cache_file(const std::string & filename) {
return cache_directory + filename;
}
std::vector<common_file_info> fs_list(const std::string & path, bool include_directories) {
std::vector<common_file_info> files;
if (path.empty()) return files;
std::filesystem::path dir(path);
if (!std::filesystem::exists(dir) || !std::filesystem::is_directory(dir)) {
return files;
}
for (const auto & entry : std::filesystem::directory_iterator(dir)) {
try {
// Only include regular files (skip directories)
const auto & p = entry.path();
if (std::filesystem::is_regular_file(p)) {
common_file_info info;
info.path = p.string();
info.name = p.filename().string();
info.is_dir = false;
try {
info.size = static_cast<size_t>(std::filesystem::file_size(p));
} catch (const std::filesystem::filesystem_error &) {
info.size = 0;
}
files.push_back(std::move(info));
} else if (include_directories && std::filesystem::is_directory(p)) {
common_file_info info;
info.path = p.string();
info.name = p.filename().string();
info.size = 0; // Directories have no size
info.is_dir = true;
files.push_back(std::move(info));
}
} catch (const std::filesystem::filesystem_error &) {
// skip entries we cannot inspect
continue;
}
}
return files;
}
//
// TTY utils
//
bool tty_can_use_colors() {
// Check NO_COLOR environment variable (https://no-color.org/)
if (const char * no_color = std::getenv("NO_COLOR")) {
if (no_color[0] != '\0') {
return false;
}
}
// Check TERM environment variable
if (const char * term = std::getenv("TERM")) {
if (std::strcmp(term, "dumb") == 0) {
return false;
}
}
// Check if stdout and stderr are connected to a terminal
// We check both because log messages can go to either
bool stdout_is_tty = isatty(fileno(stdout));
bool stderr_is_tty = isatty(fileno(stderr));
return stdout_is_tty || stderr_is_tty;
}
//
// Model utils
//
struct common_init_result common_init_from_params(common_params & params) {
common_init_result iparams;
// TODO: move to common/sampling
static void common_init_sampler_from_model(
const llama_model * model,
common_params_sampling & sparams) {
const uint64_t config = sparams.user_sampling_config;
auto get_int32 = [&](const char * key, int32_t & dst, uint64_t user_config) {
if (config & user_config) {
return;
}
char buf[64] = {0};
if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
char * end = nullptr;
int32_t v = strtol(buf, &end, 10);
if (end && end != buf) {
dst = v;
}
}
};
auto get_float = [&](const char * key, float & dst, uint64_t user_config) {
if (config & user_config) {
return;
}
char buf[128] = {0};
if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
char * end = nullptr;
float v = strtof(buf, &end);
if (end && end != buf) {
dst = v;
}
}
};
// Sampling sequence
if (!(config & common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS)) {
char buf[512] = {0};
if (llama_model_meta_val_str(model, llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE), buf, sizeof(buf)) > 0) {
const std::vector<std::string> sampler_names = string_split<std::string>(std::string(buf), ';');
if (!sampler_names.empty()) {
sparams.samplers = common_sampler_types_from_names(sampler_names, true);
}
}
}
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_K), sparams.top_k, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_K);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_P), sparams.top_p, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_P);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIN_P), sparams.min_p, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIN_P);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY), sparams.xtc_probability, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD), sparams.xtc_threshold, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TEMP), sparams.temp, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TEMP);
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N), sparams.penalty_last_n, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT), sparams.penalty_repeat, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT);
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT), sparams.mirostat, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU), sparams.mirostat_tau, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA), sparams.mirostat_eta, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA);
}
struct common_init_result::impl {
impl() = default;
~impl() = default;
llama_model_ptr model;
llama_context_ptr context;
std::vector<llama_adapter_lora_ptr> lora;
std::vector<common_sampler_ptr> samplers;
};
common_init_result::common_init_result(common_params & params) :
pimpl(new impl{}) {
auto mparams = common_model_params_to_llama(params);
auto cparams = common_context_params_to_llama(params);
if (params.fit_params) {
LOG_INF("%s: fitting params to device memory, to report bugs during this step use -fit off (or --verbose if you can't)\n", __func__);
llama_params_fit(params.model.path.c_str(), &mparams, &cparams,
params.tensor_split, params.tensor_buft_overrides.data(), params.fit_params_target, params.fit_params_min_ctx,
params.verbosity >= 4 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_ERROR);
}
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
if (model == NULL) {
LOG_ERR("%s: failed to load model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
__func__, params.model.path.c_str());
return iparams;
return;
}
pimpl->model.reset(model);
const llama_vocab * vocab = llama_model_get_vocab(model);
auto cparams = common_context_params_to_llama(params);
// updates params.sampling
// TODO: fix naming
common_init_sampler_from_model(model, params.sampling);
if (params.sampling.ignore_eos && llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have an EOS token, ignoring --ignore-eos\n", __func__);
params.sampling.ignore_eos = false;
}
// initialize once
for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
if (llama_vocab_is_eog(vocab, i)) {
LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(vocab, i).c_str(), -INFINITY);
params.sampling.logit_bias_eog.push_back({i, -INFINITY});
}
}
if (params.sampling.ignore_eos) {
// add EOG biases to the active set of logit biases
params.sampling.logit_bias.insert(
params.sampling.logit_bias.end(),
params.sampling.logit_bias_eog.begin(), params.sampling.logit_bias_eog.end());
}
//if (params.sampling.penalty_last_n == -1) {
// LOG_INF("%s: setting penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
// params.sampling.penalty_last_n = llama_n_ctx(lctx);
//}
//if (params.sampling.dry_penalty_last_n == -1) {
// LOG_INF("%s: setting dry_penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
// params.sampling.dry_penalty_last_n = llama_n_ctx(lctx);
//}
pimpl->samplers.resize(cparams.n_seq_max);
for (int i = 0; i < (int) cparams.n_seq_max; ++i) {
pimpl->samplers[i].reset(common_sampler_init(model, params.sampling));
}
llama_context * lctx = llama_init_from_model(model, cparams);
if (lctx == NULL) {
LOG_ERR("%s: failed to create context with model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
__func__, params.model.path.c_str());
llama_model_free(model);
return iparams;
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str());
return;
}
pimpl->context.reset(lctx);
}
llama_model * common_init_result::model() {
return pimpl->model.get();
}
llama_context * common_init_result::context() {
return pimpl->context.get();
}
common_sampler * common_init_result::sampler(llama_seq_id seq_id) {
return pimpl->samplers[seq_id].get();
}
std::vector<llama_adapter_lora_ptr> & common_init_result::lora() {
return pimpl->lora;
}
void common_init_result::free_context() {
pimpl->context.reset();
}
common_init_result_ptr common_init_from_params(common_params & params) {
common_init_result_ptr res(new common_init_result(params));
llama_model * model = res->model();
if (model == NULL) {
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str());
return res;
}
llama_context * lctx = res->context();
if (lctx == NULL) {
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str());
return res;
}
const llama_vocab * vocab = llama_model_get_vocab(model);
if (params.ctx_shift && !llama_memory_can_shift(llama_get_memory(lctx))) {
LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__);
params.ctx_shift = false;
@@ -947,10 +1204,7 @@ struct common_init_result common_init_from_params(common_params & params) {
const auto cvec = common_control_vector_load(params.control_vectors);
if (cvec.n_embd == -1) {
llama_free(lctx);
llama_model_free(model);
return iparams;
return res;
}
int err = llama_apply_adapter_cvec(
@@ -961,10 +1215,7 @@ struct common_init_result common_init_from_params(common_params & params) {
params.control_vector_layer_start,
params.control_vector_layer_end);
if (err) {
llama_free(lctx);
llama_model_free(model);
return iparams;
return res;
}
}
@@ -988,10 +1239,7 @@ struct common_init_result common_init_from_params(common_params & params) {
}
if (!ok) {
llama_free(lctx);
llama_model_free(model);
return iparams;
return res;
}
}
@@ -1001,9 +1249,7 @@ struct common_init_result common_init_from_params(common_params & params) {
lora.reset(llama_adapter_lora_init(model, la.path.c_str()));
if (lora == nullptr) {
LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
llama_free(lctx);
llama_model_free(model);
return iparams;
return res;
}
char buf[1024];
@@ -1012,43 +1258,13 @@ struct common_init_result common_init_from_params(common_params & params) {
la.task_name = buf;
llama_adapter_meta_val_str(la.ptr, "adapter.lora.prompt_prefix", buf, sizeof(buf));
la.prompt_prefix = buf;
iparams.lora.emplace_back(std::move(lora)); // copy to list of loaded adapters
res->lora().emplace_back(std::move(lora)); // copy to list of loaded adapters
}
if (!params.lora_init_without_apply) {
common_set_adapter_lora(lctx, params.lora_adapters);
}
if (params.sampling.ignore_eos && llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have an EOS token, ignoring --ignore-eos\n", __func__);
params.sampling.ignore_eos = false;
}
// initialize once
for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
if (llama_vocab_is_eog(vocab, i)) {
LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(lctx, i).c_str(), -INFINITY);
params.sampling.logit_bias_eog.push_back({i, -INFINITY});
}
}
if (params.sampling.ignore_eos) {
// add EOG biases to the active set of logit biases
params.sampling.logit_bias.insert(
params.sampling.logit_bias.end(),
params.sampling.logit_bias_eog.begin(), params.sampling.logit_bias_eog.end());
}
if (params.sampling.penalty_last_n == -1) {
LOG_INF("%s: setting penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
params.sampling.penalty_last_n = llama_n_ctx(lctx);
}
if (params.sampling.dry_penalty_last_n == -1) {
LOG_INF("%s: setting dry_penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
params.sampling.dry_penalty_last_n = llama_n_ctx(lctx);
}
if (params.warmup) {
LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__);
@@ -1087,12 +1303,11 @@ struct common_init_result common_init_from_params(common_params & params) {
llama_set_warmup(lctx, false);
}
iparams.model.reset(model);
iparams.context.reset(lctx);
return iparams;
return res;
}
common_init_result::~common_init_result() = default;
std::string get_model_endpoint() {
const char * model_endpoint_env = getenv("MODEL_ENDPOINT");
// We still respect the use of environment-variable "HF_ENDPOINT" for backward-compatibility.
@@ -1101,7 +1316,9 @@ std::string get_model_endpoint() {
std::string model_endpoint = "https://huggingface.co/";
if (endpoint_env) {
model_endpoint = endpoint_env;
if (model_endpoint.back() != '/') model_endpoint += '/';
if (model_endpoint.back() != '/') {
model_endpoint += '/';
}
}
return model_endpoint;
}

View File

@@ -2,17 +2,19 @@
#pragma once
#include "ggml-opt.h"
#include "llama-cpp.h"
#include <set>
#include <sstream>
#include <string>
#include <string_view>
#include <vector>
#include <map>
#include <sstream>
#include <cmath>
#include "ggml-opt.h"
#include "llama-cpp.h"
#if defined(_WIN32) && !defined(_WIN32_WINNT)
#define _WIN32_WINNT 0x0A00
#endif
#ifdef _WIN32
#define DIRECTORY_SEPARATOR '\\'
@@ -28,7 +30,14 @@
fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
} while(0)
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
struct common_time_meas {
common_time_meas(int64_t & t_acc, bool disable = false);
~common_time_meas();
const int64_t t_start_us;
int64_t & t_acc;
};
struct common_adapter_lora_info {
std::string path;
@@ -73,7 +82,8 @@ int32_t cpu_get_num_math();
enum llama_example {
LLAMA_EXAMPLE_COMMON,
LLAMA_EXAMPLE_SPECULATIVE,
LLAMA_EXAMPLE_MAIN,
LLAMA_EXAMPLE_COMPLETION,
LLAMA_EXAMPLE_CLI,
LLAMA_EXAMPLE_EMBEDDING,
LLAMA_EXAMPLE_PERPLEXITY,
LLAMA_EXAMPLE_RETRIEVAL,
@@ -89,6 +99,7 @@ enum llama_example {
LLAMA_EXAMPLE_TTS,
LLAMA_EXAMPLE_DIFFUSION,
LLAMA_EXAMPLE_FINETUNE,
LLAMA_EXAMPLE_FIT_PARAMS,
LLAMA_EXAMPLE_COUNT,
};
@@ -133,6 +144,22 @@ struct common_grammar_trigger {
llama_token token = LLAMA_TOKEN_NULL;
};
enum common_params_sampling_config : uint64_t {
COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS = 1 << 0,
COMMON_PARAMS_SAMPLING_CONFIG_TOP_K = 1 << 1,
COMMON_PARAMS_SAMPLING_CONFIG_TOP_P = 1 << 2,
COMMON_PARAMS_SAMPLING_CONFIG_MIN_P = 1 << 3,
COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY = 1 << 4,
COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD = 1 << 5,
COMMON_PARAMS_SAMPLING_CONFIG_TEMP = 1 << 6,
COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N = 1 << 7,
COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT = 1 << 8,
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT = 1 << 9,
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU = 1 << 10,
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA = 1 << 11,
};
// sampling parameters
struct common_params_sampling {
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
@@ -165,8 +192,9 @@ struct common_params_sampling {
bool no_perf = false; // disable performance metrics
bool timing_per_token = false;
std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
uint64_t user_sampling_config = 0; // bitfield to track user-specified samplers
std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
std::vector<enum common_sampler_type> samplers = {
COMMON_SAMPLER_TYPE_PENALTIES,
@@ -188,6 +216,10 @@ struct common_params_sampling {
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
std::vector<llama_logit_bias> logit_bias_eog; // pre-calculated logit biases for EOG tokens
bool has_logit_bias() const {
return !logit_bias.empty();
}
// print the parameters into a string
std::string print() const;
};
@@ -198,6 +230,7 @@ struct common_params_model {
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string docker_repo = ""; // Docker repo // NOLINT
std::string name = ""; // in format <user>/<model>[:<tag>] (tag is optional) // NOLINT
};
struct common_params_speculative {
@@ -274,8 +307,8 @@ struct lr_opt {
struct ggml_opt_optimizer_params common_opt_lr_pars(void * userdata);
struct common_params {
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 4096; // context size
int32_t n_predict = -1; // max. number of new tokens to predict, -1 == no limit
int32_t n_ctx = 0; // context size, 0 == context the model was trained with
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
@@ -296,9 +329,12 @@ struct common_params {
// offload params
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
bool fit_params = true; // whether to fit unset model/context parameters to free device memory
size_t fit_params_target = 1024 * 1024*1024; // margin per device in bytes for fitting parameters to free memory
int32_t fit_params_min_ctx = 4096; // minimum context size to set when trying to reduce memory use
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
@@ -344,7 +380,7 @@ struct common_params {
std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
int32_t verbosity = 0;
int32_t verbosity = 3; // LOG_LEVEL_INFO
int32_t control_vector_layer_start = -1; // layer range for control vector
int32_t control_vector_layer_end = -1; // layer range for control vector
bool offline = false;
@@ -378,6 +414,7 @@ struct common_params {
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
bool cont_batching = true; // insert new sequences for decoding on-the-fly
bool no_perf = false; // disable performance metrics
bool show_timings = true; // show timing information on CLI
bool ctx_shift = false; // context shift on infinite text generation
bool swa_full = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
bool kv_unified = false; // enable unified KV cache
@@ -406,6 +443,8 @@ struct common_params {
bool mmproj_use_gpu = true; // use GPU for multimodal model
bool no_mmproj = false; // explicitly disable multimodal model
std::vector<std::string> image; // path to image file(s)
int image_min_tokens = -1;
int image_max_tokens = -1;
// finetune
struct lr_opt lr;
@@ -432,7 +471,7 @@ struct common_params {
std::string public_path = ""; // NOLINT
std::string api_prefix = ""; // NOLINT
std::string chat_template = ""; // NOLINT
bool use_jinja = false; // NOLINT
bool use_jinja = true; // NOLINT
bool enable_chat_template = true;
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
int reasoning_budget = -1;
@@ -451,14 +490,22 @@ struct common_params {
bool endpoint_props = false; // only control POST requests, not GET
bool endpoint_metrics = false;
// router server configs
std::string models_dir = ""; // directory containing models for the router server
std::string models_preset = ""; // directory containing model presets for the router server
int models_max = 4; // maximum number of models to load simultaneously
bool models_autoload = true; // automatically load models when requested via the router server
bool log_json = false;
std::string slot_save_path;
std::string media_path; // path to directory for loading media files
float slot_prompt_similarity = 0.1f;
// batched-bench params
bool is_pp_shared = false;
bool is_pp_shared = false;
bool is_tg_separate = false;
std::vector<int32_t> n_pp;
std::vector<int32_t> n_tg;
@@ -505,6 +552,10 @@ struct common_params {
// return false from callback to abort model loading or true to continue
llama_progress_callback load_progress_callback = NULL;
void * load_progress_callback_user_data = NULL;
bool has_speculative() const {
return !speculative.model.path.empty() || !speculative.model.hf_repo.empty();
}
};
// call once at the start of a program if it uses libcommon
@@ -599,25 +650,55 @@ std::string string_from(const struct llama_context * ctx, const struct llama_bat
// Filesystem utils
//
bool fs_validate_filename(const std::string & filename);
bool fs_validate_filename(const std::string & filename, bool allow_subdirs = false);
bool fs_create_directory_with_parents(const std::string & path);
bool fs_is_directory(const std::string & path);
std::string fs_get_cache_directory();
std::string fs_get_cache_file(const std::string & filename);
struct common_file_info {
std::string path;
std::string name;
size_t size = 0; // in bytes
bool is_dir = false;
};
std::vector<common_file_info> fs_list(const std::string & path, bool include_directories);
//
// TTY utils
//
// Auto-detect if colors can be enabled based on terminal and environment
bool tty_can_use_colors();
//
// Model utils
//
// note: defines object's lifetime
struct common_init_result {
llama_model_ptr model;
llama_context_ptr context;
struct common_sampler;
std::vector<llama_adapter_lora_ptr> lora;
// note: defines the model, context, samplers, ets. lifetimes
struct common_init_result {
common_init_result(common_params & params);
~common_init_result();
llama_model * model();
llama_context * context();
common_sampler * sampler(llama_seq_id seq_id);
std::vector<llama_adapter_lora_ptr> & lora();
void free_context();
private:
struct impl;
std::unique_ptr<impl> pimpl;
};
struct common_init_result common_init_from_params(common_params & params);
using common_init_result_ptr = std::unique_ptr<common_init_result>;
common_init_result_ptr common_init_from_params(common_params & params);
struct llama_model_params common_model_params_to_llama ( common_params & params);
struct llama_context_params common_context_params_to_llama(const common_params & params);

View File

@@ -268,10 +268,10 @@ static bool is_reserved_name(const std::string & name) {
}
std::regex INVALID_RULE_CHARS_RE("[^a-zA-Z0-9-]+");
std::regex GRAMMAR_LITERAL_ESCAPE_RE("[\r\n\"]");
std::regex GRAMMAR_LITERAL_ESCAPE_RE("[\r\n\"\\\\]");
std::regex GRAMMAR_RANGE_LITERAL_ESCAPE_RE("[\r\n\"\\]\\-\\\\]");
std::unordered_map<char, std::string> GRAMMAR_LITERAL_ESCAPES = {
{'\r', "\\r"}, {'\n', "\\n"}, {'"', "\\\""}, {'-', "\\-"}, {']', "\\]"}
{'\r', "\\r"}, {'\n', "\\n"}, {'"', "\\\""}, {'-', "\\-"}, {']', "\\]"}, {'\\', "\\\\"}
};
std::unordered_set<char> NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'};
@@ -303,8 +303,11 @@ static std::string format_literal(const std::string & literal) {
return "\"" + escaped + "\"";
}
class SchemaConverter {
std::string gbnf_format_literal(const std::string & literal) { return format_literal(literal); }
class common_schema_converter {
private:
friend class common_schema_info;
friend std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options);
std::function<json(const std::string &)> _fetch_json;
bool _dotall;
@@ -601,7 +604,10 @@ private:
}
std::string _resolve_ref(const std::string & ref) {
std::string ref_name = ref.substr(ref.find_last_of('/') + 1);
auto it = ref.find('#');
std::string ref_fragment = it != std::string::npos ? ref.substr(it + 1) : ref;
static const std::regex nonalphanumeric_regex(R"([^a-zA-Z0-9-]+)");
std::string ref_name = "ref" + std::regex_replace(ref_fragment, nonalphanumeric_regex, "-");
if (_rules.find(ref_name) == _rules.end() && _refs_being_resolved.find(ref) == _refs_being_resolved.end()) {
_refs_being_resolved.insert(ref);
json resolved = _refs[ref];
@@ -724,7 +730,7 @@ private:
}
public:
SchemaConverter(
common_schema_converter(
const std::function<json(const std::string &)> & fetch_json,
bool dotall)
: _fetch_json(fetch_json), _dotall(dotall)
@@ -774,11 +780,24 @@ public:
std::vector<std::string> tokens = string_split(pointer, "/");
for (size_t i = 1; i < tokens.size(); ++i) {
std::string sel = tokens[i];
if (target.is_null() || !target.contains(sel)) {
if (target.is_object() && target.contains(sel)) {
target = target[sel];
} else if (target.is_array()) {
size_t sel_index;
try {
sel_index = std::stoul(sel);
} catch (const std::invalid_argument & e) {
sel_index = target.size();
}
if (sel_index >= target.size()) {
_errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump());
return;
}
target = target[sel_index];
} else {
_errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump());
return;
}
target = target[sel];
}
_refs[ref] = target;
}
@@ -956,7 +975,7 @@ public:
void check_errors() {
if (!_errors.empty()) {
throw std::runtime_error("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
throw std::invalid_argument("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
}
if (!_warnings.empty()) {
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", string_join(_warnings, "; ").c_str());
@@ -972,6 +991,134 @@ public:
}
};
// common_schema_info implementation (pimpl)
common_schema_info::common_schema_info()
: impl_(std::make_unique<common_schema_converter>(
[](const std::string &) { return json(); },
false)) {}
common_schema_info::~common_schema_info() = default;
common_schema_info::common_schema_info(common_schema_info &&) noexcept = default;
common_schema_info & common_schema_info::operator=(common_schema_info &&) noexcept = default;
void common_schema_info::resolve_refs(nlohmann::ordered_json & schema) {
impl_->resolve_refs(schema, "");
}
// Determines if a JSON schema can resolve to a string type through any path.
// Some models emit raw string values rather than JSON-encoded strings for string parameters.
// If any branch of the schema (via oneOf, anyOf, $ref, etc.) permits a string, this returns
// true, allowing callers to handle the value as a raw string for simplicity.
bool common_schema_info::resolves_to_string(const nlohmann::ordered_json & schema) {
std::unordered_set<std::string> visited_refs;
std::function<bool(const json &)> check = [&](const json & s) -> bool {
if (!s.is_object()) {
return false;
}
// Handle $ref
if (s.contains("$ref")) {
const std::string & ref = s["$ref"];
if (visited_refs.find(ref) != visited_refs.end()) {
// Circular reference, assume not a string to be safe
return false;
}
visited_refs.insert(ref);
auto it = impl_->_refs.find(ref);
if (it != impl_->_refs.end()) {
return check(it->second);
}
return false;
}
// Check type field
if (s.contains("type")) {
const json & schema_type = s["type"];
if (schema_type.is_string()) {
if (schema_type == "string") {
return true;
}
} else if (schema_type.is_array()) {
// Type can be an array like ["string", "null"]
for (const auto & t : schema_type) {
if (t == "string") {
return true;
}
}
}
}
// Check oneOf/anyOf - if any alternative can be a string
if (s.contains("oneOf")) {
for (const auto & alt : s["oneOf"]) {
if (check(alt)) {
return true;
}
}
}
if (s.contains("anyOf")) {
for (const auto & alt : s["anyOf"]) {
if (check(alt)) {
return true;
}
}
}
// Check allOf - all components must be compatible with string type
if (s.contains("allOf")) {
bool all_string = true;
for (const auto & component : s["allOf"]) {
if (!check(component)) {
all_string = false;
break;
}
}
if (all_string) {
return true;
}
}
// Check const - if the constant value is a string
if (s.contains("const")) {
if (s["const"].is_string()) {
return true;
}
}
// Check enum - if any enum value is a string
if (s.contains("enum")) {
for (const auto & val : s["enum"]) {
if (val.is_string()) {
return true;
}
}
}
// String-specific keywords imply string type
if (s.contains("pattern") || s.contains("minLength") || s.contains("maxLength")) {
return true;
}
// Check format - many formats imply string
if (s.contains("format")) {
const std::string & fmt = s["format"];
if (fmt == "date" || fmt == "time" || fmt == "date-time" ||
fmt == "uri" || fmt == "email" || fmt == "hostname" ||
fmt == "ipv4" || fmt == "ipv6" || fmt == "uuid" ||
fmt.find("uuid") == 0) {
return true;
}
}
return false;
};
return check(schema);
}
std::string json_schema_to_grammar(const json & schema, bool force_gbnf) {
#ifdef LLAMA_USE_LLGUIDANCE
if (!force_gbnf) {
@@ -988,7 +1135,7 @@ std::string json_schema_to_grammar(const json & schema, bool force_gbnf) {
}
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options) {
SchemaConverter converter([&](const std::string &) { return json(); }, options.dotall);
common_schema_converter converter([&](const std::string &) { return json(); }, options.dotall);
common_grammar_builder builder {
/* .add_rule = */ [&](const std::string & name, const std::string & rule) {
return converter._add_rule(name, rule);

View File

@@ -3,11 +3,31 @@
#include <nlohmann/json_fwd.hpp>
#include <functional>
#include <memory>
#include <string>
std::string json_schema_to_grammar(const nlohmann::ordered_json & schema,
bool force_gbnf = false);
class common_schema_converter;
// Probes a JSON schema to extract information about its structure and type constraints.
class common_schema_info {
std::unique_ptr<common_schema_converter> impl_;
public:
common_schema_info();
~common_schema_info();
common_schema_info(const common_schema_info &) = delete;
common_schema_info & operator=(const common_schema_info &) = delete;
common_schema_info(common_schema_info &&) noexcept;
common_schema_info & operator=(common_schema_info &&) noexcept;
void resolve_refs(nlohmann::ordered_json & schema);
bool resolves_to_string(const nlohmann::ordered_json & schema);
};
struct common_grammar_builder {
std::function<std::string(const std::string &, const std::string &)> add_rule;
std::function<std::string(const std::string &, const nlohmann::ordered_json &)> add_schema;
@@ -18,4 +38,6 @@ struct common_grammar_options {
bool dotall = false;
};
std::string gbnf_format_literal(const std::string & literal);
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options = {});

View File

@@ -1,3 +1,4 @@
#include "common.h"
#include "log.h"
#include <chrono>
@@ -26,30 +27,6 @@ void common_log_set_verbosity_thold(int verbosity) {
common_log_verbosity_thold = verbosity;
}
// Auto-detect if colors should be enabled based on terminal and environment
static bool common_log_should_use_colors_auto() {
// Check NO_COLOR environment variable (https://no-color.org/)
if (const char * no_color = std::getenv("NO_COLOR")) {
if (no_color[0] != '\0') {
return false;
}
}
// Check TERM environment variable
if (const char * term = std::getenv("TERM")) {
if (std::strcmp(term, "dumb") == 0) {
return false;
}
}
// Check if stdout and stderr are connected to a terminal
// We check both because log messages can go to either
bool stdout_is_tty = isatty(fileno(stdout));
bool stderr_is_tty = isatty(fileno(stderr));
return stdout_is_tty || stderr_is_tty;
}
static int64_t t_us() {
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now().time_since_epoch()).count();
}
@@ -391,7 +368,7 @@ struct common_log * common_log_main() {
static std::once_flag init_flag;
std::call_once(init_flag, [&]() {
// Set default to auto-detect colors
log.set_colors(common_log_should_use_colors_auto());
log.set_colors(tty_can_use_colors());
});
return &log;
@@ -422,7 +399,7 @@ void common_log_set_file(struct common_log * log, const char * file) {
void common_log_set_colors(struct common_log * log, log_colors colors) {
if (colors == LOG_COLORS_AUTO) {
log->set_colors(common_log_should_use_colors_auto());
log->set_colors(tty_can_use_colors());
return;
}
@@ -442,3 +419,28 @@ void common_log_set_prefix(struct common_log * log, bool prefix) {
void common_log_set_timestamps(struct common_log * log, bool timestamps) {
log->set_timestamps(timestamps);
}
void common_log_flush(struct common_log * log) {
log->pause();
log->resume();
}
static int common_get_verbosity(enum ggml_log_level level) {
switch (level) {
case GGML_LOG_LEVEL_DEBUG: return LOG_LEVEL_DEBUG;
case GGML_LOG_LEVEL_INFO: return LOG_LEVEL_INFO;
case GGML_LOG_LEVEL_WARN: return LOG_LEVEL_WARN;
case GGML_LOG_LEVEL_ERROR: return LOG_LEVEL_ERROR;
case GGML_LOG_LEVEL_CONT: return LOG_LEVEL_INFO; // same as INFO
case GGML_LOG_LEVEL_NONE:
default:
return LOG_LEVEL_OUTPUT;
}
}
void common_log_default_callback(enum ggml_log_level level, const char * text, void * /*user_data*/) {
auto verbosity = common_get_verbosity(level);
if (verbosity <= common_log_verbosity_thold) {
common_log_add(common_log_main(), level, "%s", text);
}
}

View File

@@ -21,8 +21,14 @@
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
#endif
#define LOG_DEFAULT_DEBUG 1
#define LOG_DEFAULT_LLAMA 0
#define LOG_LEVEL_DEBUG 4
#define LOG_LEVEL_INFO 3
#define LOG_LEVEL_WARN 2
#define LOG_LEVEL_ERROR 1
#define LOG_LEVEL_OUTPUT 0 // output data from tools
#define LOG_DEFAULT_DEBUG LOG_LEVEL_DEBUG
#define LOG_DEFAULT_LLAMA LOG_LEVEL_INFO
enum log_colors {
LOG_COLORS_AUTO = -1,
@@ -36,6 +42,8 @@ extern int common_log_verbosity_thold;
void common_log_set_verbosity_thold(int verbosity); // not thread-safe
void common_log_default_callback(enum ggml_log_level level, const char * text, void * user_data);
// the common_log uses an internal worker thread to print/write log messages
// when the worker thread is paused, incoming log messages are discarded
struct common_log;
@@ -65,16 +73,18 @@ void common_log_add(struct common_log * log, enum ggml_log_level level, const ch
// 0.00.090.578 I llm_load_tensors: offloading 32 repeating layers to GPU
// 0.00.090.579 I llm_load_tensors: offloading non-repeating layers to GPU
//
// I - info (stdout, V = 0)
// W - warning (stderr, V = 0)
// E - error (stderr, V = 0)
// D - debug (stderr, V = LOG_DEFAULT_DEBUG)
// I - info (stdout, V = LOG_DEFAULT_INFO)
// W - warning (stderr, V = LOG_DEFAULT_WARN)
// E - error (stderr, V = LOG_DEFAULT_ERROR)
// O - output (stdout, V = LOG_DEFAULT_OUTPUT)
//
void common_log_set_file (struct common_log * log, const char * file); // not thread-safe
void common_log_set_colors (struct common_log * log, log_colors colors); // not thread-safe
void common_log_set_prefix (struct common_log * log, bool prefix); // whether to output prefix to each log
void common_log_set_timestamps(struct common_log * log, bool timestamps); // whether to output timestamps in the prefix
void common_log_flush (struct common_log * log); // flush all pending log messages
// helper macros for logging
// use these to avoid computing log arguments if the verbosity of the log is higher than the threshold
@@ -93,14 +103,14 @@ void common_log_set_timestamps(struct common_log * log, bool timestamps); // w
} \
} while (0)
#define LOG(...) LOG_TMPL(GGML_LOG_LEVEL_NONE, 0, __VA_ARGS__)
#define LOGV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_NONE, verbosity, __VA_ARGS__)
#define LOG(...) LOG_TMPL(GGML_LOG_LEVEL_NONE, LOG_LEVEL_OUTPUT, __VA_ARGS__)
#define LOGV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_NONE, verbosity, __VA_ARGS__)
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, 0, __VA_ARGS__)
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, 0, __VA_ARGS__)
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, 0, __VA_ARGS__)
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, LOG_DEFAULT_DEBUG, __VA_ARGS__)
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, 0, __VA_ARGS__)
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, LOG_LEVEL_DEBUG, __VA_ARGS__)
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, LOG_LEVEL_INFO, __VA_ARGS__)
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, LOG_LEVEL_WARN, __VA_ARGS__)
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, LOG_LEVEL_ERROR, __VA_ARGS__)
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, LOG_LEVEL_INFO, __VA_ARGS__) // same as INFO
#define LOG_INFV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_INFO, verbosity, __VA_ARGS__)
#define LOG_WRNV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_WARN, verbosity, __VA_ARGS__)

View File

@@ -3,9 +3,10 @@
#include "common.h"
#include "log.h"
#include <cmath>
#include <unordered_map>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <unordered_map>
// the ring buffer works similarly to std::deque, but with a fixed capacity
// TODO: deduplicate with llama-impl.h
@@ -103,15 +104,22 @@ struct ring_buffer {
struct common_sampler {
common_params_sampling params;
struct llama_sampler * grmr;
struct llama_sampler * chain;
bool grammar;
ring_buffer<llama_token> prev;
std::vector<llama_token_data> cur;
llama_token_data_array cur_p;
void reset() {
prev.clear();
llama_sampler_reset(chain);
}
void set_logits(struct llama_context * ctx, int idx) {
const auto * logits = llama_get_logits_ith(ctx, idx);
@@ -128,6 +136,12 @@ struct common_sampler {
cur_p = { cur.data(), cur.size(), -1, false };
}
common_time_meas tm() {
return common_time_meas(t_total_us, params.no_perf);
}
mutable int64_t t_total_us = 0;
};
std::string common_params_sampling::print() const {
@@ -153,10 +167,15 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
lparams.no_perf = params.no_perf;
struct llama_sampler * grmr;
llama_sampler * chain = llama_sampler_chain_init(lparams);
bool grammar = false;
std::vector<llama_sampler *> samplers;
if (params.grammar.compare(0, 11, "%llguidance") == 0) {
#ifdef LLAMA_USE_LLGUIDANCE
grmr = llama_sampler_init_llg(vocab, "lark", params.grammar.c_str());
samplers.push_back(llama_sampler_init_llg(vocab, "lark", params.grammar.c_str()));
grammar = true;
#else
GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
#endif // LLAMA_USE_LLGUIDANCE
@@ -203,30 +222,23 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
trigger_patterns_c.push_back(regex.c_str());
}
grmr = params.grammar_lazy
? llama_sampler_init_grammar_lazy_patterns(vocab, params.grammar.c_str(), "root",
trigger_patterns_c.data(), trigger_patterns_c.size(),
trigger_tokens.data(), trigger_tokens.size())
: llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
if (!grmr) {
return nullptr;
if (!params.grammar.empty()) {
if (params.grammar_lazy) {
samplers.push_back(
llama_sampler_init_grammar_lazy_patterns(vocab, params.grammar.c_str(), "root",
trigger_patterns_c.data(), trigger_patterns_c.size(),
trigger_tokens.data(), trigger_tokens.size()));
} else {
samplers.push_back(llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root"));
}
grammar = true;
}
}
auto * result = new common_sampler {
/* .params = */ params,
/* .grmr = */ grmr,
/* .chain = */ llama_sampler_chain_init(lparams),
/* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
/* .cur = */ {},
/* .cur_p = */ {},
};
llama_sampler_chain_add(result->chain,
llama_sampler_init_logit_bias(
llama_vocab_n_tokens(vocab),
params.logit_bias.size(),
params.logit_bias.data()));
if (params.has_logit_bias()) {
samplers.push_back(llama_sampler_init_logit_bias(llama_vocab_n_tokens(vocab), params.logit_bias.size(), params.logit_bias.data()));
}
if (params.mirostat == 0) {
for (const auto & cnstr : params.samplers) {
@@ -239,58 +251,70 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
c_breakers.push_back(str.c_str());
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
samplers.push_back(llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
}
break;
case COMMON_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
samplers.push_back(llama_sampler_init_top_k (params.top_k));
break;
case COMMON_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
samplers.push_back(llama_sampler_init_top_p (params.top_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
samplers.push_back(llama_sampler_init_top_n_sigma(params.top_n_sigma));
break;
case COMMON_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
samplers.push_back(llama_sampler_init_min_p (params.min_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_XTC:
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
samplers.push_back(llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break;
case COMMON_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
samplers.push_back(llama_sampler_init_typical (params.typ_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TEMPERATURE:
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
samplers.push_back(llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break;
case COMMON_SAMPLER_TYPE_INFILL:
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
samplers.push_back(llama_sampler_init_infill (vocab));
break;
case COMMON_SAMPLER_TYPE_PENALTIES:
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
samplers.push_back(llama_sampler_init_penalties (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
}
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
samplers.push_back(llama_sampler_init_dist(params.seed));
} else if (params.mirostat == 1) {
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_vocab_n_tokens(vocab), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
samplers.push_back(llama_sampler_init_temp(params.temp));
samplers.push_back(llama_sampler_init_mirostat(llama_vocab_n_tokens(vocab), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
} else if (params.mirostat == 2) {
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
samplers.push_back(llama_sampler_init_temp(params.temp));
samplers.push_back(llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
} else {
GGML_ASSERT(false && "unknown mirostat version");
}
for (auto * smpl : samplers) {
llama_sampler_chain_add(chain, smpl);
}
auto * result = new common_sampler {
/* .params = */ params,
/* .chain = */ chain,
/* .grammar = */ grammar,
/* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
/* .cur = */ {},
/* .cur_p = */ {},
};
return result;
}
void common_sampler_free(struct common_sampler * gsmpl) {
if (gsmpl) {
llama_sampler_free(gsmpl->grmr);
llama_sampler_free(gsmpl->chain);
delete gsmpl;
@@ -298,91 +322,117 @@ void common_sampler_free(struct common_sampler * gsmpl) {
}
void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) {
if (accept_grammar) {
llama_sampler_accept(gsmpl->grmr, token);
}
const auto tm = gsmpl->tm();
llama_sampler_accept(gsmpl->chain, token);
if (gsmpl->grammar) {
const int n_smpl = llama_sampler_chain_n(gsmpl->chain);
for (int i = 0; i < n_smpl; i++) {
auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
// the grammar sampler is always the first one
if (i == 0) {
if (accept_grammar) {
llama_sampler_accept(smpl, token);
}
} else {
llama_sampler_accept(smpl, token);
}
}
} else {
llama_sampler_accept(gsmpl->chain, token);
}
gsmpl->prev.push_back(token);
}
void common_sampler_reset(struct common_sampler * gsmpl) {
llama_sampler_reset(gsmpl->grmr);
llama_sampler_reset(gsmpl->chain);
gsmpl->reset();
}
struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
return new common_sampler {
/* .params = */ gsmpl->params,
/* .grmr = */ llama_sampler_clone(gsmpl->grmr),
/* .chain = */ llama_sampler_clone(gsmpl->chain),
/* .prev = */ gsmpl->prev,
/* .cur = */ gsmpl->cur,
/* .cur_p = */ gsmpl->cur_p,
/* .params = */ gsmpl->params,
/* .chain = */ llama_sampler_clone(gsmpl->chain),
/* .grammar = */ gsmpl->grammar,
/* .prev = */ gsmpl->prev,
/* .cur = */ gsmpl->cur,
/* .cur_p = */ gsmpl->cur_p,
};
}
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl) {
// TODO: measure grammar performance
const double t_sampling_ms = gsmpl ? 1e-3*gsmpl->t_total_us : 0;
llama_perf_sampler_data data_smpl;
llama_perf_context_data data_ctx;
memset(&data_smpl, 0, sizeof(data_smpl));
memset(&data_ctx, 0, sizeof(data_ctx));
if (gsmpl) {
llama_perf_sampler_print(gsmpl->chain);
auto & data = data_smpl;
data = llama_perf_sampler(gsmpl->chain);
// note: the sampling time includes the samplers time + extra time spent in common/sampling
LOG_INF("%s: sampling time = %10.2f ms\n", __func__, t_sampling_ms);
LOG_INF("%s: samplers time = %10.2f ms / %5d tokens\n", __func__, data.t_sample_ms, data.n_sample);
}
if (ctx) {
llama_perf_context_print(ctx);
auto & data = data_ctx;
data = llama_perf_context(ctx);
const double t_end_ms = 1e-3 * ggml_time_us();
const double t_total_ms = t_end_ms - data.t_start_ms;
const double t_unacc_ms = t_total_ms - (t_sampling_ms + data.t_p_eval_ms + data.t_eval_ms);
const double t_unacc_pc = 100.0 * t_unacc_ms / t_total_ms;
LOG_INF("%s: load time = %10.2f ms\n", __func__, data.t_load_ms);
LOG_INF("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, data.t_p_eval_ms, data.n_p_eval, data.t_p_eval_ms / data.n_p_eval, 1e3 / data.t_p_eval_ms * data.n_p_eval);
LOG_INF("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, data.t_eval_ms, data.n_eval, data.t_eval_ms / data.n_eval, 1e3 / data.t_eval_ms * data.n_eval);
LOG_INF("%s: total time = %10.2f ms / %5d tokens\n", __func__, (t_end_ms - data.t_start_ms), (data.n_p_eval + data.n_eval));
LOG_INF("%s: unaccounted time = %10.2f ms / %5.1f %% (total - sampling - prompt eval - eval) / (total)\n", __func__, t_unacc_ms, t_unacc_pc);
LOG_INF("%s: graphs reused = %10d\n", __func__, data.n_reused);
llama_memory_breakdown_print(ctx);
}
}
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
gsmpl->set_logits(ctx, idx);
struct llama_sampler * common_sampler_get(const struct common_sampler * gsmpl) {
return gsmpl->chain;
}
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx) {
llama_synchronize(ctx);
// start measuring sampling time after the llama_context synchronization in order to not measure any ongoing async operations
const auto tm = gsmpl->tm();
llama_token id = LLAMA_TOKEN_NULL;
auto & grmr = gsmpl->grmr;
auto & chain = gsmpl->chain;
auto & cur_p = gsmpl->cur_p; // initialized by set_logits
if (grammar_first) {
llama_sampler_apply(grmr, &cur_p);
}
gsmpl->set_logits(ctx, idx);
llama_sampler_apply(chain, &cur_p);
GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration");
const llama_token id = cur_p.data[cur_p.selected].id;
id = cur_p.data[cur_p.selected].id;
if (grammar_first) {
return id;
}
// check if it the sampled token fits the grammar
{
llama_token_data single_token_data = { id, 1.0f, 0.0f };
llama_token_data_array single_token_data_array = { &single_token_data, 1, -1, false };
llama_sampler_apply(grmr, &single_token_data_array);
const bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
if (is_valid) {
return id;
}
}
// resampling:
// if the token is not valid, sample again, but first apply the grammar sampler and then the sampling chain
gsmpl->set_logits(ctx, idx);
llama_sampler_apply(grmr, &cur_p);
llama_sampler_apply(chain, &cur_p);
GGML_ASSERT(cur_p.selected != -1 && "no selected token during re-sampling - check your sampling configuration");
return cur_p.data[cur_p.selected].id;
return id;
}
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first) {
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft) {
GGML_ASSERT(idxs.size() == draft.size() + 1 && "idxs.size() must be draft.size() + 1");
std::vector<llama_token> result;
@@ -390,7 +440,7 @@ std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sample
size_t i = 0;
for (; i < draft.size(); i++) {
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i]);
common_sampler_accept(gsmpl, id, true);
@@ -402,7 +452,7 @@ std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sample
}
if (i == draft.size()) {
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i]);
common_sampler_accept(gsmpl, id, true);
@@ -412,13 +462,13 @@ std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sample
return result;
}
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first) {
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft) {
std::vector<int> idxs(draft.size() + 1);
for (size_t i = 0; i < idxs.size(); ++i) {
idxs[i] = i;
}
return common_sampler_sample_and_accept_n(gsmpl, ctx, idxs, draft, grammar_first);
return common_sampler_sample_and_accept_n(gsmpl, ctx, idxs, draft);
}
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
@@ -428,6 +478,8 @@ uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
// helpers
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl, bool do_sort) {
const auto tm = gsmpl->tm();
auto * res = &gsmpl->cur_p;
if (do_sort && !res->sorted) {
@@ -461,7 +513,8 @@ std::string common_sampler_print(const struct common_sampler * gsmpl) {
for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
const auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
result += std::string("-> ") + llama_sampler_name(smpl) + " ";
result += std::string("-> ");
result += std::string(llama_sampler_name(smpl)) + " ";
}
return result;

View File

@@ -48,6 +48,8 @@ struct common_sampler * common_sampler_clone (struct common_sampler * gsmpl);
// arguments can be nullptr to skip printing
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl);
struct llama_sampler * common_sampler_get(const struct common_sampler * gsmpl);
// extended sampling implementation:
//
// - set logits
@@ -55,10 +57,7 @@ void common_perf_print(const struct llama_context * ctx, const struct common_sam
// - check if the token fits the grammar (if any)
// - if not: resample by first applying the grammar constraints and then sampling again (slower path)
//
// if grammar_first is true, the grammar is applied before the samplers (slower)
// useful in cases where all the resulting candidates (not just the sampled one) must fit the grammar
//
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx);
// generalized version of common_sampler_sample
//
@@ -76,10 +75,10 @@ llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_co
//
// returns at least 1 token, up to idxs.size()
//
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first = false);
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft);
// assume idxs == [ 0, 1, 2, ..., draft.size() ]
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first = false);
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft);
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl);
@@ -107,3 +106,9 @@ std::vector<enum common_sampler_type> common_sampler_types_from_chars(const std:
llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab,
const char * grammar_kind, const char * grammar_data);
struct common_sampler_deleter {
void operator()(common_sampler * s) { common_sampler_free(s); }
};
typedef std::unique_ptr<common_sampler, common_sampler_deleter> common_sampler_ptr;

Some files were not shown because too many files have changed in this diff Show More