Compare commits

..

90 Commits

Author SHA1 Message Date
ParthSareen
96d69ee2b2 WIP: add agent docs and example skills
Temporary commit with documentation and examples for agent features.
This commit can be reverted before merging.

Includes:
- docs/ENTRYPOINT_FEATURE.md - ENTRYPOINT implementation notes
- docs/mcp-integration.md - MCP integration design
- docs/agent-skills-changes.md - Skills feature changes
- docs/skill-registry-design.md - Registry design notes
- skills/ - Example skill implementations
- ducky.Agentfile - Example entrypoint agent
2025-12-30 15:01:57 -05:00
ParthSareen
89f74a8b05 agents: add MCP server support and ENTRYPOINT command
MCP (Model Context Protocol) support:
- Add MCPRef type for agent MCP server references
- Parse MCP command in Agentfiles (MCP name command [args...])
- Load and manage MCP servers with mcpManager
- Implement agentic loop for multi-turn tool execution
- Add /mcp REPL commands (add, remove, disable, enable)
- Add 'ollama mcp' CLI commands for global config management
- Support both model-bundled and global (~/.ollama/mcp.json) MCPs
- Display MCPs in 'ollama show' output

ENTRYPOINT support:
- Add ENTRYPOINT command to Agentfiles for custom runtimes
- Allow agents without FROM when ENTRYPOINT is specified
- Execute entrypoint as subprocess with stdin/stdout connected
- Support $PROMPT placeholder for prompt insertion control
- Hide Model section in 'ollama show' for entrypoint-only agents
- Pass user prompt as argument to entrypoint command
2025-12-30 15:01:57 -05:00
ParthSareen
ca43de117f skills: add registry reference check and working directory env var
- Add check for registry references without digest in loadSkillsFromRefs
- Fix IsLocalSkillPath to not treat registry refs as local paths
- Inject OLLAMA_WORKING_DIR env var so skill scripts can access the
  directory where 'ollama run' was called from
2025-12-30 15:01:57 -05:00
ParthSareen
7ff2b373f4 docs: add skills documentation
Add comprehensive documentation for the skills feature:

- Quick start guide for creating skills
- SKILL.md structure and frontmatter
- Skill reference formats (local, library, user)
- CLI commands (push, pull, list, show, rm)
- Dynamic skills in interactive chat
- Storage layout
- Security considerations
- Future roadmap
2025-12-29 00:14:24 -05:00
ParthSareen
805177c054 cmd: add skill CLI and REPL commands
Add skill management commands and interactive REPL support:

CLI commands (cmd/skill_cmd.go):
  ollama skill push NAME PATH  - Push skill to registry
  ollama skill pull NAME       - Pull skill from registry
  ollama skill list            - List installed skills
  ollama skill show NAME       - Show skill details
  ollama skill rm NAME         - Remove a skill

Skill loading (cmd/skills.go):
  - Load skills from model manifests
  - Parse SKILL.md frontmatter for metadata
  - Inject skill instructions into system prompt
  - Provide run_skill_script tool for script execution

Interactive mode (cmd/interactive.go):
  /skills              - Show available skills
  /skill add PATH      - Add skill from local path
  /skill remove NAME   - Remove skill from session
  /skill list          - List session skills
2025-12-29 00:14:13 -05:00
ParthSareen
6f9fc4e1bf parser: add SKILL command for Agentfiles
Add SKILL command to the Modelfile/Agentfile parser.

Supports both local paths and registry references:
  SKILL ./path/to/skill       # Local skill bundled with agent
  SKILL skill/calc:1.0.0      # Registry skill reference
  SKILL alice/skill/calc:1.0  # User skill from registry
2025-12-29 00:13:56 -05:00
ParthSareen
fc62078ba4 api,types: add skill types and configuration
Add skill-related types to the API and configuration:

- api/types.go: Skill reference types for API requests/responses
- types/model/config.go: Skill configuration in model config
- envconfig/config.go: Environment configuration for skills
2025-12-29 00:13:39 -05:00
ParthSareen
d08c33faa0 server: add skill layer support
Add support for skill layers in model manifests:

- server/skill.go: New file with skill extraction and packaging
  - GetSkillsPath: Returns path to extracted skills cache
  - ExtractSkillBlob: Extracts skill tar.gz to cache
  - CreateSkillLayer: Creates skill blob from directory
  - ParseSkillName/GetSkillManifestPath: Skill name handling

- server/images.go: Extract skill layers on pull
- server/create.go: Create skill layers from SKILL directives
- server/routes.go: Skill-related route handling

Skills are stored as gzipped tar archives with MediaType
"application/vnd.ollama.image.skill".
2025-12-29 00:13:25 -05:00
ParthSareen
253b035b4a server: add Kind field to ModelPath for 5-part naming
Updates ModelPath struct and parsing to support the Kind field,
enabling skills and agents to use the 5-part naming structure.

- ParseModelPath detects valid kinds (skill, agent)
- GetNamespaceRepository includes kind in path
- GetManifestPath returns correct 5-part filepath
- GetFullTagname/GetShortTagname include kind when present
2025-12-29 00:12:52 -05:00
ParthSareen
d4f9bd5fe5 types: add Kind field to model.Name for 5-part naming
Extends the model name structure from 4-part to 5-part:
  host/namespace/kind/model:tag

The Kind field is optional and supports:
- "skill" for skill packages
- "agent" for agent packages (future)
- empty for regular models

Parser detects valid kinds to distinguish between old format
(host/namespace/model) and new format (host/namespace/kind/model).
2025-12-29 00:12:24 -05:00
Vallabh Mahajan
18fdcc94e5 docs: fix broken .md links and render issues (#13550) 2025-12-23 12:44:55 -05:00
Daniel Hiltgen
7ad036992f amd: use GTT on iGPUs on linux (#13196)
On Linux, look at the GTT memory information for iGPUs.
2025-12-23 09:30:05 -08:00
Jesse Gross
172b5924af llm: Avoid integer underflow on llama engine memory layout
On the llama engine, when we compute the memory layout, we reserve
a buffer to allow for some flexibility for incorrect estimates.
This is subtracted from GPU free memory and on GPUs with limited
memory, it may underflow.

Fixes #13494
2025-12-19 15:48:15 -08:00
Jeffrey Morgan
8852220f59 add REQUIRES command to Modelfile (#13361) 2025-12-18 13:21:29 -08:00
Parth Sareen
7325791599 parsers/renderers: functiongemma (#13521) 2025-12-18 07:55:37 -08:00
Grace
522c11a763 Revert "Omit args and params in tool function def and calls (#13516)" (#13518)
This reverts commit 0fadeffaee.
2025-12-17 19:06:56 -08:00
Grace
0fadeffaee Omit args and params in tool function def and calls (#13516) 2025-12-17 18:42:21 -08:00
Daniel Hiltgen
49a9c9ba6a GGML update to ec98e2002 (#13451)
* Revert "add support for NVIDIA Nemotron 3 Nano"

This reverts commit e7d2ae9d69.

* GGML update to 380b4c984

Remove MaskBatchPadding as GGML_KQ_MASK_PAD is no longer present (no
padding required)

* update to c45f89d55

* ec98e2002

solar pro needed more adjusting - needs verification

* review comments
2025-12-17 13:13:55 -08:00
Parth Sareen
1c094038bc types: add nested property support for tool definitions (#13508) 2025-12-17 11:54:09 -08:00
Grace
a013693f80 DeepseekV3 Family Parser (#13484) 2025-12-16 18:56:30 -08:00
Michael Yang
f6a016f49d revert granite-embedding (#13505) 2025-12-16 15:44:52 -08:00
Bruce MacDonald
45c4739374 types: ConfigV2 and RootFS (#13504)
Refactored the ConfigV2 and RootFS types from server/images.go to a new types/model/config.go file under the model package. Updated all references to use model.ConfigV2 and model.RootFS. This allows for use in other projects without worrying about compiling the c code in the llama package.
2025-12-16 15:18:17 -08:00
Michael Yang
2dd029de12 remove unnecessary code (#13502)
slog is already lazily evaluated so this code is completely redundant
2025-12-16 15:11:26 -08:00
Michael Yang
903b1fc97f use ollama engine for bert models (#13501)
register bpe tokenizer which enables granite-embedding
2025-12-16 11:29:19 -08:00
Parth Sareen
89eb795293 parsers/renderers: use think from user for nemotron (#13492) 2025-12-15 18:55:17 -08:00
Parth Sareen
7e3ea813c1 llama/parsers/renderers: nemotron 3 nano (#13489)
---------

Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-12-15 18:00:08 -08:00
Grace
7b95087b9d Adding tool definitions to DeepseekV3 renderer (#13491) 2025-12-15 17:57:06 -08:00
Michael Yang
971d62595a fix: qwen2.5 vl rope (#13486)
* qwen25vl: bump max pixels

* qwen25vl: mrope

fix qwen2.5vl window

* qwen25vl: vision rope
2025-12-15 17:30:33 -08:00
Parth Sareen
ffbe8e076d model: add olmo3 and olmo3.1 (#13415) 2025-12-15 15:20:04 -08:00
Grace
2c639431b1 DeepseekV3 family renderer (#13180) 2025-12-15 14:50:52 -08:00
Nhan Nguyen
aacd1cb394 fix: define GGML_VERSION variables for proper SOVERSION expansion (#13469)
The ggml/src/CMakeLists.txt uses GGML_VERSION_MAJOR for the shared
library SOVERSION property, but these variables were not defined when
building from ollama's CMakeLists.txt.

This caused libggml-base.so to be named with a literal "SOVERSION"
suffix (libggml-base.so.SOVERSION) instead of the actual version
number (libggml-base.so.0).

The fix adds the required GGML_VERSION_* variables before including
the ggml subdirectory.

Fixes #13436
2025-12-15 14:42:15 -08:00
Parth Sareen
e3731fb160 renderers: add olmo3.1 and olmo3 fixes (#13447) 2025-12-15 11:26:43 -08:00
Eva H
8dbc9e7b68 app/ui: handle unspecified bind addresses and wait for server in ollama proxy (#13159) 2025-12-15 13:33:09 -05:00
Daniel Hiltgen
abe67acf8a Revert "Enable Ollama engine by default" (#13481)
This reverts commit 56f754f46b.
2025-12-15 09:55:45 -08:00
Jeffrey Morgan
4ff8a691bc model: default gemma 3 rope scale to 1.0, apply corrections based on layer counts (#13453) 2025-12-12 17:51:56 -08:00
Jeffrey Morgan
1b308e1d2a model: fix global layer rope scale values for gemma 3 (#13452) 2025-12-12 16:29:01 -08:00
Daniel Hiltgen
bd6c1d6b49 flash attn: add auto mode for llama engine (#13052)
* flash attn: add auto mode for llama engine

If the user does not specify fa in the environment, use auto-mode.

* review comments

* ensure kv cache quantized types have FA explicitly enabled

additional review comments
2025-12-12 13:27:19 -08:00
Jeffrey Morgan
3af5d3b738 model: force rope factor 1.0 for Gemma 3 (#13445) 2025-12-12 13:27:08 -08:00
Daniel Hiltgen
7730895158 Enable Ollama engine by default (#13443)
This changes the default behavior to use the Ollama engine for supported
models, while retaining the ability to disable the Ollama engine and
fall back to the Llama engine.  Models in the OllamaEngineRequired list
will always run on the Ollama engine.
2025-12-12 11:48:43 -08:00
Eva H
de9ecfd01c tidy up lint warnings on windows (#13430) 2025-12-12 11:43:35 -05:00
Eva H
95fdd8d619 fix: select and update models folder in settings (#13412) 2025-12-12 11:09:37 -05:00
Devon Rifkin
9f7822851c docs: add docs for v1/responses and rework openai compat section (#13416)
* docs: add docs for v1/responses and rework openai compat section

I reworked the examples to be separated by topic and to be fully
runnable (i.e., they now log output instead of just suggesting how a
call might be made).

We now use `<CodeGroup>`s so that each example has a dropdown on the
docs site for users to choose, which makes the examples a lot more
digestible (since you only see approx 1/3 of the code you used to).

I also added a new tool to extract code examples into files so that it's
easier to actually run them and check that they work.

## Example

```shell
go run docs/tools/extract-examples/main.go docs/api/openai-compatibility.mdx
```

Output:

```
Extracting code examples to: /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368

  - 01_basic.py
  - 01_basic.js
  - 01_basic.sh
  - 02_responses.py
  - 02_responses.js
  - 02_responses.sh
  - 03_vision.py
  - 03_vision.js
  - 03_vision.sh

Extracted 9 file(s) to /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368

To run examples:

  cd /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368
  npm install   # for JS examples

then run individual files with `node file.js`, `python file.py`, `bash file.sh`
```

In the future we should consider actually running the examples in CI and
having some sort of acceptance test so we can automatically detect when
our examples break. So this is just a start in that direction.

* Update docs/api/openai-compatibility.mdx

Co-authored-by: Parth Sareen <parth.sareen@ollama.com>

* Update docs/api/openai-compatibility.mdx

Co-authored-by: Parth Sareen <parth.sareen@ollama.com>

---------

Co-authored-by: Parth Sareen <parth.sareen@ollama.com>
2025-12-11 17:39:40 -08:00
Parth Sareen
9b2035d194 openai: add tool call appending to previous assistant message (#13434)
* openai: add tool call appending to previous asst message

* add tests for thinking appending
2025-12-11 17:30:12 -08:00
Alexander Gusak
93d45d7a04 docs: fix link to modelfile.mdx (#13220) 2025-12-11 16:14:45 -08:00
JJ
709f842457 Update README.md (#13373)
Correct Markdown syntax for Swollama GitHub and DocC documentation links
2025-12-11 16:08:57 -08:00
Jeffrey Morgan
2dfb74410d model: fix rotary embeddings for ministral 3 (#13432) 2025-12-11 16:02:05 -08:00
Devon Rifkin
1eb5e75972 openai: add v1/responses support (#13351)
Only supporting the stateless part of the API.

Doc updates to come once this is shipped.

Closes: #9659
2025-12-11 15:37:10 -08:00
nicole pardal
3475d915cb embeddings: modified batch size (#13429)
This PR detects embedding models and sets batch_size = context_size so the full input fits in a single batch.
Previously, if batch size was smaller than the input, tokens could be split across batches and cause a SIGTRAP crash.
This change ensures all tokens stay in one batch and prevents crashes.
Fixes: #12938 #13054

Co-authored-by: Jesse Gross <jesse@ollama.com>
2025-12-11 15:36:31 -08:00
Jeffrey Morgan
48e78e9be1 template: add yesterdayDate helper function (#13431) 2025-12-11 14:47:55 -08:00
Jeffrey Morgan
a838421ea3 model: conversion and hyperparameter fixes for ministral and devstral (#13424) 2025-12-11 13:04:00 -08:00
EasonLin
1c4e85b4df routes: add logprobs in tool calls (#13238) 2025-12-10 17:28:41 -08:00
Eloi Torrents
dac4f17fea cmd/bench: fix binary name in README (#13276) 2025-12-10 14:16:58 -08:00
Julia Scheaffer
56b8fb024c cmd/bench: fix options table in cmd/bench/README.md (#13216) 2025-12-10 14:07:48 -08:00
Gabe Goodhart
b95693056c feat: llama.cpp bump (17f7f4) for SSM performance improvements (#13408)
* feat: Bump llama.cpp to the latest master (17f7f4b)

This brings in significant improvements to prefill performance for all
models using the SSM_CONV and SSM_SCAN ops (granite4, jamba, falcon-h,
nemotron-h, Qwen3 Next) on Apple Metal.

See https://github.com/ggml-org/llama.cpp/pull/17876

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update patches 1-4

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Update patches 5-12

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update patches 13-18

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update patch 20

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update patches 21-31

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Sync vendored code

The two files I'm not sure about here are the swap from gemma3-iswa.cpp to
gemma3.cpp (I chose to include this because I think it's required), and the
inclusion of `ggml-zendnn.h` which I chose to omit.

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-12-10 12:59:27 -08:00
Eva H
c34fc64688 app/ui: use requestAnimationFrame to prevent bottom line cutoff in streaming thinking display (#13137) 2025-12-10 15:29:48 -05:00
Eva H
7cf6f18c1f app/ui: refactor to use Ollama endpoints for user auth and health checks (#13081) 2025-12-10 15:24:31 -05:00
Eva H
bbbb6b2a01 app/ui: fix model capabilities not updating after download completion (#13179) 2025-12-10 14:40:02 -05:00
nicole pardal
76f88caf43 nomic-embed-text:v2: model implementation (#13162) 2025-12-09 14:24:51 -08:00
Parth Sareen
2bccf8c624 renderers/parsers: olmo3 instruct (#13383) 2025-12-09 11:12:27 -08:00
Parth Sareen
0c5e5f6630 parsers/renderers: olmo3 think (#13290) 2025-12-09 10:41:47 -08:00
Michael Yang
d475d1f081 fix: qwen2.5vl metal argsort 2025-12-08 17:18:24 -08:00
Jeffrey Morgan
d2f334c1f7 model: add rnj-1 inference support (#13354) 2025-12-08 16:49:17 -08:00
Michael Yang
603ceefaa6 refactor rope
change to a flatter directory structure and group the options with the
function

update models to call rope in one place
2025-12-08 14:42:22 -08:00
nicole pardal
e082d60a24 truncation: fixed runner truncation logic + removed server truncation (#12839)
This PR consolidates all embedding prompt-length checking, truncation, and prompt token counting into the runner to ensure a single source of truth.
2025-12-08 11:20:28 -08:00
Daniel Hiltgen
5dae738067 CI: use vendor base commit in cache keys (#13348)
Prevent CGO from accidentally reusing old object files from the cache
across vendor updates
2025-12-08 09:48:49 -08:00
JJ
0c78723174 readme: fix broken Swollama link in community integrations (#13370) 2025-12-07 21:49:52 -08:00
Jeffrey Morgan
5a41d69b2a fs/ggml: write int32 and int64 values to gguf files (#13335) 2025-12-07 21:49:14 -08:00
Daniel Hiltgen
c146a138e3 ggml: handle all streams (#13350)
Follow up from #12992

Free all streams, and keep the alloc logic aligned across streams.
2025-12-05 16:10:33 -08:00
Sos Pogosyan
31b8c6a214 fix(api): correct Content-Type header for /api/chat and /api/generate when using cloud models (#13279)
---------

Co-authored-by: Pogosyan Sos <sos_pogosyan@MacBook-Pro-Sos.local>
Co-authored-by: Patrick Devine <patrick@infrahq.com>
2025-12-04 21:33:07 -08:00
Jesse Gross
9191dfaf05 llm: Enable flash attention for mistral3 by default 2025-12-04 15:19:06 -08:00
Jesse Gross
1108d8b34e ggml: Enable flash attention for vision encoders
Although the vision component of multimodal models typically already
call the optimized nn.Attention, it is converted into non-fused
operations. That is because the backend-specific fused kernels may
have requirements, such as padding, and they is performed by the
cache, which vision encoders don't use.

This implements a fallback path in the backend, softening the
requirements into optimizations. In turn, this allows flash attention
to be used for vision encoders, saving a significant amount of VRAM
and improving performance.
2025-12-04 15:19:06 -08:00
Jesse Gross
7837a5bc7e ggml: Always set cache padding to 256
We currently use cache padding of 32 when not using flash attention
and 256 with flash attention, which is based on the historic alignment
requirements of these kernels. The restrictions have since been
loosened but there are still performance benefits, such as better
CUDA graph reuse.

Since the requirement is no longer kernel-specific, set the padding
uniformly to 256, as llama.cpp has.
2025-12-04 15:19:06 -08:00
Patrick Devine
0a844f8e96 convert: add deepseek converter (#12980)
This change adds the ability for `ollama create` to convert models that use
the DeepSeek2 architecture (specifically DeepSeekV3 and DeepSeek-R1).
2025-12-04 13:49:30 -08:00
Eloi Torrents
a03223b86f cmd/bench: support writing benchmark output to file (#13263)
* cmd/bench: support writing benchmark output to file

This changes Ollama to allow the bench command to write benchmark
results to a user-specified output file instead of stdout when the
--output flag is provided.

---------

Co-authored-by: Patrick Devine <patrick@infrahq.com>
2025-12-04 13:22:41 -08:00
Daniel Hiltgen
0cf7794b16 ggml update to b7108 (#12992)
* Revert "vulkan: temporary cary of vulkan fixes (#12971)"

This reverts commit 3a9e8e9fd4.

* ggml update to b7087

* fix argsort on metal

* update to b7108

* fix bakllava regression

This model lacks the metadata for the projector type.

* update to b7209

* fix TopK perf

* only build arm code on arm
2025-12-03 19:43:29 -08:00
Jeffrey Morgan
854d40edc5 ci: restore previous linter rules (#13322) 2025-12-03 18:55:02 -08:00
Bruce MacDonald
84a2cedf18 app: relay thinking false to server (#13319)
This fixes a bug where disabling thinking on deepseek-v3.1 did not stop the model from thinking.

When thinking is not defined it should not be sent to the server since this will cause error responses in some cases where the model does not support thinking. However if it is defined as false it should still be sent.
2025-12-03 15:06:55 -08:00
Daniel Hiltgen
3f30836734 CUDA: filter devices on secondary discovery (#13317)
We now do a deeper probe of CUDA devices to verify the library version has
the correct compute capability coverage for the device.  Due to ROCm also
interpreting the CUDA env var to filter AMD devices, we try to avoid setting
it which leads to problems in mixed vendor systems.  However without setting
it for this deeper probe, each CUDA library subprocess discovers all CUDA GPUs
and on systems with lots of GPUs, this can lead to hitting timeouts.  The fix is
to turn on the CUDA visibility env var just for this deeper probe use-case.
2025-12-03 12:58:16 -08:00
Nathan Hook
cc9555aff0 Update user message format for temperature query (#13256) 2025-12-02 15:08:39 -08:00
hello_world
20aee96706 Add Vulkan GPU support instructions in development.md (#13265)
Added Vulkan SDK installation instructions and environment variable setup for building with Vulkan support.
2025-12-02 13:37:32 -08:00
Daniel Hiltgen
18b5958d46 test: avoid ministral tools test on low vram (#13302)
Avoid hitting test timeouts
2025-12-02 13:18:55 -08:00
Jesse Gross
5317202c38 llm: Don't always evict models on CPU-only systems
Model eviction happens when we have at least one other model
loaded and are unable to load all layers into VRAM. However, on
CPU-only systems we can never load layers into VRAM, so this
constantly triggered eviction.

Fixes #13227
2025-12-02 10:58:08 -08:00
Daniel Hiltgen
d771043e88 test: add ministral-3 (#13300) 2025-12-02 09:52:16 -08:00
Daniel Hiltgen
f8f1071818 CUDA: verify CC is supported by target library (#13298) 2025-12-02 09:28:41 -08:00
Patrick Devine
d3e0a0dee4 model: ministral w/ llama4 scaling (#13292)
This change:

* fixes rope scaling in the mistral converter
* updates ministral to include llama4 scaling
* includes a new ministral parser for parsing reasoning and tool calling

---------

Co-authored-by: jmorganca <jmorganca@gmail.com>
2025-12-01 23:20:14 -08:00
Daniel Hiltgen
554172759c win: warn if ggml-base detected in PATH (#13289)
If the user has somehow installed another GGML based app which places a
ggml-base lib somewhere in their PATH, we can experience runtime problems
due to incompatibilities.  This change adds a warning message if we detect
a ggml-base outside of our install location to aid in troubleshooting.
2025-12-01 15:36:47 -08:00
Bruce MacDonald
5b6a8e6001 api/client: handle non-json streaming errors (#13007)
While processing the response stream during a chat or generation if an error is occurred it is parsed and returned to the user. The issue with the existing code is that this assumed the response would be valid JSON, which is not a safe assumption and caused cryptic error messages to be displayed due to parsing failures:
`invalid character 'i' looking for beginning of value`

This change updates the stream function to return the raw error string if it cant be parsed as JSON. This should help with debugging issues by making sure the actual error reaches the user.
2025-12-01 15:10:16 -08:00
Daniel Hiltgen
467bbc0dd5 jetpack: require exact match or skip cuda_jetpack* (#13288)
The cuda_jetpack libs will enumerate discrete GPUs on SBSA systems
which leads to runtime failures of missing kernels.  This fix
requires an exact match to enable jetpacks instead of relying on
enumeration to filter out supported libraries.
2025-12-01 12:48:16 -08:00
Jeffrey Morgan
6d9f9323c5 .gitattributes: add app/webview to linguist-vendored (#13274) 2025-11-29 23:46:10 -05:00
Ondrej Kokes
0c2489605d docs: fix output formatting in faq.mdx (#13231)
There were a few Markdown typos in one FAQ answer. It now renders as a proper ascii table.
2025-11-28 19:19:21 -05:00
559 changed files with 67185 additions and 33315 deletions

2
.gitattributes vendored
View File

@@ -19,6 +19,8 @@ ml/backend/**/*.comp linguist-vendored
ml/backend/**/*.glsl linguist-vendored
ml/backend/**/CMakeLists.txt linguist-vendored
app/webview linguist-vendored
llama/build-info.cpp linguist-generated
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.s linguist-generated

View File

@@ -16,13 +16,15 @@ jobs:
outputs:
GOFLAGS: ${{ steps.goflags.outputs.GOFLAGS }}
VERSION: ${{ steps.goflags.outputs.VERSION }}
vendorsha: ${{ steps.changes.outputs.vendorsha }}
steps:
- uses: actions/checkout@v4
- name: Set environment
id: goflags
run: |
echo GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${GITHUB_REF_NAME#v}\" \"-X=github.com/ollama/ollama/server.mode=release\"'" >>$GITHUB_OUTPUT
echo VERSION="${GITHUB_REF_NAME#v}" >>$GITHUB_OUTPUT
echo GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${GITHUB_REF_NAME#v}\" \"-X=github.com/ollama/ollama/server.mode=release\"'" | tee -a $GITHUB_OUTPUT
echo VERSION="${GITHUB_REF_NAME#v}" | tee -a $GITHUB_OUTPUT
echo vendorsha=$(make -f Makefile.sync print-base) | tee -a $GITHUB_OUTPUT
darwin-build:
runs-on: macos-14-xlarge
@@ -53,6 +55,9 @@ jobs:
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
cache-dependency-path: |
go.sum
Makefile.sync
- run: |
./scripts/build_darwin.sh
- name: Log build results
@@ -185,7 +190,7 @@ jobs:
- uses: actions/cache@v4
with:
path: ${{ github.workspace }}\.ccache
key: ccache-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.preset }}
key: ccache-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.preset }}-${{ needs.setup-environment.outputs.vendorsha }}
- name: Build target "${{ matrix.preset }}"
run: |
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
@@ -249,6 +254,9 @@ jobs:
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
cache-dependency-path: |
go.sum
Makefile.sync
- name: Verify gcc is actually clang
run: |
$ErrorActionPreference='Continue'
@@ -302,6 +310,9 @@ jobs:
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
cache-dependency-path: |
go.sum
Makefile.sync
- uses: actions/download-artifact@v4
with:
pattern: depends-windows*

View File

@@ -22,6 +22,7 @@ jobs:
runs-on: ubuntu-latest
outputs:
changed: ${{ steps.changes.outputs.changed }}
vendorsha: ${{ steps.changes.outputs.vendorsha }}
steps:
- uses: actions/checkout@v4
with:
@@ -37,6 +38,7 @@ jobs:
}
echo changed=$(changed 'llama/llama.cpp/**/*' 'ml/backend/ggml/ggml/**/*') | tee -a $GITHUB_OUTPUT
echo vendorsha=$(make -f Makefile.sync print-base) | tee -a $GITHUB_OUTPUT
linux:
needs: [changes]
@@ -83,7 +85,7 @@ jobs:
- uses: actions/cache@v4
with:
path: /github/home/.cache/ccache
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}-${{ needs.changes.outputs.vendorsha }}
- run: |
cmake --preset ${{ matrix.preset }} ${{ matrix.flags }}
cmake --build --preset ${{ matrix.preset }} --parallel
@@ -178,7 +180,7 @@ jobs:
- uses: actions/cache@v4
with:
path: ${{ github.workspace }}\.ccache
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}-${{ needs.changes.outputs.vendorsha }}
- run: |
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
@@ -206,6 +208,9 @@ jobs:
- uses: actions/setup-go@v5
with:
go-version-file: 'go.mod'
cache-dependency-path: |
go.sum
Makefile.sync
- uses: actions/setup-node@v4
with:
node-version: '20'

View File

@@ -1,77 +1,51 @@
version: "2"
linters:
default: none
enable:
- asasalint
- bidichk
- bodyclose
- containedctx
- copyloopvar
- errcheck
- errorlint
- exptostd
- gocheckcompilerdirectives
- gocritic
- govet
- ineffassign
- intrange
- makezero
- misspell
- modernize
- nilerr
- nilnil
- nolintlint
- nosprintfhostport
- perfsprint
- prealloc
- sloglint
- staticcheck
- unconvert
- unused
- usestdlibvars
- usetesting
- wastedassign
- whitespace
disable:
- errcheck
- usestdlibvars
settings:
errcheck:
exclude-functions:
- fmt.Fprintf
perfsprint:
strconcat: false
concat-loop: false
govet:
disable:
- unusedresult
staticcheck:
checks:
- all
# Using a deprecated function, variable, constant or field.
# https://staticcheck.dev/docs/checks/#SA1019
- -QF* # disable quick fix suggestions
- -SA1019
# Incorrect or missing package comment.
# https://staticcheck.dev/docs/checks/#ST1000
- -ST1000
# Poorly chosen identifier.
# https://staticcheck.dev/docs/checks/#ST1003
- -ST1003
# The documentation of an exported function should start with the function's name.
# https://staticcheck.dev/docs/checks/#ST1020
- -ST1020
# The documentation of an exported type should start with type's name.
# https://staticcheck.dev/docs/checks/#ST1021
- -ST1021
# The documentation of an exported variable or constant should start with variable's name.
# https://staticcheck.dev/docs/checks/#ST1022
- -ST1022
usestdlibvars:
http-method: false
http-status-code: false
- -ST1000 # package comment format
- -ST1003 # underscores in package names
- -ST1005 # error strings should not be capitalized
- -ST1012 # error var naming (ErrFoo)
- -ST1016 # receiver name consistency
- -ST1020 # comment on exported function format
- -ST1021 # comment on exported type format
- -ST1022 # comment on exported var format
- -ST1023 # omit type from declaration
severity:
default: error
rules:
- linters:
- gofmt
- goimports
- intrange
severity: info
formatters:
enable:
- gci
- gofmt
- gofumpt
settings:
gci:
sections:
- standard
- default
- localmodule

View File

@@ -54,6 +54,13 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cp
add_compile_definitions(NDEBUG GGML_VERSION=0x0 GGML_COMMIT=0x0)
# Define GGML version variables for shared library SOVERSION
# These are required by ggml/src/CMakeLists.txt for proper library versioning
set(GGML_VERSION_MAJOR 0)
set(GGML_VERSION_MINOR 0)
set(GGML_VERSION_PATCH 0)
set(GGML_VERSION "${GGML_VERSION_MAJOR}.${GGML_VERSION_MINOR}.${GGML_VERSION_PATCH}")
set(GGML_CPU ON)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
set_property(TARGET ggml PROPERTY EXCLUDE_FROM_ALL TRUE)

View File

@@ -1,6 +1,6 @@
UPSTREAM=https://github.com/ggml-org/llama.cpp.git
WORKDIR=llama/vendor
FETCH_HEAD=3cfa9c3f125763305b4226bc032f1954f08990dc
FETCH_HEAD=ec98e2002
.PHONY: help
help:
@@ -57,7 +57,7 @@ checkout: $(WORKDIR)
$(WORKDIR):
git clone $(UPSTREAM) $(WORKDIR)
.PHONE: format-patches
.PHONY: format-patches
format-patches: llama/patches
git -C $(WORKDIR) format-patch \
--no-signature \
@@ -66,7 +66,11 @@ format-patches: llama/patches
-o $(realpath $<) \
$(FETCH_HEAD)
.PHONE: clean
.PHONY: clean
clean: checkout
@git -C $(WORKDIR) am --abort || true
$(RM) llama/patches/.*.patched
.PHONY: print-base
print-base:
@echo $(FETCH_HEAD)

View File

@@ -555,7 +555,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Parakeet](https://github.com/parakeet-nest/parakeet) is a GoLang library, made to simplify the development of small generative AI applications with Ollama.
- [Haverscript](https://github.com/andygill/haverscript) with [examples](https://github.com/andygill/haverscript/tree/main/examples)
- [Ollama for Swift](https://github.com/mattt/ollama-swift)
- [Swollama for Swift](https://github.com/marcusziade/Swollama) with [DocC](https://marcusziade.github.io/Swollama/documentation/swollama/)
- [Swollama for Swift](https://github.com/guitaripod/Swollama) with [DocC](https://guitaripod.github.io/Swollama/documentation/swollama)
- [GoLamify](https://github.com/prasad89/golamify)
- [Ollama for Haskell](https://github.com/tusharad/ollama-haskell)
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in a unified API)

View File

@@ -226,7 +226,14 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
bts := scanner.Bytes()
if err := json.Unmarshal(bts, &errorResponse); err != nil {
return fmt.Errorf("unmarshal: %w", err)
if response.StatusCode >= http.StatusBadRequest {
return StatusError{
StatusCode: response.StatusCode,
Status: response.Status,
ErrorMessage: string(bts),
}
}
return errors.New(string(bts))
}
if response.StatusCode == http.StatusUnauthorized {
@@ -340,7 +347,7 @@ type CreateProgressFunc func(ProgressResponse) error
// Create creates a model from a [Modelfile]. fn is a progress function that
// behaves similarly to other methods (see [Client.Pull]).
//
// [Modelfile]: https://github.com/ollama/ollama/blob/main/docs/modelfile.md
// [Modelfile]: https://github.com/ollama/ollama/blob/main/docs/modelfile.mdx
func (c *Client) Create(ctx context.Context, req *CreateRequest, fn CreateProgressFunc) error {
return c.stream(ctx, http.MethodPost, "/api/create", req, func(bts []byte) error {
var resp ProgressResponse

View File

@@ -55,6 +55,7 @@ func TestClientFromEnvironment(t *testing.T) {
type testError struct {
message string
statusCode int
raw bool // if true, write message as-is instead of JSON encoding
}
func (e testError) Error() string {
@@ -111,6 +112,20 @@ func TestClientStream(t *testing.T) {
},
},
},
{
name: "plain text error response",
responses: []any{
"internal server error",
},
wantErr: "internal server error",
},
{
name: "HTML error page",
responses: []any{
"<html><body>404 Not Found</body></html>",
},
wantErr: "404 Not Found",
},
}
for _, tc := range testCases {
@@ -135,6 +150,12 @@ func TestClientStream(t *testing.T) {
return
}
if str, ok := resp.(string); ok {
fmt.Fprintln(w, str)
flusher.Flush()
continue
}
if err := json.NewEncoder(w).Encode(resp); err != nil {
t.Fatalf("failed to encode response: %v", err)
}
@@ -173,9 +194,10 @@ func TestClientStream(t *testing.T) {
func TestClientDo(t *testing.T) {
testCases := []struct {
name string
response any
wantErr string
name string
response any
wantErr string
wantStatusCode int
}{
{
name: "immediate error response",
@@ -183,7 +205,8 @@ func TestClientDo(t *testing.T) {
message: "test error message",
statusCode: http.StatusBadRequest,
},
wantErr: "test error message",
wantErr: "test error message",
wantStatusCode: http.StatusBadRequest,
},
{
name: "server error response",
@@ -191,7 +214,8 @@ func TestClientDo(t *testing.T) {
message: "internal error",
statusCode: http.StatusInternalServerError,
},
wantErr: "internal error",
wantErr: "internal error",
wantStatusCode: http.StatusInternalServerError,
},
{
name: "successful response",
@@ -203,6 +227,26 @@ func TestClientDo(t *testing.T) {
Success: true,
},
},
{
name: "plain text error response",
response: testError{
message: "internal server error",
statusCode: http.StatusInternalServerError,
raw: true,
},
wantErr: "internal server error",
wantStatusCode: http.StatusInternalServerError,
},
{
name: "HTML error page",
response: testError{
message: "<html><body>404 Not Found</body></html>",
statusCode: http.StatusNotFound,
raw: true,
},
wantErr: "<html><body>404 Not Found</body></html>",
wantStatusCode: http.StatusNotFound,
},
}
for _, tc := range testCases {
@@ -210,11 +254,16 @@ func TestClientDo(t *testing.T) {
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if errResp, ok := tc.response.(testError); ok {
w.WriteHeader(errResp.statusCode)
err := json.NewEncoder(w).Encode(map[string]string{
"error": errResp.message,
})
if err != nil {
t.Fatal("failed to encode error response:", err)
if !errResp.raw {
err := json.NewEncoder(w).Encode(map[string]string{
"error": errResp.message,
})
if err != nil {
t.Fatal("failed to encode error response:", err)
}
} else {
// Write raw message (simulates non-JSON error responses)
fmt.Fprint(w, errResp.message)
}
return
}
@@ -241,6 +290,15 @@ func TestClientDo(t *testing.T) {
if err.Error() != tc.wantErr {
t.Errorf("error message mismatch: got %q, want %q", err.Error(), tc.wantErr)
}
if tc.wantStatusCode != 0 {
if statusErr, ok := err.(StatusError); ok {
if statusErr.StatusCode != tc.wantStatusCode {
t.Errorf("status code mismatch: got %d, want %d", statusErr.StatusCode, tc.wantStatusCode)
}
} else {
t.Errorf("expected StatusError, got %T", err)
}
}
return
}

View File

@@ -15,19 +15,19 @@ func main() {
}
messages := []api.Message{
api.Message{
{
Role: "system",
Content: "Provide very brief, concise responses",
},
api.Message{
{
Role: "user",
Content: "Name some unusual animals",
},
api.Message{
{
Role: "assistant",
Content: "Monotreme, platypus, echidna",
},
api.Message{
{
Role: "user",
Content: "which of these is the most dangerous?",
},

View File

@@ -17,6 +17,12 @@ import (
"github.com/ollama/ollama/types/model"
)
// SkillRef is an alias for model.SkillRef representing a skill reference.
type SkillRef = model.SkillRef
// MCPRef is an alias for model.MCPRef representing an MCP server reference.
type MCPRef = model.MCPRef
// StatusError is an error with an HTTP status code and message.
type StatusError struct {
StatusCode int
@@ -283,11 +289,12 @@ func (pt PropertyType) String() string {
}
type ToolProperty struct {
AnyOf []ToolProperty `json:"anyOf,omitempty"`
Type PropertyType `json:"type,omitempty"`
Items any `json:"items,omitempty"`
Description string `json:"description,omitempty"`
Enum []any `json:"enum,omitempty"`
AnyOf []ToolProperty `json:"anyOf,omitempty"`
Type PropertyType `json:"type,omitempty"`
Items any `json:"items,omitempty"`
Description string `json:"description,omitempty"`
Enum []any `json:"enum,omitempty"`
Properties map[string]ToolProperty `json:"properties,omitempty"`
}
// ToTypeScriptType converts a ToolProperty to a TypeScript type string
@@ -553,6 +560,21 @@ type CreateRequest struct {
Renderer string `json:"renderer,omitempty"`
Parser string `json:"parser,omitempty"`
// Requires is the minimum version of Ollama required by the model.
Requires string `json:"requires,omitempty"`
// Skills is a list of skill references for the agent (local paths or registry refs)
Skills []SkillRef `json:"skills,omitempty"`
// MCPs is a list of MCP server references for the agent
MCPs []MCPRef `json:"mcps,omitempty"`
// AgentType defines the type of agent (e.g., "conversational", "task-based")
AgentType string `json:"agent_type,omitempty"`
// Entrypoint specifies an external command to run instead of the built-in chat loop
Entrypoint string `json:"entrypoint,omitempty"`
// Info is a map of additional information for the model
Info map[string]any `json:"info,omitempty"`
@@ -603,6 +625,11 @@ type ShowResponse struct {
Tensors []Tensor `json:"tensors,omitempty"`
Capabilities []model.Capability `json:"capabilities,omitempty"`
ModifiedAt time.Time `json:"modified_at,omitempty"`
Requires string `json:"requires,omitempty"`
Skills []SkillRef `json:"skills,omitempty"`
MCPs []MCPRef `json:"mcps,omitempty"`
AgentType string `json:"agent_type,omitempty"`
Entrypoint string `json:"entrypoint,omitempty"`
}
// CopyRequest is the request passed to [Client.Copy].

View File

@@ -504,6 +504,107 @@ func TestThinking_UnmarshalJSON(t *testing.T) {
}
}
func TestToolPropertyNestedProperties(t *testing.T) {
tests := []struct {
name string
input string
expected ToolProperty
}{
{
name: "nested object properties",
input: `{
"type": "object",
"description": "Location details",
"properties": {
"address": {
"type": "string",
"description": "Street address"
},
"city": {
"type": "string",
"description": "City name"
}
}
}`,
expected: ToolProperty{
Type: PropertyType{"object"},
Description: "Location details",
Properties: map[string]ToolProperty{
"address": {
Type: PropertyType{"string"},
Description: "Street address",
},
"city": {
Type: PropertyType{"string"},
Description: "City name",
},
},
},
},
{
name: "deeply nested properties",
input: `{
"type": "object",
"description": "Event",
"properties": {
"location": {
"type": "object",
"description": "Location",
"properties": {
"coordinates": {
"type": "object",
"description": "GPS coordinates",
"properties": {
"lat": {"type": "number", "description": "Latitude"},
"lng": {"type": "number", "description": "Longitude"}
}
}
}
}
}
}`,
expected: ToolProperty{
Type: PropertyType{"object"},
Description: "Event",
Properties: map[string]ToolProperty{
"location": {
Type: PropertyType{"object"},
Description: "Location",
Properties: map[string]ToolProperty{
"coordinates": {
Type: PropertyType{"object"},
Description: "GPS coordinates",
Properties: map[string]ToolProperty{
"lat": {Type: PropertyType{"number"}, Description: "Latitude"},
"lng": {Type: PropertyType{"number"}, Description: "Longitude"},
},
},
},
},
},
},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
var prop ToolProperty
err := json.Unmarshal([]byte(tt.input), &prop)
require.NoError(t, err)
assert.Equal(t, tt.expected, prop)
// Round-trip test: marshal and unmarshal again
data, err := json.Marshal(prop)
require.NoError(t, err)
var prop2 ToolProperty
err = json.Unmarshal(data, &prop2)
require.NoError(t, err)
assert.Equal(t, tt.expected, prop2)
})
}
}
func TestToolFunctionParameters_String(t *testing.T) {
tests := []struct {
name string

View File

@@ -273,10 +273,6 @@ func main() {
Handler: uiServer.Handler(),
}
if _, err := uiServer.UserData(ctx); err != nil {
slog.Warn("failed to load user data", "error", err)
}
// Start the UI server
slog.Info("starting ui server", "port", port)
go func() {
@@ -320,6 +316,17 @@ func main() {
slog.Debug("no URL scheme request to handle")
}
go func() {
slog.Debug("waiting for ollama server to be ready")
if err := ui.WaitForServer(ctx, 10*time.Second); err != nil {
slog.Warn("ollama server not ready, continuing anyway", "error", err)
}
if _, err := uiServer.UserData(ctx); err != nil {
slog.Warn("failed to load user data", "error", err)
}
}()
osRun(cancel, hasCompletedFirstRun, startHidden)
slog.Info("shutting down desktop server")
@@ -361,7 +368,7 @@ func checkUserLoggedIn(uiServerPort int) bool {
return false
}
resp, err := http.Get(fmt.Sprintf("http://127.0.0.1:%d/api/v1/me", uiServerPort))
resp, err := http.Post(fmt.Sprintf("http://127.0.0.1:%d/api/me", uiServerPort), "application/json", nil)
if err != nil {
slog.Debug("failed to call local auth endpoint", "error", err)
return false

View File

@@ -191,13 +191,6 @@ func LaunchNewApp() {
C.launchApp(appName)
}
// Send a request to the main app thread to load a UI page
func sendUIRequestMessage(path string) {
p := C.CString(path)
defer C.free(unsafe.Pointer(p))
C.uiRequest(p)
}
func registerLaunchAgent(hasCompletedFirstRun bool) {
// Remove any stale Login Item registrations
C.unregisterSelfFromLoginItem()

View File

@@ -263,11 +263,6 @@ func createLoginShortcut() error {
return nil
}
// Send a request to the main app thread to load a UI page
func sendUIRequestMessage(path string) {
wintray.SendUIRequestMessage(path)
}
func LaunchNewApp() {
}

View File

@@ -169,37 +169,47 @@ DlgResult fileDlg(FileDlgParams* params) {
}
NSArray* urls = [panel URLs];
if(self->params->allowMultiple && [urls count] >= 1) {
if([urls count] == 0) {
return DLG_CANCEL;
}
if(self->params->allowMultiple) {
// For multiple files, we need to return all paths separated by null bytes
char* bufPtr = self->params->buf;
int remainingBuf = self->params->nbuf;
// Calculate total required buffer size first
int totalSize = 0;
for(NSURL* url in urls) {
char tempBuf[PATH_MAX];
if(![url getFileSystemRepresentation:tempBuf maxLength:PATH_MAX]) {
return DLG_URLFAIL;
}
totalSize += strlen(tempBuf) + 1; // +1 for null terminator
}
totalSize += 1; // Final null terminator
// Calculate total required buffer size first
int totalSize = 0;
for(NSURL* url in urls) {
char tempBuf[PATH_MAX];
if(![url getFileSystemRepresentation:tempBuf maxLength:PATH_MAX]) {
return DLG_URLFAIL;
}
totalSize += strlen(tempBuf) + 1; // +1 for null terminator
}
totalSize += 1; // Final null terminator
if(totalSize > self->params->nbuf) {
// Not enough buffer space
return DLG_URLFAIL;
}
if(totalSize > self->params->nbuf) {
// Not enough buffer space
return DLG_URLFAIL;
}
// Now actually copy the paths (we know we have space)
bufPtr = self->params->buf;
for(NSURL* url in urls) {
char tempBuf[PATH_MAX];
[url getFileSystemRepresentation:tempBuf maxLength:PATH_MAX];
int pathLen = strlen(tempBuf);
strcpy(bufPtr, tempBuf);
bufPtr += pathLen + 1;
}
*bufPtr = '\0'; // Final null terminator
// Now actually copy the paths (we know we have space)
bufPtr = self->params->buf;
for(NSURL* url in urls) {
char tempBuf[PATH_MAX];
[url getFileSystemRepresentation:tempBuf maxLength:PATH_MAX];
int pathLen = strlen(tempBuf);
strcpy(bufPtr, tempBuf);
bufPtr += pathLen + 1;
}
*bufPtr = '\0'; // Final null terminator
} else {
// Single file/directory selection - write path to buffer
NSURL* url = [urls firstObject];
if(![url getFileSystemRepresentation:self->params->buf maxLength:self->params->nbuf]) {
return DLG_URLFAIL;
}
}
return DLG_OK;

View File

@@ -15,7 +15,7 @@ const multiFileBufferSize = w32.MAX_PATH * 10
type WinDlgError int
func (e WinDlgError) Error() string {
return fmt.Sprintf("CommDlgExtendedError: %#x", e)
return fmt.Sprintf("CommDlgExtendedError: %#x", int(e))
}
func err() error {

View File

@@ -224,9 +224,7 @@ func (s *Server) cmd(ctx context.Context) (*exec.Cmd, error) {
if _, err := os.Stat(settings.Models); err == nil {
env["OLLAMA_MODELS"] = settings.Models
} else {
slog.Warn("models path not accessible, clearing models setting", "path", settings.Models, "err", err)
settings.Models = ""
s.store.SetSettings(settings)
slog.Warn("models path not accessible, using default", "path", settings.Models, "err", err)
}
}
if settings.ContextLength > 0 {

View File

@@ -469,26 +469,24 @@ export class HealthResponse {
}
export class User {
id: string;
name: string;
email: string;
avatarURL: string;
plan: string;
bio: string;
firstName: string;
lastName: string;
overThreshold: boolean;
name: string;
bio?: string;
avatarurl?: string;
firstname?: string;
lastname?: string;
plan?: string;
constructor(source: any = {}) {
if ('string' === typeof source) source = JSON.parse(source);
this.id = source["id"];
this.name = source["name"];
this.email = source["email"];
this.avatarURL = source["avatarURL"];
this.plan = source["plan"];
this.name = source["name"];
this.bio = source["bio"];
this.firstName = source["firstName"];
this.lastName = source["lastName"];
this.overThreshold = source["overThreshold"];
this.avatarurl = source["avatarurl"];
this.firstname = source["firstname"];
this.lastname = source["lastname"];
this.plan = source["plan"];
}
}
export class Attachment {

View File

@@ -15,7 +15,7 @@ import {
import { parseJsonlFromResponse } from "./util/jsonl-parsing";
import { ollamaClient as ollama } from "./lib/ollama-client";
import type { ModelResponse } from "ollama/browser";
import { API_BASE } from "./lib/config";
import { API_BASE, OLLAMA_DOT_COM } from "./lib/config";
// Extend Model class with utility methods
declare module "@/gotypes" {
@@ -27,7 +27,6 @@ declare module "@/gotypes" {
Model.prototype.isCloud = function (): boolean {
return this.model.endsWith("cloud");
};
// Helper function to convert Uint8Array to base64
function uint8ArrayToBase64(uint8Array: Uint8Array): string {
const chunkSize = 0x8000; // 32KB chunks to avoid stack overflow
@@ -42,44 +41,50 @@ function uint8ArrayToBase64(uint8Array: Uint8Array): string {
}
export async function fetchUser(): Promise<User | null> {
try {
const response = await fetch(`${API_BASE}/api/v1/me`, {
method: "GET",
headers: {
"Content-Type": "application/json",
},
});
if (response.ok) {
const userData: User = await response.json();
return userData;
}
return null;
} catch (error) {
console.error("Error fetching user:", error);
return null;
}
}
export async function fetchConnectUrl(): Promise<string> {
const response = await fetch(`${API_BASE}/api/v1/connect`, {
method: "GET",
const response = await fetch(`${API_BASE}/api/me`, {
method: "POST",
headers: {
"Content-Type": "application/json",
},
});
if (!response.ok) {
throw new Error("Failed to fetch connect URL");
if (response.ok) {
const userData: User = await response.json();
if (userData.avatarurl && !userData.avatarurl.startsWith("http")) {
userData.avatarurl = `${OLLAMA_DOT_COM}${userData.avatarurl}`;
}
return userData;
}
const data = await response.json();
return data.connect_url;
if (response.status === 401 || response.status === 403) {
return null;
}
throw new Error(`Failed to fetch user: ${response.status}`);
}
export async function fetchConnectUrl(): Promise<string> {
const response = await fetch(`${API_BASE}/api/me`, {
method: "POST",
headers: {
"Content-Type": "application/json",
},
});
if (response.status === 401) {
const data = await response.json();
if (data.signin_url) {
return data.signin_url;
}
}
throw new Error("Failed to fetch connect URL");
}
export async function disconnectUser(): Promise<void> {
const response = await fetch(`${API_BASE}/api/v1/disconnect`, {
const response = await fetch(`${API_BASE}/api/signout`, {
method: "POST",
headers: {
"Content-Type": "application/json",
@@ -204,12 +209,10 @@ export async function* sendMessage(
data: uint8ArrayToBase64(att.data),
}));
// Only send think parameter when actually requesting thinking
// Don't send false as it causes issues with some providers
// Send think parameter when it's explicitly set (true, false, or a non-empty string).
const shouldSendThink =
think !== undefined &&
((typeof think === "boolean" && think) ||
(typeof think === "string" && think !== ""));
(typeof think === "boolean" || (typeof think === "string" && think !== ""));
const response = await fetch(`${API_BASE}/api/v1/chat/${chatId}`, {
method: "POST",
@@ -391,7 +394,8 @@ export async function getInferenceCompute(): Promise<InferenceCompute[]> {
export async function fetchHealth(): Promise<boolean> {
try {
const response = await fetch(`${API_BASE}/api/v1/health`, {
// Use the /api/version endpoint as a health check
const response = await fetch(`${API_BASE}/api/version`, {
method: "GET",
headers: {
"Content-Type": "application/json",
@@ -400,7 +404,8 @@ export async function fetchHealth(): Promise<boolean> {
if (response.ok) {
const data = await response.json();
return data.healthy || false;
// If we get a version back, the server is healthy
return !!data.version;
}
return false;

View File

@@ -299,9 +299,9 @@ export default function Settings() {
</Button>
</div>
</div>
{user?.avatarURL && (
{user?.avatarurl && (
<img
src={user.avatarURL}
src={user.avatarurl}
alt={user?.name}
className="h-10 w-10 rounded-full bg-neutral-200 dark:bg-neutral-700 flex-shrink-0"
onError={(e) => {

View File

@@ -50,21 +50,33 @@ export default function Thinking({
// Position content to show bottom when collapsed
useEffect(() => {
if (isCollapsed && contentRef.current && wrapperRef.current) {
const contentHeight = contentRef.current.scrollHeight;
const wrapperHeight = wrapperRef.current.clientHeight;
if (contentHeight > wrapperHeight) {
const translateY = -(contentHeight - wrapperHeight);
contentRef.current.style.transform = `translateY(${translateY}px)`;
setHasOverflow(true);
} else {
setHasOverflow(false);
}
requestAnimationFrame(() => {
if (!contentRef.current || !wrapperRef.current) return;
const contentHeight = contentRef.current.scrollHeight;
const wrapperHeight = wrapperRef.current.clientHeight;
if (contentHeight > wrapperHeight) {
const translateY = -(contentHeight - wrapperHeight);
contentRef.current.style.transform = `translateY(${translateY}px)`;
setHasOverflow(true);
} else {
contentRef.current.style.transform = "translateY(0)";
setHasOverflow(false);
}
});
} else if (contentRef.current) {
contentRef.current.style.transform = "translateY(0)";
setHasOverflow(false);
}
}, [thinking, isCollapsed]);
useEffect(() => {
if (activelyThinking && wrapperRef.current && !isCollapsed) {
// When expanded and actively thinking, scroll to bottom
wrapperRef.current.scrollTop = wrapperRef.current.scrollHeight;
}
}, [thinking, activelyThinking, isCollapsed]);
const handleToggle = () => {
setIsCollapsed(!isCollapsed);
setHasUserInteracted(true);

View File

@@ -7,6 +7,7 @@ import { createQueryBatcher } from "./useQueryBatcher";
import { useRefetchModels } from "./useModels";
import { useStreamingContext } from "@/contexts/StreamingContext";
import { useSettings } from "./useSettings";
import { getModelCapabilities } from "@/api";
export const useChats = () => {
return useQuery({
@@ -606,6 +607,24 @@ export const useSendMessage = (chatId: string) => {
queryClient.setQueryData(["staleModels"], newStaleMap);
queryClient.invalidateQueries({ queryKey: ["models"] });
// Fetch fresh capabilities for the downloaded model
getModelCapabilities(selectedModel.model)
.then((capabilities) => {
queryClient.setQueryData(
["modelCapabilities", selectedModel.model],
capabilities,
);
})
.catch((error) => {
console.error(
"Failed to fetch capabilities after download:",
error,
);
queryClient.invalidateQueries({
queryKey: ["modelCapabilities", selectedModel.model],
});
});
}
break;
}

View File

@@ -1,114 +0,0 @@
import { useMutation, useQueryClient } from "@tanstack/react-query";
import { useState } from "react";
import { pullModel } from "@/api";
import { useSelectedModel } from "./useSelectedModel";
import { useSettings } from "./useSettings";
interface DownloadProgress {
status: string;
digest?: string;
total?: number;
completed?: number;
done?: boolean;
}
export function useDownloadModel(chatId?: string) {
const queryClient = useQueryClient();
const { selectedModel } = useSelectedModel(chatId);
const { setSettings } = useSettings();
const [downloadProgress, setDownloadProgress] =
useState<DownloadProgress | null>(null);
const [abortController, setAbortController] =
useState<AbortController | null>(null);
const [downloadingChatIds, setDownloadingChatIds] = useState<Set<string>>(
new Set(),
);
const mutation = useMutation({
mutationFn: async (modelName: string) => {
const controller = new AbortController();
setAbortController(controller);
setDownloadProgress({ status: "Starting download..." });
if (chatId) {
setDownloadingChatIds((prev) => new Set(prev).add(chatId));
}
try {
for await (const progress of pullModel(modelName, controller.signal)) {
setDownloadProgress(progress);
if (progress.status === "success") {
// Update selected model to indicate it's now available locally
if (selectedModel && selectedModel.model === modelName) {
setSettings({ SelectedModel: modelName });
}
// Invalidate models query to refresh the list
await queryClient.invalidateQueries({ queryKey: ["models"] });
break;
}
}
} finally {
setAbortController(null);
if (chatId) {
setDownloadingChatIds((prev) => {
const newSet = new Set(prev);
newSet.delete(chatId);
return newSet;
});
}
}
},
onSuccess: () => {
setDownloadProgress(null);
if (chatId) {
setDownloadingChatIds((prev) => {
const newSet = new Set(prev);
newSet.delete(chatId);
return newSet;
});
}
},
onError: (error: Error) => {
const status =
error.name === "AbortError" ? "Download cancelled" : "Download failed";
setDownloadProgress({ status, done: true });
// Clear error message after delay
const delay = error.name === "AbortError" ? 1500 : 3000;
setTimeout(() => {
setDownloadProgress(null);
if (chatId) {
setDownloadingChatIds((prev) => {
const newSet = new Set(prev);
newSet.delete(chatId);
return newSet;
});
}
}, delay);
},
});
const cancelDownload = () => {
if (abortController) {
abortController.abort();
setAbortController(null);
if (chatId) {
setDownloadingChatIds((prev) => {
const newSet = new Set(prev);
newSet.delete(chatId);
return newSet;
});
}
}
};
return {
downloadModel: mutation.mutate,
isDownloading:
mutation.isPending && chatId ? downloadingChatIds.has(chatId) : false,
downloadProgress:
chatId && downloadingChatIds.has(chatId) ? downloadProgress : null,
error: mutation.error,
cancelDownload,
};
}

View File

@@ -1,29 +1,20 @@
import { useQuery, useMutation, useQueryClient } from "@tanstack/react-query";
import { useEffect, useState } from "react";
import { fetchUser, fetchConnectUrl, disconnectUser } from "@/api";
export function useUser() {
const queryClient = useQueryClient();
const [initialDataLoaded, setInitialDataLoaded] = useState(false);
// Wait for initial data to be loaded
useEffect(() => {
const initialPromise = window.__initialUserDataPromise;
if (initialPromise) {
initialPromise.finally(() => {
setInitialDataLoaded(true);
});
} else {
setInitialDataLoaded(true);
}
}, []);
const userQuery = useQuery({
queryKey: ["user"],
queryFn: () => fetchUser(),
queryFn: async () => {
const result = await fetchUser();
return result;
},
staleTime: 5 * 60 * 1000, // Consider data stale after 5 minutes
gcTime: 10 * 60 * 1000, // Keep in cache for 10 minutes
initialData: null, // Start with null to prevent flashing
retry: 10,
retryDelay: (attemptIndex) => Math.min(500 * attemptIndex, 2000),
refetchOnMount: true, // Always fetch when component mounts
});
// Mutation to refresh user data
@@ -49,14 +40,15 @@ export function useUser() {
},
});
const isLoading = userQuery.isLoading || userQuery.isFetching;
const isAuthenticated = Boolean(userQuery.data?.name);
return {
user: userQuery.data,
isLoading:
!initialDataLoaded ||
(userQuery.isLoading && userQuery.data === undefined), // Show loading until initial data is loaded
isLoading,
isError: userQuery.isError,
error: userQuery.error,
isAuthenticated: Boolean(userQuery.data?.name),
isAuthenticated,
refreshUser: refreshUser.mutate,
isRefreshing: refreshUser.isPending,
refetchUser: userQuery.refetch,

View File

@@ -8,3 +8,6 @@ export const API_BASE = import.meta.env.DEV ? DEV_API_URL : "";
export const OLLAMA_HOST = import.meta.env.DEV
? DEV_API_URL
: window.location.origin;
export const OLLAMA_DOT_COM =
import.meta.env.VITE_OLLAMA_DOT_COM_URL || "https://ollama.com";

View File

@@ -5,13 +5,6 @@ import { QueryClient, QueryClientProvider } from "@tanstack/react-query";
import { routeTree } from "./routeTree.gen";
import { fetchUser } from "./api";
import { StreamingProvider } from "./contexts/StreamingContext";
import { User } from "@/gotypes";
declare global {
interface Window {
__initialUserDataPromise?: Promise<User | null>;
}
}
const queryClient = new QueryClient({
defaultOptions: {
@@ -24,27 +17,11 @@ const queryClient = new QueryClient({
},
});
// Track initial user data fetch
let initialUserDataPromise: Promise<User | null> | null = null;
// Initialize user data on app startup
const initializeUserData = async () => {
try {
const userData = await fetchUser();
fetchUser().then((userData) => {
if (userData) {
queryClient.setQueryData(["user"], userData);
return userData;
} catch (error) {
console.error("Error initializing user data:", error);
queryClient.setQueryData(["user"], null);
return null;
}
};
// Start initialization immediately and track the promise
initialUserDataPromise = initializeUserData();
// Export the promise so hooks can await it
window.__initialUserDataPromise = initialUserDataPromise;
});
const router = createRouter({
routeTree,

View File

@@ -101,15 +101,14 @@ type HealthResponse struct {
}
type User struct {
ID string `json:"id"`
Name string `json:"name"`
Email string `json:"email"`
AvatarURL string `json:"avatarURL"`
Plan string `json:"plan"`
Bio string `json:"bio"`
FirstName string `json:"firstName"`
LastName string `json:"lastName"`
OverThreshold bool `json:"overThreshold"`
ID string `json:"id"`
Email string `json:"email"`
Name string `json:"name"`
Bio string `json:"bio,omitempty"`
AvatarURL string `json:"avatarurl,omitempty"`
FirstName string `json:"firstname,omitempty"`
LastName string `json:"lastname,omitempty"`
Plan string `json:"plan,omitempty"`
}
type Attachment struct {

View File

@@ -12,18 +12,17 @@ import (
"log/slog"
"net/http"
"net/http/httputil"
"net/url"
"os"
"runtime"
"runtime/debug"
"slices"
"strconv"
"strings"
"sync"
"time"
"github.com/google/uuid"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/app/auth"
"github.com/ollama/ollama/app/server"
"github.com/ollama/ollama/app/store"
"github.com/ollama/ollama/app/tools"
@@ -118,40 +117,66 @@ func (s *Server) log() *slog.Logger {
// ollamaProxy creates a reverse proxy handler to the Ollama server
func (s *Server) ollamaProxy() http.Handler {
ollamaHost := os.Getenv("OLLAMA_HOST")
if ollamaHost == "" {
ollamaHost = "http://127.0.0.1:11434"
}
var (
proxy http.Handler
proxyMu sync.Mutex
)
if !strings.HasPrefix(ollamaHost, "http://") && !strings.HasPrefix(ollamaHost, "https://") {
ollamaHost = "http://" + ollamaHost
}
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
proxyMu.Lock()
p := proxy
proxyMu.Unlock()
target, err := url.Parse(ollamaHost)
if err != nil {
s.log().Error("failed to parse OLLAMA_HOST", "error", err, "host", ollamaHost)
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
http.Error(w, "failed to configure proxy", http.StatusInternalServerError)
})
}
if p == nil {
proxyMu.Lock()
if proxy == nil {
var err error
for i := range 2 {
if i > 0 {
s.log().Warn("ollama server not ready, retrying", "attempt", i+1)
time.Sleep(1 * time.Second)
}
s.log().Info("configuring ollama proxy", "target", target.String())
err = WaitForServer(context.Background(), 10*time.Second)
if err == nil {
break
}
}
proxy := httputil.NewSingleHostReverseProxy(target)
if err != nil {
proxyMu.Unlock()
s.log().Error("ollama server not ready after retries", "error", err)
http.Error(w, "Ollama server is not ready", http.StatusServiceUnavailable)
return
}
originalDirector := proxy.Director
proxy.Director = func(req *http.Request) {
originalDirector(req)
req.Host = target.Host
s.log().Debug("proxying request", "method", req.Method, "path", req.URL.Path, "target", target.Host)
}
target := envconfig.Host()
s.log().Info("configuring ollama proxy", "target", target.String())
proxy.ErrorHandler = func(w http.ResponseWriter, r *http.Request, err error) {
s.log().Error("proxy error", "error", err, "path", r.URL.Path, "target", target.String())
http.Error(w, "proxy error: "+err.Error(), http.StatusBadGateway)
}
newProxy := httputil.NewSingleHostReverseProxy(target)
return proxy
originalDirector := newProxy.Director
newProxy.Director = func(req *http.Request) {
originalDirector(req)
req.Host = target.Host
s.log().Debug("proxying request", "method", req.Method, "path", req.URL.Path, "target", target.Host)
}
newProxy.ErrorHandler = func(w http.ResponseWriter, r *http.Request, err error) {
s.log().Error("proxy error", "error", err, "path", r.URL.Path, "target", target.String())
http.Error(w, "proxy error: "+err.Error(), http.StatusBadGateway)
}
proxy = newProxy
p = newProxy
} else {
p = proxy
}
proxyMu.Unlock()
}
p.ServeHTTP(w, r)
})
}
type errHandlerFunc func(http.ResponseWriter, *http.Request) error
@@ -264,11 +289,10 @@ func (s *Server) Handler() http.Handler {
ollamaProxy := s.ollamaProxy()
mux.Handle("GET /api/tags", ollamaProxy)
mux.Handle("POST /api/show", ollamaProxy)
mux.Handle("GET /api/v1/me", handle(s.me))
mux.Handle("POST /api/v1/disconnect", handle(s.disconnect))
mux.Handle("GET /api/v1/connect", handle(s.connectURL))
mux.Handle("GET /api/v1/health", handle(s.health))
mux.Handle("GET /api/version", ollamaProxy)
mux.Handle("HEAD /api/version", ollamaProxy)
mux.Handle("POST /api/me", ollamaProxy)
mux.Handle("POST /api/signout", ollamaProxy)
// React app - catch all non-API routes and serve the React app
mux.Handle("GET /", s.appHandler())
@@ -338,7 +362,7 @@ func (s *Server) doSelfSigned(ctx context.Context, method, path string) (*http.R
}
// UserData fetches user data from ollama.com API for the current ollama key
func (s *Server) UserData(ctx context.Context) (*responses.User, error) {
func (s *Server) UserData(ctx context.Context) (*api.UserResponse, error) {
resp, err := s.doSelfSigned(ctx, http.MethodPost, "/api/me")
if err != nil {
return nil, fmt.Errorf("failed to call ollama.com/api/me: %w", err)
@@ -349,7 +373,7 @@ func (s *Server) UserData(ctx context.Context) (*responses.User, error) {
return nil, fmt.Errorf("unexpected status code: %d", resp.StatusCode)
}
var user responses.User
var user api.UserResponse
if err := json.NewDecoder(resp.Body).Decode(&user); err != nil {
return nil, fmt.Errorf("failed to parse user response: %w", err)
}
@@ -368,29 +392,27 @@ func (s *Server) UserData(ctx context.Context) (*responses.User, error) {
return &user, nil
}
func waitForServer(ctx context.Context) error {
timeout := time.Now().Add(10 * time.Second)
// TODO: this avoids an error on first load of the app
// however we should either show a loading state or
// wait for the Ollama server to be ready before redirecting
for {
// WaitForServer waits for the Ollama server to be ready
func WaitForServer(ctx context.Context, timeout time.Duration) error {
deadline := time.Now().Add(timeout)
for time.Now().Before(deadline) {
c, err := api.ClientFromEnvironment()
if err != nil {
return err
}
if _, err := c.Version(ctx); err == nil {
break
}
if time.Now().After(timeout) {
return fmt.Errorf("timeout waiting for Ollama server to be ready")
slog.Debug("ollama server is ready")
return nil
}
time.Sleep(10 * time.Millisecond)
}
return nil
return errors.New("timeout waiting for Ollama server to be ready")
}
func (s *Server) createChat(w http.ResponseWriter, r *http.Request) error {
waitForServer(r.Context())
if err := WaitForServer(r.Context(), 10*time.Second); err != nil {
return err
}
id, err := uuid.NewV7()
if err != nil {
@@ -1438,129 +1460,6 @@ func (s *Server) settings(w http.ResponseWriter, r *http.Request) error {
})
}
func (s *Server) me(w http.ResponseWriter, r *http.Request) error {
if r.Method != http.MethodGet {
http.Error(w, "Method Not Allowed", http.StatusMethodNotAllowed)
return nil
}
user, err := s.UserData(r.Context())
if err != nil {
// If fetching from API fails, try to return cached user data if available
if cachedUser, cacheErr := s.Store.User(); cacheErr == nil && cachedUser != nil {
s.log().Info("API request failed, returning cached user data", "error", err)
responseUser := &responses.User{
Name: cachedUser.Name,
Email: cachedUser.Email,
Plan: cachedUser.Plan,
}
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusOK)
return json.NewEncoder(w).Encode(responseUser)
}
s.log().Error("failed to get user data", "error", err)
w.WriteHeader(http.StatusInternalServerError)
return json.NewEncoder(w).Encode(responses.Error{
Error: "failed to get user data",
})
}
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusOK)
return json.NewEncoder(w).Encode(user)
}
func (s *Server) disconnect(w http.ResponseWriter, r *http.Request) error {
if r.Method != http.MethodPost {
http.Error(w, "Method Not Allowed", http.StatusMethodNotAllowed)
return nil
}
if err := s.Store.ClearUser(); err != nil {
s.log().Warn("failed to clear cached user data", "error", err)
}
// Get the SSH public key to encode for the delete request
pubKey, err := ollamaAuth.GetPublicKey()
if err != nil {
s.log().Error("failed to get public key", "error", err)
w.WriteHeader(http.StatusInternalServerError)
return json.NewEncoder(w).Encode(responses.Error{
Error: "failed to get public key",
})
}
// Encode the key using base64 URL encoding
encodedKey := base64.RawURLEncoding.EncodeToString([]byte(pubKey))
// Call the /api/user/keys/{encodedKey} endpoint with DELETE
resp, err := s.doSelfSigned(r.Context(), http.MethodDelete, fmt.Sprintf("/api/user/keys/%s", encodedKey))
if err != nil {
s.log().Error("failed to call ollama.com/api/user/keys", "error", err)
w.WriteHeader(http.StatusInternalServerError)
return json.NewEncoder(w).Encode(responses.Error{
Error: "failed to disconnect from ollama.com",
})
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
s.log().Error("disconnect request failed", "status", resp.StatusCode)
w.WriteHeader(http.StatusInternalServerError)
return json.NewEncoder(w).Encode(responses.Error{
Error: "failed to disconnect from ollama.com",
})
}
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusOK)
return json.NewEncoder(w).Encode(map[string]string{"status": "disconnected"})
}
func (s *Server) connectURL(w http.ResponseWriter, r *http.Request) error {
if r.Method != http.MethodGet {
http.Error(w, "Method Not Allowed", http.StatusMethodNotAllowed)
return nil
}
connectURL, err := auth.BuildConnectURL(OllamaDotCom)
if err != nil {
s.log().Error("failed to build connect URL", "error", err)
w.WriteHeader(http.StatusInternalServerError)
return json.NewEncoder(w).Encode(responses.Error{
Error: "failed to build connect URL",
})
}
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusOK)
return json.NewEncoder(w).Encode(map[string]string{
"connect_url": connectURL,
})
}
func (s *Server) health(w http.ResponseWriter, r *http.Request) error {
if r.Method != http.MethodGet {
http.Error(w, "Method Not Allowed", http.StatusMethodNotAllowed)
return nil
}
healthy := false
c, err := api.ClientFromEnvironment()
if err == nil {
if _, err := c.Version(r.Context()); err == nil {
healthy = true
}
}
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusOK)
return json.NewEncoder(w).Encode(responses.HealthResponse{
Healthy: healthy,
})
}
func (s *Server) getInferenceCompute(w http.ResponseWriter, r *http.Request) error {
ctx, cancel := context.WithTimeout(r.Context(), 500*time.Millisecond)
defer cancel()

View File

@@ -158,16 +158,16 @@ func (t *winTray) wndProc(hWnd windows.Handle, message uint32, wParam, lParam ui
case uint32(UI_REQUEST_MSG_ID):
// Requests for the UI must always come from the main event thread
l := int(wParam)
path := unsafe.String((*byte)(unsafe.Pointer(lParam)), l)
path := unsafe.String((*byte)(unsafe.Pointer(lParam)), l) //nolint:govet,gosec
t.app.UIRun(path)
case WM_COPYDATA:
// Handle URL scheme requests from other instances
if lParam != 0 {
cds := (*COPYDATASTRUCT)(unsafe.Pointer(lParam))
if cds.DwData == 1 { // Our identifier for URL scheme messages
cds := (*COPYDATASTRUCT)(unsafe.Pointer(lParam)) //nolint:govet,gosec
if cds.DwData == 1 { // Our identifier for URL scheme messages
// Convert the data back to string
data := make([]byte, cds.CbData)
copy(data, (*[1 << 30]byte)(unsafe.Pointer(cds.LpData))[:cds.CbData:cds.CbData])
copy(data, (*[1 << 30]byte)(unsafe.Pointer(cds.LpData))[:cds.CbData:cds.CbData]) //nolint:govet,gosec
urlScheme := string(data)
handleURLSchemeRequest(urlScheme)
lResult = 1 // Return non-zero to indicate success

View File

@@ -15,7 +15,7 @@ A Go-based command-line tool for benchmarking Ollama models with configurable pa
```
go build -o ollama-bench bench.go
./bench -model gpt-oss:20b -epochs 6 -format csv
./ollama-bench -model gpt-oss:20b -epochs 6 -format csv
```
Using Go Run (without building)
@@ -29,31 +29,32 @@ go run bench.go -model gpt-oss:20b -epochs 3
### Basic Example
```
./bench -model gemma3 -epochs 6
./ollama-bench -model gemma3 -epochs 6
```
### Benchmark Multiple Models
```
./bench -model gemma3,gemma3n -epochs 6 -max-tokens 100 -p "Write me a short story" | tee gemma.bench
./ollama-bench -model gemma3,gemma3n -epochs 6 -max-tokens 100 -p "Write me a short story" | tee gemma.bench
benchstat -col /name gemma.bench
```
### With Image Prompt
```
./bench -model qwen3-vl -image photo.jpg -epochs 6 -max-tokens 100 -p "Describe this image"
./ollama-bench -model qwen3-vl -image photo.jpg -epochs 6 -max-tokens 100 -p "Describe this image"
```
### Advanced Example
```
./bench -model llama3 -epochs 10 -temperature 0.7 -max-tokens 500 -seed 42 -format csv -output results.csv
./ollama-bench -model llama3 -epochs 10 -temperature 0.7 -max-tokens 500 -seed 42 -format csv -output results.csv
```
## Command Line Options
| Option | Description | Default |
|----------|-------------|---------|
| -model | Comma-separated list of models to benchmark | (required) |
| -epochs | Number of iterations per model | 1 |
| -max-tokens | Maximum tokens for model response | 0 (unlimited) |

View File

@@ -48,8 +48,8 @@ func OutputMetrics(w io.Writer, format string, metrics []Metrics, verbose bool)
case "benchstat":
if verbose {
printHeader := func() {
fmt.Printf("sysname: %s\n", runtime.GOOS)
fmt.Printf("machine: %s\n", runtime.GOARCH)
fmt.Fprintf(w, "sysname: %s\n", runtime.GOOS)
fmt.Fprintf(w, "machine: %s\n", runtime.GOARCH)
}
once.Do(printHeader)
}
@@ -147,6 +147,17 @@ func BenchmarkChat(fOpt flagOptions) error {
return err
}
var out io.Writer = os.Stdout
if fOpt.outputFile != nil && *fOpt.outputFile != "" {
f, err := os.OpenFile(*fOpt.outputFile, os.O_CREATE|os.O_WRONLY, 0o644)
if err != nil {
fmt.Fprintf(os.Stderr, "ERROR: cannot open output file %s: %v\n", *fOpt.outputFile, err)
return err
}
defer f.Close()
out = f
}
for _, model := range models {
for range *fOpt.epochs {
options := make(map[string]interface{})
@@ -241,13 +252,14 @@ func BenchmarkChat(fOpt flagOptions) error {
},
}
OutputMetrics(os.Stdout, *fOpt.format, metrics, *fOpt.verbose)
OutputMetrics(out, *fOpt.format, metrics, *fOpt.verbose)
if *fOpt.keepAlive > 0 {
time.Sleep(time.Duration(*fOpt.keepAlive*float64(time.Second)) + 200*time.Millisecond)
}
}
}
return nil
}

View File

@@ -15,6 +15,7 @@ import (
"net"
"net/http"
"os"
"os/exec"
"os/signal"
"path/filepath"
"runtime"
@@ -494,6 +495,16 @@ func RunHandler(cmd *cobra.Command, args []string) error {
opts.ParentModel = info.Details.ParentModel
// Check if this is an agent
isAgent := info.AgentType != "" || len(info.Skills) > 0 || len(info.MCPs) > 0 || info.Entrypoint != ""
if isAgent {
opts.IsAgent = true
opts.AgentType = info.AgentType
opts.Skills = info.Skills
opts.MCPs = info.MCPs
opts.Entrypoint = info.Entrypoint
}
// Check if this is an embedding model
isEmbeddingModel := slices.Contains(info.Capabilities, model.CapabilityEmbedding)
@@ -517,6 +528,11 @@ func RunHandler(cmd *cobra.Command, args []string) error {
return generateEmbedding(cmd, name, opts.Prompt, opts.KeepAlive, truncate, dimensions)
}
// If agent has entrypoint, run it instead of chat loop
if opts.Entrypoint != "" {
return runEntrypoint(cmd, opts)
}
if interactive {
if err := loadOrUnloadModel(cmd, &opts); err != nil {
var sErr api.AuthorizationError
@@ -545,9 +561,62 @@ func RunHandler(cmd *cobra.Command, args []string) error {
return generateInteractive(cmd, opts)
}
// For agents, use chat API even in non-interactive mode to support tools
if opts.IsAgent {
opts.Messages = append(opts.Messages, api.Message{Role: "user", Content: opts.Prompt})
_, err := chat(cmd, opts)
return err
}
return generate(cmd, opts)
}
// runEntrypoint executes the agent's entrypoint command instead of the built-in chat loop.
func runEntrypoint(cmd *cobra.Command, opts runOptions) error {
entrypoint := opts.Entrypoint
// Check if entrypoint contains $PROMPT placeholder
hasPlaceholder := strings.Contains(entrypoint, "$PROMPT")
if hasPlaceholder && opts.Prompt != "" {
// Replace $PROMPT with the actual prompt
entrypoint = strings.ReplaceAll(entrypoint, "$PROMPT", opts.Prompt)
} else if hasPlaceholder {
// No prompt provided but placeholder exists - remove placeholder
entrypoint = strings.ReplaceAll(entrypoint, "$PROMPT", "")
}
// Parse entrypoint into command and args
parts := strings.Fields(entrypoint)
if len(parts) == 0 {
return fmt.Errorf("empty entrypoint")
}
command := parts[0]
args := parts[1:]
// If user provided a prompt and no placeholder was used, append it as argument
if opts.Prompt != "" && !hasPlaceholder {
args = append(args, opts.Prompt)
}
// Look up command in PATH
execPath, err := exec.LookPath(command)
if err != nil {
return fmt.Errorf("entrypoint command not found: %s", command)
}
// Create subprocess
proc := exec.Command(execPath, args...)
proc.Stdin = os.Stdin
proc.Stdout = os.Stdout
proc.Stderr = os.Stderr
// Run and wait
return proc.Run()
}
func SigninHandler(cmd *cobra.Command, args []string) error {
client, err := api.ClientFromEnvironment()
if err != nil {
@@ -907,44 +976,96 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
fmt.Fprintln(w)
}
tableRender("Model", func() (rows [][]string) {
if resp.RemoteHost != "" {
rows = append(rows, []string{"", "Remote model", resp.RemoteModel})
rows = append(rows, []string{"", "Remote URL", resp.RemoteHost})
}
if resp.ModelInfo != nil {
arch := resp.ModelInfo["general.architecture"].(string)
rows = append(rows, []string{"", "architecture", arch})
var paramStr string
if resp.Details.ParameterSize != "" {
paramStr = resp.Details.ParameterSize
} else if v, ok := resp.ModelInfo["general.parameter_count"]; ok {
if f, ok := v.(float64); ok {
paramStr = format.HumanNumber(uint64(f))
}
}
rows = append(rows, []string{"", "parameters", paramStr})
if v, ok := resp.ModelInfo[fmt.Sprintf("%s.context_length", arch)]; ok {
if f, ok := v.(float64); ok {
rows = append(rows, []string{"", "context length", strconv.FormatFloat(f, 'f', -1, 64)})
}
// Only show Model section if there's actual model info (not for entrypoint-only agents)
hasModelInfo := resp.RemoteHost != "" || resp.ModelInfo != nil || resp.Details.Family != "" || resp.Details.ParameterSize != "" || resp.Details.QuantizationLevel != ""
if hasModelInfo {
tableRender("Model", func() (rows [][]string) {
if resp.RemoteHost != "" {
rows = append(rows, []string{"", "Remote model", resp.RemoteModel})
rows = append(rows, []string{"", "Remote URL", resp.RemoteHost})
}
if v, ok := resp.ModelInfo[fmt.Sprintf("%s.embedding_length", arch)]; ok {
if f, ok := v.(float64); ok {
rows = append(rows, []string{"", "embedding length", strconv.FormatFloat(f, 'f', -1, 64)})
if resp.ModelInfo != nil {
arch := resp.ModelInfo["general.architecture"].(string)
rows = append(rows, []string{"", "architecture", arch})
var paramStr string
if resp.Details.ParameterSize != "" {
paramStr = resp.Details.ParameterSize
} else if v, ok := resp.ModelInfo["general.parameter_count"]; ok {
if f, ok := v.(float64); ok {
paramStr = format.HumanNumber(uint64(f))
}
}
rows = append(rows, []string{"", "parameters", paramStr})
if v, ok := resp.ModelInfo[fmt.Sprintf("%s.context_length", arch)]; ok {
if f, ok := v.(float64); ok {
rows = append(rows, []string{"", "context length", strconv.FormatFloat(f, 'f', -1, 64)})
}
}
if v, ok := resp.ModelInfo[fmt.Sprintf("%s.embedding_length", arch)]; ok {
if f, ok := v.(float64); ok {
rows = append(rows, []string{"", "embedding length", strconv.FormatFloat(f, 'f', -1, 64)})
}
}
} else {
rows = append(rows, []string{"", "architecture", resp.Details.Family})
rows = append(rows, []string{"", "parameters", resp.Details.ParameterSize})
}
rows = append(rows, []string{"", "quantization", resp.Details.QuantizationLevel})
if resp.Requires != "" {
rows = append(rows, []string{"", "requires", resp.Requires})
}
return
})
}
// Display agent information if this is an agent
if resp.AgentType != "" || len(resp.Skills) > 0 || len(resp.MCPs) > 0 || resp.Entrypoint != "" {
tableRender("Agent", func() (rows [][]string) {
if resp.AgentType != "" {
rows = append(rows, []string{"", "type", resp.AgentType})
}
if resp.Entrypoint != "" {
rows = append(rows, []string{"", "entrypoint", resp.Entrypoint})
}
if len(resp.Skills) > 0 {
for i, skill := range resp.Skills {
label := "skill"
if i > 0 {
label = ""
}
// Show skill name or digest
skillDisplay := skill.Name
if skillDisplay == "" && skill.Digest != "" {
skillDisplay = skill.Digest[:12] + "..."
}
rows = append(rows, []string{"", label, skillDisplay})
}
}
} else {
rows = append(rows, []string{"", "architecture", resp.Details.Family})
rows = append(rows, []string{"", "parameters", resp.Details.ParameterSize})
}
rows = append(rows, []string{"", "quantization", resp.Details.QuantizationLevel})
return
})
if len(resp.MCPs) > 0 {
for i, mcp := range resp.MCPs {
label := "mcp"
if i > 0 {
label = ""
}
// Show MCP name and command
mcpDisplay := mcp.Name
if mcp.Command != "" {
cmdLine := mcp.Command
if len(mcp.Args) > 0 {
cmdLine += " " + strings.Join(mcp.Args, " ")
}
mcpDisplay += " (" + cmdLine + ")"
}
rows = append(rows, []string{"", label, mcpDisplay})
}
}
return
})
}
if len(resp.Capabilities) > 0 {
tableRender("Capabilities", func() (rows [][]string) {
@@ -1186,6 +1307,11 @@ type runOptions struct {
Think *api.ThinkValue
HideThinking bool
ShowConnect bool
IsAgent bool
AgentType string
Skills []api.SkillRef
MCPs []api.MCPRef
Entrypoint string
}
func (r runOptions) Copy() runOptions {
@@ -1215,6 +1341,12 @@ func (r runOptions) Copy() runOptions {
think = &cThink
}
var skills []api.SkillRef
if r.Skills != nil {
skills = make([]api.SkillRef, len(r.Skills))
copy(skills, r.Skills)
}
return runOptions{
Model: r.Model,
ParentModel: r.ParentModel,
@@ -1230,6 +1362,9 @@ func (r runOptions) Copy() runOptions {
Think: think,
HideThinking: r.HideThinking,
ShowConnect: r.ShowConnect,
IsAgent: r.IsAgent,
AgentType: r.AgentType,
Skills: skills,
}
}
@@ -1313,6 +1448,65 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
return nil, err
}
// Load skills for agents
var skillsCatalog *skillCatalog
if opts.IsAgent && len(opts.Skills) > 0 {
skillsCatalog, err = loadSkillsFromRefs(opts.Skills)
if err != nil {
return nil, fmt.Errorf("failed to load skills: %w", err)
}
if skillsCatalog != nil && len(skillsCatalog.Skills) > 0 {
var skillNames []string
for _, s := range skillsCatalog.Skills {
skillNames = append(skillNames, s.Name)
}
fmt.Fprintf(os.Stderr, "Loaded skills: %s\n", strings.Join(skillNames, ", "))
}
}
// Load MCP servers for agents (from opts and global config)
var mcpMgr *mcpManager
allMCPs := opts.MCPs
// Load global MCPs from ~/.ollama/mcp.json
if globalConfig, err := loadMCPConfig(); err == nil && len(globalConfig.MCPServers) > 0 {
for name, srv := range globalConfig.MCPServers {
// Skip disabled MCPs
if srv.Disabled {
continue
}
// Check if already in opts.MCPs (model takes precedence)
found := false
for _, m := range opts.MCPs {
if m.Name == name {
found = true
break
}
}
if !found {
allMCPs = append(allMCPs, api.MCPRef{
Name: name,
Command: srv.Command,
Args: srv.Args,
Env: srv.Env,
Type: srv.Type,
})
}
}
}
if len(allMCPs) > 0 {
mcpMgr = newMCPManager()
if err := mcpMgr.loadMCPsFromRefs(allMCPs); err != nil {
return nil, fmt.Errorf("failed to load MCP servers: %w", err)
}
if mcpMgr.ToolCount() > 0 {
fmt.Fprintf(os.Stderr, "Loaded MCP servers: %s (%d tools)\n",
strings.Join(mcpMgr.ServerNames(), ", "), mcpMgr.ToolCount())
}
defer mcpMgr.Shutdown()
}
p := progress.NewProgress(os.Stderr)
defer p.StopAndClear()
@@ -1336,6 +1530,7 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
var fullResponse strings.Builder
var thinkTagOpened bool = false
var thinkTagClosed bool = false
var pendingToolCalls []api.ToolCall
role := "assistant"
@@ -1376,7 +1571,13 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
if response.Message.ToolCalls != nil {
toolCalls := response.Message.ToolCalls
if len(toolCalls) > 0 {
fmt.Print(renderToolCalls(toolCalls, false))
if skillsCatalog != nil || mcpMgr != nil {
// Store tool calls for execution after response is complete
pendingToolCalls = append(pendingToolCalls, toolCalls...)
} else {
// No skills catalog or MCP, just display tool calls
fmt.Print(renderToolCalls(toolCalls, false))
}
}
}
@@ -1389,31 +1590,159 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
opts.Format = `"` + opts.Format + `"`
}
req := &api.ChatRequest{
Model: opts.Model,
Messages: opts.Messages,
Format: json.RawMessage(opts.Format),
Options: opts.Options,
Think: opts.Think,
// Prepare messages with agent-specific system prompt
messages := opts.Messages
if skillsCatalog != nil {
// Add skills system prompt as the first system message
skillsPrompt := skillsCatalog.SystemPrompt()
if skillsPrompt != "" {
// Insert skills prompt at the beginning, or append to existing system message
if len(messages) > 0 && messages[0].Role == "system" {
// Append to existing system message
messages[0].Content = messages[0].Content + "\n\n" + skillsPrompt
} else {
// Insert new system message at the beginning
systemMsg := api.Message{Role: "system", Content: skillsPrompt}
messages = append([]api.Message{systemMsg}, messages...)
}
}
}
if opts.KeepAlive != nil {
req.KeepAlive = opts.KeepAlive
}
if err := client.Chat(cancelCtx, req, fn); err != nil {
if errors.Is(err, context.Canceled) {
return nil, nil
// Agentic loop: continue until no more tool calls
for {
req := &api.ChatRequest{
Model: opts.Model,
Messages: messages,
Format: json.RawMessage(opts.Format),
Options: opts.Options,
Think: opts.Think,
}
// this error should ideally be wrapped properly by the client
if strings.Contains(err.Error(), "upstream error") {
p.StopAndClear()
fmt.Println("An error occurred while processing your message. Please try again.")
fmt.Println()
return nil, nil
// Add tools for agents (combine skills and MCP tools)
var allTools api.Tools
if skillsCatalog != nil {
allTools = append(allTools, skillsCatalog.Tools()...)
}
return nil, err
if mcpMgr != nil {
allTools = append(allTools, mcpMgr.Tools()...)
}
if len(allTools) > 0 {
req.Tools = allTools
}
if opts.KeepAlive != nil {
req.KeepAlive = opts.KeepAlive
}
if err := client.Chat(cancelCtx, req, fn); err != nil {
if errors.Is(err, context.Canceled) {
return nil, nil
}
// this error should ideally be wrapped properly by the client
if strings.Contains(err.Error(), "upstream error") {
p.StopAndClear()
fmt.Println("An error occurred while processing your message. Please try again.")
fmt.Println()
return nil, nil
}
return nil, err
}
// If no tool calls, we're done
if len(pendingToolCalls) == 0 || (skillsCatalog == nil && mcpMgr == nil) {
break
}
// Execute tool calls and continue the conversation
fmt.Fprintf(os.Stderr, "\n")
// Add assistant's tool call message to history
assistantMsg := api.Message{
Role: "assistant",
Content: fullResponse.String(),
ToolCalls: pendingToolCalls,
}
messages = append(messages, assistantMsg)
// Execute each tool call and collect results
var toolResults []api.Message
for _, call := range pendingToolCalls {
// Show what's being executed
switch call.Function.Name {
case "run_skill_script":
skill, _ := call.Function.Arguments["skill"].(string)
command, _ := call.Function.Arguments["command"].(string)
fmt.Fprintf(os.Stderr, "Running script in %s: %s\n", skill, command)
case "read_skill_file":
skill, _ := call.Function.Arguments["skill"].(string)
path, _ := call.Function.Arguments["path"].(string)
fmt.Fprintf(os.Stderr, "Reading file from %s: %s\n", skill, path)
default:
fmt.Fprintf(os.Stderr, "Executing: %s\n", call.Function.Name)
}
var result api.Message
var handled bool
var err error
// Try skill catalog first
if skillsCatalog != nil {
result, handled, err = skillsCatalog.RunToolCall(call)
}
// If not handled by skills, try MCP
if !handled && mcpMgr != nil {
result, handled, err = mcpMgr.RunToolCall(call)
}
if err != nil {
fmt.Fprintf(os.Stderr, "Error: %v\n", err)
// Add error result
toolResults = append(toolResults, api.Message{
Role: "tool",
Content: fmt.Sprintf("Error: %v", err),
})
continue
}
if !handled {
fmt.Fprintf(os.Stderr, "Warning: Unknown tool %s\n", call.Function.Name)
toolResults = append(toolResults, api.Message{
Role: "tool",
Content: fmt.Sprintf("Unknown tool: %s", call.Function.Name),
})
continue
}
// Display tool output
if result.Content != "" {
fmt.Fprintf(os.Stderr, "Output:\n%s\n", result.Content)
}
// Add tool result to messages
toolResults = append(toolResults, api.Message{
Role: "tool",
Content: result.Content,
})
}
// Add tool results to message history
messages = append(messages, toolResults...)
fmt.Fprintf(os.Stderr, "\n")
// Reset state for next iteration
fullResponse.Reset()
thinkingContent.Reset()
thinkTagOpened = false
thinkTagClosed = false
pendingToolCalls = nil
state = &displayResponseState{}
// Start new progress spinner for next API call
p = progress.NewProgress(os.Stderr)
spinner = progress.NewSpinner("")
p.Add("", spinner)
}
if len(opts.Messages) > 0 {
@@ -1430,7 +1759,7 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
latest.Summary()
}
return &api.Message{Role: role, Content: fullResponse.String()}, nil
return &api.Message{Role: role, Thinking: thinkingContent.String(), Content: fullResponse.String()}, nil
}
func generate(cmd *cobra.Command, opts runOptions) error {
@@ -1905,6 +2234,8 @@ func NewCLI() *cobra.Command {
copyCmd,
deleteCmd,
runnerCmd,
NewSkillCommand(),
NewMCPCommand(),
)
return rootCmd

View File

@@ -291,6 +291,31 @@ Weigh anchor!
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
t.Run("min version", func(t *testing.T) {
var b bytes.Buffer
if err := showInfo(&api.ShowResponse{
Details: api.ModelDetails{
Family: "test",
ParameterSize: "7B",
QuantizationLevel: "FP16",
},
Requires: "0.14.0",
}, false, &b); err != nil {
t.Fatal(err)
}
expect := ` Model
architecture test
parameters 7B
quantization FP16
requires 0.14.0
`
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
}
func TestDeleteHandler(t *testing.T) {

View File

@@ -1,50 +0,0 @@
# eval
Evaluation tool for testing Ollama models.
## Usage
Run all tests:
```bash
go run . -model llama3.2:latest
```
Run specific suite:
```bash
go run . -model llama3.2:latest -suite tool-calling-basic -v
```
List available suites:
```bash
go run . -list
```
## Adding Tests
Edit `suites.go` to add new test suites. Each test needs:
- `Name`: test identifier
- `Prompt`: what to send to the model
- `Check`: function to validate the response
Example:
```go
{
Name: "my-test",
Prompt: "What is 2+2?",
Check: Contains("4"),
}
```
Available check functions:
- `HasResponse()` - response is non-empty
- `Contains(s)` - response contains substring
- `CallsTool(name)` - model called specific tool
- `NoTools()` - model called no tools
- `MinTools(n)` - model called at least n tools
- `All(checks...)` - all checks pass

View File

@@ -1,151 +0,0 @@
package main
import (
"context"
"strings"
"time"
"github.com/ollama/ollama/api"
)
// Test is a single evaluation test
type Test struct {
Name string
Prompt string
System string
Tools []api.Tool
Think bool
Options map[string]any
Check func(response string, tools []api.ToolCall) bool
}
// Suite is a collection of tests
type Suite struct {
Name string
Tests []Test
}
// Result holds test execution results
type Result struct {
Name string
Passed bool
Error error
Duration time.Duration
Response string
Tools []string
ToolCalls []api.ToolCall
Thinking bool
}
// Run executes a test against a model
func Run(ctx context.Context, client *api.Client, model string, test Test) Result {
result := Result{Name: test.Name}
req := &api.ChatRequest{
Model: model,
Messages: []api.Message{
{Role: "user", Content: test.Prompt},
},
Options: test.Options,
}
if test.System != "" {
req.Messages = append([]api.Message{
{Role: "system", Content: test.System},
}, req.Messages...)
}
if len(test.Tools) > 0 {
req.Tools = test.Tools
}
if test.Think {
req.Think = &api.ThinkValue{Value: true}
}
var resp strings.Builder
var toolCalls []api.ToolCall
start := time.Now()
err := client.Chat(ctx, req, func(r api.ChatResponse) error {
resp.WriteString(r.Message.Content)
if r.Message.Thinking != "" {
result.Thinking = true
}
toolCalls = append(toolCalls, r.Message.ToolCalls...)
return nil
})
result.Duration = time.Since(start)
if err != nil {
result.Error = err
return result
}
result.Response = resp.String()
result.Tools = uniqueToolNames(toolCalls)
result.ToolCalls = toolCalls
result.Passed = test.Check(result.Response, toolCalls)
return result
}
func uniqueToolNames(calls []api.ToolCall) []string {
seen := make(map[string]bool)
var names []string
for _, c := range calls {
if !seen[c.Function.Name] {
seen[c.Function.Name] = true
names = append(names, c.Function.Name)
}
}
return names
}
// Check functions for common test patterns
func HasResponse() func(string, []api.ToolCall) bool {
return func(resp string, _ []api.ToolCall) bool {
return strings.TrimSpace(resp) != ""
}
}
func Contains(s string) func(string, []api.ToolCall) bool {
return func(resp string, _ []api.ToolCall) bool {
return strings.Contains(strings.ToLower(resp), strings.ToLower(s))
}
}
func CallsTool(name string) func(string, []api.ToolCall) bool {
return func(_ string, tools []api.ToolCall) bool {
for _, t := range tools {
if t.Function.Name == name {
return true
}
}
return false
}
}
func NoTools() func(string, []api.ToolCall) bool {
return func(_ string, tools []api.ToolCall) bool {
return len(tools) == 0
}
}
func MinTools(n int) func(string, []api.ToolCall) bool {
return func(_ string, tools []api.ToolCall) bool {
return len(tools) >= n
}
}
func All(checks ...func(string, []api.ToolCall) bool) func(string, []api.ToolCall) bool {
return func(resp string, tools []api.ToolCall) bool {
for _, check := range checks {
if !check(resp, tools) {
return false
}
}
return true
}
}

View File

@@ -1,217 +0,0 @@
package main
import (
"context"
"encoding/json"
"flag"
"fmt"
"os"
"strings"
"time"
"github.com/ollama/ollama/api"
)
func main() {
model := flag.String("model", "", "model to evaluate")
suite := flag.String("suite", "", "comma-separated list of suites to run (empty runs all)")
list := flag.Bool("list", false, "list available suites")
verbose := flag.Bool("v", false, "verbose output")
timeout := flag.Int("timeout", 60, "timeout per test in seconds")
export := flag.String("export", "eval-results.json", "export results to file")
flag.Parse()
if *list {
for _, s := range suites {
fmt.Printf("%s (%d tests)\n", s.Name, len(s.Tests))
}
return
}
if *model == "" {
fmt.Fprintf(os.Stderr, "error: -model parameter is required\n")
os.Exit(1)
}
client, err := api.ClientFromEnvironment()
if err != nil {
fmt.Fprintf(os.Stderr, "error: %v\n", err)
os.Exit(1)
}
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
if err := client.Heartbeat(ctx); err != nil {
cancel()
fmt.Fprintf(os.Stderr, "error: cannot connect to ollama\n")
os.Exit(1)
}
cancel()
selected := suites
if *suite != "" {
suiteNames := strings.Split(*suite, ",")
selected = []Suite{}
var notFound []string
for _, name := range suiteNames {
name = strings.TrimSpace(name)
if name == "" {
continue
}
found := false
for _, s := range suites {
if s.Name == name {
selected = append(selected, s)
found = true
break
}
}
if !found {
notFound = append(notFound, name)
}
}
if len(notFound) > 0 {
fmt.Fprintf(os.Stderr, "error: suite(s) not found: %s\n", strings.Join(notFound, ", "))
os.Exit(1)
}
}
var results []Result
for _, s := range selected {
if *verbose {
fmt.Printf("\n%s (%d tests)\n", s.Name, len(s.Tests))
}
for i, test := range s.Tests {
if test.Options == nil {
test.Options = map[string]any{"temperature": 0.1}
}
if test.Check == nil {
test.Check = HasResponse()
}
if *verbose {
fmt.Printf(" [%d/%d] %s... ", i+1, len(s.Tests), test.Name)
}
ctx, cancel := context.WithTimeout(context.Background(), time.Duration(*timeout)*time.Second)
result := Run(ctx, client, *model, test)
cancel()
results = append(results, result)
if *verbose {
if result.Error != nil {
fmt.Printf("ERROR: %v\n", result.Error)
} else if result.Passed {
fmt.Printf("PASS (%.2fs)", result.Duration.Seconds())
if len(result.Tools) > 0 || result.Thinking {
fmt.Printf(" [")
if len(result.Tools) > 0 {
fmt.Printf("tools: %s", strings.Join(result.Tools, ","))
}
if result.Thinking {
if len(result.Tools) > 0 {
fmt.Printf(", ")
}
fmt.Printf("thinking")
}
fmt.Printf("]")
}
fmt.Println()
// Print tool calls with details
if len(result.ToolCalls) > 0 {
fmt.Printf(" Tool Calls:\n")
for _, tc := range result.ToolCalls {
argsJSON, _ := json.Marshal(tc.Function.Arguments)
fmt.Printf(" - %s: %s\n", tc.Function.Name, string(argsJSON))
}
}
// Print response if there is one
if result.Response != "" {
fmt.Printf(" Response: %s\n", result.Response)
}
} else {
fmt.Printf("FAIL (%.2fs)\n", result.Duration.Seconds())
// Print tool calls with details even on failure
if len(result.ToolCalls) > 0 {
fmt.Printf(" Tool Calls:\n")
for _, tc := range result.ToolCalls {
argsJSON, _ := json.Marshal(tc.Function.Arguments)
fmt.Printf(" - %s: %s\n", tc.Function.Name, string(argsJSON))
}
}
// Print response even on failure
if result.Response != "" {
fmt.Printf(" Response: %s\n", result.Response)
}
}
}
}
}
printSummary(results)
if *export != "" {
if err := writeJSON(*export, results); err != nil {
fmt.Fprintf(os.Stderr, "warning: export failed: %v\n", err)
} else if *verbose {
fmt.Printf("\nResults: %s\n", *export)
}
}
if anyFailed(results) {
os.Exit(1)
}
}
func printSummary(results []Result) {
var passed, failed, errors int
for _, r := range results {
if r.Error != nil {
errors++
} else if r.Passed {
passed++
} else {
failed++
}
}
total := len(results)
rate := 0.0
if total > 0 {
rate = float64(passed) / float64(total) * 100
}
fmt.Printf("\n%d/%d passed (%.1f%%)", passed, total, rate)
if errors > 0 {
fmt.Printf(", %d errors", errors)
}
fmt.Println()
}
func anyFailed(results []Result) bool {
for _, r := range results {
if !r.Passed || r.Error != nil {
return true
}
}
return false
}
func writeJSON(path string, results []Result) error {
f, err := os.Create(path)
if err != nil {
return err
}
defer f.Close()
enc := json.NewEncoder(f)
enc.SetIndent("", " ")
return enc.Encode(results)
}

View File

@@ -1,178 +0,0 @@
package main
import "github.com/ollama/ollama/api"
var suites = []Suite{
{
Name: "basic-qa",
Tests: []Test{
{
Name: "simple-math",
Prompt: "What is 2+2? Reply with just the number.",
Check: Contains("4"),
},
{
Name: "capital-city",
Prompt: "What is the capital of France? Reply with just the city name.",
Check: Contains("Paris"),
},
{
Name: "greeting",
Prompt: "Say hello",
Check: HasResponse(),
},
},
},
{
Name: "reasoning",
Tests: []Test{
{
Name: "logic-puzzle",
Prompt: "If all roses are flowers and some flowers fade quickly, can we conclude that some roses fade quickly? Answer yes or no.",
Check: Contains("no"),
},
{
Name: "counting",
Prompt: "How many letters are in the word 'HELLO'?",
Check: Contains("5"),
},
},
},
{
Name: "instruction-following",
Tests: []Test{
{
Name: "json-output",
Prompt: "Reply with a JSON object containing a 'status' field set to 'ok'.",
Check: All(Contains("status"), Contains("ok")),
},
{
Name: "system-prompt",
Prompt: "What is your name?",
System: "You are a helpful assistant named TestBot. When asked your name, always respond with 'TestBot'.",
Check: Contains("TestBot"),
},
},
},
{
Name: "tool-calling-basic",
Tests: []Test{
{
Name: "single-tool",
Prompt: "What's the weather like in San Francisco?",
Tools: []api.Tool{weatherTool},
Check: CallsTool("get_weather"),
},
{
Name: "tool-selection",
Prompt: "What time is it in Tokyo?",
Tools: []api.Tool{weatherTool, timeTool},
Check: CallsTool("get_time"),
},
{
Name: "no-tool-needed",
Prompt: "What is 2+2?",
Tools: []api.Tool{weatherTool, timeTool},
Check: NoTools(),
},
},
},
{
Name: "tool-calling-advanced",
Tests: []Test{
{
Name: "parallel-calls",
Prompt: "Get the weather in both New York and Los Angeles.",
Tools: []api.Tool{weatherTool},
Check: All(CallsTool("get_weather"), MinTools(2)),
},
{
Name: "multi-param",
Prompt: "Search for Italian restaurants with prices between $20 and $40.",
Tools: []api.Tool{restaurantTool},
Check: CallsTool("search_restaurants"),
},
},
},
{
Name: "tool-calling-thinking",
Tests: []Test{
{
Name: "thinking-before-tool",
Prompt: "I need to know the weather in Paris before I decide what to pack.",
Tools: []api.Tool{weatherTool},
Think: true,
Check: CallsTool("get_weather"),
},
{
Name: "thinking-multi-tool",
Prompt: "I'm planning a trip to London. I need to know what time it is there and what the weather is like.",
Tools: []api.Tool{weatherTool, timeTool},
Think: true,
Check: MinTools(1),
},
},
},
}
var weatherTool = api.Tool{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get the current weather in a given location",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"location"},
Properties: map[string]api.ToolProperty{
"location": {
Type: api.PropertyType{"string"},
Description: "The city and state",
},
},
},
},
}
var timeTool = api.Tool{
Type: "function",
Function: api.ToolFunction{
Name: "get_time",
Description: "Get the current time in a timezone",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"timezone"},
Properties: map[string]api.ToolProperty{
"timezone": {
Type: api.PropertyType{"string"},
Description: "The timezone name",
},
},
},
},
}
var restaurantTool = api.Tool{
Type: "function",
Function: api.ToolFunction{
Name: "search_restaurants",
Description: "Search for restaurants",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"cuisine"},
Properties: map[string]api.ToolProperty{
"cuisine": {
Type: api.PropertyType{"string"},
Description: "Type of cuisine",
},
"min_price": {
Type: api.PropertyType{"number"},
Description: "Minimum price",
},
"max_price": {
Type: api.PropertyType{"number"},
Description: "Maximum price",
},
},
},
},
}

View File

@@ -34,6 +34,9 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Fprintln(os.Stderr, "Available Commands:")
fmt.Fprintln(os.Stderr, " /set Set session variables")
fmt.Fprintln(os.Stderr, " /show Show model information")
fmt.Fprintln(os.Stderr, " /skills Show available skills")
fmt.Fprintln(os.Stderr, " /skill Add or remove skills dynamically")
fmt.Fprintln(os.Stderr, " /mcp Show/add/remove MCP servers")
fmt.Fprintln(os.Stderr, " /load <model> Load a session or model")
fmt.Fprintln(os.Stderr, " /save <model> Save your current session")
fmt.Fprintln(os.Stderr, " /clear Clear session context")
@@ -443,6 +446,411 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
} else {
usageShow()
}
case strings.HasPrefix(line, "/skill "):
args := strings.Fields(line)
if len(args) < 2 {
fmt.Fprintln(os.Stderr, "Usage:")
fmt.Fprintln(os.Stderr, " /skill add <path> Add a skill from local path")
fmt.Fprintln(os.Stderr, " /skill remove <name> Remove a skill by name")
fmt.Fprintln(os.Stderr, " /skill list List current skills")
continue
}
switch args[1] {
case "add":
if len(args) < 3 {
fmt.Println("Usage: /skill add <path>")
continue
}
skillPath := args[2]
// Expand ~ to home directory
if strings.HasPrefix(skillPath, "~") {
home, err := os.UserHomeDir()
if err != nil {
fmt.Printf("Error expanding path: %v\n", err)
continue
}
skillPath = filepath.Join(home, skillPath[1:])
}
// Make absolute
absPath, err := filepath.Abs(skillPath)
if err != nil {
fmt.Printf("Error resolving path: %v\n", err)
continue
}
// Verify SKILL.md exists
skillMdPath := filepath.Join(absPath, "SKILL.md")
if _, err := os.Stat(skillMdPath); err != nil {
fmt.Printf("Error: %s does not contain SKILL.md\n", skillPath)
continue
}
// Extract skill name from SKILL.md
content, err := os.ReadFile(skillMdPath)
if err != nil {
fmt.Printf("Error reading SKILL.md: %v\n", err)
continue
}
skillName, _ := extractSkillMetadata(string(content))
if skillName == "" {
skillName = filepath.Base(absPath)
}
// Check if already added
for _, s := range opts.Skills {
if s.Name == skillName {
fmt.Printf("Skill '%s' is already loaded\n", skillName)
continue
}
}
// Add to skills (using path as Name, no digest for local skills)
opts.Skills = append(opts.Skills, api.SkillRef{Name: absPath})
opts.IsAgent = true // Enable agent mode if not already
fmt.Printf("Added skill '%s' from %s\n", skillName, skillPath)
case "remove", "rm":
if len(args) < 3 {
fmt.Println("Usage: /skill remove <name>")
continue
}
skillName := args[2]
found := false
newSkills := make([]api.SkillRef, 0, len(opts.Skills))
for _, s := range opts.Skills {
// Match by name or by path basename
name := s.Name
if strings.Contains(name, string(os.PathSeparator)) {
name = filepath.Base(name)
}
if name == skillName || s.Name == skillName {
found = true
fmt.Printf("Removed skill '%s'\n", skillName)
} else {
newSkills = append(newSkills, s)
}
}
if !found {
fmt.Printf("Skill '%s' not found\n", skillName)
} else {
opts.Skills = newSkills
}
case "list", "ls":
if len(opts.Skills) == 0 {
fmt.Println("No skills loaded in this session.")
} else {
fmt.Println("Skills loaded in this session:")
for _, skill := range opts.Skills {
if skill.Digest != "" {
fmt.Printf(" %s (%s)\n", skill.Name, skill.Digest[:19])
} else {
// For local paths, show basename
name := skill.Name
if strings.Contains(name, string(os.PathSeparator)) {
name = filepath.Base(name) + " (local: " + skill.Name + ")"
}
fmt.Printf(" %s\n", name)
}
}
}
fmt.Println()
default:
fmt.Printf("Unknown skill command '%s'. Use /skill add, /skill remove, or /skill list\n", args[1])
}
continue
case strings.HasPrefix(line, "/skills"):
// Show skills from model (bundled) + session skills
client, err := api.ClientFromEnvironment()
if err != nil {
fmt.Println("error: couldn't connect to ollama server")
return err
}
req := &api.ShowRequest{
Name: opts.Model,
}
resp, err := client.Show(cmd.Context(), req)
if err != nil {
fmt.Println("error: couldn't get model info")
return err
}
// Combine model skills with session skills
allSkills := make([]api.SkillRef, 0)
allSkills = append(allSkills, resp.Skills...)
// Add session skills that aren't already in model skills
for _, sessionSkill := range opts.Skills {
found := false
for _, modelSkill := range resp.Skills {
if modelSkill.Name == sessionSkill.Name || modelSkill.Digest == sessionSkill.Digest {
found = true
break
}
}
if !found {
allSkills = append(allSkills, sessionSkill)
}
}
if len(allSkills) == 0 {
fmt.Println("No skills available.")
} else {
fmt.Println("Available Skills:")
for _, skill := range allSkills {
if skill.Digest != "" {
fmt.Printf(" %s (%s)\n", skill.Name, skill.Digest[:19])
} else {
name := skill.Name
if strings.Contains(name, string(os.PathSeparator)) {
name = filepath.Base(name) + " (session)"
}
fmt.Printf(" %s\n", name)
}
}
}
fmt.Println()
continue
case strings.HasPrefix(line, "/mcp"):
args := strings.Fields(line)
// If just "/mcp" with no args, show all MCP servers
if len(args) == 1 {
// Show MCPs from model (bundled) + global config
client, err := api.ClientFromEnvironment()
if err != nil {
fmt.Println("error: couldn't connect to ollama server")
return err
}
req := &api.ShowRequest{
Name: opts.Model,
}
resp, err := client.Show(cmd.Context(), req)
if err != nil {
fmt.Println("error: couldn't get model info")
return err
}
// Combine model MCPs with global config MCPs
allMCPs := make([]api.MCPRef, 0)
allMCPs = append(allMCPs, resp.MCPs...)
// Load global config
globalConfig, _ := loadMCPConfig()
globalMCPNames := make(map[string]bool)
if globalConfig != nil {
for name, srv := range globalConfig.MCPServers {
// Check if already in model MCPs
found := false
for _, modelMCP := range resp.MCPs {
if modelMCP.Name == name {
found = true
break
}
}
if !found {
allMCPs = append(allMCPs, api.MCPRef{
Name: name,
Command: srv.Command,
Args: srv.Args,
Env: srv.Env,
Type: srv.Type,
})
}
globalMCPNames[name] = true
}
}
if len(allMCPs) == 0 {
fmt.Println("No MCP servers available.")
fmt.Println("Use '/mcp add <name> <command> [args...]' to add one.")
} else {
fmt.Println("Available MCP Servers:")
for _, mcp := range allMCPs {
cmdLine := mcp.Command
if len(mcp.Args) > 0 {
cmdLine += " " + strings.Join(mcp.Args, " ")
}
source := ""
disabled := ""
// Check if it's from model or global config
isFromModel := false
for _, modelMCP := range resp.MCPs {
if modelMCP.Name == mcp.Name {
isFromModel = true
break
}
}
if isFromModel {
source = " (model)"
} else if globalMCPNames[mcp.Name] {
source = " (global)"
// Check if disabled
if srv, ok := globalConfig.MCPServers[mcp.Name]; ok && srv.Disabled {
disabled = " [disabled]"
}
}
fmt.Printf(" %s: %s%s%s\n", mcp.Name, cmdLine, source, disabled)
}
}
fmt.Println()
continue
}
switch args[1] {
case "add":
if len(args) < 4 {
fmt.Println("Usage: /mcp add <name> <command> [args...]")
continue
}
mcpName := args[2]
mcpCommand := args[3]
mcpArgs := args[4:]
// Load global config
config, err := loadMCPConfig()
if err != nil {
fmt.Printf("Error loading MCP config: %v\n", err)
continue
}
// Check if already exists
if _, exists := config.MCPServers[mcpName]; exists {
fmt.Printf("Warning: overwriting existing MCP server '%s'\n", mcpName)
}
// Add to global config
config.MCPServers[mcpName] = MCPServerConfig{
Type: "stdio",
Command: mcpCommand,
Args: mcpArgs,
}
// Save config
if err := saveMCPConfig(config); err != nil {
fmt.Printf("Error saving MCP config: %v\n", err)
continue
}
cmdLine := mcpCommand
if len(mcpArgs) > 0 {
cmdLine += " " + strings.Join(mcpArgs, " ")
}
fmt.Printf("Added MCP server '%s' (%s) to %s\n", mcpName, cmdLine, getMCPConfigPath())
fmt.Println("Note: MCP server will be started on next message.")
case "remove", "rm":
if len(args) < 3 {
fmt.Println("Usage: /mcp remove <name>")
continue
}
mcpName := args[2]
// Load global config
config, err := loadMCPConfig()
if err != nil {
fmt.Printf("Error loading MCP config: %v\n", err)
continue
}
if _, exists := config.MCPServers[mcpName]; !exists {
fmt.Printf("MCP server '%s' not found in global config\n", mcpName)
continue
}
delete(config.MCPServers, mcpName)
if err := saveMCPConfig(config); err != nil {
fmt.Printf("Error saving MCP config: %v\n", err)
continue
}
fmt.Printf("Removed MCP server '%s' from %s\n", mcpName, getMCPConfigPath())
fmt.Println("Note: Changes will take effect on next message.")
case "disable":
if len(args) < 3 {
fmt.Println("Usage: /mcp disable <name>")
continue
}
mcpName := args[2]
config, err := loadMCPConfig()
if err != nil {
fmt.Printf("Error loading MCP config: %v\n", err)
continue
}
srv, exists := config.MCPServers[mcpName]
if !exists {
fmt.Printf("MCP server '%s' not found in global config\n", mcpName)
continue
}
if srv.Disabled {
fmt.Printf("MCP server '%s' is already disabled\n", mcpName)
continue
}
srv.Disabled = true
config.MCPServers[mcpName] = srv
if err := saveMCPConfig(config); err != nil {
fmt.Printf("Error saving MCP config: %v\n", err)
continue
}
fmt.Printf("Disabled MCP server '%s'\n", mcpName)
fmt.Println("Note: Changes will take effect on next message.")
case "enable":
if len(args) < 3 {
fmt.Println("Usage: /mcp enable <name>")
continue
}
mcpName := args[2]
config, err := loadMCPConfig()
if err != nil {
fmt.Printf("Error loading MCP config: %v\n", err)
continue
}
srv, exists := config.MCPServers[mcpName]
if !exists {
fmt.Printf("MCP server '%s' not found in global config\n", mcpName)
continue
}
if !srv.Disabled {
fmt.Printf("MCP server '%s' is already enabled\n", mcpName)
continue
}
srv.Disabled = false
config.MCPServers[mcpName] = srv
if err := saveMCPConfig(config); err != nil {
fmt.Printf("Error saving MCP config: %v\n", err)
continue
}
fmt.Printf("Enabled MCP server '%s'\n", mcpName)
fmt.Println("Note: Changes will take effect on next message.")
default:
fmt.Printf("Unknown mcp command '%s'. Use /mcp, /mcp add, /mcp remove, /mcp disable, or /mcp enable\n", args[1])
}
continue
case strings.HasPrefix(line, "/help"), strings.HasPrefix(line, "/?"):
args := strings.Fields(line)
if len(args) > 1 {
@@ -451,6 +859,20 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
usageSet()
case "show", "/show":
usageShow()
case "skill", "/skill":
fmt.Fprintln(os.Stderr, "Available Commands:")
fmt.Fprintln(os.Stderr, " /skill add <path> Add a skill from local path")
fmt.Fprintln(os.Stderr, " /skill remove <name> Remove a skill by name")
fmt.Fprintln(os.Stderr, " /skill list List current session skills")
fmt.Fprintln(os.Stderr, "")
case "mcp", "/mcp":
fmt.Fprintln(os.Stderr, "Available Commands:")
fmt.Fprintln(os.Stderr, " /mcp Show all MCP servers")
fmt.Fprintln(os.Stderr, " /mcp add <name> <command> [args...] Add an MCP server to global config")
fmt.Fprintln(os.Stderr, " /mcp remove <name> Remove an MCP server from global config")
fmt.Fprintln(os.Stderr, " /mcp disable <name> Disable an MCP server (keep in config)")
fmt.Fprintln(os.Stderr, " /mcp enable <name> Re-enable a disabled MCP server")
fmt.Fprintln(os.Stderr, "")
case "shortcut", "shortcuts":
usageShortcuts()
}

545
cmd/mcp.go Normal file
View File

@@ -0,0 +1,545 @@
package cmd
import (
"bufio"
"context"
"encoding/json"
"errors"
"fmt"
"io"
"os"
"os/exec"
"strings"
"sync"
"time"
"github.com/ollama/ollama/api"
)
const (
mcpInitTimeout = 30 * time.Second
mcpCallTimeout = 60 * time.Second
mcpShutdownTimeout = 5 * time.Second
)
// JSON-RPC types
type jsonrpcRequest struct {
JSONRPC string `json:"jsonrpc"`
ID int `json:"id,omitempty"`
Method string `json:"method"`
Params any `json:"params,omitempty"`
}
type jsonrpcResponse struct {
JSONRPC string `json:"jsonrpc"`
ID int `json:"id"`
Result json.RawMessage `json:"result,omitempty"`
Error *jsonrpcError `json:"error,omitempty"`
}
type jsonrpcError struct {
Code int `json:"code"`
Message string `json:"message"`
Data any `json:"data,omitempty"`
}
// MCP protocol types
type mcpInitializeParams struct {
ProtocolVersion string `json:"protocolVersion"`
Capabilities map[string]any `json:"capabilities"`
ClientInfo mcpClientInfo `json:"clientInfo"`
}
type mcpClientInfo struct {
Name string `json:"name"`
Version string `json:"version"`
}
type mcpInitializeResult struct {
ProtocolVersion string `json:"protocolVersion"`
Capabilities mcpCapabilities `json:"capabilities"`
ServerInfo mcpServerInfo `json:"serverInfo"`
}
type mcpCapabilities struct {
Tools *mcpToolsCapability `json:"tools,omitempty"`
}
type mcpToolsCapability struct {
ListChanged bool `json:"listChanged,omitempty"`
}
type mcpServerInfo struct {
Name string `json:"name"`
Version string `json:"version"`
}
type mcpTool struct {
Name string `json:"name"`
Description string `json:"description,omitempty"`
InputSchema mcpToolInputSchema `json:"inputSchema"`
}
type mcpToolInputSchema struct {
Type string `json:"type"`
Properties map[string]any `json:"properties,omitempty"`
Required []string `json:"required,omitempty"`
}
type mcpToolsListResult struct {
Tools []mcpTool `json:"tools"`
}
type mcpToolCallParams struct {
Name string `json:"name"`
Arguments map[string]any `json:"arguments,omitempty"`
}
type mcpToolCallResult struct {
Content []mcpContent `json:"content"`
IsError bool `json:"isError,omitempty"`
}
type mcpContent struct {
Type string `json:"type"`
Text string `json:"text,omitempty"`
}
// mcpServer represents a running MCP server process
type mcpServer struct {
ref api.MCPRef
cmd *exec.Cmd
stdin io.WriteCloser
stdout *bufio.Reader
stderr io.ReadCloser
tools []mcpTool
mu sync.Mutex
nextID int
started bool
}
// mcpManager manages multiple MCP servers for an agent session
type mcpManager struct {
servers map[string]*mcpServer
mu sync.RWMutex
}
// newMCPManager creates a new MCP manager
func newMCPManager() *mcpManager {
return &mcpManager{
servers: make(map[string]*mcpServer),
}
}
// loadMCPsFromRefs initializes MCP servers from refs
func (m *mcpManager) loadMCPsFromRefs(refs []api.MCPRef) error {
if len(refs) == 0 {
return nil
}
for _, ref := range refs {
if err := m.addServer(ref); err != nil {
fmt.Fprintf(os.Stderr, "Warning: failed to initialize MCP server %q: %v\n", ref.Name, err)
}
}
return nil
}
// addServer adds and starts an MCP server
func (m *mcpManager) addServer(ref api.MCPRef) error {
m.mu.Lock()
defer m.mu.Unlock()
if _, exists := m.servers[ref.Name]; exists {
return fmt.Errorf("MCP server %q already exists", ref.Name)
}
srv := &mcpServer{
ref: ref,
nextID: 1,
}
if err := srv.start(); err != nil {
return fmt.Errorf("starting MCP server: %w", err)
}
m.servers[ref.Name] = srv
return nil
}
// start starts the MCP server process
func (s *mcpServer) start() error {
s.mu.Lock()
if s.started {
s.mu.Unlock()
return nil
}
s.cmd = exec.Command(s.ref.Command, s.ref.Args...)
// Set environment
s.cmd.Env = os.Environ()
for k, v := range s.ref.Env {
s.cmd.Env = append(s.cmd.Env, fmt.Sprintf("%s=%s", k, v))
}
var err error
s.stdin, err = s.cmd.StdinPipe()
if err != nil {
s.mu.Unlock()
return fmt.Errorf("creating stdin pipe: %w", err)
}
stdout, err := s.cmd.StdoutPipe()
if err != nil {
s.mu.Unlock()
return fmt.Errorf("creating stdout pipe: %w", err)
}
s.stdout = bufio.NewReader(stdout)
s.stderr, err = s.cmd.StderrPipe()
if err != nil {
s.mu.Unlock()
return fmt.Errorf("creating stderr pipe: %w", err)
}
// Start stderr reader goroutine (discard stderr for now)
go func() {
scanner := bufio.NewScanner(s.stderr)
for scanner.Scan() {
_ = scanner.Text()
}
}()
if err := s.cmd.Start(); err != nil {
s.mu.Unlock()
return fmt.Errorf("starting process: %w", err)
}
s.started = true
s.mu.Unlock() // Release lock before calling initialize/listTools which use the mutex
// Initialize the server
if err := s.initialize(); err != nil {
s.stop()
return fmt.Errorf("initializing MCP server: %w", err)
}
// Get available tools
if err := s.listTools(); err != nil {
s.stop()
return fmt.Errorf("listing tools: %w", err)
}
return nil
}
// initialize sends the MCP initialize request
func (s *mcpServer) initialize() error {
ctx, cancel := context.WithTimeout(context.Background(), mcpInitTimeout)
defer cancel()
params := mcpInitializeParams{
ProtocolVersion: "2024-11-05",
Capabilities: map[string]any{},
ClientInfo: mcpClientInfo{
Name: "ollama",
Version: "0.1.0",
},
}
var result mcpInitializeResult
if err := s.call(ctx, "initialize", params, &result); err != nil {
return err
}
// Send initialized notification
return s.notify("notifications/initialized", nil)
}
// listTools fetches the available tools from the MCP server
func (s *mcpServer) listTools() error {
ctx, cancel := context.WithTimeout(context.Background(), mcpInitTimeout)
defer cancel()
var result mcpToolsListResult
if err := s.call(ctx, "tools/list", nil, &result); err != nil {
return err
}
s.tools = result.Tools
return nil
}
// call sends a JSON-RPC request and waits for the response
func (s *mcpServer) call(ctx context.Context, method string, params any, result any) error {
s.mu.Lock()
id := s.nextID
s.nextID++
s.mu.Unlock()
req := jsonrpcRequest{
JSONRPC: "2.0",
ID: id,
Method: method,
Params: params,
}
reqBytes, err := json.Marshal(req)
if err != nil {
return fmt.Errorf("marshaling request: %w", err)
}
// Send request
s.mu.Lock()
_, err = s.stdin.Write(append(reqBytes, '\n'))
s.mu.Unlock()
if err != nil {
return fmt.Errorf("writing request: %w", err)
}
// Read response with timeout
respCh := make(chan []byte, 1)
errCh := make(chan error, 1)
go func() {
s.mu.Lock()
line, err := s.stdout.ReadBytes('\n')
s.mu.Unlock()
if err != nil {
errCh <- err
return
}
respCh <- line
}()
select {
case <-ctx.Done():
return ctx.Err()
case err := <-errCh:
return fmt.Errorf("reading response: %w", err)
case line := <-respCh:
var resp jsonrpcResponse
if err := json.Unmarshal(line, &resp); err != nil {
return fmt.Errorf("unmarshaling response: %w", err)
}
if resp.Error != nil {
return fmt.Errorf("MCP error %d: %s", resp.Error.Code, resp.Error.Message)
}
if result != nil && len(resp.Result) > 0 {
if err := json.Unmarshal(resp.Result, result); err != nil {
return fmt.Errorf("unmarshaling result: %w", err)
}
}
return nil
}
}
// notify sends a JSON-RPC notification (no response expected)
func (s *mcpServer) notify(method string, params any) error {
req := jsonrpcRequest{
JSONRPC: "2.0",
Method: method,
Params: params,
}
reqBytes, err := json.Marshal(req)
if err != nil {
return fmt.Errorf("marshaling notification: %w", err)
}
s.mu.Lock()
defer s.mu.Unlock()
if _, err := s.stdin.Write(append(reqBytes, '\n')); err != nil {
return fmt.Errorf("writing notification: %w", err)
}
return nil
}
// callTool executes a tool call on the MCP server
func (s *mcpServer) callTool(ctx context.Context, name string, arguments map[string]any) (string, error) {
params := mcpToolCallParams{
Name: name,
Arguments: arguments,
}
var result mcpToolCallResult
if err := s.call(ctx, "tools/call", params, &result); err != nil {
return "", err
}
// Concatenate text content
var sb strings.Builder
for _, content := range result.Content {
if content.Type == "text" {
sb.WriteString(content.Text)
}
}
if result.IsError {
return sb.String(), errors.New(sb.String())
}
return sb.String(), nil
}
// stop shuts down the MCP server
func (s *mcpServer) stop() error {
s.mu.Lock()
defer s.mu.Unlock()
if !s.started {
return nil
}
// Close stdin to signal shutdown
if s.stdin != nil {
s.stdin.Close()
}
// Wait for process with timeout
done := make(chan error, 1)
go func() {
done <- s.cmd.Wait()
}()
select {
case <-time.After(mcpShutdownTimeout):
s.cmd.Process.Kill()
case <-done:
}
s.started = false
return nil
}
// Tools returns all tools from all MCP servers as api.Tools
func (m *mcpManager) Tools() api.Tools {
m.mu.RLock()
defer m.mu.RUnlock()
var tools api.Tools
for serverName, srv := range m.servers {
for _, t := range srv.tools {
// Namespace tool names: mcp_{servername}_{toolname}
namespacedName := fmt.Sprintf("mcp_%s_%s", serverName, t.Name)
tool := api.Tool{
Type: "function",
Function: api.ToolFunction{
Name: namespacedName,
Description: t.Description,
Parameters: convertMCPSchema(t.InputSchema),
},
}
tools = append(tools, tool)
}
}
return tools
}
// convertMCPSchema converts MCP input schema to api.ToolFunctionParameters
func convertMCPSchema(schema mcpToolInputSchema) api.ToolFunctionParameters {
params := api.ToolFunctionParameters{
Type: schema.Type,
Required: schema.Required,
Properties: make(map[string]api.ToolProperty),
}
for name, prop := range schema.Properties {
if propMap, ok := prop.(map[string]any); ok {
tp := api.ToolProperty{}
if t, ok := propMap["type"].(string); ok {
tp.Type = api.PropertyType{t}
}
if d, ok := propMap["description"].(string); ok {
tp.Description = d
}
params.Properties[name] = tp
}
}
return params
}
// RunToolCall routes a tool call to the appropriate MCP server
func (m *mcpManager) RunToolCall(call api.ToolCall) (api.Message, bool, error) {
name := call.Function.Name
// Check if this is an MCP tool (mcp_servername_toolname)
if !strings.HasPrefix(name, "mcp_") {
return api.Message{}, false, nil
}
// Parse server name and tool name
rest := strings.TrimPrefix(name, "mcp_")
idx := strings.Index(rest, "_")
if idx == -1 {
return toolMessage(call, fmt.Sprintf("invalid MCP tool name: %s", name)), true, nil
}
serverName := rest[:idx]
toolName := rest[idx+1:]
m.mu.RLock()
srv, ok := m.servers[serverName]
m.mu.RUnlock()
if !ok {
return toolMessage(call, fmt.Sprintf("MCP server %q not found", serverName)), true, nil
}
ctx, cancel := context.WithTimeout(context.Background(), mcpCallTimeout)
defer cancel()
result, err := srv.callTool(ctx, toolName, call.Function.Arguments)
if err != nil {
return toolMessage(call, fmt.Sprintf("error: %v", err)), true, nil
}
return toolMessage(call, result), true, nil
}
// Shutdown stops all MCP servers
func (m *mcpManager) Shutdown() {
m.mu.Lock()
defer m.mu.Unlock()
for _, srv := range m.servers {
srv.stop()
}
m.servers = make(map[string]*mcpServer)
}
// ServerNames returns the names of all running MCP servers
func (m *mcpManager) ServerNames() []string {
m.mu.RLock()
defer m.mu.RUnlock()
names := make([]string, 0, len(m.servers))
for name := range m.servers {
names = append(names, name)
}
return names
}
// ToolCount returns the total number of tools across all servers
func (m *mcpManager) ToolCount() int {
m.mu.RLock()
defer m.mu.RUnlock()
count := 0
for _, srv := range m.servers {
count += len(srv.tools)
}
return count
}

898
cmd/mcp_cmd.go Normal file
View File

@@ -0,0 +1,898 @@
package cmd
import (
"context"
"encoding/json"
"fmt"
"os"
"path/filepath"
"strings"
"text/tabwriter"
"time"
"github.com/spf13/cobra"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/progress"
"github.com/ollama/ollama/server"
"github.com/ollama/ollama/types/model"
)
// MCPConfigFile represents the global MCP configuration file structure.
type MCPConfigFile struct {
MCPServers map[string]MCPServerConfig `json:"mcpServers"`
}
// MCPServerConfig represents a single MCP server configuration.
type MCPServerConfig struct {
Type string `json:"type,omitempty"`
Command string `json:"command"`
Args []string `json:"args,omitempty"`
Env map[string]string `json:"env,omitempty"`
Disabled bool `json:"disabled,omitempty"`
}
// getMCPConfigPath returns the path to the global MCP config file.
func getMCPConfigPath() string {
home, err := os.UserHomeDir()
if err != nil {
return ""
}
return filepath.Join(home, ".ollama", "mcp.json")
}
// loadMCPConfig loads the global MCP configuration file.
func loadMCPConfig() (*MCPConfigFile, error) {
configPath := getMCPConfigPath()
if configPath == "" {
return nil, fmt.Errorf("could not determine home directory")
}
data, err := os.ReadFile(configPath)
if err != nil {
if os.IsNotExist(err) {
// Return empty config if file doesn't exist
return &MCPConfigFile{
MCPServers: make(map[string]MCPServerConfig),
}, nil
}
return nil, fmt.Errorf("reading config: %w", err)
}
var config MCPConfigFile
if err := json.Unmarshal(data, &config); err != nil {
return nil, fmt.Errorf("parsing config: %w", err)
}
if config.MCPServers == nil {
config.MCPServers = make(map[string]MCPServerConfig)
}
return &config, nil
}
// saveMCPConfig saves the global MCP configuration file.
func saveMCPConfig(config *MCPConfigFile) error {
configPath := getMCPConfigPath()
if configPath == "" {
return fmt.Errorf("could not determine home directory")
}
// Ensure directory exists
if err := os.MkdirAll(filepath.Dir(configPath), 0o755); err != nil {
return fmt.Errorf("creating config directory: %w", err)
}
data, err := json.MarshalIndent(config, "", " ")
if err != nil {
return fmt.Errorf("marshaling config: %w", err)
}
if err := os.WriteFile(configPath, data, 0o644); err != nil {
return fmt.Errorf("writing config: %w", err)
}
return nil
}
// MCPAddHandler handles the mcp add command.
func MCPAddHandler(cmd *cobra.Command, args []string) error {
if len(args) < 2 {
return fmt.Errorf("usage: ollama mcp add NAME COMMAND [ARGS...]")
}
name := args[0]
command := args[1]
cmdArgs := args[2:]
// Load existing config
config, err := loadMCPConfig()
if err != nil {
return fmt.Errorf("loading config: %w", err)
}
// Check if already exists
if _, exists := config.MCPServers[name]; exists {
fmt.Fprintf(os.Stderr, "Warning: overwriting existing MCP server '%s'\n", name)
}
// Add the new server
config.MCPServers[name] = MCPServerConfig{
Type: "stdio",
Command: command,
Args: cmdArgs,
}
// Save config
if err := saveMCPConfig(config); err != nil {
return fmt.Errorf("saving config: %w", err)
}
configPath := getMCPConfigPath()
fmt.Fprintf(os.Stderr, "Added MCP server '%s' to %s\n", name, configPath)
fmt.Fprintf(os.Stderr, " Command: %s %s\n", command, strings.Join(cmdArgs, " "))
return nil
}
// MCPRemoveGlobalHandler handles removing an MCP from global config.
func MCPRemoveGlobalHandler(cmd *cobra.Command, args []string) error {
if len(args) == 0 {
return fmt.Errorf("usage: ollama mcp remove-global NAME [NAME...]")
}
config, err := loadMCPConfig()
if err != nil {
return fmt.Errorf("loading config: %w", err)
}
for _, name := range args {
if _, exists := config.MCPServers[name]; !exists {
fmt.Fprintf(os.Stderr, "MCP server '%s' not found in global config\n", name)
continue
}
delete(config.MCPServers, name)
fmt.Fprintf(os.Stderr, "Removed MCP server '%s' from global config\n", name)
}
if err := saveMCPConfig(config); err != nil {
return fmt.Errorf("saving config: %w", err)
}
return nil
}
// MCPListGlobalHandler handles listing global MCP servers.
func MCPListGlobalHandler(cmd *cobra.Command, args []string) error {
config, err := loadMCPConfig()
if err != nil {
return fmt.Errorf("loading config: %w", err)
}
if len(config.MCPServers) == 0 {
fmt.Println("No global MCP servers configured")
fmt.Printf("Add one with: ollama mcp add NAME COMMAND [ARGS...]\n")
return nil
}
fmt.Printf("Global MCP servers (%s):\n\n", getMCPConfigPath())
w := tabwriter.NewWriter(os.Stdout, 0, 0, 3, ' ', 0)
fmt.Fprintln(w, "NAME\tCOMMAND\tSTATUS")
for name, srv := range config.MCPServers {
cmdLine := srv.Command
if len(srv.Args) > 0 {
cmdLine += " " + strings.Join(srv.Args, " ")
}
status := "enabled"
if srv.Disabled {
status = "disabled"
}
fmt.Fprintf(w, "%s\t%s\t%s\n", name, cmdLine, status)
}
return w.Flush()
}
// MCPDisableHandler handles disabling an MCP server in global config.
func MCPDisableHandler(cmd *cobra.Command, args []string) error {
if len(args) == 0 {
return fmt.Errorf("usage: ollama mcp disable NAME [NAME...]")
}
config, err := loadMCPConfig()
if err != nil {
return fmt.Errorf("loading config: %w", err)
}
for _, name := range args {
srv, exists := config.MCPServers[name]
if !exists {
fmt.Fprintf(os.Stderr, "MCP server '%s' not found in global config\n", name)
continue
}
if srv.Disabled {
fmt.Fprintf(os.Stderr, "MCP server '%s' is already disabled\n", name)
continue
}
srv.Disabled = true
config.MCPServers[name] = srv
fmt.Fprintf(os.Stderr, "Disabled MCP server '%s'\n", name)
}
if err := saveMCPConfig(config); err != nil {
return fmt.Errorf("saving config: %w", err)
}
return nil
}
// MCPEnableHandler handles enabling an MCP server in global config.
func MCPEnableHandler(cmd *cobra.Command, args []string) error {
if len(args) == 0 {
return fmt.Errorf("usage: ollama mcp enable NAME [NAME...]")
}
config, err := loadMCPConfig()
if err != nil {
return fmt.Errorf("loading config: %w", err)
}
for _, name := range args {
srv, exists := config.MCPServers[name]
if !exists {
fmt.Fprintf(os.Stderr, "MCP server '%s' not found in global config\n", name)
continue
}
if !srv.Disabled {
fmt.Fprintf(os.Stderr, "MCP server '%s' is already enabled\n", name)
continue
}
srv.Disabled = false
config.MCPServers[name] = srv
fmt.Fprintf(os.Stderr, "Enabled MCP server '%s'\n", name)
}
if err := saveMCPConfig(config); err != nil {
return fmt.Errorf("saving config: %w", err)
}
return nil
}
// MCPPushHandler handles the mcp push command.
func MCPPushHandler(cmd *cobra.Command, args []string) error {
if len(args) != 2 {
return fmt.Errorf("usage: ollama mcp push NAME[:TAG] PATH")
}
name := args[0]
path := args[1]
// Expand path
if strings.HasPrefix(path, "~") {
home, err := os.UserHomeDir()
if err != nil {
return fmt.Errorf("expanding home directory: %w", err)
}
path = filepath.Join(home, path[1:])
}
absPath, err := filepath.Abs(path)
if err != nil {
return fmt.Errorf("resolving path: %w", err)
}
// Validate MCP directory - check for mcp.json, package.json, or any config file
validFiles := []string{"mcp.json", "package.json", "server.py", "server.js", "main.py", "index.js"}
found := false
for _, vf := range validFiles {
if _, err := os.Stat(filepath.Join(absPath, vf)); err == nil {
found = true
break
}
}
if !found {
return fmt.Errorf("MCP directory should contain one of: %s", strings.Join(validFiles, ", "))
}
// Parse MCP name (will set Kind="mcp")
n := server.ParseMCPName(name)
if n.Model == "" {
return fmt.Errorf("invalid MCP name: %s", name)
}
p := progress.NewProgress(os.Stderr)
defer p.Stop()
// Create MCP layer
displayName := n.DisplayShortest()
status := fmt.Sprintf("Creating MCP layer for %s", displayName)
spinner := progress.NewSpinner(status)
p.Add(status, spinner)
layer, err := server.CreateMCPLayer(absPath)
if err != nil {
return fmt.Errorf("creating MCP layer: %w", err)
}
spinner.Stop()
// Create MCP manifest
manifest, configLayer, err := createMCPManifest(absPath, layer)
if err != nil {
return fmt.Errorf("creating MCP manifest: %w", err)
}
// Write manifest locally
manifestPath, err := server.GetMCPManifestPath(n)
if err != nil {
return fmt.Errorf("getting manifest path: %w", err)
}
if err := os.MkdirAll(filepath.Dir(manifestPath), 0o755); err != nil {
return fmt.Errorf("creating manifest directory: %w", err)
}
manifestJSON, err := json.Marshal(manifest)
if err != nil {
return fmt.Errorf("marshaling manifest: %w", err)
}
if err := os.WriteFile(manifestPath, manifestJSON, 0o644); err != nil {
return fmt.Errorf("writing manifest: %w", err)
}
fmt.Fprintf(os.Stderr, "MCP %s created locally\n", displayName)
fmt.Fprintf(os.Stderr, " Config: %s (%s)\n", configLayer.Digest, format.HumanBytes(configLayer.Size))
fmt.Fprintf(os.Stderr, " Layer: %s (%s)\n", layer.Digest, format.HumanBytes(layer.Size))
// Push to registry
client, err := api.ClientFromEnvironment()
if err != nil {
return fmt.Errorf("creating client: %w", err)
}
insecure, _ := cmd.Flags().GetBool("insecure")
fmt.Fprintf(os.Stderr, "\nPushing to registry...\n")
fn := func(resp api.ProgressResponse) error {
if resp.Digest != "" {
bar := progress.NewBar(resp.Status, resp.Total, resp.Completed)
p.Add(resp.Digest, bar)
} else if resp.Status != "" {
spinner := progress.NewSpinner(resp.Status)
p.Add(resp.Status, spinner)
}
return nil
}
req := &api.PushRequest{
Model: displayName,
Insecure: insecure,
}
if err := client.Push(context.Background(), req, fn); err != nil {
// If push fails, still show success for local creation
fmt.Fprintf(os.Stderr, "\nNote: Local MCP created but push failed: %v\n", err)
fmt.Fprintf(os.Stderr, "You can try pushing later with: ollama mcp push %s\n", name)
return nil
}
fmt.Fprintf(os.Stderr, "Successfully pushed %s\n", displayName)
return nil
}
// MCPPullHandler handles the mcp pull command.
func MCPPullHandler(cmd *cobra.Command, args []string) error {
if len(args) != 1 {
return fmt.Errorf("usage: ollama mcp pull NAME[:TAG]")
}
name := args[0]
n := server.ParseMCPName(name)
if n.Model == "" {
return fmt.Errorf("invalid MCP name: %s", name)
}
client, err := api.ClientFromEnvironment()
if err != nil {
return fmt.Errorf("creating client: %w", err)
}
insecure, _ := cmd.Flags().GetBool("insecure")
p := progress.NewProgress(os.Stderr)
defer p.Stop()
fn := func(resp api.ProgressResponse) error {
if resp.Digest != "" {
bar := progress.NewBar(resp.Status, resp.Total, resp.Completed)
p.Add(resp.Digest, bar)
} else if resp.Status != "" {
spinner := progress.NewSpinner(resp.Status)
p.Add(resp.Status, spinner)
}
return nil
}
displayName := n.DisplayShortest()
req := &api.PullRequest{
Model: displayName,
Insecure: insecure,
}
if err := client.Pull(context.Background(), req, fn); err != nil {
return fmt.Errorf("pulling MCP: %w", err)
}
fmt.Fprintf(os.Stderr, "Successfully pulled %s\n", displayName)
return nil
}
// MCPListHandler handles the mcp list command.
func MCPListHandler(cmd *cobra.Command, args []string) error {
mcps, err := listLocalMCPs()
if err != nil {
return fmt.Errorf("listing MCPs: %w", err)
}
if len(mcps) == 0 {
fmt.Println("No MCPs installed")
return nil
}
w := tabwriter.NewWriter(os.Stdout, 0, 0, 3, ' ', 0)
fmt.Fprintln(w, "NAME\tTAG\tSIZE\tMODIFIED")
for _, mcp := range mcps {
fmt.Fprintf(w, "%s/%s\t%s\t%s\t%s\n",
mcp.Namespace,
mcp.Name,
mcp.Tag,
format.HumanBytes(mcp.Size),
format.HumanTime(mcp.ModifiedAt, "Never"),
)
}
return w.Flush()
}
// MCPRemoveHandler handles the mcp rm command.
func MCPRemoveHandler(cmd *cobra.Command, args []string) error {
if len(args) == 0 {
return fmt.Errorf("usage: ollama mcp rm NAME[:TAG] [NAME[:TAG]...]")
}
for _, name := range args {
n := server.ParseMCPName(name)
if n.Model == "" {
fmt.Fprintf(os.Stderr, "Invalid MCP name: %s\n", name)
continue
}
displayName := n.DisplayShortest()
manifestPath, err := server.GetMCPManifestPath(n)
if err != nil {
fmt.Fprintf(os.Stderr, "Error getting manifest path for %s: %v\n", name, err)
continue
}
if _, err := os.Stat(manifestPath); os.IsNotExist(err) {
fmt.Fprintf(os.Stderr, "MCP not found: %s\n", displayName)
continue
}
if err := os.Remove(manifestPath); err != nil {
fmt.Fprintf(os.Stderr, "Error removing %s: %v\n", displayName, err)
continue
}
// Clean up empty parent directories
dir := filepath.Dir(manifestPath)
for dir != filepath.Join(os.Getenv("HOME"), ".ollama", "models", "manifests") {
entries, _ := os.ReadDir(dir)
if len(entries) == 0 {
os.Remove(dir)
dir = filepath.Dir(dir)
} else {
break
}
}
fmt.Fprintf(os.Stderr, "Deleted '%s'\n", displayName)
}
return nil
}
// MCPShowHandler handles the mcp show command.
func MCPShowHandler(cmd *cobra.Command, args []string) error {
if len(args) != 1 {
return fmt.Errorf("usage: ollama mcp show NAME[:TAG]")
}
name := args[0]
n := server.ParseMCPName(name)
if n.Model == "" {
return fmt.Errorf("invalid MCP name: %s", name)
}
displayName := n.DisplayShortest()
manifestPath, err := server.GetMCPManifestPath(n)
if err != nil {
return fmt.Errorf("getting manifest path: %w", err)
}
data, err := os.ReadFile(manifestPath)
if err != nil {
if os.IsNotExist(err) {
return fmt.Errorf("MCP not found: %s", displayName)
}
return fmt.Errorf("reading manifest: %w", err)
}
var manifest server.Manifest
if err := json.Unmarshal(data, &manifest); err != nil {
return fmt.Errorf("parsing manifest: %w", err)
}
fmt.Printf("MCP: %s\n\n", displayName)
fmt.Println("Layers:")
for _, layer := range manifest.Layers {
fmt.Printf(" %s %s %s\n", layer.MediaType, layer.Digest[:19], format.HumanBytes(layer.Size))
}
// Try to read and display mcp.json or package.json content
if len(manifest.Layers) > 0 {
for _, layer := range manifest.Layers {
if layer.MediaType == server.MediaTypeMCP {
mcpPath, err := server.GetMCPsPath(layer.Digest)
if err == nil {
// Try mcp.json first
mcpJSONPath := filepath.Join(mcpPath, "mcp.json")
if content, err := os.ReadFile(mcpJSONPath); err == nil {
fmt.Println("\nConfig (mcp.json):")
fmt.Println(string(content))
} else {
// Try package.json
pkgJSONPath := filepath.Join(mcpPath, "package.json")
if content, err := os.ReadFile(pkgJSONPath); err == nil {
fmt.Println("\nConfig (package.json):")
fmt.Println(string(content))
}
}
// List files in the MCP
fmt.Println("\nFiles:")
filepath.Walk(mcpPath, func(path string, info os.FileInfo, err error) error {
if err != nil {
return nil
}
relPath, _ := filepath.Rel(mcpPath, path)
if relPath == "." {
return nil
}
if info.IsDir() {
fmt.Printf(" %s/\n", relPath)
} else {
fmt.Printf(" %s (%s)\n", relPath, format.HumanBytes(info.Size()))
}
return nil
})
}
}
}
}
return nil
}
// MCPInfo represents information about an installed MCP.
type MCPInfo struct {
Namespace string
Name string
Tag string
Size int64
ModifiedAt time.Time
}
// listLocalMCPs returns a list of locally installed MCPs.
// MCPs are stored with 5-part paths: host/namespace/kind/model/tag
// where kind is "mcp".
func listLocalMCPs() ([]MCPInfo, error) {
manifestsPath := filepath.Join(os.Getenv("HOME"), ".ollama", "models", "manifests")
var mcps []MCPInfo
// Walk through all registries
registries, err := os.ReadDir(manifestsPath)
if err != nil {
if os.IsNotExist(err) {
return mcps, nil
}
return nil, err
}
for _, registry := range registries {
if !registry.IsDir() {
continue
}
// Walk namespaces
namespaces, err := os.ReadDir(filepath.Join(manifestsPath, registry.Name()))
if err != nil {
continue
}
for _, namespace := range namespaces {
if !namespace.IsDir() {
continue
}
// Walk kinds looking for "mcp"
kinds, err := os.ReadDir(filepath.Join(manifestsPath, registry.Name(), namespace.Name()))
if err != nil {
continue
}
for _, kind := range kinds {
if !kind.IsDir() {
continue
}
// Only process mcp kind
if kind.Name() != server.MCPNamespace {
continue
}
// Walk MCP names (model names)
mcpNames, err := os.ReadDir(filepath.Join(manifestsPath, registry.Name(), namespace.Name(), kind.Name()))
if err != nil {
continue
}
for _, mcpName := range mcpNames {
if !mcpName.IsDir() {
continue
}
// Walk tags
tags, err := os.ReadDir(filepath.Join(manifestsPath, registry.Name(), namespace.Name(), kind.Name(), mcpName.Name()))
if err != nil {
continue
}
for _, tag := range tags {
manifestPath := filepath.Join(manifestsPath, registry.Name(), namespace.Name(), kind.Name(), mcpName.Name(), tag.Name())
fi, err := os.Stat(manifestPath)
if err != nil || fi.IsDir() {
continue
}
// Read manifest to get size
data, err := os.ReadFile(manifestPath)
if err != nil {
continue
}
var manifest server.Manifest
if err := json.Unmarshal(data, &manifest); err != nil {
continue
}
var totalSize int64
for _, layer := range manifest.Layers {
totalSize += layer.Size
}
// Build display name using model.Name
n := model.Name{
Host: registry.Name(),
Namespace: namespace.Name(),
Kind: kind.Name(),
Model: mcpName.Name(),
Tag: tag.Name(),
}
mcps = append(mcps, MCPInfo{
Namespace: n.Namespace + "/" + n.Kind,
Name: n.Model,
Tag: n.Tag,
Size: totalSize,
ModifiedAt: fi.ModTime(),
})
}
}
}
}
}
return mcps, nil
}
// createMCPManifest creates a manifest for a standalone MCP.
func createMCPManifest(mcpDir string, layer server.Layer) (*server.Manifest, *server.Layer, error) {
// Try to read mcp.json or package.json to extract metadata
name, description := extractMCPMetadata(mcpDir)
if name == "" {
// Use directory name as fallback
name = filepath.Base(mcpDir)
}
// Create config
config := map[string]any{
"name": name,
"description": description,
"architecture": "amd64",
"os": "linux",
}
configJSON, err := json.Marshal(config)
if err != nil {
return nil, nil, fmt.Errorf("marshaling config: %w", err)
}
// Create config layer
configLayer, err := server.NewLayer(strings.NewReader(string(configJSON)), "application/vnd.docker.container.image.v1+json")
if err != nil {
return nil, nil, fmt.Errorf("creating config layer: %w", err)
}
manifest := &server.Manifest{
SchemaVersion: 2,
MediaType: "application/vnd.docker.distribution.manifest.v2+json",
Config: configLayer,
Layers: []server.Layer{layer},
}
return manifest, &configLayer, nil
}
// extractMCPMetadata extracts name and description from mcp.json or package.json.
func extractMCPMetadata(mcpDir string) (name, description string) {
// Try mcp.json first
mcpJSONPath := filepath.Join(mcpDir, "mcp.json")
if data, err := os.ReadFile(mcpJSONPath); err == nil {
var config map[string]any
if err := json.Unmarshal(data, &config); err == nil {
if n, ok := config["name"].(string); ok {
name = n
}
if d, ok := config["description"].(string); ok {
description = d
}
return name, description
}
}
// Try package.json
pkgJSONPath := filepath.Join(mcpDir, "package.json")
if data, err := os.ReadFile(pkgJSONPath); err == nil {
var config map[string]any
if err := json.Unmarshal(data, &config); err == nil {
if n, ok := config["name"].(string); ok {
name = n
}
if d, ok := config["description"].(string); ok {
description = d
}
return name, description
}
}
return "", ""
}
// NewMCPCommand creates the mcp parent command with subcommands.
func NewMCPCommand() *cobra.Command {
mcpCmd := &cobra.Command{
Use: "mcp",
Short: "Manage MCP servers",
Long: "Commands for managing MCP (Model Context Protocol) servers (add, push, pull, list, rm, show)",
}
// Global config commands
addCmd := &cobra.Command{
Use: "add NAME COMMAND [ARGS...]",
Short: "Add an MCP server to global config",
Long: `Add an MCP server to the global config (~/.ollama/mcp.json).
Global MCP servers are available to all agents.
Examples:
ollama mcp add web-search uv run ./mcp-server.py
ollama mcp add calculator python3 /path/to/calc.py`,
Args: cobra.MinimumNArgs(2),
RunE: MCPAddHandler,
DisableFlagParsing: true, // Allow args with dashes
}
removeGlobalCmd := &cobra.Command{
Use: "remove-global NAME [NAME...]",
Aliases: []string{"rm-global"},
Short: "Remove an MCP server from global config",
Args: cobra.MinimumNArgs(1),
RunE: MCPRemoveGlobalHandler,
}
listGlobalCmd := &cobra.Command{
Use: "list-global",
Short: "List global MCP servers",
Args: cobra.NoArgs,
RunE: MCPListGlobalHandler,
}
// Registry commands
pushCmd := &cobra.Command{
Use: "push NAME[:TAG] PATH",
Short: "Push an MCP server to a registry",
Long: "Package a local MCP server directory and push it to a registry",
Args: cobra.ExactArgs(2),
PreRunE: checkServerHeartbeat,
RunE: MCPPushHandler,
}
pushCmd.Flags().Bool("insecure", false, "Use an insecure registry")
pullCmd := &cobra.Command{
Use: "pull NAME[:TAG]",
Short: "Pull an MCP server from a registry",
Args: cobra.ExactArgs(1),
PreRunE: checkServerHeartbeat,
RunE: MCPPullHandler,
}
pullCmd.Flags().Bool("insecure", false, "Use an insecure registry")
listCmd := &cobra.Command{
Use: "list",
Aliases: []string{"ls"},
Short: "List installed MCP servers (from registry)",
Args: cobra.NoArgs,
RunE: MCPListHandler,
}
rmCmd := &cobra.Command{
Use: "rm NAME[:TAG] [NAME[:TAG]...]",
Aliases: []string{"remove", "delete"},
Short: "Remove an MCP server (from registry)",
Args: cobra.MinimumNArgs(1),
RunE: MCPRemoveHandler,
}
showCmd := &cobra.Command{
Use: "show NAME[:TAG]",
Short: "Show MCP server details",
Args: cobra.ExactArgs(1),
RunE: MCPShowHandler,
}
disableCmd := &cobra.Command{
Use: "disable NAME [NAME...]",
Short: "Disable an MCP server (keep in config)",
Long: `Disable an MCP server without removing it from config.
Disabled servers will not be started when running agents.
Use 'ollama mcp enable' to re-enable.`,
Args: cobra.MinimumNArgs(1),
RunE: MCPDisableHandler,
}
enableCmd := &cobra.Command{
Use: "enable NAME [NAME...]",
Short: "Enable a disabled MCP server",
Long: `Re-enable a previously disabled MCP server.`,
Args: cobra.MinimumNArgs(1),
RunE: MCPEnableHandler,
}
mcpCmd.AddCommand(addCmd, removeGlobalCmd, listGlobalCmd, disableCmd, enableCmd, pushCmd, pullCmd, listCmd, rmCmd, showCmd)
return mcpCmd
}

570
cmd/skill_cmd.go Normal file
View File

@@ -0,0 +1,570 @@
package cmd
import (
"context"
"encoding/json"
"errors"
"fmt"
"os"
"path/filepath"
"strings"
"text/tabwriter"
"time"
"github.com/spf13/cobra"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/progress"
"github.com/ollama/ollama/server"
"github.com/ollama/ollama/types/model"
)
// SkillPushHandler handles the skill push command.
func SkillPushHandler(cmd *cobra.Command, args []string) error {
if len(args) != 2 {
return fmt.Errorf("usage: ollama skill push NAME[:TAG] PATH")
}
name := args[0]
path := args[1]
// Expand path
if strings.HasPrefix(path, "~") {
home, err := os.UserHomeDir()
if err != nil {
return fmt.Errorf("expanding home directory: %w", err)
}
path = filepath.Join(home, path[1:])
}
absPath, err := filepath.Abs(path)
if err != nil {
return fmt.Errorf("resolving path: %w", err)
}
// Validate skill directory
skillMdPath := filepath.Join(absPath, "SKILL.md")
if _, err := os.Stat(skillMdPath); err != nil {
return fmt.Errorf("skill directory must contain SKILL.md: %w", err)
}
// Parse skill name (will set Kind="skill")
n := server.ParseSkillName(name)
if n.Model == "" {
return fmt.Errorf("invalid skill name: %s", name)
}
p := progress.NewProgress(os.Stderr)
defer p.Stop()
// Create skill layer
displayName := n.DisplayShortest()
status := fmt.Sprintf("Creating skill layer for %s", displayName)
spinner := progress.NewSpinner(status)
p.Add(status, spinner)
layer, err := server.CreateSkillLayer(absPath)
if err != nil {
return fmt.Errorf("creating skill layer: %w", err)
}
spinner.Stop()
// Create skill manifest
manifest, configLayer, err := createSkillManifest(absPath, layer)
if err != nil {
return fmt.Errorf("creating skill manifest: %w", err)
}
// Write manifest locally
manifestPath, err := server.GetSkillManifestPath(n)
if err != nil {
return fmt.Errorf("getting manifest path: %w", err)
}
if err := os.MkdirAll(filepath.Dir(manifestPath), 0o755); err != nil {
return fmt.Errorf("creating manifest directory: %w", err)
}
manifestJSON, err := json.Marshal(manifest)
if err != nil {
return fmt.Errorf("marshaling manifest: %w", err)
}
if err := os.WriteFile(manifestPath, manifestJSON, 0o644); err != nil {
return fmt.Errorf("writing manifest: %w", err)
}
fmt.Fprintf(os.Stderr, "Skill %s created locally\n", displayName)
fmt.Fprintf(os.Stderr, " Config: %s (%s)\n", configLayer.Digest, format.HumanBytes(configLayer.Size))
fmt.Fprintf(os.Stderr, " Layer: %s (%s)\n", layer.Digest, format.HumanBytes(layer.Size))
// Push to registry
client, err := api.ClientFromEnvironment()
if err != nil {
return fmt.Errorf("creating client: %w", err)
}
insecure, _ := cmd.Flags().GetBool("insecure")
// For now, we'll use the existing push mechanism
fmt.Fprintf(os.Stderr, "\nPushing to registry...\n")
fn := func(resp api.ProgressResponse) error {
if resp.Digest != "" {
bar := progress.NewBar(resp.Status, resp.Total, resp.Completed)
p.Add(resp.Digest, bar)
} else if resp.Status != "" {
spinner := progress.NewSpinner(resp.Status)
p.Add(resp.Status, spinner)
}
return nil
}
req := &api.PushRequest{
Model: displayName,
Insecure: insecure,
}
if err := client.Push(context.Background(), req, fn); err != nil {
// If push fails, still show success for local creation
fmt.Fprintf(os.Stderr, "\nNote: Local skill created but push failed: %v\n", err)
fmt.Fprintf(os.Stderr, "You can try pushing later with: ollama skill push %s\n", name)
return nil
}
fmt.Fprintf(os.Stderr, "Successfully pushed %s\n", displayName)
return nil
}
// SkillPullHandler handles the skill pull command.
func SkillPullHandler(cmd *cobra.Command, args []string) error {
if len(args) != 1 {
return fmt.Errorf("usage: ollama skill pull NAME[:TAG]")
}
name := args[0]
n := server.ParseSkillName(name)
if n.Model == "" {
return fmt.Errorf("invalid skill name: %s", name)
}
client, err := api.ClientFromEnvironment()
if err != nil {
return fmt.Errorf("creating client: %w", err)
}
insecure, _ := cmd.Flags().GetBool("insecure")
p := progress.NewProgress(os.Stderr)
defer p.Stop()
fn := func(resp api.ProgressResponse) error {
if resp.Digest != "" {
bar := progress.NewBar(resp.Status, resp.Total, resp.Completed)
p.Add(resp.Digest, bar)
} else if resp.Status != "" {
spinner := progress.NewSpinner(resp.Status)
p.Add(resp.Status, spinner)
}
return nil
}
displayName := n.DisplayShortest()
req := &api.PullRequest{
Model: displayName,
Insecure: insecure,
}
if err := client.Pull(context.Background(), req, fn); err != nil {
return fmt.Errorf("pulling skill: %w", err)
}
fmt.Fprintf(os.Stderr, "Successfully pulled %s\n", displayName)
return nil
}
// SkillListHandler handles the skill list command.
func SkillListHandler(cmd *cobra.Command, args []string) error {
skills, err := listLocalSkills()
if err != nil {
return fmt.Errorf("listing skills: %w", err)
}
if len(skills) == 0 {
fmt.Println("No skills installed")
return nil
}
w := tabwriter.NewWriter(os.Stdout, 0, 0, 3, ' ', 0)
fmt.Fprintln(w, "NAME\tTAG\tSIZE\tMODIFIED")
for _, skill := range skills {
fmt.Fprintf(w, "%s/%s\t%s\t%s\t%s\n",
skill.Namespace,
skill.Name,
skill.Tag,
format.HumanBytes(skill.Size),
format.HumanTime(skill.ModifiedAt, "Never"),
)
}
return w.Flush()
}
// SkillRemoveHandler handles the skill rm command.
func SkillRemoveHandler(cmd *cobra.Command, args []string) error {
if len(args) == 0 {
return fmt.Errorf("usage: ollama skill rm NAME[:TAG] [NAME[:TAG]...]")
}
for _, name := range args {
n := server.ParseSkillName(name)
if n.Model == "" {
fmt.Fprintf(os.Stderr, "Invalid skill name: %s\n", name)
continue
}
displayName := n.DisplayShortest()
manifestPath, err := server.GetSkillManifestPath(n)
if err != nil {
fmt.Fprintf(os.Stderr, "Error getting manifest path for %s: %v\n", name, err)
continue
}
if _, err := os.Stat(manifestPath); os.IsNotExist(err) {
fmt.Fprintf(os.Stderr, "Skill not found: %s\n", displayName)
continue
}
if err := os.Remove(manifestPath); err != nil {
fmt.Fprintf(os.Stderr, "Error removing %s: %v\n", displayName, err)
continue
}
// Clean up empty parent directories
dir := filepath.Dir(manifestPath)
for dir != filepath.Join(os.Getenv("HOME"), ".ollama", "models", "manifests") {
entries, _ := os.ReadDir(dir)
if len(entries) == 0 {
os.Remove(dir)
dir = filepath.Dir(dir)
} else {
break
}
}
fmt.Fprintf(os.Stderr, "Deleted '%s'\n", displayName)
}
return nil
}
// SkillShowHandler handles the skill show command.
func SkillShowHandler(cmd *cobra.Command, args []string) error {
if len(args) != 1 {
return fmt.Errorf("usage: ollama skill show NAME[:TAG]")
}
name := args[0]
n := server.ParseSkillName(name)
if n.Model == "" {
return fmt.Errorf("invalid skill name: %s", name)
}
displayName := n.DisplayShortest()
manifestPath, err := server.GetSkillManifestPath(n)
if err != nil {
return fmt.Errorf("getting manifest path: %w", err)
}
data, err := os.ReadFile(manifestPath)
if err != nil {
if os.IsNotExist(err) {
return fmt.Errorf("skill not found: %s", displayName)
}
return fmt.Errorf("reading manifest: %w", err)
}
var manifest server.Manifest
if err := json.Unmarshal(data, &manifest); err != nil {
return fmt.Errorf("parsing manifest: %w", err)
}
fmt.Printf("Skill: %s\n\n", displayName)
fmt.Println("Layers:")
for _, layer := range manifest.Layers {
fmt.Printf(" %s %s %s\n", layer.MediaType, layer.Digest[:19], format.HumanBytes(layer.Size))
}
// Try to read and display SKILL.md content
if len(manifest.Layers) > 0 {
for _, layer := range manifest.Layers {
if layer.MediaType == server.MediaTypeSkill {
skillPath, err := server.GetSkillsPath(layer.Digest)
if err == nil {
skillMdPath := filepath.Join(skillPath, "SKILL.md")
if content, err := os.ReadFile(skillMdPath); err == nil {
fmt.Println("\nContent:")
fmt.Println(string(content))
}
}
}
}
}
return nil
}
// SkillInfo represents information about an installed skill.
type SkillInfo struct {
Namespace string
Name string
Tag string
Size int64
ModifiedAt time.Time
}
// listLocalSkills returns a list of locally installed skills.
// Skills are stored with 5-part paths: host/namespace/kind/model/tag
// where kind is "skill".
func listLocalSkills() ([]SkillInfo, error) {
manifestsPath := filepath.Join(os.Getenv("HOME"), ".ollama", "models", "manifests")
var skills []SkillInfo
// Walk through all registries
registries, err := os.ReadDir(manifestsPath)
if err != nil {
if os.IsNotExist(err) {
return skills, nil
}
return nil, err
}
for _, registry := range registries {
if !registry.IsDir() {
continue
}
// Walk namespaces
namespaces, err := os.ReadDir(filepath.Join(manifestsPath, registry.Name()))
if err != nil {
continue
}
for _, namespace := range namespaces {
if !namespace.IsDir() {
continue
}
// Walk kinds looking for "skill"
kinds, err := os.ReadDir(filepath.Join(manifestsPath, registry.Name(), namespace.Name()))
if err != nil {
continue
}
for _, kind := range kinds {
if !kind.IsDir() {
continue
}
// Only process skill kind
if kind.Name() != server.SkillNamespace {
continue
}
// Walk skill names (model names)
skillNames, err := os.ReadDir(filepath.Join(manifestsPath, registry.Name(), namespace.Name(), kind.Name()))
if err != nil {
continue
}
for _, skillName := range skillNames {
if !skillName.IsDir() {
continue
}
// Walk tags
tags, err := os.ReadDir(filepath.Join(manifestsPath, registry.Name(), namespace.Name(), kind.Name(), skillName.Name()))
if err != nil {
continue
}
for _, tag := range tags {
manifestPath := filepath.Join(manifestsPath, registry.Name(), namespace.Name(), kind.Name(), skillName.Name(), tag.Name())
fi, err := os.Stat(manifestPath)
if err != nil || fi.IsDir() {
continue
}
// Read manifest to get size
data, err := os.ReadFile(manifestPath)
if err != nil {
continue
}
var manifest server.Manifest
if err := json.Unmarshal(data, &manifest); err != nil {
continue
}
var totalSize int64
for _, layer := range manifest.Layers {
totalSize += layer.Size
}
// Build display name using model.Name
n := model.Name{
Host: registry.Name(),
Namespace: namespace.Name(),
Kind: kind.Name(),
Model: skillName.Name(),
Tag: tag.Name(),
}
skills = append(skills, SkillInfo{
Namespace: n.Namespace + "/" + n.Kind,
Name: n.Model,
Tag: n.Tag,
Size: totalSize,
ModifiedAt: fi.ModTime(),
})
}
}
}
}
}
return skills, nil
}
// createSkillManifest creates a manifest for a standalone skill.
func createSkillManifest(skillDir string, layer server.Layer) (*server.Manifest, *server.Layer, error) {
// Read SKILL.md to extract metadata
skillMdPath := filepath.Join(skillDir, "SKILL.md")
content, err := os.ReadFile(skillMdPath)
if err != nil {
return nil, nil, fmt.Errorf("reading SKILL.md: %w", err)
}
// Extract name and description from frontmatter
name, description := extractSkillMetadata(string(content))
if name == "" {
return nil, nil, errors.New("skill name not found in SKILL.md frontmatter")
}
// Create config
config := map[string]any{
"name": name,
"description": description,
"architecture": "amd64",
"os": "linux",
}
configJSON, err := json.Marshal(config)
if err != nil {
return nil, nil, fmt.Errorf("marshaling config: %w", err)
}
// Create config layer
configLayer, err := server.NewLayer(strings.NewReader(string(configJSON)), "application/vnd.docker.container.image.v1+json")
if err != nil {
return nil, nil, fmt.Errorf("creating config layer: %w", err)
}
manifest := &server.Manifest{
SchemaVersion: 2,
MediaType: "application/vnd.docker.distribution.manifest.v2+json",
Config: configLayer,
Layers: []server.Layer{layer},
}
return manifest, &configLayer, nil
}
// extractSkillMetadata extracts name and description from SKILL.md frontmatter.
func extractSkillMetadata(content string) (name, description string) {
lines := strings.Split(content, "\n")
inFrontmatter := false
for _, line := range lines {
trimmed := strings.TrimSpace(line)
if trimmed == "---" {
if !inFrontmatter {
inFrontmatter = true
continue
} else {
break // End of frontmatter
}
}
if inFrontmatter {
if strings.HasPrefix(trimmed, "name:") {
name = strings.TrimSpace(strings.TrimPrefix(trimmed, "name:"))
} else if strings.HasPrefix(trimmed, "description:") {
description = strings.TrimSpace(strings.TrimPrefix(trimmed, "description:"))
}
}
}
return name, description
}
// NewSkillCommand creates the skill parent command with subcommands.
func NewSkillCommand() *cobra.Command {
skillCmd := &cobra.Command{
Use: "skill",
Short: "Manage skills",
Long: "Commands for managing agent skills (push, pull, list, rm, show)",
}
pushCmd := &cobra.Command{
Use: "push NAME[:TAG] PATH",
Short: "Push a skill to a registry",
Long: "Package a local skill directory and push it to a registry",
Args: cobra.ExactArgs(2),
PreRunE: checkServerHeartbeat,
RunE: SkillPushHandler,
}
pushCmd.Flags().Bool("insecure", false, "Use an insecure registry")
pullCmd := &cobra.Command{
Use: "pull NAME[:TAG]",
Short: "Pull a skill from a registry",
Args: cobra.ExactArgs(1),
PreRunE: checkServerHeartbeat,
RunE: SkillPullHandler,
}
pullCmd.Flags().Bool("insecure", false, "Use an insecure registry")
listCmd := &cobra.Command{
Use: "list",
Aliases: []string{"ls"},
Short: "List installed skills",
Args: cobra.NoArgs,
RunE: SkillListHandler,
}
rmCmd := &cobra.Command{
Use: "rm NAME[:TAG] [NAME[:TAG]...]",
Aliases: []string{"remove", "delete"},
Short: "Remove a skill",
Args: cobra.MinimumNArgs(1),
RunE: SkillRemoveHandler,
}
showCmd := &cobra.Command{
Use: "show NAME[:TAG]",
Short: "Show skill details",
Args: cobra.ExactArgs(1),
RunE: SkillShowHandler,
}
skillCmd.AddCommand(pushCmd, pullCmd, listCmd, rmCmd, showCmd)
return skillCmd
}

589
cmd/skills.go Normal file
View File

@@ -0,0 +1,589 @@
package cmd
import (
"bufio"
"bytes"
"context"
"errors"
"fmt"
"io/fs"
"os"
"os/exec"
"path/filepath"
"regexp"
"sort"
"strings"
"time"
"gopkg.in/yaml.v3"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/server"
)
const (
skillFileName = "SKILL.md"
maxSkillDescription = 1024
maxSkillNameLength = 64
)
var skillNamePattern = regexp.MustCompile(`^[a-z0-9]+(?:-[a-z0-9]+)*$`)
type skillMetadata struct {
Name string `yaml:"name"`
Description string `yaml:"description"`
}
type skillDefinition struct {
Name string
Description string
Content string // Full SKILL.md content (without frontmatter)
Dir string
SkillPath string
}
type skillCatalog struct {
Skills []skillDefinition
byName map[string]skillDefinition
}
func loadSkills(paths []string) (*skillCatalog, error) {
if len(paths) == 0 {
return nil, nil
}
var skills []skillDefinition
byName := make(map[string]skillDefinition)
for _, root := range paths {
info, err := os.Stat(root)
if err != nil {
return nil, fmt.Errorf("skills directory %q: %w", root, err)
}
if !info.IsDir() {
return nil, fmt.Errorf("skills path %q is not a directory", root)
}
err = filepath.WalkDir(root, func(path string, entry fs.DirEntry, walkErr error) error {
if walkErr != nil {
return walkErr
}
if entry.IsDir() {
return nil
}
if entry.Name() != skillFileName {
return nil
}
skillDir := filepath.Dir(path)
skill, err := parseSkillFile(path, skillDir)
if err != nil {
fmt.Fprintf(os.Stderr, "Warning: skipping skill at %s: %v\n", path, err)
return nil
}
if _, exists := byName[skill.Name]; exists {
fmt.Fprintf(os.Stderr, "Warning: duplicate skill name %q at %s\n", skill.Name, path)
return nil
}
byName[skill.Name] = skill
skills = append(skills, skill)
return nil
})
if err != nil {
return nil, err
}
}
if len(skills) == 0 {
return nil, nil
}
sort.Slice(skills, func(i, j int) bool {
return skills[i].Name < skills[j].Name
})
return &skillCatalog{Skills: skills, byName: byName}, nil
}
// loadSkillsFromRefs loads skills from a list of SkillRef objects.
// Skills can be referenced by:
// - Digest: loaded from the extracted skill cache (for bundled/pulled skills)
// - Name (local path): loaded from the filesystem (for development)
func loadSkillsFromRefs(refs []api.SkillRef) (*skillCatalog, error) {
if len(refs) == 0 {
return nil, nil
}
var skills []skillDefinition
byName := make(map[string]skillDefinition)
for _, ref := range refs {
var skillDir string
if ref.Digest != "" {
// Load from extracted skill cache
path, err := server.GetSkillsPath(ref.Digest)
if err != nil {
return nil, fmt.Errorf("getting skill path for %s: %w", ref.Digest, err)
}
// Check if skill is already extracted
skillMdPath := filepath.Join(path, skillFileName)
if _, err := os.Stat(skillMdPath); os.IsNotExist(err) {
// Try to extract the skill blob
path, err = server.ExtractSkillBlob(ref.Digest)
if err != nil {
return nil, fmt.Errorf("extracting skill %s: %w", ref.Digest, err)
}
}
skillDir = path
} else if ref.Name != "" {
// Check if this is a local path or a registry reference
if !server.IsLocalSkillPath(ref.Name) {
// Registry reference without a digest - skill needs to be pulled first
// This happens when an agent references a skill that hasn't been bundled
return nil, fmt.Errorf("skill %q is a registry reference but has no digest - the agent may need to be recreated or the skill pulled separately", ref.Name)
}
// Local path - resolve it
skillPath := ref.Name
if strings.HasPrefix(skillPath, "~") {
home, err := os.UserHomeDir()
if err != nil {
return nil, fmt.Errorf("expanding home directory: %w", err)
}
skillPath = filepath.Join(home, skillPath[1:])
}
absPath, err := filepath.Abs(skillPath)
if err != nil {
return nil, fmt.Errorf("resolving skill path %q: %w", ref.Name, err)
}
// Check if this is a directory containing skills or a single skill
info, err := os.Stat(absPath)
if err != nil {
return nil, fmt.Errorf("skill path %q: %w", ref.Name, err)
}
if info.IsDir() {
// Check if it's a skill directory (has SKILL.md) or a parent of skill directories
skillMdPath := filepath.Join(absPath, skillFileName)
if _, err := os.Stat(skillMdPath); err == nil {
// Direct skill directory
skillDir = absPath
} else {
// Parent directory - walk to find skill subdirectories
err := filepath.WalkDir(absPath, func(path string, entry fs.DirEntry, walkErr error) error {
if walkErr != nil {
return walkErr
}
if entry.IsDir() {
return nil
}
if entry.Name() != skillFileName {
return nil
}
skillSubDir := filepath.Dir(path)
skill, err := parseSkillFile(path, skillSubDir)
if err != nil {
fmt.Fprintf(os.Stderr, "Warning: skipping skill at %s: %v\n", path, err)
return nil
}
if _, exists := byName[skill.Name]; exists {
fmt.Fprintf(os.Stderr, "Warning: duplicate skill name %q at %s\n", skill.Name, path)
return nil
}
byName[skill.Name] = skill
skills = append(skills, skill)
return nil
})
if err != nil {
return nil, err
}
continue
}
} else {
return nil, fmt.Errorf("skill path %q is not a directory", ref.Name)
}
} else {
// Both empty - skip
continue
}
// Parse the skill from skillDir if set
if skillDir != "" {
skillMdPath := filepath.Join(skillDir, skillFileName)
skill, err := parseSkillFile(skillMdPath, skillDir)
if err != nil {
return nil, fmt.Errorf("parsing skill at %s: %w", skillDir, err)
}
if _, exists := byName[skill.Name]; exists {
fmt.Fprintf(os.Stderr, "Warning: duplicate skill name %q\n", skill.Name)
continue
}
byName[skill.Name] = skill
skills = append(skills, skill)
}
}
if len(skills) == 0 {
return nil, nil
}
sort.Slice(skills, func(i, j int) bool {
return skills[i].Name < skills[j].Name
})
return &skillCatalog{Skills: skills, byName: byName}, nil
}
func parseSkillFile(path, skillDir string) (skillDefinition, error) {
rawContent, err := os.ReadFile(path)
if err != nil {
return skillDefinition{}, err
}
frontmatter, bodyContent, err := extractFrontmatterAndContent(string(rawContent))
if err != nil {
return skillDefinition{}, err
}
var meta skillMetadata
if err := yaml.Unmarshal([]byte(frontmatter), &meta); err != nil {
return skillDefinition{}, fmt.Errorf("invalid frontmatter: %w", err)
}
if err := validateSkillMetadata(meta, skillDir); err != nil {
return skillDefinition{}, err
}
absPath, err := filepath.Abs(path)
if err != nil {
return skillDefinition{}, err
}
absDir, err := filepath.Abs(skillDir)
if err != nil {
return skillDefinition{}, err
}
return skillDefinition{
Name: meta.Name,
Description: meta.Description,
Content: bodyContent,
Dir: absDir,
SkillPath: absPath,
}, nil
}
func extractFrontmatterAndContent(content string) (frontmatter string, body string, err error) {
scanner := bufio.NewScanner(strings.NewReader(content))
if !scanner.Scan() {
return "", "", errors.New("empty SKILL.md")
}
if strings.TrimSpace(scanner.Text()) != "---" {
return "", "", errors.New("missing YAML frontmatter")
}
var fmLines []string
foundEnd := false
for scanner.Scan() {
line := scanner.Text()
if strings.TrimSpace(line) == "---" {
foundEnd = true
break
}
fmLines = append(fmLines, line)
}
if !foundEnd {
return "", "", errors.New("frontmatter not terminated")
}
// Collect remaining content as body
var bodyLines []string
for scanner.Scan() {
bodyLines = append(bodyLines, scanner.Text())
}
return strings.Join(fmLines, "\n"), strings.TrimSpace(strings.Join(bodyLines, "\n")), nil
}
func validateSkillMetadata(meta skillMetadata, skillDir string) error {
name := strings.TrimSpace(meta.Name)
description := strings.TrimSpace(meta.Description)
switch {
case name == "":
return errors.New("missing skill name")
case len(name) > maxSkillNameLength:
return fmt.Errorf("skill name exceeds %d characters", maxSkillNameLength)
case !skillNamePattern.MatchString(name):
return fmt.Errorf("invalid skill name %q", name)
}
if description == "" {
return errors.New("missing skill description")
}
if len(description) > maxSkillDescription {
return fmt.Errorf("skill description exceeds %d characters", maxSkillDescription)
}
// Skip directory name check for digest-based paths (extracted from blobs)
dirName := filepath.Base(skillDir)
if !strings.HasPrefix(dirName, "sha256-") && dirName != name {
return fmt.Errorf("skill directory %q does not match name %q", dirName, name)
}
return nil
}
func (c *skillCatalog) SystemPrompt() string {
if c == nil || len(c.Skills) == 0 {
return ""
}
var b strings.Builder
b.WriteString("# Skills\n\n")
b.WriteString("You have the following skills loaded. Each skill provides instructions and may include executable scripts.\n\n")
b.WriteString("## Available Tools\n\n")
b.WriteString("- `run_skill_script`: Execute a script bundled with a skill. Use this when the skill instructions tell you to run a script.\n")
b.WriteString("- `read_skill_file`: Read additional files from a skill directory.\n\n")
for _, skill := range c.Skills {
fmt.Fprintf(&b, "## Skill: %s\n\n", skill.Name)
fmt.Fprintf(&b, "%s\n\n", skill.Content)
b.WriteString("---\n\n")
}
return b.String()
}
func (c *skillCatalog) Tools() api.Tools {
if c == nil || len(c.Skills) == 0 {
return nil
}
return api.Tools{
{
Type: "function",
Function: api.ToolFunction{
Name: "run_skill_script",
Description: "Execute a script or command within a skill's directory. Use this to run Python scripts, shell scripts, or other executables bundled with a skill.",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"skill", "command"},
Properties: map[string]api.ToolProperty{
"skill": {
Type: api.PropertyType{"string"},
Description: "The name of the skill containing the script",
},
"command": {
Type: api.PropertyType{"string"},
Description: "The command to execute (e.g., 'python scripts/calculate.py 25 4' or './scripts/run.sh')",
},
},
},
},
},
{
Type: "function",
Function: api.ToolFunction{
Name: "read_skill_file",
Description: "Read a file from a skill's directory. Use this to read additional documentation, reference files, or data files bundled with a skill.",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"skill", "path"},
Properties: map[string]api.ToolProperty{
"skill": {
Type: api.PropertyType{"string"},
Description: "The name of the skill containing the file",
},
"path": {
Type: api.PropertyType{"string"},
Description: "The relative path to the file within the skill directory",
},
},
},
},
},
}
}
func (c *skillCatalog) RunToolCall(call api.ToolCall) (api.Message, bool, error) {
switch call.Function.Name {
case "read_skill_file":
skillName, err := requireStringArg(call.Function.Arguments, "skill")
if err != nil {
return toolMessage(call, err.Error()), true, nil
}
relPath, err := requireStringArg(call.Function.Arguments, "path")
if err != nil {
return toolMessage(call, err.Error()), true, nil
}
skill, ok := c.byName[skillName]
if !ok {
return toolMessage(call, fmt.Sprintf("unknown skill %q", skillName)), true, nil
}
content, err := readSkillFile(skill.Dir, relPath)
if err != nil {
return toolMessage(call, err.Error()), true, nil
}
return toolMessage(call, content), true, nil
case "run_skill_script":
skillName, err := requireStringArg(call.Function.Arguments, "skill")
if err != nil {
return toolMessage(call, err.Error()), true, nil
}
command, err := requireStringArg(call.Function.Arguments, "command")
if err != nil {
return toolMessage(call, err.Error()), true, nil
}
skill, ok := c.byName[skillName]
if !ok {
return toolMessage(call, fmt.Sprintf("unknown skill %q", skillName)), true, nil
}
output, err := runSkillScript(skill.Dir, command)
if err != nil {
return toolMessage(call, fmt.Sprintf("error: %v\noutput: %s", err, output)), true, nil
}
return toolMessage(call, output), true, nil
default:
return api.Message{}, false, nil
}
}
// runSkillScript executes a shell command within a skill's directory.
//
// SECURITY LIMITATIONS (TODO):
// - No sandboxing: commands run with full user permissions
// - No path validation: model can run any command, not just scripts in skill dir
// - Shell injection risk: sh -c is used, malicious input could be crafted
// - No executable allowlist: any program can be called (curl, rm, etc.)
// - No environment isolation: scripts inherit full environment variables
//
// POTENTIAL IMPROVEMENTS:
// - Restrict commands to only reference files within skill directory
// - Allowlist specific executables (python3, node, bash)
// - Use sandboxing (Docker, nsjail, seccomp)
// - Require explicit script registration in SKILL.md frontmatter
// - Add per-skill configurable timeouts
func runSkillScript(skillDir, command string) (string, error) {
// Validate the skill directory exists
absSkillDir, err := filepath.Abs(skillDir)
if err != nil {
return "", err
}
if _, err := os.Stat(absSkillDir); err != nil {
return "", fmt.Errorf("skill directory not found: %w", err)
}
// Create command with timeout
ctx, cancel := context.WithTimeout(context.Background(), 30*time.Second)
defer cancel()
cmd := exec.CommandContext(ctx, "sh", "-c", command)
cmd.Dir = absSkillDir
// Inject the current working directory (where ollama run was called from)
// as an environment variable so scripts can reference files in that directory
workingDir, err := os.Getwd()
if err != nil {
return "", fmt.Errorf("failed to get working directory: %w", err)
}
cmd.Env = append(os.Environ(), "OLLAMA_WORKING_DIR="+workingDir)
// Capture both stdout and stderr
var stdout, stderr bytes.Buffer
cmd.Stdout = &stdout
cmd.Stderr = &stderr
err = cmd.Run()
// Combine output
output := stdout.String()
if stderr.Len() > 0 {
if output != "" {
output += "\n"
}
output += stderr.String()
}
if err != nil {
if ctx.Err() == context.DeadlineExceeded {
return output, fmt.Errorf("command timed out after 30 seconds")
}
return output, err
}
return output, nil
}
func readSkillFile(skillDir, relPath string) (string, error) {
relPath = filepath.Clean(strings.TrimSpace(relPath))
if relPath == "" {
return "", errors.New("path is required")
}
if filepath.IsAbs(relPath) {
return "", errors.New("path must be relative to the skill directory")
}
target := filepath.Join(skillDir, relPath)
absTarget, err := filepath.Abs(target)
if err != nil {
return "", err
}
absSkillDir, err := filepath.Abs(skillDir)
if err != nil {
return "", err
}
rel, err := filepath.Rel(absSkillDir, absTarget)
if err != nil {
return "", err
}
if strings.HasPrefix(rel, "..") {
return "", errors.New("path escapes the skill directory")
}
content, err := os.ReadFile(absTarget)
if err != nil {
return "", fmt.Errorf("failed to read %q: %w", relPath, err)
}
return string(content), nil
}
func requireStringArg(args api.ToolCallFunctionArguments, name string) (string, error) {
value, ok := args[name]
if !ok {
return "", fmt.Errorf("missing required argument %q", name)
}
str, ok := value.(string)
if !ok {
return "", fmt.Errorf("argument %q must be a string", name)
}
if strings.TrimSpace(str) == "" {
return "", fmt.Errorf("argument %q cannot be empty", name)
}
return str, nil
}
func toolMessage(call api.ToolCall, content string) api.Message {
msg := api.Message{
Role: "tool",
Content: content,
ToolName: call.Function.Name,
}
if call.ID != "" {
msg.ToolCallID = call.ID
}
return msg
}

View File

@@ -182,6 +182,8 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
conv = &llama4Model{}
case "Mistral3ForConditionalGeneration":
conv = &mistral3Model{}
case "Ministral3ForCausalLM":
conv = &mistral3CausalModel{}
case "MixtralForCausalLM":
conv = &mixtralModel{}
case "GemmaForCausalLM":
@@ -200,14 +202,20 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
conv = &qwen25VLModel{}
case "Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration":
conv = &qwen3VLModel{}
case "Olmo3ForCausalLM":
conv = &olmoModel{}
case "BertModel":
conv = &bertModel{}
case "NomicBertModel", "NomicBertMoEModel":
conv = &nomicbertModel{}
case "CohereForCausalLM":
conv = &commandrModel{}
case "GptOssForCausalLM":
conv = &gptossModel{}
case "DeepseekOCRForCausalLM":
conv = &deepseekocr{}
case "DeepseekV3ForCausalLM":
conv = &deepseek2Model{}
default:
return fmt.Errorf("unsupported architecture %q", p.Architectures[0])
}

View File

@@ -0,0 +1,173 @@
package convert
import (
"cmp"
"fmt"
"log/slog"
"regexp"
"strconv"
"github.com/ollama/ollama/fs/ggml"
)
type deepseek2Model struct {
ModelParameters // architectures, vocab_size
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RMSNormEPS float32 `json:"rms_norm_eps"`
RopeTheta float32 `json:"rope_theta"`
QKNopeHeadDim uint32 `json:"qk_nope_head_dim"`
QKRopeHeadDim uint32 `json:"qk_rope_head_dim"`
KVLoraRank uint32 `json:"kv_lora_rank"`
QLoraRank uint32 `json:"q_lora_rank"`
VHeadDim uint32 `json:"v_head_dim"`
ExpertCount uint32 `json:"n_routed_experts"`
ExpertSharedCount uint32 `json:"n_shared_experts"`
ExpertIntermediateSize uint32 `json:"moe_intermediate_size"`
ExpertUsedCount uint32 `json:"num_experts_per_tok"`
ExpertWeightsNorm bool `json:"norm_topk_prob"`
ExpertWeightsScale float32 `json:"routed_scaling_factor"`
ScoringFunc string `json:"scoring_func"`
LeadingDenseBlockCount uint32 `json:"first_k_dense_replace"`
RopeScaling struct {
Factor float32 `json:"factor"`
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
Type string `json:"type"`
MScaleAllDim float32 `json:"mscale_all_dim"`
} `json:"rope_scaling"`
Architecture string
}
func (p *deepseek2Model) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "deepseek2"
kv["general.type"] = "model"
kv["deepseek2.block_count"] = p.HiddenLayers
numHeads := p.NumAttentionHeads
numKVHeads := p.NumKeyValueHeads
kv["deepseek2.attention.head_count"] = numHeads
kv["deepseek2.attention.head_count_kv"] = numKVHeads
kv["deepseek2.attention.key_length"] = p.QKNopeHeadDim + p.QKRopeHeadDim
kv["deepseek2.attention.kv_lora_rank"] = p.KVLoraRank
kv["deepseek2.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["deepseek2.attention.q_lora_rank"] = p.QLoraRank
kv["deepseek2.attention.value_length"] = p.VHeadDim
kv["deepseek2.context_length"] = p.MaxPositionEmbeddings
kv["deepseek2.embedding_length"] = p.HiddenSize
kv["deepseek2.expert_count"] = p.ExpertCount
kv["deepseek2.expert_feed_forward_length"] = p.ExpertIntermediateSize
kv["deepseek2.expert_shared_count"] = p.ExpertSharedCount
var scoringFunc uint32
switch p.ScoringFunc {
case "softmax":
// not currently supported in the model, but needed for Deepseek-OCR
scoringFunc = 1
case "sigmoid":
scoringFunc = 2
}
kv["deepseek2.expert_gating_func"] = scoringFunc
kv["deepseek2.expert_used_count"] = p.ExpertUsedCount
kv["deepseek2.expert_weights_norm"] = p.ExpertWeightsNorm
kv["deepseek2.expert_weights_scale"] = p.ExpertWeightsScale
kv["deepseek2.feed_forward_length"] = p.IntermediateSize
kv["deepseek2.leading_dense_block_count"] = p.LeadingDenseBlockCount
kv["deepseek2.rope.dimension_count"] = p.QKRopeHeadDim
kv["deepseek2.rope.freq_base"] = cmp.Or(p.RopeTheta, 10000.0)
kv["deepseek2.rope.scaling.factor"] = p.RopeScaling.Factor
kv["deepseek2.rope.scaling.original_context_length"] = p.RopeScaling.OriginalMaxPositionEmbeddings
kv["deepseek2.rope.scaling.type"] = p.RopeScaling.Type
kv["deepseek2.rope.scaling.yarn_log_multiplier"] = 0.1 * p.RopeScaling.MScaleAllDim
kv["tokenizer.ggml.pre"] = "deepseek-v3"
return kv
}
func (p *deepseek2Model) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"language_model.", "",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.kv_a_proj_with_mqa", "attn_kv_a_mqa",
"self_attn.kv_a_layernorm", "attn_kv_a_norm",
"self_attn.kv_b_proj", "attn_kv_b",
"self_attn.q_a_proj", "attn_q_a",
"self_attn.q_a_layernorm", "attn_q_a_norm",
"self_attn.q_b_proj", "attn_q_b",
"self_attn.o_proj", "attn_output",
"post_attention_layernorm", "ffn_norm",
"mlp.shared_experts.down_proj", "ffn_down_shexp",
"mlp.shared_experts.gate_proj", "ffn_gate_shexp",
"mlp.shared_experts.up_proj", "ffn_up_shexp",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"mlp.gate.e_score_correction_bias", "exp_probs_b.bias",
"mlp.gate", "ffn_gate_inp",
}
}
func (p *deepseek2Model) Tensors(s []Tensor) (out []*ggml.Tensor) {
merges := make([]merge, p.HiddenLayers*3)
for i := range p.HiddenLayers {
merges[i*3+0] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.gate_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_gate_exps.weight", i),
}
merges[i*3+1] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.up_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_up_exps.weight", i),
}
merges[i*3+2] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.down_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_down_exps.weight", i),
}
}
skipLayer := func(n string, minValue uint32) bool {
re := regexp.MustCompile(`^blk\.(\d+)`)
matches := re.FindStringSubmatch(n)
if matches == nil {
return false
}
blkNum, err := strconv.Atoi(matches[1])
if err != nil {
return false
}
return uint32(blkNum) >= minValue
}
out, s = mergeTensors(s, merges...)
for _, t := range s {
// skip any additional layers (such as the Multi-Token Prediction layer)
if skipLayer(t.Name(), p.HiddenLayers) {
slog.Debug("skipping layer", "name", t.Name())
continue
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}

View File

@@ -2,6 +2,7 @@ package convert
import (
"cmp"
"slices"
"github.com/ollama/ollama/fs/ggml"
)
@@ -26,16 +27,26 @@ type gemma3Model struct {
NumChannels uint32 `json:"num_channels"` // num_channels 3
PatchSize uint32 `json:"patch_size"` // patch_size 14
} `json:"vision_config"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
RopeLocalTheta float32 `json:"rope_local_base_freq"`
RopeGlobalTheta float32 `json:"rope_global_base_freq"`
SlidingWindow uint32 `json:"sliding_window"`
MultiModalTokensPerImage uint32 `json:"mm_tokens_per_image"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
RopeLocalTheta float32 `json:"rope_local_base_freq"`
RopeTheta float32 `json:"rope_theta"`
SlidingWindow uint32 `json:"sliding_window"`
SlidingWindowPattern *uint32 `json:"sliding_window_pattern"`
LayerTypes []string `json:"layer_types"`
MultiModalTokensPerImage uint32 `json:"mm_tokens_per_image"`
RopeScaling *struct {
Type string `json:"rope_type"`
Factor float32 `json:"factor"`
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
ExtrapolationFactor float32 `json:"extrapolation_factor"`
BetaFast float32 `json:"beta_fast"`
BetaSlow float32 `json:"beta_slow"`
} `json:"rope_scaling"`
}
const (
@@ -81,9 +92,38 @@ func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
kv["gemma3.attention.key_length"] = p.HeadDim
kv["gemma3.attention.value_length"] = p.HeadDim
kv["gemma3.attention.sliding_window"] = p.SlidingWindow
kv["gemma3.final_logit_softcapping"] = cmp.Or(p.FinalLogitSoftcap, 30)
// The sliding window pattern is either provided as the sliding_window_pattern
// key (an int) or as the layer_types key (a list of strings).
if p.SlidingWindowPattern != nil || len(p.LayerTypes) > 0 {
kv["gemma3.attention.sliding_window_pattern"] = slices.Collect(func(yield func(bool) bool) {
for i := range numBlocks {
var isLocal bool
if len(p.LayerTypes) > 0 && int(i) < len(p.LayerTypes) {
isLocal = p.LayerTypes[i] == "sliding_attention"
} else if p.SlidingWindowPattern != nil && *p.SlidingWindowPattern > 0 {
isLocal = (i+1)%*p.SlidingWindowPattern != 0
}
if !yield(isLocal) {
break
}
}
})
}
if p.FinalLogitSoftcap > 0 {
kv["gemma3.final_logit_softcapping"] = p.FinalLogitSoftcap
}
kv["gemma3.rope.local.freq_base"] = cmp.Or(p.RopeLocalTheta, 10000.0)
kv["gemma3.rope.global.freq_base"] = cmp.Or(p.RopeGlobalTheta, 1000000.0)
kv["gemma3.rope.freq_base"] = cmp.Or(p.RopeTheta, 1000000.0)
if p.RopeScaling != nil && p.RopeScaling.Type == "yarn" && p.RopeScaling.Factor > 0 {
kv["gemma3.rope.scaling.type"] = "yarn"
kv["gemma3.rope.scaling.factor"] = p.RopeScaling.Factor
kv["gemma3.rope.scaling.original_context_length"] = p.RopeScaling.OriginalMaxPositionEmbeddings
kv["gemma3.rope.scaling.extrapolation_factor"] = cmp.Or(p.RopeScaling.ExtrapolationFactor, float32(1.0))
kv["gemma3.rope.scaling.beta_fast"] = cmp.Or(p.RopeScaling.BetaFast, float32(64.0))
kv["gemma3.rope.scaling.beta_slow"] = cmp.Or(p.RopeScaling.BetaSlow, float32(1.0))
}
kv["gemma3.embedding_length"] = p.HiddenSize
kv["gemma3.feed_forward_length"] = p.IntermediateSize
default:

View File

@@ -29,6 +29,17 @@ type mistral3Model struct {
SlidingWindow *uint32 `json:"sliding_window"`
HiddenAct string `json:"hidden_act"`
VocabSize uint32 `json:"vocab_size"`
RopeParameters struct {
BetaFast float32 `json:"beta_fast"`
BetaSlow float32 `json:"beta_slow"`
Factor float32 `json:"factor"`
Llama4ScalingBeta *float32 `json:"llama_4_scaling_beta"`
OrigMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
RopeType string `json:"rope_type"`
RopeTheta float32 `json:"rope_theta"`
Mscale *float32 `json:"mscale"`
MscaleAllDim *float32 `json:"mscale_all_dim"`
} `json:"rope_parameters"`
} `json:"text_config"`
VisionModel struct {
NumAttentionHeads uint32 `json:"num_attention_heads"`
@@ -41,6 +52,9 @@ type mistral3Model struct {
HeadDim uint32 `json:"head_dim"`
HiddenAct string `json:"hidden_act"`
RopeTheta float32 `json:"rope_theta"`
RopeParameters struct {
RopeTheta float32 `json:"rope_theta"`
} `json:"rope_parameters"`
} `json:"vision_config"`
MultiModalProjectorBias bool `json:"multimodal_projector_bias"`
ProjectorHiddenAct string `json:"projector_hidden_act"`
@@ -61,8 +75,25 @@ func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
kv["mistral3.attention.layer_norm_rms_epsilon"] = p.TextModel.RMSNormEPS
kv["mistral3.attention.key_length"] = p.TextModel.HeadDim
kv["mistral3.attention.value_length"] = p.TextModel.HeadDim
kv["mistral3.rope.dimension_count"] = p.TextModel.HiddenSize / p.TextModel.NumHiddenLayers
kv["mistral3.rope.freq_base"] = p.TextModel.RopeTheta
kv["mistral3.rope.dimension_count"] = cmp.Or(p.TextModel.HeadDim, p.TextModel.HiddenSize/p.TextModel.NumAttentionHeads)
kv["mistral3.rope.freq_base"] = cmp.Or(p.TextModel.RopeTheta, p.TextModel.RopeParameters.RopeTheta)
kv["mistral3.rope.scaling.factor"] = p.TextModel.RopeParameters.Factor
kv["mistral3.rope.scaling.type"] = p.TextModel.RopeParameters.RopeType
kv["mistral3.rope.scaling.beta_fast"] = p.TextModel.RopeParameters.BetaFast
kv["mistral3.rope.scaling.beta_slow"] = p.TextModel.RopeParameters.BetaSlow
if p.TextModel.RopeParameters.Mscale != nil {
kv["mistral3.rope.scaling.mscale"] = *p.TextModel.RopeParameters.Mscale
}
if p.TextModel.RopeParameters.MscaleAllDim != nil {
kv["mistral3.rope.scaling.mscale_all_dim"] = *p.TextModel.RopeParameters.MscaleAllDim
}
if p.TextModel.RopeParameters.OrigMaxPositionEmbeddings > 0 {
kv["mistral3.rope.scaling.original_context_length"] = p.TextModel.RopeParameters.OrigMaxPositionEmbeddings
}
if p.TextModel.RopeParameters.Llama4ScalingBeta != nil {
kv["mistral3.rope.scaling_beta"] = *p.TextModel.RopeParameters.Llama4ScalingBeta
}
// Vision configuration
kv["mistral3.vision.block_count"] = p.VisionModel.NumHiddenLayers
@@ -74,7 +105,7 @@ func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
kv["mistral3.vision.patch_size"] = p.VisionModel.PatchSize
kv["mistral3.vision.num_channels"] = p.VisionModel.NumChannels
// kv["mistral3.vision.attention.layer_norm_epsilon"] = 1e-05 // Default value
kv["mistral3.vision.rope.freq_base"] = p.VisionModel.RopeTheta
kv["mistral3.vision.rope.freq_base"] = cmp.Or(p.VisionModel.RopeTheta, p.VisionModel.RopeParameters.RopeTheta)
// Multimodal configuration
kv["mistral3.image_token_index"] = p.ImageTokenIndex

View File

@@ -0,0 +1,181 @@
package convert
import (
"cmp"
"fmt"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
)
type mistral3CausalModel struct {
ModelParameters
NumHiddenLayers uint32 `json:"num_hidden_layers"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
SlidingWindow *uint32 `json:"sliding_window"`
HiddenAct string `json:"hidden_act"`
VocabSize uint32 `json:"vocab_size"`
RopeParameters struct {
BetaFast float32 `json:"beta_fast"`
BetaSlow float32 `json:"beta_slow"`
Factor float32 `json:"factor"`
Llama4ScalingBeta *float32 `json:"llama_4_scaling_beta"`
OrigMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
RopeType string `json:"rope_type"`
RopeTheta float32 `json:"rope_theta"`
Mscale *float32 `json:"mscale"`
MscaleAllDim *float32 `json:"mscale_all_dim"`
} `json:"rope_parameters"`
}
func (p *mistral3CausalModel) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "mistral3"
kv["mistral3.vocab_size"] = p.VocabSize
// Text configuration
kv["mistral3.block_count"] = p.NumHiddenLayers
kv["mistral3.context_length"] = p.MaxPositionEmbeddings
kv["mistral3.embedding_length"] = p.HiddenSize
kv["mistral3.feed_forward_length"] = p.IntermediateSize
kv["mistral3.attention.head_count"] = p.NumAttentionHeads
kv["mistral3.attention.head_count_kv"] = p.NumKeyValueHeads
kv["mistral3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["mistral3.attention.key_length"] = p.HeadDim
kv["mistral3.attention.value_length"] = p.HeadDim
kv["mistral3.rope.dimension_count"] = cmp.Or(p.HeadDim, p.HiddenSize/p.NumAttentionHeads)
kv["mistral3.rope.freq_base"] = cmp.Or(p.RopeTheta, p.RopeParameters.RopeTheta)
kv["mistral3.rope.scaling.factor"] = p.RopeParameters.Factor
kv["mistral3.rope.scaling.type"] = p.RopeParameters.RopeType
kv["mistral3.rope.scaling.beta_fast"] = p.RopeParameters.BetaFast
kv["mistral3.rope.scaling.beta_slow"] = p.RopeParameters.BetaSlow
if p.RopeParameters.Mscale != nil {
kv["mistral3.rope.scaling.mscale"] = *p.RopeParameters.Mscale
}
if p.RopeParameters.MscaleAllDim != nil {
kv["mistral3.rope.scaling.mscale_all_dim"] = *p.RopeParameters.MscaleAllDim
}
if p.RopeParameters.OrigMaxPositionEmbeddings > 0 {
kv["mistral3.rope.scaling.original_context_length"] = p.RopeParameters.OrigMaxPositionEmbeddings
kv["mistral3.rope.scaling_beta"] = *p.RopeParameters.Llama4ScalingBeta
}
if p.RopeParameters.Llama4ScalingBeta != nil {
kv["mistral3.rope.scaling_beta"] = *p.RopeParameters.Llama4ScalingBeta
}
return kv
}
func (p *mistral3CausalModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
if !strings.HasPrefix(t.Name(), "v.") {
if strings.HasSuffix(t.Name(), ".attn_q.weight") ||
strings.HasSuffix(t.Name(), ".attn_k.weight") {
t.SetRepacker(p.repack)
}
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *mistral3CausalModel) Replacements() []string {
return []string{
"model.norm", "output_norm",
"model.", "",
"layers", "blk",
"transformer.layers", "blk",
"vision_tower", "v",
"ln_pre", "encoder_norm",
"input_layernorm", "attn_norm",
"post_attention_layernorm", "ffn_norm",
"embed_tokens", "token_embd",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.down_proj", "ffn_down",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"attention.q_proj", "attn_q",
"attention.k_proj", "attn_k",
"attention.v_proj", "attn_v",
"attention.o_proj", "attn_output",
"attention_norm", "attn_norm",
"feed_forward.gate_proj", "ffn_gate",
"feed_forward.down_proj", "ffn_down",
"feed_forward.up_proj", "ffn_up",
"multi_modal_projector", "mm",
"ffn_norm", "ffn_norm",
"lm_head", "output",
}
}
func (p *mistral3CausalModel) repack(name string, data []float32, shape []uint64) ([]float32, error) {
var dims []int
for _, dim := range shape {
dims = append(dims, int(dim))
}
var heads uint32
if strings.HasSuffix(name, ".attn_q.weight") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, ".attn_k.weight") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
} else {
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@@ -0,0 +1,213 @@
package convert
import (
"cmp"
"encoding/json"
"io/fs"
"path/filepath"
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
)
type nomicbertModel struct {
ModelParameters
NLayers uint32 `json:"n_layers"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
LayerNormEPS float32 `json:"layer_norm_eps"`
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
RopeFreqBase float32 `json:"rope_theta"`
normalizeEmbeddings bool
PoolingType uint32
// MoE parameters (only present in v2 models)
NumExperts uint32 `json:"num_local_experts"`
NumExpertsUsed uint32 `json:"num_experts_per_tok"`
MoEEveryNLayers uint32 `json:"moe_every_n_layers"`
}
var (
_ ModelConverter = (*nomicbertModel)(nil)
_ moreParser = (*nomicbertModel)(nil)
)
func (p *nomicbertModel) parseMore(fsys fs.FS) error {
bts, err := fs.ReadFile(fsys, "modules.json")
if err != nil {
return err
}
var modules []struct {
Type string `json:"type"`
Path string `json:"path"`
}
if err := json.Unmarshal(bts, &modules); err != nil {
return err
}
var pooling string
for _, m := range modules {
switch m.Type {
case "sentence_transformers.models.Pooling":
pooling = m.Path
case "sentence_transformers.models.Normalize":
p.normalizeEmbeddings = true
}
}
if pooling != "" {
bts, err := fs.ReadFile(fsys, filepath.Join(pooling, "config.json"))
if err != nil {
return err
}
var pc struct {
PoolingModeCLSToken bool `json:"pooling_mode_cls_token"`
PoolingModeMeanTokens bool `json:"pooling_mode_mean_tokens"`
}
if err := json.Unmarshal(bts, &pc); err != nil {
return err
}
if pc.PoolingModeMeanTokens {
p.PoolingType = 1
} else if pc.PoolingModeCLSToken {
p.PoolingType = 2
}
}
return nil
}
func (p *nomicbertModel) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
// Determine architecture based on MoE parameters (following qwen3 pattern)
arch := "nomic-bert"
if p.MoEEveryNLayers > 0 {
arch += "-moe"
}
kv["general.architecture"] = arch
kv["attention.causal"] = false
kv["pooling_type"] = p.PoolingType
kv["normalize_embeddings"] = p.normalizeEmbeddings
kv["block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers)
if contextLength := p.MaxPositionEmbeddings; contextLength > 0 {
kv["context_length"] = contextLength
}
if embeddingLength := p.HiddenSize; embeddingLength > 0 {
kv["embedding_length"] = p.HiddenSize
}
if feedForwardLength := p.IntermediateSize; feedForwardLength > 0 {
kv["feed_forward_length"] = p.IntermediateSize
}
if headCount := p.NumAttentionHeads; headCount > 0 {
kv["attention.head_count"] = p.NumAttentionHeads
}
if kvHeadCount := p.NumKeyValueHeads; kvHeadCount > 0 {
kv["attention.head_count_kv"] = p.NumKeyValueHeads
}
if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon); layerNormEpsilon > 0 {
kv["attention.layer_norm_epsilon"] = layerNormEpsilon
}
if p.RopeFreqBase > 0 {
kv["rope.freq_base"] = p.RopeFreqBase
}
// MoE specific parameters (only if MoE is enabled)
if p.NumExperts > 0 {
kv["expert_count"] = p.NumExperts
}
if p.NumExpertsUsed > 0 {
kv["expert_used_count"] = p.NumExpertsUsed
}
if p.MoEEveryNLayers > 0 {
kv["moe_every_n_layers"] = p.MoEEveryNLayers
}
kv["tokenizer.ggml.model"] = "bert"
kv["tokenizer.ggml.token_type_count"] = uint32(2)
// convert to phantom space tokens
for i, e := range t.Tokens {
switch {
case strings.HasPrefix(e, "[") && strings.HasSuffix(e, "]"):
// noop - keep special tokens as-is
case strings.HasPrefix(e, "##"):
t.Tokens[i] = e[2:]
default:
t.Tokens[i] = "\u2581" + e
}
}
kv["tokenizer.ggml.tokens"] = t.Tokens
return kv
}
func (p *nomicbertModel) Tensors(ts []Tensor) []*ggml.Tensor {
out := make([]*ggml.Tensor, 0, len(ts))
for _, t := range ts {
if slices.Contains([]string{
"embeddings.position_ids",
"pooler.dense.weight",
"pooler.dense.bias",
}, t.Name()) {
continue
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (nomicbertModel) Replacements() []string {
return []string{
"encoder.layer", "blk",
"encoder.layers", "blk",
"embeddings.word_embeddings", "token_embd",
"embeddings.token_type_embeddings", "token_types",
"embeddings.LayerNorm", "token_embd_norm",
"attention.self.qkv", "attn_qkv",
"attention.output.dense", "attn_output",
"attention.output.LayerNorm", "attn_output_norm",
"mlp.up", "ffn_up",
"mlp.down", "ffn_down",
"mlp.router", "ffn_gate_inp",
"mlp.experts.up", "ffn_up_exps",
"mlp.experts.down", "ffn_down_exps",
"intermediate.dense", "ffn_up",
"output.dense", "ffn_down",
"output.LayerNorm", "layer_output_norm",
}
}

117
convert/convert_olmo.go Normal file
View File

@@ -0,0 +1,117 @@
package convert
import (
"cmp"
"github.com/ollama/ollama/fs/ggml"
)
type ropeScaling struct {
Factor float32 `json:"factor"`
OriginalMaxPositionEmbeds uint32 `json:"original_max_position_embeddings"`
AttentionFactor float32 `json:"attention_factor"`
BetaFast float32 `json:"beta_fast"`
BetaSlow float32 `json:"beta_slow"`
RopeType string `json:"rope_type"`
ExtrapolationFactor float32 `json:"extrapolation_factor"`
}
type olmoModel struct {
ModelParameters
HiddenSize uint32 `json:"hidden_size"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
RMSNormEPS float32 `json:"rms_norm_eps"`
RopeTheta float32 `json:"rope_theta"`
RopeScaling *ropeScaling `json:"rope_scaling"`
SlidingWindow uint32 `json:"sliding_window"`
LayerTypes []string `json:"layer_types"`
}
var _ ModelConverter = (*olmoModel)(nil)
func (p *olmoModel) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "olmo3"
kv["olmo3.block_count"] = p.NumHiddenLayers
kv["olmo3.context_length"] = p.MaxPositionEmbeddings
kv["olmo3.embedding_length"] = p.HiddenSize
kv["olmo3.feed_forward_length"] = p.IntermediateSize
kv["olmo3.attention.head_count"] = p.NumAttentionHeads
kv["olmo3.attention.head_count_kv"] = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
if p.RopeTheta > 0 {
kv["olmo3.rope.freq_base"] = p.RopeTheta
}
if p.RopeScaling != nil {
if p.RopeScaling.Factor > 0 {
kv["olmo3.rope.scaling.factor"] = p.RopeScaling.Factor
}
if p.RopeScaling.OriginalMaxPositionEmbeds > 0 {
kv["olmo3.rope.scaling.original_context_length"] = p.RopeScaling.OriginalMaxPositionEmbeds
}
if p.RopeScaling.AttentionFactor > 0 {
kv["olmo3.rope.scaling.attn_factor"] = p.RopeScaling.AttentionFactor
}
if p.RopeScaling.RopeType != "" {
kv["olmo3.rope.scaling.type"] = p.RopeScaling.RopeType
}
}
if p.RMSNormEPS > 0 {
kv["olmo3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
}
if p.SlidingWindow > 0 {
kv["olmo3.attention.sliding_window"] = p.SlidingWindow
}
if len(p.LayerTypes) > 0 {
slidingPattern := make([]bool, len(p.LayerTypes))
for i, layerType := range p.LayerTypes {
slidingPattern[i] = (layerType == "sliding_attention")
}
kv["olmo3.attention.sliding_window_pattern"] = slidingPattern
}
return kv
}
func (p *olmoModel) Tensors(ts []Tensor) []*ggml.Tensor {
out := make([]*ggml.Tensor, 0, len(ts))
for _, t := range ts {
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *olmoModel) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.layers", "blk",
"model.norm", "output_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"self_attn.q_norm", "attn_q_norm",
"self_attn.k_norm", "attn_k_norm",
"post_attention_layernorm", "post_attention_norm",
"post_feedforward_layernorm", "post_ffw_norm",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
}
}

View File

@@ -49,7 +49,8 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
tt := int32(sentencepiece.ModelProto_SentencePiece_NORMAL)
// temporary fix to handle gemma3 broken configs
if slices.Contains([]string{"<end_of_turn>", "<start_of_turn>"}, piece.GetPiece()) {
// TODO(parthsareen): allow reading of tokenizer.json to allow managing special tokens when using spm
if slices.Contains([]string{"<end_of_turn>", "<start_of_turn>", "<start_function_declaration>", "<end_function_declaration>", "<start_function_call>", "<end_function_call>", "<start_function_response>", "<end_function_response>", "<escape>"}, piece.GetPiece()) {
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
}

View File

@@ -65,6 +65,7 @@ func GPUDevices(ctx context.Context, runners []ml.FilteredRunnerDiscovery) []ml.
}
slog.Info("discovering available GPUs...")
detectIncompatibleLibraries()
// Warn if any user-overrides are set which could lead to incorrect GPU discovery
overrideWarnings()
@@ -98,6 +99,9 @@ func GPUDevices(ctx context.Context, runners []ml.FilteredRunnerDiscovery) []ml.
continue
} else if jetpack != "" && filepath.Base(dir) != "cuda_"+jetpack {
continue
} else if jetpack == "" && strings.Contains(filepath.Base(dir), "cuda_jetpack") {
slog.Debug("jetpack not detected (set JETSON_JETPACK or OLLAMA_LLM_LIBRARY to override), skipping", "libDir", dir)
continue
} else if !envconfig.EnableVulkan() && strings.Contains(filepath.Base(dir), "vulkan") {
slog.Info("experimental Vulkan support disabled. To enable, set OLLAMA_VULKAN=1")
continue
@@ -143,7 +147,7 @@ func GPUDevices(ctx context.Context, runners []ml.FilteredRunnerDiscovery) []ml.
wg.Add(1)
go func(i int) {
defer wg.Done()
extraEnvs := ml.GetVisibleDevicesEnv(devices[i : i+1])
extraEnvs := ml.GetVisibleDevicesEnv(devices[i:i+1], true)
devices[i].AddInitValidation(extraEnvs)
if len(bootstrapDevices(ctx2ndPass, devices[i].LibraryPath, extraEnvs)) == 0 {
slog.Debug("filtering device which didn't fully initialize",
@@ -329,7 +333,8 @@ func GPUDevices(ctx context.Context, runners []ml.FilteredRunnerDiscovery) []ml.
defer cancel()
// Apply any dev filters to avoid re-discovering unsupported devices, and get IDs correct
devFilter := ml.GetVisibleDevicesEnv(devices)
// We avoid CUDA filters here to keep ROCm from failing to discover GPUs in a mixed environment
devFilter := ml.GetVisibleDevicesEnv(devices, false)
for dir := range libDirs {
updatedDevices := bootstrapDevices(ctx, []string{ml.LibOllamaPath, dir}, devFilter)
@@ -484,3 +489,16 @@ func overrideWarnings() {
slog.Warn("if GPUs are not correctly discovered, unset and try again")
}
}
func detectIncompatibleLibraries() {
if runtime.GOOS != "windows" {
return
}
basePath, err := exec.LookPath("ggml-base.dll")
if err != nil || basePath == "" {
return
}
if !strings.HasPrefix(basePath, ml.LibOllamaPath) {
slog.Warn("potentially incompatible library detected in PATH", "location", basePath)
}
}

211
docs/ENTRYPOINT_FEATURE.md Normal file
View File

@@ -0,0 +1,211 @@
# ENTRYPOINT Feature for Ollama Agents
## Overview
The ENTRYPOINT command allows agents to specify an external program to run instead of the built-in Ollama chat loop. This makes Ollama a packaging/distribution mechanism for agents with custom runtimes.
## Status: Implemented ✓
## What Was Done
### 1. Types & API
**`types/model/config.go`**
- Added `Entrypoint string` field to `ConfigV2` struct
**`api/types.go`**
- Added `Entrypoint string` to `CreateRequest` (line ~576)
- Added `Entrypoint string` to `ShowResponse` (line ~632)
### 2. Parser
**`parser/parser.go`**
- Added "entrypoint" to `isValidCommand()` switch
- Added case in `CreateRequest()` to set `req.Entrypoint = c.Args`
- Updated `ParseFile()` to allow ENTRYPOINT without FROM (entrypoint-only agents)
- Added entrypoint serialization in `Command.String()`
### 3. Server
**`server/create.go`**
- Added `config.Entrypoint = r.Entrypoint` to store entrypoint in config
- Made FROM optional when ENTRYPOINT is specified:
```go
} else if r.Entrypoint != "" {
// Entrypoint-only agent: no base model needed
slog.Debug("create entrypoint-only agent", "entrypoint", r.Entrypoint)
}
```
**`server/routes.go`**
- Added `Entrypoint: m.Config.Entrypoint` to ShowResponse in `GetModelInfo()`
**`server/images.go`**
- Added entrypoint serialization in `Model.String()`:
```go
if m.Config.Entrypoint != "" {
modelfile.Commands = append(modelfile.Commands, parser.Command{
Name: "entrypoint",
Args: m.Config.Entrypoint,
})
}
```
### 4. CLI
**`cmd/cmd.go`**
- Added `Entrypoint string` to `runOptions` struct
- Updated agent detection to include Entrypoint check
- Added entrypoint check before interactive mode:
```go
if opts.Entrypoint != "" {
return runEntrypoint(cmd, opts)
}
```
- Implemented `runEntrypoint()` function:
- Parses entrypoint into command and args
- Appends user prompt as additional argument if provided
- Looks up command in PATH
- Creates subprocess with stdin/stdout/stderr connected
- Runs and waits for completion
- Updated `showInfo()` to display entrypoint in Agent section
- Updated `showInfo()` to hide Model section for entrypoint-only agents (no blank fields)
- Added `$PROMPT` placeholder support in `runEntrypoint()`:
- If entrypoint contains `$PROMPT`, it's replaced with the user's prompt
- If no placeholder, prompt is appended as positional argument (backwards compatible)
- If no prompt provided, `$PROMPT` is removed from the command
## Usage
### Agentfile
```dockerfile
# Minimal entrypoint agent (no model required)
ENTRYPOINT ducky
# Or with full path
ENTRYPOINT /usr/local/bin/ducky
# Or with arguments
ENTRYPOINT ducky --verbose
# Use $PROMPT placeholder to control where prompt is inserted
ENTRYPOINT ducky -p $PROMPT
# Without placeholder, prompt is appended as positional argument
ENTRYPOINT echo "Hello" # becomes: echo "Hello" <prompt>
# Can still bundle skills/MCPs with entrypoint agents
SKILL ./my-skill
MCP calculator python3 ./calc.py
ENTRYPOINT my-custom-runtime
```
### CLI
```bash
# Create the agent
ollama create ducky -f ducky.Agentfile
# Run it - starts the entrypoint (e.g., REPL)
ollama run ducky
# With prompt (passed as argument to entrypoint)
ollama run ducky "hello"
# Show agent info
ollama show ducky
# Agent
# entrypoint ducky
```
## Testing Done
1. **Basic entrypoint execution**: ✓
```bash
# Agentfile: ENTRYPOINT echo "Hello from entrypoint"
ollama run test-entry # Output: "Hello from entrypoint"
```
2. **Prompt passing (positional)**: ✓
```bash
# Agentfile: ENTRYPOINT echo "Args:"
ollama run echo-test "hello world" # Output: "Args:" hello world
```
3. **Prompt passing ($PROMPT placeholder)**: ✓
```bash
# Agentfile: ENTRYPOINT echo "Prompt was:" $PROMPT "end"
ollama run echo-placeholder "hello world" # Output: "Prompt was:" hello world "end"
ollama run echo-placeholder # Output: "Prompt was:" "end"
```
4. **Show command**: ✓
```bash
ollama show ducky
# Agent
# entrypoint ducky
# (Model section hidden for entrypoint-only agents)
```
5. **List command**: ✓
- Entrypoint-only agents show with small sizes (~200 bytes)
## Left Over / Future Enhancements
### 1. Context Passing via Environment Variables
Pass agent context to entrypoint via env vars:
- `OLLAMA_AGENT_NAME` - Name of the agent
- `OLLAMA_SKILLS_PATH` - Path to bundled skills
- `OLLAMA_MCPS` - JSON of MCP configurations
### ~~2. Arguments Placeholder~~ ✓ DONE
~~Support placeholder syntax for more control:~~
```dockerfile
# Now supported!
ENTRYPOINT ducky -p $PROMPT
```
### 3. Working Directory
Set working directory for entrypoint:
```dockerfile
WORKDIR /app
ENTRYPOINT ./run.sh
```
### 4. Interactive Mode Detection
Different behavior for REPL vs single-shot:
- Detect if stdin is a TTY
- Pass different flags based on mode
### 5. Signal Handling
Improved signal forwarding to subprocess:
- Forward SIGINT, SIGTERM gracefully
- Handle cleanup on parent exit
### 6. Entrypoint with Model
Allow both model and entrypoint:
```dockerfile
FROM llama3.2
ENTRYPOINT my-custom-ui
```
The entrypoint could then use the model via Ollama API.
### 7. Pull/Push for Entrypoint Agents
- Currently entrypoint agents can be created locally
- Need to test/verify push/pull to registry works correctly
- May need to handle entrypoint binaries (or just reference system commands)
### 8. Error Handling
- Better error messages when entrypoint command not found
- Validation of entrypoint during create (optional, warn if not found)
## Design Decisions
1. **Subprocess mode (not exec)**: Ollama stays as parent process to handle signals and cleanup
2. **No context passing initially**: Keep it simple, entrypoint handles its own config
3. **Skills/MCPs allowed**: Enables packaging assets with the agent even if entrypoint manages execution
4. **FROM optional**: Entrypoint agents don't need a model, just the runtime
5. **Prompt as argument**: User prompt is appended as argument to entrypoint command (simplest approach)

View File

@@ -0,0 +1,332 @@
# Agent Skills Feature - Implementation Summary
This document summarizes all changes made to implement agent skills in Ollama, enabling `ollama run <agent>` with skill-based capabilities.
## Overview
Agents are models with attached skills. Skills are directories containing a `SKILL.md` file with instructions and optional executable scripts. When an agent runs, skills are loaded and injected into the system prompt, and the model can execute scripts via tool calls.
## Files Changed
### 1. `cmd/skills.go` (NEW FILE)
Core skills implementation:
```go
// Key types
type skillMetadata struct {
Name string `yaml:"name"`
Description string `yaml:"description"`
}
type skillDefinition struct {
Name string
Description string
Content string // SKILL.md body content
Dir string // Absolute path to skill directory
SkillPath string // Absolute path to SKILL.md
}
type skillCatalog struct {
Skills []skillDefinition
byName map[string]skillDefinition
}
```
**Key functions:**
- `loadSkills(paths []string)` - Walks skill directories, parses SKILL.md files
- `parseSkillFile(path, skillDir)` - Extracts YAML frontmatter and body content
- `SystemPrompt()` - Generates system prompt with skill instructions
- `Tools()` - Returns `run_skill_script` and `read_skill_file` tools
- `RunToolCall(call)` - Executes tool calls from the model
- `runSkillScript(skillDir, command)` - Executes shell commands in skill directory
**Tools provided to model:**
| Tool | Description |
|------|-------------|
| `run_skill_script` | Execute a script in a skill's directory |
| `read_skill_file` | Read a file from a skill's directory |
**Security note:** `runSkillScript` has documented limitations (no sandboxing, no path validation). See the function's doc comment for details.
---
### 2. `cmd/cmd.go`
**Changes to `runOptions` struct:**
```go
type runOptions struct {
// ... existing fields ...
IsAgent bool
AgentType string
Skills []string
}
```
**Agent detection in `RunHandler`** (~line 497-503):
```go
// Check if this is an agent
isAgent := info.AgentType != "" || len(info.Skills) > 0
if isAgent {
opts.IsAgent = true
opts.AgentType = info.AgentType
opts.Skills = info.Skills
}
```
**Route agents to chat API** (~line 557-562):
```go
// For agents, use chat API even in non-interactive mode to support tools
if opts.IsAgent {
opts.Messages = append(opts.Messages, api.Message{Role: "user", Content: opts.Prompt})
_, err := chat(cmd, opts)
return err
}
```
**Skills loading in `chat` function** (~line 1347-1361):
```go
var skillsCatalog *skillCatalog
if opts.IsAgent && len(opts.Skills) > 0 {
skillsCatalog, err = loadSkills(opts.Skills)
// ... error handling ...
// Print loaded skills
fmt.Fprintf(os.Stderr, "Loaded skills: %s\n", strings.Join(skillNames, ", "))
}
```
**System prompt injection** (~line 1448-1455):
- Skills system prompt is prepended to messages
**Tool execution** (~line 1497-1533):
- Executes pending tool calls via `skillsCatalog.RunToolCall()`
- Displays script execution and output to terminal
---
### 3. `parser/parser.go`
**New valid commands** in `isValidCommand()`:
```go
case "from", "license", "template", "system", "adapter", "renderer",
"parser", "parameter", "message", "requires", "skill", "agent_type":
```
**Command handling in `CreateRequest()`**:
```go
case "skill":
skills = append(skills, c.Args)
case "agent_type":
req.AgentType = c.Args
```
**Underscore support in command names** (~line 545):
```go
case isAlpha(r), r == '_':
return stateName, r, nil
```
---
### 4. `api/types.go`
**CreateRequest additions** (~line 560-564):
```go
// Skills is a list of skill directories for the agent
Skills []string `json:"skills,omitempty"`
// AgentType defines the type of agent (e.g., "conversational", "task-based")
AgentType string `json:"agent_type,omitempty"`
```
**ShowResponse additions** (~line 633-637):
```go
// Skills loaded for this agent
Skills []string `json:"skills,omitempty"`
// AgentType for this agent
AgentType string `json:"agent_type,omitempty"`
```
---
### 5. `types/model/config.go`
**ConfigV2 additions**:
```go
type ConfigV2 struct {
// ... existing fields ...
// Agent-specific fields
Skills []string `json:"skills,omitempty"`
AgentType string `json:"agent_type,omitempty"`
}
```
---
### 6. `server/create.go`
**Store agent fields** (~line 65-66):
```go
config.Skills = r.Skills
config.AgentType = r.AgentType
```
---
### 7. `server/routes.go`
**Return agent fields in ShowResponse** (~line 1107):
```go
resp := &api.ShowResponse{
// ... existing fields ...
Skills: m.Config.Skills,
AgentType: m.Config.AgentType,
}
```
---
### 8. `envconfig/config.go`
**Environment variable support**:
```go
func Skills() []string {
raw := strings.TrimSpace(Var("OLLAMA_SKILLS"))
if raw == "" {
return []string{}
}
return strings.Split(raw, ",")
}
```
---
## Agentfile Format
Agentfiles use the same syntax as Modelfiles with additional commands:
```dockerfile
FROM gpt-oss:20b
AGENT_TYPE conversational
SKILL /path/to/skills/directory
SYSTEM You are a helpful assistant.
PARAMETER temperature 0.3
PARAMETER top_p 0.9
```
| Command | Description |
|---------|-------------|
| `SKILL` | Path to a directory containing skill subdirectories |
| `AGENT_TYPE` | Type of agent (e.g., "conversational") |
---
## SKILL.md Format
Each skill is a directory with a `SKILL.md` file:
```
calculator-skill/
├── SKILL.md
└── scripts/
└── calculate.py
```
**SKILL.md structure:**
```markdown
---
name: calculator-skill
description: A skill for performing calculations.
---
# Calculator Skill
## Instructions
1. Use `run_skill_script` to execute calculations
2. Call: `python3 scripts/calculate.py '<expression>'`
## Examples
For "What is 25 * 4?":
- Call: run_skill_script with skill="calculator-skill" and command="python3 scripts/calculate.py '25 * 4'"
```
**Requirements:**
- `name` must match directory name
- `name` must be lowercase alphanumeric with hyphens only
- `name` max 64 characters
- `description` required, max 1024 characters
---
## Usage
```bash
# Create an agent
ollama create math-agent -f math-agent.Agentfile
# Run the agent
ollama run math-agent "What is 25 * 4?"
# Output:
# Loaded skills: calculator-skill
# Running script in calculator-skill: python3 scripts/calculate.py '25 * 4'
# Output:
# 25 * 4 = 100
```
---
## Flow Diagram
```
1. ollama run math-agent "query"
2. RunHandler detects agent (AgentType or Skills present)
3. Routes to chat() instead of generate()
4. loadSkills() parses SKILL.md files
5. SystemPrompt() injects skill instructions
6. Tools() provides run_skill_script, read_skill_file
7. Model generates response (may include tool calls)
8. RunToolCall() executes scripts, returns output
9. Display results to user
```
---
## Security Considerations
The `runSkillScript` function has known limitations documented in the code:
- No sandboxing (commands run with user permissions)
- No path validation (model can run any command)
- Shell injection risk (`sh -c` is used)
- No executable allowlist
- No environment isolation
**Potential improvements** (documented as TODOs):
- Restrict to skill directory paths only
- Allowlist executables (python3, node, bash)
- Use sandboxing (Docker, nsjail, seccomp)
- Require explicit script registration in SKILL.md

View File

@@ -50,7 +50,7 @@ Generate a response for a given prompt with a provided model. This is a streamin
Advanced parameters (optional):
- `format`: the format to return a response in. Format can be `json` or a JSON schema
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.mdx#valid-parameters-and-values) such as `temperature`
- `system`: system message to (overrides what is defined in the `Modelfile`)
- `template`: the prompt template to use (overrides what is defined in the `Modelfile`)
- `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects
@@ -507,7 +507,7 @@ The `message` object has the following fields:
Advanced parameters (optional):
- `format`: the format to return a response in. Format can be `json` or a JSON schema.
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.mdx#valid-parameters-and-values) such as `temperature`
- `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
@@ -1189,7 +1189,7 @@ If you are creating a model from a safetensors directory or from a GGUF file, yo
- `template`: (optional) the prompt template for the model
- `license`: (optional) a string or list of strings containing the license or licenses for the model
- `system`: (optional) a string containing the system prompt for the model
- `parameters`: (optional) a dictionary of parameters for the model (see [Modelfile](./modelfile.md#valid-parameters-and-values) for a list of parameters)
- `parameters`: (optional) a dictionary of parameters for the model (see [Modelfile](./modelfile.mdx#valid-parameters-and-values) for a list of parameters)
- `messages`: (optional) a list of message objects used to create a conversation
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
- `quantize` (optional): quantize a non-quantized (e.g. float16) model
@@ -1698,7 +1698,7 @@ Generate embeddings from a model
Advanced parameters:
- `truncate`: truncates the end of each input to fit within context length. Returns error if `false` and context length is exceeded. Defaults to `true`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.mdx#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
- `dimensions`: number of dimensions for the embedding
@@ -1817,7 +1817,7 @@ Generate embeddings from a model
Advanced parameters:
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.mdx#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
### Examples

View File

File diff suppressed because one or more lines are too long

View File

@@ -15,7 +15,7 @@ Also known as "single-shot" tool calling.
```shell
curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "qwen3",
"messages": [{"role": "user", "content": "What's the temperature in New York?"}],
"messages": [{"role": "user", "content": "What is the temperature in New York?"}],
"stream": false,
"tools": [
{
@@ -41,7 +41,7 @@ Also known as "single-shot" tool calling.
curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "qwen3",
"messages": [
{"role": "user", "content": "What's the temperature in New York?"},
{"role": "user", "content": "What is the temperature in New York?"},
{
"role": "assistant",
"tool_calls": [
@@ -90,7 +90,7 @@ Also known as "single-shot" tool calling.
}
return temperatures.get(city, "Unknown")
messages = [{"role": "user", "content": "What's the temperature in New York?"}]
messages = [{"role": "user", "content": "What is the temperature in New York?"}]
# pass functions directly as tools in the tools list or as a JSON schema
response = chat(model="qwen3", messages=messages, tools=[get_temperature], think=True)
@@ -146,7 +146,7 @@ Also known as "single-shot" tool calling.
},
]
const messages = [{ role: 'user', content: "What's the temperature in New York?" }]
const messages = [{ role: 'user', content: "What is the temperature in New York?" }]
const response = await ollama.chat({
model: 'qwen3',
@@ -609,7 +609,7 @@ def get_temperature(city: str) -> str:
return temperatures.get(city, 'Unknown')
messages = [{'role': 'user', 'content': "What's the temperature in New York?"}]
messages = [{'role': 'user', 'content': "What is the temperature in New York?"}]
while True:
stream = chat(
@@ -684,7 +684,7 @@ const getTemperatureTool = {
}
async function agentLoop() {
const messages = [{ role: 'user', content: "What's the temperature in New York?" }]
const messages = [{ role: 'user', content: "What is the temperature in New York?" }]
while (true) {
const stream = await ollama.chat({

View File

@@ -49,6 +49,8 @@ Install prerequisites:
- [Ninja](https://github.com/ninja-build/ninja/releases)
- (Optional) NVIDIA GPU support
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network)
- (Optional) VULKAN GPU support
- [VULKAN SDK](https://vulkan.lunarg.com/sdk/home) - useful for AMD/Intel GPUs
Then, configure and build the project:
@@ -57,6 +59,17 @@ cmake -B build
cmake --build build --config Release
```
> Building for Vulkan requires VULKAN_SDK environment variable:
>
> PowerShell
> ```powershell
> $env:VULKAN_SDK="C:\VulkanSDK\<version>"
> ```
> CMD
> ```cmd
> set VULKAN_SDK=C:\VulkanSDK\<version>
> ```
> [!IMPORTANT]
> Building for ROCm requires additional flags:
> ```
@@ -65,6 +78,7 @@ cmake --build build --config Release
> ```
Lastly, run Ollama:
```shell
@@ -84,7 +98,9 @@ Install prerequisites:
- [ROCm](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/quick-start.html)
- (Optional) NVIDIA GPU support
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads)
- (Optional) VULKAN GPU support
- [VULKAN SDK](https://vulkan.lunarg.com/sdk/home) - useful for AMD/Intel GPUs
- Or install via package manager: `sudo apt install vulkan-sdk` (Ubuntu/Debian) or `sudo dnf install vulkan-sdk` (Fedora/CentOS)
> [!IMPORTANT]
> Ensure prerequisites are in `PATH` before running CMake.

View File

@@ -14,11 +14,11 @@ curl -fsSL https://ollama.com/install.sh | sh
## How can I view the logs?
Review the [Troubleshooting](./troubleshooting.md) docs for more about using logs.
Review the [Troubleshooting](./troubleshooting) docs for more about using logs.
## Is my GPU compatible with Ollama?
Please refer to the [GPU docs](./gpu.md).
Please refer to the [GPU docs](./gpu).
## How can I specify the context window size?
@@ -57,8 +57,13 @@ ollama ps
```
<Info>
**Output**: ``` NAME ID SIZE PROCESSOR UNTIL llama3:70b bcfb190ca3a7 42 GB
100% GPU 4 minutes from now ```
**Output**:
```
NAME ID SIZE PROCESSOR UNTIL
llama3:70b bcfb190ca3a7 42 GB 100% GPU 4 minutes from now
```
</Info>
The `Processor` column will show which memory the model was loaded in to:
@@ -385,4 +390,4 @@ Ollama for Windows and macOS register as a login item during installation. You
- In `Task Manager` go to the `Startup apps` tab, search for `ollama` then click `Disable`
**MacOS**
- Open `Settings` and search for "Login Items", find the `Ollama` entry under "Allow in the Background`, then click the slider to disable.
- Open `Settings` and search for "Login Items", find the `Ollama` entry under "Allow in the Background`, then click the slider to disable.

View File

@@ -33,7 +33,7 @@ Check your compute compatibility to see if your card is supported:
| 5.0 | GeForce GTX | `GTX 750 Ti` `GTX 750` `NVS 810` |
| | Quadro | `K2200` `K1200` `K620` `M1200` `M520` `M5000M` `M4000M` `M3000M` `M2000M` `M1000M` `K620M` `M600M` `M500M` |
For building locally to support older GPUs, see [developer.md](./development.md#linux-cuda-nvidia)
For building locally to support older GPUs, see [developer](./development#linux-cuda-nvidia)
### GPU Selection
@@ -54,7 +54,7 @@ sudo modprobe nvidia_uvm`
Ollama supports the following AMD GPUs via the ROCm library:
> [!NOTE]
> **NOTE:**
> Additional AMD GPU support is provided by the Vulkan Library - see below.
@@ -132,9 +132,9 @@ Ollama supports GPU acceleration on Apple devices via the Metal API.
## Vulkan GPU Support
> [!NOTE]
> **NOTE:**
> Vulkan is currently an Experimental feature. To enable, you must set OLLAMA_VULKAN=1 for the Ollama server as
described in the [FAQ](faq.md#how-do-i-configure-ollama-server)
described in the [FAQ](faq#how-do-i-configure-ollama-server)
Additional GPU support on Windows and Linux is provided via
[Vulkan](https://www.vulkan.org/). On Windows most GPU vendors drivers come
@@ -161,6 +161,6 @@ sudo setcap cap_perfmon+ep /usr/local/bin/ollama
To select specific Vulkan GPU(s), you can set the environment variable
`GGML_VK_VISIBLE_DEVICES` to one or more numeric IDs on the Ollama server as
described in the [FAQ](faq.md#how-do-i-configure-ollama-server). If you
described in the [FAQ](faq#how-do-i-configure-ollama-server). If you
encounter any problems with Vulkan based GPUs, you can disable all Vulkan GPUs
by setting `GGML_VK_VISIBLE_DEVICES=-1`

265
docs/mcp-integration.md Normal file
View File

@@ -0,0 +1,265 @@
# MCP (Model Context Protocol) Integration
This document describes the MCP integration for Ollama agents, enabling agents to use external tools via the Model Context Protocol.
## Overview
MCP allows Ollama agents to communicate with external tool servers over JSON-RPC 2.0 via stdio. This enables agents to access capabilities like web search, file operations, databases, and more through standardized tool interfaces.
## Status
| Phase | Description | Status |
|-------|-------------|--------|
| Phase 1 | Types & Parser | ✅ Complete |
| Phase 2 | Layer Handling | ✅ Complete |
| Phase 3 | Runtime Manager | ✅ Complete |
| Phase 4 | CLI Commands | ✅ Complete |
## Agentfile Syntax
### Simple Command Format
```dockerfile
MCP <name> <command> [args...]
```
Example:
```dockerfile
FROM llama3.2
AGENT TYPE conversational
SYSTEM You are a helpful assistant with MCP tools.
MCP calculator python3 ./mcp-server.py
MCP websearch node ./search-server.js
```
### JSON Format
```dockerfile
MCP {"name": "custom", "command": "uv", "args": ["run", "server.py"], "env": {"API_KEY": "xxx"}}
```
## Architecture
### Type Definitions
**MCPRef** (`types/model/config.go`):
```go
type MCPRef struct {
Name string `json:"name,omitempty"`
Digest string `json:"digest,omitempty"`
Command string `json:"command,omitempty"`
Args []string `json:"args,omitempty"`
Env map[string]string `json:"env,omitempty"`
Type string `json:"type,omitempty"` // "stdio"
}
```
### Tool Namespacing
MCP tools are namespaced to avoid conflicts:
- Format: `mcp_{serverName}_{toolName}`
- Example: Server "calculator" with tool "add" → `mcp_calculator_add`
### Runtime Flow
1. Agent starts → MCP servers spawn as subprocesses
2. Initialize via JSON-RPC: `initialize``notifications/initialized`
3. Discover tools: `tools/list`
4. During chat, model calls tools → routed via `tools/call`
5. On shutdown, MCP servers are gracefully terminated
## Files
### Created
| File | Purpose |
|------|---------|
| `cmd/mcp.go` | Runtime MCP manager with JSON-RPC protocol |
| `cmd/mcp_cmd.go` | CLI commands for managing MCPs (push, pull, list, etc.) |
| `server/mcp.go` | MCP layer utilities (extraction, creation) |
### Modified
| File | Changes |
|------|---------|
| `types/model/config.go` | Added `MCPRef` type, `MCPs` field to `ConfigV2` |
| `types/model/name.go` | Added `"mcp"` to `ValidKinds` for 5-part name parsing |
| `api/types.go` | Added `MCPRef` alias, `MCPs` to `CreateRequest`/`ShowResponse` |
| `parser/parser.go` | Added `MCP` command parsing with JSON and simple formats |
| `server/create.go` | Added `setMCPLayers()` for MCP config handling |
| `server/routes.go` | Added `MCPs` to show response |
| `cmd/cmd.go` | MCP integration in `chat()` function |
| `cmd/interactive.go` | Added `/mcp` and `/mcps` REPL commands |
## Usage Example
### 1. Create an MCP Server
```python
#!/usr/bin/env python3
# mcp-server.py
import json
import sys
def handle_request(req):
method = req.get("method", "")
if method == "initialize":
return {
"protocolVersion": "2024-11-05",
"capabilities": {"tools": {}},
"serverInfo": {"name": "example", "version": "1.0"}
}
elif method == "tools/list":
return {
"tools": [{
"name": "add",
"description": "Adds two numbers",
"inputSchema": {
"type": "object",
"properties": {
"a": {"type": "number"},
"b": {"type": "number"}
},
"required": ["a", "b"]
}
}]
}
elif method == "tools/call":
args = req["params"]["arguments"]
return {"content": [{"type": "text", "text": f"{args['a'] + args['b']}"}]}
return {}
for line in sys.stdin:
req = json.loads(line)
if "id" in req:
result = handle_request(req)
print(json.dumps({"jsonrpc": "2.0", "id": req["id"], "result": result}), flush=True)
```
### 2. Create an Agent
```dockerfile
# my-agent.Agentfile
FROM gpt-oss:20b
AGENT TYPE conversational
SYSTEM You have access to a calculator. Use the add tool when asked to add numbers.
MCP calculator python3 ./mcp-server.py
```
### 3. Build and Run
```bash
ollama create my-agent -f my-agent.Agentfile
ollama run my-agent "What is 15 + 27?"
```
Output:
```
Loaded MCP servers: calculator (1 tools)
Executing: mcp_calculator_add
Output: 42
The result is 42.
```
## CLI Commands
The `ollama mcp` command provides utilities for managing MCP servers:
### Global Config Commands
Add an MCP server to the global config (`~/.ollama/mcp.json`):
```bash
# Add MCP to global config (available to all agents)
ollama mcp add web-search uv run ./mcp-server.py
ollama mcp add calculator python3 /path/to/calc.py
# List global MCP servers (shows enabled/disabled status)
ollama mcp list-global
# Disable an MCP server (keeps in config but won't be loaded)
ollama mcp disable web-search
# Re-enable a disabled MCP server
ollama mcp enable web-search
# Remove from global config
ollama mcp remove-global web-search
```
### Registry Commands
Package and push MCPs to a registry:
```bash
# Push MCP to registry (creates locally first)
ollama mcp push mcp/websearch:1.0 ./my-mcp-server/
# Pull MCP from registry
ollama mcp pull mcp/websearch:1.0
# List installed MCPs (from registry)
ollama mcp list
# Show MCP details
ollama mcp show mcp/websearch:1.0
# Remove MCP
ollama mcp rm mcp/websearch:1.0
```
## REPL Commands
Inside `ollama run`, you can manage MCP servers dynamically:
```
>>> /mcp # Show all MCP servers (model + global)
>>> /mcp add calc python3 ./calc-server.py # Add MCP server to global config
>>> /mcp remove calc # Remove MCP server from global config
>>> /mcp disable calc # Disable an MCP server (keep in config)
>>> /mcp enable calc # Re-enable a disabled MCP server
>>> /? mcp # Get help for MCP commands
```
The `/mcp` command shows all available MCP servers (both bundled with the model and from global config). Disabled servers are shown with a `[disabled]` marker. Use `/mcp add` and `/mcp remove` to manage MCPs in `~/.ollama/mcp.json`. Changes take effect on the next message.
## Global Config
MCPs can be configured globally in `~/.ollama/mcp.json`:
```json
{
"mcpServers": {
"web-search": {
"type": "stdio",
"command": "uv",
"args": ["run", "./mcp-server.py"]
},
"calculator": {
"type": "stdio",
"command": "python3",
"args": ["/path/to/calc.py"],
"disabled": true
}
}
}
```
The `disabled` field is optional. When set to `true`, the MCP server will not be loaded when running agents.
## Future Enhancements
1. **Remote Registry Push/Pull**: Full support for pushing/pulling MCPs to/from remote registries
2. **Use go-sdk**: Consider using `github.com/modelcontextprotocol/go-sdk` for protocol handling
3. **Resource Support**: Add MCP resources (not just tools)
4. **Prompt Support**: Add MCP prompts
## Protocol Reference
MCP uses JSON-RPC 2.0 over stdio with these key methods:
| Method | Direction | Purpose |
|--------|-----------|---------|
| `initialize` | Client→Server | Handshake with capabilities |
| `notifications/initialized` | Client→Server | Confirm initialization |
| `tools/list` | Client→Server | Discover available tools |
| `tools/call` | Client→Server | Execute a tool |
See [MCP Specification](https://modelcontextprotocol.io/docs) for full details.

View File

@@ -41,6 +41,7 @@ INSTRUCTION arguments
| [`ADAPTER`](#adapter) | Defines the (Q)LoRA adapters to apply to the model. |
| [`LICENSE`](#license) | Specifies the legal license. |
| [`MESSAGE`](#message) | Specify message history. |
| [`REQUIRES`](#requires) | Specify the minimum version of Ollama required by the model. |
## Examples
@@ -248,6 +249,16 @@ MESSAGE user Is Ontario in Canada?
MESSAGE assistant yes
```
### REQUIRES
The `REQUIRES` instruction allows you to specify the minimum version of Ollama required by the model.
```
REQUIRES <version>
```
The version should be a valid Ollama version (e.g. 0.14.0).
## Notes
- the **`Modelfile` is not case sensitive**. In the examples, uppercase instructions are used to make it easier to distinguish it from arguments.

View File

@@ -0,0 +1,362 @@
# Skill Registry Design
## Overview
Skills are distributable capability packages for Ollama agents. They can be:
- Bundled with agents at creation time (local paths)
- Pulled from the registry (skill references)
- Pushed to the registry for sharing
## User Experience
### Push a Skill
```bash
# Push a local skill directory to the registry
ollama skill push myname/calculator:1.0.0 ./skills/calculator-skill
# Output:
# Creating skill layer for skill/myname/calculator:1.0.0
# pushing sha256:abc123... 1.2KB
# pushing sha256:def456... 220B
# pushing manifest
# Successfully pushed skill/myname/calculator:1.0.0
```
### Pull a Skill
```bash
# Pull a skill from the registry
ollama skill pull calculator:1.0.0
# Output:
# pulling manifest
# pulling sha256:abc123... 1.2KB
# extracting skill...
# Successfully pulled skill/calculator:1.0.0
```
### List Installed Skills
```bash
ollama skill list
# Output:
# NAME TAG SIZE MODIFIED
# skill/calculator 1.0.0 1.2 KB 2 hours ago
# skill/myname/hello latest 0.8 KB 1 day ago
```
### Remove a Skill
```bash
ollama skill rm calculator:1.0.0
# Deleted 'skill/calculator:1.0.0'
```
### Use Skills in Agentfile
```dockerfile
FROM llama3.2:3b
AGENT_TYPE conversational
SKILL skill/calculator:1.0.0 # Registry reference
SKILL ./local-skill # Local path (for development)
SYSTEM You are a helpful assistant.
```
## Technical Implementation
### Skill Manifest Format
```json
{
"schemaVersion": 2,
"mediaType": "application/vnd.docker.distribution.manifest.v2+json",
"config": {
"mediaType": "application/vnd.docker.container.image.v1+json",
"digest": "sha256:config...",
"size": 220
},
"layers": [
{
"mediaType": "application/vnd.ollama.image.skill",
"digest": "sha256:skill...",
"size": 1234
}
]
}
```
### Skill Config Format
```json
{
"name": "calculator",
"description": "A skill for performing calculations",
"architecture": "amd64",
"os": "linux"
}
```
### Storage Layout
Skills use a 5-part manifest structure: `host/namespace/kind/model/tag`
```
~/.ollama/models/
├── blobs/
│ └── sha256-<skill-digest> # Skill tar.gz blob
├── manifests/
│ └── registry.ollama.ai/
│ └── library/
│ └── skill/ # Kind = skill
│ └── calculator/
│ └── 1.0.0
│ └── myname/
│ └── skill/ # User skills
│ └── my-skill/
│ └── latest
└── skills/
└── sha256-<digest>/ # Extracted skill cache
├── SKILL.md
└── scripts/
```
### Name Structure
Skills use a 5-part name structure with `kind` to distinguish from models:
| Skill Reference | Namespace | Kind | Model | Tag |
|-----------------|-----------|------|-------|-----|
| `skill/calculator:1.0.0` | library | skill | calculator | 1.0.0 |
| `myname/skill/calc:latest` | myname | skill | calc | latest |
### Media Type
```go
const MediaTypeSkill = "application/vnd.ollama.image.skill"
```
### Key Types
```go
// SkillRef represents a skill reference in agent config
type SkillRef struct {
Name string `json:"name,omitempty"` // "calculator-skill" or "myname/skill/calc:1.0.0"
Digest string `json:"digest,omitempty"` // "sha256:abc..." (set when bundled)
}
// model.Name represents a parsed 5-part name
type Name struct {
Host string // "registry.ollama.ai"
Namespace string // "library" or "myname"
Kind string // "skill" or "agent" or "" for models
Model string // "calculator"
Tag string // "1.0.0"
}
```
## Implementation Files
### Client (ollama)
| File | Purpose |
|------|---------|
| `server/skill.go` | Skill blob handling, path parsing, extraction |
| `cmd/skill_cmd.go` | CLI commands (push, pull, list, rm, show) |
| `cmd/skills.go` | Skill loading and catalog management |
| `server/create.go` | Skill layer creation during agent create |
| `server/images.go` | Skill extraction during pull |
| `types/model/config.go` | SkillRef type definition |
### Registry (ollama.com)
| File | Purpose |
|------|---------|
| `ollamadotcom/registry/store.go` | MediaTypeSkill constant |
| `ollamadotcom/store/store.go` | RecordPush handles skill layers |
## Registry Integration
### What Works
- Blob uploads (content-addressable, no auth required)
- Layer indexing (skill layers stored with mediatype)
- Manifest structure (4-part path compatible)
### What's Needed
1. **Namespace Configuration**: The `skill` namespace needs to be configured with:
- Public read access
- Authenticated write access
2. **Permission Model**: Decide who can push to `skill/` namespace:
- Only Ollama team (curated library)
- Verified publishers
- Anyone (open registry)
## Pull Flow
### Agent with Bundled Skills
```
ollama pull my-agent
→ GET manifest (includes skill layers)
→ Download all blobs (model + skills)
→ Extract skill blobs to ~/.ollama/models/skills/
→ Ready to run
```
### Standalone Skill
```
ollama skill pull calculator:1.0.0
→ Parse as skill/calculator:1.0.0
→ Convert to model.Name{Namespace: "skill", Model: "calculator", Tag: "1.0.0"}
→ GET manifest from registry
→ Download skill blob
→ Extract to ~/.ollama/models/skills/sha256-<digest>/
→ Available for agents to reference
```
## Push Flow
```
ollama skill push myname/calculator:1.0.0 ./my-skill
→ Validate SKILL.md exists
→ Create tar.gz of skill directory
→ Compute SHA256 digest
→ Store blob locally
→ Create skill manifest with config layer
→ Store manifest locally
→ Push blobs to registry
→ Push manifest to registry
```
## Backward Compatibility
- Old agents with `Skills: []string` (paths) continue to work
- New agents use `Skills: []SkillRef` with name and digest
- Parser detects format and handles both
## Local Registry Testing
To test push/pull locally, you need MinIO and the Docker registry running:
```bash
# 1. Start MinIO (for blob storage)
minio server ~/.minio-data --console-address ':9001' &
# 2. Create the ollama-dev bucket (first time only)
mc config host add local http://localhost:9000 minioadmin minioadmin
mc mb local/ollama-dev
# 3. Start the registry (from ollama.com repo)
cd /path/to/ollama.com/registry
go run cmd/registry/main.go serve config-dev.yml &
# 4. Verify registry is running
curl http://localhost:6000/v2/
```
**Important:** The `config-dev.yml` must have matching ports:
```yaml
http:
addr: :6000
host: http://localhost:6000 # Must match addr!
```
### Test Commands
```bash
# Push skill from local folder
ollama skill push localhost:6000/testuser/skill/calculator:1.0.0 ./skills/calculator-skill --insecure
# Pull skill from registry
ollama skill pull localhost:6000/testuser/skill/calculator:1.0.0 --insecure
# List skills
ollama skill list
# Show skill
ollama skill show localhost:6000/testuser/skill/calculator:1.0.0
```
## Architecture Diagram
```mermaid
graph TB
subgraph "Skill Naming Structure"
A["skill/calculator:1.0.0"] --> B["host: registry.ollama.ai"]
A --> C["namespace: library"]
A --> D["kind: skill"]
A --> E["model: calculator"]
A --> F["tag: 1.0.0"]
end
subgraph "Storage Layout"
G["~/.ollama/models/"]
G --> H["blobs/"]
H --> I["sha256-<skill-digest>"]
G --> J["manifests/"]
J --> K["registry.ollama.ai/"]
K --> L["library/skill/calculator/1.0.0"]
K --> M["myname/skill/my-skill/latest"]
G --> N["skills/"]
N --> O["sha256-<digest>/"]
O --> P["SKILL.md"]
O --> Q["scripts/"]
end
subgraph "Push Flow"
R["User Command: ollama skill push"]
R --> S["Validate SKILL.md"]
S --> T["Create tar.gz of skill dir"]
T --> U["Compute SHA256 digest"]
U --> V["Store blob locally"]
V --> W["Create skill manifest"]
W --> X["Store manifest locally"]
X --> Y["Push blobs to registry"]
Y --> Z["Push manifest to registry"]
end
subgraph "Pull Flow - Standalone Skill"
AA["User Command: ollama skill pull"]
AA --> AB["Parse name structure"]
AB --> AC["GET manifest from registry"]
AC --> AD["Download skill blob"]
AD --> AE["Extract to skills/ directory"]
AE --> AF["Available for agents"]
end
subgraph "Pull Flow - Agent with Skills"
AG["Pull Agent: ollama pull my-agent"]
AG --> AH["GET manifest (includes skill layers)"]
AH --> AI["Download all blobs (model + skills)"]
AI --> AJ["Extract skill blobs"]
AJ --> AK["Ready to run"]
end
subgraph "Agentfile Integration"
AL["Agentfile"]
AL --> AM["FROM llama3.2:3b"]
AL --> AN["SKILL skill/calculator:1.0.0"]
AL --> AO["SKILL ./local-skill"]
AO --> AP["Local path (development)"]
AN --> AQ["Registry reference"]
end
subgraph "Registry Components"
AR["Registry Server"]
AR --> AS["Blob Storage (MinIO)"]
AR --> AT["Layer Indexing"]
AR --> AU["Manifest Storage"]
AR --> AV["Namespace Config"]
end
Z --> AR
AC --> AR
AH --> AR
```

548
docs/skills.md Normal file
View File

@@ -0,0 +1,548 @@
# Ollama Skills
Skills are reusable capability packages that extend what agents can do. They bundle instructions, scripts, and data that teach an agent how to perform specific tasks.
## Quick Start
### Creating a Skill
Create a directory with a `SKILL.md` file:
```
my-skill/
├── SKILL.md # Required: Instructions for the agent
└── scripts/ # Optional: Executable scripts
└── run.py
```
The `SKILL.md` file must have YAML frontmatter:
```markdown
---
name: my-skill
description: A brief description of what this skill does
---
# My Skill
## Purpose
Explain what this skill does and when to use it.
## Instructions
Step-by-step instructions for the agent on how to use this skill.
## Examples
Show example inputs and expected outputs.
```
### Using Skills in an Agent
Reference skills in your Agentfile:
```dockerfile
FROM llama3.2:3b
AGENT_TYPE conversational
# Local skill (bundled with agent)
SKILL ./path/to/my-skill
# Registry skill (pulled from ollama.com)
SKILL library/skill/calculator:1.0.0
# User skill from registry
SKILL myname/skill/calculator:1.0.0
SYSTEM You are a helpful assistant.
```
### Managing Skills
```bash
# Push a skill to the registry (uses your namespace)
ollama skill push myname/skill/calculator:1.0.0 ./my-skill
# Pull a skill from the official library
ollama skill pull skill/calculator:1.0.0
# Pull a skill from a user's namespace
ollama skill pull myname/skill/calculator:1.0.0
# List installed skills
ollama skill list
# Show skill details
ollama skill show skill/calculator:1.0.0
# Remove a skill
ollama skill rm skill/calculator:1.0.0
```
### Dynamic Skills in Chat
You can add and remove skills dynamically during an interactive chat session:
```
>>> /skills
Available Skills:
calculator (sha256:abc123def456...)
>>> /skill add ./my-local-skill
Added skill 'my-skill' from ./my-local-skill
>>> /skill list
Skills loaded in this session:
my-skill (local: /path/to/my-local-skill)
>>> /skill remove my-skill
Removed skill 'my-skill'
```
| Command | Description |
|---------|-------------|
| `/skills` | Show all available skills (model + session) |
| `/skill add <path>` | Add a skill from a local path |
| `/skill remove <name>` | Remove a skill by name |
| `/skill list` | List skills loaded in this session |
Dynamic skills take effect on the next message. This is useful for:
- Testing skills during development
- Temporarily adding capabilities to a model
- Experimenting with skill combinations
## Skill Reference Formats
Skills use a 5-part name structure: `host/namespace/kind/model:tag`
| Format | Example | Description |
|--------|---------|-------------|
| Local path | `./skills/calc` | Bundled with agent at create time |
| Library skill | `skill/calculator:1.0.0` | From the official skill library (library/skill/calculator) |
| User skill | `alice/skill/calc:1.0.0` | From a user's namespace |
| Full path | `registry.ollama.ai/alice/skill/calc:1.0.0` | Fully qualified with host |
The `kind` field distinguishes skills from models:
- `skill` - Skill packages
- `agent` - Agent packages (future)
- (empty) - Regular models
## SKILL.md Structure
### Required Frontmatter
```yaml
---
name: skill-name # Must match directory name
description: Brief description of the skill
---
```
### Recommended Sections
1. **Purpose**: What the skill does and when to use it
2. **When to use**: Trigger conditions for the agent
3. **Instructions**: Step-by-step usage guide
4. **Examples**: Input/output examples
5. **Scripts**: Documentation for any bundled scripts
### Example: Calculator Skill
```markdown
---
name: calculator
description: Performs mathematical calculations using Python
---
# Calculator Skill
## Purpose
This skill performs mathematical calculations using a bundled Python script.
## When to use
- User asks to calculate something
- User wants to do math operations
- Any arithmetic is needed
## Instructions
1. When calculation is needed, use the `run_skill_script` tool
2. Call: `python3 scripts/calculate.py "<expression>"`
3. Return the result to the user
## Examples
**Input**: "What is 25 * 4?"
**Action**: `run_skill_script` with command `python3 scripts/calculate.py '25 * 4'`
**Output**: "25 * 4 = 100"
```
## Storage Layout
```
~/.ollama/models/
├── blobs/
│ └── sha256-<digest> # Skill tar.gz blob
├── manifests/
│ └── registry.ollama.ai/
│ └── skill/ # Library skills
│ └── calculator/
│ └── 1.0.0
│ └── skill-username/ # User skills
│ └── my-skill/
│ └── latest
└── skills/
└── sha256-<digest>/ # Extracted skill cache
├── SKILL.md
└── scripts/
```
---
# Security Considerations
## Current State (Development)
The current implementation has several security considerations that need to be addressed before production use.
### 1. Script Execution
**Risk**: Skills can bundle arbitrary scripts that execute on the host system.
**Current behavior**:
- Scripts run with the same permissions as the Ollama process
- No sandboxing or isolation
- Full filesystem access
**Mitigations needed**:
- [ ] Sandbox script execution (containers, seccomp, etc.)
- [ ] Resource limits (CPU, memory, time)
- [ ] Filesystem isolation (read-only mounts, restricted paths)
- [ ] Network policy controls
- [ ] Capability dropping
### 2. Skill Provenance
**Risk**: Malicious skills could be pushed to the registry.
**Current behavior**:
- No code signing or verification
- No malware scanning
- Trust based on namespace ownership
**Mitigations needed**:
- [ ] Skill signing with author keys
- [ ] Registry-side malware scanning
- [ ] Content policy enforcement
- [ ] Reputation system for skill authors
### 3. Namespace Squatting
**Risk**: Malicious actors could register skill names that impersonate official tools.
**Current behavior**:
- First-come-first-served namespace registration
- No verification of skill names
**Mitigations needed**:
- [ ] Reserved namespace list (official tools, common names)
- [ ] Trademark/name verification for popular skills
- [ ] Clear namespacing conventions
### 4. Supply Chain Attacks
**Risk**: Compromised skills could inject malicious code into agents.
**Current behavior**:
- Skills pulled without integrity verification beyond digest
- No dependency tracking
**Mitigations needed**:
- [ ] SBOM (Software Bill of Materials) for skills
- [ ] Dependency vulnerability scanning
- [ ] Pinned versions in Agentfiles
- [ ] Audit logging of skill usage
### 5. Data Exfiltration
**Risk**: Skills could exfiltrate sensitive data from conversations or the host.
**Current behavior**:
- Skills have access to conversation context
- Scripts can make network requests
**Mitigations needed**:
- [ ] Network egress controls
- [ ] Sensitive data detection/masking
- [ ] Audit logging of script network activity
- [ ] User consent for data access
### 6. Privilege Escalation
**Risk**: Skills could escalate privileges through script execution.
**Current behavior**:
- Scripts inherit Ollama process privileges
- No capability restrictions
**Mitigations needed**:
- [ ] Run scripts as unprivileged user
- [ ] Drop all capabilities
- [ ] Mandatory access controls (SELinux/AppArmor)
## Recommended Security Model
### Skill Trust Levels
```
┌─────────────────────────────────────────────────────────────┐
│ Level 0: Untrusted (default) │
│ - No script execution │
│ - Instructions only │
│ - Safe for any skill │
├─────────────────────────────────────────────────────────────┤
│ Level 1: Sandboxed │
│ - Scripts run in isolated container │
│ - No network access │
│ - Read-only filesystem │
│ - Resource limits enforced │
├─────────────────────────────────────────────────────────────┤
│ Level 2: Trusted │
│ - Scripts run with network access │
│ - Can write to designated directories │
│ - Requires explicit user approval │
├─────────────────────────────────────────────────────────────┤
│ Level 3: Privileged (admin only) │
│ - Full host access │
│ - System administration skills │
│ - Requires admin approval │
└─────────────────────────────────────────────────────────────┘
```
### Skill Manifest Security Fields (Future)
```yaml
---
name: my-skill
description: A skill description
security:
trust_level: sandboxed
permissions:
- network:read # Can make HTTP GET requests
- filesystem:read:/data # Can read from /data
resource_limits:
max_memory: 256MB
max_cpu_time: 30s
max_disk: 100MB
signature: sha256:abc... # Author signature
---
```
---
# Future Considerations
## Feature Roadmap
### Phase 1: Foundation (Current)
- [x] Skill bundling with agents
- [x] Local skill development
- [x] Basic CLI commands (push, pull, list, rm, show)
- [x] Registry blob storage
- [ ] Registry namespace configuration
### Phase 2: Security
- [ ] Script sandboxing
- [ ] Permission model
- [ ] Skill signing
- [ ] Audit logging
### Phase 3: Discovery
- [ ] Skill search on ollama.com
- [ ] Skill ratings and reviews
- [ ] Usage analytics
- [ ] Featured/trending skills
### Phase 4: Advanced Features
- [ ] Skill dependencies
- [ ] Skill versioning constraints
- [ ] Skill composition (skills using skills)
- [ ] Skill testing framework
## Open Questions
### 1. Skill Execution Model
**Question**: How should skills execute scripts?
Options:
- **A) In-process**: Fast but unsafe
- **B) Subprocess**: Current approach, moderate isolation
- **C) Container**: Good isolation, requires container runtime
- **D) WASM**: Portable and safe, limited capabilities
- **E) Remote execution**: Offload to secure service
### 2. Skill Versioning
**Question**: How strict should version pinning be?
Options:
- **A) Always latest**: Simple but risky
- **B) Semantic versioning**: `^1.0.0` allows minor updates
- **C) Exact pinning**: `=1.0.0` requires explicit updates
- **D) Digest pinning**: `@sha256:abc` immutable reference
### 3. Skill Permissions
**Question**: How should users grant permissions to skills?
Options:
- **A) All or nothing**: Accept all permissions or don't use
- **B) Granular consent**: Approve each permission individually
- **C) Trust levels**: Pre-defined permission bundles
- **D) Runtime prompts**: Ask when permission is first used
### 4. Skill Discovery
**Question**: How should users find skills?
Options:
- **A) Central registry only**: ollama.com/skills
- **B) Federated registries**: Multiple skill sources
- **C) Git repositories**: Pull from GitHub, etc.
- **D) All of the above**: Multiple discovery mechanisms
### 5. Skill Monetization
**Question**: Should skill authors be able to monetize?
Options:
- **A) Free only**: All skills are free and open
- **B) Paid skills**: Authors can charge for skills
- **C) Freemium**: Free tier with paid features
- **D) Donations**: Voluntary support for authors
### 6. Skill Updates
**Question**: How should skill updates be handled?
Options:
- **A) Manual**: User explicitly updates
- **B) Auto-update**: Always use latest
- **C) Notify**: Alert user to available updates
- **D) Policy-based**: Organization controls update policy
## API Considerations
### Skill Metadata API
```
GET /api/skills
GET /api/skills/:namespace/:name
GET /api/skills/:namespace/:name/versions
GET /api/skills/:namespace/:name/readme
```
### Skill Execution API
```
POST /api/skills/:namespace/:name/execute
{
"command": "python3 scripts/run.py",
"args": ["--input", "data"],
"timeout": 30
}
```
### Skill Permissions API
```
GET /api/skills/:namespace/:name/permissions
POST /api/skills/:namespace/:name/permissions/grant
DELETE /api/skills/:namespace/:name/permissions/revoke
```
## Testing Considerations
### Skill Testing Framework
```bash
# Run skill tests
ollama skill test ./my-skill
# Test with specific model
ollama skill test ./my-skill --model llama3.2:3b
# Generate test report
ollama skill test ./my-skill --report
```
### Test File Format
```yaml
# my-skill/tests/test.yaml
tests:
- name: "basic calculation"
input: "What is 2 + 2?"
expect:
contains: "4"
tool_called: "run_skill_script"
- name: "complex expression"
input: "Calculate 15% of 200"
expect:
contains: "30"
```
## Compatibility Considerations
### Minimum Ollama Version
Skills should declare minimum Ollama version:
```yaml
---
name: my-skill
requires:
ollama: ">=0.4.0"
---
```
### Model Compatibility
Skills may require specific model capabilities:
```yaml
---
name: vision-skill
requires:
capabilities:
- vision
- tools
---
```
## Migration Path
### From Local to Registry
```bash
# Develop locally
SKILL ./my-skill
# Push when ready
ollama skill push myname/my-skill:1.0.0 ./my-skill
# Update Agentfile
SKILL skill/myname/my-skill:1.0.0
```
### Version Upgrades
```bash
# Check for updates
ollama skill outdated
# Update specific skill
ollama skill update calculator:1.0.0
# Update all skills
ollama skill update --all
```

View File

@@ -0,0 +1,46 @@
# extract-examples
Extracts code examples from MDX files to a temp directory so you can run them.
## Usage
```shell
go run docs/tools/extract-examples/main.go <mdx-file>
```
## Example
```shell
go run docs/tools/extract-examples/main.go docs/api/openai-compatibility.mdx
```
Output:
```
Extracting code examples to: /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368
- 01_basic.py
- 01_basic.js
- 01_basic.sh
- 02_responses.py
- 02_responses.js
- 02_responses.sh
- 03_vision.py
- 03_vision.js
- 03_vision.sh
Extracted 9 file(s) to /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368
To run examples:
cd /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368
npm install # for JS examples
then run individual files with `node file.js`, `python file.py`, `bash file.sh`
```
## How it works
- Parses MDX files looking for fenced code blocks with filenames (e.g., ` ```python basic.py `)
- Groups examples by their `<CodeGroup>` and prefixes filenames with `01_`, `02_`, etc.
- Writes all extracted files to a temp directory

View File

@@ -0,0 +1,137 @@
package main
import (
"bufio"
"fmt"
"os"
"path/filepath"
"regexp"
"strings"
)
func main() {
if len(os.Args) < 2 {
fmt.Fprintln(os.Stderr, "Usage: go run extract-examples.go <mdx-file>")
os.Exit(1)
}
mdxFile := os.Args[1]
f, err := os.Open(mdxFile)
if err != nil {
fmt.Fprintf(os.Stderr, "Error: %v\n", err)
os.Exit(1)
}
defer f.Close()
// Create temp directory
tempDir, err := os.MkdirTemp("", "mdx-examples-*")
if err != nil {
fmt.Fprintf(os.Stderr, "Error creating temp dir: %v\n", err)
os.Exit(1)
}
fmt.Printf("Extracting code examples to: %s\n\n", tempDir)
// Patterns
codeBlockStart := regexp.MustCompile("^```([a-zA-Z0-9_-]+)\\s+([^\\s]+)$")
codeGroupStart := regexp.MustCompile("^<CodeGroup")
codeGroupEnd := regexp.MustCompile("^</CodeGroup>")
scanner := bufio.NewScanner(f)
inCodeBlock := false
inCodeGroup := false
var currentFile string
var content strings.Builder
count := 0
codeGroupNum := 0
for scanner.Scan() {
line := scanner.Text()
// Track CodeGroup boundaries
if codeGroupStart.MatchString(line) {
inCodeGroup = true
codeGroupNum++
continue
}
if codeGroupEnd.MatchString(line) {
inCodeGroup = false
continue
}
if inCodeBlock {
if line == "```" {
// End of code block - write file
if currentFile != "" {
outPath := filepath.Join(tempDir, currentFile)
if err := os.WriteFile(outPath, []byte(content.String()), 0o644); err != nil {
fmt.Fprintf(os.Stderr, "Error writing %s: %v\n", currentFile, err)
} else {
fmt.Printf(" - %s\n", currentFile)
count++
}
}
inCodeBlock = false
currentFile = ""
content.Reset()
} else {
content.WriteString(line)
content.WriteString("\n")
}
} else {
if matches := codeBlockStart.FindStringSubmatch(line); matches != nil {
inCodeBlock = true
filename := matches[2]
// Prefix with CodeGroup number if inside a CodeGroup
if inCodeGroup {
currentFile = fmt.Sprintf("%02d_%s", codeGroupNum, filename)
} else {
currentFile = filename
}
content.Reset()
}
}
}
if err := scanner.Err(); err != nil {
fmt.Fprintf(os.Stderr, "Error reading file: %v\n", err)
os.Exit(1)
}
// Write package.json for JavaScript dependencies
packageJSON := `{
"name": "mdx-examples",
"type": "module",
"dependencies": {
"openai": "^4",
"ollama": "^0.5"
}
}
`
if err := os.WriteFile(filepath.Join(tempDir, "package.json"), []byte(packageJSON), 0o644); err != nil {
fmt.Fprintf(os.Stderr, "Error writing package.json: %v\n", err)
}
// Write pyproject.toml for Python dependencies
pyprojectTOML := `[project]
name = "mdx-examples"
version = "0.0.0"
dependencies = [
"openai",
"ollama",
]
`
if err := os.WriteFile(filepath.Join(tempDir, "pyproject.toml"), []byte(pyprojectTOML), 0o644); err != nil {
fmt.Fprintf(os.Stderr, "Error writing pyproject.toml: %v\n", err)
}
fmt.Printf("\n")
fmt.Printf("Extracted %d file(s) to %s\n", count, tempDir)
fmt.Printf("\n")
fmt.Printf("To run examples:\n")
fmt.Printf("\n")
fmt.Printf(" cd %s\n npm install # for JS examples\n", tempDir)
fmt.Printf("\n")
fmt.Printf("then run individual files with `node file.js`, `python file.py`, `bash file.sh`\n")
}

View File

@@ -87,7 +87,7 @@ When Ollama starts up, it takes inventory of the GPUs present in the system to d
### Linux NVIDIA Troubleshooting
If you are using a container to run Ollama, make sure you've set up the container runtime first as described in [docker.md](./docker.md)
If you are using a container to run Ollama, make sure you've set up the container runtime first as described in [docker](./docker)
Sometimes the Ollama can have difficulties initializing the GPU. When you check the server logs, this can show up as various error codes, such as "3" (not initialized), "46" (device unavailable), "100" (no device), "999" (unknown), or others. The following troubleshooting techniques may help resolve the problem

3
ducky.Agentfile Normal file
View File

@@ -0,0 +1,3 @@
SKILL ./skills/calculator-skill
ENTRYPOINT ducky

View File

@@ -148,6 +148,16 @@ func Remotes() []string {
return r
}
// Skills returns the list of skill directories. Skills directories can be configured via the OLLAMA_SKILLS environment variable.
// Returns empty slice if not configured.
func Skills() []string {
raw := strings.TrimSpace(Var("OLLAMA_SKILLS"))
if raw == "" {
return []string{}
}
return strings.Split(raw, ",")
}
func BoolWithDefault(k string) func(defaultValue bool) bool {
return func(defaultValue bool) bool {
if s := Var(k); s != "" {
@@ -317,6 +327,9 @@ func AsMap() map[string]EnvVar {
ret["OLLAMA_VULKAN"] = EnvVar{"OLLAMA_VULKAN", EnableVulkan(), "Enable experimental Vulkan support"}
}
// Skills configuration would go here when added
ret["OLLAMA_SKILLS"] = EnvVar{"OLLAMA_SKILLS", Skills(), "Comma-separated list of skill directories"}
return ret
}

View File

@@ -13,6 +13,7 @@ import (
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/util/bufioutil"
"github.com/ollama/ollama/ml"
)
type GGML struct {
@@ -240,18 +241,20 @@ func (kv KV) Bools(key string, defaultValue ...[]bool) []bool {
func (kv KV) OllamaEngineRequired() bool {
return slices.Contains([]string{
"bert",
"deepseek2",
"deepseekocr",
"gemma3",
"gemma3n",
"gptoss", "gpt-oss",
"llama4",
"mistral3",
"mllama",
"nomic-bert",
"olmo3",
"qwen25vl",
"qwen3", "qwen3moe",
"qwen3vl", "qwen3vlmoe",
"deepseekocr",
"deepseek2",
"nomic-bert",
}, kv.Architecture())
}
@@ -550,7 +553,7 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, error) {
}, nil
}
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string, useFlashAttention bool) (kv []uint64, partialOffload, fullOffload uint64) {
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string, useFlashAttention ml.FlashAttentionType) (kv []uint64, partialOffload, fullOffload uint64) {
context *= uint64(numParallel)
embedding := f.KV().EmbeddingLength()
@@ -791,7 +794,7 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
}
partialOffload = 2 * f.KV().HeadCountMax() / cmp.Or(f.KV().HeadCountKVMin(), 1) * kvTotal / 6
if useFlashAttention {
if useFlashAttention == ml.FlashAttentionEnabled {
// rough estimate of graph size with flash attention on
partialOffload = (4*uint64(numParallel) + context>>10 + 110) * format.MebiByte
}
@@ -809,6 +812,14 @@ func (f GGML) SupportsKVCacheType(cacheType string) bool {
return slices.Contains([]string{"q8_0", "q4_0"}, cacheType)
}
// KVCacheTypeIsQuantized checks if the requested cache type is a quantized type
func (f GGML) KVCacheTypeIsQuantized(cacheType string) bool {
if cacheType == "" || cacheType == "f16" || cacheType == "f32" || cacheType == "bf16" {
return false
}
return true
}
// SupportsFlashAttention checks if the model supports flash attention
func (f GGML) SupportsFlashAttention() bool {
_, isEmbedding := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]
@@ -829,8 +840,11 @@ func (f GGML) SupportsFlashAttention() bool {
// FlashAttention checks if the model should enable flash attention
func (f GGML) FlashAttention() bool {
return slices.Contains([]string{
"bert",
"gemma3",
"gptoss", "gpt-oss",
"mistral3",
"olmo3",
"qwen3", "qwen3moe",
"qwen3vl", "qwen3vlmoe",
}, f.KV().String("general.architecture"))

View File

@@ -597,6 +597,10 @@ func ggufWriteKV(ws io.WriteSeeker, arch, k string, v any) error {
var err error
switch v := v.(type) {
case int32:
err = writeGGUF(ws, ggufTypeInt32, v)
case int64:
err = writeGGUF(ws, ggufTypeInt64, v)
case uint32, FileType:
err = writeGGUF(ws, ggufTypeUint32, v)
case uint64:
@@ -611,6 +615,10 @@ func ggufWriteKV(ws io.WriteSeeker, arch, k string, v any) error {
err = writeGGUFArray(ws, ggufTypeInt32, v)
case *array[int32]:
err = writeGGUFArray(ws, ggufTypeInt32, v.values)
case []int64:
err = writeGGUFArray(ws, ggufTypeInt64, v)
case *array[int64]:
err = writeGGUFArray(ws, ggufTypeInt64, v.values)
case []uint32:
err = writeGGUFArray(ws, ggufTypeUint32, v)
case *array[uint32]:

View File

@@ -42,6 +42,10 @@ func TestWriteGGUF(t *testing.T) {
"general.architecture": "test",
"general.alignment": uint32(16),
"test.key": "value",
"test.int32_key": int32(-42),
"test.int64_key": int64(-9223372036854775808),
"test.int32_array": []int32{-1, 0, 1, 2147483647, -2147483648},
"test.int64_array": []int64{-1, 0, 1, 9223372036854775807, -9223372036854775808},
"attention.key": "value2",
"tokenizer.key": "value3",
"adapter.key": "value4",
@@ -55,7 +59,7 @@ func TestWriteGGUF(t *testing.T) {
}
defer r.Close()
ff, err := Decode(r, 0)
ff, err := Decode(r, -1)
if err != nil {
t.Fatal(err)
}
@@ -65,15 +69,19 @@ func TestWriteGGUF(t *testing.T) {
"general.alignment": uint32(16),
"general.parameter_count": uint64(54),
"test.key": "value",
"test.int32_key": int32(-42),
"test.int64_key": int64(-9223372036854775808),
"test.int32_array": &array[int32]{size: 5, values: []int32{-1, 0, 1, 2147483647, -2147483648}},
"test.int64_array": &array[int64]{size: 5, values: []int64{-1, 0, 1, 9223372036854775807, -9223372036854775808}},
"test.attention.key": "value2",
"tokenizer.key": "value3",
"adapter.key": "value4",
}, ff.KV()); diff != "" {
}, ff.KV(), cmp.AllowUnexported(array[int32]{}, array[int64]{})); diff != "" {
t.Errorf("Mismatch (-want +got):\n%s", diff)
}
if diff := cmp.Diff(Tensors{
Offset: 800,
Offset: 992,
items: []*Tensor{
{Name: "blk.0.attn_k.weight", Offset: 0, Shape: []uint64{2, 3}},
{Name: "blk.0.attn_norm.weight", Offset: 32, Shape: []uint64{2, 3}},

17
go.mod
View File

@@ -15,8 +15,8 @@ require (
github.com/spf13/cobra v1.7.0
github.com/stretchr/testify v1.9.0
github.com/x448/float16 v0.8.4
golang.org/x/sync v0.12.0
golang.org/x/sys v0.36.0
golang.org/x/sync v0.17.0
golang.org/x/sys v0.37.0
)
require (
@@ -29,7 +29,8 @@ require (
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
github.com/tkrajina/typescriptify-golang-structs v0.2.0
golang.org/x/image v0.22.0
golang.org/x/tools v0.30.0
golang.org/x/mod v0.30.0
golang.org/x/tools v0.38.0
gonum.org/v1/gonum v0.15.0
)
@@ -76,11 +77,11 @@ require (
github.com/twitchyliquid64/golang-asm v0.15.1 // indirect
github.com/ugorji/go/codec v1.2.12 // indirect
golang.org/x/arch v0.8.0 // indirect
golang.org/x/crypto v0.36.0
golang.org/x/crypto v0.43.0
golang.org/x/exp v0.0.0-20250218142911-aa4b98e5adaa // indirect
golang.org/x/net v0.38.0 // indirect
golang.org/x/term v0.30.0
golang.org/x/text v0.23.0
golang.org/x/net v0.46.0 // indirect
golang.org/x/term v0.36.0
golang.org/x/text v0.30.0
google.golang.org/protobuf v1.34.1
gopkg.in/yaml.v3 v3.0.1 // indirect
gopkg.in/yaml.v3 v3.0.1
)

30
go.sum
View File

@@ -224,8 +224,8 @@ golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACk
golang.org/x/crypto v0.0.0-20190510104115-cbcb75029529/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/crypto v0.0.0-20200622213623-75b288015ac9/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
golang.org/x/crypto v0.36.0 h1:AnAEvhDddvBdpY+uR+MyHmuZzzNqXSe/GvuDeob5L34=
golang.org/x/crypto v0.36.0/go.mod h1:Y4J0ReaxCR1IMaabaSMugxJES1EpwhBHhv2bDHklZvc=
golang.org/x/crypto v0.43.0 h1:dduJYIi3A3KOfdGOHX8AVZ/jGiyPa3IbBozJ5kNuE04=
golang.org/x/crypto v0.43.0/go.mod h1:BFbav4mRNlXJL4wNeejLpWxB7wMbc79PdRGhWKncxR0=
golang.org/x/exp v0.0.0-20180321215751-8460e604b9de/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20180807140117-3d87b88a115f/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
@@ -255,6 +255,8 @@ golang.org/x/mod v0.1.1-0.20191105210325-c90efee705ee/go.mod h1:QqPTAvyqsEbceGzB
golang.org/x/mod v0.2.0/go.mod h1:s0Qsj1ACt9ePp/hMypM3fl4fZqREWJwdYDEqhRiZZUA=
golang.org/x/mod v0.3.0/go.mod h1:s0Qsj1ACt9ePp/hMypM3fl4fZqREWJwdYDEqhRiZZUA=
golang.org/x/mod v0.4.2/go.mod h1:s0Qsj1ACt9ePp/hMypM3fl4fZqREWJwdYDEqhRiZZUA=
golang.org/x/mod v0.30.0 h1:fDEXFVZ/fmCKProc/yAXXUijritrDzahmwwefnjoPFk=
golang.org/x/mod v0.30.0/go.mod h1:lAsf5O2EvJeSFMiBxXDki7sCgAxEUcZHXoXMKT4GJKc=
golang.org/x/net v0.0.0-20180724234803-3673e40ba225/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20180826012351-8a410e7b638d/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20190108225652-1e06a53dbb7e/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
@@ -267,8 +269,8 @@ golang.org/x/net v0.0.0-20200822124328-c89045814202/go.mod h1:/O7V0waA8r7cgGh81R
golang.org/x/net v0.0.0-20201021035429-f5854403a974/go.mod h1:sp8m0HH+o8qH0wwXwYZr8TS3Oi6o0r6Gce1SSxlDquU=
golang.org/x/net v0.0.0-20210405180319-a5a99cb37ef4/go.mod h1:p54w0d4576C0XHj96bSt6lcn1PtDYWL6XObtHCRCNQM=
golang.org/x/net v0.0.0-20210614182718-04defd469f4e/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
golang.org/x/net v0.38.0 h1:vRMAPTMaeGqVhG5QyLJHqNDwecKTomGeqbnfZyKlBI8=
golang.org/x/net v0.38.0/go.mod h1:ivrbrMbzFq5J41QOQh0siUuly180yBYtLp+CKbEaFx8=
golang.org/x/net v0.46.0 h1:giFlY12I07fugqwPuWJi68oOnpfqFnJIJzaIIm2JVV4=
golang.org/x/net v0.46.0/go.mod h1:Q9BGdFy1y4nkUwiLvT5qtyhAnEHgnQ/zd8PfU6nc210=
golang.org/x/oauth2 v0.0.0-20180821212333-d2e6202438be/go.mod h1:N/0e6XlmueqKjAGxoOufVs8QHGRruUQn6yWY3a++T0U=
golang.org/x/oauth2 v0.0.0-20200107190931-bf48bf16ab8d/go.mod h1:gOpvHmFTYa4IltrdGE7lF6nIHvwfUNPOp7c8zoXwtLw=
golang.org/x/sync v0.0.0-20180314180146-1d60e4601c6f/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
@@ -278,8 +280,8 @@ golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJ
golang.org/x/sync v0.0.0-20190911185100-cd5d95a43a6e/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20210220032951-036812b2e83c/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.12.0 h1:MHc5BpPuC30uJk597Ri8TV3CNZcTLu6B6z4lJy+g6Jw=
golang.org/x/sync v0.12.0/go.mod h1:1dzgHSNfp02xaA81J2MS99Qcpr2w7fw1gpm99rleRqA=
golang.org/x/sync v0.17.0 h1:l60nONMj9l5drqw6jlhIELNv9I0A4OFgRsG9k2oT9Ug=
golang.org/x/sync v0.17.0/go.mod h1:9KTHXmSnoGruLpwFjVSX0lNNA75CykiMECbovNTZqGI=
golang.org/x/sys v0.0.0-20180830151530-49385e6e1522/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190312061237-fead79001313/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
@@ -295,17 +297,17 @@ golang.org/x/sys v0.0.0-20210510120138-977fb7262007/go.mod h1:oPkhp1MJrh7nUepCBc
golang.org/x/sys v0.0.0-20210630005230-0f9fa26af87c/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.5.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.36.0 h1:KVRy2GtZBrk1cBYA7MKu5bEZFxQk4NIDV6RLVcC8o0k=
golang.org/x/sys v0.36.0/go.mod h1:OgkHotnGiDImocRcuBABYBEXf8A9a87e/uXjp9XT3ks=
golang.org/x/sys v0.37.0 h1:fdNQudmxPjkdUTPnLn5mdQv7Zwvbvpaxqs831goi9kQ=
golang.org/x/sys v0.37.0/go.mod h1:OgkHotnGiDImocRcuBABYBEXf8A9a87e/uXjp9XT3ks=
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
golang.org/x/term v0.30.0 h1:PQ39fJZ+mfadBm0y5WlL4vlM7Sx1Hgf13sMIY2+QS9Y=
golang.org/x/term v0.30.0/go.mod h1:NYYFdzHoI5wRh/h5tDMdMqCqPJZEuNqVR5xJLd/n67g=
golang.org/x/term v0.36.0 h1:zMPR+aF8gfksFprF/Nc/rd1wRS1EI6nDBGyWAvDzx2Q=
golang.org/x/term v0.36.0/go.mod h1:Qu394IJq6V6dCBRgwqshf3mPF85AqzYEzofzRdZkWss=
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.5/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.23.0 h1:D71I7dUrlY+VX0gQShAThNGHFxZ13dGLBHQLVl1mJlY=
golang.org/x/text v0.23.0/go.mod h1:/BLNzu4aZCJ1+kcD0DNRotWKage4q2rGVAg4o22unh4=
golang.org/x/text v0.30.0 h1:yznKA/E9zq54KzlzBEAWn1NXSQ8DIp/NYMy88xJjl4k=
golang.org/x/text v0.30.0/go.mod h1:yDdHFIX9t+tORqspjENWgzaCVXgk0yYnYuSZ8UzzBVM=
golang.org/x/tools v0.0.0-20180525024113-a5b4c53f6e8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20190114222345-bf090417da8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
@@ -319,8 +321,8 @@ golang.org/x/tools v0.0.0-20200130002326-2f3ba24bd6e7/go.mod h1:TB2adYChydJhpapK
golang.org/x/tools v0.0.0-20200619180055-7c47624df98f/go.mod h1:EkVYQZoAsY45+roYkvgYkIh4xh/qjgUK9TdY2XT94GE=
golang.org/x/tools v0.0.0-20210106214847-113979e3529a/go.mod h1:emZCQorbCU4vsT4fOWvOPXz4eW1wZW4PmDk9uLelYpA=
golang.org/x/tools v0.1.4/go.mod h1:o0xws9oXOQQZyjljx8fwUC0k7L1pTE6eaCbjGeHmOkk=
golang.org/x/tools v0.30.0 h1:BgcpHewrV5AUp2G9MebG4XPFI1E2W41zU1SaqVA9vJY=
golang.org/x/tools v0.30.0/go.mod h1:c347cR/OJfw5TI+GfX7RUPNMdDRRbjvYTS0jPyvsVtY=
golang.org/x/tools v0.38.0 h1:Hx2Xv8hISq8Lm16jvBZ2VQf+RLmbd7wVUsALibYI/IQ=
golang.org/x/tools v0.38.0/go.mod h1:yEsQ/d/YK8cjh0L6rZlY8tgtlKiBNTL14pGDJPJpYQs=
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=

View File

@@ -4,7 +4,9 @@ package integration
import (
"context"
"errors"
"math"
"strings"
"testing"
"time"
@@ -204,8 +206,8 @@ func TestAllMiniLMEmbed(t *testing.T) {
t.Fatalf("expected %v, got %v (similarity: %f)", expected[0:5], res.Embeddings[0][0:5], sim)
}
if res.PromptEvalCount != 6 {
t.Fatalf("expected 6 prompt tokens, got %d", res.PromptEvalCount)
if res.PromptEvalCount != 8 {
t.Fatalf("expected 8 prompt tokens, got %d", res.PromptEvalCount)
}
}
@@ -251,8 +253,8 @@ func TestAllMiniLMBatchEmbed(t *testing.T) {
t.Fatalf("expected %v, got %v (similarity: %f)", expected[1][0:5], res.Embeddings[1][0:5], sim)
}
if res.PromptEvalCount != 12 {
t.Fatalf("expected 12 prompt tokens, got %d", res.PromptEvalCount)
if res.PromptEvalCount != 16 {
t.Fatalf("expected 16 prompt tokens, got %d", res.PromptEvalCount)
}
}
@@ -275,7 +277,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
cases := []struct {
name string
request api.EmbedRequest
check func(*api.EmbedResponse, error)
check func(*testing.T, *api.EmbedResponse, error)
}{
{
name: "target truncation",
@@ -283,7 +285,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
Model: "all-minilm",
Input: "why",
},
check: func(got *api.EmbedResponse, err error) {
check: func(t *testing.T, got *api.EmbedResponse, err error) {
if err != nil {
t.Fatal(err)
}
@@ -300,10 +302,11 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
Input: "why is the sky blue?",
Options: map[string]any{"num_ctx": 3},
},
check: func(got *api.EmbedResponse, err error) {
check: func(t *testing.T, got *api.EmbedResponse, err error) {
if err != nil {
t.Fatal(err)
}
t.Logf("PromptEvalCount: want=%d got=%d", want.PromptEvalCount, got.PromptEvalCount)
if diff := cmp.Diff(want.Embeddings[0], got.Embeddings[0]); diff != "" {
t.Errorf("embedding mismatch (-want +got):\n%s", diff)
}
@@ -317,10 +320,11 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 3},
},
check: func(got *api.EmbedResponse, err error) {
check: func(t *testing.T, got *api.EmbedResponse, err error) {
if err != nil {
t.Fatal(err)
}
t.Logf("PromptEvalCount: want=%d got=%d", want.PromptEvalCount, got.PromptEvalCount)
if diff := cmp.Diff(want.Embeddings[0], got.Embeddings[0]); diff != "" {
t.Errorf("embedding mismatch (-want +got):\n%s", diff)
}
@@ -334,21 +338,21 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
Truncate: &truncFalse,
Options: map[string]any{"num_ctx": 3},
},
check: func(res *api.EmbedResponse, err error) {
if err.Error() != "input exceeds maximum context length" {
check: func(t *testing.T, res *api.EmbedResponse, err error) {
if err.Error() != "the input length exceeds the context length" {
t.Fatalf("expected truncation error, got: %v", err)
}
},
},
{
name: "input after truncate error",
name: "input after truncate error with context length of 1",
request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 1},
},
check: func(res *api.EmbedResponse, err error) {
check: func(t *testing.T, res *api.EmbedResponse, err error) {
if err.Error() != "input after truncation exceeds maximum context length" {
t.Fatalf("expected truncation error, got: %v", err)
}
@@ -362,7 +366,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 0},
},
check: func(res *api.EmbedResponse, err error) {
check: func(t *testing.T, res *api.EmbedResponse, err error) {
if err.Error() != "input after truncation exceeds maximum context length" {
t.Fatalf("expected truncation error, got: %v", err)
}
@@ -375,7 +379,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
Input: "why is the sky blue? Why is the sky blue? hi there my",
Options: map[string]any{"num_ctx": 16},
},
check: func(res *api.EmbedResponse, err error) {
check: func(t *testing.T, res *api.EmbedResponse, err error) {
if err != nil {
t.Fatal(err)
}
@@ -385,7 +389,8 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
for _, req := range cases {
t.Run(req.name, func(t *testing.T) {
req.check(embedTestHelper(ctx, client, t, req.request))
resp, err := embedTestHelper(ctx, client, t, req.request)
req.check(t, resp, err)
})
}
}
@@ -409,3 +414,230 @@ func embedTestHelper(ctx context.Context, client *api.Client, t *testing.T, req
return client.Embed(ctx, &req)
}
func TestEmbedTruncation(t *testing.T) {
// Use test deadline if set, otherwise default to 2 minutes
timeout := 2 * time.Minute
if deadline, ok := t.Deadline(); ok {
timeout = time.Until(deadline) - 10*time.Second // Reserve 10s buffer
}
ctx, cancel := context.WithTimeout(context.Background(), timeout)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
for _, model := range libraryEmbedModels {
model := model
t.Run(model, func(t *testing.T) {
// Check if we're running out of time (reserve 20s for current model)
if deadline, ok := t.Deadline(); ok && time.Until(deadline) < 20*time.Second {
t.Skip("skipping remaining tests to avoid timeout")
}
// Give each model its own budget to account for first-time pulls/loads
mctx, mcancel := context.WithTimeout(ctx, 3*time.Minute)
defer mcancel()
t.Run("truncation batch", func(t *testing.T) {
truncTrue := true
req := api.EmbedRequest{
Model: model,
Input: []string{"short", strings.Repeat("long ", 100), "medium text"},
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 30},
}
res, err := embedTestHelper(mctx, client, t, req)
if err != nil {
t.Fatal(err)
}
if len(res.Embeddings) != 3 {
t.Fatalf("expected 3 embeddings, got %d", len(res.Embeddings))
}
if res.PromptEvalCount > 90 {
t.Fatalf("expected tokens <= 90 (3 × 30 max), got %d", res.PromptEvalCount)
}
})
t.Run("runner token count accuracy", func(t *testing.T) {
baseline := api.EmbedRequest{Model: model, Input: "test"}
baseRes, err := embedTestHelper(mctx, client, t, baseline)
if err != nil {
t.Fatal(err)
}
batch := api.EmbedRequest{
Model: model,
Input: []string{"test", "test", "test"},
}
batchRes, err := embedTestHelper(mctx, client, t, batch)
if err != nil {
t.Fatal(err)
}
expectedCount := baseRes.PromptEvalCount * 3
if batchRes.PromptEvalCount < expectedCount-2 || batchRes.PromptEvalCount > expectedCount+2 {
t.Fatalf("expected ~%d tokens (3 × %d), got %d",
expectedCount, baseRes.PromptEvalCount, batchRes.PromptEvalCount)
}
})
})
}
}
// TestEmbedLargeInput tests that embedding models can handle large inputs that would exceed typical batch sizes.
func TestEmbedLargeInput(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Minute)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
for _, model := range libraryEmbedModels {
model := model
t.Run(model, func(t *testing.T) {
mctx, mcancel := context.WithTimeout(ctx, 2*time.Minute)
defer mcancel()
// Test with progressively larger inputs
testCases := []struct {
name string
inputWords int
}{
{"medium_input_256_words", 256},
{"large_input_512_words", 512},
{"very_large_input_800_words", 800},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
words := make([]string, tc.inputWords)
for i := range words {
words[i] = "word"
}
input := strings.Join(words, " ")
req := api.EmbedRequest{
Model: model,
Input: input,
KeepAlive: &api.Duration{Duration: 30 * time.Second},
}
res, err := embedTestHelper(mctx, client, t, req)
if err != nil {
t.Fatalf("embedding failed for %d words: %v", tc.inputWords, err)
}
if len(res.Embeddings) != 1 {
t.Fatalf("expected 1 embedding, got %d", len(res.Embeddings))
}
if len(res.Embeddings[0]) == 0 {
t.Fatal("expected non-empty embedding")
}
t.Logf("Successfully embedded %d words (%d tokens)", tc.inputWords, res.PromptEvalCount)
})
}
})
}
}
// TestEmbedStatusCode tests that errors from the embedding endpoint
// properly preserve their HTTP status codes when returned to the client.
// This test specifically checks the error handling path in EmbedHandler
// where api.StatusError errors should maintain their original status code.
func TestEmbedStatusCode(t *testing.T) {
// Use test deadline if set, otherwise default to 2 minutes
timeout := 2 * time.Minute
if deadline, ok := t.Deadline(); ok {
timeout = time.Until(deadline) - 10*time.Second // Reserve 10s buffer
}
ctx, cancel := context.WithTimeout(context.Background(), timeout)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
for _, model := range libraryEmbedModels {
model := model
t.Run(model, func(t *testing.T) {
// Check if we're running out of time (reserve 20s for current model)
if deadline, ok := t.Deadline(); ok && time.Until(deadline) < 20*time.Second {
t.Skip("skipping remaining tests to avoid timeout")
}
mctx, mcancel := context.WithTimeout(ctx, 3*time.Minute)
defer mcancel()
// Pull the model if needed
if err := PullIfMissing(mctx, client, model); err != nil {
t.Fatal(err)
}
t.Run("truncation error status code", func(t *testing.T) {
truncFalse := false
longInput := strings.Repeat("word ", 100)
req := api.EmbedRequest{
Model: model,
Input: longInput,
Truncate: &truncFalse,
Options: map[string]any{"num_ctx": 10},
}
_, err := embedTestHelper(mctx, client, t, req)
if err == nil {
t.Fatal("expected error when truncate=false with long input")
}
// Check that it's a StatusError with the correct status code
var statusErr api.StatusError
if !errors.As(err, &statusErr) {
t.Fatalf("expected api.StatusError, got %T: %v", err, err)
}
// The error should be a 4xx client error (likely 400 Bad Request)
// not a 500 Internal Server Error
if statusErr.StatusCode < 400 || statusErr.StatusCode >= 500 {
t.Errorf("expected 4xx status code, got %d", statusErr.StatusCode)
}
// Verify the error message is meaningful
if !strings.Contains(err.Error(), "context length") {
t.Errorf("expected error message to mention context length, got: %v", err)
}
})
t.Run("batch truncation error status code", func(t *testing.T) {
truncFalse := false
req := api.EmbedRequest{
Model: model,
Input: []string{
"short input",
strings.Repeat("very long input ", 100),
"another short input",
},
Truncate: &truncFalse,
Options: map[string]any{"num_ctx": 10},
}
_, err := embedTestHelper(mctx, client, t, req)
if err == nil {
t.Fatal("expected error when one input exceeds context with truncate=false")
}
// Check that it's a StatusError with the correct status code
var statusErr api.StatusError
if !errors.As(err, &statusErr) {
t.Fatalf("expected api.StatusError, got %T: %v", err, err)
}
// The error should be a 4xx client error, not a 500 Internal Server Error
if statusErr.StatusCode < 400 || statusErr.StatusCode >= 500 {
t.Errorf("expected 4xx status code, got %d", statusErr.StatusCode)
}
})
})
}
}

View File

@@ -33,6 +33,9 @@ func TestVisionModels(t *testing.T) {
// Qwen 3 VL mixture of experts
model: "qwen3-vl:30b",
},
{
model: "ministral-3",
},
}
for _, v := range testCases {

View File

@@ -30,6 +30,7 @@ func TestAPIToolCalling(t *testing.T) {
"mistral": 6,
"qwen2.5": 6,
"qwen2": 6,
"ministral-3": 20,
"mistral-nemo": 9,
"mistral-small": 16,
"mixtral:8x22b": 80,

View File

@@ -38,6 +38,7 @@ var (
// Note: add newer models at the top of the list to test them first
ollamaEngineChatModels = []string{
"ministral-3",
"qwen3-coder:30b",
"gpt-oss:20b",
"gemma3n:e2b",
@@ -167,6 +168,7 @@ var (
"medllama2",
"megadolphin",
"minicpm-v",
"ministral-3",
"mistral-large",
"mistral-nemo",
"mistral-openorca",
@@ -270,6 +272,7 @@ var (
"mistral",
"qwen2.5",
"qwen2",
"ministral-3",
"mistral-nemo",
"mistral-small",
"mixtral:8x22b",

View File

@@ -140,10 +140,6 @@ func (c *Causal) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity
c.config.CachePadding = 1
}
if c.config.MaskBatchPadding == 0 {
c.config.MaskBatchPadding = 1
}
if c.config.MaskDType == ml.DTypeOther {
c.config.MaskDType = ml.DTypeF32
}
@@ -364,15 +360,12 @@ func roundUp(length, pad int) int {
// token in the history should apply. This is based on both the sequence and causality (the
// position of the history is not ahead of the token in the batch).
func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
// Align and pad the two dimensions as required by the backend
batchSize := roundUp(c.curBatchSize, c.config.MaskBatchPadding)
c.curCellRange.min = roundDown(c.curCellRange.min, c.config.CachePadding)
c.curCellRange.max = roundUp(c.curCellRange.max+1, c.config.CachePadding) - 1
length := c.curCellRange.max - c.curCellRange.min + 1
mask := make([]float32, batchSize*length)
mask := make([]float32, c.curBatchSize*length)
for i := range c.curBatchSize {
enabled := !slices.Contains(c.opts.Except, i)
@@ -386,13 +379,7 @@ func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
}
}
// Mask out any padding tokens we added. For padding that we added to the cache history, this
// has already been masked out because the sequence doesn't match.
for i := c.curBatchSize * length; i < len(mask); i++ {
mask[i] = float32(math.Inf(-1))
}
maskTensor := ctx.Input().FromFloats(mask, length, batchSize)
maskTensor := ctx.Input().FromFloats(mask, length, c.curBatchSize)
if c.config.MaskDType != ml.DTypeF32 {
maskTensor = maskTensor.Cast(ctx, c.config.MaskDType)

2
llama/build-info.cpp generated vendored
View File

@@ -1,4 +1,4 @@
int LLAMA_BUILD_NUMBER = 0;
char const *LLAMA_COMMIT = "3cfa9c3f125763305b4226bc032f1954f08990dc";
char const *LLAMA_COMMIT = "ec98e2002";
char const *LLAMA_COMPILER = "";
char const *LLAMA_BUILD_TARGET = "";

View File

@@ -17,11 +17,17 @@ include /tools/mtmd/clip.cpp
include /tools/mtmd/mtmd.cpp
include /tools/mtmd/mtmd-audio.cpp
include /tools/mtmd/mtmd-helper.cpp
include /tools/mtmd/models/
include /tools/mtmd/models/*.h
include /tools/mtmd/models/*.cpp
include /src/
include /src/llama.*
include /src/llama-*.*
include /src/unicode-data.*
include /src/unicode.*
include /src/models/
include /src/models/*.h
include /src/models/*.cpp
include /vendor/
include /vendor/miniaudio/
include /vendor/miniaudio/*.h

View File

@@ -8,6 +8,7 @@
#include "common.h"
#include "log.h"
#include "llama.h"
#include "sampling.h"
#include <algorithm>
#include <cinttypes>
@@ -26,7 +27,6 @@
#include <sstream>
#include <string>
#include <thread>
#include <unordered_map>
#include <unordered_set>
#include <vector>
@@ -60,6 +60,14 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
common_time_meas::common_time_meas(int64_t & t_acc, bool disable) : t_start_us(disable ? -1 : ggml_time_us()), t_acc(t_acc) {}
common_time_meas::~common_time_meas() {
if (t_start_us >= 0) {
t_acc += ggml_time_us() - t_start_us;
}
}
//
// CPU utils
//
@@ -355,11 +363,7 @@ bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREAD
}
void common_init() {
llama_log_set([](ggml_log_level level, const char * text, void * /*user_data*/) {
if (LOG_DEFAULT_LLAMA <= common_log_verbosity_thold) {
common_log_add(common_log_main(), level, "%s", text);
}
}, NULL);
llama_log_set(common_log_default_callback, NULL);
#ifdef NDEBUG
const char * build_type = "";
@@ -690,7 +694,7 @@ bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_over
// Validate if a filename is safe to use
// To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
bool fs_validate_filename(const std::string & filename) {
bool fs_validate_filename(const std::string & filename, bool allow_subdirs) {
if (!filename.length()) {
// Empty filename invalid
return false;
@@ -750,10 +754,14 @@ bool fs_validate_filename(const std::string & filename) {
|| (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
|| c == 0xFFFD // Replacement Character (UTF-8)
|| c == 0xFEFF // Byte Order Mark (BOM)
|| c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
|| c == ':' || c == '*' // Illegal characters
|| c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
return false;
}
if (!allow_subdirs && (c == '/' || c == '\\')) {
// Subdirectories not allowed, reject path separators
return false;
}
}
// Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
@@ -778,11 +786,29 @@ bool fs_validate_filename(const std::string & filename) {
#include <iostream>
#ifdef _WIN32
static std::wstring utf8_to_wstring(const std::string & str) {
if (str.empty()) {
return std::wstring();
}
int size = MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), NULL, 0);
if (size <= 0) {
return std::wstring();
}
std::wstring wstr(size, 0);
MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), &wstr[0], size);
return wstr;
}
#endif
// returns true if successful, false otherwise
bool fs_create_directory_with_parents(const std::string & path) {
#ifdef _WIN32
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
std::wstring wpath = converter.from_bytes(path);
std::wstring wpath = utf8_to_wstring(path);
// if the path already exists, check whether it's a directory
const DWORD attributes = GetFileAttributesW(wpath.c_str());
@@ -855,6 +881,11 @@ bool fs_create_directory_with_parents(const std::string & path) {
#endif // _WIN32
}
bool fs_is_directory(const std::string & path) {
std::filesystem::path dir(path);
return std::filesystem::exists(dir) && std::filesystem::is_directory(dir);
}
std::string fs_get_cache_directory() {
std::string cache_directory = "";
auto ensure_trailing_slash = [](std::string p) {
@@ -889,6 +920,8 @@ std::string fs_get_cache_directory() {
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
#elif defined(_WIN32)
cache_directory = std::getenv("LOCALAPPDATA");
#elif defined(__EMSCRIPTEN__)
GGML_ABORT("not implemented on this platform");
#else
# error Unknown architecture
#endif
@@ -908,34 +941,258 @@ std::string fs_get_cache_file(const std::string & filename) {
return cache_directory + filename;
}
std::vector<common_file_info> fs_list(const std::string & path, bool include_directories) {
std::vector<common_file_info> files;
if (path.empty()) return files;
std::filesystem::path dir(path);
if (!std::filesystem::exists(dir) || !std::filesystem::is_directory(dir)) {
return files;
}
for (const auto & entry : std::filesystem::directory_iterator(dir)) {
try {
// Only include regular files (skip directories)
const auto & p = entry.path();
if (std::filesystem::is_regular_file(p)) {
common_file_info info;
info.path = p.string();
info.name = p.filename().string();
info.is_dir = false;
try {
info.size = static_cast<size_t>(std::filesystem::file_size(p));
} catch (const std::filesystem::filesystem_error &) {
info.size = 0;
}
files.push_back(std::move(info));
} else if (include_directories && std::filesystem::is_directory(p)) {
common_file_info info;
info.path = p.string();
info.name = p.filename().string();
info.size = 0; // Directories have no size
info.is_dir = true;
files.push_back(std::move(info));
}
} catch (const std::filesystem::filesystem_error &) {
// skip entries we cannot inspect
continue;
}
}
return files;
}
//
// TTY utils
//
bool tty_can_use_colors() {
// Check NO_COLOR environment variable (https://no-color.org/)
if (const char * no_color = std::getenv("NO_COLOR")) {
if (no_color[0] != '\0') {
return false;
}
}
// Check TERM environment variable
if (const char * term = std::getenv("TERM")) {
if (std::strcmp(term, "dumb") == 0) {
return false;
}
}
// Check if stdout and stderr are connected to a terminal
// We check both because log messages can go to either
bool stdout_is_tty = isatty(fileno(stdout));
bool stderr_is_tty = isatty(fileno(stderr));
return stdout_is_tty || stderr_is_tty;
}
//
// Model utils
//
struct common_init_result common_init_from_params(common_params & params) {
common_init_result iparams;
// TODO: move to common/sampling
static void common_init_sampler_from_model(
const llama_model * model,
common_params_sampling & sparams) {
const uint64_t config = sparams.user_sampling_config;
auto get_int32 = [&](const char * key, int32_t & dst, uint64_t user_config) {
if (config & user_config) {
return;
}
char buf[64] = {0};
if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
char * end = nullptr;
int32_t v = strtol(buf, &end, 10);
if (end && end != buf) {
dst = v;
}
}
};
auto get_float = [&](const char * key, float & dst, uint64_t user_config) {
if (config & user_config) {
return;
}
char buf[128] = {0};
if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
char * end = nullptr;
float v = strtof(buf, &end);
if (end && end != buf) {
dst = v;
}
}
};
// Sampling sequence
if (!(config & common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS)) {
char buf[512] = {0};
if (llama_model_meta_val_str(model, llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE), buf, sizeof(buf)) > 0) {
const std::vector<std::string> sampler_names = string_split<std::string>(std::string(buf), ';');
if (!sampler_names.empty()) {
sparams.samplers = common_sampler_types_from_names(sampler_names, true);
}
}
}
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_K), sparams.top_k, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_K);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_P), sparams.top_p, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_P);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIN_P), sparams.min_p, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIN_P);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY), sparams.xtc_probability, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD), sparams.xtc_threshold, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TEMP), sparams.temp, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TEMP);
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N), sparams.penalty_last_n, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT), sparams.penalty_repeat, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT);
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT), sparams.mirostat, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU), sparams.mirostat_tau, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA), sparams.mirostat_eta, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA);
}
struct common_init_result::impl {
impl() = default;
~impl() = default;
llama_model_ptr model;
llama_context_ptr context;
std::vector<llama_adapter_lora_ptr> lora;
std::vector<common_sampler_ptr> samplers;
};
common_init_result::common_init_result(common_params & params) :
pimpl(new impl{}) {
auto mparams = common_model_params_to_llama(params);
auto cparams = common_context_params_to_llama(params);
if (params.fit_params) {
LOG_INF("%s: fitting params to device memory, to report bugs during this step use -fit off (or --verbose if you can't)\n", __func__);
llama_params_fit(params.model.path.c_str(), &mparams, &cparams,
params.tensor_split, params.tensor_buft_overrides.data(), params.fit_params_target, params.fit_params_min_ctx,
params.verbosity >= 4 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_ERROR);
}
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
if (model == NULL) {
LOG_ERR("%s: failed to load model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
__func__, params.model.path.c_str());
return iparams;
return;
}
pimpl->model.reset(model);
const llama_vocab * vocab = llama_model_get_vocab(model);
auto cparams = common_context_params_to_llama(params);
// updates params.sampling
// TODO: fix naming
common_init_sampler_from_model(model, params.sampling);
if (params.sampling.ignore_eos && llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have an EOS token, ignoring --ignore-eos\n", __func__);
params.sampling.ignore_eos = false;
}
// initialize once
for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
if (llama_vocab_is_eog(vocab, i)) {
LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(vocab, i).c_str(), -INFINITY);
params.sampling.logit_bias_eog.push_back({i, -INFINITY});
}
}
if (params.sampling.ignore_eos) {
// add EOG biases to the active set of logit biases
params.sampling.logit_bias.insert(
params.sampling.logit_bias.end(),
params.sampling.logit_bias_eog.begin(), params.sampling.logit_bias_eog.end());
}
//if (params.sampling.penalty_last_n == -1) {
// LOG_INF("%s: setting penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
// params.sampling.penalty_last_n = llama_n_ctx(lctx);
//}
//if (params.sampling.dry_penalty_last_n == -1) {
// LOG_INF("%s: setting dry_penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
// params.sampling.dry_penalty_last_n = llama_n_ctx(lctx);
//}
pimpl->samplers.resize(cparams.n_seq_max);
for (int i = 0; i < (int) cparams.n_seq_max; ++i) {
pimpl->samplers[i].reset(common_sampler_init(model, params.sampling));
}
llama_context * lctx = llama_init_from_model(model, cparams);
if (lctx == NULL) {
LOG_ERR("%s: failed to create context with model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
__func__, params.model.path.c_str());
llama_model_free(model);
return iparams;
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str());
return;
}
pimpl->context.reset(lctx);
}
llama_model * common_init_result::model() {
return pimpl->model.get();
}
llama_context * common_init_result::context() {
return pimpl->context.get();
}
common_sampler * common_init_result::sampler(llama_seq_id seq_id) {
return pimpl->samplers[seq_id].get();
}
std::vector<llama_adapter_lora_ptr> & common_init_result::lora() {
return pimpl->lora;
}
void common_init_result::free_context() {
pimpl->context.reset();
}
common_init_result_ptr common_init_from_params(common_params & params) {
common_init_result_ptr res(new common_init_result(params));
llama_model * model = res->model();
if (model == NULL) {
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str());
return res;
}
llama_context * lctx = res->context();
if (lctx == NULL) {
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str());
return res;
}
const llama_vocab * vocab = llama_model_get_vocab(model);
if (params.ctx_shift && !llama_memory_can_shift(llama_get_memory(lctx))) {
LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__);
params.ctx_shift = false;
@@ -947,10 +1204,7 @@ struct common_init_result common_init_from_params(common_params & params) {
const auto cvec = common_control_vector_load(params.control_vectors);
if (cvec.n_embd == -1) {
llama_free(lctx);
llama_model_free(model);
return iparams;
return res;
}
int err = llama_apply_adapter_cvec(
@@ -961,10 +1215,7 @@ struct common_init_result common_init_from_params(common_params & params) {
params.control_vector_layer_start,
params.control_vector_layer_end);
if (err) {
llama_free(lctx);
llama_model_free(model);
return iparams;
return res;
}
}
@@ -988,10 +1239,7 @@ struct common_init_result common_init_from_params(common_params & params) {
}
if (!ok) {
llama_free(lctx);
llama_model_free(model);
return iparams;
return res;
}
}
@@ -1001,9 +1249,7 @@ struct common_init_result common_init_from_params(common_params & params) {
lora.reset(llama_adapter_lora_init(model, la.path.c_str()));
if (lora == nullptr) {
LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
llama_free(lctx);
llama_model_free(model);
return iparams;
return res;
}
char buf[1024];
@@ -1012,43 +1258,13 @@ struct common_init_result common_init_from_params(common_params & params) {
la.task_name = buf;
llama_adapter_meta_val_str(la.ptr, "adapter.lora.prompt_prefix", buf, sizeof(buf));
la.prompt_prefix = buf;
iparams.lora.emplace_back(std::move(lora)); // copy to list of loaded adapters
res->lora().emplace_back(std::move(lora)); // copy to list of loaded adapters
}
if (!params.lora_init_without_apply) {
common_set_adapter_lora(lctx, params.lora_adapters);
}
if (params.sampling.ignore_eos && llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have an EOS token, ignoring --ignore-eos\n", __func__);
params.sampling.ignore_eos = false;
}
// initialize once
for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
if (llama_vocab_is_eog(vocab, i)) {
LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(lctx, i).c_str(), -INFINITY);
params.sampling.logit_bias_eog.push_back({i, -INFINITY});
}
}
if (params.sampling.ignore_eos) {
// add EOG biases to the active set of logit biases
params.sampling.logit_bias.insert(
params.sampling.logit_bias.end(),
params.sampling.logit_bias_eog.begin(), params.sampling.logit_bias_eog.end());
}
if (params.sampling.penalty_last_n == -1) {
LOG_INF("%s: setting penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
params.sampling.penalty_last_n = llama_n_ctx(lctx);
}
if (params.sampling.dry_penalty_last_n == -1) {
LOG_INF("%s: setting dry_penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
params.sampling.dry_penalty_last_n = llama_n_ctx(lctx);
}
if (params.warmup) {
LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__);
@@ -1087,12 +1303,11 @@ struct common_init_result common_init_from_params(common_params & params) {
llama_set_warmup(lctx, false);
}
iparams.model.reset(model);
iparams.context.reset(lctx);
return iparams;
return res;
}
common_init_result::~common_init_result() = default;
std::string get_model_endpoint() {
const char * model_endpoint_env = getenv("MODEL_ENDPOINT");
// We still respect the use of environment-variable "HF_ENDPOINT" for backward-compatibility.
@@ -1101,7 +1316,9 @@ std::string get_model_endpoint() {
std::string model_endpoint = "https://huggingface.co/";
if (endpoint_env) {
model_endpoint = endpoint_env;
if (model_endpoint.back() != '/') model_endpoint += '/';
if (model_endpoint.back() != '/') {
model_endpoint += '/';
}
}
return model_endpoint;
}

View File

@@ -2,17 +2,19 @@
#pragma once
#include "ggml-opt.h"
#include "llama-cpp.h"
#include <set>
#include <sstream>
#include <string>
#include <string_view>
#include <vector>
#include <map>
#include <sstream>
#include <cmath>
#include "ggml-opt.h"
#include "llama-cpp.h"
#if defined(_WIN32) && !defined(_WIN32_WINNT)
#define _WIN32_WINNT 0x0A00
#endif
#ifdef _WIN32
#define DIRECTORY_SEPARATOR '\\'
@@ -28,7 +30,14 @@
fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
} while(0)
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
struct common_time_meas {
common_time_meas(int64_t & t_acc, bool disable = false);
~common_time_meas();
const int64_t t_start_us;
int64_t & t_acc;
};
struct common_adapter_lora_info {
std::string path;
@@ -73,7 +82,8 @@ int32_t cpu_get_num_math();
enum llama_example {
LLAMA_EXAMPLE_COMMON,
LLAMA_EXAMPLE_SPECULATIVE,
LLAMA_EXAMPLE_MAIN,
LLAMA_EXAMPLE_COMPLETION,
LLAMA_EXAMPLE_CLI,
LLAMA_EXAMPLE_EMBEDDING,
LLAMA_EXAMPLE_PERPLEXITY,
LLAMA_EXAMPLE_RETRIEVAL,
@@ -89,6 +99,7 @@ enum llama_example {
LLAMA_EXAMPLE_TTS,
LLAMA_EXAMPLE_DIFFUSION,
LLAMA_EXAMPLE_FINETUNE,
LLAMA_EXAMPLE_FIT_PARAMS,
LLAMA_EXAMPLE_COUNT,
};
@@ -133,6 +144,22 @@ struct common_grammar_trigger {
llama_token token = LLAMA_TOKEN_NULL;
};
enum common_params_sampling_config : uint64_t {
COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS = 1 << 0,
COMMON_PARAMS_SAMPLING_CONFIG_TOP_K = 1 << 1,
COMMON_PARAMS_SAMPLING_CONFIG_TOP_P = 1 << 2,
COMMON_PARAMS_SAMPLING_CONFIG_MIN_P = 1 << 3,
COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY = 1 << 4,
COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD = 1 << 5,
COMMON_PARAMS_SAMPLING_CONFIG_TEMP = 1 << 6,
COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N = 1 << 7,
COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT = 1 << 8,
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT = 1 << 9,
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU = 1 << 10,
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA = 1 << 11,
};
// sampling parameters
struct common_params_sampling {
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
@@ -165,8 +192,9 @@ struct common_params_sampling {
bool no_perf = false; // disable performance metrics
bool timing_per_token = false;
std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
uint64_t user_sampling_config = 0; // bitfield to track user-specified samplers
std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
std::vector<enum common_sampler_type> samplers = {
COMMON_SAMPLER_TYPE_PENALTIES,
@@ -188,6 +216,10 @@ struct common_params_sampling {
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
std::vector<llama_logit_bias> logit_bias_eog; // pre-calculated logit biases for EOG tokens
bool has_logit_bias() const {
return !logit_bias.empty();
}
// print the parameters into a string
std::string print() const;
};
@@ -198,6 +230,7 @@ struct common_params_model {
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string docker_repo = ""; // Docker repo // NOLINT
std::string name = ""; // in format <user>/<model>[:<tag>] (tag is optional) // NOLINT
};
struct common_params_speculative {
@@ -274,8 +307,8 @@ struct lr_opt {
struct ggml_opt_optimizer_params common_opt_lr_pars(void * userdata);
struct common_params {
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 4096; // context size
int32_t n_predict = -1; // max. number of new tokens to predict, -1 == no limit
int32_t n_ctx = 0; // context size, 0 == context the model was trained with
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
@@ -296,9 +329,12 @@ struct common_params {
// offload params
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
bool fit_params = true; // whether to fit unset model/context parameters to free device memory
size_t fit_params_target = 1024 * 1024*1024; // margin per device in bytes for fitting parameters to free memory
int32_t fit_params_min_ctx = 4096; // minimum context size to set when trying to reduce memory use
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
@@ -344,7 +380,7 @@ struct common_params {
std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
int32_t verbosity = 0;
int32_t verbosity = 3; // LOG_LEVEL_INFO
int32_t control_vector_layer_start = -1; // layer range for control vector
int32_t control_vector_layer_end = -1; // layer range for control vector
bool offline = false;
@@ -378,6 +414,7 @@ struct common_params {
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
bool cont_batching = true; // insert new sequences for decoding on-the-fly
bool no_perf = false; // disable performance metrics
bool show_timings = true; // show timing information on CLI
bool ctx_shift = false; // context shift on infinite text generation
bool swa_full = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
bool kv_unified = false; // enable unified KV cache
@@ -406,6 +443,8 @@ struct common_params {
bool mmproj_use_gpu = true; // use GPU for multimodal model
bool no_mmproj = false; // explicitly disable multimodal model
std::vector<std::string> image; // path to image file(s)
int image_min_tokens = -1;
int image_max_tokens = -1;
// finetune
struct lr_opt lr;
@@ -432,7 +471,7 @@ struct common_params {
std::string public_path = ""; // NOLINT
std::string api_prefix = ""; // NOLINT
std::string chat_template = ""; // NOLINT
bool use_jinja = false; // NOLINT
bool use_jinja = true; // NOLINT
bool enable_chat_template = true;
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
int reasoning_budget = -1;
@@ -451,14 +490,22 @@ struct common_params {
bool endpoint_props = false; // only control POST requests, not GET
bool endpoint_metrics = false;
// router server configs
std::string models_dir = ""; // directory containing models for the router server
std::string models_preset = ""; // directory containing model presets for the router server
int models_max = 4; // maximum number of models to load simultaneously
bool models_autoload = true; // automatically load models when requested via the router server
bool log_json = false;
std::string slot_save_path;
std::string media_path; // path to directory for loading media files
float slot_prompt_similarity = 0.1f;
// batched-bench params
bool is_pp_shared = false;
bool is_pp_shared = false;
bool is_tg_separate = false;
std::vector<int32_t> n_pp;
std::vector<int32_t> n_tg;
@@ -505,6 +552,10 @@ struct common_params {
// return false from callback to abort model loading or true to continue
llama_progress_callback load_progress_callback = NULL;
void * load_progress_callback_user_data = NULL;
bool has_speculative() const {
return !speculative.model.path.empty() || !speculative.model.hf_repo.empty();
}
};
// call once at the start of a program if it uses libcommon
@@ -599,25 +650,55 @@ std::string string_from(const struct llama_context * ctx, const struct llama_bat
// Filesystem utils
//
bool fs_validate_filename(const std::string & filename);
bool fs_validate_filename(const std::string & filename, bool allow_subdirs = false);
bool fs_create_directory_with_parents(const std::string & path);
bool fs_is_directory(const std::string & path);
std::string fs_get_cache_directory();
std::string fs_get_cache_file(const std::string & filename);
struct common_file_info {
std::string path;
std::string name;
size_t size = 0; // in bytes
bool is_dir = false;
};
std::vector<common_file_info> fs_list(const std::string & path, bool include_directories);
//
// TTY utils
//
// Auto-detect if colors can be enabled based on terminal and environment
bool tty_can_use_colors();
//
// Model utils
//
// note: defines object's lifetime
struct common_init_result {
llama_model_ptr model;
llama_context_ptr context;
struct common_sampler;
std::vector<llama_adapter_lora_ptr> lora;
// note: defines the model, context, samplers, ets. lifetimes
struct common_init_result {
common_init_result(common_params & params);
~common_init_result();
llama_model * model();
llama_context * context();
common_sampler * sampler(llama_seq_id seq_id);
std::vector<llama_adapter_lora_ptr> & lora();
void free_context();
private:
struct impl;
std::unique_ptr<impl> pimpl;
};
struct common_init_result common_init_from_params(common_params & params);
using common_init_result_ptr = std::unique_ptr<common_init_result>;
common_init_result_ptr common_init_from_params(common_params & params);
struct llama_model_params common_model_params_to_llama ( common_params & params);
struct llama_context_params common_context_params_to_llama(const common_params & params);

View File

@@ -268,10 +268,10 @@ static bool is_reserved_name(const std::string & name) {
}
std::regex INVALID_RULE_CHARS_RE("[^a-zA-Z0-9-]+");
std::regex GRAMMAR_LITERAL_ESCAPE_RE("[\r\n\"]");
std::regex GRAMMAR_LITERAL_ESCAPE_RE("[\r\n\"\\\\]");
std::regex GRAMMAR_RANGE_LITERAL_ESCAPE_RE("[\r\n\"\\]\\-\\\\]");
std::unordered_map<char, std::string> GRAMMAR_LITERAL_ESCAPES = {
{'\r', "\\r"}, {'\n', "\\n"}, {'"', "\\\""}, {'-', "\\-"}, {']', "\\]"}
{'\r', "\\r"}, {'\n', "\\n"}, {'"', "\\\""}, {'-', "\\-"}, {']', "\\]"}, {'\\', "\\\\"}
};
std::unordered_set<char> NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'};
@@ -303,8 +303,11 @@ static std::string format_literal(const std::string & literal) {
return "\"" + escaped + "\"";
}
class SchemaConverter {
std::string gbnf_format_literal(const std::string & literal) { return format_literal(literal); }
class common_schema_converter {
private:
friend class common_schema_info;
friend std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options);
std::function<json(const std::string &)> _fetch_json;
bool _dotall;
@@ -601,7 +604,10 @@ private:
}
std::string _resolve_ref(const std::string & ref) {
std::string ref_name = ref.substr(ref.find_last_of('/') + 1);
auto it = ref.find('#');
std::string ref_fragment = it != std::string::npos ? ref.substr(it + 1) : ref;
static const std::regex nonalphanumeric_regex(R"([^a-zA-Z0-9-]+)");
std::string ref_name = "ref" + std::regex_replace(ref_fragment, nonalphanumeric_regex, "-");
if (_rules.find(ref_name) == _rules.end() && _refs_being_resolved.find(ref) == _refs_being_resolved.end()) {
_refs_being_resolved.insert(ref);
json resolved = _refs[ref];
@@ -724,7 +730,7 @@ private:
}
public:
SchemaConverter(
common_schema_converter(
const std::function<json(const std::string &)> & fetch_json,
bool dotall)
: _fetch_json(fetch_json), _dotall(dotall)
@@ -774,11 +780,24 @@ public:
std::vector<std::string> tokens = string_split(pointer, "/");
for (size_t i = 1; i < tokens.size(); ++i) {
std::string sel = tokens[i];
if (target.is_null() || !target.contains(sel)) {
if (target.is_object() && target.contains(sel)) {
target = target[sel];
} else if (target.is_array()) {
size_t sel_index;
try {
sel_index = std::stoul(sel);
} catch (const std::invalid_argument & e) {
sel_index = target.size();
}
if (sel_index >= target.size()) {
_errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump());
return;
}
target = target[sel_index];
} else {
_errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump());
return;
}
target = target[sel];
}
_refs[ref] = target;
}
@@ -956,7 +975,7 @@ public:
void check_errors() {
if (!_errors.empty()) {
throw std::runtime_error("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
throw std::invalid_argument("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
}
if (!_warnings.empty()) {
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", string_join(_warnings, "; ").c_str());
@@ -972,6 +991,134 @@ public:
}
};
// common_schema_info implementation (pimpl)
common_schema_info::common_schema_info()
: impl_(std::make_unique<common_schema_converter>(
[](const std::string &) { return json(); },
false)) {}
common_schema_info::~common_schema_info() = default;
common_schema_info::common_schema_info(common_schema_info &&) noexcept = default;
common_schema_info & common_schema_info::operator=(common_schema_info &&) noexcept = default;
void common_schema_info::resolve_refs(nlohmann::ordered_json & schema) {
impl_->resolve_refs(schema, "");
}
// Determines if a JSON schema can resolve to a string type through any path.
// Some models emit raw string values rather than JSON-encoded strings for string parameters.
// If any branch of the schema (via oneOf, anyOf, $ref, etc.) permits a string, this returns
// true, allowing callers to handle the value as a raw string for simplicity.
bool common_schema_info::resolves_to_string(const nlohmann::ordered_json & schema) {
std::unordered_set<std::string> visited_refs;
std::function<bool(const json &)> check = [&](const json & s) -> bool {
if (!s.is_object()) {
return false;
}
// Handle $ref
if (s.contains("$ref")) {
const std::string & ref = s["$ref"];
if (visited_refs.find(ref) != visited_refs.end()) {
// Circular reference, assume not a string to be safe
return false;
}
visited_refs.insert(ref);
auto it = impl_->_refs.find(ref);
if (it != impl_->_refs.end()) {
return check(it->second);
}
return false;
}
// Check type field
if (s.contains("type")) {
const json & schema_type = s["type"];
if (schema_type.is_string()) {
if (schema_type == "string") {
return true;
}
} else if (schema_type.is_array()) {
// Type can be an array like ["string", "null"]
for (const auto & t : schema_type) {
if (t == "string") {
return true;
}
}
}
}
// Check oneOf/anyOf - if any alternative can be a string
if (s.contains("oneOf")) {
for (const auto & alt : s["oneOf"]) {
if (check(alt)) {
return true;
}
}
}
if (s.contains("anyOf")) {
for (const auto & alt : s["anyOf"]) {
if (check(alt)) {
return true;
}
}
}
// Check allOf - all components must be compatible with string type
if (s.contains("allOf")) {
bool all_string = true;
for (const auto & component : s["allOf"]) {
if (!check(component)) {
all_string = false;
break;
}
}
if (all_string) {
return true;
}
}
// Check const - if the constant value is a string
if (s.contains("const")) {
if (s["const"].is_string()) {
return true;
}
}
// Check enum - if any enum value is a string
if (s.contains("enum")) {
for (const auto & val : s["enum"]) {
if (val.is_string()) {
return true;
}
}
}
// String-specific keywords imply string type
if (s.contains("pattern") || s.contains("minLength") || s.contains("maxLength")) {
return true;
}
// Check format - many formats imply string
if (s.contains("format")) {
const std::string & fmt = s["format"];
if (fmt == "date" || fmt == "time" || fmt == "date-time" ||
fmt == "uri" || fmt == "email" || fmt == "hostname" ||
fmt == "ipv4" || fmt == "ipv6" || fmt == "uuid" ||
fmt.find("uuid") == 0) {
return true;
}
}
return false;
};
return check(schema);
}
std::string json_schema_to_grammar(const json & schema, bool force_gbnf) {
#ifdef LLAMA_USE_LLGUIDANCE
if (!force_gbnf) {
@@ -988,7 +1135,7 @@ std::string json_schema_to_grammar(const json & schema, bool force_gbnf) {
}
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options) {
SchemaConverter converter([&](const std::string &) { return json(); }, options.dotall);
common_schema_converter converter([&](const std::string &) { return json(); }, options.dotall);
common_grammar_builder builder {
/* .add_rule = */ [&](const std::string & name, const std::string & rule) {
return converter._add_rule(name, rule);

View File

@@ -3,11 +3,31 @@
#include <nlohmann/json_fwd.hpp>
#include <functional>
#include <memory>
#include <string>
std::string json_schema_to_grammar(const nlohmann::ordered_json & schema,
bool force_gbnf = false);
class common_schema_converter;
// Probes a JSON schema to extract information about its structure and type constraints.
class common_schema_info {
std::unique_ptr<common_schema_converter> impl_;
public:
common_schema_info();
~common_schema_info();
common_schema_info(const common_schema_info &) = delete;
common_schema_info & operator=(const common_schema_info &) = delete;
common_schema_info(common_schema_info &&) noexcept;
common_schema_info & operator=(common_schema_info &&) noexcept;
void resolve_refs(nlohmann::ordered_json & schema);
bool resolves_to_string(const nlohmann::ordered_json & schema);
};
struct common_grammar_builder {
std::function<std::string(const std::string &, const std::string &)> add_rule;
std::function<std::string(const std::string &, const nlohmann::ordered_json &)> add_schema;
@@ -18,4 +38,6 @@ struct common_grammar_options {
bool dotall = false;
};
std::string gbnf_format_literal(const std::string & literal);
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options = {});

View File

@@ -1,3 +1,4 @@
#include "common.h"
#include "log.h"
#include <chrono>
@@ -26,30 +27,6 @@ void common_log_set_verbosity_thold(int verbosity) {
common_log_verbosity_thold = verbosity;
}
// Auto-detect if colors should be enabled based on terminal and environment
static bool common_log_should_use_colors_auto() {
// Check NO_COLOR environment variable (https://no-color.org/)
if (const char * no_color = std::getenv("NO_COLOR")) {
if (no_color[0] != '\0') {
return false;
}
}
// Check TERM environment variable
if (const char * term = std::getenv("TERM")) {
if (std::strcmp(term, "dumb") == 0) {
return false;
}
}
// Check if stdout and stderr are connected to a terminal
// We check both because log messages can go to either
bool stdout_is_tty = isatty(fileno(stdout));
bool stderr_is_tty = isatty(fileno(stderr));
return stdout_is_tty || stderr_is_tty;
}
static int64_t t_us() {
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now().time_since_epoch()).count();
}
@@ -391,7 +368,7 @@ struct common_log * common_log_main() {
static std::once_flag init_flag;
std::call_once(init_flag, [&]() {
// Set default to auto-detect colors
log.set_colors(common_log_should_use_colors_auto());
log.set_colors(tty_can_use_colors());
});
return &log;
@@ -422,7 +399,7 @@ void common_log_set_file(struct common_log * log, const char * file) {
void common_log_set_colors(struct common_log * log, log_colors colors) {
if (colors == LOG_COLORS_AUTO) {
log->set_colors(common_log_should_use_colors_auto());
log->set_colors(tty_can_use_colors());
return;
}
@@ -442,3 +419,28 @@ void common_log_set_prefix(struct common_log * log, bool prefix) {
void common_log_set_timestamps(struct common_log * log, bool timestamps) {
log->set_timestamps(timestamps);
}
void common_log_flush(struct common_log * log) {
log->pause();
log->resume();
}
static int common_get_verbosity(enum ggml_log_level level) {
switch (level) {
case GGML_LOG_LEVEL_DEBUG: return LOG_LEVEL_DEBUG;
case GGML_LOG_LEVEL_INFO: return LOG_LEVEL_INFO;
case GGML_LOG_LEVEL_WARN: return LOG_LEVEL_WARN;
case GGML_LOG_LEVEL_ERROR: return LOG_LEVEL_ERROR;
case GGML_LOG_LEVEL_CONT: return LOG_LEVEL_INFO; // same as INFO
case GGML_LOG_LEVEL_NONE:
default:
return LOG_LEVEL_OUTPUT;
}
}
void common_log_default_callback(enum ggml_log_level level, const char * text, void * /*user_data*/) {
auto verbosity = common_get_verbosity(level);
if (verbosity <= common_log_verbosity_thold) {
common_log_add(common_log_main(), level, "%s", text);
}
}

View File

@@ -21,8 +21,14 @@
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
#endif
#define LOG_DEFAULT_DEBUG 1
#define LOG_DEFAULT_LLAMA 0
#define LOG_LEVEL_DEBUG 4
#define LOG_LEVEL_INFO 3
#define LOG_LEVEL_WARN 2
#define LOG_LEVEL_ERROR 1
#define LOG_LEVEL_OUTPUT 0 // output data from tools
#define LOG_DEFAULT_DEBUG LOG_LEVEL_DEBUG
#define LOG_DEFAULT_LLAMA LOG_LEVEL_INFO
enum log_colors {
LOG_COLORS_AUTO = -1,
@@ -36,6 +42,8 @@ extern int common_log_verbosity_thold;
void common_log_set_verbosity_thold(int verbosity); // not thread-safe
void common_log_default_callback(enum ggml_log_level level, const char * text, void * user_data);
// the common_log uses an internal worker thread to print/write log messages
// when the worker thread is paused, incoming log messages are discarded
struct common_log;
@@ -65,16 +73,18 @@ void common_log_add(struct common_log * log, enum ggml_log_level level, const ch
// 0.00.090.578 I llm_load_tensors: offloading 32 repeating layers to GPU
// 0.00.090.579 I llm_load_tensors: offloading non-repeating layers to GPU
//
// I - info (stdout, V = 0)
// W - warning (stderr, V = 0)
// E - error (stderr, V = 0)
// D - debug (stderr, V = LOG_DEFAULT_DEBUG)
// I - info (stdout, V = LOG_DEFAULT_INFO)
// W - warning (stderr, V = LOG_DEFAULT_WARN)
// E - error (stderr, V = LOG_DEFAULT_ERROR)
// O - output (stdout, V = LOG_DEFAULT_OUTPUT)
//
void common_log_set_file (struct common_log * log, const char * file); // not thread-safe
void common_log_set_colors (struct common_log * log, log_colors colors); // not thread-safe
void common_log_set_prefix (struct common_log * log, bool prefix); // whether to output prefix to each log
void common_log_set_timestamps(struct common_log * log, bool timestamps); // whether to output timestamps in the prefix
void common_log_flush (struct common_log * log); // flush all pending log messages
// helper macros for logging
// use these to avoid computing log arguments if the verbosity of the log is higher than the threshold
@@ -93,14 +103,14 @@ void common_log_set_timestamps(struct common_log * log, bool timestamps); // w
} \
} while (0)
#define LOG(...) LOG_TMPL(GGML_LOG_LEVEL_NONE, 0, __VA_ARGS__)
#define LOGV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_NONE, verbosity, __VA_ARGS__)
#define LOG(...) LOG_TMPL(GGML_LOG_LEVEL_NONE, LOG_LEVEL_OUTPUT, __VA_ARGS__)
#define LOGV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_NONE, verbosity, __VA_ARGS__)
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, 0, __VA_ARGS__)
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, 0, __VA_ARGS__)
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, 0, __VA_ARGS__)
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, LOG_DEFAULT_DEBUG, __VA_ARGS__)
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, 0, __VA_ARGS__)
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, LOG_LEVEL_DEBUG, __VA_ARGS__)
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, LOG_LEVEL_INFO, __VA_ARGS__)
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, LOG_LEVEL_WARN, __VA_ARGS__)
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, LOG_LEVEL_ERROR, __VA_ARGS__)
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, LOG_LEVEL_INFO, __VA_ARGS__) // same as INFO
#define LOG_INFV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_INFO, verbosity, __VA_ARGS__)
#define LOG_WRNV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_WARN, verbosity, __VA_ARGS__)

View File

@@ -3,9 +3,10 @@
#include "common.h"
#include "log.h"
#include <cmath>
#include <unordered_map>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <unordered_map>
// the ring buffer works similarly to std::deque, but with a fixed capacity
// TODO: deduplicate with llama-impl.h
@@ -103,15 +104,22 @@ struct ring_buffer {
struct common_sampler {
common_params_sampling params;
struct llama_sampler * grmr;
struct llama_sampler * chain;
bool grammar;
ring_buffer<llama_token> prev;
std::vector<llama_token_data> cur;
llama_token_data_array cur_p;
void reset() {
prev.clear();
llama_sampler_reset(chain);
}
void set_logits(struct llama_context * ctx, int idx) {
const auto * logits = llama_get_logits_ith(ctx, idx);
@@ -128,6 +136,12 @@ struct common_sampler {
cur_p = { cur.data(), cur.size(), -1, false };
}
common_time_meas tm() {
return common_time_meas(t_total_us, params.no_perf);
}
mutable int64_t t_total_us = 0;
};
std::string common_params_sampling::print() const {
@@ -153,10 +167,15 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
lparams.no_perf = params.no_perf;
struct llama_sampler * grmr;
llama_sampler * chain = llama_sampler_chain_init(lparams);
bool grammar = false;
std::vector<llama_sampler *> samplers;
if (params.grammar.compare(0, 11, "%llguidance") == 0) {
#ifdef LLAMA_USE_LLGUIDANCE
grmr = llama_sampler_init_llg(vocab, "lark", params.grammar.c_str());
samplers.push_back(llama_sampler_init_llg(vocab, "lark", params.grammar.c_str()));
grammar = true;
#else
GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
#endif // LLAMA_USE_LLGUIDANCE
@@ -203,30 +222,23 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
trigger_patterns_c.push_back(regex.c_str());
}
grmr = params.grammar_lazy
? llama_sampler_init_grammar_lazy_patterns(vocab, params.grammar.c_str(), "root",
trigger_patterns_c.data(), trigger_patterns_c.size(),
trigger_tokens.data(), trigger_tokens.size())
: llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
if (!grmr) {
return nullptr;
if (!params.grammar.empty()) {
if (params.grammar_lazy) {
samplers.push_back(
llama_sampler_init_grammar_lazy_patterns(vocab, params.grammar.c_str(), "root",
trigger_patterns_c.data(), trigger_patterns_c.size(),
trigger_tokens.data(), trigger_tokens.size()));
} else {
samplers.push_back(llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root"));
}
grammar = true;
}
}
auto * result = new common_sampler {
/* .params = */ params,
/* .grmr = */ grmr,
/* .chain = */ llama_sampler_chain_init(lparams),
/* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
/* .cur = */ {},
/* .cur_p = */ {},
};
llama_sampler_chain_add(result->chain,
llama_sampler_init_logit_bias(
llama_vocab_n_tokens(vocab),
params.logit_bias.size(),
params.logit_bias.data()));
if (params.has_logit_bias()) {
samplers.push_back(llama_sampler_init_logit_bias(llama_vocab_n_tokens(vocab), params.logit_bias.size(), params.logit_bias.data()));
}
if (params.mirostat == 0) {
for (const auto & cnstr : params.samplers) {
@@ -239,58 +251,70 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
c_breakers.push_back(str.c_str());
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
samplers.push_back(llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
}
break;
case COMMON_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
samplers.push_back(llama_sampler_init_top_k (params.top_k));
break;
case COMMON_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
samplers.push_back(llama_sampler_init_top_p (params.top_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
samplers.push_back(llama_sampler_init_top_n_sigma(params.top_n_sigma));
break;
case COMMON_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
samplers.push_back(llama_sampler_init_min_p (params.min_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_XTC:
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
samplers.push_back(llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break;
case COMMON_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
samplers.push_back(llama_sampler_init_typical (params.typ_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TEMPERATURE:
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
samplers.push_back(llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break;
case COMMON_SAMPLER_TYPE_INFILL:
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
samplers.push_back(llama_sampler_init_infill (vocab));
break;
case COMMON_SAMPLER_TYPE_PENALTIES:
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
samplers.push_back(llama_sampler_init_penalties (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
}
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
samplers.push_back(llama_sampler_init_dist(params.seed));
} else if (params.mirostat == 1) {
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_vocab_n_tokens(vocab), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
samplers.push_back(llama_sampler_init_temp(params.temp));
samplers.push_back(llama_sampler_init_mirostat(llama_vocab_n_tokens(vocab), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
} else if (params.mirostat == 2) {
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
samplers.push_back(llama_sampler_init_temp(params.temp));
samplers.push_back(llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
} else {
GGML_ASSERT(false && "unknown mirostat version");
}
for (auto * smpl : samplers) {
llama_sampler_chain_add(chain, smpl);
}
auto * result = new common_sampler {
/* .params = */ params,
/* .chain = */ chain,
/* .grammar = */ grammar,
/* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
/* .cur = */ {},
/* .cur_p = */ {},
};
return result;
}
void common_sampler_free(struct common_sampler * gsmpl) {
if (gsmpl) {
llama_sampler_free(gsmpl->grmr);
llama_sampler_free(gsmpl->chain);
delete gsmpl;
@@ -298,91 +322,117 @@ void common_sampler_free(struct common_sampler * gsmpl) {
}
void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) {
if (accept_grammar) {
llama_sampler_accept(gsmpl->grmr, token);
}
const auto tm = gsmpl->tm();
llama_sampler_accept(gsmpl->chain, token);
if (gsmpl->grammar) {
const int n_smpl = llama_sampler_chain_n(gsmpl->chain);
for (int i = 0; i < n_smpl; i++) {
auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
// the grammar sampler is always the first one
if (i == 0) {
if (accept_grammar) {
llama_sampler_accept(smpl, token);
}
} else {
llama_sampler_accept(smpl, token);
}
}
} else {
llama_sampler_accept(gsmpl->chain, token);
}
gsmpl->prev.push_back(token);
}
void common_sampler_reset(struct common_sampler * gsmpl) {
llama_sampler_reset(gsmpl->grmr);
llama_sampler_reset(gsmpl->chain);
gsmpl->reset();
}
struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
return new common_sampler {
/* .params = */ gsmpl->params,
/* .grmr = */ llama_sampler_clone(gsmpl->grmr),
/* .chain = */ llama_sampler_clone(gsmpl->chain),
/* .prev = */ gsmpl->prev,
/* .cur = */ gsmpl->cur,
/* .cur_p = */ gsmpl->cur_p,
/* .params = */ gsmpl->params,
/* .chain = */ llama_sampler_clone(gsmpl->chain),
/* .grammar = */ gsmpl->grammar,
/* .prev = */ gsmpl->prev,
/* .cur = */ gsmpl->cur,
/* .cur_p = */ gsmpl->cur_p,
};
}
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl) {
// TODO: measure grammar performance
const double t_sampling_ms = gsmpl ? 1e-3*gsmpl->t_total_us : 0;
llama_perf_sampler_data data_smpl;
llama_perf_context_data data_ctx;
memset(&data_smpl, 0, sizeof(data_smpl));
memset(&data_ctx, 0, sizeof(data_ctx));
if (gsmpl) {
llama_perf_sampler_print(gsmpl->chain);
auto & data = data_smpl;
data = llama_perf_sampler(gsmpl->chain);
// note: the sampling time includes the samplers time + extra time spent in common/sampling
LOG_INF("%s: sampling time = %10.2f ms\n", __func__, t_sampling_ms);
LOG_INF("%s: samplers time = %10.2f ms / %5d tokens\n", __func__, data.t_sample_ms, data.n_sample);
}
if (ctx) {
llama_perf_context_print(ctx);
auto & data = data_ctx;
data = llama_perf_context(ctx);
const double t_end_ms = 1e-3 * ggml_time_us();
const double t_total_ms = t_end_ms - data.t_start_ms;
const double t_unacc_ms = t_total_ms - (t_sampling_ms + data.t_p_eval_ms + data.t_eval_ms);
const double t_unacc_pc = 100.0 * t_unacc_ms / t_total_ms;
LOG_INF("%s: load time = %10.2f ms\n", __func__, data.t_load_ms);
LOG_INF("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, data.t_p_eval_ms, data.n_p_eval, data.t_p_eval_ms / data.n_p_eval, 1e3 / data.t_p_eval_ms * data.n_p_eval);
LOG_INF("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, data.t_eval_ms, data.n_eval, data.t_eval_ms / data.n_eval, 1e3 / data.t_eval_ms * data.n_eval);
LOG_INF("%s: total time = %10.2f ms / %5d tokens\n", __func__, (t_end_ms - data.t_start_ms), (data.n_p_eval + data.n_eval));
LOG_INF("%s: unaccounted time = %10.2f ms / %5.1f %% (total - sampling - prompt eval - eval) / (total)\n", __func__, t_unacc_ms, t_unacc_pc);
LOG_INF("%s: graphs reused = %10d\n", __func__, data.n_reused);
llama_memory_breakdown_print(ctx);
}
}
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
gsmpl->set_logits(ctx, idx);
struct llama_sampler * common_sampler_get(const struct common_sampler * gsmpl) {
return gsmpl->chain;
}
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx) {
llama_synchronize(ctx);
// start measuring sampling time after the llama_context synchronization in order to not measure any ongoing async operations
const auto tm = gsmpl->tm();
llama_token id = LLAMA_TOKEN_NULL;
auto & grmr = gsmpl->grmr;
auto & chain = gsmpl->chain;
auto & cur_p = gsmpl->cur_p; // initialized by set_logits
if (grammar_first) {
llama_sampler_apply(grmr, &cur_p);
}
gsmpl->set_logits(ctx, idx);
llama_sampler_apply(chain, &cur_p);
GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration");
const llama_token id = cur_p.data[cur_p.selected].id;
id = cur_p.data[cur_p.selected].id;
if (grammar_first) {
return id;
}
// check if it the sampled token fits the grammar
{
llama_token_data single_token_data = { id, 1.0f, 0.0f };
llama_token_data_array single_token_data_array = { &single_token_data, 1, -1, false };
llama_sampler_apply(grmr, &single_token_data_array);
const bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
if (is_valid) {
return id;
}
}
// resampling:
// if the token is not valid, sample again, but first apply the grammar sampler and then the sampling chain
gsmpl->set_logits(ctx, idx);
llama_sampler_apply(grmr, &cur_p);
llama_sampler_apply(chain, &cur_p);
GGML_ASSERT(cur_p.selected != -1 && "no selected token during re-sampling - check your sampling configuration");
return cur_p.data[cur_p.selected].id;
return id;
}
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first) {
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft) {
GGML_ASSERT(idxs.size() == draft.size() + 1 && "idxs.size() must be draft.size() + 1");
std::vector<llama_token> result;
@@ -390,7 +440,7 @@ std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sample
size_t i = 0;
for (; i < draft.size(); i++) {
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i]);
common_sampler_accept(gsmpl, id, true);
@@ -402,7 +452,7 @@ std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sample
}
if (i == draft.size()) {
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i]);
common_sampler_accept(gsmpl, id, true);
@@ -412,13 +462,13 @@ std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sample
return result;
}
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first) {
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft) {
std::vector<int> idxs(draft.size() + 1);
for (size_t i = 0; i < idxs.size(); ++i) {
idxs[i] = i;
}
return common_sampler_sample_and_accept_n(gsmpl, ctx, idxs, draft, grammar_first);
return common_sampler_sample_and_accept_n(gsmpl, ctx, idxs, draft);
}
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
@@ -428,6 +478,8 @@ uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
// helpers
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl, bool do_sort) {
const auto tm = gsmpl->tm();
auto * res = &gsmpl->cur_p;
if (do_sort && !res->sorted) {
@@ -461,7 +513,8 @@ std::string common_sampler_print(const struct common_sampler * gsmpl) {
for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
const auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
result += std::string("-> ") + llama_sampler_name(smpl) + " ";
result += std::string("-> ");
result += std::string(llama_sampler_name(smpl)) + " ";
}
return result;

View File

@@ -48,6 +48,8 @@ struct common_sampler * common_sampler_clone (struct common_sampler * gsmpl);
// arguments can be nullptr to skip printing
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl);
struct llama_sampler * common_sampler_get(const struct common_sampler * gsmpl);
// extended sampling implementation:
//
// - set logits
@@ -55,10 +57,7 @@ void common_perf_print(const struct llama_context * ctx, const struct common_sam
// - check if the token fits the grammar (if any)
// - if not: resample by first applying the grammar constraints and then sampling again (slower path)
//
// if grammar_first is true, the grammar is applied before the samplers (slower)
// useful in cases where all the resulting candidates (not just the sampled one) must fit the grammar
//
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx);
// generalized version of common_sampler_sample
//
@@ -76,10 +75,10 @@ llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_co
//
// returns at least 1 token, up to idxs.size()
//
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first = false);
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft);
// assume idxs == [ 0, 1, 2, ..., draft.size() ]
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first = false);
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft);
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl);
@@ -107,3 +106,9 @@ std::vector<enum common_sampler_type> common_sampler_types_from_chars(const std:
llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab,
const char * grammar_kind, const char * grammar_data);
struct common_sampler_deleter {
void operator()(common_sampler * s) { common_sampler_free(s); }
};
typedef std::unique_ptr<common_sampler, common_sampler_deleter> common_sampler_ptr;

View File

@@ -83,6 +83,7 @@ extern "C" {
LLAMA_ROPE_TYPE_NORM = 0,
LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX,
LLAMA_ROPE_TYPE_MROPE = GGML_ROPE_TYPE_MROPE,
LLAMA_ROPE_TYPE_IMROPE = GGML_ROPE_TYPE_IMROPE,
LLAMA_ROPE_TYPE_VISION = GGML_ROPE_TYPE_VISION,
};
@@ -245,6 +246,21 @@ extern "C" {
LLAMA_KV_OVERRIDE_TYPE_STR,
};
enum llama_model_meta_key {
LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE,
LLAMA_MODEL_META_KEY_SAMPLING_TOP_K,
LLAMA_MODEL_META_KEY_SAMPLING_TOP_P,
LLAMA_MODEL_META_KEY_SAMPLING_MIN_P,
LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY,
LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD,
LLAMA_MODEL_META_KEY_SAMPLING_TEMP,
LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N,
LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT,
LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT,
LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU,
LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA,
};
struct llama_model_kv_override {
enum llama_model_kv_override_type tag;
@@ -297,6 +313,7 @@ extern "C" {
bool check_tensors; // validate model tensor data
bool use_extra_bufts; // use extra buffer types (used for weight repacking)
bool no_host; // bypass host buffer allowing extra buffers to be used
bool no_alloc; // only load metadata and simulate memory allocations
};
// NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
@@ -450,17 +467,35 @@ extern "C" {
// Frees all allocated memory
LLAMA_API void llama_free(struct llama_context * ctx);
// fits mparams and cparams to free device memory (assumes system memory is unlimited)
// returns true if the parameters could be successfully modified to fit device memory
// this function is NOT thread safe because it modifies the global llama logger state
LLAMA_API bool llama_params_fit(
const char * path_model,
struct llama_model_params * mparams,
struct llama_context_params * cparams,
float * tensor_split, // writable buffer for tensor split, needs at least llama_max_devices elements
struct llama_model_tensor_buft_override * tensor_buft_overrides, // writable buffer for overrides, needs at least llama_max_tensor_buft_overrides elements
size_t margin, // margin of memory to leave per device in bytes
uint32_t n_ctx_min, // minimum context size to set when trying to reduce memory use
enum ggml_log_level log_level); // minimum log level to print during fitting, lower levels go to debug log
LLAMA_API int64_t llama_time_us(void);
LLAMA_API size_t llama_max_devices(void);
LLAMA_API size_t llama_max_parallel_sequences(void);
LLAMA_API size_t llama_max_tensor_buft_overrides(void);
LLAMA_API bool llama_supports_mmap (void);
LLAMA_API bool llama_supports_mlock (void);
LLAMA_API bool llama_supports_gpu_offload(void);
LLAMA_API bool llama_supports_rpc (void);
// NOTE: After creating a llama_context, it is recommended to query the actual values using these functions
// In some cases the requested values via llama_context_params may differ from the actual values used by the context
// ref: https://github.com/ggml-org/llama.cpp/pull/17046#discussion_r2503085732
LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_ctx_seq (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
@@ -481,6 +516,7 @@ extern "C" {
LLAMA_API int32_t llama_model_n_ctx_train(const struct llama_model * model);
LLAMA_API int32_t llama_model_n_embd (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_embd_inp (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_layer (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_head (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_head_kv (const struct llama_model * model);
@@ -512,6 +548,9 @@ extern "C" {
// Get the number of metadata key/value pairs
LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
// Get sampling metadata key name. Returns nullptr if the key is invalid
LLAMA_API const char * llama_model_meta_key_str(enum llama_model_meta_key key);
// Get metadata key name by index
LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
@@ -584,7 +623,7 @@ extern "C" {
LLAMA_API int32_t llama_adapter_meta_val_str_by_index(const struct llama_adapter_lora * adapter, int32_t i, char * buf, size_t buf_size);
// Manually free a LoRA adapter
// Note: loaded adapters will be free when the associated model is deleted
// NOTE: loaded adapters will be free when the associated model is deleted
LLAMA_API void llama_adapter_lora_free(struct llama_adapter_lora * adapter);
// Get the invocation tokens if the current lora is an alora
@@ -1110,8 +1149,6 @@ extern "C" {
// // sample from the logits of the last token in the batch
// const llama_token id = llama_sampler_sample(smpl, ctx, -1);
//
// // accepting the token updates the internal state of certain samplers (e.g. grammar, repetition, etc.)
// llama_sampler_accept(smpl, id);
// ...
// }
//
@@ -1332,7 +1369,9 @@ extern "C" {
// Set callback for all future logging events.
// If this is not called, or NULL is supplied, everything is output on stderr.
LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
// The logger state is global so these functions are NOT thread safe.
LLAMA_API void llama_log_get(ggml_log_callback * log_callback, void ** user_data);
LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
//
// Performance utils

View File

File diff suppressed because it is too large Load Diff

View File

@@ -3,6 +3,7 @@
#include "ggml.h" // ggml_op
#include <string>
#include <set>
//
// gguf constants (sync with gguf.py)
@@ -36,6 +37,9 @@ enum llm_arch {
LLM_ARCH_QWEN2VL,
LLM_ARCH_QWEN3,
LLM_ARCH_QWEN3MOE,
LLM_ARCH_QWEN3NEXT,
LLM_ARCH_QWEN3VL,
LLM_ARCH_QWEN3VLMOE,
LLM_ARCH_PHI2,
LLM_ARCH_PHI3,
LLM_ARCH_PHIMOE,
@@ -76,6 +80,7 @@ enum llm_arch {
LLM_ARCH_JAIS,
LLM_ARCH_NEMOTRON,
LLM_ARCH_NEMOTRON_H,
LLM_ARCH_NEMOTRON_H_MOE,
LLM_ARCH_EXAONE,
LLM_ARCH_EXAONE4,
LLM_ARCH_RWKV6,
@@ -93,6 +98,7 @@ enum llm_arch {
LLM_ARCH_BAILINGMOE2,
LLM_ARCH_DOTS1,
LLM_ARCH_ARCEE,
LLM_ARCH_AFMOE,
LLM_ARCH_ERNIE4_5,
LLM_ARCH_ERNIE4_5_MOE,
LLM_ARCH_HUNYUAN_MOE,
@@ -108,6 +114,11 @@ enum llm_arch {
LLM_ARCH_SEED_OSS,
LLM_ARCH_GROVEMOE,
LLM_ARCH_APERTUS,
LLM_ARCH_MINIMAX_M2,
LLM_ARCH_COGVLM,
LLM_ARCH_RND1,
LLM_ARCH_PANGU_EMBED,
LLM_ARCH_MISTRAL3,
LLM_ARCH_UNKNOWN,
};
@@ -117,6 +128,18 @@ enum llm_kv {
LLM_KV_GENERAL_QUANTIZATION_VERSION,
LLM_KV_GENERAL_ALIGNMENT,
LLM_KV_GENERAL_FILE_TYPE,
LLM_KV_GENERAL_SAMPLING_SEQUENCE,
LLM_KV_GENERAL_SAMPLING_TOP_K,
LLM_KV_GENERAL_SAMPLING_TOP_P,
LLM_KV_GENERAL_SAMPLING_MIN_P,
LLM_KV_GENERAL_SAMPLING_XTC_PROBABILITY,
LLM_KV_GENERAL_SAMPLING_XTC_THRESHOLD,
LLM_KV_GENERAL_SAMPLING_TEMP,
LLM_KV_GENERAL_SAMPLING_PENALTY_LAST_N,
LLM_KV_GENERAL_SAMPLING_PENALTY_REPEAT,
LLM_KV_GENERAL_SAMPLING_MIROSTAT,
LLM_KV_GENERAL_SAMPLING_MIROSTAT_TAU,
LLM_KV_GENERAL_SAMPLING_MIROSTAT_ETA,
LLM_KV_GENERAL_NAME,
LLM_KV_GENERAL_AUTHOR,
LLM_KV_GENERAL_VERSION,
@@ -150,6 +173,7 @@ enum llm_kv {
LLM_KV_EXPERTS_PER_GROUP,
LLM_KV_MOE_EVERY_N_LAYERS,
LLM_KV_NEXTN_PREDICT_LAYERS,
LLM_KV_NUM_DEEPSTACK_LAYERS,
LLM_KV_POOLING_TYPE,
LLM_KV_LOGIT_SCALE,
LLM_KV_DECODER_START_TOKEN_ID,
@@ -188,6 +212,7 @@ enum llm_kv {
LLM_KV_ATTENTION_SCALE,
LLM_KV_ATTENTION_OUTPUT_SCALE,
LLM_KV_ATTENTION_TEMPERATURE_LENGTH,
LLM_KV_ATTENTION_TEMPERATURE_SCALE,
LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
@@ -294,6 +319,7 @@ enum llm_tensor {
LLM_TENSOR_DENSE_3_OUT,
LLM_TENSOR_OUTPUT,
LLM_TENSOR_OUTPUT_NORM,
LLM_TENSOR_OUTPUT_NORM_LFM2, // fix for wrong tensor name
LLM_TENSOR_ROPE_FREQS,
LLM_TENSOR_ROPE_FACTORS_LONG,
LLM_TENSOR_ROPE_FACTORS_SHORT,
@@ -308,6 +334,7 @@ enum llm_tensor {
LLM_TENSOR_ATTN_POST_NORM,
LLM_TENSOR_ATTN_ROT_EMBD,
LLM_TENSOR_ATTN_SINKS,
LLM_TENSOR_ATTN_GATE,
LLM_TENSOR_FFN_GATE_INP,
LLM_TENSOR_FFN_GATE_INP_SHEXP,
LLM_TENSOR_FFN_NORM,
@@ -357,11 +384,13 @@ enum llm_tensor {
LLM_TENSOR_SSM_DT,
LLM_TENSOR_SSM_DT_NORM,
LLM_TENSOR_SSM_A,
LLM_TENSOR_SSM_A_NOSCAN, // qwen3next special case with MUL instead of SSM_SCAN
LLM_TENSOR_SSM_B_NORM,
LLM_TENSOR_SSM_C_NORM,
LLM_TENSOR_SSM_D,
LLM_TENSOR_SSM_NORM,
LLM_TENSOR_SSM_OUT,
LLM_TENSOR_SSM_BETA_ALPHA, // qwen3next
LLM_TENSOR_TIME_MIX_W0,
LLM_TENSOR_TIME_MIX_W1,
LLM_TENSOR_TIME_MIX_W2,
@@ -458,6 +487,11 @@ enum llm_tensor {
LLM_TENSOR_SHORTCONV_CONV,
LLM_TENSOR_SHORTCONV_INPROJ,
LLM_TENSOR_SHORTCONV_OUTPROJ,
LLM_TENSOR_VISEXP_ATTN_QKV,
LLM_TENSOR_VISEXP_ATTN_OUT,
LLM_TENSOR_VISEXP_FFN_GATE,
LLM_TENSOR_VISEXP_FFN_DOWN,
LLM_TENSOR_VISEXP_FFN_UP,
LLM_TENSOR_NEXTN_EH_PROJ,
LLM_TENSOR_NEXTN_EMBED_TOKENS,
LLM_TENSOR_NEXTN_ENORM,
@@ -497,6 +531,10 @@ struct LLM_TN_IMPL {
const int bid;
const int xid;
const std::set<llm_tensor> model_tensors;
LLM_TN_IMPL(llm_arch arch, llm_tensor tensor, const char * suffix, int bid, int xid);
std::string str() const;
operator std::string() const {
@@ -518,11 +556,11 @@ struct LLM_TN {
llm_arch arch;
LLM_TN_IMPL operator()(llm_tensor tensor, const char * suffix, int bid = -1, int xid = -1) const {
return { arch, tensor, suffix, bid, xid };
return LLM_TN_IMPL(arch, tensor, suffix, bid, xid);
}
LLM_TN_IMPL operator()(llm_tensor tensor, int bid = -1, int xid = -1) const {
return { arch, tensor, nullptr, bid, xid };
return LLM_TN_IMPL(arch, tensor, nullptr, bid, xid);
}
};

View File

@@ -215,6 +215,7 @@ bool llama_batch_allocr::init(
/*.n_seq_tokens =*/ (uint32_t) 1,
/*.n_seqs =*/ (uint32_t) batch.n_tokens,
/*.n_seqs_unq =*/ (uint32_t) this->seq_id_unq.size(),
/*.n_pos =*/ n_pos_per_embd,
/*.token =*/ batch.token,
/*.embd =*/ batch.embd,
/*.pos =*/ batch.pos,
@@ -251,46 +252,72 @@ bool llama_batch_allocr::init(
// consistency checks
//
for (uint32_t s = 0; s < n_seq_max; ++s) {
if (seq_pos[s].empty()) {
continue;
}
if (n_pos_per_embd > 1) {
// M-RoPE case: allow position to "jump" forward only (non-continuous positions are allowed)
for (uint32_t s = 0; s < n_seq_max; ++s) {
if (seq_pos[s].empty()) {
continue;
}
const llama_pos p0 = memory ? memory->seq_pos_max(s) : -1;
if (p0 >= 0) {
bool ok = true;
const llama_pos p0 = memory ? memory->seq_pos_max(s) : -1;
if (batch.token) {
if (p0 >= 0 && p0 >= seq_pos_min(s)) {
LLAMA_LOG_ERROR(
"%s: the tokens of sequence %d in the input batch have inconsistent sequence positions:\n"
" - the last position stored in the memory module of the context (i.e. the KV cache) for sequence %d is X = %d\n"
" - the tokens for sequence %d in the input batch have a starting position of Y = %d\n"
" for M-RoPE, it is required that the position satisfies: X < Y\n",
__func__, s, s, p0, s, seq_pos_min(s));
return false;
}
} else {
// embedding inputs can have overlapping positions
if (p0 >= 0 && p0 > seq_pos_min(s)) {
LLAMA_LOG_ERROR(
"%s: the tokens of sequence %d in the input batch have inconsistent sequence positions:\n"
" - the last position stored in the memory module of the context (i.e. the KV cache) for sequence %d is X = %d\n"
" - the tokens for sequence %d in the input batch have a starting position of Y = %d\n"
" for M-RoPE, it is required that the position satisfies: X <= Y\n",
__func__, s, s, p0, s, seq_pos_min(s));
return false;
}
}
}
} else {
for (uint32_t s = 0; s < n_seq_max; ++s) {
if (seq_pos[s].empty()) {
continue;
}
const llama_pos p0 = memory ? memory->seq_pos_max(s) : -1;
if (p0 >= 0) {
bool ok = true;
if (seq_pos_min(s) != p0 + 1) {
ok = false;
}
} else {
assert(batch.embd);
// for embeddings (typically used as vision input), we allow them to have repeating positions
// ref: https://github.com/ggml-org/llama.cpp/issues/13694#issuecomment-2983871762
if (seq_pos_min(s) != p0 && seq_pos_min(s) != p0 + 1) {
ok = false;
if (!ok) {
LLAMA_LOG_ERROR(
"%s: the tokens of sequence %d in the input batch have inconsistent sequence positions:\n"
" - the last position stored in the memory module of the context (i.e. the KV cache) for sequence %d is X = %d\n"
" - the tokens for sequence %d in the input batch have a starting position of Y = %d\n"
" it is required that the sequence positions remain consecutive: Y = X + 1\n",
__func__, s, s, p0, s, seq_pos_min(s));
return false;
}
}
if (!ok) {
LLAMA_LOG_ERROR(
"%s: the tokens of sequence %d in the input batch have inconsistent sequence positions:\n"
" - the last position stored in the memory module of the context (i.e. the KV cache) for sequence %d is X = %d\n"
" - the tokens for sequence %d in the input batch have a starting position of Y = %d\n"
" it is required that the sequence positions remain consecutive: Y = X + 1\n",
__func__, s, s, p0, s, seq_pos_min(s));
if (seq_pos_max(s) - seq_pos_min(s) + 1 > (int) seq_pos[s].size()) {
LLAMA_LOG_ERROR("%s: sequence %d positions are not continuous\n", __func__, s);
return false;
}
}
if (seq_pos_max(s) - seq_pos_min(s) + 1 > (int) seq_pos[s].size()) {
LLAMA_LOG_ERROR("%s: sequence %d positions are not continuous\n", __func__, s);
return false;
}
}
if (memory) {
@@ -389,6 +416,7 @@ llama_ubatch llama_batch_allocr::ubatch_reserve(uint32_t n_seq_tokens, uint32_t
/*.n_seq_tokens =*/ n_seq_tokens,
/*.n_seqs =*/ n_seqs,
/*.n_seqs_unq =*/ n_seqs,
/*.n_pos =*/ n_pos_per_embd,
/*.token =*/ udata->token.data(),
/*.embd =*/ nullptr,
@@ -655,10 +683,8 @@ llama_ubatch llama_batch_allocr::ubatch_add(const std::vector<int32_t> & idxs, u
auto udata = std::make_shared<llama_ubatch::data_t>();
const int32_t n_pos_cur = batch.embd ? n_pos_per_embd : 1;
const int64_t n_embd_all = batch.embd ? (int64_t) n_tokens*n_embd : 0;
const int64_t n_pos_all = (int64_t) n_tokens*n_pos_cur;
const int64_t n_pos_all = (int64_t) n_tokens*n_pos_per_embd;
udata->token .resize(n_tokens);
udata->embd .resize(n_embd_all);
@@ -669,6 +695,8 @@ llama_ubatch llama_batch_allocr::ubatch_add(const std::vector<int32_t> & idxs, u
udata->seq_idx .resize(LLAMA_MAX_SEQ, -1);
udata->output .resize(n_tokens);
udata->seq_id_data.reserve(n_tokens);
seq_set_t seq_set_unq;
for (size_t i = 0; i < idxs.size(); ++i) {
@@ -680,16 +708,23 @@ llama_ubatch llama_batch_allocr::ubatch_add(const std::vector<int32_t> & idxs, u
memcpy(udata->embd.data() + i*n_embd, batch.embd + (int64_t) idxs[i]*n_embd, n_embd*sizeof(float));
}
for (int j = 0; j < n_pos_cur; ++j) {
udata->pos[j*n_tokens + i] = batch.pos[j*batch.n_tokens + idxs[i]];
for (size_t j = 0; j < (size_t)n_pos_per_embd; ++j) {
// if we are using M-RoPE
// if the current batch is text, we need to broadcast the same position across all RoPE sections
// otherwise, the input batch is image embeddings, we copy the positions as-is
// if we are not using M-RoPE, there is only one position per token (this loop runs only once)
size_t src_off = batch.token ? 0 : j*batch.n_tokens;
udata->pos[j*n_tokens + i] = batch.pos[src_off + idxs[i]];
}
udata->n_seq_id[i] = batch.n_seq_id[idxs[i]];
udata->seq_id[i] = batch.seq_id[idxs[i]];
udata->output[i] = batch.logits[idxs[i]];
for (int s = 0; s < udata->n_seq_id[i]; ++s) {
seq_set_unq.set(udata->seq_id[i][s]);
const llama_seq_id seq_id = batch.seq_id[idxs[i]][s];
udata->seq_id_data.push_back(seq_id);
seq_set_unq.set(seq_id);
}
if (udata->output[i]) {
@@ -697,6 +732,12 @@ llama_ubatch llama_batch_allocr::ubatch_add(const std::vector<int32_t> & idxs, u
}
}
llama_seq_id * seq_id_ptr = udata->seq_id_data.data();
for (size_t i = 0; i < idxs.size(); ++i) {
udata->seq_id[i] = seq_id_ptr;
seq_id_ptr += udata->n_seq_id[i];
}
for (uint32_t s = 0; s < n_seq_max; ++s) {
if (seq_set_unq.test(s)) {
udata->seq_idx[s] = udata->seq_id_unq.size();
@@ -710,6 +751,7 @@ llama_ubatch llama_batch_allocr::ubatch_add(const std::vector<int32_t> & idxs, u
/*.n_seq_tokens =*/ n_tokens/n_seqs,
/*.n_seqs =*/ n_seqs,
/*.n_seqs_unq =*/ (uint32_t) udata->seq_id_unq.size(),
/*.n_pos =*/ n_pos_per_embd,
/*.token =*/ batch.token ? udata->token.data() : nullptr,
/*.embd =*/ batch.embd ? udata->embd.data() : nullptr,

View File

@@ -17,6 +17,16 @@ struct llama_ubatch {
return b_equal_seqs != 0;
}
// typical for M-RoPE cases:
// 0 - sequantial position of the tokens/embeddings in the sequence
// 1 - y position in the image
// 2 - x position in the image
// 3 - other
bool is_pos_2d() const {
// TODO @ngxson : we may need to check for model arch when more models use >1 positions
return n_pos >= 3;
}
uint32_t b_equal_seqs; // note: this is a boolean, but we use an int32_t for alignment
// otherwise address sanitizer complains
// TODO: whole_seqs for embeddings?
@@ -25,6 +35,7 @@ struct llama_ubatch {
uint32_t n_seq_tokens; // tokens per sequence set
uint32_t n_seqs; // sequence sets in the ubatch
uint32_t n_seqs_unq; // unique sequence ids in the ubatch
uint32_t n_pos; // number of position inputs for each token/embedding
// seq_id_unq: unique sequence ids in the ubatch
// seq_idx: indices of the unique sequence ids in the ubatch in [0, n_seqs_unq)
@@ -33,7 +44,7 @@ struct llama_ubatch {
// // size | idx | val
llama_token * token; // [n_tokens] | i | id, token
float * embd; // [n_embd, n_tokens] | i | embd
llama_pos * pos; // [n_tokens] | i | pos
llama_pos * pos; // [n_tokens*n_pos] | i | pos
int32_t * n_seq_id; // [n_tokens] | i | -
llama_seq_id ** seq_id; // [n_tokens] | s | s0, s1, seq_id
llama_seq_id * seq_id_unq; // [n_seqs_unq] | s | seq_id
@@ -45,13 +56,15 @@ struct llama_ubatch {
std::vector<float> embd;
std::vector<llama_pos> pos;
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id *> seq_id;
std::vector<llama_seq_id *> seq_id; // these point into the seq_id_data below
std::vector<llama_seq_id> seq_id_unq;
std::vector<int32_t> seq_idx;
std::vector<int8_t> output;
std::vector<llama_seq_id> seq_id_data;
};
// the llama_ubatch pointers above point to this data if set. otherwise - points to non-owning data
// the llama_ubatch pointers above point to this data if set. otherwise - point to external non-owning data
std::shared_ptr<data_t> data;
};

View File

@@ -73,6 +73,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "kimi-k2", LLM_CHAT_TEMPLATE_KIMI_K2 },
{ "seed_oss", LLM_CHAT_TEMPLATE_SEED_OSS },
{ "grok-2", LLM_CHAT_TEMPLATE_GROK_2 },
{ "pangu-embedded", LLM_CHAT_TEMPLATE_PANGU_EMBED },
};
llm_chat_template llm_chat_template_from_str(const std::string & name) {
@@ -213,6 +214,8 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
return LLM_CHAT_TEMPLATE_SEED_OSS;
} else if (tmpl_contains("'Assistant: ' + message['content'] + '<|separator|>")) {
return LLM_CHAT_TEMPLATE_GROK_2;
} else if (tmpl_contains(LU8("[unused9]系统:[unused10]"))) {
return LLM_CHAT_TEMPLATE_PANGU_EMBED;
}
return LLM_CHAT_TEMPLATE_UNKNOWN;
}
@@ -813,6 +816,35 @@ int32_t llm_chat_apply_template(
if (add_ass) {
ss << "Assistant:";
}
}else if (tmpl == LLM_CHAT_TEMPLATE_PANGU_EMBED) {
// [unused9]系统xxx[unused10]
// [unused9]用户xxx[unused10]
// [unused9]助手xxx[unused10]
// ...
for (size_t i = 0; i < chat.size(); ++i) {
const auto & msg = chat[i];
const std::string & role = msg->role;
const std::string & content = msg->content;
if (i == 0 && role != "system") {
ss << "[unused9]系统:[unused10]";
}
if (role == "system") {
ss << "[unused9]系统:" << content << "[unused10]";
} else if (role == "user") {
ss << "[unused9]用户:" << content << "[unused10]";
} else if (role == "assistant") {
ss << "[unused9]助手:" << content << "[unused10]";
} else if (role == "tool") {
ss << "[unused9]工具:" << content << "[unused10]";
} else if (role == "function") {
ss << "[unused9]方法:" << content << "[unused10]";
}
}
if (add_ass) {
ss << "[unused9]助手:";
}
} else {
// template not supported
return -1;

View File

@@ -53,6 +53,7 @@ enum llm_chat_template {
LLM_CHAT_TEMPLATE_KIMI_K2,
LLM_CHAT_TEMPLATE_SEED_OSS,
LLM_CHAT_TEMPLATE_GROK_2,
LLM_CHAT_TEMPLATE_PANGU_EMBED,
LLM_CHAT_TEMPLATE_UNKNOWN,
};

View File

@@ -1,5 +1,6 @@
#include "llama-context.h"
#include "llama-arch.h"
#include "llama-impl.h"
#include "llama-batch.h"
#include "llama-io.h"
@@ -8,6 +9,7 @@
#include "llama-model.h"
#include <cinttypes>
#include <cmath>
#include <cstring>
#include <limits>
#include <stdexcept>
@@ -21,6 +23,8 @@ llama_context::llama_context(
llama_context_params params) :
model(model),
balloc(std::make_unique<llama_batch_allocr>(model.hparams.n_pos_per_embd())) {
// TODO warning when creating llama_context with awkward ctx size that is not a power of 2,
// may need to be backend-dependent
LLAMA_LOG_INFO("%s: constructing llama_context\n", __func__);
t_start_us = model.t_start_us;
@@ -69,6 +73,43 @@ llama_context::llama_context(
cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
}
if (cparams.yarn_ext_factor != 0) {
static auto get_mscale = [](float scale, float mscale) {
return scale <= 1.0f ? 1.0f : (0.1f * mscale * logf(scale) + 1.0f);
};
const float factor = 1.0f / cparams.rope_freq_scale;
// ref: https://github.com/huggingface/transformers/blob/6d00f6b0a5679c36510f203e4226e36f517c3032/src/transformers/modeling_rope_utils.py#L336-L348
if (hparams.rope_yarn_log_mul != 0.0f) {
// note: here we assume `mscale == 1.0f`
// TODO: start reading the actual value of mscale and handle the case where it is not 1.0f
float mscale = 1.0f;
const float mscale_all_dims = hparams.rope_yarn_log_mul;
// [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
// special-case DEEPSEEK v2:
// https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite-Chat/blob/main/config.json#L42-L43
if (model.arch == LLM_ARCH_DEEPSEEK2 && mscale_all_dims != 1.0f) {
mscale = mscale_all_dims;
}
cparams.yarn_attn_factor = get_mscale(factor, mscale) / get_mscale(factor, mscale_all_dims);
LLAMA_LOG_WARN("%s: setting new yarn_attn_factor = %.4f (mscale == %.1f, mscale_all_dim = %.1f)\n",
__func__, cparams.yarn_attn_factor, mscale, mscale_all_dims);
} else {
cparams.yarn_attn_factor = get_mscale(factor, 1.0f);
}
// when YARN is applied with yarn_ext_factor != 0.0f, we need to cancel this factor:
// https://github.com/ggml-org/llama.cpp/blob/a81a569577cc38b32558958b048228150be63eae/ggml/src/ggml-cpu/ops.cpp#L5541-L5544
//
// ref: https://github.com/ggml-org/llama.cpp/discussions/7416
// https://github.com/ggml-org/llama.cpp/pull/17945
cparams.yarn_attn_factor *= 1.0f / (1.0f + 0.1f * logf(factor));
}
cparams.yarn_attn_factor *= hparams.rope_attn_factor;
if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
@@ -90,14 +131,6 @@ llama_context::llama_context(
// with causal attention, the batch size is limited by the context size
cparams.n_batch = cparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
// the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
// this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
// ref: https://github.com/ggerganov/llama.cpp/pull/5021
// TODO: this padding is not needed for the cache-less context so we should probably move it to llama_memory
if (cparams.n_batch < GGML_KQ_MASK_PAD) {
LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
cparams.n_batch = GGML_KQ_MASK_PAD;
}
cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
cparams.op_offload = params.op_offload;
@@ -112,11 +145,28 @@ llama_context::llama_context(
}
}
const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max;
// ref: https://github.com/ggml-org/llama.cpp/pull/17046#discussion_r2503085732
cparams.n_ctx = GGML_PAD(cparams.n_ctx, 256);
if (cparams.kv_unified) {
cparams.n_ctx_seq = cparams.n_ctx;
} else {
cparams.n_ctx_seq = cparams.n_ctx / cparams.n_seq_max;
cparams.n_ctx_seq = GGML_PAD(cparams.n_ctx_seq, 256);
if (cparams.n_ctx_seq == 0) {
throw std::runtime_error("n_ctx_seq == 0");
}
if (cparams.n_ctx != cparams.n_ctx_seq * cparams.n_seq_max) {
cparams.n_ctx = cparams.n_ctx_seq * cparams.n_seq_max;
LLAMA_LOG_WARN("%s: n_ctx is not divisible by n_seq_max - rounding down to %u\n", __func__, cparams.n_ctx);
}
}
LLAMA_LOG_INFO("%s: n_seq_max = %u\n", __func__, cparams.n_seq_max);
LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
LLAMA_LOG_INFO("%s: n_ctx_per_seq = %u\n", __func__, n_ctx_per_seq);
LLAMA_LOG_INFO("%s: n_ctx_seq = %u\n", __func__, cparams.n_ctx_seq);
LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
LLAMA_LOG_INFO("%s: causal_attn = %d\n", __func__, cparams.causal_attn);
@@ -125,14 +175,14 @@ llama_context::llama_context(
LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
if (n_ctx_per_seq < hparams.n_ctx_train) {
LLAMA_LOG_WARN("%s: n_ctx_per_seq (%u) < n_ctx_train (%u) -- the full capacity of the model will not be utilized\n",
__func__, n_ctx_per_seq, hparams.n_ctx_train);
if (cparams.n_ctx_seq < hparams.n_ctx_train) {
LLAMA_LOG_WARN("%s: n_ctx_seq (%u) < n_ctx_train (%u) -- the full capacity of the model will not be utilized\n",
__func__, cparams.n_ctx_seq, hparams.n_ctx_train);
}
if (n_ctx_per_seq > hparams.n_ctx_train) {
LLAMA_LOG_WARN("%s: n_ctx_per_seq (%u) > n_ctx_train (%u) -- possible training context overflow\n",
__func__, n_ctx_per_seq, hparams.n_ctx_train);
if (cparams.n_ctx_seq > hparams.n_ctx_train) {
LLAMA_LOG_WARN("%s: n_ctx_seq (%u) > n_ctx_train (%u) -- possible training context overflow\n",
__func__, cparams.n_ctx_seq, hparams.n_ctx_train);
}
if (!hparams.vocab_only) {
@@ -208,6 +258,7 @@ llama_context::llama_context(
backend_buft.clear();
backend_ptrs.clear();
backend_buf_exp_size.clear();
for (auto & backend : backends) {
auto * buft = ggml_backend_get_default_buffer_type(backend.get());
@@ -224,11 +275,15 @@ llama_context::llama_context(
backend_buft.push_back(buft);
backend_ptrs.push_back(backend.get());
backend_buf_exp_size.push_back(0);
}
LLAMA_LOG_DEBUG("%s: backend_ptrs.size() = %zu\n", __func__, backend_ptrs.size());
const size_t max_nodes = this->graph_max_nodes();
const uint32_t n_seqs = cparams.n_seq_max;
const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
const size_t max_nodes = this->graph_max_nodes(n_tokens);
LLAMA_LOG_DEBUG("%s: max_nodes = %zu\n", __func__, max_nodes);
@@ -268,9 +323,7 @@ llama_context::llama_context(
if (pipeline_parallel) {
LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(sched.get()));
}
}
if (!hparams.vocab_only) {
llama_memory_context_ptr mctx;
if (memory) {
LLAMA_LOG_DEBUG("%s: reserving full memory module\n", __func__);
@@ -282,9 +335,6 @@ llama_context::llama_context(
cross.v_embd.clear();
const uint32_t n_seqs = cparams.kv_unified ? 1 : cparams.n_seq_max;
const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
// avoid reserving graphs with zero outputs - assume one output per sequence
n_outputs = n_seqs;
@@ -341,9 +391,17 @@ llama_context::llama_context(
// reserve pp (prompt processing) graph first so that buffers are only allocated once
{
auto * gf = graph_reserve(n_tokens, n_seqs, n_tokens, mctx.get());
auto * gf = graph_reserve(n_tokens, n_seqs, n_tokens, mctx.get(),
model.hparams.no_alloc, model.hparams.no_alloc ? backend_buf_exp_size.data() : nullptr);
if (!gf) {
throw std::runtime_error("failed to allocate compute pp buffers");
if (pipeline_parallel) {
LLAMA_LOG_WARN("%s: compute buffer allocation failed, retrying without pipeline parallelism\n", __func__);
sched.reset(ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), max_nodes, false, cparams.op_offload));
gf = graph_reserve(n_tokens, n_seqs, n_tokens, mctx.get());
}
if (!gf) {
throw std::runtime_error("failed to allocate compute pp buffers");
}
}
n_splits_pp = ggml_backend_sched_get_n_splits(sched.get());
@@ -352,7 +410,7 @@ llama_context::llama_context(
// reserve with tg (token generation) graph to get the number of splits and nodes
{
auto * gf = graph_reserve(n_seqs, n_seqs, n_seqs, mctx.get());
auto * gf = graph_reserve(n_seqs, n_seqs, n_seqs, mctx.get(), model.hparams.no_alloc);
if (!gf) {
throw std::runtime_error("failed to allocate compute tg buffers");
}
@@ -367,7 +425,7 @@ llama_context::llama_context(
//
// auto * gf = graph_reserve(n_tokens, 1, n_tokens, mctx.get());
//
auto * gf = graph_reserve(n_tokens, n_seqs, n_tokens, mctx.get());
auto * gf = graph_reserve(n_tokens, n_seqs, n_tokens, mctx.get(), model.hparams.no_alloc);
if (!gf) {
throw std::runtime_error("failed to allocate compute pp buffers");
}
@@ -376,11 +434,13 @@ llama_context::llama_context(
for (size_t i = 0; i < backend_ptrs.size(); ++i) {
ggml_backend_t backend = backend_ptrs[i];
ggml_backend_buffer_type_t buft = backend_buft[i];
size_t size = ggml_backend_sched_get_buffer_size(sched.get(), backend);
if (size > 1) {
if (!model.hparams.no_alloc) {
backend_buf_exp_size[i] = ggml_backend_sched_get_buffer_size(sched.get(), backend);
}
if (backend_buf_exp_size[i] > 1) {
LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
ggml_backend_buft_name(buft),
size / 1024.0 / 1024.0);
backend_buf_exp_size[i] / 1024.0 / 1024.0);
}
}
@@ -399,6 +459,23 @@ llama_context::llama_context(
}
llama_context::~llama_context() {
// FIXME this currently results in a use-after-free bug if the model is freed before the context
// if (!model.hparams.no_alloc) {
// for (size_t i = 0; i < backend_ptrs.size(); ++i) {
// ggml_backend_t backend = backend_ptrs[i];
// ggml_backend_buffer_type_t buft = backend_buft[i];
// const size_t size_exp = backend_buf_exp_size[i];
// const size_t size_act = ggml_backend_sched_get_buffer_size(sched.get(), backend);
// if (size_exp == size_act) {
// LLAMA_LOG_DEBUG("%s: %10s compute buffer size is %8.4f MiB, matches expectation of %8.4f MiB\n",
// __func__, ggml_backend_buft_name(buft), size_act / (1024.0*1024.0), size_exp / (1024.0*1024.0));
// } else {
// LLAMA_LOG_WARN("%s: %10s compute buffer size of %8.4f MiB, does not match expectation of %8.4f MiB\n",
// __func__, ggml_backend_buft_name(buft), size_act / (1024.0*1024.0), size_exp / (1024.0*1024.0));
// }
// }
// }
ggml_opt_free(opt_ctx);
}
@@ -448,8 +525,8 @@ uint32_t llama_context::n_ctx() const {
return cparams.n_ctx;
}
uint32_t llama_context::n_ctx_per_seq() const {
return cparams.n_ctx / cparams.n_seq_max;
uint32_t llama_context::n_ctx_seq() const {
return cparams.n_ctx_seq;
}
uint32_t llama_context::n_batch() const {
@@ -518,7 +595,7 @@ bool llama_context::memory_update(bool optimize) {
throw std::runtime_error("failed to initialize memory context");
}
const uint32_t n_seqs = cparams.kv_unified ? 1 : cparams.n_seq_max;
const uint32_t n_seqs = cparams.n_seq_max;
const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
auto * gf = graph_reserve(n_tokens, n_seqs, n_tokens, mctx.get());
@@ -803,7 +880,7 @@ int llama_context::encode(const llama_batch & batch_inp) {
const auto & hparams = model.hparams;
const int64_t n_embd = hparams.n_embd;
const int64_t n_embd = hparams.n_embd_inp();
const int64_t n_vocab = model.vocab.n_tokens();
// note: during encode, we always pass the full sequence starting from pos = 0
@@ -972,7 +1049,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
const auto & hparams = model.hparams;
const int64_t n_vocab = vocab.n_tokens();
const int64_t n_embd = hparams.n_embd;
const int64_t n_embd = hparams.n_embd_inp();
const bool output_all = false;
@@ -1223,7 +1300,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
// make the outputs have the same order they had in the user-provided batch
// note: this is mostly relevant for recurrent models atm
if (!sorted_output) {
if (!sorted_output && n_outputs > 1) {
GGML_ASSERT((size_t) n_outputs == out_ids.size());
// TODO: is there something more efficient which also minimizes swaps?
@@ -1300,6 +1377,7 @@ uint32_t llama_context::output_reserve(int32_t n_outputs) {
// This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
#endif
synchronize();
buf_output = nullptr;
logits = nullptr;
embd = nullptr;
@@ -1360,7 +1438,10 @@ void llama_context::output_reorder() {
// graph
//
uint32_t llama_context::graph_max_nodes() const {
uint32_t llama_context::graph_max_nodes(uint32_t n_tokens) const {
if (model.arch == LLM_ARCH_QWEN3NEXT) {
return std::max<uint32_t>(n_tokens * 40, 32u * model.n_tensors());
}
return std::max<uint32_t>(1024u, 8u*model.n_tensors());
}
@@ -1368,7 +1449,8 @@ llm_graph_result * llama_context::get_gf_res_reserve() const {
return static_cast<llm_graph_result *>(gf_res_reserve.get());
}
ggml_cgraph * llama_context::graph_reserve(uint32_t n_tokens, uint32_t n_seqs, uint32_t n_outputs, const llama_memory_context_i * mctx, bool split_only) {
ggml_cgraph * llama_context::graph_reserve(
uint32_t n_tokens, uint32_t n_seqs, uint32_t n_outputs, const llama_memory_context_i * mctx, bool split_only, size_t * sizes) {
LLAMA_LOG_DEBUG("%s: reserving a graph for ubatch with n_tokens = %4u, n_seqs = %2u, n_outputs = %4u\n", __func__, n_tokens, n_seqs, n_outputs);
GGML_ASSERT(n_outputs >= 1);
@@ -1405,8 +1487,13 @@ ggml_cgraph * llama_context::graph_reserve(uint32_t n_tokens, uint32_t n_seqs, u
// initialize scheduler with the specified graph
if (split_only) {
ggml_backend_sched_split_graph(sched.get(), gf);
if (sizes) {
ggml_backend_sched_reserve_size(sched.get(), gf, sizes);
} else {
ggml_backend_sched_split_graph(sched.get(), gf);
}
} else if (!ggml_backend_sched_reserve(sched.get(), gf)) {
GGML_ASSERT(!sizes);
LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
return nullptr;
}
@@ -2028,15 +2115,26 @@ void llama_context::perf_reset() {
std::map<ggml_backend_buffer_type_t, llama_memory_breakdown_data> llama_context::memory_breakdown() const {
std::map<ggml_backend_buffer_type_t, llama_memory_breakdown_data> ret;
for (const auto & buft_size : model.memory_breakdown()) {
ret[buft_size.first].model += buft_size.second;
for (const auto & [buft, size] : model.memory_breakdown()) {
ret[buft].model += size;
}
for (const auto & buft_size : memory->memory_breakdown()) {
ret[buft_size.first].context += buft_size.second;
if (memory) {
for (const auto & [buft, size] : memory->memory_breakdown()) {
ret[buft].context += size;
}
}
for (const auto & backend_ptr : backends) {
ggml_backend_t backend = backend_ptr.get();
ret[ggml_backend_sched_get_buffer_type(sched.get(), backend)].compute += ggml_backend_sched_get_buffer_size(sched.get(), backend);
if (model.hparams.no_alloc) {
for (size_t i = 0; i < backends.size(); ++i) {
ggml_backend_t backend = backends[i].get();
ggml_backend_buffer_type_t buft = ggml_backend_sched_get_buffer_type(sched.get(), backend);
ret[buft].compute += backend_buf_exp_size[i];
}
} else {
for (const auto & backend_ptr : backends) {
ggml_backend_t backend = backend_ptr.get();
ggml_backend_buffer_type_t buft = ggml_backend_sched_get_buffer_type(sched.get(), backend);
ret[buft].compute += ggml_backend_sched_get_buffer_size(sched.get(), backend);
}
}
return ret;
}
@@ -2129,7 +2227,7 @@ void llama_context::opt_epoch_iter(
batch.logits [pos_batch] = true;
}
if (!balloc->init(batch, model.vocab, nullptr, model.hparams.n_embd, cparams.kv_unified ? LLAMA_MAX_SEQ : cparams.n_seq_max, true)) {
if (!balloc->init(batch, model.vocab, nullptr, model.hparams.n_embd_inp(), cparams.kv_unified ? LLAMA_MAX_SEQ : cparams.n_seq_max, true)) {
LLAMA_LOG_ERROR("%s: failed to initialize batch\n", __func__);
return;
}
@@ -2377,6 +2475,10 @@ uint32_t llama_n_ctx(const llama_context * ctx) {
return ctx->n_ctx();
}
uint32_t llama_n_ctx_seq(const llama_context * ctx) {
return ctx->n_ctx_seq();
}
uint32_t llama_n_batch(const llama_context * ctx) {
return ctx->n_batch();
}

View File

@@ -26,6 +26,10 @@ struct llama_memory_breakdown_data {
size_t model = 0; // memory allocated for the model
size_t context = 0; // memory allocated for the context
size_t compute = 0; // memory allocated for temporary compute buffers
size_t total() const {
return model + context + compute;
}
};
struct llama_context {
@@ -43,11 +47,11 @@ struct llama_context {
ggml_backend_sched_t get_sched() const;
uint32_t n_ctx() const;
uint32_t n_ctx_per_seq() const;
uint32_t n_batch() const;
uint32_t n_ubatch() const;
uint32_t n_seq_max() const;
uint32_t n_ctx() const;
uint32_t n_ctx_seq() const;
uint32_t n_batch() const;
uint32_t n_ubatch() const;
uint32_t n_seq_max() const;
uint32_t n_threads() const;
uint32_t n_threads_batch() const;
@@ -197,7 +201,7 @@ private:
//
public:
uint32_t graph_max_nodes() const;
uint32_t graph_max_nodes(uint32_t n_tokens) const;
// can reuse the llm_graph_result instance of the context (for example to update a memory module)
llm_graph_result * get_gf_res_reserve() const;
@@ -206,7 +210,8 @@ public:
ggml_status graph_compute(ggml_cgraph * gf, bool batched);
// reserve a graph with a dummy ubatch of the specified size
ggml_cgraph * graph_reserve(uint32_t n_tokens, uint32_t n_seqs, uint32_t n_outputs, const llama_memory_context_i * mctx, bool split_only = false);
ggml_cgraph * graph_reserve(
uint32_t n_tokens, uint32_t n_seqs, uint32_t n_outputs, const llama_memory_context_i * mctx, bool split_only = false, size_t * sizes = nullptr);
private:
llm_graph_params graph_params(
@@ -281,9 +286,10 @@ private:
std::vector<std::pair<ggml_backend_t, ggml_backend_set_n_threads_t>> set_n_threads_fns;
// buffer types used for the compute buffer of each backend
// pointers and buffer types used for the compute buffer of each backend
std::vector<ggml_backend_t> backend_ptrs;
std::vector<ggml_backend_buffer_type_t> backend_buft;
std::vector<size_t> backend_buf_exp_size; // expected buffer sizes
llm_graph_result_ptr gf_res_prev;
llm_graph_result_ptr gf_res_reserve;

View File

@@ -8,6 +8,7 @@
struct llama_cparams {
uint32_t n_ctx; // context size used during inference
uint32_t n_ctx_seq; // context for a single sequence
uint32_t n_batch;
uint32_t n_ubatch;
uint32_t n_seq_max;

View File

@@ -6,8 +6,10 @@
#include <cmath>
#include <algorithm>
#include <cstdint>
#include <stdexcept>
#define MAX_REPETITION_THRESHOLD 2000
//
// helpers
//
@@ -179,6 +181,52 @@ static std::pair<uint32_t, const char *> parse_char(const char * src) {
throw std::runtime_error("unexpected end of input");
}
static std::pair<uint32_t, const char *> parse_token(const llama_vocab * vocab, const char * src) {
const char * pos = src;
if (*pos != '<') {
throw std::runtime_error(std::string("expecting '<' at ") + pos);
}
pos++;
// Parse <[id]>
if (*pos == '[') {
pos++;
const char * int_end = parse_int(pos);
uint32_t token_id = std::stoul(std::string(pos, int_end - pos));
pos = int_end;
if (*pos != ']') {
throw std::runtime_error(std::string("expecting ']' at ") + pos);
}
pos++;
if (*pos != '>') {
throw std::runtime_error(std::string("expecting '>' at ") + pos);
}
pos++;
return std::make_pair(token_id, pos);
}
if (vocab == nullptr) {
throw std::runtime_error(std::string("no vocab to parse token at ") + src);
}
// Parse <token> and tokenize to obtain the token id
while (*pos != 0 && *pos != '>') {
pos++;
}
if (*pos != '>') {
throw std::runtime_error(std::string("expecting '>' at ") + pos);
}
pos++;
llama_token tokens[2];
int32_t n_tokens = vocab->tokenize(src, static_cast<int32_t>(pos - src), tokens, 2, false, true);
if (n_tokens != 1) {
// must tokenize to exactly 1 token
throw std::runtime_error("invalid token '" + std::string(src, pos - src) + "'");
}
return std::make_pair(tokens[0], pos);
}
static void print_grammar_char(FILE * file, uint32_t c) {
if (0x20 <= c && c <= 0x7f) {
fprintf(file, "%c", static_cast<char>(c));
@@ -210,6 +258,8 @@ static void print_rule_binary(FILE * file, const llama_grammar_rule & rule) {
case LLAMA_GRETYPE_CHAR_RNG_UPPER: fprintf(file, "CHAR_RNG_UPPER"); break;
case LLAMA_GRETYPE_CHAR_ALT: fprintf(file, "CHAR_ALT"); break;
case LLAMA_GRETYPE_CHAR_ANY: fprintf(file, "CHAR_ANY"); break;
case LLAMA_GRETYPE_TOKEN: fprintf(file, "TOKEN"); break;
case LLAMA_GRETYPE_TOKEN_NOT: fprintf(file, "TOKEN_NOT"); break;
}
switch (elem.type) {
case LLAMA_GRETYPE_END:
@@ -226,6 +276,17 @@ static void print_rule_binary(FILE * file, const llama_grammar_rule & rule) {
print_grammar_char(file, elem.value);
fprintf(file, "\") ");
break;
case LLAMA_GRETYPE_TOKEN:
fprintf(file, "<[");
fprintf(file, "%u", elem.value);
fprintf(file, "]> ");
break;
case LLAMA_GRETYPE_TOKEN_NOT:
fprintf(file, "!");
fprintf(file, "<[");
fprintf(file, "%u", elem.value);
fprintf(file, "]> ");
break;
}
}
fprintf(file, "\n");
@@ -282,6 +343,17 @@ static void print_rule(
case LLAMA_GRETYPE_CHAR_ANY:
fprintf(file, ".");
break;
case LLAMA_GRETYPE_TOKEN:
fprintf(file, "<[");
fprintf(file, "%u", elem.value);
fprintf(file, "]> ");
break;
case LLAMA_GRETYPE_TOKEN_NOT:
fprintf(file, "!");
fprintf(file, "<[");
fprintf(file, "%u", elem.value);
fprintf(file, "]> ");
break;
}
if (is_char_element(elem)) {
switch (rule[i + 1].type) {
@@ -345,8 +417,10 @@ const char * llama_grammar_parser::parse_sequence(
size_t last_sym_start = rule.size();
const char * pos = src;
auto handle_repetitions = [&](int min_times, int max_times) {
// use UINT64_MAX as the empty value because we aligned to the proper uint64_t type so -1 can't be used
// (though it's technically the same as -1 now)
auto handle_repetitions = [&](uint64_t min_times, uint64_t max_times) {
bool no_max = max_times == UINT64_MAX;
if (last_sym_start == rule.size()) {
throw std::runtime_error(std::string("expecting preceding item to */+/?/{ at ") + pos);
}
@@ -373,20 +447,20 @@ const char * llama_grammar_parser::parse_sequence(
rule.resize(last_sym_start);
} else {
// Repeat the previous elements (min_times - 1) times
for (int i = 1; i < min_times; i++) {
for (uint64_t i = 1; i < min_times; i++) {
rule.insert(rule.end(), prev_rule.begin(), prev_rule.end());
}
}
uint32_t last_rec_rule_id = 0;
auto n_opt = max_times < 0 ? 1 : max_times - min_times;
auto n_opt = no_max ? 1 : max_times - min_times;
llama_grammar_rule rec_rule(prev_rule);
for (int i = 0; i < n_opt; i++) {
for (uint64_t i = 0; i < n_opt; i++) {
rec_rule.resize(prev_rule.size());
uint32_t rec_rule_id = generate_symbol_id( rule_name);
if (i > 0 || max_times < 0) {
rec_rule.push_back({LLAMA_GRETYPE_RULE_REF, max_times < 0 ? rec_rule_id : last_rec_rule_id});
if (i > 0 || no_max) {
rec_rule.push_back({LLAMA_GRETYPE_RULE_REF, no_max ? rec_rule_id : last_rec_rule_id});
}
rec_rule.push_back({LLAMA_GRETYPE_ALT, 0});
rec_rule.push_back({LLAMA_GRETYPE_END, 0});
@@ -440,6 +514,17 @@ const char * llama_grammar_parser::parse_sequence(
}
}
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '<' || *pos == '!') { // token
auto type = LLAMA_GRETYPE_TOKEN;
if (*pos == '!') { // token inverse
type = LLAMA_GRETYPE_TOKEN_NOT;
pos++;
}
auto token_pair = parse_token(vocab, pos);
const char * token_end = token_pair.second;
last_sym_start = rule.size();
rule.push_back({type, token_pair.first});
pos = parse_space(token_end, is_nested);
} else if (is_word_char(*pos)) { // rule reference
const char * name_end = parse_name(pos);
uint32_t ref_rule_id = get_symbol_id(pos, name_end - pos);
@@ -478,10 +563,10 @@ const char * llama_grammar_parser::parse_sequence(
throw std::runtime_error(std::string("expecting an int at ") + pos);
}
const char * int_end = parse_int(pos);
int min_times = std::stoul(std::string(pos, int_end - pos));
uint64_t min_times = std::stoul(std::string(pos, int_end - pos));
pos = parse_space(int_end, is_nested);
int max_times = -1;
uint64_t max_times = UINT64_MAX; // default: no max limit
if (*pos == '}') {
max_times = min_times;
@@ -502,6 +587,10 @@ const char * llama_grammar_parser::parse_sequence(
} else {
throw std::runtime_error(std::string("expecting ',' at ") + pos);
}
bool has_max = max_times != UINT64_MAX;
if (min_times > MAX_REPETITION_THRESHOLD || (has_max && max_times > MAX_REPETITION_THRESHOLD)) {
throw std::runtime_error(std::string("number of repetitions exceeds sane defaults, please reduce the number of repetitions"));
}
handle_repetitions(min_times, max_times);
} else {
break;
@@ -683,6 +772,21 @@ static bool llama_grammar_match_partial_char(
return !is_positive_char;
}
// returns true iff token matches the rule at pos (regular or inverse)
// asserts that pos is pointing to a token element
static bool llama_grammar_match_token(
const llama_grammar_element * pos,
const llama_token token) {
GGML_ASSERT(pos->type == LLAMA_GRETYPE_TOKEN || pos->type == LLAMA_GRETYPE_TOKEN_NOT);
if (pos->type == LLAMA_GRETYPE_TOKEN) {
return pos->value == static_cast<uint32_t>(token);
}
if (pos->type == LLAMA_GRETYPE_TOKEN_NOT) {
return pos->value != static_cast<uint32_t>(token);
}
return false;
}
// transforms a grammar pushdown stack into N possible stacks, all ending
// at a character range (terminal element)
static void llama_grammar_advance_stack(
@@ -730,6 +834,8 @@ static void llama_grammar_advance_stack(
case LLAMA_GRETYPE_CHAR:
case LLAMA_GRETYPE_CHAR_NOT:
case LLAMA_GRETYPE_CHAR_ANY:
case LLAMA_GRETYPE_TOKEN:
case LLAMA_GRETYPE_TOKEN_NOT:
if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
// only add the stack if it's not a duplicate of one we already have
new_stacks.emplace_back(stack);
@@ -823,26 +929,38 @@ llama_grammar_stacks & llama_grammar_get_stacks(struct llama_grammar * grammar)
return grammar->stacks;
}
static void llama_grammar_accept_chr(
struct llama_grammar & grammar,
const llama_grammar_stack & stack,
uint32_t chr,
llama_grammar_stacks & new_stacks) {
if (stack.empty()) {
return;
}
const llama_grammar_element * pos = stack.back();
// ignore if this turns into a token
if (pos->type == LLAMA_GRETYPE_TOKEN || pos->type == LLAMA_GRETYPE_TOKEN_NOT) {
return;
}
auto match = llama_grammar_match_char(pos, chr);
if (match.first) {
llama_grammar_stack new_stack(stack.begin(), stack.end() - 1);
if (!llama_grammar_is_end_of_sequence(match.second)) {
new_stack.push_back(match.second);
}
llama_grammar_advance_stack(grammar.rules, new_stack, new_stacks);
}
}
void llama_grammar_accept(struct llama_grammar * grammar, uint32_t chr) {
llama_grammar_stacks stacks_new;
stacks_new.reserve(grammar->stacks.size());
for (const auto & stack : grammar->stacks) {
if (stack.empty()) {
continue;
}
auto match = llama_grammar_match_char(stack.back(), chr);
if (match.first) {
const llama_grammar_element * pos = match.second;
// update top of stack to next element, if any
llama_grammar_stack new_stack(stack.begin(), stack.end() - 1);
if (!llama_grammar_is_end_of_sequence(pos)) {
new_stack.push_back(pos);
}
llama_grammar_advance_stack(grammar->rules, new_stack, stacks_new);
}
llama_grammar_accept_chr(*grammar, stack, chr, stacks_new);
}
grammar->stacks = std::move(stacks_new);
@@ -867,6 +985,22 @@ llama_grammar_candidates llama_grammar_reject_candidates_for_stack(
const llama_grammar_element * stack_pos = stack.back();
// if the top of the stack is a token rule, then we only need to check the token id
if (stack_pos->type == LLAMA_GRETYPE_TOKEN || stack_pos->type == LLAMA_GRETYPE_TOKEN_NOT) {
for (const auto & tok : candidates) {
if (*tok.code_points == 0) {
// reached the end of a token consumed by char rules, reject iff it ended
// in a partial response
if (tok.partial_utf8.n_remain != 0) {
rejects.push_back(tok);
}
} else if (!llama_grammar_match_token(stack_pos, tok.id)) {
rejects.push_back(tok);
}
}
return rejects;
}
llama_grammar_candidates next_candidates;
next_candidates.reserve(candidates.size());
@@ -879,7 +1013,7 @@ llama_grammar_candidates llama_grammar_reject_candidates_for_stack(
rejects.push_back(tok);
}
} else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8, tok.id });
} else {
rejects.push_back(tok);
}
@@ -897,7 +1031,7 @@ llama_grammar_candidates llama_grammar_reject_candidates_for_stack(
auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
for (const auto & tok : next_rejects) {
rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8, tok.id });
}
return rejects;
@@ -966,12 +1100,13 @@ struct llama_grammar * llama_grammar_init_impl(
ollama_vocab,
std::move(vec_rules),
std::move(stacks),
/* .partial_utf8 = */ {},
/* .lazy =*/ false,
/* .awaiting_trigger = */ false,
/* .trigger_buffer = */ "",
/* .trigger_tokens = */ {},
/* .trigger_patterns = */ {},
/* .partial_utf8 = */ {},
/* .lazy = */ false,
/* .awaiting_trigger = */ false,
/* .trigger_buffer = */ "",
/* .trigger_buffer_positions = */ {},
/* .trigger_tokens = */ {},
/* .trigger_patterns = */ {},
};
}
@@ -985,7 +1120,7 @@ struct llama_grammar * llama_grammar_init_impl(
size_t num_trigger_patterns,
const llama_token * trigger_tokens,
size_t num_trigger_tokens) {
llama_grammar_parser parser;
llama_grammar_parser parser(vocab);
// if there is a grammar, parse it
// rules will be empty (default) if there are parse errors
@@ -1073,10 +1208,11 @@ struct llama_grammar * llama_grammar_init_impl(
ollama_vocab,
std::move(vec_rules),
std::move(stacks),
/* .partial_utf8 = */ {},
/* .lazy = */ lazy,
/* .awaiting_trigger = */ lazy,
/* .trigger_buffer = */ "",
/* .partial_utf8 = */ {},
/* .lazy = */ lazy,
/* .awaiting_trigger = */ lazy,
/* .trigger_buffer = */ "",
/* .trigger_buffer_positions = */ {},
std::move(vec_trigger_tokens),
std::move(vec_trigger_patterns),
};
@@ -1100,6 +1236,7 @@ struct llama_grammar * llama_grammar_clone_impl(const struct llama_grammar & gra
grammar.lazy,
grammar.awaiting_trigger,
grammar.trigger_buffer,
grammar.trigger_buffer_positions,
grammar.trigger_tokens,
grammar.trigger_patterns,
};
@@ -1156,7 +1293,7 @@ void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_
cur_p->data[i].logit = -INFINITY;
} else {
candidates_decoded.push_back(decode_utf8(piece, grammar.partial_utf8));
candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second, id });
}
}
@@ -1176,10 +1313,12 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
if (std::find(grammar.trigger_tokens.begin(), grammar.trigger_tokens.end(), token) != grammar.trigger_tokens.end()) {
grammar.awaiting_trigger = false;
grammar.trigger_buffer.clear();
llama_grammar_accept_str(grammar, piece);
llama_grammar_accept_token(grammar, token, piece);
LLAMA_LOG_DEBUG("Grammar triggered on token %u (`%s`)", token, piece.c_str());
return;
} else {
auto position = std::make_pair(grammar.trigger_buffer.size(), grammar.trigger_buffer.size() + piece.size());
grammar.trigger_buffer_positions.push_back(std::make_pair(token, position));
grammar.trigger_buffer += piece;
std::smatch match;
@@ -1197,10 +1336,23 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
if (start == std::string::npos) {
start = match.position(0);
}
// replay tokens that overlap with [start, end)
for (const auto & [tok, tok_pos] : grammar.trigger_buffer_positions) {
auto [tok_start, tok_end] = tok_pos;
if (tok_end <= start) {
continue;
}
size_t piece_start = (tok_start < start) ? start : tok_start; // allow for partial token pieces
size_t piece_len = tok_end - piece_start;
auto tok_piece = grammar.trigger_buffer.substr(piece_start, piece_len);
llama_grammar_accept_token(grammar, tok, tok_piece);
}
auto constrained_str = grammar.trigger_buffer.substr(start);
// std::string constrained_str(match[1].first, grammar.trigger_buffer.end());
grammar.trigger_buffer.clear();
llama_grammar_accept_str(grammar, constrained_str);
grammar.trigger_buffer_positions.clear();
LLAMA_LOG_DEBUG("Grammar triggered on regex: '%s'\n", constrained_str.c_str());
return;
}
@@ -1220,7 +1372,7 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
GGML_ABORT("grammar error: end of grammar token received but grammar stack is not empty");
}
llama_grammar_accept_str(grammar, piece);
llama_grammar_accept_token(grammar, token, piece);
}
void llama_grammar_accept_str(struct llama_grammar & grammar, const std::string & piece) {
@@ -1238,6 +1390,61 @@ void llama_grammar_accept_str(struct llama_grammar & grammar, const std::string
}
}
void llama_grammar_accept_token(struct llama_grammar & grammar, llama_token token, const std::string & piece) {
// Note terminating 0 in decoded string
const auto decoded = decode_utf8(piece, grammar.partial_utf8);
const auto & code_points = decoded.first;
llama_grammar_stacks stacks_new;
stacks_new.reserve(grammar.stacks.size());
for (const auto & stack : grammar.stacks) {
if (stack.empty()) {
continue;
}
const llama_grammar_element * pos = stack.back();
if (pos->type == LLAMA_GRETYPE_TOKEN || pos->type == LLAMA_GRETYPE_TOKEN_NOT) {
if (llama_grammar_match_token(pos, token)) {
llama_grammar_stack new_stack(stack.begin(), stack.end() - 1);
if (!llama_grammar_is_end_of_sequence(pos + 1)) {
new_stack.push_back(pos + 1);
}
llama_grammar_advance_stack(grammar.rules, new_stack, stacks_new);
}
} else {
llama_grammar_stacks current_stacks = {stack};
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
llama_grammar_stacks next_stacks;
for (const auto & cur_stack : current_stacks) {
llama_grammar_accept_chr(grammar, cur_stack, *it, next_stacks);
}
current_stacks = std::move(next_stacks);
if (current_stacks.empty()) {
break;
}
}
for (auto & surviving_stack : current_stacks) {
if (std::find(stacks_new.begin(), stacks_new.end(), surviving_stack) == stacks_new.end()) {
stacks_new.emplace_back(surviving_stack);
}
}
}
}
grammar.stacks = std::move(stacks_new);
grammar.partial_utf8 = decoded.second;
if (grammar.stacks.empty()) {
throw std::runtime_error("Unexpected empty grammar stack after accepting piece: " + piece + " (" + std::to_string(token) + ")");
}
}
const std::string & ollama_vocab::token_to_piece(const uint32_t token) const {
try {

Some files were not shown because too many files have changed in this diff Show More