Compare commits

...

69 Commits

Author SHA1 Message Date
Patrick Devine
c10a40db99 parser: tidy up parameter/message parsing
This change addresses how parameters and messages are handled while parsing a Modelfile.
Currently a `MESSAGE` command creates a string that looks like "<role>: <message>" which
then has to be re-parsed, and `PARAMETER` ends up being the default data type which makes
it difficult to add other multi-part commands.

This change introduces a Message and a Parameter type which properly handle properties
such as the role and the name of the parameter.
2025-09-15 18:09:05 -07:00
Daniel Hiltgen
93c64ea1b1 doc: show how to clear the cgo cache (#12298) 2025-09-15 15:45:35 -07:00
Michael Yang
3f6642f6fc model: implement bert in ollama engine (#9080)
* fix truncate

* s/SentencePieceModel/SentencePiece/

* bert

* wordpiece

* refactor pooling

* more tokenizers

* normalize embeddings
2025-09-15 15:35:59 -07:00
Michael Yang
6f7117145f batch: use tensors for outputs (#12185)
this cleans up the model interface slightly without too much impact in
other areas
2025-09-15 14:33:06 -07:00
jmorganca
92b96d54ef Revert "runner: move harmony to runner (#12052)"
This reverts commit 1a558f98e2.
2025-09-12 20:40:14 -03:00
jmorganca
9d56e63dbf Revert "runner: simplify parser entrypoints in runner (#12233)"
This reverts commit 8d6fffaead.
2025-09-12 20:40:14 -03:00
tc-mb
053092185e Fix image cannot be seen with slice image on llama engine
Ollama's recent engine update, llama.cpp, caused all models requiring a slice schema to not display images. As a result, the value of numTokens isn't always the length of the sliced ​​image embed, but rather the end length of the schema. This causes the image embed to not be correctly included during all slice processing.
2025-09-12 16:25:12 -07:00
Daniel Hiltgen
44a6792873 tests: tighten up a few flaky tests (#12271)
Sometimes the context test results are pure emoji's
Thanksgiving has too much variability, so swap for a more straight forward prompt.
2025-09-12 13:59:34 -07:00
Daniel Hiltgen
e4ce68311a cuda: remove compression for better compatibility (#12259)
This retains compatibility with driver 531 and up at the trade-off of space.
2025-09-12 07:59:14 -07:00
Jesse Gross
26214125e8 ollamarunner: Suppress stack trace during memory allocation
Allocation failures can be a normal part of new memory estimates, so
we shouldn't print a stack trace in this case.
2025-09-11 14:30:31 -07:00
Daniel Hiltgen
61fb912ca4 CI: fix windows cuda build (#12246)
* ci: adjust cuda component list

v13 has a different breakdown of the components required to build ollama

* review comments
2025-09-11 12:25:26 -07:00
Jesse Gross
aba1575315 llm: Don't try to load split vision models in the Ollama engine
If a model with a split vision projector is loaded in the Ollama
engine, the projector will be ignored and the model will hallucinate
a response. Instead, fallback and try to load the model in the llama
engine.
2025-09-11 11:41:55 -07:00
Jesse Gross
eb10390de9 llm: Enable new memory estimates by default
New memory estimates (see #11090 for more information) are now
enabled automatically for all models running on the Ollama engine,
improving both stability and performance through more accurate sizing
and allocation. Models running on the llama engine will continue to
use the original style of memory estimation.
2025-09-11 11:21:53 -07:00
Michael Yang
feb18cd710 feat: add dimensions field to embed requests (#12242)
* feat: add field to truncate embeddings

* add openai embeddings for dimensions
2025-09-11 10:36:10 -07:00
fengyuchuanshen
8a7e2055d2 cmd: use slices.Contains to simplify code (#12249) 2025-09-11 09:57:31 -07:00
Jesse Gross
29ddfc2cab ggml: Disable flash attention for gemma2
Our new engine implementation of gemma2 doesn't support flash
attention, which means that it also doesn't support KV cache
quantization. Currently, it is possible to turn these two on,
which will result in a crash.
2025-09-10 16:40:45 -07:00
Jesse Gross
71cb86af3e llm: Remove unneeded warning with flash attention enabled
If flash attention is enabled without KV cache quanitization, we will
currently always get this warning:
level=WARN source=server.go:226 msg="kv cache type not supported by model" type=""
2025-09-10 16:40:45 -07:00
CarbonatedWater.org
5198956372 docs: add ollama-co2 to community integrations (#12230) 2025-09-10 16:37:10 -07:00
Daniel Hiltgen
17a023f34b Add v12 + v13 cuda support (#12000)
* Add support for upcoming NVIDIA Jetsons

The latest Jetsons with JetPack 7 are moving to an SBSA compatible model and
will not require building a JetPack specific variant.

* cuda: bring back dual versions

This adds back dual CUDA versions for our releases,
with v11 and v13 to cover a broad set of GPUs and
driver versions.

* win: break up native builds in build_windows.ps1

* v11 build working on windows and linux

* switch to cuda v12.8 not JIT

* Set CUDA compression to size

* enhance manual install linux docs
2025-09-10 12:05:18 -07:00
Parth Sareen
8d6fffaead runner: simplify parser entrypoints in runner (#12233) 2025-09-10 11:24:42 -07:00
Parth Sareen
20b53eaa72 tests: add tool calling integration test (#12232) 2025-09-09 14:01:11 -07:00
Daniel Hiltgen
6745182885 tests: reduce stress on CPU to 2 models (#12161)
* tests: reduce stress on CPU to 2 models

This should avoid flakes due to systems getting overloaded with 3 (or more) models running concurrently

* tests: allow slow systems to pass on timeout

If a slow system is still streaming a response, and the response
will pass validation, don't fail just because the system is slow.

* test: unload embedding models more quickly
2025-09-09 09:32:15 -07:00
Kashyap Tanuku
f810ec741c readme: add Clueless to community integrations (#12188) 2025-09-08 21:31:29 -07:00
Jesse Gross
e119783e66 llm: Clamp batch size to context size
The context must always be able to store the current batch, so
if the user requests a small context then we should also shrink
the batch to match. This also fixes the TestLongInputContext
test on the new engine. (The old engine already has this behavior.)
2025-09-08 20:40:11 -07:00
Parth Sareen
1a558f98e2 runner: move harmony to runner (#12052) 2025-09-08 15:07:59 -07:00
Gabe Goodhart
7b91c9ce51 Hybrid and recurrent memory estimates (#12186)
This PR updates the memory size estimate logic to better handle recurrent and hybrid-recurrent models which are currently being badly overestimated because the default logic assumes full attention for all layers.

The logic for the sizing of the recurrent layers comes from the llama.cpp implementation

        ggml_tensor * r = ggml_new_tensor_1d(ctx, type_r, hparams.n_embd_r()*mem_size);
        ggml_tensor * s = ggml_new_tensor_1d(ctx, type_s, hparams.n_embd_s()*mem_size);

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-09-08 14:53:22 -07:00
Daniel Hiltgen
950d33aa30 docs: show how to debug nvidia init failures (#12216)
This debug setting can help troubleshoot obscure initialization failures.
2025-09-08 11:39:00 -07:00
Michael Yang
9714e38dd0 fix: nil pointer dereference if cache is nil (#12215) 2025-09-08 09:53:59 -07:00
frob
4378ae4ffa parser: don't check the file type of safetensors to prevent false negatives. (#12176)
* Don't check the file type of safetensor to prevent false negatives.

---------

Co-authored-by: Patrick Devine <patrick@infrahq.com>
2025-09-05 16:27:40 -07:00
Michael Yang
5994e8e8fd embedding gemma model (#12181)
* ollama: add embeddings
2025-09-04 09:09:07 -07:00
Michael Yang
b3e6120736 more logutil.Trace (#12177) 2025-09-03 17:24:39 -07:00
Michael Yang
fb92b61754 logutil: add Trace and TraceContext helpers (#12110) 2025-09-02 13:09:12 -07:00
Jesse Gross
8149a3c86e llm: Avoid underflow in free memory logging
If a GPU's free memory is less than the reserved amount, we might get
an underflow. Since it is an unsigned uint64, we print this as a large
number rather than the more correct 0. This only affects logging, the
actual layout code already handles this correctly.

Bug #12138
2025-09-02 12:30:26 -07:00
Daniel Hiltgen
0cc90a8186 harden uncaught exception registration (#12120) 2025-09-02 09:43:55 -07:00
pxwanglu
e42300f25b ml: fix struct field name in comment (#12123) 2025-08-31 16:26:11 -07:00
alpha-nerd-nomyo
66e73809a1 readme: add NOMYO Router to community integrations (#12129) 2025-08-31 13:49:10 -07:00
Daniel Hiltgen
517807cdf2 perf: build graph for next batch async to keep GPU busy (#11863)
* perf: build graph for next batch in parallel to keep GPU busy

This refactors the main run loop of the ollama runner to perform the main GPU
intensive tasks (Compute+Floats) in a go routine so we can prepare the next
batch in parallel to reduce the amount of time the GPU stalls waiting for the
next batch of work.

* tests: tune integration tests for ollama engine

This tunes the integration tests to focus more on models supported
by the new engine.
2025-08-29 14:20:28 -07:00
Daniel Hiltgen
ead4a9a1d0 Always filter devices (#12108)
* Always filter devices

Avoid crashing on unsupported AMD iGPUs

* Remove cuda device filtering

This interferes with mixed setups
2025-08-29 12:17:31 -07:00
ofrancon
4383a3ab7a readme: add Neuro SAN to community integrations (#12109) 2025-08-28 12:27:13 -07:00
Jesse Gross
9d97e6a9f1 ggml: Avoid allocating CUDA primary context on unused GPUs
The recent memory management changes caused all GPUs to be visible
to the runner, regardless of whether they are ultimately used. This
caused CUDA devices to allocate a primary context (~300 MB VRAM) on
each GPU, for each model. This is unnecessary, so we can both avoid
touching GPUs that we exclude in the early stage of allocation and
freeing the memory for any that we touch but don't use.

The issue will continue to exist for the old engine, since it touches
all devices during initialization.
2025-08-27 16:24:18 -07:00
Michael Yang
1081532430 fix keep alive (#12041) 2025-08-27 11:51:25 -07:00
Michael Yang
59412fbb43 convert(gptoss): mxfp4 to ggml layout to avoid jit conversion (#12018)
* convert: return bytes written

* ggml flavor mxfp4

* simplify jit conversion

* comment
2025-08-26 16:41:02 -07:00
Michael Yang
86834a2797 convert: fix tensor sorting (#12015)
there's two bugs here.

1. the check for a layer id is incorrect and should be >= 0 since layer
   0 is valid
2. if both tensors have an layer identifier, it will only compare the
   layer id which will return 0 if the tensors are in the same layer.
   instead it should fallback to comparing the full tensor name
2025-08-26 13:57:46 -07:00
Michael Yang
85ccf7354d gptoss: enable flash attention by default (#11996) 2025-08-26 13:34:45 -07:00
Michael Yang
30fb7e19f8 remove extra field attr (#11205) 2025-08-25 09:58:16 -07:00
Jeffrey Morgan
d3450dd52e api: implement stringer for ToolFunctionParameters (#12038) 2025-08-22 16:26:48 -07:00
Jeffrey Morgan
4bcb04ad88 tools: avoid matching braces that are part of tool content (#12039) 2025-08-22 15:22:14 -07:00
Devon Rifkin
e3d5708754 Merge pull request #12021 from ollama/drifkin/thinking-double-emit
thinking: fix double emit when no opening tag
2025-08-22 12:01:37 -07:00
Jeffrey Morgan
4be4dc8717 server: skip parsing initial <think> if provided in the prompt (#12024) 2025-08-22 12:00:16 -07:00
zoupingshi
109d4fc3b4 chore: remove redundant words in comment (#12028)
Signed-off-by: zoupingshi <hangfachang@outlook.com>
2025-08-22 11:00:27 -07:00
Devon Rifkin
2cb0a580f3 thinking: fix double emit when no opening tag
The thinking parser will automatically transition to being a
pass-through if non-whitespace is seen before an opening tag. However,
we weren't clearing the buffer after the first non-whitespace input, so
in practice the first token would be emitted twice.

Added a test that demonstrated this, and then fixed the bug.
2025-08-21 21:03:12 -07:00
Parth Sareen
7cce5aac76 harmony: move harmony parsing into a package (#12016) 2025-08-21 13:56:22 -07:00
Michael Yang
4ae4f47b16 gpt-oss: convert from hugging face format (#11907) 2025-08-20 15:39:18 -07:00
Jesse Gross
073fa31df5 llm: Don't always evict models in CPU-only mode
With old memory estimates, it's currently impossible to load more
than one model at a time when no GPUs are available. This is because
the check for whether we need to evict a model looks to see if all
layers of the new model can be loaded onto GPUs, which is never true
if there are no GPUs. Before the memory management changes, there
was a special code path for CPU-only systems.

This problem does not exist with new memory estimates.

Fixes #11974
2025-08-20 14:31:02 -07:00
Michael Yang
91fc3c48e3 openai: remove reasoning as an api.Options (#11993) 2025-08-20 12:21:42 -07:00
Devon Rifkin
6de62664d9 Merge pull request #11973 from ollama/drifkin/bpe
model: fix boundary in bpe
2025-08-19 22:58:33 -07:00
Devon Rifkin
463a6caad8 model: add bpe roundtripping tests 2025-08-19 22:05:48 -07:00
Devon Rifkin
fc5fb09f51 model: fix boundary in bpe
0x007e is a tilde and was getting adjusted (+0x00a2) to 0x0120 in the
encode, but then in the decode it was getting adjusted down (-0x0100) to
0x0020. The boundary for the +0x00a2 case has been adjusted to fix this

Fixes: #11966
2025-08-19 18:34:49 -07:00
Jesse Gross
05ccb17c6e kvcache: Use Cast instead of Copy for flash attention masks
Flash attention kernels require the mask of the KV cache be a F16
rather than an F32. We can use the GGML operation ggml_cast to do
this rather than doing it ourselves, which allows reuse of a
preallocated buffer in the graph rather than allocating a new one
for each batch. This improves token generation performance with
flash attention by 10-30% (with gpt-oss). This also makes performance
with flash attention better than without it, as expected.
2025-08-19 12:36:28 -07:00
Michael Yang
f804e8a460 disable output_all (#11959) 2025-08-18 17:45:40 -07:00
Kostis
9cfbffafc5 readme: add any-agent to community integrations (#11950) 2025-08-18 14:21:36 -07:00
Ruslan Suleymanov
470d580205 readme: add Andes to community integrations (#11952) 2025-08-18 14:20:28 -07:00
Devon Rifkin
b517bb1c19 Merge pull request #11910 from ollama/drifkin/harmony-fn-names
harmony: convert fn names to be valid ts identifiers
2025-08-18 14:17:47 -07:00
Jesse Gross
e3ade453a8 llm: Check for nil memory data before printing
We dump out our best memory estimate after we complete processing
for any reason, including errors. This is helpful for finding what
what stopped us in error conditions but in some cases we might not
have gotten even the first result yet.

Fixes #11957
2025-08-18 14:05:22 -07:00
Devon Rifkin
048bd4472a harmony: convert fn names to be valid ts identifiers
In <https://github.com/ollama/ollama/issues/11704#issuecomment-3177380197>
I noticed that hyphens in function names could possibly cause the model
to become confused. Later in that issue I found other explanations, but
at a minimum tool names with spaces in them are confusing to the model
because of the prompt format.

In this change I create a mapper that converts arbitrary tool names into
valid typescript identifiers. It's a little overly strict in that it
doesn't allow all unicode characters that might be valid in ts
identifiers, but it's still very permissive. Since mappings aren't
reversible, we must temporarily store this mapping in order to unmap it
if the model comes back with a call. We also handle the case where
multiple mappings collide into the same mapping and append a counter to
the end to make them unique
2025-08-18 14:05:16 -07:00
Devon Rifkin
ec8bf5e6c5 Merge pull request #11875 from ollama/drifkin/print-template
server: add debug option for printing out prompt instead of calling model
2025-08-18 14:03:14 -07:00
Kostis
709bbb0b6d readme: add any-llm to community integrations (#11956) 2025-08-18 13:13:26 -07:00
Jody Doolittle
abeec240f9 readme: add Serene Pub to community integrations (#11946) 2025-08-18 13:12:41 -07:00
Devon Rifkin
8de1da4767 server: add debug option for printing out prompt instead of calling model 2025-08-15 13:52:50 -07:00
100 changed files with 3609 additions and 804 deletions

View File

@@ -65,14 +65,36 @@ jobs:
arch: amd64
preset: 'CUDA 12'
install: https://developer.download.nvidia.com/compute/cuda/12.8.0/local_installers/cuda_12.8.0_571.96_windows.exe
cuda-components:
- '"cudart"'
- '"nvcc"'
- '"cublas"'
- '"cublas_dev"'
cuda-version: '12.8'
flags: ''
runner_dir: 'cuda_v12'
- os: windows
arch: amd64
preset: 'CUDA 13'
install: https://developer.download.nvidia.com/compute/cuda/13.0.0/local_installers/cuda_13.0.0_windows.exe
cuda-components:
- '"cudart"'
- '"nvcc"'
- '"cublas"'
- '"cublas_dev"'
- '"crt"'
- '"nvvm"'
- '"nvptxcompiler"'
cuda-version: '13.0'
flags: ''
runner_dir: 'cuda_v13'
- os: windows
arch: amd64
preset: 'ROCm 6'
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
rocm-version: '6.2'
flags: '-DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma" -DCMAKE_CXX_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma"'
runner_dir: ''
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
environment: release
env:
@@ -96,7 +118,7 @@ jobs:
$ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
$subpackages = @("cudart", "nvcc", "cublas", "cublas_dev") | Foreach-Object {"${_}_${{ matrix.cuda-version }}"}
$subpackages = @(${{ join(matrix.cuda-components, ', ') }}) | Foreach-Object {"${_}_${{ matrix.cuda-version }}"}
Start-Process -FilePath .\install.exe -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait
}
@@ -138,7 +160,7 @@ jobs:
run: |
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }}
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }} -DOLLAMA_RUNNER_DIR="${{ matrix.runner_dir }}"
cmake --build --parallel --preset "${{ matrix.preset }}"
cmake --install build --component "${{ startsWith(matrix.preset, 'CUDA ') && 'CUDA' || startsWith(matrix.preset, 'ROCm ') && 'HIP' || 'CPU' }}" --strip --parallel 8
env:
@@ -232,7 +254,7 @@ jobs:
case "$COMPONENT" in
bin/ollama) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/*.so*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_sbsa) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_v*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_jetpack5) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack5.tar.in ;;
lib/ollama/cuda_jetpack6) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack6.tar.in ;;
lib/ollama/rocm) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-rocm.tar.in ;;

View File

@@ -46,7 +46,7 @@ jobs:
include:
- preset: CPU
- preset: CUDA
container: nvidia/cuda:12.8.1-devel-ubuntu22.04
container: nvidia/cuda:13.0.0-devel-ubuntu22.04
flags: '-DCMAKE_CUDA_ARCHITECTURES=87'
- preset: ROCm
container: rocm/dev-ubuntu-22.04:6.1.2
@@ -78,8 +78,17 @@ jobs:
include:
- preset: CPU
- preset: CUDA
install: https://developer.download.nvidia.com/compute/cuda/12.8.0/local_installers/cuda_12.8.0_571.96_windows.exe
install: https://developer.download.nvidia.com/compute/cuda/13.0.0/local_installers/cuda_13.0.0_windows.exe
flags: '-DCMAKE_CUDA_ARCHITECTURES=80'
cuda-components:
- '"cudart"'
- '"nvcc"'
- '"cublas"'
- '"cublas_dev"'
- '"crt"'
- '"nvvm"'
- '"nvptxcompiler"'
cuda-version: '13.0'
- preset: ROCm
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
flags: '-DAMDGPU_TARGETS=gfx1010 -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma" -DCMAKE_CXX_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma"'
@@ -102,7 +111,8 @@ jobs:
$ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_12.8", "nvcc_12.8", "cublas_12.8", "cublas_dev_12.8")) -NoNewWindow -Wait
$subpackages = @(${{ join(matrix.cuda-components, ', ') }}) | Foreach-Object {"${_}_${{ matrix.cuda-version }}"}
Start-Process -FilePath .\install.exe -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait
}
$cudaPath = (Resolve-Path "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*").path

View File

@@ -38,7 +38,7 @@ if (CMAKE_OSX_ARCHITECTURES MATCHES "x86_64")
endif()
set(OLLAMA_BUILD_DIR ${CMAKE_BINARY_DIR}/lib/ollama)
set(OLLAMA_INSTALL_DIR ${CMAKE_INSTALL_PREFIX}/lib/ollama)
set(OLLAMA_INSTALL_DIR ${CMAKE_INSTALL_PREFIX}/lib/ollama/${OLLAMA_RUNNER_DIR})
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${OLLAMA_BUILD_DIR})
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG ${OLLAMA_BUILD_DIR})
@@ -81,7 +81,7 @@ if(CMAKE_CUDA_COMPILER)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cuda)
install(TARGETS ggml-cuda
RUNTIME_DEPENDENCIES
DIRECTORIES ${CUDAToolkit_BIN_DIR} ${CUDAToolkit_LIBRARY_DIR}
DIRECTORIES ${CUDAToolkit_BIN_DIR} ${CUDAToolkit_BIN_DIR}/x64 ${CUDAToolkit_LIBRARY_DIR}
PRE_INCLUDE_REGEXES cublas cublasLt cudart
PRE_EXCLUDE_REGEXES ".*"
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CUDA

View File

@@ -18,6 +18,14 @@
"name": "CUDA",
"inherits": [ "Default" ]
},
{
"name": "CUDA 11",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "50-virtual;60-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-virtual;87-virtual;89-virtual;90-virtual",
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets -t 2"
}
},
{
"name": "CUDA 12",
"inherits": [ "CUDA" ],
@@ -26,6 +34,14 @@
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets -t 2"
}
},
{
"name": "CUDA 13",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "75-virtual;80-virtual;86-virtual;87-virtual;89-virtual;90-virtual;90a-virtual;100-virtual;110-virtual;120-virtual;121-virtual",
"CMAKE_CUDA_FLAGS": "-t 2"
}
},
{
"name": "JetPack 5",
"inherits": [ "CUDA" ],
@@ -72,11 +88,21 @@
"configurePreset": "CUDA",
"targets": [ "ggml-cuda" ]
},
{
"name": "CUDA 11",
"inherits": [ "CUDA" ],
"configurePreset": "CUDA 11"
},
{
"name": "CUDA 12",
"inherits": [ "CUDA" ],
"configurePreset": "CUDA 12"
},
{
"name": "CUDA 13",
"inherits": [ "CUDA" ],
"configurePreset": "CUDA 13"
},
{
"name": "JetPack 5",
"inherits": [ "CUDA" ],

View File

@@ -39,15 +39,35 @@ RUN --mount=type=cache,target=/root/.ccache \
&& cmake --build --parallel --preset 'CPU' \
&& cmake --install build --component CPU --strip --parallel 8
FROM base AS cuda-11
ARG CUDA11VERSION=11.8
RUN dnf install -y cuda-toolkit-${CUDA11VERSION//./-}
ENV PATH=/usr/local/cuda-11/bin:$PATH
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 11' -DOLLAMA_RUNNER_DIR="cuda_v11" \
&& cmake --build --parallel --preset 'CUDA 11' \
&& cmake --install build --component CUDA --strip --parallel 8
FROM base AS cuda-12
ARG CUDA12VERSION=12.8
RUN dnf install -y cuda-toolkit-${CUDA12VERSION//./-}
ENV PATH=/usr/local/cuda-12/bin:$PATH
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 12' \
cmake --preset 'CUDA 12' -DOLLAMA_RUNNER_DIR="cuda_v12"\
&& cmake --build --parallel --preset 'CUDA 12' \
&& cmake --install build --component CUDA --strip --parallel 8
FROM base AS cuda-13
ARG CUDA13VERSION=13.0
RUN dnf install -y cuda-toolkit-${CUDA13VERSION//./-}
ENV PATH=/usr/local/cuda-13/bin:$PATH
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 13' -DOLLAMA_RUNNER_DIR="cuda_v13" \
&& cmake --build --parallel --preset 'CUDA 13' \
&& cmake --install build --component CUDA --strip --parallel 8
FROM base AS rocm-6
ENV PATH=/opt/rocm/hcc/bin:/opt/rocm/hip/bin:/opt/rocm/bin:/opt/rocm/hcc/bin:$PATH
RUN --mount=type=cache,target=/root/.ccache \
@@ -92,10 +112,14 @@ RUN --mount=type=cache,target=/root/.cache/go-build \
go build -trimpath -buildmode=pie -o /bin/ollama .
FROM --platform=linux/amd64 scratch AS amd64
COPY --from=cuda-12 dist/lib/ollama /lib/ollama
# COPY --from=cuda-11 dist/lib/ollama/ /lib/ollama/
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/
COPY --from=cuda-13 dist/lib/ollama/ /lib/ollama/
FROM --platform=linux/arm64 scratch AS arm64
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/cuda_sbsa
# COPY --from=cuda-11 dist/lib/ollama/ /lib/ollama/
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/
COPY --from=cuda-13 dist/lib/ollama/ /lib/ollama/
COPY --from=jetpack-5 dist/lib/ollama /lib/ollama/cuda_jetpack5
COPY --from=jetpack-6 dist/lib/ollama /lib/ollama/cuda_jetpack6

View File

@@ -411,6 +411,10 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [ollama launcher](https://github.com/NGC13009/ollama-launcher) (A launcher for Ollama, aiming to provide users with convenient functions such as ollama server launching, management, or configuration.)
- [ai-hub](https://github.com/Aj-Seven/ai-hub) (AI Hub supports multiple models via API keys and Chat support via Ollama API.)
- [Mayan EDMS](https://gitlab.com/mayan-edms/mayan-edms) (Open source document management system to organize, tag, search, and automate your files with powerful Ollama driven workflows.)
- [Serene Pub](https://github.com/doolijb/serene-pub) (Beginner friendly, open source AI Roleplaying App for Windows, Mac OS and Linux. Search, download and use models with Ollama all inside the app.)
- [Andes](https://github.com/aqerd/andes) (A Visual Studio Code extension that provides a local UI interface for Ollama models)
- [Clueless](https://github.com/KashyapTan/clueless) (Open Source & Local Cluely: A desktop application LLM assistant to help you talk to anything on your screen using locally served Ollama models. Also undetectable to screenshare)
- [ollama-co2](https://github.com/carbonatedWaterOrg/ollama-co2) (FastAPI web interface for monitoring and managing local and remote Ollama servers with real-time model monitoring and concurrent downloads)
### Cloud
@@ -537,6 +541,9 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Nichey](https://github.com/goodreasonai/nichey) is a Python package for generating custom wikis for your research topic
- [Ollama for D](https://github.com/kassane/ollama-d)
- [OllamaPlusPlus](https://github.com/HardCodeDev777/OllamaPlusPlus) (Very simple C++ library for Ollama)
- [any-llm](https://github.com/mozilla-ai/any-llm) (A single interface to use different llm providers by [mozilla.ai](https://www.mozilla.ai/))
- [any-agent](https://github.com/mozilla-ai/any-agent) (A single interface to use and evaluate different agent frameworks by [mozilla.ai](https://www.mozilla.ai/))
- [Neuro SAN](https://github.com/cognizant-ai-lab/neuro-san-studio) (Data-driven multi-agent orchestration framework) with [example](https://github.com/cognizant-ai-lab/neuro-san-studio/blob/main/docs/user_guide.md#ollama)
### Mobile
@@ -597,6 +604,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [UnityCodeLama](https://github.com/HardCodeDev777/UnityCodeLama) (Unity Edtior tool to analyze scripts via Ollama)
- [NativeMind](https://github.com/NativeMindBrowser/NativeMindExtension) (Private, on-device AI Assistant, no cloud dependencies)
- [GMAI - Gradle Managed AI](https://gmai.premex.se/) (Gradle plugin for automated Ollama lifecycle management during build phases)
- [NOMYO Router](https://github.com/nomyo-ai/nomyo-router) (A transparent Ollama proxy with model deployment aware routing which auto-manages multiple Ollama instances in a given network)
### Supported backends

View File

@@ -90,6 +90,10 @@ type GenerateRequest struct {
// (request that thinking _not_ be used) and unset (use the old behavior
// before this option was introduced)
Think *ThinkValue `json:"think,omitempty"`
// DebugRenderOnly is a debug option that, when set to true, returns the rendered
// template instead of calling the model.
DebugRenderOnly bool `json:"_debug_render_only,omitempty"`
}
// ChatRequest describes a request sent by [Client.Chat].
@@ -120,6 +124,10 @@ type ChatRequest struct {
// responding. Can be a boolean (true/false) or a string ("high", "medium", "low")
// for supported models.
Think *ThinkValue `json:"think,omitempty"`
// DebugRenderOnly is a debug option that, when set to true, returns the rendered
// template instead of calling the model.
DebugRenderOnly bool `json:"_debug_render_only,omitempty"`
}
type Tools []Tool
@@ -278,16 +286,23 @@ func mapToTypeScriptType(jsonType string) string {
}
}
type ToolFunctionParameters struct {
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required"`
Properties map[string]ToolProperty `json:"properties"`
}
func (t *ToolFunctionParameters) String() string {
bts, _ := json.Marshal(t)
return string(bts)
}
type ToolFunction struct {
Name string `json:"name"`
Description string `json:"description"`
Parameters struct {
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required"`
Properties map[string]ToolProperty `json:"properties"`
} `json:"parameters"`
Name string `json:"name"`
Description string `json:"description"`
Parameters ToolFunctionParameters `json:"parameters"`
}
func (t *ToolFunction) String() string {
@@ -308,6 +323,19 @@ type ChatResponse struct {
Metrics
}
// DebugInfo contains debug information for template rendering
type DebugInfo struct {
RenderedTemplate string `json:"rendered_template"`
ImageCount int `json:"image_count,omitempty"`
}
// DebugTemplateResponse is returned when _debug_render_only is set to true
type DebugTemplateResponse struct {
Model string `json:"model"`
CreatedAt time.Time `json:"created_at"`
DebugInfo DebugInfo `json:"_debug_info"`
}
type Metrics struct {
TotalDuration time.Duration `json:"total_duration,omitempty"`
LoadDuration time.Duration `json:"load_duration,omitempty"`
@@ -360,8 +388,12 @@ type EmbedRequest struct {
// this request.
KeepAlive *Duration `json:"keep_alive,omitempty"`
// Truncate truncates the input to fit the model's max sequence length.
Truncate *bool `json:"truncate,omitempty"`
// Dimensions truncates the output embedding to the specified dimension.
Dimensions int `json:"dimensions,omitempty"`
// Options lists model-specific options.
Options map[string]any `json:"options"`
}
@@ -860,7 +892,7 @@ func (d *Duration) UnmarshalJSON(b []byte) (err error) {
if t < 0 {
d.Duration = time.Duration(math.MaxInt64)
} else {
d.Duration = time.Duration(int(t) * int(time.Second))
d.Duration = time.Duration(t * float64(time.Second))
}
case string:
d.Duration, err = time.ParseDuration(t)

View File

@@ -17,6 +17,11 @@ func TestKeepAliveParsingFromJSON(t *testing.T) {
req string
exp *Duration
}{
{
name: "Unset",
req: `{ }`,
exp: nil,
},
{
name: "Positive Integer",
req: `{ "keep_alive": 42 }`,
@@ -25,7 +30,7 @@ func TestKeepAliveParsingFromJSON(t *testing.T) {
{
name: "Positive Float",
req: `{ "keep_alive": 42.5 }`,
exp: &Duration{42 * time.Second},
exp: &Duration{42500 * time.Millisecond},
},
{
name: "Positive Integer String",
@@ -436,3 +441,50 @@ func TestThinking_UnmarshalJSON(t *testing.T) {
})
}
}
func TestToolFunctionParameters_String(t *testing.T) {
tests := []struct {
name string
params ToolFunctionParameters
expected string
}{
{
name: "simple object with string property",
params: ToolFunctionParameters{
Type: "object",
Required: []string{"name"},
Properties: map[string]ToolProperty{
"name": {
Type: PropertyType{"string"},
Description: "The name of the person",
},
},
},
expected: `{"type":"object","required":["name"],"properties":{"name":{"type":"string","description":"The name of the person"}}}`,
},
{
name: "marshal failure returns empty string",
params: ToolFunctionParameters{
Type: "object",
Defs: func() any {
// Create a cycle that will cause json.Marshal to fail
type selfRef struct {
Self *selfRef
}
s := &selfRef{}
s.Self = s
return s
}(),
Properties: map[string]ToolProperty{},
},
expected: "",
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
result := test.params.String()
assert.Equal(t, test.expected, result)
})
}
}

View File

@@ -56,10 +56,8 @@ func ensureThinkingSupport(ctx context.Context, client *api.Client, name string)
if err != nil {
return
}
for _, cap := range resp.Capabilities {
if cap == model.CapabilityThinking {
return
}
if slices.Contains(resp.Capabilities, model.CapabilityThinking) {
return
}
fmt.Fprintf(os.Stderr, "warning: model %q does not support thinking output\n", name)
}

View File

@@ -28,6 +28,7 @@ type bertModel struct {
LayerNormEPS float32 `json:"layer_norm_eps"`
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
NormEpsilon float32 `json:"norm_epsilon"`
normalizeEmbeddings bool
PoolingType uint32
}
@@ -54,9 +55,11 @@ func (p *bertModel) parseMore(fsys fs.FS) error {
var pooling string
for _, m := range modules {
if m.Type == "sentence_transformers.models.Pooling" {
switch m.Type {
case "sentence_transformers.models.Pooling":
pooling = m.Path
break
case "sentence_transformers.models.Normalize":
p.normalizeEmbeddings = true
}
}
@@ -90,6 +93,7 @@ func (p *bertModel) KV(t *Tokenizer) ggml.KV {
kv["general.architecture"] = "bert"
kv["bert.attention.causal"] = false
kv["bert.pooling_type"] = p.PoolingType
kv["bert.normalize_embeddings"] = p.normalizeEmbeddings
kv["bert.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)

View File

@@ -15,19 +15,24 @@ import (
type gptossModel struct {
ModelParameters
HiddenLayers uint32 `json:"num_hidden_layers"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
AttentionHeads uint32 `json:"num_attention_heads"`
KeyValueHeads uint32 `json:"num_key_value_heads"`
HeadDim uint32 `json:"head_dim"`
Experts uint32 `json:"num_experts"`
ExpertsPerToken uint32 `json:"experts_per_token"`
RMSNormEpsilon float32 `json:"rms_norm_eps"`
InitialContextLength uint32 `json:"initial_context_length"`
RopeTheta float32 `json:"rope_theta"`
RopeScalingFactor float32 `json:"rope_scaling_factor"`
SlidingWindow uint32 `json:"sliding_window"`
HiddenLayers uint32 `json:"num_hidden_layers"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
AttentionHeads uint32 `json:"num_attention_heads"`
KeyValueHeads uint32 `json:"num_key_value_heads"`
HeadDim uint32 `json:"head_dim"`
Experts uint32 `json:"num_experts"`
LocalExperts uint32 `json:"num_local_experts"`
ExpertsPerToken uint32 `json:"experts_per_token"`
RMSNormEpsilon float32 `json:"rms_norm_eps"`
InitialContextLength uint32 `json:"initial_context_length"`
RopeTheta float32 `json:"rope_theta"`
RopeScalingFactor float32 `json:"rope_scaling_factor"`
RopeScaling struct {
Factor float32 `json:"factor"`
} `json:"rope_scaling"`
SlidingWindow uint32 `json:"sliding_window"`
}
var _ ModelConverter = (*gptossModel)(nil)
@@ -36,11 +41,11 @@ func (m *gptossModel) KV(t *Tokenizer) ggml.KV {
kv := m.ModelParameters.KV(t)
kv["general.architecture"] = "gptoss"
kv["general.file_type"] = uint32(4)
kv["gptoss.context_length"] = uint32(m.RopeScalingFactor * float32(m.InitialContextLength))
kv["gptoss.context_length"] = cmp.Or(m.MaxPositionEmbeddings, uint32(m.RopeScalingFactor*float32(m.InitialContextLength)))
kv["gptoss.block_count"] = m.HiddenLayers
kv["gptoss.embedding_length"] = m.HiddenSize
kv["gptoss.feed_forward_length"] = m.IntermediateSize
kv["gptoss.expert_count"] = m.Experts
kv["gptoss.expert_count"] = cmp.Or(m.Experts, m.LocalExperts)
kv["gptoss.expert_used_count"] = m.ExpertsPerToken
kv["gptoss.attention.head_count"] = m.AttentionHeads
kv["gptoss.attention.head_count_kv"] = m.KeyValueHeads
@@ -49,7 +54,7 @@ func (m *gptossModel) KV(t *Tokenizer) ggml.KV {
kv["gptoss.attention.layer_norm_rms_epsilon"] = cmp.Or(m.RMSNormEpsilon, 1e-5)
kv["gptoss.attention.sliding_window"] = m.SlidingWindow
kv["gptoss.rope.freq_base"] = m.RopeTheta
kv["gptoss.rope.scaling.factor"] = m.RopeScalingFactor
kv["gptoss.rope.scaling.factor"] = cmp.Or(m.RopeScalingFactor, m.RopeScaling.Factor)
kv["gptoss.rope.scaling.original_context_length"] = m.InitialContextLength
kv["tokenizer.ggml.bos_token_id"] = uint32(199998) // <|startoftext|>
kv["tokenizer.ggml.add_bos_token"] = false
@@ -92,6 +97,11 @@ func (m *gptossModel) Tensors(ts []Tensor) []*ggml.Tensor {
for name, mxfp4 := range mxfp4s {
dims := mxfp4.blocks.Shape()
if !strings.HasSuffix(name, ".weight") {
name += ".weight"
}
out = append(out, &ggml.Tensor{
Name: name,
Kind: uint32(ggml.TensorTypeMXFP4),
@@ -104,25 +114,47 @@ func (m *gptossModel) Tensors(ts []Tensor) []*ggml.Tensor {
}
func (m *gptossModel) Replacements() []string {
return []string{
// noop replacements so other replacements will not be applied
".blocks", ".blocks",
".scales", ".scales",
// real replacements
"block", "blk",
"attn.norm", "attn_norm",
"attn.qkv", "attn_qkv",
"attn.sinks", "attn_sinks",
"attn.out", "attn_out",
"mlp.norm", "ffn_norm",
"mlp.gate", "ffn_gate_inp",
"mlp.mlp1_", "ffn_gate_up_exps.",
"mlp.mlp2_", "ffn_down_exps.",
"embedding", "token_embd",
"norm", "output_norm",
"unembedding", "output",
"scale", "weight",
var replacements []string
if m.MaxPositionEmbeddings > 0 {
// hf flavored model
replacements = []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_out",
"self_attn.sinks", "attn_sinks",
"post_attention_layernorm", "ffn_norm",
"mlp.router", "ffn_gate_inp",
"mlp.experts.gate_up_proj_", "ffn_gate_up_exps.",
"mlp.experts.down_proj_", "ffn_down_exps.",
"model.norm", "output_norm",
}
} else {
replacements = []string{
// noop replacements so other replacements will not be applied
".blocks", ".blocks",
".scales", ".scales",
// real replacements
"block", "blk",
"attn.norm", "attn_norm",
"attn.qkv", "attn_qkv",
"attn.sinks", "attn_sinks",
"attn.out", "attn_out",
"mlp.norm", "ffn_norm",
"mlp.gate", "ffn_gate_inp",
"mlp.mlp1_", "ffn_gate_up_exps.",
"mlp.mlp2_", "ffn_down_exps.",
"embedding", "token_embd",
"norm", "output_norm",
"unembedding", "output",
"scale", "weight",
}
}
return replacements
}
type mxfp4 struct {
@@ -140,7 +172,20 @@ func (m *mxfp4) WriteTo(w io.Writer) (int64, error) {
blocksDims[i] = int(d)
}
var blocks tensor.Tensor = tensor.New(tensor.WithShape(blocksDims...), tensor.WithBacking(b.Bytes()))
bts := b.Bytes()
var tmp [16]byte
for i := 0; i < b.Len(); i += 16 {
for j := range 8 {
// transform a1b2c3 ... x7y8z9 -> 71xa82yb93zc
a, b := bts[i+j], bts[i+j+8]
tmp[2*j+0] = (a & 0x0F) | (b << 4)
tmp[2*j+1] = (a >> 4) | (b & 0xF0)
}
copy(bts[i:i+16], tmp[:])
}
var blocks tensor.Tensor = tensor.New(tensor.WithShape(blocksDims...), tensor.WithBacking(bts))
var s bytes.Buffer
if _, err := m.scales.WriteTo(&s); err != nil {
@@ -174,5 +219,5 @@ func (m *mxfp4) WriteTo(w io.Writer) (int64, error) {
return 0, err
}
return 0, nil
return int64(len(u8s)), nil
}

View File

@@ -33,8 +33,8 @@ func (t tensorBase) Shape() []uint64 {
const (
tensorKindFP32 uint32 = iota
tensorKindFP16
tensorKindMXFP4 = 4
tensorKindBF16 = 30
tensorKindMXFP4 = 39
)
func (t tensorBase) Kind() uint32 {

View File

@@ -188,17 +188,17 @@ func (st safetensor) WriteTo(w io.Writer) (int64, error) {
switch st.Kind() {
case tensorKindFP32:
return 0, binary.Write(w, binary.LittleEndian, f32s)
return int64(len(f32s) * 4), binary.Write(w, binary.LittleEndian, f32s)
case tensorKindFP16:
f16s := make([]uint16, len(f32s))
for i := range f32s {
f16s[i] = float16.Fromfloat32(f32s[i]).Bits()
}
return 0, binary.Write(w, binary.LittleEndian, f16s)
return int64(len(f16s) * 2), binary.Write(w, binary.LittleEndian, f16s)
case tensorKindBF16:
u8s := bfloat16.EncodeFloat32(f32s)
return 0, binary.Write(w, binary.LittleEndian, u8s)
return int64(len(u8s)), binary.Write(w, binary.LittleEndian, u8s)
default:
return 0, fmt.Errorf("unknown storage type: %d", st.Kind())
}

View File

@@ -277,6 +277,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
FreeMemory: (totalMemory - usedMemory),
},
ID: ID,
filterID: gpuOrdinalID,
Name: name,
Compute: fmt.Sprintf("gfx%d%x%x", major, minor, patch),
MinimumMemory: rocmMinimumMemory,
@@ -394,7 +395,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
// Check for env var workarounds
if name == "1002:687f" { // Vega RX 56
gpuInfo.EnvWorkarounds = append(gpuInfo.EnvWorkarounds, [2]string{"HSA_ENABLE_SDMA", "0"})
gpuInfo.EnvWorkarounds = append(gpuInfo.EnvWorkarounds, "HSA_ENABLE_SDMA=0")
}
// The GPU has passed all the verification steps and is supported
@@ -523,19 +524,26 @@ func verifyKFDDriverAccess() error {
return nil
}
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) string {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "rocm" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
continue
}
ids = append(ids, info.ID)
// If the devices requires a numeric ID, for filtering purposes, we use the unfiltered ID number
if _, err := strconv.Atoi(info.ID); err == nil {
ids = append(ids, fmt.Sprintf("%d", info.filterID))
} else {
ids = append(ids, info.ID)
}
}
if len(ids) == 0 {
return ""
}
// There are 3 potential env vars to use to select GPUs.
// ROCR_VISIBLE_DEVICES supports UUID or numeric so is our preferred on linux
// GPU_DEVICE_ORDINAL supports numeric IDs only
// HIP_VISIBLE_DEVICES supports numeric IDs only
return "ROCR_VISIBLE_DEVICES", strings.Join(ids, ",")
return "ROCR_VISIBLE_DEVICES=" + strings.Join(ids, ",")
}

View File

@@ -111,6 +111,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
UnreliableFreeMemory: true,
ID: strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices
filterID: i,
DependencyPath: []string{libDir},
MinimumMemory: rocmMinimumMemory,
Name: name,
@@ -200,19 +201,26 @@ func (gpus RocmGPUInfoList) RefreshFreeMemory() error {
return nil
}
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) string {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "rocm" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
continue
}
ids = append(ids, info.ID)
// If the devices requires a numeric ID, for filtering purposes, we use the unfiltered ID number
if _, err := strconv.Atoi(info.ID); err == nil {
ids = append(ids, fmt.Sprintf("%d", info.filterID))
} else {
ids = append(ids, info.ID)
}
}
if len(ids) == 0 {
return ""
}
// There are 3 potential env vars to use to select GPUs.
// ROCR_VISIBLE_DEVICES supports UUID or numeric but does not work on Windows
// HIP_VISIBLE_DEVICES supports numeric IDs only
// GPU_DEVICE_ORDINAL supports numeric IDs only
return "HIP_VISIBLE_DEVICES", strings.Join(ids, ",")
return "HIP_VISIBLE_DEVICES=" + strings.Join(ids, ",")
}

View File

@@ -16,19 +16,6 @@ import (
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK")
func cudaGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "cuda" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("cudaGetVisibleDevicesEnv skipping over non-cuda device", "library", info.Library)
continue
}
ids = append(ids, info.ID)
}
return "CUDA_VISIBLE_DEVICES", strings.Join(ids, ",")
}
func cudaVariant(gpuInfo CudaGPUInfo) string {
if runtime.GOARCH == "arm64" && runtime.GOOS == "linux" {
if CudaTegra != "" {
@@ -56,14 +43,15 @@ func cudaVariant(gpuInfo CudaGPUInfo) string {
}
}
}
return "sbsa"
}
// driver 12.0 has problems with the cuda v12 library, so run v11 on those older drivers
if gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) {
// The detected driver is older than Feb 2023
slog.Warn("old CUDA driver detected - please upgrade to a newer driver", "version", fmt.Sprintf("%d.%d", gpuInfo.DriverMajor, gpuInfo.DriverMinor))
return "v11"
if gpuInfo.DriverMajor < 13 {
// The detected driver is older than 580 (Aug 2025)
// Warn if their CC is compatible with v13 and they should upgrade their driver to get better performance
if gpuInfo.computeMajor > 7 || (gpuInfo.computeMajor == 7 && gpuInfo.computeMinor >= 5) {
slog.Warn("old CUDA driver detected - please upgrade to a newer driver for best performance", "version", fmt.Sprintf("%d.%d", gpuInfo.DriverMajor, gpuInfo.DriverMinor))
}
return "v12"
}
return "v12"
return "v13"
}

View File

@@ -371,6 +371,15 @@ func GetGPUInfo() GpuInfoList {
}
rocmGPUs, err = AMDGetGPUInfo()
// The ID field is used in context of the filtered set of GPUS
// so we have to replace any of these numeric IDs with their
// placement in this set of GPUs
for i := range rocmGPUs {
if _, err := strconv.Atoi(rocmGPUs[i].ID); err == nil {
rocmGPUs[i].ID = strconv.Itoa(i)
}
}
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
@@ -680,23 +689,16 @@ func getVerboseState() C.uint16_t {
// Given the list of GPUs this instantiation is targeted for,
// figure out the visible devices environment variable
//
// If different libraries are detected, the first one is what we use
func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
func (l GpuInfoList) GetVisibleDevicesEnv() []string {
if len(l) == 0 {
return "", ""
return nil
}
switch l[0].Library {
case "cuda":
return cudaGetVisibleDevicesEnv(l)
case "rocm":
return rocmGetVisibleDevicesEnv(l)
case "oneapi":
return oneapiGetVisibleDevicesEnv(l)
default:
slog.Debug("no filter required for library " + l[0].Library)
return "", ""
vd := []string{}
// Only filter the AMD GPUs at this level, let all NVIDIA devices through
if tmp := rocmGetVisibleDevicesEnv(l); tmp != "" {
vd = append(vd, tmp)
}
return vd
}
func GetSystemInfo() SystemInfo {

View File

@@ -62,9 +62,9 @@ func GetCPUMem() (memInfo, error) {
}, nil
}
func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
func (l GpuInfoList) GetVisibleDevicesEnv() []string {
// No-op on darwin
return "", ""
return nil
}
func GetSystemInfo() SystemInfo {

View File

@@ -1,21 +0,0 @@
//go:build linux || windows
package discover
import (
"log/slog"
"strings"
)
func oneapiGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "oneapi" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("oneapiGetVisibleDevicesEnv skipping over non-sycl device", "library", info.Library)
continue
}
ids = append(ids, info.ID)
}
return "ONEAPI_DEVICE_SELECTOR", "level_zero:" + strings.Join(ids, ",")
}

View File

@@ -27,8 +27,8 @@ type GpuInfo struct { // TODO better name maybe "InferenceProcessor"?
// Any extra PATH/LD_LIBRARY_PATH dependencies required for the Library to operate properly
DependencyPath []string `json:"lib_path,omitempty"`
// Extra environment variables specific to the GPU as list of [key,value]
EnvWorkarounds [][2]string `json:"envs,omitempty"`
// Extra environment variables specific to the GPU as list of [key=value]
EnvWorkarounds []string `json:"envs,omitempty"`
// Set to true if we can NOT reliably discover FreeMemory. A value of true indicates
// the FreeMemory is best effort, and may over or under report actual memory usage
@@ -36,9 +36,10 @@ type GpuInfo struct { // TODO better name maybe "InferenceProcessor"?
UnreliableFreeMemory bool
// GPU information
ID string `json:"gpu_id"` // string to use for selection of this specific GPU
Name string `json:"name"` // user friendly name if available
Compute string `json:"compute"` // Compute Capability or gfx
ID string `json:"gpu_id"` // string to use for selection of this specific GPU
filterID int //nolint:unused,nolintlint // AMD Workaround: The numeric ID of the device used to filter out other devices
Name string `json:"name"` // user friendly name if available
Compute string `json:"compute"` // Compute Capability or gfx
// Driver Information - TODO no need to put this on each GPU
DriverMajor int `json:"driver_major,omitempty"`

View File

@@ -1708,6 +1708,7 @@ Advanced parameters:
- `truncate`: truncates the end of each input to fit within context length. Returns error if `false` and context length is exceeded. Defaults to `true`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
- `dimensions`: number of dimensions for the embedding
### Examples

View File

@@ -11,6 +11,10 @@ Then build and run Ollama from the root directory of the repository:
go run . serve
```
> [!NOTE]
> Ollama includes native code compiled with CGO. From time to time these data structures can change and CGO can get out of sync resulting in unexpected crashes. You can force a full build of the native code by running `go clean -cache` first.
## macOS (Apple Silicon)
macOS Apple Silicon supports Metal which is built-in to the Ollama binary. No additional steps are required.

View File

@@ -11,12 +11,13 @@ curl -fsSL https://ollama.com/install.sh | sh
## Manual install
> [!NOTE]
> If you are upgrading from a prior version, you should remove the old libraries with `sudo rm -rf /usr/lib/ollama` first.
> If you are upgrading from a prior version, you **MUST** remove the old libraries with `sudo rm -rf /usr/lib/ollama` first.
Download and extract the package:
```shell
curl -LO https://ollama.com/download/ollama-linux-amd64.tgz
sudo rm -rf /usr/lib/ollama
sudo tar -C /usr -xzf ollama-linux-amd64.tgz
```

View File

@@ -92,6 +92,9 @@ If none of those resolve the problem, gather additional information and file an
- Set `CUDA_ERROR_LEVEL=50` and try again to get more diagnostic logs
- Check dmesg for any errors `sudo dmesg | grep -i nvrm` and `sudo dmesg | grep -i nvidia`
You may get more details for initialization failures by enabling debug prints in the uvm driver. You should only use this temporarily while troubleshooting
- `sudo rmmod nvidia_uvm` then `sudo modprobe nvidia_uvm uvm_debug_prints=1`
## AMD GPU Discovery

View File

@@ -185,8 +185,6 @@ var (
ContextLength = Uint("OLLAMA_CONTEXT_LENGTH", 4096)
// Auth enables authentication between the Ollama client and server
UseAuth = Bool("OLLAMA_AUTH")
// Enable the new memory estimation logic
NewMemoryEstimates = Bool("OLLAMA_NEW_ESTIMATES")
)
func String(s string) func() string {
@@ -272,7 +270,6 @@ func AsMap() map[string]EnvVar {
"OLLAMA_MULTIUSER_CACHE": {"OLLAMA_MULTIUSER_CACHE", MultiUserCache(), "Optimize prompt caching for multi-user scenarios"},
"OLLAMA_CONTEXT_LENGTH": {"OLLAMA_CONTEXT_LENGTH", ContextLength(), "Context length to use unless otherwise specified (default: 4096)"},
"OLLAMA_NEW_ENGINE": {"OLLAMA_NEW_ENGINE", NewEngine(), "Enable the new Ollama engine"},
"OLLAMA_NEW_ESTIMATES": {"OLLAMA_NEW_ESTIMATES", NewMemoryEstimates(), "Enable the new memory estimation logic"},
// Informational
"HTTP_PROXY": {"HTTP_PROXY", String("HTTP_PROXY")(), "HTTP proxy"},

View File

@@ -7,9 +7,11 @@ import (
"fmt"
"io"
"log/slog"
"math"
"slices"
"strings"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/util/bufioutil"
)
@@ -55,10 +57,28 @@ func (kv KV) EmbeddingLength() uint64 {
return uint64(kv.Uint("embedding_length"))
}
func (kv KV) HeadCount() []uint64 {
headCountDefault := uint32(1)
headCount := kv.UintOrArrayValueAsArray("attention.head_count", headCountDefault)
if len(headCount) == 1 {
headCountDefault = headCount[0]
}
nLayers := int(kv.BlockCount())
if len(headCount) > nLayers {
slog.Warn("got more elements of attention.head_count than layers", "len(headCount)", len(headCount), "layers", nLayers)
}
out := make([]uint64, nLayers)
for i := range nLayers {
if i >= len(headCount) {
out[i] = uint64(headCountDefault)
} else {
out[i] = uint64(headCount[i])
}
}
return out
}
func (kv KV) HeadCountMax() uint64 {
// TODO(drifkin): using the max value can cause an overestimation. In the
// future if array values become more popular, we can adapt the more invasive
// <https://github.com/ollama/ollama/pull/10225>
return uint64(kv.UintOrMaxArrayValue("attention.head_count", 1))
}
@@ -66,6 +86,27 @@ func (kv KV) HeadCountMin() uint64 {
return uint64(kv.UintOrMinArrayValue("attention.head_count", 1))
}
func (kv KV) HeadCountKV() []uint64 {
headCountKVDefault := uint32(1)
headCountKV := kv.UintOrArrayValueAsArray("attention.head_count_kv", headCountKVDefault)
if len(headCountKV) == 1 {
headCountKVDefault = headCountKV[0]
}
nLayers := int(kv.BlockCount())
if len(headCountKV) > nLayers {
slog.Warn("got more elements of attention.head_count than layers", "len(headCountKV)", len(headCountKV), "layers", nLayers)
}
out := make([]uint64, nLayers)
for i := range nLayers {
if i >= len(headCountKV) {
out[i] = uint64(headCountKVDefault)
} else {
out[i] = uint64(headCountKV[i])
}
}
return out
}
func (kv KV) HeadCountKVMax() uint64 {
return uint64(kv.UintOrMaxArrayValue("attention.head_count_kv", 1))
}
@@ -98,6 +139,26 @@ func (kv KV) ChatTemplate() string {
return kv.String("tokenizer.chat_template")
}
// ssm architecture parameters
func (kv KV) SSMConvKernel() uint64 {
return uint64(kv.Uint("ssm.conv_kernel"))
}
func (kv KV) SSMInnerSize() uint64 {
return uint64(kv.Uint("ssm.inner_size"))
}
func (kv KV) SSMStateSize() uint64 {
return uint64(kv.Uint("ssm.state_size"))
}
func (kv KV) SSMGroupCount() uint64 {
return uint64(kv.Uint("ssm.group_count"))
}
// general types
func (kv KV) String(key string, defaultValue ...string) string {
val, _ := keyValue(kv, key, append(defaultValue, "")...)
return val
@@ -129,22 +190,27 @@ func (kv KV) UintOrMinArrayValue(key string, defaultValue uint32) uint32 {
}
func (kv KV) UintOrArrayValue(key string, defaultValue uint32) (uint32, uint32) {
arrVal := kv.UintOrArrayValueAsArray(key, defaultValue)
return slices.Min(arrVal), slices.Max(arrVal)
}
func (kv KV) UintOrArrayValueAsArray(key string, defaultValue uint32) []uint32 {
if u32, ok := keyValue(kv, key, uint32(0)); ok {
return u32, u32
return []uint32{u32}
} else if u32s, ok := keyValue(kv, key, &array[uint32]{}); ok {
min := slices.Min(u32s.values)
max := slices.Max(u32s.values)
return min, max
return u32s.values
} else if i32s, ok := keyValue(kv, key, &array[int32]{}); ok {
min := slices.Min(i32s.values)
max := slices.Max(i32s.values)
if min < 0 || max < 0 {
slog.Warn("array values are unexpectedly negative", "key", key, "min", min, "max", max)
dst := make([]uint32, len(i32s.values))
for i, v := range i32s.values {
if v < 0 {
slog.Warn("array values are unexpectedly negative", "key", key, "i", i, "v", v)
}
dst[i] = uint32(v)
}
return uint32(min), uint32(max)
return dst
}
return defaultValue, defaultValue
return []uint32{defaultValue}
}
func (kv KV) Strings(key string, defaultValue ...[]string) []string {
@@ -275,7 +341,7 @@ type Tensor struct {
func (t Tensor) block() (n int) {
if _, err := fmt.Sscanf(t.Name, "blk.%d.", &n); err != nil {
return -1
return math.MaxInt
}
return
@@ -288,24 +354,24 @@ func (t Tensor) blockSize() uint64 {
func (t TensorType) BlockSize() uint64 {
switch t {
case
0, // F32
1, // F16
24, // I8
25, // I16
26, // I32
27, // I64
28, // F64
30: // BF16
TensorTypeF32,
TensorTypeF16,
TensorTypeI8,
TensorTypeI16,
TensorTypeI32,
TensorTypeI64,
TensorTypeF64,
TensorTypeBF16:
return 1
case
2, // Q4_0
3, // Q4_1
4, // MXFP4
6, // Q5_0
7, // Q5_1
8, // Q8_0
9, // Q8_1
20: // IQ4_NL
TensorTypeQ4_0,
TensorTypeQ4_1,
TensorTypeQ5_0,
TensorTypeQ5_1,
TensorTypeQ8_0,
TensorTypeQ8_1,
tensorTypeIQ4_NL,
4, TensorTypeMXFP4:
return 32
default:
return 256
@@ -328,8 +394,6 @@ func (t TensorType) TypeSize() uint64 {
return 2 + blockSize/2
case TensorTypeQ4_1:
return 2 + 2 + blockSize/2
case TensorTypeMXFP4, 39:
return 1 + blockSize/2
case TensorTypeQ5_0:
return 2 + 4 + blockSize/2
case TensorTypeQ5_1:
@@ -380,6 +444,8 @@ func (t TensorType) TypeSize() uint64 {
return blockSize/8 + blockSize/16 + blockSize/32
case TensorTypeBF16:
return 2
case 4, TensorTypeMXFP4:
return 1 + blockSize/2
default:
return 0
}
@@ -479,12 +545,14 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, error) {
}, nil
}
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string) (kv []uint64, partialOffload, fullOffload uint64) {
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string, useFlashAttention bool) (kv []uint64, partialOffload, fullOffload uint64) {
context *= uint64(numParallel)
embedding := f.KV().EmbeddingLength()
heads := f.KV().HeadCountMax()
headsArr := f.KV().HeadCount()
headsKV := f.KV().HeadCountKVMax()
headsKVArr := f.KV().HeadCountKV()
vocab := uint64(f.KV()["tokenizer.ggml.tokens"].(*array[string]).size)
embeddingHeads := f.KV().EmbeddingHeadCountMax()
@@ -494,12 +562,51 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
layers := f.Tensors().GroupLayers()
bytesPerElement := kvCacheBytesPerElement(kvCacheType)
// Default for models unless special-cased below. These defaults mirror the
// cache usage in llama.cpp under the assumption that models without special
// cases below will use the llamarunner and caching will be handled by the
// llama.cpp layer.
//
// This also assumes that a layer without heads or headsKV set is recurrent
// which is usually the case. Some models (eg nemotronh) use "blocks" in
// place of layers where some are MLP blocks that don't have any cache.
// Models like this will need a special case below to be accurately
// estimated.
var kvTotal uint64
kv = make([]uint64, f.KV().BlockCount())
kvSizeAttn := uint64(0)
kvSizeRecurrent := uint64(0)
for i := range kv {
kv[i] = uint64(float64(context*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
headsL := headsArr[i]
headsKVL := headsKVArr[i]
if headsL > 0 && headsKVL > 0 {
// full attention layer
// NOTE: Assumes uniform values for all attn layers
kv[i] = uint64(float64(context*(embeddingHeadsK+embeddingHeadsV)*headsKVL) * bytesPerElement)
kvSizeAttn += kv[i]
} else {
// recurrent layer
ssmDConv := f.KV().SSMConvKernel()
ssmDState := f.KV().SSMStateSize()
ssmDInner := f.KV().SSMInnerSize()
ssmNGroups := f.KV().SSMGroupCount()
nEmbdR := uint64(0)
if ssmDConv > 0 {
nEmbdR = (ssmDConv - 1) * (ssmDInner + 2*ssmNGroups*ssmDState)
}
nEmbdS := ssmDState * ssmDInner
// recurrent always uses F32 in llama.cpp backend
// https://github.com/ggml-org/llama.cpp/blob/master/src/llama-model.cpp#L18644
bytesPerElementRecurrent := kvCacheBytesPerElement("f32")
kv[i] = (nEmbdR + nEmbdS) * uint64(bytesPerElementRecurrent)
kvSizeRecurrent += kv[i]
}
kvTotal += kv[i]
}
slog.Debug("default cache size estimate", "attention MiB", float32(kvSizeAttn)/(1024.*1024.), "attention bytes", kvSizeAttn, "recurrent MiB", float32(kvSizeRecurrent)/(1024.*1024.), "recurrent bytes", kvSizeRecurrent)
switch f.KV().Architecture() {
case "llama", "llama4":
@@ -677,7 +784,12 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
kv[i] *= context
}
}
partialOffload = 2 * f.KV().HeadCountMax() / cmp.Or(f.KV().HeadCountKVMin(), 1) * kvTotal / 6
if useFlashAttention {
// rough estimate of graph size with flash attention on
partialOffload = (4*uint64(numParallel) + context>>10 + 110) * format.MebiByte
}
}
return
@@ -752,12 +864,16 @@ func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
// SupportsKVCacheType checks if the requested cache type is supported
func (f GGML) SupportsKVCacheType(cacheType string) bool {
if cacheType == "" || cacheType == "f16" {
return true
}
if arch := f.KV().Architecture(); slices.Contains([]string{"gptoss", "gpt-oss"}, arch) {
// gpt-oss uses attention with sinks which does not support quantized cache types
slog.Warn("model only supports non-quantized cache types ", "mode", arch)
return cacheType == "f16"
slog.Warn("model only supports non-quantized cache types", "model", arch)
return false
}
return slices.Contains([]string{"f16", "q8_0", "q4_0"}, cacheType)
return slices.Contains([]string{"q8_0", "q4_0"}, cacheType)
}
// SupportsFlashAttention checks if the model supports flash attention
@@ -767,12 +883,23 @@ func (f GGML) SupportsFlashAttention() bool {
return false
}
if arch := f.KV().Architecture(); slices.Contains([]string{"gemma2"}, arch) {
return false
}
// Check head counts match and are non-zero
headCountK := f.KV().EmbeddingHeadCountK()
headCountV := f.KV().EmbeddingHeadCountV()
return headCountK != 0 && headCountV != 0 && headCountK == headCountV
}
// FlashAttention checks if the model should enable flash attention
func (f GGML) FlashAttention() bool {
return slices.Contains([]string{
"gptoss", "gpt-oss",
}, f.KV().String("general.architecture"))
}
// kvCacheBytesPerElement returns the number of bytes per element for a given KV cache type
func kvCacheBytesPerElement(cacheType string) float64 {
switch cacheType {
@@ -780,6 +907,8 @@ func kvCacheBytesPerElement(cacheType string) float64 {
return 1 // 1/2 of fp16
case "q4_0":
return 0.5 // 1/4 of fp16
case "f32":
return 4 // f32 (default for recurrent)
default:
return 2 // f16 (default)
}

View File

@@ -533,12 +533,15 @@ func WriteGGUF(f *os.File, kv KV, ts []*Tensor) error {
}
}
slices.SortStableFunc(ts, func(a, b *Tensor) int {
if i, j := a.block(), b.block(); i > 0 && j > 0 {
return cmp.Compare(i, j)
}
return cmp.Compare(a.Name, b.Name)
})
slices.SortStableFunc(
ts,
func(a, b *Tensor) int {
return cmp.Or(
cmp.Compare(a.block(), b.block()),
cmp.Compare(a.Name, b.Name),
)
},
)
var s uint64
for i := range ts {

View File

@@ -11,24 +11,24 @@ import (
)
func TestWriteGGUF(t *testing.T) {
r := rand.New(rand.NewPCG(0, 0))
b := bytes.NewBuffer(make([]byte, 2*3))
for range 8 {
t.Run("shuffle", func(t *testing.T) {
t.Parallel()
ts := []*Tensor{
{Name: "token_embd.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "blk.0.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "blk.1.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "blk.2.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "blk.3.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "blk.4.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "blk.5.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
{Name: "output_norm.weight", Shape: []uint64{3, 2}, WriterTo: bytes.NewBuffer(make([]byte, 3*2))},
{Name: "output.weight", Shape: []uint64{3, 2}, WriterTo: bytes.NewBuffer(make([]byte, 3*2))},
{Name: "token_embd.weight", Shape: []uint64{2, 3}, WriterTo: b},
{Name: "blk.0.ffn_norm.weight", Shape: []uint64{2, 3}, WriterTo: b},
{Name: "blk.0.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: b},
{Name: "blk.1.ffn_up.weight", Shape: []uint64{2, 3}, WriterTo: b},
{Name: "blk.2.ffn_norm.weight", Shape: []uint64{2, 3}, WriterTo: b},
{Name: "blk.1.ffn_down.weight", Shape: []uint64{2, 3}, WriterTo: b},
{Name: "blk.0.attn_k.weight", Shape: []uint64{2, 3}, WriterTo: b},
{Name: "output_norm.weight", Shape: []uint64{3, 2}, WriterTo: b},
{Name: "output.weight", Shape: []uint64{3, 2}, WriterTo: b},
}
r.Shuffle(len(ts), func(i, j int) {
rand.Shuffle(len(ts), func(i, j int) {
ts[i], ts[j] = ts[j], ts[i]
})
@@ -63,14 +63,14 @@ func TestWriteGGUF(t *testing.T) {
}
if diff := cmp.Diff(Tensors{
Offset: 608,
Offset: 592,
items: []*Tensor{
{Name: "blk.0.attn_norm.weight", Offset: 0, Shape: []uint64{2, 3}},
{Name: "blk.1.attn_norm.weight", Offset: 32, Shape: []uint64{2, 3}},
{Name: "blk.2.attn_norm.weight", Offset: 64, Shape: []uint64{2, 3}},
{Name: "blk.3.attn_norm.weight", Offset: 96, Shape: []uint64{2, 3}},
{Name: "blk.4.attn_norm.weight", Offset: 128, Shape: []uint64{2, 3}},
{Name: "blk.5.attn_norm.weight", Offset: 160, Shape: []uint64{2, 3}},
{Name: "blk.0.attn_k.weight", Offset: 0, Shape: []uint64{2, 3}},
{Name: "blk.0.attn_norm.weight", Offset: 32, Shape: []uint64{2, 3}},
{Name: "blk.0.ffn_norm.weight", Offset: 64, Shape: []uint64{2, 3}},
{Name: "blk.1.ffn_down.weight", Offset: 96, Shape: []uint64{2, 3}},
{Name: "blk.1.ffn_up.weight", Offset: 128, Shape: []uint64{2, 3}},
{Name: "blk.2.ffn_norm.weight", Offset: 160, Shape: []uint64{2, 3}},
{Name: "output.weight", Offset: 192, Shape: []uint64{3, 2}},
{Name: "output_norm.weight", Offset: 224, Shape: []uint64{3, 2}},
{Name: "token_embd.weight", Offset: 256, Shape: []uint64{2, 3}},

View File

@@ -146,8 +146,6 @@ func (ftype FileType) ToTensorType() TensorType {
return TensorTypeQ4_0
case fileTypeQ4_1:
return TensorTypeQ4_1
case fileTypeMXFP4:
return TensorTypeMXFP4 // Formerly unused tensorTypeQ4_2
case FileTypeQ8_0:
return TensorTypeQ8_0
case fileTypeQ5_0:
@@ -176,6 +174,8 @@ func (ftype FileType) ToTensorType() TensorType {
return TensorTypeQ2_K
case FileTypeBF16:
return TensorTypeBF16
case fileTypeMXFP4:
return TensorTypeMXFP4
default:
slog.Warn("unsupported file type", "type", ftype)
return 0 // F32
@@ -191,8 +191,8 @@ const (
TensorTypeF16
TensorTypeQ4_0
TensorTypeQ4_1
TensorTypeMXFP4 // Formerly unused tensorTypeQ4_2
tensorTypeQ4_3 // unused by GGML
tensorTypeQ4_2
tensorTypeQ4_3 // unused by GGML
TensorTypeQ5_0
TensorTypeQ5_1
TensorTypeQ8_0
@@ -226,6 +226,7 @@ const (
tensorTypeIQ4_NL_4_4 // unused by GGML
tensorTypeIQ4_NL_4_8 // unused by GGML
tensorTypeIQ4_NL_8_8 // unused by GGML
TensorTypeMXFP4
)
// ParseFileType parses the provided GGUF file type
@@ -318,7 +319,7 @@ func (t TensorType) String() string {
return "F64"
case TensorTypeBF16:
return "BF16"
case TensorTypeMXFP4:
case 4, TensorTypeMXFP4:
return "MXFP4"
default:
return "unknown"

View File

@@ -1,9 +1,8 @@
package server
package harmony
import (
"context"
"fmt"
"log/slog"
"slices"
"strings"
"unicode"
@@ -19,18 +18,6 @@ const (
harmonyParserState_ParsingContent
)
func shouldUseHarmony(model Model) bool {
if slices.Contains([]string{"gptoss", "gpt-oss"}, model.Config.ModelFamily) {
// heuristic to check whether the template expects to be parsed via harmony:
// search for harmony tags that are nearly always used
if model.Template.Contains("<|start|>") && model.Template.Contains("<|end|>") {
return true
}
}
return false
}
func (s harmonyParserState) String() string {
switch s {
// we're looking for the message start tag
@@ -275,19 +262,21 @@ const (
// HarmonyMessageHandler processes harmony events and accumulates content appropriately.
// This is a higher level interface that maps harmony concepts into ollama concepts
type HarmonyMessageHandler struct {
state harmonyMessageState
harmonyParser *HarmonyParser
state harmonyMessageState
HarmonyParser *HarmonyParser
FunctionNameMap *FunctionNameMap
}
// NewHarmonyMessageHandler creates a new message handler
func NewHarmonyMessageHandler() *HarmonyMessageHandler {
return &HarmonyMessageHandler{
state: harmonyMessageState_Normal,
harmonyParser: &HarmonyParser{
HarmonyParser: &HarmonyParser{
MessageStartTag: "<|start|>",
MessageEndTag: "<|end|>",
HeaderEndTag: "<|message|>",
},
FunctionNameMap: NewFunctionNameMap(),
}
}
@@ -298,11 +287,11 @@ func (h *HarmonyMessageHandler) AddContent(content string, toolParser *HarmonyTo
thinkingSb := strings.Builder{}
toolContentSb := strings.Builder{}
events := h.harmonyParser.AddContent(content)
events := h.HarmonyParser.AddContent(content)
for _, event := range events {
switch event := event.(type) {
case HarmonyEventHeaderComplete:
slog.Log(context.TODO(), logutil.LevelTrace, "harmony event header complete", "header", event.Header)
logutil.Trace("harmony event header complete", "header", event.Header)
switch event.Header.Channel {
case "analysis":
if event.Header.Recipient != "" {
@@ -325,7 +314,7 @@ func (h *HarmonyMessageHandler) AddContent(content string, toolParser *HarmonyTo
h.state = harmonyMessageState_Normal
}
case HarmonyEventContentEmitted:
slog.Log(context.TODO(), logutil.LevelTrace, "harmony event content", "content", event.Content, "state", h.state)
logutil.Trace("harmony event content", "content", event.Content, "state", h.state)
if h.state == harmonyMessageState_Normal {
contentSb.WriteString(event.Content)
} else if h.state == harmonyMessageState_Thinking {
@@ -378,3 +367,97 @@ func (a *HarmonyToolCallAccumulator) Drain() (*string, string) {
func (a *HarmonyToolCallAccumulator) Content() string {
return a.acc.String()
}
// FunctionNameMap maps a user-specified function name to a valid function
// name for harmony (which look like TypeScript identifiers). This is needed to
// transform user-specified function names, which might contain characters that
// are not allowed in TypeScript identifiers
type FunctionNameMap struct {
userToHarmony map[string]string
harmonyToUser map[string]string
}
func NewFunctionNameMap() *FunctionNameMap {
return &FunctionNameMap{
userToHarmony: make(map[string]string),
harmonyToUser: make(map[string]string),
}
}
func (m *FunctionNameMap) ConvertAndAdd(userFunctionName string) string {
harmonyFunctionName := m.deriveName(userFunctionName)
m.userToHarmony[userFunctionName] = harmonyFunctionName
m.harmonyToUser[harmonyFunctionName] = userFunctionName
return harmonyFunctionName
}
// OriginalFromConverted looks up the reverse-mapping of a previously-converted
// user->harmony function name. To unmap reliably, the mapping must exist, as
// the conversion process is not reversible without the appropriate state
func (m *FunctionNameMap) OriginalFromConverted(harmonyFunctionName string) string {
if userFunctionName, ok := m.harmonyToUser[harmonyFunctionName]; ok {
return userFunctionName
}
slog.Warn("harmony parser: no reverse mapping found for function name", "harmonyFunctionName", harmonyFunctionName)
// fallback to the original function name if we can't find a mapping
return harmonyFunctionName
}
// convertToValidChars converts a user-specified function name to a valid
// TypeScript identifier.
//
// Limitations:
//
// - This doesn't restrict reserved TypeScript keywords.
// - We don't perform a real ID_Start/ID_Continue check, and instead use the more
// restrictive unicode.IsLetter/unicode.IsDigit check. Unclear what kind of
// identifiers these models were trained on, so in the end we might want to
// convert unicode-heavy identifiers to their closest ASCII equivalents.
func (m *FunctionNameMap) convertToValidChars(userFunctionName string) string {
mapper := func(r rune) rune {
// first, replace certain characters with underscores
if r == ' ' || r == '-' || r == '.' {
return '_'
}
if unicode.IsLetter(r) || unicode.IsDigit(r) || r == '_' || r == '$' {
return r
}
// finally, remove any other characters
return -1
}
candidate := strings.Map(mapper, userFunctionName)
// set a default name if we end up with nothing left
if candidate == "" {
return "unnamed"
}
// if the candidate starts with a number, prepend an underscore to make it a
// valid identifier
if unicode.IsDigit(rune(candidate[0])) {
candidate = "_" + candidate
}
return candidate
}
func (m *FunctionNameMap) deriveName(userFunctionName string) string {
originalCandidate := m.convertToValidChars(userFunctionName)
candidate := originalCandidate
// Check for dupes, and if so, add a number to the end.
// We start at 2 because if we have dupes and the first is never renamed, it
// makes sense for them to be named, say, `f`, `f_2`, `f_3`
count := 2
for {
if _, exists := m.harmonyToUser[candidate]; !exists {
break
}
candidate = fmt.Sprintf("%s_%d", originalCandidate, count)
count++
}
return candidate
}

View File

@@ -1,4 +1,4 @@
package server
package harmony
import (
"fmt"
@@ -467,3 +467,71 @@ func TestHarmonyParserStreaming(t *testing.T) {
})
}
}
// TestFunctionConvertToValidChars tests only FunctionNameMap.convert(), which doesn't
// handle any saving (and therefore no dupe handling)
func TestFunctionConvertToValidChars(t *testing.T) {
tests := []struct {
name string
in string
want string
}{
{name: "replace spaces with underscores", in: "get weather", want: "get_weather"},
{name: "replace hyphens with underscores", in: "get-weather", want: "get_weather"},
{name: "replace periods with underscores", in: "get.weather", want: "get_weather"},
{name: "disallow non-word characters", in: "get weather!", want: "get_weather"},
{name: "strip out invalid non-alphanumeric unicode characters", in: "a🫠bc", want: "abc"},
{name: "names that only contain invalid characters", in: "🫠", want: "unnamed"},
{name: "leading number", in: "123", want: "_123"},
{name: "$ allowed", in: "$", want: "$"},
// show that we allow weird unicode letter characters, though we might want
// to convert them to their closest ASCII equivalents in the future
{name: "allow weird unicode letter characters", in: "𝓸𝓵𝓵𝓪𝓶𝓪", want: "𝓸𝓵𝓵𝓪𝓶𝓪"},
// names that look like words but are invalid (i.e., not ID_Start/ID_Continue)
{name: "disallow non-word characters that look like words", in: "ⓞⓛⓛⓐⓜⓐ123", want: "_123"},
}
for i, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
parser := NewFunctionNameMap()
got := parser.convertToValidChars(tt.in)
if got != tt.want {
t.Errorf("case %d: got %q, want %q", i, got, tt.want)
}
})
}
}
func TestFunctionConvertAndAdd(t *testing.T) {
// make a fresh map for each test, but within a test use the same map so we can test for dupe handling
tests := []struct {
name string
in []string
want []string
}{
{name: "basic dupe handling", in: []string{"get weather", "get weather"}, want: []string{"get_weather", "get_weather_2"}},
{name: "dupes from different user-specified names", in: []string{"get weather", "get_weather", "get-weather"}, want: []string{"get_weather", "get_weather_2", "get_weather_3"}},
{name: "non dupes after dupes", in: []string{"get weather", "get_weather", "get-weather", "something-different"}, want: []string{"get_weather", "get_weather_2", "get_weather_3", "something_different"}},
{name: "multiple sets of dupes", in: []string{"a", "a", "b", "a", "a", "b", "a"}, want: []string{"a", "a_2", "b", "a_3", "a_4", "b_2", "a_5"}},
}
for i, tt := range tests {
parser := NewFunctionNameMap()
t.Run(tt.name, func(t *testing.T) {
for j, in := range tt.in {
got := parser.ConvertAndAdd(in)
want := tt.want[j]
if got != want {
t.Errorf("case %d: got %q, want %q", i, got, want)
}
// check that the maps are correct
if parser.userToHarmony[in] != want {
t.Errorf("case %d: userToHarmony[%q] = %q, want %q", i, in, parser.userToHarmony[in], want)
}
if parser.harmonyToUser[want] != in {
t.Errorf("case %d: harmonyToUser[%q] = %q, want %q", i, want, parser.harmonyToUser[want], in)
}
}
})
}
}

View File

@@ -2,10 +2,13 @@
This directory contains integration tests to exercise Ollama end-to-end to verify behavior
By default, these tests are disabled so `go test ./...` will exercise only unit tests. To run integration tests you must pass the integration tag. `go test -tags=integration ./...`
By default, these tests are disabled so `go test ./...` will exercise only unit tests. To run integration tests you must pass the integration tag. `go test -tags=integration ./...` Some tests require additional tags to enable to allow scoped testing to keep the duration reasonable. For example, testing a broad set of models requires `-tags=integration,models` and a longer timeout (~60m or more depending on the speed of your GPU.). To view the current set of tag combinations use `find integration -type f | xargs grep "go:build"`
The integration tests have 2 modes of operating.
1. By default, they will start the server on a random port, run the tests, and then shutdown the server.
2. If `OLLAMA_TEST_EXISTING` is set to a non-empty string, the tests will run against an existing running server, which can be remote
2. If `OLLAMA_TEST_EXISTING` is set to a non-empty string, the tests will run against an existing running server, which can be remote based on your `OLLAMA_HOST` environment variable
> [!IMPORTANT]
> Before running the tests locally without the "test existing" setting, compile ollama from the top of the source tree `go build .` in addition to GPU support with cmake if applicable on your platform. The integration tests expect to find an ollama binary at the top of the tree.

View File

@@ -390,7 +390,7 @@ func TestAPIEmbeddings(t *testing.T) {
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
req := api.EmbeddingRequest{
Model: "orca-mini",
Model: libraryEmbedModels[0],
Prompt: "why is the sky blue?",
Options: map[string]interface{}{
"temperature": 0,
@@ -410,3 +410,99 @@ func TestAPIEmbeddings(t *testing.T) {
t.Errorf("zero length embedding response")
}
}
func TestAPIToolCalling(t *testing.T) {
initialTimeout := 60 * time.Second
streamTimeout := 30 * time.Second
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
modelName := "qwen3:0.6b"
if err := PullIfMissing(ctx, client, modelName); err != nil {
t.Fatalf("pull failed %s", err)
}
tools := []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get the current weather in a given location",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"location"},
Properties: map[string]api.ToolProperty{
"location": {
Type: api.PropertyType{"string"},
Description: "The city and state, e.g. San Francisco, CA",
},
},
},
},
},
}
req := api.ChatRequest{
Model: modelName,
Messages: []api.Message{
{
Role: "user",
Content: "Call get_weather with location set to San Francisco.",
},
},
Tools: tools,
Options: map[string]any{
"temperature": 0,
},
}
stallTimer := time.NewTimer(initialTimeout)
var gotToolCall bool
var lastToolCall api.ToolCall
fn := func(response api.ChatResponse) error {
if len(response.Message.ToolCalls) > 0 {
gotToolCall = true
lastToolCall = response.Message.ToolCalls[len(response.Message.ToolCalls)-1]
}
if !stallTimer.Reset(streamTimeout) {
return fmt.Errorf("stall was detected while streaming response, aborting")
}
return nil
}
stream := true
req.Stream = &stream
done := make(chan int)
var genErr error
go func() {
genErr = client.Chat(ctx, &req, fn)
done <- 0
}()
select {
case <-stallTimer.C:
t.Errorf("tool-calling chat never started. Timed out after: %s", initialTimeout.String())
case <-done:
if genErr != nil {
t.Fatalf("chat failed: %v", genErr)
}
if !gotToolCall {
t.Fatalf("expected at least one tool call, got none")
}
if lastToolCall.Function.Name != "get_weather" {
t.Errorf("unexpected tool called: got %q want %q", lastToolCall.Function.Name, "get_weather")
}
if _, ok := lastToolCall.Function.Arguments["location"]; !ok {
t.Errorf("expected tool arguments to include 'location', got: %s", lastToolCall.Function.Arguments.String())
}
case <-ctx.Done():
t.Error("outer test context done while waiting for tool-calling chat")
}
}

View File

@@ -11,7 +11,6 @@ import (
"time"
"github.com/ollama/ollama/api"
"github.com/stretchr/testify/require"
)
func TestBlueSky(t *testing.T) {
@@ -37,8 +36,8 @@ func TestUnicode(t *testing.T) {
// Set up the test data
req := api.GenerateRequest{
// DeepSeek has a Unicode tokenizer regex, making it a unicode torture test
Model: "deepseek-coder-v2:16b-lite-instruct-q2_K",
Prompt: "天空为什么是蓝色的?",
Model: "deepseek-coder-v2:16b-lite-instruct-q2_K", // TODO is there an ollama-engine model we can switch to and keep the coverage?
Prompt: "天空为什么是蓝色的?", // Why is the sky blue?
Stream: &stream,
Options: map[string]any{
"temperature": 0,
@@ -50,8 +49,20 @@ func TestUnicode(t *testing.T) {
}
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
require.NoError(t, PullIfMissing(ctx, client, req.Model))
DoGenerate(ctx, t, client, req, []string{"散射", "频率"}, 120*time.Second, 120*time.Second)
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatal(err)
}
slog.Info("loading", "model", req.Model)
err := client.Generate(ctx, &api.GenerateRequest{Model: req.Model}, func(response api.GenerateResponse) error { return nil })
if err != nil {
t.Fatalf("failed to load model %s: %s", req.Model, err)
}
skipIfNotGPULoaded(ctx, t, client, req.Model, 100)
DoGenerate(ctx, t, client, req, []string{
"散射", // scattering
"频率", // frequency
}, 120*time.Second, 120*time.Second)
}
func TestExtendedUnicodeOutput(t *testing.T) {
@@ -69,7 +80,9 @@ func TestExtendedUnicodeOutput(t *testing.T) {
}
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
require.NoError(t, PullIfMissing(ctx, client, req.Model))
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatal(err)
}
DoGenerate(ctx, t, client, req, []string{"😀", "😊", "😁", "😂", "😄", "😃"}, 120*time.Second, 120*time.Second)
}
@@ -84,7 +97,9 @@ func TestUnicodeModelDir(t *testing.T) {
}
modelDir, err := os.MkdirTemp("", "ollama_埃")
require.NoError(t, err)
if err != nil {
t.Fatal(err)
}
defer os.RemoveAll(modelDir)
slog.Info("unicode", "OLLAMA_MODELS", modelDir)

View File

@@ -14,8 +14,6 @@ import (
"testing"
"time"
"github.com/stretchr/testify/require"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
@@ -79,21 +77,21 @@ func TestMultiModelStress(t *testing.T) {
t.Fatal(err)
}
// All models compatible with ollama-engine
smallModels := []string{
"llama3.2:1b",
"qwen3:0.6b",
"gemma:2b",
"deepseek-r1:1.5b",
"starcoder2:3b",
"gemma2:2b",
"deepseek-r1:1.5b", // qwen2 arch
"gemma3:270m",
}
mediumModels := []string{
"qwen3:8b",
"llama2",
"deepseek-r1:7b",
"mistral",
"dolphin-mistral",
"gemma:7b",
"codellama:7b",
"llama3.2:3b", // ~3.4G
"qwen3:8b", // ~6.6G
"gpt-oss:20b", // ~15G
"deepseek-r1:7b", // ~5.6G
"gemma3:4b", // ~5.8G
"gemma2:9b", // ~8.1G
}
var chosenModels []string
@@ -114,13 +112,16 @@ func TestMultiModelStress(t *testing.T) {
// Make sure all the models are pulled before we get started
for _, model := range chosenModels {
require.NoError(t, PullIfMissing(ctx, client, model))
if err := PullIfMissing(ctx, client, model); err != nil {
t.Fatal(err)
}
}
// Determine how many models we can load in parallel before we exceed VRAM
// The intent is to go 1 over what can fit so we force the scheduler to thrash
targetLoadCount := 0
slog.Info("Loading models to find how many can fit in VRAM before overflowing")
chooseModels:
for i, model := range chosenModels {
req := &api.GenerateRequest{Model: model}
slog.Info("loading", "model", model)
@@ -142,6 +143,13 @@ func TestMultiModelStress(t *testing.T) {
slog.Info("found model load capacity", "target", targetLoadCount, "current", loaded, "chosen", chosenModels[:targetLoadCount])
break
}
// Effectively limit model count to 2 on CPU only systems to avoid thrashing and timeouts
for _, m := range models.Models {
if m.SizeVRAM == 0 {
slog.Info("model running on CPU", "name", m.Name, "target", targetLoadCount, "chosen", chosenModels[:targetLoadCount])
break chooseModels
}
}
}
}
if targetLoadCount == len(chosenModels) {

View File

@@ -22,7 +22,7 @@ func TestLongInputContext(t *testing.T) {
defer cancel()
// Set up the test data
req := api.GenerateRequest{
Model: "llama2",
Model: smol,
Prompt: "Oh, dont speak to me of Austria. Perhaps I dont understand things, but Austria never has wished, and does not wish, for war. She is betraying us! Russia alone must save Europe. Our gracious sovereign recognizes his high vocation and will be true to it. That is the one thing I have faith in! Our good and wonderful sovereign has to perform the noblest role on earth, and he is so virtuous and noble that God will not forsake him. He will fulfill his vocation and crush the hydra of revolution, which has become more terrible than ever in the person of this murderer and villain! We alone must avenge the blood of the just one.... Whom, I ask you, can we rely on?... England with her commercial spirit will not and cannot understand the Emperor Alexanders loftiness of soul. She has refused to evacuate Malta. She wanted to find, and still seeks, some secret motive in our actions. What answer did Novosíltsev get? None. The English have not understood and cannot understand the self-abnegation of our Emperor who wants nothing for himself, but only desires the good of mankind. And what have they promised? Nothing! And what little they have promised they will not perform! Prussia has always declared that Buonaparte is invincible, and that all Europe is powerless before him.... And I dont believe a word that Hardenburg says, or Haugwitz either. This famous Prussian neutrality is just a trap. I have faith only in God and the lofty destiny of our adored monarch. He will save Europe! What country is this referring to?",
Stream: &stream,
Options: map[string]any{
@@ -36,7 +36,7 @@ func TestLongInputContext(t *testing.T) {
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatalf("PullIfMissing failed: %v", err)
}
DoGenerate(ctx, t, client, req, []string{"russia", "germany", "france", "england", "austria", "prussia"}, 120*time.Second, 10*time.Second)
DoGenerate(ctx, t, client, req, []string{"russia", "germany", "france", "england", "austria", "prussia", "europe", "individuals", "coalition", "conflict"}, 120*time.Second, 10*time.Second)
}
func TestContextExhaustion(t *testing.T) {
@@ -49,8 +49,8 @@ func TestContextExhaustion(t *testing.T) {
defer cancel()
// Set up the test data
req := api.GenerateRequest{
Model: "llama2",
Prompt: "Write me a story with a ton of emojis?",
Model: smol,
Prompt: "Write me a story in english with a lot of emojis",
Stream: &stream,
Options: map[string]any{
"temperature": 0,
@@ -63,10 +63,10 @@ func TestContextExhaustion(t *testing.T) {
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatalf("PullIfMissing failed: %v", err)
}
DoGenerate(ctx, t, client, req, []string{"once", "upon", "lived"}, 120*time.Second, 10*time.Second)
DoGenerate(ctx, t, client, req, []string{"once", "upon", "lived", "sunny", "cloudy", "clear", "water"}, 120*time.Second, 10*time.Second)
}
// Send multiple requests with prior context and ensure the response is coherant and expected
// Send multiple generate requests with prior context and ensure the response is coherant and expected
func TestGenerateWithHistory(t *testing.T) {
modelOverride := ollamaEngineChatModels[0] // Most recent ollama engine model
req, resp := GenerateRequests()
@@ -111,5 +111,56 @@ func TestGenerateWithHistory(t *testing.T) {
}(i)
}
wg.Wait()
}
// Send multiple chat requests with prior context and ensure the response is coherant and expected
func TestChatWithHistory(t *testing.T) {
modelOverride := ollamaEngineChatModels[0] // Most recent ollama engine model
req, resp := ChatRequests()
numParallel := 2
iterLimit := 2
softTimeout, hardTimeout := getTimeouts(t)
ctx, cancel := context.WithTimeout(context.Background(), hardTimeout)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
// Get the server running (if applicable) warm the model up with a single initial empty request
slog.Info("loading", "model", modelOverride)
err := client.Generate(ctx,
&api.GenerateRequest{Model: modelOverride, KeepAlive: &api.Duration{Duration: 10 * time.Second}},
func(response api.GenerateResponse) error { return nil },
)
if err != nil {
t.Fatalf("failed to load model %s: %s", modelOverride, err)
}
var wg sync.WaitGroup
wg.Add(numParallel)
for i := range numParallel {
go func(i int) {
defer wg.Done()
k := i % len(req)
req[k].Model = modelOverride
for j := 0; j < iterLimit; j++ {
if time.Now().Sub(started) > softTimeout {
slog.Info("exceeded soft timeout, winding down test")
return
}
slog.Info("Starting", "thread", i, "iter", j)
// On slower GPUs it can take a while to process the concurrent requests
// so we allow a much longer initial timeout
assistant := DoChat(ctx, t, client, req[k], resp[k], 120*time.Second, 20*time.Second)
if assistant == nil {
t.Fatalf("didn't get an assistant response for context")
}
req[k].Messages = append(req[k].Messages,
*assistant,
api.Message{Role: "user", Content: "tell me more!"},
)
}
}(i)
}
wg.Wait()
}

View File

@@ -38,8 +38,9 @@ func TestAllMiniLMEmbeddings(t *testing.T) {
defer cleanup()
req := api.EmbeddingRequest{
Model: "all-minilm",
Prompt: "why is the sky blue?",
Model: "all-minilm",
Prompt: "why is the sky blue?",
KeepAlive: &api.Duration{Duration: 10 * time.Second},
}
res, err := embeddingTestHelper(ctx, client, t, req)

View File

@@ -9,7 +9,6 @@ import (
"time"
"github.com/ollama/ollama/api"
"github.com/stretchr/testify/require"
)
func TestVisionModels(t *testing.T) {
@@ -32,7 +31,9 @@ func TestVisionModels(t *testing.T) {
for _, v := range testCases {
t.Run(v.model, func(t *testing.T) {
image, err := base64.StdEncoding.DecodeString(imageEncoding)
require.NoError(t, err)
if err != nil {
t.Fatal(err)
}
req := api.GenerateRequest{
Model: v.model,
Prompt: "what does the text in this image say?",
@@ -52,7 +53,9 @@ func TestVisionModels(t *testing.T) {
// Note: sometimes it returns "the ollamas" sometimes "the ollams"
resp := "the ollam"
defer cleanup()
require.NoError(t, PullIfMissing(ctx, client, req.Model))
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatal(err)
}
// llava models on CPU can be quite slow to start
DoGenerate(ctx, t, client, req, []string{resp}, 240*time.Second, 30*time.Second)
})
@@ -62,7 +65,9 @@ func TestVisionModels(t *testing.T) {
func TestIntegrationSplitBatch(t *testing.T) {
skipUnderMinVRAM(t, 6)
image, err := base64.StdEncoding.DecodeString(imageEncoding)
require.NoError(t, err)
if err != nil {
t.Fatal(err)
}
req := api.GenerateRequest{
Model: "gemma3:4b",
// Fill up a chunk of the batch so the image will partially spill over into the next one
@@ -84,7 +89,9 @@ func TestIntegrationSplitBatch(t *testing.T) {
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
require.NoError(t, PullIfMissing(ctx, client, req.Model))
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatal(err)
}
// llava models on CPU can be quite slow to start,
DoGenerate(ctx, t, client, req, []string{resp}, 120*time.Second, 30*time.Second)
}

View File

@@ -1,47 +0,0 @@
//go:build integration
package integration
import (
"context"
"testing"
"time"
"github.com/ollama/ollama/api"
)
// TODO - this would ideally be in the llm package, but that would require some refactoring of interfaces in the server
// package to avoid circular dependencies
var (
stream = false
req = [2]api.GenerateRequest{
{
Model: smol,
Prompt: "why is the ocean blue?",
Stream: &stream,
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
}, {
Model: smol,
Prompt: "what is the origin of the us thanksgiving holiday?",
Stream: &stream,
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
},
}
resp = [2][]string{
{"sunlight", "scattering", "interact"},
{"england", "english", "massachusetts", "pilgrims"},
}
)
func TestIntegrationSimple(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), time.Second*120)
defer cancel()
GenerateTestHelper(ctx, t, req[0], resp[0])
}

View File

@@ -13,12 +13,12 @@ import (
"testing"
"time"
"github.com/stretchr/testify/require"
"github.com/ollama/ollama/api"
)
func TestMaxQueue(t *testing.T) {
t.Skip("this test needs to be re-evaluated to use a proper embedding model")
if os.Getenv("OLLAMA_TEST_EXISTING") != "" {
t.Skip("Max Queue test requires spawning a local server so we can adjust the queue size")
return
@@ -45,7 +45,9 @@ func TestMaxQueue(t *testing.T) {
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
require.NoError(t, PullIfMissing(ctx, client, req.Model))
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatal(err)
}
// Context for the worker threads so we can shut them down
// embedCtx, embedCancel := context.WithCancel(ctx)
@@ -89,7 +91,9 @@ func TestMaxQueue(t *testing.T) {
switch {
case genErr == nil:
successCount++
require.Greater(t, len(resp.Embedding), 5) // somewhat arbitrary, but sufficient to be reasonable
if len(resp.Embedding) < 5 { // somewhat arbitrary, but sufficient to be reasonable
t.Fatalf("embeddings shorter than expected: %d", len(resp.Embedding))
}
case errors.Is(genErr, context.Canceled):
canceledCount++
case strings.Contains(genErr.Error(), "busy"):
@@ -97,7 +101,9 @@ func TestMaxQueue(t *testing.T) {
case strings.Contains(genErr.Error(), "connection reset by peer"):
resetByPeerCount++
default:
require.NoError(t, genErr, "%d request failed", i)
if genErr != nil {
t.Fatalf("%d request failed", i)
}
}
slog.Info("embed finished", "id", i)
@@ -108,8 +114,13 @@ func TestMaxQueue(t *testing.T) {
embedwg.Wait()
slog.Info("embeds completed", "success", successCount, "busy", busyCount, "reset", resetByPeerCount, "canceled", canceledCount)
require.Equal(t, resetByPeerCount, 0, "Connections reset by peer, have you updated your fd and socket limits?")
require.True(t, busyCount > 0, "no requests hit busy error but some should have")
require.True(t, canceledCount == 0, "no requests should have been canceled due to timeout")
if resetByPeerCount != 0 {
t.Fatalf("Connections reset by peer, have you updated your fd and socket limits? %d", resetByPeerCount)
}
if busyCount == 0 {
t.Fatalf("no requests hit busy error but some should have")
}
if canceledCount > 0 {
t.Fatalf("no requests should have been canceled due to timeout %d", canceledCount)
}
}

View File

@@ -9,6 +9,7 @@ import (
"fmt"
"io"
"log/slog"
"math"
"math/rand"
"net"
"net/http"
@@ -25,11 +26,11 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/app/lifecycle"
"github.com/ollama/ollama/format"
"github.com/stretchr/testify/require"
)
var (
smol = "llama3.2:1b"
smol = "llama3.2:1b"
stream = false
)
var (
@@ -435,7 +436,9 @@ func InitServerConnection(ctx context.Context, t *testing.T) (*api.Client, strin
}
lifecycle.ServerLogFile = fp.Name()
fp.Close()
require.NoError(t, startServer(t, ctx, testEndpoint))
if err := startServer(t, ctx, testEndpoint); err != nil {
t.Fatal(err)
}
}
return client, testEndpoint, func() {
@@ -468,7 +471,9 @@ func InitServerConnection(ctx context.Context, t *testing.T) (*api.Client, strin
func GenerateTestHelper(ctx context.Context, t *testing.T, genReq api.GenerateRequest, anyResp []string) {
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
require.NoError(t, PullIfMissing(ctx, client, genReq.Model))
if err := PullIfMissing(ctx, client, genReq.Model); err != nil {
t.Fatal(err)
}
DoGenerate(ctx, t, client, genReq, anyResp, 30*time.Second, 10*time.Second)
}
@@ -497,6 +502,22 @@ func DoGenerate(ctx context.Context, t *testing.T, client *api.Client, genReq ap
done <- 0
}()
var response string
verify := func() {
// Verify the response contains the expected data
response = buf.String()
atLeastOne := false
for _, resp := range anyResp {
if strings.Contains(strings.ToLower(response), resp) {
atLeastOne = true
break
}
}
if !atLeastOne {
t.Fatalf("%s: none of %v found in %s", genReq.Model, anyResp, response)
}
}
select {
case <-stallTimer.C:
if buf.Len() == 0 {
@@ -509,20 +530,17 @@ func DoGenerate(ctx context.Context, t *testing.T, client *api.Client, genReq ap
slog.Warn("model is too large for the target test system", "model", genReq.Model, "error", genErr)
return context
}
require.NoError(t, genErr, "failed with %s request prompt %s ", genReq.Model, genReq.Prompt)
// Verify the response contains the expected data
response := buf.String()
atLeastOne := false
for _, resp := range anyResp {
if strings.Contains(strings.ToLower(response), resp) {
atLeastOne = true
break
}
if genErr != nil {
t.Fatalf("%s failed with %s request prompt %s", genErr, genReq.Model, genReq.Prompt)
}
require.True(t, atLeastOne, "%s: none of %v found in %s", genReq.Model, anyResp, response)
verify()
slog.Info("test pass", "model", genReq.Model, "prompt", genReq.Prompt, "contains", anyResp, "response", response)
case <-ctx.Done():
t.Error("outer test context done while waiting for generate")
// On slow systems, we might timeout before some models finish rambling, so check what we have so far to see
// if it's considered a pass - the stallTimer will detect hangs, but we want to consider slow systems a pass
// if they are still generating valid responses
slog.Warn("outer test context done while waiting for generate")
verify()
}
return context
}
@@ -543,7 +561,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
KeepAlive: &api.Duration{Duration: 10 * time.Second},
}, {
Model: smol,
Prompt: "what is the origin of the US thanksgiving holiday? Be brief but factual in your reply",
Prompt: "how do rainbows form? Be brief but factual in your reply",
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
}, {
@@ -561,17 +579,104 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
[][]string{
{"sunlight", "scattering", "interact", "color", "surface", "depth", "red", "orange", "yellow", "absorbs", "wavelength"},
{"soil", "organic", "earth", "black", "tan", "chemical", "processes", "pigments", "particles", "iron oxide", "rust", "air", "water", "mixture", "mixing"},
{"england", "english", "massachusetts", "pilgrims", "colonists", "independence", "british", "feast", "family", "gatherings", "traditions", "turkey", "colonial", "period", "harvest", "agricultural", "european settlers", "american revolution", "civil war", "16th century", "17th century", "native american", "united states"},
{"water", "droplet", "refracted", "reflect", "color", "spectrum"},
{"fourth", "july", "declaration", "independence"},
{"nitrogen", "oxygen", "carbon", "dioxide"},
{"nitrogen", "oxygen", "carbon", "dioxide", "water", "vapor"},
}
}
func DoChat(ctx context.Context, t *testing.T, client *api.Client, req api.ChatRequest, anyResp []string, initialTimeout, streamTimeout time.Duration) *api.Message {
stallTimer := time.NewTimer(initialTimeout)
var buf bytes.Buffer
role := "assistant"
fn := func(response api.ChatResponse) error {
// fmt.Print(".")
role = response.Message.Role
buf.Write([]byte(response.Message.Content))
if !stallTimer.Reset(streamTimeout) {
return errors.New("stall was detected while streaming response, aborting")
}
return nil
}
stream := true
req.Stream = &stream
done := make(chan int)
var genErr error
go func() {
genErr = client.Chat(ctx, &req, fn)
done <- 0
}()
var response string
verify := func() {
// Verify the response contains the expected data
response = buf.String()
atLeastOne := false
for _, resp := range anyResp {
if strings.Contains(strings.ToLower(response), resp) {
atLeastOne = true
break
}
}
if !atLeastOne {
t.Fatalf("%s: none of %v found in \"%s\" -- request was:%v", req.Model, anyResp, response, req.Messages)
}
}
select {
case <-stallTimer.C:
if buf.Len() == 0 {
t.Errorf("generate never started. Timed out after :%s", initialTimeout.String())
} else {
t.Errorf("generate stalled. Response so far:%s", buf.String())
}
case <-done:
if genErr != nil && strings.Contains(genErr.Error(), "model requires more system memory") {
slog.Warn("model is too large for the target test system", "model", req.Model, "error", genErr)
return nil
}
if genErr != nil {
t.Fatalf("%s failed with %s request prompt %v", genErr, req.Model, req.Messages)
}
verify()
slog.Info("test pass", "model", req.Model, "messages", req.Messages, "contains", anyResp, "response", response)
case <-ctx.Done():
// On slow systems, we might timeout before some models finish rambling, so check what we have so far to see
// if it's considered a pass - the stallTimer will detect hangs, but we want to consider slow systems a pass
// if they are still generating valid responses
slog.Warn("outer test context done while waiting for chat")
verify()
}
return &api.Message{Role: role, Content: buf.String()}
}
func ChatRequests() ([]api.ChatRequest, [][]string) {
genReqs, results := GenerateRequests()
reqs := make([]api.ChatRequest, len(genReqs))
// think := api.ThinkValue{Value: "low"}
for i := range reqs {
reqs[i].Model = genReqs[i].Model
reqs[i].Stream = genReqs[i].Stream
reqs[i].KeepAlive = genReqs[i].KeepAlive
// reqs[i].Think = &think
reqs[i].Messages = []api.Message{
{
Role: "user",
Content: genReqs[i].Prompt,
},
}
}
return reqs, results
}
func skipUnderMinVRAM(t *testing.T, gb uint64) {
// TODO use info API in the future
if s := os.Getenv("OLLAMA_MAX_VRAM"); s != "" {
maxVram, err := strconv.ParseUint(s, 10, 64)
require.NoError(t, err)
if err != nil {
t.Fatal(err)
}
// Don't hammer on small VRAM cards...
if maxVram < gb*format.GibiByte {
t.Skip("skipping with small VRAM to avoid timeouts")
@@ -579,6 +684,39 @@ func skipUnderMinVRAM(t *testing.T, gb uint64) {
}
}
// Skip if the target model isn't X% GPU loaded to avoid excessive runtime
func skipIfNotGPULoaded(ctx context.Context, t *testing.T, client *api.Client, model string, minPercent int) {
models, err := client.ListRunning(ctx)
if err != nil {
t.Fatalf("failed to list running models: %s", err)
}
loaded := []string{}
for _, m := range models.Models {
loaded = append(loaded, m.Name)
if m.Name != model {
continue
}
gpuPercent := 0
switch {
case m.SizeVRAM == 0:
gpuPercent = 0
case m.SizeVRAM == m.Size:
gpuPercent = 100
case m.SizeVRAM > m.Size || m.Size == 0:
t.Logf("unexpected size detected: %d", m.SizeVRAM)
default:
sizeCPU := m.Size - m.SizeVRAM
cpuPercent := math.Round(float64(sizeCPU) / float64(m.Size) * 110)
gpuPercent = int(100 - cpuPercent)
}
if gpuPercent < minPercent {
t.Skip(fmt.Sprintf("test requires minimum %d%% GPU load, but model %s only has %d%%", minPercent, model, gpuPercent))
}
return
}
t.Skip(fmt.Sprintf("model %s not loaded - actually loaded: %v", model, loaded))
}
func getTimeouts(t *testing.T) (soft time.Duration, hard time.Duration) {
deadline, hasDeadline := t.Deadline()
if !hasDeadline {

View File

@@ -378,9 +378,7 @@ func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
maskTensor := ctx.Input().FromFloatSlice(mask, length, batchSize)
if c.config.MaskDType != ml.DTypeF32 {
out := ctx.Input().Empty(c.config.MaskDType, maskTensor.Shape()...)
ctx.Forward(maskTensor.Copy(ctx, out))
maskTensor = out
maskTensor = maskTensor.Cast(ctx, c.config.MaskDType)
}
return maskTensor

View File

@@ -962,8 +962,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
const int64_t n_vocab = vocab.n_tokens();
const int64_t n_embd = hparams.n_embd;
// when computing embeddings, all tokens are output
const bool output_all = cparams.embeddings;
const bool output_all = false;
if (!balloc->init(batch_inp, vocab, memory.get(), n_embd, cparams.kv_unified ? LLAMA_MAX_SEQ : cparams.n_seq_max, output_all)) {
LLAMA_LOG_ERROR("%s: failed to initialize batch\n", __func__);

View File

@@ -515,33 +515,34 @@ func (c *MtmdContext) NewEmbed(llamaContext *Context, data []byte) ([][]float32,
}
nChunks := C.mtmd_input_chunks_size(ic)
numEmbed := llamaContext.Model().NEmbd()
lastChunkSize := 0
embed := make([][]float32, 0)
for i := range int(nChunks) {
chunk := C.mtmd_input_chunks_get(ic, C.size_t(i))
numTokens := int(C.mtmd_input_chunk_get_n_tokens(chunk))
lastChunkSize = numTokens
slog.Debug("chunk tokens", "index", i, "numTokens", numTokens)
// Encode the chunk
if C.int32_t(0) != C.mtmd_encode_chunk(c.c, chunk) {
return nil, errors.New("unable to encode mtmd image chunk")
}
}
// Get the embeddings
embed := make([][]float32, lastChunkSize)
embd := C.mtmd_get_output_embd(c.c)
if nil == embd {
return nil, errors.New("failed to get image embedding")
}
// Get the embeddings for this chunk
chunkEmbed := make([][]float32, numTokens)
chunkEmbd := C.mtmd_get_output_embd(c.c)
if nil == chunkEmbd {
continue
}
// Extend the embedding array for each token
s := unsafe.Slice((*float32)(embd), numEmbed*lastChunkSize)
rows := make([]float32, len(s))
copy(rows, s)
for i := range lastChunkSize {
embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
// Extend the embedding array for each token
s := unsafe.Slice((*float32)(chunkEmbd), numTokens*numEmbed)
rows := make([]float32, len(s))
copy(rows, s)
for i := range numTokens {
chunkEmbed[i] = rows[i*numEmbed : (i+1)*numEmbed]
}
embed = append(embed, chunkEmbed...)
}
slog.Debug("image embeddings", "totalEmbeddings", len(embed))
return embed, nil
}

View File

@@ -13,7 +13,7 @@ checks.
1 file changed, 18 insertions(+)
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
index 57eae461..9db0c8b5 100644
index 57eae461..c7f9dc3a 100644
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
@@ -2671,12 +2671,24 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud

View File

@@ -0,0 +1,23 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Michael Yang <git@mxy.ng>
Date: Mon, 18 Aug 2025 16:58:39 -0700
Subject: [PATCH] decode: disable output_all
---
src/llama-context.cpp | 3 +--
1 file changed, 1 insertion(+), 2 deletions(-)
diff --git a/src/llama-context.cpp b/src/llama-context.cpp
index 26a5cf9c..6ece5263 100644
--- a/src/llama-context.cpp
+++ b/src/llama-context.cpp
@@ -962,8 +962,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
const int64_t n_vocab = vocab.n_tokens();
const int64_t n_embd = hparams.n_embd;
- // when computing embeddings, all tokens are output
- const bool output_all = cparams.embeddings;
+ const bool output_all = false;
if (!balloc->init(batch_inp, vocab, memory.get(), n_embd, cparams.kv_unified ? LLAMA_MAX_SEQ : cparams.n_seq_max, output_all)) {
LLAMA_LOG_ERROR("%s: failed to initialize batch\n", __func__);

View File

@@ -0,0 +1,130 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Jesse Gross <jesse@ollama.com>
Date: Wed, 27 Aug 2025 14:39:48 -0700
Subject: [PATCH] ggml: Enable resetting backend devices
Touching a CUDA device causes the allocation of a primary context
with CUDA data structures (~300 MB of VRAM). If a device is
unused then it can be reset to free these data structures.
---
ggml/include/ggml-backend.h | 1 +
ggml/src/ggml-backend-impl.h | 4 ++++
ggml/src/ggml-backend.cpp | 8 ++++++++
ggml/src/ggml-cuda/ggml-cuda.cu | 17 +++++++++++++++--
ggml/src/ggml-cuda/vendors/hip.h | 1 +
5 files changed, 29 insertions(+), 2 deletions(-)
diff --git a/ggml/include/ggml-backend.h b/ggml/include/ggml-backend.h
index b602a7c78..fda5ceb24 100644
--- a/ggml/include/ggml-backend.h
+++ b/ggml/include/ggml-backend.h
@@ -167,6 +167,7 @@ extern "C" {
GGML_API void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_dev_props * props);
GGML_API ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device);
GGML_API ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params);
+ GGML_API void ggml_backend_dev_reset(ggml_backend_dev_t device);
GGML_API ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device);
GGML_API ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device);
GGML_API ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size);
diff --git a/ggml/src/ggml-backend-impl.h b/ggml/src/ggml-backend-impl.h
index 81749a5a3..6f10c353b 100644
--- a/ggml/src/ggml-backend-impl.h
+++ b/ggml/src/ggml-backend-impl.h
@@ -178,6 +178,10 @@ extern "C" {
ggml_backend_event_t (*event_new) (ggml_backend_dev_t dev);
void (*event_free) (ggml_backend_dev_t dev, ggml_backend_event_t event);
void (*event_synchronize) (ggml_backend_dev_t dev, ggml_backend_event_t event);
+
+ // (optional) reset device, clearing existing allocations and context
+ // the caller must ensure that there are no outstanding buffers, as these will become invalid
+ void (*reset)(ggml_backend_dev_t dev);
};
struct ggml_backend_device {
diff --git a/ggml/src/ggml-backend.cpp b/ggml/src/ggml-backend.cpp
index 05a842ed5..6556943b0 100644
--- a/ggml/src/ggml-backend.cpp
+++ b/ggml/src/ggml-backend.cpp
@@ -477,6 +477,14 @@ ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * par
return device->iface.init_backend(device, params);
}
+void ggml_backend_dev_reset(ggml_backend_dev_t device) {
+ if (device->iface.reset == NULL) {
+ return;
+ }
+
+ device->iface.reset(device);
+}
+
ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device) {
return device->iface.get_buffer_type(device);
}
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
index c7f9dc3a5..e43fde523 100644
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
@@ -103,6 +103,11 @@ int ggml_cuda_get_device() {
return id;
}
+void ggml_cuda_reset_device(int device) {
+ ggml_cuda_set_device(device);
+ CUDA_CHECK(cudaDeviceReset());
+}
+
static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device) {
ggml_cuda_set_device(device);
cudaError_t err;
@@ -3243,7 +3248,10 @@ static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_back
props->description = ggml_backend_cuda_device_get_description(dev);
props->id = ggml_backend_cuda_device_get_id(dev);
props->type = ggml_backend_cuda_device_get_type(dev);
- ggml_backend_cuda_device_get_memory(dev, &props->memory_free, &props->memory_total);
+
+ // Memory reporting is disabled to avoid allocation of a CUDA primary context (~300 MB per device).
+ // If you need the memory data, call ggml_backend_dev_memory() explicitly.
+ props->memory_total = props->memory_free = 0;
bool host_buffer = getenv("GGML_CUDA_NO_PINNED") == nullptr;
#ifdef GGML_CUDA_NO_PEER_COPY
@@ -3700,6 +3708,11 @@ static void ggml_backend_cuda_device_event_synchronize(ggml_backend_dev_t dev, g
CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context));
}
+static void ggml_backend_cuda_device_reset(ggml_backend_dev_t dev) {
+ ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
+ ggml_cuda_reset_device(ctx->device);
+}
+
static const ggml_backend_device_i ggml_backend_cuda_device_interface = {
/* .get_name = */ ggml_backend_cuda_device_get_name,
/* .get_description = */ ggml_backend_cuda_device_get_description,
@@ -3716,6 +3729,7 @@ static const ggml_backend_device_i ggml_backend_cuda_device_interface = {
/* .event_new = */ ggml_backend_cuda_device_event_new,
/* .event_free = */ ggml_backend_cuda_device_event_free,
/* .event_synchronize = */ ggml_backend_cuda_device_event_synchronize,
+ /* .reset = */ ggml_backend_cuda_device_reset,
};
// backend reg
@@ -3835,7 +3849,6 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
dev_ctx->device = i;
dev_ctx->name = GGML_CUDA_NAME + std::to_string(i);
- ggml_cuda_set_device(i);
cudaDeviceProp prop;
CUDA_CHECK(cudaGetDeviceProperties(&prop, i));
dev_ctx->description = prop.name;
diff --git a/ggml/src/ggml-cuda/vendors/hip.h b/ggml/src/ggml-cuda/vendors/hip.h
index c31f31923..cf22e60d2 100644
--- a/ggml/src/ggml-cuda/vendors/hip.h
+++ b/ggml/src/ggml-cuda/vendors/hip.h
@@ -40,6 +40,7 @@
#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
#define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
#define cudaDeviceProp hipDeviceProp_t
+#define cudaDeviceReset hipDeviceReset
#define cudaDeviceSynchronize hipDeviceSynchronize
#define cudaError_t hipError_t
#define cudaErrorPeerAccessAlreadyEnabled hipErrorPeerAccessAlreadyEnabled

View File

@@ -0,0 +1,28 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Daniel Hiltgen <daniel@ollama.com>
Date: Fri, 29 Aug 2025 16:53:08 -0700
Subject: [PATCH] harden uncaught exception registration
---
ggml/src/ggml.cpp | 8 ++++++--
1 file changed, 6 insertions(+), 2 deletions(-)
diff --git a/ggml/src/ggml.cpp b/ggml/src/ggml.cpp
index 0d388d45..f5bcb446 100644
--- a/ggml/src/ggml.cpp
+++ b/ggml/src/ggml.cpp
@@ -19,8 +19,12 @@ static bool ggml_uncaught_exception_init = []{
return false;
}
const auto prev{std::get_terminate()};
- GGML_ASSERT(prev != ggml_uncaught_exception);
- previous_terminate_handler = prev;
+ // GGML_ASSERT(prev != ggml_uncaught_exception);
+ if (prev != ggml_uncaught_exception) {
+ previous_terminate_handler = prev;
+ } else {
+ GGML_LOG_WARN("%s double registration of ggml_uncaught_exception\n", __func__);
+ }
std::set_terminate(ggml_uncaught_exception);
return true;
}();

View File

@@ -30,7 +30,7 @@ func pickBestFullFitByLibrary(f *ggml.GGML, modelPath string, projectors []strin
// Try to pack into as few GPUs as possible, starting from 1 GPU
for numGPUs := 1; numGPUs <= len(sgl); numGPUs++ {
gpuSubset := sgl[:numGPUs]
ok, estimatedVRAM := PredictServerFit(gpuSubset, f, adapters, projectors, opts, numParallel)
ok, estimatedVRAM := predictServerFit(gpuSubset, f, adapters, projectors, opts, numParallel)
if ok {
slog.Info("new model will fit in available VRAM across minimum required GPUs, loading",
@@ -48,7 +48,7 @@ func pickBestFullFitByLibrary(f *ggml.GGML, modelPath string, projectors []strin
// - try subsets of GPUs instead of just falling back to 1 or all in a family
// Now try all the GPUS (OLLAMA_SCHED_SPREAD is set)
if ok, estimatedVRAM := PredictServerFit(sgl, f, adapters, projectors, opts, numParallel); ok {
if ok, estimatedVRAM := predictServerFit(sgl, f, adapters, projectors, opts, numParallel); ok {
slog.Info("new model will fit in available VRAM, loading",
"model", modelPath,
"library", sgl[0].Library,
@@ -71,7 +71,7 @@ func pickBestPartialFitByLibrary(f *ggml.GGML, projectors []string, adapters []s
var bestEstimate uint64
var bestFit int
for i, gl := range byLibrary {
_, estimatedVRAM := PredictServerFit(gl, f, adapters, projectors, opts, numParallel)
_, estimatedVRAM := predictServerFit(gl, f, adapters, projectors, opts, numParallel)
if estimatedVRAM > bestEstimate {
bestEstimate = estimatedVRAM
bestFit = i
@@ -81,7 +81,7 @@ func pickBestPartialFitByLibrary(f *ggml.GGML, projectors []string, adapters []s
}
// This algorithm looks for a complete fit to determine if we need to unload other models
func PredictServerFit(allGpus discover.GpuInfoList, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (bool, uint64) {
func predictServerFit(allGpus discover.GpuInfoList, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (bool, uint64) {
// Split up the GPUs by type and try them
var estimatedVRAM uint64
for _, gpus := range allGpus.ByLibrary() {
@@ -97,6 +97,10 @@ func PredictServerFit(allGpus discover.GpuInfoList, f *ggml.GGML, adapters, proj
return true, estimatedVRAM
}
}
if len(gpus) == 1 && gpus[0].Library == "cpu" && estimate.TotalSize <= gpus[0].FreeMemory {
return true, estimatedVRAM
}
}
return false, estimatedVRAM
}
@@ -191,17 +195,19 @@ func estimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
slog.Warn("model missing blk.0 layer size")
}
var kvct string
if envconfig.FlashAttention() &&
useFlashAttention := (envconfig.FlashAttention() || f.FlashAttention()) &&
discover.GetGPUInfo().FlashAttentionSupported() &&
f.SupportsFlashAttention() {
f.SupportsFlashAttention()
var kvct string
if useFlashAttention {
requested := strings.ToLower(envconfig.KvCacheType())
if requested != "" && f.SupportsKVCacheType(requested) {
if f.SupportsKVCacheType(requested) {
kvct = requested
}
}
kv, graphPartialOffload, graphFullOffload := f.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), numParallel, kvct)
kv, graphPartialOffload, graphFullOffload := f.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), numParallel, kvct, useFlashAttention)
if len(kv) > 0 {
layerSize += kv[0]

View File

@@ -148,7 +148,11 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
var textProcessor model.TextProcessor
var err error
if envconfig.NewEngine() || f.KV().OllamaEngineRequired() {
textProcessor, err = model.NewTextProcessor(modelPath)
if len(projectors) == 0 {
textProcessor, err = model.NewTextProcessor(modelPath)
} else {
err = errors.New("split vision models aren't supported")
}
if err != nil {
// To prepare for opt-out mode, instead of treating this as an error, we fallback to the old runner
slog.Debug("model not yet supported by Ollama engine, switching to compatibility mode", "model", modelPath, "error", err)
@@ -161,11 +165,6 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
}
}
newEstimates := textProcessor != nil && envconfig.NewMemoryEstimates()
if newEstimates {
slog.Info("enabling new memory estimates")
}
// Verify the requested context size is <= the model training size
trainCtx := f.KV().ContextLength()
if opts.NumCtx > int(trainCtx) && trainCtx > 0 {
@@ -173,6 +172,8 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
opts.NumCtx = int(trainCtx)
}
opts.NumBatch = min(opts.NumBatch, opts.NumCtx)
loadRequest := LoadRequest{LoraPath: adapters, KvSize: opts.NumCtx * numParallel, BatchSize: opts.NumBatch, Parallel: numParallel, MultiUserCache: envconfig.MultiUserCache()}
defaultThreads := discover.GetSystemInfo().GetOptimalThreadCount()
@@ -195,6 +196,11 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
// This will disable flash attention unless all GPUs on the system support it, even if we end up selecting a subset
// that can handle it.
fa := envconfig.FlashAttention()
if f.FlashAttention() {
slog.Info("model wants flash attention")
fa = true
}
if fa && !gpus.FlashAttentionSupported() {
slog.Warn("flash attention enabled but not supported by gpu")
fa = false
@@ -213,7 +219,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
// Flash Attention also supports kv cache quantization
// Enable if the requested and kv cache type is supported by the model
if kvct != "" && f.SupportsKVCacheType(kvct) {
if f.SupportsKVCacheType(kvct) {
loadRequest.KvCacheType = kvct
} else {
slog.Warn("kv cache type not supported by model", "type", kvct)
@@ -355,23 +361,28 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
s.cmd.Env = append(s.cmd.Env, "OLLAMA_LIBRARY_PATH="+strings.Join(ggmlPaths, string(filepath.ListSeparator)))
envWorkarounds := [][2]string{}
envWorkarounds := []string{}
for _, gpu := range gpus {
envWorkarounds = append(envWorkarounds, gpu.EnvWorkarounds...)
}
// Always filter down the set of GPUs in case there are any unsupported devices that might crash
envWorkarounds = append(envWorkarounds, gpus.GetVisibleDevicesEnv()...)
pathEnvVal := strings.Join(libraryPaths, string(filepath.ListSeparator))
// Update or add the path variable with our adjusted version
pathNeeded := true
envWorkaroundDone := make([]bool, len(envWorkarounds))
for i := range s.cmd.Env {
cmp := strings.SplitN(s.cmd.Env[i], "=", 2)
if strings.EqualFold(cmp[0], pathEnv) {
s.cmd.Env[i] = pathEnv + "=" + pathEnvVal
pathNeeded = false
} else if len(envWorkarounds) != 0 {
for _, kv := range envWorkarounds {
if strings.EqualFold(cmp[0], kv[0]) {
s.cmd.Env[i] = kv[0] + "=" + kv[1]
for j, kv := range envWorkarounds {
tmp := strings.SplitN(kv, "=", 2)
if strings.EqualFold(cmp[0], tmp[0]) {
s.cmd.Env[i] = kv
envWorkaroundDone[j] = true
}
}
}
@@ -379,6 +390,11 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
if pathNeeded {
s.cmd.Env = append(s.cmd.Env, pathEnv+"="+pathEnvVal)
}
for i, done := range envWorkaroundDone {
if !done {
s.cmd.Env = append(s.cmd.Env, envWorkarounds[i])
}
}
slog.Info("starting runner", "cmd", s.cmd)
slog.Debug("subprocess", "", filteredEnv(s.cmd.Env))
@@ -416,7 +432,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
}
}()
if newEstimates {
if textProcessor != nil {
return &ollamaServer{llmServer: s}, nil
} else {
return &llamaServer{llmServer: s, ggml: f}, nil
@@ -492,6 +508,7 @@ func (s *llamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requi
if !requireFull {
g = pickBestPartialFitByLibrary(s.ggml, []string{s.loadRequest.ProjectorPath}, s.loadRequest.LoraPath, s.options, gpus, s.numParallel)
} else {
slog.Info("model requires more memory than is currently available, evicting a model to make space", "estimate", s.estimate)
return ErrLoadRequiredFull
}
}
@@ -524,10 +541,6 @@ func (s *llamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requi
}
}
if requireFull && len(gpus) == 1 && gpus[0].Library == "cpu" && s.estimate.TotalSize > gpus[0].FreeMemory {
return ErrLoadRequiredFull
}
slog.Info("offload", "", s.estimate)
s.gpus = gpus
@@ -651,7 +664,9 @@ func (s *ollamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requ
if !success {
s.initModel(ctx, LoadRequest{}, LoadOperationClose)
}
s.mem.Log(slog.LevelInfo)
if s.mem != nil {
s.mem.Log(slog.LevelInfo)
}
}()
slog.Info("loading model", "model layers", s.totalLayers, "requested", s.options.NumGPU)
@@ -664,8 +679,12 @@ func (s *ollamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requ
if !(len(gpus) == 1 && gpus[0].Library == "cpu") {
for _, gpu := range gpus {
available := gpu.FreeMemory - envconfig.GpuOverhead() - gpu.MinimumMemory
if gpu.FreeMemory < envconfig.GpuOverhead()+gpu.MinimumMemory {
available = 0
}
slog.Info("gpu memory", "id", gpu.ID,
"available", format.HumanBytes2(gpu.FreeMemory-envconfig.GpuOverhead()-gpu.MinimumMemory),
"available", format.HumanBytes2(available),
"free", format.HumanBytes2(gpu.FreeMemory),
"minimum", format.HumanBytes2(gpu.MinimumMemory),
"overhead", format.HumanBytes2(envconfig.GpuOverhead()))
@@ -847,7 +866,7 @@ func (s *ollamaServer) createLayout(systemInfo discover.SystemInfo, systemGPUs d
}
layers[i] += memory.CPU.Weights[i].Size
layers[i] += memory.CPU.Cache[i].Size
slog.Log(context.TODO(), logutil.LevelTrace, "layer to assign", "layer", i, "size", format.HumanBytes2(layers[i]))
logutil.Trace("layer to assign", "layer", i, "size", format.HumanBytes2(layers[i]))
}
gpuLayers := ml.GPULayersList{}

View File

@@ -1,6 +1,7 @@
package logutil
import (
"context"
"io"
"log/slog"
"path/filepath"
@@ -27,3 +28,11 @@ func NewLogger(w io.Writer, level slog.Level) *slog.Logger {
},
}))
}
func Trace(msg string, args ...any) {
slog.Log(context.TODO(), LevelTrace, msg, args...)
}
func TraceContext(ctx context.Context, msg string, args ...any) {
slog.Log(ctx, LevelTrace, msg, args...)
}

View File

@@ -266,7 +266,7 @@ func (m DeviceMemory) LogValue() slog.Value {
// allocation is guaranteed to be provided so that if it failed, the caller can
// accommodate that to make forward progress.
type BackendMemory struct {
// InputsWeights are always located on the CPU and cannot be moved
// InputWeights are always located on the CPU and cannot be moved
InputWeights Memory
// CPU model components are located in system memory. This does not
@@ -372,6 +372,7 @@ type Context interface {
Forward(...Tensor) Context
Compute(...Tensor)
ComputeWithNotify(func(), ...Tensor) // notify callback once compute has begun
// Reserve is analogous to Compute but rather than executing a
// graph, simply preallocates memory. Typically called with a
@@ -396,10 +397,13 @@ type Tensor interface {
Shape() []int
DType() DType
Cast(ctx Context, dtype DType) Tensor
Bytes() []byte
Floats() []float32
SetValueFromIntSlice(s []int32)
Neg(ctx Context) Tensor
Add(ctx Context, t2 Tensor) Tensor
Sub(ctx Context, t2 Tensor) Tensor
@@ -412,6 +416,7 @@ type Tensor interface {
AddID(ctx Context, t2, ids Tensor) Tensor
Softmax(ctx Context) Tensor
L2Norm(ctx Context, eps float32) Tensor
LayerNorm(ctx Context, weight, bias Tensor, eps float32) Tensor
RMSNorm(ctx Context, weight Tensor, eps float32) Tensor
Scale(ctx Context, s float64) Tensor

View File

@@ -82,6 +82,7 @@ type Backend struct {
// to the name that is used by the model definition
tensorLoadTargets map[string][]string
schedMu sync.Mutex // Only one Compute can run at a time
sched C.ggml_backend_sched_t
schedBackends []C.ggml_backend_t
schedBufts []C.ggml_backend_buffer_type_t
@@ -270,7 +271,7 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
tt := C.ggml_new_tensor(ctxs[bt], kind, C.int(len(t.source.Shape)), (*C.int64_t)(unsafe.Pointer(&t.source.Shape[0])))
C.ggml_set_name(tt, cname)
slog.Log(context.TODO(), logutil.LevelTrace, "created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
logutil.Trace("created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
size := pad(C.ggml_backend_buft_get_alloc_size(bt, tt), C.ggml_backend_buft_get_alignment(bt))
if layer == -1 {
@@ -377,7 +378,7 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
}
for bs := range maps.Values(bbs) {
slog.Log(context.TODO(), logutil.LevelTrace, "model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(bs)),
logutil.Trace("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(bs)),
"size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(bs))))
}
@@ -535,6 +536,7 @@ func (b *Backend) Load(ctx context.Context, progress func(float32)) error {
const BS = 17 // MXFP4 block size
bts := make([]byte, 8*BS*format.KibiByte) // ~128k block aligned
var s uint64
var tmp [16]byte
for s < t.Size() {
// Stop if either the parent context has been canceled or if any of the other tensors returned an error
if err := ctx.Err(); err != nil {
@@ -546,37 +548,13 @@ func (b *Backend) Load(ctx context.Context, progress func(float32)) error {
return err
}
for j := range n / BS {
for i := 1; i < BS; i++ {
// swap nibbles
t_lo := bts[j*BS+i] & 0x0F
t_hi := bts[j*BS+i] & 0xF0
bts[j*BS+i] = (t_lo << 4) | (t_hi >> 4)
}
// transform aaaa...bbbb... to abababab...
oi := 0
tmp := [16]byte{}
for i := 1; i < 9; i++ {
blk_a0 := bts[j*BS+i] & 0xF0
blk_a1 := bts[j*BS+i] << 4
blk_b0 := bts[j*BS+i+8] >> 4
blk_b1 := bts[j*BS+i+8] & 0x0F
// swap once more
out0 := blk_a0 | blk_b0
out1 := blk_a1 | blk_b1
out_h0 := out0 & 0xF0
out_l0 := out0 & 0x0F
out_h1 := out1 & 0xF0
out_l1 := out1 & 0x0F
out0 = (out_h0 >> 4) | (out_l0 << 4)
out1 = (out_h1 >> 4) | (out_l1 << 4)
tmp[oi] = out0
oi++
tmp[oi] = out1
oi++
}
for i := range tmp {
bts[j*BS+i+1] = tmp[i]
// transform a1b2c3 ... x7y8z9 -> 71xa82yb93zc
a, b := bts[j*BS+i], bts[j*BS+i+8]
tmp[2*(i-1)] = (a & 0x0F) | (b << 4)
tmp[2*(i-1)+1] = (a >> 4) | (b & 0xF0)
}
copy(bts[j*BS+1:j*BS+17], tmp[:])
}
for _, tt := range tts {
@@ -652,6 +630,18 @@ func (b *Backend) Load(ctx context.Context, progress func(float32)) error {
})
}
// Cleanup any backend state from devices that we didn't end up using
nextDevice:
for _, d := range append(gpus, append(accels, cpus...)...) {
for _, backend := range b.schedBackends {
if d == C.ggml_backend_get_device(backend) {
continue nextDevice
}
}
C.ggml_backend_dev_reset(d)
}
if err := g.Wait(); err != nil {
return err
}
@@ -769,6 +759,15 @@ func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
}
func (c *Context) Compute(tensors ...ml.Tensor) {
c.ComputeWithNotify(nil, tensors...)
}
func (c *Context) ComputeWithNotify(cb func(), tensors ...ml.Tensor) {
c.b.schedMu.Lock()
defer c.b.schedMu.Unlock()
if cb != nil {
go cb()
}
if status := C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph); status != C.GGML_STATUS_SUCCESS {
panic(fmt.Errorf("error computing ggml graph: %v", status))
}
@@ -812,7 +811,7 @@ func (c *Context) Reserve() {
}
}
slog.Log(context.TODO(), logutil.LevelTrace, "compute graph", "backend", C.GoString(C.ggml_backend_name(c.b.schedBackends[i])),
logutil.Trace("compute graph", "backend", C.GoString(C.ggml_backend_name(c.b.schedBackends[i])),
"buffer_type", C.GoString(C.ggml_backend_buft_name(c.b.schedBufts[i])), "size", format.HumanBytes2(uint64(bufferStatus.size)))
}
@@ -843,23 +842,7 @@ func (c *Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
panic("set Input or Layer before creating tensors")
}
var cdtype uint32
switch dtype {
case ml.DTypeF32:
cdtype = C.GGML_TYPE_F32
case ml.DTypeF16:
cdtype = C.GGML_TYPE_F16
case ml.DTypeQ80:
cdtype = C.GGML_TYPE_Q8_0
case ml.DTypeQ40:
cdtype = C.GGML_TYPE_Q4_0
case ml.DTypeI32:
cdtype = C.GGML_TYPE_I32
case ml.DTypeMXFP4:
cdtype = C.GGML_TYPE_MXFP4
default:
panic("unsupported dtype")
}
cdtype := ggmlDType(dtype)
if len(shape) < 1 || shape[0] == 0 {
var shape C.int64_t = 0
@@ -1037,6 +1020,12 @@ func (t *Tensor) Floats() (data []float32) {
return
}
func (t *Tensor) SetValueFromIntSlice(s []int32) {
if len(s) > 0 {
C.ggml_backend_tensor_set(t.t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.t))
}
}
func (t *Tensor) DType() ml.DType {
switch t.t._type {
case C.GGML_TYPE_F32:
@@ -1056,6 +1045,32 @@ func (t *Tensor) DType() ml.DType {
}
}
func ggmlDType(dtype ml.DType) uint32 {
switch dtype {
case ml.DTypeF32:
return C.GGML_TYPE_F32
case ml.DTypeF16:
return C.GGML_TYPE_F16
case ml.DTypeQ80:
return C.GGML_TYPE_Q8_0
case ml.DTypeQ40:
return C.GGML_TYPE_Q4_0
case ml.DTypeI32:
return C.GGML_TYPE_I32
case ml.DTypeMXFP4:
return C.GGML_TYPE_MXFP4
default:
panic("unsupported dtype")
}
}
func (t *Tensor) Cast(ctx ml.Context, dtype ml.DType) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_cast(ctx.(*Context).ctx, t.t, ggmlDType(dtype)),
}
}
func (t *Tensor) Neg(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
@@ -1190,6 +1205,13 @@ func (t *Tensor) AddID(ctx ml.Context, t2, ids ml.Tensor) ml.Tensor {
}
}
func (t *Tensor) L2Norm(ctx ml.Context, eps float32) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_l2_norm(ctx.(*Context).ctx, t.t, C.float(eps)),
}
}
func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
tt := C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))
if w != nil {

View File

@@ -167,6 +167,7 @@ extern "C" {
GGML_API void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_dev_props * props);
GGML_API ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device);
GGML_API ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params);
GGML_API void ggml_backend_dev_reset(ggml_backend_dev_t device);
GGML_API ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device);
GGML_API ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device);
GGML_API ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size);

View File

@@ -178,6 +178,10 @@ extern "C" {
ggml_backend_event_t (*event_new) (ggml_backend_dev_t dev);
void (*event_free) (ggml_backend_dev_t dev, ggml_backend_event_t event);
void (*event_synchronize) (ggml_backend_dev_t dev, ggml_backend_event_t event);
// (optional) reset device, clearing existing allocations and context
// the caller must ensure that there are no outstanding buffers, as these will become invalid
void (*reset)(ggml_backend_dev_t dev);
};
struct ggml_backend_device {

View File

@@ -477,6 +477,14 @@ ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * par
return device->iface.init_backend(device, params);
}
void ggml_backend_dev_reset(ggml_backend_dev_t device) {
if (device->iface.reset == NULL) {
return;
}
device->iface.reset(device);
}
ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device) {
return device->iface.get_buffer_type(device);
}

View File

@@ -103,6 +103,11 @@ int ggml_cuda_get_device() {
return id;
}
void ggml_cuda_reset_device(int device) {
ggml_cuda_set_device(device);
CUDA_CHECK(cudaDeviceReset());
}
static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device) {
ggml_cuda_set_device(device);
cudaError_t err;
@@ -3243,7 +3248,10 @@ static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_back
props->description = ggml_backend_cuda_device_get_description(dev);
props->id = ggml_backend_cuda_device_get_id(dev);
props->type = ggml_backend_cuda_device_get_type(dev);
ggml_backend_cuda_device_get_memory(dev, &props->memory_free, &props->memory_total);
// Memory reporting is disabled to avoid allocation of a CUDA primary context (~300 MB per device).
// If you need the memory data, call ggml_backend_dev_memory() explicitly.
props->memory_total = props->memory_free = 0;
bool host_buffer = getenv("GGML_CUDA_NO_PINNED") == nullptr;
#ifdef GGML_CUDA_NO_PEER_COPY
@@ -3700,6 +3708,11 @@ static void ggml_backend_cuda_device_event_synchronize(ggml_backend_dev_t dev, g
CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context));
}
static void ggml_backend_cuda_device_reset(ggml_backend_dev_t dev) {
ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
ggml_cuda_reset_device(ctx->device);
}
static const ggml_backend_device_i ggml_backend_cuda_device_interface = {
/* .get_name = */ ggml_backend_cuda_device_get_name,
/* .get_description = */ ggml_backend_cuda_device_get_description,
@@ -3716,6 +3729,7 @@ static const ggml_backend_device_i ggml_backend_cuda_device_interface = {
/* .event_new = */ ggml_backend_cuda_device_event_new,
/* .event_free = */ ggml_backend_cuda_device_event_free,
/* .event_synchronize = */ ggml_backend_cuda_device_event_synchronize,
/* .reset = */ ggml_backend_cuda_device_reset,
};
// backend reg
@@ -3835,7 +3849,6 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
dev_ctx->device = i;
dev_ctx->name = GGML_CUDA_NAME + std::to_string(i);
ggml_cuda_set_device(i);
cudaDeviceProp prop;
CUDA_CHECK(cudaGetDeviceProperties(&prop, i));
dev_ctx->description = prop.name;

View File

@@ -40,6 +40,7 @@
#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
#define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
#define cudaDeviceProp hipDeviceProp_t
#define cudaDeviceReset hipDeviceReset
#define cudaDeviceSynchronize hipDeviceSynchronize
#define cudaError_t hipError_t
#define cudaErrorPeerAccessAlreadyEnabled hipErrorPeerAccessAlreadyEnabled

View File

@@ -19,8 +19,12 @@ static bool ggml_uncaught_exception_init = []{
return false;
}
const auto prev{std::get_terminate()};
GGML_ASSERT(prev != ggml_uncaught_exception);
previous_terminate_handler = prev;
// GGML_ASSERT(prev != ggml_uncaught_exception);
if (prev != ggml_uncaught_exception) {
previous_terminate_handler = prev;
} else {
GGML_LOG_WARN("%s double registration of ggml_uncaught_exception\n", __func__);
}
std::set_terminate(ggml_uncaught_exception);
return true;
}();

36
ml/nn/pooling/pooling.go Normal file
View File

@@ -0,0 +1,36 @@
package pooling
import (
"github.com/ollama/ollama/ml"
)
type Type uint32
const (
TypeNone Type = iota
TypeMean
TypeCLS
TypeLast
TypeRank
TypeUnknown = 0xFFFFFFFE
TypeUnspecified = 0xFFFFFFFF
)
func Pooling(ctx ml.Context, hiddenStates ml.Tensor, poolingType Type) ml.Tensor {
switch poolingType {
case TypeNone:
return hiddenStates
case TypeMean:
hiddenStates = hiddenStates.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Mean(ctx)
return hiddenStates.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
case TypeCLS:
return hiddenStates.View(ctx, 0, hiddenStates.Dim(0))
case TypeLast:
panic("not implemented")
case TypeRank:
panic("not implemented")
default:
panic("not implemented")
}
}

View File

@@ -2,7 +2,6 @@ package model
import (
"cmp"
"context"
"fmt"
"iter"
"log/slog"
@@ -109,7 +108,7 @@ func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
r = 0x0143
case r <= 0x0020:
r = r + 0x0100
case r >= 0x007e && r <= 0x00a0:
case r >= 0x007f && r <= 0x00a0:
r = r + 0x00a2
}
@@ -202,12 +201,11 @@ func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
}
}
slog.Log(context.TODO(), logutil.LevelTrace, "encoded", "string", s, "ids", ids)
if addSpecial && len(ids) > 0 {
ids = bpe.vocab.addSpecials(ids)
}
logutil.Trace("encoded", "string", s, "ids", ids)
return ids, nil
}
@@ -243,6 +241,6 @@ func (bpe BytePairEncoding) Decode(ids []int32) (string, error) {
}
}
slog.Log(context.TODO(), logutil.LevelTrace, "decoded", "string", sb.String(), "from", lazyIdsString{ids: ids})
logutil.Trace("decoded", "string", sb.String(), "from", lazyIdsString{ids: ids})
return sb.String(), nil
}

View File

@@ -207,6 +207,36 @@ func TestLlama(t *testing.T) {
}
}
})
t.Run("roundtriping 0x00-0xFF", func(t *testing.T) {
t.Parallel()
for b := 0x00; b <= 0xFF; b++ {
input := string(rune(b))
ids, err := tokenizer.Encode(input, false)
if err != nil {
t.Errorf("failed to encode rune 0x%02X: %v", b, err)
continue
}
decoded, err := tokenizer.Decode(ids)
if err != nil {
t.Errorf("failed to decode rune 0x%02X: %v", b, err)
continue
}
if b == 0x00 {
if len(decoded) != 0 {
t.Errorf("Decode(Encode(0x00)) should be empty, got %v", ids)
}
continue
}
if decoded != input {
t.Errorf("rune 0x%02X failed roundtrip: got %q, want %q", b, decoded, input)
}
}
})
}
func BenchmarkBytePairEncoding(b *testing.B) {

View File

@@ -54,10 +54,9 @@ type Batch struct {
// Inputs is the input tokens, including placeholders for multimodal inputs.
Inputs ml.Tensor
// Multimodal is a set of multimodal embeddings previously created by
// EncodeMultimodal, along with an index into Inputs. Unused for text-only
// models or for batches without multimodal elements.
Multimodal []MultimodalIndex
// Outputs are the set of indicies into Inputs for which output data should
// be returned.
Outputs ml.Tensor
// Positions is the position for each Input, relative to its sequence. Equal
// in length to Inputs.
@@ -66,7 +65,8 @@ type Batch struct {
// Sequences is the sequence for each Input. Equal in length to Inputs.
Sequences []int
// Outputs are the set of indicies into Inputs for which output data should
// be returned.
Outputs []int32
// Multimodal is a set of multimodal embeddings previously created by
// EncodeMultimodal, along with an index into Inputs. Unused for text-only
// models or for batches without multimodal elements.
Multimodal []MultimodalIndex
}

View File

@@ -1,12 +1,11 @@
package model
import (
"context"
"errors"
"fmt"
_ "image/jpeg"
_ "image/png"
"log/slog"
"math"
"os"
"reflect"
"strconv"
@@ -25,7 +24,11 @@ import (
"github.com/ollama/ollama/model/input"
)
var ErrNoVisionModel = errors.New("this model is missing data required for image input")
var (
ErrNoVisionModel = errors.New("this model is missing data required for image input")
ErrUnsupportedModel = errors.New("model not supported")
ErrUnsupportedTokenizer = errors.New("tokenizer not supported")
)
// Model implements a specific model architecture, defining the forward pass and any model-specific configuration
type Model interface {
@@ -64,7 +67,7 @@ type MultimodalProcessor interface {
// This function is also responsible for updating MultimodalHash for any Multimodal
// that is modified to ensure that there is a unique hash value that accurately
// represents the contents.
PostTokenize([]input.Input) ([]input.Input, error)
PostTokenize([]*input.Input) ([]*input.Input, error)
}
// Base implements the common fields and methods for all models
@@ -105,6 +108,10 @@ func New(modelPath string, params ml.BackendParams) (Model, error) {
}
arch := b.Config().Architecture()
if b.Config().Uint("pooling_type", math.MaxUint32) != math.MaxUint32 {
arch = arch + "_embed"
}
f, ok := models[arch]
if !ok {
return nil, fmt.Errorf("unsupported model architecture %q", arch)
@@ -198,7 +205,7 @@ func populateFields(base Base, v reflect.Value, tags ...Tag) reflect.Value {
names := fn(tagsCopy)
for _, name := range names {
if tensor := base.Backend().Get(strings.Join(name, ".")); tensor != nil {
slog.Log(context.TODO(), logutil.LevelTrace, "found tensor", "", tensor)
logutil.Trace("found tensor", "", tensor)
vv.Set(reflect.ValueOf(tensor))
break
}
@@ -239,7 +246,7 @@ func setPointer(base Base, v reflect.Value, tags []Tag) {
vv = vv.Elem()
}
vv = vv.Elem()
vv = reflect.Indirect(vv)
if v.IsNil() {
vv = reflect.New(v.Type().Elem()).Elem()
}
@@ -278,7 +285,7 @@ func canNil(t reflect.Type) bool {
t.Kind() == reflect.Slice
}
func Forward(ctx ml.Context, m Model, inputs []int32, batch input.Batch) (ml.Tensor, error) {
func Forward(ctx ml.Context, m Model, batch input.Batch) (ml.Tensor, error) {
if len(batch.Positions) != len(batch.Sequences) {
return nil, fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(batch.Positions), len(batch.Sequences))
}
@@ -287,8 +294,6 @@ func Forward(ctx ml.Context, m Model, inputs []int32, batch input.Batch) (ml.Ten
return nil, errors.New("batch size cannot be less than 1")
}
batch.Inputs = ctx.Input().FromIntSlice(inputs, len(inputs))
cache := m.Config().Cache
if cache != nil {
err := cache.StartForward(ctx, batch, false)
@@ -302,7 +307,7 @@ func Forward(ctx ml.Context, m Model, inputs []int32, batch input.Batch) (ml.Ten
return nil, err
}
ctx.Forward(t).Compute(t)
ctx.Forward(t)
return t, nil
}

181
model/models/bert/model.go Normal file
View File

@@ -0,0 +1,181 @@
package bert
import (
"cmp"
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
model.Base
model.TextProcessor
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
TypeEmbedding *nn.Embedding `gguf:"token_types"`
PositionEmbedding *nn.Embedding `gguf:"position_embd"`
TokenEmbeddingNorm *nn.LayerNorm `gguf:"token_embd_norm"`
Layers []EncoderLayer `gguf:"blk"`
Options
}
// Forward implements model.Model.
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
hiddenStates = hiddenStates.Add(ctx, m.TypeEmbedding.Weight.View(ctx, 0, m.hiddenSize))
hiddenStates = hiddenStates.Add(ctx, m.PositionEmbedding.Forward(ctx, ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))))
hiddenStates = m.TokenEmbeddingNorm.Forward(ctx, hiddenStates, m.eps)
for _, layer := range m.Layers {
hiddenStates = layer.Forward(ctx, hiddenStates, &m.Options)
}
hiddenStates = pooling.Pooling(ctx, hiddenStates, m.poolingType)
if m.normalize {
hiddenStates = hiddenStates.L2Norm(ctx, 1e-12)
}
return hiddenStates, nil
}
type EncoderLayer struct {
*Attention
AttentionNorm *nn.LayerNorm `gguf:"attn_output_norm"`
*MLP
MLPNorm *nn.LayerNorm `gguf:"layer_output_norm"`
}
func (e *EncoderLayer) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
// Attention
residual := hiddenStates
hiddenStates = e.Attention.Forward(ctx, hiddenStates, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
hiddenStates = e.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
// MLP
residual = hiddenStates
hiddenStates = e.MLP.Forward(ctx, hiddenStates, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
hiddenStates = e.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
return hiddenStates
}
type Attention struct {
Query *nn.Linear `gguf:"attn_q"`
QueryNorm *nn.LayerNorm `gguf:"attn_q_norm"`
Key *nn.Linear `gguf:"attn_k"`
KeyNorm *nn.LayerNorm `gguf:"attn_k_norm"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (a *Attention) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
batchSize := hiddenStates.Dim(1)
query := a.Query.Forward(ctx, hiddenStates)
if a.QueryNorm != nil {
query = a.QueryNorm.Forward(ctx, query, opts.eps)
}
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
key := a.Key.Forward(ctx, hiddenStates)
if a.KeyNorm != nil {
key = a.KeyNorm.Forward(ctx, key, opts.eps)
}
key = key.Reshape(ctx, opts.headDim(), cmp.Or(opts.numKVHeads, opts.numHeads), batchSize)
value := a.Value.Forward(ctx, hiddenStates)
value = value.Reshape(ctx, opts.headDim(), cmp.Or(opts.numKVHeads, opts.numHeads), batchSize)
attention := nn.Attention(ctx, query, key, value, 1/math.Sqrt(float64(opts.headDim())), nil)
attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
return a.Output.Forward(ctx, attention)
}
type MLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (m *MLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
return m.Down.Forward(ctx, m.Up.Forward(ctx, hiddenStates).GELU(ctx))
}
type Options struct {
hiddenSize,
numHeads,
numKVHeads,
keyLength,
valueLength int
poolingType pooling.Type
eps float32
normalize bool
}
func (o Options) headDim() int {
return cmp.Or(o.keyLength, o.valueLength, o.hiddenSize/o.numHeads)
}
func New(c fs.Config) (model.Model, error) {
var processor model.TextProcessor
switch c.String("tokenizer.ggml.model", "bert") {
case "bert":
processor = model.NewWordPiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{
int32(cmp.Or(
c.Uint("tokenizer.ggml.cls_token_id"),
c.Uint("tokenizer.ggml.bos_token_id"),
)),
},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", true),
EOS: []int32{
int32(cmp.Or(
c.Uint("tokenizer.ggml.separator_token_id"),
//nolint:misspell
// NOTE: "seperator_token_id" is a typo in model metadata but we need to
// support it for compatibility.
c.Uint("tokenizer.ggml.seperator_token_id"),
c.Uint("tokenizer.ggml.eos_token_id"),
)),
},
},
)
default:
return nil, model.ErrUnsupportedTokenizer
}
return &Model{
TextProcessor: processor,
Layers: make([]EncoderLayer, c.Uint("block_count")),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
eps: c.Float("attention.layer_norm_epsilon"),
poolingType: pooling.Type(c.Uint("pooling_type")),
normalize: c.Bool("normalize_embeddings", true),
},
}, nil
}
func init() {
model.Register("bert", New)
model.Register("bert_embed", New)
}

View File

@@ -24,7 +24,7 @@ type Options struct {
type Model struct {
model.Base
model.SentencePieceModel
model.SentencePiece
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
@@ -40,7 +40,7 @@ const (
func New(c fs.Config) (model.Model, error) {
m := Model{
SentencePieceModel: model.NewSentencePieceModel(
SentencePiece: model.NewSentencePiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
@@ -176,7 +176,6 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Ten
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize)))
@@ -193,7 +192,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
var lastLayerOutputs ml.Tensor
if i == len(m.Layers)-1 {
lastLayerOutputs = outputs
lastLayerOutputs = batch.Outputs
}
hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)

View File

@@ -0,0 +1,62 @@
package gemma3
import (
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type embedModel struct {
model.Base
model.SentencePiece
*TextModel
poolingType pooling.Type
Dense [2]*nn.Linear `gguf:"dense"`
}
func (m *embedModel) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates := m.TextModel.Forward(ctx, batch, m.Cache)
hiddenStates = pooling.Pooling(ctx, hiddenStates, m.poolingType)
for _, dense := range m.Dense {
hiddenStates = dense.Forward(ctx, hiddenStates)
}
hiddenStates = hiddenStates.L2Norm(ctx, 1e-12)
return hiddenStates, nil
}
func newEmbedModel(c fs.Config) (model.Model, error) {
m := &embedModel{
SentencePiece: model.NewSentencePiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{
int32(c.Uint("tokenizer.ggml.eos_token_id")),
int32(c.Uint("tokenizer.ggml.eot_token_id", 106)),
},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
TextModel: newTextModel(c),
poolingType: pooling.Type(c.Uint("pooling_type", 0)),
}
m.Cache = kvcache.NewWrapperCache(
kvcache.NewSWACache(int32(c.Uint("attention.sliding_window")), m.Shift),
kvcache.NewCausalCache(m.Shift),
)
return m, nil
}

View File

@@ -16,9 +16,9 @@ import (
type Model struct {
model.Base
model.SentencePieceModel
model.SentencePiece
*VisionModel `gguf:"v,vision"`
*VisionModel `gguf:"v"`
*TextModel
*MultiModalProjector `gguf:"mm"`
@@ -55,7 +55,7 @@ func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, i
func New(c fs.Config) (model.Model, error) {
m := Model{
SentencePieceModel: model.NewSentencePieceModel(
SentencePiece: model.NewSentencePiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
@@ -112,8 +112,8 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
return []input.Multimodal{{Tensor: visionOutputs}}, nil
}
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var result []input.Input
func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
var result []*input.Input
for _, inp := range inputs {
if len(inp.Multimodal) == 0 {
@@ -122,17 +122,17 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
inputMultimodal := inp.Multimodal[0].Tensor
result = append(result,
input.Input{Token: 108, SameBatch: inputMultimodal.Dim(1) + 3}, // "\n\n"
input.Input{Token: 255999}, // "<start_of_image>""
input.Input{Multimodal: []input.Multimodal{{Tensor: inputMultimodal}}, MultimodalHash: inp.MultimodalHash}, // image data is on the first placeholder
&input.Input{Token: 108, SameBatch: inputMultimodal.Dim(1) + 3}, // "\n\n"
&input.Input{Token: 255999}, // "<start_of_image>""
&input.Input{Multimodal: []input.Multimodal{{Tensor: inputMultimodal}}, MultimodalHash: inp.MultimodalHash}, // image data is on the first placeholder
)
// add image token placeholders
result = append(result, slices.Repeat([]input.Input{{Token: 0}}, inputMultimodal.Dim(1)-1)...)
result = append(result, slices.Repeat([]*input.Input{{Token: 0}}, inputMultimodal.Dim(1)-1)...)
result = append(result,
input.Input{Token: 256000}, // <end_of_image>
input.Input{Token: 108}, // "\n\n"
&input.Input{Token: 256000}, // <end_of_image>
&input.Input{Token: 108}, // "\n\n"
)
}
}
@@ -141,12 +141,11 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
hiddenStates := m.TextModel.Forward(ctx, batch, m.Cache)
return m.Output.Forward(ctx, hiddenStates), nil
}
func init() {
model.Register("gemma3", New)
model.Register("gemma3_embed", newEmbedModel)
}

View File

@@ -159,8 +159,10 @@ func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs,
return hiddenState.Add(ctx, residual)
}
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) ml.Tensor {
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
func (m *TextModel) Forward(ctx ml.Context, batch input.Batch, cache kvcache.Cache) ml.Tensor {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextConfig.hiddenSize)))
// set image embeddings
@@ -191,12 +193,12 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
var lastLayerOutputs ml.Tensor
if i == len(m.Layers)-1 {
lastLayerOutputs = outputs
lastLayerOutputs = batch.Outputs
}
hiddenState = layer.Forward(ctx, i, hiddenState, positions, lastLayerOutputs, cache, m.TextConfig)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
return m.Output.Forward(ctx, hiddenState)
return hiddenState
}

View File

@@ -10,7 +10,7 @@ import (
type Model struct {
model.Base
model.SentencePieceModel
model.SentencePiece
*TextModel
}
@@ -23,7 +23,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
func New(c fs.Config) (model.Model, error) {
m := Model{
TextModel: newTextModel(c),
SentencePieceModel: model.NewSentencePieceModel(
SentencePiece: model.NewSentencePiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),

View File

@@ -83,7 +83,7 @@ func (m *TextModel) Forward(ctx ml.Context, batch input.Batch, cache kvcache.Cac
hiddenStates = hiddenStates.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx).Mean(ctx)
hiddenStates = hiddenStates.Permute(ctx, 2, 0, 1, 3).Contiguous(ctx)
hiddenStates = hiddenStates.Rows(ctx, ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs)))
hiddenStates = hiddenStates.Rows(ctx, batch.Outputs)
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
return m.Output.Forward(ctx, hiddenStates), nil

View File

@@ -41,8 +41,8 @@ func (m *Transformer) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, err
}
var outputs ml.Tensor
if len(batch.Outputs) > 0 && i == len(m.TransformerBlocks)-1 {
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if i == len(m.TransformerBlocks)-1 {
outputs = batch.Outputs
}
hiddenStates = block.Forward(ctx, hiddenStates, positions, outputs, one, m.Cache, &m.Options)

View File

@@ -160,7 +160,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
outputs = batch.Outputs
}
hiddenState = layer.Forward(ctx, hiddenState, positions, outputs, m.Cache, m.Options)

View File

@@ -18,7 +18,7 @@ type Model struct {
model.BytePairEncoding
ImageProcessor
*VisionModel `gguf:"v,vision"`
*VisionModel `gguf:"v"`
*Projector `gguf:"mm"`
*TextModel
}
@@ -134,16 +134,16 @@ type separator struct {
y bool
}
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var result []input.Input
func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
var result []*input.Input
for _, inp := range inputs {
if len(inp.Multimodal) == 0 {
result = append(result, inp)
continue
}
var imageInputs []input.Input
imageInputs = append(imageInputs, input.Input{Token: 200080}) // <|image_start|>
var imageInputs []*input.Input
imageInputs = append(imageInputs, &input.Input{Token: 200080}) // <|image_start|>
for i, mm := range inp.Multimodal {
patchesPerChunk := mm.Tensor.Dim(1)
@@ -151,20 +151,20 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
if i < len(inp.Multimodal)-1 {
separator := mm.Data.(*separator)
imageInputs = append(imageInputs, input.Input{Token: 200092, Multimodal: []input.Multimodal{{Tensor: mm.Tensor}}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|>
imageInputs = append(imageInputs, slices.Repeat([]input.Input{{Token: 200092}}, patchesPerChunk-1)...)
imageInputs = append(imageInputs, &input.Input{Token: 200092, Multimodal: []input.Multimodal{{Tensor: mm.Tensor}}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|>
imageInputs = append(imageInputs, slices.Repeat([]*input.Input{{Token: 200092}}, patchesPerChunk-1)...)
if separator.x {
imageInputs = append(imageInputs, input.Input{Token: 200084}) // <|tile_x_separator|>
imageInputs = append(imageInputs, &input.Input{Token: 200084}) // <|tile_x_separator|>
}
if separator.y {
imageInputs = append(imageInputs, input.Input{Token: 200085}) // <|tile_y_separator|>
imageInputs = append(imageInputs, &input.Input{Token: 200085}) // <|tile_y_separator|>
}
} else {
imageInputs = append(imageInputs, input.Input{Token: 200090}) // <|image|>
imageInputs = append(imageInputs, input.Input{Token: 200092, Multimodal: []input.Multimodal{{Tensor: mm.Tensor}}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|>
imageInputs = append(imageInputs, slices.Repeat([]input.Input{{Token: 200092}}, patchesPerChunk-1)...)
imageInputs = append(imageInputs, input.Input{Token: 200080}) // <|image_end|>
imageInputs = append(imageInputs, &input.Input{Token: 200090}) // <|image|>
imageInputs = append(imageInputs, &input.Input{Token: 200092, Multimodal: []input.Multimodal{{Tensor: mm.Tensor}}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|>
imageInputs = append(imageInputs, slices.Repeat([]*input.Input{{Token: 200092}}, patchesPerChunk-1)...)
imageInputs = append(imageInputs, &input.Input{Token: 200080}) // <|image_end|>
}
}
@@ -176,9 +176,7 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, batch, m.Cache), nil
}
func init() {

View File

@@ -18,7 +18,7 @@ type Model struct {
model.BytePairEncoding
*TextModel
*VisionModel `gguf:"v,vision"`
*VisionModel `gguf:"v"`
*MultiModalProjector `gguf:"mm"`
ImageProcessor
@@ -133,22 +133,22 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
// [IMG]...[IMG][IMG_BREAK][IMG]...[IMG][IMG_BREAK][IMG]...[IMG][IMG_END]
// Each sequence of [IMG]...[IMG] is a set of patches of vision embeddings
// that can be processed together.
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var result []input.Input
func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
var result []*input.Input
for _, inp := range inputs {
if len(inp.Multimodal) == 0 {
result = append(result, inp)
} else {
for i, row := range inp.Multimodal {
// [IMG]
result = append(result, input.Input{Token: 10, Multimodal: []input.Multimodal{{Tensor: row.Tensor}}, MultimodalHash: inp.MultimodalHash, SameBatch: row.Tensor.Dim(1)})
result = append(result, slices.Repeat([]input.Input{{Token: 10}}, row.Tensor.Dim(1)-1)...)
result = append(result, &input.Input{Token: 10, Multimodal: []input.Multimodal{{Tensor: row.Tensor}}, MultimodalHash: inp.MultimodalHash, SameBatch: row.Tensor.Dim(1)})
result = append(result, slices.Repeat([]*input.Input{{Token: 10}}, row.Tensor.Dim(1)-1)...)
if i == len(inp.Multimodal)-1 {
// [IMG_END]
result = append(result, input.Input{Token: 13})
result = append(result, &input.Input{Token: 13})
} else {
// [IMG_BREAK]
result = append(result, input.Input{Token: 12})
result = append(result, &input.Input{Token: 12})
}
}
}
@@ -159,9 +159,8 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, batch, m.Cache), nil
}
func init() {

View File

@@ -17,7 +17,7 @@ type Model struct {
model.Base
model.BytePairEncoding
*VisionModel `gguf:"v,vision"`
*VisionModel `gguf:"v"`
*TextModel
Projector *nn.Linear `gguf:"mm.0"`
@@ -90,7 +90,7 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
return []input.Multimodal{{Tensor: projectedOutputs}}, nil
}
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
for i := range inputs {
if inputs[i].Multimodal != nil {
inputs[i].Token = 128256 // <|image|>
@@ -107,10 +107,9 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
}
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
// TODO: attention mask, cross attention mask
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
}
func init() {

View File

@@ -1,6 +1,7 @@
package models
import (
_ "github.com/ollama/ollama/model/models/bert"
_ "github.com/ollama/ollama/model/models/gemma2"
_ "github.com/ollama/ollama/model/models/gemma3"
_ "github.com/ollama/ollama/model/models/gemma3n"

View File

@@ -111,7 +111,7 @@ func (m Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
outputs = batch.Outputs
}
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, &m.Options)

View File

@@ -18,7 +18,7 @@ type Model struct {
model.BytePairEncoding
*TextModel
*VisionModel `gguf:"v,vision"`
*VisionModel `gguf:"v"`
ImageProcessor
}
@@ -89,8 +89,8 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
}
// PostTokenize arranges Qwen-2.5-VL's inputs for the forward pass
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var result []input.Input
func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
var result []*input.Input
var (
imageToken int32 = 151655
@@ -112,16 +112,16 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
return nil, fmt.Errorf("failed to encode image prompt: %w", err)
}
for i := range pre {
result = append(result, input.Input{Token: pre[i]})
result = append(result, &input.Input{Token: pre[i]})
}
patchesPerChunk := inp.Multimodal[0].Tensor.Dim(1)
// First add the vision start token
result = append(result, input.Input{Token: visionStartToken})
result = append(result, &input.Input{Token: visionStartToken})
// Add the image token with the multimodal tensor data at the first position
result = append(result, input.Input{
result = append(result, &input.Input{
Token: imageToken,
Multimodal: inp.Multimodal,
MultimodalHash: inp.MultimodalHash,
@@ -129,9 +129,9 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
})
// Add the placeholder tokens for the remaining positions (tokensPerGrid-1)
result = append(result, slices.Repeat([]input.Input{{Token: imageToken}}, patchesPerChunk-1)...)
result = append(result, slices.Repeat([]*input.Input{{Token: imageToken}}, patchesPerChunk-1)...)
result = append(result, input.Input{Token: visionEndToken})
result = append(result, &input.Input{Token: visionEndToken})
}
}
@@ -140,9 +140,8 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache)
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, batch, m.Cache)
}
func init() {

View File

@@ -165,7 +165,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
outputs = batch.Outputs
}
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, m.Options)

View File

@@ -2,7 +2,6 @@ package model
import (
"container/heap"
"context"
"fmt"
"log/slog"
"strconv"
@@ -13,19 +12,19 @@ import (
const spmWhitespaceSep = "▁"
type SentencePieceModel struct {
type SentencePiece struct {
maxTokenLen int
vocab *Vocabulary
}
var _ TextProcessor = (*SentencePieceModel)(nil)
var _ TextProcessor = (*SentencePiece)(nil)
func (spm SentencePieceModel) Vocabulary() *Vocabulary {
func (spm SentencePiece) Vocabulary() *Vocabulary {
return spm.vocab
}
func NewSentencePieceModel(vocab *Vocabulary) SentencePieceModel {
slog.Log(context.TODO(), logutil.LevelTrace, "Tokens", "num tokens", len(vocab.Values), "vals", vocab.Values[:5], "scores", vocab.Scores[:5], "types", vocab.Types[:5])
func NewSentencePiece(vocab *Vocabulary) SentencePiece {
logutil.Trace("Tokens", "num tokens", len(vocab.Values), "vals", vocab.Values[:5], "scores", vocab.Scores[:5], "types", vocab.Types[:5])
counter := map[int]int{}
var maxTokenLen int
@@ -39,21 +38,21 @@ func NewSentencePieceModel(vocab *Vocabulary) SentencePieceModel {
}
}
slog.Log(context.TODO(), logutil.LevelTrace, "Token counts", "normal", counter[TOKEN_TYPE_NORMAL], "unknown", counter[TOKEN_TYPE_UNKNOWN], "control", counter[TOKEN_TYPE_CONTROL],
logutil.Trace("Token counts", "normal", counter[TOKEN_TYPE_NORMAL], "unknown", counter[TOKEN_TYPE_UNKNOWN], "control", counter[TOKEN_TYPE_CONTROL],
"user defined", counter[TOKEN_TYPE_USER_DEFINED], "unused", counter[TOKEN_TYPE_UNUSED], "byte", counter[TOKEN_TYPE_BYTE],
"max token len", maxTokenLen)
return SentencePieceModel{
return SentencePiece{
maxTokenLen: maxTokenLen,
vocab: vocab,
}
}
func (spm SentencePieceModel) Is(id int32, special Special) bool {
func (spm SentencePiece) Is(id int32, special Special) bool {
return spm.vocab.Is(id, special)
}
func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error) {
func (spm SentencePiece) Encode(s string, addSpecial bool) ([]int32, error) {
fragments := []fragment{{value: s}}
for _, special := range spm.vocab.SpecialVocabulary() {
id := spm.vocab.Encode(special)
@@ -182,12 +181,11 @@ func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error)
}
}
slog.Log(context.TODO(), logutil.LevelTrace, "encoded", "string", s, "ids", ids)
if addSpecial && len(ids) > 0 {
ids = spm.vocab.addSpecials(ids)
}
logutil.Trace("encoded", "string", s, "ids", ids)
return ids, nil
}
@@ -220,7 +218,7 @@ func (q *queue) Pop() interface{} {
return item
}
func (spm SentencePieceModel) Decode(ids []int32) (string, error) {
func (spm SentencePiece) Decode(ids []int32) (string, error) {
var sb strings.Builder
for _, id := range ids {
data := spm.vocab.Decode(id)
@@ -246,6 +244,6 @@ func (spm SentencePieceModel) Decode(ids []int32) (string, error) {
}
}
slog.Log(context.TODO(), logutil.LevelTrace, "decoded", "ids", ids, "string", sb.String())
logutil.Trace("decoded", "ids", ids, "string", sb.String())
return sb.String(), nil
}

View File

@@ -12,7 +12,7 @@ import (
"github.com/ollama/ollama/convert/sentencepiece"
)
func loadSentencePieceVocab(t *testing.T) SentencePieceModel {
func loadSentencePieceVocab(t *testing.T) SentencePiece {
t.Helper()
bts, err := os.ReadFile(filepath.Join("testdata", "gemma2", "tokenizer.model"))
@@ -45,7 +45,7 @@ func loadSentencePieceVocab(t *testing.T) SentencePieceModel {
}
}
return NewSentencePieceModel(&v)
return NewSentencePiece(&v)
}
func TestSentencePieceEncode(t *testing.T) {
@@ -115,7 +115,7 @@ func TestSentencePieceEncode(t *testing.T) {
})
}
func TestSentencePieceModelDecodeByteTokens(t *testing.T) {
func TestSentencePieceDecodeByteTokens(t *testing.T) {
vocab := &Vocabulary{
Values: []string{
"normal",
@@ -134,7 +134,7 @@ func TestSentencePieceModelDecodeByteTokens(t *testing.T) {
Scores: []float32{0, 0, 0, 0, 0},
}
spm := NewSentencePieceModel(vocab)
spm := NewSentencePiece(vocab)
tests := []struct {
name string

View File

@@ -49,7 +49,7 @@ func (v *Vocabulary) addSpecials(ids []int32) []int32 {
slog.Warn("adding bos token to prompt which already has it", "id", v.BOS)
}
slog.Debug("adding bos token to prompt", "id", v.BOS)
slog.Debug("adding bos token to prompt", "id", v.BOS[0])
ids = append([]int32{v.BOS[0]}, ids...)
}
@@ -58,7 +58,7 @@ func (v *Vocabulary) addSpecials(ids []int32) []int32 {
slog.Warn("adding eos token to prompt which already has it", "id", v.EOS)
}
slog.Debug("adding eos token to prompt", "id", v.EOS)
slog.Debug("adding eos token to prompt", "id", v.EOS[0])
ids = append(ids, v.EOS[0])
}

167
model/wordpiece.go Normal file
View File

@@ -0,0 +1,167 @@
package model
import (
"fmt"
"iter"
"strings"
"unicode"
"github.com/ollama/ollama/logutil"
)
type WordPiece struct {
vocab *Vocabulary
}
// ggmlPrefix is the prefix used by GGML vocabularies to indicate word boundaries.
// this differs from original word piece which uses "##" to indicate subwords.
const ggmlPrefix = "▁"
var wordPieceReplacer = strings.NewReplacer(
" .", ".",
" ?", "?",
" !", "!",
" ,", ",",
" ' ", "'",
" n't", "n't",
" 'm", "'m",
" do not", " don't",
" 's", "'s",
" 've", "'ve",
" 're", "'re",
)
// Decode implements TextProcessor.
func (wpm WordPiece) Decode(ids []int32) (string, error) {
var sb strings.Builder
for i, id := range ids {
if id < 0 || int(id) >= len(wpm.vocab.Values) {
return "", fmt.Errorf("invalid token id: %d", id)
}
var separator string
piece := wpm.vocab.Values[id]
if i > 0 &&
(strings.HasPrefix(piece, ggmlPrefix) ||
(strings.HasPrefix(piece, "[") && strings.HasSuffix(piece, "]"))) {
separator = " "
}
sb.WriteString(wordPieceReplacer.Replace(separator + strings.TrimPrefix(piece, ggmlPrefix)))
}
return sb.String(), nil
}
// words splits a string into words, treating CJK characters as separate words.
// TODO: this is specifically for BERT and may need to be adjusted or refactored for other models.
func (wpm WordPiece) words(s string) iter.Seq[string] {
return func(yield func(string) bool) {
runes := make([]rune, 0, len(s)*3)
for _, r := range s {
switch {
case r >= 0x4E00 && r <= 0x9FFF,
r >= 0x3400 && r <= 0x4DBF,
r >= 0x20000 && r <= 0x2A6DF,
r >= 0x2A700 && r <= 0x2B73F,
r >= 0x2B740 && r <= 0x2B81F,
r >= 0x2B820 && r <= 0x2CEAF,
r >= 0xF900 && r <= 0xFAFF,
r >= 0x2F800 && r <= 0x2FA1F:
runes = append(runes, ' ', r, ' ')
default:
runes = append(runes, r)
}
}
for w := range strings.FieldsFuncSeq(string(runes), unicode.IsSpace) {
// split on but keep punctuation
var start int
for start < len(w) {
end := strings.IndexFunc(w[start:], unicode.IsPunct)
if end < 0 {
end = len(w) - start
} else if end == 0 {
end = 1
}
if !yield(w[start : start+end]) {
return
}
start += end
}
}
}
}
// Encode implements TextProcessor.
func (wpm WordPiece) Encode(s string, addSpecial bool) ([]int32, error) {
var ids []int32
// TODO: use [UNK] from config
unk := wpm.vocab.Encode("[UNK]")
for word := range wpm.words(s) {
var start int
var pieces []int32
for start < len(word) {
end := len(word)
var piece int32
for start < end {
subword := word[start:end]
if start == 0 {
subword = ggmlPrefix + subword
}
// TODO: some models might not want [ToLower]
piece = wpm.vocab.Encode(strings.ToLower(subword))
if piece >= 0 {
break
}
end--
}
if piece < 0 {
// Unknown token
pieces = pieces[:0]
break
}
pieces = append(pieces, piece)
start = end
}
if len(pieces) > 0 {
ids = append(ids, pieces...)
} else {
ids = append(ids, unk)
}
}
if addSpecial && len(ids) > 0 {
ids = wpm.vocab.addSpecials(ids)
}
logutil.Trace("encoded", "string", s, "ids", ids)
return ids, nil
}
// Is implements TextProcessor.
func (wpm WordPiece) Is(id int32, special Special) bool {
return wpm.vocab.Is(id, special)
}
// Vocabulary implements TextProcessor.
func (wpm WordPiece) Vocabulary() *Vocabulary {
return wpm.vocab
}
var _ TextProcessor = (*WordPiece)(nil)
func NewWordPiece(vocab *Vocabulary) WordPiece {
return WordPiece{
vocab: vocab,
}
}

51
model/wordpiece_test.go Normal file
View File

@@ -0,0 +1,51 @@
package model
import (
"slices"
"testing"
"github.com/google/go-cmp/cmp"
)
func TestWordPiece(t *testing.T) {
wpm := NewWordPiece(
&Vocabulary{
Values: []string{"[UNK]", "[CLS]", "[SEP]", "▁hello", "▁world", "s", "▁!", "▁@", "▁#"},
AddBOS: true,
AddEOS: true,
BOS: []int32{1},
EOS: []int32{2},
})
ids, err := wpm.Encode("Hello world!", true)
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff([]int32{1, 3, 4, 6, 2}, ids); diff != "" {
t.Errorf("unexpected ids (-want +got):\n%s", diff)
}
words, err := wpm.Decode(ids)
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff("[CLS] hello world! [SEP]", words); diff != "" {
t.Errorf("unexpected words (-want +got):\n%s", diff)
}
}
func TestWordPieceWords(t *testing.T) {
var wpm WordPiece
basic := slices.Collect(wpm.words("Hey friend! How are you?!?"))
if diff := cmp.Diff([]string{"Hey", "friend", "!", "How", "are", "you", "?", "!", "?"}, basic); diff != "" {
t.Errorf("unexpected words (-want +got):\n%s", diff)
}
chinese := slices.Collect(wpm.words("野口里佳 Noguchi Rika"))
if diff := cmp.Diff([]string{"野", "口", "里", "佳", "Noguchi", "Rika"}, chinese); diff != "" {
t.Errorf("unexpected words (-want +got):\n%s", diff)
}
}

View File

@@ -76,8 +76,9 @@ type JsonSchema struct {
}
type EmbedRequest struct {
Input any `json:"input"`
Model string `json:"model"`
Input any `json:"input"`
Model string `json:"model"`
Dimensions int `json:"dimensions,omitempty"`
}
type StreamOptions struct {
@@ -557,12 +558,10 @@ func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
var think *api.ThinkValue
if r.Reasoning != nil {
options["reasoning"] = *r.Reasoning.Effort
think = &api.ThinkValue{
Value: *r.Reasoning.Effort,
}
} else if r.ReasoningEffort != nil {
options["reasoning"] = *r.ReasoningEffort
think = &api.ThinkValue{
Value: *r.ReasoningEffort,
}
@@ -1007,7 +1006,7 @@ func EmbeddingsMiddleware() gin.HandlerFunc {
}
var b bytes.Buffer
if err := json.NewEncoder(&b).Encode(api.EmbedRequest{Model: req.Model, Input: req.Input}); err != nil {
if err := json.NewEncoder(&b).Encode(api.EmbedRequest{Model: req.Model, Input: req.Input, Dimensions: req.Dimensions}); err != nil {
c.AbortWithStatusJSON(http.StatusInternalServerError, NewError(http.StatusInternalServerError, err.Error()))
return
}

View File

@@ -62,14 +62,15 @@ func (f Modelfile) CreateRequest(relativeDir string) (*api.CreateRequest, error)
for _, c := range f.Commands {
switch c.Name {
case "model":
path, err := expandPath(c.Args, relativeDir)
name := c.Args.(string)
path, err := expandPath(name, relativeDir)
if err != nil {
return nil, err
}
digestMap, err := fileDigestMap(path)
if errors.Is(err, os.ErrNotExist) {
req.From = c.Args
req.From = name
continue
} else if err != nil {
return nil, err
@@ -83,7 +84,8 @@ func (f Modelfile) CreateRequest(relativeDir string) (*api.CreateRequest, error)
}
}
case "adapter":
path, err := expandPath(c.Args, relativeDir)
adapter := c.Args.(string)
path, err := expandPath(adapter, relativeDir)
if err != nil {
return nil, err
}
@@ -95,21 +97,25 @@ func (f Modelfile) CreateRequest(relativeDir string) (*api.CreateRequest, error)
req.Adapters = digestMap
case "template":
req.Template = c.Args
template := c.Args.(string)
req.Template = template
case "system":
req.System = c.Args
system := c.Args.(string)
req.System = system
case "license":
licenses = append(licenses, c.Args)
license := c.Args.(string)
licenses = append(licenses, license)
case "message":
role, msg, _ := strings.Cut(c.Args, ": ")
messages = append(messages, api.Message{Role: role, Content: msg})
default:
msg := c.Args.(*Message)
messages = append(messages, api.Message{Role: msg.Role, Content: msg.Content})
case "parameter":
if slices.Contains(deprecatedParameters, c.Name) {
fmt.Printf("warning: parameter %s is deprecated\n", c.Name)
fmt.Printf("warning: parameter '%s' is deprecated\n", c.Name)
break
}
ps, err := api.FormatParams(map[string][]string{c.Name: {c.Args}})
param := c.Args.(*Parameter)
ps, err := api.FormatParams(map[string][]string{param.Name: {param.Value}})
if err != nil {
return nil, err
}
@@ -123,6 +129,8 @@ func (f Modelfile) CreateRequest(relativeDir string) (*api.CreateRequest, error)
params[k] = v
}
}
default:
return nil, fmt.Errorf("warning: unknown command '%s'", c.Name)
}
}
@@ -246,7 +254,7 @@ func filesForModel(path string) ([]string, error) {
for _, match := range matches {
if ct, err := detectContentType(match); err != nil {
return nil, err
} else if ct != contentType {
} else if len(contentType) > 0 && ct != contentType {
return nil, fmt.Errorf("invalid content type: expected %s for %s", ct, match)
}
}
@@ -255,7 +263,8 @@ func filesForModel(path string) ([]string, error) {
}
var files []string
if st, _ := glob(filepath.Join(path, "*.safetensors"), "application/octet-stream"); len(st) > 0 {
// some safetensors files do not properly match "application/octet-stream", so skip checking their contentType
if st, _ := glob(filepath.Join(path, "*.safetensors"), ""); len(st) > 0 {
// safetensors files might be unresolved git lfs references; skip if they are
// covers model-x-of-y.safetensors, model.fp32-x-of-y.safetensors, model.safetensors
files = append(files, st...)
@@ -311,7 +320,17 @@ func filesForModel(path string) ([]string, error) {
type Command struct {
Name string
Args string
Args any
}
type Parameter struct {
Name string
Value string
}
type Message struct {
Role string
Content string
}
func (c Command) String() string {
@@ -320,12 +339,16 @@ func (c Command) String() string {
case "model":
fmt.Fprintf(&sb, "FROM %s", c.Args)
case "license", "template", "system", "adapter":
fmt.Fprintf(&sb, "%s %s", strings.ToUpper(c.Name), quote(c.Args))
data := c.Args.(string)
fmt.Fprintf(&sb, "%s %s", strings.ToUpper(c.Name), quote(data))
case "message":
role, message, _ := strings.Cut(c.Args, ": ")
fmt.Fprintf(&sb, "MESSAGE %s %s", role, quote(message))
data := c.Args.(*Message)
fmt.Fprintf(&sb, "MESSAGE %s %s", data.Role, quote(data.Content))
case "parameter":
data := c.Args.(*Parameter)
fmt.Fprintf(&sb, "PARAMETER %s %s", data.Name, quote(data.Value))
default:
fmt.Fprintf(&sb, "PARAMETER %s %s", c.Name, quote(c.Args))
fmt.Printf("unknown command '%s'\n", c.Name)
}
return sb.String()
@@ -365,7 +388,6 @@ func ParseFile(r io.Reader) (*Modelfile, error) {
var curr state
var currLine int = 1
var b bytes.Buffer
var role string
var f Modelfile
@@ -412,6 +434,7 @@ func ParseFile(r io.Reader) (*Modelfile, error) {
case "parameter":
// transition to stateParameter which sets command name
next = stateParameter
cmd.Name = s
case "message":
// transition to stateMessage which validates the message role
next = stateMessage
@@ -420,16 +443,37 @@ func ParseFile(r io.Reader) (*Modelfile, error) {
cmd.Name = s
}
case stateParameter:
cmd.Name = b.String()
s, ok := unquote(strings.TrimSpace(b.String()))
if !ok || isSpace(r) {
if _, err := b.WriteRune(r); err != nil {
return nil, err
}
continue
}
cmd.Args = &Parameter{
Name: s,
}
case stateMessage:
if !isValidMessageRole(b.String()) {
s, ok := unquote(strings.TrimSpace(b.String()))
if !ok || isSpace(r) {
if _, err := b.WriteRune(r); err != nil {
return nil, err
}
continue
}
if !isValidMessageRole(s) {
return nil, &ParserError{
LineNumber: currLine,
Msg: errInvalidMessageRole.Error(),
}
}
role = b.String()
cmd.Args = &Message{
Role: s,
}
case stateComment, stateNil:
// pass
case stateValue:
@@ -442,12 +486,16 @@ func ParseFile(r io.Reader) (*Modelfile, error) {
continue
}
if role != "" {
s = role + ": " + s
role = ""
switch cmd.Name {
case "parameter":
p := cmd.Args.(*Parameter)
p.Value = s
case "message":
m := cmd.Args.(*Message)
m.Content = s
default:
cmd.Args = s
}
cmd.Args = s
f.Commands = append(f.Commands, cmd)
}
@@ -472,11 +520,16 @@ func ParseFile(r io.Reader) (*Modelfile, error) {
return nil, io.ErrUnexpectedEOF
}
if role != "" {
s = role + ": " + s
switch cmd.Name {
case "parameter":
c := cmd.Args.(*Parameter)
c.Value = s
case "message":
c := cmd.Args.(*Message)
c.Content = s
default:
cmd.Args = s
}
cmd.Args = s
f.Commands = append(f.Commands, cmd)
default:
return nil, io.ErrUnexpectedEOF

View File

@@ -47,8 +47,8 @@ TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|>
{Name: "model", Args: "model1"},
{Name: "adapter", Args: "adapter1"},
{Name: "license", Args: "MIT"},
{Name: "param1", Args: "value1"},
{Name: "param2", Args: "value2"},
{Name: "parameter", Args: &Parameter{"param1", "value1"}},
{Name: "parameter", Args: &Parameter{"param2", "value2"}},
{Name: "template", Args: "{{ if .System }}<|start_header_id|>system<|end_header_id|>\n\n{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>\n\n{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>\n\n{{ .Response }}<|eot_id|>"},
}
@@ -80,8 +80,8 @@ TEMPLATE """ {{ if .System }}<|start_header_id|>system<|end_header_id|>
{Name: "model", Args: " model 1"},
{Name: "adapter", Args: "adapter3"},
{Name: "license", Args: "MIT "},
{Name: "param1", Args: "value1"},
{Name: "param2", Args: "value2"},
{Name: "parameter", Args: &Parameter{"param1", "value1"}},
{Name: "parameter", Args: &Parameter{"param2", "value2"}},
{Name: "template", Args: " {{ if .System }}<|start_header_id|>system<|end_header_id|>\n\n{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>\n\n{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>\n\n{{ .Response }}<|eot_id|> "},
}
@@ -101,7 +101,7 @@ func TestParseFileFrom(t *testing.T) {
},
{
"FROM \"FOO BAR\"\nPARAMETER param1 value1",
[]Command{{Name: "model", Args: "FOO BAR"}, {Name: "param1", Args: "value1"}},
[]Command{{Name: "model", Args: "FOO BAR"}, {Name: "parameter", Args: &Parameter{"param1", "value1"}}},
nil,
},
{
@@ -149,12 +149,12 @@ func TestParseFileFrom(t *testing.T) {
},
{
"PARAMETER param1 value1\nFROM foo",
[]Command{{Name: "param1", Args: "value1"}, {Name: "model", Args: "foo"}},
[]Command{{Name: "parameter", Args: &Parameter{"param1", "value1"}}, {Name: "model", Args: "foo"}},
nil,
},
{
"PARAMETER what the \nFROM lemons make lemonade ",
[]Command{{Name: "what", Args: "the"}, {Name: "model", Args: "lemons make lemonade"}},
[]Command{{Name: "parameter", Args: &Parameter{"what", "the"}}, {Name: "model", Args: "lemons make lemonade"}},
nil,
},
}
@@ -211,7 +211,7 @@ MESSAGE system You are a file parser. Always parse things.
`,
[]Command{
{Name: "model", Args: "foo"},
{Name: "message", Args: "system: You are a file parser. Always parse things."},
{Name: "message", Args: &Message{"system", "You are a file parser. Always parse things."}},
},
nil,
},
@@ -221,7 +221,7 @@ FROM foo
MESSAGE system You are a file parser. Always parse things.`,
[]Command{
{Name: "model", Args: "foo"},
{Name: "message", Args: "system: You are a file parser. Always parse things."},
{Name: "message", Args: &Message{"system", "You are a file parser. Always parse things."}},
},
nil,
},
@@ -234,9 +234,9 @@ MESSAGE assistant Hello, I want to parse all the things!
`,
[]Command{
{Name: "model", Args: "foo"},
{Name: "message", Args: "system: You are a file parser. Always parse things."},
{Name: "message", Args: "user: Hey there!"},
{Name: "message", Args: "assistant: Hello, I want to parse all the things!"},
{Name: "message", Args: &Message{"system", "You are a file parser. Always parse things."}},
{Name: "message", Args: &Message{"user", "Hey there!"}},
{Name: "message", Args: &Message{"assistant", "Hello, I want to parse all the things!"}},
},
nil,
},
@@ -244,12 +244,12 @@ MESSAGE assistant Hello, I want to parse all the things!
`
FROM foo
MESSAGE system """
You are a multiline file parser. Always parse things.
You are a multiline file "parser". Always parse things.
"""
`,
[]Command{
{Name: "model", Args: "foo"},
{Name: "message", Args: "system: \nYou are a multiline file parser. Always parse things.\n"},
{Name: "message", Args: &Message{"system", "\nYou are a multiline file \"parser\". Always parse things.\n"}},
},
nil,
},
@@ -514,7 +514,7 @@ func TestParseFileParameters(t *testing.T) {
assert.Equal(t, []Command{
{Name: "model", Args: "foo"},
{Name: v.name, Args: v.value},
{Name: "parameter", Args: &Parameter{v.name, v.value}},
}, modelfile.Commands)
})
}
@@ -617,8 +617,8 @@ SYSTEM You are a utf16 file.
expected := []Command{
{Name: "model", Args: "bob"},
{Name: "param1", Args: "1"},
{Name: "param2", Args: "4096"},
{Name: "parameter", Args: &Parameter{"param1", "1"}},
{Name: "parameter", Args: &Parameter{"param2", "4096"}},
{Name: "system", Args: "You are a utf16 file."},
}

View File

@@ -46,7 +46,7 @@ func NewInputCache(lc *llama.Context, kvSize int, numSlots int, multiUserCache b
}
// Locking: Operations on InputCacheSlot (including finding one
// through LoadCacheSlot) require a lock to be be held that serializes
// through LoadCacheSlot) require a lock to be held that serializes
// these operations with each other and llama.Decode
type InputCacheSlot struct {

View File

@@ -34,8 +34,8 @@ type InputCache struct {
func NewInputCache(model model.Model, kvCacheType string, kvSize int32, numSlots int, batchSize int, multiUserCache bool) (*InputCache, error) {
numCtx := kvSize / int32(numSlots)
if numCtx < 1 {
return nil, fmt.Errorf("must have at least one kv cache entry per parallel sequence (kv: %v parallel: %v)", kvSize, numSlots)
if int(numCtx) < batchSize {
return nil, fmt.Errorf("kv size must be at least as large as batch size * parallel (kv: %v batch: %v parallel: %v)", kvSize, batchSize, numSlots)
}
slots := make([]InputCacheSlot, numSlots)
@@ -70,15 +70,13 @@ func kvCacheTypeFromStr(s string) ml.DType {
}
func (c *InputCache) Close() {
if c == nil {
return
if c != nil && c.cache != nil {
c.cache.Close()
}
c.cache.Close()
}
// Locking: Operations on InputCacheSlot (including finding one
// through LoadCacheSlot) require a lock to be be held that serializes
// through LoadCacheSlot) require a lock to be held that serializes
// these operations with each other and processBatch
type InputCacheSlot struct {
@@ -86,7 +84,7 @@ type InputCacheSlot struct {
Id int
// Inputs that are stored in the KV cache
Inputs []input.Input
Inputs []*input.Input
// is this cache actively being processed as part of a sequence?
InUse bool
@@ -95,7 +93,7 @@ type InputCacheSlot struct {
lastUsed time.Time
}
func (c *InputCache) LoadCacheSlot(prompt []input.Input) (*InputCacheSlot, []input.Input, error) {
func (c *InputCache) LoadCacheSlot(prompt []*input.Input, cachePrompt bool) (*InputCacheSlot, []*input.Input, error) {
var slot *InputCacheSlot
var numPast int32
var err error
@@ -113,6 +111,10 @@ func (c *InputCache) LoadCacheSlot(prompt []input.Input) (*InputCacheSlot, []inp
return nil, nil, err
}
if !cachePrompt {
numPast = 0
}
slot.InUse = true
slot.lastUsed = time.Now()
@@ -146,7 +148,7 @@ func (c *InputCache) LoadCacheSlot(prompt []input.Input) (*InputCacheSlot, []inp
return slot, prompt, nil
}
func (c *InputCache) findLongestCacheSlot(prompt []input.Input) (*InputCacheSlot, int32, error) {
func (c *InputCache) findLongestCacheSlot(prompt []*input.Input) (*InputCacheSlot, int32, error) {
longest := int32(-1)
var longestSlot *InputCacheSlot
@@ -169,7 +171,7 @@ func (c *InputCache) findLongestCacheSlot(prompt []input.Input) (*InputCacheSlot
return longestSlot, longest, nil
}
func (c *InputCache) findBestCacheSlot(prompt []input.Input) (*InputCacheSlot, int32, error) {
func (c *InputCache) findBestCacheSlot(prompt []*input.Input) (*InputCacheSlot, int32, error) {
oldest := time.Now()
var oldestSlot *InputCacheSlot
@@ -205,7 +207,7 @@ func (c *InputCache) findBestCacheSlot(prompt []input.Input) (*InputCacheSlot, i
if longest > 0 && longestSlot != oldestSlot {
slog.Debug("forking cache slot", "src", longestSlot.Id, "dst", oldestSlot.Id, "inputs", longest, "total",
len(longestSlot.Inputs))
oldestSlot.Inputs = make([]input.Input, longest)
oldestSlot.Inputs = make([]*input.Input, longest)
copy(oldestSlot.Inputs, longestSlot.Inputs[:longest])
if c.cache != nil {
c.cache.CopyPrefix(longestSlot.Id, oldestSlot.Id, longest)
@@ -215,7 +217,7 @@ func (c *InputCache) findBestCacheSlot(prompt []input.Input) (*InputCacheSlot, i
return oldestSlot, longest, nil
}
func countCommonPrefix(a []input.Input, b []input.Input) int32 {
func countCommonPrefix(a []*input.Input, b []*input.Input) int32 {
var count int32
for i := range a {
@@ -250,7 +252,7 @@ func (c *InputCache) ShiftDiscard(inputLen int32, numKeep int32) int32 {
}
type ErrReprocessInputs struct {
Inputs []input.Input
Inputs []*input.Input
}
func (e *ErrReprocessInputs) Error() string {
@@ -283,13 +285,13 @@ func (c *InputCache) ShiftCacheSlot(slot *InputCacheSlot, numKeep int32) error {
"id", slot.Id, "error", err)
// Create new input slice with preserved tokens (numKeep + remaining tokens after discard)
newInputs := make([]input.Input, numKeep+inputLen-(numKeep+discard))
newInputs := make([]*input.Input, numKeep+inputLen-(numKeep+discard))
copy(newInputs[:numKeep], slot.Inputs[:numKeep])
copy(newInputs[numKeep:], slot.Inputs[numKeep+discard:])
// Reset the cache
_ = c.cache.Remove(slot.Id, 0, math.MaxInt32)
slot.Inputs = []input.Input{}
slot.Inputs = []*input.Input{}
// Return error with inputs that need to be reprocessed
return &ErrReprocessInputs{Inputs: newInputs}

View File

@@ -13,50 +13,50 @@ import (
func TestCountCommon(t *testing.T) {
tests := []struct {
name string
t1 []input.Input
t2 []input.Input
t1 []*input.Input
t2 []*input.Input
expected int32
}{
{
name: "Equal",
t1: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
t2: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
t1: []*input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
t2: []*input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
expected: 3,
},
{
name: "Prefix",
t1: []input.Input{{Token: 1}},
t2: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
t1: []*input.Input{{Token: 1}},
t2: []*input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
expected: 1,
},
{
name: "Image Prefix",
t1: []input.Input{{MultimodalHash: 1}},
t2: []input.Input{{MultimodalHash: 1}, {MultimodalHash: 2}, {MultimodalHash: 3}},
t1: []*input.Input{{MultimodalHash: 1}},
t2: []*input.Input{{MultimodalHash: 1}, {MultimodalHash: 2}, {MultimodalHash: 3}},
expected: 1,
},
{
name: "Mixed",
t1: []input.Input{{Token: 1}, {MultimodalHash: 1}},
t2: []input.Input{{Token: 1}, {MultimodalHash: 1}, {Token: 5}},
t1: []*input.Input{{Token: 1}, {MultimodalHash: 1}},
t2: []*input.Input{{Token: 1}, {MultimodalHash: 1}, {Token: 5}},
expected: 2,
},
{
name: "Mixed, Same Length",
t1: []input.Input{{Token: 1}, {MultimodalHash: 1}},
t2: []input.Input{{Token: 1}, {MultimodalHash: 2}},
t1: []*input.Input{{Token: 1}, {MultimodalHash: 1}},
t2: []*input.Input{{Token: 1}, {MultimodalHash: 2}},
expected: 1,
},
{
name: "Empty",
t1: []input.Input{},
t2: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
t1: []*input.Input{},
t2: []*input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
expected: 0,
},
{
name: "Both Empty",
t1: []input.Input{},
t2: []input.Input{},
t1: []*input.Input{},
t2: []*input.Input{},
expected: 0,
},
}
@@ -80,7 +80,7 @@ func TestFindCacheSlot(t *testing.T) {
tests := []struct {
name string
cache InputCache
prompt []input.Input
prompt []*input.Input
longest expected
best expected
}{
@@ -89,18 +89,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{},
Inputs: []*input.Input{},
InUse: false,
lastUsed: time.Time{},
},
{
Id: 1,
Inputs: []input.Input{},
Inputs: []*input.Input{},
InUse: false,
lastUsed: time.Time{},
},
}},
prompt: []input.Input{{Token: 1}},
prompt: []*input.Input{{Token: 1}},
longest: expected{result: 0, len: 0},
best: expected{result: 0, len: 0},
},
@@ -109,18 +109,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}},
Inputs: []*input.Input{{Token: 1}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
Inputs: []*input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
}},
prompt: []input.Input{{Token: 1}, {Token: 2}},
prompt: []*input.Input{{Token: 1}, {Token: 2}},
longest: expected{result: 1, len: 2},
best: expected{result: 1, len: 2},
},
@@ -129,18 +129,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
Inputs: []*input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input.Input{},
Inputs: []*input.Input{},
InUse: false,
lastUsed: time.Time{},
},
}},
prompt: []input.Input{{Token: 2}},
prompt: []*input.Input{{Token: 2}},
longest: expected{result: 0, len: 0},
best: expected{result: 1, len: 0},
},
@@ -150,19 +150,19 @@ func TestFindCacheSlot(t *testing.T) {
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
Inputs: []*input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input.Input{},
Inputs: []*input.Input{},
InUse: false,
lastUsed: time.Time{},
},
},
},
prompt: []input.Input{{Token: 1}},
prompt: []*input.Input{{Token: 1}},
longest: expected{result: 0, len: 1},
best: expected{result: 1, len: 1},
},
@@ -171,18 +171,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}},
Inputs: []*input.Input{{Token: 1}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
Inputs: []*input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
}},
prompt: []input.Input{{Token: 2}, {Token: 3}},
prompt: []*input.Input{{Token: 2}, {Token: 3}},
longest: expected{result: 0, len: 0},
best: expected{result: 1, len: 0},
},
@@ -191,18 +191,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
Inputs: []*input.Input{{Token: 1}, {Token: 2}},
InUse: true,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input.Input{{Token: 1}},
Inputs: []*input.Input{{Token: 1}},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
}},
prompt: []input.Input{{Token: 1}, {Token: 2}},
prompt: []*input.Input{{Token: 1}, {Token: 2}},
longest: expected{result: 1, len: 1},
best: expected{result: 1, len: 2},
},
@@ -300,7 +300,7 @@ func TestLoadCacheSlot(t *testing.T) {
tests := []struct {
name string
cache InputCache
prompt []input.Input
prompt []*input.Input
wantErr bool
expectedSlotId int
expectedPrompt int // expected length of remaining prompt
@@ -312,19 +312,19 @@ func TestLoadCacheSlot(t *testing.T) {
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
Inputs: []*input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input.Input{},
Inputs: []*input.Input{},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
},
},
prompt: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
prompt: []*input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
wantErr: false,
expectedSlotId: 0,
expectedPrompt: 1, // Only token 3 remains
@@ -336,19 +336,19 @@ func TestLoadCacheSlot(t *testing.T) {
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
Inputs: []*input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input.Input{},
Inputs: []*input.Input{},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
},
},
prompt: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
prompt: []*input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
wantErr: false,
expectedSlotId: 0,
expectedPrompt: 1, // Only token 3 remains
@@ -360,13 +360,13 @@ func TestLoadCacheSlot(t *testing.T) {
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
Inputs: []*input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
},
},
prompt: []input.Input{{Token: 1}, {Token: 2}},
prompt: []*input.Input{{Token: 1}, {Token: 2}},
wantErr: false,
expectedSlotId: 0,
expectedPrompt: 1, // Should leave 1 token for sampling
@@ -378,13 +378,13 @@ func TestLoadCacheSlot(t *testing.T) {
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
Inputs: []*input.Input{{Token: 1}, {Token: 2}},
InUse: true,
lastUsed: time.Now().Add(-time.Second),
},
},
},
prompt: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
prompt: []*input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
wantErr: true,
expectedSlotId: -1,
expectedPrompt: -1,
@@ -393,7 +393,7 @@ func TestLoadCacheSlot(t *testing.T) {
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
slot, remainingPrompt, err := tt.cache.LoadCacheSlot(tt.prompt)
slot, remainingPrompt, err := tt.cache.LoadCacheSlot(tt.prompt, true)
// Check error state
if (err != nil) != tt.wantErr {
@@ -452,7 +452,7 @@ func TestShiftCacheSlot(t *testing.T) {
tests := []struct {
name string
numCtx int32
inputs []input.Input
inputs []*input.Input
numKeep int32
cacheErr bool
wantErr any
@@ -461,7 +461,7 @@ func TestShiftCacheSlot(t *testing.T) {
{
name: "Normal shift",
numCtx: 10,
inputs: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}, {Token: 4}, {Token: 5}, {Token: 6}, {Token: 7}, {Token: 8}, {Token: 9}, {Token: 10}},
inputs: []*input.Input{{Token: 1}, {Token: 2}, {Token: 3}, {Token: 4}, {Token: 5}, {Token: 6}, {Token: 7}, {Token: 8}, {Token: 9}, {Token: 10}},
numKeep: 2,
cacheErr: false, // No error
wantErr: nil,
@@ -470,7 +470,7 @@ func TestShiftCacheSlot(t *testing.T) {
{
name: "Cache removal fails",
numCtx: 10,
inputs: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}, {Token: 4}, {Token: 5}, {Token: 6}, {Token: 7}, {Token: 8}, {Token: 9}, {Token: 10}},
inputs: []*input.Input{{Token: 1}, {Token: 2}, {Token: 3}, {Token: 4}, {Token: 5}, {Token: 6}, {Token: 7}, {Token: 8}, {Token: 9}, {Token: 10}},
numKeep: 2,
cacheErr: true,
wantErr: &ErrReprocessInputs{},
@@ -487,7 +487,7 @@ func TestShiftCacheSlot(t *testing.T) {
}
slot := &InputCacheSlot{
Id: 123,
Inputs: make([]input.Input, len(tt.inputs)),
Inputs: make([]*input.Input, len(tt.inputs)),
}
copy(slot.Inputs, tt.inputs)

View File

@@ -11,6 +11,7 @@ import (
"image"
"log"
"log/slog"
"math"
"net"
"net/http"
"os"
@@ -51,10 +52,10 @@ type Sequence struct {
iBatch int
// prompt inputs left to evaluate
inputs []input.Input
inputs []*input.Input
// inputs that have been added to a batch but not yet submitted to Forward
pendingInputs []input.Input
pendingInputs []*input.Input
// tokens that have been generated but not returned yet (e.g. for stop sequences)
pendingResponses []string
@@ -182,8 +183,8 @@ func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSe
// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
// decoding images
func (s *Server) inputs(prompt string, images []llm.ImageData) ([]input.Input, []ml.Context, multimodalStore, error) {
var inputs []input.Input
func (s *Server) inputs(prompt string, images []llm.ImageData) ([]*input.Input, []ml.Context, multimodalStore, error) {
var inputs []*input.Input
var ctxs []ml.Context
var mmStore multimodalStore
@@ -210,7 +211,7 @@ func (s *Server) inputs(prompt string, images []llm.ImageData) ([]input.Input, [
}
for _, t := range tokens {
inputs = append(inputs, input.Input{Token: t})
inputs = append(inputs, &input.Input{Token: t})
}
// image - decode and store
@@ -243,7 +244,7 @@ func (s *Server) inputs(prompt string, images []llm.ImageData) ([]input.Input, [
mmStore.addMultimodal(imageEmbeddings)
inputs = append(inputs, input.Input{Multimodal: imageEmbeddings, MultimodalHash: imageHash})
inputs = append(inputs, &input.Input{Multimodal: imageEmbeddings, MultimodalHash: imageHash})
postTokenize = true
}
}
@@ -259,6 +260,37 @@ func (s *Server) inputs(prompt string, images []llm.ImageData) ([]input.Input, [
return inputs, ctxs, mmStore, nil
}
type batchState struct {
// id provides a counter for trace logging batches
id int
// ctx holds the backend context used for this batch
ctx ml.Context
// modelOutput holds the outputs from this batch
modelOutput ml.Tensor
// batchInputs holds the input token pointers which may start as
// placeholders later filled in before calling ctx.Compute
batchInputs []*input.Input
// batch contains the inputs for a model forward pass
batch input.Batch
// full set of seqs at the time this batch was initiated
seqs []*Sequence
// Signaled when this batches inputs are ready and compute can proceed
inputsReadyCh chan struct{}
// Signaling when Compute is about to begin on this batch, and
// seqs have been updated to prepare for the next batch
computeStartedCh chan struct{}
// Signaled when this batches outputs are complete and the next batch can proceed
outputsReadyCh chan struct{}
}
type Server struct {
// modelPath is the location of the model to be loaded
modelPath string
@@ -290,6 +322,12 @@ type Server struct {
// TODO (jmorganca): make this n_batch
batchSize int
// Used to signal a hard failure during async processing which will panic the runner
hardErrCh chan error
// Simple counter used only for trace logging batches
batchID int
// protects access to everything below this line
// this is context state needed for decoding
mu sync.Mutex
@@ -362,33 +400,74 @@ func (s *Server) removeSequence(seqIndex int, reason llm.DoneReason) {
s.seqsSem.Release(1)
}
// track batch state between forwardBatch, computeBatch and predictForwardBatch
func (s *Server) run(ctx context.Context) {
s.ready.Wait()
supportsAsync := s.model.Backend().Config().Uint("pooling_type", math.MaxUint32) == math.MaxUint32
var activeBatch batchState
for {
select {
case <-ctx.Done():
return
case err := <-s.hardErrCh:
panic(err)
default:
err := s.processBatch()
var err error
activeBatch, err = s.forwardBatch(activeBatch)
if err != nil {
panic(err)
}
if supportsAsync {
go s.computeBatch(activeBatch)
} else {
s.computeBatch(activeBatch)
}
}
}
}
func (s *Server) processBatch() error {
// forwardBatch will calculate a batch.
func (s *Server) forwardBatch(pendingBatch batchState) (nextBatch batchState, err error) {
// If we have a pending batch still processing, wait until Compute has started
// before setting up the next batch so the seqs inputs are ready to receive their
// token values and we get the correct input pointers for the batchInputs
if pendingBatch.ctx != nil {
logutil.Trace("forwardBatch waiting for compute to start", "pendingBatch.id", pendingBatch.id)
<-pendingBatch.computeStartedCh
logutil.Trace("forwardBatch compute started, setting up next batch", "pendingBatch.id", pendingBatch.id, "id", s.batchID)
nextBatch.inputsReadyCh = pendingBatch.outputsReadyCh // Chain the ouputs from the pending batch to the next inputs batch
} else {
logutil.Trace("forwardBatch no pending batch detected", "batchID", s.batchID)
// No pendingBatch, so the inputs will be ready in the seqs immediately
nextBatch.inputsReadyCh = make(chan struct{}, 1)
nextBatch.inputsReadyCh <- struct{}{}
}
s.mu.Lock()
for s.allNil() {
s.cond.Wait() // Wait until an item is added
}
defer s.mu.Unlock()
ctx := s.model.Backend().NewContext()
defer ctx.Close()
nextBatch.ctx = s.model.Backend().NewContext()
defer func() {
if err != nil {
nextBatch.ctx.Close()
nextBatch.ctx = nil
}
}()
nextBatch.id = s.batchID
nextBatch.seqs = append([]*Sequence{}, s.seqs...)
nextBatch.computeStartedCh = make(chan struct{}, 1)
nextBatch.outputsReadyCh = make(chan struct{}, 1)
var batchInputs []int32
// Prepare the seqs and batch, but defer the input token values as we may not be ready yet
var batchInputs []*input.Input
var batchOutputs []int32
var batch input.Batch
resumeSeq := -1
@@ -396,7 +475,6 @@ func (s *Server) processBatch() error {
for range s.seqs {
seqIdx = (seqIdx + 1) % len(s.seqs)
seq := s.seqs[seqIdx]
if seq == nil {
continue
}
@@ -404,12 +482,13 @@ func (s *Server) processBatch() error {
// if past the num predict limit
if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
s.removeSequence(seqIdx, llm.DoneReasonLength)
nextBatch.seqs[seqIdx] = nil
continue
}
if !s.cache.enabled {
seq.inputs = append(seq.cache.Inputs, seq.inputs...)
seq.cache.Inputs = []input.Input{}
seq.cache.Inputs = []*input.Input{}
}
batchSize := s.batchSize
@@ -442,25 +521,28 @@ func (s *Server) processBatch() error {
break
}
err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
err = s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
if err != nil {
var reprocess *ErrReprocessInputs
if errors.As(err, &reprocess) {
// Prepend these inputs to the sequence's inputs queue for reprocessing
seq.inputs = append(reprocess.Inputs, seq.inputs...)
// Skip this sequence but continue processing the rest
nextBatch.seqs[seqIdx] = nil // clear this sequence for this batch
err = nil
continue
} else {
return err
return
}
}
}
batchInputs = append(batchInputs, inp.Token)
batchInputs = append(batchInputs, seq.inputs[i])
if inp.Multimodal != nil {
mm, err := seq.mmStore.getMultimodal(s.model.Backend(), ctx, inp.Multimodal, false)
var mm []input.Multimodal
mm, err = seq.mmStore.getMultimodal(s.model.Backend(), nextBatch.ctx, inp.Multimodal, false)
if err != nil {
return err
return
}
batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: len(batchInputs) - 1, Multimodal: mm})
}
@@ -468,10 +550,11 @@ func (s *Server) processBatch() error {
batch.Positions = append(batch.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
batch.Sequences = append(batch.Sequences, seq.cache.Id)
seq.iBatch = len(batch.Outputs)
if i+1 == len(seq.inputs) {
batch.Outputs = append(batch.Outputs, int32(len(batchInputs)-1))
seq.iBatch = len(batchOutputs)
if i+1 == len(seq.inputs) || seq.embeddingOnly {
batchOutputs = append(batchOutputs, int32(len(batchInputs)-1))
}
logutil.Trace("forwardBatch iBatch", "batchID", s.batchID, "seqIdx", seqIdx, "seq.iBatch", seq.iBatch, "i+1", i+1, "len(seq.inputs)", len(seq.inputs))
seq.pendingInputs = append(seq.pendingInputs, inp)
}
@@ -485,73 +568,169 @@ func (s *Server) processBatch() error {
}
if len(batchInputs) == 0 {
return nil
logutil.Trace("forwardBatch no batchInputs, going idle", "batchID", s.batchID)
nextBatch.ctx.Close()
nextBatch.ctx = nil
return
}
s.batchID++
modelOutput, err := model.Forward(ctx, s.model, batchInputs, batch)
// Actual batchInputs values will be injected into the batch.Inputs tensor before calling Compute
batch.Inputs = nextBatch.ctx.Input().Empty(ml.DTypeI32, len(batchInputs))
batch.Outputs = nextBatch.ctx.Input().FromIntSlice(batchOutputs, len(batchOutputs))
nextBatch.modelOutput, err = model.Forward(nextBatch.ctx, s.model, batch)
if err != nil {
return fmt.Errorf("failed to decode batch: %w", err)
err = fmt.Errorf("failed to build graph: %w", err)
return
}
nextBatch.batchInputs = batchInputs
nextBatch.batch = batch
return
}
// Async processing of the next batch
func (s *Server) computeBatch(activeBatch batchState) {
if activeBatch.ctx == nil {
// Nothing to compute
return
}
defer activeBatch.ctx.Close()
// Wait until inputs are ready
logutil.Trace("computeBatch: waiting for inputs to be ready", "batchID", activeBatch.id)
<-activeBatch.inputsReadyCh
logutil.Trace("computeBatch: inputs are ready", "batchID", activeBatch.id)
// Once we complete, signal the next batch of inputs are ready
// This will unblock the next computeBatch, or forwardBatch if new seqs come in
defer func() {
logutil.Trace("computeBatch: outputs are ready", "batchID", activeBatch.id)
activeBatch.outputsReadyCh <- struct{}{}
}()
s.mu.Lock()
// Gather the actual input token values now that they're ready
batchInputs := make([]int32, len(activeBatch.batchInputs))
for i := range batchInputs {
batchInputs[i] = activeBatch.batchInputs[i].Token
}
logits := modelOutput.Floats()
// Now we run part of the decoding algorithm to adjust the seq.inputs with placeholder tokens
// so that forwardBatch can build a batchInputs set which will eventually contain the actual
// decoded tokens.
nextBatchTokens := make([]*input.Input, len(s.seqs))
iBatches := make([]int, len(s.seqs)) // Record the iBatch values before releasing the lock
for i, seq := range s.seqs {
iBatches[i] = -1
if seq == nil {
continue
}
// Skip over any newly added or skipped sequences
if activeBatch.seqs[i] == nil {
continue
}
// After calling Forward, pending inputs are now in the cache
// Detect if the sequence we're processing has already been completed and replaced
// with a new sequence
if seq != activeBatch.seqs[i] {
logutil.Trace("computeBatch: sequence replaced, discarding its results", "batchID", activeBatch.id, "seqIdx", i)
continue
}
// Pending inputs will actually be in the cache after we call Compute.
// However, we have already resolved any placeholder tokens.
//
// It's possible for incoming sequences to look at the values that we've
// added to the cache here and start relying on them before we've done
// the computation. This is OK as long as we ensure that this batch's
// computation happens before any future batch's and we never fail
// (unless we take down the whole runner).
if len(seq.pendingInputs) > 0 {
seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
seq.pendingInputs = []input.Input{}
seq.pendingInputs = []*input.Input{}
}
// don't sample prompt processing
if len(seq.inputs) != 0 {
if !s.cache.enabled {
return errors.New("caching disabled but unable to fit entire input in a batch")
s.hardErrCh <- fmt.Errorf("caching disabled but unable to fit entire input in a batch")
s.mu.Unlock()
return
}
continue
}
seq.numPredicted++
nextToken := &input.Input{Token: 0} // placeholder we'll fill in after Compute/Floats
seq.inputs = []*input.Input{nextToken}
nextBatchTokens[i] = nextToken
iBatches[i] = seq.iBatch
}
// At this point the seqs are ready for forwardBatch to move forward so unblock
s.mu.Unlock()
activeBatch.batch.Inputs.SetValueFromIntSlice(batchInputs)
activeBatch.ctx.ComputeWithNotify(
func() {
logutil.Trace("computeBatch: signaling computeStartedCh", "batchID", activeBatch.id)
activeBatch.computeStartedCh <- struct{}{}
},
activeBatch.modelOutput)
outputs := activeBatch.modelOutput.Floats()
logutil.Trace("computeBatch: logits ready", "batchID", activeBatch.id)
s.mu.Lock()
defer s.mu.Unlock()
logutil.Trace("computeBatch: decoding", "batchID", activeBatch.id)
for i, seq := range s.seqs {
if seq == nil || nextBatchTokens[i] == nil {
continue
}
if seq.numPredicted == 1 {
seq.startGenerationTime = time.Now()
}
// if done processing the prompt, generate an embedding and return
if seq.embeddingOnly {
// TODO(jessegross): Embedding support
slog.Warn("generation of embedding outputs not yet supported")
seq.embedding <- outputs
s.removeSequence(i, llm.DoneReasonStop)
continue
}
// sample a token
vocabSize := len(logits) / len(batch.Outputs)
token, err := seq.sampler.Sample(logits[seq.iBatch*vocabSize : (seq.iBatch+1)*vocabSize])
vocabSize := len(outputs) / activeBatch.batch.Outputs.Dim(0)
logutil.Trace("computeBatch: vocab details", "batchID", activeBatch.id, "seqIdx", i, "len(logits)", len(outputs), "len(activeBatch.batch.Outputs)", activeBatch.batch.Outputs.Dim(0), "vocabSize", vocabSize, "iBatches", iBatches)
token, err := seq.sampler.Sample(outputs[iBatches[i]*vocabSize : (iBatches[i]+1)*vocabSize])
if err != nil {
return fmt.Errorf("failed to sample token: %w", err)
s.hardErrCh <- fmt.Errorf("failed to sample token: %w", err)
return
}
nextBatchTokens[i].Token = token
// if it's an end of sequence token, break
if s.model.(model.TextProcessor).Is(token, model.SpecialEOS) {
// TODO (jmorganca): we should send this back
// as it's important for the /api/generate context
// seq.responses <- piece
logutil.Trace("computeBatch: EOS", "batchID", activeBatch.id, "seqIdx", i)
s.removeSequence(i, llm.DoneReasonStop)
continue
}
piece, err := s.model.(model.TextProcessor).Decode([]int32{token})
if err != nil {
return err
s.hardErrCh <- fmt.Errorf("failed to decode token: %w", err)
return
}
seq.inputs = []input.Input{{Token: token}}
seq.pendingResponses = append(seq.pendingResponses, piece)
sequence := strings.Join(seq.pendingResponses, "")
@@ -575,6 +754,7 @@ func (s *Server) processBatch() error {
if tokenTruncated || origLen == newLen {
tokenLen--
}
seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
s.removeSequence(i, llm.DoneReasonStop)
@@ -593,8 +773,6 @@ func (s *Server) processBatch() error {
s.removeSequence(i, llm.DoneReasonConnectionClosed)
}
}
return nil
}
func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
@@ -665,7 +843,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
found := false
for i, sq := range s.seqs {
if sq == nil {
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs)
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, true)
if err != nil {
s.mu.Unlock()
s.seqsSem.Release(1)
@@ -721,6 +899,67 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
}
}
func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
if s.model.Backend().Config().Uint("pooling_type", math.MaxUint32) == math.MaxUint32 {
http.Error(w, "this model does not support embeddings", http.StatusNotImplemented)
return
}
var req llm.EmbeddingRequest
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, fmt.Sprintf("bad request: %s", err), http.StatusBadRequest)
return
}
w.Header().Set("Content-Type", "application/json")
seq, err := s.NewSequence(req.Content, nil, NewSequenceParams{embedding: true})
if err != nil {
http.Error(w, fmt.Sprintf("failed to create new sequence: %v", err), http.StatusInternalServerError)
return
}
if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
if errors.Is(err, context.Canceled) {
slog.Info("aborting embedding request due to client closing the connection")
} else {
http.Error(w, fmt.Sprintf("failed to acquire semaphore: %v", err), http.StatusInternalServerError)
}
return
}
s.mu.Lock()
found := false
for i, sq := range s.seqs {
if sq == nil {
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, false)
if err != nil {
s.mu.Unlock()
s.seqsSem.Release(1)
http.Error(w, fmt.Sprintf("failed to load cache: %v", err), http.StatusInternalServerError)
return
}
s.seqs[i] = seq
s.cond.Signal()
found = true
break
}
}
s.mu.Unlock()
if !found {
s.seqsSem.Release(1)
http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
return
}
if err := json.NewEncoder(w).Encode(&llm.EmbeddingResponse{
Embedding: <-seq.embedding,
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
}
}
func (s *Server) health(w http.ResponseWriter, r *http.Request) {
w.Header().Set("Content-Type", "application/json")
if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
@@ -736,7 +975,10 @@ func (s *Server) reserveWorstCaseGraph() error {
defer ctx.Close()
var err error
inputs := make([]input.Input, s.batchSize)
inputs := make([]*input.Input, s.batchSize)
for i := range inputs {
inputs[i] = &input.Input{}
}
mmStore := newMultimodalStore()
// Multimodal strategy:
@@ -778,8 +1020,11 @@ func (s *Server) reserveWorstCaseGraph() error {
}
if len(inputs) < s.batchSize {
newInputs := make([]input.Input, s.batchSize)
newInputs := make([]*input.Input, s.batchSize)
copy(newInputs, inputs)
for i := len(inputs); i < s.batchSize; i++ {
newInputs[i] = &input.Input{}
}
inputs = newInputs
}
}
@@ -803,12 +1048,8 @@ func (s *Server) reserveWorstCaseGraph() error {
batch.Positions[i] = int32(i)
}
batch.Outputs = make([]int32, s.parallel)
for i := range batch.Outputs {
batch.Outputs[i] = int32(i)
}
batch.Inputs = ctx.Input().FromIntSlice(batchInputs, len(batchInputs))
batch.Outputs = ctx.Input().Empty(ml.DTypeI32, s.parallel)
cache := s.model.Config().Cache
if cache != nil {
@@ -843,7 +1084,12 @@ func (s *Server) allocModel(
defer func() {
if r := recover(); r != nil {
if err, ok := r.(error); ok {
panicErr = err
var noMem ml.ErrNoMem
if errors.As(err, &noMem) {
panicErr = noMem
} else {
panic(r)
}
} else {
panic(r)
}
@@ -1011,6 +1257,7 @@ func Execute(args []string) error {
server := &Server{
modelPath: *mpath,
status: llm.ServerStatusLaunched,
hardErrCh: make(chan error, 1),
}
server.cond = sync.NewCond(&server.mu)
@@ -1029,10 +1276,7 @@ func Execute(args []string) error {
mux := http.NewServeMux()
// TODO: support embeddings
mux.HandleFunc("POST /load", server.load)
mux.HandleFunc("POST /embedding", func(w http.ResponseWriter, r *http.Request) {
http.Error(w, "this model does not support embeddings", http.StatusNotImplemented)
})
mux.HandleFunc("POST /embedding", server.embeddings)
mux.HandleFunc("POST /completion", server.completion)
mux.HandleFunc("GET /health", server.health)

View File

@@ -78,7 +78,7 @@ function checkEnv() {
}
function buildOllama() {
function buildCPU() {
mkdir -Force -path "${script:DIST_DIR}\"
if ($script:ARCH -ne "arm64") {
Remove-Item -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}"
@@ -90,20 +90,72 @@ function buildOllama() {
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --install build --component CPU --strip
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
}
function buildCUDA11() {
# CUDA v11 claims to be compatible with MSVC 2022, but the latest updates are no longer compatible
# 19.40 is the last compiler version that works, but recent udpates are 19.43
# So this pins to MSVC 2019 for best compatibility
mkdir -Force -path "${script:DIST_DIR}\"
if ($script:ARCH -ne "arm64") {
$hashEnv = @{}
Get-ChildItem env: | foreach { $hashEnv[$_.Name] = $_.Value }
if ("$script:CUDA_DIRS".Contains("v12")) {
$hashEnv.Keys | foreach { if ($_.Contains("CUDA_PATH_V12")) { $v12="$_" }}
$env:CUDAToolkit_ROOT=$hashEnv[$v12]
write-host "Building CUDA v12 backend libraries"
& cmake --fresh --preset "CUDA 12" --install-prefix $script:DIST_DIR
if ("$script:CUDA_DIRS".Contains("v11")) {
$hashEnv.Keys | foreach { if ($_.Contains("CUDA_PATH_V11")) { $x=$hashEnv[$_]; if (test-path -literalpath "$x\bin\nvcc.exe" ) { $cuda=$x} }}
write-host "Building CUDA v11 backend libraries $cuda"
$env:CUDAToolkit_ROOT=$cuda
& cmake --fresh --preset "CUDA 11" -T cuda="$cuda" -DCMAKE_CUDA_COMPILER="$cuda\bin\nvcc.exe" -G "Visual Studio 16 2019" --install-prefix $script:DIST_DIR -DOLLAMA_RUNNER_DIR="cuda_v11"
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --build --preset "CUDA 11" --config Release --parallel $script:JOBS
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --install build --component "CUDA" --strip
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
}
}
function buildCUDA12() {
mkdir -Force -path "${script:DIST_DIR}\"
if ($script:ARCH -ne "arm64") {
$hashEnv = @{}
Get-ChildItem env: | foreach { $hashEnv[$_.Name] = $_.Value }
if ("$script:CUDA_DIRS".Contains("v12.8")) {
$hashEnv.Keys | foreach { if ($_.Contains("CUDA_PATH_V12_8")) { $x=$hashEnv[$_]; if (test-path -literalpath "$x\bin\nvcc.exe" ) { $cuda=$x} }}
write-host "Building CUDA v12 backend libraries $cuda"
$env:CUDAToolkit_ROOT=$cuda
& cmake --fresh --preset "CUDA 12" -T cuda="$cuda" --install-prefix $script:DIST_DIR -DOLLAMA_RUNNER_DIR="cuda_v12"
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --build --preset "CUDA 12" --config Release --parallel $script:JOBS
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --install build --component "CUDA" --strip
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
}
}
function buildCUDA13() {
mkdir -Force -path "${script:DIST_DIR}\"
if ($script:ARCH -ne "arm64") {
$hashEnv = @{}
Get-ChildItem env: | foreach { $hashEnv[$_.Name] = $_.Value }
if ("$script:CUDA_DIRS".Contains("v13")) {
$hashEnv.Keys | foreach { if ($_.Contains("CUDA_PATH_V13")) { $x=$hashEnv[$_]; if (test-path -literalpath "$x\bin\nvcc.exe" ) { $cuda=$x} }}
$env:CUDAToolkit_ROOT=$cuda
write-host "Building CUDA v13 backend libraries $cuda"
& cmake --fresh --preset "CUDA 13" -T cuda="$cuda" --install-prefix $script:DIST_DIR -DOLLAMA_RUNNER_DIR="cuda_v13"
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --build --preset "CUDA 13" --config Release --parallel $script:JOBS
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --install build --component "CUDA" --strip
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
}
}
function buildROCm() {
mkdir -Force -path "${script:DIST_DIR}\"
if ($script:ARCH -ne "arm64") {
if ($env:HIP_PATH) {
write-host "Building ROCm backend libraries"
if (-Not (get-command -ErrorAction silent ninja)) {
@@ -129,6 +181,10 @@ function buildOllama() {
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
}
}
function buildOllama() {
mkdir -Force -path "${script:DIST_DIR}\"
write-host "Building ollama CLI"
& go build -trimpath -ldflags "-s -w -X=github.com/ollama/ollama/version.Version=$script:VERSION -X=github.com/ollama/ollama/server.mode=release" .
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
@@ -236,6 +292,10 @@ function distZip() {
checkEnv
try {
if ($($args.count) -eq 0) {
buildCPU
buildCUDA12
buildCUDA13
buildROCm
buildOllama
buildApp
gatherDependencies

View File

@@ -32,6 +32,7 @@ import (
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/harmony"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/openai"
@@ -45,6 +46,18 @@ import (
"github.com/ollama/ollama/version"
)
func shouldUseHarmony(model *Model) bool {
if slices.Contains([]string{"gptoss", "gpt-oss"}, model.Config.ModelFamily) {
// heuristic to check whether the template expects to be parsed via harmony:
// search for harmony tags that are nearly always used
if model.Template.Contains("<|start|>") && model.Template.Contains("<|end|>") {
return true
}
}
return false
}
func experimentEnabled(name string) bool {
return slices.Contains(strings.Split(os.Getenv("OLLAMA_EXPERIMENT"), ","), name)
}
@@ -176,7 +189,7 @@ func (s *Server) GenerateHandler(c *gin.Context) {
}
// expire the runner
if req.Prompt == "" && req.KeepAlive != nil && int(req.KeepAlive.Seconds()) == 0 {
if req.Prompt == "" && req.KeepAlive != nil && req.KeepAlive.Duration == 0 {
s.sched.expireRunner(m)
c.JSON(http.StatusOK, api.GenerateResponse{
@@ -194,12 +207,12 @@ func (s *Server) GenerateHandler(c *gin.Context) {
return
}
useHarmony := shouldUseHarmony(*m) && !req.Raw
var harmonyMessageHandler *HarmonyMessageHandler
var harmonyToolParser *HarmonyToolCallAccumulator
useHarmony := shouldUseHarmony(m) && !req.Raw
var harmonyMessageHandler *harmony.HarmonyMessageHandler
var harmonyToolParser *harmony.HarmonyToolCallAccumulator
if useHarmony {
harmonyMessageHandler = NewHarmonyMessageHandler()
harmonyMessageHandler.harmonyParser.AddImplicitStart()
harmonyMessageHandler = harmony.NewHarmonyMessageHandler()
harmonyMessageHandler.HarmonyParser.AddImplicitStart()
harmonyToolParser = harmonyMessageHandler.CreateToolParser()
}
@@ -314,6 +327,19 @@ func (s *Server) GenerateHandler(c *gin.Context) {
prompt = b.String()
}
// If debug mode is enabled, return the rendered template instead of calling the model
if req.DebugRenderOnly {
c.JSON(http.StatusOK, api.DebugTemplateResponse{
Model: req.Model,
CreatedAt: time.Now().UTC(),
DebugInfo: api.DebugInfo{
RenderedTemplate: prompt,
ImageCount: len(images),
},
})
return
}
var thinkingState *thinking.Parser
if !useHarmony {
openingTag, closingTag := thinking.InferTags(m.Template.Template)
@@ -462,7 +488,6 @@ func (s *Server) EmbedHandler(c *gin.Context) {
}
truncate := true
if req.Truncate != nil && !*req.Truncate {
truncate = false
}
@@ -529,7 +554,16 @@ func (s *Server) EmbedHandler(c *gin.Context) {
return
}
if bos := kvData.Uint("tokenizer.ggml.bos_token_id"); tokens[0] != int(bos) && kvData.Bool("add_bos_token", true) {
ctxLen--
}
if eos := kvData.Uint("tokenizer.ggml.eos_token_id"); tokens[len(tokens)-1] != int(eos) && kvData.Bool("add_eos_token", true) {
ctxLen--
}
tokens = tokens[:ctxLen]
s, err = r.Detokenize(c.Request.Context(), tokens)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
@@ -550,7 +584,12 @@ func (s *Server) EmbedHandler(c *gin.Context) {
if err != nil {
return err
}
embeddings[i] = normalize(embedding)
// TODO: this first normalization should be done by the model
embedding = normalize(embedding)
if req.Dimensions > 0 && req.Dimensions < len(embedding) {
embedding = normalize(embedding[:req.Dimensions])
}
embeddings[i] = embedding
return nil
})
}
@@ -576,11 +615,7 @@ func normalize(vec []float32) []float32 {
sum += v * v
}
norm := float32(0.0)
if sum > 0 {
norm = float32(1.0 / math.Sqrt(float64(sum)))
}
norm := float32(1.0 / max(math.Sqrt(float64(sum)), 1e-12))
for i := range vec {
vec[i] *= norm
}
@@ -1518,7 +1553,7 @@ func (s *Server) ChatHandler(c *gin.Context) {
}
// expire the runner
if len(req.Messages) == 0 && req.KeepAlive != nil && int(req.KeepAlive.Seconds()) == 0 {
if len(req.Messages) == 0 && req.KeepAlive != nil && req.KeepAlive.Duration == 0 {
model, err := GetModel(req.Model)
if err != nil {
switch {
@@ -1590,14 +1625,49 @@ func (s *Server) ChatHandler(c *gin.Context) {
}
msgs = filterThinkTags(msgs, m)
prompt, images, err := chatPrompt(c.Request.Context(), m, r.Tokenize, opts, msgs, req.Tools, req.Think)
var harmonyMessageHandler *harmony.HarmonyMessageHandler
var harmonyToolParser *harmony.HarmonyToolCallAccumulator
useHarmony := shouldUseHarmony(m)
processedTools := req.Tools
if useHarmony {
harmonyMessageHandler = harmony.NewHarmonyMessageHandler()
var lastMessage *api.Message
if len(msgs) > 0 {
lastMessage = &msgs[len(msgs)-1]
}
harmonyMessageHandler.HarmonyParser.AddImplicitStartOrPrefill(lastMessage)
harmonyToolParser = harmonyMessageHandler.CreateToolParser()
// make a copy of tools to pass to the chat prompt. Function names may be
// renamed to be valid Harmony function names.
processedTools = make([]api.Tool, len(req.Tools))
copy(processedTools, req.Tools)
for i, tool := range processedTools {
processedTools[i].Function.Name = harmonyMessageHandler.FunctionNameMap.ConvertAndAdd(tool.Function.Name)
}
}
prompt, images, err := chatPrompt(c.Request.Context(), m, r.Tokenize, opts, msgs, processedTools, req.Think)
if err != nil {
slog.Error("chat prompt error", "error", err)
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
useHarmony := shouldUseHarmony(*m)
// If debug mode is enabled, return the rendered template instead of calling the model
if req.DebugRenderOnly {
c.JSON(http.StatusOK, api.DebugTemplateResponse{
Model: req.Model,
CreatedAt: time.Now().UTC(),
DebugInfo: api.DebugInfo{
RenderedTemplate: prompt,
ImageCount: len(images),
},
})
return
}
// Validate Think value: string values currently only allowed for gptoss models
if req.Think != nil && req.Think.IsString() && !useHarmony {
@@ -1605,19 +1675,6 @@ func (s *Server) ChatHandler(c *gin.Context) {
return
}
var harmonyMessageHandler *HarmonyMessageHandler
var harmonyToolParser *HarmonyToolCallAccumulator
if useHarmony {
harmonyMessageHandler = NewHarmonyMessageHandler()
var lastMessage *api.Message
if len(msgs) > 0 {
lastMessage = &msgs[len(msgs)-1]
}
harmonyMessageHandler.harmonyParser.AddImplicitStartOrPrefill(lastMessage)
harmonyToolParser = harmonyMessageHandler.CreateToolParser()
}
var thinkingState *thinking.Parser
openingTag, closingTag := thinking.InferTags(m.Template.Template)
if req.Think != nil && req.Think.Bool() && openingTag != "" && closingTag != "" {
@@ -1625,6 +1682,10 @@ func (s *Server) ChatHandler(c *gin.Context) {
OpeningTag: openingTag,
ClosingTag: closingTag,
}
if strings.HasSuffix(strings.TrimSpace(prompt), openingTag) {
thinkingState.AddContent(openingTag)
}
}
var toolParser *tools.Parser
@@ -1670,6 +1731,7 @@ func (s *Server) ChatHandler(c *gin.Context) {
toolName, toolContent := harmonyToolParser.Drain()
if toolName != nil {
*toolName = strings.TrimPrefix(*toolName, "functions.")
*toolName = harmonyMessageHandler.FunctionNameMap.OriginalFromConverted(*toolName)
var args api.ToolCallFunctionArguments
if err := json.Unmarshal([]byte(toolContent), &args); err != nil {
errStr := fmt.Sprintf("error parsing tool call: raw='%s', err=%s", toolContent, err.Error())

413
server/routes_debug_test.go Normal file
View File

@@ -0,0 +1,413 @@
package server
import (
"bytes"
"encoding/json"
"net/http"
"testing"
"time"
"github.com/gin-gonic/gin"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/discover"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
)
func TestGenerateDebugRenderOnly(t *testing.T) {
gin.SetMode(gin.TestMode)
mock := mockRunner{
CompletionResponse: llm.CompletionResponse{
Done: true,
DoneReason: llm.DoneReasonStop,
PromptEvalCount: 1,
PromptEvalDuration: 1,
EvalCount: 1,
EvalDuration: 1,
},
}
s := Server{
sched: &Scheduler{
pendingReqCh: make(chan *LlmRequest, 1),
finishedReqCh: make(chan *LlmRequest, 1),
expiredCh: make(chan *runnerRef, 1),
unloadedCh: make(chan any, 1),
loaded: make(map[string]*runnerRef),
newServerFn: newMockServer(&mock),
getGpuFn: discover.GetGPUInfo,
getCpuFn: discover.GetCPUInfo,
reschedDelay: 250 * time.Millisecond,
loadFn: func(req *LlmRequest, _ *ggml.GGML, _ discover.GpuInfoList, _ bool) bool {
// add small delay to simulate loading
time.Sleep(time.Millisecond)
req.successCh <- &runnerRef{
llama: &mock,
}
return false
},
},
}
go s.sched.Run(t.Context())
// Create a test model
stream := false
_, digest := createBinFile(t, ggml.KV{
"general.architecture": "llama",
"llama.block_count": uint32(1),
"llama.context_length": uint32(8192),
"llama.embedding_length": uint32(4096),
"llama.attention.head_count": uint32(32),
"llama.attention.head_count_kv": uint32(8),
"tokenizer.ggml.tokens": []string{""},
"tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0},
}, []*ggml.Tensor{
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_gate.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_up.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_k.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_q.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_v.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
})
w := createRequest(t, s.CreateHandler, api.CreateRequest{
Model: "test-model",
Files: map[string]string{"file.gguf": digest},
Template: "{{ .Prompt }}",
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
tests := []struct {
name string
request api.GenerateRequest
expectDebug bool
expectTemplate string
expectNumImages int
}{
{
name: "debug render only enabled",
request: api.GenerateRequest{
Model: "test-model",
Prompt: "Hello, world!",
DebugRenderOnly: true,
},
expectDebug: true,
expectTemplate: "Hello, world!",
},
{
name: "debug render only disabled",
request: api.GenerateRequest{
Model: "test-model",
Prompt: "Hello, world!",
DebugRenderOnly: false,
},
expectDebug: false,
},
{
name: "debug render only with system prompt",
request: api.GenerateRequest{
Model: "test-model",
Prompt: "User question",
System: "You are a helpful assistant",
DebugRenderOnly: true,
},
expectDebug: true,
expectTemplate: "User question",
},
{
name: "debug render only with template",
request: api.GenerateRequest{
Model: "test-model",
Prompt: "Hello",
Template: "PROMPT: {{ .Prompt }}",
DebugRenderOnly: true,
},
expectDebug: true,
expectTemplate: "PROMPT: Hello",
},
{
name: "debug render only with images",
request: api.GenerateRequest{
Model: "test-model",
Prompt: "Describe this image",
Images: []api.ImageData{[]byte("fake-image-data")},
DebugRenderOnly: true,
},
expectDebug: true,
expectTemplate: "[img-0]\n\nDescribe this image",
expectNumImages: 1,
},
{
name: "debug render only with raw mode",
request: api.GenerateRequest{
Model: "test-model",
Prompt: "Raw prompt text",
Raw: true,
DebugRenderOnly: true,
},
expectDebug: true,
expectTemplate: "Raw prompt text",
},
}
for _, tt := range tests {
// Test both with and without streaming
streamValues := []bool{false, true}
for _, stream := range streamValues {
streamSuffix := ""
if stream {
streamSuffix = " (streaming)"
}
t.Run(tt.name+streamSuffix, func(t *testing.T) {
req := tt.request
req.Stream = &stream
w := createRequest(t, s.GenerateHandler, req)
if tt.expectDebug {
if w.Code != http.StatusOK {
t.Errorf("expected status %d, got %d, body: %s", http.StatusOK, w.Code, w.Body.String())
}
var response api.DebugTemplateResponse
if err := json.Unmarshal(w.Body.Bytes(), &response); err != nil {
t.Fatalf("failed to unmarshal response: %v", err)
}
if response.Model != tt.request.Model {
t.Errorf("expected model %s, got %s", tt.request.Model, response.Model)
}
if tt.expectTemplate != "" && response.DebugInfo.RenderedTemplate != tt.expectTemplate {
t.Errorf("expected template %q, got %q", tt.expectTemplate, response.DebugInfo.RenderedTemplate)
}
if tt.expectNumImages > 0 && response.DebugInfo.ImageCount != tt.expectNumImages {
t.Errorf("expected image count %d, got %d", tt.expectNumImages, response.DebugInfo.ImageCount)
}
} else {
// When debug is disabled, it should attempt normal processing
if w.Code != http.StatusOK {
t.Errorf("expected status %d, got %d", http.StatusOK, w.Code)
}
}
})
}
}
}
func TestChatDebugRenderOnly(t *testing.T) {
gin.SetMode(gin.TestMode)
mock := mockRunner{
CompletionResponse: llm.CompletionResponse{
Done: true,
DoneReason: llm.DoneReasonStop,
PromptEvalCount: 1,
PromptEvalDuration: 1,
EvalCount: 1,
EvalDuration: 1,
},
}
s := Server{
sched: &Scheduler{
pendingReqCh: make(chan *LlmRequest, 1),
finishedReqCh: make(chan *LlmRequest, 1),
expiredCh: make(chan *runnerRef, 1),
unloadedCh: make(chan any, 1),
loaded: make(map[string]*runnerRef),
newServerFn: newMockServer(&mock),
getGpuFn: discover.GetGPUInfo,
getCpuFn: discover.GetCPUInfo,
reschedDelay: 250 * time.Millisecond,
loadFn: func(req *LlmRequest, _ *ggml.GGML, _ discover.GpuInfoList, _ bool) bool {
// add small delay to simulate loading
time.Sleep(time.Millisecond)
req.successCh <- &runnerRef{
llama: &mock,
}
return false
},
},
}
go s.sched.Run(t.Context())
// Create a test model
stream := false
_, digest := createBinFile(t, ggml.KV{
"general.architecture": "llama",
"llama.block_count": uint32(1),
"llama.context_length": uint32(8192),
"llama.embedding_length": uint32(4096),
"llama.attention.head_count": uint32(32),
"llama.attention.head_count_kv": uint32(8),
"tokenizer.ggml.tokens": []string{""},
"tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0},
}, []*ggml.Tensor{
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_gate.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_up.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_k.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_q.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_v.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
})
w := createRequest(t, s.CreateHandler, api.CreateRequest{
Model: "test-model",
Files: map[string]string{"file.gguf": digest},
Template: "{{ if .Tools }}{{ .Tools }}{{ end }}{{ range .Messages }}{{ .Role }}: {{ .Content }}\n{{ end }}",
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
tests := []struct {
name string
request api.ChatRequest
expectDebug bool
expectTemplate string
expectNumImages int
}{
{
name: "chat debug render only enabled",
request: api.ChatRequest{
Model: "test-model",
Messages: []api.Message{
{Role: "system", Content: "You are a helpful assistant"},
{Role: "user", Content: "Hello"},
},
DebugRenderOnly: true,
},
expectDebug: true,
expectTemplate: "system: You are a helpful assistant\nuser: Hello\n",
},
{
name: "chat debug render only disabled",
request: api.ChatRequest{
Model: "test-model",
Messages: []api.Message{
{Role: "user", Content: "Hello"},
},
DebugRenderOnly: false,
},
expectDebug: false,
},
{
name: "chat debug with assistant message",
request: api.ChatRequest{
Model: "test-model",
Messages: []api.Message{
{Role: "user", Content: "Hello"},
{Role: "assistant", Content: "Hi there!"},
{Role: "user", Content: "How are you?"},
},
DebugRenderOnly: true,
},
expectDebug: true,
expectTemplate: "user: Hello\nassistant: Hi there!\nuser: How are you?\n",
},
{
name: "chat debug with images",
request: api.ChatRequest{
Model: "test-model",
Messages: []api.Message{
{
Role: "user",
Content: "What's in this image?",
Images: []api.ImageData{[]byte("fake-image-data")},
},
},
DebugRenderOnly: true,
},
expectDebug: true,
expectTemplate: "user: [img-0]What's in this image?\n",
expectNumImages: 1,
},
{
name: "chat debug with tools",
request: api.ChatRequest{
Model: "test-model",
Messages: []api.Message{
{Role: "user", Content: "Get the weather"},
},
Tools: api.Tools{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get weather information",
},
},
},
DebugRenderOnly: true,
},
expectDebug: true,
expectTemplate: "[{\"type\":\"function\",\"function\":{\"name\":\"get_weather\",\"description\":\"Get weather information\",\"parameters\":{\"type\":\"\",\"required\":null,\"properties\":null}}}]user: Get the weather\n",
},
}
for _, tt := range tests {
// Test both with and without streaming
streamValues := []bool{false, true}
for _, stream := range streamValues {
streamSuffix := ""
if stream {
streamSuffix = " (streaming)"
}
t.Run(tt.name+streamSuffix, func(t *testing.T) {
req := tt.request
req.Stream = &stream
w := createRequest(t, s.ChatHandler, req)
if tt.expectDebug {
if w.Code != http.StatusOK {
t.Errorf("expected status %d, got %d, body: %s", http.StatusOK, w.Code, w.Body.String())
}
var response api.DebugTemplateResponse
if err := json.Unmarshal(w.Body.Bytes(), &response); err != nil {
t.Fatalf("failed to unmarshal response: %v", err)
}
if response.Model != tt.request.Model {
t.Errorf("expected model %s, got %s", tt.request.Model, response.Model)
}
if tt.expectTemplate != "" && response.DebugInfo.RenderedTemplate != tt.expectTemplate {
t.Errorf("expected template %q, got %q", tt.expectTemplate, response.DebugInfo.RenderedTemplate)
}
if tt.expectNumImages > 0 && response.DebugInfo.ImageCount != tt.expectNumImages {
t.Errorf("expected image count %d, got %d", tt.expectNumImages, response.DebugInfo.ImageCount)
}
} else {
// When debug is disabled, it should attempt normal processing
if w.Code != http.StatusOK {
t.Errorf("expected status %d, got %d", http.StatusOK, w.Code)
}
}
})
}
}
}

View File

@@ -969,3 +969,233 @@ func TestGenerate(t *testing.T) {
}
})
}
func TestChatWithPromptEndingInThinkTag(t *testing.T) {
gin.SetMode(gin.TestMode)
// Helper to create a standard thinking test setup
setupThinkingTest := func(t *testing.T) (*mockRunner, *Server) {
mock := &mockRunner{
CompletionResponse: llm.CompletionResponse{
Done: true,
DoneReason: llm.DoneReasonStop,
PromptEvalCount: 1,
PromptEvalDuration: 1,
EvalCount: 1,
EvalDuration: 1,
},
}
s := &Server{
sched: &Scheduler{
pendingReqCh: make(chan *LlmRequest, 1),
finishedReqCh: make(chan *LlmRequest, 1),
expiredCh: make(chan *runnerRef, 1),
unloadedCh: make(chan any, 1),
loaded: make(map[string]*runnerRef),
newServerFn: newMockServer(mock),
getGpuFn: discover.GetGPUInfo,
getCpuFn: discover.GetCPUInfo,
reschedDelay: 250 * time.Millisecond,
loadFn: func(req *LlmRequest, _ *ggml.GGML, _ discover.GpuInfoList, _ bool) bool {
time.Sleep(time.Millisecond)
req.successCh <- &runnerRef{llama: mock}
return false
},
},
}
go s.sched.Run(t.Context())
// Create a model with thinking support
_, digest := createBinFile(t, ggml.KV{
"general.architecture": "llama",
"llama.block_count": uint32(1),
"llama.context_length": uint32(8192),
"llama.embedding_length": uint32(4096),
"llama.attention.head_count": uint32(32),
"llama.attention.head_count_kv": uint32(8),
"tokenizer.ggml.tokens": []string{""},
"tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0},
}, []*ggml.Tensor{
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_gate.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_up.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_k.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_q.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_v.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
})
// Create model with thinking template that adds <think> at the end
w := createRequest(t, s.CreateHandler, api.CreateRequest{
Model: "test-thinking",
Files: map[string]string{"file.gguf": digest},
Template: `{{- range .Messages }}
{{- if eq .Role "user" }}user: {{ .Content }}
{{ else if eq .Role "assistant" }}assistant: {{ if .Thinking }}<think>{{ .Thinking }}</think>{{ end }}{{ .Content }}
{{ end }}{{ end }}<think>`,
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
return mock, s
}
mock, s := setupThinkingTest(t)
// Helper to test chat responses
testChatRequest := func(t *testing.T, name string, userContent string, modelResponse string, expectedThinking string, expectedContent string, think bool) {
t.Run(name, func(t *testing.T) {
mock.CompletionResponse = llm.CompletionResponse{
Content: modelResponse,
Done: true,
DoneReason: llm.DoneReasonStop,
PromptEvalCount: 1,
PromptEvalDuration: 1,
EvalCount: 1,
EvalDuration: 1,
}
mock.CompletionFn = nil
streamRequest := false
req := api.ChatRequest{
Model: "test-thinking",
Messages: []api.Message{
{Role: "user", Content: userContent},
},
Stream: &streamRequest,
}
if think {
req.Think = &api.ThinkValue{Value: think}
}
w := createRequest(t, s.ChatHandler, req)
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
var resp api.ChatResponse
if err := json.NewDecoder(w.Body).Decode(&resp); err != nil {
t.Fatal(err)
}
if resp.Message.Thinking != expectedThinking {
t.Errorf("expected thinking %q, got %q", expectedThinking, resp.Message.Thinking)
}
if resp.Message.Content != expectedContent {
t.Errorf("expected content %q, got %q", expectedContent, resp.Message.Content)
}
})
}
// Test cases - Note: Template adds <think> at the end, and leading whitespace after <think> is eaten by the parser
testChatRequest(t, "basic thinking response",
"Help me solve this problem",
" Let me think about this step by step... </think> The answer is 42.",
"Let me think about this step by step... ",
"The answer is 42.",
true)
testChatRequest(t, "thinking with multiple sentences",
"Explain quantum computing",
" First, I need to understand the basics. Quantum bits can be in superposition. </think> Quantum computing uses quantum mechanics principles.",
"First, I need to understand the basics. Quantum bits can be in superposition. ",
"Quantum computing uses quantum mechanics principles.",
true)
testChatRequest(t, "no thinking content",
"What is 2+2?",
"</think> The answer is 4.",
"",
"The answer is 4.",
true)
testChatRequest(t, "thinking disabled but template still adds think tag",
"Simple question",
" My thoughts </think> The answer.",
"",
" My thoughts </think> The answer.",
false)
// Test streaming response with template-added <think>
t.Run("streaming with thinking", func(t *testing.T) {
var wg sync.WaitGroup
wg.Add(1)
mock.CompletionFn = func(ctx context.Context, r llm.CompletionRequest, fn func(r llm.CompletionResponse)) error {
defer wg.Done()
// Verify the prompt ends with <think> due to template
if !strings.HasSuffix(r.Prompt, "<think>") {
t.Errorf("expected prompt to end with <think>, got: %q", r.Prompt)
}
// Simulate streaming chunks
responses := []llm.CompletionResponse{
{Content: " I need to consider", Done: false, PromptEvalCount: 1, PromptEvalDuration: 1},
{Content: " multiple factors here...", Done: false, PromptEvalCount: 1, PromptEvalDuration: 1},
{Content: " </think> Based on my analysis,", Done: false, PromptEvalCount: 1, PromptEvalDuration: 1},
{Content: " the solution is straightforward.", Done: true, DoneReason: llm.DoneReasonStop, PromptEvalCount: 1, PromptEvalDuration: 1, EvalCount: 1, EvalDuration: 1},
}
for _, resp := range responses {
select {
case <-ctx.Done():
return ctx.Err()
default:
fn(resp)
time.Sleep(10 * time.Millisecond)
}
}
return nil
}
think := true
w := createRequest(t, s.ChatHandler, api.ChatRequest{
Model: "test-thinking",
Messages: []api.Message{{Role: "user", Content: "Analyze this complex problem"}},
Think: &api.ThinkValue{Value: think},
Stream: &stream,
})
wg.Wait()
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
// Parse streaming responses
decoder := json.NewDecoder(w.Body)
var allThinking, allContent strings.Builder
for {
var resp api.ChatResponse
if err := decoder.Decode(&resp); err == io.EOF {
break
} else if err != nil {
t.Fatal(err)
}
allThinking.WriteString(resp.Message.Thinking)
allContent.WriteString(resp.Message.Content)
}
// Note: Leading whitespace after <think> is eaten by the parser
if got := allThinking.String(); got != "I need to consider multiple factors here... " {
t.Errorf("expected thinking %q, got %q", "I need to consider multiple factors here... ", got)
}
if got := allContent.String(); got != "Based on my analysis, the solution is straightforward." {
t.Errorf("expected content %q, got %q", "Based on my analysis, the solution is straightforward.", got)
}
})
}

View File

@@ -103,7 +103,9 @@ func eat(s *Parser) (string, string, bool) {
// note that we use the original content, not the trimmed one because we
// don't want to eat any whitespace in the real content if there were no
// thinking tags
return "", s.acc.String(), false
untrimmed := s.acc.String()
s.acc.Reset()
return "", untrimmed, false
}
case thinkingState_ThinkingStartedEatingWhitespace:
trimmed := strings.TrimLeftFunc(s.acc.String(), unicode.IsSpace)

View File

@@ -58,6 +58,15 @@ func TestThinkingStreaming(t *testing.T) {
wantContent: " abc",
wantStateAfter: thinkingState_ThinkingDone,
},
// regression test for a bug where we were transitioning directly to
// ThinkingDone without clearing the buffer. This would cuase the first
// step to be outputted twice
{
input: "def",
wantThinking: "",
wantContent: "def",
wantStateAfter: thinkingState_ThinkingDone,
},
},
},
{

View File

@@ -224,22 +224,45 @@ func findArguments(buffer []byte) (map[string]any, int) {
return nil, 0
}
start := -1
var braces int
var start int = -1
var inString, escaped bool
for i := range buffer {
c := buffer[i]
if escaped {
escaped = false
continue
}
if c == '\\' {
escaped = true
continue
}
if c == '"' {
inString = !inString
continue
}
if inString {
continue
}
for i, c := range buffer {
if c == '{' {
if braces == 0 {
start = i
}
braces++
} else if c == '}' && braces > 0 {
} else if c == '}' {
braces--
if braces == 0 && start != -1 {
object := buffer[start : i+1]
var data map[string]any
if err := json.Unmarshal(object, &data); err != nil {
// not a valid object, keep looking
start = -1
continue
}
@@ -282,6 +305,10 @@ func findArguments(buffer []byte) (map[string]any, int) {
return data, i
}
if braces < 0 {
braces = 0
}
}
}

View File

@@ -1,6 +1,7 @@
package tools
import (
"strings"
"testing"
"text/template"
@@ -40,13 +41,7 @@ func TestParser(t *testing.T) {
Function: api.ToolFunction{
Name: "get_temperature",
Description: "Retrieve the temperature for a given location",
Parameters: struct {
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required"`
Properties map[string]api.ToolProperty `json:"properties"`
}{
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"city"},
Properties: map[string]api.ToolProperty{
@@ -68,13 +63,7 @@ func TestParser(t *testing.T) {
Function: api.ToolFunction{
Name: "get_conditions",
Description: "Retrieve the current weather conditions for a given location",
Parameters: struct {
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required"`
Properties map[string]api.ToolProperty `json:"properties"`
}{
Parameters: api.ToolFunctionParameters{
Type: "object",
Properties: map[string]api.ToolProperty{
"location": {
@@ -104,13 +93,7 @@ func TestParser(t *testing.T) {
Function: api.ToolFunction{
Name: "get_address",
Description: "Get the address of a given location",
Parameters: struct {
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required"`
Properties map[string]api.ToolProperty `json:"properties"`
}{
Parameters: api.ToolFunctionParameters{
Type: "object",
Properties: map[string]api.ToolProperty{
"location": {
@@ -126,13 +109,7 @@ func TestParser(t *testing.T) {
Function: api.ToolFunction{
Name: "add",
Description: "Add two numbers",
Parameters: struct {
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required"`
Properties map[string]api.ToolProperty `json:"properties"`
}{
Parameters: api.ToolFunctionParameters{
Type: "object",
Properties: map[string]api.ToolProperty{
"a": {
@@ -1140,11 +1117,163 @@ func TestFindArguments(t *testing.T) {
},
{
name: "deepseek",
buffer: []byte(`", "arguments": {"location": "Tokyo"}}</tool_call>`),
buffer: []byte(`"arguments": {"location": "Tokyo"}}</tool_call>`),
want: map[string]any{
"location": "Tokyo",
},
},
{
name: "string with braces",
buffer: []byte(`{"name": "process_code", "arguments": {"code": "if (x > 0) { return true; }"}}`),
want: map[string]any{
"code": "if (x > 0) { return true; }",
},
},
{
name: "string with nested json",
buffer: []byte(`{"name": "send_data", "arguments": {"payload": "{\"nested\": {\"key\": \"value\"}}"}}`),
want: map[string]any{
"payload": `{"nested": {"key": "value"}}`,
},
},
{
name: "string with escaped quotes and braces",
buffer: []byte(`{"name": "analyze", "arguments": {"text": "The JSON is: {\"key\": \"val{ue}\"}"}}`),
want: map[string]any{
"text": `The JSON is: {"key": "val{ue}"}`,
},
},
{
name: "multiple objects with string containing braces",
buffer: []byte(`{"name": "test", "arguments": {"query": "find } in text"}} {"name": "other"}`),
want: map[string]any{
"query": "find } in text",
},
},
{
name: "unmatched closing brace in string",
buffer: []byte(`{"name": "search", "arguments": {"pattern": "regex: }"}}`),
want: map[string]any{
"pattern": "regex: }",
},
},
{
name: "complex nested with mixed braces",
buffer: []byte(`{"name": "analyze", "arguments": {"data": "{\"items\": [{\"value\": \"}\"}, {\"code\": \"if (x) { return y; }\"}]}"}}`),
want: map[string]any{
"data": `{"items": [{"value": "}"}, {"code": "if (x) { return y; }"}]}`,
},
},
{
name: "string with newline and braces",
buffer: []byte(`{"name": "format", "arguments": {"template": "{\n \"key\": \"value\"\n}"}}`),
want: map[string]any{
"template": "{\n \"key\": \"value\"\n}",
},
},
{
name: "string with unicode escape",
buffer: []byte(`{"name": "test", "arguments": {"text": "Unicode: \u007B and \u007D"}}`),
want: map[string]any{
"text": "Unicode: { and }",
},
},
{
name: "array arguments",
buffer: []byte(`{"name": "batch", "arguments": ["item1", "item2", "{\"nested\": true}"]}`),
want: nil, // This should return nil because arguments is not a map
},
{
name: "escaped backslash before quote",
buffer: []byte(`{"name": "path", "arguments": {"dir": "C:\\Program Files\\{App}\\"}}`),
want: map[string]any{
"dir": `C:\Program Files\{App}\`,
},
},
{
name: "single quotes not treated as string delimiters",
buffer: []byte(`{"name": "query", "arguments": {"sql": "SELECT * FROM users WHERE name = '{admin}'"}}`),
want: map[string]any{
"sql": "SELECT * FROM users WHERE name = '{admin}'",
},
},
{
name: "incomplete json at buffer end",
buffer: []byte(`{"name": "test", "arguments": {"data": "some {"`),
want: nil,
},
{
name: "multiple escaped quotes",
buffer: []byte(`{"name": "echo", "arguments": {"msg": "He said \"Hello {World}\" loudly"}}`),
want: map[string]any{
"msg": `He said "Hello {World}" loudly`,
},
},
{
name: "json with comments style string",
buffer: []byte(`{"name": "code", "arguments": {"snippet": "// This is a comment with { and }"}}`),
want: map[string]any{
"snippet": "// This is a comment with { and }",
},
},
{
name: "consecutive escaped backslashes",
buffer: []byte(`{"name": "test", "arguments": {"path": "C:\\\\{folder}\\\\"}}`),
want: map[string]any{
"path": `C:\\{folder}\\`,
},
},
{
name: "empty string with braces after",
buffer: []byte(`{"name": "test", "arguments": {"a": "", "b": "{value}"}}`),
want: map[string]any{
"a": "",
"b": "{value}",
},
},
{
name: "unicode in key names",
buffer: []byte(`{"name": "test", "arguments": {"key{": "value", "key}": "value2"}}`),
want: map[string]any{
"key{": "value",
"key}": "value2",
},
},
{
name: "very long string with braces",
buffer: []byte(`{"name": "test", "arguments": {"data": "` + strings.Repeat("a{b}c", 100) + `"}}`),
want: map[string]any{
"data": strings.Repeat("a{b}c", 100),
},
},
{
name: "tab characters and braces",
buffer: []byte(`{"name": "test", "arguments": {"code": "\tif (true) {\n\t\treturn;\n\t}"}}`),
want: map[string]any{
"code": "\tif (true) {\n\t\treturn;\n\t}",
},
},
{
name: "null byte in string",
buffer: []byte(`{"name": "test", "arguments": {"data": "before\u0000{after}"}}`),
want: map[string]any{
"data": "before\x00{after}",
},
},
{
name: "escaped quote at end of string",
buffer: []byte(`{"name": "test", "arguments": {"data": "text with quote at end\\\""}}`),
want: map[string]any{
"data": `text with quote at end\"`,
},
},
{
name: "mixed array and object in arguments",
buffer: []byte(`{"name": "test", "arguments": {"items": ["{", "}", {"key": "value"}]}}`),
want: map[string]any{
"items": []any{"{", "}", map[string]any{"key": "value"}},
},
},
}
for _, tt := range tests {