Compare commits

...

52 Commits

Author SHA1 Message Date
Roy Han
d77a174eb4 defaut timeout 2024-06-27 14:58:31 -07:00
Michael
2cc7d05012 update readme for gemma 2 (#5333)
* update readme for gemma 2
2024-06-27 12:45:16 -04:00
Michael Yang
123a722a6f zip: prevent extracting files into parent dirs (#5314) 2024-06-26 21:38:21 -07:00
Jeffrey Morgan
4d311eb731 llm: architecture patch (#5316) 2024-06-26 21:38:12 -07:00
Blake Mizerany
cb42e607c5 llm: speed up gguf decoding by a lot (#5246)
Previously, some costly things were causing the loading of GGUF files
and their metadata and tensor information to be VERY slow:

  * Too many allocations when decoding strings
  * Hitting disk for each read of each key and value, resulting in a
    not-okay amount of syscalls/disk I/O.

The show API is now down to 33ms from 800ms+ for llama3 on a macbook pro
m3.

This commit also prevents collecting large arrays of values when
decoding GGUFs (if desired). When such keys are encountered, their
values are null, and are encoded as such in JSON.

Also, this fixes a broken test that was not encoding valid GGUF.
2024-06-24 21:47:52 -07:00
Blake Mizerany
2aa91a937b cmd: defer stating model info until necessary (#5248)
This commit changes the 'ollama run' command to defer fetching model
information until it really needs it. That is, when in interactive mode.

It also removes one such case where the model information is fetch in
duplicate, just before calling generateInteractive and then again, first
thing, in generateInteractive.

This positively impacts the performance of the command:

    ; time ./before run llama3 'hi'
    Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?

    ./before run llama3 'hi'  0.02s user 0.01s system 2% cpu 1.168 total
    ; time ./before run llama3 'hi'
    Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?

    ./before run llama3 'hi'  0.02s user 0.01s system 2% cpu 1.220 total
    ; time ./before run llama3 'hi'
    Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?

    ./before run llama3 'hi'  0.02s user 0.01s system 2% cpu 1.217 total
    ; time ./after run llama3 'hi'
    Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?

    ./after run llama3 'hi'  0.02s user 0.01s system 4% cpu 0.652 total
    ; time ./after run llama3 'hi'
    Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?

    ./after run llama3 'hi'  0.01s user 0.01s system 5% cpu 0.498 total
    ; time ./after run llama3 'hi'
    Hi! It's nice to meet you. Is there something I can help you with or would you like to chat?

    ./after run llama3 'hi'  0.01s user 0.01s system 3% cpu 0.479 total
    ; time ./after run llama3 'hi'
    Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?

    ./after run llama3 'hi'  0.02s user 0.01s system 5% cpu 0.507 total
    ; time ./after run llama3 'hi'
    Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?

    ./after run llama3 'hi'  0.02s user 0.01s system 5% cpu 0.507 total
2024-06-24 20:14:03 -07:00
Daniel Hiltgen
ccef9431c8 Merge pull request #5205 from dhiltgen/modelfile_use_mmap
Fix use_mmap parsing for modelfiles
2024-06-21 16:30:36 -07:00
royjhan
9a9e7d83c4 Docs (#5149) 2024-06-21 15:52:09 -07:00
Michael Yang
189a43caa2 Merge pull request #5206 from ollama/mxyng/quantize
fix: quantization with template
2024-06-21 13:44:34 -07:00
Michael Yang
e835ef1836 fix: quantization with template 2024-06-21 13:39:25 -07:00
Daniel Hiltgen
7e7749224c Fix use_mmap parsing for modelfiles
Add the new tristate parsing logic for the code path for modelfiles,
as well as a unit test.
2024-06-21 12:27:19 -07:00
Daniel Hiltgen
c7c2f3bc22 Merge pull request #5194 from dhiltgen/linux_mmap_auto
Refine mmap default logic on linux
2024-06-20 11:44:08 -07:00
Daniel Hiltgen
54a79d6a8a Merge pull request #5125 from dhiltgen/fedora39
Bump latest fedora cuda repo to 39
2024-06-20 11:27:24 -07:00
Daniel Hiltgen
5bf5aeec01 Refine mmap default logic on linux
If we try to use mmap when the model is larger than the system free space, loading is slower than the no-mmap approach.
2024-06-20 11:07:04 -07:00
Michael Yang
e01e535cbb Merge pull request #5192 from ollama/mxyng/kv
handle asymmetric embedding KVs
2024-06-20 10:46:24 -07:00
Josh
0195d6a2f8 Merge pull request #5188 from ollama/jyan/tmpdir2
fix: skip os.removeAll() if PID does not exist
2024-06-20 10:40:59 -07:00
Michael Yang
8e0641a9bf handle asymmetric embedding KVs 2024-06-20 09:57:27 -07:00
Josh Yan
662568d453 err!=nil check 2024-06-20 09:30:59 -07:00
Josh Yan
4ebb66c662 reformat error check 2024-06-20 09:23:43 -07:00
Josh Yan
23e899f32d skip os.removeAll() if PID does not exist 2024-06-20 08:51:35 -07:00
royjhan
fedf71635e Extend api/show and ollama show to return more model info (#4881)
* API Show Extended

* Initial Draft of Information

Co-Authored-By: Patrick Devine <pdevine@sonic.net>

* Clean Up

* Descriptive arg error messages and other fixes

* Second Draft of Show with Projectors Included

* Remove Chat Template

* Touches

* Prevent wrapping from files

* Verbose functionality

* Docs

* Address Feedback

* Lint

* Resolve Conflicts

* Function Name

* Tests for api/show model info

* Show Test File

* Add Projector Test

* Clean routes

* Projector Check

* Move Show Test

* Touches

* Doc update

---------

Co-authored-by: Patrick Devine <pdevine@sonic.net>
2024-06-19 14:19:02 -07:00
Daniel Hiltgen
97c59be653 Merge pull request #5074 from dhiltgen/app_log_rotation
Implement log rotation for tray app
2024-06-19 13:02:24 -07:00
Daniel Hiltgen
9d8a4988e8 Implement log rotation for tray app 2024-06-19 12:53:34 -07:00
Michael Yang
1ae0750a21 Merge pull request #5147 from ollama/mxyng/cleanup
remove confusing log message
2024-06-19 12:50:31 -07:00
Michael Yang
9d91e5e587 remove confusing log message 2024-06-19 11:14:11 -07:00
Daniel Hiltgen
96624aa412 Merge pull request #5072 from dhiltgen/windows_path
Move libraries out of users path
2024-06-19 09:13:39 -07:00
Daniel Hiltgen
10f33b8537 Merge pull request #5146 from dhiltgen/backout
Put back temporary intel GPU env var
2024-06-19 09:12:45 -07:00
Daniel Hiltgen
4a633cc295 Merge pull request #5145 from dhiltgen/bad_loads
Fix bad symbol load detection
2024-06-19 09:12:33 -07:00
Daniel Hiltgen
d34d88e417 Revert "Revert "gpu: add env var for detecting Intel oneapi gpus (#5076)""
This reverts commit 755b4e4fc2.
2024-06-19 08:57:41 -07:00
Daniel Hiltgen
52ce350b7a Fix bad symbol load detection
pointer deref's weren't correct on a few libraries, which explains
some crashes on older systems or miswired symlinks for discovery libraries.
2024-06-19 08:39:07 -07:00
Daniel Hiltgen
2abebb2cbe Merge pull request #5128 from zhewang1-intc/fix_levelzero_empty_symbol_detect
Fix levelzero empty symbol detect
2024-06-19 08:33:16 -07:00
Blake Mizerany
380e06e5be types/model: remove Digest
The Digest type in its current form is awkward to work with and presents
challenges with regard to how it serializes via String using the '-'
prefix.

We currently only use this in ollama.com, so we'll move our specific
needs around digest parsing and validation there.
2024-06-18 20:28:11 -07:00
Wang,Zhe
badf975e45 get real func ptr. 2024-06-19 09:00:51 +08:00
Wang,Zhe
755b4e4fc2 Revert "gpu: add env var for detecting Intel oneapi gpus (#5076)"
This reverts commit 163cd3e77c.
2024-06-19 08:59:58 +08:00
Daniel Hiltgen
1a1c99e334 Bump latest fedora cuda repo to 39 2024-06-18 17:13:54 -07:00
Michael Yang
21adf8b6d2 Merge pull request #5121 from ollama/mxyng/deepseekv2
deepseek v2 graph
2024-06-18 16:30:58 -07:00
Michael Yang
e873841cbb deepseek v2 graph 2024-06-18 15:35:12 -07:00
Daniel Hiltgen
26d0bf9236 Merge pull request #5117 from dhiltgen/fix_prediction
Handle models with divergent layer sizes
2024-06-18 11:36:51 -07:00
Daniel Hiltgen
359b15a597 Handle models with divergent layer sizes
The recent refactoring of the memory prediction assumed all layers
are the same size, but for some models (like deepseek-coder-v2) this
is not the case, so our predictions were significantly off.
2024-06-18 11:05:34 -07:00
Daniel Hiltgen
b55958a587 Merge pull request #5106 from dhiltgen/clean_logs
Tighten up memory prediction logging
2024-06-18 09:24:38 -07:00
Daniel Hiltgen
7784ca33ce Tighten up memory prediction logging
Prior to this change, we logged the memory prediction multiple times
as the scheduler iterates to find a suitable configuration, which can be
confusing since only the last log before the server starts is actually valid.
This now logs once just before starting the server on the final configuration.
It also reports what library instead of always saying "offloading to gpu" when
using CPU.
2024-06-18 09:15:35 -07:00
Daniel Hiltgen
c9c8c98bf6 Merge pull request #5105 from dhiltgen/cuda_mmap
Adjust mmap logic for cuda windows for faster model load
2024-06-17 17:07:30 -07:00
Daniel Hiltgen
171796791f Adjust mmap logic for cuda windows for faster model load
On Windows, recent llama.cpp changes make mmap slower in most
cases, so default to off.  This also implements a tri-state for
use_mmap so we can detect the difference between a user provided
value of true/false, or unspecified.
2024-06-17 16:54:30 -07:00
Jeffrey Morgan
176d0f7075 Update import.md 2024-06-17 19:44:14 -04:00
Daniel Hiltgen
8ed51cac37 Merge pull request #5103 from dhiltgen/faster_win_build
Revert powershell jobs, but keep nvcc and cmake parallelism
2024-06-17 14:23:18 -07:00
Daniel Hiltgen
c9e6f0542d Merge pull request #5069 from dhiltgen/ci_release
Implement custom github release action
2024-06-17 13:59:37 -07:00
Daniel Hiltgen
b0930626c5 Add back lower level parallel flags
nvcc supports parallelism (threads) and cmake + make can use -j,
while msbuild requires /p:CL_MPcount=8
2024-06-17 13:44:46 -07:00
Daniel Hiltgen
e890be4814 Revert "More parallelism on windows generate"
This reverts commit 0577af98f4.
2024-06-17 13:32:46 -07:00
Daniel Hiltgen
b2799f111b Move libraries out of users path
We update the PATH on windows to get the CLI mapped, but this has
an unintended side effect of causing other apps that may use our bundled
DLLs to get terminated when we upgrade.
2024-06-17 13:12:18 -07:00
Jeffrey Morgan
152fc202f5 llm: update llama.cpp commit to 7c26775 (#4896)
* llm: update llama.cpp submodule to `7c26775`

* disable `LLAMA_BLAS` for now

* `-DLLAMA_OPENMP=off`
2024-06-17 15:56:16 -04:00
Lei Jitang
4ad0d4d6d3 Fix a build warning (#5096)
Signed-off-by: Lei Jitang <leijitang@outlook.com>
2024-06-17 14:47:48 -04:00
Daniel Hiltgen
a12283e2ff Implement custom github release action
This implements the release logic we want via gh cli
to support updating releases with rc tags in place and retain
release notes and other community reactions.
2024-06-15 11:36:56 -07:00
50 changed files with 1533 additions and 522 deletions

View File

@@ -437,6 +437,7 @@ jobs:
env:
OLLAMA_SKIP_IMAGE_BUILD: '1'
PUSH: '1'
GH_TOKEN: ${{ github.token }}
steps:
- uses: actions/checkout@v4
- name: Set Version
@@ -460,15 +461,20 @@ jobs:
ls -lh dist/
(cd dist; sha256sum * > sha256sum.txt)
cat dist/sha256sum.txt
- uses: ncipollo/release-action@v1
with:
name: ${{ env.RELEASE_VERSION }}
allowUpdates: true
artifacts: 'dist/*'
draft: true
prerelease: true
omitBodyDuringUpdate: true
generateReleaseNotes: true
omitDraftDuringUpdate: true
omitPrereleaseDuringUpdate: true
replacesArtifacts: true
- name: Create or update Release
run: |
echo "Looking for existing release for ${{ env.RELEASE_VERSION }}"
OLD_TAG=$(gh release ls --json name,tagName | jq -r ".[] | select(.name == \"${{ env.RELEASE_VERSION }}\") | .tagName")
if [ -n "$OLD_TAG" ]; then
echo "Updating release ${{ env.RELEASE_VERSION }} to point to new tag ${GITHUB_REF_NAME}"
gh release edit ${OLD_TAG} --tag ${GITHUB_REF_NAME}
else
echo "Creating new release ${{ env.RELEASE_VERSION }} pointing to tag ${GITHUB_REF_NAME}"
gh release create ${GITHUB_REF_NAME} \
--title ${{ env.RELEASE_VERSION }} \
--draft \
--generate-notes \
--prerelease
fi
echo "Uploading artifacts for tag ${GITHUB_REF_NAME}"
gh release upload ${GITHUB_REF_NAME} dist/* --clobber

View File

@@ -53,8 +53,8 @@ Here are some example models that can be downloaded:
| Llama 3 | 70B | 40GB | `ollama run llama3:70b` |
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
| Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` |
| Gemma | 2B | 1.4GB | `ollama run gemma:2b` |
| Gemma | 7B | 4.8GB | `ollama run gemma:7b` |
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
| Mistral | 7B | 4.1GB | `ollama run mistral` |
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
@@ -182,6 +182,12 @@ $ ollama run llama3 "Summarize this file: $(cat README.md)"
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
```
### Show model information
```
ollama show llama3
```
### List models on your computer
```

View File

@@ -159,18 +159,49 @@ type Options struct {
// Runner options which must be set when the model is loaded into memory
type Runner struct {
UseNUMA bool `json:"numa,omitempty"`
NumCtx int `json:"num_ctx,omitempty"`
NumBatch int `json:"num_batch,omitempty"`
NumGPU int `json:"num_gpu,omitempty"`
MainGPU int `json:"main_gpu,omitempty"`
LowVRAM bool `json:"low_vram,omitempty"`
F16KV bool `json:"f16_kv,omitempty"`
LogitsAll bool `json:"logits_all,omitempty"`
VocabOnly bool `json:"vocab_only,omitempty"`
UseMMap bool `json:"use_mmap,omitempty"`
UseMLock bool `json:"use_mlock,omitempty"`
NumThread int `json:"num_thread,omitempty"`
UseNUMA bool `json:"numa,omitempty"`
NumCtx int `json:"num_ctx,omitempty"`
NumBatch int `json:"num_batch,omitempty"`
NumGPU int `json:"num_gpu,omitempty"`
MainGPU int `json:"main_gpu,omitempty"`
LowVRAM bool `json:"low_vram,omitempty"`
F16KV bool `json:"f16_kv,omitempty"`
LogitsAll bool `json:"logits_all,omitempty"`
VocabOnly bool `json:"vocab_only,omitempty"`
UseMMap TriState `json:"use_mmap,omitempty"`
UseMLock bool `json:"use_mlock,omitempty"`
NumThread int `json:"num_thread,omitempty"`
}
type TriState int
const (
TriStateUndefined TriState = -1
TriStateFalse TriState = 0
TriStateTrue TriState = 1
)
func (b *TriState) UnmarshalJSON(data []byte) error {
var v bool
if err := json.Unmarshal(data, &v); err != nil {
return err
}
if v {
*b = TriStateTrue
}
*b = TriStateFalse
return nil
}
func (b *TriState) MarshalJSON() ([]byte, error) {
if *b == TriStateUndefined {
return nil, nil
}
var v bool
if *b == TriStateTrue {
v = true
}
return json.Marshal(v)
}
// EmbeddingRequest is the request passed to [Client.Embeddings].
@@ -222,6 +253,7 @@ type ShowRequest struct {
Model string `json:"model"`
System string `json:"system"`
Template string `json:"template"`
Verbose bool `json:"verbose"`
Options map[string]interface{} `json:"options"`
@@ -231,14 +263,16 @@ type ShowRequest struct {
// ShowResponse is the response returned from [Client.Show].
type ShowResponse struct {
License string `json:"license,omitempty"`
Modelfile string `json:"modelfile,omitempty"`
Parameters string `json:"parameters,omitempty"`
Template string `json:"template,omitempty"`
System string `json:"system,omitempty"`
Details ModelDetails `json:"details,omitempty"`
Messages []Message `json:"messages,omitempty"`
ModifiedAt time.Time `json:"modified_at,omitempty"`
License string `json:"license,omitempty"`
Modelfile string `json:"modelfile,omitempty"`
Parameters string `json:"parameters,omitempty"`
Template string `json:"template,omitempty"`
System string `json:"system,omitempty"`
Details ModelDetails `json:"details,omitempty"`
Messages []Message `json:"messages,omitempty"`
ModelInfo map[string]any `json:"model_info,omitempty"`
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
ModifiedAt time.Time `json:"modified_at,omitempty"`
}
// CopyRequest is the request passed to [Client.Copy].
@@ -403,6 +437,19 @@ func (opts *Options) FromMap(m map[string]interface{}) error {
continue
}
if reflect.PointerTo(field.Type()) == reflect.TypeOf((*TriState)(nil)) {
val, ok := val.(bool)
if !ok {
return fmt.Errorf("option %q must be of type boolean", key)
}
if val {
field.SetInt(int64(TriStateTrue))
} else {
field.SetInt(int64(TriStateFalse))
}
continue
}
switch field.Kind() {
case reflect.Int:
switch t := val.(type) {
@@ -491,7 +538,7 @@ func DefaultOptions() Options {
LowVRAM: false,
F16KV: true,
UseMLock: false,
UseMMap: true,
UseMMap: TriStateUndefined,
UseNUMA: false,
},
}
@@ -561,6 +608,19 @@ func FormatParams(params map[string][]string) (map[string]interface{}, error) {
} else {
field := valueOpts.FieldByName(opt.Name)
if field.IsValid() && field.CanSet() {
if reflect.PointerTo(field.Type()) == reflect.TypeOf((*TriState)(nil)) {
boolVal, err := strconv.ParseBool(vals[0])
if err != nil {
return nil, fmt.Errorf("invalid bool value %s", vals)
}
if boolVal {
out[key] = TriStateTrue
} else {
out[key] = TriStateFalse
}
continue
}
switch field.Kind() {
case reflect.Float32:
floatVal, err := strconv.ParseFloat(vals[0], 32)

View File

@@ -2,6 +2,7 @@ package api
import (
"encoding/json"
"fmt"
"math"
"testing"
"time"
@@ -105,3 +106,101 @@ func TestDurationMarshalUnmarshal(t *testing.T) {
})
}
}
func TestUseMmapParsingFromJSON(t *testing.T) {
tests := []struct {
name string
req string
exp TriState
}{
{
name: "Undefined",
req: `{ }`,
exp: TriStateUndefined,
},
{
name: "True",
req: `{ "use_mmap": true }`,
exp: TriStateTrue,
},
{
name: "False",
req: `{ "use_mmap": false }`,
exp: TriStateFalse,
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
var oMap map[string]interface{}
err := json.Unmarshal([]byte(test.req), &oMap)
require.NoError(t, err)
opts := DefaultOptions()
err = opts.FromMap(oMap)
require.NoError(t, err)
assert.Equal(t, test.exp, opts.UseMMap)
})
}
}
func TestUseMmapFormatParams(t *testing.T) {
tests := []struct {
name string
req map[string][]string
exp TriState
err error
}{
{
name: "True",
req: map[string][]string{
"use_mmap": []string{"true"},
},
exp: TriStateTrue,
err: nil,
},
{
name: "False",
req: map[string][]string{
"use_mmap": []string{"false"},
},
exp: TriStateFalse,
err: nil,
},
{
name: "Numeric True",
req: map[string][]string{
"use_mmap": []string{"1"},
},
exp: TriStateTrue,
err: nil,
},
{
name: "Numeric False",
req: map[string][]string{
"use_mmap": []string{"0"},
},
exp: TriStateFalse,
err: nil,
},
{
name: "invalid string",
req: map[string][]string{
"use_mmap": []string{"foo"},
},
exp: TriStateUndefined,
err: fmt.Errorf("invalid bool value [foo]"),
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
resp, err := FormatParams(test.req)
require.Equal(t, err, test.err)
respVal, ok := resp["use_mmap"]
if test.exp != TriStateUndefined {
assert.True(t, ok, "resp: %v", resp)
assert.Equal(t, test.exp, respVal)
}
})
}
}

View File

@@ -5,6 +5,8 @@ import (
"log/slog"
"os"
"path/filepath"
"strconv"
"strings"
"github.com/ollama/ollama/envconfig"
)
@@ -24,6 +26,7 @@ func InitLogging() {
logFile = os.Stderr
// TODO - write one-line to the app.log file saying we're running in console mode to help avoid confusion
} else {
rotateLogs(AppLogFile)
logFile, err = os.OpenFile(AppLogFile, os.O_APPEND|os.O_WRONLY|os.O_CREATE, 0755)
if err != nil {
slog.Error(fmt.Sprintf("failed to create server log %v", err))
@@ -46,3 +49,32 @@ func InitLogging() {
slog.Info("ollama app started")
}
func rotateLogs(logFile string) {
if _, err := os.Stat(logFile); os.IsNotExist(err) {
return
}
index := strings.LastIndex(logFile, ".")
pre := logFile[:index]
post := "." + logFile[index+1:]
for i := LogRotationCount; i > 0; i-- {
older := pre + "-" + strconv.Itoa(i) + post
newer := pre + "-" + strconv.Itoa(i-1) + post
if i == 1 {
newer = pre + post
}
if _, err := os.Stat(newer); err == nil {
if _, err := os.Stat(older); err == nil {
err := os.Remove(older)
if err != nil {
slog.Warn("Failed to remove older log", "older", older, "error", err)
continue
}
}
err := os.Rename(newer, older)
if err != nil {
slog.Warn("Failed to rotate log", "older", older, "newer", newer, "error", err)
}
}
}
}

View File

@@ -0,0 +1,44 @@
package lifecycle
import (
"os"
"path/filepath"
"strconv"
"testing"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
func TestRotateLogs(t *testing.T) {
logDir := t.TempDir()
logFile := filepath.Join(logDir, "testlog.log")
// No log exists
rotateLogs(logFile)
require.NoError(t, os.WriteFile(logFile, []byte("1"), 0644))
assert.FileExists(t, logFile)
// First rotation
rotateLogs(logFile)
assert.FileExists(t, filepath.Join(logDir, "testlog-1.log"))
assert.NoFileExists(t, filepath.Join(logDir, "testlog-2.log"))
assert.NoFileExists(t, logFile)
// Should be a no-op without a new log
rotateLogs(logFile)
assert.FileExists(t, filepath.Join(logDir, "testlog-1.log"))
assert.NoFileExists(t, filepath.Join(logDir, "testlog-2.log"))
assert.NoFileExists(t, logFile)
for i := 2; i <= LogRotationCount+1; i++ {
require.NoError(t, os.WriteFile(logFile, []byte(strconv.Itoa(i)), 0644))
assert.FileExists(t, logFile)
rotateLogs(logFile)
assert.NoFileExists(t, logFile)
for j := 1; j < i; j++ {
assert.FileExists(t, filepath.Join(logDir, "testlog-"+strconv.Itoa(j)+".log"))
}
assert.NoFileExists(t, filepath.Join(logDir, "testlog-"+strconv.Itoa(i+1)+".log"))
}
}

View File

@@ -16,11 +16,12 @@ var (
AppDir = "/opt/Ollama"
AppDataDir = "/opt/Ollama"
// TODO - should there be a distinct log dir?
UpdateStageDir = "/tmp"
AppLogFile = "/tmp/ollama_app.log"
ServerLogFile = "/tmp/ollama.log"
UpgradeLogFile = "/tmp/ollama_update.log"
Installer = "OllamaSetup.exe"
UpdateStageDir = "/tmp"
AppLogFile = "/tmp/ollama_app.log"
ServerLogFile = "/tmp/ollama.log"
UpgradeLogFile = "/tmp/ollama_update.log"
Installer = "OllamaSetup.exe"
LogRotationCount = 5
)
func init() {

View File

@@ -54,7 +54,7 @@ func start(ctx context.Context, command string) (*exec.Cmd, error) {
return nil, fmt.Errorf("failed to spawn server stderr pipe: %w", err)
}
// TODO - rotation
rotateLogs(ServerLogFile)
logFile, err := os.OpenFile(ServerLogFile, os.O_APPEND|os.O_WRONLY|os.O_CREATE, 0755)
if err != nil {
return nil, fmt.Errorf("failed to create server log: %w", err)

View File

@@ -88,10 +88,15 @@ DialogFontSize=12
[Files]
Source: ".\app.exe"; DestDir: "{app}"; DestName: "{#MyAppExeName}" ; Flags: ignoreversion 64bit
Source: "..\ollama.exe"; DestDir: "{app}"; Flags: ignoreversion 64bit
Source: "..\dist\windows-{#ARCH}\*.dll"; DestDir: "{app}"; Flags: ignoreversion 64bit
Source: "..\dist\windows-{#ARCH}\ollama_runners\*"; DestDir: "{app}\ollama_runners"; Flags: ignoreversion 64bit recursesubdirs
Source: "..\dist\ollama_welcome.ps1"; DestDir: "{app}"; Flags: ignoreversion
Source: ".\assets\app.ico"; DestDir: "{app}"; Flags: ignoreversion
#if DirExists("..\dist\windows-amd64\cuda")
Source: "..\dist\windows-amd64\cuda\*"; DestDir: "{app}\cuda\"; Flags: ignoreversion recursesubdirs
#endif
#if DirExists("..\dist\windows-amd64\oneapi")
Source: "..\dist\windows-amd64\oneapi\*"; DestDir: "{app}\oneapi\"; Flags: ignoreversion recursesubdirs
#endif
#if DirExists("..\dist\windows-amd64\rocm")
Source: "..\dist\windows-amd64\rocm\*"; DestDir: "{app}\rocm\"; Flags: ignoreversion recursesubdirs
#endif

View File

@@ -162,9 +162,6 @@ func tempZipFiles(path string) (string, error) {
}
defer tempfile.Close()
zipfile := zip.NewWriter(tempfile)
defer zipfile.Close()
detectContentType := func(path string) (string, error) {
f, err := os.Open(path)
if err != nil {
@@ -233,6 +230,9 @@ func tempZipFiles(path string) (string, error) {
files = append(files, tks...)
}
zipfile := zip.NewWriter(tempfile)
defer zipfile.Close()
for _, file := range files {
f, err := os.Open(file)
if err != nil {
@@ -287,38 +287,12 @@ func createBlob(cmd *cobra.Command, client *api.Client, path string) (string, er
}
func RunHandler(cmd *cobra.Command, args []string) error {
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
name := args[0]
// check if the model exists on the server
show, err := client.Show(cmd.Context(), &api.ShowRequest{Name: name})
var statusError api.StatusError
switch {
case errors.As(err, &statusError) && statusError.StatusCode == http.StatusNotFound:
if err := PullHandler(cmd, []string{name}); err != nil {
return err
}
show, err = client.Show(cmd.Context(), &api.ShowRequest{Name: name})
if err != nil {
return err
}
case err != nil:
return err
}
interactive := true
opts := runOptions{
Model: args[0],
WordWrap: os.Getenv("TERM") == "xterm-256color",
Options: map[string]interface{}{},
MultiModal: slices.Contains(show.Details.Families, "clip"),
ParentModel: show.Details.ParentModel,
Model: args[0],
WordWrap: os.Getenv("TERM") == "xterm-256color",
Options: map[string]interface{}{},
}
format, err := cmd.Flags().GetString("format")
@@ -362,11 +336,38 @@ func RunHandler(cmd *cobra.Command, args []string) error {
}
opts.WordWrap = !nowrap
if !interactive {
return generate(cmd, opts)
// Fill out the rest of the options based on information about the
// model.
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
return generateInteractive(cmd, opts)
name := args[0]
info, err := func() (*api.ShowResponse, error) {
showReq := &api.ShowRequest{Name: name}
info, err := client.Show(cmd.Context(), showReq)
var se api.StatusError
if errors.As(err, &se) && se.StatusCode == http.StatusNotFound {
if err := PullHandler(cmd, []string{name}); err != nil {
return nil, err
}
return client.Show(cmd.Context(), &api.ShowRequest{Name: name})
}
return info, err
}()
if err != nil {
return err
}
opts.MultiModal = slices.Contains(info.Details.Families, "clip")
opts.ParentModel = info.Details.ParentModel
opts.Messages = append(opts.Messages, info.Messages...)
if interactive {
return generateInteractive(cmd, opts)
}
return generate(cmd, opts)
}
func errFromUnknownKey(unknownKeyErr error) error {
@@ -579,10 +580,6 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
return err
}
if len(args) != 1 {
return errors.New("missing model name")
}
license, errLicense := cmd.Flags().GetBool("license")
modelfile, errModelfile := cmd.Flags().GetBool("modelfile")
parameters, errParams := cmd.Flags().GetBool("parameters")
@@ -625,8 +622,29 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
if flagsSet > 1 {
return errors.New("only one of '--license', '--modelfile', '--parameters', '--system', or '--template' can be specified")
} else if flagsSet == 0 {
return errors.New("one of '--license', '--modelfile', '--parameters', '--system', or '--template' must be specified")
}
if flagsSet == 1 {
req := api.ShowRequest{Name: args[0]}
resp, err := client.Show(cmd.Context(), &req)
if err != nil {
return err
}
switch showType {
case "license":
fmt.Println(resp.License)
case "modelfile":
fmt.Println(resp.Modelfile)
case "parameters":
fmt.Println(resp.Parameters)
case "system":
fmt.Println(resp.System)
case "template":
fmt.Println(resp.Template)
}
return nil
}
req := api.ShowRequest{Name: args[0]}
@@ -635,22 +653,114 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
return err
}
switch showType {
case "license":
fmt.Println(resp.License)
case "modelfile":
fmt.Println(resp.Modelfile)
case "parameters":
fmt.Println(resp.Parameters)
case "system":
fmt.Println(resp.System)
case "template":
fmt.Println(resp.Template)
arch := resp.ModelInfo["general.architecture"].(string)
modelData := [][]string{
{"arch", arch},
{"parameters", resp.Details.ParameterSize},
{"quantization", resp.Details.QuantizationLevel},
{"context length", fmt.Sprintf("%v", resp.ModelInfo[fmt.Sprintf("%s.context_length", arch)].(float64))},
{"embedding length", fmt.Sprintf("%v", resp.ModelInfo[fmt.Sprintf("%s.embedding_length", arch)].(float64))},
}
mainTableData := [][]string{
{"Model"},
{renderSubTable(modelData, false)},
}
if resp.ProjectorInfo != nil {
projectorData := [][]string{
{"arch", "clip"},
{"parameters", format.HumanNumber(uint64(resp.ProjectorInfo["general.parameter_count"].(float64)))},
{"projector type", resp.ProjectorInfo["clip.projector_type"].(string)},
{"embedding length", fmt.Sprintf("%v", resp.ProjectorInfo["clip.vision.embedding_length"].(float64))},
{"projection dimensionality", fmt.Sprintf("%v", resp.ProjectorInfo["clip.vision.projection_dim"].(float64))},
}
mainTableData = append(mainTableData,
[]string{"Projector"},
[]string{renderSubTable(projectorData, false)},
)
}
if resp.Parameters != "" {
mainTableData = append(mainTableData, []string{"Parameters"}, []string{formatParams(resp.Parameters)})
}
if resp.System != "" {
mainTableData = append(mainTableData, []string{"System"}, []string{renderSubTable(twoLines(resp.System), true)})
}
if resp.License != "" {
mainTableData = append(mainTableData, []string{"License"}, []string{renderSubTable(twoLines(resp.License), true)})
}
table := tablewriter.NewWriter(os.Stdout)
table.SetAutoWrapText(false)
table.SetBorder(false)
table.SetAlignment(tablewriter.ALIGN_LEFT)
for _, v := range mainTableData {
table.Append(v)
}
table.Render()
return nil
}
func renderSubTable(data [][]string, file bool) string {
var buf bytes.Buffer
table := tablewriter.NewWriter(&buf)
table.SetAutoWrapText(!file)
table.SetBorder(false)
table.SetNoWhiteSpace(true)
table.SetTablePadding("\t")
table.SetAlignment(tablewriter.ALIGN_LEFT)
for _, v := range data {
table.Append(v)
}
table.Render()
renderedTable := buf.String()
lines := strings.Split(renderedTable, "\n")
for i, line := range lines {
lines[i] = "\t" + line
}
return strings.Join(lines, "\n")
}
func twoLines(s string) [][]string {
lines := strings.Split(s, "\n")
res := [][]string{}
count := 0
for _, line := range lines {
line = strings.TrimSpace(line)
if line != "" {
count++
res = append(res, []string{line})
if count == 2 {
return res
}
}
}
return res
}
func formatParams(s string) string {
lines := strings.Split(s, "\n")
table := [][]string{}
for _, line := range lines {
table = append(table, strings.Fields(line))
}
return renderSubTable(table, false)
}
func CopyHandler(cmd *cobra.Command, args []string) error {
client, err := api.ClientFromEnvironment()
if err != nil {

View File

@@ -31,65 +31,40 @@ const (
)
func loadModel(cmd *cobra.Command, opts *runOptions) error {
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
p := progress.NewProgress(os.Stderr)
defer p.StopAndClear()
spinner := progress.NewSpinner("")
p.Add("", spinner)
showReq := api.ShowRequest{Name: opts.Model}
showResp, err := client.Show(cmd.Context(), &showReq)
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
opts.MultiModal = slices.Contains(showResp.Details.Families, "clip")
opts.ParentModel = showResp.Details.ParentModel
if len(showResp.Messages) > 0 {
opts.Messages = append(opts.Messages, showResp.Messages...)
}
chatReq := &api.ChatRequest{
Model: opts.Model,
Messages: []api.Message{},
Model: opts.Model,
KeepAlive: opts.KeepAlive,
}
if opts.KeepAlive != nil {
chatReq.KeepAlive = opts.KeepAlive
}
err = client.Chat(cmd.Context(), chatReq, func(resp api.ChatResponse) error {
return client.Chat(cmd.Context(), chatReq, func(resp api.ChatResponse) error {
p.StopAndClear()
if len(opts.Messages) > 0 {
for _, msg := range opts.Messages {
switch msg.Role {
case "user":
fmt.Printf(">>> %s\n", msg.Content)
case "assistant":
state := &displayResponseState{}
displayResponse(msg.Content, opts.WordWrap, state)
fmt.Println()
fmt.Println()
}
for _, msg := range opts.Messages {
switch msg.Role {
case "user":
fmt.Printf(">>> %s\n", msg.Content)
case "assistant":
state := &displayResponseState{}
displayResponse(msg.Content, opts.WordWrap, state)
fmt.Println()
fmt.Println()
}
}
return nil
})
if err != nil {
return err
}
return nil
}
func generateInteractive(cmd *cobra.Command, opts runOptions) error {
opts.Messages = make([]api.Message, 0)
err := loadModel(cmd, &opts)
if err != nil {
return err

View File

@@ -777,11 +777,12 @@ A single JSON object will be returned.
POST /api/show
```
Show information about a model including details, modelfile, template, parameters, license, and system prompt.
Show information about a model including details, modelfile, template, parameters, license, system prompt.
### Parameters
- `name`: name of the model to show
- `verbose`: (optional) if set to `true`, returns full data for verbose response fields
### Examples
@@ -798,14 +799,40 @@ curl http://localhost:11434/api/show -d '{
```json
{
"modelfile": "# Modelfile generated by \"ollama show\"\n# To build a new Modelfile based on this one, replace the FROM line with:\n# FROM llava:latest\n\nFROM /Users/matt/.ollama/models/blobs/sha256:200765e1283640ffbd013184bf496e261032fa75b99498a9613be4e94d63ad52\nTEMPLATE \"\"\"{{ .System }}\nUSER: {{ .Prompt }}\nASSISTANT: \"\"\"\nPARAMETER num_ctx 4096\nPARAMETER stop \"\u003c/s\u003e\"\nPARAMETER stop \"USER:\"\nPARAMETER stop \"ASSISTANT:\"",
"parameters": "num_ctx 4096\nstop \u003c/s\u003e\nstop USER:\nstop ASSISTANT:",
"template": "{{ .System }}\nUSER: {{ .Prompt }}\nASSISTANT: ",
"parameters": "num_keep 24\nstop \"<|start_header_id|>\"\nstop \"<|end_header_id|>\"\nstop \"<|eot_id|>\"",
"template": "{{ if .System }}<|start_header_id|>system<|end_header_id|>\n\n{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>\n\n{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>\n\n{{ .Response }}<|eot_id|>",
"details": {
"parent_model": "",
"format": "gguf",
"family": "llama",
"families": ["llama", "clip"],
"parameter_size": "7B",
"families": [
"llama"
],
"parameter_size": "8.0B",
"quantization_level": "Q4_0"
},
"model_info": {
"general.architecture": "llama",
"general.file_type": 2,
"general.parameter_count": 8030261248,
"general.quantization_version": 2,
"llama.attention.head_count": 32,
"llama.attention.head_count_kv": 8,
"llama.attention.layer_norm_rms_epsilon": 0.00001,
"llama.block_count": 32,
"llama.context_length": 8192,
"llama.embedding_length": 4096,
"llama.feed_forward_length": 14336,
"llama.rope.dimension_count": 128,
"llama.rope.freq_base": 500000,
"llama.vocab_size": 128256,
"tokenizer.ggml.bos_token_id": 128000,
"tokenizer.ggml.eos_token_id": 128009,
"tokenizer.ggml.merges": [], // populates if `verbose=true`
"tokenizer.ggml.model": "gpt2",
"tokenizer.ggml.pre": "llama-bpe",
"tokenizer.ggml.token_type": [], // populates if `verbose=true`
"tokenizer.ggml.tokens": [] // populates if `verbose=true`
}
}
```

View File

@@ -47,19 +47,13 @@ success
### Supported Quantizations
<details>
<summary>Legacy Quantization</summary>
- `Q4_0`
- `Q4_1`
- `Q5_0`
- `Q5_1`
- `Q8_0`
</details>
<details>
<summary>K-means Quantization</summary>`
#### K-means Quantizations
- `Q3_K_S`
- `Q3_K_M`
@@ -70,11 +64,6 @@ success
- `Q5_K_M`
- `Q6_K`
</details>
> [!NOTE]
> Activation-aware Weight Quantization (i.e. IQ) are not currently supported for automatic quantization however you can still import the quantized model into Ollama, see [Import GGUF](#import-gguf).
## Template Detection
> [!NOTE]

View File

@@ -22,7 +22,7 @@ docker logs <container-name>
If manually running `ollama serve` in a terminal, the logs will be on that terminal.
When you run Ollama on **Windows**, there are a few different locations. You can view them in the explorer window by hitting `<cmd>+R` and type in:
- `explorer %LOCALAPPDATA%\Ollama` to view logs
- `explorer %LOCALAPPDATA%\Ollama` to view logs. The most recent server logs will be in `server.log` and older logs will be in `server-#.log`
- `explorer %LOCALAPPDATA%\Programs\Ollama` to browse the binaries (The installer adds this to your user PATH)
- `explorer %HOMEPATH%\.ollama` to browse where models and configuration is stored
- `explorer %TEMP%` where temporary executable files are stored in one or more `ollama*` directories

View File

@@ -39,8 +39,8 @@ server.
Ollama on Windows stores files in a few different locations. You can view them in
the explorer window by hitting `<cmd>+R` and type in:
- `explorer %LOCALAPPDATA%\Ollama` contains logs, and downloaded updates
- *app.log* contains logs from the GUI application
- *server.log* contains the server logs
- *app.log* contains most resent logs from the GUI application
- *server.log* contains the most recent server logs
- *upgrade.log* contains log output for upgrades
- `explorer %LOCALAPPDATA%\Programs\Ollama` contains the binaries (The installer adds this to your user PATH)
- `explorer %HOMEPATH%\.ollama` contains models and configuration

View File

@@ -77,20 +77,27 @@ func cleanupTmpDirs() {
continue
}
raw, err := os.ReadFile(filepath.Join(d, "ollama.pid"))
if err == nil {
pid, err := strconv.Atoi(string(raw))
if err == nil {
if proc, err := os.FindProcess(pid); err == nil && !errors.Is(proc.Signal(syscall.Signal(0)), os.ErrProcessDone) {
// Another running ollama, ignore this tmpdir
continue
}
}
} else {
slog.Debug("failed to open ollama.pid", "path", d, "error", err)
}
err = os.RemoveAll(d)
if err != nil {
slog.Debug("unable to cleanup stale tmpdir", "path", d, "error", err)
slog.Warn("failed to read ollama.pid", "path", d, "error", err)
// No pid, ignore this tmpdir
continue
}
pid, err := strconv.Atoi(string(raw))
if err != nil {
slog.Warn("failed to parse pid", "path", d, "error", err)
continue
}
proc, err := os.FindProcess(pid)
if err == nil && !errors.Is(proc.Signal(syscall.Signal(0)), os.ErrProcessDone) {
slog.Warn("found running ollama", "pid", pid, "path", d)
// Another running ollama, ignore this tmpdir
continue
}
if err := os.Remove(d); err != nil {
slog.Warn("unable to cleanup stale tmpdir", "path", d, "error", err)
}
}
}

View File

@@ -231,7 +231,7 @@ func GetGPUInfo() GpuInfoList {
// On windows we bundle the nvidia library one level above the runner dir
depPath := ""
if runtime.GOOS == "windows" && envconfig.RunnersDir != "" {
depPath = filepath.Dir(envconfig.RunnersDir)
depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir), "cuda")
}
// Load ALL libraries
@@ -282,6 +282,12 @@ func GetGPUInfo() GpuInfoList {
// Intel
if envconfig.IntelGpu {
oHandles = initOneAPIHandles()
// On windows we bundle the oneapi library one level above the runner dir
depPath = ""
if runtime.GOOS == "windows" && envconfig.RunnersDir != "" {
depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir), "oneapi")
}
for d := range oHandles.oneapi.num_drivers {
if oHandles.oneapi == nil {
// shouldn't happen
@@ -306,7 +312,7 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
// TODO dependency path?
gpuInfo.DependencyPath = depPath
oneapiGPUs = append(oneapiGPUs, gpuInfo)
}
}

View File

@@ -40,7 +40,7 @@ void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
for (i = 0; l[i].s != NULL; i++) {
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
if (!l[i].p) {
if (!*(l[i].p)) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "dlerr: %s\n", msg);
UNLOAD_LIBRARY(resp->ch.handle);

View File

@@ -43,7 +43,7 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
for (i = 0; l[i].s != NULL; i++) {
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
if (!*l[i].p) {
if (!*(l[i].p)) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "dlerr: %s\n", msg);
UNLOAD_LIBRARY(resp->ch.handle);

View File

@@ -42,7 +42,7 @@ void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp) {
// LOG(resp->ch.verbose, "dlsym: %s\n", l[i].s);
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
if (!l[i].p) {
if (!*(l[i].p)) {
resp->ch.handle = NULL;
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "dlerr: %s\n", msg);

View File

@@ -50,7 +50,7 @@ void oneapi_init(char *oneapi_lib_path, oneapi_init_resp_t *resp) {
LOG(resp->oh.verbose, "dlsym: %s\n", l[i].s);
*l[i].p = LOAD_SYMBOL(resp->oh.handle, l[i].s);
if (!l[i].p) {
if (!*(l[i].p)) {
resp->oh.handle = NULL;
char *msg = LOAD_ERR();
LOG(resp->oh.verbose, "dlerr: %s\n", msg);
@@ -98,7 +98,7 @@ void oneapi_init(char *oneapi_lib_path, oneapi_init_resp_t *resp) {
}
for (d = 0; d < resp->oh.num_drivers; d++) {
LOG(resp->oh.verbose, "calling zesDeviceGet %d\n", resp->oh.drivers[d]);
LOG(resp->oh.verbose, "calling zesDeviceGet count %d: %p\n", d, resp->oh.drivers[d]);
ret = (*resp->oh.zesDeviceGet)(resp->oh.drivers[d],
&resp->oh.num_devices[d], NULL);
if (ret != ZE_RESULT_SUCCESS) {

View File

@@ -56,7 +56,6 @@ struct server_params {
std::string hostname = "127.0.0.1";
std::vector<std::string> api_keys;
std::string public_path = "examples/server/public";
std::string chat_template = "";
int32_t port = 8080;
int32_t read_timeout = 600;
int32_t write_timeout = 600;
@@ -427,16 +426,6 @@ struct llama_server_context
return true;
}
void validate_model_chat_template(server_params & sparams) {
llama_chat_message chat[] = {{"user", "test"}};
std::vector<char> buf(1);
int res = llama_chat_apply_template(model, nullptr, chat, 1, true, buf.data(), buf.size());
if (res < 0) {
LOG_ERROR("The chat template comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {});
sparams.chat_template = "chatml";
}
}
void initialize() {
// create slots
all_slots_are_idle = true;
@@ -2535,7 +2524,6 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, g
invalid_param = true;
break;
}
sparams.chat_template = argv[i];
}
else if (arg == "--override-kv")
{
@@ -3008,11 +2996,6 @@ int main(int argc, char **argv) {
}
const auto model_meta = llama.model_meta();
if (sparams.chat_template.empty()) { // custom chat template is not supplied
// check if the template comes with the model is supported by us
llama.validate_model_chat_template(sparams);
}
// Middleware for API key validation
auto validate_api_key = [&sparams](const httplib::Request &req, httplib::Response &res) -> bool {
// If API key is not set, skip validation

View File

@@ -18,7 +18,7 @@ sign() {
fi
}
COMMON_DARWIN_DEFS="-DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DLLAMA_METAL_MACOSX_VERSION_MIN=11.3 -DCMAKE_SYSTEM_NAME=Darwin -DLLAMA_METAL_EMBED_LIBRARY=on"
COMMON_DARWIN_DEFS="-DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DLLAMA_METAL_MACOSX_VERSION_MIN=11.3 -DCMAKE_SYSTEM_NAME=Darwin -DLLAMA_METAL_EMBED_LIBRARY=on -DLLAMA_OPENMP=off"
case "${GOARCH}" in
"amd64")
@@ -27,7 +27,7 @@ case "${GOARCH}" in
# Static build for linking into the Go binary
init_vars
CMAKE_TARGETS="--target llama --target ggml"
CMAKE_DEFS="${COMMON_CPU_DEFS} -DBUILD_SHARED_LIBS=off -DLLAMA_ACCELERATE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
CMAKE_DEFS="${COMMON_CPU_DEFS} -DBUILD_SHARED_LIBS=off -DLLAMA_BLAS=off -DLLAMA_ACCELERATE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}_static"
echo "Building static library"
build
@@ -37,7 +37,7 @@ case "${GOARCH}" in
# CPU first for the default library, set up as lowest common denominator for maximum compatibility (including Rosetta)
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_ACCELERATE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_ACCELERATE=off -DLLAMA_BLAS=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}/cpu"
echo "Building LCD CPU"
build
@@ -49,7 +49,7 @@ case "${GOARCH}" in
# Approximately 400% faster than LCD on same CPU
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_ACCELERATE=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_ACCELERATE=off -DLLAMA_BLAS=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}/cpu_avx"
echo "Building AVX CPU"
build
@@ -61,7 +61,7 @@ case "${GOARCH}" in
# Approximately 10% faster than AVX on same CPU
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_ACCELERATE=on -DLLAMA_AVX=on -DLLAMA_AVX2=on -DLLAMA_AVX512=off -DLLAMA_FMA=on -DLLAMA_F16C=on ${CMAKE_DEFS}"
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_ACCELERATE=on -DLLAMA_BLAS=off -DLLAMA_AVX=on -DLLAMA_AVX2=on -DLLAMA_AVX512=off -DLLAMA_FMA=on -DLLAMA_F16C=on ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}/cpu_avx2"
echo "Building AVX2 CPU"
EXTRA_LIBS="${EXTRA_LIBS} -framework Accelerate -framework Foundation"
@@ -75,7 +75,7 @@ case "${GOARCH}" in
# Static build for linking into the Go binary
init_vars
CMAKE_TARGETS="--target llama --target ggml"
CMAKE_DEFS="-DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DCMAKE_SYSTEM_NAME=Darwin -DBUILD_SHARED_LIBS=off -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} -DLLAMA_METAL=off -DLLAMA_ACCELERATE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
CMAKE_DEFS="-DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DLLAMA_BLAS=off -DCMAKE_SYSTEM_NAME=Darwin -DBUILD_SHARED_LIBS=off -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} -DLLAMA_METAL=off -DLLAMA_ACCELERATE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}_static"
echo "Building static library"
build

View File

@@ -51,7 +51,7 @@ if [ -z "${CUDACXX}" ]; then
export CUDACXX=$(command -v nvcc)
fi
fi
COMMON_CMAKE_DEFS="-DCMAKE_POSITION_INDEPENDENT_CODE=on -DLLAMA_NATIVE=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off"
COMMON_CMAKE_DEFS="-DCMAKE_POSITION_INDEPENDENT_CODE=on -DLLAMA_NATIVE=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off -DLLAMA_OPENMP=off"
source $(dirname $0)/gen_common.sh
init_vars
git_module_setup
@@ -64,7 +64,7 @@ if [ -z "${OLLAMA_SKIP_STATIC_GENERATE}" -o "${OLLAMA_CPU_TARGET}" = "static" ];
# Static build for linking into the Go binary
init_vars
CMAKE_TARGETS="--target llama --target ggml"
CMAKE_DEFS="-DBUILD_SHARED_LIBS=off -DLLAMA_NATIVE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
CMAKE_DEFS="-DBUILD_SHARED_LIBS=off -DLLAMA_NATIVE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off -DLLAMA_OPENMP=off ${CMAKE_DEFS}"
BUILD_DIR="../build/linux/${ARCH}_static"
echo "Building static library"
build
@@ -93,7 +93,7 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
# -DLLAMA_AVX512_VBMI -- 2018 Intel Cannon Lake
# -DLLAMA_AVX512_VNNI -- 2021 Intel Alder Lake
COMMON_CPU_DEFS="-DCMAKE_POSITION_INDEPENDENT_CODE=on -DLLAMA_NATIVE=off"
COMMON_CPU_DEFS="-DCMAKE_POSITION_INDEPENDENT_CODE=on -DLLAMA_NATIVE=off -DLLAMA_OPENMP=off"
if [ -z "${OLLAMA_CPU_TARGET}" -o "${OLLAMA_CPU_TARGET}" = "cpu" ]; then
#
# CPU first for the default library, set up as lowest common denominator for maximum compatibility (including Rosetta)
@@ -178,7 +178,7 @@ if [ -z "${OLLAMA_SKIP_CUDA_GENERATE}" -a -d "${CUDA_LIB_DIR}" ]; then
CMAKE_CUDA_DEFS="-DLLAMA_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} ${OLLAMA_CUSTOM_CUDA_DEFS}"
echo "Building custom CUDA GPU"
else
CMAKE_CUDA_DEFS="-DLLAMA_CUDA=on -DLLAMA_CUDA_FORCE_MMQ=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}"
CMAKE_CUDA_DEFS="-DLLAMA_CUDA=on -DCMAKE_CUDA_FLAGS=-t8 -DLLAMA_CUDA_FORCE_MMQ=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}"
fi
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} ${ARM64_DEFS} ${CMAKE_CUDA_DEFS}"
BUILD_DIR="../build/linux/${ARCH}/cuda${CUDA_VARIANT}"

View File

@@ -1,5 +1,7 @@
#!powershell
$ErrorActionPreference = "Stop"
function amdGPUs {
if ($env:AMDGPU_TARGETS) {
return $env:AMDGPU_TARGETS
@@ -37,7 +39,8 @@ function init_vars {
}
$script:cmakeDefs = @(
"-DBUILD_SHARED_LIBS=on",
"-DLLAMA_NATIVE=off"
"-DLLAMA_NATIVE=off",
"-DLLAMA_OPENMP=off"
)
$script:commonCpuDefs = @("-DCMAKE_POSITION_INDEPENDENT_CODE=on")
$script:ARCH = $Env:PROCESSOR_ARCHITECTURE.ToLower()
@@ -83,9 +86,9 @@ function init_vars {
function git_module_setup {
# TODO add flags to skip the init/patch logic to make it easier to mod llama.cpp code in-repo
& git submodule init
if ($LASTEXITCODE -ne 0) { throw($LASTEXITCODE)}
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& git submodule update --force "${script:llamacppDir}"
if ($LASTEXITCODE -ne 0) { throw($LASTEXITCODE)}
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
function apply_patches {
@@ -119,7 +122,7 @@ function build {
write-host "generating config with: cmake -S ${script:llamacppDir} -B $script:buildDir $script:cmakeDefs"
& cmake --version
& cmake -S "${script:llamacppDir}" -B $script:buildDir $script:cmakeDefs
if ($LASTEXITCODE -ne 0) { throw($LASTEXITCODE)}
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
if ($cmakeDefs -contains "-G") {
$extra=@("-j8")
} else {
@@ -127,7 +130,7 @@ function build {
}
write-host "building with: cmake --build $script:buildDir --config $script:config $($script:cmakeTargets | ForEach-Object { `"--target`", $_ }) $extra"
& cmake --build $script:buildDir --config $script:config ($script:cmakeTargets | ForEach-Object { "--target", $_ }) $extra
if ($LASTEXITCODE -ne 0) { write-host "cmake build exit status $LASTEXITCODE"; throw($LASTEXITCODE)}
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
# Rearrange output to be consistent between different generators
if ($null -ne ${script:config} -And (test-path -path "${script:buildDir}/bin/${script:config}" ) ) {
mv -force "${script:buildDir}/bin/${script:config}/*" "${script:buildDir}/bin/"
@@ -141,7 +144,7 @@ function sign {
foreach ($file in @(get-childitem "${script:buildDir}/bin/*.exe") + @(get-childitem "${script:buildDir}/bin/*.dll")){
& "${script:SignTool}" sign /v /fd sha256 /t http://timestamp.digicert.com /f "${script:OLLAMA_CERT}" `
/csp "Google Cloud KMS Provider" /kc "${env:KEY_CONTAINER}" $file
if ($LASTEXITCODE -ne 0) { throw($LASTEXITCODE)}
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
}
}
@@ -206,7 +209,8 @@ function build_static() {
"-DLLAMA_AVX2=off",
"-DLLAMA_AVX512=off",
"-DLLAMA_F16C=off",
"-DLLAMA_FMA=off")
"-DLLAMA_FMA=off",
"-DLLAMA_OPENMP=off")
$script:buildDir="../build/windows/${script:ARCH}_static"
write-host "Building static library"
build
@@ -216,13 +220,7 @@ function build_static() {
}
}
function build_cpu() {
if ($script:ARCH -eq "arm64") {
$gen_arch = "ARM64"
} else { # amd64
$gen_arch = "x64"
}
function build_cpu($gen_arch) {
if ((-not "${env:OLLAMA_SKIP_CPU_GENERATE}" ) -and ((-not "${env:OLLAMA_CPU_TARGET}") -or ("${env:OLLAMA_CPU_TARGET}" -eq "cpu"))) {
# remaining llama.cpp builds use MSVC
init_vars
@@ -285,7 +283,7 @@ function build_cuda() {
"-DLLAMA_AVX=on",
"-DLLAMA_AVX2=off",
"-DCUDAToolkit_INCLUDE_DIR=$script:CUDA_INCLUDE_DIR",
"-DCMAKE_CUDA_FLAGS=-t8"
"-DCMAKE_CUDA_FLAGS=-t8",
"-DCMAKE_CUDA_ARCHITECTURES=${script:CMAKE_CUDA_ARCHITECTURES}"
)
if ($null -ne $env:OLLAMA_CUSTOM_CUDA_DEFS) {
@@ -297,10 +295,12 @@ function build_cuda() {
sign
install
write-host "copying CUDA dependencies to ${script:SRC_DIR}\dist\windows-${script:ARCH}\"
cp "${script:CUDA_LIB_DIR}\cudart64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\"
cp "${script:CUDA_LIB_DIR}\cublas64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\"
cp "${script:CUDA_LIB_DIR}\cublasLt64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\"
rm -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\"
md "${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\" -ea 0 > $null
write-host "copying CUDA dependencies to ${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\"
cp "${script:CUDA_LIB_DIR}\cudart64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\"
cp "${script:CUDA_LIB_DIR}\cublas64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\"
cp "${script:CUDA_LIB_DIR}\cublasLt64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\"
} else {
write-host "Skipping CUDA generation step"
}
@@ -334,16 +334,18 @@ function build_oneapi() {
sign
install
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\libirngmd.dll" "${script:distDir}"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\libmmd.dll" "${script:distDir}"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_level_zero.dll" "${script:distDir}"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_unified_runtime.dll" "${script:distDir}"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_win_proxy_loader.dll" "${script:distDir}"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\svml_dispmd.dll" "${script:distDir}"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\sycl7.dll" "${script:distDir}"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_core.2.dll" "${script:distDir}"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_sycl_blas.4.dll" "${script:distDir}"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_tbb_thread.2.dll" "${script:distDir}"
rm -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
md "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\" -ea 0 > $null
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\libirngmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\libmmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_level_zero.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_unified_runtime.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_win_proxy_loader.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\svml_dispmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\sycl7.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_core.2.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_sycl_blas.4.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_tbb_thread.2.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
} else {
Write-Host "Skipping oneAPI generation step"
}
@@ -408,29 +410,16 @@ init_vars
if ($($args.count) -eq 0) {
git_module_setup
apply_patches
$tasks = @("build_static", "build_cpu")
$jobs = @()
if ($script:ARCH -ne "arm64") {
$tasks += $("build_cpu_avx", "build_cpu_avx2", "build_cuda", "build_oneapi", "build_rocm")
}
foreach ($t in $tasks) {
$jobs += @(Start-ThreadJob -ThrottleLimit 12 -FilePath .\gen_windows.ps1 -ArgumentList $t -Name $t)
}
get-job
foreach ($job in $jobs) {
write-host "----" $job.Name output follows
receive-job -wait -job $job
write-host "----" $job.Name $job.State
write-host ""
if ($job.State -contains 'Failed') {
cleanup
write-host "Terminating remaining jobs (this takes a while, you can ^C)"
# TODO find some way to kill the spawned cmake processes faster
remove-job -force -job $jobs
exit(-1)
}
get-job
build_static
if ($script:ARCH -eq "arm64") {
build_cpu("ARM64")
} else { # amd64
build_cpu("x64")
build_cpu_avx
build_cpu_avx2
build_cuda
build_oneapi
build_rocm
}
cleanup

View File

@@ -53,7 +53,7 @@ func (llm *ggla) Tensors() Tensors {
return llm.tensors
}
func (llm *ggla) decode(rs io.ReadSeeker) error {
func (llm *ggla) decode(rs io.ReadSeeker) (retErr error) {
var r uint32
if err := binary.Read(rs, binary.LittleEndian, &r); err != nil {
return err
@@ -69,9 +69,18 @@ func (llm *ggla) decode(rs io.ReadSeeker) error {
for {
var dims uint32
if err := binary.Read(rs, binary.LittleEndian, &dims); err != nil {
if errors.Is(err, io.EOF) {
return nil
}
return err
}
defer func() {
if errors.Is(retErr, io.EOF) {
retErr = io.ErrUnexpectedEOF
}
}()
var namesize uint32
if err := binary.Read(rs, binary.LittleEndian, &namesize); err != nil {
return err
@@ -108,7 +117,7 @@ func (llm *ggla) decode(rs io.ReadSeeker) error {
return err
}
if _, err := rs.Seek((offset+31)&-32, io.SeekStart); err != nil {
if _, err := rs.Seek((offset+31)&-32-offset, io.SeekCurrent); err != nil {
return err
}

View File

@@ -6,6 +6,8 @@ import (
"fmt"
"io"
"strings"
"github.com/ollama/ollama/util/bufioutil"
)
type GGML struct {
@@ -69,6 +71,30 @@ func (kv KV) HeadCountKV() uint64 {
return 1
}
func (kv KV) EmbeddingHeadCount() uint64 {
if heads := kv.HeadCount(); heads > 0 {
return kv.EmbeddingLength() / kv.HeadCount()
}
return 0
}
func (kv KV) EmbeddingHeadCountK() uint64 {
if k := kv.u64(fmt.Sprintf("%s.attention.key_length", kv.Architecture())); k > 0 {
return k
}
return kv.EmbeddingHeadCount()
}
func (kv KV) EmbeddingHeadCountV() uint64 {
if v := kv.u64(fmt.Sprintf("%s.attention.value_length", kv.Architecture())); v > 0 {
return v
}
return kv.EmbeddingHeadCount()
}
func (kv KV) GQA() uint64 {
return kv.HeadCount() / kv.HeadCountKV()
}
@@ -254,7 +280,18 @@ func DetectGGMLType(b []byte) string {
}
}
func DecodeGGML(rs io.ReadSeeker) (*GGML, int64, error) {
// DecodeGGML decodes a GGML model from the given reader.
//
// It collects array values for arrays with a size less than or equal to
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
// the maxArraySize is negative, all arrays are collected.
func DecodeGGML(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
if maxArraySize == 0 {
maxArraySize = 1024
}
rs = bufioutil.NewBufferedSeeker(rs, 32<<10)
var magic uint32
if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
return nil, 0, err
@@ -267,17 +304,15 @@ func DecodeGGML(rs io.ReadSeeker) (*GGML, int64, error) {
case FILE_MAGIC_GGLA:
c = &containerGGLA{}
case FILE_MAGIC_GGUF_LE:
c = &containerGGUF{ByteOrder: binary.LittleEndian}
c = &containerGGUF{ByteOrder: binary.LittleEndian, maxArraySize: maxArraySize}
case FILE_MAGIC_GGUF_BE:
c = &containerGGUF{ByteOrder: binary.BigEndian}
c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
default:
return nil, 0, errors.New("invalid file magic")
}
model, err := c.Decode(rs)
if errors.Is(err, io.EOF) {
// noop
} else if err != nil {
if err != nil {
return nil, 0, err
}
@@ -297,7 +332,10 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
embedding := llm.KV().EmbeddingLength()
heads := llm.KV().HeadCount()
headsKV := llm.KV().HeadCountKV()
vocab := uint64(len(llm.KV()["tokenizer.ggml.tokens"].([]any)))
vocab := uint64(llm.KV()["tokenizer.ggml.tokens"].(*array).size)
embeddingHeads := llm.KV().EmbeddingHeadCount()
embeddingHeadsK := llm.KV().EmbeddingHeadCountK()
layers := llm.Tensors().Layers()
@@ -308,7 +346,7 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
partialOffload = 4 * batch * embedding
partialOffload += max(
// 4*batch*(4+6*embedding+context*(2*heads)+llm.KV().GQA()),
4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embedding/heads*headsKV),
4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV),
4*batch*(embedding+vocab)+embedding*vocab*105/128,
)
@@ -316,15 +354,15 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
// mixtral 8x22b
ff := uint64(llm.KV()["llama.feed_forward_length"].(uint32))
partialOffload = max(
3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embedding/heads*headsKV),
4*(context*batch*heads+context*embedding/heads*headsKV+batch*1024+embedding/heads*headsKV*batch),
3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
)
} else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
// mixtral 8x7b
ffnGateWeight1 := ffnGateWeight.Shape[1]
fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
partialOffload = max(
4*batch*(3+embedding/heads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
4*batch*(3+embeddingHeads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
)
}
@@ -367,6 +405,16 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
4*batch*(vocab+2*embedding),
fullOffload,
)
case "deepseek2":
fullOffload = max(
4*batch*(3*embedding+vocab),
4*batch*(3*embedding+2+context*(1+headsKV)+2*embeddingHeadsK*headsKV),
)
partialOffload = max(
4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
)
}
return

1
llm/ggml_test.go Normal file
View File

@@ -0,0 +1 @@
package llm

View File

@@ -3,11 +3,10 @@ package llm
import (
"bytes"
"encoding/binary"
"encoding/json"
"fmt"
"io"
"strings"
"log/slog"
)
type containerGGUF struct {
@@ -29,6 +28,12 @@ type containerGGUF struct {
NumTensor uint64
NumKV uint64
}
maxArraySize int
}
func (c *containerGGUF) canCollectArray(size int) bool {
return c.maxArraySize < 0 || size <= c.maxArraySize
}
func (c *containerGGUF) Name() string {
@@ -54,7 +59,6 @@ func (c *containerGGUF) Decode(rs io.ReadSeeker) (model, error) {
}
model := newGGUF(c)
slog.Debug(fmt.Sprintf("model = %#v", model))
if err := model.Decode(rs); err != nil {
return nil, err
}
@@ -85,6 +89,8 @@ type gguf struct {
tensors []*Tensor
parameters uint64
scratch [16 << 10]byte
}
func newGGUF(container *containerGGUF) *gguf {
@@ -181,34 +187,34 @@ func (llm *gguf) Decode(rs io.ReadSeeker) error {
}
// decode tensors
for i := 0; uint64(i) < llm.numTensor(); i++ {
for range llm.numTensor() {
name, err := readGGUFString(llm, rs)
if err != nil {
return err
return fmt.Errorf("failed to read tensor name: %w", err)
}
// dims is the number of dimensions in the tensor
dims, err := readGGUF[uint32](llm, rs)
if err != nil {
return err
return fmt.Errorf("failed to read tensor dimensions: %w", err)
}
shape := [4]uint64{1, 1, 1, 1}
for i := 0; uint32(i) < dims; i++ {
shape[i], err = readGGUF[uint64](llm, rs)
if err != nil {
return err
return fmt.Errorf("failed to read tensor shape: %w", err)
}
}
kind, err := readGGUF[uint32](llm, rs)
if err != nil {
return err
return fmt.Errorf("failed to read tensor kind: %w", err)
}
offset, err := readGGUF[uint64](llm, rs)
if err != nil {
return err
return fmt.Errorf("failed to read tensor offset: %w", err)
}
tensor := Tensor{
@@ -230,24 +236,19 @@ func (llm *gguf) Decode(rs io.ReadSeeker) error {
alignment = 32
}
offset, err := rs.Seek(0, io.SeekCurrent)
if err != nil {
return err
}
padding := llm.padding(offset, int64(alignment))
if _, err := rs.Seek(padding, io.SeekCurrent); err != nil {
return err
}
for _, tensor := range llm.tensors {
if _, err := rs.Seek(int64(tensor.Size()), io.SeekCurrent); err != nil {
return err
offset, err := rs.Seek(0, io.SeekCurrent)
if err != nil {
return fmt.Errorf("failed to get current offset: %w", err)
}
padding := llm.padding(int64(tensor.Size()), int64(alignment))
padding := llm.padding(offset, int64(alignment))
if _, err := rs.Seek(padding, io.SeekCurrent); err != nil {
return err
return fmt.Errorf("failed to seek to init padding: %w", err)
}
if _, err := rs.Seek(int64(tensor.Size()), io.SeekCurrent); err != nil {
return fmt.Errorf("failed to seek to tensor: %w", err)
}
}
@@ -285,22 +286,48 @@ func readGGUFV1String(llm *gguf, r io.Reader) (string, error) {
return b.String(), nil
}
func discardGGUFString(llm *gguf, r io.Reader) error {
buf := llm.scratch[:8]
_, err := io.ReadFull(r, buf)
if err != nil {
return err
}
size := int(llm.ByteOrder.Uint64(buf))
for size > 0 {
n, err := r.Read(llm.scratch[:min(size, cap(llm.scratch))])
if err != nil {
return err
}
size -= n
}
return nil
}
func readGGUFString(llm *gguf, r io.Reader) (string, error) {
if llm.Version == 1 {
return readGGUFV1String(llm, r)
}
var length uint64
if err := binary.Read(r, llm.ByteOrder, &length); err != nil {
buf := llm.scratch[:8]
_, err := io.ReadFull(r, buf)
if err != nil {
return "", err
}
var b bytes.Buffer
if _, err := io.CopyN(&b, r, int64(length)); err != nil {
length := int(llm.ByteOrder.Uint64(buf))
if length > len(llm.scratch) {
buf = make([]byte, length)
} else {
buf = llm.scratch[:length]
}
clear(buf)
_, err = io.ReadFull(r, buf)
if err != nil {
return "", err
}
return b.String(), nil
return string(buf), nil
}
func writeGGUFString(llm *gguf, w io.Writer, s string) error {
@@ -316,7 +343,16 @@ func writeGGUFString(llm *gguf, w io.Writer, s string) error {
return err
}
func readGGUFV1Array(llm *gguf, r io.Reader) (a []any, err error) {
type array struct {
size int
values []any
}
func (a *array) MarshalJSON() ([]byte, error) {
return json.Marshal(a.values)
}
func readGGUFV1Array(llm *gguf, r io.Reader) (*array, error) {
t, err := readGGUF[uint32](llm, r)
if err != nil {
return nil, err
@@ -327,7 +363,12 @@ func readGGUFV1Array(llm *gguf, r io.Reader) (a []any, err error) {
return nil, err
}
for i := 0; uint32(i) < n; i++ {
a := &array{size: int(n)}
if llm.canCollectArray(int(n)) {
a.values = make([]any, 0, int(n))
}
for i := range n {
var e any
switch t {
case ggufTypeUint8:
@@ -361,13 +402,15 @@ func readGGUFV1Array(llm *gguf, r io.Reader) (a []any, err error) {
return nil, err
}
a = append(a, e)
if a.values != nil {
a.values[i] = e
}
}
return
return a, nil
}
func readGGUFArray(llm *gguf, r io.Reader) (a []any, err error) {
func readGGUFArray(llm *gguf, r io.Reader) (*array, error) {
if llm.Version == 1 {
return readGGUFV1Array(llm, r)
}
@@ -382,7 +425,12 @@ func readGGUFArray(llm *gguf, r io.Reader) (a []any, err error) {
return nil, err
}
for i := 0; uint64(i) < n; i++ {
a := &array{size: int(n)}
if llm.canCollectArray(int(n)) {
a.values = make([]any, int(n))
}
for i := range n {
var e any
switch t {
case ggufTypeUint8:
@@ -408,7 +456,11 @@ func readGGUFArray(llm *gguf, r io.Reader) (a []any, err error) {
case ggufTypeBool:
e, err = readGGUF[bool](llm, r)
case ggufTypeString:
e, err = readGGUFString(llm, r)
if a.values != nil {
e, err = readGGUFString(llm, r)
} else {
err = discardGGUFString(llm, r)
}
default:
return nil, fmt.Errorf("invalid array type: %d", t)
}
@@ -416,10 +468,12 @@ func readGGUFArray(llm *gguf, r io.Reader) (a []any, err error) {
return nil, err
}
a = append(a, e)
if a.values != nil {
a.values[i] = e
}
}
return
return a, nil
}
func writeGGUFArray[S ~[]E, E any](llm *gguf, w io.Writer, t uint32, s S) error {

View File

@@ -1,6 +1,7 @@
package llm
import (
"fmt"
"log/slog"
"strconv"
"strings"
@@ -49,6 +50,18 @@ type MemoryEstimate struct {
// For multi-GPU scenarios, this is the size in bytes per GPU
GPUSizes []uint64
// internal fields for logging purposes
inferenceLibrary string
layersRequested int
layersModel int
availableList []string
kv uint64
allocationsList []string
memoryWeights uint64
memoryLayerOutput uint64
graphFullOffload uint64
graphPartialOffload uint64
}
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
@@ -102,8 +115,8 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
slog.Warn("model missing blk.0 layer size")
}
// fp16 k,v = (1 (k) + 1 (v)) * sizeof(float16) * n_ctx * n_layer * n_embd / n_head * n_head_kv
var kv uint64 = 2 * 2 * uint64(opts.NumCtx) * ggml.KV().BlockCount() * ggml.KV().EmbeddingLength() / ggml.KV().HeadCount() * ggml.KV().HeadCountKV()
// fp16 k,v = sizeof(float16) * n_ctx * n_layer * (n_embd_head_k + n_embd_head_v) * n_head_kv
var kv uint64 = 2 * uint64(opts.NumCtx) * ggml.KV().BlockCount() * (ggml.KV().EmbeddingHeadCountK() + ggml.KV().EmbeddingHeadCountV()) * ggml.KV().HeadCountKV()
// KV is proportional to the number of layers
layerSize += kv / ggml.KV().BlockCount()
@@ -167,6 +180,11 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
// For all the layers, find where they can fit on the GPU(s)
for i := range int(ggml.KV().BlockCount()) {
// Some models have inconsistent layer sizes
if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
layerSize = blk.size()
layerSize += kv / ggml.KV().BlockCount()
}
memoryWeights += layerSize
if opts.NumGPU >= 0 && layerCount >= opts.NumGPU {
@@ -252,78 +270,86 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
allocationsList = append(allocationsList, format.HumanBytes2(a))
}
estimate := MemoryEstimate{
TotalSize: memoryRequiredTotal,
Layers: 0,
Graph: 0,
VRAMSize: 0,
GPUSizes: []uint64{},
inferenceLibrary: gpus[0].Library,
layersRequested: opts.NumGPU,
layersModel: int(ggml.KV().BlockCount()) + 1,
availableList: availableList,
kv: kv,
allocationsList: allocationsList,
memoryWeights: memoryWeights,
memoryLayerOutput: memoryLayerOutput,
graphFullOffload: graphFullOffload,
graphPartialOffload: graphPartialOffload,
}
if gpus[0].Library == "cpu" {
return estimate
}
if layerCount == 0 {
slog.Debug("insufficient VRAM to load any model layers")
return estimate
}
estimate.Layers = layerCount
estimate.Graph = graphOffload
estimate.VRAMSize = memoryRequiredPartial
estimate.TotalSize = memoryRequiredTotal
estimate.TensorSplit = tensorSplit
estimate.GPUSizes = gpuAllocations
return estimate
}
func (m MemoryEstimate) log() {
slog.Info(
"offload to gpu",
"offload to "+m.inferenceLibrary,
slog.Group(
"layers",
// requested number of layers to offload
"requested", opts.NumGPU,
"requested", m.layersRequested,
// The number of layers the model has (including output)
"model", int(ggml.KV().BlockCount())+1,
"model", m.layersModel,
// estimated number of layers that can be offloaded
"offload", layerCount,
// multi-gpu split for tesnors
"split", tensorSplit,
"offload", m.Layers,
// multi-gpu split for tensors
"split", m.TensorSplit,
),
slog.Group(
"memory",
// memory available by GPU for offloading
"available", availableList,
"available", m.availableList,
slog.Group(
"required",
// memory required for full offloading
"full", format.HumanBytes2(memoryRequiredTotal),
"full", format.HumanBytes2(m.TotalSize),
// memory required to offload layers.estimate layers
"partial", format.HumanBytes2(memoryRequiredPartial),
"partial", format.HumanBytes2(m.VRAMSize),
// memory of KV cache
"kv", format.HumanBytes2(kv),
"kv", format.HumanBytes2(m.kv),
// Allocations across the GPUs
"allocations", allocationsList,
"allocations", m.allocationsList,
),
slog.Group(
"weights",
// memory of the weights
"total", format.HumanBytes2(memoryWeights),
"total", format.HumanBytes2(m.memoryWeights),
// memory of repeating layers
"repeating", format.HumanBytes2(memoryWeights-memoryLayerOutput),
"repeating", format.HumanBytes2(m.memoryWeights-m.memoryLayerOutput),
// memory of non-repeating layers
"nonrepeating", format.HumanBytes2(memoryLayerOutput),
"nonrepeating", format.HumanBytes2(m.memoryLayerOutput),
),
slog.Group(
"graph",
// memory of graph when fully offloaded
"full", format.HumanBytes2(graphFullOffload),
"full", format.HumanBytes2(m.graphFullOffload),
// memory of graph when not fully offloaded
"partial", format.HumanBytes2(graphPartialOffload),
"partial", format.HumanBytes2(m.graphPartialOffload),
),
),
)
if gpus[0].Library == "cpu" {
return MemoryEstimate{
Layers: 0,
Graph: 0,
VRAMSize: 0,
TotalSize: memoryRequiredTotal,
GPUSizes: []uint64{},
}
}
if layerCount == 0 {
slog.Debug("insufficient VRAM to load any model layers")
return MemoryEstimate{
Layers: 0,
Graph: 0,
VRAMSize: 0,
TotalSize: memoryRequiredTotal,
GPUSizes: []uint64{},
}
}
return MemoryEstimate{
Layers: layerCount,
Graph: graphOffload,
VRAMSize: memoryRequiredPartial,
TotalSize: memoryRequiredTotal,
TensorSplit: tensorSplit,
GPUSizes: gpuAllocations,
}
}

View File

@@ -22,13 +22,14 @@ func TestEstimateGPULayers(t *testing.T) {
defer f.Close()
gguf := NewGGUFV3(binary.LittleEndian)
inputLayerCount := 5
tensors := []Tensor{
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
{Name: "blk.1.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
{Name: "blk.2.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
{Name: "blk.3.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
{Name: "blk.4.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.1.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.2.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.3.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.4.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
}
assert.Len(t, tensors, inputLayerCount+1)
err = gguf.Encode(f, KV{
@@ -45,8 +46,10 @@ func TestEstimateGPULayers(t *testing.T) {
}, tensors)
require.NoError(t, err)
ggml, err := LoadModel(f.Name())
require.NoError(t, err)
ggml, err := LoadModel(f.Name(), 0)
if err != nil {
t.Fatal(err)
}
// Simple CPU scenario
gpus := []gpu.GpuInfo{

View File

@@ -1,8 +1,8 @@
diff --git a/common/common.cpp b/common/common.cpp
index ba1ecf0e..cead57cc 100644
index 73ff0e85..6adb1a92 100644
--- a/common/common.cpp
+++ b/common/common.cpp
@@ -1836,6 +1836,8 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
@@ -2447,6 +2447,8 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
mparams.use_mmap = params.use_mmap;
mparams.use_mlock = params.use_mlock;
mparams.check_tensors = params.check_tensors;
@@ -12,20 +12,20 @@ index ba1ecf0e..cead57cc 100644
mparams.kv_overrides = NULL;
} else {
diff --git a/common/common.h b/common/common.h
index d80344f2..71e84834 100644
index 58ed72f4..0bb2605e 100644
--- a/common/common.h
+++ b/common/common.h
@@ -174,6 +174,13 @@ struct gpt_params {
// multimodal models (see examples/llava)
@@ -180,6 +180,13 @@ struct gpt_params {
std::string mmproj = ""; // path to multimodal projector
std::vector<std::string> image; // path to image file(s)
+
+ // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
+ // If the provided progress_callback returns true, model loading continues.
+ // If it returns false, model loading is immediately aborted.
+ llama_progress_callback progress_callback = NULL;
+ // context pointer passed to the progress callback
+ void * progress_callback_user_data;
};
void gpt_params_handle_model_default(gpt_params & params);
+
// server params
int32_t port = 8080; // server listens on this network port
int32_t timeout_read = 600; // http read timeout in seconds

View File

@@ -1,8 +1,8 @@
diff --git a/llama.cpp b/llama.cpp
index 40d2ec2c..74f3ee9c 100644
index 61948751..4b72a293 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -4642,16 +4642,7 @@ static void llm_load_vocab(
@@ -4824,16 +4824,7 @@ static void llm_load_vocab(
// for now, only BPE models have pre-tokenizers
if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
@@ -15,14 +15,14 @@ index 40d2ec2c..74f3ee9c 100644
- LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
- LLAMA_LOG_WARN("%s: \n", __func__);
- vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
- } else if (
+ if (
tokenizer_pre == "default") {
- } else if (tokenizer_pre == "default") {
+ if (tokenizer_pre == "default") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
} else if (
@@ -4703,7 +4694,8 @@ static void llm_load_vocab(
tokenizer_pre == "smaug-bpe") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMAUG;
tokenizer_pre == "llama3" ||
@@ -4888,7 +4879,8 @@ static void llm_load_vocab(
tokenizer_pre == "poro-chat") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_PORO;
} else {
- throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
+ LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);

305
llm/patches/07-gemma.diff Normal file
View File

@@ -0,0 +1,305 @@
From 5cadb45f39d001ffbad95b690d6cf0abcb4a6d96 Mon Sep 17 00:00:00 2001
From: Ollama maintainers <hello@ollama.com>
Date: Wed, 26 Jun 2024 16:18:09 -0700
Subject: [PATCH] Architecture support
---
llama.cpp | 194 +++++++++++++++++++++++++++++++++++++++++++++++++++++-
1 file changed, 193 insertions(+), 1 deletion(-)
diff --git a/llama.cpp b/llama.cpp
index 61948751..3b4196f5 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -217,6 +217,7 @@ enum llm_arch {
LLM_ARCH_INTERNLM2,
LLM_ARCH_MINICPM,
LLM_ARCH_GEMMA,
+ LLM_ARCH_GEMMA2,
LLM_ARCH_STARCODER2,
LLM_ARCH_MAMBA,
LLM_ARCH_XVERSE,
@@ -255,6 +256,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_INTERNLM2, "internlm2" },
{ LLM_ARCH_MINICPM, "minicpm" },
{ LLM_ARCH_GEMMA, "gemma" },
+ { LLM_ARCH_GEMMA2, "gemma2" },
{ LLM_ARCH_STARCODER2, "starcoder2" },
{ LLM_ARCH_MAMBA, "mamba" },
{ LLM_ARCH_XVERSE, "xverse" },
@@ -464,10 +466,12 @@ enum llm_tensor {
LLM_TENSOR_ATTN_NORM,
LLM_TENSOR_ATTN_NORM_2,
LLM_TENSOR_ATTN_OUT_NORM,
+ LLM_TENSOR_ATTN_POST_NORM,
LLM_TENSOR_ATTN_ROT_EMBD,
LLM_TENSOR_FFN_GATE_INP,
LLM_TENSOR_FFN_GATE_INP_SHEXP,
LLM_TENSOR_FFN_NORM,
+ LLM_TENSOR_FFN_POST_NORM,
LLM_TENSOR_FFN_GATE,
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
@@ -960,6 +964,24 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
+ {
+ LLM_ARCH_GEMMA2,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
+ },
+ },
{
LLM_ARCH_STARCODER2,
{
@@ -1941,6 +1963,8 @@ enum e_model {
MODEL_8x22B,
MODEL_16x12B,
MODEL_10B_128x3_66B,
+ MODEL_9B,
+ MODEL_27B,
};
static const size_t kiB = 1024;
@@ -2114,6 +2138,7 @@ struct llama_layer {
struct ggml_tensor * attn_out_norm_b;
struct ggml_tensor * attn_q_a_norm;
struct ggml_tensor * attn_kv_a_norm;
+ struct ggml_tensor * attn_post_norm;
// attention
struct ggml_tensor * wq;
@@ -2136,6 +2161,7 @@ struct llama_layer {
// normalization
struct ggml_tensor * ffn_norm;
struct ggml_tensor * ffn_norm_b;
+ struct ggml_tensor * ffn_post_norm;
struct ggml_tensor * layer_out_norm;
struct ggml_tensor * layer_out_norm_b;
struct ggml_tensor * ffn_norm_exps;
@@ -4529,6 +4555,16 @@ static void llm_load_hparams(
}
} break;
case LLM_ARCH_GEMMA:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+ switch (hparams.n_layer) {
+ case 18: model.type = e_model::MODEL_9B; break;
+ case 28: model.type = e_model::MODEL_27B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_GEMMA2:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -6305,6 +6341,40 @@ static bool llm_load_tensors(
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
}
} break;
+ case LLM_ARCH_GEMMA2:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
+
+ const int64_t n_ff = hparams.n_ff;
+ const int64_t n_embd_head_k = hparams.n_embd_head_k;
+ const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
+ const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
+
+ for (uint32_t i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
+ layer.attn_post_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd});
+ }
+ } break;
case LLM_ARCH_STARCODER2:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
@@ -10614,6 +10684,123 @@ struct llm_build_context {
return gf;
}
+ struct ggml_cgraph * build_gemma2() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head_k = hparams.n_embd_head_k;
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
+ cb(inpL, "inp_scaled", -1);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
+ n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow);
+ cb(Qcur, "Qcur", il);
+
+ Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
+ cb(Qcur, "Qcur_scaled", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow);
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
+ model.layers[il].wo, NULL,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+ }
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.layers[il].attn_post_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_post_norm", il);
+
+ struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
+ cb(sa_out, "sa_out", il);
+
+ cur = llm_build_norm(ctx0, sa_out, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ // feed-forward network
+ {
+ cur = llm_build_ffn(ctx0, cur,
+ model.layers[il].ffn_up, NULL,
+ model.layers[il].ffn_gate, NULL,
+ model.layers[il].ffn_down, NULL,
+ NULL,
+ LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.layers[il].ffn_post_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "ffn_post_norm", -1);
+
+ cur = ggml_add(ctx0, cur, sa_out);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = ggml_mul_mat(ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
struct ggml_cgraph * build_starcoder2() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
@@ -11847,6 +12034,10 @@ static struct ggml_cgraph * llama_build_graph(
{
result = llm.build_gemma();
} break;
+ case LLM_ARCH_GEMMA2:
+ {
+ result = llm.build_gemma2();
+ } break;
case LLM_ARCH_STARCODER2:
{
result = llm.build_starcoder2();
@@ -16671,6 +16862,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
case LLM_ARCH_PHI2:
case LLM_ARCH_PHI3:
case LLM_ARCH_GEMMA:
+ case LLM_ARCH_GEMMA2:
case LLM_ARCH_STARCODER2:
case LLM_ARCH_GPTNEOX:
return LLAMA_ROPE_TYPE_NEOX;
@@ -18551,7 +18743,7 @@ static int32_t llama_chat_apply_template_internal(
if (add_ass) {
ss << "<s>assistant\n";
}
- } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
+ } else if (tmpl == "gemma" || tmpl == "gemma2" || tmpl.find("<start_of_turn>") != std::string::npos) {
// google/gemma-7b-it
std::string system_prompt = "";
for (auto message : chat) {
--
2.45.2

View File

@@ -58,7 +58,7 @@ func availableServers() map[string]string {
}
// glob payloadsDir for files that start with ollama_
pattern := filepath.Join(payloadsDir, "*")
pattern := filepath.Join(payloadsDir, "*", "ollama_*")
files, err := filepath.Glob(pattern)
if err != nil {
@@ -69,7 +69,7 @@ func availableServers() map[string]string {
servers := make(map[string]string)
for _, file := range files {
slog.Debug("availableServers : found", "file", file)
servers[filepath.Base(file)] = file
servers[filepath.Base(filepath.Dir(file))] = filepath.Dir(file)
}
return servers

View File

@@ -60,7 +60,12 @@ type llmServer struct {
sem *semaphore.Weighted
}
func LoadModel(model string) (*GGML, error) {
// LoadModel will load a model from disk. The model must be in the GGML format.
//
// It collects array values for arrays with a size less than or equal to
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
// the maxArraySize is negative, all arrays are collected.
func LoadModel(model string, maxArraySize int) (*GGML, error) {
if _, err := os.Stat(model); err != nil {
return nil, err
}
@@ -71,7 +76,7 @@ func LoadModel(model string) (*GGML, error) {
}
defer f.Close()
ggml, _, err := DecodeGGML(f)
ggml, _, err := DecodeGGML(f, maxArraySize)
return ggml, err
}
@@ -81,7 +86,17 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
var err error
var cpuRunner string
var estimate MemoryEstimate
var systemMemory uint64
var systemTotalMemory uint64
var systemFreeMemory uint64
systemMemInfo, err := gpu.GetCPUMem()
if err != nil {
slog.Error("failed to lookup system memory", "error", err)
} else {
systemTotalMemory = systemMemInfo.TotalMemory
systemFreeMemory = systemMemInfo.FreeMemory
slog.Debug("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", systemFreeMemory)
}
// If the user wants zero GPU layers, reset the gpu list to be CPU/system ram info
if opts.NumGPU == 0 {
@@ -91,19 +106,10 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
cpuRunner = serverForCpu()
estimate = EstimateGPULayers(gpus, ggml, projectors, opts)
} else {
if gpus[0].Library == "metal" {
memInfo, err := gpu.GetCPUMem()
if err != nil {
slog.Error("failed to lookup system memory", "error", err)
} else {
systemMemory = memInfo.TotalMemory
slog.Debug("system memory", "total", format.HumanBytes2(systemMemory))
}
}
estimate = EstimateGPULayers(gpus, ggml, projectors, opts)
switch {
case gpus[0].Library == "metal" && estimate.VRAMSize > systemMemory:
case gpus[0].Library == "metal" && estimate.VRAMSize > systemTotalMemory:
// disable partial offloading when model is greater than total system memory as this
// can lead to locking up the system
opts.NumGPU = 0
@@ -116,6 +122,8 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
}
}
estimate.log()
// Loop through potential servers
finalErr := errors.New("no suitable llama servers found")
@@ -158,6 +166,8 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
params = append(params, "--log-disable")
params = append(params, "--timeout", fmt.Sprintf("%d", 600))
if opts.NumGPU >= 0 {
params = append(params, "--n-gpu-layers", fmt.Sprintf("%d", opts.NumGPU))
}
@@ -200,7 +210,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
if g.Library == "metal" &&
uint64(opts.NumGPU) > 0 &&
uint64(opts.NumGPU) < ggml.KV().BlockCount()+1 {
opts.UseMMap = false
opts.UseMMap = api.TriStateFalse
}
}
@@ -208,7 +218,11 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
params = append(params, "--flash-attn")
}
if !opts.UseMMap {
// Windows CUDA should not use mmap for best performance
// Linux with a model larger than free space, mmap leads to thrashing
if (runtime.GOOS == "windows" && gpus[0].Library == "cuda" && opts.UseMMap == api.TriStateUndefined) ||
(runtime.GOOS == "linux" && systemFreeMemory < estimate.TotalSize && opts.UseMMap == api.TriStateUndefined) ||
opts.UseMMap == api.TriStateFalse {
params = append(params, "--no-mmap")
}
@@ -271,8 +285,8 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
if runtime.GOOS == "windows" {
pathEnv = "PATH"
}
// prepend the server directory to LD_LIBRARY_PATH/PATH
libraryPaths := []string{dir}
// prepend the server directory to LD_LIBRARY_PATH/PATH and the parent dir for common dependencies
libraryPaths := []string{dir, filepath.Dir(dir)}
if libraryPath, ok := os.LookupEnv(pathEnv); ok {
// Append our runner directory to the path
@@ -405,7 +419,7 @@ func projectorMemoryRequirements(filename string) uint64 {
}
defer file.Close()
ggml, _, err := DecodeGGML(file)
ggml, _, err := DecodeGGML(file, 0)
if err != nil {
return 0
}

View File

@@ -103,19 +103,19 @@ function buildApp() {
function gatherDependencies() {
write-host "Gathering runtime dependencies"
cd "${script:SRC_DIR}"
md "${script:DEPS_DIR}" -ea 0 > $null
md "${script:DEPS_DIR}\ollama_runners" -ea 0 > $null
# TODO - this varies based on host build system and MSVC version - drive from dumpbin output
# currently works for Win11 + MSVC 2019 + Cuda V11
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\msvcp140.dll" "${script:DEPS_DIR}\"
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\vcruntime140.dll" "${script:DEPS_DIR}\"
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\vcruntime140_1.dll" "${script:DEPS_DIR}\"
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\msvcp140.dll" "${script:DEPS_DIR}\ollama_runners\"
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\vcruntime140.dll" "${script:DEPS_DIR}\ollama_runners\"
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\vcruntime140_1.dll" "${script:DEPS_DIR}\ollama_runners\"
cp "${script:SRC_DIR}\app\ollama_welcome.ps1" "${script:SRC_DIR}\dist\"
if ("${env:KEY_CONTAINER}") {
write-host "about to sign"
foreach ($file in (get-childitem "${script:DEPS_DIR}/cu*.dll") + @("${script:SRC_DIR}\dist\ollama_welcome.ps1")){
foreach ($file in (get-childitem "${script:DEPS_DIR}\cuda\cu*.dll") + @("${script:SRC_DIR}\dist\ollama_welcome.ps1")){
write-host "signing $file"
& "${script:SignTool}" sign /v /fd sha256 /t http://timestamp.digicert.com /f "${script:OLLAMA_CERT}" `
/csp "Google Cloud KMS Provider" /kc ${env:KEY_CONTAINER} $file

View File

@@ -279,7 +279,7 @@ if ! check_gpu nvidia-smi || [ -z "$(nvidia-smi | grep -o "CUDA Version: [0-9]*\
case $OS_NAME in
centos|rhel) install_cuda_driver_yum 'rhel' $(echo $OS_VERSION | cut -d '.' -f 1) ;;
rocky) install_cuda_driver_yum 'rhel' $(echo $OS_VERSION | cut -c1) ;;
fedora) [ $OS_VERSION -lt '37' ] && install_cuda_driver_yum $OS_NAME $OS_VERSION || install_cuda_driver_yum $OS_NAME '37';;
fedora) [ $OS_VERSION -lt '39' ] && install_cuda_driver_yum $OS_NAME $OS_VERSION || install_cuda_driver_yum $OS_NAME '39';;
amzn) install_cuda_driver_yum 'fedora' '37' ;;
debian) install_cuda_driver_apt $OS_NAME $OS_VERSION ;;
ubuntu) install_cuda_driver_apt $OS_NAME $(echo $OS_VERSION | sed 's/\.//') ;;

View File

@@ -414,17 +414,22 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
return err
}
layers, err := parseFromFile(ctx, temp, "", fn)
layer, err := NewLayer(temp, baseLayer.MediaType)
if err != nil {
return err
}
if len(layers) != 1 {
return errors.New("quantization failed")
if _, err := temp.Seek(0, io.SeekStart); err != nil {
return err
}
baseLayer.Layer = layers[0].Layer
baseLayer.GGML = layers[0].GGML
ggml, _, err := llm.DecodeGGML(temp, 0)
if err != nil {
return err
}
baseLayer.Layer = layer
baseLayer.GGML = ggml
}
}

View File

@@ -11,6 +11,7 @@ import (
"net/http"
"os"
"path/filepath"
"strings"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/convert"
@@ -63,7 +64,7 @@ func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressRe
}
defer blob.Close()
ggml, _, err := llm.DecodeGGML(blob)
ggml, _, err := llm.DecodeGGML(blob, 0)
if err != nil {
return nil, err
}
@@ -77,62 +78,80 @@ func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressRe
return layers, nil
}
func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
func extractFromZipFile(p string, file *os.File, fn func(api.ProgressResponse)) error {
stat, err := file.Stat()
if err != nil {
return nil, err
return err
}
r, err := zip.NewReader(file, stat.Size())
if err != nil {
return nil, err
return err
}
tempdir, err := os.MkdirTemp(filepath.Dir(file.Name()), "")
if err != nil {
return nil, err
}
defer os.RemoveAll(tempdir)
fn(api.ProgressResponse{Status: "unpacking model metadata"})
for _, f := range r.File {
n := filepath.Join(p, f.Name)
if !strings.HasPrefix(n, p) {
slog.Warn("skipped extracting file outside of context", "name", f.Name)
continue
}
if err := os.MkdirAll(filepath.Dir(n), 0o750); err != nil {
return err
}
// TODO(mxyng): this should not write out all files to disk
outfile, err := os.Create(filepath.Join(tempdir, f.Name))
outfile, err := os.Create(n)
if err != nil {
return nil, err
return err
}
defer outfile.Close()
infile, err := f.Open()
if err != nil {
return nil, err
return err
}
defer infile.Close()
if _, err = io.Copy(outfile, infile); err != nil {
return nil, err
return err
}
if err := outfile.Close(); err != nil {
return nil, err
return err
}
if err := infile.Close(); err != nil {
return nil, err
return err
}
}
mf, err := convert.GetModelFormat(tempdir)
return nil
}
func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
tempDir, err := os.MkdirTemp(filepath.Dir(file.Name()), "")
if err != nil {
return nil, err
}
defer os.RemoveAll(tempDir)
if err := extractFromZipFile(tempDir, file, fn); err != nil {
return nil, err
}
mf, err := convert.GetModelFormat(tempDir)
if err != nil {
return nil, err
}
params, err := mf.GetParams(tempdir)
params, err := mf.GetParams(tempDir)
if err != nil {
return nil, err
}
mArch, err := mf.GetModelArch("", tempdir, params)
mArch, err := mf.GetModelArch("", tempDir, params)
if err != nil {
return nil, err
}
@@ -150,7 +169,7 @@ func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(a
// TODO(mxyng): this should write directly into a layer
// e.g. NewLayer(arch.Reader(), "application/vnd.ollama.image.model")
temp, err := os.CreateTemp(tempdir, "fp16")
temp, err := os.CreateTemp(tempDir, "fp16")
if err != nil {
return nil, err
}
@@ -176,7 +195,7 @@ func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(a
}
defer bin.Close()
ggml, _, err := llm.DecodeGGML(bin)
ggml, _, err := llm.DecodeGGML(bin, 0)
if err != nil {
return nil, err
}
@@ -210,7 +229,7 @@ func parseFromFile(ctx context.Context, file *os.File, digest string, fn func(ap
var offset int64
for offset < stat.Size() {
ggml, n, err := llm.DecodeGGML(file)
ggml, n, err := llm.DecodeGGML(file, 0)
if errors.Is(err, io.EOF) {
break
} else if err != nil {

92
server/model_test.go Normal file
View File

@@ -0,0 +1,92 @@
package server
import (
"archive/zip"
"bytes"
"io"
"os"
"path/filepath"
"slices"
"testing"
"github.com/ollama/ollama/api"
)
func createZipFile(t *testing.T, name string) *os.File {
t.Helper()
f, err := os.CreateTemp(t.TempDir(), "")
if err != nil {
t.Fatal(err)
}
zf := zip.NewWriter(f)
defer zf.Close()
zh, err := zf.CreateHeader(&zip.FileHeader{Name: name})
if err != nil {
t.Fatal(err)
}
if _, err := io.Copy(zh, bytes.NewReader([]byte(""))); err != nil {
t.Fatal(err)
}
return f
}
func TestExtractFromZipFile(t *testing.T) {
cases := []struct {
name string
expect []string
}{
{
name: "good",
expect: []string{"good"},
},
{
name: filepath.Join("..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "bad"),
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
f := createZipFile(t, tt.name)
defer f.Close()
tempDir := t.TempDir()
if err := extractFromZipFile(tempDir, f, func(api.ProgressResponse) {}); err != nil {
t.Fatal(err)
}
var matches []string
if err := filepath.Walk(tempDir, func(p string, fi os.FileInfo, err error) error {
if err != nil {
return err
}
if !fi.IsDir() {
matches = append(matches, p)
}
return nil
}); err != nil {
t.Fatal(err)
}
var actual []string
for _, match := range matches {
rel, err := filepath.Rel(tempDir, match)
if err != nil {
t.Error(err)
}
actual = append(actual, rel)
}
if !slices.Equal(actual, tt.expect) {
t.Fatalf("expected %d files, got %d", len(tt.expect), len(matches))
}
})
}
}

View File

@@ -734,9 +734,48 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
fmt.Fprint(&sb, m.String())
resp.Modelfile = sb.String()
kvData, err := getKVData(m.ModelPath, req.Verbose)
if err != nil {
return nil, err
}
delete(kvData, "general.name")
delete(kvData, "tokenizer.chat_template")
resp.ModelInfo = kvData
if len(m.ProjectorPaths) > 0 {
projectorData, err := getKVData(m.ProjectorPaths[0], req.Verbose)
if err != nil {
return nil, err
}
resp.ProjectorInfo = projectorData
}
return resp, nil
}
func getKVData(digest string, verbose bool) (llm.KV, error) {
maxArraySize := 0
if verbose {
maxArraySize = -1
}
kvData, err := llm.LoadModel(digest, maxArraySize)
if err != nil {
return nil, err
}
kv := kvData.KV()
if !verbose {
for k := range kv {
if t, ok := kv[k].([]any); len(t) > 5 && ok {
kv[k] = []any{}
}
}
}
return kv, nil
}
func (s *Server) ListModelsHandler(c *gin.Context) {
ms, err := Manifests()
if err != nil {
@@ -1066,11 +1105,20 @@ func Serve(ln net.Listener) error {
schedCtx, schedDone := context.WithCancel(ctx)
sched := InitScheduler(schedCtx)
s := &Server{addr: ln.Addr(), sched: sched}
r := s.GenerateRoutes()
http.Handle("/", s.GenerateRoutes())
slog.Info(fmt.Sprintf("Listening on %s (version %s)", ln.Addr(), version.Version))
srvr := &http.Server{
Handler: r,
// Use http.DefaultServeMux so we get net/http/pprof for
// free.
//
// TODO(bmizerany): Decide if we want to make this
// configurable so it is not exposed by default, or allow
// users to bind it to a different port. This was a quick
// and easy way to get pprof, but it may not be the best
// way.
Handler: nil,
}
// listen for a ctrl+c and stop any loaded llm

View File

@@ -19,6 +19,7 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/version"
@@ -212,6 +213,7 @@ func Test_Routes(t *testing.T) {
"top_p 0.9",
}
assert.Equal(t, expectedParams, params)
assert.InDelta(t, 0, showResp.ModelInfo["general.parameter_count"], 1e-9, "Parameter count should be 0")
},
},
}
@@ -325,3 +327,40 @@ func TestCase(t *testing.T) {
})
}
}
func TestShow(t *testing.T) {
t.Setenv("OLLAMA_MODELS", t.TempDir())
envconfig.LoadConfig()
var s Server
createRequest(t, s.CreateModelHandler, api.CreateRequest{
Name: "show-model",
Modelfile: fmt.Sprintf(
"FROM %s\nFROM %s",
createBinFile(t, llm.KV{"general.architecture": "test"}, nil),
createBinFile(t, llm.KV{"general.architecture": "clip"}, nil),
),
})
w := createRequest(t, s.ShowModelHandler, api.ShowRequest{
Name: "show-model",
})
if w.Code != http.StatusOK {
t.Fatalf("expected status code 200, actual %d", w.Code)
}
var resp api.ShowResponse
if err := json.NewDecoder(w.Body).Decode(&resp); err != nil {
t.Fatal(err)
}
if resp.ModelInfo["general.architecture"] != "test" {
t.Fatal("Expected model architecture to be 'test', but got", resp.ModelInfo["general.architecture"])
}
if resp.ProjectorInfo["general.architecture"] != "clip" {
t.Fatal("Expected projector architecture to be 'clip', but got", resp.ProjectorInfo["general.architecture"])
}
}

View File

@@ -144,7 +144,7 @@ func (s *Scheduler) processPending(ctx context.Context) {
}
// Load model for fitting
ggml, err := llm.LoadModel(pending.model.ModelPath)
ggml, err := llm.LoadModel(pending.model.ModelPath, 0)
if err != nil {
pending.errCh <- err
break

View File

@@ -128,14 +128,14 @@ func newScenario(t *testing.T, ctx context.Context, modelName string, estimatedV
"tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0},
}, []llm.Tensor{
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}},
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
})
require.NoError(t, err)
fname := f.Name()
model := &Model{Name: modelName, ModelPath: fname}
scenario.ggml, err = llm.LoadModel(model.ModelPath)
scenario.ggml, err = llm.LoadModel(model.ModelPath, 0)
require.NoError(t, err)
scenario.req = &LlmRequest{

View File

@@ -4,7 +4,6 @@ package model
import (
"cmp"
"encoding/hex"
"errors"
"fmt"
"log/slog"
@@ -371,57 +370,3 @@ func cutPromised(s, sep string) (before, after string, ok bool) {
}
return cmp.Or(before, MissingPart), cmp.Or(after, MissingPart), true
}
type DigestType byte
const (
DigestTypeInvalid DigestType = iota
DigestTypeSHA256
)
func (t DigestType) String() string {
switch t {
case DigestTypeSHA256:
return "sha256"
default:
return "invalid"
}
}
type Digest struct {
Type DigestType
Sum [32]byte
}
func ParseDigest(s string) (Digest, error) {
i := strings.IndexAny(s, "-:")
if i < 0 {
return Digest{}, fmt.Errorf("invalid digest %q", s)
}
typ, encSum := s[:i], s[i+1:]
if typ != "sha256" {
return Digest{}, fmt.Errorf("unsupported digest type %q", typ)
}
d := Digest{
Type: DigestTypeSHA256,
}
n, err := hex.Decode(d.Sum[:], []byte(encSum))
if err != nil {
return Digest{}, err
}
if n != 32 {
return Digest{}, fmt.Errorf("digest %q decoded to %d bytes; want 32", encSum, n)
}
return d, nil
}
func (d Digest) String() string {
if d.Type == DigestTypeInvalid {
return ""
}
return fmt.Sprintf("sha256-%x", d.Sum)
}
func (d Digest) IsValid() bool {
return d.Type != DigestTypeInvalid
}

View File

@@ -284,40 +284,6 @@ func TestFilepathAllocs(t *testing.T) {
}
}
const (
validSha256 = "sha256-1000000000000000000000000000000000000000000000000000000000000000"
validSha256Old = "sha256:1000000000000000000000000000000000000000000000000000000000000000"
)
func TestParseDigest(t *testing.T) {
cases := []struct {
in string
want string
}{
{"", ""}, // empty
{"sha123-12", ""}, // invalid type
{"sha256-", ""}, // invalid sum
{"sha256-123", ""}, // invalid odd length sum
{validSha256, validSha256},
{validSha256Old, validSha256},
}
for _, tt := range cases {
t.Run(tt.in, func(t *testing.T) {
got, err := ParseDigest(tt.in)
if err != nil {
if tt.want != "" {
t.Errorf("parseDigest(%q) = %v; want %v", tt.in, err, tt.want)
}
return
}
if got.String() != tt.want {
t.Errorf("parseDigest(%q).String() = %q; want %q", tt.in, got, tt.want)
}
})
}
}
func TestParseNameFromFilepath(t *testing.T) {
cases := map[string]Name{
filepath.Join("host", "namespace", "model", "tag"): {Host: "host", Namespace: "namespace", Model: "model", Tag: "tag"},

View File

@@ -0,0 +1,34 @@
package bufioutil
import (
"bufio"
"io"
)
type BufferedSeeker struct {
rs io.ReadSeeker
br *bufio.Reader
}
func NewBufferedSeeker(rs io.ReadSeeker, size int) *BufferedSeeker {
return &BufferedSeeker{
rs: rs,
br: bufio.NewReaderSize(rs, size),
}
}
func (b *BufferedSeeker) Read(p []byte) (int, error) {
return b.br.Read(p)
}
func (b *BufferedSeeker) Seek(offset int64, whence int) (int64, error) {
if whence == io.SeekCurrent {
offset -= int64(b.br.Buffered())
}
n, err := b.rs.Seek(offset, whence)
if err != nil {
return 0, err
}
b.br.Reset(b.rs)
return n, nil
}

View File

@@ -0,0 +1,64 @@
package bufioutil
import (
"bytes"
"io"
"strings"
"testing"
)
func TestBufferedSeeker(t *testing.T) {
const alphabet = "abcdefghijklmnopqrstuvwxyz"
bs := NewBufferedSeeker(strings.NewReader(alphabet), 0) // minReadBufferSize = 16
checkRead := func(buf []byte, expected string) {
t.Helper()
_, err := bs.Read(buf)
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(buf, []byte(expected)) {
t.Fatalf("expected %s, got %s", expected, buf)
}
}
// Read the first 5 bytes
buf := make([]byte, 5)
checkRead(buf, "abcde")
// Seek back to the beginning
_, err := bs.Seek(0, io.SeekStart)
if err != nil {
t.Fatal(err)
}
// read 'a'
checkRead(buf[:1], "a")
if bs.br.Buffered() == 0 {
t.Fatalf("totally unexpected sanity check failed")
}
// Seek past 'b'
_, err = bs.Seek(1, io.SeekCurrent)
if err != nil {
t.Fatal(err)
}
checkRead(buf, "cdefg")
// Seek back to the beginning
_, err = bs.Seek(0, io.SeekStart)
if err != nil {
t.Fatal(err)
}
checkRead(buf, "abcde")
// Seek to the end
_, err = bs.Seek(-5, io.SeekEnd)
if err != nil {
t.Fatal(err)
}
checkRead(buf, "vwxyz")
}