mirror of
https://github.com/ollama/ollama.git
synced 2026-02-18 15:25:27 -05:00
Compare commits
126 Commits
jmorganca/
...
parth/olmo
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
29a2d6d931 | ||
|
|
b6f769ae60 | ||
|
|
a613eca69c | ||
|
|
3015146cda | ||
|
|
5d50848c52 | ||
|
|
991a63b6ca | ||
|
|
2c147bc780 | ||
|
|
d8bf6a5dee | ||
|
|
3eea7f198b | ||
|
|
494284770d | ||
|
|
57569274ec | ||
|
|
7505cd963e | ||
|
|
bdcf9e811b | ||
|
|
0c5e5f6630 | ||
|
|
d475d1f081 | ||
|
|
d2f334c1f7 | ||
|
|
603ceefaa6 | ||
|
|
e082d60a24 | ||
|
|
5dae738067 | ||
|
|
0c78723174 | ||
|
|
5a41d69b2a | ||
|
|
c146a138e3 | ||
|
|
31b8c6a214 | ||
|
|
9191dfaf05 | ||
|
|
1108d8b34e | ||
|
|
7837a5bc7e | ||
|
|
0a844f8e96 | ||
|
|
a03223b86f | ||
|
|
0cf7794b16 | ||
|
|
854d40edc5 | ||
|
|
84a2cedf18 | ||
|
|
3f30836734 | ||
|
|
cc9555aff0 | ||
|
|
20aee96706 | ||
|
|
18b5958d46 | ||
|
|
5317202c38 | ||
|
|
d771043e88 | ||
|
|
f8f1071818 | ||
|
|
d3e0a0dee4 | ||
|
|
554172759c | ||
|
|
5b6a8e6001 | ||
|
|
467bbc0dd5 | ||
|
|
6d9f9323c5 | ||
|
|
0c2489605d | ||
|
|
8b1b89a984 | ||
|
|
47e272c35a | ||
|
|
417a81fda3 | ||
|
|
dba62ff3a5 | ||
|
|
d70e935526 | ||
|
|
5c1063df7f | ||
|
|
cb485b2019 | ||
|
|
b2af50960f | ||
|
|
eac5b8bfbd | ||
|
|
604e43b28d | ||
|
|
53985b3c4d | ||
|
|
b6e02cbbd2 | ||
|
|
91935631ac | ||
|
|
8de30b568a | ||
|
|
485da9fd35 | ||
|
|
0796d79d19 | ||
|
|
92981ae3f2 | ||
|
|
8ed1adf3db | ||
|
|
440a3823a6 | ||
|
|
718961de68 | ||
|
|
330f62a7fa | ||
|
|
584e2d646f | ||
|
|
1fd4cb87b2 | ||
|
|
4aba2e8b72 | ||
|
|
2f36d769aa | ||
|
|
399eacf486 | ||
|
|
231cc878cb | ||
|
|
aa676b313f | ||
|
|
dd0ed0ef17 | ||
|
|
d5649821ae | ||
|
|
4cea757e70 | ||
|
|
a751bc159c | ||
|
|
5d31242fbf | ||
|
|
d7fd72193f | ||
|
|
72ff5b9d8c | ||
|
|
ce29f695b4 | ||
|
|
12b174b10e | ||
|
|
333203d871 | ||
|
|
c114987523 | ||
|
|
b48083f33f | ||
|
|
482bec824f | ||
|
|
684a9a8c5a | ||
|
|
54a76d3773 | ||
|
|
8a75d8b015 | ||
|
|
f206357412 | ||
|
|
8224cd9063 | ||
|
|
6286d9a3a5 | ||
|
|
3a9e8e9fd4 | ||
|
|
cb1cb06478 | ||
|
|
2d5e066c8c | ||
|
|
15968714bd | ||
|
|
8bf38552de | ||
|
|
b13fbad0fe | ||
|
|
f560bd077f | ||
|
|
4372d0bfef | ||
|
|
31361c4d3c | ||
|
|
59241c5bee | ||
|
|
2a9b61f099 | ||
|
|
6df4208836 | ||
|
|
9d615cdaa0 | ||
|
|
6a818b8a09 | ||
|
|
2aaf29acb5 | ||
|
|
a42f826acb | ||
|
|
e10a3533a5 | ||
|
|
91ec3ddbeb | ||
|
|
755ac3b069 | ||
|
|
60b8973559 | ||
|
|
d2ef679d42 | ||
|
|
d4e0da0890 | ||
|
|
565b802a6b | ||
|
|
6c79e6c09a | ||
|
|
780762f9d2 | ||
|
|
30fcc71983 | ||
|
|
3501a4bdf9 | ||
|
|
73a0cafc1e | ||
|
|
e309c80474 | ||
|
|
a4a53692f8 | ||
|
|
536c987c39 | ||
|
|
a534d4e9e1 | ||
|
|
74586aa9df | ||
|
|
8c74f5ddfd | ||
|
|
bddfa2100f |
4
.gitattributes
vendored
4
.gitattributes
vendored
@@ -15,8 +15,12 @@ ml/backend/**/*.cu linguist-vendored
|
||||
ml/backend/**/*.cuh linguist-vendored
|
||||
ml/backend/**/*.m linguist-vendored
|
||||
ml/backend/**/*.metal linguist-vendored
|
||||
ml/backend/**/*.comp linguist-vendored
|
||||
ml/backend/**/*.glsl linguist-vendored
|
||||
ml/backend/**/CMakeLists.txt linguist-vendored
|
||||
|
||||
app/webview linguist-vendored
|
||||
|
||||
llama/build-info.cpp linguist-generated
|
||||
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.s linguist-generated
|
||||
|
||||
|
||||
58
.github/workflows/release.yaml
vendored
58
.github/workflows/release.yaml
vendored
@@ -16,13 +16,15 @@ jobs:
|
||||
outputs:
|
||||
GOFLAGS: ${{ steps.goflags.outputs.GOFLAGS }}
|
||||
VERSION: ${{ steps.goflags.outputs.VERSION }}
|
||||
vendorsha: ${{ steps.changes.outputs.vendorsha }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set environment
|
||||
id: goflags
|
||||
run: |
|
||||
echo GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${GITHUB_REF_NAME#v}\" \"-X=github.com/ollama/ollama/server.mode=release\"'" >>$GITHUB_OUTPUT
|
||||
echo VERSION="${GITHUB_REF_NAME#v}" >>$GITHUB_OUTPUT
|
||||
echo GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${GITHUB_REF_NAME#v}\" \"-X=github.com/ollama/ollama/server.mode=release\"'" | tee -a $GITHUB_OUTPUT
|
||||
echo VERSION="${GITHUB_REF_NAME#v}" | tee -a $GITHUB_OUTPUT
|
||||
echo vendorsha=$(make -f Makefile.sync print-base) | tee -a $GITHUB_OUTPUT
|
||||
|
||||
darwin-build:
|
||||
runs-on: macos-14-xlarge
|
||||
@@ -53,6 +55,9 @@ jobs:
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
cache-dependency-path: |
|
||||
go.sum
|
||||
Makefile.sync
|
||||
- run: |
|
||||
./scripts/build_darwin.sh
|
||||
- name: Log build results
|
||||
@@ -104,6 +109,13 @@ jobs:
|
||||
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
|
||||
rocm-version: '6.2'
|
||||
flags: '-DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma" -DCMAKE_CXX_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma"'
|
||||
runner_dir: 'rocm'
|
||||
- os: windows
|
||||
arch: amd64
|
||||
preset: Vulkan
|
||||
install: https://sdk.lunarg.com/sdk/download/1.4.321.1/windows/vulkansdk-windows-X64-1.4.321.1.exe
|
||||
flags: ''
|
||||
runner_dir: 'vulkan'
|
||||
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
|
||||
environment: release
|
||||
env:
|
||||
@@ -113,13 +125,14 @@ jobs:
|
||||
run: |
|
||||
choco install -y --no-progress ccache ninja
|
||||
ccache -o cache_dir=${{ github.workspace }}\.ccache
|
||||
- if: startsWith(matrix.preset, 'CUDA ') || startsWith(matrix.preset, 'ROCm ')
|
||||
- if: startsWith(matrix.preset, 'CUDA ') || startsWith(matrix.preset, 'ROCm ') || startsWith(matrix.preset, 'Vulkan')
|
||||
id: cache-install
|
||||
uses: actions/cache/restore@v4
|
||||
with:
|
||||
path: |
|
||||
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
|
||||
C:\Program Files\AMD\ROCm
|
||||
C:\VulkanSDK
|
||||
key: ${{ matrix.install }}
|
||||
- if: startsWith(matrix.preset, 'CUDA ')
|
||||
name: Install CUDA ${{ matrix.cuda-version }}
|
||||
@@ -149,6 +162,18 @@ jobs:
|
||||
echo "HIPCXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
echo "HIP_PLATFORM=amd" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
echo "CMAKE_PREFIX_PATH=$hipPath" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
- if: matrix.preset == 'Vulkan'
|
||||
name: Install Vulkan ${{ matrix.rocm-version }}
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
|
||||
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
|
||||
Start-Process -FilePath .\install.exe -ArgumentList "-c","--am","--al","in" -NoNewWindow -Wait
|
||||
}
|
||||
|
||||
$vulkanPath = (Resolve-Path "C:\VulkanSDK\*").path
|
||||
echo "$vulkanPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "VULKAN_SDK=$vulkanPath" >> $env:GITHUB_ENV
|
||||
- if: matrix.preset == 'CPU'
|
||||
run: |
|
||||
echo "CC=clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
@@ -159,19 +184,20 @@ jobs:
|
||||
path: |
|
||||
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
|
||||
C:\Program Files\AMD\ROCm
|
||||
C:\VulkanSDK
|
||||
key: ${{ matrix.install }}
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/cache@v4
|
||||
with:
|
||||
path: ${{ github.workspace }}\.ccache
|
||||
key: ccache-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.preset }}
|
||||
key: ccache-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.preset }}-${{ needs.setup-environment.outputs.vendorsha }}
|
||||
- name: Build target "${{ matrix.preset }}"
|
||||
run: |
|
||||
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -VsInstallPath 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }} --install-prefix "$((pwd).Path)\dist\${{ matrix.os }}-${{ matrix.arch }}"
|
||||
cmake --build --parallel ([Environment]::ProcessorCount) --preset "${{ matrix.preset }}"
|
||||
cmake --install build --component "${{ startsWith(matrix.preset, 'CUDA ') && 'CUDA' || startsWith(matrix.preset, 'ROCm ') && 'HIP' || 'CPU' }}" --strip
|
||||
cmake --install build --component "${{ startsWith(matrix.preset, 'CUDA ') && 'CUDA' || startsWith(matrix.preset, 'ROCm ') && 'HIP' || startsWith(matrix.preset, 'Vulkan') && 'Vulkan' || 'CPU' }}" --strip
|
||||
Remove-Item -Path dist\lib\ollama\rocm\rocblas\library\*gfx906* -ErrorAction SilentlyContinue
|
||||
env:
|
||||
CMAKE_GENERATOR: Ninja
|
||||
@@ -228,6 +254,9 @@ jobs:
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
cache-dependency-path: |
|
||||
go.sum
|
||||
Makefile.sync
|
||||
- name: Verify gcc is actually clang
|
||||
run: |
|
||||
$ErrorActionPreference='Continue'
|
||||
@@ -281,6 +310,9 @@ jobs:
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
cache-dependency-path: |
|
||||
go.sum
|
||||
Makefile.sync
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
pattern: depends-windows*
|
||||
@@ -312,13 +344,13 @@ jobs:
|
||||
include:
|
||||
- os: linux
|
||||
arch: amd64
|
||||
target: archive_novulkan
|
||||
target: archive
|
||||
- os: linux
|
||||
arch: amd64
|
||||
target: rocm
|
||||
- os: linux
|
||||
arch: arm64
|
||||
target: archive_novulkan
|
||||
target: archive
|
||||
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
|
||||
environment: release
|
||||
needs: setup-environment
|
||||
@@ -345,6 +377,7 @@ jobs:
|
||||
bin/ollama) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
|
||||
lib/ollama/*.so*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
|
||||
lib/ollama/cuda_v*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
|
||||
lib/ollama/vulkan*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
|
||||
lib/ollama/cuda_jetpack5) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack5.tar.in ;;
|
||||
lib/ollama/cuda_jetpack6) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack6.tar.in ;;
|
||||
lib/ollama/rocm) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-rocm.tar.in ;;
|
||||
@@ -374,14 +407,12 @@ jobs:
|
||||
include:
|
||||
- os: linux
|
||||
arch: arm64
|
||||
target: novulkan
|
||||
build-args: |
|
||||
CGO_CFLAGS
|
||||
CGO_CXXFLAGS
|
||||
GOFLAGS
|
||||
- os: linux
|
||||
arch: amd64
|
||||
target: novulkan
|
||||
build-args: |
|
||||
CGO_CFLAGS
|
||||
CGO_CXXFLAGS
|
||||
@@ -394,14 +425,6 @@ jobs:
|
||||
CGO_CXXFLAGS
|
||||
GOFLAGS
|
||||
FLAVOR=rocm
|
||||
- os: linux
|
||||
arch: amd64
|
||||
suffix: '-vulkan'
|
||||
target: default
|
||||
build-args: |
|
||||
CGO_CFLAGS
|
||||
CGO_CXXFLAGS
|
||||
GOFLAGS
|
||||
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
|
||||
environment: release
|
||||
needs: setup-environment
|
||||
@@ -419,7 +442,6 @@ jobs:
|
||||
with:
|
||||
context: .
|
||||
platforms: ${{ matrix.os }}/${{ matrix.arch }}
|
||||
target: ${{ matrix.preset }}
|
||||
build-args: ${{ matrix.build-args }}
|
||||
outputs: type=image,name=${{ vars.DOCKER_REPO }},push-by-digest=true,name-canonical=true,push=true
|
||||
cache-from: type=registry,ref=${{ vars.DOCKER_REPO }}:latest
|
||||
|
||||
19
.github/workflows/test.yaml
vendored
19
.github/workflows/test.yaml
vendored
@@ -22,6 +22,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
changed: ${{ steps.changes.outputs.changed }}
|
||||
vendorsha: ${{ steps.changes.outputs.vendorsha }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
@@ -37,6 +38,7 @@ jobs:
|
||||
}
|
||||
|
||||
echo changed=$(changed 'llama/llama.cpp/**/*' 'ml/backend/ggml/ggml/**/*') | tee -a $GITHUB_OUTPUT
|
||||
echo vendorsha=$(make -f Makefile.sync print-base) | tee -a $GITHUB_OUTPUT
|
||||
|
||||
linux:
|
||||
needs: [changes]
|
||||
@@ -83,7 +85,7 @@ jobs:
|
||||
- uses: actions/cache@v4
|
||||
with:
|
||||
path: /github/home/.cache/ccache
|
||||
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
|
||||
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}-${{ needs.changes.outputs.vendorsha }}
|
||||
- run: |
|
||||
cmake --preset ${{ matrix.preset }} ${{ matrix.flags }}
|
||||
cmake --build --preset ${{ matrix.preset }} --parallel
|
||||
@@ -172,12 +174,13 @@ jobs:
|
||||
path: |
|
||||
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
|
||||
C:\Program Files\AMD\ROCm
|
||||
C:\VulkanSDK
|
||||
key: ${{ matrix.install }}
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/cache@v4
|
||||
with:
|
||||
path: ${{ github.workspace }}\.ccache
|
||||
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
|
||||
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}-${{ needs.changes.outputs.vendorsha }}
|
||||
- run: |
|
||||
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -VsInstallPath 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||
@@ -205,6 +208,9 @@ jobs:
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: 'go.mod'
|
||||
cache-dependency-path: |
|
||||
go.sum
|
||||
Makefile.sync
|
||||
- uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: '20'
|
||||
@@ -225,12 +231,9 @@ jobs:
|
||||
if: always()
|
||||
run: go test -count=1 -benchtime=1x ./...
|
||||
|
||||
# TODO(bmizerany): replace this heavy tool with just the
|
||||
# tools/checks/binaries we want and then make them all run in parallel
|
||||
# across jobs, not on a single tiny vm on Github Actions.
|
||||
- uses: golangci/golangci-lint-action@v6
|
||||
- uses: golangci/golangci-lint-action@v9
|
||||
with:
|
||||
args: --timeout 10m0s -v
|
||||
only-new-issues: true
|
||||
|
||||
patches:
|
||||
runs-on: ubuntu-latest
|
||||
@@ -239,4 +242,4 @@ jobs:
|
||||
- name: Verify patches apply cleanly and do not change files
|
||||
run: |
|
||||
make -f Makefile.sync clean checkout apply-patches sync
|
||||
git diff --compact-summary --exit-code
|
||||
git diff --compact-summary --exit-code
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
run:
|
||||
timeout: 5m
|
||||
version: "2"
|
||||
linters:
|
||||
enable:
|
||||
- asasalint
|
||||
@@ -7,35 +6,46 @@ linters:
|
||||
- bodyclose
|
||||
- containedctx
|
||||
- gocheckcompilerdirectives
|
||||
- gofmt
|
||||
- gofumpt
|
||||
- gosimple
|
||||
- govet
|
||||
- ineffassign
|
||||
- intrange
|
||||
- makezero
|
||||
- misspell
|
||||
- nilerr
|
||||
- nolintlint
|
||||
- nosprintfhostport
|
||||
- staticcheck
|
||||
- unconvert
|
||||
- usetesting
|
||||
- wastedassign
|
||||
- whitespace
|
||||
disable:
|
||||
- usestdlibvars
|
||||
- errcheck
|
||||
linters-settings:
|
||||
staticcheck:
|
||||
checks:
|
||||
- all
|
||||
- -SA1019 # omit Deprecated check
|
||||
- usestdlibvars
|
||||
settings:
|
||||
govet:
|
||||
disable:
|
||||
- unusedresult
|
||||
staticcheck:
|
||||
checks:
|
||||
- all
|
||||
- -QF* # disable quick fix suggestions
|
||||
- -SA1019
|
||||
- -ST1000 # package comment format
|
||||
- -ST1003 # underscores in package names
|
||||
- -ST1005 # error strings should not be capitalized
|
||||
- -ST1012 # error var naming (ErrFoo)
|
||||
- -ST1016 # receiver name consistency
|
||||
- -ST1020 # comment on exported function format
|
||||
- -ST1021 # comment on exported type format
|
||||
- -ST1022 # comment on exported var format
|
||||
- -ST1023 # omit type from declaration
|
||||
severity:
|
||||
default-severity: error
|
||||
default: error
|
||||
rules:
|
||||
- linters:
|
||||
- gofmt
|
||||
- goimports
|
||||
- intrange
|
||||
severity: info
|
||||
formatters:
|
||||
enable:
|
||||
- gofmt
|
||||
- gofumpt
|
||||
|
||||
@@ -16,7 +16,7 @@ See the [development documentation](./docs/development.md) for instructions on h
|
||||
|
||||
* New features: new features (e.g. API fields, environment variables) add surface area to Ollama and make it harder to maintain in the long run as they cannot be removed without potentially breaking users in the future.
|
||||
* Refactoring: large code improvements are important, but can be harder or take longer to review and merge.
|
||||
* Documentation: small updates to fill in or correct missing documentation is helpful, however large documentation additions can be hard to maintain over time.
|
||||
* Documentation: small updates to fill in or correct missing documentation are helpful, however large documentation additions can be hard to maintain over time.
|
||||
|
||||
### Issues that may not be accepted
|
||||
|
||||
@@ -43,7 +43,7 @@ Tips for proposals:
|
||||
* Explain how the change will be tested.
|
||||
|
||||
Additionally, for bonus points: Provide draft documentation you would expect to
|
||||
see if the change were accepted.
|
||||
see if the changes were accepted.
|
||||
|
||||
## Pull requests
|
||||
|
||||
@@ -66,7 +66,6 @@ Examples:
|
||||
|
||||
llm/backend/mlx: support the llama architecture
|
||||
CONTRIBUTING: provide clarity on good commit messages, and bad
|
||||
docs: simplify manual installation with shorter curl commands
|
||||
|
||||
Bad Examples:
|
||||
|
||||
|
||||
41
Dockerfile
41
Dockerfile
@@ -39,14 +39,14 @@ ENV CC=clang CXX=clang++
|
||||
FROM base-${TARGETARCH} AS base
|
||||
ARG CMAKEVERSION
|
||||
RUN curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
|
||||
COPY CMakeLists.txt CMakePresets.json .
|
||||
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
|
||||
ENV LDFLAGS=-s
|
||||
|
||||
FROM base AS cpu
|
||||
RUN dnf install -y gcc-toolset-11-gcc gcc-toolset-11-gcc-c++
|
||||
ENV PATH=/opt/rh/gcc-toolset-11/root/usr/bin:$PATH
|
||||
ARG PARALLEL
|
||||
COPY CMakeLists.txt CMakePresets.json .
|
||||
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
cmake --preset 'CPU' \
|
||||
&& cmake --build --parallel ${PARALLEL} --preset 'CPU' \
|
||||
@@ -57,6 +57,8 @@ ARG CUDA11VERSION=11.8
|
||||
RUN dnf install -y cuda-toolkit-${CUDA11VERSION//./-}
|
||||
ENV PATH=/usr/local/cuda-11/bin:$PATH
|
||||
ARG PARALLEL
|
||||
COPY CMakeLists.txt CMakePresets.json .
|
||||
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
cmake --preset 'CUDA 11' \
|
||||
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 11' \
|
||||
@@ -67,6 +69,8 @@ ARG CUDA12VERSION=12.8
|
||||
RUN dnf install -y cuda-toolkit-${CUDA12VERSION//./-}
|
||||
ENV PATH=/usr/local/cuda-12/bin:$PATH
|
||||
ARG PARALLEL
|
||||
COPY CMakeLists.txt CMakePresets.json .
|
||||
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
cmake --preset 'CUDA 12' \
|
||||
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 12' \
|
||||
@@ -78,6 +82,8 @@ ARG CUDA13VERSION=13.0
|
||||
RUN dnf install -y cuda-toolkit-${CUDA13VERSION//./-}
|
||||
ENV PATH=/usr/local/cuda-13/bin:$PATH
|
||||
ARG PARALLEL
|
||||
COPY CMakeLists.txt CMakePresets.json .
|
||||
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
cmake --preset 'CUDA 13' \
|
||||
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 13' \
|
||||
@@ -87,6 +93,8 @@ RUN --mount=type=cache,target=/root/.ccache \
|
||||
FROM base AS rocm-6
|
||||
ENV PATH=/opt/rocm/hcc/bin:/opt/rocm/hip/bin:/opt/rocm/bin:/opt/rocm/hcc/bin:$PATH
|
||||
ARG PARALLEL
|
||||
COPY CMakeLists.txt CMakePresets.json .
|
||||
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
cmake --preset 'ROCm 6' \
|
||||
&& cmake --build --parallel ${PARALLEL} --preset 'ROCm 6' \
|
||||
@@ -118,6 +126,8 @@ RUN --mount=type=cache,target=/root/.ccache \
|
||||
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
|
||||
|
||||
FROM base AS vulkan
|
||||
COPY CMakeLists.txt CMakePresets.json .
|
||||
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
cmake --preset 'Vulkan' \
|
||||
&& cmake --build --parallel --preset 'Vulkan' \
|
||||
@@ -159,32 +169,7 @@ ARG VULKANVERSION
|
||||
COPY --from=cpu dist/lib/ollama /lib/ollama
|
||||
COPY --from=build /bin/ollama /bin/ollama
|
||||
|
||||
# Temporary opt-out stages for Vulkan
|
||||
FROM --platform=linux/amd64 scratch AS amd64_novulkan
|
||||
# COPY --from=cuda-11 dist/lib/ollama/ /lib/ollama/
|
||||
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/
|
||||
COPY --from=cuda-13 dist/lib/ollama /lib/ollama/
|
||||
FROM arm64 AS arm64_novulkan
|
||||
FROM ${FLAVOR}_novulkan AS archive_novulkan
|
||||
COPY --from=cpu dist/lib/ollama /lib/ollama
|
||||
COPY --from=build /bin/ollama /bin/ollama
|
||||
FROM ubuntu:24.04 AS novulkan
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y ca-certificates \
|
||||
&& apt-get clean \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
COPY --from=archive_novulkan /bin /usr/bin
|
||||
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
|
||||
COPY --from=archive_novulkan /lib/ollama /usr/lib/ollama
|
||||
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
|
||||
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
|
||||
ENV NVIDIA_VISIBLE_DEVICES=all
|
||||
ENV OLLAMA_HOST=0.0.0.0:11434
|
||||
EXPOSE 11434
|
||||
ENTRYPOINT ["/bin/ollama"]
|
||||
CMD ["serve"]
|
||||
|
||||
FROM ubuntu:24.04 AS default
|
||||
FROM ubuntu:24.04
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y ca-certificates libvulkan1 \
|
||||
&& apt-get clean \
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
UPSTREAM=https://github.com/ggml-org/llama.cpp.git
|
||||
WORKDIR=llama/vendor
|
||||
FETCH_HEAD=3cfa9c3f125763305b4226bc032f1954f08990dc
|
||||
FETCH_HEAD=7f8ef50cce40e3e7e4526a3696cb45658190e69a
|
||||
|
||||
.PHONY: help
|
||||
help:
|
||||
@@ -57,7 +57,7 @@ checkout: $(WORKDIR)
|
||||
$(WORKDIR):
|
||||
git clone $(UPSTREAM) $(WORKDIR)
|
||||
|
||||
.PHONE: format-patches
|
||||
.PHONY: format-patches
|
||||
format-patches: llama/patches
|
||||
git -C $(WORKDIR) format-patch \
|
||||
--no-signature \
|
||||
@@ -66,7 +66,11 @@ format-patches: llama/patches
|
||||
-o $(realpath $<) \
|
||||
$(FETCH_HEAD)
|
||||
|
||||
.PHONE: clean
|
||||
.PHONY: clean
|
||||
clean: checkout
|
||||
@git -C $(WORKDIR) am --abort || true
|
||||
$(RM) llama/patches/.*.patched
|
||||
|
||||
.PHONY: print-base
|
||||
print-base:
|
||||
@echo $(FETCH_HEAD)
|
||||
18
README.md
18
README.md
@@ -299,6 +299,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [LibreChat](https://github.com/danny-avila/LibreChat)
|
||||
- [Bionic GPT](https://github.com/bionic-gpt/bionic-gpt)
|
||||
- [HTML UI](https://github.com/rtcfirefly/ollama-ui)
|
||||
- [AI-UI](https://github.com/bajahaw/ai-ui)
|
||||
- [Saddle](https://github.com/jikkuatwork/saddle)
|
||||
- [TagSpaces](https://www.tagspaces.org) (A platform for file-based apps, [utilizing Ollama](https://docs.tagspaces.org/ai/) for the generation of tags and descriptions)
|
||||
- [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama)
|
||||
@@ -365,7 +366,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [PartCAD](https://github.com/openvmp/partcad/) (CAD model generation with OpenSCAD and CadQuery)
|
||||
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot, and Ollama4j
|
||||
- [PyOllaMx](https://github.com/kspviswa/pyOllaMx) - macOS application capable of chatting with both Ollama and Apple MLX models.
|
||||
- [Cline](https://github.com/cline/cline) - Formerly known as Claude Dev is a VSCode extension for multi-file/whole-repo coding
|
||||
- [Cline](https://github.com/cline/cline) - Formerly known as Claude Dev is a VS Code extension for multi-file/whole-repo coding
|
||||
- [Void](https://github.com/voideditor/void) (Open source AI code editor and Cursor alternative)
|
||||
- [Cherry Studio](https://github.com/kangfenmao/cherry-studio) (Desktop client with Ollama support)
|
||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy-focused LLM chat interface with optional encryption)
|
||||
- [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library)
|
||||
@@ -397,7 +399,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [aidful-ollama-model-delete](https://github.com/AidfulAI/aidful-ollama-model-delete) (User interface for simplified model cleanup)
|
||||
- [Perplexica](https://github.com/ItzCrazyKns/Perplexica) (An AI-powered search engine & an open-source alternative to Perplexity AI)
|
||||
- [Ollama Chat WebUI for Docker ](https://github.com/oslook/ollama-webui) (Support for local docker deployment, lightweight ollama webui)
|
||||
- [AI Toolkit for Visual Studio Code](https://aka.ms/ai-tooklit/ollama-docs) (Microsoft-official VSCode extension to chat, test, evaluate models with Ollama support, and use them in your AI applications.)
|
||||
- [AI Toolkit for Visual Studio Code](https://aka.ms/ai-tooklit/ollama-docs) (Microsoft-official VS Code extension to chat, test, evaluate models with Ollama support, and use them in your AI applications.)
|
||||
- [MinimalNextOllamaChat](https://github.com/anilkay/MinimalNextOllamaChat) (Minimal Web UI for Chat and Model Control)
|
||||
- [Chipper](https://github.com/TilmanGriesel/chipper) AI interface for tinkerers (Ollama, Haystack RAG, Python)
|
||||
- [ChibiChat](https://github.com/CosmicEventHorizon/ChibiChat) (Kotlin-based Android app to chat with Ollama and Koboldcpp API endpoints)
|
||||
@@ -426,6 +428,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Mayan EDMS](https://gitlab.com/mayan-edms/mayan-edms) (Open source document management system to organize, tag, search, and automate your files with powerful Ollama driven workflows.)
|
||||
- [Serene Pub](https://github.com/doolijb/serene-pub) (Beginner friendly, open source AI Roleplaying App for Windows, Mac OS and Linux. Search, download and use models with Ollama all inside the app.)
|
||||
- [Andes](https://github.com/aqerd/andes) (A Visual Studio Code extension that provides a local UI interface for Ollama models)
|
||||
- [KDeps](https://github.com/kdeps/kdeps) (Kdeps is an offline-first AI framework for building Dockerized full-stack AI applications declaratively using Apple PKL and integrates APIs with Ollama on the backend.)
|
||||
- [Clueless](https://github.com/KashyapTan/clueless) (Open Source & Local Cluely: A desktop application LLM assistant to help you talk to anything on your screen using locally served Ollama models. Also undetectable to screenshare)
|
||||
- [ollama-co2](https://github.com/carbonatedWaterOrg/ollama-co2) (FastAPI web interface for monitoring and managing local and remote Ollama servers with real-time model monitoring and concurrent downloads)
|
||||
- [Hillnote](https://hillnote.com) (A Markdown-first workspace designed to supercharge your AI workflow. Create documents ready to integrate with Claude, ChatGPT, Gemini, Cursor, and more - all while keeping your work on your device.)
|
||||
@@ -552,7 +555,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Parakeet](https://github.com/parakeet-nest/parakeet) is a GoLang library, made to simplify the development of small generative AI applications with Ollama.
|
||||
- [Haverscript](https://github.com/andygill/haverscript) with [examples](https://github.com/andygill/haverscript/tree/main/examples)
|
||||
- [Ollama for Swift](https://github.com/mattt/ollama-swift)
|
||||
- [Swollama for Swift](https://github.com/marcusziade/Swollama) with [DocC](https://marcusziade.github.io/Swollama/documentation/swollama/)
|
||||
- [Swollama for Swift]([https://github.com/marcusziade/Swollama](https://github.com/guitaripod/Swollama) with [DocC]( https://guitaripod.github.io/Swollama/documentation/swollama)
|
||||
- [GoLamify](https://github.com/prasad89/golamify)
|
||||
- [Ollama for Haskell](https://github.com/tusharad/ollama-haskell)
|
||||
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in a unified API)
|
||||
@@ -615,7 +618,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [LSP-AI](https://github.com/SilasMarvin/lsp-ai) (Open-source language server for AI-powered functionality)
|
||||
- [QodeAssist](https://github.com/Palm1r/QodeAssist) (AI-powered coding assistant plugin for Qt Creator)
|
||||
- [Obsidian Quiz Generator plugin](https://github.com/ECuiDev/obsidian-quiz-generator)
|
||||
- [AI Summmary Helper plugin](https://github.com/philffm/ai-summary-helper)
|
||||
- [AI Summary Helper plugin](https://github.com/philffm/ai-summary-helper)
|
||||
- [TextCraft](https://github.com/suncloudsmoon/TextCraft) (Copilot in Word alternative using Ollama)
|
||||
- [Alfred Ollama](https://github.com/zeitlings/alfred-ollama) (Alfred Workflow)
|
||||
- [TextLLaMA](https://github.com/adarshM84/TextLLaMA) A Chrome Extension that helps you write emails, correct grammar, and translate into any language
|
||||
@@ -623,7 +626,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
|
||||
- [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs)
|
||||
- [SimpleOllamaUnity](https://github.com/HardCodeDev777/SimpleOllamaUnity) (Unity Engine extension for communicating with Ollama in a few lines of code. Also works at runtime)
|
||||
- [UnityCodeLama](https://github.com/HardCodeDev777/UnityCodeLama) (Unity Edtior tool to analyze scripts via Ollama)
|
||||
- [UnityCodeLama](https://github.com/HardCodeDev777/UnityCodeLama) (Unity Editor tool to analyze scripts via Ollama)
|
||||
- [NativeMind](https://github.com/NativeMindBrowser/NativeMindExtension) (Private, on-device AI Assistant, no cloud dependencies)
|
||||
- [GMAI - Gradle Managed AI](https://gmai.premex.se/) (Gradle plugin for automated Ollama lifecycle management during build phases)
|
||||
- [NOMYO Router](https://github.com/nomyo-ai/nomyo-router) (A transparent Ollama proxy with model deployment aware routing which auto-manages multiple Ollama instances in a given network)
|
||||
@@ -633,9 +636,12 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [llama.cpp](https://github.com/ggml-org/llama.cpp) project founded by Georgi Gerganov.
|
||||
|
||||
### Observability
|
||||
- [Opik](https://www.comet.com/docs/opik/cookbook/ollama) is an open-source platform to debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards. Opik supports native intergration to Ollama.
|
||||
- [Opik](https://www.comet.com/docs/opik/cookbook/ollama) is an open-source platform to debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards. Opik supports native integration to Ollama.
|
||||
- [Lunary](https://lunary.ai/docs/integrations/ollama) is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
|
||||
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
|
||||
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
|
||||
- [Langfuse](https://langfuse.com/docs/integrations/ollama) is an open source LLM observability platform that enables teams to collaboratively monitor, evaluate and debug AI applications.
|
||||
- [MLflow Tracing](https://mlflow.org/docs/latest/llms/tracing/index.html#automatic-tracing) is an open source LLM observability tool with a convenient API to log and visualize traces, making it easy to debug and evaluate GenAI applications.
|
||||
|
||||
### Security
|
||||
- [Ollama Fortress](https://github.com/ParisNeo/ollama_proxy_server)
|
||||
|
||||
@@ -14,7 +14,7 @@ Please include the following details in your report:
|
||||
|
||||
## Security best practices
|
||||
|
||||
While the maintainer team does their best to secure Ollama, users are encouraged to implement their own security best practices, such as:
|
||||
While the maintainer team does its best to secure Ollama, users are encouraged to implement their own security best practices, such as:
|
||||
|
||||
- Regularly updating to the latest version of Ollama
|
||||
- Securing access to hosted instances of Ollama
|
||||
|
||||
@@ -226,7 +226,14 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
|
||||
|
||||
bts := scanner.Bytes()
|
||||
if err := json.Unmarshal(bts, &errorResponse); err != nil {
|
||||
return fmt.Errorf("unmarshal: %w", err)
|
||||
if response.StatusCode >= http.StatusBadRequest {
|
||||
return StatusError{
|
||||
StatusCode: response.StatusCode,
|
||||
Status: response.Status,
|
||||
ErrorMessage: string(bts),
|
||||
}
|
||||
}
|
||||
return errors.New(string(bts))
|
||||
}
|
||||
|
||||
if response.StatusCode == http.StatusUnauthorized {
|
||||
|
||||
@@ -55,6 +55,7 @@ func TestClientFromEnvironment(t *testing.T) {
|
||||
type testError struct {
|
||||
message string
|
||||
statusCode int
|
||||
raw bool // if true, write message as-is instead of JSON encoding
|
||||
}
|
||||
|
||||
func (e testError) Error() string {
|
||||
@@ -111,6 +112,20 @@ func TestClientStream(t *testing.T) {
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "plain text error response",
|
||||
responses: []any{
|
||||
"internal server error",
|
||||
},
|
||||
wantErr: "internal server error",
|
||||
},
|
||||
{
|
||||
name: "HTML error page",
|
||||
responses: []any{
|
||||
"<html><body>404 Not Found</body></html>",
|
||||
},
|
||||
wantErr: "404 Not Found",
|
||||
},
|
||||
}
|
||||
|
||||
for _, tc := range testCases {
|
||||
@@ -135,6 +150,12 @@ func TestClientStream(t *testing.T) {
|
||||
return
|
||||
}
|
||||
|
||||
if str, ok := resp.(string); ok {
|
||||
fmt.Fprintln(w, str)
|
||||
flusher.Flush()
|
||||
continue
|
||||
}
|
||||
|
||||
if err := json.NewEncoder(w).Encode(resp); err != nil {
|
||||
t.Fatalf("failed to encode response: %v", err)
|
||||
}
|
||||
@@ -173,9 +194,10 @@ func TestClientStream(t *testing.T) {
|
||||
|
||||
func TestClientDo(t *testing.T) {
|
||||
testCases := []struct {
|
||||
name string
|
||||
response any
|
||||
wantErr string
|
||||
name string
|
||||
response any
|
||||
wantErr string
|
||||
wantStatusCode int
|
||||
}{
|
||||
{
|
||||
name: "immediate error response",
|
||||
@@ -183,7 +205,8 @@ func TestClientDo(t *testing.T) {
|
||||
message: "test error message",
|
||||
statusCode: http.StatusBadRequest,
|
||||
},
|
||||
wantErr: "test error message",
|
||||
wantErr: "test error message",
|
||||
wantStatusCode: http.StatusBadRequest,
|
||||
},
|
||||
{
|
||||
name: "server error response",
|
||||
@@ -191,7 +214,8 @@ func TestClientDo(t *testing.T) {
|
||||
message: "internal error",
|
||||
statusCode: http.StatusInternalServerError,
|
||||
},
|
||||
wantErr: "internal error",
|
||||
wantErr: "internal error",
|
||||
wantStatusCode: http.StatusInternalServerError,
|
||||
},
|
||||
{
|
||||
name: "successful response",
|
||||
@@ -203,6 +227,26 @@ func TestClientDo(t *testing.T) {
|
||||
Success: true,
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "plain text error response",
|
||||
response: testError{
|
||||
message: "internal server error",
|
||||
statusCode: http.StatusInternalServerError,
|
||||
raw: true,
|
||||
},
|
||||
wantErr: "internal server error",
|
||||
wantStatusCode: http.StatusInternalServerError,
|
||||
},
|
||||
{
|
||||
name: "HTML error page",
|
||||
response: testError{
|
||||
message: "<html><body>404 Not Found</body></html>",
|
||||
statusCode: http.StatusNotFound,
|
||||
raw: true,
|
||||
},
|
||||
wantErr: "<html><body>404 Not Found</body></html>",
|
||||
wantStatusCode: http.StatusNotFound,
|
||||
},
|
||||
}
|
||||
|
||||
for _, tc := range testCases {
|
||||
@@ -210,11 +254,16 @@ func TestClientDo(t *testing.T) {
|
||||
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||
if errResp, ok := tc.response.(testError); ok {
|
||||
w.WriteHeader(errResp.statusCode)
|
||||
err := json.NewEncoder(w).Encode(map[string]string{
|
||||
"error": errResp.message,
|
||||
})
|
||||
if err != nil {
|
||||
t.Fatal("failed to encode error response:", err)
|
||||
if !errResp.raw {
|
||||
err := json.NewEncoder(w).Encode(map[string]string{
|
||||
"error": errResp.message,
|
||||
})
|
||||
if err != nil {
|
||||
t.Fatal("failed to encode error response:", err)
|
||||
}
|
||||
} else {
|
||||
// Write raw message (simulates non-JSON error responses)
|
||||
fmt.Fprint(w, errResp.message)
|
||||
}
|
||||
return
|
||||
}
|
||||
@@ -241,6 +290,15 @@ func TestClientDo(t *testing.T) {
|
||||
if err.Error() != tc.wantErr {
|
||||
t.Errorf("error message mismatch: got %q, want %q", err.Error(), tc.wantErr)
|
||||
}
|
||||
if tc.wantStatusCode != 0 {
|
||||
if statusErr, ok := err.(StatusError); ok {
|
||||
if statusErr.StatusCode != tc.wantStatusCode {
|
||||
t.Errorf("status code mismatch: got %d, want %d", statusErr.StatusCode, tc.wantStatusCode)
|
||||
}
|
||||
} else {
|
||||
t.Errorf("expected StatusError, got %T", err)
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
|
||||
@@ -15,19 +15,19 @@ func main() {
|
||||
}
|
||||
|
||||
messages := []api.Message{
|
||||
api.Message{
|
||||
{
|
||||
Role: "system",
|
||||
Content: "Provide very brief, concise responses",
|
||||
},
|
||||
api.Message{
|
||||
{
|
||||
Role: "user",
|
||||
Content: "Name some unusual animals",
|
||||
},
|
||||
api.Message{
|
||||
{
|
||||
Role: "assistant",
|
||||
Content: "Monotreme, platypus, echidna",
|
||||
},
|
||||
api.Message{
|
||||
{
|
||||
Role: "user",
|
||||
Content: "which of these is the most dangerous?",
|
||||
},
|
||||
|
||||
45
api/types.go
45
api/types.go
@@ -117,6 +117,14 @@ type GenerateRequest struct {
|
||||
// DebugRenderOnly is a debug option that, when set to true, returns the rendered
|
||||
// template instead of calling the model.
|
||||
DebugRenderOnly bool `json:"_debug_render_only,omitempty"`
|
||||
|
||||
// Logprobs specifies whether to return log probabilities of the output tokens.
|
||||
Logprobs bool `json:"logprobs,omitempty"`
|
||||
|
||||
// TopLogprobs is the number of most likely tokens to return at each token position,
|
||||
// each with an associated log probability. Only applies when Logprobs is true.
|
||||
// Valid values are 0-20. Default is 0 (only return the selected token's logprob).
|
||||
TopLogprobs int `json:"top_logprobs,omitempty"`
|
||||
}
|
||||
|
||||
// ChatRequest describes a request sent by [Client.Chat].
|
||||
@@ -159,6 +167,14 @@ type ChatRequest struct {
|
||||
// DebugRenderOnly is a debug option that, when set to true, returns the rendered
|
||||
// template instead of calling the model.
|
||||
DebugRenderOnly bool `json:"_debug_render_only,omitempty"`
|
||||
|
||||
// Logprobs specifies whether to return log probabilities of the output tokens.
|
||||
Logprobs bool `json:"logprobs,omitempty"`
|
||||
|
||||
// TopLogprobs is the number of most likely tokens to return at each token position,
|
||||
// each with an associated log probability. Only applies when Logprobs is true.
|
||||
// Valid values are 0-20. Default is 0 (only return the selected token's logprob).
|
||||
TopLogprobs int `json:"top_logprobs,omitempty"`
|
||||
}
|
||||
|
||||
type Tools []Tool
|
||||
@@ -343,6 +359,27 @@ func (t *ToolFunction) String() string {
|
||||
return string(bts)
|
||||
}
|
||||
|
||||
// TokenLogprob represents log probability information for a single token alternative.
|
||||
type TokenLogprob struct {
|
||||
// Token is the text representation of the token.
|
||||
Token string `json:"token"`
|
||||
|
||||
// Logprob is the log probability of this token.
|
||||
Logprob float64 `json:"logprob"`
|
||||
|
||||
// Bytes contains the raw byte representation of the token
|
||||
Bytes []int `json:"bytes,omitempty"`
|
||||
}
|
||||
|
||||
// Logprob contains log probability information for a generated token.
|
||||
type Logprob struct {
|
||||
TokenLogprob
|
||||
|
||||
// TopLogprobs contains the most likely tokens and their log probabilities
|
||||
// at this position, if requested via TopLogprobs parameter.
|
||||
TopLogprobs []TokenLogprob `json:"top_logprobs,omitempty"`
|
||||
}
|
||||
|
||||
// ChatResponse is the response returned by [Client.Chat]. Its fields are
|
||||
// similar to [GenerateResponse].
|
||||
type ChatResponse struct {
|
||||
@@ -369,6 +406,10 @@ type ChatResponse struct {
|
||||
|
||||
DebugInfo *DebugInfo `json:"_debug_info,omitempty"`
|
||||
|
||||
// Logprobs contains log probability information for the generated tokens,
|
||||
// if requested via the Logprobs parameter.
|
||||
Logprobs []Logprob `json:"logprobs,omitempty"`
|
||||
|
||||
Metrics
|
||||
}
|
||||
|
||||
@@ -677,6 +718,10 @@ type GenerateResponse struct {
|
||||
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
|
||||
|
||||
DebugInfo *DebugInfo `json:"_debug_info,omitempty"`
|
||||
|
||||
// Logprobs contains log probability information for the generated tokens,
|
||||
// if requested via the Logprobs parameter.
|
||||
Logprobs []Logprob `json:"logprobs,omitempty"`
|
||||
}
|
||||
|
||||
// ModelDetails provides details about a model.
|
||||
|
||||
@@ -48,16 +48,6 @@ The `-dev` flag enables:
|
||||
- CORS headers for cross-origin requests
|
||||
- Hot-reload support for UI development
|
||||
|
||||
#### Run Storybook
|
||||
|
||||
Inside the `ui/app` directory, run:
|
||||
|
||||
```bash
|
||||
npm run storybook
|
||||
```
|
||||
|
||||
For now we're writing stories as siblings of the component they're testing. So for example, `src/components/Message.stories.tsx` is the story for `src/components/Message.tsx`.
|
||||
|
||||
## Build
|
||||
|
||||
|
||||
|
||||
@@ -397,8 +397,8 @@ func checkUserLoggedIn(uiServerPort int) bool {
|
||||
// handleConnectURLScheme fetches the connect URL and opens it in the browser
|
||||
func handleConnectURLScheme() {
|
||||
if checkUserLoggedIn(uiServerPort) {
|
||||
slog.Info("user is already logged in, opening settings instead")
|
||||
sendUIRequestMessage("/")
|
||||
slog.Info("user is already logged in, opening app instead")
|
||||
showWindow(wv.webview.Window())
|
||||
return
|
||||
}
|
||||
|
||||
@@ -434,37 +434,30 @@ func openInBrowser(url string) {
|
||||
}
|
||||
}
|
||||
|
||||
// parseURLScheme parses an ollama:// URL and returns whether it's a connect URL and the UI path
|
||||
func parseURLScheme(urlSchemeRequest string) (isConnect bool, uiPath string, err error) {
|
||||
// parseURLScheme parses an ollama:// URL and validates it
|
||||
// Supports: ollama:// (open app) and ollama://connect (OAuth)
|
||||
func parseURLScheme(urlSchemeRequest string) (isConnect bool, err error) {
|
||||
parsedURL, err := url.Parse(urlSchemeRequest)
|
||||
if err != nil {
|
||||
return false, "", err
|
||||
return false, fmt.Errorf("invalid URL: %w", err)
|
||||
}
|
||||
|
||||
// Check if this is a connect URL
|
||||
if parsedURL.Host == "connect" || strings.TrimPrefix(parsedURL.Path, "/") == "connect" {
|
||||
return true, "", nil
|
||||
return true, nil
|
||||
}
|
||||
|
||||
// Extract the UI path
|
||||
path := "/"
|
||||
if parsedURL.Path != "" && parsedURL.Path != "/" {
|
||||
// For URLs like ollama:///settings, use the path directly
|
||||
path = parsedURL.Path
|
||||
} else if parsedURL.Host != "" {
|
||||
// For URLs like ollama://settings (without triple slash),
|
||||
// the "settings" part is parsed as the host, not the path.
|
||||
// We need to convert it to a path by prepending "/"
|
||||
// This also handles ollama://settings/ where Windows adds a trailing slash
|
||||
path = "/" + parsedURL.Host
|
||||
// Allow bare ollama:// or ollama:/// to open the app
|
||||
if (parsedURL.Host == "" && parsedURL.Path == "") || parsedURL.Path == "/" {
|
||||
return false, nil
|
||||
}
|
||||
|
||||
return false, path, nil
|
||||
return false, fmt.Errorf("unsupported ollama:// URL path: %s", urlSchemeRequest)
|
||||
}
|
||||
|
||||
// handleURLSchemeInCurrentInstance processes URL scheme requests in the current instance
|
||||
func handleURLSchemeInCurrentInstance(urlSchemeRequest string) {
|
||||
isConnect, uiPath, err := parseURLScheme(urlSchemeRequest)
|
||||
isConnect, err := parseURLScheme(urlSchemeRequest)
|
||||
if err != nil {
|
||||
slog.Error("failed to parse URL scheme request", "url", urlSchemeRequest, "error", err)
|
||||
return
|
||||
@@ -473,6 +466,8 @@ func handleURLSchemeInCurrentInstance(urlSchemeRequest string) {
|
||||
if isConnect {
|
||||
handleConnectURLScheme()
|
||||
} else {
|
||||
sendUIRequestMessage(uiPath)
|
||||
if wv.webview != nil {
|
||||
showWindow(wv.webview.Window())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -24,27 +24,14 @@ bool firstTimeRun,startHidden; // Set in run before initialization
|
||||
for (NSURL *url in urls) {
|
||||
if ([url.scheme isEqualToString:@"ollama"]) {
|
||||
NSString *path = url.path;
|
||||
if (!path || [path isEqualToString:@""]) {
|
||||
// For URLs like ollama://settings (without triple slash),
|
||||
// the "settings" part is parsed as the host, not the path.
|
||||
// We need to convert it to a path by prepending "/"
|
||||
if (url.host && ![url.host isEqualToString:@""]) {
|
||||
path = [@"/" stringByAppendingString:url.host];
|
||||
} else {
|
||||
path = @"/";
|
||||
}
|
||||
}
|
||||
|
||||
if ([path isEqualToString:@"/connect"] || [url.host isEqualToString:@"connect"]) {
|
||||
|
||||
if (path && ([path isEqualToString:@"/connect"] || [url.host isEqualToString:@"connect"])) {
|
||||
// Special case: handle connect by opening browser instead of app
|
||||
handleConnectURL();
|
||||
} else {
|
||||
// Set app to be active and visible
|
||||
[NSApp setActivationPolicy:NSApplicationActivationPolicyRegular];
|
||||
[NSApp activateIgnoringOtherApps:YES];
|
||||
|
||||
// Open the path with the UI
|
||||
[self uiRequest:path];
|
||||
}
|
||||
|
||||
break;
|
||||
@@ -260,7 +247,7 @@ bool firstTimeRun,startHidden; // Set in run before initialization
|
||||
}
|
||||
|
||||
- (void)openHelp:(id)sender {
|
||||
NSURL *url = [NSURL URLWithString:@"https://github.com/ollama/ollama/tree/main/docs"];
|
||||
NSURL *url = [NSURL URLWithString:@"https://docs.ollama.com/"];
|
||||
[[NSWorkspace sharedWorkspace] openURL:url];
|
||||
}
|
||||
|
||||
|
||||
@@ -138,7 +138,7 @@ func (app *appCallbacks) HandleURLScheme(urlScheme string) {
|
||||
|
||||
// handleURLSchemeRequest processes URL scheme requests from other instances
|
||||
func handleURLSchemeRequest(urlScheme string) {
|
||||
isConnect, uiPath, err := parseURLScheme(urlScheme)
|
||||
isConnect, err := parseURLScheme(urlScheme)
|
||||
if err != nil {
|
||||
slog.Error("failed to parse URL scheme request", "url", urlScheme, "error", err)
|
||||
return
|
||||
@@ -147,7 +147,9 @@ func handleURLSchemeRequest(urlScheme string) {
|
||||
if isConnect {
|
||||
handleConnectURLScheme()
|
||||
} else {
|
||||
sendUIRequestMessage(uiPath)
|
||||
if wv.webview != nil {
|
||||
showWindow(wv.webview.Window())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -282,7 +282,7 @@ func (w *Webview) Run(path string) unsafe.Pointer {
|
||||
"go", "rs", "swift", "kt", "scala", "sh", "bat", "yaml", "yml", "toml", "ini",
|
||||
"cfg", "conf", "log", "rtf",
|
||||
}
|
||||
imageExts := []string{"png", "jpg", "jpeg"}
|
||||
imageExts := []string{"png", "jpg", "jpeg", "webp"}
|
||||
allowedExts := append(textExts, imageExts...)
|
||||
|
||||
// Use native multiple file selection with extension filtering
|
||||
|
||||
1512
app/ui/app/package-lock.json
generated
1512
app/ui/app/package-lock.json
generated
File diff suppressed because it is too large
Load Diff
@@ -34,6 +34,7 @@
|
||||
"rehype-raw": "^7.0.0",
|
||||
"rehype-sanitize": "^6.0.0",
|
||||
"remark-math": "^6.0.0",
|
||||
"streamdown": "^1.4.0",
|
||||
"unist-builder": "^4.0.0",
|
||||
"unist-util-parents": "^3.0.0"
|
||||
},
|
||||
|
||||
@@ -15,6 +15,7 @@ import {
|
||||
import { parseJsonlFromResponse } from "./util/jsonl-parsing";
|
||||
import { ollamaClient as ollama } from "./lib/ollama-client";
|
||||
import type { ModelResponse } from "ollama/browser";
|
||||
import { API_BASE } from "./lib/config";
|
||||
|
||||
// Extend Model class with utility methods
|
||||
declare module "@/gotypes" {
|
||||
@@ -27,8 +28,6 @@ Model.prototype.isCloud = function (): boolean {
|
||||
return this.model.endsWith("cloud");
|
||||
};
|
||||
|
||||
const API_BASE = import.meta.env.DEV ? "http://127.0.0.1:3001" : "";
|
||||
|
||||
// Helper function to convert Uint8Array to base64
|
||||
function uint8ArrayToBase64(uint8Array: Uint8Array): string {
|
||||
const chunkSize = 0x8000; // 32KB chunks to avoid stack overflow
|
||||
@@ -205,6 +204,11 @@ export async function* sendMessage(
|
||||
data: uint8ArrayToBase64(att.data),
|
||||
}));
|
||||
|
||||
// Send think parameter when it's explicitly set (true, false, or a non-empty string).
|
||||
const shouldSendThink =
|
||||
think !== undefined &&
|
||||
(typeof think === "boolean" || (typeof think === "string" && think !== ""));
|
||||
|
||||
const response = await fetch(`${API_BASE}/api/v1/chat/${chatId}`, {
|
||||
method: "POST",
|
||||
headers: {
|
||||
@@ -222,7 +226,7 @@ export async function* sendMessage(
|
||||
web_search: webSearch ?? false,
|
||||
file_tools: fileTools ?? false,
|
||||
...(forceUpdate !== undefined ? { forceUpdate } : {}),
|
||||
...(think !== undefined ? { think } : {}),
|
||||
...(shouldSendThink ? { think } : {}),
|
||||
}),
|
||||
),
|
||||
signal,
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -1,522 +0,0 @@
|
||||
import { expect, test, suite } from "vitest";
|
||||
import { processStreamingMarkdown } from "@/utils/processStreamingMarkdown";
|
||||
|
||||
suite("common llm outputs that cause issues", () => {
|
||||
test("prefix of bolded list item shouldn't make a horizontal line", () => {
|
||||
// we're going to go in order of incrementally adding characters. This
|
||||
// happens really commonly with LLMs that like to make lists like so:
|
||||
//
|
||||
// * **point 1**: explanatory text
|
||||
// * **point 2**: more explanatory text
|
||||
//
|
||||
// Partial rendering of `*` (A), followed by `* *` (B), followed by `* **`
|
||||
// (C) is a total mess. (A) renders as a single bullet point in an
|
||||
// otherwise empty list, (B) renders as two nested lists (and therefore
|
||||
// two bullet points, styled differently by default in html), and (C)
|
||||
// renders as a horizontal line because in markdown apparently `***` or `*
|
||||
// * *` horizontal rules don't have as strict whitespace rules as I
|
||||
// expected them to
|
||||
|
||||
// these are alone (i.e., they would be the first list item)
|
||||
expect(processStreamingMarkdown("*")).toBe("");
|
||||
expect(processStreamingMarkdown("* *")).toBe("");
|
||||
expect(processStreamingMarkdown("* **")).toBe("");
|
||||
// expect(processStreamingMarkdown("* **b")).toBe("* **b**");
|
||||
|
||||
// with a list item before them
|
||||
expect(
|
||||
processStreamingMarkdown(
|
||||
// prettier-ignore
|
||||
[
|
||||
"* abc",
|
||||
"*"
|
||||
].join("\n"),
|
||||
),
|
||||
).toBe("* abc");
|
||||
|
||||
expect(
|
||||
processStreamingMarkdown(
|
||||
// prettier-ignore
|
||||
[
|
||||
"* abc",
|
||||
"* *"
|
||||
].join("\n"),
|
||||
),
|
||||
).toBe("* abc");
|
||||
|
||||
expect(
|
||||
processStreamingMarkdown(
|
||||
// prettier-ignore
|
||||
[
|
||||
"* abc",
|
||||
"* **"
|
||||
].join("\n"),
|
||||
),
|
||||
).toBe("* abc");
|
||||
});
|
||||
|
||||
test("bolded list items with text should be rendered properly", () => {
|
||||
expect(processStreamingMarkdown("* **abc**")).toBe("* **abc**");
|
||||
});
|
||||
|
||||
test("partially bolded list items should be autoclosed", () => {
|
||||
expect(processStreamingMarkdown("* **abc")).toBe("* **abc**");
|
||||
});
|
||||
|
||||
suite(
|
||||
"partially bolded list items should be autoclosed, even if the last node isn't a text node",
|
||||
() => {
|
||||
test("inline code", () => {
|
||||
expect(
|
||||
processStreamingMarkdown("* **Asynchronous Function `async`*"),
|
||||
).toBe("* **Asynchronous Function `async`**");
|
||||
});
|
||||
},
|
||||
);
|
||||
});
|
||||
|
||||
suite("autoclosing bold", () => {
|
||||
suite("endings with no asterisks", () => {
|
||||
test("should autoclose bold", () => {
|
||||
expect(processStreamingMarkdown("**abc")).toBe("**abc**");
|
||||
expect(processStreamingMarkdown("abc **abc")).toBe("abc **abc**");
|
||||
});
|
||||
|
||||
suite("should autoclose, even if the last node isn't a text node", () => {
|
||||
test("inline code", () => {
|
||||
expect(
|
||||
processStreamingMarkdown("* **Asynchronous Function `async`"),
|
||||
).toBe("* **Asynchronous Function `async`**");
|
||||
});
|
||||
|
||||
test("opening ** is at the end of the text", () => {
|
||||
expect(processStreamingMarkdown("abc **`def` jhk [lmn](opq)")).toBe(
|
||||
"abc **`def` jhk [lmn](opq)**",
|
||||
);
|
||||
});
|
||||
|
||||
test("if there's a space after the **, it should NOT be autoclosed", () => {
|
||||
expect(processStreamingMarkdown("abc ** `def` jhk [lmn](opq)")).toBe(
|
||||
"abc \\*\\* `def` jhk [lmn](opq)",
|
||||
);
|
||||
});
|
||||
});
|
||||
|
||||
test("should autoclose bold, even if the last node isn't a text node", () => {
|
||||
expect(
|
||||
processStreamingMarkdown("* **Asynchronous Function ( `async`"),
|
||||
).toBe("* **Asynchronous Function ( `async`**");
|
||||
});
|
||||
|
||||
test("whitespace fakeouts should not be modified", () => {
|
||||
expect(processStreamingMarkdown("** abc")).toBe("\\*\\* abc");
|
||||
});
|
||||
|
||||
// TODO(drifkin): arguably this should just be removed entirely, but empty
|
||||
// isn't so bad
|
||||
test("should handle empty bolded items", () => {
|
||||
expect(processStreamingMarkdown("**")).toBe("");
|
||||
});
|
||||
});
|
||||
|
||||
suite("partially closed bolded items", () => {
|
||||
test("simple partial", () => {
|
||||
expect(processStreamingMarkdown("**abc*")).toBe("**abc**");
|
||||
});
|
||||
|
||||
test("partial with non-text node at end", () => {
|
||||
expect(processStreamingMarkdown("**abc`def`*")).toBe("**abc`def`**");
|
||||
});
|
||||
|
||||
test("partial with multiply nested ending nodes", () => {
|
||||
expect(processStreamingMarkdown("**abc[abc](`def`)*")).toBe(
|
||||
"**abc[abc](`def`)**",
|
||||
);
|
||||
});
|
||||
|
||||
test("normal emphasis should not be affected", () => {
|
||||
expect(processStreamingMarkdown("*abc*")).toBe("*abc*");
|
||||
});
|
||||
|
||||
test("normal emphasis with nested code should not be affected", () => {
|
||||
expect(processStreamingMarkdown("*`abc`*")).toBe("*`abc`*");
|
||||
});
|
||||
});
|
||||
|
||||
test.skip("shouldn't autoclose immediately if there's a space before the closing *", () => {
|
||||
expect(processStreamingMarkdown("**abc *")).toBe("**abc**");
|
||||
});
|
||||
|
||||
// skipping for now because this requires partial link completion as well
|
||||
suite.skip("nested blocks that each need autoclosing", () => {
|
||||
test("emph nested in link nested in strong nested in list item", () => {
|
||||
expect(processStreamingMarkdown("* **[abc **def")).toBe(
|
||||
"* **[abc **def**]()**",
|
||||
);
|
||||
});
|
||||
|
||||
test("* **[ab *`def`", () => {
|
||||
expect(processStreamingMarkdown("* **[ab *`def`")).toBe(
|
||||
"* **[ab *`def`*]()**",
|
||||
);
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
suite("numbered list items", () => {
|
||||
test("should remove trailing numbers", () => {
|
||||
expect(processStreamingMarkdown("1. First\n2")).toBe("1. First");
|
||||
});
|
||||
|
||||
test("should remove trailing numbers with breaks before", () => {
|
||||
expect(processStreamingMarkdown("1. First \n2")).toBe("1. First");
|
||||
});
|
||||
|
||||
test("should remove trailing numbers that form a new paragraph", () => {
|
||||
expect(processStreamingMarkdown("1. First\n\n2")).toBe("1. First");
|
||||
});
|
||||
|
||||
test("but should leave list items separated by two newlines", () => {
|
||||
expect(processStreamingMarkdown("1. First\n\n2. S")).toBe(
|
||||
"1. First\n\n2. S",
|
||||
);
|
||||
});
|
||||
});
|
||||
|
||||
// TODO(drifkin):slop tests ahead, some are decent, but need to manually go
|
||||
// through them as I implement
|
||||
/*
|
||||
describe("StreamingMarkdownContent - processStreamingMarkdown", () => {
|
||||
describe("Ambiguous endings removal", () => {
|
||||
it("should remove list markers at the end", () => {
|
||||
expect(processStreamingMarkdown("Some text\n* ")).toBe("Some text");
|
||||
expect(processStreamingMarkdown("Some text\n*")).toBe("Some text");
|
||||
expect(processStreamingMarkdown("* Item 1\n- ")).toBe("* Item 1");
|
||||
expect(processStreamingMarkdown("* Item 1\n-")).toBe("* Item 1");
|
||||
expect(processStreamingMarkdown("Text\n+ ")).toBe("Text");
|
||||
expect(processStreamingMarkdown("Text\n+")).toBe("Text");
|
||||
expect(processStreamingMarkdown("1. First\n2. ")).toBe("1. First");
|
||||
});
|
||||
|
||||
it("should remove heading markers at the end", () => {
|
||||
expect(processStreamingMarkdown("Some text\n# ")).toBe("Some text");
|
||||
expect(processStreamingMarkdown("Some text\n#")).toBe("Some text\n#"); // # without space is not removed
|
||||
expect(processStreamingMarkdown("# Title\n## ")).toBe("# Title");
|
||||
expect(processStreamingMarkdown("# Title\n##")).toBe("# Title\n##"); // ## without space is not removed
|
||||
});
|
||||
|
||||
it("should remove ambiguous bold markers at the end", () => {
|
||||
expect(processStreamingMarkdown("Text **")).toBe("Text ");
|
||||
expect(processStreamingMarkdown("Some text\n**")).toBe("Some text");
|
||||
});
|
||||
|
||||
it("should remove code block markers at the end", () => {
|
||||
expect(processStreamingMarkdown("Text\n```")).toBe("Text");
|
||||
expect(processStreamingMarkdown("```")).toBe("");
|
||||
});
|
||||
|
||||
it("should remove single backtick at the end", () => {
|
||||
expect(processStreamingMarkdown("Text `")).toBe("Text ");
|
||||
expect(processStreamingMarkdown("`")).toBe("");
|
||||
});
|
||||
|
||||
it("should remove single asterisk at the end", () => {
|
||||
expect(processStreamingMarkdown("Text *")).toBe("Text ");
|
||||
expect(processStreamingMarkdown("*")).toBe("");
|
||||
});
|
||||
|
||||
it("should handle empty content", () => {
|
||||
expect(processStreamingMarkdown("")).toBe("");
|
||||
});
|
||||
|
||||
it("should handle single line removals correctly", () => {
|
||||
expect(processStreamingMarkdown("* ")).toBe("");
|
||||
expect(processStreamingMarkdown("# ")).toBe("");
|
||||
expect(processStreamingMarkdown("**")).toBe("");
|
||||
expect(processStreamingMarkdown("`")).toBe("");
|
||||
});
|
||||
|
||||
it("shouldn't have this regexp capture group bug", () => {
|
||||
expect(
|
||||
processStreamingMarkdown("Here's a shopping list:\n*"),
|
||||
).not.toContain("0*");
|
||||
expect(processStreamingMarkdown("Here's a shopping list:\n*")).toBe(
|
||||
"Here's a shopping list:",
|
||||
);
|
||||
});
|
||||
});
|
||||
|
||||
describe("List markers", () => {
|
||||
it("should preserve complete list items", () => {
|
||||
expect(processStreamingMarkdown("* Complete item")).toBe(
|
||||
"* Complete item",
|
||||
);
|
||||
expect(processStreamingMarkdown("- Another item")).toBe("- Another item");
|
||||
expect(processStreamingMarkdown("+ Plus item")).toBe("+ Plus item");
|
||||
expect(processStreamingMarkdown("1. Numbered item")).toBe(
|
||||
"1. Numbered item",
|
||||
);
|
||||
});
|
||||
|
||||
it("should handle indented list markers", () => {
|
||||
expect(processStreamingMarkdown(" * ")).toBe(" ");
|
||||
expect(processStreamingMarkdown(" - ")).toBe(" ");
|
||||
expect(processStreamingMarkdown("\t+ ")).toBe("\t");
|
||||
});
|
||||
});
|
||||
|
||||
describe("Heading markers", () => {
|
||||
it("should preserve complete headings", () => {
|
||||
expect(processStreamingMarkdown("# Complete Heading")).toBe(
|
||||
"# Complete Heading",
|
||||
);
|
||||
expect(processStreamingMarkdown("## Subheading")).toBe("## Subheading");
|
||||
expect(processStreamingMarkdown("### H3 Title")).toBe("### H3 Title");
|
||||
});
|
||||
|
||||
it("should not affect # in other contexts", () => {
|
||||
expect(processStreamingMarkdown("C# programming")).toBe("C# programming");
|
||||
expect(processStreamingMarkdown("Issue #123")).toBe("Issue #123");
|
||||
});
|
||||
});
|
||||
|
||||
describe("Bold text", () => {
|
||||
it("should close incomplete bold text", () => {
|
||||
expect(processStreamingMarkdown("This is **bold text")).toBe(
|
||||
"This is **bold text**",
|
||||
);
|
||||
expect(processStreamingMarkdown("Start **bold and more")).toBe(
|
||||
"Start **bold and more**",
|
||||
);
|
||||
expect(processStreamingMarkdown("**just bold")).toBe("**just bold**");
|
||||
});
|
||||
|
||||
it("should not affect complete bold text", () => {
|
||||
expect(processStreamingMarkdown("**complete bold**")).toBe(
|
||||
"**complete bold**",
|
||||
);
|
||||
expect(processStreamingMarkdown("Text **bold** more")).toBe(
|
||||
"Text **bold** more",
|
||||
);
|
||||
});
|
||||
|
||||
it("should handle nested bold correctly", () => {
|
||||
expect(processStreamingMarkdown("**bold** and **another")).toBe(
|
||||
"**bold** and **another**",
|
||||
);
|
||||
});
|
||||
});
|
||||
|
||||
describe("Italic text", () => {
|
||||
it("should close incomplete italic text", () => {
|
||||
expect(processStreamingMarkdown("This is *italic text")).toBe(
|
||||
"This is *italic text*",
|
||||
);
|
||||
expect(processStreamingMarkdown("Start *italic and more")).toBe(
|
||||
"Start *italic and more*",
|
||||
);
|
||||
});
|
||||
|
||||
it("should differentiate between list markers and italic", () => {
|
||||
expect(processStreamingMarkdown("* Item\n* ")).toBe("* Item");
|
||||
expect(processStreamingMarkdown("Some *italic text")).toBe(
|
||||
"Some *italic text*",
|
||||
);
|
||||
expect(processStreamingMarkdown("*just italic")).toBe("*just italic*");
|
||||
});
|
||||
|
||||
it("should not affect complete italic text", () => {
|
||||
expect(processStreamingMarkdown("*complete italic*")).toBe(
|
||||
"*complete italic*",
|
||||
);
|
||||
expect(processStreamingMarkdown("Text *italic* more")).toBe(
|
||||
"Text *italic* more",
|
||||
);
|
||||
});
|
||||
});
|
||||
|
||||
describe("Code blocks", () => {
|
||||
it("should close incomplete code blocks", () => {
|
||||
expect(processStreamingMarkdown("```javascript\nconst x = 42;")).toBe(
|
||||
"```javascript\nconst x = 42;\n```",
|
||||
);
|
||||
expect(processStreamingMarkdown("```\ncode here")).toBe(
|
||||
"```\ncode here\n```",
|
||||
);
|
||||
});
|
||||
|
||||
it("should not affect complete code blocks", () => {
|
||||
expect(processStreamingMarkdown("```\ncode\n```")).toBe("```\ncode\n```");
|
||||
expect(processStreamingMarkdown("```js\nconst x = 1;\n```")).toBe(
|
||||
"```js\nconst x = 1;\n```",
|
||||
);
|
||||
});
|
||||
|
||||
it("should handle nested code blocks correctly", () => {
|
||||
expect(processStreamingMarkdown("```\ncode\n```\n```python")).toBe(
|
||||
"```\ncode\n```\n```python\n```",
|
||||
);
|
||||
});
|
||||
|
||||
it("should not process markdown inside code blocks", () => {
|
||||
expect(processStreamingMarkdown("```\n* not a list\n**not bold**")).toBe(
|
||||
"```\n* not a list\n**not bold**\n```",
|
||||
);
|
||||
});
|
||||
});
|
||||
|
||||
describe("Inline code", () => {
|
||||
it("should close incomplete inline code", () => {
|
||||
expect(processStreamingMarkdown("This is `inline code")).toBe(
|
||||
"This is `inline code`",
|
||||
);
|
||||
expect(processStreamingMarkdown("Use `console.log")).toBe(
|
||||
"Use `console.log`",
|
||||
);
|
||||
});
|
||||
|
||||
it("should not affect complete inline code", () => {
|
||||
expect(processStreamingMarkdown("`complete code`")).toBe(
|
||||
"`complete code`",
|
||||
);
|
||||
expect(processStreamingMarkdown("Use `code` here")).toBe(
|
||||
"Use `code` here",
|
||||
);
|
||||
});
|
||||
|
||||
it("should handle multiple inline codes correctly", () => {
|
||||
expect(processStreamingMarkdown("`code` and `more")).toBe(
|
||||
"`code` and `more`",
|
||||
);
|
||||
});
|
||||
|
||||
it("should not confuse inline code with code blocks", () => {
|
||||
expect(processStreamingMarkdown("```\nblock\n```\n`inline")).toBe(
|
||||
"```\nblock\n```\n`inline`",
|
||||
);
|
||||
});
|
||||
});
|
||||
|
||||
describe("Complex streaming scenarios", () => {
|
||||
it("should handle progressive streaming of a heading", () => {
|
||||
const steps = [
|
||||
{ input: "#", expected: "#" }, // # alone is not removed (needs space)
|
||||
{ input: "# ", expected: "" },
|
||||
{ input: "# H", expected: "# H" },
|
||||
{ input: "# Hello", expected: "# Hello" },
|
||||
];
|
||||
steps.forEach(({ input, expected }) => {
|
||||
expect(processStreamingMarkdown(input)).toBe(expected);
|
||||
});
|
||||
});
|
||||
|
||||
it("should handle progressive streaming of bold text", () => {
|
||||
const steps = [
|
||||
{ input: "*", expected: "" },
|
||||
{ input: "**", expected: "" },
|
||||
{ input: "**b", expected: "**b**" },
|
||||
{ input: "**bold", expected: "**bold**" },
|
||||
{ input: "**bold**", expected: "**bold**" },
|
||||
];
|
||||
steps.forEach(({ input, expected }) => {
|
||||
expect(processStreamingMarkdown(input)).toBe(expected);
|
||||
});
|
||||
});
|
||||
|
||||
it("should handle multiline content with various patterns", () => {
|
||||
const multiline = `# Title
|
||||
|
||||
This is a paragraph with **bold text** and *italic text*.
|
||||
|
||||
* Item 1
|
||||
* Item 2
|
||||
* `;
|
||||
|
||||
const expected = `# Title
|
||||
|
||||
This is a paragraph with **bold text** and *italic text*.
|
||||
|
||||
* Item 1
|
||||
* Item 2`;
|
||||
|
||||
expect(processStreamingMarkdown(multiline)).toBe(expected);
|
||||
});
|
||||
|
||||
it("should only fix the last line", () => {
|
||||
expect(processStreamingMarkdown("# Complete\n# Another\n# ")).toBe(
|
||||
"# Complete\n# Another",
|
||||
);
|
||||
expect(processStreamingMarkdown("* Item 1\n* Item 2\n* ")).toBe(
|
||||
"* Item 1\n* Item 2",
|
||||
);
|
||||
});
|
||||
|
||||
it("should handle mixed content correctly", () => {
|
||||
const input = `# Header
|
||||
|
||||
This has **bold** text and *italic* text.
|
||||
|
||||
\`\`\`js
|
||||
const x = 42;
|
||||
\`\`\`
|
||||
|
||||
Now some \`inline code\` and **unclosed bold`;
|
||||
|
||||
const expected = `# Header
|
||||
|
||||
This has **bold** text and *italic* text.
|
||||
|
||||
\`\`\`js
|
||||
const x = 42;
|
||||
\`\`\`
|
||||
|
||||
Now some \`inline code\` and **unclosed bold**`;
|
||||
|
||||
expect(processStreamingMarkdown(input)).toBe(expected);
|
||||
});
|
||||
});
|
||||
|
||||
describe("Edge cases with escaping", () => {
|
||||
it("should handle escaped asterisks (future enhancement)", () => {
|
||||
// Note: Current implementation doesn't handle escaping
|
||||
// This is a known limitation - escaped characters still trigger closing
|
||||
expect(processStreamingMarkdown("Text \\*not italic")).toBe(
|
||||
"Text \\*not italic*",
|
||||
);
|
||||
});
|
||||
|
||||
it("should handle escaped backticks (future enhancement)", () => {
|
||||
// Note: Current implementation doesn't handle escaping
|
||||
// This is a known limitation - escaped characters still trigger closing
|
||||
expect(processStreamingMarkdown("Text \\`not code")).toBe(
|
||||
"Text \\`not code`",
|
||||
);
|
||||
});
|
||||
});
|
||||
|
||||
describe("Code block edge cases", () => {
|
||||
it("should handle triple backticks in the middle of lines", () => {
|
||||
expect(processStreamingMarkdown("Text ``` in middle")).toBe(
|
||||
"Text ``` in middle\n```",
|
||||
);
|
||||
expect(processStreamingMarkdown("```\nText ``` in code\nmore")).toBe(
|
||||
"```\nText ``` in code\nmore\n```",
|
||||
);
|
||||
});
|
||||
|
||||
it("should properly close code blocks with language specifiers", () => {
|
||||
expect(processStreamingMarkdown("```typescript")).toBe(
|
||||
"```typescript\n```",
|
||||
);
|
||||
expect(processStreamingMarkdown("```typescript\nconst x = 1")).toBe(
|
||||
"```typescript\nconst x = 1\n```",
|
||||
);
|
||||
});
|
||||
|
||||
it("should remove a completely empty partial code block", () => {
|
||||
expect(processStreamingMarkdown("```\n")).toBe("");
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
*/
|
||||
@@ -1,66 +1,123 @@
|
||||
import React from "react";
|
||||
import Markdown from "react-markdown";
|
||||
import remarkGfm from "remark-gfm";
|
||||
import remarkMath from "remark-math";
|
||||
import rehypeRaw from "rehype-raw";
|
||||
import rehypeSanitize, { defaultSchema } from "rehype-sanitize";
|
||||
import rehypePrismPlus from "rehype-prism-plus";
|
||||
import rehypeKatex from "rehype-katex";
|
||||
import remarkStreamingMarkdown, {
|
||||
type LastNodeInfo,
|
||||
} from "@/utils/remarkStreamingMarkdown";
|
||||
import type { PluggableList } from "unified";
|
||||
import { Streamdown, defaultRemarkPlugins } from "streamdown";
|
||||
import remarkCitationParser from "@/utils/remarkCitationParser";
|
||||
import CopyButton from "./CopyButton";
|
||||
import type { BundledLanguage } from "shiki";
|
||||
import { highlighter } from "@/lib/highlighter";
|
||||
|
||||
interface StreamingMarkdownContentProps {
|
||||
content: string;
|
||||
isStreaming?: boolean;
|
||||
size?: "sm" | "md" | "lg";
|
||||
onLastNode?: (info: LastNodeInfo) => void;
|
||||
browserToolResult?: any; // TODO: proper type
|
||||
}
|
||||
|
||||
// Helper to extract text from React nodes
|
||||
const extractText = (node: React.ReactNode): string => {
|
||||
if (typeof node === "string") return node;
|
||||
if (typeof node === "number") return String(node);
|
||||
if (!node) return "";
|
||||
if (React.isValidElement(node)) {
|
||||
const props = node.props as any;
|
||||
if (props?.children) {
|
||||
return extractText(props.children as React.ReactNode);
|
||||
}
|
||||
}
|
||||
if (Array.isArray(node)) {
|
||||
return node.map(extractText).join("");
|
||||
}
|
||||
return "";
|
||||
};
|
||||
|
||||
const CodeBlock = React.memo(
|
||||
({ children, className, ...props }: React.HTMLAttributes<HTMLPreElement>) => {
|
||||
const extractText = React.useCallback((node: React.ReactNode): string => {
|
||||
if (typeof node === "string") return node;
|
||||
if (typeof node === "number") return String(node);
|
||||
if (!node) return "";
|
||||
({ children }: React.HTMLAttributes<HTMLPreElement>) => {
|
||||
// Extract code and language from children
|
||||
const codeElement = children as React.ReactElement<{
|
||||
className?: string;
|
||||
children: React.ReactNode;
|
||||
}>;
|
||||
const language =
|
||||
codeElement.props.className?.replace(/language-/, "") || "";
|
||||
const codeText = extractText(codeElement.props.children);
|
||||
|
||||
if (React.isValidElement(node)) {
|
||||
if (
|
||||
node.props &&
|
||||
typeof node.props === "object" &&
|
||||
"children" in node.props
|
||||
) {
|
||||
return extractText(node.props.children as React.ReactNode);
|
||||
}
|
||||
// Synchronously highlight code using the pre-loaded highlighter
|
||||
const tokens = React.useMemo(() => {
|
||||
if (!highlighter) return null;
|
||||
|
||||
try {
|
||||
return {
|
||||
light: highlighter.codeToTokensBase(codeText, {
|
||||
lang: language as BundledLanguage,
|
||||
theme: "one-light" as any,
|
||||
}),
|
||||
dark: highlighter.codeToTokensBase(codeText, {
|
||||
lang: language as BundledLanguage,
|
||||
theme: "one-dark" as any,
|
||||
}),
|
||||
};
|
||||
} catch (error) {
|
||||
console.error("Failed to highlight code:", error);
|
||||
return null;
|
||||
}
|
||||
|
||||
if (Array.isArray(node)) {
|
||||
return node.map(extractText).join("");
|
||||
}
|
||||
|
||||
return "";
|
||||
}, []);
|
||||
|
||||
const language = className?.replace(/language-/, "") || "";
|
||||
}, [codeText, language]);
|
||||
|
||||
return (
|
||||
<div className="relative bg-neutral-100 dark:bg-neutral-800 rounded-2xl overflow-hidden my-6">
|
||||
<div className="flex justify-between select-none">
|
||||
<div className="text-[13px] text-neutral-500 dark:text-neutral-400 font-mono px-4 py-2">
|
||||
{language}
|
||||
</div>
|
||||
<div className="flex select-none">
|
||||
{language && (
|
||||
<div className="text-[13px] text-neutral-500 dark:text-neutral-400 font-mono px-4 py-2">
|
||||
{language}
|
||||
</div>
|
||||
)}
|
||||
<CopyButton
|
||||
content={extractText(children)}
|
||||
content={codeText}
|
||||
showLabels={true}
|
||||
className="copy-button text-neutral-500 dark:text-neutral-400 bg-neutral-100 dark:bg-neutral-800"
|
||||
className="copy-button text-neutral-500 dark:text-neutral-400 bg-neutral-100 dark:bg-neutral-800 ml-auto"
|
||||
/>
|
||||
</div>
|
||||
<pre className={className} {...props}>
|
||||
{children}
|
||||
{/* Light mode */}
|
||||
<pre className="dark:hidden m-0 bg-neutral-100 text-sm overflow-x-auto p-4">
|
||||
<code className="font-mono text-sm">
|
||||
{tokens?.light
|
||||
? tokens.light.map((line: any, i: number) => (
|
||||
<React.Fragment key={i}>
|
||||
{line.map((token: any, j: number) => (
|
||||
<span
|
||||
key={j}
|
||||
style={{
|
||||
color: token.color,
|
||||
}}
|
||||
>
|
||||
{token.content}
|
||||
</span>
|
||||
))}
|
||||
{i < tokens.light.length - 1 && "\n"}
|
||||
</React.Fragment>
|
||||
))
|
||||
: codeText}
|
||||
</code>
|
||||
</pre>
|
||||
{/* Dark mode */}
|
||||
<pre className="hidden dark:block m-0 bg-neutral-800 text-sm overflow-x-auto p-4">
|
||||
<code className="font-mono text-sm">
|
||||
{tokens?.dark
|
||||
? tokens.dark.map((line: any, i: number) => (
|
||||
<React.Fragment key={i}>
|
||||
{line.map((token: any, j: number) => (
|
||||
<span
|
||||
key={j}
|
||||
style={{
|
||||
color: token.color,
|
||||
}}
|
||||
>
|
||||
{token.content}
|
||||
</span>
|
||||
))}
|
||||
{i < tokens.dark.length - 1 && "\n"}
|
||||
</React.Fragment>
|
||||
))
|
||||
: codeText}
|
||||
</code>
|
||||
</pre>
|
||||
</div>
|
||||
);
|
||||
@@ -68,65 +125,19 @@ const CodeBlock = React.memo(
|
||||
);
|
||||
|
||||
const StreamingMarkdownContent: React.FC<StreamingMarkdownContentProps> =
|
||||
React.memo(
|
||||
({ content, isStreaming = false, size, onLastNode, browserToolResult }) => {
|
||||
// Build the remark plugins array
|
||||
const remarkPlugins = React.useMemo(() => {
|
||||
const plugins: PluggableList = [
|
||||
remarkGfm,
|
||||
[remarkMath, { singleDollarTextMath: false }],
|
||||
remarkCitationParser,
|
||||
];
|
||||
React.memo(({ content, isStreaming = false, size, browserToolResult }) => {
|
||||
// Build the remark plugins array - keep default GFM and Math, add citations
|
||||
const remarkPlugins = React.useMemo(() => {
|
||||
return [
|
||||
defaultRemarkPlugins.gfm,
|
||||
defaultRemarkPlugins.math,
|
||||
remarkCitationParser,
|
||||
];
|
||||
}, []);
|
||||
|
||||
// Add streaming plugin when in streaming mode
|
||||
if (isStreaming) {
|
||||
plugins.push([remarkStreamingMarkdown, { debug: true, onLastNode }]);
|
||||
}
|
||||
|
||||
return plugins;
|
||||
}, [isStreaming, onLastNode]);
|
||||
|
||||
// Create a custom sanitization schema that allows math elements
|
||||
const sanitizeSchema = React.useMemo(() => {
|
||||
return {
|
||||
...defaultSchema,
|
||||
attributes: {
|
||||
...defaultSchema.attributes,
|
||||
span: [
|
||||
...(defaultSchema.attributes?.span || []),
|
||||
["className", /^katex/],
|
||||
],
|
||||
div: [
|
||||
...(defaultSchema.attributes?.div || []),
|
||||
["className", /^katex/],
|
||||
],
|
||||
"ol-citation": ["cursor", "start", "end"],
|
||||
},
|
||||
tagNames: [
|
||||
...(defaultSchema.tagNames || []),
|
||||
"math",
|
||||
"mrow",
|
||||
"mi",
|
||||
"mo",
|
||||
"mn",
|
||||
"msup",
|
||||
"msub",
|
||||
"mfrac",
|
||||
"mover",
|
||||
"munder",
|
||||
"msqrt",
|
||||
"mroot",
|
||||
"merror",
|
||||
"mspace",
|
||||
"mpadded",
|
||||
"ol-citation",
|
||||
],
|
||||
};
|
||||
}, []);
|
||||
|
||||
return (
|
||||
<div
|
||||
className={`
|
||||
return (
|
||||
<div
|
||||
className={`
|
||||
max-w-full
|
||||
${size === "sm" ? "prose-sm" : size === "lg" ? "prose-lg" : ""}
|
||||
prose
|
||||
@@ -144,7 +155,27 @@ const StreamingMarkdownContent: React.FC<StreamingMarkdownContentProps> =
|
||||
prose-pre:my-0
|
||||
prose-pre:max-w-full
|
||||
prose-pre:pt-1
|
||||
[&_code:not(pre_code)]:text-neutral-700
|
||||
[&_table]:border-collapse
|
||||
[&_table]:w-full
|
||||
[&_table]:border
|
||||
[&_table]:border-neutral-200
|
||||
[&_table]:rounded-lg
|
||||
[&_table]:overflow-hidden
|
||||
[&_th]:px-3
|
||||
[&_th]:py-2
|
||||
[&_th]:text-left
|
||||
[&_th]:font-semibold
|
||||
[&_th]:border-b
|
||||
[&_th]:border-r
|
||||
[&_th]:border-neutral-200
|
||||
[&_th:last-child]:border-r-0
|
||||
[&_td]:px-3
|
||||
[&_td]:py-2
|
||||
[&_td]:border-r
|
||||
[&_td]:border-neutral-200
|
||||
[&_td:last-child]:border-r-0
|
||||
[&_tbody_tr:not(:last-child)_td]:border-b
|
||||
[&_code:not(pre_code)]:text-neutral-700
|
||||
[&_code:not(pre_code)]:bg-neutral-100
|
||||
[&_code:not(pre_code)]:font-normal
|
||||
[&_code:not(pre_code)]:px-1.5
|
||||
@@ -160,6 +191,10 @@ const StreamingMarkdownContent: React.FC<StreamingMarkdownContentProps> =
|
||||
dark:prose-strong:text-neutral-200
|
||||
dark:prose-pre:text-neutral-200
|
||||
dark:prose:pre:text-neutral-200
|
||||
dark:[&_table]:border-neutral-700
|
||||
dark:[&_thead]:bg-neutral-800
|
||||
dark:[&_th]:border-neutral-700
|
||||
dark:[&_td]:border-neutral-700
|
||||
dark:[&_code:not(pre_code)]:text-neutral-200
|
||||
dark:[&_code:not(pre_code)]:bg-neutral-800
|
||||
dark:[&_code:not(pre_code)]:font-normal
|
||||
@@ -167,104 +202,86 @@ const StreamingMarkdownContent: React.FC<StreamingMarkdownContentProps> =
|
||||
dark:prose-li:marker:text-neutral-300
|
||||
break-words
|
||||
`}
|
||||
>
|
||||
<StreamingMarkdownErrorBoundary
|
||||
content={content}
|
||||
isStreaming={isStreaming}
|
||||
>
|
||||
<StreamingMarkdownErrorBoundary
|
||||
content={content}
|
||||
isStreaming={isStreaming}
|
||||
>
|
||||
<Markdown
|
||||
remarkPlugins={remarkPlugins}
|
||||
rehypePlugins={
|
||||
[
|
||||
[rehypeRaw, { allowDangerousHtml: true }],
|
||||
[rehypeSanitize, sanitizeSchema],
|
||||
[rehypePrismPlus, { ignoreMissing: true }],
|
||||
[
|
||||
rehypeKatex,
|
||||
{
|
||||
errorColor: "#000000", // Black instead of red for errors
|
||||
strict: false, // Be more lenient with parsing
|
||||
throwOnError: false,
|
||||
},
|
||||
],
|
||||
] as PluggableList
|
||||
}
|
||||
components={{
|
||||
pre: CodeBlock,
|
||||
table: ({
|
||||
children,
|
||||
...props
|
||||
}: React.HTMLAttributes<HTMLTableElement>) => (
|
||||
<div className="overflow-x-auto max-w-full">
|
||||
<table {...props}>{children}</table>
|
||||
</div>
|
||||
),
|
||||
// @ts-expect-error: custom type
|
||||
"ol-citation": ({
|
||||
cursor,
|
||||
// start,
|
||||
// end,
|
||||
}: {
|
||||
cursor: number;
|
||||
start: number;
|
||||
end: number;
|
||||
}) => {
|
||||
// Check if we have a page_stack and if the cursor is valid
|
||||
const pageStack = browserToolResult?.page_stack;
|
||||
const hasValidPage = pageStack && cursor < pageStack.length;
|
||||
const pageUrl = hasValidPage ? pageStack[cursor] : null;
|
||||
<Streamdown
|
||||
parseIncompleteMarkdown={isStreaming}
|
||||
isAnimating={isStreaming}
|
||||
remarkPlugins={remarkPlugins}
|
||||
controls={false}
|
||||
components={{
|
||||
pre: CodeBlock,
|
||||
table: ({
|
||||
children,
|
||||
...props
|
||||
}: React.HTMLAttributes<HTMLTableElement>) => (
|
||||
<div className="overflow-x-auto max-w-full">
|
||||
<table
|
||||
{...props}
|
||||
className="border-collapse w-full border border-neutral-200 dark:border-neutral-700 rounded-lg overflow-hidden"
|
||||
>
|
||||
{children}
|
||||
</table>
|
||||
</div>
|
||||
),
|
||||
// @ts-expect-error: custom citation type
|
||||
"ol-citation": ({
|
||||
cursor,
|
||||
}: {
|
||||
cursor: number;
|
||||
start: number;
|
||||
end: number;
|
||||
}) => {
|
||||
const pageStack = browserToolResult?.page_stack;
|
||||
const hasValidPage = pageStack && cursor < pageStack.length;
|
||||
const pageUrl = hasValidPage ? pageStack[cursor] : null;
|
||||
|
||||
// Extract a readable title from the URL if possible
|
||||
const getPageTitle = (url: string) => {
|
||||
if (url.startsWith("search_results_")) {
|
||||
const searchTerm = url.substring(
|
||||
"search_results_".length,
|
||||
);
|
||||
return `Search: ${searchTerm}`;
|
||||
}
|
||||
// For regular URLs, try to extract domain or use full URL
|
||||
try {
|
||||
const urlObj = new URL(url);
|
||||
return urlObj.hostname;
|
||||
} catch {
|
||||
// If not a valid URL, return as is
|
||||
return url;
|
||||
}
|
||||
};
|
||||
|
||||
const citationElement = (
|
||||
<span className="text-xs text-neutral-500 dark:text-neutral-400 bg-neutral-100 dark:bg-neutral-800 rounded-full px-2 py-1 ml-1">
|
||||
[{cursor}]
|
||||
</span>
|
||||
);
|
||||
|
||||
// If we have a valid page URL, wrap in a link
|
||||
if (pageUrl && pageUrl.startsWith("http")) {
|
||||
return (
|
||||
<a
|
||||
href={pageUrl}
|
||||
target="_blank"
|
||||
rel="noopener noreferrer"
|
||||
className="inline-flex items-center hover:opacity-80 transition-opacity no-underline"
|
||||
title={getPageTitle(pageUrl)}
|
||||
>
|
||||
{citationElement}
|
||||
</a>
|
||||
);
|
||||
const getPageTitle = (url: string) => {
|
||||
if (url.startsWith("search_results_")) {
|
||||
const searchTerm = url.substring("search_results_".length);
|
||||
return `Search: ${searchTerm}`;
|
||||
}
|
||||
try {
|
||||
const urlObj = new URL(url);
|
||||
return urlObj.hostname;
|
||||
} catch {
|
||||
return url;
|
||||
}
|
||||
};
|
||||
|
||||
// Otherwise, just return the citation without a link
|
||||
return citationElement;
|
||||
},
|
||||
}}
|
||||
>
|
||||
{content}
|
||||
</Markdown>
|
||||
</StreamingMarkdownErrorBoundary>
|
||||
</div>
|
||||
);
|
||||
},
|
||||
);
|
||||
const citationElement = (
|
||||
<span className="text-xs text-neutral-500 dark:text-neutral-400 bg-neutral-100 dark:bg-neutral-800 rounded-full px-2 py-1 ml-1">
|
||||
[{cursor}]
|
||||
</span>
|
||||
);
|
||||
|
||||
if (pageUrl && pageUrl.startsWith("http")) {
|
||||
return (
|
||||
<a
|
||||
href={pageUrl}
|
||||
target="_blank"
|
||||
rel="noopener noreferrer"
|
||||
className="inline-flex items-center hover:opacity-80 transition-opacity no-underline"
|
||||
title={getPageTitle(pageUrl)}
|
||||
>
|
||||
{citationElement}
|
||||
</a>
|
||||
);
|
||||
}
|
||||
|
||||
return citationElement;
|
||||
},
|
||||
}}
|
||||
>
|
||||
{content}
|
||||
</Streamdown>
|
||||
</StreamingMarkdownErrorBoundary>
|
||||
</div>
|
||||
);
|
||||
});
|
||||
|
||||
interface StreamingMarkdownErrorBoundaryProps {
|
||||
content: string;
|
||||
|
||||
@@ -73,8 +73,9 @@ export default function Thinking({
|
||||
// Calculate max height for smooth animations
|
||||
const getMaxHeight = () => {
|
||||
if (isCollapsed) {
|
||||
return finishedThinking ? "0px" : "12rem"; // 8rem = 128px (same as max-h-32)
|
||||
return finishedThinking ? "0px" : "12rem";
|
||||
}
|
||||
// When expanded, use the content height or grow naturally
|
||||
return contentHeight ? `${contentHeight}px` : "none";
|
||||
};
|
||||
|
||||
@@ -131,10 +132,11 @@ export default function Thinking({
|
||||
</div>
|
||||
<div
|
||||
ref={wrapperRef}
|
||||
className={`text-xs text-neutral-500 dark:text-neutral-500 rounded-md overflow-hidden
|
||||
transition-[max-height,opacity] duration-300 ease-in-out relative ml-6 mt-2`}
|
||||
className={`text-xs text-neutral-500 dark:text-neutral-500 rounded-md
|
||||
transition-[max-height,opacity] duration-300 ease-in-out relative ml-6 mt-2
|
||||
${isCollapsed ? "overflow-hidden" : "overflow-y-auto"}`}
|
||||
style={{
|
||||
maxHeight: getMaxHeight(),
|
||||
maxHeight: isCollapsed ? getMaxHeight() : undefined,
|
||||
opacity: isCollapsed && finishedThinking ? 0 : 1,
|
||||
}}
|
||||
>
|
||||
|
||||
@@ -16,793 +16,6 @@
|
||||
--text-color: #ffffff;
|
||||
}
|
||||
}
|
||||
@media (prefers-color-scheme: light) {
|
||||
.prose {
|
||||
/**
|
||||
* One Light theme for prism.js
|
||||
* Based on Atom's One Light theme: https://github.com/atom/atom/tree/master/packages/one-light-syntax
|
||||
*/
|
||||
|
||||
/**
|
||||
* One Light colours (accurate as of commit eb064bf on 19 Feb 2021)
|
||||
* From colors.less
|
||||
* --mono-1: hsl(230, 8%, 24%);
|
||||
* --mono-2: hsl(230, 6%, 44%);
|
||||
* --mono-3: hsl(230, 4%, 64%)
|
||||
* --hue-1: hsl(198, 99%, 37%);
|
||||
* --hue-2: hsl(221, 87%, 60%);
|
||||
* --hue-3: hsl(301, 63%, 40%);
|
||||
* --hue-4: hsl(119, 34%, 47%);
|
||||
* --hue-5: hsl(5, 74%, 59%);
|
||||
* --hue-5-2: hsl(344, 84%, 43%);
|
||||
* --hue-6: hsl(35, 99%, 36%);
|
||||
* --hue-6-2: hsl(35, 99%, 40%);
|
||||
* --syntax-fg: hsl(230, 8%, 24%);
|
||||
* --syntax-bg: hsl(230, 1%, 98%);
|
||||
* --syntax-gutter: hsl(230, 1%, 62%);
|
||||
* --syntax-guide: hsla(230, 8%, 24%, 0.2);
|
||||
* --syntax-accent: hsl(230, 100%, 66%);
|
||||
* From syntax-variables.less
|
||||
* --syntax-selection-color: hsl(230, 1%, 90%);
|
||||
* --syntax-gutter-background-color-selected: hsl(230, 1%, 90%);
|
||||
* --syntax-cursor-line: hsla(230, 8%, 24%, 0.05);
|
||||
*/
|
||||
|
||||
.token.comment,
|
||||
.token.prolog,
|
||||
.token.cdata {
|
||||
color: hsl(230, 4%, 64%);
|
||||
}
|
||||
|
||||
.token.doctype,
|
||||
.token.punctuation,
|
||||
.token.entity {
|
||||
color: hsl(230, 8%, 24%);
|
||||
}
|
||||
|
||||
.token.attr-name,
|
||||
.token.class-name,
|
||||
.token.boolean,
|
||||
.token.constant,
|
||||
.token.number,
|
||||
.token.atrule {
|
||||
color: hsl(35, 99%, 36%);
|
||||
}
|
||||
|
||||
.token.keyword {
|
||||
color: hsl(301, 63%, 40%);
|
||||
}
|
||||
|
||||
.token.property,
|
||||
.token.tag,
|
||||
.token.symbol,
|
||||
.token.deleted,
|
||||
.token.important {
|
||||
color: hsl(5, 74%, 59%);
|
||||
}
|
||||
|
||||
.token.selector,
|
||||
.token.string,
|
||||
.token.char,
|
||||
.token.builtin,
|
||||
.token.inserted,
|
||||
.token.regex,
|
||||
.token.attr-value,
|
||||
.token.attr-value > .token.punctuation {
|
||||
color: hsl(119, 34%, 47%);
|
||||
}
|
||||
|
||||
.token.variable,
|
||||
.token.operator,
|
||||
.token.function {
|
||||
color: hsl(221, 87%, 60%);
|
||||
}
|
||||
|
||||
.token.url {
|
||||
color: hsl(198, 99%, 37%);
|
||||
}
|
||||
|
||||
/* HTML overrides */
|
||||
.token.attr-value > .token.punctuation.attr-equals,
|
||||
.token.special-attr > .token.attr-value > .token.value.css {
|
||||
color: hsl(230, 8%, 24%);
|
||||
}
|
||||
|
||||
/* CSS overrides */
|
||||
.language-css .token.selector {
|
||||
color: hsl(5, 74%, 59%);
|
||||
}
|
||||
|
||||
.language-css .token.property {
|
||||
color: hsl(230, 8%, 24%);
|
||||
}
|
||||
|
||||
.language-css .token.function,
|
||||
.language-css .token.url > .token.function {
|
||||
color: hsl(198, 99%, 37%);
|
||||
}
|
||||
|
||||
.language-css .token.url > .token.string.url {
|
||||
color: hsl(119, 34%, 47%);
|
||||
}
|
||||
|
||||
.language-css .token.important,
|
||||
.language-css .token.atrule .token.rule {
|
||||
color: hsl(301, 63%, 40%);
|
||||
}
|
||||
|
||||
/* JS overrides */
|
||||
.language-javascript .token.operator {
|
||||
color: hsl(301, 63%, 40%);
|
||||
}
|
||||
|
||||
.language-javascript
|
||||
.token.template-string
|
||||
> .token.interpolation
|
||||
> .token.interpolation-punctuation.punctuation {
|
||||
color: hsl(344, 84%, 43%);
|
||||
}
|
||||
|
||||
/* JSON overrides */
|
||||
.language-json .token.operator {
|
||||
color: hsl(230, 8%, 24%);
|
||||
}
|
||||
|
||||
.language-json .token.null.keyword {
|
||||
color: hsl(35, 99%, 36%);
|
||||
}
|
||||
|
||||
/* MD overrides */
|
||||
.language-markdown .token.url,
|
||||
.language-markdown .token.url > .token.operator,
|
||||
.language-markdown .token.url-reference.url > .token.string {
|
||||
color: hsl(230, 8%, 24%);
|
||||
}
|
||||
|
||||
.language-markdown .token.url > .token.content {
|
||||
color: hsl(221, 87%, 60%);
|
||||
}
|
||||
|
||||
.language-markdown .token.url > .token.url,
|
||||
.language-markdown .token.url-reference.url {
|
||||
color: hsl(198, 99%, 37%);
|
||||
}
|
||||
|
||||
.language-markdown .token.blockquote.punctuation,
|
||||
.language-markdown .token.hr.punctuation {
|
||||
color: hsl(230, 4%, 64%);
|
||||
font-style: italic;
|
||||
}
|
||||
|
||||
.language-markdown .token.code-snippet {
|
||||
color: hsl(119, 34%, 47%);
|
||||
}
|
||||
|
||||
.language-markdown .token.bold .token.content {
|
||||
color: hsl(35, 99%, 36%);
|
||||
}
|
||||
|
||||
.language-markdown .token.italic .token.content {
|
||||
color: hsl(301, 63%, 40%);
|
||||
}
|
||||
|
||||
.language-markdown .token.strike .token.content,
|
||||
.language-markdown .token.strike .token.punctuation,
|
||||
.language-markdown .token.list.punctuation,
|
||||
.language-markdown .token.title.important > .token.punctuation {
|
||||
color: hsl(5, 74%, 59%);
|
||||
}
|
||||
|
||||
/* General */
|
||||
.token.bold {
|
||||
font-weight: bold;
|
||||
}
|
||||
|
||||
.token.comment,
|
||||
.token.italic {
|
||||
font-style: italic;
|
||||
}
|
||||
|
||||
.token.entity {
|
||||
cursor: help;
|
||||
}
|
||||
|
||||
.token.namespace {
|
||||
opacity: 0.8;
|
||||
}
|
||||
|
||||
/* Plugin overrides */
|
||||
/* Selectors should have higher specificity than those in the plugins' default stylesheets */
|
||||
|
||||
/* Show Invisibles plugin overrides */
|
||||
.token.token.tab:not(:empty):before,
|
||||
.token.token.cr:before,
|
||||
.token.token.lf:before,
|
||||
.token.token.space:before {
|
||||
color: hsla(230, 8%, 24%, 0.2);
|
||||
}
|
||||
|
||||
/* Toolbar plugin overrides */
|
||||
/* Space out all buttons and move them away from the right edge of the code block */
|
||||
div.code-toolbar > .toolbar.toolbar > .toolbar-item {
|
||||
margin-right: 0.4em;
|
||||
}
|
||||
|
||||
/* Styling the buttons */
|
||||
div.code-toolbar > .toolbar.toolbar > .toolbar-item > button,
|
||||
div.code-toolbar > .toolbar.toolbar > .toolbar-item > a,
|
||||
div.code-toolbar > .toolbar.toolbar > .toolbar-item > span {
|
||||
background: hsl(230, 1%, 90%);
|
||||
color: hsl(230, 6%, 44%);
|
||||
padding: 0.1em 0.4em;
|
||||
border-radius: 0.3em;
|
||||
}
|
||||
|
||||
div.code-toolbar > .toolbar.toolbar > .toolbar-item > button:hover,
|
||||
div.code-toolbar > .toolbar.toolbar > .toolbar-item > button:focus,
|
||||
div.code-toolbar > .toolbar.toolbar > .toolbar-item > a:hover,
|
||||
div.code-toolbar > .toolbar.toolbar > .toolbar-item > a:focus,
|
||||
div.code-toolbar > .toolbar.toolbar > .toolbar-item > span:hover,
|
||||
div.code-toolbar > .toolbar.toolbar > .toolbar-item > span:focus {
|
||||
background: hsl(230, 1%, 78%); /* custom: darken(--syntax-bg, 20%) */
|
||||
color: hsl(230, 8%, 24%);
|
||||
}
|
||||
|
||||
/* Line Highlight plugin overrides */
|
||||
/* The highlighted line itself */
|
||||
.line-highlight.line-highlight {
|
||||
background: hsla(230, 8%, 24%, 0.05);
|
||||
}
|
||||
|
||||
/* Default line numbers in Line Highlight plugin */
|
||||
.line-highlight.line-highlight:before,
|
||||
.line-highlight.line-highlight[data-end]:after {
|
||||
background: hsl(230, 1%, 90%);
|
||||
color: hsl(230, 8%, 24%);
|
||||
padding: 0.1em 0.6em;
|
||||
border-radius: 0.3em;
|
||||
box-shadow: 0 2px 0 0 rgba(0, 0, 0, 0.2); /* same as Toolbar plugin default */
|
||||
}
|
||||
|
||||
/* Hovering over a linkable line number (in the gutter area) */
|
||||
/* Requires Line Numbers plugin as well */
|
||||
pre[id].linkable-line-numbers.linkable-line-numbers
|
||||
span.line-numbers-rows
|
||||
> span:hover:before {
|
||||
background-color: hsla(230, 8%, 24%, 0.05);
|
||||
}
|
||||
|
||||
/* Line Numbers and Command Line plugins overrides */
|
||||
/* Line separating gutter from coding area */
|
||||
.line-numbers.line-numbers .line-numbers-rows,
|
||||
.command-line .command-line-prompt {
|
||||
border-right-color: hsla(230, 8%, 24%, 0.2);
|
||||
}
|
||||
|
||||
/* Stuff in the gutter */
|
||||
.line-numbers .line-numbers-rows > span:before,
|
||||
.command-line .command-line-prompt > span:before {
|
||||
color: hsl(230, 1%, 62%);
|
||||
}
|
||||
|
||||
/* Match Braces plugin overrides */
|
||||
/* Note: Outline colour is inherited from the braces */
|
||||
.rainbow-braces .token.token.punctuation.brace-level-1,
|
||||
.rainbow-braces .token.token.punctuation.brace-level-5,
|
||||
.rainbow-braces .token.token.punctuation.brace-level-9 {
|
||||
color: hsl(5, 74%, 59%);
|
||||
}
|
||||
|
||||
.rainbow-braces .token.token.punctuation.brace-level-2,
|
||||
.rainbow-braces .token.token.punctuation.brace-level-6,
|
||||
.rainbow-braces .token.token.punctuation.brace-level-10 {
|
||||
color: hsl(119, 34%, 47%);
|
||||
}
|
||||
|
||||
.rainbow-braces .token.token.punctuation.brace-level-3,
|
||||
.rainbow-braces .token.token.punctuation.brace-level-7,
|
||||
.rainbow-braces .token.token.punctuation.brace-level-11 {
|
||||
color: hsl(221, 87%, 60%);
|
||||
}
|
||||
|
||||
.rainbow-braces .token.token.punctuation.brace-level-4,
|
||||
.rainbow-braces .token.token.punctuation.brace-level-8,
|
||||
.rainbow-braces .token.token.punctuation.brace-level-12 {
|
||||
color: hsl(301, 63%, 40%);
|
||||
}
|
||||
|
||||
/* Diff Highlight plugin overrides */
|
||||
/* Taken from https://github.com/atom/github/blob/master/styles/variables.less */
|
||||
pre.diff-highlight > code .token.token.deleted:not(.prefix),
|
||||
pre > code.diff-highlight .token.token.deleted:not(.prefix) {
|
||||
background-color: hsla(353, 100%, 66%, 0.15);
|
||||
}
|
||||
|
||||
pre.diff-highlight > code .token.token.deleted:not(.prefix)::-moz-selection,
|
||||
pre.diff-highlight
|
||||
> code
|
||||
.token.token.deleted:not(.prefix)
|
||||
*::-moz-selection,
|
||||
pre > code.diff-highlight .token.token.deleted:not(.prefix)::-moz-selection,
|
||||
pre
|
||||
> code.diff-highlight
|
||||
.token.token.deleted:not(.prefix)
|
||||
*::-moz-selection {
|
||||
background-color: hsla(353, 95%, 66%, 0.25);
|
||||
}
|
||||
|
||||
pre.diff-highlight > code .token.token.deleted:not(.prefix)::selection,
|
||||
pre.diff-highlight > code .token.token.deleted:not(.prefix) *::selection,
|
||||
pre > code.diff-highlight .token.token.deleted:not(.prefix)::selection,
|
||||
pre > code.diff-highlight .token.token.deleted:not(.prefix) *::selection {
|
||||
background-color: hsla(353, 95%, 66%, 0.25);
|
||||
}
|
||||
|
||||
pre.diff-highlight > code .token.token.inserted:not(.prefix),
|
||||
pre > code.diff-highlight .token.token.inserted:not(.prefix) {
|
||||
background-color: hsla(137, 100%, 55%, 0.15);
|
||||
}
|
||||
|
||||
pre.diff-highlight
|
||||
> code
|
||||
.token.token.inserted:not(.prefix)::-moz-selection,
|
||||
pre.diff-highlight
|
||||
> code
|
||||
.token.token.inserted:not(.prefix)
|
||||
*::-moz-selection,
|
||||
pre
|
||||
> code.diff-highlight
|
||||
.token.token.inserted:not(.prefix)::-moz-selection,
|
||||
pre
|
||||
> code.diff-highlight
|
||||
.token.token.inserted:not(.prefix)
|
||||
*::-moz-selection {
|
||||
background-color: hsla(135, 73%, 55%, 0.25);
|
||||
}
|
||||
|
||||
pre.diff-highlight > code .token.token.inserted:not(.prefix)::selection,
|
||||
pre.diff-highlight > code .token.token.inserted:not(.prefix) *::selection,
|
||||
pre > code.diff-highlight .token.token.inserted:not(.prefix)::selection,
|
||||
pre > code.diff-highlight .token.token.inserted:not(.prefix) *::selection {
|
||||
background-color: hsla(135, 73%, 55%, 0.25);
|
||||
}
|
||||
|
||||
/* Previewers plugin overrides */
|
||||
/* Based on https://github.com/atom-community/atom-ide-datatip/blob/master/styles/atom-ide-datatips.less and https://github.com/atom/atom/blob/master/packages/one-light-ui */
|
||||
/* Border around popup */
|
||||
.prism-previewer.prism-previewer:before,
|
||||
.prism-previewer-gradient.prism-previewer-gradient div {
|
||||
border-color: hsl(0, 0, 95%);
|
||||
}
|
||||
|
||||
/* Angle and time should remain as circles and are hence not included */
|
||||
.prism-previewer-color.prism-previewer-color:before,
|
||||
.prism-previewer-gradient.prism-previewer-gradient div,
|
||||
.prism-previewer-easing.prism-previewer-easing:before {
|
||||
border-radius: 0.3em;
|
||||
}
|
||||
|
||||
/* Triangles pointing to the code */
|
||||
.prism-previewer.prism-previewer:after {
|
||||
border-top-color: hsl(0, 0, 95%);
|
||||
}
|
||||
|
||||
.prism-previewer-flipped.prism-previewer-flipped.after {
|
||||
border-bottom-color: hsl(0, 0, 95%);
|
||||
}
|
||||
|
||||
/* Background colour within the popup */
|
||||
.prism-previewer-angle.prism-previewer-angle:before,
|
||||
.prism-previewer-time.prism-previewer-time:before,
|
||||
.prism-previewer-easing.prism-previewer-easing {
|
||||
background: hsl(0, 0%, 100%);
|
||||
}
|
||||
|
||||
/* For angle, this is the positive area (eg. 90deg will display one quadrant in this colour) */
|
||||
/* For time, this is the alternate colour */
|
||||
.prism-previewer-angle.prism-previewer-angle circle,
|
||||
.prism-previewer-time.prism-previewer-time circle {
|
||||
stroke: hsl(230, 8%, 24%);
|
||||
stroke-opacity: 1;
|
||||
}
|
||||
|
||||
/* Stroke colours of the handle, direction point, and vector itself */
|
||||
.prism-previewer-easing.prism-previewer-easing circle,
|
||||
.prism-previewer-easing.prism-previewer-easing path,
|
||||
.prism-previewer-easing.prism-previewer-easing line {
|
||||
stroke: hsl(230, 8%, 24%);
|
||||
}
|
||||
|
||||
/* Fill colour of the handle */
|
||||
.prism-previewer-easing.prism-previewer-easing circle {
|
||||
fill: transparent;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@media (prefers-color-scheme: dark) {
|
||||
.prose {
|
||||
.token.comment,
|
||||
.token.prolog,
|
||||
.token.cdata {
|
||||
color: hsl(220, 10%, 40%);
|
||||
}
|
||||
|
||||
.token.doctype,
|
||||
.token.punctuation,
|
||||
.token.entity {
|
||||
color: hsl(220, 14%, 71%);
|
||||
}
|
||||
|
||||
.token.attr-name,
|
||||
.token.class-name,
|
||||
.token.boolean,
|
||||
.token.constant,
|
||||
.token.number,
|
||||
.token.atrule {
|
||||
color: hsl(29, 54%, 61%);
|
||||
}
|
||||
|
||||
.token.keyword {
|
||||
color: hsl(286, 60%, 67%);
|
||||
}
|
||||
|
||||
.token.property,
|
||||
.token.tag,
|
||||
.token.symbol,
|
||||
.token.deleted,
|
||||
.token.important {
|
||||
color: hsl(355, 65%, 65%);
|
||||
}
|
||||
|
||||
.token.selector,
|
||||
.token.string,
|
||||
.token.char,
|
||||
.token.builtin,
|
||||
.token.inserted,
|
||||
.token.regex,
|
||||
.token.attr-value,
|
||||
.token.attr-value > .token.punctuation {
|
||||
color: hsl(95, 38%, 62%);
|
||||
}
|
||||
|
||||
.token.variable,
|
||||
.token.operator,
|
||||
.token.function {
|
||||
color: hsl(207, 82%, 66%);
|
||||
}
|
||||
|
||||
.token.url {
|
||||
color: hsl(187, 47%, 55%);
|
||||
}
|
||||
|
||||
/* HTML overrides */
|
||||
.token.attr-value > .token.punctuation.attr-equals,
|
||||
.token.special-attr > .token.attr-value > .token.value.css {
|
||||
color: hsl(220, 14%, 71%);
|
||||
}
|
||||
|
||||
/* CSS overrides */
|
||||
.language-css .token.selector {
|
||||
color: hsl(355, 65%, 65%);
|
||||
}
|
||||
|
||||
.language-css .token.property {
|
||||
color: hsl(220, 14%, 71%);
|
||||
}
|
||||
|
||||
.language-css .token.function,
|
||||
.language-css .token.url > .token.function {
|
||||
color: hsl(187, 47%, 55%);
|
||||
}
|
||||
|
||||
.language-css .token.url > .token.string.url {
|
||||
color: hsl(95, 38%, 62%);
|
||||
}
|
||||
|
||||
.language-css .token.important,
|
||||
.language-css .token.atrule .token.rule {
|
||||
color: hsl(286, 60%, 67%);
|
||||
}
|
||||
|
||||
/* JS overrides */
|
||||
.language-javascript .token.operator {
|
||||
color: hsl(286, 60%, 67%);
|
||||
}
|
||||
|
||||
.language-javascript
|
||||
.token.template-string
|
||||
> .token.interpolation
|
||||
> .token.interpolation-punctuation.punctuation {
|
||||
color: hsl(5, 48%, 51%);
|
||||
}
|
||||
|
||||
/* JSON overrides */
|
||||
.language-json .token.operator {
|
||||
color: hsl(220, 14%, 71%);
|
||||
}
|
||||
|
||||
.language-json .token.null.keyword {
|
||||
color: hsl(29, 54%, 61%);
|
||||
}
|
||||
|
||||
/* MD overrides */
|
||||
.language-markdown .token.url,
|
||||
.language-markdown .token.url > .token.operator,
|
||||
.language-markdown .token.url-reference.url > .token.string {
|
||||
color: hsl(220, 14%, 71%);
|
||||
}
|
||||
|
||||
.language-markdown .token.url > .token.content {
|
||||
color: hsl(207, 82%, 66%);
|
||||
}
|
||||
|
||||
.language-markdown .token.url > .token.url,
|
||||
.language-markdown .token.url-reference.url {
|
||||
color: hsl(187, 47%, 55%);
|
||||
}
|
||||
|
||||
.language-markdown .token.blockquote.punctuation,
|
||||
.language-markdown .token.hr.punctuation {
|
||||
color: hsl(220, 10%, 40%);
|
||||
font-style: italic;
|
||||
}
|
||||
|
||||
.language-markdown .token.code-snippet {
|
||||
color: hsl(95, 38%, 62%);
|
||||
}
|
||||
|
||||
.language-markdown .token.bold .token.content {
|
||||
color: hsl(29, 54%, 61%);
|
||||
}
|
||||
|
||||
.language-markdown .token.italic .token.content {
|
||||
color: hsl(286, 60%, 67%);
|
||||
}
|
||||
|
||||
.language-markdown .token.strike .token.content,
|
||||
.language-markdown .token.strike .token.punctuation,
|
||||
.language-markdown .token.list.punctuation,
|
||||
.language-markdown .token.title.important > .token.punctuation {
|
||||
color: hsl(355, 65%, 65%);
|
||||
}
|
||||
|
||||
/* General */
|
||||
.token.bold {
|
||||
font-weight: bold;
|
||||
}
|
||||
|
||||
.token.comment,
|
||||
.token.italic {
|
||||
font-style: italic;
|
||||
}
|
||||
|
||||
.token.entity {
|
||||
cursor: help;
|
||||
}
|
||||
|
||||
.token.namespace {
|
||||
opacity: 0.8;
|
||||
}
|
||||
|
||||
/* Plugin overrides */
|
||||
/* Selectors should have higher specificity than those in the plugins' default stylesheets */
|
||||
|
||||
/* Show Invisibles plugin overrides */
|
||||
.token.token.tab:not(:empty):before,
|
||||
.token.token.cr:before,
|
||||
.token.token.lf:before,
|
||||
.token.token.space:before {
|
||||
color: hsla(220, 14%, 71%, 0.15);
|
||||
text-shadow: none;
|
||||
}
|
||||
|
||||
/* Toolbar plugin overrides */
|
||||
/* Space out all buttons and move them away from the right edge of the code block */
|
||||
div.code-toolbar > .toolbar.toolbar > .toolbar-item {
|
||||
margin-right: 0.4em;
|
||||
}
|
||||
|
||||
/* Styling the buttons */
|
||||
div.code-toolbar > .toolbar.toolbar > .toolbar-item > button,
|
||||
div.code-toolbar > .toolbar.toolbar > .toolbar-item > a,
|
||||
div.code-toolbar > .toolbar.toolbar > .toolbar-item > span {
|
||||
background: hsl(220, 13%, 26%);
|
||||
color: hsl(220, 9%, 55%);
|
||||
padding: 0.1em 0.4em;
|
||||
border-radius: 0.3em;
|
||||
}
|
||||
|
||||
div.code-toolbar > .toolbar.toolbar > .toolbar-item > button:hover,
|
||||
div.code-toolbar > .toolbar.toolbar > .toolbar-item > button:focus,
|
||||
div.code-toolbar > .toolbar.toolbar > .toolbar-item > a:hover,
|
||||
div.code-toolbar > .toolbar.toolbar > .toolbar-item > a:focus,
|
||||
div.code-toolbar > .toolbar.toolbar > .toolbar-item > span:hover,
|
||||
div.code-toolbar > .toolbar.toolbar > .toolbar-item > span:focus {
|
||||
background: hsl(220, 13%, 28%);
|
||||
color: hsl(220, 14%, 71%);
|
||||
}
|
||||
|
||||
/* Line Highlight plugin overrides */
|
||||
/* The highlighted line itself */
|
||||
.line-highlight.line-highlight {
|
||||
background: hsla(220, 100%, 80%, 0.04);
|
||||
}
|
||||
|
||||
/* Default line numbers in Line Highlight plugin */
|
||||
.line-highlight.line-highlight:before,
|
||||
.line-highlight.line-highlight[data-end]:after {
|
||||
background: hsl(220, 13%, 26%);
|
||||
color: hsl(220, 14%, 71%);
|
||||
padding: 0.1em 0.6em;
|
||||
border-radius: 0.3em;
|
||||
box-shadow: 0 2px 0 0 rgba(0, 0, 0, 0.2); /* same as Toolbar plugin default */
|
||||
}
|
||||
|
||||
/* Hovering over a linkable line number (in the gutter area) */
|
||||
/* Requires Line Numbers plugin as well */
|
||||
pre[id].linkable-line-numbers.linkable-line-numbers
|
||||
span.line-numbers-rows
|
||||
> span:hover:before {
|
||||
background-color: hsla(220, 100%, 80%, 0.04);
|
||||
}
|
||||
|
||||
/* Line Numbers and Command Line plugins overrides */
|
||||
/* Line separating gutter from coding area */
|
||||
.line-numbers.line-numbers .line-numbers-rows,
|
||||
.command-line .command-line-prompt {
|
||||
border-right-color: hsla(220, 14%, 71%, 0.15);
|
||||
}
|
||||
|
||||
/* Stuff in the gutter */
|
||||
.line-numbers .line-numbers-rows > span:before,
|
||||
.command-line .command-line-prompt > span:before {
|
||||
color: hsl(220, 14%, 45%);
|
||||
}
|
||||
|
||||
/* Match Braces plugin overrides */
|
||||
/* Note: Outline colour is inherited from the braces */
|
||||
.rainbow-braces .token.token.punctuation.brace-level-1,
|
||||
.rainbow-braces .token.token.punctuation.brace-level-5,
|
||||
.rainbow-braces .token.token.punctuation.brace-level-9 {
|
||||
color: hsl(355, 65%, 65%);
|
||||
}
|
||||
|
||||
.rainbow-braces .token.token.punctuation.brace-level-2,
|
||||
.rainbow-braces .token.token.punctuation.brace-level-6,
|
||||
.rainbow-braces .token.token.punctuation.brace-level-10 {
|
||||
color: hsl(95, 38%, 62%);
|
||||
}
|
||||
|
||||
.rainbow-braces .token.token.punctuation.brace-level-3,
|
||||
.rainbow-braces .token.token.punctuation.brace-level-7,
|
||||
.rainbow-braces .token.token.punctuation.brace-level-11 {
|
||||
color: hsl(207, 82%, 66%);
|
||||
}
|
||||
|
||||
.rainbow-braces .token.token.punctuation.brace-level-4,
|
||||
.rainbow-braces .token.token.punctuation.brace-level-8,
|
||||
.rainbow-braces .token.token.punctuation.brace-level-12 {
|
||||
color: hsl(286, 60%, 67%);
|
||||
}
|
||||
|
||||
/* Diff Highlight plugin overrides */
|
||||
/* Taken from https://github.com/atom/github/blob/master/styles/variables.less */
|
||||
pre.diff-highlight > code .token.token.deleted:not(.prefix),
|
||||
pre > code.diff-highlight .token.token.deleted:not(.prefix) {
|
||||
background-color: hsla(353, 100%, 66%, 0.15);
|
||||
}
|
||||
|
||||
pre.diff-highlight > code .token.token.deleted:not(.prefix)::-moz-selection,
|
||||
pre.diff-highlight
|
||||
> code
|
||||
.token.token.deleted:not(.prefix)
|
||||
*::-moz-selection,
|
||||
pre > code.diff-highlight .token.token.deleted:not(.prefix)::-moz-selection,
|
||||
pre
|
||||
> code.diff-highlight
|
||||
.token.token.deleted:not(.prefix)
|
||||
*::-moz-selection {
|
||||
background-color: hsla(353, 95%, 66%, 0.25);
|
||||
}
|
||||
|
||||
pre.diff-highlight > code .token.token.deleted:not(.prefix)::selection,
|
||||
pre.diff-highlight > code .token.token.deleted:not(.prefix) *::selection,
|
||||
pre > code.diff-highlight .token.token.deleted:not(.prefix)::selection,
|
||||
pre > code.diff-highlight .token.token.deleted:not(.prefix) *::selection {
|
||||
background-color: hsla(353, 95%, 66%, 0.25);
|
||||
}
|
||||
|
||||
pre.diff-highlight > code .token.token.inserted:not(.prefix),
|
||||
pre > code.diff-highlight .token.token.inserted:not(.prefix) {
|
||||
background-color: hsla(137, 100%, 55%, 0.15);
|
||||
}
|
||||
|
||||
pre.diff-highlight
|
||||
> code
|
||||
.token.token.inserted:not(.prefix)::-moz-selection,
|
||||
pre.diff-highlight
|
||||
> code
|
||||
.token.token.inserted:not(.prefix)
|
||||
*::-moz-selection,
|
||||
pre
|
||||
> code.diff-highlight
|
||||
.token.token.inserted:not(.prefix)::-moz-selection,
|
||||
pre
|
||||
> code.diff-highlight
|
||||
.token.token.inserted:not(.prefix)
|
||||
*::-moz-selection {
|
||||
background-color: hsla(135, 73%, 55%, 0.25);
|
||||
}
|
||||
|
||||
pre.diff-highlight > code .token.token.inserted:not(.prefix)::selection,
|
||||
pre.diff-highlight > code .token.token.inserted:not(.prefix) *::selection,
|
||||
pre > code.diff-highlight .token.token.inserted:not(.prefix)::selection,
|
||||
pre > code.diff-highlight .token.token.inserted:not(.prefix) *::selection {
|
||||
background-color: hsla(135, 73%, 55%, 0.25);
|
||||
}
|
||||
|
||||
/* Previewers plugin overrides */
|
||||
/* Based on https://github.com/atom-community/atom-ide-datatip/blob/master/styles/atom-ide-datatips.less and https://github.com/atom/atom/blob/master/packages/one-dark-ui */
|
||||
/* Border around popup */
|
||||
.prism-previewer.prism-previewer:before,
|
||||
.prism-previewer-gradient.prism-previewer-gradient div {
|
||||
border-color: hsl(224, 13%, 17%);
|
||||
}
|
||||
|
||||
/* Angle and time should remain as circles and are hence not included */
|
||||
.prism-previewer-color.prism-previewer-color:before,
|
||||
.prism-previewer-gradient.prism-previewer-gradient div,
|
||||
.prism-previewer-easing.prism-previewer-easing:before {
|
||||
border-radius: 0.3em;
|
||||
}
|
||||
|
||||
/* Triangles pointing to the code */
|
||||
.prism-previewer.prism-previewer:after {
|
||||
border-top-color: hsl(224, 13%, 17%);
|
||||
}
|
||||
|
||||
.prism-previewer-flipped.prism-previewer-flipped.after {
|
||||
border-bottom-color: hsl(224, 13%, 17%);
|
||||
}
|
||||
|
||||
/* Background colour within the popup */
|
||||
.prism-previewer-angle.prism-previewer-angle:before,
|
||||
.prism-previewer-time.prism-previewer-time:before,
|
||||
.prism-previewer-easing.prism-previewer-easing {
|
||||
background: hsl(219, 13%, 22%);
|
||||
}
|
||||
|
||||
/* For angle, this is the positive area (eg. 90deg will display one quadrant in this colour) */
|
||||
/* For time, this is the alternate colour */
|
||||
.prism-previewer-angle.prism-previewer-angle circle,
|
||||
.prism-previewer-time.prism-previewer-time circle {
|
||||
stroke: hsl(220, 14%, 71%);
|
||||
stroke-opacity: 1;
|
||||
}
|
||||
|
||||
/* Stroke colours of the handle, direction point, and vector itself */
|
||||
.prism-previewer-easing.prism-previewer-easing circle,
|
||||
.prism-previewer-easing.prism-previewer-easing path,
|
||||
.prism-previewer-easing.prism-previewer-easing line {
|
||||
stroke: hsl(220, 14%, 71%);
|
||||
}
|
||||
|
||||
/* Fill colour of the handle */
|
||||
.prism-previewer-easing.prism-previewer-easing circle {
|
||||
fill: transparent;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
.prose pre {
|
||||
contain: layout style;
|
||||
}
|
||||
|
||||
/* Or more aggressively */
|
||||
.prose pre code {
|
||||
contain: layout style paint;
|
||||
}
|
||||
|
||||
/* messaging-style typing indicator animation */
|
||||
@keyframes typing {
|
||||
|
||||
10
app/ui/app/src/lib/config.ts
Normal file
10
app/ui/app/src/lib/config.ts
Normal file
@@ -0,0 +1,10 @@
|
||||
// API configuration
|
||||
const DEV_API_URL = "http://127.0.0.1:3001";
|
||||
|
||||
// Base URL for fetch API calls (can be relative in production)
|
||||
export const API_BASE = import.meta.env.DEV ? DEV_API_URL : "";
|
||||
|
||||
// Full host URL for Ollama client (needs full origin in production)
|
||||
export const OLLAMA_HOST = import.meta.env.DEV
|
||||
? DEV_API_URL
|
||||
: window.location.origin;
|
||||
156
app/ui/app/src/lib/highlighter.ts
Normal file
156
app/ui/app/src/lib/highlighter.ts
Normal file
@@ -0,0 +1,156 @@
|
||||
import { createHighlighter } from "shiki";
|
||||
import type { ThemeRegistration } from "shiki";
|
||||
|
||||
const oneLightTheme: ThemeRegistration = {
|
||||
name: "one-light",
|
||||
type: "light",
|
||||
colors: {
|
||||
"editor.background": "#fafafa",
|
||||
"editor.foreground": "#383a42",
|
||||
},
|
||||
tokenColors: [
|
||||
{
|
||||
scope: ["comment", "punctuation.definition.comment"],
|
||||
settings: { foreground: "#a0a1a7" },
|
||||
},
|
||||
{
|
||||
scope: ["keyword", "storage.type", "storage.modifier"],
|
||||
settings: { foreground: "#a626a4" },
|
||||
},
|
||||
{ scope: ["string", "string.quoted"], settings: { foreground: "#50a14f" } },
|
||||
{
|
||||
scope: ["function", "entity.name.function", "support.function"],
|
||||
settings: { foreground: "#4078f2" },
|
||||
},
|
||||
{
|
||||
scope: [
|
||||
"constant.numeric",
|
||||
"constant.language",
|
||||
"constant.character",
|
||||
"number",
|
||||
],
|
||||
settings: { foreground: "#c18401" },
|
||||
},
|
||||
{
|
||||
scope: ["variable", "support.variable"],
|
||||
settings: { foreground: "#e45649" },
|
||||
},
|
||||
{
|
||||
scope: ["entity.name.tag", "entity.name.type", "entity.name.class"],
|
||||
settings: { foreground: "#e45649" },
|
||||
},
|
||||
{
|
||||
scope: ["entity.other.attribute-name"],
|
||||
settings: { foreground: "#c18401" },
|
||||
},
|
||||
{
|
||||
scope: ["keyword.operator", "operator"],
|
||||
settings: { foreground: "#a626a4" },
|
||||
},
|
||||
{ scope: ["punctuation"], settings: { foreground: "#383a42" } },
|
||||
{
|
||||
scope: ["markup.heading"],
|
||||
settings: { foreground: "#e45649", fontStyle: "bold" },
|
||||
},
|
||||
{
|
||||
scope: ["markup.bold"],
|
||||
settings: { foreground: "#c18401", fontStyle: "bold" },
|
||||
},
|
||||
{
|
||||
scope: ["markup.italic"],
|
||||
settings: { foreground: "#a626a4", fontStyle: "italic" },
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
const oneDarkTheme: ThemeRegistration = {
|
||||
name: "one-dark",
|
||||
type: "dark",
|
||||
colors: {
|
||||
"editor.background": "#282c34",
|
||||
"editor.foreground": "#abb2bf",
|
||||
},
|
||||
tokenColors: [
|
||||
{
|
||||
scope: ["comment", "punctuation.definition.comment"],
|
||||
settings: { foreground: "#5c6370" },
|
||||
},
|
||||
{
|
||||
scope: ["keyword", "storage.type", "storage.modifier"],
|
||||
settings: { foreground: "#c678dd" },
|
||||
},
|
||||
{ scope: ["string", "string.quoted"], settings: { foreground: "#98c379" } },
|
||||
{
|
||||
scope: ["function", "entity.name.function", "support.function"],
|
||||
settings: { foreground: "#61afef" },
|
||||
},
|
||||
{
|
||||
scope: [
|
||||
"constant.numeric",
|
||||
"constant.language",
|
||||
"constant.character",
|
||||
"number",
|
||||
],
|
||||
settings: { foreground: "#d19a66" },
|
||||
},
|
||||
{
|
||||
scope: ["variable", "support.variable"],
|
||||
settings: { foreground: "#e06c75" },
|
||||
},
|
||||
{
|
||||
scope: ["entity.name.tag", "entity.name.type", "entity.name.class"],
|
||||
settings: { foreground: "#e06c75" },
|
||||
},
|
||||
{
|
||||
scope: ["entity.other.attribute-name"],
|
||||
settings: { foreground: "#d19a66" },
|
||||
},
|
||||
{
|
||||
scope: ["keyword.operator", "operator"],
|
||||
settings: { foreground: "#c678dd" },
|
||||
},
|
||||
{ scope: ["punctuation"], settings: { foreground: "#abb2bf" } },
|
||||
{
|
||||
scope: ["markup.heading"],
|
||||
settings: { foreground: "#e06c75", fontStyle: "bold" },
|
||||
},
|
||||
{
|
||||
scope: ["markup.bold"],
|
||||
settings: { foreground: "#d19a66", fontStyle: "bold" },
|
||||
},
|
||||
{
|
||||
scope: ["markup.italic"],
|
||||
settings: { foreground: "#c678dd", fontStyle: "italic" },
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
export let highlighter: Awaited<ReturnType<typeof createHighlighter>> | null =
|
||||
null;
|
||||
|
||||
export const highlighterPromise = createHighlighter({
|
||||
themes: [oneLightTheme, oneDarkTheme],
|
||||
langs: [
|
||||
"javascript",
|
||||
"typescript",
|
||||
"python",
|
||||
"bash",
|
||||
"shell",
|
||||
"json",
|
||||
"html",
|
||||
"css",
|
||||
"tsx",
|
||||
"jsx",
|
||||
"go",
|
||||
"rust",
|
||||
"java",
|
||||
"c",
|
||||
"cpp",
|
||||
"sql",
|
||||
"yaml",
|
||||
"markdown",
|
||||
],
|
||||
}).then((h) => {
|
||||
highlighter = h;
|
||||
return h;
|
||||
});
|
||||
@@ -1,4 +1,5 @@
|
||||
import { Ollama } from "ollama/browser";
|
||||
import { OLLAMA_HOST } from "./config";
|
||||
|
||||
let _ollamaClient: Ollama | null = null;
|
||||
|
||||
@@ -6,7 +7,7 @@ export const ollamaClient = new Proxy({} as Ollama, {
|
||||
get(_target, prop) {
|
||||
if (!_ollamaClient) {
|
||||
_ollamaClient = new Ollama({
|
||||
host: window.location.origin,
|
||||
host: OLLAMA_HOST,
|
||||
});
|
||||
}
|
||||
const value = _ollamaClient[prop as keyof Ollama];
|
||||
|
||||
97
app/ui/app/src/utils/fileValidation.test.ts
Normal file
97
app/ui/app/src/utils/fileValidation.test.ts
Normal file
@@ -0,0 +1,97 @@
|
||||
import { describe, it, expect } from "vitest";
|
||||
import { IMAGE_EXTENSIONS, validateFile } from "./fileValidation";
|
||||
|
||||
describe("fileValidation", () => {
|
||||
describe("IMAGE_EXTENSIONS", () => {
|
||||
it("should include all supported image formats including WebP", () => {
|
||||
expect(IMAGE_EXTENSIONS).toContain("png");
|
||||
expect(IMAGE_EXTENSIONS).toContain("jpg");
|
||||
expect(IMAGE_EXTENSIONS).toContain("jpeg");
|
||||
expect(IMAGE_EXTENSIONS).toContain("webp");
|
||||
});
|
||||
});
|
||||
|
||||
describe("validateFile", () => {
|
||||
const createMockFile = (
|
||||
name: string,
|
||||
size: number,
|
||||
type: string,
|
||||
): File => {
|
||||
const blob = new Blob(["test content"], { type });
|
||||
return new File([blob], name, { type });
|
||||
};
|
||||
|
||||
it("should accept WebP images when vision capability is enabled", () => {
|
||||
const file = createMockFile("test.webp", 1024, "image/webp");
|
||||
const result = validateFile(file, {
|
||||
hasVisionCapability: true,
|
||||
});
|
||||
expect(result.valid).toBe(true);
|
||||
});
|
||||
|
||||
it("should reject WebP images when vision capability is disabled", () => {
|
||||
const file = createMockFile("test.webp", 1024, "image/webp");
|
||||
const result = validateFile(file, {
|
||||
hasVisionCapability: false,
|
||||
});
|
||||
expect(result.valid).toBe(false);
|
||||
expect(result.error).toBe("This model does not support images");
|
||||
});
|
||||
|
||||
it("should accept PNG images when vision capability is enabled", () => {
|
||||
const file = createMockFile("test.png", 1024, "image/png");
|
||||
const result = validateFile(file, {
|
||||
hasVisionCapability: true,
|
||||
});
|
||||
expect(result.valid).toBe(true);
|
||||
});
|
||||
|
||||
it("should accept JPEG images when vision capability is enabled", () => {
|
||||
const file = createMockFile("test.jpg", 1024, "image/jpeg");
|
||||
const result = validateFile(file, {
|
||||
hasVisionCapability: true,
|
||||
});
|
||||
expect(result.valid).toBe(true);
|
||||
});
|
||||
|
||||
it("should reject files that are too large", () => {
|
||||
// Create a file with size property set correctly
|
||||
const largeSize = 11 * 1024 * 1024; // 11MB
|
||||
const content = new Uint8Array(largeSize);
|
||||
const blob = new Blob([content], { type: "image/webp" });
|
||||
const file = new File([blob], "large.webp", { type: "image/webp" });
|
||||
|
||||
const result = validateFile(file, {
|
||||
hasVisionCapability: true,
|
||||
maxFileSize: 10, // 10MB limit
|
||||
});
|
||||
expect(result.valid).toBe(false);
|
||||
expect(result.error).toBe("File too large");
|
||||
});
|
||||
|
||||
it("should reject unsupported file types", () => {
|
||||
const file = createMockFile("test.xyz", 1024, "application/xyz");
|
||||
const result = validateFile(file, {
|
||||
hasVisionCapability: true,
|
||||
});
|
||||
expect(result.valid).toBe(false);
|
||||
expect(result.error).toBe("File type not supported");
|
||||
});
|
||||
|
||||
it("should respect custom validators", () => {
|
||||
const file = createMockFile("test.webp", 1024, "image/webp");
|
||||
const result = validateFile(file, {
|
||||
hasVisionCapability: true,
|
||||
customValidator: () => ({
|
||||
valid: false,
|
||||
error: "Custom error",
|
||||
}),
|
||||
});
|
||||
expect(result.valid).toBe(false);
|
||||
expect(result.error).toBe("Custom error");
|
||||
});
|
||||
});
|
||||
|
||||
// Note: processFiles tests are skipped because FileReader is not available in the Node.js test environment
|
||||
// These functions are tested in browser environment via integration tests
|
||||
});
|
||||
@@ -41,7 +41,7 @@ export const TEXT_FILE_EXTENSIONS = [
|
||||
"rtf",
|
||||
];
|
||||
|
||||
export const IMAGE_EXTENSIONS = ["png", "jpg", "jpeg"];
|
||||
export const IMAGE_EXTENSIONS = ["png", "jpg", "jpeg", "webp"];
|
||||
|
||||
export interface FileValidationOptions {
|
||||
maxFileSize?: number; // in MB
|
||||
|
||||
@@ -1,24 +0,0 @@
|
||||
import { remark } from "remark";
|
||||
import remarkStringify from "remark-stringify";
|
||||
import remarkStreamingMarkdown from "./remarkStreamingMarkdown";
|
||||
|
||||
/**
|
||||
* Process markdown content for streaming display using the remark plugin.
|
||||
* This is primarily used for testing the remark plugin with string inputs/outputs.
|
||||
*/
|
||||
export function processStreamingMarkdown(content: string): string {
|
||||
if (!content) return content;
|
||||
|
||||
const result = remark()
|
||||
.use(remarkStreamingMarkdown, { debug: false })
|
||||
.use(remarkStringify)
|
||||
.processSync(content);
|
||||
|
||||
// remove trailing newline to keep tests cleaner
|
||||
let output = result.toString();
|
||||
if (output.endsWith("\n")) {
|
||||
output = output.slice(0, -1);
|
||||
}
|
||||
|
||||
return output;
|
||||
}
|
||||
@@ -1,447 +0,0 @@
|
||||
import { parents, type Proxy } from "unist-util-parents";
|
||||
import type { Plugin } from "unified";
|
||||
import type {
|
||||
Emphasis,
|
||||
Node,
|
||||
Parent,
|
||||
Root,
|
||||
RootContent,
|
||||
Text,
|
||||
Strong,
|
||||
PhrasingContent,
|
||||
Paragraph,
|
||||
} from "mdast";
|
||||
import { u } from "unist-builder";
|
||||
|
||||
declare module "unist" {
|
||||
interface Node {
|
||||
/** Added by `unist-util-parents` (or your own walk). */
|
||||
parent?: Proxy & Parent;
|
||||
}
|
||||
}
|
||||
|
||||
// interface SimpleTextRule {
|
||||
// pattern: RegExp;
|
||||
// transform: (matches: RegExpExecArray[], lastNode: Proxy) => void;
|
||||
// }
|
||||
|
||||
// const simpleTextRules: SimpleTextRule[] = [
|
||||
// // TODO(drifkin): generalize this for `__`/`_`/`~~`/`~` etc.
|
||||
// {
|
||||
// pattern: /(\*\*)(?=\S|$)/g,
|
||||
// transform: (matchesIterator, lastNode) => {
|
||||
// const textNode = lastNode.node as Text;
|
||||
|
||||
// const matches = [...matchesIterator];
|
||||
// const lastMatch = matches[matches.length - 1];
|
||||
// const origValue = textNode.value;
|
||||
// const start = lastMatch.index;
|
||||
// const sep = lastMatch[1];
|
||||
|
||||
// const before = origValue.slice(0, start);
|
||||
// const after = origValue.slice(start + sep.length);
|
||||
|
||||
// if (lastNode.parent) {
|
||||
// const index = (lastNode.parent.node as Parent).children.indexOf(
|
||||
// lastNode.node as RootContent,
|
||||
// );
|
||||
// const shouldRemove = before.length === 0;
|
||||
// if (!shouldRemove) {
|
||||
// textNode.value = before;
|
||||
// }
|
||||
|
||||
// const newNode = u("strong", {
|
||||
// children: [u("text", { value: after })],
|
||||
// });
|
||||
// (lastNode.parent.node as Parent).children.splice(
|
||||
// index + (shouldRemove ? 0 : 1),
|
||||
// shouldRemove ? 1 : 0,
|
||||
// newNode,
|
||||
// );
|
||||
// }
|
||||
// },
|
||||
// },
|
||||
// ];
|
||||
|
||||
interface Options {
|
||||
debug?: boolean;
|
||||
onLastNode?: (info: LastNodeInfo) => void;
|
||||
}
|
||||
|
||||
export interface LastNodeInfo {
|
||||
path: string[];
|
||||
type: string;
|
||||
value?: string;
|
||||
lastChars?: string;
|
||||
fullNode: Node;
|
||||
}
|
||||
|
||||
/**
|
||||
* Removes `child` from `parent` in-place.
|
||||
* @returns `true` if the child was found and removed; `false` otherwise.
|
||||
*/
|
||||
export function removeChildFromParent(
|
||||
child: RootContent,
|
||||
parent: Node,
|
||||
): boolean {
|
||||
if (!isParent(parent)) return false; // parent isn’t a Parent → nothing to do
|
||||
|
||||
const idx = parent.children.indexOf(child);
|
||||
if (idx < 0) return false; // not a child → nothing to remove
|
||||
|
||||
parent.children.splice(idx, 1);
|
||||
return true; // removal successful
|
||||
}
|
||||
|
||||
/** Narrow a generic `Node` to a `Parent` (i.e. one that really has children). */
|
||||
function isParent(node: Node): node is Parent {
|
||||
// A `Parent` always has a `children` array; make sure it's an array first.
|
||||
return Array.isArray((node as Partial<Parent>).children);
|
||||
}
|
||||
|
||||
/**
|
||||
* Follow “last-child” pointers until you reach a leaf.
|
||||
* Returns the right-most, deepest node in source order.
|
||||
*/
|
||||
export function findRightmostDeepestNode(root: Node): Node {
|
||||
let current: Node = root;
|
||||
|
||||
// While the current node *is* a Parent and has at least one child…
|
||||
while (isParent(current) && current.children.length > 0) {
|
||||
const lastIndex = current.children.length - 1;
|
||||
current = current.children[lastIndex];
|
||||
}
|
||||
|
||||
return current; // Leaf: no further children
|
||||
}
|
||||
|
||||
const remarkStreamingMarkdown: Plugin<[Options?], Root> = () => {
|
||||
return (tree) => {
|
||||
const treeWithParents = parents(tree);
|
||||
const lastNode = findRightmostDeepestNode(treeWithParents) as Proxy;
|
||||
|
||||
const parentNode = lastNode.parent;
|
||||
const grandparentNode = parentNode?.parent;
|
||||
|
||||
let ruleMatched = false;
|
||||
|
||||
// handling `* *` -> ``
|
||||
//
|
||||
// if the last node is part of a <list item (otherwise empty)> ->
|
||||
// <list (otherwise empty)> -> <list item (last node, empty)>, then we need to
|
||||
// remove everything up to and including the first list item. This happens
|
||||
// when we have `* *`, which can become a bolded list item OR a horizontal
|
||||
// line
|
||||
if (
|
||||
lastNode.type === "listItem" &&
|
||||
parentNode &&
|
||||
grandparentNode &&
|
||||
parentNode.type === "list" &&
|
||||
grandparentNode.type === "listItem" &&
|
||||
parentNode.children.length === 1 &&
|
||||
grandparentNode.children.length === 1
|
||||
) {
|
||||
ruleMatched = true;
|
||||
if (grandparentNode.parent) {
|
||||
removeChildFromParent(
|
||||
grandparentNode.node as RootContent,
|
||||
grandparentNode.parent.node,
|
||||
);
|
||||
}
|
||||
// Handle `*` -> ``:
|
||||
//
|
||||
// if the last node is just an empty list item, we need to remove it
|
||||
// because it could become something else (e.g., a horizontal line)
|
||||
} else if (
|
||||
lastNode.type === "listItem" &&
|
||||
parentNode &&
|
||||
parentNode.type === "list"
|
||||
) {
|
||||
ruleMatched = true;
|
||||
removeChildFromParent(lastNode.node as RootContent, parentNode.node);
|
||||
} else if (lastNode.type === "thematicBreak") {
|
||||
ruleMatched = true;
|
||||
const parent = lastNode.parent;
|
||||
if (parent) {
|
||||
removeChildFromParent(lastNode.node as RootContent, parent.node);
|
||||
}
|
||||
} else if (lastNode.type === "text") {
|
||||
const textNode = lastNode.node as Text;
|
||||
if (textNode.value.endsWith("**")) {
|
||||
ruleMatched = true;
|
||||
textNode.value = textNode.value.slice(0, -2);
|
||||
// if there's a newline then a number, this is very very likely a
|
||||
// numbered list item. Let's just hide it until the period comes (or
|
||||
// other text disambiguates it)
|
||||
} else {
|
||||
const match = textNode.value.match(/^([0-9]+)$/m);
|
||||
if (match) {
|
||||
const number = match[1];
|
||||
textNode.value = textNode.value.slice(0, -number.length - 1);
|
||||
ruleMatched = true;
|
||||
// if the text node is now empty, then we might want to remove other
|
||||
// elements, like a now-empty containing paragraph, or a break that
|
||||
// might disappear once more tokens come in
|
||||
if (textNode.value.length === 0) {
|
||||
if (
|
||||
lastNode.parent?.type === "paragraph" &&
|
||||
lastNode.parent.children.length === 1
|
||||
) {
|
||||
// remove the whole paragraph if it's now empty (otherwise it'll
|
||||
// cause an extra newline that might not last)
|
||||
removeChildFromParent(
|
||||
lastNode.parent.node as Paragraph,
|
||||
lastNode.parent.parent?.node as Node,
|
||||
);
|
||||
} else {
|
||||
const prev = prevSibling(lastNode);
|
||||
if (prev?.type === "break") {
|
||||
removeChildFromParent(
|
||||
prev.node as RootContent,
|
||||
lastNode.parent?.node as Node,
|
||||
);
|
||||
removeChildFromParent(
|
||||
lastNode.node as RootContent,
|
||||
lastNode.parent?.node as Node,
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (ruleMatched) {
|
||||
return tree;
|
||||
}
|
||||
|
||||
// we need to
|
||||
// a case like
|
||||
// - *def `abc` [abc **def**](abc)*
|
||||
// is pretty tricky, because if we land just after def, then we actually
|
||||
// have two separate tags to process at two different parents. Maybe we
|
||||
// need to keep iterating up until we find a paragraph, but process each
|
||||
// parent on the way up. Hmm, well actually after `def` we won't even be a proper link yet
|
||||
// TODO(drifkin): it's really if the last node's parent is a paragraph, for which the following is a sub-cas where the lastNode is a text node.
|
||||
// And instead of just processing simple text rules, they need to operate on the whole paragraph
|
||||
// like `**[abc](def)` needs to become `**[abc](def)**`
|
||||
|
||||
// if we're just text at the end, then we should remove some ambiguous characters
|
||||
|
||||
if (lastNode.parent) {
|
||||
const didChange = processParent(lastNode.parent as Parent & Proxy);
|
||||
if (didChange) {
|
||||
// TODO(drifkin): need to fix up the tree, but not sure lastNode will still exist? Check all the transforms to see if it's safe to find the last node again
|
||||
//
|
||||
// need to regen the tree w/ parents since reparenting could've happened
|
||||
// treeWithParents = parents(tree);
|
||||
}
|
||||
}
|
||||
|
||||
const grandparent = lastNode.parent?.parent;
|
||||
// TODO(drifkin): let's go arbitrarily high up the tree, but limiting it
|
||||
// to 2 levels for now until I think more about the stop condition
|
||||
if (grandparent) {
|
||||
processParent(grandparent as Parent & Proxy);
|
||||
}
|
||||
|
||||
// console.log("ruleMatched", ruleMatched);
|
||||
|
||||
// } else if (lastNode.parent?.type === "paragraph") {
|
||||
// console.log("!!! paragraph");
|
||||
// console.log("lastNode.parent", lastNode.parent);
|
||||
|
||||
// // Handle `**abc*` -> `**abc**`:
|
||||
// // We detect this when the last child is an emphasis node, and it's preceded by a text node that ends with `*`
|
||||
// const paragraph = lastNode.parent as Proxy & Paragraph;
|
||||
// if (paragraph.children.length >= 2) {
|
||||
// const lastChild = paragraph.children[paragraph.children.length - 1];
|
||||
// if (lastChild.type === "emphasis") {
|
||||
// const sibling = paragraph.children[paragraph.children.length - 2];
|
||||
// if (sibling.type === "text") {
|
||||
// const siblingText = sibling as Text & Proxy;
|
||||
// if (siblingText.value.endsWith("*")) {
|
||||
// ruleMatched = true;
|
||||
// const textNode = (lastNode as Proxy).node as Text;
|
||||
// textNode.value = textNode.value.slice(0, -1);
|
||||
// paragraph.node.type = "strong";
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// } else if (lastNode.type === "text") {
|
||||
// // Handle `**abc*` -> `**abc**`:
|
||||
// //
|
||||
// // this gets parsed as a text node ending in `*` followed by an emphasis
|
||||
// // node. So if we're in text, we need to check if our parent is emphasis,
|
||||
// // and then get our parent's sibling before it and check if it ends with
|
||||
// // `*`
|
||||
// const parent = lastNode.parent;
|
||||
// if (parent && parent.type === "emphasis") {
|
||||
// const grandparent = parent.parent;
|
||||
// if (grandparent) {
|
||||
// const index = (grandparent.node as Parent).children.indexOf(
|
||||
// parent.node as RootContent,
|
||||
// );
|
||||
// if (index > 0) {
|
||||
// const prevNode = grandparent.children[index - 1];
|
||||
// if (
|
||||
// prevNode.type === "text" &&
|
||||
// (prevNode as Text).value.endsWith("*")
|
||||
// ) {
|
||||
// ruleMatched = true;
|
||||
// const textNode = (prevNode as Proxy).node as Text;
|
||||
// textNode.value = textNode.value.slice(0, -1);
|
||||
// parent.node.type = "strong";
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
// if (!ruleMatched) {
|
||||
// // if the last node is just text, then we process it in order to fix up certain unclosed items
|
||||
// // e.g., `**abc` -> `**abc**`
|
||||
// const textNode = lastNode.node as Text;
|
||||
// for (const rule of simpleTextRules) {
|
||||
// const matchesIterator = textNode.value.matchAll(rule.pattern);
|
||||
// const matches = [...matchesIterator];
|
||||
// if (matches.length > 0) {
|
||||
// rule.transform(matches, lastNode);
|
||||
// ruleMatched = true;
|
||||
// break;
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// } else if (!ruleMatched) {
|
||||
// // console.log("no rule matched", lastNode);
|
||||
// }
|
||||
|
||||
return tree;
|
||||
};
|
||||
};
|
||||
|
||||
function processParent(parent: Parent & Proxy): boolean {
|
||||
if (parent.type === "emphasis") {
|
||||
// Handle `**abc*` -> `**abc**`:
|
||||
// We detect this when we end with an emphasis node, and it's preceded by
|
||||
// a text node that ends with `*`
|
||||
// TODO(drifkin): the last node can be more deeply nested (e.g., a code
|
||||
// literal in a link), so we probably need to walk up the tree until we
|
||||
// find an emphasis node or a block? For now we'll just go up one layer to
|
||||
// catch the most common cases
|
||||
const emphasisNode = parent as Emphasis & Proxy;
|
||||
const grandparent = emphasisNode.parent;
|
||||
if (grandparent) {
|
||||
const indexOfEmphasisNode = (grandparent.node as Parent).children.indexOf(
|
||||
emphasisNode.node as RootContent,
|
||||
);
|
||||
if (indexOfEmphasisNode >= 0) {
|
||||
const nodeBefore = grandparent.children[indexOfEmphasisNode - 1] as
|
||||
| (Node & Proxy)
|
||||
| undefined;
|
||||
if (nodeBefore?.type === "text") {
|
||||
const textNode = nodeBefore.node as Text;
|
||||
if (textNode.value.endsWith("*")) {
|
||||
const strBefore = textNode.value.slice(0, -1);
|
||||
textNode.value = strBefore;
|
||||
const strongNode = u("strong", {
|
||||
children: emphasisNode.children,
|
||||
});
|
||||
(grandparent.node as Parent).children.splice(
|
||||
indexOfEmphasisNode,
|
||||
1,
|
||||
strongNode,
|
||||
);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Let's check if we have any bold items to close
|
||||
for (let i = parent.children.length - 1; i >= 0; i--) {
|
||||
const child = parent.children[i];
|
||||
if (child.type === "text") {
|
||||
const textNode = child as Text & Proxy;
|
||||
const sep = "**";
|
||||
const index = textNode.value.lastIndexOf(sep);
|
||||
if (index >= 0) {
|
||||
let isValidOpening = false;
|
||||
if (index + sep.length < textNode.value.length) {
|
||||
const charAfter = textNode.value[index + sep.length];
|
||||
if (!isWhitespace(charAfter)) {
|
||||
isValidOpening = true;
|
||||
}
|
||||
} else {
|
||||
if (i < parent.children.length - 1) {
|
||||
// TODO(drifkin): I'm not sure that this check is strict enough.
|
||||
// We're trying to detect cases like `**[abc]()` where the char
|
||||
// after the opening ** is indeed a non-whitespace character. We're
|
||||
// using the heuristic that there's another item after the current
|
||||
// one, but I'm not sure if that is good enough. In a well
|
||||
// constructed tree, there aren't two text nodes in a row, so this
|
||||
// _seems_ good, but I should think through it more
|
||||
isValidOpening = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (isValidOpening) {
|
||||
// TODO(drifkin): close the bold
|
||||
const strBefore = textNode.value.slice(0, index);
|
||||
const strAfter = textNode.value.slice(index + sep.length);
|
||||
(textNode.node as Text).value = strBefore;
|
||||
// TODO(drifkin): the node above could be empty in which case we probably want to delete it
|
||||
const children: PhrasingContent[] = [
|
||||
...(strAfter.length > 0 ? [u("text", { value: strAfter })] : []),
|
||||
];
|
||||
const strongNode: Strong = u("strong", {
|
||||
children,
|
||||
});
|
||||
const nodesAfter = (parent.node as Parent).children.splice(
|
||||
i + 1,
|
||||
parent.children.length - i - 1,
|
||||
strongNode,
|
||||
);
|
||||
// TODO(drifkin): this cast seems iffy, should see if we can cast the
|
||||
// parent instead, which would also help us check some of our
|
||||
// assumptions
|
||||
strongNode.children.push(...(nodesAfter as PhrasingContent[]));
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
function prevSibling(node: Node & Proxy): (Node & Proxy) | null {
|
||||
const parent = node.parent;
|
||||
if (parent) {
|
||||
const index = parent.children.indexOf(node);
|
||||
return parent.children[index - 1] as Node & Proxy;
|
||||
}
|
||||
return null;
|
||||
}
|
||||
|
||||
function isWhitespace(str: string) {
|
||||
return str.trim() === "";
|
||||
}
|
||||
|
||||
// function debugPrintTreeNoPos(tree: Node) {
|
||||
// console.log(
|
||||
// JSON.stringify(
|
||||
// tree,
|
||||
// (key, value) => {
|
||||
// if (key === "position") {
|
||||
// return undefined;
|
||||
// }
|
||||
// return value;
|
||||
// },
|
||||
// 2,
|
||||
// ),
|
||||
// );
|
||||
// }
|
||||
|
||||
export default remarkStreamingMarkdown;
|
||||
11
app/ui/ui.go
11
app/ui/ui.go
@@ -1705,7 +1705,7 @@ func getStringFromMap(m map[string]any, key, defaultValue string) string {
|
||||
// isImageAttachment checks if a filename is an image file
|
||||
func isImageAttachment(filename string) bool {
|
||||
ext := strings.ToLower(filename)
|
||||
return strings.HasSuffix(ext, ".png") || strings.HasSuffix(ext, ".jpg") || strings.HasSuffix(ext, ".jpeg")
|
||||
return strings.HasSuffix(ext, ".png") || strings.HasSuffix(ext, ".jpg") || strings.HasSuffix(ext, ".jpeg") || strings.HasSuffix(ext, ".webp")
|
||||
}
|
||||
|
||||
// ptr is a convenience function for &literal
|
||||
@@ -1794,13 +1794,14 @@ func (s *Server) buildChatRequest(chat *store.Chat, model string, think any, ava
|
||||
|
||||
var thinkValue *api.ThinkValue
|
||||
if think != nil {
|
||||
// Only set Think if it's actually requesting thinking
|
||||
if boolValue, ok := think.(bool); ok {
|
||||
thinkValue = &api.ThinkValue{
|
||||
Value: boolValue,
|
||||
if boolValue {
|
||||
thinkValue = &api.ThinkValue{Value: boolValue}
|
||||
}
|
||||
} else if stringValue, ok := think.(string); ok {
|
||||
thinkValue = &api.ThinkValue{
|
||||
Value: stringValue,
|
||||
if stringValue != "" && stringValue != "none" {
|
||||
thinkValue = &api.ThinkValue{Value: stringValue}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
114
cmd/bench/README.md
Normal file
114
cmd/bench/README.md
Normal file
@@ -0,0 +1,114 @@
|
||||
Ollama Benchmark Tool
|
||||
---------------------
|
||||
|
||||
A Go-based command-line tool for benchmarking Ollama models with configurable parameters and multiple output formats.
|
||||
|
||||
## Features
|
||||
|
||||
* Benchmark multiple models in a single run
|
||||
* Support for both text and image prompts
|
||||
* Configurable generation parameters (temperature, max tokens, seed, etc.)
|
||||
* Supports benchstat and CSV output formats
|
||||
* Detailed performance metrics (prefill, generate, load, total durations)
|
||||
|
||||
## Building from Source
|
||||
|
||||
```
|
||||
go build -o ollama-bench bench.go
|
||||
./bench -model gpt-oss:20b -epochs 6 -format csv
|
||||
```
|
||||
|
||||
Using Go Run (without building)
|
||||
|
||||
```
|
||||
go run bench.go -model gpt-oss:20b -epochs 3
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
### Basic Example
|
||||
|
||||
```
|
||||
./bench -model gemma3 -epochs 6
|
||||
```
|
||||
|
||||
### Benchmark Multiple Models
|
||||
|
||||
```
|
||||
./bench -model gemma3,gemma3n -epochs 6 -max-tokens 100 -p "Write me a short story" | tee gemma.bench
|
||||
benchstat -col /name gemma.bench
|
||||
```
|
||||
|
||||
### With Image Prompt
|
||||
|
||||
```
|
||||
./bench -model qwen3-vl -image photo.jpg -epochs 6 -max-tokens 100 -p "Describe this image"
|
||||
```
|
||||
|
||||
### Advanced Example
|
||||
|
||||
```
|
||||
./bench -model llama3 -epochs 10 -temperature 0.7 -max-tokens 500 -seed 42 -format csv -output results.csv
|
||||
```
|
||||
|
||||
## Command Line Options
|
||||
|
||||
| Option | Description | Default |
|
||||
| -model | Comma-separated list of models to benchmark | (required) |
|
||||
| -epochs | Number of iterations per model | 1 |
|
||||
| -max-tokens | Maximum tokens for model response | 0 (unlimited) |
|
||||
| -temperature | Temperature parameter | 0.0 |
|
||||
| -seed | Random seed | 0 (random) |
|
||||
| -timeout | Timeout in seconds | 300 |
|
||||
| -p | Prompt text | "Write a long story." |
|
||||
| -image | Image file to include in prompt | |
|
||||
| -k | Keep-alive duration in seconds | 0 |
|
||||
| -format | Output format (benchstat, csv) | benchstat |
|
||||
| -output | Output file for results | "" (stdout) |
|
||||
| -v | Verbose mode | false |
|
||||
| -debug | Show debug information | false |
|
||||
|
||||
## Output Formats
|
||||
|
||||
### Markdown Format
|
||||
|
||||
The default markdown format is suitable for copying and pasting into a GitHub issue and will look like:
|
||||
```
|
||||
Model | Step | Count | Duration | nsPerToken | tokensPerSec |
|
||||
|-------|------|-------|----------|------------|--------------|
|
||||
| gpt-oss:20b | prefill | 124 | 30.006458ms | 241987.56 | 4132.44 |
|
||||
| gpt-oss:20b | generate | 200 | 2.646843954s | 13234219.77 | 75.56 |
|
||||
| gpt-oss:20b | load | 1 | 121.674208ms | - | - |
|
||||
| gpt-oss:20b | total | 1 | 2.861047625s | - | - |
|
||||
```
|
||||
|
||||
### Benchstat Format
|
||||
|
||||
Compatible with Go's benchstat tool for statistical analysis:
|
||||
|
||||
```
|
||||
BenchmarkModel/name=gpt-oss:20b/step=prefill 128 78125.00 ns/token 12800.00 token/sec
|
||||
BenchmarkModel/name=gpt-oss:20b/step=generate 512 19531.25 ns/token 51200.00 token/sec
|
||||
BenchmarkModel/name=gpt-oss:20b/step=load 1 1500000000 ns/request
|
||||
```
|
||||
|
||||
### CSV Format
|
||||
|
||||
Machine-readable comma-separated values:
|
||||
|
||||
```
|
||||
NAME,STEP,COUNT,NS_PER_COUNT,TOKEN_PER_SEC
|
||||
gpt-oss:20b,prefill,128,78125.00,12800.00
|
||||
gpt-oss:20b,generate,512,19531.25,51200.00
|
||||
gpt-oss:20b,load,1,1500000000,0
|
||||
```
|
||||
|
||||
## Metrics Explained
|
||||
|
||||
The tool reports four types of metrics for each model:
|
||||
|
||||
* prefill: Time spent processing the prompt
|
||||
* generate: Time spent generating the response
|
||||
* load: Model loading time (one-time cost)
|
||||
* total: Total request duration
|
||||
|
||||
321
cmd/bench/bench.go
Normal file
321
cmd/bench/bench.go
Normal file
@@ -0,0 +1,321 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"context"
|
||||
"flag"
|
||||
"fmt"
|
||||
"io"
|
||||
"os"
|
||||
"runtime"
|
||||
"slices"
|
||||
"strings"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
type flagOptions struct {
|
||||
models *string
|
||||
epochs *int
|
||||
maxTokens *int
|
||||
temperature *float64
|
||||
seed *int
|
||||
timeout *int
|
||||
prompt *string
|
||||
imageFile *string
|
||||
keepAlive *float64
|
||||
format *string
|
||||
outputFile *string
|
||||
debug *bool
|
||||
verbose *bool
|
||||
}
|
||||
|
||||
type Metrics struct {
|
||||
Model string
|
||||
Step string
|
||||
Count int
|
||||
Duration time.Duration
|
||||
}
|
||||
|
||||
var once sync.Once
|
||||
|
||||
const DefaultPrompt = `Please write a descriptive story about a llama named Alonso who grows up to be President of the Land of Llamas. Include details about Alonso's childhood, adolescent years, and how he grew up to be a political mover and shaker. Write the story with a sense of whimsy.`
|
||||
|
||||
func OutputMetrics(w io.Writer, format string, metrics []Metrics, verbose bool) {
|
||||
switch format {
|
||||
case "benchstat":
|
||||
if verbose {
|
||||
printHeader := func() {
|
||||
fmt.Fprintf(w, "sysname: %s\n", runtime.GOOS)
|
||||
fmt.Fprintf(w, "machine: %s\n", runtime.GOARCH)
|
||||
}
|
||||
once.Do(printHeader)
|
||||
}
|
||||
for _, m := range metrics {
|
||||
if m.Step == "generate" || m.Step == "prefill" {
|
||||
if m.Count > 0 {
|
||||
nsPerToken := float64(m.Duration.Nanoseconds()) / float64(m.Count)
|
||||
tokensPerSec := float64(m.Count) / (float64(m.Duration.Nanoseconds()) + 1e-12) * 1e9
|
||||
|
||||
fmt.Fprintf(w, "BenchmarkModel/name=%s/step=%s %d %.2f ns/token %.2f token/sec\n",
|
||||
m.Model, m.Step, m.Count, nsPerToken, tokensPerSec)
|
||||
} else {
|
||||
fmt.Fprintf(w, "BenchmarkModel/name=%s/step=%s %d 0 ns/token 0 token/sec\n",
|
||||
m.Model, m.Step, m.Count)
|
||||
}
|
||||
} else {
|
||||
var suffix string
|
||||
if m.Step == "load" {
|
||||
suffix = "/step=load"
|
||||
}
|
||||
fmt.Fprintf(w, "BenchmarkModel/name=%s%s 1 %d ns/request\n",
|
||||
m.Model, suffix, m.Duration.Nanoseconds())
|
||||
}
|
||||
}
|
||||
case "csv":
|
||||
printHeader := func() {
|
||||
headings := []string{"NAME", "STEP", "COUNT", "NS_PER_COUNT", "TOKEN_PER_SEC"}
|
||||
fmt.Fprintln(w, strings.Join(headings, ","))
|
||||
}
|
||||
once.Do(printHeader)
|
||||
|
||||
for _, m := range metrics {
|
||||
if m.Step == "generate" || m.Step == "prefill" {
|
||||
var nsPerToken float64
|
||||
var tokensPerSec float64
|
||||
if m.Count > 0 {
|
||||
nsPerToken = float64(m.Duration.Nanoseconds()) / float64(m.Count)
|
||||
tokensPerSec = float64(m.Count) / (float64(m.Duration.Nanoseconds()) + 1e-12) * 1e9
|
||||
}
|
||||
fmt.Fprintf(w, "%s,%s,%d,%.2f,%.2f\n", m.Model, m.Step, m.Count, nsPerToken, tokensPerSec)
|
||||
} else {
|
||||
fmt.Fprintf(w, "%s,%s,1,%d,0\n", m.Model, m.Step, m.Duration.Nanoseconds())
|
||||
}
|
||||
}
|
||||
case "markdown":
|
||||
printHeader := func() {
|
||||
fmt.Fprintln(w, "| Model | Step | Count | Duration | nsPerToken | tokensPerSec |")
|
||||
fmt.Fprintln(w, "|-------|------|-------|----------|------------|--------------|")
|
||||
}
|
||||
once.Do(printHeader)
|
||||
|
||||
for _, m := range metrics {
|
||||
var nsPerToken, tokensPerSec float64
|
||||
var nsPerTokenStr, tokensPerSecStr string
|
||||
|
||||
if m.Step == "generate" || m.Step == "prefill" {
|
||||
nsPerToken = float64(m.Duration.Nanoseconds()) / float64(m.Count)
|
||||
tokensPerSec = float64(m.Count) / (float64(m.Duration.Nanoseconds()) + 1e-12) * 1e9
|
||||
nsPerTokenStr = fmt.Sprintf("%.2f", nsPerToken)
|
||||
tokensPerSecStr = fmt.Sprintf("%.2f", tokensPerSec)
|
||||
} else {
|
||||
nsPerTokenStr = "-"
|
||||
tokensPerSecStr = "-"
|
||||
}
|
||||
|
||||
fmt.Fprintf(w, "| %s | %s | %d | %v | %s | %s |\n",
|
||||
m.Model, m.Step, m.Count, m.Duration, nsPerTokenStr, tokensPerSecStr)
|
||||
}
|
||||
default:
|
||||
fmt.Fprintf(os.Stderr, "Unknown output format '%s'\n", format)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkChat(fOpt flagOptions) error {
|
||||
models := strings.Split(*fOpt.models, ",")
|
||||
|
||||
// todo - add multi-image support
|
||||
var imgData api.ImageData
|
||||
var err error
|
||||
if *fOpt.imageFile != "" {
|
||||
imgData, err = readImage(*fOpt.imageFile)
|
||||
if err != nil {
|
||||
fmt.Fprintf(os.Stderr, "ERROR: Couldn't read image '%s': %v\n", *fOpt.imageFile, err)
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
if *fOpt.debug && imgData != nil {
|
||||
fmt.Fprintf(os.Stderr, "Read file '%s'\n", *fOpt.imageFile)
|
||||
}
|
||||
|
||||
client, err := api.ClientFromEnvironment()
|
||||
if err != nil {
|
||||
fmt.Fprintf(os.Stderr, "ERROR: Couldn't create ollama client: %v\n", err)
|
||||
return err
|
||||
}
|
||||
|
||||
var out io.Writer = os.Stdout
|
||||
if fOpt.outputFile != nil && *fOpt.outputFile != "" {
|
||||
f, err := os.OpenFile(*fOpt.outputFile, os.O_CREATE|os.O_WRONLY, 0o644)
|
||||
if err != nil {
|
||||
fmt.Fprintf(os.Stderr, "ERROR: cannot open output file %s: %v\n", *fOpt.outputFile, err)
|
||||
return err
|
||||
}
|
||||
defer f.Close()
|
||||
out = f
|
||||
}
|
||||
|
||||
for _, model := range models {
|
||||
for range *fOpt.epochs {
|
||||
options := make(map[string]interface{})
|
||||
if *fOpt.maxTokens > 0 {
|
||||
options["num_predict"] = *fOpt.maxTokens
|
||||
}
|
||||
options["temperature"] = *fOpt.temperature
|
||||
if fOpt.seed != nil && *fOpt.seed > 0 {
|
||||
options["seed"] = *fOpt.seed
|
||||
}
|
||||
|
||||
var keepAliveDuration *api.Duration
|
||||
if *fOpt.keepAlive > 0 {
|
||||
duration := api.Duration{Duration: time.Duration(*fOpt.keepAlive * float64(time.Second))}
|
||||
keepAliveDuration = &duration
|
||||
}
|
||||
|
||||
req := &api.ChatRequest{
|
||||
Model: model,
|
||||
Messages: []api.Message{
|
||||
{
|
||||
Role: "user",
|
||||
Content: *fOpt.prompt,
|
||||
},
|
||||
},
|
||||
Options: options,
|
||||
KeepAlive: keepAliveDuration,
|
||||
}
|
||||
|
||||
if imgData != nil {
|
||||
req.Messages[0].Images = []api.ImageData{imgData}
|
||||
}
|
||||
|
||||
var responseMetrics *api.Metrics
|
||||
|
||||
ctx, cancel := context.WithTimeout(context.Background(), time.Duration(*fOpt.timeout)*time.Second)
|
||||
defer cancel()
|
||||
|
||||
err = client.Chat(ctx, req, func(resp api.ChatResponse) error {
|
||||
if *fOpt.debug {
|
||||
fmt.Fprintf(os.Stderr, "%s", cmp.Or(resp.Message.Thinking, resp.Message.Content))
|
||||
}
|
||||
|
||||
if resp.Done {
|
||||
responseMetrics = &resp.Metrics
|
||||
}
|
||||
return nil
|
||||
})
|
||||
|
||||
if *fOpt.debug {
|
||||
fmt.Fprintln(os.Stderr)
|
||||
}
|
||||
|
||||
if err != nil {
|
||||
if ctx.Err() == context.DeadlineExceeded {
|
||||
fmt.Fprintf(os.Stderr, "ERROR: Chat request timed out with model '%s' after %vs\n", model, 1)
|
||||
continue
|
||||
}
|
||||
fmt.Fprintf(os.Stderr, "ERROR: Couldn't chat with model '%s': %v\n", model, err)
|
||||
continue
|
||||
}
|
||||
|
||||
if responseMetrics == nil {
|
||||
fmt.Fprintf(os.Stderr, "ERROR: No metrics received for model '%s'\n", model)
|
||||
continue
|
||||
}
|
||||
|
||||
metrics := []Metrics{
|
||||
{
|
||||
Model: model,
|
||||
Step: "prefill",
|
||||
Count: responseMetrics.PromptEvalCount,
|
||||
Duration: responseMetrics.PromptEvalDuration,
|
||||
},
|
||||
{
|
||||
Model: model,
|
||||
Step: "generate",
|
||||
Count: responseMetrics.EvalCount,
|
||||
Duration: responseMetrics.EvalDuration,
|
||||
},
|
||||
{
|
||||
Model: model,
|
||||
Step: "load",
|
||||
Count: 1,
|
||||
Duration: responseMetrics.LoadDuration,
|
||||
},
|
||||
{
|
||||
Model: model,
|
||||
Step: "total",
|
||||
Count: 1,
|
||||
Duration: responseMetrics.TotalDuration,
|
||||
},
|
||||
}
|
||||
|
||||
OutputMetrics(out, *fOpt.format, metrics, *fOpt.verbose)
|
||||
|
||||
if *fOpt.keepAlive > 0 {
|
||||
time.Sleep(time.Duration(*fOpt.keepAlive*float64(time.Second)) + 200*time.Millisecond)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func readImage(filePath string) (api.ImageData, error) {
|
||||
file, err := os.Open(filePath)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer file.Close()
|
||||
|
||||
data, err := io.ReadAll(file)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return api.ImageData(data), nil
|
||||
}
|
||||
|
||||
func main() {
|
||||
fOpt := flagOptions{
|
||||
models: flag.String("model", "", "Model to benchmark"),
|
||||
epochs: flag.Int("epochs", 6, "Number of epochs (iterations) per model"),
|
||||
maxTokens: flag.Int("max-tokens", 200, "Maximum tokens for model response"),
|
||||
temperature: flag.Float64("temperature", 0, "Temperature parameter"),
|
||||
seed: flag.Int("seed", 0, "Random seed"),
|
||||
timeout: flag.Int("timeout", 60*5, "Timeout in seconds (default 300s)"),
|
||||
prompt: flag.String("p", DefaultPrompt, "Prompt to use"),
|
||||
imageFile: flag.String("image", "", "Filename for an image to include"),
|
||||
keepAlive: flag.Float64("k", 0, "Keep alive duration in seconds"),
|
||||
format: flag.String("format", "markdown", "Output format [benchstat|csv] (default benchstat)"),
|
||||
outputFile: flag.String("output", "", "Output file for results (stdout if empty)"),
|
||||
verbose: flag.Bool("v", false, "Show system information"),
|
||||
debug: flag.Bool("debug", false, "Show debug information"),
|
||||
}
|
||||
|
||||
flag.Usage = func() {
|
||||
fmt.Fprintf(os.Stderr, "Usage: %s [OPTIONS]\n\n", os.Args[0])
|
||||
fmt.Fprintf(os.Stderr, "Description:\n")
|
||||
fmt.Fprintf(os.Stderr, " Model benchmarking tool with configurable parameters\n\n")
|
||||
fmt.Fprintf(os.Stderr, "Options:\n")
|
||||
flag.PrintDefaults()
|
||||
fmt.Fprintf(os.Stderr, "\nExamples:\n")
|
||||
fmt.Fprintf(os.Stderr, " bench -model gpt-oss:20b -epochs 3 -temperature 0.7\n")
|
||||
}
|
||||
flag.Parse()
|
||||
|
||||
if !slices.Contains([]string{"markdown", "benchstat", "csv"}, *fOpt.format) {
|
||||
fmt.Fprintf(os.Stderr, "ERROR: Unknown format '%s'\n", *fOpt.format)
|
||||
os.Exit(1)
|
||||
}
|
||||
|
||||
if len(*fOpt.models) == 0 {
|
||||
fmt.Fprintf(os.Stderr, "ERROR: No model(s) specified to benchmark.\n")
|
||||
flag.Usage()
|
||||
return
|
||||
}
|
||||
|
||||
BenchmarkChat(fOpt)
|
||||
}
|
||||
463
cmd/bench/bench_test.go
Normal file
463
cmd/bench/bench_test.go
Normal file
@@ -0,0 +1,463 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto/rand"
|
||||
"encoding/json"
|
||||
"io"
|
||||
"net/http"
|
||||
"net/http/httptest"
|
||||
"os"
|
||||
"strings"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
func createTestFlagOptions() flagOptions {
|
||||
models := "test-model"
|
||||
format := "benchstat"
|
||||
epochs := 1
|
||||
maxTokens := 100
|
||||
temperature := 0.7
|
||||
seed := 42
|
||||
timeout := 30
|
||||
prompt := "test prompt"
|
||||
imageFile := ""
|
||||
keepAlive := 5.0
|
||||
verbose := false
|
||||
debug := false
|
||||
|
||||
return flagOptions{
|
||||
models: &models,
|
||||
format: &format,
|
||||
epochs: &epochs,
|
||||
maxTokens: &maxTokens,
|
||||
temperature: &temperature,
|
||||
seed: &seed,
|
||||
timeout: &timeout,
|
||||
prompt: &prompt,
|
||||
imageFile: &imageFile,
|
||||
keepAlive: &keepAlive,
|
||||
verbose: &verbose,
|
||||
debug: &debug,
|
||||
}
|
||||
}
|
||||
|
||||
func captureOutput(f func()) string {
|
||||
oldStdout := os.Stdout
|
||||
oldStderr := os.Stderr
|
||||
defer func() {
|
||||
os.Stdout = oldStdout
|
||||
os.Stderr = oldStderr
|
||||
}()
|
||||
|
||||
r, w, _ := os.Pipe()
|
||||
os.Stdout = w
|
||||
os.Stderr = w
|
||||
|
||||
f()
|
||||
|
||||
w.Close()
|
||||
var buf bytes.Buffer
|
||||
io.Copy(&buf, r)
|
||||
return buf.String()
|
||||
}
|
||||
|
||||
func createMockOllamaServer(t *testing.T, responses []api.ChatResponse) *httptest.Server {
|
||||
return httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||
if r.URL.Path != "/api/chat" {
|
||||
t.Errorf("Expected path /api/chat, got %s", r.URL.Path)
|
||||
http.Error(w, "Not found", http.StatusNotFound)
|
||||
return
|
||||
}
|
||||
|
||||
if r.Method != "POST" {
|
||||
t.Errorf("Expected POST method, got %s", r.Method)
|
||||
http.Error(w, "Method not allowed", http.StatusMethodNotAllowed)
|
||||
return
|
||||
}
|
||||
|
||||
w.Header().Set("Content-Type", "application/json")
|
||||
w.WriteHeader(http.StatusOK)
|
||||
|
||||
for _, resp := range responses {
|
||||
jsonData, err := json.Marshal(resp)
|
||||
if err != nil {
|
||||
t.Errorf("Failed to marshal response: %v", err)
|
||||
return
|
||||
}
|
||||
w.Write(jsonData)
|
||||
w.Write([]byte("\n"))
|
||||
if f, ok := w.(http.Flusher); ok {
|
||||
f.Flush()
|
||||
}
|
||||
time.Sleep(10 * time.Millisecond) // Simulate some delay
|
||||
}
|
||||
}))
|
||||
}
|
||||
|
||||
func TestBenchmarkChat_Success(t *testing.T) {
|
||||
fOpt := createTestFlagOptions()
|
||||
|
||||
mockResponses := []api.ChatResponse{
|
||||
{
|
||||
Model: "test-model",
|
||||
Message: api.Message{
|
||||
Role: "assistant",
|
||||
Content: "test response part 1",
|
||||
},
|
||||
Done: false,
|
||||
},
|
||||
{
|
||||
Model: "test-model",
|
||||
Message: api.Message{
|
||||
Role: "assistant",
|
||||
Content: "test response part 2",
|
||||
},
|
||||
Done: true,
|
||||
Metrics: api.Metrics{
|
||||
PromptEvalCount: 10,
|
||||
PromptEvalDuration: 100 * time.Millisecond,
|
||||
EvalCount: 50,
|
||||
EvalDuration: 500 * time.Millisecond,
|
||||
TotalDuration: 600 * time.Millisecond,
|
||||
LoadDuration: 50 * time.Millisecond,
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
server := createMockOllamaServer(t, mockResponses)
|
||||
defer server.Close()
|
||||
|
||||
t.Setenv("OLLAMA_HOST", server.URL)
|
||||
|
||||
output := captureOutput(func() {
|
||||
err := BenchmarkChat(fOpt)
|
||||
if err != nil {
|
||||
t.Errorf("Expected no error, got %v", err)
|
||||
}
|
||||
})
|
||||
|
||||
if !strings.Contains(output, "BenchmarkModel/name=test-model/step=prefill") {
|
||||
t.Errorf("Expected output to contain prefill metrics, got: %s", output)
|
||||
}
|
||||
if !strings.Contains(output, "BenchmarkModel/name=test-model/step=generate") {
|
||||
t.Errorf("Expected output to contain generate metrics, got: %s", output)
|
||||
}
|
||||
if !strings.Contains(output, "ns/token") {
|
||||
t.Errorf("Expected output to contain ns/token metric, got: %s", output)
|
||||
}
|
||||
}
|
||||
|
||||
func TestBenchmarkChat_ServerError(t *testing.T) {
|
||||
fOpt := createTestFlagOptions()
|
||||
|
||||
server := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||
http.Error(w, "Internal server error", http.StatusInternalServerError)
|
||||
}))
|
||||
defer server.Close()
|
||||
|
||||
t.Setenv("OLLAMA_HOST", server.URL)
|
||||
|
||||
output := captureOutput(func() {
|
||||
err := BenchmarkChat(fOpt)
|
||||
if err != nil {
|
||||
t.Errorf("Expected error to be handled internally, got returned error: %v", err)
|
||||
}
|
||||
})
|
||||
|
||||
if !strings.Contains(output, "ERROR: Couldn't chat with model") {
|
||||
t.Errorf("Expected error message about chat failure, got: %s", output)
|
||||
}
|
||||
}
|
||||
|
||||
func TestBenchmarkChat_Timeout(t *testing.T) {
|
||||
fOpt := createTestFlagOptions()
|
||||
shortTimeout := 1 // Very short timeout
|
||||
fOpt.timeout = &shortTimeout
|
||||
|
||||
server := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||
// Simulate a long delay that will cause timeout
|
||||
time.Sleep(2 * time.Second)
|
||||
|
||||
w.Header().Set("Content-Type", "application/json")
|
||||
response := api.ChatResponse{
|
||||
Model: "test-model",
|
||||
Message: api.Message{
|
||||
Role: "assistant",
|
||||
Content: "test response",
|
||||
},
|
||||
Done: true,
|
||||
Metrics: api.Metrics{
|
||||
PromptEvalCount: 10,
|
||||
PromptEvalDuration: 100 * time.Millisecond,
|
||||
EvalCount: 50,
|
||||
EvalDuration: 500 * time.Millisecond,
|
||||
TotalDuration: 600 * time.Millisecond,
|
||||
LoadDuration: 50 * time.Millisecond,
|
||||
},
|
||||
}
|
||||
jsonData, _ := json.Marshal(response)
|
||||
w.Write(jsonData)
|
||||
}))
|
||||
defer server.Close()
|
||||
|
||||
t.Setenv("OLLAMA_HOST", server.URL)
|
||||
|
||||
output := captureOutput(func() {
|
||||
err := BenchmarkChat(fOpt)
|
||||
if err != nil {
|
||||
t.Errorf("Expected timeout to be handled internally, got returned error: %v", err)
|
||||
}
|
||||
})
|
||||
|
||||
if !strings.Contains(output, "ERROR: Chat request timed out") {
|
||||
t.Errorf("Expected timeout error message, got: %s", output)
|
||||
}
|
||||
}
|
||||
|
||||
func TestBenchmarkChat_NoMetrics(t *testing.T) {
|
||||
fOpt := createTestFlagOptions()
|
||||
|
||||
mockResponses := []api.ChatResponse{
|
||||
{
|
||||
Model: "test-model",
|
||||
Message: api.Message{
|
||||
Role: "assistant",
|
||||
Content: "test response",
|
||||
},
|
||||
Done: false, // Never sends Done=true
|
||||
},
|
||||
}
|
||||
|
||||
server := createMockOllamaServer(t, mockResponses)
|
||||
defer server.Close()
|
||||
|
||||
t.Setenv("OLLAMA_HOST", server.URL)
|
||||
|
||||
output := captureOutput(func() {
|
||||
err := BenchmarkChat(fOpt)
|
||||
if err != nil {
|
||||
t.Errorf("Expected no error, got %v", err)
|
||||
}
|
||||
})
|
||||
|
||||
if !strings.Contains(output, "ERROR: No metrics received") {
|
||||
t.Errorf("Expected no metrics error message, got: %s", output)
|
||||
}
|
||||
}
|
||||
|
||||
func TestBenchmarkChat_MultipleModels(t *testing.T) {
|
||||
fOpt := createTestFlagOptions()
|
||||
models := "model1,model2"
|
||||
epochs := 2
|
||||
fOpt.models = &models
|
||||
fOpt.epochs = &epochs
|
||||
|
||||
callCount := 0
|
||||
server := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||
callCount++
|
||||
|
||||
w.Header().Set("Content-Type", "application/json")
|
||||
|
||||
var req api.ChatRequest
|
||||
body, _ := io.ReadAll(r.Body)
|
||||
json.Unmarshal(body, &req)
|
||||
|
||||
response := api.ChatResponse{
|
||||
Model: req.Model,
|
||||
Message: api.Message{
|
||||
Role: "assistant",
|
||||
Content: "test response for " + req.Model,
|
||||
},
|
||||
Done: true,
|
||||
Metrics: api.Metrics{
|
||||
PromptEvalCount: 10,
|
||||
PromptEvalDuration: 100 * time.Millisecond,
|
||||
EvalCount: 50,
|
||||
EvalDuration: 500 * time.Millisecond,
|
||||
TotalDuration: 600 * time.Millisecond,
|
||||
LoadDuration: 50 * time.Millisecond,
|
||||
},
|
||||
}
|
||||
jsonData, _ := json.Marshal(response)
|
||||
w.Write(jsonData)
|
||||
}))
|
||||
defer server.Close()
|
||||
|
||||
t.Setenv("OLLAMA_HOST", server.URL)
|
||||
|
||||
output := captureOutput(func() {
|
||||
err := BenchmarkChat(fOpt)
|
||||
if err != nil {
|
||||
t.Errorf("Expected no error, got %v", err)
|
||||
}
|
||||
})
|
||||
|
||||
// Should be called 4 times (2 models × 2 epochs)
|
||||
if callCount != 4 {
|
||||
t.Errorf("Expected 4 API calls, got %d", callCount)
|
||||
}
|
||||
|
||||
if !strings.Contains(output, "BenchmarkModel/name=model1") || !strings.Contains(output, "BenchmarkModel/name=model2") {
|
||||
t.Errorf("Expected output for both models, got: %s", output)
|
||||
}
|
||||
}
|
||||
|
||||
func TestBenchmarkChat_WithImage(t *testing.T) {
|
||||
fOpt := createTestFlagOptions()
|
||||
|
||||
tmpfile, err := os.CreateTemp(t.TempDir(), "testimage")
|
||||
if err != nil {
|
||||
t.Fatalf("Failed to create temp file: %v", err)
|
||||
}
|
||||
defer os.Remove(tmpfile.Name())
|
||||
|
||||
content := []byte("fake image data")
|
||||
if _, err := tmpfile.Write(content); err != nil {
|
||||
t.Fatalf("Failed to write to temp file: %v", err)
|
||||
}
|
||||
tmpfile.Close()
|
||||
|
||||
tmpfileName := tmpfile.Name()
|
||||
fOpt.imageFile = &tmpfileName
|
||||
|
||||
server := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||
// Verify the request contains image data
|
||||
var req api.ChatRequest
|
||||
body, _ := io.ReadAll(r.Body)
|
||||
json.Unmarshal(body, &req)
|
||||
|
||||
if len(req.Messages) == 0 || len(req.Messages[0].Images) == 0 {
|
||||
t.Error("Expected request to contain images")
|
||||
}
|
||||
|
||||
w.Header().Set("Content-Type", "application/json")
|
||||
response := api.ChatResponse{
|
||||
Model: "test-model",
|
||||
Message: api.Message{
|
||||
Role: "assistant",
|
||||
Content: "test response with image",
|
||||
},
|
||||
Done: true,
|
||||
Metrics: api.Metrics{
|
||||
PromptEvalCount: 10,
|
||||
PromptEvalDuration: 100 * time.Millisecond,
|
||||
EvalCount: 50,
|
||||
EvalDuration: 500 * time.Millisecond,
|
||||
TotalDuration: 600 * time.Millisecond,
|
||||
LoadDuration: 50 * time.Millisecond,
|
||||
},
|
||||
}
|
||||
jsonData, _ := json.Marshal(response)
|
||||
w.Write(jsonData)
|
||||
}))
|
||||
defer server.Close()
|
||||
|
||||
t.Setenv("OLLAMA_HOST", server.URL)
|
||||
|
||||
output := captureOutput(func() {
|
||||
err := BenchmarkChat(fOpt)
|
||||
if err != nil {
|
||||
t.Errorf("Expected no error, got %v", err)
|
||||
}
|
||||
})
|
||||
|
||||
if !strings.Contains(output, "BenchmarkModel/name=test-model") {
|
||||
t.Errorf("Expected benchmark output, got: %s", output)
|
||||
}
|
||||
}
|
||||
|
||||
func TestBenchmarkChat_ImageError(t *testing.T) {
|
||||
randFileName := func() string {
|
||||
const charset = "abcdefghijklmnopqrstuvwxyz0123456789"
|
||||
const length = 8
|
||||
|
||||
result := make([]byte, length)
|
||||
rand.Read(result) // Fill with random bytes
|
||||
|
||||
for i := range result {
|
||||
result[i] = charset[result[i]%byte(len(charset))]
|
||||
}
|
||||
|
||||
return string(result) + ".txt"
|
||||
}
|
||||
|
||||
fOpt := createTestFlagOptions()
|
||||
imageFile := randFileName()
|
||||
fOpt.imageFile = &imageFile
|
||||
|
||||
output := captureOutput(func() {
|
||||
err := BenchmarkChat(fOpt)
|
||||
if err == nil {
|
||||
t.Error("Expected error from image reading, got nil")
|
||||
}
|
||||
})
|
||||
|
||||
if !strings.Contains(output, "ERROR: Couldn't read image") {
|
||||
t.Errorf("Expected image read error message, got: %s", output)
|
||||
}
|
||||
}
|
||||
|
||||
func TestReadImage_Success(t *testing.T) {
|
||||
tmpfile, err := os.CreateTemp(t.TempDir(), "testimage")
|
||||
if err != nil {
|
||||
t.Fatalf("Failed to create temp file: %v", err)
|
||||
}
|
||||
defer os.Remove(tmpfile.Name())
|
||||
|
||||
content := []byte("fake image data")
|
||||
if _, err := tmpfile.Write(content); err != nil {
|
||||
t.Fatalf("Failed to write to temp file: %v", err)
|
||||
}
|
||||
tmpfile.Close()
|
||||
|
||||
imgData, err := readImage(tmpfile.Name())
|
||||
if err != nil {
|
||||
t.Errorf("Expected no error, got %v", err)
|
||||
}
|
||||
|
||||
if imgData == nil {
|
||||
t.Error("Expected image data, got nil")
|
||||
}
|
||||
|
||||
expected := api.ImageData(content)
|
||||
if string(imgData) != string(expected) {
|
||||
t.Errorf("Expected image data %v, got %v", expected, imgData)
|
||||
}
|
||||
}
|
||||
|
||||
func TestReadImage_FileNotFound(t *testing.T) {
|
||||
imgData, err := readImage("nonexistentfile.jpg")
|
||||
if err == nil {
|
||||
t.Error("Expected error for non-existent file, got nil")
|
||||
}
|
||||
if imgData != nil {
|
||||
t.Error("Expected nil image data for non-existent file")
|
||||
}
|
||||
}
|
||||
|
||||
func TestOptionsMapCreation(t *testing.T) {
|
||||
fOpt := createTestFlagOptions()
|
||||
|
||||
options := make(map[string]interface{})
|
||||
if *fOpt.maxTokens > 0 {
|
||||
options["num_predict"] = *fOpt.maxTokens
|
||||
}
|
||||
options["temperature"] = *fOpt.temperature
|
||||
if fOpt.seed != nil && *fOpt.seed > 0 {
|
||||
options["seed"] = *fOpt.seed
|
||||
}
|
||||
|
||||
if options["num_predict"] != *fOpt.maxTokens {
|
||||
t.Errorf("Expected num_predict %d, got %v", *fOpt.maxTokens, options["num_predict"])
|
||||
}
|
||||
if options["temperature"] != *fOpt.temperature {
|
||||
t.Errorf("Expected temperature %f, got %v", *fOpt.temperature, options["temperature"])
|
||||
}
|
||||
if options["seed"] != *fOpt.seed {
|
||||
t.Errorf("Expected seed %d, got %v", *fOpt.seed, options["seed"])
|
||||
}
|
||||
}
|
||||
@@ -1430,7 +1430,7 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
|
||||
latest.Summary()
|
||||
}
|
||||
|
||||
return &api.Message{Role: role, Content: fullResponse.String()}, nil
|
||||
return &api.Message{Role: role, Thinking: thinkingContent.String(), Content: fullResponse.String()}, nil
|
||||
}
|
||||
|
||||
func generate(cmd *cobra.Command, opts runOptions) error {
|
||||
|
||||
@@ -200,12 +200,18 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
|
||||
conv = &qwen25VLModel{}
|
||||
case "Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration":
|
||||
conv = &qwen3VLModel{}
|
||||
case "OLMo2ForCausalLM", "Olmo2ForCausalLM", "OLMo3ForCausalLM", "Olmo3ForCausalLM":
|
||||
conv = &olmoModel{}
|
||||
case "BertModel":
|
||||
conv = &bertModel{}
|
||||
case "CohereForCausalLM":
|
||||
conv = &commandrModel{}
|
||||
case "GptOssForCausalLM":
|
||||
conv = &gptossModel{}
|
||||
case "DeepseekOCRForCausalLM":
|
||||
conv = &deepseekocr{}
|
||||
case "DeepseekV3ForCausalLM":
|
||||
conv = &deepseek2Model{}
|
||||
default:
|
||||
return fmt.Errorf("unsupported architecture %q", p.Architectures[0])
|
||||
}
|
||||
|
||||
173
convert/convert_deepseek2.go
Normal file
173
convert/convert_deepseek2.go
Normal file
@@ -0,0 +1,173 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"regexp"
|
||||
"strconv"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type deepseek2Model struct {
|
||||
ModelParameters // architectures, vocab_size
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
QKNopeHeadDim uint32 `json:"qk_nope_head_dim"`
|
||||
QKRopeHeadDim uint32 `json:"qk_rope_head_dim"`
|
||||
KVLoraRank uint32 `json:"kv_lora_rank"`
|
||||
QLoraRank uint32 `json:"q_lora_rank"`
|
||||
VHeadDim uint32 `json:"v_head_dim"`
|
||||
|
||||
ExpertCount uint32 `json:"n_routed_experts"`
|
||||
ExpertSharedCount uint32 `json:"n_shared_experts"`
|
||||
ExpertIntermediateSize uint32 `json:"moe_intermediate_size"`
|
||||
ExpertUsedCount uint32 `json:"num_experts_per_tok"`
|
||||
ExpertWeightsNorm bool `json:"norm_topk_prob"`
|
||||
ExpertWeightsScale float32 `json:"routed_scaling_factor"`
|
||||
|
||||
ScoringFunc string `json:"scoring_func"`
|
||||
LeadingDenseBlockCount uint32 `json:"first_k_dense_replace"`
|
||||
|
||||
RopeScaling struct {
|
||||
Factor float32 `json:"factor"`
|
||||
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
|
||||
Type string `json:"type"`
|
||||
MScaleAllDim float32 `json:"mscale_all_dim"`
|
||||
} `json:"rope_scaling"`
|
||||
|
||||
Architecture string
|
||||
}
|
||||
|
||||
func (p *deepseek2Model) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "deepseek2"
|
||||
kv["general.type"] = "model"
|
||||
kv["deepseek2.block_count"] = p.HiddenLayers
|
||||
|
||||
numHeads := p.NumAttentionHeads
|
||||
numKVHeads := p.NumKeyValueHeads
|
||||
|
||||
kv["deepseek2.attention.head_count"] = numHeads
|
||||
kv["deepseek2.attention.head_count_kv"] = numKVHeads
|
||||
kv["deepseek2.attention.key_length"] = p.QKNopeHeadDim + p.QKRopeHeadDim
|
||||
kv["deepseek2.attention.kv_lora_rank"] = p.KVLoraRank
|
||||
kv["deepseek2.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
||||
kv["deepseek2.attention.q_lora_rank"] = p.QLoraRank
|
||||
kv["deepseek2.attention.value_length"] = p.VHeadDim
|
||||
kv["deepseek2.context_length"] = p.MaxPositionEmbeddings
|
||||
kv["deepseek2.embedding_length"] = p.HiddenSize
|
||||
kv["deepseek2.expert_count"] = p.ExpertCount
|
||||
kv["deepseek2.expert_feed_forward_length"] = p.ExpertIntermediateSize
|
||||
kv["deepseek2.expert_shared_count"] = p.ExpertSharedCount
|
||||
|
||||
var scoringFunc uint32
|
||||
switch p.ScoringFunc {
|
||||
case "softmax":
|
||||
// not currently supported in the model, but needed for Deepseek-OCR
|
||||
scoringFunc = 1
|
||||
case "sigmoid":
|
||||
scoringFunc = 2
|
||||
}
|
||||
kv["deepseek2.expert_gating_func"] = scoringFunc
|
||||
kv["deepseek2.expert_used_count"] = p.ExpertUsedCount
|
||||
kv["deepseek2.expert_weights_norm"] = p.ExpertWeightsNorm
|
||||
kv["deepseek2.expert_weights_scale"] = p.ExpertWeightsScale
|
||||
kv["deepseek2.feed_forward_length"] = p.IntermediateSize
|
||||
kv["deepseek2.leading_dense_block_count"] = p.LeadingDenseBlockCount
|
||||
|
||||
kv["deepseek2.rope.dimension_count"] = p.QKRopeHeadDim
|
||||
kv["deepseek2.rope.freq_base"] = cmp.Or(p.RopeTheta, 10000.0)
|
||||
kv["deepseek2.rope.scaling.factor"] = p.RopeScaling.Factor
|
||||
kv["deepseek2.rope.scaling.original_context_length"] = p.RopeScaling.OriginalMaxPositionEmbeddings
|
||||
kv["deepseek2.rope.scaling.type"] = p.RopeScaling.Type
|
||||
kv["deepseek2.rope.scaling.yarn_log_multiplier"] = 0.1 * p.RopeScaling.MScaleAllDim
|
||||
|
||||
kv["tokenizer.ggml.pre"] = "deepseek-v3"
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *deepseek2Model) Replacements() []string {
|
||||
return []string{
|
||||
"lm_head", "output",
|
||||
"model.embed_tokens", "token_embd",
|
||||
"model.norm", "output_norm",
|
||||
"language_model.", "",
|
||||
"model.layers", "blk",
|
||||
"input_layernorm", "attn_norm",
|
||||
"self_attn.kv_a_proj_with_mqa", "attn_kv_a_mqa",
|
||||
"self_attn.kv_a_layernorm", "attn_kv_a_norm",
|
||||
"self_attn.kv_b_proj", "attn_kv_b",
|
||||
"self_attn.q_a_proj", "attn_q_a",
|
||||
"self_attn.q_a_layernorm", "attn_q_a_norm",
|
||||
"self_attn.q_b_proj", "attn_q_b",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"post_attention_layernorm", "ffn_norm",
|
||||
"mlp.shared_experts.down_proj", "ffn_down_shexp",
|
||||
"mlp.shared_experts.gate_proj", "ffn_gate_shexp",
|
||||
"mlp.shared_experts.up_proj", "ffn_up_shexp",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"mlp.gate.e_score_correction_bias", "exp_probs_b.bias",
|
||||
"mlp.gate", "ffn_gate_inp",
|
||||
}
|
||||
}
|
||||
|
||||
func (p *deepseek2Model) Tensors(s []Tensor) (out []*ggml.Tensor) {
|
||||
merges := make([]merge, p.HiddenLayers*3)
|
||||
for i := range p.HiddenLayers {
|
||||
merges[i*3+0] = merge{
|
||||
fmt.Sprintf("blk.%d.mlp.experts.*.gate_proj.weight", i),
|
||||
fmt.Sprintf("blk.%d.ffn_gate_exps.weight", i),
|
||||
}
|
||||
merges[i*3+1] = merge{
|
||||
fmt.Sprintf("blk.%d.mlp.experts.*.up_proj.weight", i),
|
||||
fmt.Sprintf("blk.%d.ffn_up_exps.weight", i),
|
||||
}
|
||||
merges[i*3+2] = merge{
|
||||
fmt.Sprintf("blk.%d.mlp.experts.*.down_proj.weight", i),
|
||||
fmt.Sprintf("blk.%d.ffn_down_exps.weight", i),
|
||||
}
|
||||
}
|
||||
|
||||
skipLayer := func(n string, minValue uint32) bool {
|
||||
re := regexp.MustCompile(`^blk\.(\d+)`)
|
||||
matches := re.FindStringSubmatch(n)
|
||||
if matches == nil {
|
||||
return false
|
||||
}
|
||||
|
||||
blkNum, err := strconv.Atoi(matches[1])
|
||||
if err != nil {
|
||||
return false
|
||||
}
|
||||
|
||||
return uint32(blkNum) >= minValue
|
||||
}
|
||||
|
||||
out, s = mergeTensors(s, merges...)
|
||||
for _, t := range s {
|
||||
// skip any additional layers (such as the Multi-Token Prediction layer)
|
||||
if skipLayer(t.Name(), p.HiddenLayers) {
|
||||
slog.Debug("skipping layer", "name", t.Name())
|
||||
continue
|
||||
}
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
return out
|
||||
}
|
||||
136
convert/convert_deepseekocr.go
Normal file
136
convert/convert_deepseekocr.go
Normal file
@@ -0,0 +1,136 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type deepseekocr struct {
|
||||
ModelParameters
|
||||
LanguageConfig struct {
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
NumRoutedExperts uint32 `json:"n_routed_experts"`
|
||||
NumSharedExperts uint32 `json:"n_shared_experts"`
|
||||
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
|
||||
FirstKDenseReplace uint32 `json:"first_k_dense_replace"`
|
||||
} `json:"language_config"`
|
||||
|
||||
VisionConfig struct {
|
||||
ImageSize uint32 `json:"image_size"`
|
||||
Width struct {
|
||||
Vision struct {
|
||||
Heads uint32 `json:"heads"`
|
||||
ImageSize uint32 `json:"image_size"`
|
||||
Layers uint32 `json:"layers"`
|
||||
PatchSize uint32 `json:"patch_size"`
|
||||
Width uint32 `json:"width"`
|
||||
} `json:"clip-l-14-224"`
|
||||
Sam struct {
|
||||
GlobalAttentionIndexes []int32 `json:"global_attn_indexes"`
|
||||
Heads uint32 `json:"heads"`
|
||||
Layers uint32 `json:"layers"`
|
||||
Width uint32 `json:"width"`
|
||||
} `json:"sam_vit_b"`
|
||||
}
|
||||
} `json:"vision_config"`
|
||||
}
|
||||
|
||||
func (m *deepseekocr) KV(t *Tokenizer) ggml.KV {
|
||||
kv := m.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "deepseekocr"
|
||||
kv["block_count"] = m.LanguageConfig.HiddenLayers
|
||||
kv["context_length"] = m.LanguageConfig.MaxPositionEmbeddings
|
||||
kv["embedding_length"] = m.LanguageConfig.HiddenSize
|
||||
kv["feed_forward_length"] = m.LanguageConfig.IntermediateSize
|
||||
kv["attention.head_count"] = m.LanguageConfig.NumAttentionHeads
|
||||
kv["attention.head_count_kv"] = m.LanguageConfig.NumKeyValueHeads
|
||||
kv["expert_count"] = m.LanguageConfig.NumRoutedExperts
|
||||
kv["expert_used_count"] = m.LanguageConfig.NumExpertsPerToken
|
||||
kv["leading_dense_block_count"] = m.LanguageConfig.FirstKDenseReplace
|
||||
|
||||
kv["vision.block_count"] = m.VisionConfig.Width.Vision.Layers
|
||||
kv["vision.embedding_length"] = m.VisionConfig.Width.Vision.Width
|
||||
kv["vision.head_count"] = m.VisionConfig.Width.Vision.Heads
|
||||
kv["vision.image_size"] = m.VisionConfig.Width.Vision.ImageSize
|
||||
kv["vision.patch_size"] = m.VisionConfig.Width.Vision.PatchSize
|
||||
|
||||
kv["sam.block_count"] = m.VisionConfig.Width.Sam.Layers
|
||||
kv["sam.embedding_length"] = m.VisionConfig.Width.Sam.Width
|
||||
kv["sam.head_count"] = m.VisionConfig.Width.Sam.Heads
|
||||
kv["sam.global_attention_indexes"] = m.VisionConfig.Width.Sam.GlobalAttentionIndexes
|
||||
return kv
|
||||
}
|
||||
|
||||
func (m *deepseekocr) Tensors(s []Tensor) (out []*ggml.Tensor) {
|
||||
merges := make([]merge, m.LanguageConfig.HiddenLayers*3)
|
||||
for i := range m.LanguageConfig.HiddenLayers {
|
||||
merges[i*3+0] = merge{
|
||||
fmt.Sprintf("blk.%d.mlp.experts.*.gate_proj.weight", i),
|
||||
fmt.Sprintf("blk.%d.ffn_gate_exps.weight", i),
|
||||
}
|
||||
merges[i*3+1] = merge{
|
||||
fmt.Sprintf("blk.%d.mlp.experts.*.up_proj.weight", i),
|
||||
fmt.Sprintf("blk.%d.ffn_up_exps.weight", i),
|
||||
}
|
||||
merges[i*3+2] = merge{
|
||||
fmt.Sprintf("blk.%d.mlp.experts.*.down_proj.weight", i),
|
||||
fmt.Sprintf("blk.%d.ffn_down_exps.weight", i),
|
||||
}
|
||||
}
|
||||
|
||||
out, s = mergeTensors(s, merges...)
|
||||
for _, t := range s {
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
func (m *deepseekocr) Replacements() []string {
|
||||
return []string{
|
||||
"model.embed_tokens", "token_embd",
|
||||
"model.layers", "blk",
|
||||
"input_layernorm", "attn_norm",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"post_attention_layernorm", "ffn_norm",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.gate", "ffn_gate_inp",
|
||||
"mlp.shared_experts.gate_proj", "ffn_gate_shexp",
|
||||
"mlp.shared_experts.up_proj", "ffn_up_shexp",
|
||||
"mlp.shared_experts.down_proj", "ffn_down_shexp",
|
||||
"model.norm", "output_norm",
|
||||
"lm_head", "output",
|
||||
|
||||
"model.vision_model", "v",
|
||||
"embeddings.patch_embedding", "patch_embd",
|
||||
"embeddings.class_embedding", "class_embd",
|
||||
"embeddings.position_embedding", "position_embd",
|
||||
"transformer.layers", "blk",
|
||||
|
||||
"model.projector", "mm",
|
||||
"model.image_newline", "mm.image_newline",
|
||||
//nolint:misspell // this misspelling is upstream. fixing it breaks the model
|
||||
"model.view_seperator", "mm.view_seperator",
|
||||
|
||||
"model.sam_model.patch_embed.proj", "s.patch_embd",
|
||||
"model.sam_model.pos_embed", "s.position_embd",
|
||||
"model.sam_model.blocks", "s.blk",
|
||||
"model.sam_model.neck", "s.neck",
|
||||
"model.sam_model.net_", "s.net_",
|
||||
}
|
||||
}
|
||||
@@ -2,6 +2,7 @@ package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"slices"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
@@ -26,16 +27,26 @@ type gemma3Model struct {
|
||||
NumChannels uint32 `json:"num_channels"` // num_channels 3
|
||||
PatchSize uint32 `json:"patch_size"` // patch_size 14
|
||||
} `json:"vision_config"`
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
|
||||
RopeLocalTheta float32 `json:"rope_local_base_freq"`
|
||||
RopeGlobalTheta float32 `json:"rope_global_base_freq"`
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
MultiModalTokensPerImage uint32 `json:"mm_tokens_per_image"`
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
|
||||
RopeLocalTheta float32 `json:"rope_local_base_freq"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
SlidingWindowPattern *uint32 `json:"sliding_window_pattern"`
|
||||
LayerTypes []string `json:"layer_types"`
|
||||
MultiModalTokensPerImage uint32 `json:"mm_tokens_per_image"`
|
||||
RopeScaling *struct {
|
||||
Type string `json:"rope_type"`
|
||||
Factor float32 `json:"factor"`
|
||||
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
|
||||
ExtrapolationFactor float32 `json:"extrapolation_factor"`
|
||||
BetaFast float32 `json:"beta_fast"`
|
||||
BetaSlow float32 `json:"beta_slow"`
|
||||
} `json:"rope_scaling"`
|
||||
}
|
||||
|
||||
const (
|
||||
@@ -81,9 +92,38 @@ func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
|
||||
kv["gemma3.attention.key_length"] = p.HeadDim
|
||||
kv["gemma3.attention.value_length"] = p.HeadDim
|
||||
kv["gemma3.attention.sliding_window"] = p.SlidingWindow
|
||||
kv["gemma3.final_logit_softcapping"] = cmp.Or(p.FinalLogitSoftcap, 30)
|
||||
|
||||
// The sliding window pattern is either provided as the sliding_window_pattern
|
||||
// key (an int) or as the layer_types key (a list of strings).
|
||||
if p.SlidingWindowPattern != nil || len(p.LayerTypes) > 0 {
|
||||
kv["gemma3.attention.sliding_window_pattern"] = slices.Collect(func(yield func(bool) bool) {
|
||||
for i := range numBlocks {
|
||||
var isLocal bool
|
||||
if len(p.LayerTypes) > 0 && int(i) < len(p.LayerTypes) {
|
||||
isLocal = p.LayerTypes[i] == "sliding_attention"
|
||||
} else if p.SlidingWindowPattern != nil && *p.SlidingWindowPattern > 0 {
|
||||
isLocal = (i+1)%*p.SlidingWindowPattern != 0
|
||||
}
|
||||
if !yield(isLocal) {
|
||||
break
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
if p.FinalLogitSoftcap > 0 {
|
||||
kv["gemma3.final_logit_softcapping"] = p.FinalLogitSoftcap
|
||||
}
|
||||
kv["gemma3.rope.local.freq_base"] = cmp.Or(p.RopeLocalTheta, 10000.0)
|
||||
kv["gemma3.rope.global.freq_base"] = cmp.Or(p.RopeGlobalTheta, 1000000.0)
|
||||
kv["gemma3.rope.freq_base"] = cmp.Or(p.RopeTheta, 1000000.0)
|
||||
if p.RopeScaling != nil && p.RopeScaling.Type == "yarn" && p.RopeScaling.Factor > 0 {
|
||||
kv["gemma3.rope.scaling.type"] = "yarn"
|
||||
kv["gemma3.rope.scaling.factor"] = p.RopeScaling.Factor
|
||||
kv["gemma3.rope.scaling.original_context_length"] = p.RopeScaling.OriginalMaxPositionEmbeddings
|
||||
kv["gemma3.rope.scaling.extrapolation_factor"] = cmp.Or(p.RopeScaling.ExtrapolationFactor, float32(1.0))
|
||||
kv["gemma3.rope.scaling.beta_fast"] = cmp.Or(p.RopeScaling.BetaFast, float32(64.0))
|
||||
kv["gemma3.rope.scaling.beta_slow"] = cmp.Or(p.RopeScaling.BetaSlow, float32(1.0))
|
||||
}
|
||||
|
||||
kv["gemma3.embedding_length"] = p.HiddenSize
|
||||
kv["gemma3.feed_forward_length"] = p.IntermediateSize
|
||||
default:
|
||||
|
||||
@@ -110,9 +110,12 @@ func (m *gptossModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
|
||||
for name, mxfp4 := range mxfp4s {
|
||||
dims := mxfp4.blocks.Shape()
|
||||
if !strings.HasSuffix(name, ".weight") {
|
||||
name = name + ".weight"
|
||||
}
|
||||
if strings.Contains(name, "ffn_down_exps") {
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: name + ".weight",
|
||||
Name: name,
|
||||
Kind: uint32(ggml.TensorTypeMXFP4),
|
||||
Shape: []uint64{dims[0], dims[1], dims[2] * dims[3] * 2},
|
||||
WriterTo: mxfp4,
|
||||
@@ -121,12 +124,12 @@ func (m *gptossModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
// gate_up_exps is interleaved, need to split into gate_exps and up_exps
|
||||
// e.g. gate_exps, up_exps = gate_up_exps[:, 0::2, ...], gate_up_exps[:, 1::2, ...]
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: strings.Replace(name, "gate_up", "gate", 1) + ".weight",
|
||||
Name: strings.Replace(name, "gate_up", "gate", 1),
|
||||
Kind: uint32(ggml.TensorTypeMXFP4),
|
||||
Shape: []uint64{dims[0], dims[1] / 2, dims[2] * dims[3] * 2},
|
||||
WriterTo: mxfp4.slice(1, 0, int(dims[1]), 2),
|
||||
}, &ggml.Tensor{
|
||||
Name: strings.Replace(name, "gate_up", "up", 1) + ".weight",
|
||||
Name: strings.Replace(name, "gate_up", "up", 1),
|
||||
Kind: uint32(ggml.TensorTypeMXFP4),
|
||||
Shape: []uint64{dims[0], dims[1] / 2, dims[2] * dims[3] * 2},
|
||||
WriterTo: mxfp4.slice(1, 1, int(dims[1]), 2),
|
||||
|
||||
@@ -29,6 +29,15 @@ type mistral3Model struct {
|
||||
SlidingWindow *uint32 `json:"sliding_window"`
|
||||
HiddenAct string `json:"hidden_act"`
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
RopeParameters struct {
|
||||
BetaFast float32 `json:"beta_fast"`
|
||||
BetaSlow float32 `json:"beta_slow"`
|
||||
Factor float32 `json:"factor"`
|
||||
ScalingBeta float32 `json:"llama_4_scaling_beta"`
|
||||
OrigMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
|
||||
RopeType string `json:"rope_type"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
} `json:"rope_parameters"`
|
||||
} `json:"text_config"`
|
||||
VisionModel struct {
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
@@ -61,8 +70,13 @@ func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
|
||||
kv["mistral3.attention.layer_norm_rms_epsilon"] = p.TextModel.RMSNormEPS
|
||||
kv["mistral3.attention.key_length"] = p.TextModel.HeadDim
|
||||
kv["mistral3.attention.value_length"] = p.TextModel.HeadDim
|
||||
kv["mistral3.rope.dimension_count"] = p.TextModel.HiddenSize / p.TextModel.NumHiddenLayers
|
||||
kv["mistral3.rope.freq_base"] = p.TextModel.RopeTheta
|
||||
kv["mistral3.rope.dimension_count"] = cmp.Or(p.TextModel.HeadDim, p.TextModel.HiddenSize/p.TextModel.NumAttentionHeads)
|
||||
kv["mistral3.rope.freq_base"] = cmp.Or(p.TextModel.RopeTheta, p.TextModel.RopeParameters.RopeTheta)
|
||||
|
||||
if p.TextModel.RopeParameters.OrigMaxPositionEmbeddings > 0 {
|
||||
kv["mistral3.rope.scaling.original_context_length"] = p.TextModel.RopeParameters.OrigMaxPositionEmbeddings
|
||||
kv["mistral3.rope.scaling_beta"] = p.TextModel.RopeParameters.ScalingBeta
|
||||
}
|
||||
|
||||
// Vision configuration
|
||||
kv["mistral3.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
||||
|
||||
124
convert/convert_olmo.go
Normal file
124
convert/convert_olmo.go
Normal file
@@ -0,0 +1,124 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type ropeScaling struct {
|
||||
Factor float32 `json:"factor"`
|
||||
OriginalMaxPositionEmbeds uint32 `json:"original_max_position_embeddings"`
|
||||
AttentionFactor float32 `json:"attention_factor"`
|
||||
BetaFast float32 `json:"beta_fast"`
|
||||
BetaSlow float32 `json:"beta_slow"`
|
||||
RopeType string `json:"rope_type"`
|
||||
ExtrapolationFactor float32 `json:"extrapolation_factor"`
|
||||
}
|
||||
|
||||
type olmoModel struct {
|
||||
ModelParameters
|
||||
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
RopeScaling *ropeScaling `json:"rope_scaling"`
|
||||
ClampKQV float32 `json:"f_clamp_kqv"`
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
LayerTypes []string `json:"layer_types"`
|
||||
}
|
||||
|
||||
var _ ModelConverter = (*olmoModel)(nil)
|
||||
|
||||
func (p *olmoModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "olmo2"
|
||||
kv["olmo2.block_count"] = p.NumHiddenLayers
|
||||
kv["olmo2.context_length"] = p.MaxPositionEmbeddings
|
||||
kv["olmo2.embedding_length"] = p.HiddenSize
|
||||
kv["olmo2.feed_forward_length"] = p.IntermediateSize
|
||||
kv["olmo2.attention.head_count"] = p.NumAttentionHeads
|
||||
kv["olmo2.attention.head_count_kv"] = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
|
||||
|
||||
if p.RopeTheta > 0 {
|
||||
kv["olmo2.rope.freq_base"] = p.RopeTheta
|
||||
} else {
|
||||
kv["olmo2.rope.freq_base"] = float32(10000.0)
|
||||
}
|
||||
|
||||
if p.RopeScaling != nil {
|
||||
if p.RopeScaling.Factor > 0 {
|
||||
kv["olmo2.rope.scaling.factor"] = p.RopeScaling.Factor
|
||||
}
|
||||
if p.RopeScaling.OriginalMaxPositionEmbeds > 0 {
|
||||
kv["olmo2.rope.scaling.original_context_length"] = p.RopeScaling.OriginalMaxPositionEmbeds
|
||||
}
|
||||
if p.RopeScaling.AttentionFactor > 0 {
|
||||
kv["olmo2.rope.scaling.attn_factor"] = p.RopeScaling.AttentionFactor
|
||||
}
|
||||
if p.RopeScaling.RopeType != "" {
|
||||
kv["olmo2.rope.scaling.type"] = p.RopeScaling.RopeType
|
||||
}
|
||||
}
|
||||
|
||||
if p.RMSNormEPS > 0 {
|
||||
kv["olmo2.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
||||
}
|
||||
|
||||
if p.ClampKQV > 0 {
|
||||
kv["olmo2.attention.clamp_kqv"] = p.ClampKQV
|
||||
}
|
||||
|
||||
if p.SlidingWindow > 0 {
|
||||
kv["olmo2.attention.sliding_window"] = p.SlidingWindow
|
||||
}
|
||||
|
||||
if len(p.LayerTypes) > 0 {
|
||||
slidingPattern := make([]bool, len(p.LayerTypes))
|
||||
for i, layerType := range p.LayerTypes {
|
||||
slidingPattern[i] = (layerType == "sliding_attention")
|
||||
}
|
||||
kv["olmo2.attention.sliding_window_pattern"] = slidingPattern
|
||||
}
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *olmoModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
out := make([]*ggml.Tensor, 0, len(ts))
|
||||
for _, t := range ts {
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *olmoModel) Replacements() []string {
|
||||
return []string{
|
||||
"lm_head", "output",
|
||||
"model.embed_tokens", "token_embd",
|
||||
"model.layers", "blk",
|
||||
"model.norm", "output_norm",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"self_attn.q_norm", "attn_q_norm",
|
||||
"self_attn.k_norm", "attn_k_norm",
|
||||
"post_attention_layernorm", "post_attention_norm",
|
||||
"post_feedforward_layernorm", "post_ffw_norm",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
}
|
||||
}
|
||||
@@ -44,7 +44,10 @@ func (t tensorBase) Kind() uint32 {
|
||||
t.name == "v.positional_embedding_vlm" ||
|
||||
t.name == "v.tile_position_embd.weight" ||
|
||||
t.name == "v.pre_tile_position_embd.weight" ||
|
||||
t.name == "v.post_tile_position_embd.weight" {
|
||||
t.name == "v.post_tile_position_embd.weight" ||
|
||||
t.name == "s.position_embd" ||
|
||||
strings.HasSuffix(t.name, "rel_pos_h") ||
|
||||
strings.HasSuffix(t.name, "rel_pos_w") {
|
||||
// these tensors are always F32
|
||||
return tensorKindFP32
|
||||
}
|
||||
|
||||
@@ -96,7 +96,10 @@ type safetensor struct {
|
||||
|
||||
func (st safetensor) Kind() uint32 {
|
||||
kind := st.tensorBase.Kind()
|
||||
if !strings.HasPrefix(st.name, "v.") && st.dtype == "BF16" && kind != tensorKindFP32 {
|
||||
if st.dtype == "BF16" &&
|
||||
!strings.HasPrefix(st.name, "v.") &&
|
||||
!strings.HasPrefix(st.name, "s.") &&
|
||||
kind != tensorKindFP32 {
|
||||
kind = tensorKindBF16
|
||||
}
|
||||
|
||||
|
||||
@@ -2,10 +2,12 @@ package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"errors"
|
||||
"io"
|
||||
"iter"
|
||||
"path"
|
||||
"slices"
|
||||
"strconv"
|
||||
"strings"
|
||||
|
||||
"github.com/pdevine/tensor"
|
||||
@@ -94,6 +96,26 @@ func mergeTensors(unmatched []Tensor, merges ...merge) (out []*ggml.Tensor, _ []
|
||||
return matched
|
||||
})
|
||||
|
||||
slices.SortStableFunc(matched, func(a, b Tensor) int {
|
||||
x := strings.Split(a.Name(), ".")
|
||||
y := strings.Split(b.Name(), ".")
|
||||
if len(x) != len(y) {
|
||||
return cmp.Compare(len(x), len(y))
|
||||
}
|
||||
|
||||
vals := make([]int, len(x))
|
||||
for i := range x {
|
||||
vals[i] = strings.Compare(x[i], y[i])
|
||||
m, err := strconv.ParseInt(x[i], 0, 0)
|
||||
n, err2 := strconv.ParseInt(y[i], 0, 0)
|
||||
if errors.Join(err, err2) == nil {
|
||||
vals[i] = cmp.Compare(m, n)
|
||||
}
|
||||
}
|
||||
|
||||
return cmp.Or(vals...)
|
||||
})
|
||||
|
||||
if len(matched) > 0 {
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: merges[i].name,
|
||||
|
||||
@@ -3,8 +3,10 @@ package convert
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"fmt"
|
||||
"io"
|
||||
"iter"
|
||||
"math/rand/v2"
|
||||
"slices"
|
||||
"strings"
|
||||
"testing"
|
||||
@@ -951,3 +953,45 @@ func TestMerge(t *testing.T) {
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
func TestMergeOrder(t *testing.T) {
|
||||
for range 8 {
|
||||
t.Run("", func(t *testing.T) {
|
||||
tensors := make([]Tensor, 16)
|
||||
for i := range tensors {
|
||||
tensors[i] = &fakeTensor{
|
||||
name: fmt.Sprintf("layer.%d.weight", i),
|
||||
shape: []uint64{1},
|
||||
data: []float32{float32(i)},
|
||||
}
|
||||
}
|
||||
|
||||
rand.Shuffle(len(tensors), func(i, j int) {
|
||||
tensors[i], tensors[j] = tensors[j], tensors[i]
|
||||
})
|
||||
|
||||
matched, unmatched := mergeTensors(tensors, merge{"layer.*.weight", "layer.weight"})
|
||||
if len(unmatched) != 0 {
|
||||
t.Error("expected no remaining tensors, got", len(unmatched))
|
||||
}
|
||||
|
||||
if len(matched) != 1 {
|
||||
t.Error("expected 1 merged tensor, got", len(matched))
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := matched[0].WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
var f32s [16]float32
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if !slices.IsSorted(f32s[:]) {
|
||||
t.Errorf("merged tensor data is not in order: %+v", f32s)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2,6 +2,7 @@ package discover
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
@@ -10,12 +11,21 @@ import (
|
||||
"reflect"
|
||||
"regexp"
|
||||
"sort"
|
||||
"strconv"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/format"
|
||||
)
|
||||
|
||||
func GetCPUMem() (memInfo, error) {
|
||||
mem, err := getCPUMem()
|
||||
if err != nil {
|
||||
return memInfo{}, err
|
||||
}
|
||||
return getCPUMemByCgroups(mem), nil
|
||||
}
|
||||
|
||||
func getCPUMem() (memInfo, error) {
|
||||
var mem memInfo
|
||||
var total, available, free, buffers, cached, freeSwap uint64
|
||||
f, err := os.Open("/proc/meminfo")
|
||||
@@ -56,6 +66,32 @@ func GetCPUMem() (memInfo, error) {
|
||||
return mem, nil
|
||||
}
|
||||
|
||||
func getCPUMemByCgroups(mem memInfo) memInfo {
|
||||
total, err := getUint64ValueFromFile("/sys/fs/cgroup/memory.max")
|
||||
if err == nil {
|
||||
mem.TotalMemory = total
|
||||
}
|
||||
used, err := getUint64ValueFromFile("/sys/fs/cgroup/memory.current")
|
||||
if err == nil {
|
||||
mem.FreeMemory = mem.TotalMemory - used
|
||||
}
|
||||
return mem
|
||||
}
|
||||
|
||||
func getUint64ValueFromFile(path string) (uint64, error) {
|
||||
f, err := os.Open(path)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
defer f.Close()
|
||||
s := bufio.NewScanner(f)
|
||||
for s.Scan() {
|
||||
line := s.Text()
|
||||
return strconv.ParseUint(line, 10, 64)
|
||||
}
|
||||
return 0, errors.New("empty file content")
|
||||
}
|
||||
|
||||
const CpuInfoFilename = "/proc/cpuinfo"
|
||||
|
||||
type linuxCpuInfo struct {
|
||||
@@ -74,7 +110,41 @@ func GetCPUDetails() []CPU {
|
||||
return nil
|
||||
}
|
||||
defer file.Close()
|
||||
return linuxCPUDetails(file)
|
||||
cpus := linuxCPUDetails(file)
|
||||
return overwriteThreadCountByLinuxCgroups(cpus)
|
||||
}
|
||||
|
||||
func overwriteThreadCountByLinuxCgroups(cpus []CPU) []CPU {
|
||||
file, err := os.Open("/sys/fs/cgroup/cpu.max")
|
||||
if err != nil {
|
||||
return cpus
|
||||
}
|
||||
defer file.Close()
|
||||
|
||||
scanner := bufio.NewScanner(file)
|
||||
for scanner.Scan() {
|
||||
line := scanner.Text()
|
||||
if sl := strings.Split(line, " "); len(sl) == 2 {
|
||||
allowdUs, err := strconv.ParseInt(sl[0], 10, 64)
|
||||
if err != nil {
|
||||
slog.Warn("failed to parse CPU allowed micro secs", "error", err)
|
||||
return cpus
|
||||
}
|
||||
unitUs, err := strconv.ParseInt(sl[1], 10, 64)
|
||||
if err != nil {
|
||||
slog.Warn("failed to parse CPU unit micro secs", "error", err)
|
||||
return cpus
|
||||
}
|
||||
|
||||
threads := int(max(allowdUs/unitUs, 1))
|
||||
|
||||
cpu := cpus[0]
|
||||
cpu.CoreCount = threads
|
||||
cpu.ThreadCount = threads
|
||||
return []CPU{cpu}
|
||||
}
|
||||
}
|
||||
return cpus
|
||||
}
|
||||
|
||||
func linuxCPUDetails(file io.Reader) []CPU {
|
||||
|
||||
@@ -65,6 +65,11 @@ func GPUDevices(ctx context.Context, runners []ml.FilteredRunnerDiscovery) []ml.
|
||||
}
|
||||
|
||||
slog.Info("discovering available GPUs...")
|
||||
detectIncompatibleLibraries()
|
||||
|
||||
// Warn if any user-overrides are set which could lead to incorrect GPU discovery
|
||||
overrideWarnings()
|
||||
|
||||
requested := envconfig.LLMLibrary()
|
||||
jetpack := cudaJetpack()
|
||||
|
||||
@@ -90,10 +95,16 @@ func GPUDevices(ctx context.Context, runners []ml.FilteredRunnerDiscovery) []ml.
|
||||
var dirs []string
|
||||
if dir != "" {
|
||||
if requested != "" && filepath.Base(dir) != requested {
|
||||
slog.Debug("skipping available library at users request", "requested", requested, "libDir", dir)
|
||||
slog.Debug("skipping available library at user's request", "requested", requested, "libDir", dir)
|
||||
continue
|
||||
} else if jetpack != "" && filepath.Base(dir) != "cuda_"+jetpack {
|
||||
continue
|
||||
} else if jetpack == "" && strings.Contains(filepath.Base(dir), "cuda_jetpack") {
|
||||
slog.Debug("jetpack not detected (set JETSON_JETPACK or OLLAMA_LLM_LIBRARY to override), skipping", "libDir", dir)
|
||||
continue
|
||||
} else if !envconfig.EnableVulkan() && strings.Contains(filepath.Base(dir), "vulkan") {
|
||||
slog.Info("experimental Vulkan support disabled. To enable, set OLLAMA_VULKAN=1")
|
||||
continue
|
||||
}
|
||||
dirs = []string{ml.LibOllamaPath, dir}
|
||||
} else {
|
||||
@@ -110,7 +121,7 @@ func GPUDevices(ctx context.Context, runners []ml.FilteredRunnerDiscovery) []ml.
|
||||
// In the second pass, we more deeply initialize the GPUs to weed out devices that
|
||||
// aren't supported by a given library. We run this phase in parallel to speed up discovery.
|
||||
// Only devices that need verification are included in this pass
|
||||
slog.Debug("evluating which if any devices to filter out", "initial_count", len(devices))
|
||||
slog.Debug("evaluating which, if any, devices to filter out", "initial_count", len(devices))
|
||||
ctx2ndPass, cancel := context.WithTimeout(ctx, 30*time.Second)
|
||||
defer cancel()
|
||||
var wg sync.WaitGroup
|
||||
@@ -118,15 +129,25 @@ func GPUDevices(ctx context.Context, runners []ml.FilteredRunnerDiscovery) []ml.
|
||||
supportedMu := sync.Mutex{}
|
||||
supported := make(map[string]map[string]map[string]int) // [Library][libDir][ID] = pre-deletion devices index
|
||||
for i := range devices {
|
||||
libDir := devices[i].LibraryPath[len(devices[i].LibraryPath)-1]
|
||||
if !devices[i].NeedsInitValidation() {
|
||||
// No need to validate, add to the supported map
|
||||
supportedMu.Lock()
|
||||
if _, ok := supported[devices[i].Library]; !ok {
|
||||
supported[devices[i].Library] = make(map[string]map[string]int)
|
||||
}
|
||||
if _, ok := supported[devices[i].Library][libDir]; !ok {
|
||||
supported[devices[i].Library][libDir] = make(map[string]int)
|
||||
}
|
||||
supported[devices[i].Library][libDir][devices[i].ID] = i
|
||||
supportedMu.Unlock()
|
||||
continue
|
||||
}
|
||||
libDir := devices[i].LibraryPath[len(devices[i].LibraryPath)-1]
|
||||
slog.Debug("verifying device is supported", "library", libDir, "description", devices[i].Description, "compute", devices[i].Compute(), "id", devices[i].ID, "pci_id", devices[i].PCIID)
|
||||
slog.Debug("verifying if device is supported", "library", libDir, "description", devices[i].Description, "compute", devices[i].Compute(), "id", devices[i].ID, "pci_id", devices[i].PCIID)
|
||||
wg.Add(1)
|
||||
go func(i int) {
|
||||
defer wg.Done()
|
||||
extraEnvs := ml.GetVisibleDevicesEnv(devices[i : i+1])
|
||||
extraEnvs := ml.GetVisibleDevicesEnv(devices[i:i+1], true)
|
||||
devices[i].AddInitValidation(extraEnvs)
|
||||
if len(bootstrapDevices(ctx2ndPass, devices[i].LibraryPath, extraEnvs)) == 0 {
|
||||
slog.Debug("filtering device which didn't fully initialize",
|
||||
@@ -312,7 +333,8 @@ func GPUDevices(ctx context.Context, runners []ml.FilteredRunnerDiscovery) []ml.
|
||||
defer cancel()
|
||||
|
||||
// Apply any dev filters to avoid re-discovering unsupported devices, and get IDs correct
|
||||
devFilter := ml.GetVisibleDevicesEnv(devices)
|
||||
// We avoid CUDA filters here to keep ROCm from failing to discover GPUs in a mixed environment
|
||||
devFilter := ml.GetVisibleDevicesEnv(devices, false)
|
||||
|
||||
for dir := range libDirs {
|
||||
updatedDevices := bootstrapDevices(ctx, []string{ml.LibOllamaPath, dir}, devFilter)
|
||||
@@ -446,3 +468,37 @@ func bootstrapDevices(ctx context.Context, ollamaLibDirs []string, extraEnvs map
|
||||
|
||||
return devices
|
||||
}
|
||||
|
||||
func overrideWarnings() {
|
||||
anyFound := false
|
||||
m := envconfig.AsMap()
|
||||
for _, k := range []string{
|
||||
"CUDA_VISIBLE_DEVICES",
|
||||
"HIP_VISIBLE_DEVICES",
|
||||
"ROCR_VISIBLE_DEVICES",
|
||||
"GGML_VK_VISIBLE_DEVICES",
|
||||
"GPU_DEVICE_ORDINAL",
|
||||
"HSA_OVERRIDE_GFX_VERSION",
|
||||
} {
|
||||
if e, found := m[k]; found && e.Value != "" {
|
||||
anyFound = true
|
||||
slog.Warn("user overrode visible devices", k, e.Value)
|
||||
}
|
||||
}
|
||||
if anyFound {
|
||||
slog.Warn("if GPUs are not correctly discovered, unset and try again")
|
||||
}
|
||||
}
|
||||
|
||||
func detectIncompatibleLibraries() {
|
||||
if runtime.GOOS != "windows" {
|
||||
return
|
||||
}
|
||||
basePath, err := exec.LookPath("ggml-base.dll")
|
||||
if err != nil || basePath == "" {
|
||||
return
|
||||
}
|
||||
if !strings.HasPrefix(basePath, ml.LibOllamaPath) {
|
||||
slog.Warn("potentially incompatible library detected in PATH", "location", basePath)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
### Reference
|
||||
|
||||
* [API Reference](https://docs.ollama.com/api)
|
||||
* [Modelfile Reference](./modelfile.md)
|
||||
* [Modelfile Reference](https://docs.ollama.com/modelfile)
|
||||
* [OpenAI Compatibility](https://docs.ollama.com/api/openai-compatibility)
|
||||
|
||||
### Resources
|
||||
|
||||
@@ -13,9 +13,23 @@ Embeddings turn text into numeric vectors you can store in a vector database, se
|
||||
|
||||
## Generate embeddings
|
||||
|
||||
Use `/api/embed` with a single string.
|
||||
|
||||
<Tabs>
|
||||
<Tab title="CLI">
|
||||
Generate embeddings directly from the command line:
|
||||
|
||||
```shell
|
||||
ollama run embeddinggemma "Hello world"
|
||||
```
|
||||
|
||||
You can also pipe text to generate embeddings:
|
||||
|
||||
```shell
|
||||
echo "Hello world" | ollama run embeddinggemma
|
||||
```
|
||||
|
||||
Output is a JSON array.
|
||||
|
||||
</Tab>
|
||||
<Tab title="cURL">
|
||||
```shell
|
||||
curl -X POST http://localhost:11434/api/embed \
|
||||
|
||||
@@ -15,7 +15,7 @@ Also known as "single-shot" tool calling.
|
||||
```shell
|
||||
curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
|
||||
"model": "qwen3",
|
||||
"messages": [{"role": "user", "content": "What's the temperature in New York?"}],
|
||||
"messages": [{"role": "user", "content": "What is the temperature in New York?"}],
|
||||
"stream": false,
|
||||
"tools": [
|
||||
{
|
||||
@@ -41,7 +41,7 @@ Also known as "single-shot" tool calling.
|
||||
curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
|
||||
"model": "qwen3",
|
||||
"messages": [
|
||||
{"role": "user", "content": "What's the temperature in New York?"},
|
||||
{"role": "user", "content": "What is the temperature in New York?"},
|
||||
{
|
||||
"role": "assistant",
|
||||
"tool_calls": [
|
||||
@@ -90,7 +90,7 @@ Also known as "single-shot" tool calling.
|
||||
}
|
||||
return temperatures.get(city, "Unknown")
|
||||
|
||||
messages = [{"role": "user", "content": "What's the temperature in New York?"}]
|
||||
messages = [{"role": "user", "content": "What is the temperature in New York?"}]
|
||||
|
||||
# pass functions directly as tools in the tools list or as a JSON schema
|
||||
response = chat(model="qwen3", messages=messages, tools=[get_temperature], think=True)
|
||||
@@ -146,7 +146,7 @@ Also known as "single-shot" tool calling.
|
||||
},
|
||||
]
|
||||
|
||||
const messages = [{ role: 'user', content: "What's the temperature in New York?" }]
|
||||
const messages = [{ role: 'user', content: "What is the temperature in New York?" }]
|
||||
|
||||
const response = await ollama.chat({
|
||||
model: 'qwen3',
|
||||
@@ -609,7 +609,7 @@ def get_temperature(city: str) -> str:
|
||||
return temperatures.get(city, 'Unknown')
|
||||
|
||||
|
||||
messages = [{'role': 'user', 'content': "What's the temperature in New York?"}]
|
||||
messages = [{'role': 'user', 'content': "What is the temperature in New York?"}]
|
||||
|
||||
while True:
|
||||
stream = chat(
|
||||
@@ -684,7 +684,7 @@ const getTemperatureTool = {
|
||||
}
|
||||
|
||||
async function agentLoop() {
|
||||
const messages = [{ role: 'user', content: "What's the temperature in New York?" }]
|
||||
const messages = [{ role: 'user', content: "What is the temperature in New York?" }]
|
||||
|
||||
while (true) {
|
||||
const stream = await ollama.chat({
|
||||
|
||||
@@ -9,15 +9,9 @@ sidebarTitle: Cloud
|
||||
|
||||
Ollama's cloud models are a new kind of model in Ollama that can run without a powerful GPU. Instead, cloud models are automatically offloaded to Ollama's cloud service while offering the same capabilities as local models, making it possible to keep using your local tools while running larger models that wouldn't fit on a personal computer.
|
||||
|
||||
Ollama currently supports the following cloud models, with more coming soon:
|
||||
### Supported models
|
||||
|
||||
- `deepseek-v3.1:671b-cloud`
|
||||
- `gpt-oss:20b-cloud`
|
||||
- `gpt-oss:120b-cloud`
|
||||
- `kimi-k2:1t-cloud`
|
||||
- `qwen3-coder:480b-cloud`
|
||||
- `glm-4.6:cloud`
|
||||
- `minimax-m2:cloud`
|
||||
For a list of supported models, see Ollama's [model library](https://ollama.com/search?c=cloud).
|
||||
|
||||
### Running Cloud models
|
||||
|
||||
|
||||
@@ -49,6 +49,8 @@ Install prerequisites:
|
||||
- [Ninja](https://github.com/ninja-build/ninja/releases)
|
||||
- (Optional) NVIDIA GPU support
|
||||
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network)
|
||||
- (Optional) VULKAN GPU support
|
||||
- [VULKAN SDK](https://vulkan.lunarg.com/sdk/home) - useful for AMD/Intel GPUs
|
||||
|
||||
Then, configure and build the project:
|
||||
|
||||
@@ -57,6 +59,17 @@ cmake -B build
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
> Building for Vulkan requires VULKAN_SDK environment variable:
|
||||
>
|
||||
> PowerShell
|
||||
> ```powershell
|
||||
> $env:VULKAN_SDK="C:\VulkanSDK\<version>"
|
||||
> ```
|
||||
> CMD
|
||||
> ```cmd
|
||||
> set VULKAN_SDK=C:\VulkanSDK\<version>
|
||||
> ```
|
||||
|
||||
> [!IMPORTANT]
|
||||
> Building for ROCm requires additional flags:
|
||||
> ```
|
||||
@@ -65,6 +78,7 @@ cmake --build build --config Release
|
||||
> ```
|
||||
|
||||
|
||||
|
||||
Lastly, run Ollama:
|
||||
|
||||
```shell
|
||||
@@ -84,7 +98,9 @@ Install prerequisites:
|
||||
- [ROCm](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/quick-start.html)
|
||||
- (Optional) NVIDIA GPU support
|
||||
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads)
|
||||
|
||||
- (Optional) VULKAN GPU support
|
||||
- [VULKAN SDK](https://vulkan.lunarg.com/sdk/home) - useful for AMD/Intel GPUs
|
||||
- Or install via package manager: `sudo apt install vulkan-sdk` (Ubuntu/Debian) or `sudo dnf install vulkan-sdk` (Fedora/CentOS)
|
||||
> [!IMPORTANT]
|
||||
> Ensure prerequisites are in `PATH` before running CMake.
|
||||
|
||||
|
||||
@@ -68,6 +68,15 @@ To run Ollama using Docker with AMD GPUs, use the `rocm` tag and the following c
|
||||
docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama:rocm
|
||||
```
|
||||
|
||||
## Vulkan Support
|
||||
|
||||
Vulkan is bundled into the `ollama/ollama` image.
|
||||
|
||||
```shell
|
||||
docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 11434:11434 -e OLLAMA_VULKAN=1 --name ollama ollama/ollama
|
||||
```
|
||||
|
||||
|
||||
## Run model locally
|
||||
|
||||
Now you can run a model:
|
||||
@@ -79,3 +88,4 @@ docker exec -it ollama ollama run llama3.2
|
||||
## Try different models
|
||||
|
||||
More models can be found on the [Ollama library](https://ollama.com/library).
|
||||
|
||||
|
||||
@@ -63,6 +63,10 @@
|
||||
{
|
||||
"source": "/api/openai",
|
||||
"destination": "/api/openai-compatibility"
|
||||
},
|
||||
{
|
||||
"source": "/api",
|
||||
"destination": "/api/introduction"
|
||||
}
|
||||
],
|
||||
"navigation": {
|
||||
@@ -130,7 +134,7 @@
|
||||
{
|
||||
"group": "API Reference",
|
||||
"pages": [
|
||||
"/api/index",
|
||||
"/api/introduction",
|
||||
"/api/authentication",
|
||||
"/api/streaming",
|
||||
"/api/usage",
|
||||
|
||||
21
docs/faq.mdx
21
docs/faq.mdx
@@ -57,8 +57,13 @@ ollama ps
|
||||
```
|
||||
|
||||
<Info>
|
||||
**Output**: ``` NAME ID SIZE PROCESSOR UNTIL llama3:70b bcfb190ca3a7 42 GB
|
||||
100% GPU 4 minutes from now ```
|
||||
|
||||
**Output**:
|
||||
|
||||
```
|
||||
NAME ID SIZE PROCESSOR UNTIL
|
||||
llama3:70b bcfb190ca3a7 42 GB 100% GPU 4 minutes from now
|
||||
```
|
||||
</Info>
|
||||
|
||||
The `Processor` column will show which memory the model was loaded in to:
|
||||
@@ -223,7 +228,7 @@ Refer to the section [above](#how-do-i-configure-ollama-server) for how to set e
|
||||
|
||||
## How can I use Ollama in Visual Studio Code?
|
||||
|
||||
There is already a large collection of plugins available for VSCode as well as other editors that leverage Ollama. See the list of [extensions & plugins](https://github.com/ollama/ollama#extensions--plugins) at the bottom of the main repository readme.
|
||||
There is already a large collection of plugins available for VS Code as well as other editors that leverage Ollama. See the list of [extensions & plugins](https://github.com/ollama/ollama#extensions--plugins) at the bottom of the main repository readme.
|
||||
|
||||
## How do I use Ollama with GPU acceleration in Docker?
|
||||
|
||||
@@ -376,3 +381,13 @@ ollama signin
|
||||
<Note>
|
||||
Replace <username> with your actual Windows user name.
|
||||
</Note>
|
||||
|
||||
## How can I stop Ollama from starting when I login to my computer
|
||||
|
||||
Ollama for Windows and macOS register as a login item during installation. You can disable this if you prefer not to have Ollama automatically start. Ollama will respect this setting across upgrades, unless you uninstall the application.
|
||||
|
||||
**Windows**
|
||||
- In `Task Manager` go to the `Startup apps` tab, search for `ollama` then click `Disable`
|
||||
|
||||
**MacOS**
|
||||
- Open `Settings` and search for "Login Items", find the `Ollama` entry under "Allow in the Background`, then click the slider to disable.
|
||||
|
||||
109
docs/gpu.mdx
109
docs/gpu.mdx
@@ -3,34 +3,35 @@ title: Hardware support
|
||||
---
|
||||
|
||||
## Nvidia
|
||||
|
||||
Ollama supports Nvidia GPUs with compute capability 5.0+.
|
||||
Ollama supports Nvidia GPUs with compute capability 5.0+ and driver version 531 and newer.
|
||||
|
||||
Check your compute compatibility to see if your card is supported:
|
||||
[https://developer.nvidia.com/cuda-gpus](https://developer.nvidia.com/cuda-gpus)
|
||||
|
||||
| Compute Capability | Family | Cards |
|
||||
| ------------------ | ------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
|
||||
| 9.0 | NVIDIA | `H200` `H100` |
|
||||
| 8.9 | GeForce RTX 40xx | `RTX 4090` `RTX 4080 SUPER` `RTX 4080` `RTX 4070 Ti SUPER` `RTX 4070 Ti` `RTX 4070 SUPER` `RTX 4070` `RTX 4060 Ti` `RTX 4060` |
|
||||
| | NVIDIA Professional | `L4` `L40` `RTX 6000` |
|
||||
| 8.6 | GeForce RTX 30xx | `RTX 3090 Ti` `RTX 3090` `RTX 3080 Ti` `RTX 3080` `RTX 3070 Ti` `RTX 3070` `RTX 3060 Ti` `RTX 3060` `RTX 3050 Ti` `RTX 3050` |
|
||||
| | NVIDIA Professional | `A40` `RTX A6000` `RTX A5000` `RTX A4000` `RTX A3000` `RTX A2000` `A10` `A16` `A2` |
|
||||
| 8.0 | NVIDIA | `A100` `A30` |
|
||||
| 7.5 | GeForce GTX/RTX | `GTX 1650 Ti` `TITAN RTX` `RTX 2080 Ti` `RTX 2080` `RTX 2070` `RTX 2060` |
|
||||
| | NVIDIA Professional | `T4` `RTX 5000` `RTX 4000` `RTX 3000` `T2000` `T1200` `T1000` `T600` `T500` |
|
||||
| | Quadro | `RTX 8000` `RTX 6000` `RTX 5000` `RTX 4000` |
|
||||
| 7.0 | NVIDIA | `TITAN V` `V100` `Quadro GV100` |
|
||||
| 6.1 | NVIDIA TITAN | `TITAN Xp` `TITAN X` |
|
||||
| | GeForce GTX | `GTX 1080 Ti` `GTX 1080` `GTX 1070 Ti` `GTX 1070` `GTX 1060` `GTX 1050 Ti` `GTX 1050` |
|
||||
| | Quadro | `P6000` `P5200` `P4200` `P3200` `P5000` `P4000` `P3000` `P2200` `P2000` `P1000` `P620` `P600` `P500` `P520` |
|
||||
| | Tesla | `P40` `P4` |
|
||||
| 6.0 | NVIDIA | `Tesla P100` `Quadro GP100` |
|
||||
| 5.2 | GeForce GTX | `GTX TITAN X` `GTX 980 Ti` `GTX 980` `GTX 970` `GTX 960` `GTX 950` |
|
||||
| | Quadro | `M6000 24GB` `M6000` `M5000` `M5500M` `M4000` `M2200` `M2000` `M620` |
|
||||
| | Tesla | `M60` `M40` |
|
||||
| 5.0 | GeForce GTX | `GTX 750 Ti` `GTX 750` `NVS 810` |
|
||||
| | Quadro | `K2200` `K1200` `K620` `M1200` `M520` `M5000M` `M4000M` `M3000M` `M2000M` `M1000M` `K620M` `M600M` `M500M` |
|
||||
| Compute Capability | Family | Cards |
|
||||
| ------------------ | ------------------- | ------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| 12.0 | GeForce RTX 50xx | `RTX 5060` `RTX 5060 Ti` `RTX 5070` `RTX 5070 Ti` `RTX 5080` `RTX 5090` |
|
||||
| | NVIDIA Professional | `RTX PRO 4000 Blackwell` `RTX PRO 4500 Blackwell` `RTX PRO 5000 Blackwell` `RTX PRO 6000 Blackwell` |
|
||||
| 9.0 | NVIDIA | `H200` `H100` |
|
||||
| 8.9 | GeForce RTX 40xx | `RTX 4090` `RTX 4080 SUPER` `RTX 4080` `RTX 4070 Ti SUPER` `RTX 4070 Ti` `RTX 4070 SUPER` `RTX 4070` `RTX 4060 Ti` `RTX 4060` |
|
||||
| | NVIDIA Professional | `L4` `L40` `RTX 6000` |
|
||||
| 8.6 | GeForce RTX 30xx | `RTX 3090 Ti` `RTX 3090` `RTX 3080 Ti` `RTX 3080` `RTX 3070 Ti` `RTX 3070` `RTX 3060 Ti` `RTX 3060` `RTX 3050 Ti` `RTX 3050` |
|
||||
| | NVIDIA Professional | `A40` `RTX A6000` `RTX A5000` `RTX A4000` `RTX A3000` `RTX A2000` `A10` `A16` `A2` |
|
||||
| 8.0 | NVIDIA | `A100` `A30` |
|
||||
| 7.5 | GeForce GTX/RTX | `GTX 1650 Ti` `TITAN RTX` `RTX 2080 Ti` `RTX 2080` `RTX 2070` `RTX 2060` |
|
||||
| | NVIDIA Professional | `T4` `RTX 5000` `RTX 4000` `RTX 3000` `T2000` `T1200` `T1000` `T600` `T500` |
|
||||
| | Quadro | `RTX 8000` `RTX 6000` `RTX 5000` `RTX 4000` |
|
||||
| 7.0 | NVIDIA | `TITAN V` `V100` `Quadro GV100` |
|
||||
| 6.1 | NVIDIA TITAN | `TITAN Xp` `TITAN X` |
|
||||
| | GeForce GTX | `GTX 1080 Ti` `GTX 1080` `GTX 1070 Ti` `GTX 1070` `GTX 1060` `GTX 1050 Ti` `GTX 1050` |
|
||||
| | Quadro | `P6000` `P5200` `P4200` `P3200` `P5000` `P4000` `P3000` `P2200` `P2000` `P1000` `P620` `P600` `P500` `P520` |
|
||||
| | Tesla | `P40` `P4` |
|
||||
| 6.0 | NVIDIA | `Tesla P100` `Quadro GP100` |
|
||||
| 5.2 | GeForce GTX | `GTX TITAN X` `GTX 980 Ti` `GTX 980` `GTX 970` `GTX 960` `GTX 950` |
|
||||
| | Quadro | `M6000 24GB` `M6000` `M5000` `M5500M` `M4000` `M2200` `M2000` `M620` |
|
||||
| | Tesla | `M60` `M40` |
|
||||
| 5.0 | GeForce GTX | `GTX 750 Ti` `GTX 750` `NVS 810` |
|
||||
| | Quadro | `K2200` `K1200` `K620` `M1200` `M520` `M5000M` `M4000M` `M3000M` `M2000M` `M1000M` `K620M` `M600M` `M500M` |
|
||||
|
||||
For building locally to support older GPUs, see [developer.md](./development.md#linux-cuda-nvidia)
|
||||
|
||||
@@ -51,24 +52,28 @@ sudo modprobe nvidia_uvm`
|
||||
|
||||
## AMD Radeon
|
||||
|
||||
Ollama supports the following AMD GPUs:
|
||||
Ollama supports the following AMD GPUs via the ROCm library:
|
||||
|
||||
> [!NOTE]
|
||||
> Additional AMD GPU support is provided by the Vulkan Library - see below.
|
||||
|
||||
|
||||
### Linux Support
|
||||
|
||||
| Family | Cards and accelerators |
|
||||
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| AMD Radeon RX | `7900 XTX` `7900 XT` `7900 GRE` `7800 XT` `7700 XT` `7600 XT` `7600` `6950 XT` `6900 XTX` `6900XT` `6800 XT` `6800` `Vega 64` `Vega 56` |
|
||||
| AMD Radeon PRO | `W7900` `W7800` `W7700` `W7600` `W7500` `W6900X` `W6800X Duo` `W6800X` `W6800` `V620` `V420` `V340` `V320` `Vega II Duo` `Vega II` `VII` `SSG` |
|
||||
| AMD Instinct | `MI300X` `MI300A` `MI300` `MI250X` `MI250` `MI210` `MI200` `MI100` `MI60` `MI50` |
|
||||
| AMD Radeon RX | `7900 XTX` `7900 XT` `7900 GRE` `7800 XT` `7700 XT` `7600 XT` `7600` `6950 XT` `6900 XTX` `6900XT` `6800 XT` `6800` `Vega 64` |
|
||||
| AMD Radeon PRO | `W7900` `W7800` `W7700` `W7600` `W7500` `W6900X` `W6800X Duo` `W6800X` `W6800` `V620` `V420` `V340` `V320` `Vega II Duo` `Vega II` `SSG` |
|
||||
| AMD Instinct | `MI300X` `MI300A` `MI300` `MI250X` `MI250` `MI210` `MI200` `MI100` `MI60` |
|
||||
|
||||
### Windows Support
|
||||
|
||||
With ROCm v6.1, the following GPUs are supported on Windows.
|
||||
|
||||
| Family | Cards and accelerators |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------- |
|
||||
| AMD Radeon RX | `7900 XTX` `7900 XT` `7900 GRE` `7800 XT` `7700 XT` `7600 XT` `7600` `6950 XT` `6900 XTX` `6900XT` `6800 XT` `6800` |
|
||||
| AMD Radeon PRO | `W7900` `W7800` `W7700` `W7600` `W7500` `W6900X` `W6800X Duo` `W6800X` `W6800` `V620` |
|
||||
| Family | Cards and accelerators |
|
||||
| -------------- | -------------------------------------------------------------------------------------------------------------------- |
|
||||
| AMD Radeon RX | `7900 XTX` `7900 XT` `7900 GRE` `7800 XT` `7700 XT` `7600 XT` `7600` `6950 XT` `6900 XTX` `6900XT` `6800 XT` `6800` |
|
||||
| AMD Radeon PRO | `W7900` `W7800` `W7700` `W7600` `W7500` `W6900X` `W6800X Duo` `W6800X` `W6800` `V620` |
|
||||
|
||||
### Overrides on Linux
|
||||
|
||||
@@ -90,8 +95,6 @@ At this time, the known supported GPU types on linux are the following LLVM Targ
|
||||
This table shows some example GPUs that map to these LLVM targets:
|
||||
| **LLVM Target** | **An Example GPU** |
|
||||
|-----------------|---------------------|
|
||||
| gfx900 | Radeon RX Vega 56 |
|
||||
| gfx906 | Radeon Instinct MI50 |
|
||||
| gfx908 | Radeon Instinct MI100 |
|
||||
| gfx90a | Radeon Instinct MI210 |
|
||||
| gfx940 | Radeon Instinct MI300 |
|
||||
@@ -122,6 +125,42 @@ In some Linux distributions, SELinux can prevent containers from
|
||||
accessing the AMD GPU devices. On the host system you can run
|
||||
`sudo setsebool container_use_devices=1` to allow containers to use devices.
|
||||
|
||||
### Metal (Apple GPUs)
|
||||
## Metal (Apple GPUs)
|
||||
|
||||
Ollama supports GPU acceleration on Apple devices via the Metal API.
|
||||
|
||||
|
||||
## Vulkan GPU Support
|
||||
|
||||
> [!NOTE]
|
||||
> Vulkan is currently an Experimental feature. To enable, you must set OLLAMA_VULKAN=1 for the Ollama server as
|
||||
described in the [FAQ](faq.md#how-do-i-configure-ollama-server)
|
||||
|
||||
Additional GPU support on Windows and Linux is provided via
|
||||
[Vulkan](https://www.vulkan.org/). On Windows most GPU vendors drivers come
|
||||
bundled with Vulkan support and require no additional setup steps. Most Linux
|
||||
distributions require installing additional components, and you may have
|
||||
multiple options for Vulkan drivers between Mesa and GPU Vendor specific packages
|
||||
|
||||
- Linux Intel GPU Instructions - https://dgpu-docs.intel.com/driver/client/overview.html
|
||||
- Linux AMD GPU Instructions - https://amdgpu-install.readthedocs.io/en/latest/install-script.html#specifying-a-vulkan-implementation
|
||||
|
||||
For AMD GPUs on some Linux distributions, you may need to add the `ollama` user to the `render` group.
|
||||
|
||||
The Ollama scheduler leverages available VRAM data reported by the GPU libraries to
|
||||
make optimal scheduling decisions. Vulkan requires additional capabilities or
|
||||
running as root to expose this available VRAM data. If neither root access or this
|
||||
capability are granted, Ollama will use approximate sizes of the models
|
||||
to make best effort scheduling decisions.
|
||||
|
||||
```bash
|
||||
sudo setcap cap_perfmon+ep /usr/local/bin/ollama
|
||||
```
|
||||
|
||||
### GPU Selection
|
||||
|
||||
To select specific Vulkan GPU(s), you can set the environment variable
|
||||
`GGML_VK_VISIBLE_DEVICES` to one or more numeric IDs on the Ollama server as
|
||||
described in the [FAQ](faq.md#how-do-i-configure-ollama-server). If you
|
||||
encounter any problems with Vulkan based GPUs, you can disable all Vulkan GPUs
|
||||
by setting `GGML_VK_VISIBLE_DEVICES=-1`
|
||||
@@ -25,8 +25,23 @@ Install [n8n](https://docs.n8n.io/choose-n8n/).
|
||||
width="75%"
|
||||
/>
|
||||
</div>
|
||||
3. Confirm Base URL is set to `http://localhost:11434` and click **Save**
|
||||
<Note> If connecting to `http://localhost:11434` fails, use `http://127.0.0.1:11434`</Note>
|
||||
3. Confirm Base URL is set to `http://localhost:11434` if running locally or `http://host.docker.internal:11434` if running through docker and click **Save**
|
||||
|
||||
<Note>
|
||||
In environments that don't use Docker Desktop (ie, Linux server installations), `host.docker.internal` is not automatically added.
|
||||
|
||||
Run n8n in docker with `--add-host=host.docker.internal:host-gateway`
|
||||
|
||||
or add the following to a docker compose file:
|
||||
|
||||
```yaml
|
||||
extra_hosts:
|
||||
- "host.docker.internal:host-gateway"
|
||||
```
|
||||
</Note>
|
||||
|
||||
You should see a `Connection tested successfully` message.
|
||||
|
||||
4. When creating a new workflow, select **Add a first step** and select an **Ollama node**
|
||||
<div style={{ display: 'flex', justifyContent: 'center' }}>
|
||||
<img
|
||||
|
||||
@@ -1,34 +1,34 @@
|
||||
---
|
||||
title: VS Code
|
||||
title: VS Code
|
||||
---
|
||||
|
||||
## Install
|
||||
|
||||
Install [VSCode](https://code.visualstudio.com/download).
|
||||
Install [VS Code](https://code.visualstudio.com/download).
|
||||
|
||||
## Usage with Ollama
|
||||
## Usage with Ollama
|
||||
|
||||
1. Open Copilot side bar found in top right window
|
||||
<div style={{ display: 'flex', justifyContent: 'center' }}>
|
||||
<img
|
||||
src="/images/vscode-sidebar.png"
|
||||
alt="VSCode chat Sidebar"
|
||||
width="75%"
|
||||
/>
|
||||
</div>
|
||||
2. Select the model drowpdown > **Manage models**
|
||||
<div style={{ display: 'flex', justifyContent: 'center' }}>
|
||||
<img
|
||||
src="/images/vscode-models.png"
|
||||
alt="VSCode model picker"
|
||||
width="75%"
|
||||
/>
|
||||
</div>
|
||||
<div style={{ display: "flex", justifyContent: "center" }}>
|
||||
<img
|
||||
src="/images/vscode-sidebar.png"
|
||||
alt="VS Code chat Sidebar"
|
||||
width="75%"
|
||||
/>
|
||||
</div>
|
||||
2. Select the model dropdown > **Manage models**
|
||||
<div style={{ display: "flex", justifyContent: "center" }}>
|
||||
<img
|
||||
src="/images/vscode-models.png"
|
||||
alt="VS Code model picker"
|
||||
width="75%"
|
||||
/>
|
||||
</div>
|
||||
3. Enter **Ollama** under **Provider Dropdown** and select desired models (e.g `qwen3, qwen3-coder:480b-cloud`)
|
||||
<div style={{ display: 'flex', justifyContent: 'center' }}>
|
||||
<img
|
||||
src="/images/vscode-model-options.png"
|
||||
alt="VSCode model options dropdown"
|
||||
width="75%"
|
||||
/>
|
||||
</div>
|
||||
<div style={{ display: "flex", justifyContent: "center" }}>
|
||||
<img
|
||||
src="/images/vscode-model-options.png"
|
||||
alt="VS Code model options dropdown"
|
||||
width="75%"
|
||||
/>
|
||||
</div>
|
||||
|
||||
@@ -149,9 +149,6 @@ PARAMETER <parameter> <parametervalue>
|
||||
|
||||
| Parameter | Description | Value Type | Example Usage |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------- | -------------------- |
|
||||
| mirostat | Enable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0) | int | mirostat 0 |
|
||||
| mirostat_eta | Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1) | float | mirostat_eta 0.1 |
|
||||
| mirostat_tau | Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0) | float | mirostat_tau 5.0 |
|
||||
| num_ctx | Sets the size of the context window used to generate the next token. (Default: 2048) | int | num_ctx 4096 |
|
||||
| repeat_last_n | Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx) | int | repeat_last_n 64 |
|
||||
| repeat_penalty | Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1) | float | repeat_penalty 1.1 |
|
||||
|
||||
@@ -2,12 +2,15 @@ openapi: 3.1.0
|
||||
info:
|
||||
title: Ollama API
|
||||
version: 0.1.0
|
||||
license:
|
||||
name: MIT
|
||||
url: https://opensource.org/licenses/MIT
|
||||
description: |
|
||||
OpenAPI specification for the Ollama HTTP API
|
||||
|
||||
servers:
|
||||
- url: http://localhost:11434
|
||||
description: Local Ollama instance
|
||||
description: Ollama
|
||||
security: []
|
||||
components:
|
||||
securitySchemes:
|
||||
bearerAuth:
|
||||
@@ -93,8 +96,11 @@ components:
|
||||
type: boolean
|
||||
default: true
|
||||
think:
|
||||
type: boolean
|
||||
description: When true, returns separate thinking output in addition to content
|
||||
oneOf:
|
||||
- type: boolean
|
||||
- type: string
|
||||
enum: [high, medium, low]
|
||||
description: When true, returns separate thinking output in addition to content. Can be a boolean (true/false) or a string ("high", "medium", "low") for supported models.
|
||||
raw:
|
||||
type: boolean
|
||||
description: When true, returns the raw response from the model without any prompt templating
|
||||
@@ -105,6 +111,12 @@ components:
|
||||
description: Model keep-alive duration (for example `5m` or `0` to unload immediately)
|
||||
options:
|
||||
$ref: "#/components/schemas/ModelOptions"
|
||||
logprobs:
|
||||
type: boolean
|
||||
description: Whether to return log probabilities of the output tokens
|
||||
top_logprobs:
|
||||
type: integer
|
||||
description: Number of most likely tokens to return at each token position when logprobs are enabled
|
||||
GenerateResponse:
|
||||
type: object
|
||||
properties:
|
||||
@@ -144,6 +156,11 @@ components:
|
||||
eval_duration:
|
||||
type: integer
|
||||
description: Time spent generating tokens in nanoseconds
|
||||
logprobs:
|
||||
type: array
|
||||
items:
|
||||
$ref: "#/components/schemas/Logprob"
|
||||
description: Log probability information for the generated tokens when logprobs are enabled
|
||||
GenerateStreamEvent:
|
||||
type: object
|
||||
properties:
|
||||
@@ -271,13 +288,22 @@ components:
|
||||
type: boolean
|
||||
default: true
|
||||
think:
|
||||
type: boolean
|
||||
description: When true, returns separate thinking output in addition to content
|
||||
oneOf:
|
||||
- type: boolean
|
||||
- type: string
|
||||
enum: [high, medium, low]
|
||||
description: When true, returns separate thinking output in addition to content. Can be a boolean (true/false) or a string ("high", "medium", "low") for supported models.
|
||||
keep_alive:
|
||||
oneOf:
|
||||
- type: string
|
||||
- type: number
|
||||
description: Model keep-alive duration (for example `5m` or `0` to unload immediately)
|
||||
logprobs:
|
||||
type: boolean
|
||||
description: Whether to return log probabilities of the output tokens
|
||||
top_logprobs:
|
||||
type: integer
|
||||
description: Number of most likely tokens to return at each token position when logprobs are enabled
|
||||
ChatResponse:
|
||||
type: object
|
||||
properties:
|
||||
@@ -310,7 +336,6 @@ components:
|
||||
type: array
|
||||
items:
|
||||
type: string
|
||||
nullable: true
|
||||
description: Optional base64-encoded images in the response
|
||||
done:
|
||||
type: boolean
|
||||
@@ -336,6 +361,11 @@ components:
|
||||
eval_duration:
|
||||
type: integer
|
||||
description: Time spent generating tokens in nanoseconds
|
||||
logprobs:
|
||||
type: array
|
||||
items:
|
||||
$ref: "#/components/schemas/Logprob"
|
||||
description: Log probability information for the generated tokens when logprobs are enabled
|
||||
ChatStreamEvent:
|
||||
type: object
|
||||
properties:
|
||||
@@ -367,7 +397,6 @@ components:
|
||||
type: array
|
||||
items:
|
||||
type: string
|
||||
nullable: true
|
||||
description: Partial base64-encoded images, when present
|
||||
done:
|
||||
type: boolean
|
||||
@@ -543,6 +572,9 @@ components:
|
||||
license:
|
||||
type: string
|
||||
description: The license of the model
|
||||
modified_at:
|
||||
type: string
|
||||
description: Last modified timestamp in ISO 8601 format
|
||||
details:
|
||||
type: object
|
||||
description: High-level model details
|
||||
@@ -622,6 +654,9 @@ components:
|
||||
size_vram:
|
||||
type: integer
|
||||
description: VRAM usage in bytes
|
||||
context_length:
|
||||
type: integer
|
||||
description: Context length for the running model
|
||||
PsResponse:
|
||||
type: object
|
||||
properties:
|
||||
@@ -693,6 +728,41 @@ components:
|
||||
version:
|
||||
type: string
|
||||
description: Version of Ollama
|
||||
TokenLogprob:
|
||||
type: object
|
||||
description: Log probability information for a single token alternative
|
||||
properties:
|
||||
token:
|
||||
type: string
|
||||
description: The text representation of the token
|
||||
logprob:
|
||||
type: number
|
||||
description: The log probability of this token
|
||||
bytes:
|
||||
type: array
|
||||
items:
|
||||
type: integer
|
||||
description: The raw byte representation of the token
|
||||
Logprob:
|
||||
type: object
|
||||
description: Log probability information for a generated token
|
||||
properties:
|
||||
token:
|
||||
type: string
|
||||
description: The text representation of the token
|
||||
logprob:
|
||||
type: number
|
||||
description: The log probability of this token
|
||||
bytes:
|
||||
type: array
|
||||
items:
|
||||
type: integer
|
||||
description: The raw byte representation of the token
|
||||
top_logprobs:
|
||||
type: array
|
||||
items:
|
||||
$ref: "#/components/schemas/TokenLogprob"
|
||||
description: Most likely tokens and their log probabilities at this position
|
||||
ErrorResponse:
|
||||
type: object
|
||||
properties:
|
||||
@@ -1275,6 +1345,9 @@ paths:
|
||||
example:
|
||||
source: gemma3
|
||||
destination: gemma3-backup
|
||||
responses:
|
||||
"200":
|
||||
description: Model successfully copied
|
||||
/api/pull:
|
||||
post:
|
||||
summary: Pull a model
|
||||
@@ -1382,16 +1455,7 @@ paths:
|
||||
model: gemma3
|
||||
responses:
|
||||
"200":
|
||||
description: Deletion status updates.
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
$ref: "#/components/schemas/StatusResponse"
|
||||
example:
|
||||
status: "success"
|
||||
application/x-ndjson:
|
||||
schema:
|
||||
$ref: "#/components/schemas/StatusEvent"
|
||||
description: Model successfully deleted
|
||||
/api/version:
|
||||
get:
|
||||
summary: Get version
|
||||
|
||||
@@ -196,8 +196,6 @@ var (
|
||||
NoPrune = Bool("OLLAMA_NOPRUNE")
|
||||
// SchedSpread allows scheduling models across all GPUs.
|
||||
SchedSpread = Bool("OLLAMA_SCHED_SPREAD")
|
||||
// IntelGPU enables experimental Intel GPU detection.
|
||||
IntelGPU = Bool("OLLAMA_INTEL_GPU")
|
||||
// MultiUserCache optimizes prompt caching for multi-user scenarios
|
||||
MultiUserCache = Bool("OLLAMA_MULTIUSER_CACHE")
|
||||
// Enable the new Ollama engine
|
||||
@@ -206,6 +204,8 @@ var (
|
||||
ContextLength = Uint("OLLAMA_CONTEXT_LENGTH", 4096)
|
||||
// Auth enables authentication between the Ollama client and server
|
||||
UseAuth = Bool("OLLAMA_AUTH")
|
||||
// Enable Vulkan backend
|
||||
EnableVulkan = Bool("OLLAMA_VULKAN")
|
||||
)
|
||||
|
||||
func String(s string) func() string {
|
||||
@@ -314,7 +314,7 @@ func AsMap() map[string]EnvVar {
|
||||
ret["GGML_VK_VISIBLE_DEVICES"] = EnvVar{"GGML_VK_VISIBLE_DEVICES", VkVisibleDevices(), "Set which Vulkan devices are visible by numeric ID"}
|
||||
ret["GPU_DEVICE_ORDINAL"] = EnvVar{"GPU_DEVICE_ORDINAL", GpuDeviceOrdinal(), "Set which AMD devices are visible by numeric ID"}
|
||||
ret["HSA_OVERRIDE_GFX_VERSION"] = EnvVar{"HSA_OVERRIDE_GFX_VERSION", HsaOverrideGfxVersion(), "Override the gfx used for all detected AMD GPUs"}
|
||||
ret["OLLAMA_INTEL_GPU"] = EnvVar{"OLLAMA_INTEL_GPU", IntelGPU(), "Enable experimental Intel GPU detection"}
|
||||
ret["OLLAMA_VULKAN"] = EnvVar{"OLLAMA_VULKAN", EnableVulkan(), "Enable experimental Vulkan support"}
|
||||
}
|
||||
|
||||
return ret
|
||||
|
||||
@@ -249,6 +249,10 @@ func (kv KV) OllamaEngineRequired() bool {
|
||||
"qwen25vl",
|
||||
"qwen3", "qwen3moe",
|
||||
"qwen3vl", "qwen3vlmoe",
|
||||
"deepseekocr",
|
||||
"deepseek2",
|
||||
"nomic-bert",
|
||||
"olmo2",
|
||||
}, kv.Architecture())
|
||||
}
|
||||
|
||||
@@ -797,73 +801,6 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
|
||||
return
|
||||
}
|
||||
|
||||
func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
|
||||
if llm.KV().Uint("vision.block_count") == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
for name, layer := range llm.Tensors().GroupLayers() {
|
||||
if name == "v" || strings.HasPrefix(name, "v.") {
|
||||
for _, tensor := range layer {
|
||||
weights += tensor.Size()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
imageSize := uint64(llm.KV().Uint("vision.image_size"))
|
||||
patchSize := uint64(llm.KV().Uint("vision.patch_size"))
|
||||
if patchSize == 0 {
|
||||
slog.Warn("unknown patch size for vision model")
|
||||
return
|
||||
}
|
||||
|
||||
numChannels := uint64(llm.KV().Uint("vision.num_channels"))
|
||||
|
||||
numPatches := (imageSize / patchSize) * (imageSize / patchSize)
|
||||
if _, ok := llm.Tensors().GroupLayers()["v"]["class_embd"]; ok {
|
||||
numPatches++
|
||||
}
|
||||
|
||||
headCount := uint64(llm.KV().Uint("vision.attention.head_count"))
|
||||
embeddingLength := uint64(llm.KV().Uint("vision.embedding_length"))
|
||||
|
||||
switch llm.KV().Architecture() {
|
||||
case "mllama":
|
||||
numPaddedPatches := numPatches + 8 - (numPatches%8)%8
|
||||
|
||||
maxNumTiles := uint64(llm.KV().Uint("vision.max_num_tiles"))
|
||||
|
||||
graphSize = 4 * (8 +
|
||||
imageSize*imageSize*numChannels*maxNumTiles +
|
||||
embeddingLength*numPatches*maxNumTiles +
|
||||
9*embeddingLength*numPaddedPatches*maxNumTiles +
|
||||
numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount)
|
||||
case "gemma3", "mistral3":
|
||||
graphSize = 4 * (imageSize*imageSize*numChannels +
|
||||
embeddingLength*patchSize +
|
||||
numPatches*numPatches*headCount)
|
||||
case "qwen25vl":
|
||||
maxPixels := uint64(llm.KV().Uint("vision.max_pixels", 28*28*1280))
|
||||
|
||||
numPatches := maxPixels / (patchSize * patchSize)
|
||||
|
||||
graphSize = 4 * (maxPixels*numChannels + // Original image storage
|
||||
// Normalized pixels
|
||||
maxPixels*numChannels +
|
||||
// Patches storage (numPatches * channels * patchSize^2)
|
||||
numPatches*numChannels*patchSize*patchSize +
|
||||
// Self-attention calculations
|
||||
numPatches*numPatches*headCount +
|
||||
// Additional buffer for processing
|
||||
embeddingLength*numPatches)
|
||||
case "llama4":
|
||||
// vision graph is computed independently in the same schedule
|
||||
// and is negligible compared to the worst case text graph
|
||||
}
|
||||
|
||||
return weights, graphSize
|
||||
}
|
||||
|
||||
// SupportsKVCacheType checks if the requested cache type is supported
|
||||
func (f GGML) SupportsKVCacheType(cacheType string) bool {
|
||||
if cacheType == "" || cacheType == "f16" {
|
||||
@@ -895,6 +832,7 @@ func (f GGML) FlashAttention() bool {
|
||||
return slices.Contains([]string{
|
||||
"gemma3",
|
||||
"gptoss", "gpt-oss",
|
||||
"mistral3",
|
||||
"qwen3", "qwen3moe",
|
||||
"qwen3vl", "qwen3vlmoe",
|
||||
}, f.KV().String("general.architecture"))
|
||||
|
||||
@@ -305,7 +305,7 @@ func readGGUFV1StringsData(llm *gguf, r io.Reader, a *array[string]) (any, error
|
||||
|
||||
a.values[i] = e
|
||||
} else {
|
||||
discardGGUFString(llm, r)
|
||||
_ = discardGGUFString(llm, r)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -568,7 +568,6 @@ func WriteGGUF(f *os.File, kv KV, ts []*Tensor) error {
|
||||
g.SetLimit(runtime.GOMAXPROCS(0))
|
||||
// TODO consider reducing if tensors size * gomaxprocs is larger than free memory
|
||||
for _, t := range ts {
|
||||
t := t
|
||||
w := io.NewOffsetWriter(f, offset+int64(t.Offset))
|
||||
g.Go(func() error {
|
||||
_, err := t.WriteTo(w)
|
||||
@@ -598,6 +597,10 @@ func ggufWriteKV(ws io.WriteSeeker, arch, k string, v any) error {
|
||||
|
||||
var err error
|
||||
switch v := v.(type) {
|
||||
case int32:
|
||||
err = writeGGUF(ws, ggufTypeInt32, v)
|
||||
case int64:
|
||||
err = writeGGUF(ws, ggufTypeInt64, v)
|
||||
case uint32, FileType:
|
||||
err = writeGGUF(ws, ggufTypeUint32, v)
|
||||
case uint64:
|
||||
@@ -612,6 +615,10 @@ func ggufWriteKV(ws io.WriteSeeker, arch, k string, v any) error {
|
||||
err = writeGGUFArray(ws, ggufTypeInt32, v)
|
||||
case *array[int32]:
|
||||
err = writeGGUFArray(ws, ggufTypeInt32, v.values)
|
||||
case []int64:
|
||||
err = writeGGUFArray(ws, ggufTypeInt64, v)
|
||||
case *array[int64]:
|
||||
err = writeGGUFArray(ws, ggufTypeInt64, v.values)
|
||||
case []uint32:
|
||||
err = writeGGUFArray(ws, ggufTypeUint32, v)
|
||||
case *array[uint32]:
|
||||
|
||||
@@ -42,6 +42,10 @@ func TestWriteGGUF(t *testing.T) {
|
||||
"general.architecture": "test",
|
||||
"general.alignment": uint32(16),
|
||||
"test.key": "value",
|
||||
"test.int32_key": int32(-42),
|
||||
"test.int64_key": int64(-9223372036854775808),
|
||||
"test.int32_array": []int32{-1, 0, 1, 2147483647, -2147483648},
|
||||
"test.int64_array": []int64{-1, 0, 1, 9223372036854775807, -9223372036854775808},
|
||||
"attention.key": "value2",
|
||||
"tokenizer.key": "value3",
|
||||
"adapter.key": "value4",
|
||||
@@ -55,7 +59,7 @@ func TestWriteGGUF(t *testing.T) {
|
||||
}
|
||||
defer r.Close()
|
||||
|
||||
ff, err := Decode(r, 0)
|
||||
ff, err := Decode(r, -1)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
@@ -65,15 +69,19 @@ func TestWriteGGUF(t *testing.T) {
|
||||
"general.alignment": uint32(16),
|
||||
"general.parameter_count": uint64(54),
|
||||
"test.key": "value",
|
||||
"test.int32_key": int32(-42),
|
||||
"test.int64_key": int64(-9223372036854775808),
|
||||
"test.int32_array": &array[int32]{size: 5, values: []int32{-1, 0, 1, 2147483647, -2147483648}},
|
||||
"test.int64_array": &array[int64]{size: 5, values: []int64{-1, 0, 1, 9223372036854775807, -9223372036854775808}},
|
||||
"test.attention.key": "value2",
|
||||
"tokenizer.key": "value3",
|
||||
"adapter.key": "value4",
|
||||
}, ff.KV()); diff != "" {
|
||||
}, ff.KV(), cmp.AllowUnexported(array[int32]{}, array[int64]{})); diff != "" {
|
||||
t.Errorf("Mismatch (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(Tensors{
|
||||
Offset: 800,
|
||||
Offset: 992,
|
||||
items: []*Tensor{
|
||||
{Name: "blk.0.attn_k.weight", Offset: 0, Shape: []uint64{2, 3}},
|
||||
{Name: "blk.0.attn_norm.weight", Offset: 32, Shape: []uint64{2, 3}},
|
||||
|
||||
1
go.mod
1
go.mod
@@ -17,7 +17,6 @@ require (
|
||||
github.com/x448/float16 v0.8.4
|
||||
golang.org/x/sync v0.12.0
|
||||
golang.org/x/sys v0.36.0
|
||||
|
||||
)
|
||||
|
||||
require (
|
||||
|
||||
@@ -388,9 +388,9 @@ func NewFunctionNameMap() *FunctionNameMap {
|
||||
}
|
||||
}
|
||||
|
||||
// Init initializes the handler with tools and optional last message
|
||||
// Init initializes the handler with tools, optional last message, and think value
|
||||
// Implements the Parser interface
|
||||
func (h *HarmonyMessageHandler) Init(tools []api.Tool, lastMessage *api.Message) []api.Tool {
|
||||
func (h *HarmonyMessageHandler) Init(tools []api.Tool, lastMessage *api.Message, thinkValue *api.ThinkValue) []api.Tool {
|
||||
// Initialize the harmony parser
|
||||
if h.HarmonyParser == nil {
|
||||
h.HarmonyParser = &HarmonyParser{
|
||||
|
||||
@@ -14,6 +14,23 @@ import (
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
func assertBytesMatchToken(t *testing.T, label, token string, ints []int) {
|
||||
t.Helper()
|
||||
|
||||
raw := []byte(token)
|
||||
if len(ints) != len(raw) {
|
||||
t.Errorf("%s expected %d bytes for token %q, got %d (%v)", label, len(raw), token, len(ints), ints)
|
||||
return
|
||||
}
|
||||
|
||||
for i, b := range raw {
|
||||
if ints[i] != int(b) {
|
||||
t.Errorf("%s byte[%d] mismatch for token %q: got %d want %d", label, i, token, ints[i], int(b))
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestAPIGenerate(t *testing.T) {
|
||||
initialTimeout := 60 * time.Second
|
||||
streamTimeout := 30 * time.Second
|
||||
@@ -381,3 +398,182 @@ func TestAPIShowModel(t *testing.T) {
|
||||
t.Errorf("%s missing modified_at: %#v", modelName, resp)
|
||||
}
|
||||
}
|
||||
|
||||
func TestAPIGenerateLogprobs(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
|
||||
defer cancel()
|
||||
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
|
||||
if err := PullIfMissing(ctx, client, smol); err != nil {
|
||||
t.Fatalf("pull failed %s", err)
|
||||
}
|
||||
|
||||
enableLogprobs := true
|
||||
noStream := false
|
||||
|
||||
tests := []struct {
|
||||
name string
|
||||
logprobs *bool
|
||||
topLogprobs int
|
||||
expectCount int
|
||||
}{
|
||||
{
|
||||
name: "no_logprobs",
|
||||
logprobs: nil,
|
||||
topLogprobs: 0,
|
||||
expectCount: 0,
|
||||
},
|
||||
{
|
||||
name: "logprobs_only",
|
||||
logprobs: &enableLogprobs,
|
||||
topLogprobs: 0,
|
||||
expectCount: 1,
|
||||
},
|
||||
{
|
||||
name: "logprobs_with_top_5",
|
||||
logprobs: &enableLogprobs,
|
||||
topLogprobs: 5,
|
||||
expectCount: 1,
|
||||
},
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
req := api.GenerateRequest{
|
||||
Model: smol,
|
||||
Prompt: "Why is the sky blue?",
|
||||
Stream: &noStream,
|
||||
Logprobs: test.logprobs != nil && *test.logprobs,
|
||||
TopLogprobs: test.topLogprobs,
|
||||
Options: map[string]interface{}{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
"num_predict": 10,
|
||||
},
|
||||
}
|
||||
|
||||
var response api.GenerateResponse
|
||||
err := client.Generate(ctx, &req, func(resp api.GenerateResponse) error {
|
||||
if resp.Done {
|
||||
response = resp
|
||||
}
|
||||
return nil
|
||||
})
|
||||
if err != nil {
|
||||
t.Fatalf("generate failed: %s", err)
|
||||
}
|
||||
|
||||
// Check logprobs based on expectation
|
||||
if test.expectCount == 0 {
|
||||
if len(response.Logprobs) > 0 {
|
||||
t.Errorf("expected no logprobs but got %d", len(response.Logprobs))
|
||||
}
|
||||
} else {
|
||||
if len(response.Logprobs) == 0 {
|
||||
t.Errorf("expected logprobs but got none")
|
||||
}
|
||||
|
||||
// Validate each logprob entry
|
||||
for i, lp := range response.Logprobs {
|
||||
if lp.Token == "" {
|
||||
t.Errorf("logprob[%d] has empty token", i)
|
||||
}
|
||||
if lp.Logprob > 0 {
|
||||
t.Errorf("logprob[%d] has positive logprob %f (should be <= 0)", i, lp.Logprob)
|
||||
}
|
||||
assertBytesMatchToken(t, fmt.Sprintf("generate logprob[%d]", i), lp.Token, lp.Bytes)
|
||||
|
||||
// Check top_logprobs if requested
|
||||
if test.topLogprobs > 0 {
|
||||
if len(lp.TopLogprobs) == 0 {
|
||||
t.Errorf("logprob[%d] expected top_logprobs but got none", i)
|
||||
}
|
||||
if len(lp.TopLogprobs) > test.topLogprobs {
|
||||
t.Errorf("logprob[%d] has %d top_logprobs, expected max %d", i, len(lp.TopLogprobs), test.topLogprobs)
|
||||
}
|
||||
|
||||
// Verify top_logprobs are sorted by probability (descending)
|
||||
for j := 1; j < len(lp.TopLogprobs); j++ {
|
||||
if lp.TopLogprobs[j-1].Logprob < lp.TopLogprobs[j].Logprob {
|
||||
t.Errorf("logprob[%d].top_logprobs not sorted: %f < %f", i, lp.TopLogprobs[j-1].Logprob, lp.TopLogprobs[j].Logprob)
|
||||
}
|
||||
}
|
||||
for j, top := range lp.TopLogprobs {
|
||||
assertBytesMatchToken(t, fmt.Sprintf("generate logprob[%d].top[%d]", i, j), top.Token, top.Bytes)
|
||||
}
|
||||
} else if len(lp.TopLogprobs) > 0 {
|
||||
t.Errorf("logprob[%d] has top_logprobs but none were requested", i)
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestAPIChatLogprobs(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
|
||||
defer cancel()
|
||||
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
|
||||
if err := PullIfMissing(ctx, client, smol); err != nil {
|
||||
t.Fatalf("pull failed %s", err)
|
||||
}
|
||||
|
||||
enableLogprobs := true
|
||||
noStream := false
|
||||
|
||||
req := api.ChatRequest{
|
||||
Model: smol,
|
||||
Messages: []api.Message{
|
||||
{Role: "user", Content: "Say hello in one word"},
|
||||
},
|
||||
Stream: &noStream,
|
||||
Logprobs: enableLogprobs,
|
||||
TopLogprobs: 3,
|
||||
Options: map[string]interface{}{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
"num_predict": 5,
|
||||
},
|
||||
}
|
||||
|
||||
var response api.ChatResponse
|
||||
err := client.Chat(ctx, &req, func(resp api.ChatResponse) error {
|
||||
if resp.Done {
|
||||
response = resp
|
||||
}
|
||||
return nil
|
||||
})
|
||||
if err != nil {
|
||||
t.Fatalf("chat failed: %s", err)
|
||||
}
|
||||
|
||||
if len(response.Logprobs) == 0 {
|
||||
t.Fatal("expected logprobs in response but got none")
|
||||
}
|
||||
|
||||
t.Logf("received %d logprobs for chat response", len(response.Logprobs))
|
||||
|
||||
for i, lp := range response.Logprobs {
|
||||
if lp.Token == "" {
|
||||
t.Errorf("logprob[%d] has empty token", i)
|
||||
}
|
||||
if lp.Logprob > 0 {
|
||||
t.Errorf("logprob[%d] has positive logprob %f", i, lp.Logprob)
|
||||
}
|
||||
assertBytesMatchToken(t, fmt.Sprintf("chat logprob[%d]", i), lp.Token, lp.Bytes)
|
||||
if len(lp.TopLogprobs) == 0 {
|
||||
t.Errorf("logprob[%d] expected top_logprobs but got none", i)
|
||||
}
|
||||
if len(lp.TopLogprobs) > 3 {
|
||||
t.Errorf("logprob[%d] has %d top_logprobs, expected max 3", i, len(lp.TopLogprobs))
|
||||
}
|
||||
for j, top := range lp.TopLogprobs {
|
||||
assertBytesMatchToken(t, fmt.Sprintf("chat logprob[%d].top[%d]", i, j), top.Token, top.Bytes)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -4,7 +4,9 @@ package integration
|
||||
|
||||
import (
|
||||
"context"
|
||||
"errors"
|
||||
"math"
|
||||
"strings"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
@@ -204,8 +206,8 @@ func TestAllMiniLMEmbed(t *testing.T) {
|
||||
t.Fatalf("expected %v, got %v (similarity: %f)", expected[0:5], res.Embeddings[0][0:5], sim)
|
||||
}
|
||||
|
||||
if res.PromptEvalCount != 6 {
|
||||
t.Fatalf("expected 6 prompt tokens, got %d", res.PromptEvalCount)
|
||||
if res.PromptEvalCount != 8 {
|
||||
t.Fatalf("expected 8 prompt tokens, got %d", res.PromptEvalCount)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -251,8 +253,8 @@ func TestAllMiniLMBatchEmbed(t *testing.T) {
|
||||
t.Fatalf("expected %v, got %v (similarity: %f)", expected[1][0:5], res.Embeddings[1][0:5], sim)
|
||||
}
|
||||
|
||||
if res.PromptEvalCount != 12 {
|
||||
t.Fatalf("expected 12 prompt tokens, got %d", res.PromptEvalCount)
|
||||
if res.PromptEvalCount != 16 {
|
||||
t.Fatalf("expected 16 prompt tokens, got %d", res.PromptEvalCount)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -275,7 +277,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
|
||||
cases := []struct {
|
||||
name string
|
||||
request api.EmbedRequest
|
||||
check func(*api.EmbedResponse, error)
|
||||
check func(*testing.T, *api.EmbedResponse, error)
|
||||
}{
|
||||
{
|
||||
name: "target truncation",
|
||||
@@ -283,7 +285,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
|
||||
Model: "all-minilm",
|
||||
Input: "why",
|
||||
},
|
||||
check: func(got *api.EmbedResponse, err error) {
|
||||
check: func(t *testing.T, got *api.EmbedResponse, err error) {
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
@@ -300,10 +302,11 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
|
||||
Input: "why is the sky blue?",
|
||||
Options: map[string]any{"num_ctx": 3},
|
||||
},
|
||||
check: func(got *api.EmbedResponse, err error) {
|
||||
check: func(t *testing.T, got *api.EmbedResponse, err error) {
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
t.Logf("PromptEvalCount: want=%d got=%d", want.PromptEvalCount, got.PromptEvalCount)
|
||||
if diff := cmp.Diff(want.Embeddings[0], got.Embeddings[0]); diff != "" {
|
||||
t.Errorf("embedding mismatch (-want +got):\n%s", diff)
|
||||
}
|
||||
@@ -317,10 +320,11 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
|
||||
Truncate: &truncTrue,
|
||||
Options: map[string]any{"num_ctx": 3},
|
||||
},
|
||||
check: func(got *api.EmbedResponse, err error) {
|
||||
check: func(t *testing.T, got *api.EmbedResponse, err error) {
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
t.Logf("PromptEvalCount: want=%d got=%d", want.PromptEvalCount, got.PromptEvalCount)
|
||||
if diff := cmp.Diff(want.Embeddings[0], got.Embeddings[0]); diff != "" {
|
||||
t.Errorf("embedding mismatch (-want +got):\n%s", diff)
|
||||
}
|
||||
@@ -334,21 +338,21 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
|
||||
Truncate: &truncFalse,
|
||||
Options: map[string]any{"num_ctx": 3},
|
||||
},
|
||||
check: func(res *api.EmbedResponse, err error) {
|
||||
if err.Error() != "input exceeds maximum context length" {
|
||||
check: func(t *testing.T, res *api.EmbedResponse, err error) {
|
||||
if err.Error() != "the input length exceeds the context length" {
|
||||
t.Fatalf("expected truncation error, got: %v", err)
|
||||
}
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "input after truncate error",
|
||||
name: "input after truncate error with context length of 1",
|
||||
request: api.EmbedRequest{
|
||||
Model: "all-minilm",
|
||||
Input: "why is the sky blue?",
|
||||
Truncate: &truncTrue,
|
||||
Options: map[string]any{"num_ctx": 1},
|
||||
},
|
||||
check: func(res *api.EmbedResponse, err error) {
|
||||
check: func(t *testing.T, res *api.EmbedResponse, err error) {
|
||||
if err.Error() != "input after truncation exceeds maximum context length" {
|
||||
t.Fatalf("expected truncation error, got: %v", err)
|
||||
}
|
||||
@@ -362,7 +366,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
|
||||
Truncate: &truncTrue,
|
||||
Options: map[string]any{"num_ctx": 0},
|
||||
},
|
||||
check: func(res *api.EmbedResponse, err error) {
|
||||
check: func(t *testing.T, res *api.EmbedResponse, err error) {
|
||||
if err.Error() != "input after truncation exceeds maximum context length" {
|
||||
t.Fatalf("expected truncation error, got: %v", err)
|
||||
}
|
||||
@@ -375,7 +379,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
|
||||
Input: "why is the sky blue? Why is the sky blue? hi there my",
|
||||
Options: map[string]any{"num_ctx": 16},
|
||||
},
|
||||
check: func(res *api.EmbedResponse, err error) {
|
||||
check: func(t *testing.T, res *api.EmbedResponse, err error) {
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
@@ -385,7 +389,8 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
|
||||
|
||||
for _, req := range cases {
|
||||
t.Run(req.name, func(t *testing.T) {
|
||||
req.check(embedTestHelper(ctx, client, t, req.request))
|
||||
resp, err := embedTestHelper(ctx, client, t, req.request)
|
||||
req.check(t, resp, err)
|
||||
})
|
||||
}
|
||||
}
|
||||
@@ -409,3 +414,173 @@ func embedTestHelper(ctx context.Context, client *api.Client, t *testing.T, req
|
||||
|
||||
return client.Embed(ctx, &req)
|
||||
}
|
||||
|
||||
func TestEmbedTruncation(t *testing.T) {
|
||||
// Use test deadline if set, otherwise default to 2 minutes
|
||||
timeout := 2 * time.Minute
|
||||
if deadline, ok := t.Deadline(); ok {
|
||||
timeout = time.Until(deadline) - 10*time.Second // Reserve 10s buffer
|
||||
}
|
||||
ctx, cancel := context.WithTimeout(context.Background(), timeout)
|
||||
defer cancel()
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
|
||||
for _, model := range libraryEmbedModels {
|
||||
model := model
|
||||
t.Run(model, func(t *testing.T) {
|
||||
// Check if we're running out of time (reserve 20s for current model)
|
||||
if deadline, ok := t.Deadline(); ok && time.Until(deadline) < 20*time.Second {
|
||||
t.Skip("skipping remaining tests to avoid timeout")
|
||||
}
|
||||
|
||||
// Give each model its own budget to account for first-time pulls/loads
|
||||
mctx, mcancel := context.WithTimeout(ctx, 3*time.Minute)
|
||||
defer mcancel()
|
||||
|
||||
t.Run("truncation batch", func(t *testing.T) {
|
||||
truncTrue := true
|
||||
req := api.EmbedRequest{
|
||||
Model: model,
|
||||
Input: []string{"short", strings.Repeat("long ", 100), "medium text"},
|
||||
Truncate: &truncTrue,
|
||||
Options: map[string]any{"num_ctx": 30},
|
||||
}
|
||||
|
||||
res, err := embedTestHelper(mctx, client, t, req)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if len(res.Embeddings) != 3 {
|
||||
t.Fatalf("expected 3 embeddings, got %d", len(res.Embeddings))
|
||||
}
|
||||
|
||||
if res.PromptEvalCount > 90 {
|
||||
t.Fatalf("expected tokens <= 90 (3 × 30 max), got %d", res.PromptEvalCount)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("runner token count accuracy", func(t *testing.T) {
|
||||
baseline := api.EmbedRequest{Model: model, Input: "test"}
|
||||
baseRes, err := embedTestHelper(mctx, client, t, baseline)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
batch := api.EmbedRequest{
|
||||
Model: model,
|
||||
Input: []string{"test", "test", "test"},
|
||||
}
|
||||
batchRes, err := embedTestHelper(mctx, client, t, batch)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
expectedCount := baseRes.PromptEvalCount * 3
|
||||
if batchRes.PromptEvalCount < expectedCount-2 || batchRes.PromptEvalCount > expectedCount+2 {
|
||||
t.Fatalf("expected ~%d tokens (3 × %d), got %d",
|
||||
expectedCount, baseRes.PromptEvalCount, batchRes.PromptEvalCount)
|
||||
}
|
||||
})
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// TestEmbedStatusCode tests that errors from the embedding endpoint
|
||||
// properly preserve their HTTP status codes when returned to the client.
|
||||
// This test specifically checks the error handling path in EmbedHandler
|
||||
// where api.StatusError errors should maintain their original status code.
|
||||
func TestEmbedStatusCode(t *testing.T) {
|
||||
// Use test deadline if set, otherwise default to 2 minutes
|
||||
timeout := 2 * time.Minute
|
||||
if deadline, ok := t.Deadline(); ok {
|
||||
timeout = time.Until(deadline) - 10*time.Second // Reserve 10s buffer
|
||||
}
|
||||
ctx, cancel := context.WithTimeout(context.Background(), timeout)
|
||||
defer cancel()
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
|
||||
for _, model := range libraryEmbedModels {
|
||||
model := model
|
||||
t.Run(model, func(t *testing.T) {
|
||||
// Check if we're running out of time (reserve 20s for current model)
|
||||
if deadline, ok := t.Deadline(); ok && time.Until(deadline) < 20*time.Second {
|
||||
t.Skip("skipping remaining tests to avoid timeout")
|
||||
}
|
||||
|
||||
mctx, mcancel := context.WithTimeout(ctx, 3*time.Minute)
|
||||
defer mcancel()
|
||||
|
||||
// Pull the model if needed
|
||||
if err := PullIfMissing(mctx, client, model); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
t.Run("truncation error status code", func(t *testing.T) {
|
||||
truncFalse := false
|
||||
longInput := strings.Repeat("word ", 100)
|
||||
|
||||
req := api.EmbedRequest{
|
||||
Model: model,
|
||||
Input: longInput,
|
||||
Truncate: &truncFalse,
|
||||
Options: map[string]any{"num_ctx": 10},
|
||||
}
|
||||
|
||||
_, err := embedTestHelper(mctx, client, t, req)
|
||||
if err == nil {
|
||||
t.Fatal("expected error when truncate=false with long input")
|
||||
}
|
||||
|
||||
// Check that it's a StatusError with the correct status code
|
||||
var statusErr api.StatusError
|
||||
if !errors.As(err, &statusErr) {
|
||||
t.Fatalf("expected api.StatusError, got %T: %v", err, err)
|
||||
}
|
||||
|
||||
// The error should be a 4xx client error (likely 400 Bad Request)
|
||||
// not a 500 Internal Server Error
|
||||
if statusErr.StatusCode < 400 || statusErr.StatusCode >= 500 {
|
||||
t.Errorf("expected 4xx status code, got %d", statusErr.StatusCode)
|
||||
}
|
||||
|
||||
// Verify the error message is meaningful
|
||||
if !strings.Contains(err.Error(), "context length") {
|
||||
t.Errorf("expected error message to mention context length, got: %v", err)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("batch truncation error status code", func(t *testing.T) {
|
||||
truncFalse := false
|
||||
req := api.EmbedRequest{
|
||||
Model: model,
|
||||
Input: []string{
|
||||
"short input",
|
||||
strings.Repeat("very long input ", 100),
|
||||
"another short input",
|
||||
},
|
||||
Truncate: &truncFalse,
|
||||
Options: map[string]any{"num_ctx": 10},
|
||||
}
|
||||
|
||||
_, err := embedTestHelper(mctx, client, t, req)
|
||||
if err == nil {
|
||||
t.Fatal("expected error when one input exceeds context with truncate=false")
|
||||
}
|
||||
|
||||
// Check that it's a StatusError with the correct status code
|
||||
var statusErr api.StatusError
|
||||
if !errors.As(err, &statusErr) {
|
||||
t.Fatalf("expected api.StatusError, got %T: %v", err, err)
|
||||
}
|
||||
|
||||
// The error should be a 4xx client error, not a 500 Internal Server Error
|
||||
if statusErr.StatusCode < 400 || statusErr.StatusCode >= 500 {
|
||||
t.Errorf("expected 4xx status code, got %d", statusErr.StatusCode)
|
||||
}
|
||||
})
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
@@ -33,6 +33,9 @@ func TestVisionModels(t *testing.T) {
|
||||
// Qwen 3 VL mixture of experts
|
||||
model: "qwen3-vl:30b",
|
||||
},
|
||||
{
|
||||
model: "ministral-3",
|
||||
},
|
||||
}
|
||||
|
||||
for _, v := range testCases {
|
||||
|
||||
@@ -30,6 +30,7 @@ func TestAPIToolCalling(t *testing.T) {
|
||||
"mistral": 6,
|
||||
"qwen2.5": 6,
|
||||
"qwen2": 6,
|
||||
"ministral-3": 20,
|
||||
"mistral-nemo": 9,
|
||||
"mistral-small": 16,
|
||||
"mixtral:8x22b": 80,
|
||||
|
||||
@@ -38,6 +38,7 @@ var (
|
||||
|
||||
// Note: add newer models at the top of the list to test them first
|
||||
ollamaEngineChatModels = []string{
|
||||
"ministral-3",
|
||||
"qwen3-coder:30b",
|
||||
"gpt-oss:20b",
|
||||
"gemma3n:e2b",
|
||||
@@ -167,6 +168,7 @@ var (
|
||||
"medllama2",
|
||||
"megadolphin",
|
||||
"minicpm-v",
|
||||
"ministral-3",
|
||||
"mistral-large",
|
||||
"mistral-nemo",
|
||||
"mistral-openorca",
|
||||
@@ -270,6 +272,7 @@ var (
|
||||
"mistral",
|
||||
"qwen2.5",
|
||||
"qwen2",
|
||||
"ministral-3",
|
||||
"mistral-nemo",
|
||||
"mistral-small",
|
||||
"mixtral:8x22b",
|
||||
|
||||
@@ -3,7 +3,6 @@ package kvcache
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"math"
|
||||
"slices"
|
||||
|
||||
@@ -40,18 +39,18 @@ type Causal struct {
|
||||
|
||||
// ** current forward pass **
|
||||
|
||||
// the active layer for Get and Put
|
||||
curLayer int
|
||||
|
||||
// starting location for data storage for this batch
|
||||
curLoc int
|
||||
|
||||
// size of the current batch
|
||||
curBatchSize int
|
||||
|
||||
// locations for data storage for this batch
|
||||
curLoc ml.Tensor
|
||||
|
||||
// mask of the cache as used by this batch
|
||||
curMask ml.Tensor
|
||||
|
||||
// the active layer for Get and Put
|
||||
curLayer int
|
||||
|
||||
// locations in the cache that are needed for this batch
|
||||
curCellRange cellRange
|
||||
|
||||
@@ -206,45 +205,47 @@ func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) e
|
||||
c.curPositions = batch.Positions
|
||||
c.opts.Except = nil
|
||||
|
||||
var locs []int32
|
||||
if !reserve {
|
||||
c.updateSlidingWindow()
|
||||
|
||||
var err error
|
||||
c.curLoc, err = c.findStartLoc()
|
||||
if errors.Is(err, ErrKvCacheFull) {
|
||||
c.defrag()
|
||||
c.curLoc, err = c.findStartLoc()
|
||||
}
|
||||
locs, err = c.findLocs()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for i, pos := range batch.Positions {
|
||||
seq := batch.Sequences[i]
|
||||
loc := int(locs[i])
|
||||
|
||||
c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}
|
||||
c.cells[loc] = cacheCell{pos: pos, sequences: []int{seq}}
|
||||
|
||||
seqRange, ok := c.cellRanges[seq]
|
||||
if !ok {
|
||||
seqRange = newRange()
|
||||
}
|
||||
|
||||
seqRange.min = min(seqRange.min, c.curLoc+i)
|
||||
c.curCellRange.min = min(c.curCellRange.min, c.curLoc+i)
|
||||
seqRange.min = min(seqRange.min, loc)
|
||||
c.curCellRange.min = min(c.curCellRange.min, loc)
|
||||
|
||||
seqRange.max = max(seqRange.max, c.curLoc+i)
|
||||
c.curCellRange.max = max(c.curCellRange.max, c.curLoc+i)
|
||||
seqRange.max = max(seqRange.max, loc)
|
||||
c.curCellRange.max = max(c.curCellRange.max, loc)
|
||||
|
||||
c.cellRanges[seq] = seqRange
|
||||
}
|
||||
} else {
|
||||
// If we are reserving memory, don't update any of the cache metadata but set the size
|
||||
// to the worst case.
|
||||
c.curLoc = 0
|
||||
locs = make([]int32, c.curBatchSize)
|
||||
for i := range locs {
|
||||
locs[i] = int32(i)
|
||||
}
|
||||
c.curCellRange.min = 0
|
||||
c.curCellRange.max = len(c.cells) - 1
|
||||
}
|
||||
|
||||
c.curLoc = ctx.Input().FromInts(locs, len(locs))
|
||||
c.curMask = c.buildMask(ctx)
|
||||
|
||||
return nil
|
||||
@@ -257,22 +258,20 @@ func newRange() cellRange {
|
||||
}
|
||||
}
|
||||
|
||||
// Find the first contiguous block of at least curBatchSize
|
||||
func (c *Causal) findStartLoc() (int, error) {
|
||||
var start, count int
|
||||
// Returns a slice of locations where each token in the batch should be stored
|
||||
func (c *Causal) findLocs() ([]int32, error) {
|
||||
loc := make([]int32, 0, c.curBatchSize)
|
||||
|
||||
for i := range c.cells {
|
||||
if len(c.cells[i].sequences) == 0 {
|
||||
count++
|
||||
if count >= c.curBatchSize {
|
||||
return start, nil
|
||||
loc = append(loc, int32(i))
|
||||
if len(loc) >= c.curBatchSize {
|
||||
return loc, nil
|
||||
}
|
||||
} else {
|
||||
start = i + 1
|
||||
count = 0
|
||||
}
|
||||
}
|
||||
|
||||
return 0, fmt.Errorf("%w (cache: %v batch: %v)", ErrKvCacheFull, len(c.cells), c.curBatchSize)
|
||||
return nil, fmt.Errorf("%w (cache: %v batch: %v)", ErrKvCacheFull, len(c.cells), c.curBatchSize)
|
||||
}
|
||||
|
||||
func (c *Causal) updateSlidingWindow() {
|
||||
@@ -402,145 +401,6 @@ func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
|
||||
return maskTensor
|
||||
}
|
||||
|
||||
func (c *Causal) moveCells(ctx ml.Context, src, dst, length int) {
|
||||
for i, key := range c.keys {
|
||||
if key == nil {
|
||||
continue
|
||||
}
|
||||
|
||||
kHeadDim := key.Dim(0)
|
||||
numKVHeads := key.Dim(1)
|
||||
rowSize := key.Stride(2)
|
||||
|
||||
kSrcView := key.View(ctx, rowSize*src, kHeadDim*numKVHeads*length)
|
||||
kDstView := key.View(ctx, rowSize*dst, kHeadDim*numKVHeads*length)
|
||||
|
||||
value := c.values[i]
|
||||
var vSrcView, vDstView ml.Tensor
|
||||
if c.config.PermutedV {
|
||||
vHeadDim := value.Dim(1)
|
||||
elemSize := value.Stride(0)
|
||||
|
||||
vSrcView = value.View(ctx, elemSize*src, length, len(c.cells)*elemSize, vHeadDim*numKVHeads)
|
||||
vDstView = value.View(ctx, elemSize*dst, length, len(c.cells)*elemSize, vHeadDim*numKVHeads)
|
||||
} else {
|
||||
vHeadDim := value.Dim(0)
|
||||
rowSize := value.Stride(2)
|
||||
|
||||
vSrcView = value.View(ctx, rowSize*src, vHeadDim*numKVHeads*length)
|
||||
vDstView = value.View(ctx, rowSize*dst, vHeadDim*numKVHeads*length)
|
||||
}
|
||||
|
||||
ctx.Forward(
|
||||
kSrcView.Copy(ctx, kDstView),
|
||||
vSrcView.Copy(ctx, vDstView),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Causal) defrag() {
|
||||
slog.Debug("defragmenting kv cache")
|
||||
|
||||
// Defrag strategy:
|
||||
// - Search for empty holes at the beginning of the cache,
|
||||
// filling them with active data starting at the end
|
||||
// - If there are contiguous elements that need to be moved,
|
||||
// combine them into a single operation by holding new moves
|
||||
// until we see that the next one is non-contiguous
|
||||
// - Fill up the context with the maximum number of operations it
|
||||
// can hold then compute that and continue with a new context
|
||||
//
|
||||
// We could try to optimize placement by grouping blocks from
|
||||
// the same sequences together but most likely the next forward
|
||||
// pass will disrupt this anyways, so the real world benefit
|
||||
// seems limited as this time.
|
||||
|
||||
ctx := c.backend.NewContext()
|
||||
|
||||
// For every move, 6 tensors are required per layer (2 views and a
|
||||
// copy for each of k and v). We also need to refer to the original
|
||||
// k and v cache tensors - once per layer, not per move.
|
||||
layers := 0
|
||||
for _, key := range c.keys {
|
||||
if key == nil {
|
||||
continue
|
||||
}
|
||||
layers++
|
||||
}
|
||||
|
||||
maxMoves := (ctx.MaxGraphNodes() - 2*layers) / (6 * layers)
|
||||
moves := 0
|
||||
|
||||
var pendingSrc, pendingDst, pendingLen int
|
||||
src := len(c.cells) - 1
|
||||
|
||||
for dst := 0; dst < src; dst++ {
|
||||
if len(c.cells[dst].sequences) == 0 {
|
||||
for ; src > dst; src-- {
|
||||
if len(c.cells[src].sequences) != 0 {
|
||||
c.cells[dst] = c.cells[src]
|
||||
c.cells[src] = cacheCell{}
|
||||
|
||||
if pendingLen > 0 {
|
||||
if src == pendingSrc-pendingLen && dst == pendingDst+pendingLen {
|
||||
pendingSrc = src
|
||||
pendingLen++
|
||||
break
|
||||
} else {
|
||||
c.moveCells(ctx, pendingSrc, pendingDst, pendingLen)
|
||||
moves++
|
||||
}
|
||||
}
|
||||
|
||||
pendingSrc = src
|
||||
pendingDst = dst
|
||||
pendingLen = 1
|
||||
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if moves >= maxMoves {
|
||||
ctx.Compute()
|
||||
ctx.Close()
|
||||
ctx = c.backend.NewContext()
|
||||
|
||||
moves = 0
|
||||
}
|
||||
}
|
||||
|
||||
if pendingLen > 0 {
|
||||
c.moveCells(ctx, pendingSrc, pendingDst, pendingLen)
|
||||
moves++
|
||||
}
|
||||
|
||||
if moves > 0 {
|
||||
ctx.Compute()
|
||||
}
|
||||
ctx.Close()
|
||||
|
||||
// Reset range metadata
|
||||
for seq := range c.cellRanges {
|
||||
seqRange := newRange()
|
||||
|
||||
for i, cell := range c.cells {
|
||||
if slices.Contains(cell.sequences, seq) {
|
||||
if i < seqRange.min {
|
||||
seqRange.min = i
|
||||
}
|
||||
if i > seqRange.max {
|
||||
seqRange.max = i
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
c.cellRanges[seq] = seqRange
|
||||
}
|
||||
|
||||
c.updateSlidingWindow()
|
||||
}
|
||||
|
||||
func (c *Causal) SetLayer(layer int) {
|
||||
c.curLayer = layer
|
||||
}
|
||||
@@ -625,18 +485,25 @@ func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
|
||||
}
|
||||
}
|
||||
|
||||
rowSize := c.keys[c.curLayer].Stride(2)
|
||||
ctx.Forward(key.Copy(ctx, c.keys[c.curLayer].View(ctx, rowSize*c.curLoc, kHeadDim*numKVHeads*batchSize)))
|
||||
key = key.Reshape(ctx, kHeadDim*numKVHeads, batchSize)
|
||||
keyCache := c.keys[c.curLayer]
|
||||
keyCache = keyCache.Reshape(ctx, kHeadDim*numKVHeads, len(c.cells))
|
||||
ctx.Forward(keyCache.SetRows(ctx, key, c.curLoc))
|
||||
|
||||
if c.config.PermutedV {
|
||||
elemSize := c.values[c.curLayer].Stride(0)
|
||||
value = value.Reshape(ctx, vHeadDim*numKVHeads, 1, batchSize)
|
||||
value = value.Permute(ctx, 2, 0, 1, 3)
|
||||
|
||||
value = value.Permute(ctx, 1, 2, 0, 3)
|
||||
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, elemSize*c.curLoc, batchSize, len(c.cells)*elemSize, vHeadDim*numKVHeads)))
|
||||
valueCache := c.values[c.curLayer]
|
||||
valueCache = valueCache.Reshape(ctx, 1, len(c.cells), vHeadDim*numKVHeads)
|
||||
|
||||
ctx.Forward(valueCache.SetRows(ctx, value, c.curLoc))
|
||||
} else {
|
||||
rowSize := c.values[c.curLayer].Stride(2)
|
||||
value = value.Reshape(ctx, vHeadDim*numKVHeads, batchSize)
|
||||
valueCache := c.values[c.curLayer]
|
||||
valueCache = valueCache.Reshape(ctx, vHeadDim*numKVHeads, len(c.cells))
|
||||
|
||||
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, rowSize*c.curLoc, vHeadDim*numKVHeads*batchSize)))
|
||||
ctx.Forward(valueCache.SetRows(ctx, value, c.curLoc))
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
2
llama/build-info.cpp
generated
vendored
2
llama/build-info.cpp
generated
vendored
@@ -1,4 +1,4 @@
|
||||
int LLAMA_BUILD_NUMBER = 0;
|
||||
char const *LLAMA_COMMIT = "3cfa9c3f125763305b4226bc032f1954f08990dc";
|
||||
char const *LLAMA_COMMIT = "7f8ef50cce40e3e7e4526a3696cb45658190e69a";
|
||||
char const *LLAMA_COMPILER = "";
|
||||
char const *LLAMA_BUILD_TARGET = "";
|
||||
|
||||
@@ -22,6 +22,9 @@ include /src/llama.*
|
||||
include /src/llama-*.*
|
||||
include /src/unicode-data.*
|
||||
include /src/unicode.*
|
||||
include /src/models/
|
||||
include /src/models/*.h
|
||||
include /src/models/*.cpp
|
||||
include /vendor/
|
||||
include /vendor/miniaudio/
|
||||
include /vendor/miniaudio/*.h
|
||||
|
||||
103
llama/llama.cpp/common/common.cpp
vendored
103
llama/llama.cpp/common/common.cpp
vendored
@@ -8,6 +8,7 @@
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
#include "sampling.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cinttypes>
|
||||
@@ -26,7 +27,6 @@
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
#include <vector>
|
||||
|
||||
@@ -60,6 +60,14 @@
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
common_time_meas::common_time_meas(int64_t & t_acc, bool disable) : t_start_us(disable ? -1 : ggml_time_us()), t_acc(t_acc) {}
|
||||
|
||||
common_time_meas::~common_time_meas() {
|
||||
if (t_start_us >= 0) {
|
||||
t_acc += ggml_time_us() - t_start_us;
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// CPU utils
|
||||
//
|
||||
@@ -355,11 +363,7 @@ bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREAD
|
||||
}
|
||||
|
||||
void common_init() {
|
||||
llama_log_set([](ggml_log_level level, const char * text, void * /*user_data*/) {
|
||||
if (LOG_DEFAULT_LLAMA <= common_log_verbosity_thold) {
|
||||
common_log_add(common_log_main(), level, "%s", text);
|
||||
}
|
||||
}, NULL);
|
||||
llama_log_set(common_log_default_callback, NULL);
|
||||
|
||||
#ifdef NDEBUG
|
||||
const char * build_type = "";
|
||||
@@ -908,11 +912,96 @@ std::string fs_get_cache_file(const std::string & filename) {
|
||||
return cache_directory + filename;
|
||||
}
|
||||
|
||||
std::vector<common_file_info> fs_list_files(const std::string & path) {
|
||||
std::vector<common_file_info> files;
|
||||
if (path.empty()) return files;
|
||||
|
||||
std::filesystem::path dir(path);
|
||||
if (!std::filesystem::exists(dir) || !std::filesystem::is_directory(dir)) {
|
||||
return files;
|
||||
}
|
||||
|
||||
for (const auto & entry : std::filesystem::directory_iterator(dir)) {
|
||||
try {
|
||||
// Only include regular files (skip directories)
|
||||
const auto & p = entry.path();
|
||||
if (std::filesystem::is_regular_file(p)) {
|
||||
common_file_info info;
|
||||
info.path = p.string();
|
||||
info.name = p.filename().string();
|
||||
try {
|
||||
info.size = static_cast<size_t>(std::filesystem::file_size(p));
|
||||
} catch (const std::filesystem::filesystem_error &) {
|
||||
info.size = 0;
|
||||
}
|
||||
files.push_back(std::move(info));
|
||||
}
|
||||
} catch (const std::filesystem::filesystem_error &) {
|
||||
// skip entries we cannot inspect
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
return files;
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// Model utils
|
||||
//
|
||||
|
||||
static inline void common_init_sampler_from_model(
|
||||
const llama_model * model,
|
||||
common_params_sampling & sparams) {
|
||||
|
||||
const uint64_t config = sparams.user_sampling_config;
|
||||
|
||||
auto get_int32 = [&](const char * key, int32_t & dst, uint64_t user_config) {
|
||||
if (config & user_config) return;
|
||||
|
||||
char buf[64] = {0};
|
||||
if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
|
||||
char * end = nullptr;
|
||||
int32_t v = strtol(buf, &end, 10);
|
||||
if (end && end != buf) dst = v;
|
||||
}
|
||||
};
|
||||
|
||||
auto get_float = [&](const char * key, float & dst, uint64_t user_config) {
|
||||
if (config & user_config) return;
|
||||
|
||||
char buf[128] = {0};
|
||||
if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
|
||||
char * end = nullptr;
|
||||
float v = strtof(buf, &end);
|
||||
if (end && end != buf) dst = v;
|
||||
}
|
||||
};
|
||||
|
||||
// Sampling sequence
|
||||
if (!(config & common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS)) {
|
||||
char buf[512] = {0};
|
||||
if (llama_model_meta_val_str(model, llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE), buf, sizeof(buf)) > 0) {
|
||||
const std::vector<std::string> sampler_names = string_split<std::string>(std::string(buf), ';');
|
||||
if (!sampler_names.empty()) {
|
||||
sparams.samplers = common_sampler_types_from_names(sampler_names, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_K), sparams.top_k, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_K);
|
||||
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_P), sparams.top_p, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_P);
|
||||
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIN_P), sparams.min_p, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIN_P);
|
||||
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY), sparams.xtc_probability, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY);
|
||||
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD), sparams.xtc_threshold, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD);
|
||||
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TEMP), sparams.temp, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TEMP);
|
||||
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N), sparams.penalty_last_n, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N);
|
||||
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT), sparams.penalty_repeat, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT);
|
||||
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT), sparams.mirostat, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT);
|
||||
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU), sparams.mirostat_tau, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU);
|
||||
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA), sparams.mirostat_eta, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA);
|
||||
}
|
||||
|
||||
struct common_init_result common_init_from_params(common_params & params) {
|
||||
common_init_result iparams;
|
||||
auto mparams = common_model_params_to_llama(params);
|
||||
@@ -924,6 +1013,8 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
return iparams;
|
||||
}
|
||||
|
||||
common_init_sampler_from_model(model, params.sampling);
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
auto cparams = common_context_params_to_llama(params);
|
||||
|
||||
51
llama/llama.cpp/common/common.h
vendored
51
llama/llama.cpp/common/common.h
vendored
@@ -2,17 +2,15 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ggml-opt.h"
|
||||
#include "llama-cpp.h"
|
||||
|
||||
#include <set>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <string_view>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <sstream>
|
||||
#include <cmath>
|
||||
|
||||
#include "ggml-opt.h"
|
||||
#include "llama-cpp.h"
|
||||
|
||||
#ifdef _WIN32
|
||||
#define DIRECTORY_SEPARATOR '\\'
|
||||
@@ -30,6 +28,15 @@
|
||||
|
||||
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
|
||||
|
||||
struct common_time_meas {
|
||||
common_time_meas(int64_t & t_acc, bool disable = false);
|
||||
~common_time_meas();
|
||||
|
||||
const int64_t t_start_us;
|
||||
|
||||
int64_t & t_acc;
|
||||
};
|
||||
|
||||
struct common_adapter_lora_info {
|
||||
std::string path;
|
||||
float scale;
|
||||
@@ -133,6 +140,22 @@ struct common_grammar_trigger {
|
||||
llama_token token = LLAMA_TOKEN_NULL;
|
||||
};
|
||||
|
||||
enum common_params_sampling_config : uint64_t {
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS = 1 << 0,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_TOP_K = 1 << 1,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_TOP_P = 1 << 2,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_MIN_P = 1 << 3,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY = 1 << 4,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD = 1 << 5,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_TEMP = 1 << 6,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N = 1 << 7,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT = 1 << 8,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT = 1 << 9,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU = 1 << 10,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA = 1 << 11,
|
||||
};
|
||||
|
||||
|
||||
// sampling parameters
|
||||
struct common_params_sampling {
|
||||
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
|
||||
@@ -165,6 +188,8 @@ struct common_params_sampling {
|
||||
bool no_perf = false; // disable performance metrics
|
||||
bool timing_per_token = false;
|
||||
|
||||
uint64_t user_sampling_config = 0; // bitfield to track user-specified samplers
|
||||
|
||||
std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
|
||||
|
||||
|
||||
@@ -406,6 +431,8 @@ struct common_params {
|
||||
bool mmproj_use_gpu = true; // use GPU for multimodal model
|
||||
bool no_mmproj = false; // explicitly disable multimodal model
|
||||
std::vector<std::string> image; // path to image file(s)
|
||||
int image_min_tokens = -1;
|
||||
int image_max_tokens = -1;
|
||||
|
||||
// finetune
|
||||
struct lr_opt lr;
|
||||
@@ -458,7 +485,8 @@ struct common_params {
|
||||
float slot_prompt_similarity = 0.1f;
|
||||
|
||||
// batched-bench params
|
||||
bool is_pp_shared = false;
|
||||
bool is_pp_shared = false;
|
||||
bool is_tg_separate = false;
|
||||
|
||||
std::vector<int32_t> n_pp;
|
||||
std::vector<int32_t> n_tg;
|
||||
@@ -505,6 +533,10 @@ struct common_params {
|
||||
// return false from callback to abort model loading or true to continue
|
||||
llama_progress_callback load_progress_callback = NULL;
|
||||
void * load_progress_callback_user_data = NULL;
|
||||
|
||||
bool has_speculative() const {
|
||||
return !speculative.model.path.empty() || !speculative.model.hf_repo.empty();
|
||||
}
|
||||
};
|
||||
|
||||
// call once at the start of a program if it uses libcommon
|
||||
@@ -605,6 +637,13 @@ bool fs_create_directory_with_parents(const std::string & path);
|
||||
std::string fs_get_cache_directory();
|
||||
std::string fs_get_cache_file(const std::string & filename);
|
||||
|
||||
struct common_file_info {
|
||||
std::string path;
|
||||
std::string name;
|
||||
size_t size = 0; // in bytes
|
||||
};
|
||||
std::vector<common_file_info> fs_list_files(const std::string & path);
|
||||
|
||||
//
|
||||
// Model utils
|
||||
//
|
||||
|
||||
@@ -268,10 +268,10 @@ static bool is_reserved_name(const std::string & name) {
|
||||
}
|
||||
|
||||
std::regex INVALID_RULE_CHARS_RE("[^a-zA-Z0-9-]+");
|
||||
std::regex GRAMMAR_LITERAL_ESCAPE_RE("[\r\n\"]");
|
||||
std::regex GRAMMAR_LITERAL_ESCAPE_RE("[\r\n\"\\\\]");
|
||||
std::regex GRAMMAR_RANGE_LITERAL_ESCAPE_RE("[\r\n\"\\]\\-\\\\]");
|
||||
std::unordered_map<char, std::string> GRAMMAR_LITERAL_ESCAPES = {
|
||||
{'\r', "\\r"}, {'\n', "\\n"}, {'"', "\\\""}, {'-', "\\-"}, {']', "\\]"}
|
||||
{'\r', "\\r"}, {'\n', "\\n"}, {'"', "\\\""}, {'-', "\\-"}, {']', "\\]"}, {'\\', "\\\\"}
|
||||
};
|
||||
|
||||
std::unordered_set<char> NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'};
|
||||
@@ -303,6 +303,8 @@ static std::string format_literal(const std::string & literal) {
|
||||
return "\"" + escaped + "\"";
|
||||
}
|
||||
|
||||
std::string gbnf_format_literal(const std::string & literal) { return format_literal(literal); }
|
||||
|
||||
class SchemaConverter {
|
||||
private:
|
||||
friend std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options);
|
||||
@@ -601,7 +603,10 @@ private:
|
||||
}
|
||||
|
||||
std::string _resolve_ref(const std::string & ref) {
|
||||
std::string ref_name = ref.substr(ref.find_last_of('/') + 1);
|
||||
auto it = ref.find('#');
|
||||
std::string ref_fragment = it != std::string::npos ? ref.substr(it + 1) : ref;
|
||||
static const std::regex nonalphanumeric_regex(R"([^a-zA-Z0-9-]+)");
|
||||
std::string ref_name = "ref" + std::regex_replace(ref_fragment, nonalphanumeric_regex, "-");
|
||||
if (_rules.find(ref_name) == _rules.end() && _refs_being_resolved.find(ref) == _refs_being_resolved.end()) {
|
||||
_refs_being_resolved.insert(ref);
|
||||
json resolved = _refs[ref];
|
||||
@@ -774,11 +779,24 @@ public:
|
||||
std::vector<std::string> tokens = string_split(pointer, "/");
|
||||
for (size_t i = 1; i < tokens.size(); ++i) {
|
||||
std::string sel = tokens[i];
|
||||
if (target.is_null() || !target.contains(sel)) {
|
||||
if (target.is_object() && target.contains(sel)) {
|
||||
target = target[sel];
|
||||
} else if (target.is_array()) {
|
||||
size_t sel_index;
|
||||
try {
|
||||
sel_index = std::stoul(sel);
|
||||
} catch (const std::invalid_argument & e) {
|
||||
sel_index = target.size();
|
||||
}
|
||||
if (sel_index >= target.size()) {
|
||||
_errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump());
|
||||
return;
|
||||
}
|
||||
target = target[sel_index];
|
||||
} else {
|
||||
_errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump());
|
||||
return;
|
||||
}
|
||||
target = target[sel];
|
||||
}
|
||||
_refs[ref] = target;
|
||||
}
|
||||
|
||||
@@ -18,4 +18,6 @@ struct common_grammar_options {
|
||||
bool dotall = false;
|
||||
};
|
||||
|
||||
std::string gbnf_format_literal(const std::string & literal);
|
||||
|
||||
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options = {});
|
||||
|
||||
6
llama/llama.cpp/common/log.cpp
vendored
6
llama/llama.cpp/common/log.cpp
vendored
@@ -442,3 +442,9 @@ void common_log_set_prefix(struct common_log * log, bool prefix) {
|
||||
void common_log_set_timestamps(struct common_log * log, bool timestamps) {
|
||||
log->set_timestamps(timestamps);
|
||||
}
|
||||
|
||||
void common_log_default_callback(enum ggml_log_level level, const char * text, void * /*user_data*/) {
|
||||
if (LOG_DEFAULT_LLAMA <= common_log_verbosity_thold) {
|
||||
common_log_add(common_log_main(), level, "%s", text);
|
||||
}
|
||||
}
|
||||
|
||||
2
llama/llama.cpp/common/log.h
vendored
2
llama/llama.cpp/common/log.h
vendored
@@ -36,6 +36,8 @@ extern int common_log_verbosity_thold;
|
||||
|
||||
void common_log_set_verbosity_thold(int verbosity); // not thread-safe
|
||||
|
||||
void common_log_default_callback(enum ggml_log_level level, const char * text, void * user_data);
|
||||
|
||||
// the common_log uses an internal worker thread to print/write log messages
|
||||
// when the worker thread is paused, incoming log messages are discarded
|
||||
struct common_log;
|
||||
|
||||
68
llama/llama.cpp/common/sampling.cpp
vendored
68
llama/llama.cpp/common/sampling.cpp
vendored
@@ -3,9 +3,10 @@
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <unordered_map>
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
#include <unordered_map>
|
||||
|
||||
// the ring buffer works similarly to std::deque, but with a fixed capacity
|
||||
// TODO: deduplicate with llama-impl.h
|
||||
@@ -112,6 +113,13 @@ struct common_sampler {
|
||||
|
||||
llama_token_data_array cur_p;
|
||||
|
||||
void reset() {
|
||||
prev.clear();
|
||||
|
||||
llama_sampler_reset(grmr);
|
||||
llama_sampler_reset(chain);
|
||||
}
|
||||
|
||||
void set_logits(struct llama_context * ctx, int idx) {
|
||||
const auto * logits = llama_get_logits_ith(ctx, idx);
|
||||
|
||||
@@ -128,6 +136,12 @@ struct common_sampler {
|
||||
|
||||
cur_p = { cur.data(), cur.size(), -1, false };
|
||||
}
|
||||
|
||||
common_time_meas tm() {
|
||||
return common_time_meas(t_total_us, params.no_perf);
|
||||
}
|
||||
|
||||
mutable int64_t t_total_us = 0;
|
||||
};
|
||||
|
||||
std::string common_params_sampling::print() const {
|
||||
@@ -298,6 +312,8 @@ void common_sampler_free(struct common_sampler * gsmpl) {
|
||||
}
|
||||
|
||||
void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) {
|
||||
const auto tm = gsmpl->tm();
|
||||
|
||||
if (accept_grammar) {
|
||||
llama_sampler_accept(gsmpl->grmr, token);
|
||||
}
|
||||
@@ -308,9 +324,7 @@ void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, boo
|
||||
}
|
||||
|
||||
void common_sampler_reset(struct common_sampler * gsmpl) {
|
||||
llama_sampler_reset(gsmpl->grmr);
|
||||
|
||||
llama_sampler_reset(gsmpl->chain);
|
||||
gsmpl->reset();
|
||||
}
|
||||
|
||||
struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
|
||||
@@ -327,16 +341,54 @@ struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
|
||||
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl) {
|
||||
// TODO: measure grammar performance
|
||||
|
||||
const double t_sampling_ms = gsmpl ? 1e-3*gsmpl->t_total_us : 0;
|
||||
|
||||
llama_perf_sampler_data data_smpl;
|
||||
llama_perf_context_data data_ctx;
|
||||
|
||||
memset(&data_smpl, 0, sizeof(data_smpl));
|
||||
memset(&data_ctx, 0, sizeof(data_ctx));
|
||||
|
||||
if (gsmpl) {
|
||||
llama_perf_sampler_print(gsmpl->chain);
|
||||
auto & data = data_smpl;
|
||||
|
||||
data = llama_perf_sampler(gsmpl->chain);
|
||||
|
||||
// note: the sampling time includes the samplers time + extra time spent in common/sampling
|
||||
LOG_INF("%s: sampling time = %10.2f ms\n", __func__, t_sampling_ms);
|
||||
LOG_INF("%s: samplers time = %10.2f ms / %5d tokens\n", __func__, data.t_sample_ms, data.n_sample);
|
||||
}
|
||||
|
||||
if (ctx) {
|
||||
llama_perf_context_print(ctx);
|
||||
auto & data = data_ctx;
|
||||
|
||||
data = llama_perf_context(ctx);
|
||||
|
||||
const double t_end_ms = 1e-3 * ggml_time_us();
|
||||
|
||||
const double t_total_ms = t_end_ms - data.t_start_ms;
|
||||
const double t_unacc_ms = t_total_ms - (t_sampling_ms + data.t_p_eval_ms + data.t_eval_ms);
|
||||
const double t_unacc_pc = 100.0 * t_unacc_ms / t_total_ms;
|
||||
|
||||
LOG_INF("%s: load time = %10.2f ms\n", __func__, data.t_load_ms);
|
||||
LOG_INF("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
|
||||
__func__, data.t_p_eval_ms, data.n_p_eval, data.t_p_eval_ms / data.n_p_eval, 1e3 / data.t_p_eval_ms * data.n_p_eval);
|
||||
LOG_INF("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
|
||||
__func__, data.t_eval_ms, data.n_eval, data.t_eval_ms / data.n_eval, 1e3 / data.t_eval_ms * data.n_eval);
|
||||
LOG_INF("%s: total time = %10.2f ms / %5d tokens\n", __func__, (t_end_ms - data.t_start_ms), (data.n_p_eval + data.n_eval));
|
||||
LOG_INF("%s: unaccounted time = %10.2f ms / %5.1f %% (total - sampling - prompt eval - eval) / (total)\n", __func__, t_unacc_ms, t_unacc_pc);
|
||||
LOG_INF("%s: graphs reused = %10d\n", __func__, data.n_reused);
|
||||
|
||||
llama_memory_breakdown_print(ctx);
|
||||
}
|
||||
}
|
||||
|
||||
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
|
||||
llama_synchronize(ctx);
|
||||
|
||||
// start measuring sampling time after the llama_context synchronization in order to not measure any ongoing async operations
|
||||
const auto tm = gsmpl->tm();
|
||||
|
||||
gsmpl->set_logits(ctx, idx);
|
||||
|
||||
auto & grmr = gsmpl->grmr;
|
||||
@@ -428,6 +480,8 @@ uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
|
||||
// helpers
|
||||
|
||||
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl, bool do_sort) {
|
||||
const auto tm = gsmpl->tm();
|
||||
|
||||
auto * res = &gsmpl->cur_p;
|
||||
|
||||
if (do_sort && !res->sorted) {
|
||||
|
||||
28
llama/llama.cpp/include/llama.h
vendored
28
llama/llama.cpp/include/llama.h
vendored
@@ -83,6 +83,7 @@ extern "C" {
|
||||
LLAMA_ROPE_TYPE_NORM = 0,
|
||||
LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX,
|
||||
LLAMA_ROPE_TYPE_MROPE = GGML_ROPE_TYPE_MROPE,
|
||||
LLAMA_ROPE_TYPE_IMROPE = GGML_ROPE_TYPE_IMROPE,
|
||||
LLAMA_ROPE_TYPE_VISION = GGML_ROPE_TYPE_VISION,
|
||||
};
|
||||
|
||||
@@ -245,6 +246,21 @@ extern "C" {
|
||||
LLAMA_KV_OVERRIDE_TYPE_STR,
|
||||
};
|
||||
|
||||
enum llama_model_meta_key {
|
||||
LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE,
|
||||
LLAMA_MODEL_META_KEY_SAMPLING_TOP_K,
|
||||
LLAMA_MODEL_META_KEY_SAMPLING_TOP_P,
|
||||
LLAMA_MODEL_META_KEY_SAMPLING_MIN_P,
|
||||
LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY,
|
||||
LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD,
|
||||
LLAMA_MODEL_META_KEY_SAMPLING_TEMP,
|
||||
LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N,
|
||||
LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT,
|
||||
LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT,
|
||||
LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU,
|
||||
LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA,
|
||||
};
|
||||
|
||||
struct llama_model_kv_override {
|
||||
enum llama_model_kv_override_type tag;
|
||||
|
||||
@@ -460,7 +476,11 @@ extern "C" {
|
||||
LLAMA_API bool llama_supports_gpu_offload(void);
|
||||
LLAMA_API bool llama_supports_rpc (void);
|
||||
|
||||
// NOTE: After creating a llama_context, it is recommended to query the actual values using these functions
|
||||
// In some cases the requested values via llama_context_params may differ from the actual values used by the context
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/17046#discussion_r2503085732
|
||||
LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
|
||||
LLAMA_API uint32_t llama_n_ctx_seq (const struct llama_context * ctx);
|
||||
LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
|
||||
LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
|
||||
LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
|
||||
@@ -481,6 +501,7 @@ extern "C" {
|
||||
|
||||
LLAMA_API int32_t llama_model_n_ctx_train(const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_model_n_embd (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_model_n_embd_inp (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_model_n_layer (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_model_n_head (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_model_n_head_kv (const struct llama_model * model);
|
||||
@@ -512,6 +533,9 @@ extern "C" {
|
||||
// Get the number of metadata key/value pairs
|
||||
LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
|
||||
|
||||
// Get sampling metadata key name. Returns nullptr if the key is invalid
|
||||
LLAMA_API const char * llama_model_meta_key_str(enum llama_model_meta_key key);
|
||||
|
||||
// Get metadata key name by index
|
||||
LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
|
||||
|
||||
@@ -584,7 +608,7 @@ extern "C" {
|
||||
LLAMA_API int32_t llama_adapter_meta_val_str_by_index(const struct llama_adapter_lora * adapter, int32_t i, char * buf, size_t buf_size);
|
||||
|
||||
// Manually free a LoRA adapter
|
||||
// Note: loaded adapters will be free when the associated model is deleted
|
||||
// NOTE: loaded adapters will be free when the associated model is deleted
|
||||
LLAMA_API void llama_adapter_lora_free(struct llama_adapter_lora * adapter);
|
||||
|
||||
// Get the invocation tokens if the current lora is an alora
|
||||
@@ -1110,8 +1134,6 @@ extern "C" {
|
||||
// // sample from the logits of the last token in the batch
|
||||
// const llama_token id = llama_sampler_sample(smpl, ctx, -1);
|
||||
//
|
||||
// // accepting the token updates the internal state of certain samplers (e.g. grammar, repetition, etc.)
|
||||
// llama_sampler_accept(smpl, id);
|
||||
// ...
|
||||
// }
|
||||
//
|
||||
|
||||
251
llama/llama.cpp/src/llama-arch.cpp
vendored
251
llama/llama.cpp/src/llama-arch.cpp
vendored
@@ -32,6 +32,9 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_QWEN2VL, "qwen2vl" },
|
||||
{ LLM_ARCH_QWEN3, "qwen3" },
|
||||
{ LLM_ARCH_QWEN3MOE, "qwen3moe" },
|
||||
{ LLM_ARCH_QWEN3NEXT, "qwen3next" },
|
||||
{ LLM_ARCH_QWEN3VL, "qwen3vl" },
|
||||
{ LLM_ARCH_QWEN3VLMOE, "qwen3vlmoe" },
|
||||
{ LLM_ARCH_PHI2, "phi2" },
|
||||
{ LLM_ARCH_PHI3, "phi3" },
|
||||
{ LLM_ARCH_PHIMOE, "phimoe" },
|
||||
@@ -89,6 +92,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_BAILINGMOE2, "bailingmoe2" },
|
||||
{ LLM_ARCH_DOTS1, "dots1" },
|
||||
{ LLM_ARCH_ARCEE, "arcee" },
|
||||
{ LLM_ARCH_AFMOE, "afmoe" },
|
||||
{ LLM_ARCH_ERNIE4_5, "ernie4_5" },
|
||||
{ LLM_ARCH_ERNIE4_5_MOE, "ernie4_5-moe" },
|
||||
{ LLM_ARCH_HUNYUAN_MOE, "hunyuan-moe" },
|
||||
@@ -104,23 +108,39 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_SEED_OSS, "seed_oss" },
|
||||
{ LLM_ARCH_GROVEMOE, "grovemoe" },
|
||||
{ LLM_ARCH_APERTUS, "apertus" },
|
||||
{ LLM_ARCH_MINIMAX_M2, "minimax-m2" },
|
||||
{ LLM_ARCH_COGVLM, "cogvlm" },
|
||||
{ LLM_ARCH_RND1, "rnd1" },
|
||||
{ LLM_ARCH_PANGU_EMBED, "pangu-embedded" },
|
||||
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
||||
};
|
||||
|
||||
static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
{ LLM_KV_GENERAL_TYPE, "general.type" },
|
||||
{ LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
|
||||
{ LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
|
||||
{ LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
|
||||
{ LLM_KV_GENERAL_FILE_TYPE, "general.file_type" },
|
||||
{ LLM_KV_GENERAL_NAME, "general.name" },
|
||||
{ LLM_KV_GENERAL_AUTHOR, "general.author" },
|
||||
{ LLM_KV_GENERAL_VERSION, "general.version" },
|
||||
{ LLM_KV_GENERAL_URL, "general.url" },
|
||||
{ LLM_KV_GENERAL_DESCRIPTION, "general.description" },
|
||||
{ LLM_KV_GENERAL_LICENSE, "general.license" },
|
||||
{ LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
|
||||
{ LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
|
||||
{ LLM_KV_GENERAL_TYPE, "general.type" },
|
||||
{ LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
|
||||
{ LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
|
||||
{ LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
|
||||
{ LLM_KV_GENERAL_FILE_TYPE, "general.file_type" },
|
||||
{ LLM_KV_GENERAL_SAMPLING_SEQUENCE, "general.sampling.sequence" },
|
||||
{ LLM_KV_GENERAL_SAMPLING_TOP_K, "general.sampling.top_k" },
|
||||
{ LLM_KV_GENERAL_SAMPLING_TOP_P, "general.sampling.top_p" },
|
||||
{ LLM_KV_GENERAL_SAMPLING_MIN_P, "general.sampling.min_p" },
|
||||
{ LLM_KV_GENERAL_SAMPLING_XTC_PROBABILITY, "general.sampling.xtc_probability" },
|
||||
{ LLM_KV_GENERAL_SAMPLING_XTC_THRESHOLD, "general.sampling.xtc_threshold" },
|
||||
{ LLM_KV_GENERAL_SAMPLING_TEMP, "general.sampling.temp" },
|
||||
{ LLM_KV_GENERAL_SAMPLING_PENALTY_LAST_N, "general.sampling.penalty_last_n" },
|
||||
{ LLM_KV_GENERAL_SAMPLING_PENALTY_REPEAT, "general.sampling.penalty_repeat" },
|
||||
{ LLM_KV_GENERAL_SAMPLING_MIROSTAT, "general.sampling.mirostat" },
|
||||
{ LLM_KV_GENERAL_SAMPLING_MIROSTAT_TAU, "general.sampling.mirostat_tau" },
|
||||
{ LLM_KV_GENERAL_SAMPLING_MIROSTAT_ETA, "general.sampling.mirostat_eta" },
|
||||
{ LLM_KV_GENERAL_NAME, "general.name" },
|
||||
{ LLM_KV_GENERAL_AUTHOR, "general.author" },
|
||||
{ LLM_KV_GENERAL_VERSION, "general.version" },
|
||||
{ LLM_KV_GENERAL_URL, "general.url" },
|
||||
{ LLM_KV_GENERAL_DESCRIPTION, "general.description" },
|
||||
{ LLM_KV_GENERAL_LICENSE, "general.license" },
|
||||
{ LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
|
||||
{ LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
|
||||
|
||||
{ LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
|
||||
{ LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
|
||||
@@ -146,6 +166,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
{ LLM_KV_EXPERTS_PER_GROUP, "%s.experts_per_group" },
|
||||
{ LLM_KV_MOE_EVERY_N_LAYERS, "%s.moe_every_n_layers" },
|
||||
{ LLM_KV_NEXTN_PREDICT_LAYERS, "%s.nextn_predict_layers" },
|
||||
{ LLM_KV_NUM_DEEPSTACK_LAYERS, "%s.n_deepstack_layers" },
|
||||
{ LLM_KV_POOLING_TYPE, "%s.pooling_type" },
|
||||
{ LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
|
||||
{ LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" },
|
||||
@@ -329,6 +350,36 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_AFMOE,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
|
||||
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
||||
{ LLM_TENSOR_ATTN_GATE, "blk.%d.attn_gate" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
{ LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
|
||||
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
|
||||
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
|
||||
{ LLM_TENSOR_FFN_EXP_PROBS_B, "blk.%d.exp_probs_b" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_LLAMA4,
|
||||
{
|
||||
@@ -781,6 +832,77 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_QWEN3NEXT,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
{ LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
|
||||
{ LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
|
||||
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
|
||||
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
|
||||
{ LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
|
||||
{ LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
|
||||
{ LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
|
||||
{ LLM_TENSOR_SSM_BETA_ALPHA, "blk.%d.ssm_ba" },
|
||||
{ LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
|
||||
{ LLM_TENSOR_SSM_NORM, "blk.%d.ssm_norm" },
|
||||
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_QWEN3VL,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_QWEN3VLMOE,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_PHI2,
|
||||
{
|
||||
@@ -2168,7 +2290,7 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_SHORTCONV_INPROJ, "blk.%d.shortconv.in_proj" },
|
||||
{ LLM_TENSOR_SHORTCONV_OUTPROJ, "blk.%d.shortconv.out_proj" },
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "token_embd_norm" }, // note: wrong tensor name
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
}
|
||||
},
|
||||
@@ -2190,7 +2312,7 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_SHORTCONV_INPROJ, "blk.%d.shortconv.in_proj" },
|
||||
{ LLM_TENSOR_SHORTCONV_OUTPROJ, "blk.%d.shortconv.out_proj" },
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "token_embd_norm" }, // note: wrong tensor name
|
||||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
@@ -2332,6 +2454,84 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_FFN_UP_CHEXPS, "blk.%d.ffn_up_chexps" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_MINIMAX_M2,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
|
||||
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
{ LLM_TENSOR_FFN_EXP_PROBS_B, "blk.%d.exp_probs_b" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_PANGU_EMBED,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_COGVLM,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_VISEXP_ATTN_QKV, "blk.%d.vis_attn_qkv" },
|
||||
{ LLM_TENSOR_VISEXP_ATTN_OUT, "blk.%d.vis_attn_output" },
|
||||
{ LLM_TENSOR_VISEXP_FFN_GATE, "blk.%d.vis_gate" },
|
||||
{ LLM_TENSOR_VISEXP_FFN_DOWN, "blk.%d.vis_down" },
|
||||
{ LLM_TENSOR_VISEXP_FFN_UP, "blk.%d.vis_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_RND1,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_UNKNOWN,
|
||||
{
|
||||
@@ -2340,11 +2540,21 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
},
|
||||
};
|
||||
|
||||
// declare information about the model weight tensors:
|
||||
// - the layer in which the tensor is going to be used. this is needed in order to assign the correct buffer type for the weight
|
||||
// - the operator which is going to use the weight. this is needed to determine if the respective backend supports the operator
|
||||
//
|
||||
// for example, input layers are usually assigned to CPU/host buffer types
|
||||
//
|
||||
// a mismatch between the declared information and the actual layer/op in which the tensor is used can lead to sub-optimal
|
||||
// assignment of the buffer types and extra overhead during computation
|
||||
// example: https://github.com/ggml-org/llama.cpp/pull/17548
|
||||
//
|
||||
static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
|
||||
{LLM_TENSOR_TOKEN_EMBD, {LLM_TENSOR_LAYER_INPUT, GGML_OP_GET_ROWS}},
|
||||
{LLM_TENSOR_POS_EMBD, {LLM_TENSOR_LAYER_INPUT, GGML_OP_GET_ROWS}},
|
||||
{LLM_TENSOR_TOKEN_EMBD_NORM, {LLM_TENSOR_LAYER_INPUT, GGML_OP_GET_ROWS}},
|
||||
{LLM_TENSOR_TOKEN_TYPES, {LLM_TENSOR_LAYER_INPUT, GGML_OP_GET_ROWS}},
|
||||
{LLM_TENSOR_TOKEN_EMBD_NORM, {LLM_TENSOR_LAYER_INPUT, GGML_OP_MUL}},
|
||||
{LLM_TENSOR_OUTPUT, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_CLS, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_CLS_OUT, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}},
|
||||
@@ -2361,6 +2571,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
|
||||
{LLM_TENSOR_ATTN_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_ATTN_QKV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_ATTN_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_ATTN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_FFN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_FFN_DOWN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_FFN_UP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
@@ -2398,6 +2609,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
|
||||
{LLM_TENSOR_SSM_X, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_SSM_DT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_SSM_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_SSM_BETA_ALPHA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_TIME_MIX_W1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_TIME_MIX_W2, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_TIME_MIX_A1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
@@ -2509,6 +2721,11 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
|
||||
{LLM_TENSOR_SHORTCONV_CONV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_SSM_CONV}},
|
||||
{LLM_TENSOR_SHORTCONV_INPROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_SHORTCONV_OUTPROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_VISEXP_ATTN_QKV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_VISEXP_ATTN_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_VISEXP_FFN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_VISEXP_FFN_DOWN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
{LLM_TENSOR_VISEXP_FFN_UP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||
// NextN/MTP tensors are currently ignored (reserved for future MTP support)
|
||||
// These tensors only exist in the last layer(s) and are treated as output tensors
|
||||
{LLM_TENSOR_NEXTN_EH_PROJ, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}},
|
||||
@@ -2592,6 +2809,7 @@ bool llm_arch_is_hybrid(const llm_arch & arch) {
|
||||
case LLM_ARCH_LFM2:
|
||||
case LLM_ARCH_LFM2MOE:
|
||||
case LLM_ARCH_NEMOTRON_H:
|
||||
case LLM_ARCH_QWEN3NEXT:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
@@ -2603,6 +2821,7 @@ bool llm_arch_is_diffusion(const llm_arch & arch) {
|
||||
case LLM_ARCH_DREAM:
|
||||
case LLM_ARCH_LLADA:
|
||||
case LLM_ARCH_LLADA_MOE:
|
||||
case LLM_ARCH_RND1:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
|
||||
28
llama/llama.cpp/src/llama-arch.h
vendored
28
llama/llama.cpp/src/llama-arch.h
vendored
@@ -36,6 +36,9 @@ enum llm_arch {
|
||||
LLM_ARCH_QWEN2VL,
|
||||
LLM_ARCH_QWEN3,
|
||||
LLM_ARCH_QWEN3MOE,
|
||||
LLM_ARCH_QWEN3NEXT,
|
||||
LLM_ARCH_QWEN3VL,
|
||||
LLM_ARCH_QWEN3VLMOE,
|
||||
LLM_ARCH_PHI2,
|
||||
LLM_ARCH_PHI3,
|
||||
LLM_ARCH_PHIMOE,
|
||||
@@ -93,6 +96,7 @@ enum llm_arch {
|
||||
LLM_ARCH_BAILINGMOE2,
|
||||
LLM_ARCH_DOTS1,
|
||||
LLM_ARCH_ARCEE,
|
||||
LLM_ARCH_AFMOE,
|
||||
LLM_ARCH_ERNIE4_5,
|
||||
LLM_ARCH_ERNIE4_5_MOE,
|
||||
LLM_ARCH_HUNYUAN_MOE,
|
||||
@@ -108,6 +112,10 @@ enum llm_arch {
|
||||
LLM_ARCH_SEED_OSS,
|
||||
LLM_ARCH_GROVEMOE,
|
||||
LLM_ARCH_APERTUS,
|
||||
LLM_ARCH_MINIMAX_M2,
|
||||
LLM_ARCH_COGVLM,
|
||||
LLM_ARCH_RND1,
|
||||
LLM_ARCH_PANGU_EMBED,
|
||||
LLM_ARCH_UNKNOWN,
|
||||
};
|
||||
|
||||
@@ -117,6 +125,18 @@ enum llm_kv {
|
||||
LLM_KV_GENERAL_QUANTIZATION_VERSION,
|
||||
LLM_KV_GENERAL_ALIGNMENT,
|
||||
LLM_KV_GENERAL_FILE_TYPE,
|
||||
LLM_KV_GENERAL_SAMPLING_SEQUENCE,
|
||||
LLM_KV_GENERAL_SAMPLING_TOP_K,
|
||||
LLM_KV_GENERAL_SAMPLING_TOP_P,
|
||||
LLM_KV_GENERAL_SAMPLING_MIN_P,
|
||||
LLM_KV_GENERAL_SAMPLING_XTC_PROBABILITY,
|
||||
LLM_KV_GENERAL_SAMPLING_XTC_THRESHOLD,
|
||||
LLM_KV_GENERAL_SAMPLING_TEMP,
|
||||
LLM_KV_GENERAL_SAMPLING_PENALTY_LAST_N,
|
||||
LLM_KV_GENERAL_SAMPLING_PENALTY_REPEAT,
|
||||
LLM_KV_GENERAL_SAMPLING_MIROSTAT,
|
||||
LLM_KV_GENERAL_SAMPLING_MIROSTAT_TAU,
|
||||
LLM_KV_GENERAL_SAMPLING_MIROSTAT_ETA,
|
||||
LLM_KV_GENERAL_NAME,
|
||||
LLM_KV_GENERAL_AUTHOR,
|
||||
LLM_KV_GENERAL_VERSION,
|
||||
@@ -150,6 +170,7 @@ enum llm_kv {
|
||||
LLM_KV_EXPERTS_PER_GROUP,
|
||||
LLM_KV_MOE_EVERY_N_LAYERS,
|
||||
LLM_KV_NEXTN_PREDICT_LAYERS,
|
||||
LLM_KV_NUM_DEEPSTACK_LAYERS,
|
||||
LLM_KV_POOLING_TYPE,
|
||||
LLM_KV_LOGIT_SCALE,
|
||||
LLM_KV_DECODER_START_TOKEN_ID,
|
||||
@@ -308,6 +329,7 @@ enum llm_tensor {
|
||||
LLM_TENSOR_ATTN_POST_NORM,
|
||||
LLM_TENSOR_ATTN_ROT_EMBD,
|
||||
LLM_TENSOR_ATTN_SINKS,
|
||||
LLM_TENSOR_ATTN_GATE,
|
||||
LLM_TENSOR_FFN_GATE_INP,
|
||||
LLM_TENSOR_FFN_GATE_INP_SHEXP,
|
||||
LLM_TENSOR_FFN_NORM,
|
||||
@@ -362,6 +384,7 @@ enum llm_tensor {
|
||||
LLM_TENSOR_SSM_D,
|
||||
LLM_TENSOR_SSM_NORM,
|
||||
LLM_TENSOR_SSM_OUT,
|
||||
LLM_TENSOR_SSM_BETA_ALPHA, // qwen3next
|
||||
LLM_TENSOR_TIME_MIX_W0,
|
||||
LLM_TENSOR_TIME_MIX_W1,
|
||||
LLM_TENSOR_TIME_MIX_W2,
|
||||
@@ -458,6 +481,11 @@ enum llm_tensor {
|
||||
LLM_TENSOR_SHORTCONV_CONV,
|
||||
LLM_TENSOR_SHORTCONV_INPROJ,
|
||||
LLM_TENSOR_SHORTCONV_OUTPROJ,
|
||||
LLM_TENSOR_VISEXP_ATTN_QKV,
|
||||
LLM_TENSOR_VISEXP_ATTN_OUT,
|
||||
LLM_TENSOR_VISEXP_FFN_GATE,
|
||||
LLM_TENSOR_VISEXP_FFN_DOWN,
|
||||
LLM_TENSOR_VISEXP_FFN_UP,
|
||||
LLM_TENSOR_NEXTN_EH_PROJ,
|
||||
LLM_TENSOR_NEXTN_EMBED_TOKENS,
|
||||
LLM_TENSOR_NEXTN_ENORM,
|
||||
|
||||
96
llama/llama.cpp/src/llama-batch.cpp
vendored
96
llama/llama.cpp/src/llama-batch.cpp
vendored
@@ -215,6 +215,7 @@ bool llama_batch_allocr::init(
|
||||
/*.n_seq_tokens =*/ (uint32_t) 1,
|
||||
/*.n_seqs =*/ (uint32_t) batch.n_tokens,
|
||||
/*.n_seqs_unq =*/ (uint32_t) this->seq_id_unq.size(),
|
||||
/*.n_pos =*/ n_pos_per_embd,
|
||||
/*.token =*/ batch.token,
|
||||
/*.embd =*/ batch.embd,
|
||||
/*.pos =*/ batch.pos,
|
||||
@@ -251,46 +252,72 @@ bool llama_batch_allocr::init(
|
||||
// consistency checks
|
||||
//
|
||||
|
||||
for (uint32_t s = 0; s < n_seq_max; ++s) {
|
||||
if (seq_pos[s].empty()) {
|
||||
continue;
|
||||
}
|
||||
if (n_pos_per_embd > 1) {
|
||||
// M-RoPE case: allow position to "jump" forward only (non-continuous positions are allowed)
|
||||
for (uint32_t s = 0; s < n_seq_max; ++s) {
|
||||
if (seq_pos[s].empty()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const llama_pos p0 = memory ? memory->seq_pos_max(s) : -1;
|
||||
|
||||
if (p0 >= 0) {
|
||||
bool ok = true;
|
||||
const llama_pos p0 = memory ? memory->seq_pos_max(s) : -1;
|
||||
|
||||
if (batch.token) {
|
||||
if (p0 >= 0 && p0 >= seq_pos_min(s)) {
|
||||
LLAMA_LOG_ERROR(
|
||||
"%s: the tokens of sequence %d in the input batch have inconsistent sequence positions:\n"
|
||||
" - the last position stored in the memory module of the context (i.e. the KV cache) for sequence %d is X = %d\n"
|
||||
" - the tokens for sequence %d in the input batch have a starting position of Y = %d\n"
|
||||
" for M-RoPE, it is required that the position satisfies: X < Y\n",
|
||||
__func__, s, s, p0, s, seq_pos_min(s));
|
||||
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
// embedding inputs can have overlapping positions
|
||||
if (p0 >= 0 && p0 > seq_pos_min(s)) {
|
||||
LLAMA_LOG_ERROR(
|
||||
"%s: the tokens of sequence %d in the input batch have inconsistent sequence positions:\n"
|
||||
" - the last position stored in the memory module of the context (i.e. the KV cache) for sequence %d is X = %d\n"
|
||||
" - the tokens for sequence %d in the input batch have a starting position of Y = %d\n"
|
||||
" for M-RoPE, it is required that the position satisfies: X <= Y\n",
|
||||
__func__, s, s, p0, s, seq_pos_min(s));
|
||||
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (uint32_t s = 0; s < n_seq_max; ++s) {
|
||||
if (seq_pos[s].empty()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const llama_pos p0 = memory ? memory->seq_pos_max(s) : -1;
|
||||
|
||||
if (p0 >= 0) {
|
||||
bool ok = true;
|
||||
|
||||
if (seq_pos_min(s) != p0 + 1) {
|
||||
ok = false;
|
||||
}
|
||||
} else {
|
||||
assert(batch.embd);
|
||||
|
||||
// for embeddings (typically used as vision input), we allow them to have repeating positions
|
||||
// ref: https://github.com/ggml-org/llama.cpp/issues/13694#issuecomment-2983871762
|
||||
if (seq_pos_min(s) != p0 && seq_pos_min(s) != p0 + 1) {
|
||||
ok = false;
|
||||
if (!ok) {
|
||||
LLAMA_LOG_ERROR(
|
||||
"%s: the tokens of sequence %d in the input batch have inconsistent sequence positions:\n"
|
||||
" - the last position stored in the memory module of the context (i.e. the KV cache) for sequence %d is X = %d\n"
|
||||
" - the tokens for sequence %d in the input batch have a starting position of Y = %d\n"
|
||||
" it is required that the sequence positions remain consecutive: Y = X + 1\n",
|
||||
__func__, s, s, p0, s, seq_pos_min(s));
|
||||
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
if (!ok) {
|
||||
LLAMA_LOG_ERROR(
|
||||
"%s: the tokens of sequence %d in the input batch have inconsistent sequence positions:\n"
|
||||
" - the last position stored in the memory module of the context (i.e. the KV cache) for sequence %d is X = %d\n"
|
||||
" - the tokens for sequence %d in the input batch have a starting position of Y = %d\n"
|
||||
" it is required that the sequence positions remain consecutive: Y = X + 1\n",
|
||||
__func__, s, s, p0, s, seq_pos_min(s));
|
||||
|
||||
if (seq_pos_max(s) - seq_pos_min(s) + 1 > (int) seq_pos[s].size()) {
|
||||
LLAMA_LOG_ERROR("%s: sequence %d positions are not continuous\n", __func__, s);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
if (seq_pos_max(s) - seq_pos_min(s) + 1 > (int) seq_pos[s].size()) {
|
||||
LLAMA_LOG_ERROR("%s: sequence %d positions are not continuous\n", __func__, s);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
if (memory) {
|
||||
@@ -389,6 +416,7 @@ llama_ubatch llama_batch_allocr::ubatch_reserve(uint32_t n_seq_tokens, uint32_t
|
||||
/*.n_seq_tokens =*/ n_seq_tokens,
|
||||
/*.n_seqs =*/ n_seqs,
|
||||
/*.n_seqs_unq =*/ n_seqs,
|
||||
/*.n_pos =*/ n_pos_per_embd,
|
||||
|
||||
/*.token =*/ udata->token.data(),
|
||||
/*.embd =*/ nullptr,
|
||||
@@ -655,10 +683,8 @@ llama_ubatch llama_batch_allocr::ubatch_add(const std::vector<int32_t> & idxs, u
|
||||
|
||||
auto udata = std::make_shared<llama_ubatch::data_t>();
|
||||
|
||||
const int32_t n_pos_cur = batch.embd ? n_pos_per_embd : 1;
|
||||
|
||||
const int64_t n_embd_all = batch.embd ? (int64_t) n_tokens*n_embd : 0;
|
||||
const int64_t n_pos_all = (int64_t) n_tokens*n_pos_cur;
|
||||
const int64_t n_pos_all = (int64_t) n_tokens*n_pos_per_embd;
|
||||
|
||||
udata->token .resize(n_tokens);
|
||||
udata->embd .resize(n_embd_all);
|
||||
@@ -680,8 +706,13 @@ llama_ubatch llama_batch_allocr::ubatch_add(const std::vector<int32_t> & idxs, u
|
||||
memcpy(udata->embd.data() + i*n_embd, batch.embd + (int64_t) idxs[i]*n_embd, n_embd*sizeof(float));
|
||||
}
|
||||
|
||||
for (int j = 0; j < n_pos_cur; ++j) {
|
||||
udata->pos[j*n_tokens + i] = batch.pos[j*batch.n_tokens + idxs[i]];
|
||||
for (size_t j = 0; j < (size_t)n_pos_per_embd; ++j) {
|
||||
// if we are using M-RoPE
|
||||
// if the current batch is text, we need to broadcast the same position across all RoPE sections
|
||||
// otherwise, the input batch is image embeddings, we copy the positions as-is
|
||||
// if we are not using M-RoPE, there is only one position per token (this loop runs only once)
|
||||
size_t src_off = batch.token ? 0 : j*batch.n_tokens;
|
||||
udata->pos[j*n_tokens + i] = batch.pos[src_off + idxs[i]];
|
||||
}
|
||||
|
||||
udata->n_seq_id[i] = batch.n_seq_id[idxs[i]];
|
||||
@@ -710,6 +741,7 @@ llama_ubatch llama_batch_allocr::ubatch_add(const std::vector<int32_t> & idxs, u
|
||||
/*.n_seq_tokens =*/ n_tokens/n_seqs,
|
||||
/*.n_seqs =*/ n_seqs,
|
||||
/*.n_seqs_unq =*/ (uint32_t) udata->seq_id_unq.size(),
|
||||
/*.n_pos =*/ n_pos_per_embd,
|
||||
|
||||
/*.token =*/ batch.token ? udata->token.data() : nullptr,
|
||||
/*.embd =*/ batch.embd ? udata->embd.data() : nullptr,
|
||||
|
||||
13
llama/llama.cpp/src/llama-batch.h
vendored
13
llama/llama.cpp/src/llama-batch.h
vendored
@@ -17,6 +17,16 @@ struct llama_ubatch {
|
||||
return b_equal_seqs != 0;
|
||||
}
|
||||
|
||||
// typical for M-RoPE cases:
|
||||
// 0 - sequantial position of the tokens/embeddings in the sequence
|
||||
// 1 - y position in the image
|
||||
// 2 - x position in the image
|
||||
// 3 - other
|
||||
bool is_pos_2d() const {
|
||||
// TODO @ngxson : we may need to check for model arch when more models use >1 positions
|
||||
return n_pos >= 3;
|
||||
}
|
||||
|
||||
uint32_t b_equal_seqs; // note: this is a boolean, but we use an int32_t for alignment
|
||||
// otherwise address sanitizer complains
|
||||
// TODO: whole_seqs for embeddings?
|
||||
@@ -25,6 +35,7 @@ struct llama_ubatch {
|
||||
uint32_t n_seq_tokens; // tokens per sequence set
|
||||
uint32_t n_seqs; // sequence sets in the ubatch
|
||||
uint32_t n_seqs_unq; // unique sequence ids in the ubatch
|
||||
uint32_t n_pos; // number of position inputs for each token/embedding
|
||||
|
||||
// seq_id_unq: unique sequence ids in the ubatch
|
||||
// seq_idx: indices of the unique sequence ids in the ubatch in [0, n_seqs_unq)
|
||||
@@ -33,7 +44,7 @@ struct llama_ubatch {
|
||||
// // size | idx | val
|
||||
llama_token * token; // [n_tokens] | i | id, token
|
||||
float * embd; // [n_embd, n_tokens] | i | embd
|
||||
llama_pos * pos; // [n_tokens] | i | pos
|
||||
llama_pos * pos; // [n_tokens*n_pos] | i | pos
|
||||
int32_t * n_seq_id; // [n_tokens] | i | -
|
||||
llama_seq_id ** seq_id; // [n_tokens] | s | s0, s1, seq_id
|
||||
llama_seq_id * seq_id_unq; // [n_seqs_unq] | s | seq_id
|
||||
|
||||
32
llama/llama.cpp/src/llama-chat.cpp
vendored
32
llama/llama.cpp/src/llama-chat.cpp
vendored
@@ -73,6 +73,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
|
||||
{ "kimi-k2", LLM_CHAT_TEMPLATE_KIMI_K2 },
|
||||
{ "seed_oss", LLM_CHAT_TEMPLATE_SEED_OSS },
|
||||
{ "grok-2", LLM_CHAT_TEMPLATE_GROK_2 },
|
||||
{ "pangu-embedded", LLM_CHAT_TEMPLATE_PANGU_EMBED },
|
||||
};
|
||||
|
||||
llm_chat_template llm_chat_template_from_str(const std::string & name) {
|
||||
@@ -213,6 +214,8 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
|
||||
return LLM_CHAT_TEMPLATE_SEED_OSS;
|
||||
} else if (tmpl_contains("'Assistant: ' + message['content'] + '<|separator|>")) {
|
||||
return LLM_CHAT_TEMPLATE_GROK_2;
|
||||
} else if (tmpl_contains(LU8("[unused9]系统:[unused10]"))) {
|
||||
return LLM_CHAT_TEMPLATE_PANGU_EMBED;
|
||||
}
|
||||
return LLM_CHAT_TEMPLATE_UNKNOWN;
|
||||
}
|
||||
@@ -813,6 +816,35 @@ int32_t llm_chat_apply_template(
|
||||
if (add_ass) {
|
||||
ss << "Assistant:";
|
||||
}
|
||||
}else if (tmpl == LLM_CHAT_TEMPLATE_PANGU_EMBED) {
|
||||
// [unused9]系统:xxx[unused10]
|
||||
// [unused9]用户:xxx[unused10]
|
||||
// [unused9]助手:xxx[unused10]
|
||||
// ...
|
||||
for (size_t i = 0; i < chat.size(); ++i) {
|
||||
const auto & msg = chat[i];
|
||||
const std::string & role = msg->role;
|
||||
const std::string & content = msg->content;
|
||||
|
||||
if (i == 0 && role != "system") {
|
||||
ss << "[unused9]系统:[unused10]";
|
||||
}
|
||||
|
||||
if (role == "system") {
|
||||
ss << "[unused9]系统:" << content << "[unused10]";
|
||||
} else if (role == "user") {
|
||||
ss << "[unused9]用户:" << content << "[unused10]";
|
||||
} else if (role == "assistant") {
|
||||
ss << "[unused9]助手:" << content << "[unused10]";
|
||||
} else if (role == "tool") {
|
||||
ss << "[unused9]工具:" << content << "[unused10]";
|
||||
} else if (role == "function") {
|
||||
ss << "[unused9]方法:" << content << "[unused10]";
|
||||
}
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "[unused9]助手:";
|
||||
}
|
||||
} else {
|
||||
// template not supported
|
||||
return -1;
|
||||
|
||||
1
llama/llama.cpp/src/llama-chat.h
vendored
1
llama/llama.cpp/src/llama-chat.h
vendored
@@ -53,6 +53,7 @@ enum llm_chat_template {
|
||||
LLM_CHAT_TEMPLATE_KIMI_K2,
|
||||
LLM_CHAT_TEMPLATE_SEED_OSS,
|
||||
LLM_CHAT_TEMPLATE_GROK_2,
|
||||
LLM_CHAT_TEMPLATE_PANGU_EMBED,
|
||||
LLM_CHAT_TEMPLATE_UNKNOWN,
|
||||
};
|
||||
|
||||
|
||||
70
llama/llama.cpp/src/llama-context.cpp
vendored
70
llama/llama.cpp/src/llama-context.cpp
vendored
@@ -1,5 +1,6 @@
|
||||
#include "llama-context.h"
|
||||
|
||||
#include "llama-arch.h"
|
||||
#include "llama-impl.h"
|
||||
#include "llama-batch.h"
|
||||
#include "llama-io.h"
|
||||
@@ -21,6 +22,8 @@ llama_context::llama_context(
|
||||
llama_context_params params) :
|
||||
model(model),
|
||||
balloc(std::make_unique<llama_batch_allocr>(model.hparams.n_pos_per_embd())) {
|
||||
// TODO warning when creating llama_context with awkward ctx size that is not a power of 2,
|
||||
// may need to be backend-dependent
|
||||
LLAMA_LOG_INFO("%s: constructing llama_context\n", __func__);
|
||||
|
||||
t_start_us = model.t_start_us;
|
||||
@@ -112,11 +115,28 @@ llama_context::llama_context(
|
||||
}
|
||||
}
|
||||
|
||||
const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max;
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/17046#discussion_r2503085732
|
||||
cparams.n_ctx = GGML_PAD(cparams.n_ctx, 256);
|
||||
|
||||
if (cparams.kv_unified) {
|
||||
cparams.n_ctx_seq = cparams.n_ctx;
|
||||
} else {
|
||||
cparams.n_ctx_seq = cparams.n_ctx / cparams.n_seq_max;
|
||||
cparams.n_ctx_seq = GGML_PAD(cparams.n_ctx_seq, 256);
|
||||
|
||||
if (cparams.n_ctx_seq == 0) {
|
||||
throw std::runtime_error("n_ctx_seq == 0");
|
||||
}
|
||||
|
||||
if (cparams.n_ctx != cparams.n_ctx_seq * cparams.n_seq_max) {
|
||||
cparams.n_ctx = cparams.n_ctx_seq * cparams.n_seq_max;
|
||||
LLAMA_LOG_WARN("%s: n_ctx is not divisible by n_seq_max - rounding down to %u\n", __func__, cparams.n_ctx);
|
||||
}
|
||||
}
|
||||
|
||||
LLAMA_LOG_INFO("%s: n_seq_max = %u\n", __func__, cparams.n_seq_max);
|
||||
LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
|
||||
LLAMA_LOG_INFO("%s: n_ctx_per_seq = %u\n", __func__, n_ctx_per_seq);
|
||||
LLAMA_LOG_INFO("%s: n_ctx_seq = %u\n", __func__, cparams.n_ctx_seq);
|
||||
LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
|
||||
LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
|
||||
LLAMA_LOG_INFO("%s: causal_attn = %d\n", __func__, cparams.causal_attn);
|
||||
@@ -125,14 +145,14 @@ llama_context::llama_context(
|
||||
LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
|
||||
LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
|
||||
|
||||
if (n_ctx_per_seq < hparams.n_ctx_train) {
|
||||
LLAMA_LOG_WARN("%s: n_ctx_per_seq (%u) < n_ctx_train (%u) -- the full capacity of the model will not be utilized\n",
|
||||
__func__, n_ctx_per_seq, hparams.n_ctx_train);
|
||||
if (cparams.n_ctx_seq < hparams.n_ctx_train) {
|
||||
LLAMA_LOG_WARN("%s: n_ctx_seq (%u) < n_ctx_train (%u) -- the full capacity of the model will not be utilized\n",
|
||||
__func__, cparams.n_ctx_seq, hparams.n_ctx_train);
|
||||
}
|
||||
|
||||
if (n_ctx_per_seq > hparams.n_ctx_train) {
|
||||
LLAMA_LOG_WARN("%s: n_ctx_per_seq (%u) > n_ctx_train (%u) -- possible training context overflow\n",
|
||||
__func__, n_ctx_per_seq, hparams.n_ctx_train);
|
||||
if (cparams.n_ctx_seq > hparams.n_ctx_train) {
|
||||
LLAMA_LOG_WARN("%s: n_ctx_seq (%u) > n_ctx_train (%u) -- possible training context overflow\n",
|
||||
__func__, cparams.n_ctx_seq, hparams.n_ctx_train);
|
||||
}
|
||||
|
||||
if (!hparams.vocab_only) {
|
||||
@@ -268,9 +288,7 @@ llama_context::llama_context(
|
||||
if (pipeline_parallel) {
|
||||
LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(sched.get()));
|
||||
}
|
||||
}
|
||||
|
||||
if (!hparams.vocab_only) {
|
||||
llama_memory_context_ptr mctx;
|
||||
if (memory) {
|
||||
LLAMA_LOG_DEBUG("%s: reserving full memory module\n", __func__);
|
||||
@@ -282,7 +300,7 @@ llama_context::llama_context(
|
||||
|
||||
cross.v_embd.clear();
|
||||
|
||||
const uint32_t n_seqs = cparams.kv_unified ? 1 : cparams.n_seq_max;
|
||||
const uint32_t n_seqs = cparams.n_seq_max;
|
||||
const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
|
||||
|
||||
// avoid reserving graphs with zero outputs - assume one output per sequence
|
||||
@@ -343,7 +361,14 @@ llama_context::llama_context(
|
||||
{
|
||||
auto * gf = graph_reserve(n_tokens, n_seqs, n_tokens, mctx.get());
|
||||
if (!gf) {
|
||||
throw std::runtime_error("failed to allocate compute pp buffers");
|
||||
if (pipeline_parallel) {
|
||||
LLAMA_LOG_WARN("%s: compute buffer allocation failed, retrying without pipeline parallelism\n", __func__);
|
||||
sched.reset(ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), max_nodes, false, cparams.op_offload));
|
||||
gf = graph_reserve(n_tokens, n_seqs, n_tokens, mctx.get());
|
||||
}
|
||||
if (!gf) {
|
||||
throw std::runtime_error("failed to allocate compute pp buffers");
|
||||
}
|
||||
}
|
||||
|
||||
n_splits_pp = ggml_backend_sched_get_n_splits(sched.get());
|
||||
@@ -448,8 +473,8 @@ uint32_t llama_context::n_ctx() const {
|
||||
return cparams.n_ctx;
|
||||
}
|
||||
|
||||
uint32_t llama_context::n_ctx_per_seq() const {
|
||||
return cparams.n_ctx / cparams.n_seq_max;
|
||||
uint32_t llama_context::n_ctx_seq() const {
|
||||
return cparams.n_ctx_seq;
|
||||
}
|
||||
|
||||
uint32_t llama_context::n_batch() const {
|
||||
@@ -518,7 +543,7 @@ bool llama_context::memory_update(bool optimize) {
|
||||
throw std::runtime_error("failed to initialize memory context");
|
||||
}
|
||||
|
||||
const uint32_t n_seqs = cparams.kv_unified ? 1 : cparams.n_seq_max;
|
||||
const uint32_t n_seqs = cparams.n_seq_max;
|
||||
const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
|
||||
|
||||
auto * gf = graph_reserve(n_tokens, n_seqs, n_tokens, mctx.get());
|
||||
@@ -803,7 +828,7 @@ int llama_context::encode(const llama_batch & batch_inp) {
|
||||
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
const int64_t n_embd = hparams.n_embd_inp();
|
||||
const int64_t n_vocab = model.vocab.n_tokens();
|
||||
|
||||
// note: during encode, we always pass the full sequence starting from pos = 0
|
||||
@@ -972,7 +997,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int64_t n_vocab = vocab.n_tokens();
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
const int64_t n_embd = hparams.n_embd_inp();
|
||||
|
||||
const bool output_all = false;
|
||||
|
||||
@@ -1223,7 +1248,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
|
||||
|
||||
// make the outputs have the same order they had in the user-provided batch
|
||||
// note: this is mostly relevant for recurrent models atm
|
||||
if (!sorted_output) {
|
||||
if (!sorted_output && n_outputs > 1) {
|
||||
GGML_ASSERT((size_t) n_outputs == out_ids.size());
|
||||
|
||||
// TODO: is there something more efficient which also minimizes swaps?
|
||||
@@ -1361,6 +1386,9 @@ void llama_context::output_reorder() {
|
||||
//
|
||||
|
||||
uint32_t llama_context::graph_max_nodes() const {
|
||||
if (model.arch == LLM_ARCH_QWEN3NEXT) {
|
||||
return std::max<uint32_t>(8192u, 32u*model.n_tensors());
|
||||
}
|
||||
return std::max<uint32_t>(1024u, 8u*model.n_tensors());
|
||||
}
|
||||
|
||||
@@ -2129,7 +2157,7 @@ void llama_context::opt_epoch_iter(
|
||||
batch.logits [pos_batch] = true;
|
||||
}
|
||||
|
||||
if (!balloc->init(batch, model.vocab, nullptr, model.hparams.n_embd, cparams.kv_unified ? LLAMA_MAX_SEQ : cparams.n_seq_max, true)) {
|
||||
if (!balloc->init(batch, model.vocab, nullptr, model.hparams.n_embd_inp(), cparams.kv_unified ? LLAMA_MAX_SEQ : cparams.n_seq_max, true)) {
|
||||
LLAMA_LOG_ERROR("%s: failed to initialize batch\n", __func__);
|
||||
return;
|
||||
}
|
||||
@@ -2377,6 +2405,10 @@ uint32_t llama_n_ctx(const llama_context * ctx) {
|
||||
return ctx->n_ctx();
|
||||
}
|
||||
|
||||
uint32_t llama_n_ctx_seq(const llama_context * ctx) {
|
||||
return ctx->n_ctx_seq();
|
||||
}
|
||||
|
||||
uint32_t llama_n_batch(const llama_context * ctx) {
|
||||
return ctx->n_batch();
|
||||
}
|
||||
|
||||
10
llama/llama.cpp/src/llama-context.h
vendored
10
llama/llama.cpp/src/llama-context.h
vendored
@@ -43,11 +43,11 @@ struct llama_context {
|
||||
|
||||
ggml_backend_sched_t get_sched() const;
|
||||
|
||||
uint32_t n_ctx() const;
|
||||
uint32_t n_ctx_per_seq() const;
|
||||
uint32_t n_batch() const;
|
||||
uint32_t n_ubatch() const;
|
||||
uint32_t n_seq_max() const;
|
||||
uint32_t n_ctx() const;
|
||||
uint32_t n_ctx_seq() const;
|
||||
uint32_t n_batch() const;
|
||||
uint32_t n_ubatch() const;
|
||||
uint32_t n_seq_max() const;
|
||||
|
||||
uint32_t n_threads() const;
|
||||
uint32_t n_threads_batch() const;
|
||||
|
||||
1
llama/llama.cpp/src/llama-cparams.h
vendored
1
llama/llama.cpp/src/llama-cparams.h
vendored
@@ -8,6 +8,7 @@
|
||||
|
||||
struct llama_cparams {
|
||||
uint32_t n_ctx; // context size used during inference
|
||||
uint32_t n_ctx_seq; // context for a single sequence
|
||||
uint32_t n_batch;
|
||||
uint32_t n_ubatch;
|
||||
uint32_t n_seq_max;
|
||||
|
||||
26
llama/llama.cpp/src/llama-grammar.cpp
vendored
26
llama/llama.cpp/src/llama-grammar.cpp
vendored
@@ -6,8 +6,10 @@
|
||||
|
||||
#include <cmath>
|
||||
#include <algorithm>
|
||||
#include <cstdint>
|
||||
#include <stdexcept>
|
||||
|
||||
#define MAX_REPETITION_THRESHOLD 2000
|
||||
//
|
||||
// helpers
|
||||
//
|
||||
@@ -345,8 +347,10 @@ const char * llama_grammar_parser::parse_sequence(
|
||||
size_t last_sym_start = rule.size();
|
||||
const char * pos = src;
|
||||
|
||||
auto handle_repetitions = [&](int min_times, int max_times) {
|
||||
|
||||
// use UINT64_MAX as the empty value because we aligned to the proper uint64_t type so -1 can't be used
|
||||
// (though it's technically the same as -1 now)
|
||||
auto handle_repetitions = [&](uint64_t min_times, uint64_t max_times) {
|
||||
bool no_max = max_times == UINT64_MAX;
|
||||
if (last_sym_start == rule.size()) {
|
||||
throw std::runtime_error(std::string("expecting preceding item to */+/?/{ at ") + pos);
|
||||
}
|
||||
@@ -373,20 +377,20 @@ const char * llama_grammar_parser::parse_sequence(
|
||||
rule.resize(last_sym_start);
|
||||
} else {
|
||||
// Repeat the previous elements (min_times - 1) times
|
||||
for (int i = 1; i < min_times; i++) {
|
||||
for (uint64_t i = 1; i < min_times; i++) {
|
||||
rule.insert(rule.end(), prev_rule.begin(), prev_rule.end());
|
||||
}
|
||||
}
|
||||
|
||||
uint32_t last_rec_rule_id = 0;
|
||||
auto n_opt = max_times < 0 ? 1 : max_times - min_times;
|
||||
auto n_opt = no_max ? 1 : max_times - min_times;
|
||||
|
||||
llama_grammar_rule rec_rule(prev_rule);
|
||||
for (int i = 0; i < n_opt; i++) {
|
||||
for (uint64_t i = 0; i < n_opt; i++) {
|
||||
rec_rule.resize(prev_rule.size());
|
||||
uint32_t rec_rule_id = generate_symbol_id( rule_name);
|
||||
if (i > 0 || max_times < 0) {
|
||||
rec_rule.push_back({LLAMA_GRETYPE_RULE_REF, max_times < 0 ? rec_rule_id : last_rec_rule_id});
|
||||
if (i > 0 || no_max) {
|
||||
rec_rule.push_back({LLAMA_GRETYPE_RULE_REF, no_max ? rec_rule_id : last_rec_rule_id});
|
||||
}
|
||||
rec_rule.push_back({LLAMA_GRETYPE_ALT, 0});
|
||||
rec_rule.push_back({LLAMA_GRETYPE_END, 0});
|
||||
@@ -478,10 +482,10 @@ const char * llama_grammar_parser::parse_sequence(
|
||||
throw std::runtime_error(std::string("expecting an int at ") + pos);
|
||||
}
|
||||
const char * int_end = parse_int(pos);
|
||||
int min_times = std::stoul(std::string(pos, int_end - pos));
|
||||
uint64_t min_times = std::stoul(std::string(pos, int_end - pos));
|
||||
pos = parse_space(int_end, is_nested);
|
||||
|
||||
int max_times = -1;
|
||||
uint64_t max_times = UINT64_MAX; // default: no max limit
|
||||
|
||||
if (*pos == '}') {
|
||||
max_times = min_times;
|
||||
@@ -502,6 +506,10 @@ const char * llama_grammar_parser::parse_sequence(
|
||||
} else {
|
||||
throw std::runtime_error(std::string("expecting ',' at ") + pos);
|
||||
}
|
||||
bool has_max = max_times != UINT64_MAX;
|
||||
if (min_times > MAX_REPETITION_THRESHOLD || (has_max && max_times > MAX_REPETITION_THRESHOLD)) {
|
||||
throw std::runtime_error(std::string("number of repetitions exceeds sane defaults, please reduce the number of repetitions"));
|
||||
}
|
||||
handle_repetitions(min_times, max_times);
|
||||
} else {
|
||||
break;
|
||||
|
||||
28
llama/llama.cpp/src/llama-graph.cpp
vendored
28
llama/llama.cpp/src/llama-graph.cpp
vendored
@@ -810,6 +810,9 @@ ggml_tensor * llm_graph_context::build_ffn(
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
//expand here so that we can fuse ffn gate
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
|
||||
if (gate && type_gate == LLM_FFN_PAR) {
|
||||
cur = ggml_mul(ctx0, cur, tmp);
|
||||
cb(cur, "ffn_gate_par", il);
|
||||
@@ -958,14 +961,14 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
|
||||
// organize experts into n_expert_groups
|
||||
ggml_tensor * selection_groups = ggml_reshape_3d(ctx0, selection_probs, n_exp_per_group, hparams.n_expert_groups, n_tokens); // [n_exp_per_group, n_expert_groups, n_tokens]
|
||||
|
||||
ggml_tensor * group_scores = ggml_top_k(ctx0, selection_groups, 2); // [2, n_expert_groups, n_tokens]
|
||||
ggml_tensor * group_scores = ggml_argsort_top_k(ctx0, selection_groups, 2); // [2, n_expert_groups, n_tokens]
|
||||
group_scores = ggml_get_rows(ctx0, ggml_reshape_4d(ctx0, selection_groups, 1, selection_groups->ne[0], selection_groups->ne[1], selection_groups->ne[2]), group_scores); // [1, 2, n_expert_groups, n_tokens]
|
||||
|
||||
// get top n_group_used expert groups
|
||||
group_scores = ggml_sum_rows(ctx0, ggml_reshape_3d(ctx0, group_scores, group_scores->ne[1], group_scores->ne[2], group_scores->ne[3])); // [1, n_expert_groups, n_tokens]
|
||||
group_scores = ggml_reshape_2d(ctx0, group_scores, group_scores->ne[1], group_scores->ne[2]); // [n_expert_groups, n_tokens]
|
||||
|
||||
ggml_tensor * expert_groups = ggml_top_k(ctx0, group_scores, hparams.n_group_used); // [n_group_used, n_tokens]
|
||||
ggml_tensor * expert_groups = ggml_argsort_top_k(ctx0, group_scores, hparams.n_group_used); // [n_group_used, n_tokens]
|
||||
cb(expert_groups, "ffn_moe_group_topk", il);
|
||||
|
||||
// mask out the other groups
|
||||
@@ -976,7 +979,7 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
|
||||
}
|
||||
|
||||
// select experts
|
||||
ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
|
||||
ggml_tensor * selected_experts = ggml_argsort_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
|
||||
cb(selected_experts->src[0], "ffn_moe_argsort", il);
|
||||
cb(selected_experts, "ffn_moe_topk", il);
|
||||
|
||||
@@ -1006,10 +1009,9 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
|
||||
ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens]
|
||||
cb(weights_sum, "ffn_moe_weights_sum", il);
|
||||
|
||||
if (arch == LLM_ARCH_BAILINGMOE2) {
|
||||
weights_sum = ggml_scale_bias(ctx0, weights_sum, 1.0, 1e-20);
|
||||
cb(weights_sum, "ffn_moe_weights_sum_biased", il);
|
||||
}
|
||||
// Avoid division by zero, clamp to smallest number representable by F16
|
||||
weights_sum = ggml_clamp(ctx0, weights_sum, 6.103515625e-5, INFINITY);
|
||||
cb(weights_sum, "ffn_moe_weights_sum_clamped", il);
|
||||
|
||||
weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
|
||||
cb(weights, "ffn_moe_weights_norm", il);
|
||||
@@ -1091,6 +1093,9 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
//expand here so that we can fuse ffn gate
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
|
||||
experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
|
||||
cb(experts, "ffn_moe_down", il);
|
||||
|
||||
@@ -1137,7 +1142,7 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
|
||||
|
||||
// input embeddings with optional lora
|
||||
ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
const int64_t n_embd = hparams.n_embd_inp();
|
||||
|
||||
auto inp = std::make_unique<llm_graph_input_embd>();
|
||||
|
||||
@@ -1274,7 +1279,7 @@ ggml_tensor * llm_graph_context::build_inp_cross_embd() const {
|
||||
// return cur;
|
||||
//}
|
||||
|
||||
const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd;
|
||||
const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd_inp();
|
||||
const auto n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
|
||||
|
||||
cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_enc);
|
||||
@@ -1587,9 +1592,10 @@ ggml_tensor * llm_graph_context::build_attn(
|
||||
int il) const {
|
||||
// these nodes are added to the graph together so that they are not reordered
|
||||
// by doing so, the number of splits in the graph is reduced
|
||||
// expand k later to enable rope fusion which directly writes into k-v cache
|
||||
ggml_build_forward_expand(gf, q_cur);
|
||||
ggml_build_forward_expand(gf, k_cur);
|
||||
ggml_build_forward_expand(gf, v_cur);
|
||||
ggml_build_forward_expand(gf, k_cur);
|
||||
|
||||
const auto * mctx_cur = inp->mctx;
|
||||
|
||||
@@ -2030,7 +2036,7 @@ int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buck
|
||||
|
||||
if (bidirectional) {
|
||||
relative_bucket += (relative_position > 0) * n_buckets;
|
||||
relative_position = abs(relative_position);
|
||||
relative_position = std::abs(relative_position);
|
||||
} else {
|
||||
relative_position = -std::min<int32_t>(relative_position, 0);
|
||||
}
|
||||
|
||||
12
llama/llama.cpp/src/llama-hparams.cpp
vendored
12
llama/llama.cpp/src/llama-hparams.cpp
vendored
@@ -60,6 +60,16 @@ uint32_t llama_hparams::n_gqa(uint32_t il) const {
|
||||
return n_head/n_head_kv;
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_embd_inp() const {
|
||||
uint32_t n_embd_inp = n_embd;
|
||||
|
||||
if (n_deepstack_layers > 0) {
|
||||
n_embd_inp += n_embd * n_deepstack_layers;
|
||||
}
|
||||
|
||||
return n_embd_inp;
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_embd_k_gqa(uint32_t il) const {
|
||||
const uint32_t n_head_kv = this->n_head_kv(il);
|
||||
|
||||
@@ -148,7 +158,7 @@ bool llama_hparams::is_recurrent(uint32_t il) const {
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_pos_per_embd() const {
|
||||
return rope_type == LLAMA_ROPE_TYPE_MROPE ? 4 : 1;
|
||||
return rope_type == LLAMA_ROPE_TYPE_MROPE || rope_type == LLAMA_ROPE_TYPE_IMROPE ? 4 : 1;
|
||||
}
|
||||
|
||||
bool llama_hparams::n_bskcn(uint32_t n, uint32_t il) const {
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user