Compare commits

...

44 Commits

Author SHA1 Message Date
jmorganca
f7c5f40daa model: add lfm2 2026-01-20 01:56:45 -08:00
Daniel Hiltgen
c42e9d244f test: add image gen test case (#13698)
* test: fix type regression in tools test.

* test: add image gen integration test
2026-01-19 16:01:31 -08:00
Devon Rifkin
e98b5e8b4e /api/show: default to empty model_info (#13785)
For `/api/show`, a fully missing `model_info` field trips up various
integrators (including a recent Android Studio integration).

The primary source of missing info tends to come from models with a
remote that are also missing other data. It seems better to me to return
an empty `model_info` than making up some other fields within
`model_info` (like saying the architecture is `remote` or something like
that). So this does slightly change `/api/show`'s behavior that possibly
someone is relying on, but it seems more important to ensure the field
is always there (from a quick sampling integrations seem to be robust to
missing fields _within_ it).

Fixes: https://github.com/ollama/ollama/issues/13783
2026-01-19 15:26:17 -08:00
Jeffrey Morgan
68e00c7c36 fix: prevent image generation models from loading during deletion (#13781)
Move the unload check (empty prompt + KeepAlive=0) before the image
generation model dispatch in GenerateHandler. This prevents models like
flux from being loaded into memory just to be immediately unloaded when
running `ollama rm`.

Also fix a bug in DeleteHandler where `args[0]` was used instead of
`arg` in the delete loop, causing only the first model to be unloaded
when deleting multiple models.
2026-01-19 12:48:34 -08:00
Jeffrey Morgan
4f138a1749 model: add Glm4MoeLiteForCausalLM architecture to support GLM-4.7-Flash (#13779) 2026-01-19 12:47:17 -08:00
Jeffrey Morgan
03bf241c33 x/imagegen: add FP4 quantization support for image generation models (#13773)
Add --quantize fp4 support to ollama create for image generation models
(flux2, z-image-turbo), using MLX's affine 4-bit quantization.

Changes:
- Add fp4 to validation in CreateImageGenModel
- Add FP4 case to quantizeTensor (group_size=32, bits=4, affine mode)
- Add GetQuantization() to WeightSource interface for dynamic params
- Update LoadLinearLayer to use quantization params from model metadata
2026-01-19 00:54:54 -08:00
Jeffrey Morgan
a887406c24 x/imagegen: add preliminary support for FLUX.2-klein model (#13772) 2026-01-18 22:30:49 -08:00
Jeffrey Morgan
d51e95ba7e server: prevent image generation models from reloading on every request (#13771)
The loadImageGen function was not setting Options on the runnerRef,
causing needsReload() to always return true (since it checks if
runner.Options == nil). This resulted in the image generation
subprocess being killed and restarted for every request.
2026-01-18 20:50:04 -08:00
Jeffrey Morgan
3d01f2aa34 parsers: refactor Nemotron parser to reuse Qwen3Coder for tool calls (#13764)
Simplify Nemotron3NanoParser by delegating tool call parsing to
Qwen3CoderParser instead of duplicating the parsing logic. The
Nemotron parser now only handles the thinking state machine and
transitions to Qwen3CoderParser for content and tool call parsing.

This also fixes an issue where tool calls without </think> would
cause the parser to get stuck in thinking mode.
2026-01-17 18:28:52 -08:00
Jeffrey Morgan
634c416645 Add experimental image generation fields to /api/generate (#13753)
Request fields (experimental):
- width: image width (max 4096)
- height: image height (max 4096)
- steps: denoising steps
- seed: random seed

Response fields (experimental):
- images: base64-encoded generated images
- completed: current step progress
- total: total steps

Other changes:
- Fix lifecycle bug where image models wouldn't unload (refCount issue)
- Fix "headers already written" error on Ctrl+C during streaming
- Add gin middleware for OpenAI /v1/images/generations compatibility
- Update CLI to use /api/generate with progress bar
- Add preload support in interactive mode
2026-01-17 18:27:41 -08:00
Michael
57de86cc61 docs: update claude code docs (#13757)
* docs: update claude code docs
2026-01-16 22:41:34 -08:00
Daniel Hiltgen
12719b6e87 MLX - dynamic loading of mlx-c (#13735)
* MLX - dynamic loading of mlx-c

Create a wrapper layer to indirect the dependency on mlx-c so
the main ollama binary does not have a load-time dependency on mlx-c, mlx, and on linux, cuda.  Lazy load the library via dlopen
so we can adjust the path to ensure the dependencies are found
and fail gracefully if not present.

* review comments

* fix broken tests
2026-01-16 16:34:22 -08:00
Patrick Devine
a077d996e3 Fix create and show commands for experimental models (#13741)
* x: make `ollama create --experimental` import from safetensors

This change allows pulling in safetensors models into the new experimental model format, and also
fixes the `ollama show` command to be able to correctly display the model information.

* gofumpt the linter

* gofumpt the linter again

* validate the model name
2026-01-16 14:31:55 -08:00
Jeffrey Morgan
c23d5095de x/imagegen: clean up image generation code (#13725) 2026-01-16 12:19:25 -08:00
Bruce MacDonald
7601f0e93e server: reject unexpected auth hosts (#13738)
Added validation to ensure auth redirects stay on the same host as the original request. The fix is a single check in getAuthorizationToken comparing the realm URL's host against the request host. Added tests for the auth flow.

Co-Authored-By: Gecko Security <188164982+geckosecurity@users.noreply.github.com>

* gofmt

---------

Co-authored-by: Gecko Security <188164982+geckosecurity@users.noreply.github.com>
2026-01-16 14:10:36 -05:00
Eva H
aad3f03890 app: allow macOS app to terminate during system shutdown (#13737) 2026-01-16 09:05:04 -05:00
Gyungrai Wang
55d0b6e8b9 integration: fix tools_test.go for ToolCallFunctionArguments API change (#13731) 2026-01-15 16:08:09 -08:00
Devon Rifkin
38eac40d56 openai: tweak v1/responses to conform better (#13736)
* openai: tweak v1/responses to conform better

* openai: provide better error for image URLs

* lint
2026-01-15 15:46:36 -08:00
Jeffrey Morgan
80f3f1bc25 readme: add instructions to build with MLX (#13733) 2026-01-15 11:03:52 -08:00
Parth Sareen
b1a0db547b docs: add env var needed for claude code in docs (#13721) 2026-01-15 10:11:00 -08:00
Parth Sareen
75d7b5f926 cmd: enable multi-line input and shift enter (#13694) 2026-01-14 17:52:46 -08:00
vincent d warmerdam
349d814814 docs: add marimo integration (#13326)
* docs added

* fix title

* add marimo to docs.json

---------

Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2026-01-14 17:37:38 -08:00
Yuhong Sun
c8743031e0 docs: add onyx integration (#13135)
* Ready for team review

* Update docs/integrations/onyx.mdx

Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>

* update docs.json

---------

Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2026-01-14 17:32:05 -08:00
Jeffrey Morgan
4adb9cf4bb scripts: fix macOS auto-update signature verification failure (#13713)
Add --norsrc flag to ditto commands when creating Ollama-darwin.zip
to exclude AppleDouble resource fork files (._* files) from the archive.

The mlx.metallib file has extended attributes, which causes ditto to
include a ._mlx.metallib AppleDouble file in the zip. Since this file
is not part of the code signature seal, macOS rejects the bundle during
auto-update verification with:

  "a sealed resource is missing or invalid"
  "file added: .../._mlx.metallib"

The --norsrc flag prevents ditto from preserving resource forks and
extended attributes, ensuring only signed files are included in the
release archive.
2026-01-14 07:48:10 -08:00
Daniel Hiltgen
74f475e735 Revert "Documentation edits made through Mintlify web editor" (#13688)
This reverts commit c6d4c0c7f2.

Merge after 0.14.0 ships for the updated Linux documentation.
2026-01-14 07:42:34 -08:00
Maternion
875cecba74 docs: update default context window size to 4096 tokens (#13709) 2026-01-14 01:01:28 -08:00
Josh Daniel Bañares
7d411a4686 docs: update web search param in examples (#13711) 2026-01-14 00:38:39 -08:00
Daniel Hiltgen
02a2401596 mlx: bundle openblas dependency (#13706) 2026-01-13 15:29:47 -08:00
Daniel Hiltgen
e4b488a7b5 CI: dedup cuda libraries to reduce payload size (#13704) 2026-01-13 11:25:31 -08:00
Daniel Hiltgen
98079ddd79 ci: add missing mlx components to release build (#13702) 2026-01-13 09:13:09 -08:00
Jeffrey Morgan
d70942f47b x/imagegen/cli: skip local model check (#13699) 2026-01-12 22:38:10 -08:00
Jeffrey Morgan
58e4701557 scripts: increase notarization timeout to 20m (#13697)
The 100MB mlx.metallib file significantly increased the app bundle size,
causing Apple's notarization service to timeout with the previous 10m limit.
2026-01-12 20:38:38 -08:00
Jeffrey Morgan
dbf47ee55a cmake: use CMAKE_SYSTEM_PROCESSOR instead of CMAKE_OSX_ARCHITECTURES for mlx.metallib install (#13696)
The CMake condition for installing mlx.metallib checks
CMAKE_OSX_ARCHITECTURES, but this variable is only set when explicitly
passed - not auto-detected. The arm64 build was missing this flag,
causing the metallib to not be installed, which then caused codesign
to fail on the unexpanded glob pattern.
2026-01-12 20:05:11 -08:00
Jeffrey Morgan
af7ea6e96e x/imagegen: install mlx.metallib and fix macOS rpath handling, add mlx library directories to LD_LIBRARY_PATH (#13695)
- Install mlx.metallib for arm64 builds (required for Metal GPU acceleration)
- Apply rpath settings to all macOS builds, not just x86_64
- Add CMAKE_BUILD_WITH_INSTALL_RPATH to avoid install_name_tool errors
- Update build_darwin.sh to copy, sign, and package the metallib
2026-01-12 19:03:11 -08:00
Jeffrey Morgan
8f1e0140e7 x/imagegen: fix mlx build in Dockerfile and macOS build script (#13693) 2026-01-12 15:52:43 -08:00
Parth Sareen
35c3c9e3c2 anthropic: allow non-thinking models when using Anthropic API (#13692) 2026-01-12 15:13:26 -08:00
Parth Sareen
d06acbcb19 x/cmd: enable web search and web fetch with flag (#13690) 2026-01-12 13:59:40 -08:00
Jeffrey Morgan
9667c2282f x/imagegen: add naive TeaCache and FP8 quantization support (#13683)
TeaCache:
- Timestep embedding similarity caching for diffusion models
- Polynomial rescaling with configurable thresholds
- Reduces transformer forward passes by ~30-50%

FP8 quantization:
- Support for FP8 quantized models (8-bit weights with scales)
- QuantizedMatmul on Metal, Dequantize on CUDA
- Client-side quantization via ollama create --quantize fp8

Other bug fixes:
- Fix `/api/show` API for image generation models
- Server properly returns model info (architecture, parameters, quantization)
- Memory allocation optimizations
- CLI improvements for image generation
2026-01-12 13:45:22 -08:00
Jeffrey Morgan
a937a68317 server: fix slow 'ollama rm' of models with many layers (#13680)
RemoveLayers was calling Manifests() for each layer to check if it was
shared with other models. For models with many blobs (e.g., tensor
models), this caused O(N*M) manifest reads.

Now loads manifests once and builds a set of in-use digests.
2026-01-12 13:17:48 -08:00
Parth Sareen
2185112d84 x/cmd: connect /set flags to behavior in experimental mode (#13684) 2026-01-12 00:40:44 -08:00
Parth Sareen
91926601dc x: add missing /set, /show, /load, /save commands to experimental mode (#13682) 2026-01-11 23:12:31 -08:00
Jeffrey Morgan
361d6c16c2 x/imagegen/transfer: fix timeout and progress reporting (#13679)
Removes 5-minute HTTP client timeout that caused "context deadline
exceeded" errors on large file downloads. Stall detection (10s)
already handles unresponsive connections.

Fixes progress bar total going down on resume by calculating total
from all blobs upfront and reporting already-downloaded bytes
as completed immediately.
2026-01-11 15:33:53 -08:00
Patrick Devine
7e2496e88e Fix cmake install command in README (#13678)
Update installation command for MLX component in README.
2026-01-11 13:16:42 -08:00
WhatToPutHere
5b84e29882 docs: fix troubleshooting page (#13674)
Updated the link in the log output description to point to the correct troubleshooting guide format.
2026-01-11 00:58:07 -08:00
151 changed files with 23710 additions and 2175 deletions

View File

@@ -13,7 +13,7 @@ body:
id: logs
attributes:
label: Relevant log output
description: Please copy and paste any relevant log output. See [Troubleshooting Guide](https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md#how-to-troubleshoot-issues) for details.
description: Please copy and paste any relevant log output. See [Troubleshooting Guide](https://github.com/ollama/ollama/blob/main/docs/troubleshooting.mdx#how-to-troubleshoot-issues) for details.
render: shell
validations:
required: false

View File

@@ -372,13 +372,17 @@ jobs:
outputs: type=local,dest=dist/${{ matrix.os }}-${{ matrix.arch }}
cache-from: type=registry,ref=${{ vars.DOCKER_REPO }}:latest
cache-to: type=inline
- name: Deduplicate CUDA libraries
run: |
./scripts/deduplicate_cuda_libs.sh dist/${{ matrix.os }}-${{ matrix.arch }}
- run: |
for COMPONENT in bin/* lib/ollama/*; do
case "$COMPONENT" in
bin/ollama) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
bin/ollama*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/*.so*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_v*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/vulkan*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/mlx*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_jetpack5) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack5.tar.in ;;
lib/ollama/cuda_jetpack6) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack6.tar.in ;;
lib/ollama/rocm) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-rocm.tar.in ;;

View File

@@ -48,9 +48,10 @@ if((CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
set(GGML_CPU_ALL_VARIANTS ON)
endif()
if (CMAKE_OSX_ARCHITECTURES MATCHES "x86_64")
if(APPLE)
set(CMAKE_BUILD_RPATH "@loader_path")
set(CMAKE_INSTALL_RPATH "@loader_path")
set(CMAKE_BUILD_WITH_INSTALL_RPATH ON)
endif()
set(OLLAMA_BUILD_DIR ${CMAKE_BINARY_DIR}/lib/ollama)
@@ -189,13 +190,21 @@ if(MLX_ENGINE)
install(TARGETS mlx mlxc
RUNTIME_DEPENDENCIES
DIRECTORIES ${CUDAToolkit_BIN_DIR} ${CUDAToolkit_BIN_DIR}/x64 ${CUDAToolkit_LIBRARY_DIR}
PRE_INCLUDE_REGEXES cublas cublasLt cudart nvrtc cudnn nccl
PRE_INCLUDE_REGEXES cublas cublasLt cudart nvrtc nvrtc-builtins cudnn nccl openblas gfortran
PRE_EXCLUDE_REGEXES ".*"
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT MLX
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT MLX
FRAMEWORK DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT MLX
)
# Install the Metal library for macOS arm64 (must be colocated with the binary)
# Metal backend is only built for arm64, not x86_64
if(APPLE AND CMAKE_SYSTEM_PROCESSOR STREQUAL "arm64")
install(FILES ${CMAKE_BINARY_DIR}/_deps/mlx-build/mlx/backend/metal/kernels/mlx.metallib
DESTINATION ${OLLAMA_INSTALL_DIR}
COMPONENT MLX)
endif()
# Manually install cudart and cublas since they might not be picked up as direct dependencies
if(CUDAToolkit_FOUND)
file(GLOB CUDART_LIBS

View File

@@ -32,7 +32,7 @@ ENV PATH=/${VULKANVERSION}/x86_64/bin:$PATH
FROM --platform=linux/arm64 almalinux:8 AS base-arm64
# install epel-release for ccache
RUN yum install -y yum-utils epel-release \
&& dnf install -y clang ccache \
&& dnf install -y clang ccache git \
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/sbsa/cuda-rhel8.repo
ENV CC=clang CXX=clang++
@@ -149,6 +149,7 @@ COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
COPY x/ml/backend/mlx x/ml/backend/mlx
COPY go.mod go.sum .
COPY MLX_VERSION .
RUN curl -fsSL https://golang.org/dl/go$(awk '/^go/ { print $2 }' go.mod).linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
ENV PATH=/usr/local/go/bin:$PATH
RUN go mod download
@@ -156,11 +157,6 @@ RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'MLX CUDA 13' -DBLAS_INCLUDE_DIRS=/usr/include/openblas -DLAPACK_INCLUDE_DIRS=/usr/include/openblas \
&& cmake --build --parallel ${PARALLEL} --preset 'MLX CUDA 13' \
&& cmake --install build --component MLX --strip --parallel ${PARALLEL}
COPY . .
ARG GOFLAGS="'-ldflags=-w -s'"
ENV CGO_ENABLED=1
ARG CGO_CFLAGS
ARG CGO_CXXFLAGS
FROM base AS build
WORKDIR /go/src/github.com/ollama/ollama
@@ -169,12 +165,14 @@ RUN curl -fsSL https://golang.org/dl/go$(awk '/^go/ { print $2 }' go.mod).linux-
ENV PATH=/usr/local/go/bin:$PATH
RUN go mod download
COPY . .
# Clone mlx-c headers for CGO (version from MLX_VERSION file)
RUN git clone --depth 1 --branch "$(cat MLX_VERSION)" https://github.com/ml-explore/mlx-c.git build/_deps/mlx-c-src
ARG GOFLAGS="'-ldflags=-w -s'"
ENV CGO_ENABLED=1
ARG CGO_CFLAGS
ENV CGO_CFLAGS="-I/go/src/github.com/ollama/ollama/build/_deps/mlx-c-src"
ARG CGO_CXXFLAGS
RUN --mount=type=cache,target=/root/.cache/go-build \
go build -trimpath -buildmode=pie -o /bin/ollama .
go build -tags mlx -trimpath -buildmode=pie -o /bin/ollama .
FROM --platform=linux/amd64 scratch AS amd64
# COPY --from=cuda-11 dist/lib/ollama/ /lib/ollama/

1
MLX_VERSION Normal file
View File

@@ -0,0 +1 @@
v0.4.1

View File

@@ -48,7 +48,7 @@ ollama run gemma3
## Model library
Ollama supports a list of models available on [ollama.com/library](https://ollama.com/library 'ollama model library')
Ollama supports a list of models available on [ollama.com/library](https://ollama.com/library "ollama model library")
Here are some example models that can be downloaded:
@@ -79,7 +79,7 @@ Here are some example models that can be downloaded:
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
| LLaVA | 7B | 4.5GB | `ollama run llava` |
| Granite-3.3 | 8B | 4.9GB | `ollama run granite3.3` |
| Granite-3.3 | 8B | 4.9GB | `ollama run granite3.3` |
> [!NOTE]
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
@@ -260,6 +260,38 @@ Finally, in a separate shell, run a model:
./ollama run llama3.2
```
## Building with MLX (experimental)
First build the MLX libraries:
```shell
cmake --preset MLX
cmake --build --preset MLX --parallel
cmake --install build --component MLX
```
When building with the `-tags mlx` flag, the main `ollama` binary includes MLX support for experimental features like image generation:
```shell
go build -tags mlx .
```
Finally, start the server:
```
./ollama serve
```
### Building MLX with CUDA
When building with CUDA, use the preset "MLX CUDA 13" or "MLX CUDA 12" to enable CUDA with default architectures:
```shell
cmake --preset 'MLX CUDA 13'
cmake --build --preset 'MLX CUDA 13' --parallel
cmake --install build --component MLX
```
## REST API
Ollama has a REST API for running and managing models.
@@ -290,6 +322,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
### Web & Desktop
- [Onyx](https://github.com/onyx-dot-app/onyx)
- [Open WebUI](https://github.com/open-webui/open-webui)
- [SwiftChat (macOS with ReactNative)](https://github.com/aws-samples/swift-chat)
- [Enchanted (macOS native)](https://github.com/AugustDev/enchanted)
@@ -421,7 +454,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [AppFlowy](https://github.com/AppFlowy-IO/AppFlowy) (AI collaborative workspace with Ollama, cross-platform and self-hostable)
- [Lumina](https://github.com/cushydigit/lumina.git) (A lightweight, minimal React.js frontend for interacting with Ollama servers)
- [Tiny Notepad](https://pypi.org/project/tiny-notepad) (A lightweight, notepad-like interface to chat with ollama available on PyPI)
- [macLlama (macOS native)](https://github.com/hellotunamayo/macLlama) (A native macOS GUI application for interacting with Ollama models, featuring a chat interface.)
- [macLlama (macOS native)](https://github.com/hellotunamayo/macLlama) (A native macOS GUI application for interacting with Ollama models, featuring a chat interface.)
- [GPTranslate](https://github.com/philberndt/GPTranslate) (A fast and lightweight, AI powered desktop translation application written with Rust and Tauri. Features real-time translation with OpenAI/Azure/Ollama.)
- [ollama launcher](https://github.com/NGC13009/ollama-launcher) (A launcher for Ollama, aiming to provide users with convenient functions such as ollama server launching, management, or configuration.)
- [ai-hub](https://github.com/Aj-Seven/ai-hub) (AI Hub supports multiple models via API keys and Chat support via Ollama API.)
@@ -493,7 +526,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
### Database
- [pgai](https://github.com/timescale/pgai) - PostgreSQL as a vector database (Create and search embeddings from Ollama models using pgvector)
- [Get started guide](https://github.com/timescale/pgai/blob/main/docs/vectorizer-quick-start.md)
- [Get started guide](https://github.com/timescale/pgai/blob/main/docs/vectorizer-quick-start.md)
- [MindsDB](https://github.com/mindsdb/mindsdb/blob/staging/mindsdb/integrations/handlers/ollama_handler/README.md) (Connects Ollama models with nearly 200 data platforms and apps)
- [chromem-go](https://github.com/philippgille/chromem-go/blob/v0.5.0/embed_ollama.go) with [example](https://github.com/philippgille/chromem-go/tree/v0.5.0/examples/rag-wikipedia-ollama)
- [Kangaroo](https://github.com/dbkangaroo/kangaroo) (AI-powered SQL client and admin tool for popular databases)
@@ -636,6 +669,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [llama.cpp](https://github.com/ggml-org/llama.cpp) project founded by Georgi Gerganov.
### Observability
- [Opik](https://www.comet.com/docs/opik/cookbook/ollama) is an open-source platform to debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards. Opik supports native integration to Ollama.
- [Lunary](https://lunary.ai/docs/integrations/ollama) is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
@@ -644,4 +678,5 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [MLflow Tracing](https://mlflow.org/docs/latest/llms/tracing/index.html#automatic-tracing) is an open source LLM observability tool with a convenient API to log and visualize traces, making it easy to debug and evaluate GenAI applications.
### Security
- [Ollama Fortress](https://github.com/ParisNeo/ollama_proxy_server)

View File

@@ -165,7 +165,7 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
return nil
}
const maxBufferSize = 512 * format.KiloByte
const maxBufferSize = 8 * format.MegaByte
func (c *Client) stream(ctx context.Context, method, path string, data any, fn func([]byte) error) error {
var buf io.Reader

View File

@@ -127,6 +127,20 @@ type GenerateRequest struct {
// each with an associated log probability. Only applies when Logprobs is true.
// Valid values are 0-20. Default is 0 (only return the selected token's logprob).
TopLogprobs int `json:"top_logprobs,omitempty"`
// Experimental: Image generation fields (may change or be removed)
// Width is the width of the generated image in pixels.
// Only used for image generation models.
Width int32 `json:"width,omitempty"`
// Height is the height of the generated image in pixels.
// Only used for image generation models.
Height int32 `json:"height,omitempty"`
// Steps is the number of diffusion steps for image generation.
// Only used for image generation models.
Steps int32 `json:"steps,omitempty"`
}
// ChatRequest describes a request sent by [Client.Chat].
@@ -735,7 +749,7 @@ type ShowResponse struct {
Messages []Message `json:"messages,omitempty"`
RemoteModel string `json:"remote_model,omitempty"`
RemoteHost string `json:"remote_host,omitempty"`
ModelInfo map[string]any `json:"model_info,omitempty"`
ModelInfo map[string]any `json:"model_info"`
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
Tensors []Tensor `json:"tensors,omitempty"`
Capabilities []model.Capability `json:"capabilities,omitempty"`
@@ -860,6 +874,20 @@ type GenerateResponse struct {
// Logprobs contains log probability information for the generated tokens,
// if requested via the Logprobs parameter.
Logprobs []Logprob `json:"logprobs,omitempty"`
// Experimental: Image generation fields (may change or be removed)
// Image contains a base64-encoded generated image.
// Only present for image generation models.
Image string `json:"image,omitempty"`
// Completed is the number of completed steps in image generation.
// Only present for image generation models during streaming.
Completed int64 `json:"completed,omitempty"`
// Total is the total number of steps for image generation.
// Only present for image generation models during streaming.
Total int64 `json:"total,omitempty"`
}
// ModelDetails provides details about a model.

View File

@@ -14,6 +14,7 @@ extern NSString *SystemWidePath;
@interface AppDelegate () <NSWindowDelegate, WKNavigationDelegate, WKUIDelegate>
@property(strong, nonatomic) NSStatusItem *statusItem;
@property(assign, nonatomic) BOOL updateAvailable;
@property(assign, nonatomic) BOOL systemShutdownInProgress;
@end
@implementation AppDelegate
@@ -40,6 +41,13 @@ bool firstTimeRun,startHidden; // Set in run before initialization
}
- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
// Register for system shutdown/restart notification so we can allow termination
[[[NSWorkspace sharedWorkspace] notificationCenter]
addObserver:self
selector:@selector(systemWillPowerOff:)
name:NSWorkspaceWillPowerOffNotification
object:nil];
// if we're in development mode, set the app icon
NSString *bundlePath = [[NSBundle mainBundle] bundlePath];
if (![bundlePath hasSuffix:@".app"]) {
@@ -278,7 +286,18 @@ bool firstTimeRun,startHidden; // Set in run before initialization
[NSApp activateIgnoringOtherApps:YES];
}
- (void)systemWillPowerOff:(NSNotification *)notification {
// Set flag so applicationShouldTerminate: knows to allow termination.
// The system will call applicationShouldTerminate: after posting this notification.
self.systemShutdownInProgress = YES;
}
- (NSApplicationTerminateReply)applicationShouldTerminate:(NSApplication *)sender {
// Allow termination if the system is shutting down or restarting
if (self.systemShutdownInProgress) {
return NSTerminateNow;
}
// Otherwise just hide the app (for Cmd+Q, close button, etc.)
[NSApp hide:nil];
[NSApp setActivationPolicy:NSApplicationActivationPolicyAccessory];
return NSTerminateCancel;

View File

@@ -46,8 +46,9 @@ import (
"github.com/ollama/ollama/types/syncmap"
"github.com/ollama/ollama/version"
xcmd "github.com/ollama/ollama/x/cmd"
"github.com/ollama/ollama/x/create"
xcreateclient "github.com/ollama/ollama/x/create/client"
"github.com/ollama/ollama/x/imagegen"
imagegenclient "github.com/ollama/ollama/x/imagegen/client"
)
const ConnectInstructions = "To sign in, navigate to:\n %s\n\n"
@@ -93,14 +94,87 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
p := progress.NewProgress(os.Stderr)
defer p.Stop()
// Validate model name early to fail fast
modelName := args[0]
name := model.ParseName(modelName)
if !name.IsValid() {
return fmt.Errorf("invalid model name: %s", modelName)
}
// Check for --experimental flag for safetensors model creation
experimental, _ := cmd.Flags().GetBool("experimental")
if experimental {
// Get Modelfile content - either from -f flag or default to "FROM ."
var reader io.Reader
filename, err := getModelfileName(cmd)
if os.IsNotExist(err) || filename == "" {
// No Modelfile specified or found - use default
reader = strings.NewReader("FROM .\n")
} else if err != nil {
return err
} else {
f, err := os.Open(filename)
if err != nil {
return err
}
defer f.Close()
reader = f
}
// Parse the Modelfile
modelfile, err := parser.ParseFile(reader)
if err != nil {
return fmt.Errorf("failed to parse Modelfile: %w", err)
}
// Extract FROM path and configuration
var modelDir string
mfConfig := &xcreateclient.ModelfileConfig{}
for _, cmd := range modelfile.Commands {
switch cmd.Name {
case "model":
modelDir = cmd.Args
case "template":
mfConfig.Template = cmd.Args
case "system":
mfConfig.System = cmd.Args
case "license":
mfConfig.License = cmd.Args
}
}
if modelDir == "" {
modelDir = "."
}
// Resolve relative paths based on Modelfile location
if !filepath.IsAbs(modelDir) && filename != "" {
modelDir = filepath.Join(filepath.Dir(filename), modelDir)
}
quantize, _ := cmd.Flags().GetString("quantize")
return xcreateclient.CreateModel(xcreateclient.CreateOptions{
ModelName: modelName,
ModelDir: modelDir,
Quantize: quantize,
Modelfile: mfConfig,
}, p)
}
var reader io.Reader
filename, err := getModelfileName(cmd)
if os.IsNotExist(err) {
if filename == "" {
// No Modelfile found - check if current directory is an image gen model
if imagegen.IsTensorModelDir(".") {
return imagegenclient.CreateModel(args[0], ".", p)
if create.IsTensorModelDir(".") {
quantize, _ := cmd.Flags().GetString("quantize")
return xcreateclient.CreateModel(xcreateclient.CreateOptions{
ModelName: modelName,
ModelDir: ".",
Quantize: quantize,
}, p)
}
reader = strings.NewReader("FROM .\n")
} else {
@@ -133,7 +207,7 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
}
spinner.Stop()
req.Model = args[0]
req.Model = modelName
quantize, _ := cmd.Flags().GetString("quantize")
if quantize != "" {
req.Quantize = quantize
@@ -464,14 +538,6 @@ func RunHandler(cmd *cobra.Command, args []string) error {
name := args[0]
// Check if this is a known image generation model (skip Show/Pull)
if imagegen.HasTensorLayers(name) {
if opts.Prompt == "" && !interactive {
return errors.New("image generation models require a prompt. Usage: ollama run " + name + " \"your prompt here\"")
}
return imagegen.RunCLI(cmd, name, opts.Prompt, interactive, opts.KeepAlive)
}
info, err := func() (*api.ShowResponse, error) {
showReq := &api.ShowRequest{Name: name}
info, err := client.Show(cmd.Context(), showReq)
@@ -533,9 +599,18 @@ func RunHandler(cmd *cobra.Command, args []string) error {
return generateEmbedding(cmd, name, opts.Prompt, opts.KeepAlive, truncate, dimensions)
}
// Check if this is an image generation model
if slices.Contains(info.Capabilities, model.CapabilityImage) {
if opts.Prompt == "" && !interactive {
return errors.New("image generation models require a prompt. Usage: ollama run " + name + " \"your prompt here\"")
}
return imagegen.RunCLI(cmd, name, opts.Prompt, interactive, opts.KeepAlive)
}
// Check for experimental flag
isExperimental, _ := cmd.Flags().GetBool("experimental")
yoloMode, _ := cmd.Flags().GetBool("experimental-yolo")
enableWebsearch, _ := cmd.Flags().GetBool("experimental-websearch")
if interactive {
if err := loadOrUnloadModel(cmd, &opts); err != nil {
@@ -565,7 +640,7 @@ func RunHandler(cmd *cobra.Command, args []string) error {
// Use experimental agent loop with tools
if isExperimental {
return xcmd.GenerateInteractive(cmd, opts.Model, opts.WordWrap, opts.Options, opts.Think, opts.HideThinking, opts.KeepAlive, yoloMode)
return xcmd.GenerateInteractive(cmd, opts.Model, opts.WordWrap, opts.Options, opts.Think, opts.HideThinking, opts.KeepAlive, yoloMode, enableWebsearch)
}
return generateInteractive(cmd, opts)
@@ -671,7 +746,11 @@ func PushHandler(cmd *cobra.Command, args []string) error {
bar, ok := bars[resp.Digest]
if !ok {
bar = progress.NewBar(fmt.Sprintf("pushing %s...", resp.Digest[7:19]), resp.Total, resp.Completed)
msg := resp.Status
if msg == "" {
msg = fmt.Sprintf("pushing %s...", resp.Digest[7:19])
}
bar = progress.NewBar(msg, resp.Total, resp.Completed)
bars[resp.Digest] = bar
p.Add(resp.Digest, bar)
}
@@ -820,11 +899,11 @@ func DeleteHandler(cmd *cobra.Command, args []string) error {
for _, arg := range args {
// Unload the model if it's running before deletion
if err := loadOrUnloadModel(cmd, &runOptions{
Model: args[0],
Model: arg,
KeepAlive: &api.Duration{Duration: 0},
}); err != nil {
if !strings.Contains(strings.ToLower(err.Error()), "not found") {
fmt.Fprintf(os.Stderr, "Warning: unable to stop model '%s'\n", args[0])
fmt.Fprintf(os.Stderr, "Warning: unable to stop model '%s'\n", arg)
}
}
@@ -837,11 +916,6 @@ func DeleteHandler(cmd *cobra.Command, args []string) error {
}
func ShowHandler(cmd *cobra.Command, args []string) error {
// Check if this is an image generation model
if imagegen.HasTensorLayers(args[0]) {
return imagegen.Show(args[0], os.Stdout)
}
client, err := api.ClientFromEnvironment()
if err != nil {
return err
@@ -1741,15 +1815,22 @@ func NewCLI() *cobra.Command {
rootCmd.Flags().BoolP("version", "v", false, "Show version information")
createCmd := &cobra.Command{
Use: "create MODEL",
Short: "Create a model",
Args: cobra.ExactArgs(1),
PreRunE: checkServerHeartbeat,
RunE: CreateHandler,
Use: "create MODEL",
Short: "Create a model",
Args: cobra.ExactArgs(1),
PreRunE: func(cmd *cobra.Command, args []string) error {
// Skip server check for experimental mode (writes directly to disk)
if experimental, _ := cmd.Flags().GetBool("experimental"); experimental {
return nil
}
return checkServerHeartbeat(cmd, args)
},
RunE: CreateHandler,
}
createCmd.Flags().StringP("file", "f", "", "Name of the Modelfile (default \"Modelfile\")")
createCmd.Flags().StringP("quantize", "q", "", "Quantize model to this level (e.g. q4_K_M)")
createCmd.Flags().Bool("experimental", false, "Enable experimental safetensors model creation")
showCmd := &cobra.Command{
Use: "show MODEL",
@@ -1786,6 +1867,7 @@ func NewCLI() *cobra.Command {
runCmd.Flags().Int("dimensions", 0, "Truncate output embeddings to specified dimension (embedding models only)")
runCmd.Flags().Bool("experimental", false, "Enable experimental agent loop with tools")
runCmd.Flags().Bool("experimental-yolo", false, "Skip all tool approval prompts (use with caution)")
runCmd.Flags().Bool("experimental-websearch", false, "Enable web search tool in experimental mode")
// Image generation flags (width, height, steps, seed, etc.)
imagegen.RegisterFlags(runCmd)
@@ -1903,6 +1985,7 @@ func NewCLI() *cobra.Command {
} {
switch cmd {
case runCmd:
imagegen.AppendFlagsDocs(cmd)
appendEnvDocs(cmd, []envconfig.EnvVar{envVars["OLLAMA_HOST"], envVars["OLLAMA_NOHISTORY"]})
case serveCmd:
appendEnvDocs(cmd, []envconfig.EnvVar{

View File

@@ -1547,6 +1547,79 @@ func TestRunOptions_Copy_ThinkValueVariants(t *testing.T) {
}
}
func TestShowInfoImageGen(t *testing.T) {
var b bytes.Buffer
err := showInfo(&api.ShowResponse{
Details: api.ModelDetails{
Family: "ZImagePipeline",
ParameterSize: "10.3B",
QuantizationLevel: "FP8",
},
Capabilities: []model.Capability{model.CapabilityImage},
Requires: "0.14.0",
}, false, &b)
if err != nil {
t.Fatal(err)
}
expect := " Model\n" +
" architecture ZImagePipeline \n" +
" parameters 10.3B \n" +
" quantization FP8 \n" +
" requires 0.14.0 \n" +
"\n" +
" Capabilities\n" +
" image \n" +
"\n"
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
}
func TestPushProgressMessage(t *testing.T) {
tests := []struct {
name string
status string
digest string
wantMsg string
}{
{
name: "uses status when provided",
status: "uploading model",
digest: "sha256:abc123456789def",
wantMsg: "uploading model",
},
{
name: "falls back to digest when status empty",
status: "",
digest: "sha256:abc123456789def",
wantMsg: "pushing abc123456789...",
},
{
name: "handles short digest gracefully",
status: "",
digest: "sha256:abc",
wantMsg: "pushing sha256:abc...",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
msg := tt.status
if msg == "" {
if len(tt.digest) >= 19 {
msg = fmt.Sprintf("pushing %s...", tt.digest[7:19])
} else {
msg = fmt.Sprintf("pushing %s...", tt.digest)
}
}
if msg != tt.wantMsg {
t.Errorf("got %q, want %q", msg, tt.wantMsg)
}
})
}
}
func TestRunOptions_Copy_Independence(t *testing.T) {
// Test that modifications to original don't affect copy
originalThink := &api.ThinkValue{Value: "original"}

View File

@@ -116,7 +116,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
Prompt: ">>> ",
AltPrompt: "... ",
Placeholder: "Send a message (/? for help)",
AltPlaceholder: `Use """ to end multi-line input`,
AltPlaceholder: "Press Enter to send",
})
if err != nil {
return err

View File

@@ -311,6 +311,10 @@ func LoadModelMetadata(fsys fs.FS) (ModelKV, *Tokenizer, error) {
conv = &deepseekocr{}
case "DeepseekV3ForCausalLM":
conv = &deepseek2Model{}
case "Glm4MoeLiteForCausalLM":
conv = &glm4MoeLiteModel{}
case "Lfm2ForCausalLM":
conv = &lfm2Model{}
default:
return nil, nil, fmt.Errorf("unsupported architecture %q", p.Architectures[0])
}

View File

@@ -0,0 +1,150 @@
package convert
import (
"cmp"
"fmt"
"log/slog"
"regexp"
"strconv"
"github.com/ollama/ollama/fs/ggml"
)
type glm4MoeLiteModel struct {
ModelParameters
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RMSNormEPS float32 `json:"rms_norm_eps"`
RopeTheta float32 `json:"rope_theta"`
QKNopeHeadDim uint32 `json:"qk_nope_head_dim"`
QKRopeHeadDim uint32 `json:"qk_rope_head_dim"`
KVLoraRank uint32 `json:"kv_lora_rank"`
QLoraRank uint32 `json:"q_lora_rank"`
VHeadDim uint32 `json:"v_head_dim"`
ExpertCount uint32 `json:"n_routed_experts"`
ExpertSharedCount uint32 `json:"n_shared_experts"`
ExpertIntermediateSize uint32 `json:"moe_intermediate_size"`
ExpertUsedCount uint32 `json:"num_experts_per_tok"`
ExpertWeightsNorm bool `json:"norm_topk_prob"`
ExpertWeightsScale float32 `json:"routed_scaling_factor"`
LeadingDenseBlockCount uint32 `json:"first_k_dense_replace"`
}
func (p *glm4MoeLiteModel) KV(t *Tokenizer) KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "glm4moelite"
kv["general.type"] = "model"
kv["glm4moelite.block_count"] = p.HiddenLayers
numHeads := p.NumAttentionHeads
numKVHeads := p.NumKeyValueHeads
kv["glm4moelite.attention.head_count"] = numHeads
kv["glm4moelite.attention.head_count_kv"] = numKVHeads
kv["glm4moelite.attention.key_length"] = p.QKNopeHeadDim + p.QKRopeHeadDim
kv["glm4moelite.attention.kv_lora_rank"] = p.KVLoraRank
kv["glm4moelite.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["glm4moelite.attention.q_lora_rank"] = p.QLoraRank
kv["glm4moelite.attention.value_length"] = p.VHeadDim
kv["glm4moelite.context_length"] = p.MaxPositionEmbeddings
kv["glm4moelite.embedding_length"] = p.HiddenSize
kv["glm4moelite.expert_count"] = p.ExpertCount
kv["glm4moelite.expert_feed_forward_length"] = p.ExpertIntermediateSize
kv["glm4moelite.expert_shared_count"] = p.ExpertSharedCount
kv["glm4moelite.expert_gating_func"] = uint32(2)
kv["glm4moelite.expert_used_count"] = p.ExpertUsedCount
kv["glm4moelite.expert_weights_norm"] = p.ExpertWeightsNorm
kv["glm4moelite.expert_weights_scale"] = p.ExpertWeightsScale
kv["glm4moelite.feed_forward_length"] = p.IntermediateSize
kv["glm4moelite.leading_dense_block_count"] = p.LeadingDenseBlockCount
kv["glm4moelite.rope.dimension_count"] = p.QKRopeHeadDim
kv["glm4moelite.rope.freq_base"] = cmp.Or(p.RopeTheta, float32(1000000.0))
kv["tokenizer.ggml.pre"] = "glm4"
return kv
}
func (p *glm4MoeLiteModel) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.kv_a_proj_with_mqa", "attn_kv_a_mqa",
"self_attn.kv_a_layernorm", "attn_kv_a_norm",
"self_attn.kv_b_proj", "attn_kv_b",
"self_attn.q_a_proj", "attn_q_a",
"self_attn.q_a_layernorm", "attn_q_a_norm",
"self_attn.q_b_proj", "attn_q_b",
"self_attn.o_proj", "attn_output",
"post_attention_layernorm", "ffn_norm",
"mlp.shared_experts.down_proj", "ffn_down_shexp",
"mlp.shared_experts.gate_proj", "ffn_gate_shexp",
"mlp.shared_experts.up_proj", "ffn_up_shexp",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"mlp.gate.e_score_correction_bias", "exp_probs_b.bias",
"mlp.gate", "ffn_gate_inp",
}
}
func (p *glm4MoeLiteModel) Tensors(s []Tensor) (out []*ggml.Tensor) {
merges := make([]merge, p.HiddenLayers*3)
for i := range p.HiddenLayers {
merges[i*3+0] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.gate_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_gate_exps.weight", i),
}
merges[i*3+1] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.up_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_up_exps.weight", i),
}
merges[i*3+2] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.down_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_down_exps.weight", i),
}
}
skipLayer := func(n string, minValue uint32) bool {
re := regexp.MustCompile(`^blk\.(\d+)`)
matches := re.FindStringSubmatch(n)
if matches == nil {
return false
}
blkNum, err := strconv.Atoi(matches[1])
if err != nil {
return false
}
return uint32(blkNum) >= minValue
}
out, s = mergeTensors(s, merges...)
for _, t := range s {
// skip any additional layers (such as the Multi-Token Prediction layer)
if skipLayer(t.Name(), p.HiddenLayers) {
slog.Debug("skipping layer", "name", t.Name())
continue
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}

115
convert/convert_lfm2.go Normal file
View File

@@ -0,0 +1,115 @@
package convert
import (
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
)
type lfm2Model struct {
ModelParameters
HiddenSize uint32 `json:"hidden_size"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"`
NormEps float32 `json:"norm_eps"`
ConvLCache uint32 `json:"conv_L_cache"`
LayerTypes []string `json:"layer_types"`
TieEmbedding bool `json:"tie_embedding"`
}
var _ ModelConverter = (*lfm2Model)(nil)
func (p *lfm2Model) KV(t *Tokenizer) KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "lfm2"
kv["lfm2.vocab_size"] = p.VocabSize
kv["lfm2.block_count"] = p.NumHiddenLayers
kv["lfm2.embedding_length"] = p.HiddenSize
kv["lfm2.feed_forward_length"] = p.IntermediateSize
kv["lfm2.context_length"] = p.MaxPositionEmbeddings
// Build per-layer head count arrays based on layer_types
headCounts := make([]uint32, p.NumHiddenLayers)
kvHeadCounts := make([]uint32, p.NumHiddenLayers)
for i := uint32(0); i < p.NumHiddenLayers; i++ {
if i < uint32(len(p.LayerTypes)) && p.LayerTypes[i] == "full_attention" {
headCounts[i] = p.NumAttentionHeads
kvHeadCounts[i] = p.NumKeyValueHeads
} else {
// Conv layers have 0 head counts
headCounts[i] = 0
kvHeadCounts[i] = 0
}
}
kv["lfm2.attention.head_count"] = headCounts
kv["lfm2.attention.head_count_kv"] = kvHeadCounts
kv["lfm2.attention.layer_norm_rms_epsilon"] = p.NormEps
kv["lfm2.rope.freq_base"] = p.RopeTheta
kv["lfm2.shortconv.l_cache"] = p.ConvLCache
// Renderer and parser config for thinking model
kv["tokenizer.chat_template.renderer"] = "lfm2-thinking"
kv["tokenizer.chat_template.parser"] = "lfm2-thinking"
return kv
}
func (p *lfm2Model) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
shape := t.Shape()
// Squeeze conv weights from [D, 1, K] to [D, K]
// The shortconv.conv.weight tensors have shape [D, 1, K] in HuggingFace
// We remove the middle dimension (which is always 1) to get [D, K]
// Note: ollama's GGUF writer does NOT reverse shapes like llama.cpp's Python writer does,
// so we keep the shape in the same order as the original safetensors file
if strings.HasSuffix(t.Name(), "shortconv.conv.weight") && len(shape) == 3 && shape[1] == 1 {
// Squeeze: [D, 1, K] -> [D, K]
shape = []uint64{shape[0], shape[2]}
// No repacker needed - data layout is already correct since the middle dim is 1
t.SetRepacker(func(_ string, data []float32, _ []uint64) ([]float32, error) {
return data, nil
})
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: slices.Clone(shape),
WriterTo: t,
})
}
return out
}
func (p *lfm2Model) Replacements() []string {
return []string{
"model.embed_tokens", "token_embd",
"model.embedding_norm", "output_norm",
"model.layers", "blk",
"operator_norm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.out_proj", "attn_output",
"self_attn.q_layernorm", "attn_q_norm",
"self_attn.k_layernorm", "attn_k_norm",
"conv.conv", "shortconv.conv",
"conv.in_proj", "shortconv.in_proj",
"conv.out_proj", "shortconv.out_proj",
"feed_forward.w1", "ffn_gate",
"feed_forward.w2", "ffn_down",
"feed_forward.w3", "ffn_up",
"ffn_norm", "ffn_norm",
}
}

View File

@@ -16,6 +16,7 @@
- [Generate Embeddings](#generate-embeddings)
- [List Running Models](#list-running-models)
- [Version](#version)
- [Experimental: Image Generation](#image-generation-experimental)
## Conventions
@@ -58,6 +59,15 @@ Advanced parameters (optional):
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
- `context` (deprecated): the context parameter returned from a previous request to `/generate`, this can be used to keep a short conversational memory
Experimental image generation parameters (for image generation models only):
> [!WARNING]
> These parameters are experimental and may change in future versions.
- `width`: width of the generated image in pixels
- `height`: height of the generated image in pixels
- `steps`: number of diffusion steps
#### Structured outputs
Structured outputs are supported by providing a JSON schema in the `format` parameter. The model will generate a response that matches the schema. See the [structured outputs](#request-structured-outputs) example below.
@@ -1867,3 +1877,55 @@ curl http://localhost:11434/api/version
"version": "0.5.1"
}
```
## Experimental Features
### Image Generation (Experimental)
> [!WARNING]
> Image generation is experimental and may change in future versions.
Image generation is now supported through the standard `/api/generate` endpoint when using image generation models. The API automatically detects when an image generation model is being used.
See the [Generate a completion](#generate-a-completion) section for the full API documentation. The experimental image generation parameters (`width`, `height`, `steps`) are documented there.
#### Example
##### Request
```shell
curl http://localhost:11434/api/generate -d '{
"model": "x/z-image-turbo",
"prompt": "a sunset over mountains",
"width": 1024,
"height": 768
}'
```
##### Response (streaming)
Progress updates during generation:
```json
{
"model": "x/z-image-turbo",
"created_at": "2024-01-15T10:30:00.000000Z",
"completed": 5,
"total": 20,
"done": false
}
```
##### Final Response
```json
{
"model": "x/z-image-turbo",
"created_at": "2024-01-15T10:30:15.000000Z",
"image": "iVBORw0KGgoAAAANSUhEUg...",
"done": true,
"done_reason": "stop",
"total_duration": 15000000000,
"load_duration": 2000000000
}
```

View File

@@ -21,6 +21,7 @@ ollama pull glm-4.7:cloud
To use Ollama with tools that expect the Anthropic API (like Claude Code), set these environment variables:
```shell
export ANTHROPIC_AUTH_TOKEN=ollama # required but ignored
export ANTHROPIC_BASE_URL=http://localhost:11434
export ANTHROPIC_API_KEY=ollama # required but ignored
```
@@ -247,12 +248,13 @@ curl -X POST http://localhost:11434/v1/messages \
[Claude Code](https://code.claude.com/docs/en/overview) can be configured to use Ollama as its backend:
```shell
ANTHROPIC_BASE_URL=http://localhost:11434 ANTHROPIC_API_KEY=ollama claude --model qwen3-coder
ANTHROPIC_AUTH_TOKEN=ollama ANTHROPIC_BASE_URL=http://localhost:11434 ANTHROPIC_API_KEY=ollama claude --model qwen3-coder
```
Or set the environment variables in your shell profile:
```shell
export ANTHROPIC_AUTH_TOKEN=ollama
export ANTHROPIC_BASE_URL=http://localhost:11434
export ANTHROPIC_API_KEY=ollama
```

View File

@@ -275,6 +275,73 @@ curl -X POST http://localhost:11434/v1/chat/completions \
- [x] `dimensions`
- [ ] `user`
### `/v1/images/generations` (experimental)
> Note: This endpoint is experimental and may change or be removed in future versions.
Generate images using image generation models.
<CodeGroup dropdown>
```python images.py
from openai import OpenAI
client = OpenAI(
base_url='http://localhost:11434/v1/',
api_key='ollama', # required but ignored
)
response = client.images.generate(
model='x/z-image-turbo',
prompt='A cute robot learning to paint',
size='1024x1024',
response_format='b64_json',
)
print(response.data[0].b64_json[:50] + '...')
```
```javascript images.js
import OpenAI from "openai";
const openai = new OpenAI({
baseURL: "http://localhost:11434/v1/",
apiKey: "ollama", // required but ignored
});
const response = await openai.images.generate({
model: "x/z-image-turbo",
prompt: "A cute robot learning to paint",
size: "1024x1024",
response_format: "b64_json",
});
console.log(response.data[0].b64_json.slice(0, 50) + "...");
```
```shell images.sh
curl -X POST http://localhost:11434/v1/images/generations \
-H "Content-Type: application/json" \
-d '{
"model": "x/z-image-turbo",
"prompt": "A cute robot learning to paint",
"size": "1024x1024",
"response_format": "b64_json"
}'
```
</CodeGroup>
#### Supported request fields
- [x] `model`
- [x] `prompt`
- [x] `size` (e.g. "1024x1024")
- [x] `response_format` (only `b64_json` supported)
- [ ] `n`
- [ ] `quality`
- [ ] `style`
- [ ] `user`
### `/v1/responses`
> Note: Added in Ollama v0.13.3

View File

@@ -110,7 +110,7 @@ More Ollama [Python example](https://github.com/ollama/ollama-python/blob/main/e
import { Ollama } from "ollama";
const client = new Ollama();
const results = await client.webSearch({ query: "what is ollama?" });
const results = await client.webSearch("what is ollama?");
console.log(JSON.stringify(results, null, 2));
```
@@ -213,7 +213,7 @@ models](https://ollama.com/models)\n\nAvailable for macOS, Windows, and Linux',
import { Ollama } from "ollama";
const client = new Ollama();
const fetchResult = await client.webFetch({ url: "https://ollama.com" });
const fetchResult = await client.webFetch("https://ollama.com");
console.log(JSON.stringify(fetchResult, null, 2));
```

View File

@@ -111,7 +111,9 @@
"/integrations/zed",
"/integrations/roo-code",
"/integrations/n8n",
"/integrations/xcode"
"/integrations/xcode",
"/integrations/onyx",
"/integrations/marimo"
]
},
{

View File

@@ -22,7 +22,7 @@ Please refer to the [GPU docs](./gpu).
## How can I specify the context window size?
By default, Ollama uses a context window size of 2048 tokens.
By default, Ollama uses a context window size of 4096 tokens.
This can be overridden with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context window to 8K, use:

View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 174 KiB

BIN
docs/images/marimo-chat.png Normal file
View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 80 KiB

View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 230 KiB

View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 178 KiB

View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 186 KiB

BIN
docs/images/onyx-login.png Normal file
View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 100 KiB

View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 306 KiB

View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 300 KiB

BIN
docs/images/onyx-query.png Normal file
View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 211 KiB

View File

@@ -2,6 +2,12 @@
title: Claude Code
---
Claude Code is Anthropic's agentic coding tool that can read, modify, and execute code in your working directory.
Open models can be used with Claude Code through Ollama's Anthropic-compatible API, enabling you to use models such as `qwen3-coder`, `gpt-oss:20b`, or other models.
![Claude Code with Ollama](https://files.ollama.com/claude-code.png)
## Install
Install [Claude Code](https://code.claude.com/docs/en/overview):
@@ -25,22 +31,24 @@ Claude Code connects to Ollama using the Anthropic-compatible API.
1. Set the environment variables:
```shell
export ANTHROPIC_AUTH_TOKEN=ollama
export ANTHROPIC_BASE_URL=http://localhost:11434
export ANTHROPIC_API_KEY=ollama
```
2. Run Claude Code with an Ollama model:
```shell
claude --model qwen3-coder
claude --model gpt-oss:20b
```
Or run with environment variables inline:
```shell
ANTHROPIC_BASE_URL=http://localhost:11434 ANTHROPIC_API_KEY=ollama claude --model qwen3-coder
ANTHROPIC_AUTH_TOKEN=ollama ANTHROPIC_BASE_URL=http://localhost:11434 claude --model gpt-oss:20b
```
**Note:** Claude Code requires a large context window. We recommend at least 32K tokens. See the [context length documentation](/context-length) for how to adjust context length in Ollama.
## Connecting to ollama.com
1. Create an [API key](https://ollama.com/settings/keys) on ollama.com
@@ -67,3 +75,4 @@ claude --model glm-4.7:cloud
### Local models
- `qwen3-coder` - Excellent for coding tasks
- `gpt-oss:20b` - Strong general-purpose model
- `gpt-oss:120b` - Larger general-purpose model for more complex tasks

View File

@@ -0,0 +1,73 @@
---
title: marimo
---
## Install
Install [marimo](https://marimo.io). You can use `pip` or `uv` for this. You
can also use `uv` to create a sandboxed environment for marimo by running:
```
uvx marimo edit --sandbox notebook.py
```
## Usage with Ollama
1. In marimo, go to the user settings and go to the AI tab. From here
you can find and configure Ollama as an AI provider. For local use you
would typically point the base url to `http://localhost:11434/v1`.
<div style={{ display: 'flex', justifyContent: 'center' }}>
<img
src="/images/marimo-settings.png"
alt="Ollama settings in marimo"
width="50%"
/>
</div>
2. Once the AI provider is set up, you can turn on/off specific AI models you'd like to access.
<div style={{ display: 'flex', justifyContent: 'center' }}>
<img
src="/images/marimo-models.png"
alt="Selecting an Ollama model"
width="50%"
/>
</div>
3. You can also add a model to the list of available models by scrolling to the bottom and using the UI there.
<div style={{ display: 'flex', justifyContent: 'center' }}>
<img
src="/images/marimo-add-model.png"
alt="Adding a new Ollama model"
width="50%"
/>
</div>
4. Once configured, you can now use Ollama for AI chats in marimo.
<div style={{ display: 'flex', justifyContent: 'center' }}>
<img
src="/images/marimo-chat.png"
alt="Configure code completion"
width="50%"
/>
</div>
4. Alternatively, you can now use Ollama for **inline code completion** in marimo. This can be configured in the "AI Features" tab.
<div style={{ display: 'flex', justifyContent: 'center' }}>
<img
src="/images/marimo-code-completion.png"
alt="Configure code completion"
width="50%"
/>
</div>
## Connecting to ollama.com
1. Sign in to ollama cloud via `ollama signin`
2. In the ollama model settings add a model that ollama hosts, like `gpt-oss:120b`.
3. You can now refer to this model in marimo!

View File

@@ -0,0 +1,63 @@
---
title: Onyx
---
## Overview
[Onyx](http://onyx.app/) is a self-hostable Chat UI that integrates with all Ollama models. Features include:
- Creating custom Agents
- Web search
- Deep Research
- RAG over uploaded documents and connected apps
- Connectors to applications like Google Drive, Email, Slack, etc.
- MCP and OpenAPI Actions support
- Image generation
- User/Groups management, RBAC, SSO, etc.
Onyx can be deployed for single users or large organizations.
## Install Onyx
Deploy Onyx with the [quickstart guide](https://docs.onyx.app/deployment/getting_started/quickstart).
<Info>
Resourcing/scaling docs [here](https://docs.onyx.app/deployment/getting_started/resourcing).
</Info>
## Usage with Ollama
1. Login to your Onyx deployment (create an account first).
<div style={{ display: 'flex', justifyContent: 'center' }}>
<img
src="/images/onyx-login.png"
alt="Onyx Login Page"
width="75%"
/>
</div>
2. In the set-up process select `Ollama` as the LLM provider.
<div style={{ display: 'flex', justifyContent: 'center' }}>
<img
src="/images/onyx-ollama-llm.png"
alt="Onyx Set Up Form"
width="75%"
/>
</div>
3. Provide your **Ollama API URL** and select your models.
<Note>If you're running Onyx in Docker, to access your computer's local network use `http://host.docker.internal` instead of `http://127.0.0.1`.</Note>
<div style={{ display: 'flex', justifyContent: 'center' }}>
<img
src="/images/onyx-ollama-form.png"
alt="Selecting Ollama Models"
width="75%"
/>
</div>
You can also easily connect up Onyx Cloud with the `Ollama Cloud` tab of the setup.
## Send your first query
<div style={{ display: 'flex', justifyContent: 'center' }}>
<img
src="/images/onyx-query.png"
alt="Onyx Query Example"
width="75%"
/>
</div>

View File

@@ -1,5 +1,5 @@
---
title: "Linux"
title: Linux
---
## Install
@@ -13,14 +13,15 @@ curl -fsSL https://ollama.com/install.sh | sh
## Manual install
<Note>
If you are upgrading from a prior version, you should remove the old libraries with `sudo rm -rf /usr/lib/ollama` first.
If you are upgrading from a prior version, you should remove the old libraries
with `sudo rm -rf /usr/lib/ollama` first.
</Note>
Download and extract the package:
```shell
curl -fsSL https://ollama.com/download/ollama-linux-amd64.tgz \
| sudo tar zx -C /usr
curl -fsSL https://ollama.com/download/ollama-linux-amd64.tar.zst \
| sudo tar x -C /usr
```
Start Ollama:
@@ -40,8 +41,8 @@ ollama -v
If you have an AMD GPU, also download and extract the additional ROCm package:
```shell
curl -fsSL https://ollama.com/download/ollama-linux-amd64-rocm.tgz \
| sudo tar zx -C /usr
curl -fsSL https://ollama.com/download/ollama-linux-amd64-rocm.tar.zst \
| sudo tar x -C /usr
```
### ARM64 install
@@ -49,8 +50,8 @@ curl -fsSL https://ollama.com/download/ollama-linux-amd64-rocm.tgz \
Download and extract the ARM64-specific package:
```shell
curl -fsSL https://ollama.com/download/ollama-linux-arm64.tgz \
| sudo tar zx -C /usr
curl -fsSL https://ollama.com/download/ollama-linux-arm64.tar.zst \
| sudo tar x -C /usr
```
### Adding Ollama as a startup service (recommended)
@@ -112,7 +113,11 @@ sudo systemctl status ollama
```
<Note>
While AMD has contributed the `amdgpu` driver upstream to the official linux kernel source, the version is older and may not support all ROCm features. We recommend you install the latest driver from https://www.amd.com/en/support/linux-drivers for best support of your Radeon GPU.
While AMD has contributed the `amdgpu` driver upstream to the official linux
kernel source, the version is older and may not support all ROCm features. We
recommend you install the latest driver from
https://www.amd.com/en/support/linux-drivers for best support of your Radeon
GPU.
</Note>
## Customizing
@@ -141,8 +146,8 @@ curl -fsSL https://ollama.com/install.sh | sh
Or by re-downloading Ollama:
```shell
curl -fsSL https://ollama.com/download/ollama-linux-amd64.tgz \
| sudo tar zx -C /usr
curl -fsSL https://ollama.com/download/ollama-linux-amd64.tar.zst \
| sudo tar x -C /usr
```
## Installing specific versions
@@ -191,4 +196,4 @@ Remove the downloaded models and Ollama service user and group:
sudo userdel ollama
sudo groupdel ollama
sudo rm -r /usr/share/ollama
```
```

View File

@@ -1,3 +0,0 @@
# Troubleshooting
For troubleshooting, see [https://docs.ollama.com/troubleshooting](https://docs.ollama.com/troubleshooting)

View File

@@ -269,6 +269,8 @@ func (kv KV) OllamaEngineRequired() bool {
"qwen25vl",
"qwen3", "qwen3moe",
"qwen3vl", "qwen3vlmoe",
"glm4moelite",
"lfm2",
}, kv.Architecture())
}
@@ -856,6 +858,7 @@ func (f GGML) FlashAttention() bool {
return slices.Contains([]string{
"bert",
"gemma3",
"glm4moelite",
"gptoss", "gpt-oss",
"mistral3",
"olmo3",

View File

@@ -0,0 +1,174 @@
//go:build integration
package integration
import (
"bytes"
"context"
"encoding/base64"
"encoding/json"
"fmt"
"net/http"
"strings"
"testing"
"time"
"github.com/ollama/ollama/api"
imagegenapi "github.com/ollama/ollama/x/imagegen/api"
)
func TestImageGeneration(t *testing.T) {
skipUnderMinVRAM(t, 8)
type testCase struct {
imageGenModel string
visionModel string
prompt string
expectedWords []string
}
testCases := []testCase{
{
imageGenModel: "jmorgan/z-image-turbo",
visionModel: "llama3.2-vision",
prompt: "A cartoon style llama flying like a superhero through the air with clouds in the background",
expectedWords: []string{"llama", "flying", "cartoon", "cloud", "sky", "superhero", "air", "animal", "camelid"},
},
}
for _, tc := range testCases {
t.Run(fmt.Sprintf("%s->%s", tc.imageGenModel, tc.visionModel), func(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 10*time.Minute)
defer cancel()
client, testEndpoint, cleanup := InitServerConnection(ctx, t)
defer cleanup()
// Pull both models
if err := PullIfMissing(ctx, client, tc.imageGenModel); err != nil {
t.Fatalf("failed to pull image gen model: %v", err)
}
if err := PullIfMissing(ctx, client, tc.visionModel); err != nil {
t.Fatalf("failed to pull vision model: %v", err)
}
// Generate the image
t.Logf("Generating image with prompt: %s", tc.prompt)
imageBase64, err := generateImage(ctx, testEndpoint, tc.imageGenModel, tc.prompt)
if err != nil {
if strings.Contains(err.Error(), "image generation not available") {
t.Skip("Target system does not support image generation")
} else if strings.Contains(err.Error(), "executable file not found in") { // Windows pattern, not yet supported
t.Skip("Windows does not support image generation yet")
} else if strings.Contains(err.Error(), "CUDA driver version is insufficient") {
t.Skip("Driver is too old")
} else if strings.Contains(err.Error(), "insufficient memory for image generation") {
t.Skip("insufficient memory for image generation")
} else if strings.Contains(err.Error(), "error while loading shared libraries: libcuda.so.1") { // AMD GPU or CPU
t.Skip("CUDA GPU is not available")
} else if strings.Contains(err.Error(), "ollama-mlx: no such file or directory") {
// most likely linux arm - not supported yet
t.Skip("unsupported architecture")
}
t.Fatalf("failed to generate image: %v", err)
}
imageData, err := base64.StdEncoding.DecodeString(imageBase64)
if err != nil {
t.Fatalf("failed to decode image: %v", err)
}
t.Logf("Generated image: %d bytes", len(imageData))
// Preload vision model and check GPU loading
err = client.Generate(ctx, &api.GenerateRequest{Model: tc.visionModel}, func(response api.GenerateResponse) error { return nil })
if err != nil {
t.Fatalf("failed to load vision model: %v", err)
}
// Use vision model to describe the image
chatReq := api.ChatRequest{
Model: tc.visionModel,
Messages: []api.Message{
{
Role: "user",
Content: "Describe this image in detail. What is shown? What style is it? What is the main subject doing?",
Images: []api.ImageData{imageData},
},
},
Stream: &stream,
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
}
// Verify the vision model's response contains expected keywords
response := DoChat(ctx, t, client, chatReq, tc.expectedWords, 240*time.Second, 30*time.Second)
if response != nil {
t.Logf("Vision model response: %s", response.Content)
// Additional detailed check for keywords
content := strings.ToLower(response.Content)
foundWords := []string{}
missingWords := []string{}
for _, word := range tc.expectedWords {
if strings.Contains(content, word) {
foundWords = append(foundWords, word)
} else {
missingWords = append(missingWords, word)
}
}
t.Logf("Found keywords: %v", foundWords)
if len(missingWords) > 0 {
t.Logf("Missing keywords (at least one was found so test passed): %v", missingWords)
}
}
})
}
}
// generateImage calls the OpenAI-compatible image generation API and returns the base64 image data
func generateImage(ctx context.Context, endpoint, model, prompt string) (string, error) {
reqBody := imagegenapi.ImageGenerationRequest{
Model: model,
Prompt: prompt,
N: 1,
Size: "512x512",
ResponseFormat: "b64_json",
}
jsonBody, err := json.Marshal(reqBody)
if err != nil {
return "", fmt.Errorf("failed to marshal request: %w", err)
}
url := fmt.Sprintf("http://%s/v1/images/generations", endpoint)
req, err := http.NewRequestWithContext(ctx, "POST", url, bytes.NewReader(jsonBody))
if err != nil {
return "", fmt.Errorf("failed to create request: %w", err)
}
req.Header.Set("Content-Type", "application/json")
resp, err := http.DefaultClient.Do(req)
if err != nil {
return "", fmt.Errorf("failed to send request: %w", err)
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
var buf bytes.Buffer
buf.ReadFrom(resp.Body)
return "", fmt.Errorf("unexpected status code %d: %s", resp.StatusCode, buf.String())
}
var genResp imagegenapi.ImageGenerationResponse
if err := json.NewDecoder(resp.Body).Decode(&genResp); err != nil {
return "", fmt.Errorf("failed to decode response: %w", err)
}
if len(genResp.Data) == 0 {
return "", fmt.Errorf("no image data in response")
}
return genResp.Data[0].B64JSON, nil
}

View File

@@ -131,7 +131,7 @@ func TestAPIToolCalling(t *testing.T) {
t.Errorf("unexpected tool called: got %q want %q", lastToolCall.Function.Name, "get_weather")
}
if _, ok := lastToolCall.Function.Arguments["location"]; !ok {
if _, ok := lastToolCall.Function.Arguments.Get("location"); !ok {
t.Errorf("expected tool arguments to include 'location', got: %s", lastToolCall.Function.Arguments.String())
}
case <-ctx.Done():

View File

@@ -1464,6 +1464,12 @@ type CompletionRequest struct {
// TopLogprobs specifies the number of most likely alternative tokens to return (0-20)
TopLogprobs int
// Image generation fields
Width int32 `json:"width,omitempty"`
Height int32 `json:"height,omitempty"`
Steps int32 `json:"steps,omitempty"`
Seed int64 `json:"seed,omitempty"`
}
// DoneReason represents the reason why a completion response is done
@@ -1512,6 +1518,15 @@ type CompletionResponse struct {
// Logprobs contains log probability information if requested
Logprobs []Logprob `json:"logprobs,omitempty"`
// Image contains base64-encoded image data for image generation
Image string `json:"image,omitempty"`
// Step is the current step in image generation
Step int `json:"step,omitempty"`
// TotalSteps is the total number of steps for image generation
TotalSteps int `json:"total_steps,omitempty"`
}
func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error {

View File

@@ -118,6 +118,9 @@ func AnthropicMessagesMiddleware() gin.HandlerFunc {
return
}
// Set think to nil when being used with Anthropic API to connect to tools like claude code
c.Set("relax_thinking", true)
var b bytes.Buffer
if err := json.NewEncoder(&b).Encode(chatReq); err != nil {
c.AbortWithStatusJSON(http.StatusInternalServerError, anthropic.NewError(http.StatusInternalServerError, err.Error()))

View File

@@ -582,3 +582,26 @@ func TestAnthropicWriter_ErrorFromRoutes(t *testing.T) {
})
}
}
func TestAnthropicMessagesMiddleware_SetsRelaxThinkingFlag(t *testing.T) {
gin.SetMode(gin.TestMode)
var flagSet bool
router := gin.New()
router.Use(AnthropicMessagesMiddleware())
router.POST("/v1/messages", func(c *gin.Context) {
_, flagSet = c.Get("relax_thinking")
c.Status(http.StatusOK)
})
body := `{"model": "test-model", "max_tokens": 100, "messages": [{"role": "user", "content": "Hi"}]}`
req, _ := http.NewRequest(http.MethodPost, "/v1/messages", strings.NewReader(body))
req.Header.Set("Content-Type", "application/json")
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
if !flagSet {
t.Error("expected relax_thinking flag to be set in context")
}
}

View File

@@ -8,6 +8,7 @@ import (
"math/rand"
"net/http"
"strings"
"time"
"github.com/gin-gonic/gin"
@@ -441,6 +442,7 @@ type ResponsesWriter struct {
stream bool
responseID string
itemID string
request openai.ResponsesRequest
}
func (w *ResponsesWriter) writeEvent(eventType string, data any) error {
@@ -478,7 +480,9 @@ func (w *ResponsesWriter) writeResponse(data []byte) (int, error) {
// Non-streaming response
w.ResponseWriter.Header().Set("Content-Type", "application/json")
response := openai.ToResponse(w.model, w.responseID, w.itemID, chatResponse)
response := openai.ToResponse(w.model, w.responseID, w.itemID, chatResponse, w.request)
completedAt := time.Now().Unix()
response.CompletedAt = &completedAt
return len(data), json.NewEncoder(w.ResponseWriter).Encode(response)
}
@@ -523,11 +527,12 @@ func ResponsesMiddleware() gin.HandlerFunc {
w := &ResponsesWriter{
BaseWriter: BaseWriter{ResponseWriter: c.Writer},
converter: openai.NewResponsesStreamConverter(responseID, itemID, req.Model),
converter: openai.NewResponsesStreamConverter(responseID, itemID, req.Model, req),
model: req.Model,
stream: streamRequested,
responseID: responseID,
itemID: itemID,
request: req,
}
// Set headers based on streaming mode
@@ -541,3 +546,66 @@ func ResponsesMiddleware() gin.HandlerFunc {
c.Next()
}
}
type ImageWriter struct {
BaseWriter
}
func (w *ImageWriter) writeResponse(data []byte) (int, error) {
var generateResponse api.GenerateResponse
if err := json.Unmarshal(data, &generateResponse); err != nil {
return 0, err
}
// Only write response when done with image
if generateResponse.Done && generateResponse.Image != "" {
w.ResponseWriter.Header().Set("Content-Type", "application/json")
return len(data), json.NewEncoder(w.ResponseWriter).Encode(openai.ToImageGenerationResponse(generateResponse))
}
return len(data), nil
}
func (w *ImageWriter) Write(data []byte) (int, error) {
code := w.ResponseWriter.Status()
if code != http.StatusOK {
return w.writeError(data)
}
return w.writeResponse(data)
}
func ImageGenerationsMiddleware() gin.HandlerFunc {
return func(c *gin.Context) {
var req openai.ImageGenerationRequest
if err := c.ShouldBindJSON(&req); err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, openai.NewError(http.StatusBadRequest, err.Error()))
return
}
if req.Prompt == "" {
c.AbortWithStatusJSON(http.StatusBadRequest, openai.NewError(http.StatusBadRequest, "prompt is required"))
return
}
if req.Model == "" {
c.AbortWithStatusJSON(http.StatusBadRequest, openai.NewError(http.StatusBadRequest, "model is required"))
return
}
var b bytes.Buffer
if err := json.NewEncoder(&b).Encode(openai.FromImageGenerationRequest(req)); err != nil {
c.AbortWithStatusJSON(http.StatusInternalServerError, openai.NewError(http.StatusInternalServerError, err.Error()))
return
}
c.Request.Body = io.NopCloser(&b)
w := &ImageWriter{
BaseWriter: BaseWriter{ResponseWriter: c.Writer},
}
c.Writer = w
c.Next()
}
}

View File

@@ -961,3 +961,154 @@ func TestRetrieveMiddleware(t *testing.T) {
}
}
}
func TestImageGenerationsMiddleware(t *testing.T) {
type testCase struct {
name string
body string
req api.GenerateRequest
err openai.ErrorResponse
}
var capturedRequest *api.GenerateRequest
testCases := []testCase{
{
name: "image generation basic",
body: `{
"model": "test-model",
"prompt": "a beautiful sunset"
}`,
req: api.GenerateRequest{
Model: "test-model",
Prompt: "a beautiful sunset",
},
},
{
name: "image generation with size",
body: `{
"model": "test-model",
"prompt": "a beautiful sunset",
"size": "512x768"
}`,
req: api.GenerateRequest{
Model: "test-model",
Prompt: "a beautiful sunset",
Width: 512,
Height: 768,
},
},
{
name: "image generation missing prompt",
body: `{
"model": "test-model"
}`,
err: openai.ErrorResponse{
Error: openai.Error{
Message: "prompt is required",
Type: "invalid_request_error",
},
},
},
{
name: "image generation missing model",
body: `{
"prompt": "a beautiful sunset"
}`,
err: openai.ErrorResponse{
Error: openai.Error{
Message: "model is required",
Type: "invalid_request_error",
},
},
},
}
endpoint := func(c *gin.Context) {
c.Status(http.StatusOK)
}
gin.SetMode(gin.TestMode)
router := gin.New()
router.Use(ImageGenerationsMiddleware(), captureRequestMiddleware(&capturedRequest))
router.Handle(http.MethodPost, "/api/generate", endpoint)
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
req, _ := http.NewRequest(http.MethodPost, "/api/generate", strings.NewReader(tc.body))
req.Header.Set("Content-Type", "application/json")
defer func() { capturedRequest = nil }()
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
if tc.err.Error.Message != "" {
var errResp openai.ErrorResponse
if err := json.Unmarshal(resp.Body.Bytes(), &errResp); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(tc.err, errResp); diff != "" {
t.Fatalf("errors did not match:\n%s", diff)
}
return
}
if resp.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d: %s", resp.Code, resp.Body.String())
}
if diff := cmp.Diff(&tc.req, capturedRequest); diff != "" {
t.Fatalf("requests did not match:\n%s", diff)
}
})
}
}
func TestImageWriterResponse(t *testing.T) {
gin.SetMode(gin.TestMode)
// Test that ImageWriter transforms GenerateResponse to OpenAI format
endpoint := func(c *gin.Context) {
resp := api.GenerateResponse{
Model: "test-model",
CreatedAt: time.Unix(1234567890, 0).UTC(),
Done: true,
Image: "dGVzdC1pbWFnZS1kYXRh", // base64 of "test-image-data"
}
data, _ := json.Marshal(resp)
c.Writer.Write(append(data, '\n'))
}
router := gin.New()
router.Use(ImageGenerationsMiddleware())
router.Handle(http.MethodPost, "/api/generate", endpoint)
body := `{"model": "test-model", "prompt": "test"}`
req, _ := http.NewRequest(http.MethodPost, "/api/generate", strings.NewReader(body))
req.Header.Set("Content-Type", "application/json")
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
if resp.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d: %s", resp.Code, resp.Body.String())
}
var imageResp openai.ImageGenerationResponse
if err := json.Unmarshal(resp.Body.Bytes(), &imageResp); err != nil {
t.Fatalf("failed to unmarshal response: %v", err)
}
if imageResp.Created != 1234567890 {
t.Errorf("expected created 1234567890, got %d", imageResp.Created)
}
if len(imageResp.Data) != 1 {
t.Fatalf("expected 1 image, got %d", len(imageResp.Data))
}
if imageResp.Data[0].B64JSON != "dGVzdC1pbWFnZS1kYXRh" {
t.Errorf("expected image data 'dGVzdC1pbWFnZS1kYXRh', got %s", imageResp.Data[0].B64JSON)
}
}

View File

@@ -162,6 +162,7 @@ type Tensor interface {
AvgPool2D(ctx Context, k, s int, p float32) Tensor
Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
Conv3D(ctx Context, weight Tensor, c, s0, s1, s2, p0, p1, p2, d0, d1, d2 int) Tensor
SSMConv(ctx Context, kernel Tensor) Tensor
IM2Col(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor

View File

@@ -1641,6 +1641,13 @@ func (t *Tensor) Conv3D(ctx ml.Context, t2 ml.Tensor, c, s0, s1, s2, p0, p1, p2,
return tt
}
func (t *Tensor) SSMConv(ctx ml.Context, kernel ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_ssm_conv(ctx.(*Context).ctx, t.t, kernel.(*Tensor).t),
}
}
func (t *Tensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
return &Tensor{
b: t.b,

View File

@@ -0,0 +1,304 @@
package glm4moelite
import (
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Options struct {
numExpertsUsed int
numExperts int
normTopKProb bool
routedScalingFactor float32
kvLoraRank,
qkNopeHeadDim,
qkRopeHeadDim,
kqNopeHeadDim,
qkHeadDim int
qLoraRank int
vHeadDim int
hiddenSize,
numHeads,
numKVHeads int
eps,
ropeBase float32
kqScale float64
}
func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, t, p ml.Tensor) ml.Tensor {
return nn.RoPE(ctx, t, p, o.qkRopeHeadDim, o.ropeBase, 1.0)
}
type Attention struct {
Q *nn.Linear `gguf:"attn_q"`
QA *nn.Linear `gguf:"attn_q_a"`
QANorm *nn.RMSNorm `gguf:"attn_q_a_norm"`
QB *nn.Linear `gguf:"attn_q_b"`
KVA *nn.Linear `gguf:"attn_kv_a_mqa"`
KVANorm *nn.RMSNorm `gguf:"attn_kv_a_norm"`
KVB *nn.Linear `gguf:"attn_kv_b"`
Output *nn.Linear `gguf:"attn_out,alt:attn_output"`
}
func (attn *Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
seqLength := hiddenStates.Dim(1)
var query ml.Tensor
if opts.qLoraRank == 0 {
query = attn.Q.Forward(ctx, hiddenStates)
} else {
query = attn.QA.Forward(ctx, hiddenStates)
query = attn.QANorm.Forward(ctx, query, opts.eps)
query = attn.QB.Forward(ctx, query)
}
query = query.Reshape(ctx, query.Dim(0)/opts.numHeads, opts.numHeads, seqLength)
queryChunks := query.ChunkSections(ctx, 0, opts.qkNopeHeadDim, opts.qkRopeHeadDim)
compressedKV := attn.KVA.Forward(ctx, hiddenStates)
kPass := compressedKV.Slice(ctx, 0, 0, opts.kvLoraRank, 1)
kRot := compressedKV.View(ctx,
opts.kvLoraRank*compressedKV.Stride(0), opts.qkRopeHeadDim,
compressedKV.Stride(1), 1,
compressedKV.Stride(1), compressedKV.Dim(1),
)
qRot := opts.applyRotaryPositionEmbeddings(ctx, queryChunks[1], positions)
kRot = opts.applyRotaryPositionEmbeddings(ctx, kRot, positions)
kPass = attn.KVANorm.Forward(ctx, kPass, opts.eps)
kPass = attn.KVB.Forward(ctx, kPass)
kv := kPass.Reshape(ctx, kPass.Dim(0)/opts.numKVHeads, opts.numKVHeads, seqLength)
kvChunks := kv.ChunkSections(ctx, 0, opts.kqNopeHeadDim, opts.vHeadDim)
kRot = kRot.Repeat(ctx, 1, queryChunks[0].Dim(1))
query = qRot.Concat(ctx, queryChunks[0], 0)
key := kRot.Concat(ctx, kvChunks[0], 0)
attention := nn.Attention(ctx, query, key, kvChunks[1], opts.kqScale, cache)
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), seqLength)
return attn.Output.Forward(ctx, attention)
}
type MLP interface {
Forward(ml.Context, ml.Tensor, *Options) ml.Tensor
}
type sparse struct {
Router *nn.Linear `gguf:"ffn_gate_inp"`
Gate *nn.Linear `gguf:"ffn_gate_exps"`
Up *nn.Linear `gguf:"ffn_up_exps"`
Down *nn.Linear `gguf:"ffn_down_exps"`
SharedExpert *dense `gguf:",suf:_shexp"`
ExpProbsBias ml.Tensor `gguf:"exp_probs_b.bias,alt:exp_probs_b"`
}
func (moe *sparse) Moe(ctx ml.Context, hiddenStates, topKIndices, topKWeights ml.Tensor, opts *Options) ml.Tensor {
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
upStates := moe.Up.Weight.MulmatID(ctx, hiddenStates, topKIndices)
hiddenStates = moe.Gate.Weight.MulmatID(ctx, hiddenStates, topKIndices)
hiddenStates = hiddenStates.SILU(ctx, upStates)
experts := moe.Down.Weight.MulmatID(ctx, hiddenStates, topKIndices)
experts = experts.Mul(ctx, topKWeights)
nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2))
for i := 1; i < opts.numExpertsUsed; i++ {
nextStates = nextStates.Add(ctx, experts.View(ctx, i*experts.Stride(1), experts.Dim(0), experts.Stride(2), experts.Dim(2)))
}
return nextStates
}
func (moe *sparse) topKIndices(ctx ml.Context, scores ml.Tensor, opts *Options) ml.Tensor {
if moe.ExpProbsBias != nil {
scores = scores.Add(ctx, moe.ExpProbsBias)
}
topKIndices := scores.TopK(ctx, opts.numExpertsUsed)
return topKIndices
}
func (moe *sparse) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
residuals := hiddenStates
routerLogits := moe.Router.Forward(ctx, hiddenStates)
scores := routerLogits.Sigmoid(ctx)
topKIndices := moe.topKIndices(ctx, scores, opts)
topKWeights := scores.Reshape(ctx, 1, opts.numExperts, hiddenStates.Dim(1)).Rows(ctx, topKIndices)
if opts.normTopKProb {
topKWeights = topKWeights.Reshape(ctx, opts.numExpertsUsed, hiddenStates.Dim(1))
topKWeights = topKWeights.Div(ctx, topKWeights.SumRows(ctx))
topKWeights = topKWeights.Reshape(ctx, 1, opts.numExpertsUsed, hiddenStates.Dim(1))
}
topKWeights = topKWeights.Scale(ctx, float64(opts.routedScalingFactor))
hiddenStates = moe.Moe(ctx, hiddenStates, topKIndices, topKWeights, opts)
sharedExpertResult := moe.SharedExpert.Forward(ctx, residuals, opts)
hiddenStates = hiddenStates.Add(ctx, sharedExpertResult)
return hiddenStates
}
type dense struct {
Gate *nn.Linear `gguf:"ffn_gate"`
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (mlp *dense) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
type Layer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
Attention *Attention
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP MLP
}
func (t *Layer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
residual := hiddenStates
hiddenStates = t.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = t.Attention.Forward(ctx, hiddenStates, positions, cache, opts)
if outputs != nil {
hiddenStates = hiddenStates.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
hiddenStates = hiddenStates.Add(ctx, residual)
residual = hiddenStates
hiddenStates = t.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = t.MLP.Forward(ctx, hiddenStates, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
return hiddenStates
}
type Model struct {
model.Base
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
*Options
}
func New(c fs.Config) (model.Model, error) {
layers := make([]Layer, c.Uint("block_count"))
firstDenseLayerIndex := int(c.Uint("leading_dense_block_count"))
for i := range layers {
if i < firstDenseLayerIndex {
layers[i].MLP = &dense{}
} else {
layers[i].MLP = &sparse{}
}
}
keyLength := int(c.Uint("attention.key_length"))
valueLength := int(c.Uint("attention.value_length"))
kqScale := 1.0 / math.Sqrt(float64(keyLength))
var pre []string
switch c.String("tokenizer.ggml.pre") {
case "glm4":
pre = []string{
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
}
default:
return nil, model.ErrUnsupportedTokenizer
}
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
pre...,
),
Layers: layers,
Options: &Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
numExperts: int(c.Uint("expert_count")),
numExpertsUsed: int(c.Uint("expert_used_count")),
normTopKProb: c.Bool("expert_weights_norm", true),
qLoraRank: int(c.Uint("attention.q_lora_rank")),
kvLoraRank: int(c.Uint("attention.kv_lora_rank")),
qkHeadDim: keyLength,
vHeadDim: valueLength,
qkRopeHeadDim: int(c.Uint("rope.dimension_count")),
qkNopeHeadDim: keyLength - int(c.Uint("rope.dimension_count")),
kqNopeHeadDim: keyLength - int(c.Uint("rope.dimension_count")),
routedScalingFactor: c.Float("expert_weights_scale"),
kqScale: kqScale,
},
}
m.Cache = kvcache.NewCausalCache(m.Shift)
return &m, nil
}
func (m Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return m.applyRotaryPositionEmbeddings(ctx, key, shift), nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
for i, layer := range m.Layers {
m.Cache.SetLayer(i)
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = batch.Outputs
}
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, m.Options)
}
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
return m.Output.Forward(ctx, hiddenStates), nil
}
func init() {
model.Register("glm4moelite", New)
}

358
model/models/lfm2/cache.go Normal file
View File

@@ -0,0 +1,358 @@
package lfm2
import (
"slices"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
// HybridCache stores:
// - a standard causal KV cache for attention layers
// - a per-sequence recurrent conv state for shortconv layers
//
// Conv state shape (per layer, per sequence): [dConv, hiddenSize] where dConv = L_cache - 1.
// Stored internally as a tensor of shape [dConv * hiddenSize, maxSlots].
type HybridCache struct {
kv *kvcache.Causal
backend ml.Backend
dtype ml.DType
maxSequences int
hiddenSize int
dConv int
// slot mapping for recurrent state
slotForSeq map[int]int
refCount []int
freeSlots []int
// per-layer conv state buffers (allocated lazily)
convCtxs map[int]ml.Context
convStates map[int]ml.Tensor // [dConv*hiddenSize, maxSlots]
// current forward batch (derived in StartForward)
curSeqs []int
curSlots []int
curSlotsInput ml.Tensor
curSeqTokens int
// track if EnsureWritable has been called for this forward pass
writableEnsured bool
// track any error from EnsureWritable to propagate later
writableError error
}
func NewHybridCache(shift func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error), hiddenSize, dConv int) *HybridCache {
return &HybridCache{
kv: kvcache.NewCausalCache(shift),
hiddenSize: hiddenSize,
dConv: dConv,
slotForSeq: make(map[int]int),
convCtxs: make(map[int]ml.Context),
convStates: make(map[int]ml.Tensor),
}
}
func (c *HybridCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
c.backend = backend
c.dtype = dtype
c.maxSequences = maxSequences
// initialize slot allocator
c.refCount = make([]int, maxSequences)
c.freeSlots = c.freeSlots[:0]
for i := maxSequences - 1; i >= 0; i-- {
c.freeSlots = append(c.freeSlots, i)
}
c.kv.Init(backend, dtype, maxSequences, capacity, maxBatch)
}
func (c *HybridCache) Close() {
for _, ctx := range c.convCtxs {
ctx.Close()
}
c.kv.Close()
}
func (c *HybridCache) SetConfig(config ml.CacheConfig) {
c.kv.SetConfig(config)
}
func (c *HybridCache) SetLayer(layer int) {
c.kv.SetLayer(layer)
}
func (c *HybridCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
return c.kv.Get(ctx)
}
func (c *HybridCache) Put(ctx ml.Context, key, value ml.Tensor) {
c.kv.Put(ctx, key, value)
}
func (c *HybridCache) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
if err := c.kv.StartForward(ctx, batch, reserve); err != nil {
return err
}
// Derive equal-length sequence layout for shortconv.
// LFM2 shortconv assumes tokens form a [seq_tokens, seqs] grid.
seqCounts := make(map[int]int)
c.curSeqs = c.curSeqs[:0]
for _, s := range batch.Sequences {
if _, ok := seqCounts[s]; !ok {
c.curSeqs = append(c.curSeqs, s)
}
seqCounts[s]++
}
if len(c.curSeqs) == 0 {
return nil
}
nTokens := len(batch.Sequences)
nSeqs := len(c.curSeqs)
want := nTokens / nSeqs
for _, s := range c.curSeqs {
if seqCounts[s] != want {
return kvcache.ErrNotSupported
}
}
c.curSeqTokens = want
// Ensure slots exist for sequences in this batch
c.curSlots = c.curSlots[:0]
for _, s := range c.curSeqs {
slot, ok := c.slotForSeq[s]
if !ok {
var err error
slot, err = c.allocSlot()
if err != nil {
return err
}
c.slotForSeq[s] = slot
c.refCount[slot] = 1
}
c.curSlots = append(c.curSlots, slot)
}
// Create a tensor for the current slots
slots := make([]int32, len(c.curSlots))
for i, v := range c.curSlots {
slots[i] = int32(v)
}
c.curSlotsInput = ctx.Input().FromInts(slots, len(slots))
// Reset writable state for new forward pass
c.writableEnsured = false
c.writableError = nil
return nil
}
func (c *HybridCache) allocSlot() (int, error) {
if len(c.freeSlots) == 0 {
return 0, kvcache.ErrKvCacheFull
}
slot := c.freeSlots[len(c.freeSlots)-1]
c.freeSlots = c.freeSlots[:len(c.freeSlots)-1]
return slot, nil
}
func (c *HybridCache) freeSlot(slot int) {
// Bounds check before freeing
if slot >= 0 && slot < c.maxSequences {
c.freeSlots = append(c.freeSlots, slot)
}
}
// EnsureWritable ensures that sequences in the current batch have private (non-shared) conv slots.
// Returns an error if slot allocation fails.
func (c *HybridCache) EnsureWritable(ctx ml.Context) error {
for i, seq := range c.curSeqs {
slot, ok := c.slotForSeq[seq]
if !ok {
continue
}
// Bounds check
if slot < 0 || slot >= len(c.refCount) {
continue
}
if c.refCount[slot] <= 1 {
continue
}
newSlot, err := c.allocSlot()
if err != nil {
return err
}
c.refCount[slot]--
c.refCount[newSlot] = 1
c.slotForSeq[seq] = newSlot
c.curSlots[i] = newSlot
// Copy existing conv state for all initialized layers
for _, buf := range c.convStates {
// buf: [dConv*hiddenSize, maxSlots]
src := buf.Rows(ctx, ctx.Input().FromInts([]int32{int32(slot)}, 1))
ctx.Forward(buf.SetRows(ctx, src, ctx.Input().FromInts([]int32{int32(newSlot)}, 1)))
}
}
// Rebuild current slots tensor
slots := make([]int32, len(c.curSlots))
for i, v := range c.curSlots {
slots[i] = int32(v)
}
c.curSlotsInput = ctx.Input().FromInts(slots, len(slots))
return nil
}
func (c *HybridCache) CopyPrefix(srcSeq, dstSeq int, prefixLen int32) {
// KV cache shares prefix metadata (no copy) which is correct for prefix reuse.
c.kv.CopyPrefix(srcSeq, dstSeq, prefixLen)
// For shortconv state we implement copy-on-write: dst shares the same slot as src.
// On the first write to dst, EnsureWritable will create a private slot.
if dstSlot, ok := c.slotForSeq[dstSeq]; ok {
// Bounds check before decrementing
if dstSlot >= 0 && dstSlot < len(c.refCount) {
c.refCount[dstSlot]--
if c.refCount[dstSlot] <= 0 {
c.refCount[dstSlot] = 0
c.freeSlot(dstSlot)
}
}
delete(c.slotForSeq, dstSeq)
}
srcSlot, ok := c.slotForSeq[srcSeq]
if !ok {
// src may not have a slot yet; dst will allocate on demand
return
}
// Bounds check before incrementing
if srcSlot >= 0 && srcSlot < len(c.refCount) {
c.slotForSeq[dstSeq] = srcSlot
c.refCount[srcSlot]++
}
}
func (c *HybridCache) CanResume(seq int, pos int32) bool {
return c.kv.CanResume(seq, pos)
}
func (c *HybridCache) Remove(seq int, beginIndex, endIndex int32) error {
if err := c.kv.Remove(seq, beginIndex, endIndex); err != nil {
return err
}
// For recurrent state, any removal invalidates the state because
// the state at position N depends on all previous positions.
// Drop the slot mapping so it resets on next use.
slot, ok := c.slotForSeq[seq]
if !ok {
return nil
}
// Bounds check
if slot < 0 || slot >= len(c.refCount) {
delete(c.slotForSeq, seq)
return nil
}
c.refCount[slot]--
if c.refCount[slot] <= 0 {
c.refCount[slot] = 0
c.freeSlot(slot)
}
delete(c.slotForSeq, seq)
return nil
}
func (c *HybridCache) slotsTensor() ml.Tensor {
return c.curSlotsInput
}
func (c *HybridCache) seqTokens() int {
return c.curSeqTokens
}
func (c *HybridCache) numSeqs() int {
return len(c.curSeqs)
}
func (c *HybridCache) convBuffer(ctx ml.Context, layer int) ml.Tensor {
if buf, ok := c.convStates[layer]; ok {
return buf
}
if _, ok := c.convCtxs[layer]; !ok {
c.convCtxs[layer] = c.backend.NewContextSize(1).Layer(layer)
}
buf := c.convCtxs[layer].Zeros(c.dtype, c.dConv*c.hiddenSize, c.maxSequences)
c.convStates[layer] = buf
return buf
}
// ConvState returns the conv state for current batch sequences as shape [dConv, hiddenSize, nSeqs].
// Returns an error if copy-on-write allocation fails.
func (c *HybridCache) ConvState(ctx ml.Context, layer int) (ml.Tensor, error) {
if !c.writableEnsured {
needsWritable := false
for _, seq := range c.curSeqs {
slot, ok := c.slotForSeq[seq]
if !ok {
continue
}
if slot >= 0 && slot < len(c.refCount) && c.refCount[slot] > 1 {
needsWritable = true
break
}
}
if needsWritable {
if err := c.EnsureWritable(ctx); err != nil {
c.writableError = err
}
}
c.writableEnsured = true
}
if c.writableError != nil {
return nil, c.writableError
}
buf := c.convBuffer(ctx, layer)
cur := buf.Rows(ctx, c.slotsTensor())
return cur.Reshape(ctx, c.dConv, c.hiddenSize, c.numSeqs()), nil
}
// UpdateConvState writes a new conv state for current batch sequences.
// newState must have shape [dConv, hiddenSize, nSeqs].
func (c *HybridCache) UpdateConvState(ctx ml.Context, layer int, newState ml.Tensor) {
buf := c.convBuffer(ctx, layer)
src := newState.Reshape(ctx, c.dConv*c.hiddenSize, c.numSeqs())
ctx.Forward(buf.SetRows(ctx, src, c.slotsTensor()))
}
// IsSupportedForBatch returns true if the current batch layout supports shortconv.
func (c *HybridCache) IsSupportedForBatch() bool {
return c.curSeqTokens > 0 && len(c.curSeqs) > 0
}
// Seqs returns the ordered unique sequences for the current forward pass.
func (c *HybridCache) Seqs() []int {
return slices.Clone(c.curSeqs)
}

284
model/models/lfm2/model.go Normal file
View File

@@ -0,0 +1,284 @@
package lfm2
import (
"cmp"
"fmt"
"math"
"strings"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Options struct {
hiddenSize int
headDim, ropeDim int
eps, ropeBase, ropeScale float32
ropeType string
originalContextLength int
// per-layer head counts (LFM2 alternates attention and recurrent layers)
numHeadsByLayer []int
numKVHeadsByLayer []int
}
func (o Options) headDimValue() int {
// Head dim is shared across layers; fall back to first attention layer head count.
for _, h := range o.numHeadsByLayer {
if h > 0 {
return cmp.Or(o.headDim, o.hiddenSize/h)
}
}
return cmp.Or(o.headDim, o.hiddenSize)
}
func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
opts := []func(*rope.Options){rope.WithTypeNeoX()}
if o.ropeType == "yarn" {
attnFactor := float32(1.0 / (1.0 + 0.1*math.Log(float64(o.ropeScale))))
opts = append(opts,
rope.WithOriginalContextLength(o.originalContextLength),
rope.WithExtrapolationFactor(1.),
rope.WithAttentionFactor(attnFactor),
)
}
headCount := 1
for _, h := range o.numHeadsByLayer {
if h > 0 {
headCount = h
break
}
}
return nn.RoPE(ctx, states, positions, cmp.Or(o.ropeDim, o.headDim, o.hiddenSize/headCount), o.ropeBase, 1./o.ropeScale, opts...)
}
type Model struct {
model.Base
model.TextProcessor
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm,alt:token_embd_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
Options
}
func New(c fs.Config) (model.Model, error) {
if c.Uint("expert_count") > 0 {
// TODO: support mixtures of experts
return nil, model.ErrUnsupportedModel
}
// Tokenizer
vocabulary := model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
}
var processor model.TextProcessor
switch c.String("tokenizer.ggml.model") {
case "gpt2":
// LFM2 uses a llama3-style BPE pretokenizer.
var pretokenizers []string
switch c.String("tokenizer.ggml.pre") {
case "lfm2", "llama3", "llama-v3", "llama-bpe":
pretokenizers = []string{
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
}
case "qwen2":
pretokenizers = []string{
"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
}
case "refact":
pretokenizers = []string{
`\p{N}`,
`'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+`,
}
case "tekken":
pretokenizers = []string{
"[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
}
case "default":
// no-op use the default bpe pretokenizer
default:
// use a llama-style pretokenizer
pretokenizers = []string{
"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
}
}
processor = model.NewBytePairEncoding(&vocabulary, pretokenizers...)
case "llama":
return nil, fmt.Errorf("unsupported tokenizer: llama")
default:
return nil, model.ErrUnsupportedTokenizer
}
if strings.HasPrefix(c.String("general.name"), "Qwen2-beta") {
return nil, fmt.Errorf("unsupported model: %s", c.String("general.name"))
}
m := Model{
TextProcessor: processor,
Layers: make([]Layer, c.Uint("block_count")),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),
headDim: int(c.Uint("attention.key_length")),
ropeDim: int(c.Uint("rope.dimension_count")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeType: c.String("rope.scaling.type"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1),
originalContextLength: int(c.Uint("rope.scaling.original_context_length")),
},
}
type headCounts interface {
HeadCount() []uint64
HeadCountKV() []uint64
}
hc, ok := c.(headCounts)
if !ok {
return nil, model.ErrUnsupportedModel
}
headCount := hc.HeadCount()
headCountKV := hc.HeadCountKV()
m.numHeadsByLayer = make([]int, len(m.Layers))
m.numKVHeadsByLayer = make([]int, len(m.Layers))
for i := range m.Layers {
m.numHeadsByLayer[i] = int(headCount[i])
m.numKVHeadsByLayer[i] = int(headCountKV[i])
if m.numKVHeadsByLayer[i] == 0 {
m.Layers[i].Operator = &ShortConv{}
} else {
m.Layers[i].Operator = &Attention{}
}
}
lCache := int(c.Uint("shortconv.l_cache"))
dConv := max(0, lCache-1)
m.Cache = NewHybridCache(m.Shift, m.hiddenSize, dConv)
return &m, nil
}
type Operator interface {
Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache *HybridCache, layer int, opts *Options) ml.Tensor
}
type Attention struct {
Query *nn.Linear `gguf:"attn_q"`
QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
Key *nn.Linear `gguf:"attn_k"`
KeyNorm *nn.RMSNorm `gguf:"attn_k_norm"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output,alt:attn_out"`
}
func (sa *Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache *HybridCache, layer int, opts *Options) ml.Tensor {
batchSize := hiddenStates.Dim(1)
headDim := opts.headDimValue()
numHeads := opts.numHeadsByLayer[layer]
numKVHeads := opts.numKVHeadsByLayer[layer]
query := sa.Query.Forward(ctx, hiddenStates)
key := sa.Key.Forward(ctx, hiddenStates)
value := sa.Value.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, headDim, numHeads, batchSize)
key = key.Reshape(ctx, headDim, numKVHeads, batchSize)
value = value.Reshape(ctx, headDim, numKVHeads, batchSize)
query = sa.QueryNorm.Forward(ctx, query, opts.eps)
key = sa.KeyNorm.Forward(ctx, key, opts.eps)
query = opts.applyRotaryPositionEmbeddings(ctx, query, positions)
key = opts.applyRotaryPositionEmbeddings(ctx, key, positions)
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(headDim)), cache)
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
return sa.Output.Forward(ctx, attention)
}
type MLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
Gate *nn.Linear `gguf:"ffn_gate"`
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
type Layer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
Operator Operator
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP *MLP
}
func (l *Layer) Forward(ctx ml.Context, layer int, hiddenState, positions, outputs ml.Tensor, cache *HybridCache, opts *Options) ml.Tensor {
residual := hiddenState
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.Operator.Forward(ctx, hiddenState, positions, cache, layer, opts)
if outputs != nil {
hiddenState = hiddenState.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
return hiddenState.Add(ctx, residual)
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return m.applyRotaryPositionEmbeddings(ctx, key, shift), nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
for i, layer := range m.Layers {
m.Cache.SetLayer(i)
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = batch.Outputs
}
hiddenState = layer.Forward(ctx, i, hiddenState, positions, outputs, m.Cache.(*HybridCache), &m.Options)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
return m.Output.Forward(ctx, hiddenState), nil
}
func init() {
model.Register("lfm2", New)
}

View File

@@ -0,0 +1,52 @@
package lfm2
import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
)
type shortConvKernel struct {
Weight ml.Tensor `gguf:"weight"`
}
// ShortConv implements the LFM2 short-convolution block (GGML_OP_SSM_CONV) with a recurrent
// state stored in the HybridCache.
type ShortConv struct {
Conv *shortConvKernel `gguf:"shortconv.conv"`
InProj *nn.Linear `gguf:"shortconv.in_proj"`
OutProj *nn.Linear `gguf:"shortconv.out_proj"`
}
func (sc *ShortConv) Forward(ctx ml.Context, hiddenStates ml.Tensor, _ ml.Tensor, cache *HybridCache, layer int, opts *Options) ml.Tensor {
nSeqs := cache.numSeqs()
seqTokens := cache.seqTokens()
hiddenSize := hiddenStates.Dim(0)
if nSeqs <= 0 || seqTokens <= 0 || hiddenStates.Dim(1) != nSeqs*seqTokens {
panic("lfm2: unsupported batch layout for shortconv")
}
bcx := sc.InProj.Forward(ctx, hiddenStates).Reshape(ctx, 3*hiddenSize, seqTokens, nSeqs)
elementSize := bcx.Stride(0)
b := bcx.View(ctx, 0*hiddenSize*elementSize, hiddenSize, bcx.Stride(1), seqTokens, bcx.Stride(2), nSeqs)
c := bcx.View(ctx, 1*hiddenSize*elementSize, hiddenSize, bcx.Stride(1), seqTokens, bcx.Stride(2), nSeqs)
x := bcx.View(ctx, 2*hiddenSize*elementSize, hiddenSize, bcx.Stride(1), seqTokens, bcx.Stride(2), nSeqs)
bx := b.Mul(ctx, x).Permute(ctx, 1, 0, 2, 3)
state, err := cache.ConvState(ctx, layer)
if err != nil {
panic("lfm2: failed to get conv state: " + err.Error())
}
sx := state.Concat(ctx, bx, 0)
// Cast weight to F32 for SSMConv (Metal requires F32)
weightF32 := sc.Conv.Weight.Cast(ctx, ml.DTypeF32)
convOut := sx.SSMConv(ctx, weightF32)
y := c.Mul(ctx, convOut)
dConv := sx.Dim(0) - seqTokens
cache.UpdateConvState(ctx, layer, sx.Slice(ctx, 0, sx.Dim(0)-dConv, sx.Dim(0), 1))
return sc.OutProj.Forward(ctx, y.Reshape(ctx, hiddenSize, seqTokens*nSeqs))
}

View File

@@ -7,7 +7,9 @@ import (
_ "github.com/ollama/ollama/model/models/gemma2"
_ "github.com/ollama/ollama/model/models/gemma3"
_ "github.com/ollama/ollama/model/models/gemma3n"
_ "github.com/ollama/ollama/model/models/glm4moelite"
_ "github.com/ollama/ollama/model/models/gptoss"
_ "github.com/ollama/ollama/model/models/lfm2"
_ "github.com/ollama/ollama/model/models/llama"
_ "github.com/ollama/ollama/model/models/llama4"
_ "github.com/ollama/ollama/model/models/mistral3"

410
model/parsers/glm46.go Normal file
View File

@@ -0,0 +1,410 @@
package parsers
import (
"context"
"encoding/xml"
"fmt"
"log/slog"
"strings"
"unicode"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/logutil"
)
type glm46ParserState int
const (
glm46ParserState_LookingForThinkingOpen glm46ParserState = iota
glm46ParserState_ThinkingStartedEatingWhitespace
glm46ParserState_CollectingThinking
glm46ParserState_ThinkingDoneEatingWhitespace
glm46ParserState_CollectingContent
glm46ParserState_ToolStartedEatingWhitespace
glm46ParserState_CollectingToolContent
)
const (
glm46ThinkingOpenTag = "<think>"
glm46ThinkingCloseTag = "</think>"
glm46ToolOpenTag = "<tool_call>"
glm46ToolCloseTag = "</tool_call>"
)
type GLM46Parser struct {
state glm46ParserState
buffer strings.Builder
tools []api.Tool
}
func (p *GLM46Parser) HasToolSupport() bool {
return true
}
func (p *GLM46Parser) HasThinkingSupport() bool {
return true
}
// func (p *GLM46Parser) Init(tools []api.Tool, lastMessage *api.Message) []api.Tool {
func (p *GLM46Parser) Init(tools []api.Tool, lastMessage *api.Message, thinkValue *api.ThinkValue) []api.Tool {
p.tools = tools
return tools
}
type glm46Event interface {
isGLM46Event()
}
type glm46EventContent struct {
content string
}
func (glm46EventContent) isGLM46Event() {}
type glm46EventRawToolCall struct {
raw string
}
func (glm46EventRawToolCall) isGLM46Event() {}
type glm46EventThinkingContent struct {
content string
}
func (glm46EventThinkingContent) isGLM46Event() {}
func (p *GLM46Parser) Add(s string, done bool) (content string, thinking string, calls []api.ToolCall, err error) {
p.buffer.WriteString(s)
events := p.parseEvents()
var toolCalls []api.ToolCall
var contentSb strings.Builder
var thinkingSb strings.Builder
for _, event := range events {
switch event := event.(type) {
case glm46EventRawToolCall:
toolCall, err := parseGLM46ToolCall(event, p.tools)
if err != nil {
slog.Warn("glm-4.6 tool call parsing failed", "error", err)
return "", "", nil, err
}
toolCalls = append(toolCalls, toolCall)
case glm46EventThinkingContent:
thinkingSb.WriteString(event.content)
case glm46EventContent:
// TODO(drifkin): if the same turn contains multiple interleaved content
// events, we naively append them together here.
contentSb.WriteString(event.content)
}
}
return contentSb.String(), thinkingSb.String(), toolCalls, nil
}
func (p *GLM46Parser) parseEvents() []glm46Event {
var all []glm46Event
keepLooping := true
for keepLooping {
var events []glm46Event
events, keepLooping = p.eat()
if len(events) > 0 {
all = append(all, events...)
}
}
if len(all) > 0 {
slog.Log(context.TODO(), logutil.LevelTrace, "glm-4.6 events parsed", "events", all, "state", p.state, "buffer", p.buffer.String())
}
return all
}
// eatLeadingWhitespaceAndTransitionTo consumes leading whitespace from the buffer
// and transitions to the next state. Returns (nil, false) if only whitespace remains
// in the buffer (needs more input), or (nil, true) if we successfully transitioned.
func (p *GLM46Parser) eatLeadingWhitespaceAndTransitionTo(nextState glm46ParserState) ([]glm46Event, bool) {
trimmed := strings.TrimLeftFunc(p.buffer.String(), unicode.IsSpace)
p.buffer.Reset()
if trimmed == "" {
return nil, false // Still only whitespace, keep waiting for more input
}
p.state = nextState
p.buffer.WriteString(trimmed)
return nil, true // Successfully transitioned
}
// glm46SplitAtTag splits the buffer at the given tag, returns the content before (trimmed of trailing whitespace),
// the content after (optionally trimmed of leading whitespace), and updates the buffer
func glm46SplitAtTag(p *GLM46Parser, tag string, trimAfter bool) (string, string) {
split := strings.SplitN(p.buffer.String(), tag, 2)
before := split[0]
before = strings.TrimRightFunc(before, unicode.IsSpace)
after := split[1]
if trimAfter {
after = strings.TrimLeftFunc(after, unicode.IsSpace)
}
p.buffer.Reset()
p.buffer.WriteString(after)
return before, after
}
func (p *GLM46Parser) eat() ([]glm46Event, bool) {
var events []glm46Event
switch p.state {
case glm46ParserState_LookingForThinkingOpen:
trimmed := strings.TrimLeftFunc(p.buffer.String(), unicode.IsSpace)
if strings.HasPrefix(trimmed, glm46ThinkingOpenTag) {
// Found <think> opening tag
after := strings.TrimPrefix(trimmed, glm46ThinkingOpenTag)
after = strings.TrimLeftFunc(after, unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(after)
if after == "" {
p.state = glm46ParserState_ThinkingStartedEatingWhitespace
} else {
p.state = glm46ParserState_CollectingThinking
}
return events, true
} else if strings.HasPrefix(glm46ThinkingOpenTag, trimmed) {
// Partial opening tag seen, keep accumulating
return events, false
} else if trimmed == "" {
// Only whitespace, keep accumulating
return events, false
} else {
// No thinking tag found, skip to content collection
p.state = glm46ParserState_CollectingContent
// Don't trim - we want to keep the original content
return events, true
}
case glm46ParserState_ThinkingStartedEatingWhitespace:
return p.eatLeadingWhitespaceAndTransitionTo(glm46ParserState_CollectingThinking)
case glm46ParserState_CollectingThinking:
acc := p.buffer.String()
if strings.Contains(acc, glm46ThinkingCloseTag) {
thinking, remaining := glm46SplitAtTag(p, glm46ThinkingCloseTag, true)
if len(thinking) > 0 {
events = append(events, glm46EventThinkingContent{content: thinking})
}
if remaining == "" {
p.state = glm46ParserState_ThinkingDoneEatingWhitespace
} else {
p.state = glm46ParserState_CollectingContent
}
return events, true
} else if overlapLen := overlap(acc, glm46ThinkingCloseTag); overlapLen > 0 {
// Partial closing tag - withhold it along with any trailing whitespace before it
beforePartialTag := acc[:len(acc)-overlapLen]
trailingWhitespaceLen := trailingWhitespaceLen(beforePartialTag)
ambiguousStart := len(beforePartialTag) - trailingWhitespaceLen
unambiguous := acc[:ambiguousStart]
ambiguous := acc[ambiguousStart:]
p.buffer.Reset()
p.buffer.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, glm46EventThinkingContent{content: unambiguous})
}
return events, false
} else {
// Pure thinking content - withhold trailing whitespace (might precede closing tag)
whitespaceLen := trailingWhitespaceLen(acc)
ambiguousStart := len(acc) - whitespaceLen
unambiguous := acc[:ambiguousStart]
ambiguous := acc[ambiguousStart:]
p.buffer.Reset()
p.buffer.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, glm46EventThinkingContent{content: unambiguous})
}
return events, false
}
case glm46ParserState_ThinkingDoneEatingWhitespace:
return p.eatLeadingWhitespaceAndTransitionTo(glm46ParserState_CollectingContent)
case glm46ParserState_CollectingContent:
if strings.Contains(p.buffer.String(), glm46ToolOpenTag) {
before, after := glm46SplitAtTag(p, glm46ToolOpenTag, true)
if len(before) > 0 {
events = append(events, glm46EventContent{content: before})
}
if after == "" {
p.state = glm46ParserState_ToolStartedEatingWhitespace
} else {
p.state = glm46ParserState_CollectingToolContent
}
return events, true
} else if overlapLen := overlap(p.buffer.String(), glm46ToolOpenTag); overlapLen > 0 {
beforePartialTag := p.buffer.String()[:len(p.buffer.String())-overlapLen]
trailingWhitespaceLen := trailingWhitespaceLen(beforePartialTag)
ambiguousStart := len(beforePartialTag) - trailingWhitespaceLen
unambiguous := p.buffer.String()[:ambiguousStart]
ambiguous := p.buffer.String()[ambiguousStart:]
p.buffer.Reset()
p.buffer.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, glm46EventContent{content: unambiguous})
}
return events, false
} else {
whitespaceLen := trailingWhitespaceLen(p.buffer.String())
ambiguousStart := len(p.buffer.String()) - whitespaceLen
unambiguous := p.buffer.String()[:ambiguousStart]
ambiguous := p.buffer.String()[ambiguousStart:]
p.buffer.Reset()
p.buffer.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, glm46EventContent{content: unambiguous})
}
return events, false
}
case glm46ParserState_ToolStartedEatingWhitespace:
return p.eatLeadingWhitespaceAndTransitionTo(glm46ParserState_CollectingToolContent)
case glm46ParserState_CollectingToolContent:
acc := p.buffer.String()
if strings.Contains(acc, glm46ToolCloseTag) {
toolContent, _ := glm46SplitAtTag(p, glm46ToolCloseTag, true)
if len(toolContent) == 0 {
slog.Warn("glm46 tool call closing tag found but no content before it")
}
events = append(events, glm46EventRawToolCall{raw: toolContent})
p.state = glm46ParserState_CollectingContent
return events, true
} else {
// Keep accumulating - tool calls are not streamed
// We just wait for the closing tag
return events, false
}
default:
panic("unreachable")
}
}
// GLMToolCallXML represents the structure of a GLM-4.6 tool call for XML parsing
type GLMToolCallXML struct {
XMLName xml.Name `xml:"tool_call"`
Content string `xml:",chardata"` // Function name (text nodes between tags)
Keys []string `xml:"arg_key"` // All arg_key elements in document order
Values []string `xml:"arg_value"` // All arg_value elements in document order
}
// escapeGLM46Content escapes XML entities in text content while preserving arg_key/arg_value tags
func escapeGLM46Content(s string) string {
var result strings.Builder
inTag := false
for i := range len(s) {
ch := s[i]
if ch == '<' {
// Check if this is a known tag
if strings.HasPrefix(s[i:], "<arg_key>") ||
strings.HasPrefix(s[i:], "</arg_key>") ||
strings.HasPrefix(s[i:], "<arg_value>") ||
strings.HasPrefix(s[i:], "</arg_value>") {
inTag = true
}
}
if inTag {
result.WriteByte(ch)
if ch == '>' {
inTag = false
}
} else {
// Escape special characters in text content
switch ch {
case '&':
result.WriteString("&amp;")
case '<':
result.WriteString("&lt;")
case '>':
result.WriteString("&gt;")
default:
result.WriteByte(ch)
}
}
}
return result.String()
}
func parseGLM46ToolCall(raw glm46EventRawToolCall, tools []api.Tool) (api.ToolCall, error) {
// Escape any unescaped entities in text content
// We need to escape text between tags, but not the tags themselves
escaped := escapeGLM46Content(raw.raw)
// Wrap the content in a root element to make it valid XML
xmlString := "<tool_call>" + escaped + "</tool_call>"
// Parse XML into struct
var parsed GLMToolCallXML
if err := xml.Unmarshal([]byte(xmlString), &parsed); err != nil {
return api.ToolCall{}, fmt.Errorf("failed to parse XML: %w", err)
}
// Extract and trim function name
functionName := strings.TrimSpace(parsed.Content)
if functionName == "" {
return api.ToolCall{}, fmt.Errorf("empty function name")
}
// Verify keys and values are paired correctly
if len(parsed.Keys) != len(parsed.Values) {
return api.ToolCall{}, fmt.Errorf("mismatched arg_key and arg_value counts: %d keys, %d values", len(parsed.Keys), len(parsed.Values))
}
// Find the matching tool to get parameter types
var matchedTool *api.Tool
for i := range tools {
if tools[i].Function.Name == functionName {
matchedTool = &tools[i]
break
}
}
// Build arguments map by pairing keys and values
toolCall := api.ToolCall{
Function: api.ToolCallFunction{
Name: functionName,
Arguments: api.NewToolCallFunctionArguments(),
},
}
for i := range parsed.Keys {
key := strings.TrimSpace(parsed.Keys[i])
value := parsed.Values[i] // Don't trim here - parseValue handles it
// Look up parameter type
var paramType api.PropertyType
if matchedTool != nil && matchedTool.Function.Parameters.Properties != nil {
if prop, ok := matchedTool.Function.Parameters.Properties.Get(key); ok {
// Handle anyOf by collecting all types from the union
if len(prop.AnyOf) > 0 {
for _, anyOfProp := range prop.AnyOf {
paramType = append(paramType, anyOfProp.Type...)
}
} else {
paramType = prop.Type
}
}
}
// Parse value with type coercion
toolCall.Function.Arguments.Set(key, parseValue(value, paramType))
}
return toolCall, nil
}

862
model/parsers/glm46_test.go Normal file
View File

@@ -0,0 +1,862 @@
package parsers
import (
"encoding/xml"
"reflect"
"testing"
"github.com/ollama/ollama/api"
)
func TestGLM46ParserStreaming(t *testing.T) {
type step struct {
input string
wantEvents []glm46Event
}
cases := []struct {
desc string
steps []step
only bool
}{
{
desc: "leading whitespace before think tag",
steps: []step{
{
input: " \n\t ",
wantEvents: []glm46Event{},
},
{
input: "<think>thinking</think>",
wantEvents: []glm46Event{glm46EventThinkingContent{content: "thinking"}},
},
},
},
{
desc: "think tag with whitespace inside",
steps: []step{
{
input: "<think> \n thinking content \n </think>regular content",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: "thinking content"},
glm46EventContent{content: "regular content"},
},
},
},
},
{
desc: "tool call with leading whitespace after opening tag",
steps: []step{
{
input: "<think></think><tool_call> \n test \n </tool_call>",
wantEvents: []glm46Event{
glm46EventRawToolCall{raw: "test"},
},
},
},
},
{
desc: "simple thinking then content",
steps: []step{
{
input: "<think>I am thinking</think>Now I respond",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: "I am thinking"},
glm46EventContent{content: "Now I respond"},
},
},
},
},
{
desc: "streamed thinking content",
steps: []step{
{
input: "<think>hello",
wantEvents: []glm46Event{glm46EventThinkingContent{content: "hello"}},
},
{
input: " world",
wantEvents: []glm46Event{glm46EventThinkingContent{content: " world"}},
},
{
input: "</think>content",
wantEvents: []glm46Event{
glm46EventContent{content: "content"},
},
},
},
},
{
desc: "content before tool call",
steps: []step{
{
input: "<think>Let me call a tool</think>here is text<tool_call>",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: "Let me call a tool"},
glm46EventContent{content: "here is text"},
},
},
{
input: "function_name\n<arg_key>param</arg_key>\n<arg_value>value</arg_value>\n</tool_call>",
wantEvents: []glm46Event{
glm46EventRawToolCall{raw: "function_name\n<arg_key>param</arg_key>\n<arg_value>value</arg_value>"},
},
},
},
},
{
desc: "tool call with content after",
steps: []step{
{
input: "<think>thinking</think><tool_call>test</tool_call>after tool",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: "thinking"},
glm46EventRawToolCall{raw: "test"},
glm46EventContent{content: "after tool"},
},
},
},
},
{
desc: "trailing whitespace between content and tool call is trimmed",
steps: []step{
{
input: "<think>thinking</think>content\n \t <tool_call>test</tool_call>",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: "thinking"},
glm46EventContent{content: "content"},
glm46EventRawToolCall{raw: "test"},
},
},
},
},
{
desc: "trailing whitespace between tool call and content is trimmed",
steps: []step{
{
input: "<think>think</think><tool_call>test</tool_call>\n\t after",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: "think"},
glm46EventRawToolCall{raw: "test"},
glm46EventContent{content: "after"},
},
},
},
},
{
desc: "split thinking close tag",
steps: []step{
{
input: "<think>thinking content</th",
wantEvents: []glm46Event{glm46EventThinkingContent{content: "thinking content"}},
},
{
input: "ink>after",
wantEvents: []glm46Event{
glm46EventContent{content: "after"},
},
},
},
},
{
desc: "split thinking open tag",
steps: []step{
{
input: " <thi",
wantEvents: []glm46Event{},
},
{
input: "nk>content</think>",
wantEvents: []glm46Event{glm46EventThinkingContent{content: "content"}},
},
},
},
{
desc: "split tool open tag",
steps: []step{
{
input: "<think>think</think>content<tool",
wantEvents: []glm46Event{glm46EventThinkingContent{content: "think"}, glm46EventContent{content: "content"}},
},
{
input: "_call>inside",
wantEvents: []glm46Event{},
},
{
input: "</tool_call>",
wantEvents: []glm46Event{
glm46EventRawToolCall{raw: "inside"},
},
},
},
},
{
desc: "partial thinking close tag fakeout",
steps: []step{
{
input: "<think>content</th",
wantEvents: []glm46Event{glm46EventThinkingContent{content: "content"}},
},
{
input: "ought more",
wantEvents: []glm46Event{glm46EventThinkingContent{content: "</thought more"}},
},
},
},
{
desc: "partial thinking open tag fakeout",
steps: []step{
{
input: " <thi",
wantEvents: []glm46Event{},
},
{
input: "nking is fun",
wantEvents: []glm46Event{
glm46EventContent{content: " <thinking is fun"},
},
},
},
},
{
desc: "partial tool open tag fakeout",
steps: []step{
{
input: "<think></think>content\n<tool",
wantEvents: []glm46Event{
glm46EventContent{content: "content"},
},
},
{
input: " fakeout",
wantEvents: []glm46Event{
glm46EventContent{content: "\n<tool fakeout"},
},
},
},
},
{
desc: "partial tool close tag fakeout",
steps: []step{
{
input: "<think></think><tool_call>content</tool",
wantEvents: []glm46Event{},
},
{
input: " fakeout",
wantEvents: []glm46Event{},
},
{
input: "</tool_call>",
wantEvents: []glm46Event{
glm46EventRawToolCall{raw: "content</tool fakeout"},
},
},
},
},
{
desc: "empty thinking tag",
steps: []step{
{
input: "<think></think>content here",
wantEvents: []glm46Event{
glm46EventContent{content: "content here"},
},
},
},
},
{
desc: "multiple tool calls in sequence",
steps: []step{
{
input: "<think>think</think><tool_call>first</tool_call>between<tool_call>second</tool_call>end",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: "think"},
glm46EventRawToolCall{raw: "first"},
glm46EventContent{content: "between"},
glm46EventRawToolCall{raw: "second"},
glm46EventContent{content: "end"},
},
},
},
},
{
desc: "no thinking tag - direct to content",
steps: []step{
{
input: "just content here",
wantEvents: []glm46Event{
glm46EventContent{content: "just content here"},
},
},
},
},
{
desc: "no thinking tag - skip to content then tool call",
steps: []step{
{
input: "Here's the answer:<tool_call>test</tool_call>done",
wantEvents: []glm46Event{
glm46EventContent{content: "Here's the answer:"},
glm46EventRawToolCall{raw: "test"},
glm46EventContent{content: "done"},
},
},
},
},
{
desc: "no thinking tag - whitespace preserved when no tags",
steps: []step{
{
input: " \n content with leading whitespace",
wantEvents: []glm46Event{
glm46EventContent{content: " \n content with leading whitespace"},
},
},
},
},
{
desc: "whitespace after think close tag gets eaten",
steps: []step{
{
input: "<think>thinking</think> \n\t content",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: "thinking"},
glm46EventContent{content: "content"},
},
},
},
},
{
desc: "whitespace after tool_call close tag gets eaten",
steps: []step{
{
input: "<think></think><tool_call>test</tool_call> \n\t content",
wantEvents: []glm46Event{
glm46EventRawToolCall{raw: "test"},
glm46EventContent{content: "content"},
},
},
},
},
{
desc: "thinking content withholds trailing whitespace (single chunk)",
steps: []step{
{
input: "<think>thinking content ",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: "thinking content"},
},
},
{
input: "</think>after",
wantEvents: []glm46Event{
glm46EventContent{content: "after"},
},
},
},
},
{
desc: "thinking content withholds trailing whitespace with newlines",
steps: []step{
{
input: "<think>thinking\n\n ",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: "thinking"},
},
},
{
input: "</think>content",
wantEvents: []glm46Event{
glm46EventContent{content: "content"},
},
},
},
},
{
desc: "thinking content trailing whitespace emitted when more content arrives",
steps: []step{
{
input: "<think>thinking ",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: "thinking"},
},
},
{
input: "more thinking",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: " more thinking"},
},
},
{
input: "</think>",
wantEvents: []glm46Event{},
},
},
},
{
desc: "thinking content withholds trailing whitespace before partial close tag",
steps: []step{
{
input: "<think>thinking </th",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: "thinking"},
},
},
{
input: "ink>content",
wantEvents: []glm46Event{
glm46EventContent{content: "content"},
},
},
},
},
}
anyOnlies := false
for _, tc := range cases {
if tc.only {
anyOnlies = true
}
}
for _, tc := range cases {
if anyOnlies && !tc.only {
continue
}
t.Run(tc.desc, func(t *testing.T) {
parser := GLM46Parser{}
for i, step := range tc.steps {
parser.buffer.WriteString(step.input)
gotEvents := parser.parseEvents()
if len(gotEvents) == 0 && len(step.wantEvents) == 0 {
// avoid deep equal on empty vs. nil slices
continue
}
if !reflect.DeepEqual(gotEvents, step.wantEvents) {
t.Errorf("step %d: input %q: got events %#v, want %#v", i, step.input, gotEvents, step.wantEvents)
}
}
})
}
}
// TestGLMToolCallXMLOrderPreservation verifies that xml.Unmarshal preserves
// document order when collecting multiple elements with the same tag name into slices.
// This is a critical assumption for the GLM-4.6 parser's struct-based approach.
func TestGLMToolCallXMLOrderPreservation(t *testing.T) {
testCases := []struct {
name string
xml string
wantKeys []string
wantValues []string
}{
{
name: "alternating keys and values",
xml: `<tool_call>
function_name
<arg_key>first</arg_key>
<arg_value>A</arg_value>
<arg_key>second</arg_key>
<arg_value>B</arg_value>
<arg_key>third</arg_key>
<arg_value>C</arg_value>
</tool_call>`,
wantKeys: []string{"first", "second", "third"},
wantValues: []string{"A", "B", "C"},
},
{
name: "all keys then all values",
xml: `<tool_call>
function_name
<arg_key>key1</arg_key>
<arg_key>key2</arg_key>
<arg_key>key3</arg_key>
<arg_value>val1</arg_value>
<arg_value>val2</arg_value>
<arg_value>val3</arg_value>
</tool_call>`,
wantKeys: []string{"key1", "key2", "key3"},
wantValues: []string{"val1", "val2", "val3"},
},
{
name: "mixed grouping",
xml: `<tool_call>
function_name
<arg_key>a</arg_key>
<arg_value>1</arg_value>
<arg_key>b</arg_key>
<arg_key>c</arg_key>
<arg_value>2</arg_value>
<arg_value>3</arg_value>
</tool_call>`,
wantKeys: []string{"a", "b", "c"},
wantValues: []string{"1", "2", "3"},
},
{
name: "reverse order - all values then all keys",
xml: `<tool_call>
function_name
<arg_value>X</arg_value>
<arg_value>Y</arg_value>
<arg_value>Z</arg_value>
<arg_key>x</arg_key>
<arg_key>y</arg_key>
<arg_key>z</arg_key>
</tool_call>`,
wantKeys: []string{"x", "y", "z"},
wantValues: []string{"X", "Y", "Z"},
},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
var parsed GLMToolCallXML
err := xml.Unmarshal([]byte(tc.xml), &parsed)
if err != nil {
t.Fatalf("failed to unmarshal XML: %v", err)
}
if !reflect.DeepEqual(parsed.Keys, tc.wantKeys) {
t.Errorf("Keys order mismatch:\ngot: %v\nwant: %v", parsed.Keys, tc.wantKeys)
}
if !reflect.DeepEqual(parsed.Values, tc.wantValues) {
t.Errorf("Values order mismatch:\ngot: %v\nwant: %v", parsed.Values, tc.wantValues)
}
})
}
}
func TestGLM46ToolCallParsing(t *testing.T) {
type testCase struct {
name string
rawToolCall string
tools []api.Tool
wantToolCall api.ToolCall
}
cases := []testCase{
{
name: "simple tool call",
tools: []api.Tool{},
rawToolCall: `get-current-weather
<arg_key>location</arg_key>
<arg_value>New York, NY</arg_value>
<arg_key>unit</arg_key>
<arg_value>celsius</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "get-current-weather",
Arguments: args(`{"location": "New York, NY", "unit": "celsius"}`),
},
},
},
{
name: "tool call with typed parameters",
tools: []api.Tool{
tool("calculate", map[string]api.ToolProperty{
"x": {Type: api.PropertyType{"number"}},
"y": {Type: api.PropertyType{"integer"}},
"enabled": {Type: api.PropertyType{"boolean"}},
"items": {Type: api.PropertyType{"array"}},
}),
},
rawToolCall: `calculate
<arg_key>x</arg_key>
<arg_value>3.14</arg_value>
<arg_key>y</arg_key>
<arg_value>42</arg_value>
<arg_key>enabled</arg_key>
<arg_value>true</arg_value>
<arg_key>items</arg_key>
<arg_value>["a", "b", "c"]</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "calculate",
Arguments: args(`{"enabled": true, "items": ["a", "b", "c"], "x": 3.14, "y": 42}`),
},
},
},
{
name: "function name with whitespace",
tools: []api.Tool{},
rawToolCall: ` get-weather
<arg_key>city</arg_key>
<arg_value>Paris</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "get-weather",
Arguments: args(`{"city": "Paris"}`),
},
},
},
{
name: "values with special characters",
tools: []api.Tool{},
rawToolCall: `execute-command
<arg_key>command</arg_key>
<arg_value>ls && echo "done"</arg_value>
<arg_key>message</arg_key>
<arg_value>a < b and c > d</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "execute-command",
Arguments: args(`{"command": "ls && echo \"done\"", "message": "a < b and c > d"}`),
},
},
},
{
name: "unicode in function names and values",
tools: []api.Tool{},
rawToolCall: `获取天气
<arg_key>城市</arg_key>
<arg_value>北京</arg_value>
<arg_key>message</arg_key>
<arg_value>Hello! 你好! 🌟</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "获取天气",
Arguments: args(`{"message": "Hello! 你好! 🌟", "城市": "北京"}`),
},
},
},
{
name: "empty value",
tools: []api.Tool{},
rawToolCall: `test-function
<arg_key>param1</arg_key>
<arg_value></arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "test-function",
Arguments: args(`{"param1": ""}`),
},
},
},
{
name: "special chars in arg_key names",
tools: []api.Tool{},
rawToolCall: `test-function
<arg_key>param<1></arg_key>
<arg_value>value1</arg_value>
<arg_key>a&b</arg_key>
<arg_value>value2</arg_value>
<arg_key>x>y</arg_key>
<arg_value>value3</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "test-function",
Arguments: args(`{"a&b": "value2", "param<1>": "value1", "x>y": "value3"}`),
},
},
},
{
name: "multiple consecutive ampersands",
tools: []api.Tool{},
rawToolCall: `test-function
<arg_key>param</arg_key>
<arg_value>test &&&& more</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "test-function",
Arguments: args(`{"param": "test &&&& more"}`),
},
},
},
{
name: "mixed special chars together",
tools: []api.Tool{},
rawToolCall: `test-function
<arg_key>param</arg_key>
<arg_value><>&<>&</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "test-function",
Arguments: args(`{"param": "<>&<>&"}`),
},
},
},
{
name: "newlines and tabs in parameter values",
tools: []api.Tool{},
rawToolCall: `test-function
<arg_key>multiline</arg_key>
<arg_value>line1
indented line2
line3</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "test-function",
Arguments: args(`{"multiline": "line1\n\tindented line2\nline3"}`),
},
},
},
{
name: "single and double quotes in values",
tools: []api.Tool{},
rawToolCall: `test-function
<arg_key>quotes</arg_key>
<arg_value>She said "Hello's there!"</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "test-function",
Arguments: args(`{"quotes": "She said \"Hello's there!\""}`),
},
},
},
{
name: "CDATA-like content that should be treated as text",
tools: []api.Tool{},
rawToolCall: `test-function
<arg_key>cdata</arg_key>
<arg_value><![CDATA[not actual cdata]]></arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "test-function",
Arguments: args(`{"cdata": "<![CDATA[not actual cdata]]>"}`),
},
},
},
{
name: "all special XML entities",
tools: []api.Tool{},
rawToolCall: `test-function
<arg_key>entities</arg_key>
<arg_value>&lt;&gt;&amp;&apos;&quot;</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "test-function",
Arguments: args(`{"entities": "&lt;&gt;&amp;&apos;&quot;"}`),
},
},
},
{
name: "order preservation with multiple parameters",
tools: []api.Tool{},
rawToolCall: `test-function
<arg_key>first</arg_key>
<arg_value>value1</arg_value>
<arg_key>second</arg_key>
<arg_value>value2</arg_value>
<arg_key>third</arg_key>
<arg_value>value3</arg_value>
<arg_key>fourth</arg_key>
<arg_value>value4</arg_value>
<arg_key>fifth</arg_key>
<arg_value>value5</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "test-function",
Arguments: args(`{"fifth": "value5", "first": "value1", "fourth": "value4", "second": "value2", "third": "value3"}`),
},
},
},
{
name: "order preservation with identical key names but different positions",
tools: []api.Tool{},
rawToolCall: `test-function
<arg_key>param</arg_key>
<arg_value>first occurrence</arg_value>
<arg_key>other</arg_key>
<arg_value>middle</arg_value>
<arg_key>param</arg_key>
<arg_value>second occurrence</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "test-function",
// Later occurrence should overwrite earlier one
Arguments: args(`{"other": "middle", "param": "second occurrence"}`),
},
},
},
{
name: "array with mixed types",
tools: []api.Tool{
tool("process", map[string]api.ToolProperty{
"items": {Type: api.PropertyType{"array"}},
}),
},
rawToolCall: `process
<arg_key>items</arg_key>
<arg_value>[1, "hello", true, null]</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "process",
Arguments: args(`{"items": [1, "hello", true, null]}`),
},
},
},
{
name: "empty array",
tools: []api.Tool{
tool("test", map[string]api.ToolProperty{
"tags": {Type: api.PropertyType{"array"}},
}),
},
rawToolCall: `test
<arg_key>tags</arg_key>
<arg_value>[]</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "test",
Arguments: args(`{"tags": []}`),
},
},
},
{
name: "anyOf array or string - with array of objects",
tools: []api.Tool{
tool("TodoWrite", map[string]api.ToolProperty{
"todos": {AnyOf: []api.ToolProperty{{Type: api.PropertyType{"array"}}, {Type: api.PropertyType{"string"}}}},
}),
},
// <tool_call>TodoWrite
// <arg_key>todos</arg_key>
// <arg_value>[{"content": "Set up HTML file and basic structure", "id": "1", "priority": "high", "status": "pending"}, {"content": "Create 3D scene with Three.js", "id": "2", "priority": "high", "status": "pending"}, {"content": "Implement terrain generation with blocks", "id": "3", "priority": "high", "status": "pending"}, {"content": "Add player controls (movement, camera)", "id": "4", "priority": "high", "status": "pending"}, {"content": "Implement block placement/destruction", "id": "5", "priority": "medium", "status": "pending"}, {"content": "Add lighting and textures", "id": "6", "priority": "medium", "status": "pending"}, {"content": "Test and optimize performance", "id": "7", "priority": "low", "status": "pending"}]</arg_value>
// </tool_call>
rawToolCall: `TodoWrite
<arg_key>todos</arg_key>
<arg_value>[{"content": "task 1", "status": "pending", "priority": "high", "id": "1"}, {"content": "task 2", "status": "completed", "priority": "low", "id": "2"}]</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "TodoWrite",
Arguments: args(`{"todos": [{"content": "task 1", "id": "1", "priority": "high", "status": "pending"}, {"content": "task 2", "id": "2", "priority": "low", "status": "completed"}]}`),
},
},
},
{
name: "anyOf array or string - with plain string",
tools: []api.Tool{
tool("TodoWrite", map[string]api.ToolProperty{
"todos": {Type: api.PropertyType{"array", "string"}},
}),
},
rawToolCall: `TodoWrite
<arg_key>todos</arg_key>
<arg_value>Error: could not load todos</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "TodoWrite",
Arguments: args(`{"todos": "Error: could not load todos"}`),
},
},
},
}
for i, tc := range cases {
t.Run(tc.name, func(t *testing.T) {
gotToolCall, err := parseGLM46ToolCall(glm46EventRawToolCall{raw: tc.rawToolCall}, tc.tools)
if err != nil {
t.Errorf("case %d (%s): %v", i, tc.name, err)
}
if !toolCallEqual(gotToolCall, tc.wantToolCall) {
t.Errorf("case %d (%s): got tool call %#v, want %#v", i, tc.name, gotToolCall, tc.wantToolCall)
}
})
}
}

20
model/parsers/glm47.go Normal file
View File

@@ -0,0 +1,20 @@
package parsers
import "github.com/ollama/ollama/api"
// GLM47Parser extends GLM46Parser with thinking-aware initialization.
// GLM-4.7's prompt ends with <think> when thinking is enabled, so the parser
// must start in CollectingThinking state (the model outputs thinking content directly).
type GLM47Parser struct {
GLM46Parser
}
func (p *GLM47Parser) Init(tools []api.Tool, lastMessage *api.Message, thinkValue *api.ThinkValue) []api.Tool {
p.tools = tools
// When thinking is enabled (nil or true), the prompt ends with <think>,
// so model output starts directly with thinking content (no opening tag).
if thinkValue == nil || thinkValue.Bool() {
p.state = glm46ParserState_CollectingThinking
}
return tools
}

View File

@@ -0,0 +1,99 @@
package parsers
import (
"reflect"
"testing"
"github.com/ollama/ollama/api"
)
func TestGLM47ParserAdd(t *testing.T) {
parser := GLM47Parser{}
parser.Init([]api.Tool{
tool("calculate", map[string]api.ToolProperty{
"count": {Type: api.PropertyType{"integer"}},
"enabled": {Type: api.PropertyType{"boolean"}},
}),
}, nil, nil)
// When thinking is enabled (thinkValue nil), the prompt ends with <think>,
// so the model output does NOT include the opening <think> tag.
content, thinking, calls, err := parser.Add("plan</think>Answer<tool_call>calculate<arg_key>count</arg_key><arg_value>3</arg_value><arg_key>enabled</arg_key><arg_value>true</arg_value></tool_call>", true)
if err != nil {
t.Fatalf("parse failed: %v", err)
}
if thinking != "plan" {
t.Fatalf("expected thinking 'plan', got %q", thinking)
}
if content != "Answer" {
t.Fatalf("expected content 'Answer', got %q", content)
}
if len(calls) != 1 {
t.Fatalf("expected 1 tool call, got %d", len(calls))
}
expectedArgs := args(`{"count": 3, "enabled": true}`)
if !toolCallEqual(api.ToolCall{Function: api.ToolCallFunction{Arguments: calls[0].Function.Arguments}}, api.ToolCall{Function: api.ToolCallFunction{Arguments: expectedArgs}}) {
t.Fatalf("expected args %#v, got %#v", expectedArgs.ToMap(), calls[0].Function.Arguments.ToMap())
}
}
func TestGLM47ParserNoThinkingContent(t *testing.T) {
parser := GLM47Parser{}
parser.Init(nil, nil, nil)
// When thinking is enabled but model has no thinking to output,
// it should output </think> immediately followed by content.
content, thinking, calls, err := parser.Add("</think>Plain answer", true)
if err != nil {
t.Fatalf("parse failed: %v", err)
}
if thinking != "" {
t.Fatalf("expected empty thinking, got %q", thinking)
}
if content != "Plain answer" {
t.Fatalf("expected content 'Plain answer', got %q", content)
}
if len(calls) != 0 {
t.Fatalf("expected no tool calls, got %d", len(calls))
}
}
func TestGLM47ParserThinkingDisabled(t *testing.T) {
parser := GLM47Parser{}
// When thinking is disabled, parser stays in LookingForThinkingOpen state
parser.Init(nil, nil, &api.ThinkValue{Value: false})
// Model outputs plain content (prompt ended with </think>)
content, thinking, calls, err := parser.Add("Plain answer", true)
if err != nil {
t.Fatalf("parse failed: %v", err)
}
if thinking != "" {
t.Fatalf("expected empty thinking, got %q", thinking)
}
if content != "Plain answer" {
t.Fatalf("expected content 'Plain answer', got %q", content)
}
if len(calls) != 0 {
t.Fatalf("expected no tool calls, got %d", len(calls))
}
}
func TestGLM47ParserToolCallEscaping(t *testing.T) {
toolCall, err := parseGLM46ToolCall(glm46EventRawToolCall{raw: `exec
<arg_key>expr</arg_key>
<arg_value>a < b && c > d</arg_value>`}, nil)
if err != nil {
t.Fatalf("parse failed: %v", err)
}
expected := api.ToolCall{
Function: api.ToolCallFunction{
Name: "exec",
Arguments: args(`{"expr": "a < b && c > d"}`),
},
}
if !reflect.DeepEqual(toolCall, expected) {
t.Fatalf("expected %#v, got %#v", expected, toolCall)
}
}

393
model/parsers/lfm2.go Normal file
View File

@@ -0,0 +1,393 @@
package parsers
import (
"encoding/json"
"errors"
"log/slog"
"strconv"
"strings"
"unicode"
"github.com/ollama/ollama/api"
)
type LFM2ParserState int
const (
LFM2CollectingThinking LFM2ParserState = iota
LFM2CollectingContent
LFM2CollectingToolCalls
)
const (
lfm2ThinkingOpenTag = "<think>"
lfm2ThinkingCloseTag = "</think>"
lfm2ToolCallStartTag = "<|tool_call_start|>"
lfm2ToolCallEndTag = "<|tool_call_end|>"
)
type LFM2Parser struct {
state LFM2ParserState
buffer strings.Builder
hasThinkingSupport bool
}
func (p *LFM2Parser) HasToolSupport() bool {
return true
}
func (p *LFM2Parser) HasThinkingSupport() bool {
return p.hasThinkingSupport
}
func (p *LFM2Parser) setInitialState(lastMessage *api.Message, thinkValue *api.ThinkValue) {
prefill := lastMessage != nil && lastMessage.Role == "assistant"
// Check both model capability AND request preference
thinkingEnabled := p.HasThinkingSupport() && (thinkValue != nil && thinkValue.Bool())
if !thinkingEnabled {
p.state = LFM2CollectingContent
return
}
if prefill && lastMessage.Content != "" {
p.state = LFM2CollectingContent
return
}
p.state = LFM2CollectingThinking
}
func (p *LFM2Parser) Init(tools []api.Tool, lastMessage *api.Message, thinkValue *api.ThinkValue) []api.Tool {
p.setInitialState(lastMessage, thinkValue)
return tools
}
type lfm2Event interface {
isLFM2Event()
}
type lfm2EventThinkingContent struct {
content string
}
type lfm2EventContent struct {
content string
}
type lfm2EventToolCall struct {
toolCall api.ToolCall
}
func (lfm2EventThinkingContent) isLFM2Event() {}
func (lfm2EventContent) isLFM2Event() {}
func (lfm2EventToolCall) isLFM2Event() {}
func (p *LFM2Parser) Add(s string, done bool) (content string, thinking string, calls []api.ToolCall, err error) {
p.buffer.WriteString(s)
events := p.parseEvents()
var toolCalls []api.ToolCall
var contentSb strings.Builder
var thinkingSb strings.Builder
for _, event := range events {
switch event := event.(type) {
case lfm2EventToolCall:
toolCalls = append(toolCalls, event.toolCall)
case lfm2EventThinkingContent:
thinkingSb.WriteString(event.content)
case lfm2EventContent:
contentSb.WriteString(event.content)
}
}
return contentSb.String(), thinkingSb.String(), toolCalls, nil
}
func (p *LFM2Parser) parseEvents() []lfm2Event {
var all []lfm2Event
keepLooping := true
for keepLooping {
var events []lfm2Event
events, keepLooping = p.eat()
if len(events) > 0 {
all = append(all, events...)
}
}
return all
}
func (p *LFM2Parser) eat() ([]lfm2Event, bool) {
var events []lfm2Event
bufStr := p.buffer.String()
if bufStr == "" {
return events, false
}
switch p.state {
case LFM2CollectingThinking:
// Strip opening <think> tag if present
if strings.HasPrefix(bufStr, lfm2ThinkingOpenTag) {
bufStr = bufStr[len(lfm2ThinkingOpenTag):]
bufStr = strings.TrimLeftFunc(bufStr, unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(bufStr)
}
if strings.Contains(bufStr, lfm2ThinkingCloseTag) { // thinking[</think>] -> content
split := strings.SplitN(bufStr, lfm2ThinkingCloseTag, 2)
thinking := split[0]
thinking = strings.TrimRightFunc(thinking, unicode.IsSpace)
remaining := split[1]
remaining = strings.TrimLeftFunc(remaining, unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(remaining)
p.state = LFM2CollectingContent
if len(thinking) > 0 {
events = append(events, lfm2EventThinkingContent{content: thinking})
}
return events, true
} else if overlapLen := overlap(bufStr, lfm2ThinkingCloseTag); overlapLen > 0 { // partial </think>
beforePartialTag := bufStr[:len(bufStr)-overlapLen]
trailingLen := trailingWhitespaceLen(beforePartialTag)
ambiguousStart := len(beforePartialTag) - trailingLen
unambiguous := bufStr[:ambiguousStart]
ambiguous := bufStr[ambiguousStart:]
p.buffer.Reset()
p.buffer.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, lfm2EventThinkingContent{content: unambiguous})
}
return events, false
} else { // otherwise its thinking content
whitespaceLen := trailingWhitespaceLen(bufStr)
ambiguousStart := len(bufStr) - whitespaceLen
unambiguous := bufStr[:ambiguousStart]
ambiguous := bufStr[ambiguousStart:]
p.buffer.Reset()
p.buffer.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, lfm2EventThinkingContent{content: unambiguous})
}
return events, false
}
case LFM2CollectingContent:
if strings.Contains(bufStr, lfm2ToolCallStartTag) { // content[<|tool_call_start|>] -> tool calls
split := strings.SplitN(bufStr, lfm2ToolCallStartTag, 2)
contentBefore := strings.TrimRightFunc(split[0], unicode.IsSpace)
remaining := split[1]
p.buffer.Reset()
p.buffer.WriteString(remaining)
p.state = LFM2CollectingToolCalls
if len(contentBefore) > 0 {
events = append(events, lfm2EventContent{content: contentBefore})
}
return events, true
} else { // otherwise its content
p.buffer.Reset()
if len(bufStr) > 0 {
events = append(events, lfm2EventContent{content: bufStr})
}
return events, false
}
case LFM2CollectingToolCalls:
// Look for complete tool call JSON between tags
if idx := strings.Index(bufStr, lfm2ToolCallEndTag); idx != -1 {
toolCallContent := bufStr[:idx]
if toolCall, err := p.parseToolCallContent(toolCallContent); err == nil {
remaining := bufStr[idx+len(lfm2ToolCallEndTag):]
// Check if there's another tool call
if strings.HasPrefix(remaining, lfm2ToolCallStartTag) {
remaining = remaining[len(lfm2ToolCallStartTag):]
} else {
// No more tool calls, go back to content
remaining = strings.TrimLeftFunc(remaining, unicode.IsSpace)
p.state = LFM2CollectingContent
}
p.buffer.Reset()
p.buffer.WriteString(remaining)
events = append(events, lfm2EventToolCall{toolCall: toolCall})
return events, true
} else {
slog.Warn("lfm2 tool call parsing failed", "error", err, "content", toolCallContent)
}
}
return events, false
}
return events, false
}
func (p *LFM2Parser) parseToolCallContent(content string) (api.ToolCall, error) {
content = strings.TrimSpace(content)
// Try JSON format first: {"name": "func", "arguments": {...}}
var parsed struct {
Name string `json:"name"`
Arguments json.RawMessage `json:"arguments"`
}
if err := json.Unmarshal([]byte(content), &parsed); err == nil && parsed.Name != "" {
var args api.ToolCallFunctionArguments
if len(parsed.Arguments) > 0 {
if err := json.Unmarshal(parsed.Arguments, &args); err != nil {
return api.ToolCall{}, err
}
} else {
args = api.NewToolCallFunctionArguments()
}
return api.ToolCall{
Function: api.ToolCallFunction{
Name: parsed.Name,
Arguments: args,
},
}, nil
}
// Try Python-style format: [func(arg1='val1', arg2='val2')] or func(arg1='val1')
return p.parsePythonStyleToolCall(content)
}
// parsePythonStyleToolCall parses tool calls in Python function call syntax
// Examples: [bash(command='ls')] or bash(command='ls', flag='-la')
func (p *LFM2Parser) parsePythonStyleToolCall(content string) (api.ToolCall, error) {
content = strings.TrimSpace(content)
// Strip outer brackets if present: [func(...)] -> func(...)
if strings.HasPrefix(content, "[") && strings.HasSuffix(content, "]") {
content = content[1 : len(content)-1]
}
// Find function name and arguments: func(args)
parenIdx := strings.Index(content, "(")
if parenIdx == -1 {
return api.ToolCall{}, errors.New("invalid tool call: no opening parenthesis")
}
funcName := strings.TrimSpace(content[:parenIdx])
if funcName == "" {
return api.ToolCall{}, errors.New("invalid tool call: empty function name")
}
// Extract arguments between parentheses
if !strings.HasSuffix(content, ")") {
return api.ToolCall{}, errors.New("invalid tool call: no closing parenthesis")
}
argsStr := content[parenIdx+1 : len(content)-1]
args := api.NewToolCallFunctionArguments()
if argsStr != "" {
// Parse key='value' or key="value" pairs
if err := parsePythonArgs(argsStr, &args); err != nil {
return api.ToolCall{}, err
}
}
return api.ToolCall{
Function: api.ToolCallFunction{
Name: funcName,
Arguments: args,
},
}, nil
}
// parsePythonArgs parses Python-style keyword arguments: key='value', key2="value2"
func parsePythonArgs(argsStr string, args *api.ToolCallFunctionArguments) error {
// Simple state machine to parse key='value' pairs
// Handles: command='ls', flag="-la", count=42, enabled=true
var key string
i := 0
for i < len(argsStr) {
// Skip whitespace
for i < len(argsStr) && (argsStr[i] == ' ' || argsStr[i] == '\t' || argsStr[i] == '\n') {
i++
}
if i >= len(argsStr) {
break
}
// Parse key
keyStart := i
for i < len(argsStr) && argsStr[i] != '=' && argsStr[i] != ',' {
i++
}
if i >= len(argsStr) || argsStr[i] != '=' {
return errors.New("invalid argument: expected '='")
}
key = strings.TrimSpace(argsStr[keyStart:i])
i++ // skip '='
// Skip whitespace after =
for i < len(argsStr) && (argsStr[i] == ' ' || argsStr[i] == '\t') {
i++
}
// Parse value
var value string
if i < len(argsStr) && (argsStr[i] == '\'' || argsStr[i] == '"') {
// Quoted string
quote := argsStr[i]
i++
valueStart := i
for i < len(argsStr) && argsStr[i] != quote {
if argsStr[i] == '\\' && i+1 < len(argsStr) {
i += 2 // skip escaped char
} else {
i++
}
}
value = argsStr[valueStart:i]
if i < len(argsStr) {
i++ // skip closing quote
}
args.Set(key, value)
} else {
// Unquoted value (number, bool, etc)
valueStart := i
for i < len(argsStr) && argsStr[i] != ',' {
i++
}
value = strings.TrimSpace(argsStr[valueStart:i])
// Try to parse as number or bool
if v, err := strconv.ParseInt(value, 10, 64); err == nil {
args.Set(key, v)
} else if v, err := strconv.ParseFloat(value, 64); err == nil {
args.Set(key, v)
} else if value == "true" {
args.Set(key, true)
} else if value == "false" {
args.Set(key, false)
} else {
args.Set(key, value)
}
}
// Skip comma and whitespace
for i < len(argsStr) && (argsStr[i] == ',' || argsStr[i] == ' ' || argsStr[i] == '\t' || argsStr[i] == '\n') {
i++
}
}
return nil
}

549
model/parsers/lfm2_test.go Normal file
View File

@@ -0,0 +1,549 @@
package parsers
import (
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
)
func TestLFM2Parser(t *testing.T) {
tests := []struct {
name string
input string
expectedContent string
expectedThinking string
expectedCalls []api.ToolCall
hasThinking bool
}{
{
name: "simple_content",
input: "Hello, how are you?",
expectedContent: "Hello, how are you?",
hasThinking: false,
},
{
name: "thinking_content",
input: "I need to think about this...</think>The answer is 42.",
expectedThinking: "I need to think about this...",
expectedContent: "The answer is 42.",
hasThinking: true,
},
{
name: "no_thinking_simple",
input: "Just a regular response.",
expectedContent: "Just a regular response.",
hasThinking: false,
},
{
name: "thinking_with_newlines",
input: "Let me think:\n- Point 1\n- Point 2</think>\n\nHere's my answer.",
expectedThinking: "Let me think:\n- Point 1\n- Point 2",
expectedContent: "Here's my answer.",
hasThinking: true,
},
{
name: "tool_call_simple",
input: "I'll check the weather.<|tool_call_start|>{\"name\":\"get_weather\",\"arguments\":{\"location\":\"Paris\"}}<|tool_call_end|>",
expectedContent: "I'll check the weather.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
},
hasThinking: false,
},
{
name: "multiple_tool_calls",
input: "Getting weather for both cities.<|tool_call_start|>{\"name\":\"get_weather\",\"arguments\":{\"location\":\"Paris\"}}<|tool_call_end|><|tool_call_start|>{\"name\":\"get_weather\",\"arguments\":{\"location\":\"London\"}}<|tool_call_end|>",
expectedContent: "Getting weather for both cities.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "London",
}),
},
},
},
hasThinking: false,
},
{
name: "complex_tool_arguments",
input: "Processing data.<|tool_call_start|>{\"name\":\"process_data\",\"arguments\":{\"items\":[\"item1\",\"item2\"],\"config\":{\"enabled\":true,\"threshold\":0.95}}}<|tool_call_end|>",
expectedContent: "Processing data.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "process_data",
Arguments: testArgs(map[string]any{
"items": []interface{}{"item1", "item2"},
"config": map[string]interface{}{"enabled": true, "threshold": 0.95},
}),
},
},
},
hasThinking: false,
},
{
name: "thinking_with_tool_call",
input: "Let me check the weather...</think>I'll get that for you.<|tool_call_start|>{\"name\":\"get_weather\",\"arguments\":{\"location\":\"Paris\"}}<|tool_call_end|>",
expectedThinking: "Let me check the weather...",
expectedContent: "I'll get that for you.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
},
hasThinking: true,
},
{
name: "empty_content",
input: "",
expectedContent: "",
hasThinking: false,
},
{
name: "only_thinking",
input: "Just thinking content</think>",
expectedThinking: "Just thinking content",
expectedContent: "",
hasThinking: true,
},
{
name: "unicode_content",
input: "مرحبا بالعالم! 你好世界! 🌍",
expectedContent: "مرحبا بالعالم! 你好世界! 🌍",
hasThinking: false,
},
{
name: "emoji_passthrough",
input: "Task completed ✅ 🎉",
expectedContent: "Task completed ✅ 🎉",
hasThinking: false,
},
{
name: "newlines_and_whitespace",
input: "Line 1\n\nLine 3\t\tTabbed content",
expectedContent: "Line 1\n\nLine 3\t\tTabbed content",
hasThinking: false,
},
{
name: "thinking_with_unicode",
input: "我在思考这个问题...</think>答案是42。",
expectedThinking: "我在思考这个问题...",
expectedContent: "答案是42。",
hasThinking: true,
},
{
name: "tool_call_with_unicode_args",
input: "Searching for information.<|tool_call_start|>{\"name\":\"search\",\"arguments\":{\"query\":\"北京天气\",\"language\":\"中文\"}}<|tool_call_end|>",
expectedContent: "Searching for information.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "search",
Arguments: testArgs(map[string]any{
"query": "北京天气",
"language": "中文",
}),
},
},
},
hasThinking: false,
},
{
name: "thinking_with_special_chars",
input: "Let me calculate: 2+2=4 & 3*3=9...</think>The results are correct!",
expectedThinking: "Let me calculate: 2+2=4 & 3*3=9...",
expectedContent: "The results are correct!",
hasThinking: true,
},
{
name: "empty_tool_call_args",
input: "Pinging server.<|tool_call_start|>{\"name\":\"ping\",\"arguments\":{}}<|tool_call_end|>",
expectedContent: "Pinging server.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "ping",
Arguments: api.NewToolCallFunctionArguments(),
},
},
},
hasThinking: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
parser := &LFM2Parser{hasThinkingSupport: tt.hasThinking}
parser.Init([]api.Tool{}, nil, &api.ThinkValue{Value: tt.hasThinking})
content, thinking, calls, err := parser.Add(tt.input, true)
if err != nil {
t.Fatalf("Add() error = %v", err)
}
if diff := cmp.Diff(tt.expectedContent, content); diff != "" {
t.Errorf("Content mismatch (-want +got):\n%s", diff)
}
if diff := cmp.Diff(tt.expectedThinking, thinking); diff != "" {
t.Errorf("Thinking mismatch (-want +got):\n%s", diff)
}
if diff := cmp.Diff(tt.expectedCalls, calls, argsComparer); diff != "" {
t.Errorf("Tool calls mismatch (-want +got):\n%s", diff)
}
})
}
}
func TestLFM2Parser_Streaming(t *testing.T) {
tests := []struct {
name string
chunks []string
expectedContent string
expectedThinking string
expectedCalls []api.ToolCall
hasThinking bool
}{
{
name: "streaming_simple_content",
chunks: []string{"Hello, ", "how are ", "you?"},
expectedContent: "Hello, how are you?",
hasThinking: false,
},
{
name: "streaming_thinking",
chunks: []string{"I need to ", "think about this", "...</think>", "The answer is 42."},
expectedThinking: "I need to think about this...",
expectedContent: "The answer is 42.",
hasThinking: true,
},
{
name: "streaming_tool_call",
chunks: []string{"I'll check weather.", "<|tool_call_start|>", "{\"name\":\"get_weather\",", "\"arguments\":{\"location\":\"Paris\"}}", "<|tool_call_end|>"},
expectedContent: "I'll check weather.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
},
hasThinking: false,
},
{
name: "streaming_thinking_with_partial_tag",
chunks: []string{"Thinking about this", "...</", "think>", "Done thinking."},
expectedThinking: "Thinking about this...",
expectedContent: "Done thinking.",
hasThinking: true,
},
{
name: "streaming_unicode_content",
chunks: []string{"مرحبا ", "بالعالم! ", "你好", "世界!"},
expectedContent: "مرحبا بالعالم! 你好世界!",
hasThinking: false,
},
{
name: "streaming_tool_call_with_split_json",
chunks: []string{"Processing.", "<|tool_call_start|>{\"name\":\"calc\",\"arguments\":{\"x\":", "42,\"y\":", "24}}<|tool_call_end|>"},
expectedContent: "Processing.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "calc",
Arguments: testArgs(map[string]any{
"x": float64(42),
"y": float64(24),
}),
},
},
},
hasThinking: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
parser := &LFM2Parser{hasThinkingSupport: tt.hasThinking}
parser.Init([]api.Tool{}, nil, &api.ThinkValue{Value: tt.hasThinking})
var allContent, allThinking string
var allCalls []api.ToolCall
for i, chunk := range tt.chunks {
done := i == len(tt.chunks)-1
content, thinking, calls, err := parser.Add(chunk, done)
if err != nil {
t.Fatalf("Add() error = %v", err)
}
allContent += content
allThinking += thinking
allCalls = append(allCalls, calls...)
}
if diff := cmp.Diff(tt.expectedContent, allContent); diff != "" {
t.Errorf("Content mismatch (-want +got):\n%s", diff)
}
if diff := cmp.Diff(tt.expectedThinking, allThinking); diff != "" {
t.Errorf("Thinking mismatch (-want +got):\n%s", diff)
}
if diff := cmp.Diff(tt.expectedCalls, allCalls, argsComparer); diff != "" {
t.Errorf("Tool calls mismatch (-want +got):\n%s", diff)
}
})
}
}
func TestLFM2Parser_HasThinkingSupport(t *testing.T) {
tests := []struct {
name string
hasThinking bool
expectedSupport bool
}{
{
name: "thinking_enabled",
hasThinking: true,
expectedSupport: true,
},
{
name: "thinking_disabled",
hasThinking: false,
expectedSupport: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
parser := &LFM2Parser{hasThinkingSupport: tt.hasThinking}
if got := parser.HasThinkingSupport(); got != tt.expectedSupport {
t.Errorf("HasThinkingSupport() = %v, want %v", got, tt.expectedSupport)
}
})
}
}
func TestLFM2Parser_HasToolSupport(t *testing.T) {
parser := &LFM2Parser{}
if !parser.HasToolSupport() {
t.Error("HasToolSupport() should return true")
}
}
func TestLFM2Parser_Init(t *testing.T) {
parser := &LFM2Parser{hasThinkingSupport: true}
tools := []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "test_tool",
},
},
}
returnedTools := parser.Init(tools, nil, &api.ThinkValue{Value: true})
if diff := cmp.Diff(tools, returnedTools, toolsComparer); diff != "" {
t.Errorf("Init() returned tools mismatch (-want +got):\n%s", diff)
}
// Test initial state is set to thinking when enabled
if parser.state != LFM2CollectingThinking {
t.Errorf("Expected initial state to be LFM2CollectingThinking, got %v", parser.state)
}
}
func TestLFM2Parser_parseToolCallContent(t *testing.T) {
tests := []struct {
name string
content string
expected api.ToolCall
expectError bool
}{
{
name: "valid_tool_call",
content: `{"name":"get_weather","arguments":{"location":"Paris"}}`,
expected: api.ToolCall{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
},
{
name: "complex_arguments",
content: `{"name":"process_data","arguments":{"items":["a","b"],"config":{"enabled":true}}}`,
expected: api.ToolCall{
Function: api.ToolCallFunction{
Name: "process_data",
Arguments: testArgs(map[string]any{
"items": []interface{}{"a", "b"},
"config": map[string]interface{}{"enabled": true},
}),
},
},
},
{
name: "empty_arguments",
content: `{"name":"ping","arguments":{}}`,
expected: api.ToolCall{
Function: api.ToolCallFunction{
Name: "ping",
Arguments: api.NewToolCallFunctionArguments(),
},
},
},
{
name: "unicode_in_tool_name",
content: `{"name":"获取天气","arguments":{"城市":"北京"}}`,
expected: api.ToolCall{
Function: api.ToolCallFunction{
Name: "获取天气",
Arguments: testArgs(map[string]any{
"城市": "北京",
}),
},
},
},
{
name: "numeric_arguments",
content: `{"name":"calculate","arguments":{"x":3.14,"y":42,"enabled":true}}`,
expected: api.ToolCall{
Function: api.ToolCallFunction{
Name: "calculate",
Arguments: testArgs(map[string]any{
"x": 3.14,
"y": float64(42),
"enabled": true,
}),
},
},
},
{
name: "invalid_json",
content: `{invalid json}`,
expectError: true,
},
{
name: "missing_name",
content: `{"arguments":{"arg":"value"}}`,
expectError: true,
},
{
name: "empty_name",
content: `{"name":"","arguments":{"arg":"value"}}`,
expectError: true,
},
}
parser := &LFM2Parser{}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
result, err := parser.parseToolCallContent(tt.content)
if tt.expectError {
if err == nil {
t.Error("Expected error but got none")
}
return
}
if err != nil {
t.Fatalf("Unexpected error: %v", err)
}
if diff := cmp.Diff(tt.expected, result, argsComparer); diff != "" {
t.Errorf("parseToolCallContent() mismatch (-want +got):\n%s", diff)
}
})
}
}
func TestLFM2Parser_EdgeCases(t *testing.T) {
tests := []struct {
name string
input string
expectedContent string
expectedThinking string
hasThinking bool
}{
{
name: "multiple_think_close_tags",
input: "First thought</think>Second thought</think>Final content",
expectedThinking: "First thought",
expectedContent: "Second thought</think>Final content",
hasThinking: true,
},
{
name: "empty_thinking_content",
input: "</think>Just content",
expectedThinking: "",
expectedContent: "Just content",
hasThinking: true,
},
{
name: "thinking_disabled_with_think_tags",
input: "Some content</think>More content",
expectedContent: "Some content</think>More content",
hasThinking: false,
},
{
name: "whitespace_only_content",
input: " \n\t ",
expectedContent: " \n\t ",
hasThinking: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
parser := &LFM2Parser{hasThinkingSupport: tt.hasThinking}
parser.Init([]api.Tool{}, nil, &api.ThinkValue{Value: tt.hasThinking})
content, thinking, _, err := parser.Add(tt.input, true)
if err != nil {
t.Fatalf("Add() error = %v", err)
}
if diff := cmp.Diff(tt.expectedContent, content); diff != "" {
t.Errorf("Content mismatch (-want +got):\n%s", diff)
}
if diff := cmp.Diff(tt.expectedThinking, thinking); diff != "" {
t.Errorf("Thinking mismatch (-want +got):\n%s", diff)
}
})
}
}

View File

@@ -1,7 +1,6 @@
package parsers
import (
"regexp"
"strings"
"unicode"
@@ -14,243 +13,114 @@ const (
Nemotron3NanoCollectingThinking Nemotron3NanoParserState = iota
Nemotron3NanoSkipWhitespaceAfterThinking
Nemotron3NanoCollectingContent
Nemotron3NanoCollectingToolCalls
)
const (
nemotronThinkClose = "</think>"
nemotronToolCallOpen = "<tool_call>"
nemotronToolCallClose = "</tool_call>"
nemotronThinkClose = "</think>"
nemotronToolCallOpen = "<tool_call>"
)
type Nemotron3NanoParser struct {
state Nemotron3NanoParserState
buffer strings.Builder
tools []api.Tool
state Nemotron3NanoParserState
buffer strings.Builder
toolParser *Qwen3CoderParser
}
func (p *Nemotron3NanoParser) HasToolSupport() bool { return true }
func (p *Nemotron3NanoParser) HasThinkingSupport() bool { return true }
func (p *Nemotron3NanoParser) Init(tools []api.Tool, lastMessage *api.Message, thinkValue *api.ThinkValue) []api.Tool {
p.tools = tools
p.toolParser = &Qwen3CoderParser{}
p.toolParser.Init(tools, nil, nil)
// thinking is enabled if user requests it
thinkingEnabled := thinkValue != nil && thinkValue.Bool()
prefill := lastMessage != nil && lastMessage.Role == "assistant"
if !thinkingEnabled {
if !thinkingEnabled || (prefill && lastMessage.Content != "") {
p.state = Nemotron3NanoCollectingContent
return tools
} else {
p.state = Nemotron3NanoCollectingThinking
}
if prefill && lastMessage.Content != "" {
p.state = Nemotron3NanoCollectingContent
return tools
}
p.state = Nemotron3NanoCollectingThinking
return tools
}
type nemotronEvent interface {
isNemotronEvent()
}
type nemotronEventThinkingContent struct {
content string
}
type nemotronEventContent struct {
content string
}
type nemotronEventToolCall struct {
toolCall api.ToolCall
}
func (nemotronEventThinkingContent) isNemotronEvent() {}
func (nemotronEventContent) isNemotronEvent() {}
func (nemotronEventToolCall) isNemotronEvent() {}
func (p *Nemotron3NanoParser) Add(s string, done bool) (content string, thinking string, calls []api.ToolCall, err error) {
p.buffer.WriteString(s)
events := p.parseEvents()
var toolCalls []api.ToolCall
var contentSb strings.Builder
var thinkingSb strings.Builder
for _, event := range events {
switch event := event.(type) {
case nemotronEventToolCall:
toolCalls = append(toolCalls, event.toolCall)
case nemotronEventThinkingContent:
thinkingSb.WriteString(event.content)
case nemotronEventContent:
contentSb.WriteString(event.content)
}
if p.state == Nemotron3NanoCollectingContent {
return p.toolParser.Add(s, done)
}
return contentSb.String(), thinkingSb.String(), toolCalls, nil
}
func (p *Nemotron3NanoParser) parseEvents() []nemotronEvent {
var all []nemotronEvent
keepLooping := true
for keepLooping {
var events []nemotronEvent
events, keepLooping = p.eat()
if len(events) > 0 {
all = append(all, events...)
}
}
return all
}
// emitWithPartialCheck extracts unambiguous content before a potential partial tag
func (p *Nemotron3NanoParser) emitWithPartialCheck(bufStr, tag string) (unambiguous, ambiguous string) {
if overlapLen := overlap(bufStr, tag); overlapLen > 0 {
beforePartialTag := bufStr[:len(bufStr)-overlapLen]
trailingLen := trailingWhitespaceLen(beforePartialTag)
return bufStr[:len(beforePartialTag)-trailingLen], bufStr[len(beforePartialTag)-trailingLen:]
}
wsLen := trailingWhitespaceLen(bufStr)
return bufStr[:len(bufStr)-wsLen], bufStr[len(bufStr)-wsLen:]
}
func (p *Nemotron3NanoParser) eat() ([]nemotronEvent, bool) {
bufStr := p.buffer.String()
if bufStr == "" {
return nil, false
}
switch p.state {
case Nemotron3NanoCollectingThinking:
if strings.Contains(bufStr, nemotronThinkClose) {
split := strings.SplitN(bufStr, nemotronThinkClose, 2)
thinking := strings.TrimRightFunc(split[0], unicode.IsSpace)
p.buffer.Reset()
remainder := strings.TrimLeftFunc(split[1], unicode.IsSpace)
p.buffer.WriteString(remainder)
// Transition to whitespace-skipping state if buffer is empty,
// otherwise go directly to content collection
if remainder == "" {
p.state = Nemotron3NanoSkipWhitespaceAfterThinking
} else {
p.state = Nemotron3NanoCollectingContent
}
if thinking != "" {
return []nemotronEvent{nemotronEventThinkingContent{content: thinking}}, true
}
return nil, true
}
unambig, ambig := p.emitWithPartialCheck(bufStr, nemotronThinkClose)
p.buffer.Reset()
p.buffer.WriteString(ambig)
if unambig != "" {
return []nemotronEvent{nemotronEventThinkingContent{content: unambig}}, false
}
return nil, false
// We only want to skip whitespace between thinking and content
case Nemotron3NanoSkipWhitespaceAfterThinking:
bufStr = strings.TrimLeftFunc(bufStr, unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(bufStr)
if bufStr == "" {
return nil, false
if p.state == Nemotron3NanoSkipWhitespaceAfterThinking {
s = strings.TrimLeftFunc(s, unicode.IsSpace)
if s == "" {
return "", "", nil, nil
}
p.state = Nemotron3NanoCollectingContent
return nil, true
return p.toolParser.Add(s, done)
}
case Nemotron3NanoCollectingContent:
if strings.Contains(bufStr, nemotronToolCallOpen) {
split := strings.SplitN(bufStr, nemotronToolCallOpen, 2)
content := strings.TrimRightFunc(split[0], unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(split[1])
p.state = Nemotron3NanoCollectingToolCalls
if content != "" {
return []nemotronEvent{nemotronEventContent{content: content}}, true
}
return nil, true
}
unambig, ambig := p.emitWithPartialCheck(bufStr, nemotronToolCallOpen)
// Nemotron3NanoCollectingThinking - buffer and look for end markers
p.buffer.WriteString(s)
bufStr := p.buffer.String()
// Look for end of thinking: </think> or <tool_call> (model may skip </think>)
thinkIdx := strings.Index(bufStr, nemotronThinkClose)
toolIdx := strings.Index(bufStr, nemotronToolCallOpen)
var endIdx int = -1
var remainder string
if thinkIdx != -1 && (toolIdx == -1 || thinkIdx < toolIdx) {
endIdx = thinkIdx
remainder = strings.TrimLeftFunc(bufStr[thinkIdx+len(nemotronThinkClose):], unicode.IsSpace)
} else if toolIdx != -1 {
endIdx = toolIdx
remainder = bufStr[toolIdx:] // Include <tool_call> tag
}
if endIdx != -1 {
thinking = strings.TrimRightFunc(bufStr[:endIdx], unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(ambig)
if unambig != "" {
return []nemotronEvent{nemotronEventContent{content: unambig}}, false
if remainder == "" {
p.state = Nemotron3NanoSkipWhitespaceAfterThinking
} else {
p.state = Nemotron3NanoCollectingContent
content, _, calls, err = p.toolParser.Add(remainder, done)
}
return nil, false
case Nemotron3NanoCollectingToolCalls:
if strings.Contains(bufStr, nemotronToolCallClose) {
split := strings.SplitN(bufStr, nemotronToolCallClose, 2)
remaining := strings.TrimLeftFunc(split[1], unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(remaining)
var events []nemotronEvent
if tc, err := p.parseToolCall(split[0]); err == nil {
events = append(events, nemotronEventToolCall{toolCall: tc})
}
if !strings.Contains(remaining, nemotronToolCallOpen) {
p.state = Nemotron3NanoCollectingContent
}
return events, true
}
return nil, false
return content, thinking, calls, err
}
return nil, false
// No end marker - emit unambiguous thinking
thinking = p.emitThinking(bufStr)
return "", thinking, nil, nil
}
var (
nemotronFunctionRegex = regexp.MustCompile(`<function=([^>]+)>`)
nemotronParameterRegex = regexp.MustCompile(`<parameter=([^>]+)>\n?([\s\S]*?)\n?</parameter>`)
)
// emitThinking returns unambiguous thinking content, keeping potential partial tags in buffer
func (p *Nemotron3NanoParser) emitThinking(bufStr string) string {
// Check for partial </think> or <tool_call> at end
thinkOverlap := overlap(bufStr, nemotronThinkClose)
toolOverlap := overlap(bufStr, nemotronToolCallOpen)
maxOverlap := max(thinkOverlap, toolOverlap)
func (p *Nemotron3NanoParser) parseToolCall(content string) (api.ToolCall, error) {
toolCall := api.ToolCall{}
// Extract function name
fnMatch := nemotronFunctionRegex.FindStringSubmatch(content)
if len(fnMatch) < 2 {
return toolCall, nil
}
toolCall.Function.Name = fnMatch[1]
// Extract parameters
toolCall.Function.Arguments = api.NewToolCallFunctionArguments()
paramMatches := nemotronParameterRegex.FindAllStringSubmatch(content, -1)
for _, match := range paramMatches {
if len(match) >= 3 {
paramName := match[1]
paramValue := strings.TrimSpace(match[2])
// Try to parse as typed value based on tool definition
toolCall.Function.Arguments.Set(paramName, p.parseParamValue(paramName, paramValue))
}
if maxOverlap > 0 {
unambiguous := bufStr[:len(bufStr)-maxOverlap]
unambiguous = strings.TrimRightFunc(unambiguous, unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(bufStr[len(bufStr)-maxOverlap:])
return unambiguous
}
return toolCall, nil
}
func (p *Nemotron3NanoParser) parseParamValue(paramName string, raw string) any {
// Find the matching tool to get parameter type
var paramType api.PropertyType
for _, tool := range p.tools {
if tool.Function.Parameters.Properties != nil {
if prop, ok := tool.Function.Parameters.Properties.Get(paramName); ok {
paramType = prop.Type
break
}
}
}
return parseValue(raw, paramType)
// No partial tags - emit all but trailing whitespace
wsLen := trailingWhitespaceLen(bufStr)
if wsLen > 0 {
unambiguous := bufStr[:len(bufStr)-wsLen]
p.buffer.Reset()
p.buffer.WriteString(bufStr[len(bufStr)-wsLen:])
return unambiguous
}
// Nothing to hold back
p.buffer.Reset()
return bufStr
}

View File

@@ -8,6 +8,8 @@ import (
"github.com/ollama/ollama/api"
)
// TestNemotron3NanoParser tests Nemotron-specific behavior (thinking support).
// Tool call parsing is tested in qwen3coder_test.go since Nemotron delegates to Qwen3CoderParser.
func TestNemotron3NanoParser(t *testing.T) {
tests := []struct {
name string
@@ -17,18 +19,6 @@ func TestNemotron3NanoParser(t *testing.T) {
expectedThinking string
expectedCalls []api.ToolCall
}{
{
name: "simple content - no thinking",
input: "Hello, how can I help you?",
thinkValue: nil,
expectedContent: "Hello, how can I help you?",
},
{
name: "simple content - thinking disabled",
input: "Hello, how can I help you?",
thinkValue: &api.ThinkValue{Value: false},
expectedContent: "Hello, how can I help you?",
},
{
name: "thinking then content",
input: "Let me think about this...</think>\nHere is my answer.",
@@ -43,69 +33,6 @@ func TestNemotron3NanoParser(t *testing.T) {
expectedThinking: "Step 1: Analyze\nStep 2: Process\nStep 3: Conclude",
expectedContent: "The answer is 42.",
},
{
name: "simple tool call",
input: "<tool_call>\n<function=get_weather>\n<parameter=city>\nParis\n</parameter>\n</function>\n</tool_call>",
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{"city": "Paris"}),
},
},
},
},
{
name: "content then tool call",
input: "Let me check the weather.\n<tool_call>\n<function=get_weather>\n<parameter=city>\nNYC\n</parameter>\n</function>\n</tool_call>",
thinkValue: nil,
expectedContent: "Let me check the weather.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{"city": "NYC"}),
},
},
},
},
{
name: "tool call with multiple parameters",
input: "<tool_call>\n<function=book_flight>\n<parameter=from>\nSFO\n</parameter>\n<parameter=to>\nNYC\n</parameter>\n</function>\n</tool_call>",
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "book_flight",
Arguments: testArgs(map[string]any{
"from": "SFO",
"to": "NYC",
}),
},
},
},
},
{
name: "multiple tool calls",
input: "<tool_call>\n<function=get_weather>\n<parameter=city>\nSan Francisco\n</parameter>\n</function>\n</tool_call>\n" +
"<tool_call>\n<function=get_weather>\n<parameter=city>\nNew York\n</parameter>\n</function>\n</tool_call>",
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{"city": "San Francisco"}),
},
},
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{"city": "New York"}),
},
},
},
},
{
name: "thinking then tool call",
input: "I should check the weather...</think>\n<tool_call>\n<function=get_weather>\n<parameter=city>\nParis\n</parameter>\n</function>\n</tool_call>",
@@ -135,19 +62,6 @@ func TestNemotron3NanoParser(t *testing.T) {
},
},
},
{
name: "tool call with multiline parameter value",
input: "<tool_call>\n<function=create_note>\n<parameter=content>\nLine 1\nLine 2\nLine 3\n</parameter>\n</function>\n</tool_call>",
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "create_note",
Arguments: testArgs(map[string]any{"content": "Line 1\nLine 2\nLine 3"}),
},
},
},
},
{
name: "empty thinking block - immediate close",
input: "</think>\nHere is my answer.",
@@ -161,18 +75,6 @@ func TestNemotron3NanoParser(t *testing.T) {
thinkValue: &api.ThinkValue{Value: false},
expectedContent: "</think>\nSome content after spurious tag.",
},
{
name: "tool call with no function name - returns empty tool call",
input: "<tool_call>\n<function=>\n</function>\n</tool_call>",
thinkValue: nil,
expectedCalls: []api.ToolCall{{Function: api.ToolCallFunction{Name: "", Arguments: api.NewToolCallFunctionArguments()}}},
},
{
name: "content with newlines preserved",
input: "Line 1\n\nLine 2\n\n\nLine 3",
thinkValue: nil,
expectedContent: "Line 1\n\nLine 2\n\n\nLine 3",
},
{
name: "thinking with only whitespace after close tag",
input: "My thoughts...</think> \n\t\n Content here.",
@@ -180,25 +82,6 @@ func TestNemotron3NanoParser(t *testing.T) {
expectedThinking: "My thoughts...",
expectedContent: "Content here.",
},
{
name: "unicode content",
input: "Hello 世界! 🌍 Ñoño",
thinkValue: nil,
expectedContent: "Hello 世界! 🌍 Ñoño",
},
{
name: "tool call with numeric parameter",
input: "<tool_call>\n<function=set_temp>\n<parameter=value>\n42\n</parameter>\n</function>\n</tool_call>",
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "set_temp",
Arguments: testArgs(map[string]any{"value": "42"}),
},
},
},
},
}
for _, tt := range tests {
@@ -233,6 +116,8 @@ func TestNemotron3NanoParser(t *testing.T) {
}
}
// TestNemotron3NanoParser_Streaming tests streaming behavior for thinking support.
// Tool call streaming is tested in qwen3coder_test.go.
func TestNemotron3NanoParser_Streaming(t *testing.T) {
tests := []struct {
name string
@@ -242,18 +127,6 @@ func TestNemotron3NanoParser_Streaming(t *testing.T) {
expectedThinking string
expectedCalls []api.ToolCall
}{
{
name: "streaming content character by character",
chunks: []string{"H", "e", "l", "l", "o", ",", " ", "w", "o", "r", "l", "d", "!"},
thinkValue: nil,
expectedContent: "Hello, world!",
},
{
name: "streaming content small tokens",
chunks: []string{"Hel", "lo", ", ", "how ", "can", " I", " help", " you", " today", "?"},
thinkValue: nil,
expectedContent: "Hello, how can I help you today?",
},
{
name: "streaming thinking then content - granular",
chunks: []string{"Let", " me", " th", "ink", " about", " this", "...", "<", "/", "think", ">", "\n", "Here", " is", " my", " answer", "."},
@@ -268,45 +141,6 @@ func TestNemotron3NanoParser_Streaming(t *testing.T) {
expectedThinking: "Step 1: Analyze\nStep 2: Process",
expectedContent: "The answer.",
},
{
name: "streaming tool call - highly granular",
chunks: []string{"<", "tool", "_", "call", ">", "\n", "<", "func", "tion", "=", "get", "_", "weather", ">", "\n", "<", "param", "eter", "=", "city", ">", "\n", "Par", "is", "\n", "</", "param", "eter", ">", "\n", "</", "func", "tion", ">", "\n", "</", "tool", "_", "call", ">"},
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{"city": "Paris"}),
},
},
},
},
{
name: "streaming content then tool call - granular",
chunks: []string{"Let", " me", " check", " the", " weather", ".", "\n<", "tool_call", ">", "\n", "<function=", "get_weather", ">", "\n", "<parameter=", "city", ">", "\n", "NYC", "\n", "</parameter>", "\n", "</function>", "\n", "</tool_call>"},
thinkValue: nil,
expectedContent: "Let me check the weather.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{"city": "NYC"}),
},
},
},
},
{
name: "tool call tag split character by character",
chunks: []string{"<", "t", "o", "o", "l", "_", "c", "a", "l", "l", ">", "\n", "<", "f", "u", "n", "c", "t", "i", "o", "n", "=", "t", "e", "s", "t", ">", "\n", "<", "/", "f", "u", "n", "c", "t", "i", "o", "n", ">", "\n", "<", "/", "t", "o", "o", "l", "_", "c", "a", "l", "l", ">"},
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "test",
Arguments: api.NewToolCallFunctionArguments(),
},
},
},
},
{
name: "thinking close tag split character by character",
chunks: []string{"I", "'", "m", " ", "t", "h", "i", "n", "k", "i", "n", "g", ".", ".", ".", "<", "/", "t", "h", "i", "n", "k", ">", "\n", "D", "o", "n", "e", "!"},
@@ -321,22 +155,6 @@ func TestNemotron3NanoParser_Streaming(t *testing.T) {
expectedThinking: "Thinking...",
expectedContent: "Content here.",
},
{
name: "tool call with multiple parameters - streaming",
chunks: []string{"<tool_", "call>\n", "<function", "=book_", "flight>", "\n<para", "meter=", "from>\n", "SFO\n", "</param", "eter>", "\n<param", "eter=to", ">\nNYC", "\n</para", "meter>", "\n</func", "tion>\n", "</tool_", "call>"},
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "book_flight",
Arguments: testArgs(map[string]any{
"from": "SFO",
"to": "NYC",
}),
},
},
},
},
{
name: "thinking then content then tool call - streaming",
chunks: []string{"Ana", "lyzing", " your", " request", "...", "</", "think", ">\n", "I'll", " check", " that", " for", " you", ".", "\n", "<tool", "_call", ">\n", "<function", "=search", ">\n", "<parameter", "=query", ">\n", "test", " query", "\n</", "parameter", ">\n", "</function", ">\n", "</tool", "_call", ">"},
@@ -352,45 +170,6 @@ func TestNemotron3NanoParser_Streaming(t *testing.T) {
},
},
},
{
name: "multiple tool calls - streaming",
chunks: []string{
"<tool_call>", "\n", "<function=", "get_weather>", "\n",
"<parameter=", "city>\n", "San Fran", "cisco\n", "</parameter>", "\n",
"</function>", "\n", "</tool_call>", "\n",
"<tool_", "call>\n", "<function", "=get_weather", ">\n",
"<param", "eter=city", ">\nNew", " York\n", "</parameter>\n",
"</function>\n", "</tool_call>",
},
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{"city": "San Francisco"}),
},
},
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{"city": "New York"}),
},
},
},
},
{
name: "tool call with multiline parameter - streaming",
chunks: []string{"<tool_call>\n", "<function=", "create_note>\n", "<parameter=", "content>\n", "Line 1", "\nLine", " 2\n", "Line 3", "\n</parameter>\n", "</function>\n", "</tool_call>"},
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "create_note",
Arguments: testArgs(map[string]any{"content": "Line 1\nLine 2\nLine 3"}),
},
},
},
},
{
name: "empty thinking block",
chunks: []string{"</think>", "\n", "Just content."},
@@ -398,12 +177,6 @@ func TestNemotron3NanoParser_Streaming(t *testing.T) {
expectedThinking: "",
expectedContent: "Just content.",
},
{
name: "empty input chunks interspersed",
chunks: []string{"Hello", "", " ", "", "world", "", "!"},
thinkValue: nil,
expectedContent: "Hello world!",
},
{
name: "tool call immediately after think close - no content",
chunks: []string{"Analyzing...", "</think>", "\n", "<tool_call>", "\n<function=test>\n</function>\n", "</tool_call>"},
@@ -418,25 +191,6 @@ func TestNemotron3NanoParser_Streaming(t *testing.T) {
},
},
},
{
name: "tool call with empty parameter value",
chunks: []string{"<tool_call>\n<function=test>\n<parameter=name>\n", "\n</parameter>\n</function>\n</tool_call>"},
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "test",
Arguments: testArgs(map[string]any{"name": ""}),
},
},
},
},
{
name: "partial tool call tag at end - buffered",
chunks: []string{"Here's some content", "<tool"},
thinkValue: nil,
expectedContent: "Here's some content",
},
}
for _, tt := range tests {
@@ -572,3 +326,65 @@ func TestNemotron3NanoParser_WithTools(t *testing.T) {
t.Errorf("calls mismatch (-got +want):\n%s", diff)
}
}
// TestNemotron3NanoParser_ToolCallWithoutThinkClose tests the case where thinking is enabled
// but the model outputs content + tool call WITHOUT the </think> tag.
// The parser should still parse the tool call (content before is treated as thinking).
func TestNemotron3NanoParser_ToolCallWithoutThinkClose(t *testing.T) {
chunks := []string{
"Let", " me", " analyze", " this", ".", "\n",
"<tool_call>", "\n",
"<function=get_weather>", "\n",
"<parameter=city>", "Paris", "</parameter>", "\n",
"</function>", "\n",
"</tool_call>",
}
p := &Nemotron3NanoParser{}
p.Init(nil, nil, &api.ThinkValue{Value: true}) // thinking ENABLED but model doesn't output </think>
var allContent string
var allThinking string
var allCalls []api.ToolCall
for _, chunk := range chunks {
content, thinking, calls, err := p.Add(chunk, false)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
allContent += content
allThinking += thinking
allCalls = append(allCalls, calls...)
}
// Drain
content, thinking, calls, err := p.Add("", true)
if err != nil {
t.Fatalf("unexpected error on done: %v", err)
}
allContent += content
allThinking += thinking
allCalls = append(allCalls, calls...)
// The parser was in thinking mode, so text before <tool_call> is emitted as thinking.
expectedThinking := "Let me analyze this."
expectedCalls := []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{"city": "Paris"}),
},
},
}
if allContent != "" {
t.Errorf("expected no content (text was streamed as thinking), got: %q", allContent)
}
if diff := cmp.Diff(allThinking, expectedThinking); diff != "" {
t.Errorf("thinking mismatch (-got +want):\n%s", diff)
}
if diff := cmp.Diff(allCalls, expectedCalls, argsComparer); diff != "" {
t.Errorf("calls mismatch (-got +want):\n%s", diff)
}
}

View File

@@ -68,6 +68,12 @@ func ParserForName(name string) Parser {
return &Nemotron3NanoParser{}
case "functiongemma":
return &FunctionGemmaParser{}
case "glm-4.7":
return &GLM47Parser{}
case "lfm2":
return &LFM2Parser{hasThinkingSupport: false}
case "lfm2-thinking":
return &LFM2Parser{hasThinkingSupport: true}
default:
return nil
}

View File

@@ -91,6 +91,37 @@ func TestQwenParserStreaming(t *testing.T) {
},
},
},
{
desc: "tool call tags split character by character",
steps: []step{
{input: "<", wantEvents: []qwenEvent{}},
{input: "t", wantEvents: []qwenEvent{}},
{input: "o", wantEvents: []qwenEvent{}},
{input: "o", wantEvents: []qwenEvent{}},
{input: "l", wantEvents: []qwenEvent{}},
{input: "_", wantEvents: []qwenEvent{}},
{input: "c", wantEvents: []qwenEvent{}},
{input: "a", wantEvents: []qwenEvent{}},
{input: "l", wantEvents: []qwenEvent{}},
{input: "l", wantEvents: []qwenEvent{}},
{input: ">", wantEvents: []qwenEvent{}},
{input: "a", wantEvents: []qwenEvent{}},
{input: "b", wantEvents: []qwenEvent{}},
{input: "c", wantEvents: []qwenEvent{}},
{input: "<", wantEvents: []qwenEvent{}},
{input: "/", wantEvents: []qwenEvent{}},
{input: "t", wantEvents: []qwenEvent{}},
{input: "o", wantEvents: []qwenEvent{}},
{input: "o", wantEvents: []qwenEvent{}},
{input: "l", wantEvents: []qwenEvent{}},
{input: "_", wantEvents: []qwenEvent{}},
{input: "c", wantEvents: []qwenEvent{}},
{input: "a", wantEvents: []qwenEvent{}},
{input: "l", wantEvents: []qwenEvent{}},
{input: "l", wantEvents: []qwenEvent{}},
{input: ">", wantEvents: []qwenEvent{qwenEventRawToolCall{raw: "abc"}}},
},
},
{
desc: "trailing whitespace between content and tool call",
steps: []step{

View File

@@ -96,3 +96,11 @@ func testArgs(m map[string]any) api.ToolCallFunctionArguments {
}
return args
}
func args(s string) api.ToolCallFunctionArguments {
var result api.ToolCallFunctionArguments
if err := json.Unmarshal([]byte(s), &result); err != nil {
panic("invalid JSON in args(): " + err.Error())
}
return result
}

110
model/renderers/glm46.go Normal file
View File

@@ -0,0 +1,110 @@
package renderers
import (
"encoding/json"
"fmt"
"strings"
"github.com/ollama/ollama/api"
)
type GLM46Renderer struct{}
func (r *GLM46Renderer) Render(messages []api.Message, tools []api.Tool, thinkValue *api.ThinkValue) (string, error) {
var sb strings.Builder
sb.WriteString("[gMASK]<sop>")
var lastUserIndex int
for i, message := range messages {
if message.Role == "user" {
lastUserIndex = i
}
}
if len(tools) > 0 {
sb.WriteString("<|system|>\n")
sb.WriteString("# Tools\n\n")
sb.WriteString("You may call one or more functions to assist with the user query.\n\n")
sb.WriteString("You are provided with function signatures within <tools></tools> XML tags:\n")
sb.WriteString("<tools>\n")
for _, tool := range tools {
d, _ := json.Marshal(tool)
sb.WriteString(string(d) + "\n")
}
sb.WriteString("</tools>\n\n")
sb.WriteString("For each function call, output the function name and arguments within the following XML format:\n")
sb.WriteString("<tool_call>{function-name}\n")
sb.WriteString("<arg_key>{arg-key-1}</arg_key>\n")
sb.WriteString("<arg_value>{arg-value-1}</arg_value>\n")
sb.WriteString("<arg_key>{arg-key-2}</arg_key>\n")
sb.WriteString("<arg_value>{arg-value-2}</arg_value>\n")
sb.WriteString("...\n")
sb.WriteString("</tool_call>")
}
for i, message := range messages {
switch message.Role {
case "user":
sb.WriteString("<|user|>\n")
sb.WriteString(message.Content)
if thinkValue != nil && !thinkValue.Bool() && !strings.HasSuffix(message.Content, "/nothink") {
sb.WriteString("/nothink")
}
case "assistant":
sb.WriteString("<|assistant|>")
if i > lastUserIndex {
if message.Thinking != "" {
sb.WriteString("\n<think>" + message.Thinking + "</think>")
} else {
sb.WriteString("\n<think></think>")
}
}
if message.Content != "" {
sb.WriteString("\n" + message.Content)
}
if len(message.ToolCalls) > 0 {
for _, toolCall := range message.ToolCalls {
sb.WriteString("\n<tool_call>" + toolCall.Function.Name + "\n")
for key, value := range toolCall.Function.Arguments.All() {
sb.WriteString("<arg_key>" + key + "</arg_key>\n")
var valueStr string
if str, ok := value.(string); ok {
valueStr = str
} else {
jsonBytes, err := json.Marshal(value)
if err != nil {
valueStr = fmt.Sprintf("%v", value)
} else {
valueStr = string(jsonBytes)
}
}
sb.WriteString("<arg_value>" + valueStr + "</arg_value>\n")
}
sb.WriteString("</tool_call>")
}
}
case "tool":
if i == 0 || messages[i-1].Role != "tool" {
sb.WriteString("<|observation|>")
}
sb.WriteString("\n<tool_response>\n")
sb.WriteString(message.Content)
sb.WriteString("\n</tool_response>")
case "system":
sb.WriteString("<|system|>\n")
sb.WriteString(message.Content)
}
}
// Add generation prompt
sb.WriteString("<|assistant|>")
if thinkValue != nil && !thinkValue.Bool() {
sb.WriteString("\n<think></think>\n")
}
return sb.String(), nil
}

View File

@@ -0,0 +1,223 @@
package renderers
import (
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
)
func TestGLM46Renderer(t *testing.T) {
tests := []struct {
name string
messages []api.Message
tools []api.Tool
thinkValue *api.ThinkValue
expected string
skip string
}{
{
name: "basic",
messages: []api.Message{
{Role: "user", Content: "Hello, how are you?"},
},
expected: `[gMASK]<sop><|user|>
Hello, how are you?<|assistant|>`,
},
{
name: "basic with system message",
messages: []api.Message{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "Hello, how are you?"},
},
expected: `[gMASK]<sop><|system|>
You are a helpful assistant.<|user|>
Hello, how are you?<|assistant|>`,
},
{
name: "basic with user assistant user",
messages: []api.Message{
{Role: "user", Content: "What is the capital of France?"},
{Role: "assistant", Thinking: "Let me analyze the request...", Content: "The capital of France is Paris."},
{Role: "user", Content: "Fantastic!"},
},
expected: `[gMASK]<sop><|user|>
What is the capital of France?<|assistant|>
The capital of France is Paris.<|user|>
Fantastic!<|assistant|>`,
},
{
skip: "tool call ordering not guaranteed yet",
name: "tools",
messages: []api.Message{
{Role: "system", Content: "You are a helpful assistant with access to tools."},
{Role: "user", Content: "What is the weather like in Tokyo?"},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get the current weather in a given location",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"location"},
Properties: propsMap(`{"location": {"type": "string", "description": "The city and state, e.g. San Francisco, CA"}, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}}`),
},
},
},
},
expected: `[gMASK]<sop><|system|>
# Tools
You may call one or more functions to assist with the user query.
You are provided with function signatures within <tools></tools> XML tags:
<tools>
{"type":"function","function":{"name":"get_weather","description":"Get the current weather in a given location","parameters":{"type":"object","required":["location"],"properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"},"unit":{"type":"string","description":"","enum":["celsius","fahrenheit"]}}}}}
</tools>
For each function call, output the function name and arguments within the following XML format:
<tool_call>{function-name}
<arg_key>{arg-key-1}</arg_key>
<arg_value>{arg-value-1}</arg_value>
<arg_key>{arg-key-2}</arg_key>
<arg_value>{arg-value-2}</arg_value>
...
</tool_call><|system|>
You are a helpful assistant with access to tools.<|user|>
What is the weather like in Tokyo?<|assistant|>`,
},
{
skip: "tool call ordering not guaranteed yet",
name: "tool calls",
messages: []api.Message{
{Role: "system", Content: "You are a helpful assistant with access to tools."},
{Role: "user", Content: "What is the weather like in Tokyo?"},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: args(`{"location": "Tokyo, Japan", "unit": "celsius"}`),
},
},
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: args(`{"location": "Japan", "unit": "fahrenheit"}`),
},
},
},
},
{
Role: "tool",
Content: "{\"temperature\": 22, \"weather\": \"partly cloudy\", \"humidity\": 65}",
ToolName: "get_weather",
},
{
Role: "tool",
Content: "{\"temperature\": 68, \"weather\": \"sunny\", \"humidity\": 75}",
ToolName: "get_weather",
},
{
Role: "assistant",
Content: "The weather in Tokyo is currently partly cloudy with a temperature of 22°C and 65% humidity. It's a pleasant day with moderate temperatures.",
},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get the current weather in a given location",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"location"},
Properties: propsMap(`{"location": {"type": "string", "description": "The city and state, e.g. San Francisco, CA"}, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}}`),
},
},
},
},
expected: `[gMASK]<sop><|system|>
# Tools
You may call one or more functions to assist with the user query.
You are provided with function signatures within <tools></tools> XML tags:
<tools>
{"type":"function","function":{"name":"get_weather","description":"Get the current weather in a given location","parameters":{"type":"object","required":["location"],"properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"},"unit":{"type":"string","description":"","enum":["celsius","fahrenheit"]}}}}}
</tools>
For each function call, output the function name and arguments within the following XML format:
<tool_call>{function-name}
<arg_key>{arg-key-1}</arg_key>
<arg_value>{arg-value-1}</arg_value>
<arg_key>{arg-key-2}</arg_key>
<arg_value>{arg-value-2}</arg_value>
...
</tool_call><|system|>
You are a helpful assistant with access to tools.<|user|>
What is the weather like in Tokyo?<|assistant|>
<think></think>
<tool_call>get_weather
<arg_key>location</arg_key>
<arg_value>Tokyo, Japan</arg_value>
<arg_key>unit</arg_key>
<arg_value>celsius</arg_value>
</tool_call>
<tool_call>get_weather
<arg_key>location</arg_key>
<arg_value>Japan</arg_value>
<arg_key>unit</arg_key>
<arg_value>fahrenheit</arg_value>
</tool_call><|observation|>
<tool_response>
{"temperature": 22, "weather": "partly cloudy", "humidity": 65}
</tool_response>
<tool_response>
{"temperature": 68, "weather": "sunny", "humidity": 75}
</tool_response><|assistant|>
<think></think>
The weather in Tokyo is currently partly cloudy with a temperature of 22°C and 65% humidity. It's a pleasant day with moderate temperatures.<|assistant|>`,
},
{
name: "think true",
messages: []api.Message{
{Role: "user", Content: "Hello, how are you?"},
},
thinkValue: &api.ThinkValue{Value: true},
expected: `[gMASK]<sop><|user|>
Hello, how are you?<|assistant|>`,
},
{
name: "think false",
messages: []api.Message{
{Role: "user", Content: "Hello, how are you?"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `[gMASK]<sop><|user|>
Hello, how are you?/nothink<|assistant|>
<think></think>
`,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
if tt.skip != "" {
t.Skip(tt.skip)
}
renderer := &GLM46Renderer{}
rendered, err := renderer.Render(tt.messages, tt.tools, tt.thinkValue)
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(rendered, tt.expected); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
t.Logf("Got:\n%s", rendered)
t.Logf("Expected:\n%s", tt.expected)
}
})
}
}

170
model/renderers/glm47.go Normal file
View File

@@ -0,0 +1,170 @@
package renderers
import (
"encoding/json"
"fmt"
"strings"
"github.com/ollama/ollama/api"
)
// GLM47Renderer renders messages for GLM-4.7 models.
//
// GLM-4.7 Thinking Modes (ref: https://docs.z.ai/guides/capabilities/thinking-mode):
//
// 1. INTERLEAVED THINKING
// The model thinks between tool calls and after receiving tool results.
// This enables complex step-by-step reasoning: interpreting each tool output
// before deciding what to do next. Thinking blocks are preserved and returned
// with tool results to maintain reasoning continuity.
//
// 2. PRESERVED THINKING
// The model retains reasoning content from previous assistant turns in context.
// This preserves reasoning continuity across multi-turn conversations. The
// upstream API has a "clear_thinking" parameter to control this:
// - clear_thinking=true: clears reasoning from previous turns (outputs </think>)
// - clear_thinking=false: preserves <think>...</think> blocks from previous turns
//
// 3. TURN-LEVEL THINKING
// Controls whether the model should reason on each turn. The upstream API
// uses "enable_thinking" parameter:
// - enable_thinking=true: outputs <think> to start reasoning
// - enable_thinking=false: outputs </think> to skip reasoning
//
// OLLAMA DEFAULTS:
// - Thinking is ENABLED by default (thinkValue=nil or true outputs <think>)
// - Thinking is PRESERVED by default (reasoning content from previous turns is always
// included in <think>...</think> blocks, equivalent to clear_thinking=false)
// - Users can disable thinking per-turn via thinkValue=false
type GLM47Renderer struct{}
func (r *GLM47Renderer) Render(messages []api.Message, tools []api.Tool, thinkValue *api.ThinkValue) (string, error) {
var sb strings.Builder
sb.WriteString("[gMASK]<sop>")
if len(tools) > 0 {
sb.WriteString("<|system|>\n")
sb.WriteString("# Tools\n\n")
sb.WriteString("You may call one or more functions to assist with the user query.\n\n")
sb.WriteString("You are provided with function signatures within <tools></tools> XML tags:\n")
sb.WriteString("<tools>\n")
for _, tool := range tools {
d, _ := json.Marshal(tool)
sb.WriteString(formatGLM47ToolJSON(d))
sb.WriteString("\n")
}
sb.WriteString("</tools>\n\n")
sb.WriteString("For each function call, output the function name and arguments within the following XML format:\n")
sb.WriteString("<tool_call>{function-name}<arg_key>{arg-key-1}</arg_key><arg_value>{arg-value-1}</arg_value><arg_key>{arg-key-2}</arg_key><arg_value>{arg-value-2}</arg_value>...</tool_call>")
}
think := true
if thinkValue != nil && !thinkValue.Bool() {
think = false
}
for i, message := range messages {
switch message.Role {
case "user":
sb.WriteString("<|user|>")
sb.WriteString(message.Content)
case "assistant":
sb.WriteString("<|assistant|>")
if message.Thinking != "" {
sb.WriteString("<think>" + message.Thinking + "</think>")
} else {
sb.WriteString("</think>")
}
if message.Content != "" {
sb.WriteString(message.Content)
}
if len(message.ToolCalls) > 0 {
for _, toolCall := range message.ToolCalls {
sb.WriteString("<tool_call>" + toolCall.Function.Name)
sb.WriteString(renderGLM47ToolArguments(toolCall.Function.Arguments))
sb.WriteString("</tool_call>")
}
}
case "tool":
if i == 0 || messages[i-1].Role != "tool" {
sb.WriteString("<|observation|>")
}
sb.WriteString("<tool_response>")
sb.WriteString(message.Content)
sb.WriteString("</tool_response>")
case "system":
sb.WriteString("<|system|>")
sb.WriteString(message.Content)
}
}
sb.WriteString("<|assistant|>")
if think {
sb.WriteString("<think>")
} else {
sb.WriteString("</think>")
}
return sb.String(), nil
}
func renderGLM47ToolArguments(args api.ToolCallFunctionArguments) string {
var sb strings.Builder
for key, value := range args.All() {
sb.WriteString("<arg_key>" + key + "</arg_key>")
var valueStr string
if str, ok := value.(string); ok {
valueStr = str
} else {
jsonBytes, err := json.Marshal(value)
if err != nil {
valueStr = fmt.Sprintf("%v", value)
} else {
valueStr = string(jsonBytes)
}
}
sb.WriteString("<arg_value>" + valueStr + "</arg_value>")
}
return sb.String()
}
func formatGLM47ToolJSON(raw []byte) string {
var sb strings.Builder
sb.Grow(len(raw) + len(raw)/10)
inString := false
escaped := false
for i := range raw {
ch := raw[i]
sb.WriteByte(ch)
if inString {
if escaped {
escaped = false
continue
}
if ch == '\\' {
escaped = true
continue
}
if ch == '"' {
inString = false
}
continue
}
if ch == '"' {
inString = true
continue
}
if ch == ':' || ch == ',' {
sb.WriteByte(' ')
}
}
return sb.String()
}

View File

@@ -0,0 +1,191 @@
package renderers
import (
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
)
func TestGLM47Renderer(t *testing.T) {
tests := []struct {
name string
messages []api.Message
tools []api.Tool
thinkValue *api.ThinkValue
expected string
}{
{
name: "basic user message",
messages: []api.Message{
{Role: "user", Content: "Hello"},
},
expected: "[gMASK]<sop><|user|>Hello<|assistant|><think>",
},
{
name: "thinking disabled",
messages: []api.Message{
{Role: "user", Content: "Hello"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "[gMASK]<sop><|user|>Hello<|assistant|></think>",
},
{
name: "system and user",
messages: []api.Message{
{Role: "system", Content: "You are helpful."},
{Role: "user", Content: "Hello"},
},
expected: "[gMASK]<sop><|system|>You are helpful.<|user|>Hello<|assistant|><think>",
},
{
name: "multi-turn conversation",
messages: []api.Message{
{Role: "user", Content: "Hi"},
{Role: "assistant", Content: "Hello there"},
{Role: "user", Content: "How are you?"},
},
expected: "[gMASK]<sop><|user|>Hi<|assistant|></think>Hello there<|user|>How are you?<|assistant|><think>",
},
{
name: "assistant with reasoning_content",
messages: []api.Message{
{Role: "user", Content: "Answer with reasoning."},
{Role: "assistant", Thinking: "Plan.", Content: "Done."},
},
expected: "[gMASK]<sop><|user|>Answer with reasoning.<|assistant|><think>Plan.</think>Done.<|assistant|><think>",
},
{
name: "tool call with empty content",
messages: []api.Message{
{Role: "user", Content: "Weather?"},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: args(`{"location": "Tokyo", "unit": "celsius"}`),
},
},
},
},
{Role: "tool", Content: `{"temperature":22}`},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"location"},
Properties: propsMap(`{"location": {"type": "string"}}`),
},
},
},
},
expected: "[gMASK]<sop><|system|>\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>\n{\"type\": \"function\", \"function\": {\"name\": \"get_weather\", \"description\": \"Get weather\", \"parameters\": {\"type\": \"object\", \"required\": [\"location\"], \"properties\": {\"location\": {\"type\": \"string\"}}}}}\n</tools>\n\nFor each function call, output the function name and arguments within the following XML format:\n<tool_call>{function-name}<arg_key>{arg-key-1}</arg_key><arg_value>{arg-value-1}</arg_value><arg_key>{arg-key-2}</arg_key><arg_value>{arg-value-2}</arg_value>...</tool_call><|user|>Weather?<|assistant|></think><tool_call>get_weather<arg_key>location</arg_key><arg_value>Tokyo</arg_value><arg_key>unit</arg_key><arg_value>celsius</arg_value></tool_call><|observation|><tool_response>{\"temperature\":22}</tool_response><|assistant|><think>",
},
{
name: "tool call with content",
messages: []api.Message{
{Role: "user", Content: "Weather?"},
{
Role: "assistant",
Content: "Let me check",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: args(`{"location": "Tokyo"}`),
},
},
},
},
{Role: "tool", Content: `{"temperature":22}`},
{Role: "assistant", Content: "It is 22C."},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"location"},
Properties: propsMap(`{"location": {"type": "string"}}`),
},
},
},
},
expected: "[gMASK]<sop><|system|>\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>\n{\"type\": \"function\", \"function\": {\"name\": \"get_weather\", \"description\": \"Get weather\", \"parameters\": {\"type\": \"object\", \"required\": [\"location\"], \"properties\": {\"location\": {\"type\": \"string\"}}}}}\n</tools>\n\nFor each function call, output the function name and arguments within the following XML format:\n<tool_call>{function-name}<arg_key>{arg-key-1}</arg_key><arg_value>{arg-value-1}</arg_value><arg_key>{arg-key-2}</arg_key><arg_value>{arg-value-2}</arg_value>...</tool_call><|user|>Weather?<|assistant|></think>Let me check<tool_call>get_weather<arg_key>location</arg_key><arg_value>Tokyo</arg_value></tool_call><|observation|><tool_response>{\"temperature\":22}</tool_response><|assistant|></think>It is 22C.<|assistant|><think>",
},
{
name: "multiple tool calls and responses",
messages: []api.Message{
{Role: "user", Content: "Compare weather"},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: args(`{"location": "Tokyo"}`),
},
},
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: args(`{"location": "Paris"}`),
},
},
},
},
{Role: "tool", Content: `{"temperature":22}`},
{Role: "tool", Content: `{"temperature":18}`},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"location"},
Properties: propsMap(`{"location": {"type": "string"}}`),
},
},
},
},
expected: "[gMASK]<sop><|system|>\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>\n{\"type\": \"function\", \"function\": {\"name\": \"get_weather\", \"description\": \"Get weather\", \"parameters\": {\"type\": \"object\", \"required\": [\"location\"], \"properties\": {\"location\": {\"type\": \"string\"}}}}}\n</tools>\n\nFor each function call, output the function name and arguments within the following XML format:\n<tool_call>{function-name}<arg_key>{arg-key-1}</arg_key><arg_value>{arg-value-1}</arg_value><arg_key>{arg-key-2}</arg_key><arg_value>{arg-value-2}</arg_value>...</tool_call><|user|>Compare weather<|assistant|></think><tool_call>get_weather<arg_key>location</arg_key><arg_value>Tokyo</arg_value></tool_call><tool_call>get_weather<arg_key>location</arg_key><arg_value>Paris</arg_value></tool_call><|observation|><tool_response>{\"temperature\":22}</tool_response><tool_response>{\"temperature\":18}</tool_response><|assistant|><think>",
},
{
name: "preserved thinking in multi-turn",
messages: []api.Message{
{Role: "user", Content: "Think step by step"},
{Role: "assistant", Thinking: "Let me think...", Content: "Here's my answer."},
{Role: "user", Content: "Continue"},
},
expected: "[gMASK]<sop><|user|>Think step by step<|assistant|><think>Let me think...</think>Here's my answer.<|user|>Continue<|assistant|><think>",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
renderer := &GLM47Renderer{}
rendered, err := renderer.Render(tt.messages, tt.tools, tt.thinkValue)
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(rendered, tt.expected); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
t.Logf("Got:\n%s", rendered)
t.Logf("Expected:\n%s", tt.expected)
}
})
}
}

139
model/renderers/lfm2.go Normal file
View File

@@ -0,0 +1,139 @@
package renderers
import (
"encoding/json"
"strings"
"github.com/ollama/ollama/api"
)
type LFM2Renderer struct {
IsThinking bool
}
func (r *LFM2Renderer) Render(messages []api.Message, tools []api.Tool, thinkValue *api.ThinkValue) (string, error) {
var sb strings.Builder
// Note: BOS token is added by the tokenizer (add_bos_token: true), not the renderer
// Extract first system message if present (to combine with tools)
var firstSystemContent string
startIdx := 0
if len(messages) > 0 && messages[0].Role == "system" {
firstSystemContent = messages[0].Content
startIdx = 1
}
// Append tools to first system content
if len(tools) > 0 {
if firstSystemContent != "" {
firstSystemContent += "\n"
}
firstSystemContent += "List of tools: ["
for i, tool := range tools {
toolJSON, err := json.Marshal(tool)
if err != nil {
return "", err
}
firstSystemContent += string(toolJSON)
if i < len(tools)-1 {
firstSystemContent += ", "
}
}
firstSystemContent += "]\nOutput function calls as JSON."
}
// Output first system block if it has content
if firstSystemContent != "" {
sb.WriteString("<|im_start|>system\n")
sb.WriteString(firstSystemContent)
sb.WriteString("<|im_end|>\n")
}
// Find the index of the last assistant message for thinking stripping
lastAssistantIndex := -1
for i := len(messages) - 1; i >= startIdx; i-- {
if messages[i].Role == "assistant" {
lastAssistantIndex = i
break
}
}
// Track whether we need to add generation prompt
needsGenerationPrompt := len(messages) > 0
for i := startIdx; i < len(messages); i++ {
message := messages[i]
switch message.Role {
case "system":
// Additional system messages (after the first) are rendered normally
sb.WriteString("<|im_start|>system\n")
sb.WriteString(message.Content)
sb.WriteString("<|im_end|>\n")
case "user":
sb.WriteString("<|im_start|>user\n")
sb.WriteString(message.Content)
sb.WriteString("<|im_end|>\n")
needsGenerationPrompt = true
case "assistant":
sb.WriteString("<|im_start|>assistant\n")
// Check if this is the last assistant message
isLastAssistant := i == lastAssistantIndex
// Process content (may need thinking stripped)
content := message.Content
// For past assistant messages (not the last), strip thinking when keep_past_thinking=false
// This applies to both regular content and content before tool calls
keepPastThinking := r.IsThinking && (thinkValue != nil && thinkValue.Bool())
if !isLastAssistant && !keepPastThinking && strings.Contains(content, "</think>") {
parts := strings.SplitN(content, "</think>", 2)
if len(parts) > 1 {
content = strings.TrimSpace(parts[1])
}
}
if len(message.ToolCalls) > 0 {
// Assistant with tool calls - write content first (if any after stripping)
if content != "" {
sb.WriteString(content)
}
for _, toolCall := range message.ToolCalls {
sb.WriteString("<|tool_call_start|>")
toolCallJSON := map[string]any{
"name": toolCall.Function.Name,
"arguments": toolCall.Function.Arguments,
}
callJSON, _ := json.Marshal(toolCallJSON)
sb.WriteString(string(callJSON))
sb.WriteString("<|tool_call_end|>")
}
} else {
sb.WriteString(content)
}
sb.WriteString("<|im_end|>\n")
needsGenerationPrompt = true // Always add gen prompt after assistant when add_generation_prompt=true
case "tool":
// Tool responses are rendered as plain messages per the chat template
sb.WriteString("<|im_start|>tool\n")
sb.WriteString(message.Content)
sb.WriteString("<|im_end|>\n")
needsGenerationPrompt = true
}
}
// Add generation prompt
if needsGenerationPrompt {
sb.WriteString("<|im_start|>assistant\n")
// Note: Model is a "thinking-only" model - it will output <think> itself
// We don't add <think> tag to the prompt
}
return sb.String(), nil
}

View File

@@ -0,0 +1,403 @@
package renderers
import (
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
)
func TestLFM2Renderer(t *testing.T) {
tests := []struct {
name string
messages []api.Message
tools []api.Tool
thinkValue *api.ThinkValue
expected string
}{
{
name: "basic user message",
messages: []api.Message{
{Role: "user", Content: "Hello!"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nHello!<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "basic with system message",
messages: []api.Message{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "Hello!"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\nHello!<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "multiple system messages rendered separately",
messages: []api.Message{
{Role: "system", Content: "First instruction."},
{Role: "system", Content: "Second instruction."},
{Role: "user", Content: "Hello!"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>system\nFirst instruction.<|im_end|>\n<|im_start|>system\nSecond instruction.<|im_end|>\n<|im_start|>user\nHello!<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "multi-turn conversation",
messages: []api.Message{
{Role: "user", Content: "What is 2+2?"},
{Role: "assistant", Content: "The answer is 4."},
{Role: "user", Content: "Thanks!"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nWhat is 2+2?<|im_end|>\n<|im_start|>assistant\nThe answer is 4.<|im_end|>\n<|im_start|>user\nThanks!<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "only system message",
messages: []api.Message{
{Role: "system", Content: "You are helpful."},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>system\nYou are helpful.<|im_end|>\n<|im_start|>assistant\n",
},
{
// When assistant is the LAST assistant, thinking is preserved (even with keep_past_thinking=false)
name: "user-assistant-user: last assistant preserves thinking",
messages: []api.Message{
{Role: "user", Content: "Q1"},
{Role: "assistant", Content: "<think>reasoning</think>A1"},
{Role: "user", Content: "Q2"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nQ1<|im_end|>\n<|im_start|>assistant\n<think>reasoning</think>A1<|im_end|>\n<|im_start|>user\nQ2<|im_end|>\n<|im_start|>assistant\n",
},
{
// With two assistants, first is stripped (not last), second preserved (is last)
name: "multi-turn thinking: first stripped, second preserved",
messages: []api.Message{
{Role: "user", Content: "Q1"},
{Role: "assistant", Content: "<think>reason1</think>A1"},
{Role: "user", Content: "Q2"},
{Role: "assistant", Content: "<think>reason2</think>A2"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nQ1<|im_end|>\n<|im_start|>assistant\nA1<|im_end|>\n<|im_start|>user\nQ2<|im_end|>\n<|im_start|>assistant\n<think>reason2</think>A2<|im_end|>\n<|im_start|>assistant\n",
},
{
// With thinking enabled (keep_past_thinking=true), both preserved
name: "multi-turn thinking: both preserved when thinking enabled",
messages: []api.Message{
{Role: "user", Content: "Q1"},
{Role: "assistant", Content: "<think>reason1</think>A1"},
{Role: "user", Content: "Q2"},
{Role: "assistant", Content: "<think>reason2</think>A2"},
},
thinkValue: &api.ThinkValue{Value: true},
expected: "<|im_start|>user\nQ1<|im_end|>\n<|im_start|>assistant\n<think>reason1</think>A1<|im_end|>\n<|im_start|>user\nQ2<|im_end|>\n<|im_start|>assistant\n<think>reason2</think>A2<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "assistant with tool calls",
messages: []api.Message{
{Role: "user", Content: "What's the weather?"},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<|im_start|>user` + "\n" + `What's the weather?<|im_end|>` + "\n" + `<|im_start|>assistant` + "\n" + `<|tool_call_start|>{"arguments":{"location":"Paris"},"name":"get_weather"}<|tool_call_end|><|im_end|>` + "\n" + `<|im_start|>assistant` + "\n",
},
{
name: "assistant with content and tool calls",
messages: []api.Message{
{Role: "user", Content: "What's the weather in Paris?"},
{
Role: "assistant",
Content: "Let me check.",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<|im_start|>user` + "\n" + `What's the weather in Paris?<|im_end|>` + "\n" + `<|im_start|>assistant` + "\n" + `Let me check.<|tool_call_start|>{"arguments":{"location":"Paris"},"name":"get_weather"}<|tool_call_end|><|im_end|>` + "\n" + `<|im_start|>assistant` + "\n",
},
{
name: "tool response",
messages: []api.Message{
{Role: "user", Content: "What's the weather?"},
{Role: "assistant", Content: "Let me check."},
{Role: "tool", Content: "22C, Sunny"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nWhat's the weather?<|im_end|>\n<|im_start|>assistant\nLet me check.<|im_end|>\n<|im_start|>tool\n22C, Sunny<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "multiple tool calls",
messages: []api.Message{
{Role: "user", Content: "Get weather for Paris and London"},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "London",
}),
},
},
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<|im_start|>user` + "\n" + `Get weather for Paris and London<|im_end|>` + "\n" + `<|im_start|>assistant` + "\n" + `<|tool_call_start|>{"arguments":{"location":"Paris"},"name":"get_weather"}<|tool_call_end|><|tool_call_start|>{"arguments":{"location":"London"},"name":"get_weather"}<|tool_call_end|><|im_end|>` + "\n" + `<|im_start|>assistant` + "\n",
},
{
name: "tools definitions with system message",
messages: []api.Message{
{Role: "system", Content: "You are helpful."},
{Role: "user", Content: "What's the weather?"},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get current weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Properties: testPropsMap(map[string]api.ToolProperty{
"location": {
Type: api.PropertyType{"string"},
Description: "City name",
},
}),
Required: []string{"location"},
},
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<|im_start|>system` + "\n" + `You are helpful.` + "\n" + `List of tools: [{"type":"function","function":{"name":"get_weather","description":"Get current weather","parameters":{"type":"object","required":["location"],"properties":{"location":{"type":"string","description":"City name"}}}}}]` + "\n" + `Output function calls as JSON.<|im_end|>` + "\n" + `<|im_start|>user` + "\n" + `What's the weather?<|im_end|>` + "\n" + `<|im_start|>assistant` + "\n",
},
{
name: "tools definitions without system message",
messages: []api.Message{
{Role: "user", Content: "What's the weather?"},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get current weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Properties: testPropsMap(map[string]api.ToolProperty{
"location": {
Type: api.PropertyType{"string"},
Description: "City name",
},
}),
Required: []string{"location"},
},
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<|im_start|>system` + "\n" + `List of tools: [{"type":"function","function":{"name":"get_weather","description":"Get current weather","parameters":{"type":"object","required":["location"],"properties":{"location":{"type":"string","description":"City name"}}}}}]` + "\n" + `Output function calls as JSON.<|im_end|>` + "\n" + `<|im_start|>user` + "\n" + `What's the weather?<|im_end|>` + "\n" + `<|im_start|>assistant` + "\n",
},
{
name: "user-tool sequence",
messages: []api.Message{
{Role: "user", Content: "Check weather"},
{Role: "tool", Content: "22C"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nCheck weather<|im_end|>\n<|im_start|>tool\n22C<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "full tool call cycle",
messages: []api.Message{
{Role: "user", Content: "Check weather"},
{Role: "assistant", Content: "Let me check"},
{Role: "tool", Content: "22C"},
{Role: "assistant", Content: "It's 22C"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nCheck weather<|im_end|>\n<|im_start|>assistant\nLet me check<|im_end|>\n<|im_start|>tool\n22C<|im_end|>\n<|im_start|>assistant\nIt's 22C<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "unicode content",
messages: []api.Message{
{Role: "user", Content: "你好世界! مرحبا 🌍"},
{Role: "assistant", Content: "Hello! 👋"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\n你好世界! مرحبا 🌍<|im_end|>\n<|im_start|>assistant\nHello! 👋<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "newlines in content",
messages: []api.Message{
{Role: "user", Content: "Line 1\nLine 2\n\nLine 4"},
{Role: "assistant", Content: "Response with\nmultiple\nlines"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nLine 1\nLine 2\n\nLine 4<|im_end|>\n<|im_start|>assistant\nResponse with\nmultiple\nlines<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "empty assistant content",
messages: []api.Message{
{Role: "user", Content: "Hello"},
{Role: "assistant", Content: ""},
{Role: "user", Content: "OK"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nHello<|im_end|>\n<|im_start|>assistant\n<|im_end|>\n<|im_start|>user\nOK<|im_end|>\n<|im_start|>assistant\n",
},
{
// Generation prompt does NOT include <think> - model outputs it
name: "generation prompt has no think tag",
messages: []api.Message{
{Role: "user", Content: "Think hard"},
},
thinkValue: &api.ThinkValue{Value: true},
expected: "<|im_start|>user\nThink hard<|im_end|>\n<|im_start|>assistant\n",
},
{
// Interleaved: thinking before tool call - last assistant preserves thinking
name: "thinking before tool call (last assistant)",
messages: []api.Message{
{Role: "user", Content: "What's the weather?"},
{
Role: "assistant",
Content: "<think>I need to check the weather</think>",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nWhat's the weather?<|im_end|>\n<|im_start|>assistant\n<think>I need to check the weather</think><|tool_call_start|>{\"arguments\":{\"location\":\"Paris\"},\"name\":\"get_weather\"}<|tool_call_end|><|im_end|>\n<|im_start|>assistant\n",
},
{
// Two assistants with tool calls - first has thinking stripped
name: "two assistants with tools: first thinking stripped",
messages: []api.Message{
{Role: "user", Content: "What's the weather?"},
{
Role: "assistant",
Content: "<think>checking</think>",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
},
},
{Role: "tool", Content: "22C"},
{Role: "assistant", Content: "<think>got result</think>It's 22C!"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nWhat's the weather?<|im_end|>\n<|im_start|>assistant\n<|tool_call_start|>{\"arguments\":{\"location\":\"Paris\"},\"name\":\"get_weather\"}<|tool_call_end|><|im_end|>\n<|im_start|>tool\n22C<|im_end|>\n<|im_start|>assistant\n<think>got result</think>It's 22C!<|im_end|>\n<|im_start|>assistant\n",
},
{
// Two assistants with tools - both preserved when thinking enabled
name: "two assistants with tools: both preserved when thinking enabled",
messages: []api.Message{
{Role: "user", Content: "What's the weather?"},
{
Role: "assistant",
Content: "<think>checking</think>",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
},
},
{Role: "tool", Content: "22C"},
{Role: "assistant", Content: "<think>got result</think>It's 22C!"},
},
thinkValue: &api.ThinkValue{Value: true},
expected: "<|im_start|>user\nWhat's the weather?<|im_end|>\n<|im_start|>assistant\n<think>checking</think><|tool_call_start|>{\"arguments\":{\"location\":\"Paris\"},\"name\":\"get_weather\"}<|tool_call_end|><|im_end|>\n<|im_start|>tool\n22C<|im_end|>\n<|im_start|>assistant\n<think>got result</think>It's 22C!<|im_end|>\n<|im_start|>assistant\n",
},
{
// Content before thinking before tool call
name: "content then thinking then tool call",
messages: []api.Message{
{Role: "user", Content: "What's the weather?"},
{
Role: "assistant",
Content: "Let me check.<think>Using weather API</think>",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nWhat's the weather?<|im_end|>\n<|im_start|>assistant\nLet me check.<think>Using weather API</think><|tool_call_start|>{\"arguments\":{\"location\":\"Paris\"},\"name\":\"get_weather\"}<|tool_call_end|><|im_end|>\n<|im_start|>assistant\n",
},
}
renderer := &LFM2Renderer{IsThinking: true}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
rendered, err := renderer.Render(tt.messages, tt.tools, tt.thinkValue)
if err != nil {
t.Fatalf("Render() error = %v", err)
}
if diff := cmp.Diff(tt.expected, rendered); diff != "" {
t.Errorf("Render() mismatch (-want +got):\n%s", diff)
}
})
}
}

View File

@@ -80,6 +80,12 @@ func rendererForName(name string) Renderer {
return &Nemotron3NanoRenderer{}
case "functiongemma":
return &FunctionGemmaRenderer{}
case "glm-4.7":
return &GLM47Renderer{}
case "lfm2":
return &LFM2Renderer{IsThinking: false}
case "lfm2-thinking":
return &LFM2Renderer{IsThinking: true}
default:
return nil
}

View File

@@ -1,6 +1,26 @@
package renderers
import "github.com/ollama/ollama/api"
import (
"encoding/json"
"github.com/ollama/ollama/api"
)
func args(s string) api.ToolCallFunctionArguments {
var result api.ToolCallFunctionArguments
if err := json.Unmarshal([]byte(s), &result); err != nil {
panic("invalid JSON in args(): " + err.Error())
}
return result
}
func propsMap(s string) *api.ToolPropertiesMap {
var result api.ToolPropertiesMap
if err := json.Unmarshal([]byte(s), &result); err != nil {
panic("invalid JSON in propsMap(): " + err.Error())
}
return &result
}
// testPropsMap creates a ToolPropertiesMap from a map (convenience function for tests, order not preserved)
func testPropsMap(m map[string]api.ToolProperty) *api.ToolPropertiesMap {

View File

@@ -630,6 +630,10 @@ func nameFromToolCallID(messages []Message, toolCallID string) string {
// decodeImageURL decodes a base64 data URI into raw image bytes.
func decodeImageURL(url string) (api.ImageData, error) {
if strings.HasPrefix(url, "http://") || strings.HasPrefix(url, "https://") {
return nil, errors.New("image URLs are not currently supported, please use base64 encoded data instead")
}
types := []string{"jpeg", "jpg", "png", "webp"}
// Support blank mime type to match /api/chat's behavior of taking just unadorned base64
@@ -733,3 +737,60 @@ func FromCompleteRequest(r CompletionRequest) (api.GenerateRequest, error) {
DebugRenderOnly: r.DebugRenderOnly,
}, nil
}
// ImageGenerationRequest is an OpenAI-compatible image generation request.
type ImageGenerationRequest struct {
Model string `json:"model"`
Prompt string `json:"prompt"`
N int `json:"n,omitempty"`
Size string `json:"size,omitempty"`
ResponseFormat string `json:"response_format,omitempty"`
Seed *int64 `json:"seed,omitempty"`
}
// ImageGenerationResponse is an OpenAI-compatible image generation response.
type ImageGenerationResponse struct {
Created int64 `json:"created"`
Data []ImageURLOrData `json:"data"`
}
// ImageURLOrData contains either a URL or base64-encoded image data.
type ImageURLOrData struct {
URL string `json:"url,omitempty"`
B64JSON string `json:"b64_json,omitempty"`
}
// FromImageGenerationRequest converts an OpenAI image generation request to an Ollama GenerateRequest.
func FromImageGenerationRequest(r ImageGenerationRequest) api.GenerateRequest {
req := api.GenerateRequest{
Model: r.Model,
Prompt: r.Prompt,
}
// Parse size if provided (e.g., "1024x768")
if r.Size != "" {
var w, h int32
if _, err := fmt.Sscanf(r.Size, "%dx%d", &w, &h); err == nil {
req.Width = w
req.Height = h
}
}
if r.Seed != nil {
if req.Options == nil {
req.Options = map[string]any{}
}
req.Options["seed"] = *r.Seed
}
return req
}
// ToImageGenerationResponse converts an Ollama GenerateResponse to an OpenAI ImageGenerationResponse.
func ToImageGenerationResponse(resp api.GenerateResponse) ImageGenerationResponse {
var data []ImageURLOrData
if resp.Image != "" {
data = []ImageURLOrData{{B64JSON: resp.Image}}
}
return ImageGenerationResponse{
Created: resp.CreatedAt.Unix(),
Data: data,
}
}

View File

@@ -4,6 +4,7 @@ import (
"encoding/json"
"fmt"
"math/rand"
"time"
"github.com/ollama/ollama/api"
)
@@ -265,9 +266,9 @@ type ResponsesText struct {
type ResponsesTool struct {
Type string `json:"type"` // "function"
Name string `json:"name"`
Description string `json:"description,omitempty"`
Strict bool `json:"strict,omitempty"`
Parameters map[string]any `json:"parameters,omitempty"`
Description *string `json:"description"` // nullable but required
Strict *bool `json:"strict"` // nullable but required
Parameters map[string]any `json:"parameters"` // nullable but required
}
type ResponsesRequest struct {
@@ -475,11 +476,16 @@ func convertTool(t ResponsesTool) (api.Tool, error) {
}
}
var description string
if t.Description != nil {
description = *t.Description
}
return api.Tool{
Type: t.Type,
Function: api.ToolFunction{
Name: t.Name,
Description: t.Description,
Description: description,
Parameters: params,
},
}, nil
@@ -516,17 +522,60 @@ func convertInputMessage(m ResponsesInputMessage) (api.Message, error) {
// Response types for the Responses API
// ResponsesTextField represents the text output configuration in the response.
type ResponsesTextField struct {
Format ResponsesTextFormat `json:"format"`
}
// ResponsesReasoningOutput represents reasoning configuration in the response.
type ResponsesReasoningOutput struct {
Effort *string `json:"effort,omitempty"`
Summary *string `json:"summary,omitempty"`
}
// ResponsesError represents an error in the response.
type ResponsesError struct {
Code string `json:"code"`
Message string `json:"message"`
}
// ResponsesIncompleteDetails represents details about why a response was incomplete.
type ResponsesIncompleteDetails struct {
Reason string `json:"reason"`
}
type ResponsesResponse struct {
ID string `json:"id"`
Object string `json:"object"`
CreatedAt int64 `json:"created_at"`
Status string `json:"status"`
Model string `json:"model"`
Output []ResponsesOutputItem `json:"output"`
Usage *ResponsesUsage `json:"usage,omitempty"`
// TODO(drifkin): add `temperature` and `top_p` to the response, but this
// requires additional plumbing to find the effective values since the
// defaults can come from the model or the request
ID string `json:"id"`
Object string `json:"object"`
CreatedAt int64 `json:"created_at"`
CompletedAt *int64 `json:"completed_at"`
Status string `json:"status"`
IncompleteDetails *ResponsesIncompleteDetails `json:"incomplete_details"`
Model string `json:"model"`
PreviousResponseID *string `json:"previous_response_id"`
Instructions *string `json:"instructions"`
Output []ResponsesOutputItem `json:"output"`
Error *ResponsesError `json:"error"`
Tools []ResponsesTool `json:"tools"`
ToolChoice any `json:"tool_choice"`
Truncation string `json:"truncation"`
ParallelToolCalls bool `json:"parallel_tool_calls"`
Text ResponsesTextField `json:"text"`
TopP float64 `json:"top_p"`
PresencePenalty float64 `json:"presence_penalty"`
FrequencyPenalty float64 `json:"frequency_penalty"`
TopLogprobs int `json:"top_logprobs"`
Temperature float64 `json:"temperature"`
Reasoning *ResponsesReasoningOutput `json:"reasoning"`
Usage *ResponsesUsage `json:"usage"`
MaxOutputTokens *int `json:"max_output_tokens"`
MaxToolCalls *int `json:"max_tool_calls"`
Store bool `json:"store"`
Background bool `json:"background"`
ServiceTier string `json:"service_tier"`
Metadata map[string]any `json:"metadata"`
SafetyIdentifier *string `json:"safety_identifier"`
PromptCacheKey *string `json:"prompt_cache_key"`
}
type ResponsesOutputItem struct {
@@ -550,18 +599,39 @@ type ResponsesReasoningSummary struct {
}
type ResponsesOutputContent struct {
Type string `json:"type"` // "output_text"
Text string `json:"text"`
Type string `json:"type"` // "output_text"
Text string `json:"text"`
Annotations []any `json:"annotations"`
Logprobs []any `json:"logprobs"`
}
type ResponsesInputTokensDetails struct {
CachedTokens int `json:"cached_tokens"`
}
type ResponsesOutputTokensDetails struct {
ReasoningTokens int `json:"reasoning_tokens"`
}
type ResponsesUsage struct {
InputTokens int `json:"input_tokens"`
OutputTokens int `json:"output_tokens"`
TotalTokens int `json:"total_tokens"`
InputTokens int `json:"input_tokens"`
OutputTokens int `json:"output_tokens"`
TotalTokens int `json:"total_tokens"`
InputTokensDetails ResponsesInputTokensDetails `json:"input_tokens_details"`
OutputTokensDetails ResponsesOutputTokensDetails `json:"output_tokens_details"`
}
// ToResponse converts an api.ChatResponse to a Responses API response
func ToResponse(model, responseID, itemID string, chatResponse api.ChatResponse) ResponsesResponse {
// derefFloat64 returns the value of a float64 pointer, or a default if nil.
func derefFloat64(p *float64, def float64) float64 {
if p != nil {
return *p
}
return def
}
// ToResponse converts an api.ChatResponse to a Responses API response.
// The request is used to echo back request parameters in the response.
func ToResponse(model, responseID, itemID string, chatResponse api.ChatResponse, request ResponsesRequest) ResponsesResponse {
var output []ResponsesOutputItem
// Add reasoning item if thinking is present
@@ -585,6 +655,7 @@ func ToResponse(model, responseID, itemID string, chatResponse api.ChatResponse)
output = append(output, ResponsesOutputItem{
ID: fmt.Sprintf("fc_%s_%d", responseID, i),
Type: "function_call",
Status: "completed",
CallID: tc.ID,
Name: tc.Function.Name,
Arguments: tc.Function.Arguments,
@@ -598,25 +669,90 @@ func ToResponse(model, responseID, itemID string, chatResponse api.ChatResponse)
Role: "assistant",
Content: []ResponsesOutputContent{
{
Type: "output_text",
Text: chatResponse.Message.Content,
Type: "output_text",
Text: chatResponse.Message.Content,
Annotations: []any{},
Logprobs: []any{},
},
},
})
}
var instructions *string
if request.Instructions != "" {
instructions = &request.Instructions
}
// Build truncation with default
truncation := "disabled"
if request.Truncation != nil {
truncation = *request.Truncation
}
tools := request.Tools
if tools == nil {
tools = []ResponsesTool{}
}
text := ResponsesTextField{
Format: ResponsesTextFormat{Type: "text"},
}
if request.Text != nil && request.Text.Format != nil {
text.Format = *request.Text.Format
}
// Build reasoning output from request
var reasoning *ResponsesReasoningOutput
if request.Reasoning.Effort != "" || request.Reasoning.Summary != "" {
reasoning = &ResponsesReasoningOutput{}
if request.Reasoning.Effort != "" {
reasoning.Effort = &request.Reasoning.Effort
}
if request.Reasoning.Summary != "" {
reasoning.Summary = &request.Reasoning.Summary
}
}
return ResponsesResponse{
ID: responseID,
Object: "response",
CreatedAt: chatResponse.CreatedAt.Unix(),
Status: "completed",
Model: model,
Output: output,
ID: responseID,
Object: "response",
CreatedAt: chatResponse.CreatedAt.Unix(),
CompletedAt: nil, // Set by middleware when writing final response
Status: "completed",
IncompleteDetails: nil, // Only populated if response incomplete
Model: model,
PreviousResponseID: nil, // Not supported
Instructions: instructions,
Output: output,
Error: nil, // Only populated on failure
Tools: tools,
ToolChoice: "auto", // Default value
Truncation: truncation,
ParallelToolCalls: true, // Default value
Text: text,
TopP: derefFloat64(request.TopP, 1.0),
PresencePenalty: 0, // Default value
FrequencyPenalty: 0, // Default value
TopLogprobs: 0, // Default value
Temperature: derefFloat64(request.Temperature, 1.0),
Reasoning: reasoning,
Usage: &ResponsesUsage{
InputTokens: chatResponse.PromptEvalCount,
OutputTokens: chatResponse.EvalCount,
TotalTokens: chatResponse.PromptEvalCount + chatResponse.EvalCount,
// TODO(drifkin): wire through the actual values
InputTokensDetails: ResponsesInputTokensDetails{CachedTokens: 0},
// TODO(drifkin): wire through the actual values
OutputTokensDetails: ResponsesOutputTokensDetails{ReasoningTokens: 0},
},
MaxOutputTokens: request.MaxOutputTokens,
MaxToolCalls: nil, // Not supported
Store: false, // We don't store responses
Background: request.Background,
ServiceTier: "default", // Default value
Metadata: map[string]any{},
SafetyIdentifier: nil, // Not supported
PromptCacheKey: nil, // Not supported
}
}
@@ -636,6 +772,7 @@ type ResponsesStreamConverter struct {
responseID string
itemID string
model string
request ResponsesRequest
// State tracking (mutated across Process calls)
firstWrite bool
@@ -668,11 +805,12 @@ func (c *ResponsesStreamConverter) newEvent(eventType string, data map[string]an
}
// NewResponsesStreamConverter creates a new converter with the given configuration.
func NewResponsesStreamConverter(responseID, itemID, model string) *ResponsesStreamConverter {
func NewResponsesStreamConverter(responseID, itemID, model string, request ResponsesRequest) *ResponsesStreamConverter {
return &ResponsesStreamConverter{
responseID: responseID,
itemID: itemID,
model: model,
request: request,
firstWrite: true,
}
}
@@ -717,25 +855,120 @@ func (c *ResponsesStreamConverter) Process(r api.ChatResponse) []ResponsesStream
return events
}
// buildResponseObject creates a full response object with all required fields for streaming events.
func (c *ResponsesStreamConverter) buildResponseObject(status string, output []any, usage map[string]any) map[string]any {
var instructions any = nil
if c.request.Instructions != "" {
instructions = c.request.Instructions
}
truncation := "disabled"
if c.request.Truncation != nil {
truncation = *c.request.Truncation
}
var tools []any
if c.request.Tools != nil {
for _, t := range c.request.Tools {
tools = append(tools, map[string]any{
"type": t.Type,
"name": t.Name,
"description": t.Description,
"strict": t.Strict,
"parameters": t.Parameters,
})
}
}
if tools == nil {
tools = []any{}
}
textFormat := map[string]any{"type": "text"}
if c.request.Text != nil && c.request.Text.Format != nil {
textFormat = map[string]any{
"type": c.request.Text.Format.Type,
}
if c.request.Text.Format.Name != "" {
textFormat["name"] = c.request.Text.Format.Name
}
if c.request.Text.Format.Schema != nil {
textFormat["schema"] = c.request.Text.Format.Schema
}
if c.request.Text.Format.Strict != nil {
textFormat["strict"] = *c.request.Text.Format.Strict
}
}
var reasoning any = nil
if c.request.Reasoning.Effort != "" || c.request.Reasoning.Summary != "" {
r := map[string]any{}
if c.request.Reasoning.Effort != "" {
r["effort"] = c.request.Reasoning.Effort
} else {
r["effort"] = nil
}
if c.request.Reasoning.Summary != "" {
r["summary"] = c.request.Reasoning.Summary
} else {
r["summary"] = nil
}
reasoning = r
}
// Build top_p and temperature with defaults
topP := 1.0
if c.request.TopP != nil {
topP = *c.request.TopP
}
temperature := 1.0
if c.request.Temperature != nil {
temperature = *c.request.Temperature
}
return map[string]any{
"id": c.responseID,
"object": "response",
"created_at": time.Now().Unix(),
"completed_at": nil,
"status": status,
"incomplete_details": nil,
"model": c.model,
"previous_response_id": nil,
"instructions": instructions,
"output": output,
"error": nil,
"tools": tools,
"tool_choice": "auto",
"truncation": truncation,
"parallel_tool_calls": true,
"text": map[string]any{"format": textFormat},
"top_p": topP,
"presence_penalty": 0,
"frequency_penalty": 0,
"top_logprobs": 0,
"temperature": temperature,
"reasoning": reasoning,
"usage": usage,
"max_output_tokens": c.request.MaxOutputTokens,
"max_tool_calls": nil,
"store": false,
"background": c.request.Background,
"service_tier": "default",
"metadata": map[string]any{},
"safety_identifier": nil,
"prompt_cache_key": nil,
}
}
func (c *ResponsesStreamConverter) createResponseCreatedEvent() ResponsesStreamEvent {
return c.newEvent("response.created", map[string]any{
"response": map[string]any{
"id": c.responseID,
"object": "response",
"status": "in_progress",
"output": []any{},
},
"response": c.buildResponseObject("in_progress", []any{}, nil),
})
}
func (c *ResponsesStreamConverter) createResponseInProgressEvent() ResponsesStreamEvent {
return c.newEvent("response.in_progress", map[string]any{
"response": map[string]any{
"id": c.responseID,
"object": "response",
"status": "in_progress",
"output": []any{},
},
"response": c.buildResponseObject("in_progress", []any{}, nil),
})
}
@@ -762,9 +995,10 @@ func (c *ResponsesStreamConverter) processThinking(thinking string) []ResponsesS
// Emit delta
events = append(events, c.newEvent("response.reasoning_summary_text.delta", map[string]any{
"item_id": c.reasoningItemID,
"output_index": c.outputIndex,
"delta": thinking,
"item_id": c.reasoningItemID,
"output_index": c.outputIndex,
"summary_index": 0,
"delta": thinking,
}))
// TODO(drifkin): consider adding
@@ -783,9 +1017,10 @@ func (c *ResponsesStreamConverter) finishReasoning() []ResponsesStreamEvent {
events := []ResponsesStreamEvent{
c.newEvent("response.reasoning_summary_text.done", map[string]any{
"item_id": c.reasoningItemID,
"output_index": c.outputIndex,
"text": c.accumulatedThinking,
"item_id": c.reasoningItemID,
"output_index": c.outputIndex,
"summary_index": 0,
"text": c.accumulatedThinking,
}),
c.newEvent("response.output_item.done", map[string]any{
"output_index": c.outputIndex,
@@ -898,8 +1133,10 @@ func (c *ResponsesStreamConverter) processTextContent(content string) []Response
"output_index": c.outputIndex,
"content_index": c.contentIndex,
"part": map[string]any{
"type": "output_text",
"text": "",
"type": "output_text",
"text": "",
"annotations": []any{},
"logprobs": []any{},
},
}))
}
@@ -913,6 +1150,7 @@ func (c *ResponsesStreamConverter) processTextContent(content string) []Response
"output_index": c.outputIndex,
"content_index": 0,
"delta": content,
"logprobs": []any{},
}))
return events
@@ -944,8 +1182,10 @@ func (c *ResponsesStreamConverter) buildFinalOutput() []any {
"status": "completed",
"role": "assistant",
"content": []map[string]any{{
"type": "output_text",
"text": c.accumulatedText,
"type": "output_text",
"text": c.accumulatedText,
"annotations": []any{},
"logprobs": []any{},
}},
})
}
@@ -967,6 +1207,7 @@ func (c *ResponsesStreamConverter) processCompletion(r api.ChatResponse) []Respo
"output_index": c.outputIndex,
"content_index": 0,
"text": c.accumulatedText,
"logprobs": []any{},
}))
// response.content_part.done
@@ -975,8 +1216,10 @@ func (c *ResponsesStreamConverter) processCompletion(r api.ChatResponse) []Respo
"output_index": c.outputIndex,
"content_index": 0,
"part": map[string]any{
"type": "output_text",
"text": c.accumulatedText,
"type": "output_text",
"text": c.accumulatedText,
"annotations": []any{},
"logprobs": []any{},
},
}))
@@ -989,26 +1232,31 @@ func (c *ResponsesStreamConverter) processCompletion(r api.ChatResponse) []Respo
"status": "completed",
"role": "assistant",
"content": []map[string]any{{
"type": "output_text",
"text": c.accumulatedText,
"type": "output_text",
"text": c.accumulatedText,
"annotations": []any{},
"logprobs": []any{},
}},
},
}))
}
// response.completed
events = append(events, c.newEvent("response.completed", map[string]any{
"response": map[string]any{
"id": c.responseID,
"object": "response",
"status": "completed",
"output": c.buildFinalOutput(),
"usage": map[string]any{
"input_tokens": r.PromptEvalCount,
"output_tokens": r.EvalCount,
"total_tokens": r.PromptEvalCount + r.EvalCount,
},
usage := map[string]any{
"input_tokens": r.PromptEvalCount,
"output_tokens": r.EvalCount,
"total_tokens": r.PromptEvalCount + r.EvalCount,
"input_tokens_details": map[string]any{
"cached_tokens": 0,
},
"output_tokens_details": map[string]any{
"reasoning_tokens": 0,
},
}
response := c.buildResponseObject("completed", c.buildFinalOutput(), usage)
response["completed_at"] = time.Now().Unix()
events = append(events, c.newEvent("response.completed", map[string]any{
"response": response,
}))
return events

View File

@@ -850,7 +850,7 @@ func TestFromResponsesRequest_Images(t *testing.T) {
}
func TestResponsesStreamConverter_TextOnly(t *testing.T) {
converter := NewResponsesStreamConverter("resp_123", "msg_456", "gpt-oss:20b")
converter := NewResponsesStreamConverter("resp_123", "msg_456", "gpt-oss:20b", ResponsesRequest{})
// First chunk with content
events := converter.Process(api.ChatResponse{
@@ -916,7 +916,7 @@ func TestResponsesStreamConverter_TextOnly(t *testing.T) {
}
func TestResponsesStreamConverter_ToolCalls(t *testing.T) {
converter := NewResponsesStreamConverter("resp_123", "msg_456", "gpt-oss:20b")
converter := NewResponsesStreamConverter("resp_123", "msg_456", "gpt-oss:20b", ResponsesRequest{})
events := converter.Process(api.ChatResponse{
Message: api.Message{
@@ -952,7 +952,7 @@ func TestResponsesStreamConverter_ToolCalls(t *testing.T) {
}
func TestResponsesStreamConverter_Reasoning(t *testing.T) {
converter := NewResponsesStreamConverter("resp_123", "msg_456", "gpt-oss:20b")
converter := NewResponsesStreamConverter("resp_123", "msg_456", "gpt-oss:20b", ResponsesRequest{})
// First chunk with thinking
events := converter.Process(api.ChatResponse{
@@ -1267,7 +1267,7 @@ func TestToResponse_WithReasoning(t *testing.T) {
Content: "The answer is 42",
},
Done: true,
})
}, ResponsesRequest{})
// Should have 2 output items: reasoning + message
if len(response.Output) != 2 {
@@ -1638,7 +1638,7 @@ func TestFromResponsesRequest_ShorthandFormats(t *testing.T) {
func TestResponsesStreamConverter_OutputIncludesContent(t *testing.T) {
// Verify that response.output_item.done includes content field for messages
converter := NewResponsesStreamConverter("resp_123", "msg_456", "gpt-oss:20b")
converter := NewResponsesStreamConverter("resp_123", "msg_456", "gpt-oss:20b", ResponsesRequest{})
// First chunk
converter.Process(api.ChatResponse{
@@ -1686,7 +1686,7 @@ func TestResponsesStreamConverter_OutputIncludesContent(t *testing.T) {
func TestResponsesStreamConverter_ResponseCompletedIncludesOutput(t *testing.T) {
// Verify that response.completed includes the output array
converter := NewResponsesStreamConverter("resp_123", "msg_456", "gpt-oss:20b")
converter := NewResponsesStreamConverter("resp_123", "msg_456", "gpt-oss:20b", ResponsesRequest{})
// Process some content
converter.Process(api.ChatResponse{
@@ -1730,7 +1730,7 @@ func TestResponsesStreamConverter_ResponseCompletedIncludesOutput(t *testing.T)
func TestResponsesStreamConverter_ResponseCreatedIncludesOutput(t *testing.T) {
// Verify that response.created includes an empty output array
converter := NewResponsesStreamConverter("resp_123", "msg_456", "gpt-oss:20b")
converter := NewResponsesStreamConverter("resp_123", "msg_456", "gpt-oss:20b", ResponsesRequest{})
events := converter.Process(api.ChatResponse{
Message: api.Message{Content: "Hi"},
@@ -1757,7 +1757,7 @@ func TestResponsesStreamConverter_ResponseCreatedIncludesOutput(t *testing.T) {
func TestResponsesStreamConverter_SequenceNumbers(t *testing.T) {
// Verify that events include incrementing sequence numbers
converter := NewResponsesStreamConverter("resp_123", "msg_456", "gpt-oss:20b")
converter := NewResponsesStreamConverter("resp_123", "msg_456", "gpt-oss:20b", ResponsesRequest{})
events := converter.Process(api.ChatResponse{
Message: api.Message{Content: "Hello"},
@@ -1791,7 +1791,7 @@ func TestResponsesStreamConverter_SequenceNumbers(t *testing.T) {
func TestResponsesStreamConverter_FunctionCallStatus(t *testing.T) {
// Verify that function call items include status field
converter := NewResponsesStreamConverter("resp_123", "msg_456", "gpt-oss:20b")
converter := NewResponsesStreamConverter("resp_123", "msg_456", "gpt-oss:20b", ResponsesRequest{})
events := converter.Process(api.ChatResponse{
Message: api.Message{

View File

@@ -5,6 +5,7 @@ import (
"fmt"
"io"
"os"
"strings"
)
type Prompt struct {
@@ -36,10 +37,11 @@ type Terminal struct {
}
type Instance struct {
Prompt *Prompt
Terminal *Terminal
History *History
Pasting bool
Prompt *Prompt
Terminal *Terminal
History *History
Pasting bool
pastedLines []string
}
func New(prompt Prompt) (*Instance, error) {
@@ -174,6 +176,8 @@ func (i *Instance) Readline() (string, error) {
case CharEsc:
esc = true
case CharInterrupt:
i.pastedLines = nil
i.Prompt.UseAlt = false
return "", ErrInterrupt
case CharPrev:
i.historyPrev(buf, &currentLineBuf)
@@ -188,7 +192,23 @@ func (i *Instance) Readline() (string, error) {
case CharForward:
buf.MoveRight()
case CharBackspace, CharCtrlH:
buf.Remove()
if buf.IsEmpty() && len(i.pastedLines) > 0 {
lastIdx := len(i.pastedLines) - 1
prevLine := i.pastedLines[lastIdx]
i.pastedLines = i.pastedLines[:lastIdx]
fmt.Print(CursorBOL + ClearToEOL + CursorUp + CursorBOL + ClearToEOL)
if len(i.pastedLines) == 0 {
fmt.Print(i.Prompt.Prompt)
i.Prompt.UseAlt = false
} else {
fmt.Print(i.Prompt.AltPrompt)
}
for _, r := range prevLine {
buf.Add(r)
}
} else {
buf.Remove()
}
case CharTab:
// todo: convert back to real tabs
for range 8 {
@@ -211,13 +231,28 @@ func (i *Instance) Readline() (string, error) {
case CharCtrlZ:
fd := os.Stdin.Fd()
return handleCharCtrlZ(fd, i.Terminal.termios)
case CharEnter, CharCtrlJ:
case CharCtrlJ:
i.pastedLines = append(i.pastedLines, buf.String())
buf.Buf.Clear()
buf.Pos = 0
buf.DisplayPos = 0
buf.LineHasSpace.Clear()
fmt.Println()
fmt.Print(i.Prompt.AltPrompt)
i.Prompt.UseAlt = true
continue
case CharEnter:
output := buf.String()
if len(i.pastedLines) > 0 {
output = strings.Join(i.pastedLines, "\n") + "\n" + output
i.pastedLines = nil
}
if output != "" {
i.History.Add(output)
}
buf.MoveToEnd()
fmt.Println()
i.Prompt.UseAlt = false
return output, nil
default:

View File

@@ -60,7 +60,7 @@ _build_darwin() {
cmake --install $BUILD_DIR --component MLX
# Override CGO flags to point to the amd64 build directory
MLX_CGO_CFLAGS="-O3 -I$(pwd)/$BUILD_DIR/_deps/mlx-c-src -mmacosx-version-min=14.0"
MLX_CGO_LDFLAGS="-L$(pwd)/$BUILD_DIR/lib/ollama -lmlxc -lmlx -Wl,-rpath,@executable_path -lc++ -framework Accelerate -mmacosx-version-min=14.0"
MLX_CGO_LDFLAGS="-ldl -lc++ -framework Accelerate -mmacosx-version-min=14.0"
else
BUILD_DIR=build
cmake --preset MLX \
@@ -71,10 +71,12 @@ _build_darwin() {
cmake --install $BUILD_DIR --component MLX
# Use default CGO flags from mlx.go for arm64
MLX_CGO_CFLAGS="-O3 -I$(pwd)/$BUILD_DIR/_deps/mlx-c-src -mmacosx-version-min=14.0"
MLX_CGO_LDFLAGS="-L$(pwd)/$BUILD_DIR/lib/ollama -lmlxc -lmlx -Wl,-rpath,@executable_path -lc++ -framework Metal -framework Foundation -framework Accelerate -mmacosx-version-min=14.0"
MLX_CGO_LDFLAGS="-lc++ -framework Metal -framework Foundation -framework Accelerate -mmacosx-version-min=14.0"
fi
GOOS=darwin GOARCH=$ARCH CGO_ENABLED=1 CGO_CFLAGS="$MLX_CGO_CFLAGS" CGO_LDFLAGS="$MLX_CGO_LDFLAGS" go build -tags mlx -o $INSTALL_PREFIX/imagegen ./x/imagegen/cmd/engine
GOOS=darwin GOARCH=$ARCH CGO_ENABLED=1 go build -o $INSTALL_PREFIX .
GOOS=darwin GOARCH=$ARCH CGO_ENABLED=1 CGO_CFLAGS="$MLX_CGO_CFLAGS" CGO_LDFLAGS="$MLX_CGO_LDFLAGS" go build -tags mlx -o $INSTALL_PREFIX .
# Copy MLX libraries to same directory as executable for dlopen
cp $INSTALL_PREFIX/lib/ollama/libmlxc.dylib $INSTALL_PREFIX/
cp $INSTALL_PREFIX/lib/ollama/libmlx.dylib $INSTALL_PREFIX/
done
}
@@ -82,19 +84,17 @@ _sign_darwin() {
status "Creating universal binary..."
mkdir -p dist/darwin
lipo -create -output dist/darwin/ollama dist/darwin-*/ollama
lipo -create -output dist/darwin/imagegen dist/darwin-*/imagegen
chmod +x dist/darwin/ollama
chmod +x dist/darwin/imagegen
if [ -n "$APPLE_IDENTITY" ]; then
for F in dist/darwin/ollama dist/darwin-*/lib/ollama/* dist/darwin/imagegen; do
for F in dist/darwin/ollama dist/darwin-*/lib/ollama/*; do
codesign -f --timestamp -s "$APPLE_IDENTITY" --identifier ai.ollama.ollama --options=runtime $F
done
# create a temporary zip for notarization
TEMP=$(mktemp -u).zip
ditto -c -k --keepParent dist/darwin/ollama "$TEMP"
xcrun notarytool submit "$TEMP" --wait --timeout 10m --apple-id $APPLE_ID --password $APPLE_PASSWORD --team-id $APPLE_TEAM_ID
xcrun notarytool submit "$TEMP" --wait --timeout 20m --apple-id $APPLE_ID --password $APPLE_PASSWORD --team-id $APPLE_TEAM_ID
rm -f "$TEMP"
fi
@@ -154,38 +154,38 @@ _build_macapp() {
mkdir -p dist/Ollama.app/Contents/Resources
if [ -d dist/darwin-amd64 ]; then
lipo -create -output dist/Ollama.app/Contents/Resources/ollama dist/darwin-amd64/ollama dist/darwin-arm64/ollama
lipo -create -output dist/Ollama.app/Contents/Resources/imagegen dist/darwin-amd64/imagegen dist/darwin-arm64/imagegen
for F in dist/darwin-amd64/lib/ollama/*mlx*.dylib ; do
lipo -create -output dist/darwin/$(basename $F) $F dist/darwin-arm64/lib/ollama/$(basename $F)
done
cp dist/darwin-*/lib/ollama/*.so dist/darwin-*/lib/ollama/*.dylib dist/Ollama.app/Contents/Resources/
cp dist/darwin/*.dylib dist/Ollama.app/Contents/Resources/
# Copy MLX metallib (architecture-independent, just use arm64 version)
cp dist/darwin-arm64/lib/ollama/*.metallib dist/Ollama.app/Contents/Resources/ 2>/dev/null || true
else
cp -a dist/darwin/ollama dist/Ollama.app/Contents/Resources/ollama
cp dist/darwin/*.so dist/darwin/*.dylib dist/Ollama.app/Contents/Resources/
fi
cp -a dist/darwin/imagegen dist/Ollama.app/Contents/Resources/imagegen
chmod a+x dist/Ollama.app/Contents/Resources/ollama
# Sign
if [ -n "$APPLE_IDENTITY" ]; then
codesign -f --timestamp -s "$APPLE_IDENTITY" --identifier ai.ollama.ollama --options=runtime dist/Ollama.app/Contents/Resources/ollama
for lib in dist/Ollama.app/Contents/Resources/*.so dist/Ollama.app/Contents/Resources/*.dylib dist/Ollama.app/Contents/Resources/imagegen ; do
for lib in dist/Ollama.app/Contents/Resources/*.so dist/Ollama.app/Contents/Resources/*.dylib dist/Ollama.app/Contents/Resources/*.metallib ; do
codesign -f --timestamp -s "$APPLE_IDENTITY" --identifier ai.ollama.ollama --options=runtime ${lib}
done
codesign -f --timestamp -s "$APPLE_IDENTITY" --identifier com.electron.ollama --deep --options=runtime dist/Ollama.app
fi
rm -f dist/Ollama-darwin.zip
ditto -c -k --keepParent dist/Ollama.app dist/Ollama-darwin.zip
(cd dist/Ollama.app/Contents/Resources/; tar -cf - ollama imagegen *.so *.dylib) | gzip -9vc > dist/ollama-darwin.tgz
ditto -c -k --norsrc --keepParent dist/Ollama.app dist/Ollama-darwin.zip
(cd dist/Ollama.app/Contents/Resources/; tar -cf - ollama *.so *.dylib *.metallib 2>/dev/null) | gzip -9vc > dist/ollama-darwin.tgz
# Notarize and Staple
if [ -n "$APPLE_IDENTITY" ]; then
$(xcrun -f notarytool) submit dist/Ollama-darwin.zip --wait --timeout 10m --apple-id "$APPLE_ID" --password "$APPLE_PASSWORD" --team-id "$APPLE_TEAM_ID"
$(xcrun -f notarytool) submit dist/Ollama-darwin.zip --wait --timeout 20m --apple-id "$APPLE_ID" --password "$APPLE_PASSWORD" --team-id "$APPLE_TEAM_ID"
rm -f dist/Ollama-darwin.zip
$(xcrun -f stapler) staple dist/Ollama.app
ditto -c -k --keepParent dist/Ollama.app dist/Ollama-darwin.zip
ditto -c -k --norsrc --keepParent dist/Ollama.app dist/Ollama-darwin.zip
rm -f dist/Ollama.dmg
@@ -206,7 +206,7 @@ _build_macapp() {
rm -f dist/rw*.dmg
codesign -f --timestamp -s "$APPLE_IDENTITY" --identifier ai.ollama.ollama --options=runtime dist/Ollama.dmg
$(xcrun -f notarytool) submit dist/Ollama.dmg --wait --timeout 10m --apple-id "$APPLE_ID" --password "$APPLE_PASSWORD" --team-id "$APPLE_TEAM_ID"
$(xcrun -f notarytool) submit dist/Ollama.dmg --wait --timeout 20m --apple-id "$APPLE_ID" --password "$APPLE_PASSWORD" --team-id "$APPLE_TEAM_ID"
$(xcrun -f stapler) staple dist/Ollama.dmg
else
echo "WARNING: Code signing disabled, this bundle will not work for upgrade testing"

View File

@@ -48,53 +48,12 @@ if echo $PLATFORM | grep "amd64" > /dev/null; then
.
fi
# Deduplicate CUDA libraries across mlx_* and cuda_* directories
deduplicate_cuda_libs() {
local base_dir="$1"
echo "Deduplicating CUDA libraries in ${base_dir}..."
# Find all mlx_cuda_* directories
for mlx_dir in "${base_dir}"/lib/ollama/mlx_cuda_*; do
[ -d "${mlx_dir}" ] || continue
# Extract CUDA version (e.g., v12, v13)
cuda_version=$(basename "${mlx_dir}" | sed 's/mlx_cuda_//')
cuda_dir="${base_dir}/lib/ollama/cuda_${cuda_version}"
# Skip if corresponding cuda_* directory doesn't exist
[ -d "${cuda_dir}" ] || continue
echo " Checking ${mlx_dir} against ${cuda_dir}..."
# Find all .so* files in mlx directory
find "${mlx_dir}" -type f -name "*.so*" | while read mlx_file; do
filename=$(basename "${mlx_file}")
cuda_file="${cuda_dir}/${filename}"
# Skip if file doesn't exist in cuda directory
[ -f "${cuda_file}" ] || continue
# Compare checksums
mlx_sum=$(sha256sum "${mlx_file}" | awk '{print $1}')
cuda_sum=$(sha256sum "${cuda_file}" | awk '{print $1}')
if [ "${mlx_sum}" = "${cuda_sum}" ]; then
echo " Deduplicating ${filename}"
# Calculate relative path from mlx_dir to cuda_dir
rel_path="../cuda_${cuda_version}/${filename}"
rm -f "${mlx_file}"
ln -s "${rel_path}" "${mlx_file}"
fi
done
done
}
# Run deduplication for each platform output directory
if echo $PLATFORM | grep "," > /dev/null ; then
deduplicate_cuda_libs "./dist/linux_amd64"
deduplicate_cuda_libs "./dist/linux_arm64"
$(dirname $0)/deduplicate_cuda_libs.sh "./dist/linux_amd64"
$(dirname $0)/deduplicate_cuda_libs.sh "./dist/linux_arm64"
elif echo $PLATFORM | grep "amd64\|arm64" > /dev/null ; then
deduplicate_cuda_libs "./dist"
$(dirname $0)/deduplicate_cuda_libs.sh "./dist"
fi
# buildx behavior changes for single vs. multiplatform

View File

@@ -0,0 +1,60 @@
#!/bin/sh
#
# Deduplicate CUDA libraries across mlx_* and cuda_* directories
# This script finds identical .so* files in mlx_cuda_* directories that exist
# in corresponding cuda_* directories and replaces them with symlinks.
#
set -eu
if [ $# -eq 0 ]; then
echo "ERROR: No directory specified" >&2
echo "Usage: $0 <base_directory>" >&2
exit 1
fi
base_dir="$1"
if [ ! -d "${base_dir}" ]; then
echo "ERROR: Directory ${base_dir} does not exist" >&2
exit 1
fi
echo "Deduplicating CUDA libraries in ${base_dir}..."
# Find all mlx_cuda_* directories
for mlx_dir in "${base_dir}"/lib/ollama/mlx_cuda_*; do
[ -d "${mlx_dir}" ] || continue
# Extract CUDA version (e.g., v12, v13)
cuda_version=$(basename "${mlx_dir}" | sed 's/mlx_cuda_//')
cuda_dir="${base_dir}/lib/ollama/cuda_${cuda_version}"
# Skip if corresponding cuda_* directory doesn't exist
[ -d "${cuda_dir}" ] || continue
echo " Checking ${mlx_dir} against ${cuda_dir}..."
# Find all .so* files in mlx directory
find "${mlx_dir}" -type f -name "*.so*" | while read mlx_file; do
filename=$(basename "${mlx_file}")
cuda_file="${cuda_dir}/${filename}"
# Skip if file doesn't exist in cuda directory
[ -f "${cuda_file}" ] || continue
# Compare checksums
mlx_sum=$(sha256sum "${mlx_file}" | awk '{print $1}')
cuda_sum=$(sha256sum "${cuda_file}" | awk '{print $1}')
if [ "${mlx_sum}" = "${cuda_sum}" ]; then
echo " Deduplicating ${filename}"
# Calculate relative path from mlx_dir to cuda_dir
rel_path="../cuda_${cuda_version}/${filename}"
rm -f "${mlx_file}"
ln -s "${rel_path}" "${mlx_file}"
fi
done
done
echo "Deduplication complete"

View File

@@ -50,12 +50,17 @@ func (r registryChallenge) URL() (*url.URL, error) {
return redirectURL, nil
}
func getAuthorizationToken(ctx context.Context, challenge registryChallenge) (string, error) {
func getAuthorizationToken(ctx context.Context, challenge registryChallenge, originalHost string) (string, error) {
redirectURL, err := challenge.URL()
if err != nil {
return "", err
}
// Validate that the realm host matches the original request host to prevent sending tokens cross-origin.
if redirectURL.Host != originalHost {
return "", fmt.Errorf("realm host %q does not match original host %q", redirectURL.Host, originalHost)
}
sha256sum := sha256.Sum256(nil)
data := []byte(fmt.Sprintf("%s,%s,%s", http.MethodGet, redirectURL.String(), base64.StdEncoding.EncodeToString([]byte(hex.EncodeToString(sha256sum[:])))))

113
server/auth_test.go Normal file
View File

@@ -0,0 +1,113 @@
package server
import (
"context"
"strings"
"testing"
"time"
)
func TestGetAuthorizationTokenRejectsCrossDomain(t *testing.T) {
tests := []struct {
realm string
originalHost string
wantMismatch bool
}{
{"https://example.com/token", "example.com", false},
{"https://example.com/token", "other.com", true},
{"https://example.com/token", "localhost:8000", true},
{"https://localhost:5000/token", "localhost:5000", false},
{"https://localhost:5000/token", "localhost:6000", true},
}
for _, tt := range tests {
t.Run(tt.originalHost, func(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 100*time.Millisecond)
defer cancel()
challenge := registryChallenge{Realm: tt.realm, Service: "test", Scope: "repo:x:pull"}
_, err := getAuthorizationToken(ctx, challenge, tt.originalHost)
isMismatch := err != nil && strings.Contains(err.Error(), "does not match")
if tt.wantMismatch && !isMismatch {
t.Errorf("expected domain mismatch error, got: %v", err)
}
if !tt.wantMismatch && isMismatch {
t.Errorf("unexpected domain mismatch error: %v", err)
}
})
}
}
func TestParseRegistryChallenge(t *testing.T) {
tests := []struct {
input string
wantRealm, wantService, wantScope string
}{
{
`Bearer realm="https://auth.example.com/token",service="registry",scope="repo:foo:pull"`,
"https://auth.example.com/token", "registry", "repo:foo:pull",
},
{
`Bearer realm="https://r.ollama.ai/v2/token",service="ollama",scope="-"`,
"https://r.ollama.ai/v2/token", "ollama", "-",
},
{"", "", "", ""},
}
for _, tt := range tests {
result := parseRegistryChallenge(tt.input)
if result.Realm != tt.wantRealm || result.Service != tt.wantService || result.Scope != tt.wantScope {
t.Errorf("parseRegistryChallenge(%q) = {%q, %q, %q}, want {%q, %q, %q}",
tt.input, result.Realm, result.Service, result.Scope,
tt.wantRealm, tt.wantService, tt.wantScope)
}
}
}
func TestRegistryChallengeURL(t *testing.T) {
challenge := registryChallenge{
Realm: "https://auth.example.com/token",
Service: "registry",
Scope: "repo:foo:pull repo:bar:push",
}
u, err := challenge.URL()
if err != nil {
t.Fatalf("URL() error: %v", err)
}
if u.Host != "auth.example.com" {
t.Errorf("host = %q, want %q", u.Host, "auth.example.com")
}
if u.Path != "/token" {
t.Errorf("path = %q, want %q", u.Path, "/token")
}
q := u.Query()
if q.Get("service") != "registry" {
t.Errorf("service = %q, want %q", q.Get("service"), "registry")
}
if scopes := q["scope"]; len(scopes) != 2 {
t.Errorf("scope count = %d, want 2", len(scopes))
}
if q.Get("ts") == "" {
t.Error("missing ts")
}
if q.Get("nonce") == "" {
t.Error("missing nonce")
}
// Nonces should differ between calls
u2, _ := challenge.URL()
if q.Get("nonce") == u2.Query().Get("nonce") {
t.Error("nonce should be unique per call")
}
}
func TestRegistryChallengeURLInvalid(t *testing.T) {
challenge := registryChallenge{Realm: "://invalid"}
if _, err := challenge.URL(); err == nil {
t.Error("expected error for invalid URL")
}
}

View File

@@ -41,6 +41,7 @@ var (
errCapabilityVision = errors.New("vision")
errCapabilityEmbedding = errors.New("embedding")
errCapabilityThinking = errors.New("thinking")
errCapabilityImage = errors.New("image generation")
errInsecureProtocol = errors.New("insecure protocol http")
)
@@ -76,7 +77,7 @@ func (m *Model) Capabilities() []model.Capability {
// Check for image generation model via config capabilities
if slices.Contains(m.Config.Capabilities, "image") {
return []model.Capability{model.CapabilityImageGeneration}
return []model.Capability{model.CapabilityImage}
}
// Check for completion capability
@@ -159,6 +160,7 @@ func (m *Model) CheckCapabilities(want ...model.Capability) error {
model.CapabilityVision: errCapabilityVision,
model.CapabilityEmbedding: errCapabilityEmbedding,
model.CapabilityThinking: errCapabilityThinking,
model.CapabilityImage: errCapabilityImage,
}
for _, cap := range want {
@@ -775,7 +777,7 @@ func pullWithTransfer(ctx context.Context, mp ModelPath, layers []Layer, manifes
Realm: challenge.Realm,
Service: challenge.Service,
Scope: challenge.Scope,
})
}, base.Host)
}
if err := transfer.Download(ctx, transfer.DownloadOptions{
@@ -850,7 +852,7 @@ func pushWithTransfer(ctx context.Context, mp ModelPath, layers []Layer, manifes
Realm: challenge.Realm,
Service: challenge.Service,
Scope: challenge.Scope,
})
}, base.Host)
}
return transfer.Upload(ctx, transfer.UploadOptions{
@@ -916,7 +918,7 @@ func makeRequestWithRetry(ctx context.Context, method string, requestURL *url.UR
// Handle authentication error with one retry
challenge := parseRegistryChallenge(resp.Header.Get("www-authenticate"))
token, err := getAuthorizationToken(ctx, challenge)
token, err := getAuthorizationToken(ctx, challenge, requestURL.Host)
if err != nil {
return nil, err
}

View File

@@ -54,7 +54,7 @@ func TestModelCapabilities(t *testing.T) {
Capabilities: []string{"image"},
},
},
expectedCaps: []model.Capability{model.CapabilityImageGeneration},
expectedCaps: []model.Capability{model.CapabilityImage},
},
{
name: "model with completion capability",
@@ -242,6 +242,24 @@ func TestModelCheckCapabilities(t *testing.T) {
checkCaps: []model.Capability{"unknown"},
expectedErrMsg: "unknown capability",
},
{
name: "model missing image generation capability",
model: Model{
ModelPath: completionModelPath,
Template: chatTemplate,
},
checkCaps: []model.Capability{model.CapabilityImage},
expectedErrMsg: "does not support image generation",
},
{
name: "model with image generation capability",
model: Model{
Config: model.ConfigV2{
Capabilities: []string{"image"},
},
},
checkCaps: []model.Capability{model.CapabilityImage},
},
}
for _, tt := range tests {

View File

@@ -47,16 +47,40 @@ func (m *Manifest) Remove() error {
}
func (m *Manifest) RemoveLayers() error {
for _, layer := range append(m.Layers, m.Config) {
if layer.Digest != "" {
if err := layer.Remove(); errors.Is(err, os.ErrNotExist) {
slog.Debug("layer does not exist", "digest", layer.Digest)
} else if err != nil {
return err
ms, err := Manifests(true)
if err != nil {
return err
}
// Build set of digests still in use by other manifests
inUse := make(map[string]struct{})
for _, other := range ms {
for _, layer := range append(other.Layers, other.Config) {
if layer.Digest != "" {
inUse[layer.Digest] = struct{}{}
}
}
}
// Remove layers not used by any other manifest
for _, layer := range append(m.Layers, m.Config) {
if layer.Digest == "" {
continue
}
if _, used := inUse[layer.Digest]; used {
continue
}
blob, err := GetBlobsPath(layer.Digest)
if err != nil {
return err
}
if err := os.Remove(blob); errors.Is(err, os.ErrNotExist) {
slog.Debug("layer does not exist", "digest", layer.Digest)
} else if err != nil {
return err
}
}
return nil
}

View File

@@ -51,7 +51,7 @@ import (
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/version"
"github.com/ollama/ollama/x/imagegen"
imagegenapi "github.com/ollama/ollama/x/imagegen/api"
xserver "github.com/ollama/ollama/x/server"
)
const signinURLStr = "https://ollama.com/connect?name=%s&key=%s"
@@ -164,29 +164,6 @@ func (s *Server) scheduleRunner(ctx context.Context, name string, caps []model.C
return runner.llama, model, &opts, nil
}
// ScheduleImageGenRunner schedules an image generation model runner.
// This implements the imagegenapi.RunnerScheduler interface.
func (s *Server) ScheduleImageGenRunner(c *gin.Context, modelName string, opts api.Options, keepAlive *api.Duration) (llm.LlamaServer, error) {
m := &Model{
Name: modelName,
ShortName: modelName,
ModelPath: modelName, // For image gen, ModelPath is just the model name
Config: model.ConfigV2{
Capabilities: []string{"image"},
},
}
runnerCh, errCh := s.sched.GetRunner(c.Request.Context(), m, opts, keepAlive)
var runner *runnerRef
select {
case runner = <-runnerCh:
case err := <-errCh:
return nil, err
}
return runner.llama, nil
}
func signinURL() (string, error) {
pubKey, err := auth.GetPublicKey()
if err != nil {
@@ -214,12 +191,6 @@ func (s *Server) GenerateHandler(c *gin.Context) {
return
}
// Check if this is a known image generation model
if imagegen.ResolveModelName(req.Model) != "" {
imagegenapi.HandleGenerateRequest(c, s, req.Model, req.Prompt, req.KeepAlive, streamResponse)
return
}
name := model.ParseName(req.Model)
if !name.IsValid() {
// Ideally this is "invalid model name" but we're keeping with
@@ -344,7 +315,7 @@ func (s *Server) GenerateHandler(c *gin.Context) {
return
}
// expire the runner
// expire the runner if unload is requested (empty prompt, keep alive is 0)
if req.Prompt == "" && req.KeepAlive != nil && req.KeepAlive.Duration == 0 {
s.sched.expireRunner(m)
@@ -358,6 +329,12 @@ func (s *Server) GenerateHandler(c *gin.Context) {
return
}
// Handle image generation models
if slices.Contains(m.Capabilities(), model.CapabilityImage) {
s.handleImageGenerate(c, req, name.String(), checkpointStart)
return
}
if req.Raw && (req.Template != "" || req.System != "" || len(req.Context) > 0) {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "raw mode does not support template, system, or context"})
return
@@ -1124,6 +1101,31 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
QuantizationLevel: m.Config.FileType,
}
// For image generation models, populate details from imagegen package
if slices.Contains(m.Capabilities(), model.CapabilityImage) {
if info, err := imagegen.GetModelInfo(name.String()); err == nil {
modelDetails.Family = info.Architecture
modelDetails.ParameterSize = format.HumanNumber(uint64(info.ParameterCount))
modelDetails.QuantizationLevel = info.Quantization
}
}
// For safetensors LLM models (experimental), populate details from config.json
if m.Config.ModelFormat == "safetensors" && slices.Contains(m.Config.Capabilities, "completion") {
if info, err := xserver.GetSafetensorsLLMInfo(name.String()); err == nil {
if arch, ok := info["general.architecture"].(string); ok && arch != "" {
modelDetails.Family = arch
}
if paramCount, ok := info["general.parameter_count"].(int64); ok && paramCount > 0 {
modelDetails.ParameterSize = format.HumanNumber(uint64(paramCount))
}
}
// Get torch_dtype directly from config.json for quantization level
if dtype, err := xserver.GetSafetensorsDtype(name.String()); err == nil && dtype != "" {
modelDetails.QuantizationLevel = dtype
}
}
if req.System != "" {
m.System = req.System
}
@@ -1147,6 +1149,9 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
Capabilities: m.Capabilities(),
ModifiedAt: manifest.fi.ModTime(),
Requires: m.Config.Requires,
// Several integrations crash on a nil/omitempty+empty ModelInfo, so by
// default we return an empty map.
ModelInfo: make(map[string]any),
}
if m.Config.RemoteHost != "" {
@@ -1206,6 +1211,30 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
return resp, nil
}
if slices.Contains(m.Capabilities(), model.CapabilityImage) {
// Populate tensor info if verbose
if req.Verbose {
if tensors, err := xserver.GetSafetensorsTensorInfo(name.String()); err == nil {
resp.Tensors = tensors
}
}
return resp, nil
}
// For safetensors LLM models (experimental), populate ModelInfo from config.json
if m.Config.ModelFormat == "safetensors" && slices.Contains(m.Config.Capabilities, "completion") {
if info, err := xserver.GetSafetensorsLLMInfo(name.String()); err == nil {
resp.ModelInfo = info
}
// Populate tensor info if verbose
if req.Verbose {
if tensors, err := xserver.GetSafetensorsTensorInfo(name.String()); err == nil {
resp.Tensors = tensors
}
}
return resp, nil
}
kvData, tensors, err := getModelData(m.ModelPath, req.Verbose)
if err != nil {
return nil, err
@@ -1574,13 +1603,12 @@ func (s *Server) GenerateRoutes(rc *ollama.Registry) (http.Handler, error) {
r.GET("/v1/models", middleware.ListMiddleware(), s.ListHandler)
r.GET("/v1/models/:model", middleware.RetrieveMiddleware(), s.ShowHandler)
r.POST("/v1/responses", middleware.ResponsesMiddleware(), s.ChatHandler)
// OpenAI-compatible image generation endpoint
r.POST("/v1/images/generations", middleware.ImageGenerationsMiddleware(), s.GenerateHandler)
// Inference (Anthropic compatibility)
r.POST("/v1/messages", middleware.AnthropicMessagesMiddleware(), s.ChatHandler)
// Experimental image generation support
imagegenapi.RegisterRoutes(r, s)
if rc != nil {
// wrap old with new
rs := &registry.Local{
@@ -2059,8 +2087,14 @@ func (s *Server) ChatHandler(c *gin.Context) {
}
} else {
if req.Think != nil && req.Think.Bool() {
c.JSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("%q does not support thinking", req.Model)})
return
// Set think to nil when being used with Anthropic API to connect to tools like claude code
if _, ok := c.Get("relax_thinking"); ok {
slog.Warn("model does not support thinking, relaxing thinking to nil", "model", req.Model)
req.Think = nil
} else {
c.JSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("%q does not support thinking", req.Model)})
return
}
}
}
@@ -2441,3 +2475,91 @@ func filterThinkTags(msgs []api.Message, m *Model) []api.Message {
}
return msgs
}
// handleImageGenerate handles image generation requests within GenerateHandler.
// This is called when the model has the Image capability.
func (s *Server) handleImageGenerate(c *gin.Context, req api.GenerateRequest, modelName string, checkpointStart time.Time) {
// Validate image dimensions
const maxDimension int32 = 4096
if req.Width > maxDimension || req.Height > maxDimension {
c.JSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("width and height must be <= %d", maxDimension)})
return
}
// Schedule the runner for image generation
runner, _, _, err := s.scheduleRunner(c.Request.Context(), modelName, []model.Capability{model.CapabilityImage}, nil, req.KeepAlive)
if err != nil {
handleScheduleError(c, req.Model, err)
return
}
checkpointLoaded := time.Now()
// Handle load-only request (empty prompt)
if req.Prompt == "" {
c.JSON(http.StatusOK, api.GenerateResponse{
Model: req.Model,
CreatedAt: time.Now().UTC(),
Done: true,
DoneReason: "load",
})
return
}
// Set headers for streaming response
c.Header("Content-Type", "application/x-ndjson")
// Get seed from options if provided
var seed int64
if s, ok := req.Options["seed"]; ok {
switch v := s.(type) {
case int:
seed = int64(v)
case int64:
seed = v
case float64:
seed = int64(v)
}
}
var streamStarted bool
if err := runner.Completion(c.Request.Context(), llm.CompletionRequest{
Prompt: req.Prompt,
Width: req.Width,
Height: req.Height,
Steps: req.Steps,
Seed: seed,
}, func(cr llm.CompletionResponse) {
streamStarted = true
res := api.GenerateResponse{
Model: req.Model,
CreatedAt: time.Now().UTC(),
Done: cr.Done,
}
if cr.TotalSteps > 0 {
res.Completed = int64(cr.Step)
res.Total = int64(cr.TotalSteps)
}
if cr.Image != "" {
res.Image = cr.Image
}
if cr.Done {
res.DoneReason = cr.DoneReason.String()
res.Metrics.TotalDuration = time.Since(checkpointStart)
res.Metrics.LoadDuration = checkpointLoaded.Sub(checkpointStart)
}
data, _ := json.Marshal(res)
c.Writer.Write(append(data, '\n'))
c.Writer.Flush()
}); err != nil {
// Only send JSON error if streaming hasn't started yet
// (once streaming starts, headers are committed and we can't change status code)
if !streamStarted {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
}
}
}

View File

@@ -2101,3 +2101,95 @@ func TestChatWithPromptEndingInThinkTag(t *testing.T) {
}
})
}
func TestGenerateUnload(t *testing.T) {
gin.SetMode(gin.TestMode)
var loadFnCalled bool
s := Server{
sched: &Scheduler{
pendingReqCh: make(chan *LlmRequest, 1),
finishedReqCh: make(chan *LlmRequest, 1),
expiredCh: make(chan *runnerRef, 1),
unloadedCh: make(chan any, 1),
loaded: make(map[string]*runnerRef),
newServerFn: newMockServer(&mockRunner{}),
getGpuFn: getGpuFn,
getSystemInfoFn: getSystemInfoFn,
loadFn: func(req *LlmRequest, _ *ggml.GGML, _ ml.SystemInfo, _ []ml.DeviceInfo, _ bool) bool {
loadFnCalled = true
req.successCh <- &runnerRef{llama: &mockRunner{}}
return false
},
},
}
go s.sched.Run(t.Context())
_, digest := createBinFile(t, ggml.KV{
"general.architecture": "llama",
"llama.block_count": uint32(1),
"llama.context_length": uint32(8192),
"llama.embedding_length": uint32(4096),
"llama.attention.head_count": uint32(32),
"llama.attention.head_count_kv": uint32(8),
"tokenizer.ggml.tokens": []string{""},
"tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0},
}, []*ggml.Tensor{
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_gate.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_up.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_k.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_q.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_v.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
})
w := createRequest(t, s.CreateHandler, api.CreateRequest{
Model: "test",
Files: map[string]string{"file.gguf": digest},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
t.Run("unload with empty prompt and keepalive 0", func(t *testing.T) {
loadFnCalled = false
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test",
Prompt: "",
KeepAlive: &api.Duration{Duration: 0},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
var resp api.GenerateResponse
if err := json.Unmarshal(w.Body.Bytes(), &resp); err != nil {
t.Fatalf("failed to unmarshal response: %v", err)
}
if resp.DoneReason != "unload" {
t.Errorf("expected done_reason 'unload', got %q", resp.DoneReason)
}
if !resp.Done {
t.Error("expected done to be true")
}
if loadFnCalled {
t.Error("expected model NOT to be loaded for unload request, but loadFn was called")
}
})
}

View File

@@ -574,7 +574,8 @@ func (s *Scheduler) loadImageGen(req *LlmRequest) bool {
Options: &req.opts,
loading: false,
sessionDuration: sessionDuration,
refCount: 1,
totalSize: server.TotalSize(),
vramSize: server.VRAMSize(),
}
s.loadedMu.Lock()

View File

@@ -6,7 +6,6 @@ import (
"errors"
"log/slog"
"os"
"slices"
"testing"
"time"
@@ -17,7 +16,6 @@ import (
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/types/model"
)
func TestMain(m *testing.M) {
@@ -807,32 +805,8 @@ func (s *mockLlm) GetDeviceInfos(ctx context.Context) []ml.DeviceInfo { return n
func (s *mockLlm) HasExited() bool { return false }
func (s *mockLlm) GetActiveDeviceIDs() []ml.DeviceID { return nil }
// TestImageGenCapabilityDetection verifies that models with "image" capability
// are correctly identified and routed differently from language models.
func TestImageGenCapabilityDetection(t *testing.T) {
// Model with image capability should be detected
imageModel := &Model{
Config: model.ConfigV2{
Capabilities: []string{"image"},
},
}
require.True(t, slices.Contains(imageModel.Config.Capabilities, "image"))
// Model without image capability should not be detected
langModel := &Model{
Config: model.ConfigV2{
Capabilities: []string{"completion"},
},
}
require.False(t, slices.Contains(langModel.Config.Capabilities, "image"))
// Empty capabilities should not match
emptyModel := &Model{}
require.False(t, slices.Contains(emptyModel.Config.Capabilities, "image"))
}
// TestImageGenRunnerCanBeEvicted verifies that an image generation model
// loaded in the scheduler can be evicted by a language model request.
// loaded in the scheduler can be evicted when idle.
func TestImageGenRunnerCanBeEvicted(t *testing.T) {
ctx, done := context.WithTimeout(t.Context(), 500*time.Millisecond)
defer done()
@@ -864,3 +838,59 @@ func TestImageGenRunnerCanBeEvicted(t *testing.T) {
require.NotNil(t, runner)
require.Equal(t, "/fake/image/model", runner.modelPath)
}
// TestImageGenSchedulerCoexistence verifies that image generation models
// can coexist with language models in the scheduler and VRAM is tracked correctly.
func TestImageGenSchedulerCoexistence(t *testing.T) {
ctx, done := context.WithTimeout(t.Context(), 500*time.Millisecond)
defer done()
s := InitScheduler(ctx)
s.getGpuFn = getGpuFn
s.getSystemInfoFn = getSystemInfoFn
// Load both an imagegen runner and a language model runner
imageGenRunner := &runnerRef{
model: &Model{Name: "flux", ModelPath: "/fake/flux/model"},
modelPath: "/fake/flux/model",
llama: &mockLlm{vramSize: 8 * format.GigaByte, vramByGPU: map[ml.DeviceID]uint64{{Library: "Metal"}: 8 * format.GigaByte}},
sessionDuration: 10 * time.Millisecond,
numParallel: 1,
refCount: 0,
}
langModelRunner := &runnerRef{
model: &Model{Name: "llama3", ModelPath: "/fake/llama3/model"},
modelPath: "/fake/llama3/model",
llama: &mockLlm{vramSize: 4 * format.GigaByte, vramByGPU: map[ml.DeviceID]uint64{{Library: "Metal"}: 4 * format.GigaByte}},
sessionDuration: 10 * time.Millisecond,
numParallel: 1,
refCount: 0,
}
s.loadedMu.Lock()
s.loaded["/fake/flux/model"] = imageGenRunner
s.loaded["/fake/llama3/model"] = langModelRunner
s.loadedMu.Unlock()
// Verify both are loaded
s.loadedMu.Lock()
require.Len(t, s.loaded, 2)
require.NotNil(t, s.loaded["/fake/flux/model"])
require.NotNil(t, s.loaded["/fake/llama3/model"])
s.loadedMu.Unlock()
// Verify updateFreeSpace accounts for both
gpus := []ml.DeviceInfo{
{
DeviceID: ml.DeviceID{Library: "Metal"},
TotalMemory: 24 * format.GigaByte,
FreeMemory: 24 * format.GigaByte,
},
}
s.updateFreeSpace(gpus)
// Free memory should be reduced by both models
expectedFree := uint64(24*format.GigaByte) - uint64(8*format.GigaByte) - uint64(4*format.GigaByte)
require.Equal(t, expectedFree, gpus[0].FreeMemory)
}

View File

@@ -279,7 +279,7 @@ func (b *blobUpload) uploadPart(ctx context.Context, method string, requestURL *
case resp.StatusCode == http.StatusUnauthorized:
w.Rollback()
challenge := parseRegistryChallenge(resp.Header.Get("www-authenticate"))
token, err := getAuthorizationToken(ctx, challenge)
token, err := getAuthorizationToken(ctx, challenge, requestURL.Host)
if err != nil {
return err
}

View File

@@ -9,7 +9,7 @@ const (
CapabilityVision = Capability("vision")
CapabilityEmbedding = Capability("embedding")
CapabilityThinking = Capability("thinking")
CapabilityImageGeneration = Capability("image")
CapabilityImage = Capability("image")
)
func (c Capability) String() string {

View File

@@ -1,24 +0,0 @@
# Experimental Features
## MLX Backend
We're working on a new experimental backend based on the [MLX project](https://github.com/ml-explore/mlx)
Support is currently limited to MacOS and Linux with CUDA GPUs. We're looking to add support for Windows CUDA soon, and other GPU vendors. To build:
```
cmake --preset MLX
cmake --build --preset MLX --parallel
cmake --install --component MLX
go build -tags mlx .
```
On linux, use the preset "MLX CUDA 13" or "MLX CUDA 12" to enable CUDA with the default Ollama NVIDIA GPU architectures enabled.
## Image Generation
Based on the experimental MLX backend, we're working on adding imagegen support. After running the cmake commands above:
```
go build -o imagegen ./x/imagegen/cmd/engine
```

View File

@@ -41,6 +41,7 @@ var optionLabels = []string{
var toolDisplayNames = map[string]string{
"bash": "Bash",
"web_search": "Web Search",
"web_fetch": "Web Fetch",
}
// ToolDisplayName returns the human-readable display name for a tool.
@@ -565,6 +566,16 @@ func formatToolDisplay(toolName string, args map[string]any) string {
}
}
// For web fetch, show URL and internet notice
if toolName == "web_fetch" {
if url, ok := args["url"].(string); ok {
sb.WriteString(fmt.Sprintf("Tool: %s\n", displayName))
sb.WriteString(fmt.Sprintf("URL: %s\n", url))
sb.WriteString("Uses internet via ollama.com")
return sb.String()
}
}
// Generic display
sb.WriteString(fmt.Sprintf("Tool: %s", displayName))
if len(args) > 0 {
@@ -1017,6 +1028,16 @@ func FormatApprovalResult(toolName string, args map[string]any, result ApprovalR
}
}
if toolName == "web_fetch" {
if url, ok := args["url"].(string); ok {
// Truncate long URLs
if len(url) > 50 {
url = url[:47] + "..."
}
return fmt.Sprintf("\033[1m%s:\033[0m %s: %s", label, displayName, url)
}
}
return fmt.Sprintf("\033[1m%s:\033[0m %s", label, displayName)
}

View File

@@ -9,6 +9,7 @@ import (
"net/url"
"os"
"os/signal"
"slices"
"strings"
"syscall"
"time"
@@ -130,6 +131,7 @@ type RunOptions struct {
KeepAlive *api.Duration
Think *api.ThinkValue
HideThinking bool
Verbose bool
// Agent fields (managed externally for session persistence)
Tools *tools.Registry
@@ -178,6 +180,7 @@ func Chat(ctx context.Context, opts RunOptions) (*api.Message, error) {
var thinkTagClosed bool = false
var pendingToolCalls []api.ToolCall
var consecutiveErrors int // Track consecutive 500 errors for retry limit
var latest api.ChatResponse
role := "assistant"
messages := opts.Messages
@@ -187,6 +190,7 @@ func Chat(ctx context.Context, opts RunOptions) (*api.Message, error) {
p.StopAndClear()
}
latest = response
role = response.Message.Role
if response.Message.Thinking != "" && !opts.HideThinking {
if !thinkTagOpened {
@@ -483,6 +487,10 @@ func Chat(ctx context.Context, opts RunOptions) (*api.Message, error) {
fmt.Println()
}
if opts.Verbose {
latest.Summary()
}
return &api.Message{Role: role, Thinking: thinkingContent.String(), Content: fullResponse.String()}, nil
}
@@ -634,12 +642,13 @@ func checkModelCapabilities(ctx context.Context, modelName string) (supportsTool
// GenerateInteractive runs an interactive agent session.
// This is called from cmd.go when --experimental flag is set.
// If yoloMode is true, all tool approvals are skipped.
func GenerateInteractive(cmd *cobra.Command, modelName string, wordWrap bool, options map[string]any, think *api.ThinkValue, hideThinking bool, keepAlive *api.Duration, yoloMode bool) error {
// If enableWebsearch is true, the web search tool is registered.
func GenerateInteractive(cmd *cobra.Command, modelName string, wordWrap bool, options map[string]any, think *api.ThinkValue, hideThinking bool, keepAlive *api.Duration, yoloMode bool, enableWebsearch bool) error {
scanner, err := readline.New(readline.Prompt{
Prompt: ">>> ",
AltPrompt: "... ",
Placeholder: "Send a message (/? for help)",
AltPlaceholder: `Use """ to end multi-line input`,
AltPlaceholder: "Press Enter to send",
})
if err != nil {
return err
@@ -660,6 +669,12 @@ func GenerateInteractive(cmd *cobra.Command, modelName string, wordWrap bool, op
if supportsTools {
toolRegistry = tools.DefaultRegistry()
// Register web search and web fetch tools if enabled via flag
if enableWebsearch {
toolRegistry.RegisterWebSearch()
toolRegistry.RegisterWebFetch()
}
if toolRegistry.Has("bash") {
fmt.Fprintln(os.Stderr)
fmt.Fprintln(os.Stderr, "This experimental version of Ollama has the \033[1mbash\033[0m tool enabled.")
@@ -667,6 +682,11 @@ func GenerateInteractive(cmd *cobra.Command, modelName string, wordWrap bool, op
fmt.Fprintln(os.Stderr)
}
if toolRegistry.Has("web_search") || toolRegistry.Has("web_fetch") {
fmt.Fprintln(os.Stderr, "The \033[1mWeb Search\033[0m and \033[1mWeb Fetch\033[0m tools are enabled. Models can search and fetch web content via ollama.com.")
fmt.Fprintln(os.Stderr)
}
if yoloMode {
fmt.Fprintf(os.Stderr, "\033[1mwarning:\033[0m yolo mode - all tool approvals will be skipped\n")
}
@@ -677,6 +697,8 @@ func GenerateInteractive(cmd *cobra.Command, modelName string, wordWrap bool, op
var messages []api.Message
var sb strings.Builder
var format string
var system string
for {
line, err := scanner.Readline()
@@ -688,6 +710,7 @@ func GenerateInteractive(cmd *cobra.Command, modelName string, wordWrap bool, op
if line == "" {
fmt.Println("\nUse Ctrl + d or /bye to exit.")
}
scanner.Prompt.UseAlt = false
sb.Reset()
continue
case err != nil:
@@ -707,6 +730,10 @@ func GenerateInteractive(cmd *cobra.Command, modelName string, wordWrap bool, op
continue
case strings.HasPrefix(line, "/help"), strings.HasPrefix(line, "/?"):
fmt.Fprintln(os.Stderr, "Available Commands:")
fmt.Fprintln(os.Stderr, " /set Set session variables")
fmt.Fprintln(os.Stderr, " /show Show model information")
fmt.Fprintln(os.Stderr, " /load Load a different model")
fmt.Fprintln(os.Stderr, " /save Save session as a model")
fmt.Fprintln(os.Stderr, " /tools Show available tools and approvals")
fmt.Fprintln(os.Stderr, " /clear Clear session context and approvals")
fmt.Fprintln(os.Stderr, " /bye Exit")
@@ -716,6 +743,280 @@ func GenerateInteractive(cmd *cobra.Command, modelName string, wordWrap bool, op
fmt.Fprintln(os.Stderr, " Ctrl+O Expand last tool output")
fmt.Fprintln(os.Stderr, "")
continue
case strings.HasPrefix(line, "/set"):
args := strings.Fields(line)
if len(args) > 1 {
switch args[1] {
case "history":
scanner.HistoryEnable()
case "nohistory":
scanner.HistoryDisable()
case "wordwrap":
wordWrap = true
fmt.Println("Set 'wordwrap' mode.")
case "nowordwrap":
wordWrap = false
fmt.Println("Set 'nowordwrap' mode.")
case "verbose":
if err := cmd.Flags().Set("verbose", "true"); err != nil {
return err
}
fmt.Println("Set 'verbose' mode.")
case "quiet":
if err := cmd.Flags().Set("verbose", "false"); err != nil {
return err
}
fmt.Println("Set 'quiet' mode.")
case "think":
thinkValue := api.ThinkValue{Value: true}
var maybeLevel string
if len(args) > 2 {
maybeLevel = args[2]
}
if maybeLevel != "" {
thinkValue.Value = maybeLevel
}
think = &thinkValue
// Check if model supports thinking
if client, err := api.ClientFromEnvironment(); err == nil {
if resp, err := client.Show(cmd.Context(), &api.ShowRequest{Model: modelName}); err == nil {
if !slices.Contains(resp.Capabilities, model.CapabilityThinking) {
fmt.Fprintf(os.Stderr, "warning: model %q does not support thinking output\n", modelName)
}
}
}
if maybeLevel != "" {
fmt.Printf("Set 'think' mode to '%s'.\n", maybeLevel)
} else {
fmt.Println("Set 'think' mode.")
}
case "nothink":
think = &api.ThinkValue{Value: false}
// Check if model supports thinking
if client, err := api.ClientFromEnvironment(); err == nil {
if resp, err := client.Show(cmd.Context(), &api.ShowRequest{Model: modelName}); err == nil {
if !slices.Contains(resp.Capabilities, model.CapabilityThinking) {
fmt.Fprintf(os.Stderr, "warning: model %q does not support thinking output\n", modelName)
}
}
}
fmt.Println("Set 'nothink' mode.")
case "format":
if len(args) < 3 || args[2] != "json" {
fmt.Println("Invalid or missing format. For 'json' mode use '/set format json'")
} else {
format = args[2]
fmt.Printf("Set format to '%s' mode.\n", args[2])
}
case "noformat":
format = ""
fmt.Println("Disabled format.")
case "parameter":
if len(args) < 4 {
fmt.Println("Usage: /set parameter <name> <value>")
continue
}
params := args[3:]
fp, err := api.FormatParams(map[string][]string{args[2]: params})
if err != nil {
fmt.Printf("Couldn't set parameter: %q\n", err)
continue
}
fmt.Printf("Set parameter '%s' to '%s'\n", args[2], strings.Join(params, ", "))
options[args[2]] = fp[args[2]]
case "system":
if len(args) < 3 {
fmt.Println("Usage: /set system <message>")
continue
}
system = strings.Join(args[2:], " ")
newMessage := api.Message{Role: "system", Content: system}
if len(messages) > 0 && messages[len(messages)-1].Role == "system" {
messages[len(messages)-1] = newMessage
} else {
messages = append(messages, newMessage)
}
fmt.Println("Set system message.")
continue
default:
fmt.Printf("Unknown command '/set %s'. Type /? for help\n", args[1])
}
} else {
fmt.Println("Usage: /set <parameter|system|history|format|wordwrap|think|verbose> [value]")
}
continue
case strings.HasPrefix(line, "/show"):
args := strings.Fields(line)
if len(args) > 1 {
client, err := api.ClientFromEnvironment()
if err != nil {
fmt.Println("error: couldn't connect to ollama server")
continue
}
req := &api.ShowRequest{
Name: modelName,
Options: options,
}
resp, err := client.Show(cmd.Context(), req)
if err != nil {
fmt.Println("error: couldn't get model")
continue
}
switch args[1] {
case "info":
fmt.Fprintf(os.Stderr, " Model\n")
fmt.Fprintf(os.Stderr, " %-16s %s\n", "Name", modelName)
if resp.Details.Family != "" {
fmt.Fprintf(os.Stderr, " %-16s %s\n", "Family", resp.Details.Family)
}
if resp.Details.ParameterSize != "" {
fmt.Fprintf(os.Stderr, " %-16s %s\n", "Parameter Size", resp.Details.ParameterSize)
}
if resp.Details.QuantizationLevel != "" {
fmt.Fprintf(os.Stderr, " %-16s %s\n", "Quantization", resp.Details.QuantizationLevel)
}
if len(resp.Capabilities) > 0 {
caps := make([]string, len(resp.Capabilities))
for i, c := range resp.Capabilities {
caps[i] = string(c)
}
fmt.Fprintf(os.Stderr, " %-16s %s\n", "Capabilities", strings.Join(caps, ", "))
}
fmt.Fprintln(os.Stderr)
case "license":
if resp.License == "" {
fmt.Println("No license was specified for this model.")
} else {
fmt.Println(resp.License)
}
case "modelfile":
fmt.Println(resp.Modelfile)
case "parameters":
fmt.Println("Model defined parameters:")
if resp.Parameters == "" {
fmt.Println(" No additional parameters were specified.")
} else {
for _, l := range strings.Split(resp.Parameters, "\n") {
fmt.Printf(" %s\n", l)
}
}
if len(options) > 0 {
fmt.Println("\nUser defined parameters:")
for k, v := range options {
fmt.Printf(" %-30s %v\n", k, v)
}
}
case "system":
switch {
case system != "":
fmt.Println(system + "\n")
case resp.System != "":
fmt.Println(resp.System + "\n")
default:
fmt.Println("No system message was specified for this model.")
}
case "template":
if resp.Template != "" {
fmt.Println(resp.Template)
} else {
fmt.Println("No prompt template was specified for this model.")
}
default:
fmt.Printf("Unknown command '/show %s'. Type /? for help\n", args[1])
}
} else {
fmt.Println("Usage: /show <info|license|modelfile|parameters|system|template>")
}
continue
case strings.HasPrefix(line, "/load"):
args := strings.Fields(line)
if len(args) != 2 {
fmt.Println("Usage: /load <modelname>")
continue
}
newModelName := args[1]
fmt.Printf("Loading model '%s'\n", newModelName)
// Create progress spinner
p := progress.NewProgress(os.Stderr)
spinner := progress.NewSpinner("")
p.Add("", spinner)
// Get client
client, err := api.ClientFromEnvironment()
if err != nil {
p.StopAndClear()
fmt.Println("error: couldn't connect to ollama server")
continue
}
// Check if model exists and get its info
info, err := client.Show(cmd.Context(), &api.ShowRequest{Model: newModelName})
if err != nil {
p.StopAndClear()
if strings.Contains(err.Error(), "not found") {
fmt.Printf("Couldn't find model '%s'\n", newModelName)
} else {
fmt.Printf("error: %v\n", err)
}
continue
}
// For cloud models, no need to preload
if info.RemoteHost == "" {
// Preload the model by sending an empty generate request
req := &api.GenerateRequest{
Model: newModelName,
Think: think,
}
err = client.Generate(cmd.Context(), req, func(r api.GenerateResponse) error {
return nil
})
if err != nil {
p.StopAndClear()
if strings.Contains(err.Error(), "not found") {
fmt.Printf("Couldn't find model '%s'\n", newModelName)
} else if strings.Contains(err.Error(), "does not support thinking") {
fmt.Printf("error: %v\n", err)
} else {
fmt.Printf("error loading model: %v\n", err)
}
continue
}
}
p.StopAndClear()
modelName = newModelName
messages = []api.Message{}
approval.Reset()
continue
case strings.HasPrefix(line, "/save"):
args := strings.Fields(line)
if len(args) != 2 {
fmt.Println("Usage: /save <modelname>")
continue
}
client, err := api.ClientFromEnvironment()
if err != nil {
fmt.Println("error: couldn't connect to ollama server")
continue
}
req := &api.CreateRequest{
Model: args[1],
From: modelName,
Parameters: options,
Messages: messages,
}
fn := func(resp api.ProgressResponse) error { return nil }
err = client.Create(cmd.Context(), req, fn)
if err != nil {
fmt.Printf("error: %v\n", err)
continue
}
fmt.Printf("Created new model '%s'\n", args[1])
continue
case strings.HasPrefix(line, "/"):
fmt.Printf("Unknown command '%s'. Type /? for help\n", strings.Fields(line)[0])
continue
@@ -727,10 +1028,12 @@ func GenerateInteractive(cmd *cobra.Command, modelName string, wordWrap bool, op
newMessage := api.Message{Role: "user", Content: sb.String()}
messages = append(messages, newMessage)
verbose, _ := cmd.Flags().GetBool("verbose")
opts := RunOptions{
Model: modelName,
Messages: messages,
WordWrap: wordWrap,
Format: format,
Options: options,
Think: think,
HideThinking: hideThinking,
@@ -738,6 +1041,7 @@ func GenerateInteractive(cmd *cobra.Command, modelName string, wordWrap bool, op
Tools: toolRegistry,
Approval: approval,
YoloMode: yoloMode,
Verbose: verbose,
}
assistant, err := Chat(cmd.Context(), opts)

282
x/create/client/create.go Normal file
View File

@@ -0,0 +1,282 @@
// Package client provides client-side model creation for safetensors-based models.
//
// This package is in x/ because the safetensors model storage format is under development.
// It also exists to break an import cycle: server imports x/create, so x/create
// cannot import server. This sub-package can import server because server doesn't
// import it.
package client
import (
"bytes"
"encoding/json"
"fmt"
"io"
"github.com/ollama/ollama/progress"
"github.com/ollama/ollama/server"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/x/create"
)
// MinOllamaVersion is the minimum Ollama version required for safetensors models.
const MinOllamaVersion = "0.14.0"
// ModelfileConfig holds configuration extracted from a Modelfile.
type ModelfileConfig struct {
Template string
System string
License string
}
// CreateOptions holds all options for model creation.
type CreateOptions struct {
ModelName string
ModelDir string
Quantize string // "fp8" for quantization
Modelfile *ModelfileConfig // template/system/license from Modelfile
}
// CreateModel imports a model from a local directory.
// This creates blobs and manifest directly on disk, bypassing the HTTP API.
// Automatically detects model type (safetensors LLM vs image gen) and routes accordingly.
func CreateModel(opts CreateOptions, p *progress.Progress) error {
// Detect model type
isSafetensors := create.IsSafetensorsModelDir(opts.ModelDir)
isImageGen := create.IsTensorModelDir(opts.ModelDir)
if !isSafetensors && !isImageGen {
return fmt.Errorf("%s is not a supported model directory (needs config.json + *.safetensors or model_index.json)", opts.ModelDir)
}
// Determine model type settings
var modelType, spinnerKey string
var capabilities []string
if isSafetensors {
modelType = "safetensors model"
spinnerKey = "create"
capabilities = []string{"completion"}
} else {
modelType = "image generation model"
spinnerKey = "imagegen"
capabilities = []string{"image"}
}
// Set up progress spinner
statusMsg := "importing " + modelType
spinner := progress.NewSpinner(statusMsg)
p.Add(spinnerKey, spinner)
progressFn := func(msg string) {
spinner.Stop()
statusMsg = msg
spinner = progress.NewSpinner(statusMsg)
p.Add(spinnerKey, spinner)
}
// Create the model using shared callbacks
var err error
if isSafetensors {
err = create.CreateSafetensorsModel(
opts.ModelName, opts.ModelDir, opts.Quantize,
newLayerCreator(), newTensorLayerCreator(),
newManifestWriter(opts, capabilities),
progressFn,
)
} else {
err = create.CreateImageGenModel(
opts.ModelName, opts.ModelDir, opts.Quantize,
newLayerCreator(), newTensorLayerCreator(),
newManifestWriter(opts, capabilities),
progressFn,
)
}
spinner.Stop()
if err != nil {
return err
}
fmt.Printf("Created %s '%s'\n", modelType, opts.ModelName)
return nil
}
// newLayerCreator returns a LayerCreator callback for creating config/JSON layers.
func newLayerCreator() create.LayerCreator {
return func(r io.Reader, mediaType, name string) (create.LayerInfo, error) {
layer, err := server.NewLayer(r, mediaType)
if err != nil {
return create.LayerInfo{}, err
}
return create.LayerInfo{
Digest: layer.Digest,
Size: layer.Size,
MediaType: layer.MediaType,
Name: name,
}, nil
}
}
// newTensorLayerCreator returns a QuantizingTensorLayerCreator callback for creating tensor layers.
// When quantize is non-empty, returns multiple layers (weight + scales + optional qbias).
func newTensorLayerCreator() create.QuantizingTensorLayerCreator {
return func(r io.Reader, name, dtype string, shape []int32, quantize string) ([]create.LayerInfo, error) {
if quantize != "" {
return createQuantizedLayers(r, name, dtype, shape, quantize)
}
return createUnquantizedLayer(r, name)
}
}
// createQuantizedLayers quantizes a tensor and returns the resulting layers.
func createQuantizedLayers(r io.Reader, name, dtype string, shape []int32, quantize string) ([]create.LayerInfo, error) {
if !QuantizeSupported() {
return nil, fmt.Errorf("quantization requires MLX support")
}
// Quantize the tensor
qweightData, scalesData, qbiasData, _, _, _, err := quantizeTensor(r, name, dtype, shape, quantize)
if err != nil {
return nil, fmt.Errorf("failed to quantize %s: %w", name, err)
}
// Create layer for quantized weight
weightLayer, err := server.NewLayer(bytes.NewReader(qweightData), server.MediaTypeImageTensor)
if err != nil {
return nil, err
}
// Create layer for scales
scalesLayer, err := server.NewLayer(bytes.NewReader(scalesData), server.MediaTypeImageTensor)
if err != nil {
return nil, err
}
layers := []create.LayerInfo{
{
Digest: weightLayer.Digest,
Size: weightLayer.Size,
MediaType: weightLayer.MediaType,
Name: name,
},
{
Digest: scalesLayer.Digest,
Size: scalesLayer.Size,
MediaType: scalesLayer.MediaType,
Name: name + "_scale",
},
}
// Add qbiases layer if present (affine mode)
if qbiasData != nil {
qbiasLayer, err := server.NewLayer(bytes.NewReader(qbiasData), server.MediaTypeImageTensor)
if err != nil {
return nil, err
}
layers = append(layers, create.LayerInfo{
Digest: qbiasLayer.Digest,
Size: qbiasLayer.Size,
MediaType: qbiasLayer.MediaType,
Name: name + "_qbias",
})
}
return layers, nil
}
// createUnquantizedLayer creates a single tensor layer without quantization.
func createUnquantizedLayer(r io.Reader, name string) ([]create.LayerInfo, error) {
layer, err := server.NewLayer(r, server.MediaTypeImageTensor)
if err != nil {
return nil, err
}
return []create.LayerInfo{
{
Digest: layer.Digest,
Size: layer.Size,
MediaType: layer.MediaType,
Name: name,
},
}, nil
}
// newManifestWriter returns a ManifestWriter callback for writing the model manifest.
func newManifestWriter(opts CreateOptions, capabilities []string) create.ManifestWriter {
return func(modelName string, config create.LayerInfo, layers []create.LayerInfo) error {
name := model.ParseName(modelName)
if !name.IsValid() {
return fmt.Errorf("invalid model name: %s", modelName)
}
// Create config blob with version requirement
configData := model.ConfigV2{
ModelFormat: "safetensors",
Capabilities: capabilities,
Requires: MinOllamaVersion,
}
configJSON, err := json.Marshal(configData)
if err != nil {
return fmt.Errorf("failed to marshal config: %w", err)
}
// Create config layer blob
configLayer, err := server.NewLayer(bytes.NewReader(configJSON), "application/vnd.docker.container.image.v1+json")
if err != nil {
return fmt.Errorf("failed to create config layer: %w", err)
}
// Convert LayerInfo to server.Layer
serverLayers := make([]server.Layer, 0, len(layers))
for _, l := range layers {
serverLayers = append(serverLayers, server.Layer{
MediaType: l.MediaType,
Digest: l.Digest,
Size: l.Size,
Name: l.Name,
})
}
// Add Modelfile layers if present
if opts.Modelfile != nil {
modelfileLayers, err := createModelfileLayers(opts.Modelfile)
if err != nil {
return err
}
serverLayers = append(serverLayers, modelfileLayers...)
}
return server.WriteManifest(name, configLayer, serverLayers)
}
}
// createModelfileLayers creates layers for template, system, and license from Modelfile config.
func createModelfileLayers(mf *ModelfileConfig) ([]server.Layer, error) {
var layers []server.Layer
if mf.Template != "" {
layer, err := server.NewLayer(bytes.NewReader([]byte(mf.Template)), "application/vnd.ollama.image.template")
if err != nil {
return nil, fmt.Errorf("failed to create template layer: %w", err)
}
layers = append(layers, layer)
}
if mf.System != "" {
layer, err := server.NewLayer(bytes.NewReader([]byte(mf.System)), "application/vnd.ollama.image.system")
if err != nil {
return nil, fmt.Errorf("failed to create system layer: %w", err)
}
layers = append(layers, layer)
}
if mf.License != "" {
layer, err := server.NewLayer(bytes.NewReader([]byte(mf.License)), "application/vnd.ollama.image.license")
if err != nil {
return nil, fmt.Errorf("failed to create license layer: %w", err)
}
layers = append(layers, layer)
}
return layers, nil
}

View File

@@ -0,0 +1,146 @@
package client
import (
"testing"
)
func TestModelfileConfig(t *testing.T) {
// Test that ModelfileConfig struct works as expected
config := &ModelfileConfig{
Template: "{{ .Prompt }}",
System: "You are a helpful assistant.",
License: "MIT",
}
if config.Template != "{{ .Prompt }}" {
t.Errorf("Template = %q, want %q", config.Template, "{{ .Prompt }}")
}
if config.System != "You are a helpful assistant." {
t.Errorf("System = %q, want %q", config.System, "You are a helpful assistant.")
}
if config.License != "MIT" {
t.Errorf("License = %q, want %q", config.License, "MIT")
}
}
func TestModelfileConfig_Empty(t *testing.T) {
config := &ModelfileConfig{}
if config.Template != "" {
t.Errorf("Template should be empty, got %q", config.Template)
}
if config.System != "" {
t.Errorf("System should be empty, got %q", config.System)
}
if config.License != "" {
t.Errorf("License should be empty, got %q", config.License)
}
}
func TestModelfileConfig_PartialFields(t *testing.T) {
// Test config with only some fields set
config := &ModelfileConfig{
Template: "{{ .Prompt }}",
// System and License intentionally empty
}
if config.Template == "" {
t.Error("Template should not be empty")
}
if config.System != "" {
t.Error("System should be empty")
}
if config.License != "" {
t.Error("License should be empty")
}
}
func TestMinOllamaVersion(t *testing.T) {
// Verify the minimum version constant is set
if MinOllamaVersion == "" {
t.Error("MinOllamaVersion should not be empty")
}
if MinOllamaVersion != "0.14.0" {
t.Errorf("MinOllamaVersion = %q, want %q", MinOllamaVersion, "0.14.0")
}
}
func TestCreateModel_InvalidDir(t *testing.T) {
// Test that CreateModel returns error for invalid directory
err := CreateModel(CreateOptions{
ModelName: "test-model",
ModelDir: "/nonexistent/path",
}, nil)
if err == nil {
t.Error("expected error for nonexistent directory, got nil")
}
}
func TestCreateModel_NotSafetensorsDir(t *testing.T) {
// Test that CreateModel returns error for directory without safetensors
dir := t.TempDir()
err := CreateModel(CreateOptions{
ModelName: "test-model",
ModelDir: dir,
}, nil)
if err == nil {
t.Error("expected error for empty directory, got nil")
}
}
func TestCreateOptions(t *testing.T) {
opts := CreateOptions{
ModelName: "my-model",
ModelDir: "/path/to/model",
Quantize: "fp8",
Modelfile: &ModelfileConfig{
Template: "test",
System: "system",
License: "MIT",
},
}
if opts.ModelName != "my-model" {
t.Errorf("ModelName = %q, want %q", opts.ModelName, "my-model")
}
if opts.ModelDir != "/path/to/model" {
t.Errorf("ModelDir = %q, want %q", opts.ModelDir, "/path/to/model")
}
if opts.Quantize != "fp8" {
t.Errorf("Quantize = %q, want %q", opts.Quantize, "fp8")
}
if opts.Modelfile == nil {
t.Error("Modelfile should not be nil")
}
if opts.Modelfile.Template != "test" {
t.Errorf("Modelfile.Template = %q, want %q", opts.Modelfile.Template, "test")
}
}
func TestCreateOptions_Defaults(t *testing.T) {
opts := CreateOptions{
ModelName: "test",
ModelDir: "/tmp",
}
// Quantize should default to empty
if opts.Quantize != "" {
t.Errorf("Quantize should be empty by default, got %q", opts.Quantize)
}
// Modelfile should default to nil
if opts.Modelfile != nil {
t.Error("Modelfile should be nil by default")
}
}
func TestQuantizeSupported(t *testing.T) {
// This just verifies the function exists and returns a boolean
// The actual value depends on build tags (mlx vs non-mlx)
supported := QuantizeSupported()
// In non-mlx builds, this should be false
// We can't easily test both cases, so just verify it returns something
_ = supported
}

130
x/create/client/quantize.go Normal file
View File

@@ -0,0 +1,130 @@
//go:build mlx
package client
import (
"fmt"
"io"
"os"
"path/filepath"
"github.com/ollama/ollama/x/imagegen/mlx"
)
// quantizeTensor loads a tensor from safetensors format, quantizes it,
// and returns safetensors data for the quantized weights, scales, and biases.
// Supported quantization types: "fp8" (affine 8-bit)
// Uses MLX's native SaveSafetensors to ensure correct dtype handling (especially uint32 for quantized weights).
func quantizeTensor(r io.Reader, name, dtype string, shape []int32, quantize string) (qweightData, scalesData, qbiasData []byte, qweightShape, scalesShape, qbiasShape []int32, err error) {
tmpDir := ensureTempDir()
// Read safetensors data to a temp file (LoadSafetensorsNative needs a path)
tmpFile, err := os.CreateTemp(tmpDir, "quant-input-*.safetensors")
if err != nil {
return nil, nil, nil, nil, nil, nil, fmt.Errorf("failed to create temp file: %w", err)
}
tmpPath := tmpFile.Name()
defer os.Remove(tmpPath)
if _, err := io.Copy(tmpFile, r); err != nil {
tmpFile.Close()
return nil, nil, nil, nil, nil, nil, fmt.Errorf("failed to write temp file: %w", err)
}
tmpFile.Close()
// Load the tensor using MLX's native loader
st, err := mlx.LoadSafetensorsNative(tmpPath)
if err != nil {
return nil, nil, nil, nil, nil, nil, fmt.Errorf("failed to load safetensors: %w", err)
}
defer st.Free()
// Get the tensor (it's stored as "data" in our minimal safetensors format)
arr := st.Get("data")
if arr == nil {
return nil, nil, nil, nil, nil, nil, fmt.Errorf("tensor 'data' not found in safetensors")
}
// Convert to BFloat16 if needed (quantize expects float type)
if arr.Dtype() != mlx.DtypeBFloat16 && arr.Dtype() != mlx.DtypeFloat32 && arr.Dtype() != mlx.DtypeFloat16 {
arr = mlx.AsType(arr, mlx.DtypeBFloat16)
mlx.Eval(arr)
}
// Quantize based on quantization type
var qweight, scales, qbiases *mlx.Array
switch quantize {
case "fp4":
// affine mode: group_size=32, bits=4
qweight, scales, qbiases = mlx.Quantize(arr, 32, 4, "affine")
case "fp8":
// affine mode: group_size=32, bits=8
qweight, scales, qbiases = mlx.Quantize(arr, 32, 8, "affine")
default:
return nil, nil, nil, nil, nil, nil, fmt.Errorf("unsupported quantization type: %s", quantize)
}
// Eval and make contiguous for data access
qweight = mlx.Contiguous(qweight)
scales = mlx.Contiguous(scales)
if qbiases != nil {
qbiases = mlx.Contiguous(qbiases)
mlx.Eval(qweight, scales, qbiases)
} else {
mlx.Eval(qweight, scales)
}
// Get shapes
qweightShape = qweight.Shape()
scalesShape = scales.Shape()
// Save quantized weight using MLX's native safetensors (correctly handles uint32 dtype)
qweightPath := filepath.Join(tmpDir, "qweight.safetensors")
defer os.Remove(qweightPath)
if err := mlx.SaveSafetensors(qweightPath, map[string]*mlx.Array{"data": qweight}); err != nil {
return nil, nil, nil, nil, nil, nil, fmt.Errorf("failed to save quantized weight: %w", err)
}
qweightData, err = os.ReadFile(qweightPath)
if err != nil {
return nil, nil, nil, nil, nil, nil, fmt.Errorf("failed to read quantized weight: %w", err)
}
// Save scales using MLX's native safetensors
scalesPath := filepath.Join(tmpDir, "scales.safetensors")
defer os.Remove(scalesPath)
if err := mlx.SaveSafetensors(scalesPath, map[string]*mlx.Array{"data": scales}); err != nil {
return nil, nil, nil, nil, nil, nil, fmt.Errorf("failed to save scales: %w", err)
}
scalesData, err = os.ReadFile(scalesPath)
if err != nil {
return nil, nil, nil, nil, nil, nil, fmt.Errorf("failed to read scales: %w", err)
}
// Affine mode returns qbiases for zero-point offset
if qbiases != nil {
qbiasShape = qbiases.Shape()
qbiasPath := filepath.Join(tmpDir, "qbias.safetensors")
defer os.Remove(qbiasPath)
if err := mlx.SaveSafetensors(qbiasPath, map[string]*mlx.Array{"data": qbiases}); err != nil {
return nil, nil, nil, nil, nil, nil, fmt.Errorf("failed to save qbiases: %w", err)
}
qbiasData, err = os.ReadFile(qbiasPath)
if err != nil {
return nil, nil, nil, nil, nil, nil, fmt.Errorf("failed to read qbiases: %w", err)
}
}
return qweightData, scalesData, qbiasData, qweightShape, scalesShape, qbiasShape, nil
}
// QuantizeSupported returns true if quantization is supported (MLX build)
func QuantizeSupported() bool {
return true
}
// ensureTempDir creates the temp directory for quantization if it doesn't exist
func ensureTempDir() string {
tmpDir := filepath.Join(os.TempDir(), "ollama-quantize")
os.MkdirAll(tmpDir, 0755)
return tmpDir
}

View File

@@ -0,0 +1,18 @@
//go:build !mlx
package client
import (
"fmt"
"io"
)
// quantizeTensor is not available without MLX
func quantizeTensor(r io.Reader, name, dtype string, shape []int32, quantize string) (qweightData, scalesData, qbiasData []byte, qweightShape, scalesShape, qbiasShape []int32, err error) {
return nil, nil, nil, nil, nil, nil, fmt.Errorf("quantization requires MLX support (build with mlx tag)")
}
// QuantizeSupported returns false when MLX is not available
func QuantizeSupported() bool {
return false
}

399
x/create/create.go Normal file
View File

@@ -0,0 +1,399 @@
package create
import (
"encoding/json"
"fmt"
"io"
"os"
"path/filepath"
"slices"
"strings"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/x/imagegen/safetensors"
)
// ModelConfig represents the config blob stored with a model.
type ModelConfig struct {
ModelFormat string `json:"model_format"`
Capabilities []string `json:"capabilities"`
}
// Manifest represents the manifest JSON structure.
type Manifest struct {
SchemaVersion int `json:"schemaVersion"`
MediaType string `json:"mediaType"`
Config ManifestLayer `json:"config"`
Layers []ManifestLayer `json:"layers"`
}
// ManifestLayer represents a layer in the manifest.
type ManifestLayer struct {
MediaType string `json:"mediaType"`
Digest string `json:"digest"`
Size int64 `json:"size"`
Name string `json:"name,omitempty"`
}
// defaultManifestDir returns the manifest storage directory.
func defaultManifestDir() string {
return filepath.Join(envconfig.Models(), "manifests")
}
// defaultBlobDir returns the blob storage directory.
func defaultBlobDir() string {
return filepath.Join(envconfig.Models(), "blobs")
}
// resolveManifestPath converts a model name to a manifest file path.
func resolveManifestPath(modelName string) string {
host := "registry.ollama.ai"
namespace := "library"
name := modelName
tag := "latest"
if idx := strings.LastIndex(name, ":"); idx != -1 {
tag = name[idx+1:]
name = name[:idx]
}
parts := strings.Split(name, "/")
switch len(parts) {
case 3:
host = parts[0]
namespace = parts[1]
name = parts[2]
case 2:
namespace = parts[0]
name = parts[1]
}
return filepath.Join(defaultManifestDir(), host, namespace, name, tag)
}
// loadManifest loads a manifest for the given model name.
func loadManifest(modelName string) (*Manifest, error) {
manifestPath := resolveManifestPath(modelName)
data, err := os.ReadFile(manifestPath)
if err != nil {
return nil, err
}
var manifest Manifest
if err := json.Unmarshal(data, &manifest); err != nil {
return nil, err
}
return &manifest, nil
}
// loadModelConfig loads the config blob for a model.
func loadModelConfig(modelName string) (*ModelConfig, error) {
manifest, err := loadManifest(modelName)
if err != nil {
return nil, err
}
// Read the config blob
blobName := strings.Replace(manifest.Config.Digest, ":", "-", 1)
blobPath := filepath.Join(defaultBlobDir(), blobName)
data, err := os.ReadFile(blobPath)
if err != nil {
return nil, err
}
var config ModelConfig
if err := json.Unmarshal(data, &config); err != nil {
return nil, err
}
return &config, nil
}
// IsSafetensorsModel checks if a model was created with the experimental
// safetensors builder by checking the model format in the config.
func IsSafetensorsModel(modelName string) bool {
config, err := loadModelConfig(modelName)
if err != nil {
return false
}
return config.ModelFormat == "safetensors"
}
// IsSafetensorsLLMModel checks if a model is a safetensors LLM model
// (has completion capability, not image generation).
func IsSafetensorsLLMModel(modelName string) bool {
config, err := loadModelConfig(modelName)
if err != nil {
return false
}
return config.ModelFormat == "safetensors" && slices.Contains(config.Capabilities, "completion")
}
// IsImageGenModel checks if a model is an image generation model
// (has image capability).
func IsImageGenModel(modelName string) bool {
config, err := loadModelConfig(modelName)
if err != nil {
return false
}
return config.ModelFormat == "safetensors" && slices.Contains(config.Capabilities, "image")
}
// GetModelArchitecture returns the architecture from the model's config.json layer.
func GetModelArchitecture(modelName string) (string, error) {
manifest, err := loadManifest(modelName)
if err != nil {
return "", err
}
// Find the config.json layer
for _, layer := range manifest.Layers {
if layer.Name == "config.json" && layer.MediaType == "application/vnd.ollama.image.json" {
blobName := strings.Replace(layer.Digest, ":", "-", 1)
blobPath := filepath.Join(defaultBlobDir(), blobName)
data, err := os.ReadFile(blobPath)
if err != nil {
return "", err
}
var cfg struct {
Architectures []string `json:"architectures"`
ModelType string `json:"model_type"`
}
if err := json.Unmarshal(data, &cfg); err != nil {
return "", err
}
// Prefer model_type, fall back to first architecture
if cfg.ModelType != "" {
return cfg.ModelType, nil
}
if len(cfg.Architectures) > 0 {
return cfg.Architectures[0], nil
}
}
}
return "", fmt.Errorf("architecture not found in model config")
}
// IsTensorModelDir checks if the directory contains a diffusers-style tensor model
// by looking for model_index.json, which is the standard diffusers pipeline config.
func IsTensorModelDir(dir string) bool {
_, err := os.Stat(filepath.Join(dir, "model_index.json"))
return err == nil
}
// IsSafetensorsModelDir checks if the directory contains a standard safetensors model
// by looking for config.json and at least one .safetensors file.
func IsSafetensorsModelDir(dir string) bool {
// Must have config.json
if _, err := os.Stat(filepath.Join(dir, "config.json")); err != nil {
return false
}
// Must have at least one .safetensors file
entries, err := os.ReadDir(dir)
if err != nil {
return false
}
for _, entry := range entries {
if strings.HasSuffix(entry.Name(), ".safetensors") {
return true
}
}
return false
}
// LayerInfo holds metadata for a created layer.
type LayerInfo struct {
Digest string
Size int64
MediaType string
Name string // Path-style name: "component/tensor" or "path/to/config.json"
}
// LayerCreator is called to create a blob layer.
// name is the path-style name (e.g., "tokenizer/tokenizer.json")
type LayerCreator func(r io.Reader, mediaType, name string) (LayerInfo, error)
// TensorLayerCreator creates a tensor blob layer with metadata.
// name is the path-style name including component (e.g., "text_encoder/model.embed_tokens.weight")
type TensorLayerCreator func(r io.Reader, name, dtype string, shape []int32) (LayerInfo, error)
// QuantizingTensorLayerCreator creates tensor layers with optional quantization.
// When quantize is non-empty (e.g., "fp8"), returns multiple layers (weight + scales + biases).
type QuantizingTensorLayerCreator func(r io.Reader, name, dtype string, shape []int32, quantize string) ([]LayerInfo, error)
// ManifestWriter writes the manifest file.
type ManifestWriter func(modelName string, config LayerInfo, layers []LayerInfo) error
// ShouldQuantize returns true if a tensor should be quantized.
// For image gen models (component non-empty): quantizes linear weights, skipping VAE, embeddings, norms.
// For LLM models (component empty): quantizes linear weights, skipping embeddings, norms, and small tensors.
func ShouldQuantize(name, component string) bool {
// Image gen specific: skip VAE entirely
if component == "vae" {
return false
}
// Skip embeddings
if strings.Contains(name, "embed") {
return false
}
// Skip layer norms and RMS norms
if strings.Contains(name, "norm") || strings.Contains(name, "ln_") || strings.Contains(name, "layernorm") {
return false
}
// Skip biases
if strings.HasSuffix(name, ".bias") {
return false
}
// Only quantize weights
return strings.HasSuffix(name, ".weight")
}
// ShouldQuantizeTensor returns true if a tensor should be quantized based on name and shape.
// This is a more detailed check that also considers tensor dimensions.
func ShouldQuantizeTensor(name string, shape []int32) bool {
// Use basic name-based check first
if !ShouldQuantize(name, "") {
return false
}
// Only quantize 2D tensors (linear layers) - skip 1D (biases, norms) and higher-D (convolutions if any)
if len(shape) != 2 {
return false
}
// Skip small tensors (less than 1024 elements) - not worth quantizing
if len(shape) >= 2 && int64(shape[0])*int64(shape[1]) < 1024 {
return false
}
// MLX quantization requires last dimension to be divisible by group size (32)
if shape[len(shape)-1]%32 != 0 {
return false
}
return true
}
// CreateSafetensorsModel imports a standard safetensors model from a directory.
// This handles Hugging Face style models with config.json and *.safetensors files.
// Stores each tensor as a separate blob for fine-grained deduplication.
// If quantize is non-empty (e.g., "fp8"), eligible tensors will be quantized.
func CreateSafetensorsModel(modelName, modelDir, quantize string, createLayer LayerCreator, createTensorLayer QuantizingTensorLayerCreator, writeManifest ManifestWriter, fn func(status string)) error {
var layers []LayerInfo
var configLayer LayerInfo
entries, err := os.ReadDir(modelDir)
if err != nil {
return fmt.Errorf("failed to read directory: %w", err)
}
// Process all safetensors files
for _, entry := range entries {
if entry.IsDir() || !strings.HasSuffix(entry.Name(), ".safetensors") {
continue
}
stPath := filepath.Join(modelDir, entry.Name())
// Extract individual tensors from safetensors file
extractor, err := safetensors.OpenForExtraction(stPath)
if err != nil {
return fmt.Errorf("failed to open %s: %w", stPath, err)
}
tensorNames := extractor.ListTensors()
quantizeMsg := ""
if quantize != "" {
quantizeMsg = fmt.Sprintf(", quantizing to %s", quantize)
}
fn(fmt.Sprintf("importing %s (%d tensors%s)", entry.Name(), len(tensorNames), quantizeMsg))
for _, tensorName := range tensorNames {
td, err := extractor.GetTensor(tensorName)
if err != nil {
extractor.Close()
return fmt.Errorf("failed to get tensor %s: %w", tensorName, err)
}
// Determine quantization type for this tensor (empty string if not quantizing)
quantizeType := ""
if quantize != "" && ShouldQuantizeTensor(tensorName, td.Shape) {
quantizeType = quantize
}
// Store as minimal safetensors format (88 bytes header overhead)
// This enables native mmap loading via mlx_load_safetensors
// createTensorLayer returns multiple layers if quantizing (weight + scales)
newLayers, err := createTensorLayer(td.SafetensorsReader(), tensorName, td.Dtype, td.Shape, quantizeType)
if err != nil {
extractor.Close()
return fmt.Errorf("failed to create layer for %s: %w", tensorName, err)
}
layers = append(layers, newLayers...)
}
extractor.Close()
}
// Process all JSON config files
for _, entry := range entries {
if entry.IsDir() || !strings.HasSuffix(entry.Name(), ".json") {
continue
}
// Skip the index file as we don't need it after extraction
if entry.Name() == "model.safetensors.index.json" {
continue
}
cfgPath := entry.Name()
fullPath := filepath.Join(modelDir, cfgPath)
fn(fmt.Sprintf("importing config %s", cfgPath))
f, err := os.Open(fullPath)
if err != nil {
return fmt.Errorf("failed to open %s: %w", cfgPath, err)
}
layer, err := createLayer(f, "application/vnd.ollama.image.json", cfgPath)
f.Close()
if err != nil {
return fmt.Errorf("failed to create layer for %s: %w", cfgPath, err)
}
// Use config.json as the config layer
if cfgPath == "config.json" {
configLayer = layer
}
layers = append(layers, layer)
}
if configLayer.Digest == "" {
return fmt.Errorf("config.json not found in %s", modelDir)
}
fn(fmt.Sprintf("writing manifest for %s", modelName))
if err := writeManifest(modelName, configLayer, layers); err != nil {
return fmt.Errorf("failed to write manifest: %w", err)
}
fn(fmt.Sprintf("successfully imported %s with %d layers", modelName, len(layers)))
return nil
}

752
x/create/create_test.go Normal file
View File

@@ -0,0 +1,752 @@
package create
import (
"bytes"
"encoding/binary"
"encoding/json"
"io"
"os"
"path/filepath"
"strings"
"testing"
)
func TestIsTensorModelDir(t *testing.T) {
tests := []struct {
name string
setup func(dir string) error
expected bool
}{
{
name: "valid diffusers model with model_index.json",
setup: func(dir string) error {
return os.WriteFile(filepath.Join(dir, "model_index.json"), []byte(`{"_class_name": "FluxPipeline"}`), 0o644)
},
expected: true,
},
{
name: "empty directory",
setup: func(dir string) error {
return nil
},
expected: false,
},
{
name: "directory with other files but no model_index.json",
setup: func(dir string) error {
return os.WriteFile(filepath.Join(dir, "config.json"), []byte(`{}`), 0o644)
},
expected: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
dir := t.TempDir()
if err := tt.setup(dir); err != nil {
t.Fatalf("setup failed: %v", err)
}
got := IsTensorModelDir(dir)
if got != tt.expected {
t.Errorf("IsTensorModelDir() = %v, want %v", got, tt.expected)
}
})
}
}
func TestIsSafetensorsModelDir(t *testing.T) {
tests := []struct {
name string
setup func(dir string) error
expected bool
}{
{
name: "valid safetensors model with config.json and .safetensors file",
setup: func(dir string) error {
if err := os.WriteFile(filepath.Join(dir, "config.json"), []byte(`{"model_type": "gemma3"}`), 0o644); err != nil {
return err
}
return os.WriteFile(filepath.Join(dir, "model.safetensors"), []byte("dummy"), 0o644)
},
expected: true,
},
{
name: "config.json only, no safetensors files",
setup: func(dir string) error {
return os.WriteFile(filepath.Join(dir, "config.json"), []byte(`{}`), 0o644)
},
expected: false,
},
{
name: "safetensors file only, no config.json",
setup: func(dir string) error {
return os.WriteFile(filepath.Join(dir, "model.safetensors"), []byte("dummy"), 0o644)
},
expected: false,
},
{
name: "empty directory",
setup: func(dir string) error {
return nil
},
expected: false,
},
{
name: "multiple safetensors files with config.json",
setup: func(dir string) error {
if err := os.WriteFile(filepath.Join(dir, "config.json"), []byte(`{}`), 0o644); err != nil {
return err
}
if err := os.WriteFile(filepath.Join(dir, "model-00001-of-00002.safetensors"), []byte("dummy"), 0o644); err != nil {
return err
}
return os.WriteFile(filepath.Join(dir, "model-00002-of-00002.safetensors"), []byte("dummy"), 0o644)
},
expected: true,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
dir := t.TempDir()
if err := tt.setup(dir); err != nil {
t.Fatalf("setup failed: %v", err)
}
got := IsSafetensorsModelDir(dir)
if got != tt.expected {
t.Errorf("IsSafetensorsModelDir() = %v, want %v", got, tt.expected)
}
})
}
}
func TestIsSafetensorsModelDir_NonexistentDir(t *testing.T) {
got := IsSafetensorsModelDir("/nonexistent/path/that/does/not/exist")
if got != false {
t.Errorf("IsSafetensorsModelDir() = %v for nonexistent dir, want false", got)
}
}
// createMinimalSafetensors creates a minimal valid safetensors file with one tensor
func createMinimalSafetensors(t *testing.T, path string) {
t.Helper()
// Create a minimal safetensors file with a single float32 tensor
header := map[string]interface{}{
"test_tensor": map[string]interface{}{
"dtype": "F32",
"shape": []int{2, 2},
"data_offsets": []int{0, 16}, // 4 float32 values = 16 bytes
},
}
headerJSON, err := json.Marshal(header)
if err != nil {
t.Fatalf("failed to marshal header: %v", err)
}
// Pad header to 8-byte alignment
padding := (8 - len(headerJSON)%8) % 8
headerJSON = append(headerJSON, bytes.Repeat([]byte(" "), padding)...)
// Write file
f, err := os.Create(path)
if err != nil {
t.Fatalf("failed to create file: %v", err)
}
defer f.Close()
// Write header size (8 bytes, little endian)
if err := binary.Write(f, binary.LittleEndian, uint64(len(headerJSON))); err != nil {
t.Fatalf("failed to write header size: %v", err)
}
// Write header
if _, err := f.Write(headerJSON); err != nil {
t.Fatalf("failed to write header: %v", err)
}
// Write tensor data (16 bytes of zeros for 4 float32 values)
if _, err := f.Write(make([]byte, 16)); err != nil {
t.Fatalf("failed to write tensor data: %v", err)
}
}
func TestCreateSafetensorsModel(t *testing.T) {
dir := t.TempDir()
// Create config.json
configJSON := `{"model_type": "test", "architectures": ["TestModel"]}`
if err := os.WriteFile(filepath.Join(dir, "config.json"), []byte(configJSON), 0o644); err != nil {
t.Fatalf("failed to write config.json: %v", err)
}
// Create a minimal safetensors file
createMinimalSafetensors(t, filepath.Join(dir, "model.safetensors"))
// Track what was created
var createdLayers []LayerInfo
var manifestWritten bool
var manifestModelName string
var manifestConfigLayer LayerInfo
var manifestLayers []LayerInfo
var statusMessages []string
// Mock callbacks
createLayer := func(r io.Reader, mediaType, name string) (LayerInfo, error) {
data, err := io.ReadAll(r)
if err != nil {
return LayerInfo{}, err
}
layer := LayerInfo{
Digest: "sha256:test",
Size: int64(len(data)),
MediaType: mediaType,
Name: name,
}
createdLayers = append(createdLayers, layer)
return layer, nil
}
createTensorLayer := func(r io.Reader, name, dtype string, shape []int32, quantize string) ([]LayerInfo, error) {
data, err := io.ReadAll(r)
if err != nil {
return nil, err
}
layer := LayerInfo{
Digest: "sha256:tensor_" + name,
Size: int64(len(data)),
MediaType: "application/vnd.ollama.image.tensor",
Name: name,
}
createdLayers = append(createdLayers, layer)
return []LayerInfo{layer}, nil
}
writeManifest := func(modelName string, config LayerInfo, layers []LayerInfo) error {
manifestWritten = true
manifestModelName = modelName
manifestConfigLayer = config
manifestLayers = layers
return nil
}
progressFn := func(status string) {
statusMessages = append(statusMessages, status)
}
// Run CreateSafetensorsModel
err := CreateSafetensorsModel("test-model", dir, "", createLayer, createTensorLayer, writeManifest, progressFn)
if err != nil {
t.Fatalf("CreateSafetensorsModel failed: %v", err)
}
// Verify manifest was written
if !manifestWritten {
t.Error("manifest was not written")
}
if manifestModelName != "test-model" {
t.Errorf("manifest model name = %q, want %q", manifestModelName, "test-model")
}
// Verify config layer was set
if manifestConfigLayer.Name != "config.json" {
t.Errorf("config layer name = %q, want %q", manifestConfigLayer.Name, "config.json")
}
// Verify we have at least one tensor and one config layer
hasTensor := false
hasConfig := false
for _, layer := range manifestLayers {
if layer.Name == "test_tensor" {
hasTensor = true
}
if layer.Name == "config.json" {
hasConfig = true
}
}
if !hasTensor {
t.Error("no tensor layer found in manifest")
}
if !hasConfig {
t.Error("no config layer found in manifest")
}
// Verify status messages were sent
if len(statusMessages) == 0 {
t.Error("no status messages received")
}
}
func TestCreateSafetensorsModel_NoConfigJson(t *testing.T) {
dir := t.TempDir()
// Create only a safetensors file, no config.json
createMinimalSafetensors(t, filepath.Join(dir, "model.safetensors"))
// Mock callbacks (minimal)
createLayer := func(r io.Reader, mediaType, name string) (LayerInfo, error) {
io.ReadAll(r)
return LayerInfo{Name: name}, nil
}
createTensorLayer := func(r io.Reader, name, dtype string, shape []int32, quantize string) ([]LayerInfo, error) {
io.ReadAll(r)
return []LayerInfo{{Name: name}}, nil
}
writeManifest := func(modelName string, config LayerInfo, layers []LayerInfo) error {
return nil
}
progressFn := func(status string) {}
err := CreateSafetensorsModel("test-model", dir, "", createLayer, createTensorLayer, writeManifest, progressFn)
if err == nil {
t.Error("expected error for missing config.json, got nil")
}
}
func TestCreateSafetensorsModel_EmptyDir(t *testing.T) {
dir := t.TempDir()
// Mock callbacks
createLayer := func(r io.Reader, mediaType, name string) (LayerInfo, error) {
return LayerInfo{}, nil
}
createTensorLayer := func(r io.Reader, name, dtype string, shape []int32, quantize string) ([]LayerInfo, error) {
return []LayerInfo{{}}, nil
}
writeManifest := func(modelName string, config LayerInfo, layers []LayerInfo) error {
return nil
}
progressFn := func(status string) {}
err := CreateSafetensorsModel("test-model", dir, "", createLayer, createTensorLayer, writeManifest, progressFn)
if err == nil {
t.Error("expected error for empty directory, got nil")
}
}
func TestCreateSafetensorsModel_SkipsIndexJson(t *testing.T) {
dir := t.TempDir()
// Create config.json
if err := os.WriteFile(filepath.Join(dir, "config.json"), []byte(`{}`), 0o644); err != nil {
t.Fatalf("failed to write config.json: %v", err)
}
// Create model.safetensors.index.json (should be skipped)
indexJSON := `{"metadata": {"total_size": 100}, "weight_map": {}}`
if err := os.WriteFile(filepath.Join(dir, "model.safetensors.index.json"), []byte(indexJSON), 0o644); err != nil {
t.Fatalf("failed to write index.json: %v", err)
}
// Create a minimal safetensors file
createMinimalSafetensors(t, filepath.Join(dir, "model.safetensors"))
var configNames []string
createLayer := func(r io.Reader, mediaType, name string) (LayerInfo, error) {
io.ReadAll(r)
configNames = append(configNames, name)
return LayerInfo{Name: name, Digest: "sha256:test"}, nil
}
createTensorLayer := func(r io.Reader, name, dtype string, shape []int32, quantize string) ([]LayerInfo, error) {
io.ReadAll(r)
return []LayerInfo{{Name: name}}, nil
}
writeManifest := func(modelName string, config LayerInfo, layers []LayerInfo) error {
return nil
}
progressFn := func(status string) {}
err := CreateSafetensorsModel("test-model", dir, "", createLayer, createTensorLayer, writeManifest, progressFn)
if err != nil {
t.Fatalf("CreateSafetensorsModel failed: %v", err)
}
// Verify model.safetensors.index.json was not included
for _, name := range configNames {
if name == "model.safetensors.index.json" {
t.Error("model.safetensors.index.json should have been skipped")
}
}
}
func TestResolveManifestPath(t *testing.T) {
tests := []struct {
name string
modelName string
wantParts []string // Parts that should appear in the path
}{
{
name: "simple model name",
modelName: "llama2",
wantParts: []string{"registry.ollama.ai", "library", "llama2", "latest"},
},
{
name: "model name with tag",
modelName: "llama2:7b",
wantParts: []string{"registry.ollama.ai", "library", "llama2", "7b"},
},
{
name: "model name with namespace",
modelName: "myuser/mymodel",
wantParts: []string{"registry.ollama.ai", "myuser", "mymodel", "latest"},
},
{
name: "model name with namespace and tag",
modelName: "myuser/mymodel:v1",
wantParts: []string{"registry.ollama.ai", "myuser", "mymodel", "v1"},
},
{
name: "fully qualified model name",
modelName: "registry.example.com/namespace/model:tag",
wantParts: []string{"registry.example.com", "namespace", "model", "tag"},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := resolveManifestPath(tt.modelName)
for _, part := range tt.wantParts {
if !strings.Contains(got, part) {
t.Errorf("resolveManifestPath(%q) = %q, missing part %q", tt.modelName, got, part)
}
}
})
}
}
func TestLayerInfo(t *testing.T) {
layer := LayerInfo{
Digest: "sha256:abc123",
Size: 1024,
MediaType: "application/vnd.ollama.image.tensor",
Name: "model.weight",
}
if layer.Digest != "sha256:abc123" {
t.Errorf("Digest = %q, want %q", layer.Digest, "sha256:abc123")
}
if layer.Size != 1024 {
t.Errorf("Size = %d, want %d", layer.Size, 1024)
}
if layer.MediaType != "application/vnd.ollama.image.tensor" {
t.Errorf("MediaType = %q, want %q", layer.MediaType, "application/vnd.ollama.image.tensor")
}
if layer.Name != "model.weight" {
t.Errorf("Name = %q, want %q", layer.Name, "model.weight")
}
}
func TestModelConfig(t *testing.T) {
config := ModelConfig{
ModelFormat: "safetensors",
Capabilities: []string{"completion", "chat"},
}
if config.ModelFormat != "safetensors" {
t.Errorf("ModelFormat = %q, want %q", config.ModelFormat, "safetensors")
}
if len(config.Capabilities) != 2 {
t.Errorf("Capabilities length = %d, want %d", len(config.Capabilities), 2)
}
}
func TestManifest(t *testing.T) {
manifest := Manifest{
SchemaVersion: 2,
MediaType: "application/vnd.oci.image.manifest.v1+json",
Config: ManifestLayer{
MediaType: "application/vnd.docker.container.image.v1+json",
Digest: "sha256:config",
Size: 100,
},
Layers: []ManifestLayer{
{
MediaType: "application/vnd.ollama.image.tensor",
Digest: "sha256:layer1",
Size: 1000,
Name: "weight.bin",
},
},
}
if manifest.SchemaVersion != 2 {
t.Errorf("SchemaVersion = %d, want %d", manifest.SchemaVersion, 2)
}
if manifest.Config.Digest != "sha256:config" {
t.Errorf("Config.Digest = %q, want %q", manifest.Config.Digest, "sha256:config")
}
if len(manifest.Layers) != 1 {
t.Errorf("Layers length = %d, want %d", len(manifest.Layers), 1)
}
if manifest.Layers[0].Name != "weight.bin" {
t.Errorf("Layers[0].Name = %q, want %q", manifest.Layers[0].Name, "weight.bin")
}
}
func TestShouldQuantize(t *testing.T) {
tests := []struct {
name string
tensor string
component string
want bool
}{
// VAE component should never be quantized
{"vae weight", "decoder.weight", "vae", false},
{"vae bias", "decoder.bias", "vae", false},
// Embeddings should not be quantized
{"embedding weight", "embed_tokens.weight", "", false},
{"embedding in name", "token_embedding.weight", "", false},
// Norms should not be quantized
{"layer norm", "layer_norm.weight", "", false},
{"rms norm", "rms_norm.weight", "", false},
{"ln prefix", "ln_1.weight", "", false},
{"layernorm in name", "input_layernorm.weight", "", false},
// Biases should not be quantized
{"bias tensor", "attention.bias", "", false},
{"proj bias", "o_proj.bias", "", false},
// Linear weights should be quantized
{"linear weight", "q_proj.weight", "", true},
{"attention weight", "self_attn.weight", "", true},
{"mlp weight", "mlp.gate_proj.weight", "", true},
// Transformer component weights should be quantized
{"transformer weight", "layers.0.weight", "transformer", true},
{"text_encoder weight", "encoder.weight", "text_encoder", true},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := ShouldQuantize(tt.tensor, tt.component)
if got != tt.want {
t.Errorf("ShouldQuantize(%q, %q) = %v, want %v", tt.tensor, tt.component, got, tt.want)
}
})
}
}
func TestShouldQuantizeTensor(t *testing.T) {
tests := []struct {
name string
tensor string
shape []int32
want bool
}{
// 2D tensors with sufficient size should be quantized
{"large 2D weight", "q_proj.weight", []int32{4096, 4096}, true},
{"medium 2D weight", "small_proj.weight", []int32{128, 128}, true},
// Small tensors should not be quantized (< 1024 elements)
{"tiny 2D weight", "tiny.weight", []int32{16, 16}, false},
{"small 2D weight", "small.weight", []int32{31, 31}, false},
// 1D tensors should not be quantized
{"1D tensor", "layer_norm.weight", []int32{4096}, false},
// 3D+ tensors should not be quantized
{"3D tensor", "conv.weight", []int32{64, 64, 3}, false},
{"4D tensor", "conv2d.weight", []int32{64, 64, 3, 3}, false},
// Embeddings should not be quantized regardless of shape
{"embedding 2D", "embed_tokens.weight", []int32{32000, 4096}, false},
// Norms should not be quantized regardless of shape
{"norm 2D", "layer_norm.weight", []int32{4096, 1}, false},
// Biases should not be quantized
{"bias 2D", "proj.bias", []int32{4096, 1}, false},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := ShouldQuantizeTensor(tt.tensor, tt.shape)
if got != tt.want {
t.Errorf("ShouldQuantizeTensor(%q, %v) = %v, want %v", tt.tensor, tt.shape, got, tt.want)
}
})
}
}
func TestCreateSafetensorsModel_WithQuantize(t *testing.T) {
dir := t.TempDir()
// Create config.json
configJSON := `{"model_type": "test", "architectures": ["TestModel"]}`
if err := os.WriteFile(filepath.Join(dir, "config.json"), []byte(configJSON), 0o644); err != nil {
t.Fatalf("failed to write config.json: %v", err)
}
// Create a minimal safetensors file
createMinimalSafetensors(t, filepath.Join(dir, "model.safetensors"))
var quantizeRequested []string
createLayer := func(r io.Reader, mediaType, name string) (LayerInfo, error) {
io.ReadAll(r)
return LayerInfo{Name: name, Digest: "sha256:test"}, nil
}
createTensorLayer := func(r io.Reader, name, dtype string, shape []int32, quantize string) ([]LayerInfo, error) {
io.ReadAll(r)
quantizeRequested = append(quantizeRequested, quantize)
return []LayerInfo{{Name: name}}, nil
}
writeManifest := func(modelName string, config LayerInfo, layers []LayerInfo) error {
return nil
}
progressFn := func(status string) {}
// Run with quantize enabled
err := CreateSafetensorsModel("test-model", dir, "fp8", createLayer, createTensorLayer, writeManifest, progressFn)
if err != nil {
t.Fatalf("CreateSafetensorsModel failed: %v", err)
}
// Verify quantize was passed to callback (will be false for small test tensor)
if len(quantizeRequested) == 0 {
t.Error("no tensors processed")
}
}
// createMinimalImageGenModel creates a minimal diffusers-style model directory
func createMinimalImageGenModel(t *testing.T, dir string) {
t.Helper()
// Create model_index.json
modelIndex := `{"_class_name": "FluxPipeline", "_diffusers_version": "0.30.0"}`
if err := os.WriteFile(filepath.Join(dir, "model_index.json"), []byte(modelIndex), 0o644); err != nil {
t.Fatalf("failed to write model_index.json: %v", err)
}
// Create transformer directory with a safetensors file
transformerDir := filepath.Join(dir, "transformer")
if err := os.MkdirAll(transformerDir, 0o755); err != nil {
t.Fatalf("failed to create transformer dir: %v", err)
}
createMinimalSafetensors(t, filepath.Join(transformerDir, "model.safetensors"))
// Create transformer config
transformerConfig := `{"hidden_size": 3072}`
if err := os.WriteFile(filepath.Join(transformerDir, "config.json"), []byte(transformerConfig), 0o644); err != nil {
t.Fatalf("failed to write transformer config: %v", err)
}
}
func TestCreateImageGenModel(t *testing.T) {
dir := t.TempDir()
createMinimalImageGenModel(t, dir)
var manifestWritten bool
var manifestModelName string
var statusMessages []string
createLayer := func(r io.Reader, mediaType, name string) (LayerInfo, error) {
io.ReadAll(r)
return LayerInfo{Name: name, Digest: "sha256:test"}, nil
}
createTensorLayer := func(r io.Reader, name, dtype string, shape []int32, quantize string) ([]LayerInfo, error) {
io.ReadAll(r)
return []LayerInfo{{Name: name, Digest: "sha256:tensor"}}, nil
}
writeManifest := func(modelName string, config LayerInfo, layers []LayerInfo) error {
manifestWritten = true
manifestModelName = modelName
return nil
}
progressFn := func(status string) {
statusMessages = append(statusMessages, status)
}
err := CreateImageGenModel("test-imagegen", dir, "", createLayer, createTensorLayer, writeManifest, progressFn)
if err != nil {
t.Fatalf("CreateImageGenModel failed: %v", err)
}
if !manifestWritten {
t.Error("manifest was not written")
}
if manifestModelName != "test-imagegen" {
t.Errorf("manifest model name = %q, want %q", manifestModelName, "test-imagegen")
}
if len(statusMessages) == 0 {
t.Error("no status messages received")
}
}
func TestCreateImageGenModel_NoModelIndex(t *testing.T) {
dir := t.TempDir()
// Create only transformer without model_index.json
transformerDir := filepath.Join(dir, "transformer")
if err := os.MkdirAll(transformerDir, 0o755); err != nil {
t.Fatalf("failed to create transformer dir: %v", err)
}
createMinimalSafetensors(t, filepath.Join(transformerDir, "model.safetensors"))
createLayer := func(r io.Reader, mediaType, name string) (LayerInfo, error) {
io.ReadAll(r)
return LayerInfo{Name: name}, nil
}
createTensorLayer := func(r io.Reader, name, dtype string, shape []int32, quantize string) ([]LayerInfo, error) {
io.ReadAll(r)
return []LayerInfo{{Name: name}}, nil
}
writeManifest := func(modelName string, config LayerInfo, layers []LayerInfo) error {
return nil
}
progressFn := func(status string) {}
err := CreateImageGenModel("test-imagegen", dir, "", createLayer, createTensorLayer, writeManifest, progressFn)
if err == nil {
t.Error("expected error for missing model_index.json, got nil")
}
}
func TestCreateImageGenModel_WithQuantize(t *testing.T) {
dir := t.TempDir()
createMinimalImageGenModel(t, dir)
var quantizeRequested []string
createLayer := func(r io.Reader, mediaType, name string) (LayerInfo, error) {
io.ReadAll(r)
return LayerInfo{Name: name, Digest: "sha256:test"}, nil
}
createTensorLayer := func(r io.Reader, name, dtype string, shape []int32, quantize string) ([]LayerInfo, error) {
io.ReadAll(r)
quantizeRequested = append(quantizeRequested, quantize)
return []LayerInfo{{Name: name}}, nil
}
writeManifest := func(modelName string, config LayerInfo, layers []LayerInfo) error {
return nil
}
progressFn := func(status string) {}
err := CreateImageGenModel("test-imagegen", dir, "fp8", createLayer, createTensorLayer, writeManifest, progressFn)
if err != nil {
t.Fatalf("CreateImageGenModel failed: %v", err)
}
if len(quantizeRequested) == 0 {
t.Error("no tensors processed")
}
}

View File

@@ -1,4 +1,4 @@
package imagegen
package create
import (
"bytes"
@@ -12,38 +12,24 @@ import (
"github.com/ollama/ollama/x/imagegen/safetensors"
)
// IsTensorModelDir checks if the directory contains a tensor model
// by looking for model_index.json, which is the standard diffusers pipeline config.
func IsTensorModelDir(dir string) bool {
_, err := os.Stat(filepath.Join(dir, "model_index.json"))
return err == nil
}
// LayerInfo holds metadata for a created layer.
type LayerInfo struct {
Digest string
Size int64
MediaType string
Name string // Path-style name: "component/tensor" or "path/to/config.json"
}
// LayerCreator is called to create a blob layer.
// name is the path-style name (e.g., "tokenizer/tokenizer.json")
type LayerCreator func(r io.Reader, mediaType, name string) (LayerInfo, error)
// TensorLayerCreator creates a tensor blob layer with metadata.
// name is the path-style name including component (e.g., "text_encoder/model.embed_tokens.weight")
type TensorLayerCreator func(r io.Reader, name, dtype string, shape []int32) (LayerInfo, error)
// ManifestWriter writes the manifest file.
type ManifestWriter func(modelName string, config LayerInfo, layers []LayerInfo) error
// CreateModel imports an image generation model from a directory.
// CreateImageGenModel imports an image generation model from a directory.
// Stores each tensor as a separate blob for fine-grained deduplication.
// If quantize is specified, linear weights in transformer/text_encoder are quantized.
// Supported quantization types: fp8 (or empty for no quantization).
// Layer creation and manifest writing are done via callbacks to avoid import cycles.
func CreateModel(modelName, modelDir string, createLayer LayerCreator, createTensorLayer TensorLayerCreator, writeManifest ManifestWriter, fn func(status string)) error {
func CreateImageGenModel(modelName, modelDir, quantize string, createLayer LayerCreator, createTensorLayer QuantizingTensorLayerCreator, writeManifest ManifestWriter, fn func(status string)) error {
// Validate quantization type
switch quantize {
case "", "fp4", "fp8":
// valid
default:
return fmt.Errorf("unsupported quantization type %q: supported types are fp4, fp8", quantize)
}
var layers []LayerInfo
var configLayer LayerInfo
var totalParams int64 // Count parameters from original tensor shapes
var torchDtype string // Read from component config for quantization display
// Components to process - extract individual tensors from each
components := []string{"text_encoder", "transformer", "vae"}
@@ -74,7 +60,11 @@ func CreateModel(modelName, modelDir string, createLayer LayerCreator, createTen
}
tensorNames := extractor.ListTensors()
fn(fmt.Sprintf("importing %s/%s (%d tensors)", component, entry.Name(), len(tensorNames)))
quantizeMsg := ""
if quantize != "" && component != "vae" {
quantizeMsg = ", quantizing to " + quantize
}
fn(fmt.Sprintf("importing %s/%s (%d tensors%s)", component, entry.Name(), len(tensorNames), quantizeMsg))
for _, tensorName := range tensorNames {
td, err := extractor.GetTensor(tensorName)
@@ -83,22 +73,52 @@ func CreateModel(modelName, modelDir string, createLayer LayerCreator, createTen
return fmt.Errorf("failed to get tensor %s: %w", tensorName, err)
}
// Count parameters from original tensor shape
if len(td.Shape) > 0 {
numElements := int64(1)
for _, dim := range td.Shape {
numElements *= int64(dim)
}
totalParams += numElements
}
// Store as minimal safetensors format (88 bytes header overhead)
// This enables native mmap loading via mlx_load_safetensors
// Use path-style name: "component/tensor_name"
fullName := component + "/" + tensorName
layer, err := createTensorLayer(td.SafetensorsReader(), fullName, td.Dtype, td.Shape)
// Determine quantization type for this tensor (empty string if not quantizing)
quantizeType := ""
if quantize != "" && ShouldQuantize(tensorName, component) && canQuantizeShape(td.Shape) {
quantizeType = quantize
}
// createTensorLayer returns multiple layers if quantizing (weight + scales)
newLayers, err := createTensorLayer(td.SafetensorsReader(), fullName, td.Dtype, td.Shape, quantizeType)
if err != nil {
extractor.Close()
return fmt.Errorf("failed to create layer for %s: %w", fullName, err)
}
layers = append(layers, layer)
layers = append(layers, newLayers...)
}
extractor.Close()
}
}
// Read torch_dtype from text_encoder config for quantization display
if torchDtype == "" {
textEncoderConfig := filepath.Join(modelDir, "text_encoder/config.json")
if data, err := os.ReadFile(textEncoderConfig); err == nil {
var cfg struct {
TorchDtype string `json:"torch_dtype"`
}
if json.Unmarshal(data, &cfg) == nil && cfg.TorchDtype != "" {
torchDtype = cfg.TorchDtype
}
}
}
// Import config files
configFiles := []string{
"model_index.json",
@@ -122,7 +142,7 @@ func CreateModel(modelName, modelDir string, createLayer LayerCreator, createTen
var r io.Reader
// For model_index.json, normalize to Ollama format
// For model_index.json, normalize to Ollama format and add metadata
if cfgPath == "model_index.json" {
data, err := os.ReadFile(fullPath)
if err != nil {
@@ -141,6 +161,16 @@ func CreateModel(modelName, modelDir string, createLayer LayerCreator, createTen
}
delete(cfg, "_diffusers_version")
// Add parameter count (counted from tensor shapes during import)
cfg["parameter_count"] = totalParams
// Add quantization info - use quantize type if set, otherwise torch_dtype
if quantize != "" {
cfg["quantization"] = strings.ToUpper(quantize)
} else {
cfg["quantization"] = torchDtype
}
data, err = json.MarshalIndent(cfg, "", " ")
if err != nil {
return fmt.Errorf("failed to marshal %s: %w", cfgPath, err)
@@ -181,3 +211,12 @@ func CreateModel(modelName, modelDir string, createLayer LayerCreator, createTen
fn(fmt.Sprintf("successfully imported %s with %d layers", modelName, len(layers)))
return nil
}
// canQuantizeShape returns true if a tensor shape is compatible with MLX quantization.
// MLX requires the last dimension to be divisible by the group size (32).
func canQuantizeShape(shape []int32) bool {
if len(shape) < 2 {
return false
}
return shape[len(shape)-1]%32 == 0
}

View File

@@ -234,3 +234,17 @@ ollama create z-image
3. Copy config files (*.json) as config layers
4. Write manifest
```
## FP8 Quantization
Z-Image supports FP8 quantization to reduce memory usage by ~50% while maintaining image quality.
### Usage
```bash
cd ./weights/Z-Image-Turbo
ollama create z-image-fp8 --quantize fp8
```
This quantizes weights during import. The resulting model will be ~15GB instead of ~31GB.

View File

@@ -1,235 +0,0 @@
package api
import (
"encoding/base64"
"fmt"
"net/http"
"os"
"strconv"
"strings"
"time"
"github.com/gin-gonic/gin"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/x/imagegen"
)
// RunnerScheduler is the interface for scheduling a model runner.
// This is implemented by server.Server to avoid circular imports.
type RunnerScheduler interface {
ScheduleImageGenRunner(ctx *gin.Context, modelName string, opts api.Options, keepAlive *api.Duration) (llm.LlamaServer, error)
}
// RegisterRoutes registers the image generation API routes.
func RegisterRoutes(r gin.IRouter, scheduler RunnerScheduler) {
r.POST("/v1/images/generations", func(c *gin.Context) {
ImageGenerationHandler(c, scheduler)
})
}
// ImageGenerationHandler handles OpenAI-compatible image generation requests.
func ImageGenerationHandler(c *gin.Context, scheduler RunnerScheduler) {
var req ImageGenerationRequest
if err := c.BindJSON(&req); err != nil {
c.JSON(http.StatusBadRequest, gin.H{"error": gin.H{"message": err.Error()}})
return
}
// Validate required fields
if req.Model == "" {
c.JSON(http.StatusBadRequest, gin.H{"error": gin.H{"message": "model is required"}})
return
}
if req.Prompt == "" {
c.JSON(http.StatusBadRequest, gin.H{"error": gin.H{"message": "prompt is required"}})
return
}
// Apply defaults
if req.N == 0 {
req.N = 1
}
if req.Size == "" {
req.Size = "1024x1024"
}
if req.ResponseFormat == "" {
req.ResponseFormat = "b64_json"
}
// Verify model exists
if imagegen.ResolveModelName(req.Model) == "" {
c.JSON(http.StatusNotFound, gin.H{"error": gin.H{"message": fmt.Sprintf("model %q not found", req.Model)}})
return
}
// Parse size
width, height := parseSize(req.Size)
// Build options - we repurpose NumCtx/NumGPU for width/height
opts := api.Options{}
opts.NumCtx = int(width)
opts.NumGPU = int(height)
// Schedule runner
runner, err := scheduler.ScheduleImageGenRunner(c, req.Model, opts, nil)
if err != nil {
status := http.StatusInternalServerError
if strings.Contains(err.Error(), "not found") {
status = http.StatusNotFound
}
c.JSON(status, gin.H{"error": gin.H{"message": err.Error()}})
return
}
// Build completion request
completionReq := llm.CompletionRequest{
Prompt: req.Prompt,
Options: &opts,
}
if req.Stream {
handleStreamingResponse(c, runner, completionReq, req.ResponseFormat)
} else {
handleNonStreamingResponse(c, runner, completionReq, req.ResponseFormat)
}
}
func handleStreamingResponse(c *gin.Context, runner llm.LlamaServer, req llm.CompletionRequest, format string) {
c.Header("Content-Type", "text/event-stream")
c.Header("Cache-Control", "no-cache")
c.Header("Connection", "keep-alive")
var imagePath string
err := runner.Completion(c.Request.Context(), req, func(resp llm.CompletionResponse) {
if resp.Done {
imagePath = extractPath(resp.Content)
} else {
progress := parseProgress(resp.Content)
if progress.Total > 0 {
c.SSEvent("progress", progress)
c.Writer.Flush()
}
}
})
if err != nil {
c.SSEvent("error", gin.H{"error": err.Error()})
return
}
c.SSEvent("done", buildResponse(imagePath, format))
}
func handleNonStreamingResponse(c *gin.Context, runner llm.LlamaServer, req llm.CompletionRequest, format string) {
var imagePath string
err := runner.Completion(c.Request.Context(), req, func(resp llm.CompletionResponse) {
if resp.Done {
imagePath = extractPath(resp.Content)
}
})
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": gin.H{"message": err.Error()}})
return
}
c.JSON(http.StatusOK, buildResponse(imagePath, format))
}
func parseSize(size string) (int32, int32) {
parts := strings.Split(size, "x")
if len(parts) != 2 {
return 1024, 1024
}
w, _ := strconv.Atoi(parts[0])
h, _ := strconv.Atoi(parts[1])
if w == 0 {
w = 1024
}
if h == 0 {
h = 1024
}
return int32(w), int32(h)
}
func extractPath(content string) string {
if idx := strings.Index(content, "Image saved to: "); idx >= 0 {
return strings.TrimSpace(content[idx+16:])
}
return ""
}
func parseProgress(content string) ImageProgressEvent {
var step, total int
fmt.Sscanf(content, "\rGenerating: step %d/%d", &step, &total)
return ImageProgressEvent{Step: step, Total: total}
}
func buildResponse(imagePath, format string) ImageGenerationResponse {
resp := ImageGenerationResponse{
Created: time.Now().Unix(),
Data: make([]ImageData, 1),
}
if imagePath == "" {
return resp
}
if format == "url" {
resp.Data[0].URL = "file://" + imagePath
} else {
data, err := os.ReadFile(imagePath)
if err == nil {
resp.Data[0].B64JSON = base64.StdEncoding.EncodeToString(data)
}
}
return resp
}
// HandleGenerateRequest handles Ollama /api/generate requests for image gen models.
// This allows routes.go to delegate image generation with minimal code.
func HandleGenerateRequest(c *gin.Context, scheduler RunnerScheduler, modelName, prompt string, keepAlive *api.Duration, streamFn func(c *gin.Context, ch chan any)) {
opts := api.Options{}
// Schedule runner
runner, err := scheduler.ScheduleImageGenRunner(c, modelName, opts, keepAlive)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
// Build completion request
completionReq := llm.CompletionRequest{
Prompt: prompt,
Options: &opts,
}
// Stream responses via channel
ch := make(chan any)
go func() {
defer close(ch)
err := runner.Completion(c.Request.Context(), completionReq, func(resp llm.CompletionResponse) {
ch <- GenerateResponse{
Model: modelName,
CreatedAt: time.Now().UTC(),
Response: resp.Content,
Done: resp.Done,
}
})
if err != nil {
// Log error but don't block - channel is already being consumed
_ = err
}
}()
streamFn(c, ch)
}
// GenerateResponse matches api.GenerateResponse structure for streaming.
type GenerateResponse struct {
Model string `json:"model"`
CreatedAt time.Time `json:"created_at"`
Response string `json:"response"`
Done bool `json:"done"`
}

View File

@@ -1,31 +0,0 @@
// Package api provides OpenAI-compatible image generation API types.
package api
// ImageGenerationRequest is an OpenAI-compatible image generation request.
type ImageGenerationRequest struct {
Model string `json:"model"`
Prompt string `json:"prompt"`
N int `json:"n,omitempty"`
Size string `json:"size,omitempty"`
ResponseFormat string `json:"response_format,omitempty"`
Stream bool `json:"stream,omitempty"`
}
// ImageGenerationResponse is an OpenAI-compatible image generation response.
type ImageGenerationResponse struct {
Created int64 `json:"created"`
Data []ImageData `json:"data"`
}
// ImageData contains the generated image data.
type ImageData struct {
URL string `json:"url,omitempty"`
B64JSON string `json:"b64_json,omitempty"`
RevisedPrompt string `json:"revised_prompt,omitempty"`
}
// ImageProgressEvent is sent during streaming to indicate generation progress.
type ImageProgressEvent struct {
Step int `json:"step"`
Total int `json:"total"`
}

Some files were not shown because too many files have changed in this diff Show More