mirror of
https://github.com/ollama/ollama.git
synced 2026-01-21 22:10:58 -05:00
Compare commits
250 Commits
modelfile-
...
jmorganca/
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
2bed62926e | ||
|
|
aad8d128a0 | ||
|
|
ec1acbb867 | ||
|
|
e4859c4563 | ||
|
|
8e30eb26bd | ||
|
|
0b5c589ca2 | ||
|
|
65fadddc85 | ||
|
|
ed5fb088c4 | ||
|
|
f81f308118 | ||
|
|
b1390a7b37 | ||
|
|
11d83386a5 | ||
|
|
bb31def011 | ||
|
|
41e03ede95 | ||
|
|
7fea1ecdf6 | ||
|
|
054894271d | ||
|
|
6fef042f0b | ||
|
|
5c0c2d1d09 | ||
|
|
37f9c8ad99 | ||
|
|
2a80f55e2a | ||
|
|
421c878a2d | ||
|
|
36666c2142 | ||
|
|
85801317d1 | ||
|
|
2ed0d65948 | ||
|
|
d459dc4ad1 | ||
|
|
40bc4622ef | ||
|
|
c0f818a07a | ||
|
|
8671fdeda6 | ||
|
|
2619850fb4 | ||
|
|
8feb97dc0d | ||
|
|
4e1ff6dcbb | ||
|
|
8589d752ac | ||
|
|
de4ded68b0 | ||
|
|
9b5a3c5991 | ||
|
|
00b0699c75 | ||
|
|
993cf8bf55 | ||
|
|
7bb7cb8a60 | ||
|
|
b123be5b71 | ||
|
|
ddf5c09a9b | ||
|
|
5f73c08729 | ||
|
|
f503a848c2 | ||
|
|
36a6daccab | ||
|
|
ceb0e26e5e | ||
|
|
284e02bed0 | ||
|
|
3450a57d4a | ||
|
|
592dae31c8 | ||
|
|
2010cbc5fa | ||
|
|
ac0801eced | ||
|
|
ad66e5b060 | ||
|
|
ade4b55520 | ||
|
|
a6d62e0617 | ||
|
|
6e76348df7 | ||
|
|
0d6687f84c | ||
|
|
74d2a9ef9a | ||
|
|
14476d48cc | ||
|
|
ce8ce82567 | ||
|
|
4dc4f1be34 | ||
|
|
16b52331a4 | ||
|
|
5445aaa94e | ||
|
|
2ac3dd6853 | ||
|
|
d8851cb7a0 | ||
|
|
058f6cd2cc | ||
|
|
790cf34d17 | ||
|
|
928d844896 | ||
|
|
939d6a8606 | ||
|
|
58888a74bc | ||
|
|
cc5a71e0e3 | ||
|
|
e83bcf7f9a | ||
|
|
5690e5ce99 | ||
|
|
f2ea8470e5 | ||
|
|
34b9db5afc | ||
|
|
8711d03df7 | ||
|
|
ee448deaba | ||
|
|
6e8db04716 | ||
|
|
658e60cf73 | ||
|
|
4c78f028f8 | ||
|
|
435cc866a3 | ||
|
|
c7d3a558f6 | ||
|
|
089cdb2877 | ||
|
|
ea1e9aa36b | ||
|
|
d0d28ef90d | ||
|
|
6654186a7c | ||
|
|
aa72281eae | ||
|
|
74bcbf828f | ||
|
|
fe39147e64 | ||
|
|
fad00a85e5 | ||
|
|
9c0db4cc83 | ||
|
|
62be2050dd | ||
|
|
56f8aa6912 | ||
|
|
e6f9bfc0e8 | ||
|
|
6f18297b3a | ||
|
|
15016413de | ||
|
|
440b7190ed | ||
|
|
8d1995c625 | ||
|
|
fd01fbf038 | ||
|
|
0408205c1c | ||
|
|
63a7edd771 | ||
|
|
554ffdcce3 | ||
|
|
9850a4ce08 | ||
|
|
3934c15895 | ||
|
|
fd048f1367 | ||
|
|
8645076a71 | ||
|
|
05e9424824 | ||
|
|
52ebe67a98 | ||
|
|
889b31ab78 | ||
|
|
3cf483fe48 | ||
|
|
8dca03173d | ||
|
|
85bdf14b56 | ||
|
|
d524e5ef5e | ||
|
|
52f5370c48 | ||
|
|
da8a0c7657 | ||
|
|
1b42b4b59a | ||
|
|
7c000ec3ed | ||
|
|
c8afe7168c | ||
|
|
28d3cd0148 | ||
|
|
eb5554232a | ||
|
|
ea4c284a48 | ||
|
|
2bdc320216 | ||
|
|
32561aed09 | ||
|
|
71548d9829 | ||
|
|
8aec92fa6d | ||
|
|
a8b9b930b4 | ||
|
|
9755cf9173 | ||
|
|
70261b9bb6 | ||
|
|
9df6c85c3a | ||
|
|
e74163af4c | ||
|
|
fb9580df85 | ||
|
|
26df674785 | ||
|
|
7c9792a6e0 | ||
|
|
7afb2e125a | ||
|
|
41a272de9f | ||
|
|
f335722275 | ||
|
|
6d53b67c2c | ||
|
|
969238b19e | ||
|
|
949d7832cf | ||
|
|
99d227c9db | ||
|
|
a27e419b47 | ||
|
|
e4d0db5a97 | ||
|
|
ba460802c2 | ||
|
|
e54a3c7fcd | ||
|
|
9f8691c6c8 | ||
|
|
a0b8a32eb4 | ||
|
|
7027f264fb | ||
|
|
9bee3b63b1 | ||
|
|
309aef7fee | ||
|
|
08655170aa | ||
|
|
2b341069a7 | ||
|
|
c00fee6936 | ||
|
|
c2d813bdc3 | ||
|
|
786f3a1c44 | ||
|
|
3397eff0cd | ||
|
|
0efb7931c7 | ||
|
|
42f2cc408e | ||
|
|
9446b795b5 | ||
|
|
62f8cda3b3 | ||
|
|
6a1de23175 | ||
|
|
a7b431e743 | ||
|
|
5a25f93522 | ||
|
|
7e33a017c0 | ||
|
|
8b2c10061c | ||
|
|
c5c451ca3b | ||
|
|
2b4ca6cf36 | ||
|
|
ad90b9ab3d | ||
|
|
4340f8eba4 | ||
|
|
4c7db6b7e9 | ||
|
|
c03f0e3c3d | ||
|
|
c5ff443b9f | ||
|
|
01114b4526 | ||
|
|
1524f323a3 | ||
|
|
fccf3eecaa | ||
|
|
c77d45d836 | ||
|
|
5ec12cec6c | ||
|
|
d9578d2bad | ||
|
|
cb8352d6b4 | ||
|
|
fc6558f47f | ||
|
|
9502e5661f | ||
|
|
e1c9a2a00f | ||
|
|
1341ee1b56 | ||
|
|
63efa075a0 | ||
|
|
cb03fc9571 | ||
|
|
a5ec9cfc0f | ||
|
|
be517e491c | ||
|
|
fc8e108642 | ||
|
|
c5d5c4a96c | ||
|
|
dfe330fa1c | ||
|
|
01f77ae25d | ||
|
|
483b81a863 | ||
|
|
36bd967722 | ||
|
|
b0e7d35db8 | ||
|
|
aeb1fb5192 | ||
|
|
a2e60ebcaf | ||
|
|
883ec4d1ef | ||
|
|
4de0126719 | ||
|
|
9768e2dc75 | ||
|
|
08600d5bec | ||
|
|
a624e672d2 | ||
|
|
e4a7e5b2ca | ||
|
|
a0a15cfd5b | ||
|
|
12e923e158 | ||
|
|
cd135317d2 | ||
|
|
4f895d633f | ||
|
|
7d05a6ee8f | ||
|
|
464d817824 | ||
|
|
531324a9be | ||
|
|
6589eb8a8c | ||
|
|
90f071c658 | ||
|
|
a039e383cd | ||
|
|
80163ebcb5 | ||
|
|
a57818d93e | ||
|
|
841adda157 | ||
|
|
0035e31af8 | ||
|
|
c863c6a96d | ||
|
|
1f11b52511 | ||
|
|
526d4eb204 | ||
|
|
0a74cb31d5 | ||
|
|
10ed1b6292 | ||
|
|
4fec5816d6 | ||
|
|
0a0e9f3e0f | ||
|
|
58d95cc9bd | ||
|
|
3b6a9154dd | ||
|
|
d6dd2ff839 | ||
|
|
e57a6ba89f | ||
|
|
12ec2346ef | ||
|
|
1ec0df1069 | ||
|
|
91b3e4d282 | ||
|
|
d338d70492 | ||
|
|
011bb67351 | ||
|
|
d124627202 | ||
|
|
b0a8246a69 | ||
|
|
e6fb39c182 | ||
|
|
e1f1c374ea | ||
|
|
06a1508bfe | ||
|
|
5a5efee46b | ||
|
|
97ae517fbf | ||
|
|
44b813e459 | ||
|
|
539043f5e0 | ||
|
|
dbcace6847 | ||
|
|
c91a4ebcff | ||
|
|
b79c7e4528 | ||
|
|
035b274b70 | ||
|
|
9c6a254945 | ||
|
|
f31f2bedf4 | ||
|
|
756c257553 | ||
|
|
5255d0af8a | ||
|
|
af8a8a6b59 | ||
|
|
461ad25015 | ||
|
|
8838ae787d | ||
|
|
db75402ade | ||
|
|
1e85a140a3 | ||
|
|
c363282fdc | ||
|
|
5b0c48d29e |
60
.github/ISSUE_TEMPLATE/10_bug_report.yml
vendored
Normal file
60
.github/ISSUE_TEMPLATE/10_bug_report.yml
vendored
Normal file
@@ -0,0 +1,60 @@
|
||||
name: Bug report
|
||||
labels: [bug]
|
||||
description: Something isn't working right.
|
||||
body:
|
||||
- type: textarea
|
||||
id: description
|
||||
attributes:
|
||||
label: What is the issue?
|
||||
description: What happened? What did you expect to happen?
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: os
|
||||
attributes:
|
||||
label: OS
|
||||
description: Which operating system are you using?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- macOS
|
||||
- Windows
|
||||
- Docker
|
||||
- WSL2
|
||||
validations:
|
||||
required: false
|
||||
- type: dropdown
|
||||
id: gpu
|
||||
attributes:
|
||||
label: GPU
|
||||
description: Which GPU are you using?
|
||||
multiple: true
|
||||
options:
|
||||
- Nvidia
|
||||
- AMD
|
||||
- Intel
|
||||
- Apple
|
||||
- Other
|
||||
validations:
|
||||
required: false
|
||||
- type: dropdown
|
||||
id: cpu
|
||||
attributes:
|
||||
label: CPU
|
||||
description: Which CPU are you using?
|
||||
multiple: true
|
||||
options:
|
||||
- Intel
|
||||
- AMD
|
||||
- Apple
|
||||
- Other
|
||||
validations:
|
||||
required: false
|
||||
- type: input
|
||||
id: version
|
||||
attributes:
|
||||
label: Ollama version
|
||||
description: What version of Ollama are you using? (`ollama --version`)
|
||||
placeholder: e.g., 0.1.32
|
||||
validations:
|
||||
required: false
|
||||
18
.github/ISSUE_TEMPLATE/10_model_request.yml
vendored
18
.github/ISSUE_TEMPLATE/10_model_request.yml
vendored
@@ -1,18 +0,0 @@
|
||||
name: Model request
|
||||
description: Request a new model for the library
|
||||
labels: [mr]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Please check if your Model request is [already available](https://ollama.com/search) or that you cannot [import it](https://github.com/ollama/ollama/blob/main/docs/import.md#import-a-model) yourself.
|
||||
Tell us about which Model you'd like to see in the library!
|
||||
- type: textarea
|
||||
id: problem
|
||||
attributes:
|
||||
label: What model would you like?
|
||||
description: Please provide a link to the model.
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for filing a model request!
|
||||
6
.github/ISSUE_TEMPLATE/20_feature_request.md
vendored
Normal file
6
.github/ISSUE_TEMPLATE/20_feature_request.md
vendored
Normal file
@@ -0,0 +1,6 @@
|
||||
---
|
||||
name: Feature request
|
||||
about: Request a new feature
|
||||
labels: feature request
|
||||
---
|
||||
|
||||
41
.github/ISSUE_TEMPLATE/20_feature_request.yml
vendored
41
.github/ISSUE_TEMPLATE/20_feature_request.yml
vendored
@@ -1,41 +0,0 @@
|
||||
name: Feature request
|
||||
description: Propose a new feature
|
||||
labels: [needs-triage, fr]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Please check if your feature request is [already filed](https://github.com/ollama/ollama/issues).
|
||||
Tell us about your idea!
|
||||
- type: textarea
|
||||
id: problem
|
||||
attributes:
|
||||
label: What are you trying to do?
|
||||
description: Tell us about the problem you're trying to solve.
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: solution
|
||||
attributes:
|
||||
label: How should we solve this?
|
||||
description: If you have an idea of how you'd like to see this feature work, let us know.
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: alternative
|
||||
attributes:
|
||||
label: What is the impact of not solving this?
|
||||
description: (How) Are you currently working around the issue?
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: context
|
||||
attributes:
|
||||
label: Anything else?
|
||||
description: Any additional context to share, e.g., links
|
||||
validations:
|
||||
required: false
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for filing a feature request!
|
||||
5
.github/ISSUE_TEMPLATE/30_model_request.md
vendored
Normal file
5
.github/ISSUE_TEMPLATE/30_model_request.md
vendored
Normal file
@@ -0,0 +1,5 @@
|
||||
---
|
||||
name: Model request
|
||||
about: Request support for a new model to be added to Ollama
|
||||
labels: model request
|
||||
---
|
||||
125
.github/ISSUE_TEMPLATE/90_bug_report.yml
vendored
125
.github/ISSUE_TEMPLATE/90_bug_report.yml
vendored
@@ -1,125 +0,0 @@
|
||||
name: Bug report
|
||||
description: File a bug report. If you need help, please join our Discord server.
|
||||
labels: [needs-triage, bug]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Please check if your bug is [already filed](https://github.com/ollama/ollama/issues) before filing a new one.
|
||||
- type: textarea
|
||||
id: what-happened
|
||||
attributes:
|
||||
label: What is the issue?
|
||||
description: What happened? What did you expect to happen?
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: what-was-expected
|
||||
attributes:
|
||||
label: What did you expect to see?
|
||||
description: What did you expect to see/happen instead?
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: steps
|
||||
attributes:
|
||||
label: Steps to reproduce
|
||||
description: What are the steps you took that hit this issue?
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: changes
|
||||
attributes:
|
||||
label: Are there any recent changes that introduced the issue?
|
||||
description: If so, what are those changes?
|
||||
validations:
|
||||
required: false
|
||||
- type: dropdown
|
||||
id: os
|
||||
attributes:
|
||||
label: OS
|
||||
description: What OS are you using? You may select more than one.
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- macOS
|
||||
- Windows
|
||||
- Other
|
||||
validations:
|
||||
required: false
|
||||
- type: dropdown
|
||||
id: architecture
|
||||
attributes:
|
||||
label: Architecture
|
||||
description: What architecture are you using? You may select more than one.
|
||||
multiple: true
|
||||
options:
|
||||
- arm64
|
||||
- amd64
|
||||
- x86
|
||||
- Other
|
||||
- type: dropdown
|
||||
id: platform
|
||||
attributes:
|
||||
label: Platform
|
||||
description: What platform are you using? You may select more than one.
|
||||
multiple: true
|
||||
options:
|
||||
- Docker
|
||||
- WSL
|
||||
- WSL2
|
||||
validations:
|
||||
required: false
|
||||
- type: input
|
||||
id: ollama-version
|
||||
attributes:
|
||||
label: Ollama version
|
||||
description: What Ollama version are you using? (`ollama --version`)
|
||||
placeholder: e.g., 1.14.4
|
||||
validations:
|
||||
required: false
|
||||
- type: dropdown
|
||||
id: gpu
|
||||
attributes:
|
||||
label: GPU
|
||||
description: What GPU, if any, are you using? You may select more than one.
|
||||
multiple: true
|
||||
options:
|
||||
- Nvidia
|
||||
- AMD
|
||||
- Intel
|
||||
- Apple
|
||||
- Other
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: gpu-info
|
||||
attributes:
|
||||
label: GPU info
|
||||
description: What GPU info do you have? (`nvidia-smi`, `rocminfo`, `system_profiler SPDisplaysDataType`, etc.)
|
||||
validations:
|
||||
required: false
|
||||
- type: dropdown
|
||||
id: cpu
|
||||
attributes:
|
||||
label: CPU
|
||||
description: What CPU are you using? You may select more than one.
|
||||
multiple: true
|
||||
options:
|
||||
- Intel
|
||||
- AMD
|
||||
- Apple
|
||||
- Other
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: other-software
|
||||
attributes:
|
||||
label: Other software
|
||||
description: What other software are you using that might be related to this issue?
|
||||
validations:
|
||||
required: false
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for filing a bug report!
|
||||
24
.github/workflows/latest.yaml
vendored
Normal file
24
.github/workflows/latest.yaml
vendored
Normal file
@@ -0,0 +1,24 @@
|
||||
name: latest
|
||||
|
||||
on:
|
||||
release:
|
||||
types: [released]
|
||||
|
||||
jobs:
|
||||
update-latest:
|
||||
environment: release
|
||||
runs-on: linux
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Login to Docker Hub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ vars.DOCKER_USER }}
|
||||
password: ${{ secrets.DOCKER_ACCESS_TOKEN }}
|
||||
- name: Tag images as latest
|
||||
env:
|
||||
PUSH: "1"
|
||||
shell: bash
|
||||
run: |
|
||||
export "VERSION=${GITHUB_REF_NAME#v}"
|
||||
./scripts/tag_latest.sh
|
||||
100
.github/workflows/release.yaml
vendored
100
.github/workflows/release.yaml
vendored
@@ -8,7 +8,7 @@ on:
|
||||
jobs:
|
||||
# Full build of the Mac assets
|
||||
build-darwin:
|
||||
runs-on: macos-latest
|
||||
runs-on: macos-12
|
||||
environment: release
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
@@ -30,7 +30,7 @@ jobs:
|
||||
security set-key-partition-list -S apple-tool:,apple:,codesign: -s -k password build.keychain
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: '1.22'
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- name: Build Darwin
|
||||
env:
|
||||
@@ -38,9 +38,11 @@ jobs:
|
||||
APPLE_PASSWORD: ${{ secrets.APPLE_PASSWORD }}
|
||||
APPLE_TEAM_ID: ${{ vars.APPLE_TEAM_ID }}
|
||||
APPLE_ID: ${{ vars.APPLE_ID }}
|
||||
SDKROOT: /Applications/Xcode_13.4.1.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk
|
||||
DEVELOPER_DIR: /Applications/Xcode_13.4.1.app/Contents/Developer
|
||||
run: |
|
||||
./scripts/build_darwin.sh
|
||||
|
||||
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: dist-darwin
|
||||
@@ -48,7 +50,6 @@ jobs:
|
||||
dist/*arwin*
|
||||
!dist/*-cov
|
||||
|
||||
|
||||
# Windows builds take a long time to both install the dependencies and build, so parallelize
|
||||
# CPU generation step
|
||||
generate-windows-cpu:
|
||||
@@ -85,7 +86,7 @@ jobs:
|
||||
write-host "plugin installed"
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: '1.22'
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- run: go get ./...
|
||||
- run: |
|
||||
@@ -99,7 +100,10 @@ jobs:
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: generate-windows-cpu
|
||||
path: llm/llama.cpp/build/**/lib/*
|
||||
path: |
|
||||
llm/build/**/bin/*
|
||||
llm/build/**/*.a
|
||||
dist/windows-amd64/**
|
||||
|
||||
# ROCm generation step
|
||||
generate-windows-rocm:
|
||||
@@ -136,9 +140,9 @@ jobs:
|
||||
write-host "plugin installed"
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: '1.22'
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- name: "Install ROCm"
|
||||
- name: 'Install ROCm'
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "downloading AMD HIP Installer"
|
||||
@@ -146,7 +150,7 @@ jobs:
|
||||
write-host "Installing AMD HIP"
|
||||
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
|
||||
write-host "Completed AMD HIP"
|
||||
- name: "Verify ROCm"
|
||||
- name: 'Verify ROCm'
|
||||
run: |
|
||||
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
|
||||
- run: go get ./...
|
||||
@@ -160,7 +164,7 @@ jobs:
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
go generate -x ./...
|
||||
name: go generate
|
||||
- name: "gather rocm dependencies"
|
||||
- name: 'gather rocm dependencies'
|
||||
run: |
|
||||
$HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
md "dist\deps\bin\rocblas\library"
|
||||
@@ -170,7 +174,9 @@ jobs:
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: generate-windows-rocm
|
||||
path: llm/llama.cpp/build/**/lib/*
|
||||
path: |
|
||||
llm/build/**/bin/*
|
||||
dist/windows-amd64/**
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: windows-rocm-deps
|
||||
@@ -211,29 +217,36 @@ jobs:
|
||||
write-host "plugin installed"
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: '1.22'
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
# TODO - consider replacing this action with a ps1 snippet to install
|
||||
# This actions seems to fail sometimes with "no tools in cache" but a re-run of the failed job clears it
|
||||
# https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe
|
||||
- name: "Install CUDA"
|
||||
uses: Jimver/cuda-toolkit@v0.2.14
|
||||
id: cuda-toolkit
|
||||
with:
|
||||
cuda: '11.3.1'
|
||||
- name: "Verify CUDA"
|
||||
- name: 'Install CUDA'
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "downloading CUDA Installer"
|
||||
Invoke-WebRequest -Uri "https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe" -OutFile "${env:RUNNER_TEMP}\cuda-install.exe"
|
||||
write-host "Installing CUDA"
|
||||
Start-Process "${env:RUNNER_TEMP}\cuda-install.exe" -ArgumentList '-s' -NoNewWindow -Wait
|
||||
write-host "Completed CUDA"
|
||||
$cudaPath=((resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0].path | split-path | split-path)
|
||||
$cudaVer=($cudaPath | split-path -leaf ) -replace 'v(\d+).(\d+)', '$1_$2'
|
||||
echo "$cudaPath\bin" >> $env:GITHUB_PATH
|
||||
echo "CUDA_PATH=$cudaPath" >> $env:GITHUB_ENV
|
||||
echo "CUDA_PATH_V${cudaVer}=$cudaPath" >> $env:GITHUB_ENV
|
||||
echo "CUDA_PATH_VX_Y=CUDA_PATH_V${cudaVer}" >> $env:GITHUB_ENV
|
||||
- name: 'Verify CUDA'
|
||||
run: nvcc -V
|
||||
- run: go get ./...
|
||||
- name: go generate
|
||||
run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
$cudabin=(get-command nvcc).source | split-path
|
||||
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
cd $env:GITHUB_WORKSPACE
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$env:PATH"
|
||||
$env:PATH="$gopath;$cudabin;$env:PATH"
|
||||
$env:OLLAMA_SKIP_CPU_GENERATE="1"
|
||||
go generate -x ./...
|
||||
- name: "gather cuda dependencies"
|
||||
- name: 'gather cuda dependencies'
|
||||
run: |
|
||||
$NVIDIA_DIR=(resolve-path 'C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*\bin\')[0]
|
||||
md "dist\deps"
|
||||
@@ -243,7 +256,9 @@ jobs:
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: generate-windows-cuda
|
||||
path: llm/llama.cpp/build/**/lib/*
|
||||
path: |
|
||||
llm/build/**/bin/*
|
||||
dist/windows-amd64/**
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: windows-cuda-deps
|
||||
@@ -290,30 +305,25 @@ jobs:
|
||||
write-host "plugin installed"
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: '1.22'
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- run: go get
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: generate-windows-cpu
|
||||
path: llm/llama.cpp/build
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: generate-windows-cuda
|
||||
path: llm/llama.cpp/build
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: windows-cuda-deps
|
||||
path: dist/deps
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: windows-rocm-deps
|
||||
path: dist/deps
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: generate-windows-rocm
|
||||
path: llm/llama.cpp/build
|
||||
- run: dir llm/llama.cpp/build
|
||||
- run: dir llm/build
|
||||
- run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
@@ -321,22 +331,22 @@ jobs:
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$env:PATH"
|
||||
$env:OLLAMA_SKIP_GENERATE="1"
|
||||
$env:NVIDIA_DIR=$(resolve-path ".\dist\deps")
|
||||
$env:HIP_PATH=$(resolve-path ".\dist\deps")
|
||||
& .\scripts\build_windows.ps1
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: dist-windows
|
||||
path: dist/*.exe
|
||||
path: |
|
||||
dist/OllamaSetup.exe
|
||||
dist/ollama-windows-*.zip
|
||||
|
||||
# Linux x86 assets built using the container based build
|
||||
# Linux x86 assets built using the container based build
|
||||
build-linux-amd64:
|
||||
environment: release
|
||||
runs-on: linux
|
||||
env:
|
||||
OLLAMA_SKIP_MANIFEST_CREATE: "1"
|
||||
OLLAMA_SKIP_MANIFEST_CREATE: '1'
|
||||
BUILD_ARCH: amd64
|
||||
PUSH: "1"
|
||||
PUSH: '1'
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
@@ -366,9 +376,9 @@ jobs:
|
||||
environment: release
|
||||
runs-on: linux-arm64
|
||||
env:
|
||||
OLLAMA_SKIP_MANIFEST_CREATE: "1"
|
||||
OLLAMA_SKIP_MANIFEST_CREATE: '1'
|
||||
BUILD_ARCH: arm64
|
||||
PUSH: "1"
|
||||
PUSH: '1'
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
@@ -376,7 +386,7 @@ jobs:
|
||||
- name: Set Version
|
||||
shell: bash
|
||||
run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
|
||||
- name: "Install Docker"
|
||||
- name: 'Install Docker'
|
||||
run: |
|
||||
# Add Docker's official GPG key:
|
||||
env
|
||||
@@ -413,7 +423,7 @@ jobs:
|
||||
!dist/*-cov
|
||||
|
||||
# Aggregate all the assets and ship a release
|
||||
release:
|
||||
release:
|
||||
needs:
|
||||
- build-darwin
|
||||
- build-windows
|
||||
@@ -424,8 +434,8 @@ jobs:
|
||||
permissions:
|
||||
contents: write
|
||||
env:
|
||||
OLLAMA_SKIP_IMAGE_BUILD: "1"
|
||||
PUSH: "1"
|
||||
OLLAMA_SKIP_IMAGE_BUILD: '1'
|
||||
PUSH: '1'
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set Version
|
||||
@@ -453,11 +463,11 @@ jobs:
|
||||
with:
|
||||
name: ${{ env.RELEASE_VERSION }}
|
||||
allowUpdates: true
|
||||
artifacts: "dist/*"
|
||||
artifacts: 'dist/*'
|
||||
draft: true
|
||||
prerelease: true
|
||||
omitBodyDuringUpdate: true
|
||||
generateReleaseNotes: true
|
||||
omitDraftDuringUpdate: true
|
||||
omitPrereleaseDuringUpdate: true
|
||||
replacesArtifacts: true
|
||||
replacesArtifacts: true
|
||||
|
||||
200
.github/workflows/test.yaml
vendored
200
.github/workflows/test.yaml
vendored
@@ -1,15 +1,51 @@
|
||||
name: test
|
||||
|
||||
concurrency:
|
||||
# For PRs, later CI runs preempt previous ones. e.g. a force push on a PR
|
||||
# cancels running CI jobs and starts all new ones.
|
||||
#
|
||||
# For non-PR pushes, concurrency.group needs to be unique for every distinct
|
||||
# CI run we want to have happen. Use run_id, which in practice means all
|
||||
# non-PR CI runs will be allowed to run without preempting each other.
|
||||
group: ${{ github.workflow }}-$${{ github.pull_request.number || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
paths:
|
||||
- '**/*'
|
||||
- '!docs/**'
|
||||
- '!examples/**'
|
||||
- '!README.md'
|
||||
|
||||
jobs:
|
||||
changes:
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
GENERATE: ${{ steps.changes.outputs.GENERATE }}
|
||||
GENERATE_CUDA: ${{ steps.changes.outputs.GENERATE_CUDA }}
|
||||
GENERATE_ROCM: ${{ steps.changes.outputs.GENERATE_ROCM }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
- id: changes
|
||||
run: |
|
||||
changed() {
|
||||
git diff-tree -r --no-commit-id --name-only \
|
||||
$(git merge-base ${{ github.event.pull_request.base.sha }} ${{ github.event.pull_request.head.sha }}) \
|
||||
${{ github.event.pull_request.head.sha }} \
|
||||
| xargs python3 -c "import sys; print(any([x.startswith('$1') for x in sys.argv[1:]]))"
|
||||
}
|
||||
|
||||
{
|
||||
echo GENERATE=$(changed llm/)
|
||||
echo GENERATE_CUDA=$(changed llm/)
|
||||
echo GENERATE_ROCM=$(changed llm/)
|
||||
} >>$GITHUB_OUTPUT
|
||||
|
||||
generate:
|
||||
needs: [changes]
|
||||
if: ${{ needs.changes.outputs.GENERATE == 'True' }}
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest, macos-latest, windows-2019]
|
||||
@@ -26,26 +62,32 @@ jobs:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: '1.22'
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- run: go get ./...
|
||||
- run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
$gccpath=(get-command gcc).source | split-path -parent
|
||||
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
cd $env:GITHUB_WORKSPACE
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$env:PATH"
|
||||
$env:PATH="$gopath;$gccpath;$env:PATH"
|
||||
echo $env:PATH
|
||||
go generate -x ./...
|
||||
if: ${{ startsWith(matrix.os, 'windows-') }}
|
||||
name: "Windows Go Generate"
|
||||
name: 'Windows Go Generate'
|
||||
- run: go generate -x ./...
|
||||
if: ${{ ! startsWith(matrix.os, 'windows-') }}
|
||||
name: "Unix Go Generate"
|
||||
name: 'Unix Go Generate'
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.os }}-${{ matrix.arch }}-libraries
|
||||
path: llm/llama.cpp/build/**/lib/*
|
||||
path: |
|
||||
llm/build/**/bin/*
|
||||
llm/build/**/*.a
|
||||
generate-cuda:
|
||||
needs: [changes]
|
||||
if: ${{ needs.changes.outputs.GENERATE_CUDA == 'True' }}
|
||||
strategy:
|
||||
matrix:
|
||||
cuda-version:
|
||||
@@ -62,7 +104,7 @@ jobs:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-go@v4
|
||||
with:
|
||||
go-version: '1.22'
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- run: go get ./...
|
||||
- run: |
|
||||
@@ -73,12 +115,16 @@ jobs:
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: cuda-${{ matrix.cuda-version }}-libraries
|
||||
path: llm/llama.cpp/build/**/lib/*
|
||||
path: |
|
||||
llm/build/**/bin/*
|
||||
dist/windows-amd64/**
|
||||
generate-rocm:
|
||||
needs: [changes]
|
||||
if: ${{ needs.changes.outputs.GENERATE_ROCM == 'True' }}
|
||||
strategy:
|
||||
matrix:
|
||||
rocm-version:
|
||||
- '6.0'
|
||||
- '6.0.2'
|
||||
runs-on: linux
|
||||
container: rocm/dev-ubuntu-20.04:${{ matrix.rocm-version }}
|
||||
steps:
|
||||
@@ -91,7 +137,7 @@ jobs:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-go@v4
|
||||
with:
|
||||
go-version: '1.22'
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- run: go get ./...
|
||||
- run: |
|
||||
@@ -102,7 +148,89 @@ jobs:
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: rocm-${{ matrix.rocm-version }}-libraries
|
||||
path: llm/llama.cpp/build/**/lib/*
|
||||
path: |
|
||||
llm/build/**/bin/*
|
||||
dist/windows-amd64/**
|
||||
|
||||
# ROCm generation step
|
||||
generate-windows-rocm:
|
||||
needs: [changes]
|
||||
if: ${{ needs.changes.outputs.GENERATE_ROCM == 'True' }}
|
||||
runs-on: windows
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- name: 'Install ROCm'
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "downloading AMD HIP Installer"
|
||||
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-23.Q4-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
||||
write-host "Installing AMD HIP"
|
||||
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
|
||||
write-host "Completed AMD HIP"
|
||||
- name: 'Verify ROCm'
|
||||
run: |
|
||||
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
|
||||
- run: go get ./...
|
||||
- run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
cd $env:GITHUB_WORKSPACE
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$env:PATH"
|
||||
$env:OLLAMA_SKIP_CPU_GENERATE="1"
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
go generate -x ./...
|
||||
name: go generate
|
||||
env:
|
||||
OLLAMA_SKIP_CPU_GENERATE: '1'
|
||||
# TODO - do we need any artifacts?
|
||||
|
||||
# CUDA generation step
|
||||
generate-windows-cuda:
|
||||
needs: [changes]
|
||||
if: ${{ needs.changes.outputs.GENERATE_CUDA == 'True' }}
|
||||
runs-on: windows
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- name: 'Install CUDA'
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "downloading CUDA Installer"
|
||||
Invoke-WebRequest -Uri "https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe" -OutFile "${env:RUNNER_TEMP}\cuda-install.exe"
|
||||
write-host "Installing CUDA"
|
||||
Start-Process "${env:RUNNER_TEMP}\cuda-install.exe" -ArgumentList '-s' -NoNewWindow -Wait
|
||||
write-host "Completed CUDA"
|
||||
$cudaPath=((resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0].path | split-path | split-path)
|
||||
$cudaVer=($cudaPath | split-path -leaf ) -replace 'v(\d+).(\d+)', '$1_$2'
|
||||
echo "$cudaPath\bin" >> $env:GITHUB_PATH
|
||||
echo "CUDA_PATH=$cudaPath" >> $env:GITHUB_ENV
|
||||
echo "CUDA_PATH_V${cudaVer}=$cudaPath" >> $env:GITHUB_ENV
|
||||
echo "CUDA_PATH_VX_Y=CUDA_PATH_V${cudaVer}" >> $env:GITHUB_ENV
|
||||
- name: 'Verify CUDA'
|
||||
run: nvcc -V
|
||||
- run: go get ./...
|
||||
- name: go generate
|
||||
run: |
|
||||
$gopath=(get-command go).source | split-path -parent
|
||||
$cudabin=(get-command nvcc).source | split-path
|
||||
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
|
||||
cd $env:GITHUB_WORKSPACE
|
||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
||||
$env:PATH="$gopath;$cudabin;$env:PATH"
|
||||
$env:OLLAMA_SKIP_CPU_GENERATE="1"
|
||||
go generate -x ./...
|
||||
env:
|
||||
OLLAMA_SKIP_CPU_GENERATE: '1'
|
||||
# TODO - do we need any artifacts?
|
||||
|
||||
lint:
|
||||
strategy:
|
||||
matrix:
|
||||
@@ -125,24 +253,26 @@ jobs:
|
||||
submodules: recursive
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: '1.22'
|
||||
go-version-file: go.mod
|
||||
cache: false
|
||||
- run: |
|
||||
mkdir -p llm/llama.cpp/build/linux/${{ matrix.arch }}/stub/lib/
|
||||
touch llm/llama.cpp/build/linux/${{ matrix.arch }}/stub/lib/stub.so
|
||||
case ${{ matrix.arch }} in
|
||||
amd64) echo ARCH=x86_64 ;;
|
||||
arm64) echo ARCH=arm64 ;;
|
||||
esac >>$GITHUB_ENV
|
||||
shell: bash
|
||||
- run: |
|
||||
mkdir -p llm/build/linux/$ARCH/stub/bin
|
||||
touch llm/build/linux/$ARCH/stub/bin/ollama_llama_server
|
||||
if: ${{ startsWith(matrix.os, 'ubuntu-') }}
|
||||
- run: |
|
||||
mkdir -p llm/llama.cpp/build/darwin/${{ matrix.arch }}/stub/lib/
|
||||
touch llm/llama.cpp/build/darwin/${{ matrix.arch }}/stub/lib/stub.dylib
|
||||
touch llm/llama.cpp/ggml-metal.metal
|
||||
mkdir -p llm/build/darwin/$ARCH/stub/bin
|
||||
touch llm/build/darwin/$ARCH/stub/bin/ollama_llama_server
|
||||
if: ${{ startsWith(matrix.os, 'macos-') }}
|
||||
- run: |
|
||||
mkdir -p llm/llama.cpp/build/windows/${{ matrix.arch }}/stub/lib/
|
||||
touch llm/llama.cpp/build/windows/${{ matrix.arch }}/stub/lib/stub.dll
|
||||
if: ${{ startsWith(matrix.os, 'windows-') }}
|
||||
- uses: golangci/golangci-lint-action@v3
|
||||
- uses: golangci/golangci-lint-action@v4
|
||||
with:
|
||||
args: --timeout 8m0s -v
|
||||
test:
|
||||
needs: generate
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest, macos-latest, windows-2019]
|
||||
@@ -156,19 +286,31 @@ jobs:
|
||||
env:
|
||||
GOARCH: ${{ matrix.arch }}
|
||||
CGO_ENABLED: '1'
|
||||
OLLAMA_CPU_TARGET: 'static'
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: recursive
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: '1.22'
|
||||
go-version-file: go.mod
|
||||
cache: true
|
||||
- run: go get
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.os }}-${{ matrix.arch }}-libraries
|
||||
path: llm/llama.cpp/build
|
||||
- run: |
|
||||
case ${{ matrix.arch }} in
|
||||
amd64) echo ARCH=x86_64 ;;
|
||||
arm64) echo ARCH=arm64 ;;
|
||||
esac >>$GITHUB_ENV
|
||||
shell: bash
|
||||
- run: |
|
||||
mkdir -p llm/build/linux/$ARCH/stub/bin
|
||||
touch llm/build/linux/$ARCH/stub/bin/ollama_llama_server
|
||||
if: ${{ startsWith(matrix.os, 'ubuntu-') }}
|
||||
- run: |
|
||||
mkdir -p llm/build/darwin/$ARCH/stub/bin
|
||||
touch llm/build/darwin/$ARCH/stub/bin/ollama_llama_server
|
||||
if: ${{ startsWith(matrix.os, 'macos-') }}
|
||||
shell: bash
|
||||
- run: go generate ./...
|
||||
- run: go build
|
||||
- run: go test -v ./...
|
||||
- uses: actions/upload-artifact@v4
|
||||
|
||||
3
.gitignore
vendored
3
.gitignore
vendored
@@ -10,4 +10,5 @@ ggml-metal.metal
|
||||
*.exe
|
||||
.idea
|
||||
test_data
|
||||
*.crt
|
||||
*.crt
|
||||
llm/build
|
||||
@@ -15,13 +15,3 @@ linters:
|
||||
- misspell
|
||||
- nilerr
|
||||
- unused
|
||||
linters-settings:
|
||||
errcheck:
|
||||
# exclude the following functions since we don't generally
|
||||
# need to be concerned with the returned errors
|
||||
exclude-functions:
|
||||
- encoding/binary.Read
|
||||
- (*os.File).Seek
|
||||
- (*bufio.Writer).WriteString
|
||||
- (*github.com/spf13/pflag.FlagSet).Set
|
||||
- (*github.com/ollama/ollama/llm.readSeekOffset).Seek
|
||||
|
||||
43
Dockerfile
43
Dockerfile
@@ -2,7 +2,7 @@ ARG GOLANG_VERSION=1.22.1
|
||||
ARG CMAKE_VERSION=3.22.1
|
||||
# this CUDA_VERSION corresponds with the one specified in docs/gpu.md
|
||||
ARG CUDA_VERSION=11.3.1
|
||||
ARG ROCM_VERSION=6.0
|
||||
ARG ROCM_VERSION=6.0.2
|
||||
|
||||
# Copy the minimal context we need to run the generate scripts
|
||||
FROM scratch AS llm-code
|
||||
@@ -18,7 +18,7 @@ ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
|
||||
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
ARG CGO_CFLAGS
|
||||
RUN OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh
|
||||
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh
|
||||
|
||||
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION-devel-rockylinux8 AS cuda-build-arm64
|
||||
ARG CMAKE_VERSION
|
||||
@@ -28,7 +28,7 @@ ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH
|
||||
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
ARG CGO_CFLAGS
|
||||
RUN OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh
|
||||
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh
|
||||
|
||||
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS rocm-build-amd64
|
||||
ARG CMAKE_VERSION
|
||||
@@ -40,9 +40,9 @@ COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
ARG CGO_CFLAGS
|
||||
ARG AMDGPU_TARGETS
|
||||
RUN OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh
|
||||
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh
|
||||
RUN mkdir /tmp/scratch && \
|
||||
for dep in $(cat /go/src/github.com/ollama/ollama/llm/llama.cpp/build/linux/x86_64/rocm*/lib/deps.txt) ; do \
|
||||
for dep in $(zcat /go/src/github.com/ollama/ollama/llm/build/linux/x86_64/rocm*/bin/deps.txt.gz) ; do \
|
||||
cp ${dep} /tmp/scratch/ || exit 1 ; \
|
||||
done && \
|
||||
(cd /opt/rocm/lib && tar cf - rocblas/library) | (cd /tmp/scratch/ && tar xf - ) && \
|
||||
@@ -61,35 +61,42 @@ ARG OLLAMA_CUSTOM_CPU_DEFS
|
||||
ARG CGO_CFLAGS
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
|
||||
FROM --platform=linux/amd64 cpu-builder-amd64 AS static-build-amd64
|
||||
RUN OLLAMA_CPU_TARGET="static" sh gen_linux.sh
|
||||
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu-build-amd64
|
||||
RUN OLLAMA_CPU_TARGET="cpu" sh gen_linux.sh
|
||||
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu" sh gen_linux.sh
|
||||
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx-build-amd64
|
||||
RUN OLLAMA_CPU_TARGET="cpu_avx" sh gen_linux.sh
|
||||
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx" sh gen_linux.sh
|
||||
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx2-build-amd64
|
||||
RUN OLLAMA_CPU_TARGET="cpu_avx2" sh gen_linux.sh
|
||||
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx2" sh gen_linux.sh
|
||||
|
||||
FROM --platform=linux/arm64 centos:7 AS cpu-build-arm64
|
||||
FROM --platform=linux/arm64 centos:7 AS cpu-builder-arm64
|
||||
ARG CMAKE_VERSION
|
||||
ARG GOLANG_VERSION
|
||||
COPY ./scripts/rh_linux_deps.sh /
|
||||
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
|
||||
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
|
||||
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
# Note, we only build the "base" CPU variant on arm since avx/avx2 are x86 features
|
||||
ARG OLLAMA_CUSTOM_CPU_DEFS
|
||||
ARG CGO_CFLAGS
|
||||
RUN OLLAMA_CPU_TARGET="cpu" sh gen_linux.sh
|
||||
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
|
||||
|
||||
FROM --platform=linux/arm64 cpu-builder-arm64 AS static-build-arm64
|
||||
RUN OLLAMA_CPU_TARGET="static" sh gen_linux.sh
|
||||
FROM --platform=linux/arm64 cpu-builder-arm64 AS cpu-build-arm64
|
||||
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu" sh gen_linux.sh
|
||||
|
||||
|
||||
# Intermediate stage used for ./scripts/build_linux.sh
|
||||
FROM --platform=linux/amd64 cpu-build-amd64 AS build-amd64
|
||||
ENV CGO_ENABLED 1
|
||||
WORKDIR /go/src/github.com/ollama/ollama
|
||||
COPY . .
|
||||
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
|
||||
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
|
||||
COPY --from=cuda-build-amd64 /go/src/github.com/ollama/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
|
||||
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
|
||||
COPY --from=static-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
|
||||
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
|
||||
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
|
||||
COPY --from=cuda-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
|
||||
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
|
||||
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/deps/ ./dist/deps/
|
||||
ARG GOFLAGS
|
||||
ARG CGO_CFLAGS
|
||||
@@ -101,8 +108,8 @@ ENV CGO_ENABLED 1
|
||||
ARG GOLANG_VERSION
|
||||
WORKDIR /go/src/github.com/ollama/ollama
|
||||
COPY . .
|
||||
COPY --from=cuda-build-arm64 /go/src/github.com/ollama/ollama/llm/llama.cpp/build/linux/ llm/llama.cpp/build/linux/
|
||||
RUN mkdir -p /go/src/github.com/ollama/ollama/dist/deps/
|
||||
COPY --from=static-build-arm64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
|
||||
COPY --from=cuda-build-arm64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
|
||||
ARG GOFLAGS
|
||||
ARG CGO_CFLAGS
|
||||
RUN go build -trimpath .
|
||||
|
||||
58
README.md
58
README.md
@@ -35,10 +35,10 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
|
||||
|
||||
## Quickstart
|
||||
|
||||
To run and chat with [Llama 2](https://ollama.com/library/llama2):
|
||||
To run and chat with [Llama 3](https://ollama.com/library/llama3):
|
||||
|
||||
```
|
||||
ollama run llama2
|
||||
ollama run llama3
|
||||
```
|
||||
|
||||
## Model library
|
||||
@@ -49,21 +49,18 @@ Here are some example models that can be downloaded:
|
||||
|
||||
| Model | Parameters | Size | Download |
|
||||
| ------------------ | ---------- | ----- | ------------------------------ |
|
||||
| Llama 2 | 7B | 3.8GB | `ollama run llama2` |
|
||||
| Llama 3 | 8B | 4.7GB | `ollama run llama3` |
|
||||
| Llama 3 | 70B | 40GB | `ollama run llama3:70b` |
|
||||
| Phi-3 | 3,8B | 2.3GB | `ollama run phi3` |
|
||||
| Mistral | 7B | 4.1GB | `ollama run mistral` |
|
||||
| Dolphin Phi | 2.7B | 1.6GB | `ollama run dolphin-phi` |
|
||||
| Phi-2 | 2.7B | 1.7GB | `ollama run phi` |
|
||||
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
|
||||
| Starling | 7B | 4.1GB | `ollama run starling-lm` |
|
||||
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
|
||||
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
|
||||
| Llama 2 13B | 13B | 7.3GB | `ollama run llama2:13b` |
|
||||
| Llama 2 70B | 70B | 39GB | `ollama run llama2:70b` |
|
||||
| Orca Mini | 3B | 1.9GB | `ollama run orca-mini` |
|
||||
| Vicuna | 7B | 3.8GB | `ollama run vicuna` |
|
||||
| LLaVA | 7B | 4.5GB | `ollama run llava` |
|
||||
| Gemma | 2B | 1.4GB | `ollama run gemma:2b` |
|
||||
| Gemma | 7B | 4.8GB | `ollama run gemma:7b` |
|
||||
| Solar | 10.7B | 6.1GB | `ollama run solar` |
|
||||
|
||||
> Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
|
||||
|
||||
@@ -97,16 +94,16 @@ See the [guide](docs/import.md) on importing models for more information.
|
||||
|
||||
### Customize a prompt
|
||||
|
||||
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama2` model:
|
||||
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3` model:
|
||||
|
||||
```
|
||||
ollama pull llama2
|
||||
ollama pull llama3
|
||||
```
|
||||
|
||||
Create a `Modelfile`:
|
||||
|
||||
```
|
||||
FROM llama2
|
||||
FROM llama3
|
||||
|
||||
# set the temperature to 1 [higher is more creative, lower is more coherent]
|
||||
PARAMETER temperature 1
|
||||
@@ -141,7 +138,7 @@ ollama create mymodel -f ./Modelfile
|
||||
### Pull a model
|
||||
|
||||
```
|
||||
ollama pull llama2
|
||||
ollama pull llama3
|
||||
```
|
||||
|
||||
> This command can also be used to update a local model. Only the diff will be pulled.
|
||||
@@ -149,13 +146,13 @@ ollama pull llama2
|
||||
### Remove a model
|
||||
|
||||
```
|
||||
ollama rm llama2
|
||||
ollama rm llama3
|
||||
```
|
||||
|
||||
### Copy a model
|
||||
|
||||
```
|
||||
ollama cp llama2 my-llama2
|
||||
ollama cp llama3 my-model
|
||||
```
|
||||
|
||||
### Multiline input
|
||||
@@ -179,7 +176,7 @@ The image features a yellow smiley face, which is likely the central focus of th
|
||||
### Pass in prompt as arguments
|
||||
|
||||
```
|
||||
$ ollama run llama2 "Summarize this file: $(cat README.md)"
|
||||
$ ollama run llama3 "Summarize this file: $(cat README.md)"
|
||||
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
|
||||
```
|
||||
|
||||
@@ -226,7 +223,7 @@ Next, start the server:
|
||||
Finally, in a separate shell, run a model:
|
||||
|
||||
```
|
||||
./ollama run llama2
|
||||
./ollama run llama3
|
||||
```
|
||||
|
||||
## REST API
|
||||
@@ -237,7 +234,7 @@ Ollama has a REST API for running and managing models.
|
||||
|
||||
```
|
||||
curl http://localhost:11434/api/generate -d '{
|
||||
"model": "llama2",
|
||||
"model": "llama3",
|
||||
"prompt":"Why is the sky blue?"
|
||||
}'
|
||||
```
|
||||
@@ -246,7 +243,7 @@ curl http://localhost:11434/api/generate -d '{
|
||||
|
||||
```
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
"model": "mistral",
|
||||
"model": "llama3",
|
||||
"messages": [
|
||||
{ "role": "user", "content": "why is the sky blue?" }
|
||||
]
|
||||
@@ -259,15 +256,17 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
|
||||
### Web & Desktop
|
||||
|
||||
- [Open WebUI](https://github.com/open-webui/open-webui)
|
||||
- [Enchanted (macOS native)](https://github.com/AugustDev/enchanted)
|
||||
- [Lollms-Webui](https://github.com/ParisNeo/lollms-webui)
|
||||
- [LibreChat](https://github.com/danny-avila/LibreChat)
|
||||
- [Bionic GPT](https://github.com/bionic-gpt/bionic-gpt)
|
||||
- [Enchanted (macOS native)](https://github.com/AugustDev/enchanted)
|
||||
- [HTML UI](https://github.com/rtcfirefly/ollama-ui)
|
||||
- [Saddle](https://github.com/jikkuatwork/saddle)
|
||||
- [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama)
|
||||
- [Chatbot UI v2](https://github.com/mckaywrigley/chatbot-ui)
|
||||
- [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file)
|
||||
- [Minimalistic React UI for Ollama Models](https://github.com/richawo/minimal-llm-ui)
|
||||
- [Open WebUI](https://github.com/open-webui/open-webui)
|
||||
- [Ollamac](https://github.com/kevinhermawan/Ollamac)
|
||||
- [big-AGI](https://github.com/enricoros/big-AGI/blob/main/docs/config-local-ollama.md)
|
||||
- [Cheshire Cat assistant framework](https://github.com/cheshire-cat-ai/core)
|
||||
@@ -289,6 +288,13 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [AnythingLLM (Docker + MacOs/Windows/Linux native app)](https://github.com/Mintplex-Labs/anything-llm)
|
||||
- [Ollama Basic Chat: Uses HyperDiv Reactive UI](https://github.com/rapidarchitect/ollama_basic_chat)
|
||||
- [Ollama-chats RPG](https://github.com/drazdra/ollama-chats)
|
||||
- [QA-Pilot: Chat with Code Repository](https://github.com/reid41/QA-Pilot)
|
||||
- [ChatOllama: Open Source Chatbot based on Ollama with Knowledge Bases](https://github.com/sugarforever/chat-ollama)
|
||||
- [CRAG Ollama Chat: Simple Web Search with Corrective RAG](https://github.com/Nagi-ovo/CRAG-Ollama-Chat)
|
||||
- [RAGFlow: Open-source Retrieval-Augmented Generation engine based on deep document understanding](https://github.com/infiniflow/ragflow)
|
||||
- [chat: chat web app for teams](https://github.com/swuecho/chat)
|
||||
- [Lobe Chat](https://github.com/lobehub/lobe-chat) with [Integrating Doc](https://lobehub.com/docs/self-hosting/examples/ollama)
|
||||
- [Ollama RAG Chatbot: Local Chat with multiples PDFs using Ollama and RAG.](https://github.com/datvodinh/rag-chatbot.git)
|
||||
|
||||
### Terminal
|
||||
|
||||
@@ -304,15 +310,18 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Oatmeal](https://github.com/dustinblackman/oatmeal)
|
||||
- [cmdh](https://github.com/pgibler/cmdh)
|
||||
- [ooo](https://github.com/npahlfer/ooo)
|
||||
- [shell-pilot](https://github.com/reid41/shell-pilot)
|
||||
- [tenere](https://github.com/pythops/tenere)
|
||||
- [llm-ollama](https://github.com/taketwo/llm-ollama) for [Datasette's LLM CLI](https://llm.datasette.io/en/stable/).
|
||||
- [typechat-cli](https://github.com/anaisbetts/typechat-cli)
|
||||
- [ShellOracle](https://github.com/djcopley/ShellOracle)
|
||||
- [tlm](https://github.com/yusufcanb/tlm)
|
||||
- [podman-ollama](https://github.com/ericcurtin/podman-ollama)
|
||||
|
||||
### Database
|
||||
|
||||
- [MindsDB](https://github.com/mindsdb/mindsdb/blob/staging/mindsdb/integrations/handlers/ollama_handler/README.md)
|
||||
- [MindsDB](https://github.com/mindsdb/mindsdb/blob/staging/mindsdb/integrations/handlers/ollama_handler/README.md) (Connects Ollama models with nearly 200 data platforms and apps)
|
||||
- [chromem-go](https://github.com/philippgille/chromem-go/blob/v0.5.0/embed_ollama.go) with [example](https://github.com/philippgille/chromem-go/tree/v0.5.0/examples/rag-wikipedia-ollama)
|
||||
|
||||
### Package managers
|
||||
|
||||
@@ -371,3 +380,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and HuggingFace)
|
||||
- [Page Assist](https://github.com/n4ze3m/page-assist) (Chrome Extension)
|
||||
- [AI Telegram Bot](https://github.com/tusharhero/aitelegrambot) (Telegram bot using Ollama in backend)
|
||||
- [AI ST Completion](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (Sublime Text 4 AI assistant plugin with Ollama support)
|
||||
- [Discord-Ollama Chat Bot](https://github.com/kevinthedang/discord-ollama) (Generalized TypeScript Discord Bot w/ Tuning Documentation)
|
||||
|
||||
### Supported backends
|
||||
- [llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov.
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
// Package api implements the client-side API for code wishing to interact
|
||||
// with the ollama service. The methods of the [Client] type correspond to
|
||||
// the ollama REST API as described in https://github.com/ollama/ollama/blob/main/docs/api.md
|
||||
//
|
||||
// The ollama command-line client itself uses this package to interact with
|
||||
// the backend service.
|
||||
package api
|
||||
|
||||
import (
|
||||
@@ -5,7 +11,6 @@ import (
|
||||
"bytes"
|
||||
"context"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"net"
|
||||
@@ -19,6 +24,8 @@ import (
|
||||
"github.com/ollama/ollama/version"
|
||||
)
|
||||
|
||||
// Client encapsulates client state for interacting with the ollama
|
||||
// service. Use [ClientFromEnvironment] to create new Clients.
|
||||
type Client struct {
|
||||
base *url.URL
|
||||
http *http.Client
|
||||
@@ -40,6 +47,15 @@ func checkError(resp *http.Response, body []byte) error {
|
||||
return apiError
|
||||
}
|
||||
|
||||
// ClientFromEnvironment creates a new [Client] using configuration from the
|
||||
// environment variable OLLAMA_HOST, which points to the network host and
|
||||
// port on which the ollama service is listenting. The format of this variable
|
||||
// is:
|
||||
//
|
||||
// <scheme>://<host>:<port>
|
||||
//
|
||||
// If the variable is not specified, a default ollama host and port will be
|
||||
// used.
|
||||
func ClientFromEnvironment() (*Client, error) {
|
||||
defaultPort := "11434"
|
||||
|
||||
@@ -75,6 +91,13 @@ func ClientFromEnvironment() (*Client, error) {
|
||||
}, nil
|
||||
}
|
||||
|
||||
func NewClient(base *url.URL, http *http.Client) *Client {
|
||||
return &Client{
|
||||
base: base,
|
||||
http: http,
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Client) do(ctx context.Context, method, path string, reqData, respData any) error {
|
||||
var reqBody io.Reader
|
||||
var data []byte
|
||||
@@ -191,8 +214,14 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
|
||||
return nil
|
||||
}
|
||||
|
||||
// GenerateResponseFunc is a function that [Client.Generate] invokes every time
|
||||
// a response is received from the service. If this function returns an error,
|
||||
// [Client.Generate] will stop generating and return this error.
|
||||
type GenerateResponseFunc func(GenerateResponse) error
|
||||
|
||||
// Generate generates a response for a given prompt. The req parameter should
|
||||
// be populated with prompt details. fn is called for each response (there may
|
||||
// be multiple responses, e.g. in case streaming is enabled).
|
||||
func (c *Client) Generate(ctx context.Context, req *GenerateRequest, fn GenerateResponseFunc) error {
|
||||
return c.stream(ctx, http.MethodPost, "/api/generate", req, func(bts []byte) error {
|
||||
var resp GenerateResponse
|
||||
@@ -204,8 +233,15 @@ func (c *Client) Generate(ctx context.Context, req *GenerateRequest, fn Generate
|
||||
})
|
||||
}
|
||||
|
||||
// ChatResponseFunc is a function that [Client.Chat] invokes every time
|
||||
// a response is received from the service. If this function returns an error,
|
||||
// [Client.Chat] will stop generating and return this error.
|
||||
type ChatResponseFunc func(ChatResponse) error
|
||||
|
||||
// Chat generates the next message in a chat. [ChatRequest] may contain a
|
||||
// sequence of messages which can be used to maintain chat history with a model.
|
||||
// fn is called for each response (there may be multiple responses, e.g. if case
|
||||
// streaming is enabled).
|
||||
func (c *Client) Chat(ctx context.Context, req *ChatRequest, fn ChatResponseFunc) error {
|
||||
return c.stream(ctx, http.MethodPost, "/api/chat", req, func(bts []byte) error {
|
||||
var resp ChatResponse
|
||||
@@ -217,8 +253,14 @@ func (c *Client) Chat(ctx context.Context, req *ChatRequest, fn ChatResponseFunc
|
||||
})
|
||||
}
|
||||
|
||||
// PullProgressFunc is a function that [Client.Pull] invokes every time there
|
||||
// is progress with a "pull" request sent to the service. If this function
|
||||
// returns an error, [Client.Pull] will stop the process and return this error.
|
||||
type PullProgressFunc func(ProgressResponse) error
|
||||
|
||||
// Pull downloads a model from the ollama library. fn is called each time
|
||||
// progress is made on the request and can be used to display a progress bar,
|
||||
// etc.
|
||||
func (c *Client) Pull(ctx context.Context, req *PullRequest, fn PullProgressFunc) error {
|
||||
return c.stream(ctx, http.MethodPost, "/api/pull", req, func(bts []byte) error {
|
||||
var resp ProgressResponse
|
||||
@@ -301,18 +343,7 @@ func (c *Client) Embeddings(ctx context.Context, req *EmbeddingRequest) (*Embedd
|
||||
}
|
||||
|
||||
func (c *Client) CreateBlob(ctx context.Context, digest string, r io.Reader) error {
|
||||
if err := c.do(ctx, http.MethodHead, fmt.Sprintf("/api/blobs/%s", digest), nil, nil); err != nil {
|
||||
var statusError StatusError
|
||||
if !errors.As(err, &statusError) || statusError.StatusCode != http.StatusNotFound {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := c.do(ctx, http.MethodPost, fmt.Sprintf("/api/blobs/%s", digest), r, nil); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
return c.do(ctx, http.MethodPost, fmt.Sprintf("/api/blobs/%s", digest), r, nil)
|
||||
}
|
||||
|
||||
func (c *Client) Version(ctx context.Context) (string, error) {
|
||||
|
||||
119
api/types.go
119
api/types.go
@@ -2,6 +2,7 @@ package api
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"math"
|
||||
"os"
|
||||
@@ -33,18 +34,46 @@ func (e StatusError) Error() string {
|
||||
|
||||
type ImageData []byte
|
||||
|
||||
// GenerateRequest describes a request sent by [Client.Generate]. While you
|
||||
// have to specify the Model and Prompt fields, all the other fields have
|
||||
// reasonable defaults for basic uses.
|
||||
type GenerateRequest struct {
|
||||
Model string `json:"model"`
|
||||
Prompt string `json:"prompt"`
|
||||
System string `json:"system"`
|
||||
Template string `json:"template"`
|
||||
Context []int `json:"context,omitempty"`
|
||||
Stream *bool `json:"stream,omitempty"`
|
||||
Raw bool `json:"raw,omitempty"`
|
||||
Format string `json:"format"`
|
||||
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
||||
Images []ImageData `json:"images,omitempty"`
|
||||
// Model is the model name; it should be a name familiar to Ollama from
|
||||
// the library at https://ollama.com/library
|
||||
Model string `json:"model"`
|
||||
|
||||
// Prompt is the textual prompt to send to the model.
|
||||
Prompt string `json:"prompt"`
|
||||
|
||||
// System overrides the model's default system message/prompt.
|
||||
System string `json:"system"`
|
||||
|
||||
// Template overrides the model's default prompt template.
|
||||
Template string `json:"template"`
|
||||
|
||||
// Context is the context parameter returned from a previous call to
|
||||
// Generate call. It can be used to keep a short conversational memory.
|
||||
Context []int `json:"context,omitempty"`
|
||||
|
||||
// Stream specifies whether the response is streaming; it is true by default.
|
||||
Stream *bool `json:"stream,omitempty"`
|
||||
|
||||
// Raw set to true means that no formatting will be applied to the prompt.
|
||||
Raw bool `json:"raw,omitempty"`
|
||||
|
||||
// Format specifies the format to return a response in.
|
||||
Format string `json:"format"`
|
||||
|
||||
// KeepAlive controls how long the model will stay loaded in memory following
|
||||
// this request.
|
||||
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
||||
|
||||
// Images is an optional list of base64-encoded images accompanying this
|
||||
// request, for multimodal models.
|
||||
Images []ImageData `json:"images,omitempty"`
|
||||
|
||||
// Options lists model-specific options. For example, temperature can be
|
||||
// set through this field, if the model supports it.
|
||||
Options map[string]interface{} `json:"options"`
|
||||
}
|
||||
|
||||
@@ -109,21 +138,24 @@ type Options struct {
|
||||
|
||||
// Runner options which must be set when the model is loaded into memory
|
||||
type Runner struct {
|
||||
UseNUMA bool `json:"numa,omitempty"`
|
||||
NumCtx int `json:"num_ctx,omitempty"`
|
||||
NumBatch int `json:"num_batch,omitempty"`
|
||||
NumGQA int `json:"num_gqa,omitempty"`
|
||||
NumGPU int `json:"num_gpu,omitempty"`
|
||||
MainGPU int `json:"main_gpu,omitempty"`
|
||||
LowVRAM bool `json:"low_vram,omitempty"`
|
||||
F16KV bool `json:"f16_kv,omitempty"`
|
||||
LogitsAll bool `json:"logits_all,omitempty"`
|
||||
VocabOnly bool `json:"vocab_only,omitempty"`
|
||||
UseMMap bool `json:"use_mmap,omitempty"`
|
||||
UseMLock bool `json:"use_mlock,omitempty"`
|
||||
RopeFrequencyBase float32 `json:"rope_frequency_base,omitempty"`
|
||||
UseNUMA bool `json:"numa,omitempty"`
|
||||
NumCtx int `json:"num_ctx,omitempty"`
|
||||
NumBatch int `json:"num_batch,omitempty"`
|
||||
NumGQA int `json:"num_gqa,omitempty"`
|
||||
NumGPU int `json:"num_gpu,omitempty"`
|
||||
MainGPU int `json:"main_gpu,omitempty"`
|
||||
LowVRAM bool `json:"low_vram,omitempty"`
|
||||
F16KV bool `json:"f16_kv,omitempty"`
|
||||
LogitsAll bool `json:"logits_all,omitempty"`
|
||||
VocabOnly bool `json:"vocab_only,omitempty"`
|
||||
UseMMap bool `json:"use_mmap,omitempty"`
|
||||
UseMLock bool `json:"use_mlock,omitempty"`
|
||||
NumThread int `json:"num_thread,omitempty"`
|
||||
|
||||
// Unused: RopeFrequencyBase is ignored. Instead the value in the model will be used
|
||||
RopeFrequencyBase float32 `json:"rope_frequency_base,omitempty"`
|
||||
// Unused: RopeFrequencyScale is ignored. Instead the value in the model will be used
|
||||
RopeFrequencyScale float32 `json:"rope_frequency_scale,omitempty"`
|
||||
NumThread int `json:"num_thread,omitempty"`
|
||||
}
|
||||
|
||||
type EmbeddingRequest struct {
|
||||
@@ -139,10 +171,11 @@ type EmbeddingResponse struct {
|
||||
}
|
||||
|
||||
type CreateRequest struct {
|
||||
Model string `json:"model"`
|
||||
Path string `json:"path"`
|
||||
Modelfile string `json:"modelfile"`
|
||||
Stream *bool `json:"stream,omitempty"`
|
||||
Model string `json:"model"`
|
||||
Path string `json:"path"`
|
||||
Modelfile string `json:"modelfile"`
|
||||
Stream *bool `json:"stream,omitempty"`
|
||||
Quantization string `json:"quantization,omitempty"`
|
||||
|
||||
// Name is deprecated, see Model
|
||||
Name string `json:"name"`
|
||||
@@ -275,7 +308,7 @@ func (m *Metrics) Summary() {
|
||||
}
|
||||
}
|
||||
|
||||
var ErrInvalidOpts = fmt.Errorf("invalid options")
|
||||
var ErrInvalidOpts = errors.New("invalid options")
|
||||
|
||||
func (opts *Options) FromMap(m map[string]interface{}) error {
|
||||
valueOpts := reflect.ValueOf(opts).Elem() // names of the fields in the options struct
|
||||
@@ -363,8 +396,10 @@ func (opts *Options) FromMap(m map[string]interface{}) error {
|
||||
func DefaultOptions() Options {
|
||||
return Options{
|
||||
// options set on request to runner
|
||||
NumPredict: -1,
|
||||
NumKeep: 0,
|
||||
NumPredict: -1,
|
||||
|
||||
// set a minimal num_keep to avoid issues on context shifts
|
||||
NumKeep: 4,
|
||||
Temperature: 0.8,
|
||||
TopK: 40,
|
||||
TopP: 0.9,
|
||||
@@ -382,18 +417,16 @@ func DefaultOptions() Options {
|
||||
|
||||
Runner: Runner{
|
||||
// options set when the model is loaded
|
||||
NumCtx: 2048,
|
||||
RopeFrequencyBase: 10000.0,
|
||||
RopeFrequencyScale: 1.0,
|
||||
NumBatch: 512,
|
||||
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
|
||||
NumGQA: 1,
|
||||
NumThread: 0, // let the runtime decide
|
||||
LowVRAM: false,
|
||||
F16KV: true,
|
||||
UseMLock: false,
|
||||
UseMMap: true,
|
||||
UseNUMA: false,
|
||||
NumCtx: 2048,
|
||||
NumBatch: 512,
|
||||
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
|
||||
NumGQA: 1,
|
||||
NumThread: 0, // let the runtime decide
|
||||
LowVRAM: false,
|
||||
F16KV: true,
|
||||
UseMLock: false,
|
||||
UseMMap: true,
|
||||
UseNUMA: false,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
@@ -83,6 +83,38 @@ func SpawnServer(ctx context.Context, command string) (chan int, error) {
|
||||
io.Copy(logFile, stderr) //nolint:errcheck
|
||||
}()
|
||||
|
||||
// Re-wire context done behavior to attempt a graceful shutdown of the server
|
||||
cmd.Cancel = func() error {
|
||||
if cmd.Process != nil {
|
||||
err := terminate(cmd)
|
||||
if err != nil {
|
||||
slog.Warn("error trying to gracefully terminate server", "err", err)
|
||||
return cmd.Process.Kill()
|
||||
}
|
||||
|
||||
tick := time.NewTicker(10 * time.Millisecond)
|
||||
defer tick.Stop()
|
||||
|
||||
for {
|
||||
select {
|
||||
case <-tick.C:
|
||||
exited, err := isProcessExited(cmd.Process.Pid)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if exited {
|
||||
return nil
|
||||
}
|
||||
case <-time.After(5 * time.Second):
|
||||
slog.Warn("graceful server shutdown timeout, killing", "pid", cmd.Process.Pid)
|
||||
return cmd.Process.Kill()
|
||||
}
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// run the command and wait for it to finish
|
||||
if err := cmd.Start(); err != nil {
|
||||
return done, fmt.Errorf("failed to start server %w", err)
|
||||
@@ -105,7 +137,7 @@ func SpawnServer(ctx context.Context, command string) (chan int, error) {
|
||||
|
||||
select {
|
||||
case <-ctx.Done():
|
||||
slog.Debug(fmt.Sprintf("server shutdown with exit code %d", code))
|
||||
slog.Info(fmt.Sprintf("server shutdown with exit code %d", code))
|
||||
done <- code
|
||||
return
|
||||
default:
|
||||
|
||||
@@ -4,9 +4,35 @@ package lifecycle
|
||||
|
||||
import (
|
||||
"context"
|
||||
"errors"
|
||||
"fmt"
|
||||
"os"
|
||||
"os/exec"
|
||||
"syscall"
|
||||
)
|
||||
|
||||
func getCmd(ctx context.Context, cmd string) *exec.Cmd {
|
||||
return exec.CommandContext(ctx, cmd, "serve")
|
||||
}
|
||||
|
||||
func terminate(cmd *exec.Cmd) error {
|
||||
return cmd.Process.Signal(os.Interrupt)
|
||||
}
|
||||
|
||||
func isProcessExited(pid int) (bool, error) {
|
||||
proc, err := os.FindProcess(pid)
|
||||
if err != nil {
|
||||
return false, fmt.Errorf("failed to find process: %v", err)
|
||||
}
|
||||
|
||||
err = proc.Signal(syscall.Signal(0))
|
||||
if err != nil {
|
||||
if errors.Is(err, os.ErrProcessDone) || errors.Is(err, syscall.ESRCH) {
|
||||
return true, nil
|
||||
}
|
||||
|
||||
return false, fmt.Errorf("error signaling process: %v", err)
|
||||
}
|
||||
|
||||
return false, nil
|
||||
}
|
||||
|
||||
@@ -2,12 +2,88 @@ package lifecycle
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"os/exec"
|
||||
"syscall"
|
||||
|
||||
"golang.org/x/sys/windows"
|
||||
)
|
||||
|
||||
func getCmd(ctx context.Context, exePath string) *exec.Cmd {
|
||||
cmd := exec.CommandContext(ctx, exePath, "serve")
|
||||
cmd.SysProcAttr = &syscall.SysProcAttr{HideWindow: true, CreationFlags: 0x08000000}
|
||||
cmd.SysProcAttr = &syscall.SysProcAttr{
|
||||
HideWindow: true,
|
||||
CreationFlags: windows.CREATE_NEW_PROCESS_GROUP,
|
||||
}
|
||||
|
||||
return cmd
|
||||
}
|
||||
|
||||
func terminate(cmd *exec.Cmd) error {
|
||||
dll, err := windows.LoadDLL("kernel32.dll")
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer dll.Release() // nolint: errcheck
|
||||
|
||||
pid := cmd.Process.Pid
|
||||
|
||||
f, err := dll.FindProc("AttachConsole")
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
r1, _, err := f.Call(uintptr(pid))
|
||||
if r1 == 0 && err != syscall.ERROR_ACCESS_DENIED {
|
||||
return err
|
||||
}
|
||||
|
||||
f, err = dll.FindProc("SetConsoleCtrlHandler")
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
r1, _, err = f.Call(0, 1)
|
||||
if r1 == 0 {
|
||||
return err
|
||||
}
|
||||
|
||||
f, err = dll.FindProc("GenerateConsoleCtrlEvent")
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
r1, _, err = f.Call(windows.CTRL_BREAK_EVENT, uintptr(pid))
|
||||
if r1 == 0 {
|
||||
return err
|
||||
}
|
||||
|
||||
r1, _, err = f.Call(windows.CTRL_C_EVENT, uintptr(pid))
|
||||
if r1 == 0 {
|
||||
return err
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
const STILL_ACTIVE = 259
|
||||
|
||||
func isProcessExited(pid int) (bool, error) {
|
||||
hProcess, err := windows.OpenProcess(windows.PROCESS_QUERY_INFORMATION, false, uint32(pid))
|
||||
if err != nil {
|
||||
return false, fmt.Errorf("failed to open process: %v", err)
|
||||
}
|
||||
defer windows.CloseHandle(hProcess) // nolint: errcheck
|
||||
|
||||
var exitCode uint32
|
||||
err = windows.GetExitCodeProcess(hProcess, &exitCode)
|
||||
if err != nil {
|
||||
return false, fmt.Errorf("failed to get exit code: %v", err)
|
||||
}
|
||||
|
||||
if exitCode == STILL_ACTIVE {
|
||||
return false, nil
|
||||
}
|
||||
|
||||
return true, nil
|
||||
}
|
||||
|
||||
@@ -88,15 +88,12 @@ DialogFontSize=12
|
||||
[Files]
|
||||
Source: ".\app.exe"; DestDir: "{app}"; DestName: "{#MyAppExeName}" ; Flags: ignoreversion 64bit
|
||||
Source: "..\ollama.exe"; DestDir: "{app}"; Flags: ignoreversion 64bit
|
||||
Source: "..\dist\windeps\*.dll"; DestDir: "{app}"; Flags: ignoreversion 64bit
|
||||
Source: "..\dist\windows-amd64\*.dll"; DestDir: "{app}"; Flags: ignoreversion 64bit
|
||||
Source: "..\dist\windows-amd64\ollama_runners\*"; DestDir: "{app}\ollama_runners"; Flags: ignoreversion 64bit recursesubdirs
|
||||
Source: "..\dist\ollama_welcome.ps1"; DestDir: "{app}"; Flags: ignoreversion
|
||||
Source: ".\assets\app.ico"; DestDir: "{app}"; Flags: ignoreversion
|
||||
; Assumes v5.7, may need adjustments for v6
|
||||
#if GetEnv("HIP_PATH") != ""
|
||||
Source: "{#GetEnv('HIP_PATH')}\bin\hipblas.dll"; DestDir: "{app}\rocm\"; Flags: ignoreversion
|
||||
Source: "{#GetEnv('HIP_PATH')}\bin\rocblas.dll"; DestDir: "{app}\rocm\"; Flags: ignoreversion
|
||||
; amdhip64.dll dependency comes from the driver and must be installed already
|
||||
Source: "{#GetEnv('HIP_PATH')}\bin\rocblas\library\*"; DestDir: "{app}\rocm\rocblas\library\"; Flags: ignoreversion
|
||||
#if DirExists("..\dist\windows-amd64\rocm")
|
||||
Source: "..\dist\windows-amd64\rocm\*"; DestDir: "{app}\rocm\"; Flags: ignoreversion recursesubdirs
|
||||
#endif
|
||||
|
||||
|
||||
@@ -132,7 +129,7 @@ SetupAppRunningError=Another Ollama installer is running.%n%nPlease cancel or fi
|
||||
|
||||
|
||||
;FinishedHeadingLabel=Run your first model
|
||||
;FinishedLabel=%nRun this command in a PowerShell or cmd terminal.%n%n%n ollama run llama2
|
||||
;FinishedLabel=%nRun this command in a PowerShell or cmd terminal.%n%n%n ollama run llama3
|
||||
;ClickFinish=%n
|
||||
|
||||
[Registry]
|
||||
|
||||
@@ -24,10 +24,5 @@ func NewTray() (commontray.OllamaTray, error) {
|
||||
return nil, fmt.Errorf("failed to load icon %s: %w", iconName, err)
|
||||
}
|
||||
|
||||
tray, err := InitPlatformTray(icon, updateIcon)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return tray, nil
|
||||
return InitPlatformTray(icon, updateIcon)
|
||||
}
|
||||
|
||||
196
cmd/cmd.go
196
cmd/cmd.go
@@ -17,6 +17,7 @@ import (
|
||||
"os"
|
||||
"os/signal"
|
||||
"path/filepath"
|
||||
"regexp"
|
||||
"runtime"
|
||||
"strings"
|
||||
"syscall"
|
||||
@@ -53,8 +54,6 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
|
||||
p := progress.NewProgress(os.Stderr)
|
||||
defer p.Stop()
|
||||
|
||||
bars := make(map[string]*progress.Bar)
|
||||
|
||||
modelfile, err := os.ReadFile(filename)
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -95,71 +94,16 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
|
||||
return err
|
||||
}
|
||||
|
||||
// TODO make this work w/ adapters
|
||||
if fi.IsDir() {
|
||||
tf, err := os.CreateTemp("", "ollama-tf")
|
||||
// this is likely a safetensors or pytorch directory
|
||||
// TODO make this work w/ adapters
|
||||
tempfile, err := tempZipFiles(path)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer os.RemoveAll(tf.Name())
|
||||
defer os.RemoveAll(tempfile)
|
||||
|
||||
zf := zip.NewWriter(tf)
|
||||
|
||||
files, err := filepath.Glob(filepath.Join(path, "model-*.safetensors"))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if len(files) == 0 {
|
||||
return fmt.Errorf("no safetensors files were found in '%s'", path)
|
||||
}
|
||||
|
||||
// add the safetensor config file + tokenizer
|
||||
files = append(files, filepath.Join(path, "config.json"))
|
||||
files = append(files, filepath.Join(path, "added_tokens.json"))
|
||||
files = append(files, filepath.Join(path, "tokenizer.model"))
|
||||
|
||||
for _, fn := range files {
|
||||
f, err := os.Open(fn)
|
||||
if os.IsNotExist(err) && strings.HasSuffix(fn, "added_tokens.json") {
|
||||
continue
|
||||
} else if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
fi, err := f.Stat()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
h, err := zip.FileInfoHeader(fi)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
h.Name = filepath.Base(fn)
|
||||
h.Method = zip.Store
|
||||
|
||||
w, err := zf.CreateHeader(h)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
_, err = io.Copy(w, f)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
if err := zf.Close(); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := tf.Close(); err != nil {
|
||||
return err
|
||||
}
|
||||
path = tf.Name()
|
||||
path = tempfile
|
||||
}
|
||||
|
||||
digest, err := createBlob(cmd, client, path)
|
||||
@@ -167,10 +111,17 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
|
||||
return err
|
||||
}
|
||||
|
||||
modelfile = bytes.ReplaceAll(modelfile, []byte(c.Args), []byte("@"+digest))
|
||||
name := c.Name
|
||||
if c.Name == "model" {
|
||||
name = "from"
|
||||
}
|
||||
|
||||
re := regexp.MustCompile(fmt.Sprintf(`(?im)^(%s)\s+%s\s*$`, name, c.Args))
|
||||
modelfile = re.ReplaceAll(modelfile, []byte("$1 @"+digest))
|
||||
}
|
||||
}
|
||||
|
||||
bars := make(map[string]*progress.Bar)
|
||||
fn := func(resp api.ProgressResponse) error {
|
||||
if resp.Digest != "" {
|
||||
spinner.Stop()
|
||||
@@ -194,7 +145,9 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
request := api.CreateRequest{Name: args[0], Modelfile: string(modelfile)}
|
||||
quantization, _ := cmd.Flags().GetString("quantization")
|
||||
|
||||
request := api.CreateRequest{Name: args[0], Modelfile: string(modelfile), Quantization: quantization}
|
||||
if err := client.Create(cmd.Context(), &request, fn); err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -202,6 +155,114 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
func tempZipFiles(path string) (string, error) {
|
||||
tempfile, err := os.CreateTemp("", "ollama-tf")
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer tempfile.Close()
|
||||
|
||||
zipfile := zip.NewWriter(tempfile)
|
||||
defer zipfile.Close()
|
||||
|
||||
detectContentType := func(path string) (string, error) {
|
||||
f, err := os.Open(path)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
var b bytes.Buffer
|
||||
b.Grow(512)
|
||||
|
||||
if _, err := io.CopyN(&b, f, 512); err != nil && !errors.Is(err, io.EOF) {
|
||||
return "", err
|
||||
}
|
||||
|
||||
contentType, _, _ := strings.Cut(http.DetectContentType(b.Bytes()), ";")
|
||||
return contentType, nil
|
||||
}
|
||||
|
||||
glob := func(pattern, contentType string) ([]string, error) {
|
||||
matches, err := filepath.Glob(pattern)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
for _, safetensor := range matches {
|
||||
if ct, err := detectContentType(safetensor); err != nil {
|
||||
return nil, err
|
||||
} else if ct != contentType {
|
||||
return nil, fmt.Errorf("invalid content type: expected %s for %s", ct, safetensor)
|
||||
}
|
||||
}
|
||||
|
||||
return matches, nil
|
||||
}
|
||||
|
||||
var files []string
|
||||
if st, _ := glob(filepath.Join(path, "model*.safetensors"), "application/octet-stream"); len(st) > 0 {
|
||||
// safetensors files might be unresolved git lfs references; skip if they are
|
||||
// covers model-x-of-y.safetensors, model.fp32-x-of-y.safetensors, model.safetensors
|
||||
files = append(files, st...)
|
||||
} else if pt, _ := glob(filepath.Join(path, "pytorch_model*.bin"), "application/zip"); len(pt) > 0 {
|
||||
// pytorch files might also be unresolved git lfs references; skip if they are
|
||||
// covers pytorch_model-x-of-y.bin, pytorch_model.fp32-x-of-y.bin, pytorch_model.bin
|
||||
files = append(files, pt...)
|
||||
} else if pt, _ := glob(filepath.Join(path, "consolidated*.pth"), "application/octet-stream"); len(pt) > 0 {
|
||||
// pytorch files might also be unresolved git lfs references; skip if they are
|
||||
// covers consolidated.x.pth, consolidated.pth
|
||||
files = append(files, pt...)
|
||||
} else {
|
||||
return "", errors.New("no safetensors or torch files found")
|
||||
}
|
||||
|
||||
// add configuration files, json files are detected as text/plain
|
||||
js, err := glob(filepath.Join(path, "*.json"), "text/plain")
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
files = append(files, js...)
|
||||
|
||||
if tks, _ := glob(filepath.Join(path, "tokenizer.model"), "application/octet-stream"); len(tks) > 0 {
|
||||
// add tokenizer.model if it exists, tokenizer.json is automatically picked up by the previous glob
|
||||
// tokenizer.model might be a unresolved git lfs reference; error if it is
|
||||
files = append(files, tks...)
|
||||
} else if tks, _ := glob(filepath.Join(path, "**/tokenizer.model"), "text/plain"); len(tks) > 0 {
|
||||
// some times tokenizer.model is in a subdirectory (e.g. meta-llama/Meta-Llama-3-8B)
|
||||
files = append(files, tks...)
|
||||
}
|
||||
|
||||
for _, file := range files {
|
||||
f, err := os.Open(file)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
fi, err := f.Stat()
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
zfi, err := zip.FileInfoHeader(fi)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
zf, err := zipfile.CreateHeader(zfi)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
if _, err := io.Copy(zf, f); err != nil {
|
||||
return "", err
|
||||
}
|
||||
}
|
||||
|
||||
return tempfile.Name(), nil
|
||||
}
|
||||
|
||||
func createBlob(cmd *cobra.Command, client *api.Client, path string) (string, error) {
|
||||
bin, err := os.Open(path)
|
||||
if err != nil {
|
||||
@@ -213,7 +274,10 @@ func createBlob(cmd *cobra.Command, client *api.Client, path string) (string, er
|
||||
if _, err := io.Copy(hash, bin); err != nil {
|
||||
return "", err
|
||||
}
|
||||
bin.Seek(0, io.SeekStart)
|
||||
|
||||
if _, err := bin.Seek(0, io.SeekStart); err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
digest := fmt.Sprintf("sha256:%x", hash.Sum(nil))
|
||||
if err = client.CreateBlob(cmd.Context(), digest, bin); err != nil {
|
||||
@@ -932,6 +996,7 @@ func NewCLI() *cobra.Command {
|
||||
}
|
||||
|
||||
createCmd.Flags().StringP("file", "f", "Modelfile", "Name of the Modelfile (default \"Modelfile\")")
|
||||
createCmd.Flags().StringP("quantization", "q", "", "Quantization level.")
|
||||
|
||||
showCmd := &cobra.Command{
|
||||
Use: "show MODEL",
|
||||
@@ -973,6 +1038,7 @@ Environment Variables:
|
||||
OLLAMA_ORIGINS A comma separated list of allowed origins.
|
||||
OLLAMA_MODELS The path to the models directory (default is "~/.ollama/models")
|
||||
OLLAMA_KEEP_ALIVE The duration that models stay loaded in memory (default is "5m")
|
||||
OLLAMA_DEBUG Set to 1 to enable additional debug logging
|
||||
`)
|
||||
|
||||
pullCmd := &cobra.Command{
|
||||
|
||||
@@ -295,10 +295,14 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
opts.WordWrap = false
|
||||
fmt.Println("Set 'nowordwrap' mode.")
|
||||
case "verbose":
|
||||
cmd.Flags().Set("verbose", "true")
|
||||
if err := cmd.Flags().Set("verbose", "true"); err != nil {
|
||||
return err
|
||||
}
|
||||
fmt.Println("Set 'verbose' mode.")
|
||||
case "quiet":
|
||||
cmd.Flags().Set("verbose", "false")
|
||||
if err := cmd.Flags().Set("verbose", "false"); err != nil {
|
||||
return err
|
||||
}
|
||||
fmt.Println("Set 'quiet' mode.")
|
||||
case "format":
|
||||
if len(args) < 3 || args[2] != "json" {
|
||||
|
||||
@@ -1,19 +1,16 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"cmp"
|
||||
"encoding/binary"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"regexp"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/mitchellh/mapstructure"
|
||||
"google.golang.org/protobuf/proto"
|
||||
|
||||
"github.com/ollama/ollama/convert/sentencepiece"
|
||||
@@ -21,146 +18,71 @@ import (
|
||||
)
|
||||
|
||||
type Params struct {
|
||||
Architectures []string `json:"architectures"`
|
||||
VocabSize int `json:"vocab_size"`
|
||||
HiddenSize int `json:"hidden_size"` // n_embd
|
||||
HiddenLayers int `json:"num_hidden_layers"` // n_layer
|
||||
ContextSize int `json:"max_position_embeddings"`
|
||||
IntermediateSize int `json:"intermediate_size"`
|
||||
AttentionHeads int `json:"num_attention_heads"` // n_head
|
||||
KeyValHeads int `json:"num_key_value_heads"`
|
||||
NormEPS float64 `json:"rms_norm_eps"`
|
||||
RopeFreqBase float64 `json:"rope_theta"`
|
||||
BoSTokenID int `json:"bos_token_id"`
|
||||
EoSTokenID int `json:"eos_token_id"`
|
||||
Architectures []string `json:"architectures"`
|
||||
VocabSize int `json:"vocab_size"`
|
||||
HiddenSize int `json:"hidden_size"` // n_embd
|
||||
HiddenLayers int `json:"num_hidden_layers"` // n_layer
|
||||
ContextSize int `json:"max_position_embeddings"`
|
||||
IntermediateSize int `json:"intermediate_size"`
|
||||
AttentionHeads int `json:"num_attention_heads"` // n_head
|
||||
KeyValHeads int `json:"num_key_value_heads"`
|
||||
NormEPS float64 `json:"rms_norm_eps"`
|
||||
BoSTokenID int `json:"bos_token_id"`
|
||||
EoSTokenID int `json:"eos_token_id"`
|
||||
HeadDimension int `json:"head_dim"`
|
||||
PaddingTokenID int `json:"pad_token_id"`
|
||||
RopeFrequencyBase float64 `json:"rope_theta"`
|
||||
|
||||
Experts int `json:"num_local_experts"`
|
||||
ExpertsUsed int `json:"num_experts_per_tok"`
|
||||
|
||||
ByteOrder
|
||||
}
|
||||
|
||||
type MetaData struct {
|
||||
Type string `mapstructure:"dtype"`
|
||||
Shape []int `mapstructure:"shape"`
|
||||
Offsets []int `mapstructure:"data_offsets"`
|
||||
type ByteOrder interface {
|
||||
binary.ByteOrder
|
||||
binary.AppendByteOrder
|
||||
}
|
||||
|
||||
func ReadSafeTensors(fn string, offset uint64) ([]llm.Tensor, uint64, error) {
|
||||
f, err := os.Open(fn)
|
||||
if err != nil {
|
||||
return []llm.Tensor{}, 0, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
var jsonSize uint64
|
||||
binary.Read(f, binary.LittleEndian, &jsonSize)
|
||||
|
||||
buf := make([]byte, jsonSize)
|
||||
_, err = io.ReadFull(f, buf)
|
||||
if err != nil {
|
||||
return []llm.Tensor{}, 0, err
|
||||
}
|
||||
|
||||
d := json.NewDecoder(bytes.NewBuffer(buf))
|
||||
d.UseNumber()
|
||||
var parsed map[string]interface{}
|
||||
if err = d.Decode(&parsed); err != nil {
|
||||
return []llm.Tensor{}, 0, err
|
||||
}
|
||||
|
||||
var keys []string
|
||||
for k := range parsed {
|
||||
keys = append(keys, k)
|
||||
}
|
||||
|
||||
slices.Sort(keys)
|
||||
|
||||
slog.Info("converting layers")
|
||||
|
||||
var tensors []llm.Tensor
|
||||
for _, k := range keys {
|
||||
vals := parsed[k].(map[string]interface{})
|
||||
var data MetaData
|
||||
if err = mapstructure.Decode(vals, &data); err != nil {
|
||||
return []llm.Tensor{}, 0, err
|
||||
}
|
||||
|
||||
var size uint64
|
||||
var kind uint32
|
||||
switch len(data.Shape) {
|
||||
case 0:
|
||||
// metadata
|
||||
continue
|
||||
case 1:
|
||||
// convert to float32
|
||||
kind = 0
|
||||
size = uint64(data.Shape[0] * 4)
|
||||
case 2:
|
||||
// convert to float16
|
||||
kind = 1
|
||||
size = uint64(data.Shape[0] * data.Shape[1] * 2)
|
||||
}
|
||||
|
||||
ggufName, err := GetTensorName(k)
|
||||
if err != nil {
|
||||
slog.Error("%v", err)
|
||||
return []llm.Tensor{}, 0, err
|
||||
}
|
||||
|
||||
shape := []uint64{0, 0, 0, 0}
|
||||
for i := range data.Shape {
|
||||
shape[i] = uint64(data.Shape[i])
|
||||
}
|
||||
|
||||
t := llm.Tensor{
|
||||
Name: ggufName,
|
||||
Kind: kind,
|
||||
Offset: offset,
|
||||
Shape: shape[:],
|
||||
FileName: fn,
|
||||
OffsetPadding: 8 + jsonSize,
|
||||
FileOffsets: []uint64{uint64(data.Offsets[0]), uint64(data.Offsets[1])},
|
||||
}
|
||||
slog.Debug(fmt.Sprintf("%v", t))
|
||||
tensors = append(tensors, t)
|
||||
offset += size
|
||||
}
|
||||
return tensors, offset, nil
|
||||
type ModelArch interface {
|
||||
GetTensors() error
|
||||
LoadVocab() error
|
||||
WriteGGUF() (string, error)
|
||||
}
|
||||
|
||||
func GetSafeTensors(dirpath string) ([]llm.Tensor, error) {
|
||||
var tensors []llm.Tensor
|
||||
files, err := filepath.Glob(filepath.Join(dirpath, "/model-*.safetensors"))
|
||||
if err != nil {
|
||||
return []llm.Tensor{}, err
|
||||
}
|
||||
|
||||
var offset uint64
|
||||
for _, f := range files {
|
||||
var t []llm.Tensor
|
||||
var err error
|
||||
t, offset, err = ReadSafeTensors(f, offset)
|
||||
if err != nil {
|
||||
slog.Error("%v", err)
|
||||
return []llm.Tensor{}, err
|
||||
}
|
||||
tensors = append(tensors, t...)
|
||||
}
|
||||
return tensors, nil
|
||||
type ModelFormat interface {
|
||||
GetLayerName(string) (string, error)
|
||||
GetTensors(string, *Params) ([]llm.Tensor, error)
|
||||
GetParams(string) (*Params, error)
|
||||
GetModelArch(string, string, *Params) (ModelArch, error)
|
||||
}
|
||||
|
||||
func GetParams(dirpath string) (*Params, error) {
|
||||
f, err := os.Open(filepath.Join(dirpath, "config.json"))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer f.Close()
|
||||
type ModelData struct {
|
||||
Path string
|
||||
Name string
|
||||
Params *Params
|
||||
Vocab *Vocab
|
||||
Tensors []llm.Tensor
|
||||
Format ModelFormat
|
||||
}
|
||||
|
||||
var params Params
|
||||
|
||||
d := json.NewDecoder(f)
|
||||
err = d.Decode(¶ms)
|
||||
func GetModelFormat(dirname string) (ModelFormat, error) {
|
||||
files, err := filepath.Glob(filepath.Join(dirname, "*"))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return ¶ms, nil
|
||||
for _, fn := range files {
|
||||
slog.Debug(fmt.Sprintf("file = %s", fn))
|
||||
if strings.HasSuffix(fn, ".safetensors") {
|
||||
return &SafetensorFormat{}, nil
|
||||
} else if strings.HasSuffix(fn, ".bin") {
|
||||
slog.Debug("model is torch")
|
||||
return &TorchFormat{}, nil
|
||||
}
|
||||
}
|
||||
|
||||
return nil, fmt.Errorf("couldn't determine model format")
|
||||
}
|
||||
|
||||
// Details on gguf's tokenizer can be found at:
|
||||
@@ -171,7 +93,7 @@ type Vocab struct {
|
||||
Types []int32
|
||||
}
|
||||
|
||||
func LoadTokens(dirpath string) (*Vocab, error) {
|
||||
func LoadSentencePieceTokens(dirpath string, params *Params) (*Vocab, error) {
|
||||
slog.Info(fmt.Sprintf("reading vocab from %s", filepath.Join(dirpath, "tokenizer.model")))
|
||||
in, err := os.ReadFile(filepath.Join(dirpath, "tokenizer.model"))
|
||||
if err != nil {
|
||||
@@ -196,6 +118,14 @@ func LoadTokens(dirpath string) (*Vocab, error) {
|
||||
v.Tokens = append(v.Tokens, p.GetPiece())
|
||||
v.Scores = append(v.Scores, p.GetScore())
|
||||
t := p.GetType()
|
||||
switch t {
|
||||
case sentencepiece.ModelProto_SentencePiece_UNKNOWN:
|
||||
case sentencepiece.ModelProto_SentencePiece_CONTROL:
|
||||
case sentencepiece.ModelProto_SentencePiece_UNUSED:
|
||||
case sentencepiece.ModelProto_SentencePiece_BYTE:
|
||||
default:
|
||||
t = sentencepiece.ModelProto_SentencePiece_NORMAL
|
||||
}
|
||||
v.Types = append(v.Types, int32(t))
|
||||
}
|
||||
|
||||
@@ -243,89 +173,15 @@ func LoadTokens(dirpath string) (*Vocab, error) {
|
||||
}
|
||||
slog.Info(fmt.Sprintf("vocab size w/ extra tokens: %d", len(v.Tokens)))
|
||||
|
||||
return v, nil
|
||||
}
|
||||
|
||||
func GetTensorName(n string) (string, error) {
|
||||
tMap := map[string]string{
|
||||
"model.embed_tokens.weight": "token_embd.weight",
|
||||
"model.layers.(\\d+).input_layernorm.weight": "blk.$1.attn_norm.weight",
|
||||
"model.layers.(\\d+).mlp.down_proj.weight": "blk.$1.ffn_down.weight",
|
||||
"model.layers.(\\d+).mlp.gate_proj.weight": "blk.$1.ffn_gate.weight",
|
||||
"model.layers.(\\d+).mlp.up_proj.weight": "blk.$1.ffn_up.weight",
|
||||
"model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight",
|
||||
"model.layers.(\\d+).self_attn.k_proj.weight": "blk.$1.attn_k.weight",
|
||||
"model.layers.(\\d+).self_attn.o_proj.weight": "blk.$1.attn_output.weight",
|
||||
"model.layers.(\\d+).self_attn.q_proj.weight": "blk.$1.attn_q.weight",
|
||||
"model.layers.(\\d+).self_attn.v_proj.weight": "blk.$1.attn_v.weight",
|
||||
"lm_head.weight": "output.weight",
|
||||
"model.norm.weight": "output_norm.weight",
|
||||
}
|
||||
|
||||
v, ok := tMap[n]
|
||||
if ok {
|
||||
return v, nil
|
||||
}
|
||||
|
||||
// quick hack to rename the layers to gguf format
|
||||
for k, v := range tMap {
|
||||
re := regexp.MustCompile(k)
|
||||
newName := re.ReplaceAllString(n, v)
|
||||
if newName != n {
|
||||
return newName, nil
|
||||
if params.VocabSize > len(v.Tokens) {
|
||||
missingTokens := params.VocabSize - len(v.Tokens)
|
||||
slog.Warn(fmt.Sprintf("vocab is missing %d tokens", missingTokens))
|
||||
for cnt := 0; cnt < missingTokens; cnt++ {
|
||||
v.Tokens = append(v.Tokens, fmt.Sprintf("<dummy%05d>", cnt+1))
|
||||
v.Scores = append(v.Scores, -1)
|
||||
v.Types = append(v.Types, int32(llm.GGUFTokenUserDefined))
|
||||
}
|
||||
}
|
||||
|
||||
return "", fmt.Errorf("couldn't find a layer name for '%s'", n)
|
||||
}
|
||||
|
||||
func WriteGGUF(name string, tensors []llm.Tensor, params *Params, vocab *Vocab) (string, error) {
|
||||
c := llm.ContainerGGUF{
|
||||
ByteOrder: binary.LittleEndian,
|
||||
}
|
||||
|
||||
m := llm.NewGGUFModel(&c)
|
||||
m.Tensors = tensors
|
||||
m.KV["general.architecture"] = "llama"
|
||||
m.KV["general.name"] = name
|
||||
m.KV["llama.context_length"] = uint32(params.ContextSize)
|
||||
m.KV["llama.embedding_length"] = uint32(params.HiddenSize)
|
||||
m.KV["llama.block_count"] = uint32(params.HiddenLayers)
|
||||
m.KV["llama.feed_forward_length"] = uint32(params.IntermediateSize)
|
||||
m.KV["llama.rope.dimension_count"] = uint32(128)
|
||||
m.KV["llama.attention.head_count"] = uint32(params.AttentionHeads)
|
||||
m.KV["llama.attention.head_count_kv"] = uint32(params.KeyValHeads)
|
||||
m.KV["llama.attention.layer_norm_rms_epsilon"] = float32(params.NormEPS)
|
||||
m.KV["llama.rope.freq_base"] = float32(params.RopeFreqBase)
|
||||
m.KV["general.file_type"] = uint32(1)
|
||||
m.KV["tokenizer.ggml.model"] = "llama"
|
||||
|
||||
m.KV["tokenizer.ggml.tokens"] = vocab.Tokens
|
||||
m.KV["tokenizer.ggml.scores"] = vocab.Scores
|
||||
m.KV["tokenizer.ggml.token_type"] = vocab.Types
|
||||
|
||||
m.KV["tokenizer.ggml.bos_token_id"] = uint32(params.BoSTokenID)
|
||||
m.KV["tokenizer.ggml.eos_token_id"] = uint32(params.EoSTokenID)
|
||||
m.KV["tokenizer.ggml.unknown_token_id"] = uint32(0)
|
||||
m.KV["tokenizer.ggml.add_bos_token"] = true
|
||||
m.KV["tokenizer.ggml.add_eos_token"] = false
|
||||
|
||||
// llamacpp sets the chat template, however we don't need to set it since we pass it in through a layer
|
||||
// m.KV["tokenizer.chat_template"] = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}" // XXX removeme
|
||||
|
||||
c.V3.NumTensor = uint64(len(tensors))
|
||||
c.V3.NumKV = uint64(len(m.KV))
|
||||
|
||||
f, err := os.CreateTemp("", "ollama-gguf")
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
err = m.Encode(f)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
return f.Name(), nil
|
||||
return v, nil
|
||||
}
|
||||
|
||||
137
convert/gemma.go
Normal file
137
convert/gemma.go
Normal file
@@ -0,0 +1,137 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"os"
|
||||
"strings"
|
||||
|
||||
"github.com/d4l3k/go-bfloat16"
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type GemmaModel struct {
|
||||
ModelData
|
||||
}
|
||||
|
||||
func gemmaLayerHandler(w io.Writer, r safetensorWriterTo, f *os.File) error {
|
||||
slog.Debug(fmt.Sprintf("converting '%s'", r.t.Name))
|
||||
|
||||
data := make([]byte, r.end-r.start)
|
||||
if err := binary.Read(f, r.bo, data); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
tDataF32 := bfloat16.DecodeFloat32(data)
|
||||
|
||||
var err error
|
||||
tDataF32, err = addOnes(tDataF32, int(r.t.Shape[0]))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(w, r.bo, tDataF32); err != nil {
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func addOnes(data []float32, vectorSize int) ([]float32, error) {
|
||||
n := tensor.New(tensor.WithShape(vectorSize), tensor.WithBacking(data))
|
||||
ones := tensor.Ones(tensor.Float32, vectorSize)
|
||||
|
||||
var err error
|
||||
n, err = n.Add(ones)
|
||||
if err != nil {
|
||||
return []float32{}, err
|
||||
}
|
||||
|
||||
newN, err := native.SelectF32(n, 0)
|
||||
if err != nil {
|
||||
return []float32{}, err
|
||||
}
|
||||
|
||||
var fullTensor []float32
|
||||
for _, v := range newN {
|
||||
fullTensor = append(fullTensor, v...)
|
||||
}
|
||||
|
||||
return fullTensor, nil
|
||||
}
|
||||
|
||||
func (m *GemmaModel) GetTensors() error {
|
||||
t, err := m.Format.GetTensors(m.Path, m.Params)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
slog.Debug(fmt.Sprintf("Total tensors: %d", len(t)))
|
||||
|
||||
m.Tensors = []llm.Tensor{}
|
||||
for _, l := range t {
|
||||
if strings.HasSuffix(l.Name, "norm.weight") {
|
||||
wt := l.WriterTo.(safetensorWriterTo)
|
||||
wt.handler = gemmaLayerHandler
|
||||
l.WriterTo = wt
|
||||
}
|
||||
m.Tensors = append(m.Tensors, l)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (m *GemmaModel) LoadVocab() error {
|
||||
v, err := LoadSentencePieceTokens(m.Path, m.Params)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
m.Vocab = v
|
||||
return nil
|
||||
}
|
||||
|
||||
func (m *GemmaModel) WriteGGUF() (string, error) {
|
||||
kv := llm.KV{
|
||||
"general.architecture": "gemma",
|
||||
"general.name": m.Name,
|
||||
"gemma.context_length": uint32(m.Params.ContextSize),
|
||||
"gemma.embedding_length": uint32(m.Params.HiddenSize),
|
||||
"gemma.block_count": uint32(m.Params.HiddenLayers),
|
||||
"gemma.feed_forward_length": uint32(m.Params.IntermediateSize),
|
||||
"gemma.attention.head_count": uint32(m.Params.AttentionHeads),
|
||||
"gemma.attention.head_count_kv": uint32(m.Params.KeyValHeads),
|
||||
"gemma.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
|
||||
"gemma.attention.key_length": uint32(m.Params.HeadDimension),
|
||||
"gemma.attention.value_length": uint32(m.Params.HeadDimension),
|
||||
"general.file_type": uint32(1),
|
||||
"tokenizer.ggml.model": "llama",
|
||||
|
||||
"tokenizer.ggml.tokens": m.Vocab.Tokens,
|
||||
"tokenizer.ggml.scores": m.Vocab.Scores,
|
||||
"tokenizer.ggml.token_type": m.Vocab.Types,
|
||||
|
||||
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
|
||||
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
|
||||
"tokenizer.ggml.padding_token_id": uint32(m.Params.PaddingTokenID),
|
||||
"tokenizer.ggml.unknown_token_id": uint32(3),
|
||||
"tokenizer.ggml.add_bos_token": true,
|
||||
"tokenizer.ggml.add_eos_token": false,
|
||||
}
|
||||
|
||||
f, err := os.CreateTemp("", "ollama-gguf")
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
mod := llm.NewGGUFV3(m.Params.ByteOrder)
|
||||
if err := mod.Encode(f, kv, m.Tensors); err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
return f.Name(), nil
|
||||
}
|
||||
176
convert/llama.go
Normal file
176
convert/llama.go
Normal file
@@ -0,0 +1,176 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"os"
|
||||
"regexp"
|
||||
"strings"
|
||||
|
||||
"github.com/nlpodyssey/gopickle/pytorch"
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
"github.com/x448/float16"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type LlamaModel struct {
|
||||
ModelData
|
||||
}
|
||||
|
||||
func llamaLayerHandler(w io.Writer, r torchWriterTo) error {
|
||||
slog.Debug(fmt.Sprintf("repacking layer '%s'", r.t.Name))
|
||||
|
||||
data := r.storage.(*pytorch.HalfStorage).Data
|
||||
tData := make([]uint16, len(data))
|
||||
for cnt, v := range data {
|
||||
tData[cnt] = uint16(float16.Fromfloat32(v))
|
||||
}
|
||||
|
||||
var err error
|
||||
var heads uint32
|
||||
if strings.Contains(r.t.Name, "attn_q") {
|
||||
heads = uint32(r.params.AttentionHeads)
|
||||
} else if strings.Contains(r.t.Name, "attn_k") {
|
||||
heads = uint32(r.params.KeyValHeads)
|
||||
if heads == 0 {
|
||||
heads = uint32(r.params.AttentionHeads)
|
||||
}
|
||||
} else {
|
||||
return fmt.Errorf("unknown layer type")
|
||||
}
|
||||
|
||||
slog.Debug(fmt.Sprintf("heads = %d", heads))
|
||||
|
||||
tData, err = llamaRepack(tData, int(heads), r.t.Shape)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err = binary.Write(w, r.bo, tData); err != nil {
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func llamaRepack(data []uint16, heads int, shape []uint64) ([]uint16, error) {
|
||||
n := tensor.New(tensor.WithShape(int(shape[0]), int(shape[1])), tensor.WithBacking(data))
|
||||
origShape := n.Shape().Clone()
|
||||
|
||||
// reshape the tensor and swap axes 1 and 2 to unpack the layer for gguf
|
||||
if err := n.Reshape(heads, 2, origShape[0]/heads/2, origShape[1]); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.T(0, 2, 1, 3); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Reshape(origShape...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Transpose(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
newN, err := native.SelectU16(n, 1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var fullTensor []uint16
|
||||
for _, v := range newN {
|
||||
fullTensor = append(fullTensor, v...)
|
||||
}
|
||||
return fullTensor, nil
|
||||
}
|
||||
|
||||
func (m *LlamaModel) GetTensors() error {
|
||||
t, err := m.Format.GetTensors(m.Path, m.Params)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
m.Tensors = []llm.Tensor{}
|
||||
|
||||
pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
|
||||
re, err := regexp.Compile(pattern)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for _, l := range t {
|
||||
matches := re.FindAllStringSubmatch(l.Name, -1)
|
||||
if len(matches) > 0 {
|
||||
slog.Debug(fmt.Sprintf("setting handler for: %s", l.Name))
|
||||
wt := l.WriterTo.(torchWriterTo)
|
||||
wt.handler = llamaLayerHandler
|
||||
l.WriterTo = wt
|
||||
}
|
||||
m.Tensors = append(m.Tensors, l)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (m *LlamaModel) LoadVocab() error {
|
||||
var v *Vocab
|
||||
var err error
|
||||
|
||||
slog.Debug("loading vocab")
|
||||
v, err = LoadSentencePieceTokens(m.Path, m.Params)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
slog.Debug("vocab loaded")
|
||||
|
||||
m.Vocab = v
|
||||
return nil
|
||||
}
|
||||
|
||||
func (m *LlamaModel) WriteGGUF() (string, error) {
|
||||
kv := llm.KV{
|
||||
"general.architecture": "llama",
|
||||
"general.name": m.Name,
|
||||
"llama.vocab_size": uint32(len(m.Vocab.Tokens)),
|
||||
"llama.context_length": uint32(m.Params.ContextSize),
|
||||
"llama.embedding_length": uint32(m.Params.HiddenSize),
|
||||
"llama.block_count": uint32(m.Params.HiddenLayers),
|
||||
"llama.feed_forward_length": uint32(m.Params.IntermediateSize),
|
||||
"llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
|
||||
"llama.attention.head_count": uint32(m.Params.AttentionHeads),
|
||||
"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
|
||||
"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
|
||||
"general.file_type": uint32(1),
|
||||
"tokenizer.ggml.model": "llama",
|
||||
|
||||
"tokenizer.ggml.tokens": m.Vocab.Tokens,
|
||||
"tokenizer.ggml.scores": m.Vocab.Scores,
|
||||
"tokenizer.ggml.token_type": m.Vocab.Types,
|
||||
|
||||
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
|
||||
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
|
||||
"tokenizer.ggml.unknown_token_id": uint32(0),
|
||||
"tokenizer.ggml.add_bos_token": true,
|
||||
"tokenizer.ggml.add_eos_token": false,
|
||||
}
|
||||
|
||||
f, err := os.CreateTemp("", "ollama-gguf")
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
mod := llm.NewGGUFV3(m.Params.ByteOrder)
|
||||
if err := mod.Encode(f, kv, m.Tensors); err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
slog.Debug(fmt.Sprintf("gguf file = %s", f.Name()))
|
||||
|
||||
return f.Name(), nil
|
||||
}
|
||||
173
convert/mistral.go
Normal file
173
convert/mistral.go
Normal file
@@ -0,0 +1,173 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"fmt"
|
||||
"io"
|
||||
"os"
|
||||
"regexp"
|
||||
"strings"
|
||||
|
||||
"github.com/d4l3k/go-bfloat16"
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
"github.com/x448/float16"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type MistralModel struct {
|
||||
ModelData
|
||||
}
|
||||
|
||||
func mistralLayerHandler(w io.Writer, r safetensorWriterTo, f *os.File) error {
|
||||
layerSize := r.end - r.start
|
||||
|
||||
var err error
|
||||
tData := make([]uint16, layerSize/2)
|
||||
if err = binary.Read(f, r.bo, tData); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
var heads uint32
|
||||
if strings.Contains(r.t.Name, "attn_q") {
|
||||
heads = uint32(r.params.AttentionHeads)
|
||||
} else if strings.Contains(r.t.Name, "attn_k") {
|
||||
heads = uint32(r.params.KeyValHeads)
|
||||
if heads == 0 {
|
||||
heads = uint32(r.params.AttentionHeads)
|
||||
}
|
||||
} else {
|
||||
return fmt.Errorf("unknown layer type")
|
||||
}
|
||||
|
||||
tData, err = repack(tData, int(heads), r.t.Shape)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
var buf []byte
|
||||
for _, n := range tData {
|
||||
buf = r.bo.AppendUint16(buf, n)
|
||||
}
|
||||
|
||||
tempBuf := make([]uint16, len(tData))
|
||||
tDataF32 := bfloat16.DecodeFloat32(buf)
|
||||
for cnt, v := range tDataF32 {
|
||||
tDataF16 := float16.Fromfloat32(v)
|
||||
tempBuf[cnt] = uint16(tDataF16)
|
||||
}
|
||||
|
||||
if err = binary.Write(w, r.bo, tempBuf); err != nil {
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func repack(data []uint16, heads int, shape []uint64) ([]uint16, error) {
|
||||
n := tensor.New(tensor.WithShape(int(shape[0]), int(shape[1])), tensor.WithBacking(data))
|
||||
origShape := n.Shape().Clone()
|
||||
|
||||
// reshape the tensor and swap axes 1 and 2 to unpack the layer for gguf
|
||||
if err := n.Reshape(heads, 2, origShape[0]/heads/2, origShape[1]); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.T(0, 2, 1, 3); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Reshape(origShape...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Transpose(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
newN, err := native.SelectU16(n, 1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var fullTensor []uint16
|
||||
for _, v := range newN {
|
||||
fullTensor = append(fullTensor, v...)
|
||||
}
|
||||
return fullTensor, nil
|
||||
}
|
||||
|
||||
func (m *MistralModel) GetTensors() error {
|
||||
t, err := m.Format.GetTensors(m.Path, m.Params)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
m.Tensors = []llm.Tensor{}
|
||||
|
||||
pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
|
||||
re, err := regexp.Compile(pattern)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for _, l := range t {
|
||||
matches := re.FindAllStringSubmatch(l.Name, -1)
|
||||
if len(matches) > 0 {
|
||||
wt := l.WriterTo.(safetensorWriterTo)
|
||||
wt.handler = mistralLayerHandler
|
||||
l.WriterTo = wt
|
||||
}
|
||||
m.Tensors = append(m.Tensors, l)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (m *MistralModel) LoadVocab() error {
|
||||
v, err := LoadSentencePieceTokens(m.Path, m.Params)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
m.Vocab = v
|
||||
return nil
|
||||
}
|
||||
|
||||
func (m *MistralModel) WriteGGUF() (string, error) {
|
||||
kv := llm.KV{
|
||||
"general.architecture": "llama",
|
||||
"general.name": m.Name,
|
||||
"llama.context_length": uint32(m.Params.ContextSize),
|
||||
"llama.embedding_length": uint32(m.Params.HiddenSize),
|
||||
"llama.block_count": uint32(m.Params.HiddenLayers),
|
||||
"llama.feed_forward_length": uint32(m.Params.IntermediateSize),
|
||||
"llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
|
||||
"llama.attention.head_count": uint32(m.Params.AttentionHeads),
|
||||
"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
|
||||
"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
|
||||
"general.file_type": uint32(1),
|
||||
"tokenizer.ggml.model": "llama",
|
||||
|
||||
"tokenizer.ggml.tokens": m.Vocab.Tokens,
|
||||
"tokenizer.ggml.scores": m.Vocab.Scores,
|
||||
"tokenizer.ggml.token_type": m.Vocab.Types,
|
||||
|
||||
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
|
||||
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
|
||||
"tokenizer.ggml.add_bos_token": true,
|
||||
"tokenizer.ggml.add_eos_token": false,
|
||||
"tokenizer.ggml.unknown_token_id": uint32(0),
|
||||
}
|
||||
|
||||
f, err := os.CreateTemp("", "ollama-gguf")
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
mod := llm.NewGGUFV3(m.Params.ByteOrder)
|
||||
if err := mod.Encode(f, kv, m.Tensors); err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
return f.Name(), nil
|
||||
}
|
||||
96
convert/mixtral.go
Normal file
96
convert/mixtral.go
Normal file
@@ -0,0 +1,96 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"os"
|
||||
"regexp"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type MixtralModel struct {
|
||||
ModelData
|
||||
}
|
||||
|
||||
func (m *MixtralModel) GetTensors() error {
|
||||
t, err := m.Format.GetTensors(m.Path, m.Params)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
m.Tensors = []llm.Tensor{}
|
||||
|
||||
pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
|
||||
re, err := regexp.Compile(pattern)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for _, l := range t {
|
||||
matches := re.FindAllStringSubmatch(l.Name, -1)
|
||||
if len(matches) > 0 {
|
||||
wt := l.WriterTo.(safetensorWriterTo)
|
||||
wt.handler = mistralLayerHandler
|
||||
l.WriterTo = wt
|
||||
}
|
||||
m.Tensors = append(m.Tensors, l)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (m *MixtralModel) LoadVocab() error {
|
||||
v, err := LoadSentencePieceTokens(m.Path, m.Params)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
m.Vocab = v
|
||||
return nil
|
||||
}
|
||||
|
||||
func (m *MixtralModel) WriteGGUF() (string, error) {
|
||||
kv := llm.KV{
|
||||
"general.architecture": "llama",
|
||||
"general.name": m.Name,
|
||||
"llama.block_count": uint32(m.Params.HiddenLayers),
|
||||
"llama.context_length": uint32(m.Params.ContextSize),
|
||||
"llama.embedding_length": uint32(m.Params.HiddenSize),
|
||||
"llama.feed_forward_length": uint32(m.Params.IntermediateSize),
|
||||
"llama.attention.head_count": uint32(m.Params.AttentionHeads),
|
||||
"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
|
||||
|
||||
"llama.rope.freq_base": float32(m.Params.RopeFrequencyBase),
|
||||
"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
|
||||
|
||||
"llama.expert_count": uint32(m.Params.Experts),
|
||||
"llama.expert_used_count": uint32(m.Params.ExpertsUsed),
|
||||
|
||||
"llama.vocab_size": uint32(len(m.Vocab.Tokens)),
|
||||
"llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
|
||||
|
||||
"general.file_type": uint32(1),
|
||||
"tokenizer.ggml.model": "llama",
|
||||
|
||||
"tokenizer.ggml.tokens": m.Vocab.Tokens,
|
||||
"tokenizer.ggml.scores": m.Vocab.Scores,
|
||||
"tokenizer.ggml.token_type": m.Vocab.Types,
|
||||
|
||||
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
|
||||
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
|
||||
"tokenizer.ggml.unknown_token_id": uint32(0),
|
||||
"tokenizer.ggml.add_bos_token": true,
|
||||
"tokenizer.ggml.add_eos_token": false,
|
||||
}
|
||||
|
||||
f, err := os.CreateTemp("", "ollama-gguf")
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
mod := llm.NewGGUFV3(m.Params.ByteOrder)
|
||||
if err := mod.Encode(f, kv, m.Tensors); err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
return f.Name(), nil
|
||||
}
|
||||
317
convert/safetensors.go
Normal file
317
convert/safetensors.go
Normal file
@@ -0,0 +1,317 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"regexp"
|
||||
"slices"
|
||||
|
||||
"github.com/d4l3k/go-bfloat16"
|
||||
"github.com/mitchellh/mapstructure"
|
||||
"github.com/x448/float16"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type safetensorWriterTo struct {
|
||||
t *llm.Tensor
|
||||
|
||||
params *Params
|
||||
bo ByteOrder
|
||||
|
||||
filename string
|
||||
|
||||
start, end, padding uint64
|
||||
handler func(w io.Writer, r safetensorWriterTo, f *os.File) error
|
||||
}
|
||||
|
||||
type tensorMetaData struct {
|
||||
Type string `mapstructure:"dtype"`
|
||||
Shape []int `mapstructure:"shape"`
|
||||
Offsets []int `mapstructure:"data_offsets"`
|
||||
}
|
||||
|
||||
type SafetensorFormat struct{}
|
||||
|
||||
func (m *SafetensorFormat) GetTensors(dirpath string, params *Params) ([]llm.Tensor, error) {
|
||||
slog.Debug("getting tensor data")
|
||||
var tensors []llm.Tensor
|
||||
files, err := filepath.Glob(filepath.Join(dirpath, "/model-*.safetensors"))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var offset uint64
|
||||
for _, f := range files {
|
||||
var t []llm.Tensor
|
||||
var err error
|
||||
t, offset, err = m.readTensors(f, offset, params)
|
||||
if err != nil {
|
||||
slog.Error("%v", err)
|
||||
return nil, err
|
||||
}
|
||||
tensors = append(tensors, t...)
|
||||
}
|
||||
slog.Debug(fmt.Sprintf("all tensors = %d", len(tensors)))
|
||||
return tensors, nil
|
||||
}
|
||||
|
||||
func (m *SafetensorFormat) readTensors(fn string, offset uint64, params *Params) ([]llm.Tensor, uint64, error) {
|
||||
f, err := os.Open(fn)
|
||||
if err != nil {
|
||||
return nil, 0, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
var jsonSize uint64
|
||||
if err := binary.Read(f, binary.LittleEndian, &jsonSize); err != nil {
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
buf := make([]byte, jsonSize)
|
||||
_, err = io.ReadFull(f, buf)
|
||||
if err != nil {
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
d := json.NewDecoder(bytes.NewBuffer(buf))
|
||||
d.UseNumber()
|
||||
var parsed map[string]interface{}
|
||||
if err = d.Decode(&parsed); err != nil {
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
var keys []string
|
||||
for k := range parsed {
|
||||
keys = append(keys, k)
|
||||
}
|
||||
|
||||
slices.Sort(keys)
|
||||
slog.Info("converting layers")
|
||||
|
||||
var tensors []llm.Tensor
|
||||
for _, k := range keys {
|
||||
vals := parsed[k].(map[string]interface{})
|
||||
var data tensorMetaData
|
||||
if err = mapstructure.Decode(vals, &data); err != nil {
|
||||
slog.Error("couldn't decode properly")
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
var size uint64
|
||||
var kind uint32
|
||||
switch len(data.Shape) {
|
||||
case 0:
|
||||
// metadata
|
||||
continue
|
||||
case 1:
|
||||
// convert to float32
|
||||
kind = 0
|
||||
size = uint64(data.Shape[0] * 4)
|
||||
case 2:
|
||||
// convert to float16
|
||||
kind = 1
|
||||
size = uint64(data.Shape[0] * data.Shape[1] * 2)
|
||||
}
|
||||
|
||||
ggufName, err := m.GetLayerName(k)
|
||||
if err != nil {
|
||||
slog.Error("%v", err)
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
shape := []uint64{0, 0, 0, 0}
|
||||
for i := range data.Shape {
|
||||
shape[i] = uint64(data.Shape[i])
|
||||
}
|
||||
|
||||
t := llm.Tensor{
|
||||
Name: ggufName,
|
||||
Kind: kind,
|
||||
Offset: offset,
|
||||
Shape: shape[:],
|
||||
}
|
||||
|
||||
t.WriterTo = safetensorWriterTo{
|
||||
t: &t,
|
||||
params: params,
|
||||
bo: params.ByteOrder,
|
||||
filename: fn,
|
||||
start: uint64(data.Offsets[0]),
|
||||
end: uint64(data.Offsets[1]),
|
||||
padding: 8 + jsonSize,
|
||||
}
|
||||
|
||||
offset += size
|
||||
tensors = append(tensors, t)
|
||||
}
|
||||
|
||||
slog.Debug(fmt.Sprintf("total tensors for file = %d", len(tensors)))
|
||||
slog.Debug(fmt.Sprintf("offset = %d", offset))
|
||||
|
||||
return tensors, offset, nil
|
||||
}
|
||||
|
||||
func (m *SafetensorFormat) GetParams(dirpath string) (*Params, error) {
|
||||
f, err := os.Open(filepath.Join(dirpath, "config.json"))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
var params Params
|
||||
|
||||
d := json.NewDecoder(f)
|
||||
err = d.Decode(¶ms)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
params.ByteOrder = binary.LittleEndian
|
||||
return ¶ms, nil
|
||||
}
|
||||
|
||||
func (m *SafetensorFormat) GetLayerName(n string) (string, error) {
|
||||
directMap := map[string]string{
|
||||
"model.embed_tokens.weight": "token_embd.weight",
|
||||
"lm_head.weight": "output.weight",
|
||||
"model.norm.weight": "output_norm.weight",
|
||||
}
|
||||
|
||||
tMap := map[string]string{
|
||||
"model.layers.(\\d+).input_layernorm.weight": "blk.$1.attn_norm.weight",
|
||||
"model.layers.(\\d+).mlp.down_proj.weight": "blk.$1.ffn_down.weight",
|
||||
"model.layers.(\\d+).mlp.gate_proj.weight": "blk.$1.ffn_gate.weight",
|
||||
"model.layers.(\\d+).mlp.up_proj.weight": "blk.$1.ffn_up.weight",
|
||||
"model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight",
|
||||
"model.layers.(\\d+).self_attn.k_proj.weight": "blk.$1.attn_k.weight",
|
||||
"model.layers.(\\d+).self_attn.o_proj.weight": "blk.$1.attn_output.weight",
|
||||
"model.layers.(\\d+).self_attn.q_proj.weight": "blk.$1.attn_q.weight",
|
||||
"model.layers.(\\d+).self_attn.v_proj.weight": "blk.$1.attn_v.weight",
|
||||
"model.layers.(\\d+).block_sparse_moe.gate.weight": "blk.$1.ffn_gate_inp.weight",
|
||||
"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w1.weight": "blk.$1.ffn_gate.$2.weight",
|
||||
"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w2.weight": "blk.$1.ffn_down.$2.weight",
|
||||
"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w3.weight": "blk.$1.ffn_up.$2.weight",
|
||||
}
|
||||
|
||||
v, ok := directMap[n]
|
||||
if ok {
|
||||
return v, nil
|
||||
}
|
||||
|
||||
// quick hack to rename the layers to gguf format
|
||||
for k, v := range tMap {
|
||||
re := regexp.MustCompile(k)
|
||||
newName := re.ReplaceAllString(n, v)
|
||||
if newName != n {
|
||||
return newName, nil
|
||||
}
|
||||
}
|
||||
|
||||
return "", fmt.Errorf("couldn't find a layer name for '%s'", n)
|
||||
}
|
||||
|
||||
func (r safetensorWriterTo) WriteTo(w io.Writer) (n int64, err error) {
|
||||
f, err := os.Open(r.filename)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
if _, err = f.Seek(int64(r.padding+r.start), 0); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
// use the handler if one is present
|
||||
if r.handler != nil {
|
||||
return 0, r.handler(w, r, f)
|
||||
}
|
||||
|
||||
remaining := r.end - r.start
|
||||
|
||||
bufSize := uint64(10240)
|
||||
var finished bool
|
||||
for {
|
||||
data := make([]byte, min(bufSize, remaining))
|
||||
|
||||
b, err := io.ReadFull(f, data)
|
||||
remaining -= uint64(b)
|
||||
|
||||
if err == io.EOF || remaining <= 0 {
|
||||
finished = true
|
||||
} else if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
// convert bfloat16 -> ieee float32
|
||||
tDataF32 := bfloat16.DecodeFloat32(data)
|
||||
|
||||
switch r.t.Kind {
|
||||
case 0:
|
||||
if err := binary.Write(w, r.bo, tDataF32); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
case 1:
|
||||
// convert float32 -> float16
|
||||
tempBuf := make([]uint16, len(data)/2)
|
||||
for cnt, v := range tDataF32 {
|
||||
tDataF16 := float16.Fromfloat32(v)
|
||||
tempBuf[cnt] = uint16(tDataF16)
|
||||
}
|
||||
if err := binary.Write(w, r.bo, tempBuf); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
}
|
||||
if finished {
|
||||
break
|
||||
}
|
||||
}
|
||||
return 0, nil
|
||||
}
|
||||
|
||||
func (m *SafetensorFormat) GetModelArch(name, dirPath string, params *Params) (ModelArch, error) {
|
||||
switch len(params.Architectures) {
|
||||
case 0:
|
||||
return nil, fmt.Errorf("No architecture specified to convert")
|
||||
case 1:
|
||||
switch params.Architectures[0] {
|
||||
case "MistralForCausalLM":
|
||||
return &MistralModel{
|
||||
ModelData{
|
||||
Name: name,
|
||||
Path: dirPath,
|
||||
Params: params,
|
||||
Format: m,
|
||||
},
|
||||
}, nil
|
||||
case "MixtralForCausalLM":
|
||||
return &MixtralModel{
|
||||
ModelData{
|
||||
Name: name,
|
||||
Path: dirPath,
|
||||
Params: params,
|
||||
Format: m,
|
||||
},
|
||||
}, nil
|
||||
case "GemmaForCausalLM":
|
||||
return &GemmaModel{
|
||||
ModelData{
|
||||
Name: name,
|
||||
Path: dirPath,
|
||||
Params: params,
|
||||
Format: m,
|
||||
},
|
||||
}, nil
|
||||
default:
|
||||
return nil, fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0])
|
||||
}
|
||||
}
|
||||
|
||||
return nil, fmt.Errorf("Unknown error")
|
||||
}
|
||||
286
convert/torch.go
Normal file
286
convert/torch.go
Normal file
@@ -0,0 +1,286 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"regexp"
|
||||
"strings"
|
||||
|
||||
"github.com/nlpodyssey/gopickle/pytorch"
|
||||
"github.com/nlpodyssey/gopickle/types"
|
||||
"github.com/x448/float16"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type torchWriterTo struct {
|
||||
t *llm.Tensor
|
||||
|
||||
params *Params
|
||||
bo ByteOrder
|
||||
|
||||
storage pytorch.StorageInterface
|
||||
handler func(w io.Writer, r torchWriterTo) error
|
||||
}
|
||||
|
||||
type TorchFormat struct{}
|
||||
|
||||
func (tf *TorchFormat) GetTensors(dirpath string, params *Params) ([]llm.Tensor, error) {
|
||||
slog.Debug("getting torch tensors")
|
||||
|
||||
files, err := filepath.Glob(filepath.Join(dirpath, "pytorch_model-*.bin"))
|
||||
if err != nil {
|
||||
slog.Error("didn't find any torch files")
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var offset uint64
|
||||
|
||||
var tensors []llm.Tensor
|
||||
for _, fn := range files {
|
||||
m, err := pytorch.Load(fn)
|
||||
if err != nil {
|
||||
slog.Error(fmt.Sprintf("error unpickling: %q", err))
|
||||
return []llm.Tensor{}, err
|
||||
}
|
||||
|
||||
for _, k := range m.(*types.Dict).Keys() {
|
||||
if strings.HasSuffix(k.(string), "self_attn.rotary_emb.inv_freq") {
|
||||
continue
|
||||
}
|
||||
|
||||
t, _ := m.(*types.Dict).Get(k)
|
||||
tshape := t.(*pytorch.Tensor).Size
|
||||
|
||||
var size uint64
|
||||
var kind uint32
|
||||
switch len(tshape) {
|
||||
case 0:
|
||||
continue
|
||||
case 1:
|
||||
// convert to float32
|
||||
kind = 0
|
||||
size = uint64(tshape[0] * 4)
|
||||
case 2:
|
||||
// convert to float16
|
||||
kind = 1
|
||||
size = uint64(tshape[0] * tshape[1] * 2)
|
||||
}
|
||||
|
||||
ggufName, err := tf.GetLayerName(k.(string))
|
||||
if err != nil {
|
||||
slog.Error("%v", err)
|
||||
return nil, err
|
||||
}
|
||||
slog.Debug(fmt.Sprintf("finding name for '%s' -> '%s'", k.(string), ggufName))
|
||||
|
||||
shape := []uint64{0, 0, 0, 0}
|
||||
for i := range tshape {
|
||||
shape[i] = uint64(tshape[i])
|
||||
}
|
||||
|
||||
tensor := llm.Tensor{
|
||||
Name: ggufName,
|
||||
Kind: kind,
|
||||
Offset: offset, // calculate the offset
|
||||
Shape: shape[:],
|
||||
}
|
||||
|
||||
tensor.WriterTo = torchWriterTo{
|
||||
t: &tensor,
|
||||
params: params,
|
||||
bo: params.ByteOrder,
|
||||
storage: t.(*pytorch.Tensor).Source,
|
||||
}
|
||||
|
||||
tensors = append(tensors, tensor)
|
||||
offset += size
|
||||
}
|
||||
}
|
||||
|
||||
return tensors, nil
|
||||
|
||||
}
|
||||
|
||||
func getAltParams(dirpath string) (*Params, error) {
|
||||
f, err := os.Open(filepath.Join(dirpath, "params.json"))
|
||||
if err != nil {
|
||||
slog.Error("no params.json")
|
||||
return nil, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
type TorchParams struct {
|
||||
HiddenSize int `json:"dim"`
|
||||
AttentionHeads int `json:"n_heads"`
|
||||
KeyValHeads int `json:"n_kv_heads"`
|
||||
HiddenLayers int `json:"n_layers"`
|
||||
RopeTheta int `json:"rope_theta"`
|
||||
NormEPS float64 `json:"norm_eps"`
|
||||
}
|
||||
|
||||
var tparams TorchParams
|
||||
|
||||
d := json.NewDecoder(f)
|
||||
err = d.Decode(&tparams)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
params := &Params{
|
||||
HiddenSize: tparams.HiddenSize,
|
||||
AttentionHeads: tparams.AttentionHeads,
|
||||
KeyValHeads: tparams.KeyValHeads,
|
||||
HiddenLayers: tparams.HiddenLayers,
|
||||
NormEPS: tparams.NormEPS,
|
||||
}
|
||||
|
||||
switch {
|
||||
case tparams.RopeTheta == 1000000:
|
||||
// Codellama
|
||||
params.ContextSize = 16384
|
||||
case tparams.NormEPS == 1e-06:
|
||||
// llama2
|
||||
slog.Debug("Found llama2 - setting context size to 4096")
|
||||
params.ContextSize = 4096
|
||||
default:
|
||||
params.ContextSize = 2048
|
||||
}
|
||||
|
||||
params.ByteOrder = binary.LittleEndian
|
||||
return params, nil
|
||||
}
|
||||
|
||||
func (m *TorchFormat) GetParams(dirpath string) (*Params, error) {
|
||||
f, err := os.Open(filepath.Join(dirpath, "config.json"))
|
||||
if err != nil {
|
||||
if os.IsNotExist(err) {
|
||||
// try params.json instead
|
||||
return getAltParams(dirpath)
|
||||
} else {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
var params Params
|
||||
d := json.NewDecoder(f)
|
||||
err = d.Decode(¶ms)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
params.ByteOrder = binary.LittleEndian
|
||||
return ¶ms, nil
|
||||
}
|
||||
|
||||
func (m *TorchFormat) GetLayerName(n string) (string, error) {
|
||||
directMap := map[string]string{
|
||||
"tok_embeddings.weight": "token_embd.weight",
|
||||
"output.weight": "output.weight",
|
||||
"norm.weight": "output_norm.weight",
|
||||
"rope.freqs": "rope_freqs.weight",
|
||||
"model.embed_tokens.weight": "token_embd.weight",
|
||||
"lm_head.weight": "output.weight",
|
||||
"model.norm.weight": "output_norm.weight",
|
||||
}
|
||||
|
||||
lMap := map[string]string{
|
||||
"layers.(\\d+).attention_norm.weight": "blk.$1.attn_norm.weight",
|
||||
"layers.(\\d+).attention_output_norm.weight": "blk.$1.attn_norm.weight",
|
||||
"layers.(\\d+).feed_forward.w2.weight": "blk.$1.ffn_down.weight",
|
||||
"layers.(\\d+).feed_forward.w1.weight": "blk.$1.ffn_gate.weight",
|
||||
"layers.(\\d+).feed_forward.w3.weight": "blk.$1.ffn_up.weight",
|
||||
"layers.(\\d+).ffn_norm.weight": "blk.$1.ffn_norm.weight",
|
||||
"layers.(\\d+).attention.wk.weight": "blk.$1.attn_k.weight",
|
||||
"layers.(\\d+).attention.wo.weight": "blk.$1.attn_output.weight",
|
||||
"layers.(\\d+).attention.wq.weight": "blk.$1.attn_q.weight",
|
||||
"layers.(\\d+).attention.wv.weight": "blk.$1.attn_v.weight",
|
||||
"model.layers.(\\d+).input_layernorm.weight": "blk.$1.attn_norm.weight",
|
||||
"model.layers.(\\d+).mlp.down_proj.weight": "blk.$1.ffn_down.weight",
|
||||
"model.layers.(\\d+).mlp.gate_proj.weight": "blk.$1.ffn_gate.weight",
|
||||
"model.layers.(\\d+).mlp.up_proj.weight": "blk.$1.ffn_up.weight",
|
||||
"model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight",
|
||||
"model.layers.(\\d+).self_attn.k_proj.weight": "blk.$1.attn_k.weight",
|
||||
"model.layers.(\\d+).self_attn.o_proj.weight": "blk.$1.attn_output.weight",
|
||||
"model.layers.(\\d+).self_attn.q_proj.weight": "blk.$1.attn_q.weight",
|
||||
"model.layers.(\\d+).self_attn.v_proj.weight": "blk.$1.attn_v.weight",
|
||||
}
|
||||
|
||||
v, ok := directMap[n]
|
||||
if ok {
|
||||
return v, nil
|
||||
}
|
||||
|
||||
// quick hack to rename the layers to gguf format
|
||||
for k, v := range lMap {
|
||||
re := regexp.MustCompile(k)
|
||||
newName := re.ReplaceAllString(n, v)
|
||||
if newName != n {
|
||||
return newName, nil
|
||||
}
|
||||
}
|
||||
|
||||
return "", fmt.Errorf("couldn't find a layer name for '%s'", n)
|
||||
}
|
||||
|
||||
func (r torchWriterTo) WriteTo(w io.Writer) (n int64, err error) {
|
||||
// use the handler if one is present
|
||||
if r.handler != nil {
|
||||
return 0, r.handler(w, r)
|
||||
}
|
||||
|
||||
switch r.storage.(type) {
|
||||
case *pytorch.FloatStorage:
|
||||
slog.Warn(fmt.Sprintf("unexpected storage found for layer '%s'; skipping", r.t.Name))
|
||||
return 0, nil
|
||||
case *pytorch.HalfStorage:
|
||||
switch r.t.Kind {
|
||||
case 0:
|
||||
data := r.storage.(*pytorch.HalfStorage).Data
|
||||
slog.Debug(fmt.Sprintf("%35s F32 (%d)", r.t.Name, len(data)))
|
||||
if err := binary.Write(w, r.bo, data); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
case 1:
|
||||
data := r.storage.(*pytorch.HalfStorage).Data
|
||||
tData := make([]uint16, len(data))
|
||||
for cnt, v := range data {
|
||||
tData[cnt] = uint16(float16.Fromfloat32(v))
|
||||
}
|
||||
slog.Debug(fmt.Sprintf("%35s F16 (%d)", r.t.Name, len(tData)))
|
||||
if err := binary.Write(w, r.bo, tData); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0, nil
|
||||
}
|
||||
|
||||
func (m *TorchFormat) GetModelArch(name, dirPath string, params *Params) (ModelArch, error) {
|
||||
switch len(params.Architectures) {
|
||||
case 0:
|
||||
return nil, fmt.Errorf("No architecture specified to convert")
|
||||
case 1:
|
||||
switch params.Architectures[0] {
|
||||
case "LlamaForCausalLM":
|
||||
return &LlamaModel{
|
||||
ModelData{
|
||||
Name: name,
|
||||
Path: dirPath,
|
||||
Params: params,
|
||||
Format: m,
|
||||
},
|
||||
}, nil
|
||||
default:
|
||||
return nil, fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0])
|
||||
}
|
||||
}
|
||||
|
||||
return nil, fmt.Errorf("Unknown error")
|
||||
}
|
||||
@@ -90,7 +90,7 @@ The final response in the stream also includes additional data about the generat
|
||||
- `load_duration`: time spent in nanoseconds loading the model
|
||||
- `prompt_eval_count`: number of tokens in the prompt
|
||||
- `prompt_eval_duration`: time spent in nanoseconds evaluating the prompt
|
||||
- `eval_count`: number of tokens the response
|
||||
- `eval_count`: number of tokens in the response
|
||||
- `eval_duration`: time in nanoseconds spent generating the response
|
||||
- `context`: an encoding of the conversation used in this response, this can be sent in the next request to keep a conversational memory
|
||||
- `response`: empty if the response was streamed, if not streamed, this will contain the full response
|
||||
@@ -394,7 +394,6 @@ Advanced parameters (optional):
|
||||
|
||||
- `format`: the format to return a response in. Currently the only accepted value is `json`
|
||||
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
|
||||
- `template`: the prompt template to use (overrides what is defined in the `Modelfile`)
|
||||
- `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects
|
||||
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
|
||||
|
||||
|
||||
@@ -228,3 +228,7 @@ To unload the model and free up memory use:
|
||||
```shell
|
||||
curl http://localhost:11434/api/generate -d '{"model": "llama2", "keep_alive": 0}'
|
||||
```
|
||||
|
||||
Alternatively, you can change the amount of time all models are loaded into memory by setting the `OLLAMA_KEEP_ALIVE` environment variable when starting the Ollama server. The `OLLAMA_KEEP_ALIVE` variable uses the same parameter types as the `keep_alive` parameter types mentioned above. Refer to section explaining [how to configure the Ollama server](#how-do-i-configure-ollama-server) to correctly set the environment variable.
|
||||
|
||||
If you wish to override the `OLLAMA_KEEP_ALIVE` setting, use the `keep_alive` API parameter with the `/api/generate` or `/api/chat` API endpoints.
|
||||
|
||||
@@ -139,9 +139,6 @@ PARAMETER <parameter> <parametervalue>
|
||||
| mirostat_eta | Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1) | float | mirostat_eta 0.1 |
|
||||
| mirostat_tau | Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0) | float | mirostat_tau 5.0 |
|
||||
| num_ctx | Sets the size of the context window used to generate the next token. (Default: 2048) | int | num_ctx 4096 |
|
||||
| num_gqa | The number of GQA groups in the transformer layer. Required for some models, for example it is 8 for llama2:70b | int | num_gqa 1 |
|
||||
| num_gpu | The number of layers to send to the GPU(s). On macOS it defaults to 1 to enable metal support, 0 to disable. | int | num_gpu 50 |
|
||||
| num_thread | Sets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). | int | num_thread 8 |
|
||||
| repeat_last_n | Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx) | int | repeat_last_n 64 |
|
||||
| repeat_penalty | Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1) | float | repeat_penalty 1.1 |
|
||||
| temperature | The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8) | float | temperature 0.7 |
|
||||
|
||||
@@ -76,3 +76,10 @@ install script which version to install.
|
||||
```sh
|
||||
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION="0.1.29" sh
|
||||
```
|
||||
|
||||
## Linux tmp noexec
|
||||
|
||||
If your system is configured with the "noexec" flag where Ollama stores its
|
||||
temporary executable files, you can specify an alternate location by setting
|
||||
OLLAMA_TMPDIR to a location writable by the user ollama runs as. For example
|
||||
OLLAMA_TMPDIR=/usr/share/ollama/
|
||||
@@ -18,7 +18,7 @@ const ollama = new Ollama({
|
||||
model: "llama2",
|
||||
});
|
||||
|
||||
const answer = await ollama.call(`why is the sky blue?`);
|
||||
const answer = await ollama.invoke(`why is the sky blue?`);
|
||||
|
||||
console.log(answer);
|
||||
```
|
||||
|
||||
@@ -1,38 +1,15 @@
|
||||
# Running Ollama on NVIDIA Jetson Devices
|
||||
|
||||
With some minor configuration, Ollama runs well on [NVIDIA Jetson Devices](https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/). The following has been tested on [JetPack 5.1.2](https://developer.nvidia.com/embedded/jetpack).
|
||||
Ollama runs well on [NVIDIA Jetson Devices](https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/) and should run out of the box with the standard installation instructions.
|
||||
|
||||
NVIDIA Jetson devices are Linux-based embedded AI computers that are purpose-built for AI applications.
|
||||
|
||||
Jetsons have an integrated GPU that is wired directly to the memory controller of the machine. For this reason, the `nvidia-smi` command is unrecognized, and Ollama proceeds to operate in "CPU only"
|
||||
mode. This can be verified by using a monitoring tool like jtop.
|
||||
|
||||
In order to address this, we simply pass the path to the Jetson's pre-installed CUDA libraries into `ollama serve` (while in a tmux session). We then hardcode the num_gpu parameters into a cloned
|
||||
version of our target model.
|
||||
|
||||
Prerequisites:
|
||||
|
||||
- curl
|
||||
- tmux
|
||||
|
||||
Here are the steps:
|
||||
The following has been tested on [JetPack 5.1.2](https://developer.nvidia.com/embedded/jetpack), but should also work on JetPack 6.0.
|
||||
|
||||
- Install Ollama via standard Linux command (ignore the 404 error): `curl https://ollama.com/install.sh | sh`
|
||||
- Stop the Ollama service: `sudo systemctl stop ollama`
|
||||
- Start Ollama serve in a tmux session called ollama_jetson and reference the CUDA libraries path: `tmux has-session -t ollama_jetson 2>/dev/null || tmux new-session -d -s ollama_jetson
|
||||
'LD_LIBRARY_PATH=/usr/local/cuda/lib64 ollama serve'`
|
||||
- Pull the model you want to use (e.g. mistral): `ollama pull mistral`
|
||||
- Create a new Modelfile specifically for enabling GPU support on the Jetson: `touch ModelfileMistralJetson`
|
||||
- In the ModelfileMistralJetson file, specify the FROM model and the num_gpu PARAMETER as shown below:
|
||||
|
||||
```
|
||||
FROM mistral
|
||||
PARAMETER num_gpu 999
|
||||
```
|
||||
|
||||
- Create a new model from your Modelfile: `ollama create mistral-jetson -f ./ModelfileMistralJetson`
|
||||
- Run the new model: `ollama run mistral-jetson`
|
||||
|
||||
If you run a monitoring tool like jtop you should now see that Ollama is using the Jetson's integrated GPU.
|
||||
- Start an interactive session: `ollama run mistral`
|
||||
|
||||
And that's it!
|
||||
|
||||
# Running Ollama in Docker
|
||||
|
||||
When running GPU accelerated applications in Docker, it is highly recommended to use [dusty-nv jetson-containers repo](https://github.com/dusty-nv/jetson-containers).
|
||||
@@ -14,7 +14,7 @@ As this is a preview release, you should expect a few bugs here and there. If
|
||||
you run into a problem you can reach out on
|
||||
[Discord](https://discord.gg/ollama), or file an
|
||||
[issue](https://github.com/ollama/ollama/issues).
|
||||
Logs will often be helpful in dianosing the problem (see
|
||||
Logs will often be helpful in diagnosing the problem (see
|
||||
[Troubleshooting](#troubleshooting) below)
|
||||
|
||||
## System Requirements
|
||||
|
||||
51
examples/go-chat/main.go
Normal file
51
examples/go-chat/main.go
Normal file
@@ -0,0 +1,51 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"log"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
func main() {
|
||||
client, err := api.ClientFromEnvironment()
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
|
||||
messages := []api.Message{
|
||||
api.Message{
|
||||
Role: "system",
|
||||
Content: "Provide very brief, concise responses",
|
||||
},
|
||||
api.Message{
|
||||
Role: "user",
|
||||
Content: "Name some unusual animals",
|
||||
},
|
||||
api.Message{
|
||||
Role: "assistant",
|
||||
Content: "Monotreme, platypus, echidna",
|
||||
},
|
||||
api.Message{
|
||||
Role: "user",
|
||||
Content: "which of these is the most dangerous?",
|
||||
},
|
||||
}
|
||||
|
||||
ctx := context.Background()
|
||||
req := &api.ChatRequest{
|
||||
Model: "llama2",
|
||||
Messages: messages,
|
||||
}
|
||||
|
||||
respFunc := func(resp api.ChatResponse) error {
|
||||
fmt.Print(resp.Message.Content)
|
||||
return nil
|
||||
}
|
||||
|
||||
err = client.Chat(ctx, req, respFunc)
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
}
|
||||
40
examples/go-generate-streaming/main.go
Normal file
40
examples/go-generate-streaming/main.go
Normal file
@@ -0,0 +1,40 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"log"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
func main() {
|
||||
client, err := api.ClientFromEnvironment()
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
|
||||
// By default, GenerateRequest is streaming.
|
||||
req := &api.GenerateRequest{
|
||||
Model: "gemma",
|
||||
Prompt: "how many planets are there?",
|
||||
}
|
||||
|
||||
ctx := context.Background()
|
||||
respFunc := func(resp api.GenerateResponse) error {
|
||||
// Only print the response here; GenerateResponse has a number of other
|
||||
// interesting fields you want to examine.
|
||||
|
||||
// In streaming mode, responses are partial so we call fmt.Print (and not
|
||||
// Println) in order to avoid spurious newlines being introduced. The
|
||||
// model will insert its own newlines if it wants.
|
||||
fmt.Print(resp.Response)
|
||||
return nil
|
||||
}
|
||||
|
||||
err = client.Generate(ctx, req, respFunc)
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
fmt.Println()
|
||||
}
|
||||
37
examples/go-generate/main.go
Normal file
37
examples/go-generate/main.go
Normal file
@@ -0,0 +1,37 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"log"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
func main() {
|
||||
client, err := api.ClientFromEnvironment()
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
|
||||
req := &api.GenerateRequest{
|
||||
Model: "gemma",
|
||||
Prompt: "how many planets are there?",
|
||||
|
||||
// set streaming to false
|
||||
Stream: new(bool),
|
||||
}
|
||||
|
||||
ctx := context.Background()
|
||||
respFunc := func(resp api.GenerateResponse) error {
|
||||
// Only print the response here; GenerateResponse has a number of other
|
||||
// interesting fields you want to examine.
|
||||
fmt.Println(resp.Response)
|
||||
return nil
|
||||
}
|
||||
|
||||
err = client.Generate(ctx, req, respFunc)
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
}
|
||||
47
examples/go-multimodal/main.go
Normal file
47
examples/go-multimodal/main.go
Normal file
@@ -0,0 +1,47 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"log"
|
||||
"os"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
func main() {
|
||||
if len(os.Args) <= 1 {
|
||||
log.Fatal("usage: <image name>")
|
||||
}
|
||||
|
||||
imgData, err := os.ReadFile(os.Args[1])
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
|
||||
client, err := api.ClientFromEnvironment()
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
|
||||
req := &api.GenerateRequest{
|
||||
Model: "llava",
|
||||
Prompt: "describe this image",
|
||||
Images: []api.ImageData{imgData},
|
||||
}
|
||||
|
||||
ctx := context.Background()
|
||||
respFunc := func(resp api.GenerateResponse) error {
|
||||
// In streaming mode, responses are partial so we call fmt.Print (and not
|
||||
// Println) in order to avoid spurious newlines being introduced. The
|
||||
// model will insert its own newlines if it wants.
|
||||
fmt.Print(resp.Response)
|
||||
return nil
|
||||
}
|
||||
|
||||
err = client.Generate(ctx, req, respFunc)
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
fmt.Println()
|
||||
}
|
||||
31
examples/go-pull-progress/main.go
Normal file
31
examples/go-pull-progress/main.go
Normal file
@@ -0,0 +1,31 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"log"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
func main() {
|
||||
client, err := api.ClientFromEnvironment()
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
|
||||
ctx := context.Background()
|
||||
|
||||
req := &api.PullRequest{
|
||||
Model: "mistral",
|
||||
}
|
||||
progressFunc := func(resp api.ProgressResponse) error {
|
||||
fmt.Printf("Progress: status=%v, total=%v, completed=%v\n", resp.Status, resp.Total, resp.Completed)
|
||||
return nil
|
||||
}
|
||||
|
||||
err = client.Pull(ctx, req, progressFunc)
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
}
|
||||
@@ -6,11 +6,16 @@ import (
|
||||
)
|
||||
|
||||
const (
|
||||
Byte = 1
|
||||
Byte = 1
|
||||
|
||||
KiloByte = Byte * 1000
|
||||
MegaByte = KiloByte * 1000
|
||||
GigaByte = MegaByte * 1000
|
||||
TeraByte = GigaByte * 1000
|
||||
|
||||
KibiByte = Byte * 1024
|
||||
MebiByte = KibiByte * 1024
|
||||
GibiByte = MebiByte * 1024
|
||||
)
|
||||
|
||||
func HumanBytes(b int64) string {
|
||||
@@ -45,3 +50,14 @@ func HumanBytes(b int64) string {
|
||||
return fmt.Sprintf("%d %s", int(value), unit)
|
||||
}
|
||||
}
|
||||
|
||||
func HumanBytes2(b uint64) string {
|
||||
switch {
|
||||
case b >= MebiByte:
|
||||
return fmt.Sprintf("%.1f MiB", float64(b)/MebiByte)
|
||||
case b >= KibiByte:
|
||||
return fmt.Sprintf("%.1f KiB", float64(b)/KibiByte)
|
||||
default:
|
||||
return fmt.Sprintf("%d B", b)
|
||||
}
|
||||
}
|
||||
|
||||
9
go.mod
9
go.mod
@@ -9,7 +9,7 @@ require (
|
||||
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1
|
||||
github.com/emirpasic/gods v1.18.1
|
||||
github.com/gin-gonic/gin v1.9.1
|
||||
github.com/golang/protobuf v1.5.0
|
||||
github.com/golang/protobuf v1.5.0 // indirect
|
||||
github.com/google/uuid v1.0.0
|
||||
github.com/mitchellh/mapstructure v1.5.0
|
||||
github.com/olekukonko/tablewriter v0.0.5
|
||||
@@ -19,7 +19,10 @@ require (
|
||||
golang.org/x/sync v0.3.0
|
||||
)
|
||||
|
||||
require github.com/pdevine/tensor v0.0.0-20240228013915-64ccaa8d9ca9
|
||||
require (
|
||||
github.com/nlpodyssey/gopickle v0.3.0
|
||||
github.com/pdevine/tensor v0.0.0-20240228013915-64ccaa8d9ca9
|
||||
)
|
||||
|
||||
require (
|
||||
github.com/apache/arrow/go/arrow v0.0.0-20201229220542-30ce2eb5d4dc // indirect
|
||||
@@ -68,7 +71,7 @@ require (
|
||||
golang.org/x/net v0.17.0 // indirect
|
||||
golang.org/x/sys v0.13.0
|
||||
golang.org/x/term v0.13.0
|
||||
golang.org/x/text v0.13.0 // indirect
|
||||
golang.org/x/text v0.14.0 // indirect
|
||||
google.golang.org/protobuf v1.30.0
|
||||
gopkg.in/yaml.v3 v3.0.1 // indirect
|
||||
)
|
||||
|
||||
6
go.sum
6
go.sum
@@ -122,6 +122,8 @@ github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd h1:TRLaZ9cD/w
|
||||
github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd/go.mod h1:6dJC0mAP4ikYIbvyc7fijjWJddQyLn8Ig3JB5CqoB9Q=
|
||||
github.com/modern-go/reflect2 v1.0.2 h1:xBagoLtFs94CBntxluKeaWgTMpvLxC4ur3nMaC9Gz0M=
|
||||
github.com/modern-go/reflect2 v1.0.2/go.mod h1:yWuevngMOJpCy52FWWMvUC8ws7m/LJsjYzDa0/r8luk=
|
||||
github.com/nlpodyssey/gopickle v0.3.0 h1:BLUE5gxFLyyNOPzlXxt6GoHEMMxD0qhsE4p0CIQyoLw=
|
||||
github.com/nlpodyssey/gopickle v0.3.0/go.mod h1:f070HJ/yR+eLi5WmM1OXJEGaTpuJEUiib19olXgYha0=
|
||||
github.com/olekukonko/tablewriter v0.0.5 h1:P2Ga83D34wi1o9J6Wh1mRuqd4mF/x/lgBS7N7AbDhec=
|
||||
github.com/olekukonko/tablewriter v0.0.5/go.mod h1:hPp6KlRPjbx+hW8ykQs1w3UBbZlj6HuIJcUGPhkA7kY=
|
||||
github.com/pdevine/tensor v0.0.0-20240228013915-64ccaa8d9ca9 h1:DV4iXjNn6fGeDl1AkZ1I0QB/0DBjrc7kPpxHrmuDzW4=
|
||||
@@ -236,8 +238,8 @@ golang.org/x/term v0.13.0/go.mod h1:LTmsnFJwVN6bCy1rVCoS+qHT1HhALEFxKncY3WNNh4U=
|
||||
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
|
||||
golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
|
||||
golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
|
||||
golang.org/x/text v0.13.0 h1:ablQoSUd0tRdKxZewP80B+BaqeKJuVhuRxj/dkrun3k=
|
||||
golang.org/x/text v0.13.0/go.mod h1:TvPlkZtksWOMsz7fbANvkp4WM8x/WCo/om8BMLbz+aE=
|
||||
golang.org/x/text v0.14.0 h1:ScX5w1eTa3QqT8oi6+ziP7dTV1S2+ALU0bI+0zXKWiQ=
|
||||
golang.org/x/text v0.14.0/go.mod h1:18ZOQIKpY8NJVqYksKHtTdi31H5itFRjB5/qKTNYzSU=
|
||||
golang.org/x/tools v0.0.0-20180525024113-a5b4c53f6e8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
|
||||
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
|
||||
golang.org/x/tools v0.0.0-20190114222345-bf090417da8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
|
||||
|
||||
@@ -7,7 +7,7 @@ import (
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strconv"
|
||||
"runtime"
|
||||
"strings"
|
||||
)
|
||||
|
||||
@@ -35,22 +35,64 @@ func GetSupportedGFX(libDir string) ([]string, error) {
|
||||
return ret, nil
|
||||
}
|
||||
|
||||
func amdSetVisibleDevices(ids []int, skip map[int]interface{}) {
|
||||
// Set the visible devices if not already set
|
||||
// TODO - does sort order matter?
|
||||
devices := []string{}
|
||||
for i := range ids {
|
||||
if _, skipped := skip[i]; skipped {
|
||||
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
|
||||
ids := []string{}
|
||||
for _, info := range gpuInfo {
|
||||
if info.Library != "rocm" {
|
||||
// TODO shouldn't happen if things are wired correctly...
|
||||
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
|
||||
continue
|
||||
}
|
||||
devices = append(devices, strconv.Itoa(i))
|
||||
ids = append(ids, info.ID)
|
||||
}
|
||||
return "HIP_VISIBLE_DEVICES", strings.Join(ids, ",")
|
||||
}
|
||||
|
||||
func commonAMDValidateLibDir() (string, error) {
|
||||
// We try to favor system paths first, so that we can wire up the subprocess to use
|
||||
// the system version. Only use our bundled version if the system version doesn't work
|
||||
// This gives users a more recovery options if versions have subtle problems at runtime
|
||||
|
||||
// Prefer explicit HIP env var
|
||||
hipPath := os.Getenv("HIP_PATH")
|
||||
if hipPath != "" {
|
||||
hipLibDir := filepath.Join(hipPath, "bin")
|
||||
if rocmLibUsable(hipLibDir) {
|
||||
slog.Debug("detected ROCM via HIP_PATH=" + hipPath)
|
||||
return hipLibDir, nil
|
||||
}
|
||||
}
|
||||
|
||||
val := strings.Join(devices, ",")
|
||||
err := os.Setenv("HIP_VISIBLE_DEVICES", val)
|
||||
if err != nil {
|
||||
slog.Warn(fmt.Sprintf("failed to set env: %s", err))
|
||||
} else {
|
||||
slog.Info("Setting HIP_VISIBLE_DEVICES=" + val)
|
||||
// Scan the LD_LIBRARY_PATH or PATH
|
||||
pathEnv := "LD_LIBRARY_PATH"
|
||||
if runtime.GOOS == "windows" {
|
||||
pathEnv = "PATH"
|
||||
}
|
||||
|
||||
paths := os.Getenv(pathEnv)
|
||||
for _, path := range filepath.SplitList(paths) {
|
||||
d, err := filepath.Abs(path)
|
||||
if err != nil {
|
||||
continue
|
||||
}
|
||||
if rocmLibUsable(d) {
|
||||
return d, nil
|
||||
}
|
||||
}
|
||||
|
||||
// Well known location(s)
|
||||
if rocmLibUsable(RocmStandardLocation) {
|
||||
return RocmStandardLocation, nil
|
||||
}
|
||||
|
||||
// Installer payload location if we're running the installed binary
|
||||
exe, err := os.Executable()
|
||||
if err == nil {
|
||||
rocmTargetDir := filepath.Join(filepath.Dir(exe), "rocm")
|
||||
if rocmLibUsable(rocmTargetDir) {
|
||||
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
|
||||
return rocmTargetDir, nil
|
||||
}
|
||||
}
|
||||
return "", fmt.Errorf("no suitable rocm found, falling back to CPU")
|
||||
}
|
||||
|
||||
@@ -69,7 +69,7 @@ func NewHipLib() (*HipLib, error) {
|
||||
func (hl *HipLib) Release() {
|
||||
err := windows.FreeLibrary(hl.dll)
|
||||
if err != nil {
|
||||
slog.Warn(fmt.Sprintf("failed to unload amdhip64.dll: %s", err))
|
||||
slog.Warn("failed to unload amdhip64.dll", "error", err)
|
||||
}
|
||||
hl.dll = 0
|
||||
}
|
||||
@@ -98,7 +98,7 @@ func (hl *HipLib) HipGetDeviceCount() int {
|
||||
return 0
|
||||
}
|
||||
if status != hipSuccess {
|
||||
slog.Warn(fmt.Sprintf("failed call to hipGetDeviceCount: %d %s", status, err))
|
||||
slog.Warn("failed call to hipGetDeviceCount", "status", status, "error", err)
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
466
gpu/amd_linux.go
466
gpu/amd_linux.go
@@ -11,6 +11,8 @@ import (
|
||||
"slices"
|
||||
"strconv"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/format"
|
||||
)
|
||||
|
||||
// Discovery logic for AMD/ROCm GPUs
|
||||
@@ -24,9 +26,6 @@ const (
|
||||
GPUTotalMemoryFileGlob = "mem_banks/*/properties" // size_in_bytes line
|
||||
GPUUsedMemoryFileGlob = "mem_banks/*/used_memory"
|
||||
RocmStandardLocation = "/opt/rocm/lib"
|
||||
|
||||
// TODO find a better way to detect iGPU instead of minimum memory
|
||||
IGPUMemLimit = 1024 * 1024 * 1024 // 512G is what they typically report, so anything less than 1G must be iGPU
|
||||
)
|
||||
|
||||
var (
|
||||
@@ -35,14 +34,11 @@ var (
|
||||
)
|
||||
|
||||
// Gather GPU information from the amdgpu driver if any supported GPUs are detected
|
||||
// HIP_VISIBLE_DEVICES will be set if we detect a mix of unsupported and supported devices
|
||||
// and the user hasn't already set this variable
|
||||
func AMDGetGPUInfo(resp *GpuInfo) {
|
||||
// TODO - DRY this out with windows
|
||||
func AMDGetGPUInfo() []GpuInfo {
|
||||
resp := []GpuInfo{}
|
||||
if !AMDDetected() {
|
||||
return
|
||||
return resp
|
||||
}
|
||||
skip := map[int]interface{}{}
|
||||
|
||||
// Opportunistic logging of driver version to aid in troubleshooting
|
||||
ver, err := AMDDriverVersion()
|
||||
@@ -50,143 +46,117 @@ func AMDGetGPUInfo(resp *GpuInfo) {
|
||||
slog.Info("AMD Driver: " + ver)
|
||||
} else {
|
||||
// TODO - if we see users crash and burn with the upstreamed kernel this can be adjusted to hard-fail rocm support and fallback to CPU
|
||||
slog.Warn(fmt.Sprintf("ollama recommends running the https://www.amd.com/en/support/linux-drivers: %s", err))
|
||||
slog.Warn("ollama recommends running the https://www.amd.com/en/support/linux-drivers", "error", err)
|
||||
}
|
||||
|
||||
// If the user has specified exactly which GPUs to use, look up their memory
|
||||
visibleDevices := os.Getenv("HIP_VISIBLE_DEVICES")
|
||||
if visibleDevices != "" {
|
||||
ids := []int{}
|
||||
for _, idStr := range strings.Split(visibleDevices, ",") {
|
||||
id, err := strconv.Atoi(idStr)
|
||||
if err != nil {
|
||||
slog.Warn(fmt.Sprintf("malformed HIP_VISIBLE_DEVICES=%s %s", visibleDevices, err))
|
||||
} else {
|
||||
ids = append(ids, id)
|
||||
}
|
||||
}
|
||||
amdProcMemLookup(resp, nil, ids)
|
||||
return
|
||||
}
|
||||
|
||||
// Gather GFX version information from all detected cards
|
||||
gfx := AMDGFXVersions()
|
||||
verStrings := []string{}
|
||||
for i, v := range gfx {
|
||||
verStrings = append(verStrings, v.ToGFXString())
|
||||
if v.Major == 0 {
|
||||
// Silently skip CPUs
|
||||
skip[i] = struct{}{}
|
||||
continue
|
||||
}
|
||||
if v.Major < 9 {
|
||||
// TODO consider this a build-time setting if we can support 8xx family GPUs
|
||||
slog.Warn(fmt.Sprintf("amdgpu [%d] too old %s", i, v.ToGFXString()))
|
||||
skip[i] = struct{}{}
|
||||
}
|
||||
}
|
||||
slog.Info(fmt.Sprintf("detected amdgpu versions %v", verStrings))
|
||||
|
||||
// Abort if all GPUs are skipped
|
||||
if len(skip) >= len(gfx) {
|
||||
slog.Info("all detected amdgpus are skipped, falling back to CPU")
|
||||
return
|
||||
}
|
||||
|
||||
// If we got this far, then we have at least 1 GPU that's a ROCm candidate, so make sure we have a lib
|
||||
libDir, err := AMDValidateLibDir()
|
||||
if err != nil {
|
||||
slog.Warn(fmt.Sprintf("unable to verify rocm library, will use cpu: %s", err))
|
||||
return
|
||||
// Determine if the user has already pre-selected which GPUs to look at, then ignore the others
|
||||
var visibleDevices []string
|
||||
hipVD := os.Getenv("HIP_VISIBLE_DEVICES") // zero based index only
|
||||
rocrVD := os.Getenv("ROCR_VISIBLE_DEVICES") // zero based index or UUID, but consumer cards seem to not support UUID
|
||||
gpuDO := os.Getenv("GPU_DEVICE_ORDINAL") // zero based index
|
||||
switch {
|
||||
// TODO is this priorty order right?
|
||||
case hipVD != "":
|
||||
visibleDevices = strings.Split(hipVD, ",")
|
||||
case rocrVD != "":
|
||||
visibleDevices = strings.Split(rocrVD, ",")
|
||||
// TODO - since we don't yet support UUIDs, consider detecting and reporting here
|
||||
// all our test systems show GPU-XX indicating UUID is not supported
|
||||
case gpuDO != "":
|
||||
visibleDevices = strings.Split(gpuDO, ",")
|
||||
}
|
||||
|
||||
gfxOverride := os.Getenv("HSA_OVERRIDE_GFX_VERSION")
|
||||
if gfxOverride == "" {
|
||||
supported, err := GetSupportedGFX(libDir)
|
||||
var supported []string
|
||||
libDir := ""
|
||||
|
||||
// The amdgpu driver always exposes the host CPU(s) first, but we have to skip them and subtract
|
||||
// from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU)
|
||||
matches, _ := filepath.Glob(GPUPropertiesFileGlob)
|
||||
cpuCount := 0
|
||||
for _, match := range matches {
|
||||
slog.Debug("evaluating amdgpu node " + match)
|
||||
fp, err := os.Open(match)
|
||||
if err != nil {
|
||||
slog.Warn(fmt.Sprintf("failed to lookup supported GFX types, falling back to CPU mode: %s", err))
|
||||
return
|
||||
}
|
||||
slog.Debug(fmt.Sprintf("rocm supported GPU types %v", supported))
|
||||
|
||||
for i, v := range gfx {
|
||||
if !slices.Contains[[]string, string](supported, v.ToGFXString()) {
|
||||
slog.Warn(fmt.Sprintf("amdgpu [%d] %s is not supported by %s %v", i, v.ToGFXString(), libDir, supported))
|
||||
// TODO - consider discrete markdown just for ROCM troubleshooting?
|
||||
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for HSA_OVERRIDE_GFX_VERSION usage")
|
||||
skip[i] = struct{}{}
|
||||
} else {
|
||||
slog.Info(fmt.Sprintf("amdgpu [%d] %s is supported", i, v.ToGFXString()))
|
||||
}
|
||||
}
|
||||
} else {
|
||||
slog.Debug("skipping rocm gfx compatibility check with HSA_OVERRIDE_GFX_VERSION=" + gfxOverride)
|
||||
}
|
||||
|
||||
if len(skip) >= len(gfx) {
|
||||
slog.Info("all detected amdgpus are skipped, falling back to CPU")
|
||||
return
|
||||
}
|
||||
|
||||
ids := make([]int, len(gfx))
|
||||
i := 0
|
||||
for k := range gfx {
|
||||
ids[i] = k
|
||||
i++
|
||||
}
|
||||
amdProcMemLookup(resp, skip, ids)
|
||||
if resp.memInfo.DeviceCount == 0 {
|
||||
return
|
||||
}
|
||||
if len(skip) > 0 {
|
||||
amdSetVisibleDevices(ids, skip)
|
||||
}
|
||||
}
|
||||
|
||||
// Walk the sysfs nodes for the available GPUs and gather information from them
|
||||
// skipping over any devices in the skip map
|
||||
func amdProcMemLookup(resp *GpuInfo, skip map[int]interface{}, ids []int) {
|
||||
resp.memInfo.DeviceCount = 0
|
||||
resp.memInfo.TotalMemory = 0
|
||||
resp.memInfo.FreeMemory = 0
|
||||
slog.Debug("discovering VRAM for amdgpu devices")
|
||||
if len(ids) == 0 {
|
||||
entries, err := os.ReadDir(AMDNodesSysfsDir)
|
||||
if err != nil {
|
||||
slog.Warn(fmt.Sprintf("failed to read amdgpu sysfs %s - %s", AMDNodesSysfsDir, err))
|
||||
return
|
||||
}
|
||||
for _, node := range entries {
|
||||
if !node.IsDir() {
|
||||
continue
|
||||
}
|
||||
id, err := strconv.Atoi(node.Name())
|
||||
if err != nil {
|
||||
slog.Warn("malformed amdgpu sysfs node id " + node.Name())
|
||||
continue
|
||||
}
|
||||
ids = append(ids, id)
|
||||
}
|
||||
}
|
||||
slog.Debug(fmt.Sprintf("amdgpu devices %v", ids))
|
||||
|
||||
for _, id := range ids {
|
||||
if _, skipped := skip[id]; skipped {
|
||||
slog.Debug("failed to open sysfs node", "file", match, "error", err)
|
||||
continue
|
||||
}
|
||||
defer fp.Close()
|
||||
nodeID, err := strconv.Atoi(filepath.Base(filepath.Dir(match)))
|
||||
if err != nil {
|
||||
slog.Debug("failed to parse node ID", "error", err)
|
||||
continue
|
||||
}
|
||||
|
||||
scanner := bufio.NewScanner(fp)
|
||||
isCPU := false
|
||||
var major, minor, patch uint64
|
||||
for scanner.Scan() {
|
||||
line := strings.TrimSpace(scanner.Text())
|
||||
// Note: we could also use "cpu_cores_count X" where X is greater than zero to detect CPUs
|
||||
if strings.HasPrefix(line, "gfx_target_version") {
|
||||
ver := strings.Fields(line)
|
||||
|
||||
// Detect CPUs
|
||||
if len(ver) == 2 && ver[1] == "0" {
|
||||
slog.Debug("detected CPU " + match)
|
||||
isCPU = true
|
||||
break
|
||||
}
|
||||
|
||||
if len(ver) != 2 || len(ver[1]) < 5 {
|
||||
slog.Warn("malformed "+match, "gfx_target_version", line)
|
||||
// If this winds up being a CPU, our offsets may be wrong
|
||||
continue
|
||||
}
|
||||
l := len(ver[1])
|
||||
var err1, err2, err3 error
|
||||
patch, err1 = strconv.ParseUint(ver[1][l-2:l], 10, 32)
|
||||
minor, err2 = strconv.ParseUint(ver[1][l-4:l-2], 10, 32)
|
||||
major, err3 = strconv.ParseUint(ver[1][:l-4], 10, 32)
|
||||
if err1 != nil || err2 != nil || err3 != nil {
|
||||
slog.Debug("malformed int " + line)
|
||||
continue
|
||||
}
|
||||
}
|
||||
|
||||
// TODO - any other properties we want to extract and record?
|
||||
// vendor_id + device_id -> pci lookup for "Name"
|
||||
// Other metrics that may help us understand relative performance between multiple GPUs
|
||||
}
|
||||
|
||||
if isCPU {
|
||||
cpuCount++
|
||||
continue
|
||||
}
|
||||
|
||||
// CPUs are always first in the list
|
||||
gpuID := nodeID - cpuCount
|
||||
|
||||
// Shouldn't happen, but just in case...
|
||||
if gpuID < 0 {
|
||||
slog.Error("unexpected amdgpu sysfs data resulted in negative GPU ID, please set OLLAMA_DEBUG=1 and report an issue")
|
||||
return []GpuInfo{}
|
||||
}
|
||||
|
||||
if int(major) < RocmComputeMin {
|
||||
slog.Warn(fmt.Sprintf("amdgpu too old gfx%d%d%x", major, minor, patch), "gpu", gpuID)
|
||||
continue
|
||||
}
|
||||
|
||||
// Look up the memory for the current node
|
||||
totalMemory := uint64(0)
|
||||
usedMemory := uint64(0)
|
||||
// Adjust for sysfs vs HIP ids
|
||||
propGlob := filepath.Join(AMDNodesSysfsDir, strconv.Itoa(id+1), GPUTotalMemoryFileGlob)
|
||||
propGlob := filepath.Join(AMDNodesSysfsDir, strconv.Itoa(nodeID), GPUTotalMemoryFileGlob)
|
||||
propFiles, err := filepath.Glob(propGlob)
|
||||
if err != nil {
|
||||
slog.Warn(fmt.Sprintf("error looking up total GPU memory: %s %s", propGlob, err))
|
||||
slog.Warn("error looking up total GPU memory", "glob", propGlob, "error", err)
|
||||
}
|
||||
// 1 or more memory banks - sum the values of all of them
|
||||
for _, propFile := range propFiles {
|
||||
fp, err := os.Open(propFile)
|
||||
if err != nil {
|
||||
slog.Warn(fmt.Sprintf("failed to open sysfs node file %s: %s", propFile, err))
|
||||
slog.Warn("failed to open sysfs node", "file", propFile, "erroir", err)
|
||||
continue
|
||||
}
|
||||
defer fp.Close()
|
||||
@@ -209,49 +179,113 @@ func amdProcMemLookup(resp *GpuInfo, skip map[int]interface{}, ids []int) {
|
||||
}
|
||||
}
|
||||
if totalMemory == 0 {
|
||||
slog.Warn(fmt.Sprintf("amdgpu [%d] reports zero total memory, skipping", id))
|
||||
skip[id] = struct{}{}
|
||||
slog.Warn("amdgpu reports zero total memory", "gpu", gpuID)
|
||||
continue
|
||||
}
|
||||
if totalMemory < IGPUMemLimit {
|
||||
slog.Info(fmt.Sprintf("amdgpu [%d] appears to be an iGPU with %dM reported total memory, skipping", id, totalMemory/1024/1024))
|
||||
skip[id] = struct{}{}
|
||||
continue
|
||||
}
|
||||
usedGlob := filepath.Join(AMDNodesSysfsDir, strconv.Itoa(id), GPUUsedMemoryFileGlob)
|
||||
usedGlob := filepath.Join(AMDNodesSysfsDir, strconv.Itoa(nodeID), GPUUsedMemoryFileGlob)
|
||||
usedFiles, err := filepath.Glob(usedGlob)
|
||||
if err != nil {
|
||||
slog.Warn(fmt.Sprintf("error looking up used GPU memory: %s %s", usedGlob, err))
|
||||
slog.Warn("error looking up used GPU memory", "glob", usedGlob, "error", err)
|
||||
continue
|
||||
}
|
||||
for _, usedFile := range usedFiles {
|
||||
fp, err := os.Open(usedFile)
|
||||
if err != nil {
|
||||
slog.Warn(fmt.Sprintf("failed to open sysfs node file %s: %s", usedFile, err))
|
||||
slog.Warn("failed to open sysfs node", "file", usedFile, "error", err)
|
||||
continue
|
||||
}
|
||||
defer fp.Close()
|
||||
data, err := io.ReadAll(fp)
|
||||
if err != nil {
|
||||
slog.Warn(fmt.Sprintf("failed to read sysfs node file %s: %s", usedFile, err))
|
||||
slog.Warn("failed to read sysfs node", "file", usedFile, "error", err)
|
||||
continue
|
||||
}
|
||||
used, err := strconv.ParseUint(strings.TrimSpace(string(data)), 10, 64)
|
||||
if err != nil {
|
||||
slog.Warn(fmt.Sprintf("malformed used memory %s: %s", string(data), err))
|
||||
slog.Warn("malformed used memory", "data", string(data), "error", err)
|
||||
continue
|
||||
}
|
||||
usedMemory += used
|
||||
}
|
||||
slog.Info(fmt.Sprintf("[%d] amdgpu totalMemory %dM", id, totalMemory/1024/1024))
|
||||
slog.Info(fmt.Sprintf("[%d] amdgpu freeMemory %dM", id, (totalMemory-usedMemory)/1024/1024))
|
||||
resp.memInfo.DeviceCount++
|
||||
resp.memInfo.TotalMemory += totalMemory
|
||||
resp.memInfo.FreeMemory += (totalMemory - usedMemory)
|
||||
|
||||
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
|
||||
if totalMemory < IGPUMemLimit {
|
||||
slog.Info("amdgpu appears to be an iGPU, skipping", "gpu", gpuID, "total", format.HumanBytes2(totalMemory))
|
||||
continue
|
||||
}
|
||||
|
||||
slog.Info("amdgpu memory", "gpu", gpuID, "total", format.HumanBytes2(totalMemory))
|
||||
slog.Info("amdgpu memory", "gpu", gpuID, "available", format.HumanBytes2(totalMemory-usedMemory))
|
||||
gpuInfo := GpuInfo{
|
||||
Library: "rocm",
|
||||
memInfo: memInfo{
|
||||
TotalMemory: totalMemory,
|
||||
FreeMemory: (totalMemory - usedMemory),
|
||||
},
|
||||
ID: fmt.Sprintf("%d", gpuID),
|
||||
// Name: not exposed in sysfs directly, would require pci device id lookup
|
||||
Major: int(major),
|
||||
Minor: int(minor),
|
||||
Patch: int(patch),
|
||||
MinimumMemory: rocmMinimumMemory,
|
||||
}
|
||||
|
||||
// If the user wants to filter to a subset of devices, filter out if we aren't a match
|
||||
if len(visibleDevices) > 0 {
|
||||
include := false
|
||||
for _, visible := range visibleDevices {
|
||||
if visible == gpuInfo.ID {
|
||||
include = true
|
||||
break
|
||||
}
|
||||
}
|
||||
if !include {
|
||||
slog.Info("filtering out device per user request", "id", gpuInfo.ID, "visible_devices", visibleDevices)
|
||||
continue
|
||||
}
|
||||
}
|
||||
|
||||
// Final validation is gfx compatibility - load the library if we haven't already loaded it
|
||||
// even if the user overrides, we still need to validate the library
|
||||
if libDir == "" {
|
||||
libDir, err = AMDValidateLibDir()
|
||||
if err != nil {
|
||||
slog.Warn("unable to verify rocm library, will use cpu", "error", err)
|
||||
return []GpuInfo{}
|
||||
}
|
||||
}
|
||||
gpuInfo.DependencyPath = libDir
|
||||
|
||||
if gfxOverride == "" {
|
||||
// Only load supported list once
|
||||
if len(supported) == 0 {
|
||||
supported, err = GetSupportedGFX(libDir)
|
||||
if err != nil {
|
||||
slog.Warn("failed to lookup supported GFX types, falling back to CPU mode", "error", err)
|
||||
return []GpuInfo{}
|
||||
}
|
||||
slog.Debug("rocm supported GPUs", "types", supported)
|
||||
}
|
||||
gfx := fmt.Sprintf("gfx%d%d%x", gpuInfo.Major, gpuInfo.Minor, gpuInfo.Patch)
|
||||
if !slices.Contains[[]string, string](supported, gfx) {
|
||||
slog.Warn("amdgpu is not supported", "gpu", gpuInfo.ID, "gpu_type", gfx, "library", libDir, "supported_types", supported)
|
||||
// TODO - consider discrete markdown just for ROCM troubleshooting?
|
||||
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/gpu.md#overrides for HSA_OVERRIDE_GFX_VERSION usage")
|
||||
continue
|
||||
} else {
|
||||
slog.Info("amdgpu is supported", "gpu", gpuInfo.ID, "gpu_type", gfx)
|
||||
}
|
||||
} else {
|
||||
slog.Debug("skipping rocm gfx compatibility check with HSA_OVERRIDE_GFX_VERSION=" + gfxOverride)
|
||||
}
|
||||
|
||||
// The GPU has passed all the verification steps and is supported
|
||||
resp = append(resp, gpuInfo)
|
||||
}
|
||||
if resp.memInfo.DeviceCount > 0 {
|
||||
resp.Library = "rocm"
|
||||
if len(resp) == 0 {
|
||||
slog.Info("no compatible amdgpu devices detected")
|
||||
}
|
||||
return resp
|
||||
}
|
||||
|
||||
// Quick check for AMD driver so we can skip amdgpu discovery if not present
|
||||
@@ -263,87 +297,24 @@ func AMDDetected() bool {
|
||||
slog.Debug("amdgpu driver not detected " + sysfsDir)
|
||||
return false
|
||||
} else if err != nil {
|
||||
slog.Debug(fmt.Sprintf("error looking up amd driver %s %s", sysfsDir, err))
|
||||
slog.Debug("error looking up amd driver", "path", sysfsDir, "error", err)
|
||||
return false
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
func setupLink(source, target string) error {
|
||||
if err := os.RemoveAll(target); err != nil {
|
||||
return fmt.Errorf("failed to remove old rocm directory %s %w", target, err)
|
||||
}
|
||||
if err := os.Symlink(source, target); err != nil {
|
||||
return fmt.Errorf("failed to create link %s => %s %w", source, target, err)
|
||||
}
|
||||
slog.Debug(fmt.Sprintf("host rocm linked %s => %s", source, target))
|
||||
return nil
|
||||
}
|
||||
|
||||
// Ensure the AMD rocm lib dir is wired up
|
||||
// Prefer to use host installed ROCm, as long as it meets our minimum requirements
|
||||
// failing that, tell the user how to download it on their own
|
||||
func AMDValidateLibDir() (string, error) {
|
||||
// We rely on the rpath compiled into our library to find rocm
|
||||
// so we establish a symlink to wherever we find it on the system
|
||||
// to <payloads>/rocm
|
||||
payloadsDir, err := PayloadsDir()
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
// If we already have a rocm dependency wired, nothing more to do
|
||||
rocmTargetDir := filepath.Clean(filepath.Join(payloadsDir, "..", "rocm"))
|
||||
if rocmLibUsable(rocmTargetDir) {
|
||||
return rocmTargetDir, nil
|
||||
}
|
||||
|
||||
// next to the running binary
|
||||
exe, err := os.Executable()
|
||||
libDir, err := commonAMDValidateLibDir()
|
||||
if err == nil {
|
||||
peerDir := filepath.Dir(exe)
|
||||
if rocmLibUsable(peerDir) {
|
||||
slog.Debug("detected ROCM next to ollama executable " + peerDir)
|
||||
return rocmTargetDir, setupLink(peerDir, rocmTargetDir)
|
||||
}
|
||||
peerDir = filepath.Join(filepath.Dir(exe), "rocm")
|
||||
if rocmLibUsable(peerDir) {
|
||||
slog.Debug("detected ROCM next to ollama executable " + peerDir)
|
||||
return rocmTargetDir, setupLink(peerDir, rocmTargetDir)
|
||||
}
|
||||
return libDir, nil
|
||||
}
|
||||
|
||||
// Well known ollama installer path
|
||||
installedRocmDir := "/usr/share/ollama/lib/rocm"
|
||||
if rocmLibUsable(installedRocmDir) {
|
||||
return rocmTargetDir, setupLink(installedRocmDir, rocmTargetDir)
|
||||
}
|
||||
|
||||
// Prefer explicit HIP env var
|
||||
hipPath := os.Getenv("HIP_PATH")
|
||||
if hipPath != "" {
|
||||
hipLibDir := filepath.Join(hipPath, "lib")
|
||||
if rocmLibUsable(hipLibDir) {
|
||||
slog.Debug("detected ROCM via HIP_PATH=" + hipPath)
|
||||
return rocmTargetDir, setupLink(hipLibDir, rocmTargetDir)
|
||||
}
|
||||
}
|
||||
|
||||
// Scan the library path for potential matches
|
||||
ldPaths := strings.Split(os.Getenv("LD_LIBRARY_PATH"), ":")
|
||||
for _, ldPath := range ldPaths {
|
||||
d, err := filepath.Abs(ldPath)
|
||||
if err != nil {
|
||||
continue
|
||||
}
|
||||
if rocmLibUsable(d) {
|
||||
return rocmTargetDir, setupLink(d, rocmTargetDir)
|
||||
}
|
||||
}
|
||||
|
||||
// Well known location(s)
|
||||
if rocmLibUsable("/opt/rocm/lib") {
|
||||
return rocmTargetDir, setupLink("/opt/rocm/lib", rocmTargetDir)
|
||||
return installedRocmDir, nil
|
||||
}
|
||||
|
||||
// If we still haven't found a usable rocm, the user will have to install it on their own
|
||||
@@ -367,68 +338,3 @@ func AMDDriverVersion() (string, error) {
|
||||
}
|
||||
return strings.TrimSpace(string(verString)), nil
|
||||
}
|
||||
|
||||
func AMDGFXVersions() map[int]Version {
|
||||
// The amdgpu driver always exposes the host CPU as node 0, but we have to skip that and subtract one
|
||||
// from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU)
|
||||
res := map[int]Version{}
|
||||
matches, _ := filepath.Glob(GPUPropertiesFileGlob)
|
||||
for _, match := range matches {
|
||||
fp, err := os.Open(match)
|
||||
if err != nil {
|
||||
slog.Debug(fmt.Sprintf("failed to open sysfs node file %s: %s", match, err))
|
||||
continue
|
||||
}
|
||||
defer fp.Close()
|
||||
i, err := strconv.Atoi(filepath.Base(filepath.Dir(match)))
|
||||
if err != nil {
|
||||
slog.Debug(fmt.Sprintf("failed to parse node ID %s", err))
|
||||
continue
|
||||
}
|
||||
|
||||
if i == 0 {
|
||||
// Skipping the CPU
|
||||
continue
|
||||
}
|
||||
// Align with HIP IDs (zero is first GPU, not CPU)
|
||||
i -= 1
|
||||
|
||||
scanner := bufio.NewScanner(fp)
|
||||
for scanner.Scan() {
|
||||
line := strings.TrimSpace(scanner.Text())
|
||||
if strings.HasPrefix(line, "gfx_target_version") {
|
||||
ver := strings.Fields(line)
|
||||
if len(ver) != 2 || len(ver[1]) < 5 {
|
||||
if ver[1] != "0" {
|
||||
slog.Debug("malformed " + line)
|
||||
}
|
||||
res[i] = Version{
|
||||
Major: 0,
|
||||
Minor: 0,
|
||||
Patch: 0,
|
||||
}
|
||||
continue
|
||||
}
|
||||
l := len(ver[1])
|
||||
patch, err1 := strconv.ParseUint(ver[1][l-2:l], 10, 32)
|
||||
minor, err2 := strconv.ParseUint(ver[1][l-4:l-2], 10, 32)
|
||||
major, err3 := strconv.ParseUint(ver[1][:l-4], 10, 32)
|
||||
if err1 != nil || err2 != nil || err3 != nil {
|
||||
slog.Debug("malformed int " + line)
|
||||
continue
|
||||
}
|
||||
|
||||
res[i] = Version{
|
||||
Major: uint(major),
|
||||
Minor: uint(minor),
|
||||
Patch: uint(patch),
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
func (v Version) ToGFXString() string {
|
||||
return fmt.Sprintf("gfx%d%d%d", v.Major, v.Minor, v.Patch)
|
||||
}
|
||||
|
||||
@@ -7,7 +7,10 @@ import (
|
||||
"os"
|
||||
"path/filepath"
|
||||
"slices"
|
||||
"strconv"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/format"
|
||||
)
|
||||
|
||||
const (
|
||||
@@ -22,36 +25,32 @@ var (
|
||||
ROCmLibGlobs = []string{"hipblas.dll", "rocblas"} // TODO - probably include more coverage of files here...
|
||||
)
|
||||
|
||||
func AMDGetGPUInfo(resp *GpuInfo) {
|
||||
func AMDGetGPUInfo() []GpuInfo {
|
||||
resp := []GpuInfo{}
|
||||
hl, err := NewHipLib()
|
||||
if err != nil {
|
||||
slog.Debug(err.Error())
|
||||
return
|
||||
return nil
|
||||
}
|
||||
defer hl.Release()
|
||||
skip := map[int]interface{}{}
|
||||
ids := []int{}
|
||||
resp.memInfo.DeviceCount = 0
|
||||
resp.memInfo.TotalMemory = 0
|
||||
resp.memInfo.FreeMemory = 0
|
||||
|
||||
ver, err := hl.AMDDriverVersion()
|
||||
if err == nil {
|
||||
slog.Info("AMD Driver: " + ver)
|
||||
} else {
|
||||
// For now this is benign, but we may eventually need to fail compatibility checks
|
||||
slog.Debug(fmt.Sprintf("error looking up amd driver version: %s", err))
|
||||
slog.Debug("error looking up amd driver version", "error", err)
|
||||
}
|
||||
|
||||
// Note: the HIP library automatically handles HIP_VISIBLE_DEVICES
|
||||
// Note: the HIP library automatically handles subsetting to any HIP_VISIBLE_DEVICES the user specified
|
||||
count := hl.HipGetDeviceCount()
|
||||
if count == 0 {
|
||||
return
|
||||
return nil
|
||||
}
|
||||
libDir, err := AMDValidateLibDir()
|
||||
if err != nil {
|
||||
slog.Warn(fmt.Sprintf("unable to verify rocm library, will use cpu: %s", err))
|
||||
return
|
||||
slog.Warn("unable to verify rocm library, will use cpu", "error", err)
|
||||
return nil
|
||||
}
|
||||
|
||||
var supported []string
|
||||
@@ -59,95 +58,120 @@ func AMDGetGPUInfo(resp *GpuInfo) {
|
||||
if gfxOverride == "" {
|
||||
supported, err = GetSupportedGFX(libDir)
|
||||
if err != nil {
|
||||
slog.Warn(fmt.Sprintf("failed to lookup supported GFX types, falling back to CPU mode: %s", err))
|
||||
return
|
||||
slog.Warn("failed to lookup supported GFX types, falling back to CPU mode", "error", err)
|
||||
return nil
|
||||
}
|
||||
} else {
|
||||
slog.Debug("skipping rocm gfx compatibility check with HSA_OVERRIDE_GFX_VERSION=" + gfxOverride)
|
||||
}
|
||||
|
||||
slog.Info(fmt.Sprintf("detected %d hip devices", count))
|
||||
slog.Info("detected hip devices", "count", count)
|
||||
// TODO how to determine the underlying device ID when visible devices is causing this to subset?
|
||||
for i := 0; i < count; i++ {
|
||||
ids = append(ids, i)
|
||||
err = hl.HipSetDevice(i)
|
||||
if err != nil {
|
||||
slog.Warn(fmt.Sprintf("[%d] %s", i, err))
|
||||
skip[i] = struct{}{}
|
||||
slog.Warn("set device", "id", i, "error", err)
|
||||
continue
|
||||
}
|
||||
|
||||
props, err := hl.HipGetDeviceProperties(i)
|
||||
if err != nil {
|
||||
slog.Warn(fmt.Sprintf("[%d] %s", i, err))
|
||||
skip[i] = struct{}{}
|
||||
slog.Warn("get properties", "id", i, "error", err)
|
||||
continue
|
||||
}
|
||||
n := bytes.IndexByte(props.Name[:], 0)
|
||||
name := string(props.Name[:n])
|
||||
slog.Info(fmt.Sprintf("[%d] Name: %s", i, name))
|
||||
// TODO is UUID actually populated on windows?
|
||||
// Can luid be used on windows for setting visible devices (and is it actually set?)
|
||||
n = bytes.IndexByte(props.GcnArchName[:], 0)
|
||||
gfx := string(props.GcnArchName[:n])
|
||||
slog.Info(fmt.Sprintf("[%d] GcnArchName: %s", i, gfx))
|
||||
slog.Info("hip device", "id", i, "name", name, "gfx", gfx)
|
||||
var major, minor, patch string
|
||||
switch len(gfx) {
|
||||
case 6:
|
||||
major, minor, patch = gfx[3:4], gfx[4:5], gfx[5:]
|
||||
case 7:
|
||||
major, minor, patch = gfx[3:5], gfx[5:6], gfx[6:]
|
||||
}
|
||||
//slog.Info(fmt.Sprintf("[%d] Integrated: %d", i, props.iGPU)) // DOESN'T REPORT CORRECTLY! Always 0
|
||||
// TODO Why isn't props.iGPU accurate!?
|
||||
if strings.EqualFold(name, iGPUName) {
|
||||
slog.Info(fmt.Sprintf("iGPU detected [%d] skipping", i))
|
||||
skip[i] = struct{}{}
|
||||
slog.Info("iGPU detected skipping", "id", i)
|
||||
continue
|
||||
}
|
||||
if gfxOverride == "" {
|
||||
if !slices.Contains[[]string, string](supported, gfx) {
|
||||
slog.Warn(fmt.Sprintf("amdgpu [%d] %s is not supported by %s %v", i, gfx, libDir, supported))
|
||||
slog.Warn("amdgpu is not supported", "gpu", i, "gpu_type", gfx, "library", libDir, "supported_types", supported)
|
||||
// TODO - consider discrete markdown just for ROCM troubleshooting?
|
||||
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for HSA_OVERRIDE_GFX_VERSION usage")
|
||||
skip[i] = struct{}{}
|
||||
continue
|
||||
} else {
|
||||
slog.Info(fmt.Sprintf("amdgpu [%d] %s is supported", i, gfx))
|
||||
slog.Info("amdgpu is supported", "gpu", i, "gpu_type", gfx)
|
||||
}
|
||||
}
|
||||
|
||||
totalMemory, freeMemory, err := hl.HipMemGetInfo()
|
||||
freeMemory, totalMemory, err := hl.HipMemGetInfo()
|
||||
if err != nil {
|
||||
slog.Warn(fmt.Sprintf("[%d] %s", i, err))
|
||||
slog.Warn("get mem info", "id", i, "error", err)
|
||||
continue
|
||||
}
|
||||
|
||||
// TODO according to docs, freeMem may lie on windows!
|
||||
slog.Info(fmt.Sprintf("[%d] Total Mem: %d", i, totalMemory))
|
||||
slog.Info(fmt.Sprintf("[%d] Free Mem: %d", i, freeMemory))
|
||||
resp.memInfo.DeviceCount++
|
||||
resp.memInfo.TotalMemory += totalMemory
|
||||
resp.memInfo.FreeMemory += freeMemory
|
||||
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
|
||||
if totalMemory < IGPUMemLimit {
|
||||
slog.Info("amdgpu appears to be an iGPU, skipping", "gpu", i, "total", format.HumanBytes2(totalMemory))
|
||||
continue
|
||||
}
|
||||
|
||||
// TODO revisit this once ROCm v6 is available on windows.
|
||||
// v5.7 only reports VRAM used by this process, so it's completely wrong and unusable
|
||||
slog.Info("amdgpu memory", "gpu", i, "total", format.HumanBytes2(totalMemory))
|
||||
slog.Info("amdgpu memory", "gpu", i, "available", format.HumanBytes2(freeMemory))
|
||||
gpuInfo := GpuInfo{
|
||||
Library: "rocm",
|
||||
memInfo: memInfo{
|
||||
TotalMemory: totalMemory,
|
||||
FreeMemory: freeMemory,
|
||||
},
|
||||
ID: fmt.Sprintf("%d", i), // TODO this is probably wrong if we specify visible devices
|
||||
DependencyPath: libDir,
|
||||
MinimumMemory: rocmMinimumMemory,
|
||||
}
|
||||
if major != "" {
|
||||
gpuInfo.Major, err = strconv.Atoi(major)
|
||||
if err != nil {
|
||||
slog.Info("failed to parse version", "version", gfx, "error", err)
|
||||
}
|
||||
}
|
||||
if minor != "" {
|
||||
gpuInfo.Minor, err = strconv.Atoi(minor)
|
||||
if err != nil {
|
||||
slog.Info("failed to parse version", "version", gfx, "error", err)
|
||||
}
|
||||
}
|
||||
if patch != "" {
|
||||
// Patch rev is hex; e.g. gfx90a
|
||||
p, err := strconv.ParseInt(patch, 16, 0)
|
||||
if err != nil {
|
||||
slog.Info("failed to parse version", "version", gfx, "error", err)
|
||||
} else {
|
||||
gpuInfo.Patch = int(p)
|
||||
}
|
||||
}
|
||||
if gpuInfo.Major < RocmComputeMin {
|
||||
slog.Warn(fmt.Sprintf("amdgpu [%s] too old gfx%d%d%x", gpuInfo.ID, gpuInfo.Major, gpuInfo.Minor, gpuInfo.Patch))
|
||||
continue
|
||||
}
|
||||
|
||||
resp = append(resp, gpuInfo)
|
||||
}
|
||||
if resp.memInfo.DeviceCount > 0 {
|
||||
resp.Library = "rocm"
|
||||
}
|
||||
// Abort if all GPUs are skipped
|
||||
if len(skip) >= count {
|
||||
slog.Info("all detected amdgpus are skipped, falling back to CPU")
|
||||
return
|
||||
}
|
||||
if len(skip) > 0 {
|
||||
amdSetVisibleDevices(ids, skip)
|
||||
}
|
||||
UpdatePath(libDir)
|
||||
|
||||
return resp
|
||||
}
|
||||
|
||||
func AMDValidateLibDir() (string, error) {
|
||||
// On windows non-admins typically can't create links
|
||||
// so instead of trying to rely on rpath and a link in
|
||||
// $LibDir/rocm, we instead rely on setting PATH to point
|
||||
// to the location of the ROCm library
|
||||
|
||||
// Installer payload location if we're running the installed binary
|
||||
exe, err := os.Executable()
|
||||
libDir, err := commonAMDValidateLibDir()
|
||||
if err == nil {
|
||||
rocmTargetDir := filepath.Join(filepath.Dir(exe), "rocm")
|
||||
if rocmLibUsable(rocmTargetDir) {
|
||||
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
|
||||
return rocmTargetDir, nil
|
||||
}
|
||||
return libDir, nil
|
||||
}
|
||||
|
||||
// Installer payload (if we're running from some other location)
|
||||
@@ -159,21 +183,6 @@ func AMDValidateLibDir() (string, error) {
|
||||
return rocmTargetDir, nil
|
||||
}
|
||||
|
||||
// Prefer explicit HIP env var
|
||||
hipPath := os.Getenv("HIP_PATH")
|
||||
if hipPath != "" {
|
||||
hipLibDir := filepath.Join(hipPath, "bin")
|
||||
if rocmLibUsable(hipLibDir) {
|
||||
slog.Debug("detected ROCM via HIP_PATH=" + hipPath)
|
||||
return hipLibDir, nil
|
||||
}
|
||||
}
|
||||
|
||||
// Well known location(s)
|
||||
if rocmLibUsable(RocmStandardLocation) {
|
||||
return RocmStandardLocation, nil
|
||||
}
|
||||
|
||||
// Should not happen on windows since we include it in the installer, but stand-alone binary might hit this
|
||||
slog.Warn("amdgpu detected, but no compatible rocm library found. Please install ROCm")
|
||||
return "", fmt.Errorf("no suitable rocm found, falling back to CPU")
|
||||
|
||||
@@ -11,6 +11,7 @@ import (
|
||||
"strings"
|
||||
"sync"
|
||||
"syscall"
|
||||
"time"
|
||||
)
|
||||
|
||||
var (
|
||||
@@ -21,11 +22,65 @@ var (
|
||||
func PayloadsDir() (string, error) {
|
||||
lock.Lock()
|
||||
defer lock.Unlock()
|
||||
var err error
|
||||
if payloadsDir == "" {
|
||||
runnersDir := os.Getenv("OLLAMA_RUNNERS_DIR")
|
||||
// On Windows we do not carry the payloads inside the main executable
|
||||
if runtime.GOOS == "windows" && runnersDir == "" {
|
||||
appExe, err := os.Executable()
|
||||
if err != nil {
|
||||
slog.Error("failed to lookup executable path", "error", err)
|
||||
return "", err
|
||||
}
|
||||
|
||||
cwd, err := os.Getwd()
|
||||
if err != nil {
|
||||
slog.Error("failed to lookup working directory", "error", err)
|
||||
return "", err
|
||||
}
|
||||
|
||||
var paths []string
|
||||
for _, root := range []string{appExe, cwd} {
|
||||
paths = append(paths,
|
||||
filepath.Join(root),
|
||||
filepath.Join(root, "windows-"+runtime.GOARCH),
|
||||
filepath.Join(root, "dist", "windows-"+runtime.GOARCH),
|
||||
)
|
||||
}
|
||||
|
||||
// Try a few variations to improve developer experience when building from source in the local tree
|
||||
for _, p := range paths {
|
||||
candidate := filepath.Join(p, "ollama_runners")
|
||||
_, err := os.Stat(candidate)
|
||||
if err == nil {
|
||||
runnersDir = candidate
|
||||
break
|
||||
}
|
||||
}
|
||||
if runnersDir == "" {
|
||||
err = fmt.Errorf("unable to locate llm runner directory. Set OLLAMA_RUNNERS_DIR to the location of 'ollama_runners'")
|
||||
slog.Error("incomplete distribution", "error", err)
|
||||
return "", err
|
||||
}
|
||||
}
|
||||
if runnersDir != "" {
|
||||
payloadsDir = runnersDir
|
||||
return payloadsDir, nil
|
||||
}
|
||||
|
||||
// The remainder only applies on non-windows where we still carry payloads in the main executable
|
||||
cleanupTmpDirs()
|
||||
tmpDir, err := os.MkdirTemp("", "ollama")
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("failed to generate tmp dir: %w", err)
|
||||
tmpDir := os.Getenv("OLLAMA_TMPDIR")
|
||||
if tmpDir == "" {
|
||||
tmpDir, err = os.MkdirTemp("", "ollama")
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("failed to generate tmp dir: %w", err)
|
||||
}
|
||||
} else {
|
||||
err = os.MkdirAll(tmpDir, 0755)
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("failed to generate tmp dir %s: %w", tmpDir, err)
|
||||
}
|
||||
}
|
||||
|
||||
// Track our pid so we can clean up orphaned tmpdirs
|
||||
@@ -70,7 +125,7 @@ func cleanupTmpDirs() {
|
||||
}
|
||||
err = os.RemoveAll(d)
|
||||
if err != nil {
|
||||
slog.Debug(fmt.Sprintf("unable to cleanup stale tmpdir %s: %s", d, err))
|
||||
slog.Debug("unable to cleanup stale tmpdir", "path", d, "error", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -78,13 +133,19 @@ func cleanupTmpDirs() {
|
||||
func Cleanup() {
|
||||
lock.Lock()
|
||||
defer lock.Unlock()
|
||||
if payloadsDir != "" {
|
||||
runnersDir := os.Getenv("OLLAMA_RUNNERS_DIR")
|
||||
if payloadsDir != "" && runnersDir == "" && runtime.GOOS != "windows" {
|
||||
// We want to fully clean up the tmpdir parent of the payloads dir
|
||||
tmpDir := filepath.Clean(filepath.Join(payloadsDir, ".."))
|
||||
slog.Debug("cleaning up", "dir", tmpDir)
|
||||
err := os.RemoveAll(tmpDir)
|
||||
if err != nil {
|
||||
slog.Warn("failed to clean up", "dir", tmpDir, "err", err)
|
||||
// On windows, if we remove too quickly the llama.dll may still be in-use and fail to remove
|
||||
time.Sleep(1000 * time.Millisecond)
|
||||
err = os.RemoveAll(tmpDir)
|
||||
if err != nil {
|
||||
slog.Warn("failed to clean up", "dir", tmpDir, "err", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -105,7 +166,7 @@ func UpdatePath(dir string) {
|
||||
}
|
||||
}
|
||||
newPath := strings.Join(append([]string{dir}, pathComponents...), ";")
|
||||
slog.Info(fmt.Sprintf("Updating PATH to %s", newPath))
|
||||
slog.Info("updating", "PATH", newPath)
|
||||
os.Setenv("PATH", newPath)
|
||||
}
|
||||
// linux and darwin rely on rpath
|
||||
|
||||
22
gpu/cuda_common.go
Normal file
22
gpu/cuda_common.go
Normal file
@@ -0,0 +1,22 @@
|
||||
//go:build linux || windows
|
||||
|
||||
package gpu
|
||||
|
||||
import (
|
||||
"log/slog"
|
||||
"strings"
|
||||
)
|
||||
|
||||
func cudaGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
|
||||
ids := []string{}
|
||||
for _, info := range gpuInfo {
|
||||
if info.Library != "cuda" {
|
||||
// TODO shouldn't happen if things are wired correctly...
|
||||
slog.Debug("cudaGetVisibleDevicesEnv skipping over non-cuda device", "library", info.Library)
|
||||
continue
|
||||
}
|
||||
ids = append(ids, info.ID)
|
||||
}
|
||||
return "CUDA_VISIBLE_DEVICES", strings.Join(ids, ",")
|
||||
|
||||
}
|
||||
266
gpu/gpu.go
266
gpu/gpu.go
@@ -16,43 +16,32 @@ import (
|
||||
"os"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"strconv"
|
||||
"strings"
|
||||
"sync"
|
||||
"unsafe"
|
||||
|
||||
"github.com/ollama/ollama/format"
|
||||
)
|
||||
|
||||
type handles struct {
|
||||
nvml *C.nvml_handle_t
|
||||
cudart *C.cudart_handle_t
|
||||
deviceCount int
|
||||
cudart *C.cudart_handle_t
|
||||
}
|
||||
|
||||
const (
|
||||
cudaMinimumMemory = 457 * format.MebiByte
|
||||
rocmMinimumMemory = 457 * format.MebiByte
|
||||
)
|
||||
|
||||
var gpuMutex sync.Mutex
|
||||
var gpuHandles *handles = nil
|
||||
|
||||
// With our current CUDA compile flags, older than 5.0 will not work properly
|
||||
var CudaComputeMin = [2]C.int{5, 0}
|
||||
|
||||
// Possible locations for the nvidia-ml library
|
||||
var NvmlLinuxGlobs = []string{
|
||||
"/usr/local/cuda/lib64/libnvidia-ml.so*",
|
||||
"/usr/lib/x86_64-linux-gnu/nvidia/current/libnvidia-ml.so*",
|
||||
"/usr/lib/x86_64-linux-gnu/libnvidia-ml.so*",
|
||||
"/usr/lib/wsl/lib/libnvidia-ml.so*",
|
||||
"/usr/lib/wsl/drivers/*/libnvidia-ml.so*",
|
||||
"/opt/cuda/lib64/libnvidia-ml.so*",
|
||||
"/usr/lib*/libnvidia-ml.so*",
|
||||
"/usr/lib/aarch64-linux-gnu/nvidia/current/libnvidia-ml.so*",
|
||||
"/usr/lib/aarch64-linux-gnu/libnvidia-ml.so*",
|
||||
"/usr/local/lib*/libnvidia-ml.so*",
|
||||
var RocmComputeMin = 9
|
||||
|
||||
// TODO: are these stubs ever valid?
|
||||
"/opt/cuda/targets/x86_64-linux/lib/stubs/libnvidia-ml.so*",
|
||||
}
|
||||
|
||||
var NvmlWindowsGlobs = []string{
|
||||
"c:\\Windows\\System32\\nvml.dll",
|
||||
}
|
||||
// TODO find a better way to detect iGPU instead of minimum memory
|
||||
const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU
|
||||
|
||||
var CudartLinuxGlobs = []string{
|
||||
"/usr/local/cuda/lib64/libcudart.so*",
|
||||
@@ -78,30 +67,22 @@ var CudartWindowsGlobs = []string{
|
||||
var CudaTegra string = os.Getenv("JETSON_JETPACK")
|
||||
|
||||
// Note: gpuMutex must already be held
|
||||
func initGPUHandles() {
|
||||
func initGPUHandles() *handles {
|
||||
|
||||
// TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing
|
||||
|
||||
gpuHandles = &handles{nil, nil}
|
||||
var nvmlMgmtName string
|
||||
var nvmlMgmtPatterns []string
|
||||
gpuHandles := &handles{}
|
||||
var cudartMgmtName string
|
||||
var cudartMgmtPatterns []string
|
||||
|
||||
tmpDir, _ := PayloadsDir()
|
||||
switch runtime.GOOS {
|
||||
case "windows":
|
||||
nvmlMgmtName = "nvml.dll"
|
||||
nvmlMgmtPatterns = make([]string, len(NvmlWindowsGlobs))
|
||||
copy(nvmlMgmtPatterns, NvmlWindowsGlobs)
|
||||
cudartMgmtName = "cudart64_*.dll"
|
||||
localAppData := os.Getenv("LOCALAPPDATA")
|
||||
cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", cudartMgmtName)}
|
||||
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartWindowsGlobs...)
|
||||
case "linux":
|
||||
nvmlMgmtName = "libnvidia-ml.so"
|
||||
nvmlMgmtPatterns = make([]string, len(NvmlLinuxGlobs))
|
||||
copy(nvmlMgmtPatterns, NvmlLinuxGlobs)
|
||||
cudartMgmtName = "libcudart.so*"
|
||||
if tmpDir != "" {
|
||||
// TODO - add "payloads" for subprocess
|
||||
@@ -109,41 +90,35 @@ func initGPUHandles() {
|
||||
}
|
||||
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartLinuxGlobs...)
|
||||
default:
|
||||
return
|
||||
return gpuHandles
|
||||
}
|
||||
|
||||
slog.Info("Detecting GPU type")
|
||||
slog.Info("Detecting GPUs")
|
||||
cudartLibPaths := FindGPULibs(cudartMgmtName, cudartMgmtPatterns)
|
||||
if len(cudartLibPaths) > 0 {
|
||||
cudart := LoadCUDARTMgmt(cudartLibPaths)
|
||||
deviceCount, cudart, libPath := LoadCUDARTMgmt(cudartLibPaths)
|
||||
if cudart != nil {
|
||||
slog.Info("Nvidia GPU detected via cudart")
|
||||
slog.Info("detected GPUs", "library", libPath, "count", deviceCount)
|
||||
gpuHandles.cudart = cudart
|
||||
return
|
||||
gpuHandles.deviceCount = deviceCount
|
||||
return gpuHandles
|
||||
}
|
||||
}
|
||||
|
||||
// TODO once we build confidence, remove this and the gpu_info_nvml.[ch] files
|
||||
nvmlLibPaths := FindGPULibs(nvmlMgmtName, nvmlMgmtPatterns)
|
||||
if len(nvmlLibPaths) > 0 {
|
||||
nvml := LoadNVMLMgmt(nvmlLibPaths)
|
||||
if nvml != nil {
|
||||
slog.Info("Nvidia GPU detected via nvidia-ml")
|
||||
gpuHandles.nvml = nvml
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
return gpuHandles
|
||||
}
|
||||
|
||||
func GetGPUInfo() GpuInfo {
|
||||
func GetGPUInfo() GpuInfoList {
|
||||
// TODO - consider exploring lspci (and equivalent on windows) to check for
|
||||
// GPUs so we can report warnings if we see Nvidia/AMD but fail to load the libraries
|
||||
gpuMutex.Lock()
|
||||
defer gpuMutex.Unlock()
|
||||
if gpuHandles == nil {
|
||||
initGPUHandles()
|
||||
}
|
||||
|
||||
gpuHandles := initGPUHandles()
|
||||
defer func() {
|
||||
if gpuHandles.cudart != nil {
|
||||
C.cudart_release(*gpuHandles.cudart)
|
||||
}
|
||||
}()
|
||||
|
||||
// All our GPU builds on x86 have AVX enabled, so fallback to CPU if we don't detect at least AVX
|
||||
cpuVariant := GetCPUVariant()
|
||||
@@ -152,69 +127,63 @@ func GetGPUInfo() GpuInfo {
|
||||
}
|
||||
|
||||
var memInfo C.mem_info_t
|
||||
resp := GpuInfo{}
|
||||
if gpuHandles.nvml != nil && (cpuVariant != "" || runtime.GOARCH != "amd64") {
|
||||
C.nvml_check_vram(*gpuHandles.nvml, &memInfo)
|
||||
resp := []GpuInfo{}
|
||||
|
||||
// NVIDIA first
|
||||
for i := 0; i < gpuHandles.deviceCount; i++ {
|
||||
// TODO once we support CPU compilation variants of GPU libraries refine this...
|
||||
if cpuVariant == "" && runtime.GOARCH == "amd64" {
|
||||
continue
|
||||
}
|
||||
gpuInfo := GpuInfo{
|
||||
Library: "cuda",
|
||||
}
|
||||
C.cudart_check_vram(*gpuHandles.cudart, C.int(i), &memInfo)
|
||||
if memInfo.err != nil {
|
||||
slog.Info(fmt.Sprintf("[nvidia-ml] error looking up NVML GPU memory: %s", C.GoString(memInfo.err)))
|
||||
slog.Info("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
|
||||
C.free(unsafe.Pointer(memInfo.err))
|
||||
} else if memInfo.count > 0 {
|
||||
// Verify minimum compute capability
|
||||
var cc C.nvml_compute_capability_t
|
||||
C.nvml_compute_capability(*gpuHandles.nvml, &cc)
|
||||
if cc.err != nil {
|
||||
slog.Info(fmt.Sprintf("[nvidia-ml] error looking up NVML GPU compute capability: %s", C.GoString(cc.err)))
|
||||
C.free(unsafe.Pointer(cc.err))
|
||||
} else if cc.major > CudaComputeMin[0] || (cc.major == CudaComputeMin[0] && cc.minor >= CudaComputeMin[1]) {
|
||||
slog.Info(fmt.Sprintf("[nvidia-ml] NVML CUDA Compute Capability detected: %d.%d", cc.major, cc.minor))
|
||||
resp.Library = "cuda"
|
||||
} else {
|
||||
slog.Info(fmt.Sprintf("[nvidia-ml] CUDA GPU is too old. Falling back to CPU mode. Compute Capability detected: %d.%d", cc.major, cc.minor))
|
||||
}
|
||||
continue
|
||||
}
|
||||
} else if gpuHandles.cudart != nil && (cpuVariant != "" || runtime.GOARCH != "amd64") {
|
||||
C.cudart_check_vram(*gpuHandles.cudart, &memInfo)
|
||||
if memInfo.err != nil {
|
||||
slog.Info(fmt.Sprintf("[cudart] error looking up CUDART GPU memory: %s", C.GoString(memInfo.err)))
|
||||
C.free(unsafe.Pointer(memInfo.err))
|
||||
} else if memInfo.count > 0 {
|
||||
// Verify minimum compute capability
|
||||
var cc C.cudart_compute_capability_t
|
||||
C.cudart_compute_capability(*gpuHandles.cudart, &cc)
|
||||
if cc.err != nil {
|
||||
slog.Info(fmt.Sprintf("[cudart] error looking up CUDA compute capability: %s", C.GoString(cc.err)))
|
||||
C.free(unsafe.Pointer(cc.err))
|
||||
} else if cc.major > CudaComputeMin[0] || (cc.major == CudaComputeMin[0] && cc.minor >= CudaComputeMin[1]) {
|
||||
slog.Info(fmt.Sprintf("[cudart] CUDART CUDA Compute Capability detected: %d.%d", cc.major, cc.minor))
|
||||
resp.Library = "cuda"
|
||||
} else {
|
||||
slog.Info(fmt.Sprintf("[cudart] CUDA GPU is too old. Falling back to CPU mode. Compute Capability detected: %d.%d", cc.major, cc.minor))
|
||||
}
|
||||
if memInfo.major < CudaComputeMin[0] || (memInfo.major == CudaComputeMin[0] && memInfo.minor < CudaComputeMin[1]) {
|
||||
slog.Info(fmt.Sprintf("[%d] CUDA GPU is too old. Compute Capability detected: %d.%d", i, memInfo.major, memInfo.minor))
|
||||
continue
|
||||
}
|
||||
} else {
|
||||
AMDGetGPUInfo(&resp)
|
||||
if resp.Library != "" {
|
||||
return resp
|
||||
}
|
||||
}
|
||||
if resp.Library == "" {
|
||||
C.cpu_check_ram(&memInfo)
|
||||
resp.Library = "cpu"
|
||||
resp.Variant = cpuVariant
|
||||
}
|
||||
if memInfo.err != nil {
|
||||
slog.Info(fmt.Sprintf("error looking up CPU memory: %s", C.GoString(memInfo.err)))
|
||||
C.free(unsafe.Pointer(memInfo.err))
|
||||
return resp
|
||||
gpuInfo.TotalMemory = uint64(memInfo.total)
|
||||
gpuInfo.FreeMemory = uint64(memInfo.free)
|
||||
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
|
||||
gpuInfo.Major = int(memInfo.major)
|
||||
gpuInfo.Minor = int(memInfo.minor)
|
||||
gpuInfo.MinimumMemory = cudaMinimumMemory
|
||||
|
||||
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
|
||||
resp = append(resp, gpuInfo)
|
||||
}
|
||||
|
||||
// Then AMD
|
||||
resp = append(resp, AMDGetGPUInfo()...)
|
||||
|
||||
if len(resp) == 0 {
|
||||
C.cpu_check_ram(&memInfo)
|
||||
if memInfo.err != nil {
|
||||
slog.Info("error looking up CPU memory", "error", C.GoString(memInfo.err))
|
||||
C.free(unsafe.Pointer(memInfo.err))
|
||||
return resp
|
||||
}
|
||||
gpuInfo := GpuInfo{
|
||||
Library: "cpu",
|
||||
Variant: cpuVariant,
|
||||
}
|
||||
gpuInfo.TotalMemory = uint64(memInfo.total)
|
||||
gpuInfo.FreeMemory = uint64(memInfo.free)
|
||||
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
|
||||
|
||||
resp = append(resp, gpuInfo)
|
||||
}
|
||||
|
||||
resp.DeviceCount = uint32(memInfo.count)
|
||||
resp.FreeMemory = uint64(memInfo.free)
|
||||
resp.TotalMemory = uint64(memInfo.total)
|
||||
return resp
|
||||
}
|
||||
|
||||
func getCPUMem() (memInfo, error) {
|
||||
func GetCPUMem() (memInfo, error) {
|
||||
var ret memInfo
|
||||
var info C.mem_info_t
|
||||
C.cpu_check_ram(&info)
|
||||
@@ -227,42 +196,11 @@ func getCPUMem() (memInfo, error) {
|
||||
return ret, nil
|
||||
}
|
||||
|
||||
func CheckVRAM() (int64, error) {
|
||||
userLimit := os.Getenv("OLLAMA_MAX_VRAM")
|
||||
if userLimit != "" {
|
||||
avail, err := strconv.ParseInt(userLimit, 10, 64)
|
||||
if err != nil {
|
||||
return 0, fmt.Errorf("Invalid OLLAMA_MAX_VRAM setting %s: %s", userLimit, err)
|
||||
}
|
||||
slog.Info(fmt.Sprintf("user override OLLAMA_MAX_VRAM=%d", avail))
|
||||
return avail, nil
|
||||
}
|
||||
gpuInfo := GetGPUInfo()
|
||||
if gpuInfo.FreeMemory > 0 && (gpuInfo.Library == "cuda" || gpuInfo.Library == "rocm") {
|
||||
// leave 10% or 1024MiB of VRAM free per GPU to handle unaccounted for overhead
|
||||
overhead := gpuInfo.FreeMemory / 10
|
||||
gpus := uint64(gpuInfo.DeviceCount)
|
||||
if overhead < gpus*1024*1024*1024 {
|
||||
overhead = gpus * 1024 * 1024 * 1024
|
||||
}
|
||||
// Assigning full reported free memory for Tegras due to OS controlled caching.
|
||||
if CudaTegra != "" {
|
||||
// Setting overhead for non-Tegra devices
|
||||
overhead = 0
|
||||
}
|
||||
avail := int64(gpuInfo.FreeMemory - overhead)
|
||||
slog.Debug(fmt.Sprintf("%s detected %d devices with %dM available memory", gpuInfo.Library, gpuInfo.DeviceCount, avail/1024/1024))
|
||||
return avail, nil
|
||||
}
|
||||
|
||||
return 0, fmt.Errorf("no GPU detected") // TODO - better handling of CPU based memory determiniation
|
||||
}
|
||||
|
||||
func FindGPULibs(baseLibName string, patterns []string) []string {
|
||||
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
|
||||
var ldPaths []string
|
||||
gpuLibPaths := []string{}
|
||||
slog.Info(fmt.Sprintf("Searching for GPU management library %s", baseLibName))
|
||||
slog.Debug("Searching for GPU library", "name", baseLibName)
|
||||
|
||||
switch runtime.GOOS {
|
||||
case "windows":
|
||||
@@ -280,7 +218,7 @@ func FindGPULibs(baseLibName string, patterns []string) []string {
|
||||
}
|
||||
patterns = append(patterns, filepath.Join(d, baseLibName+"*"))
|
||||
}
|
||||
slog.Debug(fmt.Sprintf("gpu management search paths: %v", patterns))
|
||||
slog.Debug("gpu library search", "globs", patterns)
|
||||
for _, pattern := range patterns {
|
||||
// Ignore glob discovery errors
|
||||
matches, _ := filepath.Glob(pattern)
|
||||
@@ -308,28 +246,11 @@ func FindGPULibs(baseLibName string, patterns []string) []string {
|
||||
}
|
||||
}
|
||||
}
|
||||
slog.Info(fmt.Sprintf("Discovered GPU libraries: %v", gpuLibPaths))
|
||||
slog.Debug("discovered GPU libraries", "paths", gpuLibPaths)
|
||||
return gpuLibPaths
|
||||
}
|
||||
|
||||
func LoadNVMLMgmt(nvmlLibPaths []string) *C.nvml_handle_t {
|
||||
var resp C.nvml_init_resp_t
|
||||
resp.ch.verbose = getVerboseState()
|
||||
for _, libPath := range nvmlLibPaths {
|
||||
lib := C.CString(libPath)
|
||||
defer C.free(unsafe.Pointer(lib))
|
||||
C.nvml_init(lib, &resp)
|
||||
if resp.err != nil {
|
||||
slog.Info(fmt.Sprintf("Unable to load NVML management library %s: %s", libPath, C.GoString(resp.err)))
|
||||
C.free(unsafe.Pointer(resp.err))
|
||||
} else {
|
||||
return &resp.ch
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func LoadCUDARTMgmt(cudartLibPaths []string) *C.cudart_handle_t {
|
||||
func LoadCUDARTMgmt(cudartLibPaths []string) (int, *C.cudart_handle_t, string) {
|
||||
var resp C.cudart_init_resp_t
|
||||
resp.ch.verbose = getVerboseState()
|
||||
for _, libPath := range cudartLibPaths {
|
||||
@@ -337,13 +258,13 @@ func LoadCUDARTMgmt(cudartLibPaths []string) *C.cudart_handle_t {
|
||||
defer C.free(unsafe.Pointer(lib))
|
||||
C.cudart_init(lib, &resp)
|
||||
if resp.err != nil {
|
||||
slog.Info(fmt.Sprintf("Unable to load cudart CUDA management library %s: %s", libPath, C.GoString(resp.err)))
|
||||
slog.Debug("Unable to load cudart", "library", libPath, "error", C.GoString(resp.err))
|
||||
C.free(unsafe.Pointer(resp.err))
|
||||
} else {
|
||||
return &resp.ch
|
||||
return int(resp.num_devices), &resp.ch, libPath
|
||||
}
|
||||
}
|
||||
return nil
|
||||
return 0, nil, ""
|
||||
}
|
||||
|
||||
func getVerboseState() C.uint16_t {
|
||||
@@ -352,3 +273,22 @@ func getVerboseState() C.uint16_t {
|
||||
}
|
||||
return C.uint16_t(0)
|
||||
}
|
||||
|
||||
// Given the list of GPUs this instantiation is targeted for,
|
||||
// figure out the visible devices environment variable
|
||||
//
|
||||
// If different libraries are detected, the first one is what we use
|
||||
func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
|
||||
if len(l) == 0 {
|
||||
return "", ""
|
||||
}
|
||||
switch l[0].Library {
|
||||
case "cuda":
|
||||
return cudaGetVisibleDevicesEnv(l)
|
||||
case "rocm":
|
||||
return rocmGetVisibleDevicesEnv(l)
|
||||
default:
|
||||
slog.Debug("no filter required for library " + l[0].Library)
|
||||
return "", ""
|
||||
}
|
||||
}
|
||||
|
||||
@@ -9,52 +9,41 @@ package gpu
|
||||
*/
|
||||
import "C"
|
||||
import (
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"os"
|
||||
"runtime"
|
||||
"strconv"
|
||||
)
|
||||
|
||||
// CheckVRAM returns the free VRAM in bytes on Linux machines with NVIDIA GPUs
|
||||
func CheckVRAM() (int64, error) {
|
||||
userLimit := os.Getenv("OLLAMA_MAX_VRAM")
|
||||
if userLimit != "" {
|
||||
avail, err := strconv.ParseInt(userLimit, 10, 64)
|
||||
if err != nil {
|
||||
return 0, fmt.Errorf("Invalid OLLAMA_MAX_VRAM setting %s: %s", userLimit, err)
|
||||
}
|
||||
slog.Info(fmt.Sprintf("user override OLLAMA_MAX_VRAM=%d", avail))
|
||||
return avail, nil
|
||||
}
|
||||
|
||||
func GetGPUInfo() GpuInfoList {
|
||||
mem, _ := GetCPUMem()
|
||||
if runtime.GOARCH == "amd64" {
|
||||
// gpu not supported, this may not be metal
|
||||
return 0, nil
|
||||
}
|
||||
recommendedMaxVRAM := int64(C.getRecommendedMaxVRAM())
|
||||
return recommendedMaxVRAM, nil
|
||||
}
|
||||
|
||||
func GetGPUInfo() GpuInfo {
|
||||
mem, _ := getCPUMem()
|
||||
if runtime.GOARCH == "amd64" {
|
||||
return GpuInfo{
|
||||
Library: "cpu",
|
||||
Variant: GetCPUVariant(),
|
||||
memInfo: mem,
|
||||
return []GpuInfo{
|
||||
{
|
||||
Library: "cpu",
|
||||
Variant: GetCPUVariant(),
|
||||
memInfo: mem,
|
||||
},
|
||||
}
|
||||
}
|
||||
return GpuInfo{
|
||||
info := GpuInfo{
|
||||
Library: "metal",
|
||||
memInfo: mem,
|
||||
ID: "0",
|
||||
}
|
||||
info.TotalMemory = uint64(C.getRecommendedMaxVRAM())
|
||||
|
||||
// TODO is there a way to gather actual allocated video memory? (currentAllocatedSize doesn't work)
|
||||
info.FreeMemory = info.TotalMemory
|
||||
|
||||
info.MinimumMemory = 0
|
||||
return []GpuInfo{info}
|
||||
}
|
||||
|
||||
func getCPUMem() (memInfo, error) {
|
||||
func GetCPUMem() (memInfo, error) {
|
||||
return memInfo{
|
||||
TotalMemory: 0,
|
||||
TotalMemory: uint64(C.getPhysicalMemory()),
|
||||
FreeMemory: 0,
|
||||
DeviceCount: 0,
|
||||
}, nil
|
||||
}
|
||||
|
||||
func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
|
||||
// No-op on darwin
|
||||
return "", ""
|
||||
}
|
||||
|
||||
@@ -38,12 +38,17 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define GPU_ID_LEN 64
|
||||
|
||||
typedef struct mem_info {
|
||||
char *err; // If non-nill, caller responsible for freeing
|
||||
char gpu_id[GPU_ID_LEN];
|
||||
uint64_t total;
|
||||
uint64_t free;
|
||||
unsigned int count;
|
||||
int igpu_index; // If >= 0, we detected an integrated GPU to ignore
|
||||
char *err; // If non-nill, caller responsible for freeing
|
||||
|
||||
// Compute Capability
|
||||
int major;
|
||||
int minor;
|
||||
} mem_info_t;
|
||||
|
||||
void cpu_check_ram(mem_info_t *resp);
|
||||
@@ -52,7 +57,6 @@ void cpu_check_ram(mem_info_t *resp);
|
||||
}
|
||||
#endif
|
||||
|
||||
#include "gpu_info_nvml.h"
|
||||
#include "gpu_info_cudart.h"
|
||||
|
||||
#endif // __GPU_INFO_H__
|
||||
|
||||
@@ -8,9 +8,11 @@ void cpu_check_ram(mem_info_t *resp) {
|
||||
MEMORYSTATUSEX info;
|
||||
info.dwLength = sizeof(info);
|
||||
if (GlobalMemoryStatusEx(&info) != 0) {
|
||||
resp->count = 1;
|
||||
resp->total = info.ullTotalPhys;
|
||||
resp->free = info.ullAvailPhys;
|
||||
resp->major = 0;
|
||||
resp->minor = 0;
|
||||
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "0");
|
||||
} else {
|
||||
resp->err = LOAD_ERR();
|
||||
}
|
||||
@@ -27,9 +29,11 @@ void cpu_check_ram(mem_info_t *resp) {
|
||||
if (sysinfo(&info) != 0) {
|
||||
resp->err = strdup(strerror(errno));
|
||||
} else {
|
||||
resp->count = 1;
|
||||
resp->total = info.totalram * info.mem_unit;
|
||||
resp->free = info.freeram * info.mem_unit;
|
||||
resp->major = 0;
|
||||
resp->minor = 0;
|
||||
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "0");
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -6,6 +6,7 @@
|
||||
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
|
||||
cudartReturn_t ret;
|
||||
resp->err = NULL;
|
||||
resp->num_devices = 0;
|
||||
const int buflen = 256;
|
||||
char buf[buflen + 1];
|
||||
int i;
|
||||
@@ -21,6 +22,7 @@ void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
|
||||
{"cudaGetDeviceCount", (void *)&resp->ch.cudaGetDeviceCount},
|
||||
{"cudaDeviceGetAttribute", (void *)&resp->ch.cudaDeviceGetAttribute},
|
||||
{"cudaDriverGetVersion", (void *)&resp->ch.cudaDriverGetVersion},
|
||||
{"cudaGetDeviceProperties", (void *)&resp->ch.cudaGetDeviceProperties},
|
||||
{NULL, NULL},
|
||||
};
|
||||
|
||||
@@ -36,13 +38,7 @@ void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
|
||||
return;
|
||||
}
|
||||
|
||||
// TODO once we've squashed the remaining corner cases remove this log
|
||||
LOG(resp->ch.verbose, "wiring cudart library functions in %s\n", cudart_lib_path);
|
||||
|
||||
for (i = 0; l[i].s != NULL; i++) {
|
||||
// TODO once we've squashed the remaining corner cases remove this log
|
||||
LOG(resp->ch.verbose, "dlsym: %s\n", l[i].s);
|
||||
|
||||
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
|
||||
if (!l[i].p) {
|
||||
char *msg = LOAD_ERR();
|
||||
@@ -62,6 +58,10 @@ void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
|
||||
LOG(resp->ch.verbose, "cudaSetDevice err: %d\n", ret);
|
||||
UNLOAD_LIBRARY(resp->ch.handle);
|
||||
resp->ch.handle = NULL;
|
||||
if (ret == CUDA_ERROR_INSUFFICIENT_DRIVER) {
|
||||
resp->err = strdup("your nvidia driver is too old or missing. If you have a CUDA GPU please upgrade to run ollama");
|
||||
return;
|
||||
}
|
||||
snprintf(buf, buflen, "cudart init failure: %d", ret);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
@@ -81,110 +81,101 @@ void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
|
||||
driverVersion.minor = (version - (driverVersion.major * 1000)) / 10;
|
||||
LOG(resp->ch.verbose, "CUDA driver version: %d-%d\n", driverVersion.major, driverVersion.minor);
|
||||
}
|
||||
|
||||
ret = (*resp->ch.cudaGetDeviceCount)(&resp->num_devices);
|
||||
if (ret != CUDART_SUCCESS) {
|
||||
LOG(resp->ch.verbose, "cudaGetDeviceCount err: %d\n", ret);
|
||||
UNLOAD_LIBRARY(resp->ch.handle);
|
||||
resp->ch.handle = NULL;
|
||||
snprintf(buf, buflen, "unable to get device count: %d", ret);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void cudart_check_vram(cudart_handle_t h, mem_info_t *resp) {
|
||||
void cudart_check_vram(cudart_handle_t h, int i, mem_info_t *resp) {
|
||||
resp->err = NULL;
|
||||
cudartMemory_t memInfo = {0,0,0};
|
||||
cudartReturn_t ret;
|
||||
const int buflen = 256;
|
||||
char buf[buflen + 1];
|
||||
int i;
|
||||
|
||||
if (h.handle == NULL) {
|
||||
resp->err = strdup("cudart handle isn't initialized");
|
||||
return;
|
||||
}
|
||||
|
||||
// cudaGetDeviceCount takes int type, resp-> count is uint
|
||||
int deviceCount;
|
||||
ret = (*h.cudaGetDeviceCount)(&deviceCount);
|
||||
ret = (*h.cudaSetDevice)(i);
|
||||
if (ret != CUDART_SUCCESS) {
|
||||
snprintf(buf, buflen, "unable to get device count: %d", ret);
|
||||
snprintf(buf, buflen, "cudart device failed to initialize");
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
|
||||
cudaDeviceProp_t props;
|
||||
ret = (*h.cudaGetDeviceProperties)(&props, i);
|
||||
if (ret != CUDART_SUCCESS) {
|
||||
LOG(h.verbose, "[%d] device properties lookup failure: %d\n", i, ret);
|
||||
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "%d", i);
|
||||
resp->major = 0;
|
||||
resp->minor = 0;
|
||||
} else {
|
||||
resp->count = (unsigned int)deviceCount;
|
||||
int allNull = 1;
|
||||
for (int j = 0; j < 16; j++) {
|
||||
if (props.uuid.bytes[j] != 0) {
|
||||
allNull = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (allNull != 0) {
|
||||
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "%d", i);
|
||||
} else {
|
||||
// GPU-d110a105-ac29-1d54-7b49-9c90440f215b
|
||||
snprintf(&resp->gpu_id[0], GPU_ID_LEN,
|
||||
"GPU-%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x",
|
||||
props.uuid.bytes[0],
|
||||
props.uuid.bytes[1],
|
||||
props.uuid.bytes[2],
|
||||
props.uuid.bytes[3],
|
||||
props.uuid.bytes[4],
|
||||
props.uuid.bytes[5],
|
||||
props.uuid.bytes[6],
|
||||
props.uuid.bytes[7],
|
||||
props.uuid.bytes[8],
|
||||
props.uuid.bytes[9],
|
||||
props.uuid.bytes[10],
|
||||
props.uuid.bytes[11],
|
||||
props.uuid.bytes[12],
|
||||
props.uuid.bytes[13],
|
||||
props.uuid.bytes[14],
|
||||
props.uuid.bytes[15]
|
||||
);
|
||||
}
|
||||
resp->major = props.major;
|
||||
resp->minor = props.minor;
|
||||
|
||||
// TODO add other useful properties from props
|
||||
}
|
||||
ret = (*h.cudaMemGetInfo)(&memInfo.free, &memInfo.total);
|
||||
if (ret != CUDART_SUCCESS) {
|
||||
snprintf(buf, buflen, "cudart device memory info lookup failure %d", ret);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
|
||||
resp->total = 0;
|
||||
resp->free = 0;
|
||||
for (i = 0; i < resp-> count; i++) {
|
||||
ret = (*h.cudaSetDevice)(i);
|
||||
if (ret != CUDART_SUCCESS) {
|
||||
snprintf(buf, buflen, "cudart device failed to initialize");
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
ret = (*h.cudaMemGetInfo)(&memInfo.free, &memInfo.total);
|
||||
if (ret != CUDART_SUCCESS) {
|
||||
snprintf(buf, buflen, "cudart device memory info lookup failure %d", ret);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
resp->total = memInfo.total;
|
||||
resp->free = memInfo.free;
|
||||
|
||||
LOG(h.verbose, "[%d] CUDA totalMem %lu\n", i, memInfo.total);
|
||||
LOG(h.verbose, "[%d] CUDA freeMem %lu\n", i, memInfo.free);
|
||||
|
||||
resp->total += memInfo.total;
|
||||
resp->free += memInfo.free;
|
||||
}
|
||||
LOG(h.verbose, "[%s] CUDA totalMem %lu\n", resp->gpu_id, resp->total);
|
||||
LOG(h.verbose, "[%s] CUDA freeMem %lu\n", resp->gpu_id, resp->free);
|
||||
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
|
||||
}
|
||||
|
||||
void cudart_compute_capability(cudart_handle_t h, cudart_compute_capability_t *resp) {
|
||||
resp->err = NULL;
|
||||
resp->major = 0;
|
||||
resp->minor = 0;
|
||||
int major = 0;
|
||||
int minor = 0;
|
||||
cudartReturn_t ret;
|
||||
const int buflen = 256;
|
||||
char buf[buflen + 1];
|
||||
int i;
|
||||
|
||||
if (h.handle == NULL) {
|
||||
resp->err = strdup("cudart handle not initialized");
|
||||
return;
|
||||
}
|
||||
|
||||
int devices;
|
||||
ret = (*h.cudaGetDeviceCount)(&devices);
|
||||
if (ret != CUDART_SUCCESS) {
|
||||
snprintf(buf, buflen, "unable to get cudart device count: %d", ret);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
|
||||
for (i = 0; i < devices; i++) {
|
||||
ret = (*h.cudaSetDevice)(i);
|
||||
if (ret != CUDART_SUCCESS) {
|
||||
snprintf(buf, buflen, "cudart device failed to initialize");
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
|
||||
ret = (*h.cudaDeviceGetAttribute)(&major, cudartDevAttrComputeCapabilityMajor, i);
|
||||
if (ret != CUDART_SUCCESS) {
|
||||
snprintf(buf, buflen, "device compute capability lookup failure %d: %d", i, ret);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
ret = (*h.cudaDeviceGetAttribute)(&minor, cudartDevAttrComputeCapabilityMinor, i);
|
||||
if (ret != CUDART_SUCCESS) {
|
||||
snprintf(buf, buflen, "device compute capability lookup failure %d: %d", i, ret);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
|
||||
// Report the lowest major.minor we detect as that limits our compatibility
|
||||
if (resp->major == 0 || resp->major > major ) {
|
||||
resp->major = major;
|
||||
resp->minor = minor;
|
||||
} else if ( resp->major == major && resp->minor > minor ) {
|
||||
resp->minor = minor;
|
||||
}
|
||||
}
|
||||
void cudart_release(cudart_handle_t h) {
|
||||
LOG(h.verbose, "releasing cudart library\n");
|
||||
UNLOAD_LIBRARY(h.handle);
|
||||
h.handle = NULL;
|
||||
}
|
||||
|
||||
#endif // __APPLE__
|
||||
@@ -6,13 +6,20 @@
|
||||
// Just enough typedef's to dlopen/dlsym for memory information
|
||||
typedef enum cudartReturn_enum {
|
||||
CUDART_SUCCESS = 0,
|
||||
CUDART_UNSUPPORTED = 1,
|
||||
CUDA_ERROR_INVALID_VALUE = 1,
|
||||
CUDA_ERROR_MEMORY_ALLOCATION = 2,
|
||||
CUDA_ERROR_INSUFFICIENT_DRIVER = 35,
|
||||
// Other values omitted for now...
|
||||
} cudartReturn_t;
|
||||
|
||||
typedef enum cudartDeviceAttr_enum {
|
||||
cudartDevAttrComputeCapabilityMajor = 75,
|
||||
cudartDevAttrComputeCapabilityMinor = 76,
|
||||
|
||||
// TODO - not yet wired up but may be useful for Jetson or other
|
||||
// integrated GPU scenarios with shared memory
|
||||
cudaDevAttrIntegrated = 18
|
||||
|
||||
} cudartDeviceAttr_t;
|
||||
|
||||
typedef void *cudartDevice_t; // Opaque is sufficient
|
||||
@@ -27,6 +34,92 @@ typedef struct cudartDriverVersion {
|
||||
int minor;
|
||||
} cudartDriverVersion_t;
|
||||
|
||||
typedef struct cudaUUID {
|
||||
unsigned char bytes[16];
|
||||
} cudaUUID_t;
|
||||
typedef struct cudaDeviceProp {
|
||||
char name[256]; /**< ASCII string identifying device */
|
||||
cudaUUID_t uuid; /**< 16-byte unique identifier */
|
||||
char luid[8]; /**< 8-byte locally unique identifier. Value is undefined on TCC and non-Windows platforms */
|
||||
unsigned int luidDeviceNodeMask; /**< LUID device node mask. Value is undefined on TCC and non-Windows platforms */
|
||||
size_t totalGlobalMem; /**< Global memory available on device in bytes */
|
||||
size_t sharedMemPerBlock; /**< Shared memory available per block in bytes */
|
||||
int regsPerBlock; /**< 32-bit registers available per block */
|
||||
int warpSize; /**< Warp size in threads */
|
||||
size_t memPitch; /**< Maximum pitch in bytes allowed by memory copies */
|
||||
int maxThreadsPerBlock; /**< Maximum number of threads per block */
|
||||
int maxThreadsDim[3]; /**< Maximum size of each dimension of a block */
|
||||
int maxGridSize[3]; /**< Maximum size of each dimension of a grid */
|
||||
int clockRate; /**< Clock frequency in kilohertz */
|
||||
size_t totalConstMem; /**< Constant memory available on device in bytes */
|
||||
int major; /**< Major compute capability */
|
||||
int minor; /**< Minor compute capability */
|
||||
size_t textureAlignment; /**< Alignment requirement for textures */
|
||||
size_t texturePitchAlignment; /**< Pitch alignment requirement for texture references bound to pitched memory */
|
||||
int deviceOverlap; /**< Device can concurrently copy memory and execute a kernel. Deprecated. Use instead asyncEngineCount. */
|
||||
int multiProcessorCount; /**< Number of multiprocessors on device */
|
||||
int kernelExecTimeoutEnabled; /**< Specified whether there is a run time limit on kernels */
|
||||
int integrated; /**< Device is integrated as opposed to discrete */
|
||||
int canMapHostMemory; /**< Device can map host memory with cudaHostAlloc/cudaHostGetDevicePointer */
|
||||
int computeMode; /**< Compute mode (See ::cudaComputeMode) */
|
||||
int maxTexture1D; /**< Maximum 1D texture size */
|
||||
int maxTexture1DMipmap; /**< Maximum 1D mipmapped texture size */
|
||||
int maxTexture1DLinear; /**< Deprecated, do not use. Use cudaDeviceGetTexture1DLinearMaxWidth() or cuDeviceGetTexture1DLinearMaxWidth() instead. */
|
||||
int maxTexture2D[2]; /**< Maximum 2D texture dimensions */
|
||||
int maxTexture2DMipmap[2]; /**< Maximum 2D mipmapped texture dimensions */
|
||||
int maxTexture2DLinear[3]; /**< Maximum dimensions (width, height, pitch) for 2D textures bound to pitched memory */
|
||||
int maxTexture2DGather[2]; /**< Maximum 2D texture dimensions if texture gather operations have to be performed */
|
||||
int maxTexture3D[3]; /**< Maximum 3D texture dimensions */
|
||||
int maxTexture3DAlt[3]; /**< Maximum alternate 3D texture dimensions */
|
||||
int maxTextureCubemap; /**< Maximum Cubemap texture dimensions */
|
||||
int maxTexture1DLayered[2]; /**< Maximum 1D layered texture dimensions */
|
||||
int maxTexture2DLayered[3]; /**< Maximum 2D layered texture dimensions */
|
||||
int maxTextureCubemapLayered[2];/**< Maximum Cubemap layered texture dimensions */
|
||||
int maxSurface1D; /**< Maximum 1D surface size */
|
||||
int maxSurface2D[2]; /**< Maximum 2D surface dimensions */
|
||||
int maxSurface3D[3]; /**< Maximum 3D surface dimensions */
|
||||
int maxSurface1DLayered[2]; /**< Maximum 1D layered surface dimensions */
|
||||
int maxSurface2DLayered[3]; /**< Maximum 2D layered surface dimensions */
|
||||
int maxSurfaceCubemap; /**< Maximum Cubemap surface dimensions */
|
||||
int maxSurfaceCubemapLayered[2];/**< Maximum Cubemap layered surface dimensions */
|
||||
size_t surfaceAlignment; /**< Alignment requirements for surfaces */
|
||||
int concurrentKernels; /**< Device can possibly execute multiple kernels concurrently */
|
||||
int ECCEnabled; /**< Device has ECC support enabled */
|
||||
int pciBusID; /**< PCI bus ID of the device */
|
||||
int pciDeviceID; /**< PCI device ID of the device */
|
||||
int pciDomainID; /**< PCI domain ID of the device */
|
||||
int tccDriver; /**< 1 if device is a Tesla device using TCC driver, 0 otherwise */
|
||||
int asyncEngineCount; /**< Number of asynchronous engines */
|
||||
int unifiedAddressing; /**< Device shares a unified address space with the host */
|
||||
int memoryClockRate; /**< Peak memory clock frequency in kilohertz */
|
||||
int memoryBusWidth; /**< Global memory bus width in bits */
|
||||
int l2CacheSize; /**< Size of L2 cache in bytes */
|
||||
int persistingL2CacheMaxSize; /**< Device's maximum l2 persisting lines capacity setting in bytes */
|
||||
int maxThreadsPerMultiProcessor;/**< Maximum resident threads per multiprocessor */
|
||||
int streamPrioritiesSupported; /**< Device supports stream priorities */
|
||||
int globalL1CacheSupported; /**< Device supports caching globals in L1 */
|
||||
int localL1CacheSupported; /**< Device supports caching locals in L1 */
|
||||
size_t sharedMemPerMultiprocessor; /**< Shared memory available per multiprocessor in bytes */
|
||||
int regsPerMultiprocessor; /**< 32-bit registers available per multiprocessor */
|
||||
int managedMemory; /**< Device supports allocating managed memory on this system */
|
||||
int isMultiGpuBoard; /**< Device is on a multi-GPU board */
|
||||
int multiGpuBoardGroupID; /**< Unique identifier for a group of devices on the same multi-GPU board */
|
||||
int hostNativeAtomicSupported; /**< Link between the device and the host supports native atomic operations */
|
||||
int singleToDoublePrecisionPerfRatio; /**< Ratio of single precision performance (in floating-point operations per second) to double precision performance */
|
||||
int pageableMemoryAccess; /**< Device supports coherently accessing pageable memory without calling cudaHostRegister on it */
|
||||
int concurrentManagedAccess; /**< Device can coherently access managed memory concurrently with the CPU */
|
||||
int computePreemptionSupported; /**< Device supports Compute Preemption */
|
||||
int canUseHostPointerForRegisteredMem; /**< Device can access host registered memory at the same virtual address as the CPU */
|
||||
int cooperativeLaunch; /**< Device supports launching cooperative kernels via ::cudaLaunchCooperativeKernel */
|
||||
int cooperativeMultiDeviceLaunch; /**< Deprecated, cudaLaunchCooperativeKernelMultiDevice is deprecated. */
|
||||
size_t sharedMemPerBlockOptin; /**< Per device maximum shared memory per block usable by special opt in */
|
||||
int pageableMemoryAccessUsesHostPageTables; /**< Device accesses pageable memory via the host's page tables */
|
||||
int directManagedMemAccessFromHost; /**< Host can directly access managed memory on the device without migration. */
|
||||
int maxBlocksPerMultiProcessor; /**< Maximum number of resident blocks per multiprocessor */
|
||||
int accessPolicyMaxWindowSize; /**< The maximum value of ::cudaAccessPolicyWindow::num_bytes. */
|
||||
size_t reservedSharedMemPerBlock; /**< Shared memory reserved by CUDA driver per block in bytes */
|
||||
} cudaDeviceProp_t;
|
||||
|
||||
typedef struct cudart_handle {
|
||||
void *handle;
|
||||
uint16_t verbose;
|
||||
@@ -37,23 +130,18 @@ typedef struct cudart_handle {
|
||||
cudartReturn_t (*cudaGetDeviceCount)(int *);
|
||||
cudartReturn_t (*cudaDeviceGetAttribute)(int* value, cudartDeviceAttr_t attr, int device);
|
||||
cudartReturn_t (*cudaDriverGetVersion) (int *driverVersion);
|
||||
cudartReturn_t (*cudaGetDeviceProperties) (cudaDeviceProp_t* prop, int device);
|
||||
} cudart_handle_t;
|
||||
|
||||
typedef struct cudart_init_resp {
|
||||
char *err; // If err is non-null handle is invalid
|
||||
cudart_handle_t ch;
|
||||
int num_devices;
|
||||
} cudart_init_resp_t;
|
||||
|
||||
typedef struct cudart_compute_capability {
|
||||
char *err;
|
||||
int major;
|
||||
int minor;
|
||||
} cudart_compute_capability_t;
|
||||
|
||||
|
||||
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp);
|
||||
void cudart_check_vram(cudart_handle_t ch, mem_info_t *resp);
|
||||
void cudart_compute_capability(cudart_handle_t th, cudart_compute_capability_t *cc);
|
||||
void cudart_check_vram(cudart_handle_t ch, int device_id, mem_info_t *resp);
|
||||
void cudart_release(cudart_handle_t ch);
|
||||
|
||||
#endif // __GPU_INFO_CUDART_H__
|
||||
#endif // __APPLE__
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
#import <Metal/Metal.h>
|
||||
#include <stdint.h>
|
||||
uint64_t getRecommendedMaxVRAM();
|
||||
uint64_t getPhysicalMemory();
|
||||
|
||||
@@ -1,11 +1,13 @@
|
||||
//go:build darwin
|
||||
// go:build darwin
|
||||
#include "gpu_info_darwin.h"
|
||||
|
||||
uint64_t getRecommendedMaxVRAM()
|
||||
{
|
||||
id<MTLDevice> device = MTLCreateSystemDefaultDevice();
|
||||
uint64_t result = device.recommendedMaxWorkingSetSize;
|
||||
CFRelease(device);
|
||||
return result;
|
||||
uint64_t getRecommendedMaxVRAM() {
|
||||
id<MTLDevice> device = MTLCreateSystemDefaultDevice();
|
||||
uint64_t result = device.recommendedMaxWorkingSetSize;
|
||||
CFRelease(device);
|
||||
return result;
|
||||
}
|
||||
|
||||
uint64_t getPhysicalMemory() {
|
||||
return [[NSProcessInfo processInfo] physicalMemory];
|
||||
}
|
||||
|
||||
@@ -1,214 +0,0 @@
|
||||
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#include "gpu_info_nvml.h"
|
||||
|
||||
void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp) {
|
||||
nvmlReturn_t ret;
|
||||
resp->err = NULL;
|
||||
const int buflen = 256;
|
||||
char buf[buflen + 1];
|
||||
int i;
|
||||
|
||||
struct lookup {
|
||||
char *s;
|
||||
void **p;
|
||||
} l[] = {
|
||||
{"nvmlInit_v2", (void *)&resp->ch.nvmlInit_v2},
|
||||
{"nvmlShutdown", (void *)&resp->ch.nvmlShutdown},
|
||||
{"nvmlDeviceGetHandleByIndex", (void *)&resp->ch.nvmlDeviceGetHandleByIndex},
|
||||
{"nvmlDeviceGetMemoryInfo", (void *)&resp->ch.nvmlDeviceGetMemoryInfo},
|
||||
{"nvmlDeviceGetCount_v2", (void *)&resp->ch.nvmlDeviceGetCount_v2},
|
||||
{"nvmlDeviceGetCudaComputeCapability", (void *)&resp->ch.nvmlDeviceGetCudaComputeCapability},
|
||||
{"nvmlSystemGetDriverVersion", (void *)&resp->ch.nvmlSystemGetDriverVersion},
|
||||
{"nvmlDeviceGetName", (void *)&resp->ch.nvmlDeviceGetName},
|
||||
{"nvmlDeviceGetSerial", (void *)&resp->ch.nvmlDeviceGetSerial},
|
||||
{"nvmlDeviceGetVbiosVersion", (void *)&resp->ch.nvmlDeviceGetVbiosVersion},
|
||||
{"nvmlDeviceGetBoardPartNumber", (void *)&resp->ch.nvmlDeviceGetBoardPartNumber},
|
||||
{"nvmlDeviceGetBrand", (void *)&resp->ch.nvmlDeviceGetBrand},
|
||||
{NULL, NULL},
|
||||
};
|
||||
|
||||
resp->ch.handle = LOAD_LIBRARY(nvml_lib_path, RTLD_LAZY);
|
||||
if (!resp->ch.handle) {
|
||||
char *msg = LOAD_ERR();
|
||||
LOG(resp->ch.verbose, "library %s load err: %s\n", nvml_lib_path, msg);
|
||||
snprintf(buf, buflen,
|
||||
"Unable to load %s library to query for Nvidia GPUs: %s",
|
||||
nvml_lib_path, msg);
|
||||
free(msg);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
|
||||
// TODO once we've squashed the remaining corner cases remove this log
|
||||
LOG(resp->ch.verbose, "wiring nvidia management library functions in %s\n", nvml_lib_path);
|
||||
|
||||
for (i = 0; l[i].s != NULL; i++) {
|
||||
// TODO once we've squashed the remaining corner cases remove this log
|
||||
LOG(resp->ch.verbose, "dlsym: %s\n", l[i].s);
|
||||
|
||||
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
|
||||
if (!l[i].p) {
|
||||
resp->ch.handle = NULL;
|
||||
char *msg = LOAD_ERR();
|
||||
LOG(resp->ch.verbose, "dlerr: %s\n", msg);
|
||||
UNLOAD_LIBRARY(resp->ch.handle);
|
||||
snprintf(buf, buflen, "symbol lookup for %s failed: %s", l[i].s,
|
||||
msg);
|
||||
free(msg);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
ret = (*resp->ch.nvmlInit_v2)();
|
||||
if (ret != NVML_SUCCESS) {
|
||||
LOG(resp->ch.verbose, "nvmlInit_v2 err: %d\n", ret);
|
||||
UNLOAD_LIBRARY(resp->ch.handle);
|
||||
resp->ch.handle = NULL;
|
||||
snprintf(buf, buflen, "nvml vram init failure: %d", ret);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
|
||||
// Report driver version if we're in verbose mode, ignore errors
|
||||
ret = (*resp->ch.nvmlSystemGetDriverVersion)(buf, buflen);
|
||||
if (ret != NVML_SUCCESS) {
|
||||
LOG(resp->ch.verbose, "nvmlSystemGetDriverVersion failed: %d\n", ret);
|
||||
} else {
|
||||
LOG(resp->ch.verbose, "CUDA driver version: %s\n", buf);
|
||||
}
|
||||
}
|
||||
|
||||
void nvml_check_vram(nvml_handle_t h, mem_info_t *resp) {
|
||||
resp->err = NULL;
|
||||
nvmlDevice_t device;
|
||||
nvmlMemory_t memInfo = {0};
|
||||
nvmlReturn_t ret;
|
||||
const int buflen = 256;
|
||||
char buf[buflen + 1];
|
||||
int i;
|
||||
|
||||
if (h.handle == NULL) {
|
||||
resp->err = strdup("nvml handle isn't initialized");
|
||||
return;
|
||||
}
|
||||
|
||||
ret = (*h.nvmlDeviceGetCount_v2)(&resp->count);
|
||||
if (ret != NVML_SUCCESS) {
|
||||
snprintf(buf, buflen, "unable to get device count: %d", ret);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
|
||||
resp->total = 0;
|
||||
resp->free = 0;
|
||||
for (i = 0; i < resp->count; i++) {
|
||||
ret = (*h.nvmlDeviceGetHandleByIndex)(i, &device);
|
||||
if (ret != NVML_SUCCESS) {
|
||||
snprintf(buf, buflen, "unable to get device handle %d: %d", i, ret);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
|
||||
ret = (*h.nvmlDeviceGetMemoryInfo)(device, &memInfo);
|
||||
if (ret != NVML_SUCCESS) {
|
||||
snprintf(buf, buflen, "device memory info lookup failure %d: %d", i, ret);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
if (h.verbose) {
|
||||
nvmlBrandType_t brand = 0;
|
||||
// When in verbose mode, report more information about
|
||||
// the card we discover, but don't fail on error
|
||||
ret = (*h.nvmlDeviceGetName)(device, buf, buflen);
|
||||
if (ret != NVML_SUCCESS) {
|
||||
LOG(h.verbose, "nvmlDeviceGetName failed: %d\n", ret);
|
||||
} else {
|
||||
LOG(h.verbose, "[%d] CUDA device name: %s\n", i, buf);
|
||||
}
|
||||
ret = (*h.nvmlDeviceGetBoardPartNumber)(device, buf, buflen);
|
||||
if (ret != NVML_SUCCESS) {
|
||||
LOG(h.verbose, "nvmlDeviceGetBoardPartNumber failed: %d\n", ret);
|
||||
} else {
|
||||
LOG(h.verbose, "[%d] CUDA part number: %s\n", i, buf);
|
||||
}
|
||||
ret = (*h.nvmlDeviceGetSerial)(device, buf, buflen);
|
||||
if (ret != NVML_SUCCESS) {
|
||||
LOG(h.verbose, "nvmlDeviceGetSerial failed: %d\n", ret);
|
||||
} else {
|
||||
LOG(h.verbose, "[%d] CUDA S/N: %s\n", i, buf);
|
||||
}
|
||||
ret = (*h.nvmlDeviceGetVbiosVersion)(device, buf, buflen);
|
||||
if (ret != NVML_SUCCESS) {
|
||||
LOG(h.verbose, "nvmlDeviceGetVbiosVersion failed: %d\n", ret);
|
||||
} else {
|
||||
LOG(h.verbose, "[%d] CUDA vbios version: %s\n", i, buf);
|
||||
}
|
||||
ret = (*h.nvmlDeviceGetBrand)(device, &brand);
|
||||
if (ret != NVML_SUCCESS) {
|
||||
LOG(h.verbose, "nvmlDeviceGetBrand failed: %d\n", ret);
|
||||
} else {
|
||||
LOG(h.verbose, "[%d] CUDA brand: %d\n", i, brand);
|
||||
}
|
||||
}
|
||||
|
||||
LOG(h.verbose, "[%d] CUDA totalMem %ld\n", i, memInfo.total);
|
||||
LOG(h.verbose, "[%d] CUDA freeMem %ld\n", i, memInfo.free);
|
||||
|
||||
resp->total += memInfo.total;
|
||||
resp->free += memInfo.free;
|
||||
}
|
||||
}
|
||||
|
||||
void nvml_compute_capability(nvml_handle_t h, nvml_compute_capability_t *resp) {
|
||||
resp->err = NULL;
|
||||
resp->major = 0;
|
||||
resp->minor = 0;
|
||||
nvmlDevice_t device;
|
||||
int major = 0;
|
||||
int minor = 0;
|
||||
nvmlReturn_t ret;
|
||||
const int buflen = 256;
|
||||
char buf[buflen + 1];
|
||||
int i;
|
||||
|
||||
if (h.handle == NULL) {
|
||||
resp->err = strdup("nvml handle not initialized");
|
||||
return;
|
||||
}
|
||||
|
||||
unsigned int devices;
|
||||
ret = (*h.nvmlDeviceGetCount_v2)(&devices);
|
||||
if (ret != NVML_SUCCESS) {
|
||||
snprintf(buf, buflen, "unable to get device count: %d", ret);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
|
||||
for (i = 0; i < devices; i++) {
|
||||
ret = (*h.nvmlDeviceGetHandleByIndex)(i, &device);
|
||||
if (ret != NVML_SUCCESS) {
|
||||
snprintf(buf, buflen, "unable to get device handle %d: %d", i, ret);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
|
||||
ret = (*h.nvmlDeviceGetCudaComputeCapability)(device, &major, &minor);
|
||||
if (ret != NVML_SUCCESS) {
|
||||
snprintf(buf, buflen, "device compute capability lookup failure %d: %d", i, ret);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
// Report the lowest major.minor we detect as that limits our compatibility
|
||||
if (resp->major == 0 || resp->major > major ) {
|
||||
resp->major = major;
|
||||
resp->minor = minor;
|
||||
} else if ( resp->major == major && resp->minor > minor ) {
|
||||
resp->minor = minor;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif // __APPLE__
|
||||
@@ -1,56 +0,0 @@
|
||||
#ifndef __APPLE__
|
||||
#ifndef __GPU_INFO_NVML_H__
|
||||
#define __GPU_INFO_NVML_H__
|
||||
#include "gpu_info.h"
|
||||
|
||||
// Just enough typedef's to dlopen/dlsym for memory information
|
||||
typedef enum nvmlReturn_enum {
|
||||
NVML_SUCCESS = 0,
|
||||
// Other values omitted for now...
|
||||
} nvmlReturn_t;
|
||||
typedef void *nvmlDevice_t; // Opaque is sufficient
|
||||
typedef struct nvmlMemory_st {
|
||||
unsigned long long total;
|
||||
unsigned long long free;
|
||||
unsigned long long used;
|
||||
} nvmlMemory_t;
|
||||
|
||||
typedef enum nvmlBrandType_enum
|
||||
{
|
||||
NVML_BRAND_UNKNOWN = 0,
|
||||
} nvmlBrandType_t;
|
||||
|
||||
typedef struct nvml_handle {
|
||||
void *handle;
|
||||
uint16_t verbose;
|
||||
nvmlReturn_t (*nvmlInit_v2)(void);
|
||||
nvmlReturn_t (*nvmlShutdown)(void);
|
||||
nvmlReturn_t (*nvmlDeviceGetHandleByIndex)(unsigned int, nvmlDevice_t *);
|
||||
nvmlReturn_t (*nvmlDeviceGetMemoryInfo)(nvmlDevice_t, nvmlMemory_t *);
|
||||
nvmlReturn_t (*nvmlDeviceGetCount_v2)(unsigned int *);
|
||||
nvmlReturn_t (*nvmlDeviceGetCudaComputeCapability)(nvmlDevice_t, int* major, int* minor);
|
||||
nvmlReturn_t (*nvmlSystemGetDriverVersion) (char* version, unsigned int length);
|
||||
nvmlReturn_t (*nvmlDeviceGetName) (nvmlDevice_t device, char* name, unsigned int length);
|
||||
nvmlReturn_t (*nvmlDeviceGetSerial) (nvmlDevice_t device, char* serial, unsigned int length);
|
||||
nvmlReturn_t (*nvmlDeviceGetVbiosVersion) (nvmlDevice_t device, char* version, unsigned int length);
|
||||
nvmlReturn_t (*nvmlDeviceGetBoardPartNumber) (nvmlDevice_t device, char* partNumber, unsigned int length);
|
||||
nvmlReturn_t (*nvmlDeviceGetBrand) (nvmlDevice_t device, nvmlBrandType_t* type);
|
||||
} nvml_handle_t;
|
||||
|
||||
typedef struct nvml_init_resp {
|
||||
char *err; // If err is non-null handle is invalid
|
||||
nvml_handle_t ch;
|
||||
} nvml_init_resp_t;
|
||||
|
||||
typedef struct nvml_compute_capability {
|
||||
char *err;
|
||||
int major;
|
||||
int minor;
|
||||
} nvml_compute_capability_t;
|
||||
|
||||
void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp);
|
||||
void nvml_check_vram(nvml_handle_t ch, mem_info_t *resp);
|
||||
void nvml_compute_capability(nvml_handle_t ch, nvml_compute_capability_t *cc);
|
||||
|
||||
#endif // __GPU_INFO_NVML_H__
|
||||
#endif // __APPLE__
|
||||
@@ -9,23 +9,16 @@ import (
|
||||
|
||||
func TestBasicGetGPUInfo(t *testing.T) {
|
||||
info := GetGPUInfo()
|
||||
assert.Contains(t, "cuda rocm cpu metal", info.Library)
|
||||
|
||||
switch runtime.GOOS {
|
||||
case "darwin":
|
||||
// TODO - remove this once MacOS returns some size for CPU
|
||||
return
|
||||
case "linux", "windows":
|
||||
assert.Greater(t, info.TotalMemory, uint64(0))
|
||||
assert.Greater(t, info.FreeMemory, uint64(0))
|
||||
assert.Greater(t, info.DeviceCount, uint32(0))
|
||||
default:
|
||||
return
|
||||
assert.Greater(t, len(info), 0)
|
||||
assert.Contains(t, "cuda rocm cpu metal", info[0].Library)
|
||||
if info[0].Library != "cpu" {
|
||||
assert.Greater(t, info[0].TotalMemory, uint64(0))
|
||||
assert.Greater(t, info[0].FreeMemory, uint64(0))
|
||||
}
|
||||
}
|
||||
|
||||
func TestCPUMemInfo(t *testing.T) {
|
||||
info, err := getCPUMem()
|
||||
info, err := GetCPUMem()
|
||||
assert.NoError(t, err)
|
||||
switch runtime.GOOS {
|
||||
case "darwin":
|
||||
|
||||
52
gpu/types.go
52
gpu/types.go
@@ -3,7 +3,6 @@ package gpu
|
||||
type memInfo struct {
|
||||
TotalMemory uint64 `json:"total_memory,omitempty"`
|
||||
FreeMemory uint64 `json:"free_memory,omitempty"`
|
||||
DeviceCount uint32 `json:"device_count,omitempty"`
|
||||
}
|
||||
|
||||
// Beginning of an `ollama info` command
|
||||
@@ -14,11 +13,52 @@ type GpuInfo struct {
|
||||
// Optional variant to select (e.g. versions, cpu feature flags)
|
||||
Variant string `json:"variant,omitempty"`
|
||||
|
||||
// TODO add other useful attributes about the card here for discovery information
|
||||
// MinimumMemory represents the minimum memory required to use the GPU
|
||||
MinimumMemory uint64 `json:"-"`
|
||||
|
||||
// Any extra PATH/LD_LIBRARY_PATH dependencies required for the Library to operate properly
|
||||
DependencyPath string `json:"lib_path,omitempty"`
|
||||
|
||||
// GPU information
|
||||
ID string `json:"gpu_id"` // string to use for selection of this specific GPU
|
||||
Name string `json:"name"` // user friendly name if available
|
||||
Major int `json:"major,omitempty"` // Major compatibility version (CC or gfx)
|
||||
Minor int `json:"minor,omitempty"` // Minor compatibility version (CC or gfx)
|
||||
Patch int `json:"patch,omitempty"` // Patch compatibility only matters on AMD
|
||||
|
||||
// TODO other performance capability info to help in scheduling decisions
|
||||
}
|
||||
|
||||
type Version struct {
|
||||
Major uint
|
||||
Minor uint
|
||||
Patch uint
|
||||
type GpuInfoList []GpuInfo
|
||||
|
||||
// Split up the set of gpu info's by Library and variant
|
||||
func (l GpuInfoList) ByLibrary() []GpuInfoList {
|
||||
resp := []GpuInfoList{}
|
||||
libs := []string{}
|
||||
for _, info := range l {
|
||||
found := false
|
||||
requested := info.Library
|
||||
if info.Variant != "" {
|
||||
requested += "_" + info.Variant
|
||||
}
|
||||
for i, lib := range libs {
|
||||
if lib == requested {
|
||||
resp[i] = append(resp[i], info)
|
||||
found = true
|
||||
break
|
||||
}
|
||||
}
|
||||
if !found {
|
||||
libs = append(libs, info.Library)
|
||||
resp = append(resp, []GpuInfo{info})
|
||||
}
|
||||
}
|
||||
return resp
|
||||
}
|
||||
|
||||
// Sort by Free Space
|
||||
type ByFreeMemory []GpuInfo
|
||||
|
||||
func (a ByFreeMemory) Len() int { return len(a) }
|
||||
func (a ByFreeMemory) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
|
||||
func (a ByFreeMemory) Less(i, j int) bool { return a[i].FreeMemory < a[j].FreeMemory }
|
||||
|
||||
@@ -4,11 +4,14 @@ package integration
|
||||
|
||||
import (
|
||||
"context"
|
||||
"net/http"
|
||||
"log/slog"
|
||||
"os"
|
||||
"runtime"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/stretchr/testify/require"
|
||||
)
|
||||
|
||||
func TestOrcaMiniBlueSky(t *testing.T) {
|
||||
@@ -24,5 +27,44 @@ func TestOrcaMiniBlueSky(t *testing.T) {
|
||||
"seed": 123,
|
||||
},
|
||||
}
|
||||
GenerateTestHelper(ctx, t, &http.Client{}, req, []string{"rayleigh"})
|
||||
GenerateTestHelper(ctx, t, req, []string{"rayleigh", "scattering"})
|
||||
}
|
||||
|
||||
func TestUnicodeModelDir(t *testing.T) {
|
||||
// This is only useful for Windows with utf-16 characters, so skip this test for other platforms
|
||||
if runtime.GOOS != "windows" {
|
||||
t.Skip("Unicode test only applicable to windows")
|
||||
}
|
||||
// Only works for local testing
|
||||
if os.Getenv("OLLAMA_TEST_EXISTING") != "" {
|
||||
t.Skip("TestUnicodeModelDir only works for local testing, skipping")
|
||||
}
|
||||
|
||||
modelDir, err := os.MkdirTemp("", "ollama_埃")
|
||||
require.NoError(t, err)
|
||||
defer os.RemoveAll(modelDir)
|
||||
slog.Info("unicode", "OLLAMA_MODELS", modelDir)
|
||||
|
||||
oldModelsDir := os.Getenv("OLLAMA_MODELS")
|
||||
if oldModelsDir == "" {
|
||||
defer os.Unsetenv("OLLAMA_MODELS")
|
||||
} else {
|
||||
defer os.Setenv("OLLAMA_MODELS", oldModelsDir)
|
||||
}
|
||||
err = os.Setenv("OLLAMA_MODELS", modelDir)
|
||||
require.NoError(t, err)
|
||||
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
|
||||
defer cancel()
|
||||
|
||||
req := api.GenerateRequest{
|
||||
Model: "orca-mini",
|
||||
Prompt: "why is the sky blue?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
},
|
||||
}
|
||||
GenerateTestHelper(ctx, t, req, []string{"rayleigh", "scattering"})
|
||||
}
|
||||
|
||||
225
integration/concurrency_test.go
Normal file
225
integration/concurrency_test.go
Normal file
@@ -0,0 +1,225 @@
|
||||
//go:build integration
|
||||
|
||||
package integration
|
||||
|
||||
import (
|
||||
"context"
|
||||
"log/slog"
|
||||
"os"
|
||||
"strconv"
|
||||
"sync"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/stretchr/testify/require"
|
||||
)
|
||||
|
||||
func TestMultiModelConcurrency(t *testing.T) {
|
||||
var (
|
||||
req = [2]api.GenerateRequest{
|
||||
{
|
||||
Model: "orca-mini",
|
||||
Prompt: "why is the ocean blue?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
}, {
|
||||
Model: "tinydolphin",
|
||||
Prompt: "what is the origin of the us thanksgiving holiday?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
},
|
||||
}
|
||||
resp = [2][]string{
|
||||
[]string{"sunlight"},
|
||||
[]string{"england", "english", "massachusetts", "pilgrims"},
|
||||
}
|
||||
)
|
||||
var wg sync.WaitGroup
|
||||
wg.Add(len(req))
|
||||
ctx, cancel := context.WithTimeout(context.Background(), time.Second*120)
|
||||
defer cancel()
|
||||
for i := 0; i < len(req); i++ {
|
||||
go func(i int) {
|
||||
defer wg.Done()
|
||||
GenerateTestHelper(ctx, t, req[i], resp[i])
|
||||
}(i)
|
||||
}
|
||||
wg.Wait()
|
||||
}
|
||||
|
||||
func TestIntegrationConcurrentPredictOrcaMini(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 10*time.Minute) // GTX 750 2G card takes ~9 minutes
|
||||
defer cancel()
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
|
||||
req, resp := GenerateRequests()
|
||||
// Get the server running (if applicable) warm the model up with a single initial request
|
||||
DoGenerate(ctx, t, client, req[0], resp[0], 60*time.Second, 5*time.Second)
|
||||
|
||||
var wg sync.WaitGroup
|
||||
wg.Add(len(req))
|
||||
for i := 0; i < len(req); i++ {
|
||||
go func(i int) {
|
||||
defer wg.Done()
|
||||
for j := 0; j < 5; j++ {
|
||||
slog.Info("Starting", "req", i, "iter", j)
|
||||
// On slower GPUs it can take a while to process the 4 concurrent requests
|
||||
// so we allow a much longer initial timeout
|
||||
DoGenerate(ctx, t, client, req[i], resp[i], 90*time.Second, 5*time.Second)
|
||||
}
|
||||
}(i)
|
||||
}
|
||||
wg.Wait()
|
||||
}
|
||||
|
||||
// Stress the system if we know how much VRAM it has, and attempt to load more models than will fit
|
||||
func TestMultiModelStress(t *testing.T) {
|
||||
vram := os.Getenv("OLLAMA_MAX_VRAM")
|
||||
if vram == "" {
|
||||
t.Skip("OLLAMA_MAX_VRAM not specified, can't pick the right models for the stress test")
|
||||
}
|
||||
max, err := strconv.ParseUint(vram, 10, 64)
|
||||
require.NoError(t, err)
|
||||
const MB = uint64(1024 * 1024)
|
||||
type model struct {
|
||||
name string
|
||||
size uint64 // Approximate amount of VRAM they typically use when fully loaded in VRAM
|
||||
}
|
||||
|
||||
smallModels := []model{
|
||||
{
|
||||
name: "orca-mini",
|
||||
size: 2992 * MB,
|
||||
},
|
||||
{
|
||||
name: "phi",
|
||||
size: 2616 * MB,
|
||||
},
|
||||
{
|
||||
name: "gemma:2b",
|
||||
size: 2364 * MB,
|
||||
},
|
||||
{
|
||||
name: "stable-code:3b",
|
||||
size: 2608 * MB,
|
||||
},
|
||||
{
|
||||
name: "starcoder2:3b",
|
||||
size: 2166 * MB,
|
||||
},
|
||||
}
|
||||
mediumModels := []model{
|
||||
{
|
||||
name: "llama2",
|
||||
size: 5118 * MB,
|
||||
},
|
||||
{
|
||||
name: "mistral",
|
||||
size: 4620 * MB,
|
||||
},
|
||||
{
|
||||
name: "orca-mini:7b",
|
||||
size: 5118 * MB,
|
||||
},
|
||||
{
|
||||
name: "dolphin-mistral",
|
||||
size: 4620 * MB,
|
||||
},
|
||||
{
|
||||
name: "gemma:7b",
|
||||
size: 5000 * MB,
|
||||
},
|
||||
// TODO - uncomment this once #3565 is merged and this is rebased on it
|
||||
// {
|
||||
// name: "codellama:7b",
|
||||
// size: 5118 * MB,
|
||||
// },
|
||||
}
|
||||
|
||||
// These seem to be too slow to be useful...
|
||||
// largeModels := []model{
|
||||
// {
|
||||
// name: "llama2:13b",
|
||||
// size: 7400 * MB,
|
||||
// },
|
||||
// {
|
||||
// name: "codellama:13b",
|
||||
// size: 7400 * MB,
|
||||
// },
|
||||
// {
|
||||
// name: "orca-mini:13b",
|
||||
// size: 7400 * MB,
|
||||
// },
|
||||
// {
|
||||
// name: "gemma:7b",
|
||||
// size: 5000 * MB,
|
||||
// },
|
||||
// {
|
||||
// name: "starcoder2:15b",
|
||||
// size: 9100 * MB,
|
||||
// },
|
||||
// }
|
||||
|
||||
var chosenModels []model
|
||||
switch {
|
||||
case max < 10000*MB:
|
||||
slog.Info("selecting small models")
|
||||
chosenModels = smallModels
|
||||
// case max < 30000*MB:
|
||||
default:
|
||||
slog.Info("selecting medium models")
|
||||
chosenModels = mediumModels
|
||||
// default:
|
||||
// slog.Info("selecting large models")
|
||||
// chosenModels = largModels
|
||||
}
|
||||
|
||||
req, resp := GenerateRequests()
|
||||
|
||||
for i := range req {
|
||||
if i > len(chosenModels) {
|
||||
break
|
||||
}
|
||||
req[i].Model = chosenModels[i].name
|
||||
}
|
||||
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 15*time.Minute) // TODO baseline -- 10m too short
|
||||
defer cancel()
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
|
||||
// Make sure all the models are pulled before we get started
|
||||
for _, r := range req {
|
||||
require.NoError(t, PullIfMissing(ctx, client, r.Model))
|
||||
}
|
||||
|
||||
var wg sync.WaitGroup
|
||||
consumed := uint64(256 * MB) // Assume some baseline usage
|
||||
for i := 0; i < len(req); i++ {
|
||||
// Always get at least 2 models, but dont' overshoot VRAM too much or we'll take too long
|
||||
if i > 1 && consumed > max {
|
||||
slog.Info("achieved target vram exhaustion", "count", i, "vramMB", max/1024/1024, "modelsMB", consumed/1024/1024)
|
||||
break
|
||||
}
|
||||
consumed += chosenModels[i].size
|
||||
slog.Info("target vram", "count", i, "vramMB", max/1024/1024, "modelsMB", consumed/1024/1024)
|
||||
|
||||
wg.Add(1)
|
||||
go func(i int) {
|
||||
defer wg.Done()
|
||||
for j := 0; j < 3; j++ {
|
||||
slog.Info("Starting", "req", i, "iter", j, "model", req[i].Model)
|
||||
DoGenerate(ctx, t, client, req[i], resp[i], 90*time.Second, 5*time.Second)
|
||||
}
|
||||
}(i)
|
||||
}
|
||||
wg.Wait()
|
||||
}
|
||||
28
integration/context_test.go
Normal file
28
integration/context_test.go
Normal file
@@ -0,0 +1,28 @@
|
||||
//go:build integration
|
||||
|
||||
package integration
|
||||
|
||||
import (
|
||||
"context"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
func TestContextExhaustion(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute) // TODO maybe shorter?
|
||||
defer cancel()
|
||||
// Set up the test data
|
||||
req := api.GenerateRequest{
|
||||
Model: "llama2",
|
||||
Prompt: "Write me a story with a ton of emojis?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
"num_ctx": 128,
|
||||
},
|
||||
}
|
||||
GenerateTestHelper(ctx, t, req, []string{"once", "upon", "lived"})
|
||||
}
|
||||
@@ -5,7 +5,6 @@ package integration
|
||||
import (
|
||||
"context"
|
||||
"encoding/base64"
|
||||
"net/http"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
@@ -29,10 +28,11 @@ func TestIntegrationMultimodal(t *testing.T) {
|
||||
},
|
||||
}
|
||||
|
||||
resp := "the ollamas"
|
||||
// Note: sometimes it returns "the ollamas" sometimes "the ollams"
|
||||
resp := "the ollam"
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Minute)
|
||||
defer cancel()
|
||||
GenerateTestHelper(ctx, t, &http.Client{}, req, []string{resp})
|
||||
GenerateTestHelper(ctx, t, req, []string{resp})
|
||||
}
|
||||
|
||||
const imageEncoding = `iVBORw0KGgoAAAANSUhEUgAAANIAAAB4CAYAAACHHqzKAAAAAXNSR0IArs4c6QAAAIRlWElmTU0AKgAAAAgABQESAAMAAAABAAEAAAEaAAUAAAABAAAASgEb
|
||||
|
||||
@@ -4,8 +4,6 @@ package integration
|
||||
|
||||
import (
|
||||
"context"
|
||||
"net/http"
|
||||
"sync"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
@@ -15,10 +13,6 @@ import (
|
||||
// TODO - this would ideally be in the llm package, but that would require some refactoring of interfaces in the server
|
||||
// package to avoid circular dependencies
|
||||
|
||||
// WARNING - these tests will fail on mac if you don't manually copy ggml-metal.metal to this dir (./server)
|
||||
//
|
||||
// TODO - Fix this ^^
|
||||
|
||||
var (
|
||||
stream = false
|
||||
req = [2]api.GenerateRequest{
|
||||
@@ -49,25 +43,5 @@ var (
|
||||
func TestIntegrationSimpleOrcaMini(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), time.Second*120)
|
||||
defer cancel()
|
||||
GenerateTestHelper(ctx, t, &http.Client{}, req[0], resp[0])
|
||||
GenerateTestHelper(ctx, t, req[0], resp[0])
|
||||
}
|
||||
|
||||
// TODO
|
||||
// The server always loads a new runner and closes the old one, which forces serial execution
|
||||
// At present this test case fails with concurrency problems. Eventually we should try to
|
||||
// get true concurrency working with n_parallel support in the backend
|
||||
func TestIntegrationConcurrentPredictOrcaMini(t *testing.T) {
|
||||
var wg sync.WaitGroup
|
||||
wg.Add(len(req))
|
||||
ctx, cancel := context.WithTimeout(context.Background(), time.Second*120)
|
||||
defer cancel()
|
||||
for i := 0; i < len(req); i++ {
|
||||
go func(i int) {
|
||||
defer wg.Done()
|
||||
GenerateTestHelper(ctx, t, &http.Client{}, req[i], resp[i])
|
||||
}(i)
|
||||
}
|
||||
wg.Wait()
|
||||
}
|
||||
|
||||
// TODO - create a parallel test with 2 different models once we support concurrency
|
||||
|
||||
@@ -5,13 +5,14 @@ package integration
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"math/rand"
|
||||
"net"
|
||||
"net/http"
|
||||
"net/url"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
@@ -23,9 +24,13 @@ import (
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/app/lifecycle"
|
||||
"github.com/stretchr/testify/assert"
|
||||
"github.com/stretchr/testify/require"
|
||||
)
|
||||
|
||||
func Init() {
|
||||
lifecycle.InitLogging()
|
||||
}
|
||||
|
||||
func FindPort() string {
|
||||
port := 0
|
||||
if a, err := net.ResolveTCPAddr("tcp", "localhost:0"); err == nil {
|
||||
@@ -41,7 +46,7 @@ func FindPort() string {
|
||||
return strconv.Itoa(port)
|
||||
}
|
||||
|
||||
func GetTestEndpoint() (string, string) {
|
||||
func GetTestEndpoint() (*api.Client, string) {
|
||||
defaultPort := "11434"
|
||||
ollamaHost := os.Getenv("OLLAMA_HOST")
|
||||
|
||||
@@ -67,16 +72,20 @@ func GetTestEndpoint() (string, string) {
|
||||
port = FindPort()
|
||||
}
|
||||
|
||||
url := fmt.Sprintf("%s:%s", host, port)
|
||||
slog.Info("server connection", "url", url)
|
||||
return scheme, url
|
||||
slog.Info("server connection", "host", host, "port", port)
|
||||
|
||||
return api.NewClient(
|
||||
&url.URL{
|
||||
Scheme: scheme,
|
||||
Host: net.JoinHostPort(host, port),
|
||||
},
|
||||
http.DefaultClient), fmt.Sprintf("%s:%s", host, port)
|
||||
}
|
||||
|
||||
// TODO make fanicier, grab logs, etc.
|
||||
var serverMutex sync.Mutex
|
||||
var serverReady bool
|
||||
|
||||
func StartServer(ctx context.Context, ollamaHost string) error {
|
||||
func startServer(ctx context.Context, ollamaHost string) error {
|
||||
// Make sure the server has been built
|
||||
CLIName, err := filepath.Abs("../ollama")
|
||||
if err != nil {
|
||||
@@ -125,126 +134,205 @@ func StartServer(ctx context.Context, ollamaHost string) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
func PullIfMissing(ctx context.Context, client *http.Client, scheme, testEndpoint, modelName string) error {
|
||||
slog.Debug("checking status of model", "model", modelName)
|
||||
func PullIfMissing(ctx context.Context, client *api.Client, modelName string) error {
|
||||
slog.Info("checking status of model", "model", modelName)
|
||||
showReq := &api.ShowRequest{Name: modelName}
|
||||
requestJSON, err := json.Marshal(showReq)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
req, err := http.NewRequest("POST", scheme+"://"+testEndpoint+"/api/show", bytes.NewReader(requestJSON))
|
||||
if err != nil {
|
||||
showCtx, cancel := context.WithDeadlineCause(
|
||||
ctx,
|
||||
time.Now().Add(5*time.Second),
|
||||
fmt.Errorf("show for existing model %s took too long", modelName),
|
||||
)
|
||||
defer cancel()
|
||||
_, err := client.Show(showCtx, showReq)
|
||||
var statusError api.StatusError
|
||||
switch {
|
||||
case errors.As(err, &statusError) && statusError.StatusCode == http.StatusNotFound:
|
||||
break
|
||||
case err != nil:
|
||||
return err
|
||||
}
|
||||
|
||||
// Make the request with the HTTP client
|
||||
response, err := client.Do(req.WithContext(ctx))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer response.Body.Close()
|
||||
if response.StatusCode == 200 {
|
||||
default:
|
||||
slog.Info("model already present", "model", modelName)
|
||||
return nil
|
||||
}
|
||||
slog.Info("model missing", "status", response.StatusCode)
|
||||
slog.Info("model missing", "model", modelName)
|
||||
|
||||
stallDuration := 30 * time.Second // This includes checksum verification, which can take a while on larger models
|
||||
stallTimer := time.NewTimer(stallDuration)
|
||||
fn := func(resp api.ProgressResponse) error {
|
||||
// fmt.Print(".")
|
||||
if !stallTimer.Reset(stallDuration) {
|
||||
return fmt.Errorf("stall was detected, aborting status reporting")
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
stream := true
|
||||
pullReq := &api.PullRequest{Name: modelName, Stream: &stream}
|
||||
requestJSON, err = json.Marshal(pullReq)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
req, err = http.NewRequest("POST", scheme+"://"+testEndpoint+"/api/pull", bytes.NewReader(requestJSON))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
slog.Info("pulling", "model", modelName)
|
||||
var pullError error
|
||||
|
||||
response, err = client.Do(req.WithContext(ctx))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer response.Body.Close()
|
||||
if response.StatusCode != 200 {
|
||||
return fmt.Errorf("failed to pull model") // TODO more details perhaps
|
||||
}
|
||||
slog.Info("model pulled", "model", modelName)
|
||||
return nil
|
||||
}
|
||||
|
||||
func GenerateTestHelper(ctx context.Context, t *testing.T, client *http.Client, genReq api.GenerateRequest, anyResp []string) {
|
||||
requestJSON, err := json.Marshal(genReq)
|
||||
if err != nil {
|
||||
t.Fatalf("Error serializing request: %v", err)
|
||||
}
|
||||
defer func() {
|
||||
if t.Failed() && os.Getenv("OLLAMA_TEST_EXISTING") == "" {
|
||||
// TODO
|
||||
fp, err := os.Open(lifecycle.ServerLogFile)
|
||||
if err != nil {
|
||||
slog.Error("failed to open server log", "logfile", lifecycle.ServerLogFile, "error", err)
|
||||
return
|
||||
}
|
||||
data, err := io.ReadAll(fp)
|
||||
if err != nil {
|
||||
slog.Error("failed to read server log", "logfile", lifecycle.ServerLogFile, "error", err)
|
||||
return
|
||||
}
|
||||
slog.Warn("SERVER LOG FOLLOWS")
|
||||
os.Stderr.Write(data)
|
||||
slog.Warn("END OF SERVER")
|
||||
}
|
||||
err = os.Remove(lifecycle.ServerLogFile)
|
||||
if err != nil && !os.IsNotExist(err) {
|
||||
slog.Warn("failed to cleanup", "logfile", lifecycle.ServerLogFile, "error", err)
|
||||
}
|
||||
done := make(chan int)
|
||||
go func() {
|
||||
pullError = client.Pull(ctx, pullReq, fn)
|
||||
done <- 0
|
||||
}()
|
||||
scheme, testEndpoint := GetTestEndpoint()
|
||||
|
||||
select {
|
||||
case <-stallTimer.C:
|
||||
return fmt.Errorf("download stalled")
|
||||
case <-done:
|
||||
return pullError
|
||||
}
|
||||
}
|
||||
|
||||
var serverProcMutex sync.Mutex
|
||||
|
||||
// Returns an Client, the testEndpoint, and a cleanup function, fails the test on errors
|
||||
// Starts the server if needed
|
||||
func InitServerConnection(ctx context.Context, t *testing.T) (*api.Client, string, func()) {
|
||||
client, testEndpoint := GetTestEndpoint()
|
||||
if os.Getenv("OLLAMA_TEST_EXISTING") == "" {
|
||||
assert.NoError(t, StartServer(ctx, testEndpoint))
|
||||
serverProcMutex.Lock()
|
||||
fp, err := os.CreateTemp("", "ollama-server-*.log")
|
||||
if err != nil {
|
||||
t.Fatalf("failed to generate log file: %s", err)
|
||||
}
|
||||
lifecycle.ServerLogFile = fp.Name()
|
||||
fp.Close()
|
||||
require.NoError(t, startServer(ctx, testEndpoint))
|
||||
}
|
||||
|
||||
err = PullIfMissing(ctx, client, scheme, testEndpoint, genReq.Model)
|
||||
if err != nil {
|
||||
t.Fatalf("Error pulling model: %v", err)
|
||||
}
|
||||
|
||||
// Make the request and get the response
|
||||
req, err := http.NewRequest("POST", scheme+"://"+testEndpoint+"/api/generate", bytes.NewReader(requestJSON))
|
||||
if err != nil {
|
||||
t.Fatalf("Error creating request: %v", err)
|
||||
}
|
||||
|
||||
// Set the content type for the request
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
|
||||
// Make the request with the HTTP client
|
||||
response, err := client.Do(req.WithContext(ctx))
|
||||
if err != nil {
|
||||
t.Fatalf("Error making request: %v", err)
|
||||
}
|
||||
defer response.Body.Close()
|
||||
body, err := io.ReadAll(response.Body)
|
||||
assert.NoError(t, err)
|
||||
assert.Equal(t, response.StatusCode, 200, string(body))
|
||||
|
||||
// Verify the response is valid JSON
|
||||
var payload api.GenerateResponse
|
||||
err = json.Unmarshal(body, &payload)
|
||||
if err != nil {
|
||||
assert.NoError(t, err, body)
|
||||
}
|
||||
|
||||
// Verify the response contains the expected data
|
||||
atLeastOne := false
|
||||
for _, resp := range anyResp {
|
||||
if strings.Contains(strings.ToLower(payload.Response), resp) {
|
||||
atLeastOne = true
|
||||
break
|
||||
return client, testEndpoint, func() {
|
||||
if os.Getenv("OLLAMA_TEST_EXISTING") == "" {
|
||||
defer serverProcMutex.Unlock()
|
||||
if t.Failed() {
|
||||
fp, err := os.Open(lifecycle.ServerLogFile)
|
||||
if err != nil {
|
||||
slog.Error("failed to open server log", "logfile", lifecycle.ServerLogFile, "error", err)
|
||||
return
|
||||
}
|
||||
data, err := io.ReadAll(fp)
|
||||
if err != nil {
|
||||
slog.Error("failed to read server log", "logfile", lifecycle.ServerLogFile, "error", err)
|
||||
return
|
||||
}
|
||||
slog.Warn("SERVER LOG FOLLOWS")
|
||||
os.Stderr.Write(data)
|
||||
slog.Warn("END OF SERVER")
|
||||
}
|
||||
err := os.Remove(lifecycle.ServerLogFile)
|
||||
if err != nil && !os.IsNotExist(err) {
|
||||
slog.Warn("failed to cleanup", "logfile", lifecycle.ServerLogFile, "error", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
assert.True(t, atLeastOne, "none of %v found in %s", anyResp, payload.Response)
|
||||
}
|
||||
|
||||
func GenerateTestHelper(ctx context.Context, t *testing.T, genReq api.GenerateRequest, anyResp []string) {
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
require.NoError(t, PullIfMissing(ctx, client, genReq.Model))
|
||||
DoGenerate(ctx, t, client, genReq, anyResp, 30*time.Second, 10*time.Second)
|
||||
}
|
||||
|
||||
func DoGenerate(ctx context.Context, t *testing.T, client *api.Client, genReq api.GenerateRequest, anyResp []string, initialTimeout, streamTimeout time.Duration) {
|
||||
stallTimer := time.NewTimer(initialTimeout)
|
||||
var buf bytes.Buffer
|
||||
fn := func(response api.GenerateResponse) error {
|
||||
// fmt.Print(".")
|
||||
buf.Write([]byte(response.Response))
|
||||
if !stallTimer.Reset(streamTimeout) {
|
||||
return fmt.Errorf("stall was detected while streaming response, aborting")
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
stream := true
|
||||
genReq.Stream = &stream
|
||||
done := make(chan int)
|
||||
var genErr error
|
||||
go func() {
|
||||
genErr = client.Generate(ctx, &genReq, fn)
|
||||
done <- 0
|
||||
}()
|
||||
|
||||
select {
|
||||
case <-stallTimer.C:
|
||||
if buf.Len() == 0 {
|
||||
t.Errorf("generate never started. Timed out after :%s", initialTimeout.String())
|
||||
} else {
|
||||
t.Errorf("generate stalled. Response so far:%s", buf.String())
|
||||
}
|
||||
case <-done:
|
||||
require.NoError(t, genErr, "failed with %s request prompt %s ", genReq.Model, genReq.Prompt)
|
||||
// Verify the response contains the expected data
|
||||
response := buf.String()
|
||||
atLeastOne := false
|
||||
for _, resp := range anyResp {
|
||||
if strings.Contains(strings.ToLower(response), resp) {
|
||||
atLeastOne = true
|
||||
break
|
||||
}
|
||||
}
|
||||
require.True(t, atLeastOne, "none of %v found in %s", anyResp, response)
|
||||
slog.Info("test pass", "model", genReq.Model, "prompt", genReq.Prompt, "contains", anyResp, "response", response)
|
||||
case <-ctx.Done():
|
||||
t.Error("outer test context done while waiting for generate")
|
||||
}
|
||||
}
|
||||
|
||||
// Generate a set of requests
|
||||
// By default each request uses orca-mini as the model
|
||||
func GenerateRequests() ([]api.GenerateRequest, [][]string) {
|
||||
return []api.GenerateRequest{
|
||||
{
|
||||
Model: "orca-mini",
|
||||
Prompt: "why is the ocean blue?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
}, {
|
||||
Model: "orca-mini",
|
||||
Prompt: "why is the color of dirt brown?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
}, {
|
||||
Model: "orca-mini",
|
||||
Prompt: "what is the origin of the us thanksgiving holiday?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
}, {
|
||||
Model: "orca-mini",
|
||||
Prompt: "what is the origin of independence day?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
}, {
|
||||
Model: "orca-mini",
|
||||
Prompt: "what is the composition of air?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
},
|
||||
},
|
||||
[][]string{
|
||||
[]string{"sunlight"},
|
||||
[]string{"soil", "organic", "earth", "black", "tan"},
|
||||
[]string{"england", "english", "massachusetts", "pilgrims"},
|
||||
[]string{"fourth", "july", "declaration", "independence"},
|
||||
[]string{"nitrogen", "oxygen", "carbon", "dioxide"},
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,142 +0,0 @@
|
||||
#include "dyn_ext_server.h"
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
#ifdef __linux__
|
||||
#include <dlfcn.h>
|
||||
#define LOAD_LIBRARY(lib, flags) dlopen(lib, flags)
|
||||
#define LOAD_SYMBOL(handle, sym) dlsym(handle, sym)
|
||||
#define LOAD_ERR() strdup(dlerror())
|
||||
#define UNLOAD_LIBRARY(handle) dlclose(handle)
|
||||
#elif _WIN32
|
||||
#include <windows.h>
|
||||
#define LOAD_LIBRARY(lib, flags) LoadLibrary(lib)
|
||||
#define LOAD_SYMBOL(handle, sym) GetProcAddress(handle, sym)
|
||||
#define UNLOAD_LIBRARY(handle) FreeLibrary(handle)
|
||||
#define LOAD_ERR() ({\
|
||||
LPSTR messageBuffer = NULL; \
|
||||
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, \
|
||||
NULL, GetLastError(), MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&messageBuffer, 0, NULL); \
|
||||
char *resp = strdup(messageBuffer); \
|
||||
LocalFree(messageBuffer); \
|
||||
resp; \
|
||||
})
|
||||
#else
|
||||
#include <dlfcn.h>
|
||||
#define LOAD_LIBRARY(lib, flags) dlopen(lib, flags)
|
||||
#define LOAD_SYMBOL(handle, sym) dlsym(handle, sym)
|
||||
#define LOAD_ERR() strdup(dlerror())
|
||||
#define UNLOAD_LIBRARY(handle) dlclose(handle)
|
||||
#endif
|
||||
|
||||
void dyn_init(const char *libPath, struct dynamic_llama_server *s,
|
||||
ext_server_resp_t *err) {
|
||||
int i = 0;
|
||||
struct lookup {
|
||||
char *s;
|
||||
void **p;
|
||||
} l[] = {
|
||||
{"llama_server_init", (void *)&s->llama_server_init},
|
||||
{"llama_server_start", (void *)&s->llama_server_start},
|
||||
{"llama_server_stop", (void *)&s->llama_server_stop},
|
||||
{"llama_server_completion", (void *)&s->llama_server_completion},
|
||||
{"llama_server_completion_next_result",
|
||||
(void *)&s->llama_server_completion_next_result},
|
||||
{"llama_server_completion_cancel",
|
||||
(void *)&s->llama_server_completion_cancel},
|
||||
{"llama_server_release_task_result",
|
||||
(void *)&s->llama_server_release_task_result},
|
||||
{"llama_server_tokenize", (void *)&s->llama_server_tokenize},
|
||||
{"llama_server_detokenize", (void *)&s->llama_server_detokenize},
|
||||
{"llama_server_embedding", (void *)&s->llama_server_embedding},
|
||||
{"llama_server_release_json_resp",
|
||||
(void *)&s->llama_server_release_json_resp},
|
||||
{"", NULL},
|
||||
};
|
||||
|
||||
printf("loading library %s\n", libPath);
|
||||
s->handle = LOAD_LIBRARY(libPath, RTLD_LOCAL|RTLD_NOW);
|
||||
if (!s->handle) {
|
||||
err->id = -1;
|
||||
char *msg = LOAD_ERR();
|
||||
snprintf(err->msg, err->msg_len,
|
||||
"Unable to load dynamic server library: %s", msg);
|
||||
free(msg);
|
||||
return;
|
||||
}
|
||||
|
||||
for (i = 0; l[i].p != NULL; i++) {
|
||||
*l[i].p = LOAD_SYMBOL(s->handle, l[i].s);
|
||||
if (!l[i].p) {
|
||||
UNLOAD_LIBRARY(s->handle);
|
||||
err->id = -1;
|
||||
char *msg = LOAD_ERR();
|
||||
snprintf(err->msg, err->msg_len, "symbol lookup for %s failed: %s",
|
||||
l[i].s, msg);
|
||||
free(msg);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
inline void dyn_llama_server_init(struct dynamic_llama_server s,
|
||||
ext_server_params_t *sparams,
|
||||
ext_server_resp_t *err) {
|
||||
s.llama_server_init(sparams, err);
|
||||
}
|
||||
|
||||
inline void dyn_llama_server_start(struct dynamic_llama_server s) {
|
||||
s.llama_server_start();
|
||||
}
|
||||
|
||||
inline void dyn_llama_server_stop(struct dynamic_llama_server s) {
|
||||
s.llama_server_stop();
|
||||
}
|
||||
|
||||
inline void dyn_llama_server_completion(struct dynamic_llama_server s,
|
||||
const char *json_req,
|
||||
ext_server_resp_t *resp) {
|
||||
s.llama_server_completion(json_req, resp);
|
||||
}
|
||||
|
||||
inline void dyn_llama_server_completion_next_result(
|
||||
struct dynamic_llama_server s, const int task_id,
|
||||
ext_server_task_result_t *result) {
|
||||
s.llama_server_completion_next_result(task_id, result);
|
||||
}
|
||||
|
||||
inline void dyn_llama_server_completion_cancel(
|
||||
struct dynamic_llama_server s, const int task_id, ext_server_resp_t *err) {
|
||||
s.llama_server_completion_cancel(task_id, err);
|
||||
}
|
||||
inline void dyn_llama_server_release_task_result(
|
||||
struct dynamic_llama_server s, ext_server_task_result_t *result) {
|
||||
s.llama_server_release_task_result(result);
|
||||
}
|
||||
|
||||
inline void dyn_llama_server_tokenize(struct dynamic_llama_server s,
|
||||
const char *json_req,
|
||||
char **json_resp,
|
||||
ext_server_resp_t *err) {
|
||||
s.llama_server_tokenize(json_req, json_resp, err);
|
||||
}
|
||||
|
||||
inline void dyn_llama_server_detokenize(struct dynamic_llama_server s,
|
||||
const char *json_req,
|
||||
char **json_resp,
|
||||
ext_server_resp_t *err) {
|
||||
s.llama_server_detokenize(json_req, json_resp, err);
|
||||
}
|
||||
|
||||
inline void dyn_llama_server_embedding(struct dynamic_llama_server s,
|
||||
const char *json_req,
|
||||
char **json_resp,
|
||||
ext_server_resp_t *err) {
|
||||
s.llama_server_embedding(json_req, json_resp, err);
|
||||
}
|
||||
|
||||
inline void dyn_llama_server_release_json_resp(
|
||||
struct dynamic_llama_server s, char **json_resp) {
|
||||
s.llama_server_release_json_resp(json_resp);
|
||||
}
|
||||
@@ -1,388 +0,0 @@
|
||||
package llm
|
||||
|
||||
/*
|
||||
#cgo CFLAGS: -I${SRCDIR}/ext_server -I${SRCDIR}/llama.cpp -I${SRCDIR}/llama.cpp/common -I${SRCDIR}/llama.cpp/examples/server
|
||||
#cgo CFLAGS: -DNDEBUG -DLLAMA_SERVER_LIBRARY=1 -D_XOPEN_SOURCE=600 -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
|
||||
#cgo CFLAGS: -Wmissing-noreturn -Wextra -Wcast-qual -Wno-unused-function -Wno-array-bounds
|
||||
#cgo CPPFLAGS: -Ofast -Wextra -Wno-unused-function -Wno-unused-variable -Wno-deprecated-declarations
|
||||
#cgo darwin CFLAGS: -D_DARWIN_C_SOURCE
|
||||
#cgo darwin CPPFLAGS: -DGGML_USE_ACCELERATE
|
||||
#cgo darwin CPPFLAGS: -DGGML_USE_METAL -DGGML_METAL_NDEBUG
|
||||
#cgo darwin LDFLAGS: -lc++ -framework Accelerate
|
||||
#cgo darwin LDFLAGS: -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
|
||||
#cgo linux CFLAGS: -D_GNU_SOURCE
|
||||
#cgo linux LDFLAGS: -lrt -ldl -lstdc++ -lm
|
||||
#cgo linux windows LDFLAGS: -lpthread
|
||||
|
||||
#include <stdlib.h>
|
||||
#include "dyn_ext_server.h"
|
||||
|
||||
*/
|
||||
import "C"
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
"sync"
|
||||
"time"
|
||||
"unsafe"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/gpu"
|
||||
)
|
||||
|
||||
type dynExtServer struct {
|
||||
s C.struct_dynamic_llama_server
|
||||
options api.Options
|
||||
}
|
||||
|
||||
// Note: current implementation does not support concurrent instantiations
|
||||
var mutex sync.Mutex
|
||||
|
||||
func newExtServerResp(len C.size_t) C.ext_server_resp_t {
|
||||
var resp C.ext_server_resp_t
|
||||
resp.msg_len = len
|
||||
bytes := make([]byte, len)
|
||||
resp.msg = (*C.char)(C.CBytes(bytes))
|
||||
return resp
|
||||
}
|
||||
|
||||
func freeExtServerResp(resp C.ext_server_resp_t) {
|
||||
if resp.msg_len == 0 {
|
||||
return
|
||||
}
|
||||
C.free(unsafe.Pointer(resp.msg))
|
||||
}
|
||||
|
||||
func extServerResponseToErr(resp C.ext_server_resp_t) error {
|
||||
return fmt.Errorf(C.GoString(resp.msg))
|
||||
}
|
||||
|
||||
func newDynExtServer(library, model string, adapters, projectors []string, opts api.Options) (LLM, error) {
|
||||
if !mutex.TryLock() {
|
||||
slog.Info("concurrent llm servers not yet supported, waiting for prior server to complete")
|
||||
mutex.Lock()
|
||||
}
|
||||
gpu.UpdatePath(filepath.Dir(library))
|
||||
libPath := C.CString(library)
|
||||
defer C.free(unsafe.Pointer(libPath))
|
||||
resp := newExtServerResp(512)
|
||||
defer freeExtServerResp(resp)
|
||||
var srv C.struct_dynamic_llama_server
|
||||
C.dyn_init(libPath, &srv, &resp)
|
||||
if resp.id < 0 {
|
||||
mutex.Unlock()
|
||||
return nil, fmt.Errorf("Unable to load dynamic library: %s", C.GoString(resp.msg))
|
||||
}
|
||||
llm := dynExtServer{
|
||||
s: srv,
|
||||
options: opts,
|
||||
}
|
||||
slog.Info(fmt.Sprintf("Loading Dynamic llm server: %s", library))
|
||||
|
||||
var sparams C.ext_server_params_t
|
||||
sparams.model = C.CString(model)
|
||||
defer C.free(unsafe.Pointer(sparams.model))
|
||||
|
||||
sparams.embedding = true
|
||||
sparams.n_ctx = C.uint(opts.NumCtx)
|
||||
sparams.n_batch = C.uint(opts.NumBatch)
|
||||
sparams.n_gpu_layers = C.int(opts.NumGPU)
|
||||
sparams.main_gpu = C.int(opts.MainGPU)
|
||||
sparams.n_parallel = 1 // TODO - wire up concurrency
|
||||
|
||||
// Always use the value encoded in the model
|
||||
sparams.rope_freq_base = 0.0
|
||||
sparams.rope_freq_scale = 0.0
|
||||
sparams.memory_f16 = C.bool(opts.F16KV)
|
||||
sparams.use_mlock = C.bool(opts.UseMLock)
|
||||
sparams.use_mmap = C.bool(opts.UseMMap)
|
||||
|
||||
if opts.UseNUMA {
|
||||
sparams.numa = C.int(1)
|
||||
} else {
|
||||
sparams.numa = C.int(0)
|
||||
}
|
||||
|
||||
sparams.lora_adapters = nil
|
||||
for i := 0; i < len(adapters); i++ {
|
||||
la := (*C.ext_server_lora_adapter_t)(C.malloc(C.sizeof_ext_server_lora_adapter_t))
|
||||
defer C.free(unsafe.Pointer(la))
|
||||
la.adapter = C.CString(adapters[i])
|
||||
defer C.free(unsafe.Pointer(la.adapter))
|
||||
la.scale = C.float(1.0) // TODO expose scale/weights up through ollama UX
|
||||
la.next = nil
|
||||
if i == 0 {
|
||||
sparams.lora_adapters = la
|
||||
} else {
|
||||
tmp := sparams.lora_adapters
|
||||
for ; tmp.next != nil; tmp = tmp.next {
|
||||
}
|
||||
tmp.next = la
|
||||
}
|
||||
}
|
||||
|
||||
if len(projectors) > 0 {
|
||||
// TODO: applying multiple projectors is not supported by the llama.cpp server yet
|
||||
sparams.mmproj = C.CString(projectors[0])
|
||||
defer C.free(unsafe.Pointer(sparams.mmproj))
|
||||
} else {
|
||||
sparams.mmproj = nil
|
||||
}
|
||||
|
||||
sparams.n_threads = C.uint(opts.NumThread)
|
||||
|
||||
if debug := os.Getenv("OLLAMA_DEBUG"); debug != "" {
|
||||
sparams.verbose_logging = C.bool(true)
|
||||
} else {
|
||||
sparams.verbose_logging = C.bool(false)
|
||||
}
|
||||
|
||||
slog.Info("Initializing llama server")
|
||||
slog.Debug(fmt.Sprintf("server params: %+v", sparams))
|
||||
initResp := newExtServerResp(512)
|
||||
defer freeExtServerResp(initResp)
|
||||
C.dyn_llama_server_init(llm.s, &sparams, &initResp)
|
||||
if initResp.id < 0 {
|
||||
mutex.Unlock()
|
||||
err := extServerResponseToErr(initResp)
|
||||
slog.Debug(fmt.Sprintf("failure during initialization: %s", err))
|
||||
return nil, err
|
||||
}
|
||||
|
||||
slog.Info("Starting llama main loop")
|
||||
C.dyn_llama_server_start(llm.s)
|
||||
return &llm, nil
|
||||
}
|
||||
|
||||
func (llm *dynExtServer) Predict(ctx context.Context, predict PredictOpts, fn func(PredictResult)) error {
|
||||
resp := newExtServerResp(128)
|
||||
defer freeExtServerResp(resp)
|
||||
|
||||
if len(predict.Images) > 0 {
|
||||
slog.Info(fmt.Sprintf("loaded %d images", len(predict.Images)))
|
||||
}
|
||||
|
||||
request := map[string]any{
|
||||
"prompt": predict.Prompt,
|
||||
"stream": true,
|
||||
"n_predict": predict.Options.NumPredict,
|
||||
"n_keep": predict.Options.NumKeep,
|
||||
"temperature": predict.Options.Temperature,
|
||||
"top_k": predict.Options.TopK,
|
||||
"top_p": predict.Options.TopP,
|
||||
"tfs_z": predict.Options.TFSZ,
|
||||
"typical_p": predict.Options.TypicalP,
|
||||
"repeat_last_n": predict.Options.RepeatLastN,
|
||||
"repeat_penalty": predict.Options.RepeatPenalty,
|
||||
"presence_penalty": predict.Options.PresencePenalty,
|
||||
"frequency_penalty": predict.Options.FrequencyPenalty,
|
||||
"mirostat": predict.Options.Mirostat,
|
||||
"mirostat_tau": predict.Options.MirostatTau,
|
||||
"mirostat_eta": predict.Options.MirostatEta,
|
||||
"penalize_nl": predict.Options.PenalizeNewline,
|
||||
"seed": predict.Options.Seed,
|
||||
"stop": predict.Options.Stop,
|
||||
"image_data": predict.Images,
|
||||
"cache_prompt": true,
|
||||
}
|
||||
|
||||
if predict.Format == "json" {
|
||||
request["grammar"] = jsonGrammar
|
||||
if !strings.Contains(strings.ToLower(predict.Prompt), "json") {
|
||||
slog.Warn("Prompt does not specify that the LLM should response in JSON, but JSON format is expected. For best results specify that JSON is expected in the system prompt.")
|
||||
}
|
||||
}
|
||||
|
||||
retryDelay := 100 * time.Microsecond
|
||||
for retries := 0; retries < maxRetries; retries++ {
|
||||
if retries > 0 {
|
||||
time.Sleep(retryDelay) // wait before retrying
|
||||
retryDelay *= 2 // exponential backoff
|
||||
}
|
||||
|
||||
// Handling JSON marshaling with special characters unescaped.
|
||||
buffer := &bytes.Buffer{}
|
||||
enc := json.NewEncoder(buffer)
|
||||
enc.SetEscapeHTML(false)
|
||||
|
||||
if err := enc.Encode(request); err != nil {
|
||||
return fmt.Errorf("failed to marshal data: %w", err)
|
||||
}
|
||||
|
||||
req := C.CString(buffer.String())
|
||||
defer C.free(unsafe.Pointer(req))
|
||||
|
||||
C.dyn_llama_server_completion(llm.s, req, &resp)
|
||||
if resp.id < 0 {
|
||||
return extServerResponseToErr(resp)
|
||||
}
|
||||
|
||||
retryNeeded := false
|
||||
// keep track of the last token generated, this is used to abort if the model starts looping
|
||||
var lastToken string
|
||||
var tokenRepeat int
|
||||
out:
|
||||
for {
|
||||
select {
|
||||
case <-ctx.Done():
|
||||
return cancelCompletion(llm, resp)
|
||||
default:
|
||||
var result C.ext_server_task_result_t
|
||||
C.dyn_llama_server_completion_next_result(llm.s, resp.id, &result)
|
||||
json_resp := C.GoString(result.json_resp)
|
||||
C.dyn_llama_server_release_task_result(llm.s, &result)
|
||||
|
||||
var p prediction
|
||||
if err := json.Unmarshal([]byte(json_resp), &p); err != nil {
|
||||
C.dyn_llama_server_completion_cancel(llm.s, resp.id, &resp)
|
||||
if resp.id < 0 {
|
||||
return fmt.Errorf("error unmarshaling llm prediction response: %w and cancel %s", err, C.GoString(resp.msg))
|
||||
} else {
|
||||
return fmt.Errorf("error unmarshaling llm prediction response: %w", err)
|
||||
}
|
||||
}
|
||||
|
||||
if bool(result.error) && strings.Contains(json_resp, "slot unavailable") {
|
||||
retryNeeded = true
|
||||
// task will already be canceled
|
||||
break out
|
||||
}
|
||||
|
||||
switch {
|
||||
case strings.TrimSpace(p.Content) == lastToken:
|
||||
tokenRepeat++
|
||||
default:
|
||||
lastToken = strings.TrimSpace(p.Content)
|
||||
tokenRepeat = 0
|
||||
}
|
||||
|
||||
// 30 picked as an arbitrary max token repeat limit, modify as needed
|
||||
if tokenRepeat > 30 {
|
||||
slog.Debug("prediction aborted, token repeat limit reached")
|
||||
return cancelCompletion(llm, resp)
|
||||
}
|
||||
|
||||
if p.Content != "" {
|
||||
fn(PredictResult{
|
||||
Content: p.Content,
|
||||
})
|
||||
}
|
||||
|
||||
if p.Stop || bool(result.stop) {
|
||||
fn(PredictResult{
|
||||
Done: true,
|
||||
PromptEvalCount: p.Timings.PromptN,
|
||||
PromptEvalDuration: parseDurationMs(p.Timings.PromptMS),
|
||||
EvalCount: p.Timings.PredictedN,
|
||||
EvalDuration: parseDurationMs(p.Timings.PredictedMS),
|
||||
})
|
||||
return nil
|
||||
}
|
||||
}
|
||||
}
|
||||
if !retryNeeded {
|
||||
return nil // success
|
||||
}
|
||||
}
|
||||
|
||||
// should never reach here ideally
|
||||
return fmt.Errorf("max retries exceeded")
|
||||
}
|
||||
|
||||
func cancelCompletion(llm *dynExtServer, resp C.ext_server_resp_t) error {
|
||||
C.dyn_llama_server_completion_cancel(llm.s, resp.id, &resp)
|
||||
if resp.id < 0 {
|
||||
return extServerResponseToErr(resp)
|
||||
} else {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
|
||||
func (llm *dynExtServer) Encode(ctx context.Context, prompt string) ([]int, error) {
|
||||
data, err := json.Marshal(TokenizeRequest{Content: prompt})
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("marshaling encode data: %w", err)
|
||||
}
|
||||
req := C.CString(string(data))
|
||||
defer C.free(unsafe.Pointer(req))
|
||||
var json_resp *C.char
|
||||
resp := newExtServerResp(128)
|
||||
defer freeExtServerResp(resp)
|
||||
C.dyn_llama_server_tokenize(llm.s, req, &json_resp, &resp)
|
||||
if resp.id < 0 {
|
||||
return nil, extServerResponseToErr(resp)
|
||||
}
|
||||
defer C.dyn_llama_server_release_json_resp(llm.s, &json_resp)
|
||||
|
||||
var encoded TokenizeResponse
|
||||
if err2 := json.Unmarshal([]byte(C.GoString(json_resp)), &encoded); err2 != nil {
|
||||
return nil, fmt.Errorf("unmarshal encode response: %w", err2)
|
||||
}
|
||||
|
||||
return encoded.Tokens, err
|
||||
}
|
||||
|
||||
func (llm *dynExtServer) Decode(ctx context.Context, tokens []int) (string, error) {
|
||||
if len(tokens) == 0 {
|
||||
return "", nil
|
||||
}
|
||||
data, err := json.Marshal(DetokenizeRequest{Tokens: tokens})
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("marshaling decode data: %w", err)
|
||||
}
|
||||
|
||||
req := C.CString(string(data))
|
||||
defer C.free(unsafe.Pointer(req))
|
||||
var json_resp *C.char
|
||||
resp := newExtServerResp(128)
|
||||
defer freeExtServerResp(resp)
|
||||
C.dyn_llama_server_detokenize(llm.s, req, &json_resp, &resp)
|
||||
if resp.id < 0 {
|
||||
return "", extServerResponseToErr(resp)
|
||||
}
|
||||
defer C.dyn_llama_server_release_json_resp(llm.s, &json_resp)
|
||||
|
||||
var decoded DetokenizeResponse
|
||||
if err2 := json.Unmarshal([]byte(C.GoString(json_resp)), &decoded); err2 != nil {
|
||||
return "", fmt.Errorf("unmarshal encode response: %w", err2)
|
||||
}
|
||||
|
||||
return decoded.Content, err
|
||||
}
|
||||
|
||||
func (llm *dynExtServer) Embedding(ctx context.Context, input string) ([]float64, error) {
|
||||
data, err := json.Marshal(TokenizeRequest{Content: input})
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("error marshaling embed data: %w", err)
|
||||
}
|
||||
|
||||
req := C.CString(string(data))
|
||||
defer C.free(unsafe.Pointer(req))
|
||||
var json_resp *C.char
|
||||
resp := newExtServerResp(128)
|
||||
defer freeExtServerResp(resp)
|
||||
C.dyn_llama_server_embedding(llm.s, req, &json_resp, &resp)
|
||||
if resp.id < 0 {
|
||||
return nil, extServerResponseToErr(resp)
|
||||
}
|
||||
defer C.dyn_llama_server_release_json_resp(llm.s, &json_resp)
|
||||
|
||||
var embedding EmbeddingResponse
|
||||
if err := json.Unmarshal([]byte(C.GoString(json_resp)), &embedding); err != nil {
|
||||
return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
|
||||
}
|
||||
|
||||
return embedding.Embedding, nil
|
||||
}
|
||||
|
||||
func (llm *dynExtServer) Close() {
|
||||
C.dyn_llama_server_stop(llm.s)
|
||||
mutex.Unlock()
|
||||
}
|
||||
@@ -1,74 +0,0 @@
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "ext_server.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
struct dynamic_llama_server {
|
||||
void *handle;
|
||||
void (*llama_server_init)(ext_server_params_t *sparams,
|
||||
ext_server_resp_t *err);
|
||||
void (*llama_server_start)();
|
||||
void (*llama_server_stop)();
|
||||
void (*llama_server_completion)(const char *json_req,
|
||||
ext_server_resp_t *resp);
|
||||
void (*llama_server_completion_next_result)(const int task_id,
|
||||
ext_server_task_result_t *result);
|
||||
void (*llama_server_completion_cancel)(const int task_id,
|
||||
ext_server_resp_t *err);
|
||||
void (*llama_server_release_task_result)(ext_server_task_result_t *result);
|
||||
void (*llama_server_tokenize)(const char *json_req, char **json_resp,
|
||||
ext_server_resp_t *err);
|
||||
void (*llama_server_detokenize)(const char *json_req, char **json_resp,
|
||||
ext_server_resp_t *err);
|
||||
void (*llama_server_embedding)(const char *json_req, char **json_resp,
|
||||
ext_server_resp_t *err);
|
||||
void (*llama_server_release_json_resp)(char **json_resp);
|
||||
};
|
||||
|
||||
void dyn_init(const char *libPath, struct dynamic_llama_server *s,
|
||||
ext_server_resp_t *err);
|
||||
|
||||
// No good way to call C function pointers from Go so inline the indirection
|
||||
void dyn_llama_server_init(struct dynamic_llama_server s,
|
||||
ext_server_params_t *sparams,
|
||||
ext_server_resp_t *err);
|
||||
|
||||
void dyn_llama_server_start(struct dynamic_llama_server s);
|
||||
|
||||
void dyn_llama_server_stop(struct dynamic_llama_server s);
|
||||
|
||||
void dyn_llama_server_completion(struct dynamic_llama_server s,
|
||||
const char *json_req,
|
||||
ext_server_resp_t *resp);
|
||||
|
||||
void dyn_llama_server_completion_next_result(
|
||||
struct dynamic_llama_server s, const int task_id,
|
||||
ext_server_task_result_t *result);
|
||||
|
||||
void dyn_llama_server_completion_cancel(struct dynamic_llama_server s,
|
||||
const int task_id,
|
||||
ext_server_resp_t *err);
|
||||
|
||||
void dyn_llama_server_release_task_result(
|
||||
struct dynamic_llama_server s, ext_server_task_result_t *result);
|
||||
|
||||
void dyn_llama_server_tokenize(struct dynamic_llama_server s,
|
||||
const char *json_req, char **json_resp,
|
||||
ext_server_resp_t *err);
|
||||
|
||||
void dyn_llama_server_detokenize(struct dynamic_llama_server s,
|
||||
const char *json_req,
|
||||
char **json_resp,
|
||||
ext_server_resp_t *err);
|
||||
|
||||
void dyn_llama_server_embedding(struct dynamic_llama_server s,
|
||||
const char *json_req, char **json_resp,
|
||||
ext_server_resp_t *err);
|
||||
void dyn_llama_server_release_json_resp(struct dynamic_llama_server s,
|
||||
char **json_resp);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
27
llm/ext_server/CMakeLists.txt
vendored
27
llm/ext_server/CMakeLists.txt
vendored
@@ -1,21 +1,14 @@
|
||||
|
||||
set(TARGET ext_server)
|
||||
set(TARGET ollama_llama_server)
|
||||
option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
add_executable(${TARGET} server.cpp utils.hpp json.hpp httplib.h)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_compile_definitions(${TARGET} PRIVATE
|
||||
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
|
||||
)
|
||||
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
|
||||
if (WIN32)
|
||||
add_library(${TARGET} SHARED ext_server.cpp ../llama.cpp/llama.cpp)
|
||||
else()
|
||||
add_library(${TARGET} STATIC ext_server.cpp ../llama.cpp/llama.cpp)
|
||||
TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32)
|
||||
endif()
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
target_compile_definitions(${TARGET} PUBLIC LLAMA_SERVER_LIBRARY=1)
|
||||
target_link_libraries(${TARGET} PRIVATE ggml llava common )
|
||||
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
target_compile_definitions(${TARGET} PRIVATE SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>)
|
||||
install(TARGETS ext_server LIBRARY)
|
||||
|
||||
if (CUDAToolkit_FOUND)
|
||||
target_include_directories(${TARGET} PRIVATE ${CMAKE_CUDA_TOOLKIT_INCLUDE_DIRECTORIES})
|
||||
if (WIN32)
|
||||
target_link_libraries(${TARGET} PRIVATE nvml)
|
||||
endif()
|
||||
endif()
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
18
llm/ext_server/README.md
vendored
18
llm/ext_server/README.md
vendored
@@ -1,18 +0,0 @@
|
||||
# Extern C Server
|
||||
|
||||
This directory contains a thin facade we layer on top of the Llama.cpp server to
|
||||
expose `extern C` interfaces to access the functionality through direct API
|
||||
calls in-process. The llama.cpp code uses compile time macros to configure GPU
|
||||
type along with other settings. During the `go generate ./...` execution, the
|
||||
build will generate one or more copies of the llama.cpp `extern C` server based
|
||||
on what GPU libraries are detected to support multiple GPU types as well as CPU
|
||||
only support. The Ollama go build then embeds these different servers to support
|
||||
different GPUs and settings at runtime.
|
||||
|
||||
If you are making changes to the code in this directory, make sure to disable
|
||||
caching during your go build to ensure you pick up your changes. A typical
|
||||
iteration cycle from the top of the source tree looks like:
|
||||
|
||||
```
|
||||
go generate ./... && go build -a .
|
||||
```
|
||||
377
llm/ext_server/ext_server.cpp
vendored
377
llm/ext_server/ext_server.cpp
vendored
@@ -1,377 +0,0 @@
|
||||
#include "ext_server.h"
|
||||
#include <atomic>
|
||||
|
||||
// Necessary evil since the server types are not defined in a header
|
||||
#include "server.cpp"
|
||||
|
||||
// Low level API access to verify GPU access
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
#if defined(GGML_USE_HIPBLAS)
|
||||
#include <hip/hip_runtime.h>
|
||||
#include <hipblas/hipblas.h>
|
||||
#include <hip/hip_fp16.h>
|
||||
#ifdef __HIP_PLATFORM_AMD__
|
||||
// for rocblas_initialize()
|
||||
#include "rocblas/rocblas.h"
|
||||
#endif // __HIP_PLATFORM_AMD__
|
||||
#define cudaGetDevice hipGetDevice
|
||||
#define cudaError_t hipError_t
|
||||
#define cudaSuccess hipSuccess
|
||||
#define cudaGetErrorString hipGetErrorString
|
||||
#else
|
||||
#include <cuda_runtime.h>
|
||||
#include <cublas_v2.h>
|
||||
#include <cuda_fp16.h>
|
||||
#endif // defined(GGML_USE_HIPBLAS)
|
||||
#endif // GGML_USE_CUBLAS
|
||||
|
||||
// Expose the llama server as a callable extern "C" API
|
||||
llama_server_context *llama = NULL;
|
||||
std::thread ext_server_thread;
|
||||
bool shutting_down = false;
|
||||
std::atomic_int recv_counter;
|
||||
|
||||
// RAII wrapper for tracking in-flight recv calls
|
||||
class atomicRecv {
|
||||
public:
|
||||
atomicRecv(std::atomic<int> &atomic) : atomic(atomic) {
|
||||
++this->atomic;
|
||||
}
|
||||
~atomicRecv() {
|
||||
--this->atomic;
|
||||
}
|
||||
private:
|
||||
std::atomic<int> &atomic;
|
||||
};
|
||||
|
||||
void llama_server_init(ext_server_params *sparams, ext_server_resp_t *err) {
|
||||
recv_counter = 0;
|
||||
assert(err != NULL && sparams != NULL);
|
||||
log_set_target(stderr);
|
||||
if (!sparams->verbose_logging) {
|
||||
server_verbose = true;
|
||||
log_disable();
|
||||
}
|
||||
|
||||
LOG_TEE("system info: %s\n", llama_print_system_info());
|
||||
err->id = 0;
|
||||
err->msg[0] = '\0';
|
||||
try {
|
||||
llama = new llama_server_context;
|
||||
gpt_params params;
|
||||
params.n_ctx = sparams->n_ctx;
|
||||
params.n_batch = sparams->n_batch;
|
||||
if (sparams->n_threads > 0) {
|
||||
params.n_threads = sparams->n_threads;
|
||||
}
|
||||
params.n_parallel = sparams->n_parallel;
|
||||
params.rope_freq_base = sparams->rope_freq_base;
|
||||
params.rope_freq_scale = sparams->rope_freq_scale;
|
||||
|
||||
if (sparams->memory_f16) {
|
||||
params.cache_type_k = "f16";
|
||||
params.cache_type_v = "f16";
|
||||
} else {
|
||||
params.cache_type_k = "f32";
|
||||
params.cache_type_v = "f32";
|
||||
}
|
||||
|
||||
params.n_gpu_layers = sparams->n_gpu_layers;
|
||||
params.main_gpu = sparams->main_gpu;
|
||||
params.use_mlock = sparams->use_mlock;
|
||||
params.use_mmap = sparams->use_mmap;
|
||||
params.numa = (ggml_numa_strategy)sparams->numa;
|
||||
params.embedding = sparams->embedding;
|
||||
if (sparams->model != NULL) {
|
||||
params.model = sparams->model;
|
||||
}
|
||||
|
||||
if (sparams->lora_adapters != NULL) {
|
||||
for (ext_server_lora_adapter *la = sparams->lora_adapters; la != NULL;
|
||||
la = la->next) {
|
||||
params.lora_adapter.push_back(std::make_tuple(la->adapter, la->scale));
|
||||
}
|
||||
|
||||
params.use_mmap = false;
|
||||
}
|
||||
|
||||
if (sparams->mmproj != NULL) {
|
||||
params.mmproj = std::string(sparams->mmproj);
|
||||
}
|
||||
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
// Before attempting to init the backend which will assert on error, verify the CUDA/ROCM GPU is accessible
|
||||
LOG_TEE("Performing pre-initialization of GPU\n");
|
||||
int id;
|
||||
cudaError_t cudaErr = cudaGetDevice(&id);
|
||||
if (cudaErr != cudaSuccess) {
|
||||
err->id = -1;
|
||||
snprintf(err->msg, err->msg_len, "Unable to init GPU: %s", cudaGetErrorString(cudaErr));
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
if (!llama->load_model(params)) {
|
||||
// an error occurred that was not thrown
|
||||
err->id = -1;
|
||||
snprintf(err->msg, err->msg_len, "error loading model %s", params.model.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
llama->initialize();
|
||||
} catch (std::exception &e) {
|
||||
err->id = -1;
|
||||
snprintf(err->msg, err->msg_len, "exception %s", e.what());
|
||||
} catch (...) {
|
||||
err->id = -1;
|
||||
snprintf(err->msg, err->msg_len,
|
||||
"Unknown exception initializing llama server");
|
||||
}
|
||||
}
|
||||
|
||||
void llama_server_start() {
|
||||
assert(llama != NULL);
|
||||
// TODO mutex to protect thread creation
|
||||
ext_server_thread = std::thread([&]() {
|
||||
try {
|
||||
LOG_TEE("llama server main loop starting\n");
|
||||
ggml_time_init();
|
||||
llama->queue_tasks.on_new_task(std::bind(
|
||||
&llama_server_context::process_single_task, llama, std::placeholders::_1));
|
||||
llama->queue_tasks.on_finish_multitask(std::bind(
|
||||
&llama_server_context::on_finish_multitask, llama, std::placeholders::_1));
|
||||
llama->queue_tasks.on_run_slots(std::bind(
|
||||
&llama_server_context::update_slots, llama));
|
||||
llama->queue_results.on_multitask_update(std::bind(
|
||||
&llama_server_queue::update_multitask,
|
||||
&llama->queue_tasks,
|
||||
std::placeholders::_1,
|
||||
std::placeholders::_2,
|
||||
std::placeholders::_3
|
||||
));
|
||||
llama->queue_tasks.start_loop();
|
||||
} catch (std::exception &e) {
|
||||
LOG_TEE("caught exception in llama server main loop: %s\n", e.what());
|
||||
} catch (...) {
|
||||
LOG_TEE("caught unknown exception in llama server main loop\n");
|
||||
}
|
||||
LOG_TEE("\nllama server shutting down\n");
|
||||
llama_backend_free();
|
||||
});
|
||||
}
|
||||
|
||||
void llama_server_stop() {
|
||||
assert(llama != NULL);
|
||||
// Shutdown any in-flight requests and block incoming requests.
|
||||
LOG_TEE("\ninitiating shutdown - draining remaining tasks...\n");
|
||||
shutting_down = true;
|
||||
|
||||
while (recv_counter.load() > 0) {
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(50));
|
||||
}
|
||||
|
||||
// This may take a while for any pending tasks to drain
|
||||
// TODO - consider a timeout to cancel tasks if it's taking too long
|
||||
llama->queue_tasks.terminate();
|
||||
ext_server_thread.join();
|
||||
delete llama;
|
||||
llama = NULL;
|
||||
LOG_TEE("llama server shutdown complete\n");
|
||||
shutting_down = false;
|
||||
}
|
||||
|
||||
void llama_server_completion(const char *json_req, ext_server_resp_t *resp) {
|
||||
assert(llama != NULL && json_req != NULL && resp != NULL);
|
||||
resp->id = -1;
|
||||
resp->msg[0] = '\0';
|
||||
try {
|
||||
if (shutting_down) {
|
||||
throw std::runtime_error("server shutting down");
|
||||
}
|
||||
json data = json::parse(json_req);
|
||||
resp->id = llama->queue_tasks.get_new_id();
|
||||
llama->queue_results.add_waiting_task_id(resp->id);
|
||||
llama->request_completion(resp->id, data, false, false, -1);
|
||||
} catch (std::exception &e) {
|
||||
snprintf(resp->msg, resp->msg_len, "exception %s", e.what());
|
||||
} catch (...) {
|
||||
snprintf(resp->msg, resp->msg_len, "Unknown exception during completion");
|
||||
}
|
||||
}
|
||||
|
||||
void llama_server_completion_next_result(const int task_id,
|
||||
ext_server_task_result_t *resp) {
|
||||
assert(llama != NULL && resp != NULL);
|
||||
resp->id = -1;
|
||||
resp->stop = false;
|
||||
resp->error = false;
|
||||
resp->json_resp = NULL;
|
||||
std::string result_json;
|
||||
try {
|
||||
atomicRecv ar(recv_counter);
|
||||
task_result result = llama->queue_results.recv(task_id);
|
||||
result_json =
|
||||
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace);
|
||||
resp->id = result.id;
|
||||
resp->stop = result.stop;
|
||||
resp->error = result.error;
|
||||
if (result.error) {
|
||||
LOG_TEE("next result cancel on error\n");
|
||||
llama->request_cancel(task_id);
|
||||
LOG_TEE("next result removing waiting tak ID: %d\n", task_id);
|
||||
llama->queue_results.remove_waiting_task_id(task_id);
|
||||
} else if (result.stop) {
|
||||
LOG_TEE("next result cancel on stop\n");
|
||||
llama->request_cancel(task_id);
|
||||
LOG_TEE("next result removing waiting task ID: %d\n", task_id);
|
||||
llama->queue_results.remove_waiting_task_id(task_id);
|
||||
} else if (shutting_down) {
|
||||
LOG_TEE("aborting completion due to shutdown %d\n", task_id);
|
||||
llama->request_cancel(task_id);
|
||||
llama->queue_results.remove_waiting_task_id(task_id);
|
||||
resp->stop = true;
|
||||
}
|
||||
} catch (std::exception &e) {
|
||||
resp->error = true;
|
||||
resp->id = -1;
|
||||
result_json = "{\"error\":\"exception " + std::string(e.what()) + "\"}";
|
||||
LOG_TEE("llama server completion exception %s\n", e.what());
|
||||
} catch (...) {
|
||||
resp->error = true;
|
||||
resp->id = -1;
|
||||
result_json = "{\"error\":\"Unknown exception during completion\"}";
|
||||
LOG_TEE("llama server completion unknown exception\n");
|
||||
}
|
||||
const std::string::size_type size = result_json.size() + 1;
|
||||
resp->json_resp = new char[size];
|
||||
snprintf(resp->json_resp, size, "%s", result_json.c_str());
|
||||
}
|
||||
|
||||
void llama_server_release_task_result(ext_server_task_result_t *result) {
|
||||
if (result == NULL || result->json_resp == NULL) {
|
||||
return;
|
||||
}
|
||||
delete[] result->json_resp;
|
||||
}
|
||||
|
||||
void llama_server_completion_cancel(const int task_id, ext_server_resp_t *err) {
|
||||
assert(llama != NULL && err != NULL);
|
||||
err->id = 0;
|
||||
err->msg[0] = '\0';
|
||||
try {
|
||||
llama->request_cancel(task_id);
|
||||
llama->queue_results.remove_waiting_task_id(task_id);
|
||||
} catch (std::exception &e) {
|
||||
err->id = -1;
|
||||
snprintf(err->msg, err->msg_len, "exception %s", e.what());
|
||||
} catch (...) {
|
||||
err->id = -1;
|
||||
snprintf(err->msg, err->msg_len,
|
||||
"Unknown exception completion cancel in llama server");
|
||||
}
|
||||
}
|
||||
|
||||
void llama_server_tokenize(const char *json_req, char **json_resp,
|
||||
ext_server_resp_t *err) {
|
||||
assert(llama != NULL && json_req != NULL && json_resp != NULL && err != NULL);
|
||||
*json_resp = NULL;
|
||||
err->id = 0;
|
||||
err->msg[0] = '\0';
|
||||
try {
|
||||
if (shutting_down) {
|
||||
throw std::runtime_error("server shutting down");
|
||||
}
|
||||
const json body = json::parse(json_req);
|
||||
std::vector<llama_token> tokens;
|
||||
if (body.count("content") != 0) {
|
||||
tokens = llama->tokenize(body["content"], false);
|
||||
}
|
||||
const json data = format_tokenizer_response(tokens);
|
||||
std::string result_json = data.dump();
|
||||
const std::string::size_type size = result_json.size() + 1;
|
||||
*json_resp = new char[size];
|
||||
snprintf(*json_resp, size, "%s", result_json.c_str());
|
||||
} catch (std::exception &e) {
|
||||
err->id = -1;
|
||||
snprintf(err->msg, err->msg_len, "exception %s", e.what());
|
||||
} catch (...) {
|
||||
err->id = -1;
|
||||
snprintf(err->msg, err->msg_len, "Unknown exception during tokenize");
|
||||
}
|
||||
}
|
||||
|
||||
void llama_server_release_json_resp(char **json_resp) {
|
||||
if (json_resp == NULL || *json_resp == NULL) {
|
||||
return;
|
||||
}
|
||||
delete[] *json_resp;
|
||||
}
|
||||
|
||||
void llama_server_detokenize(const char *json_req, char **json_resp,
|
||||
ext_server_resp_t *err) {
|
||||
assert(llama != NULL && json_req != NULL && json_resp != NULL && err != NULL);
|
||||
*json_resp = NULL;
|
||||
err->id = 0;
|
||||
err->msg[0] = '\0';
|
||||
try {
|
||||
if (shutting_down) {
|
||||
throw std::runtime_error("server shutting down");
|
||||
}
|
||||
const json body = json::parse(json_req);
|
||||
std::string content;
|
||||
if (body.count("tokens") != 0) {
|
||||
const std::vector<llama_token> tokens = body["tokens"];
|
||||
content = tokens_to_str(llama->ctx, tokens.cbegin(), tokens.cend());
|
||||
}
|
||||
const json data = format_detokenized_response(content);
|
||||
std::string result_json = data.dump();
|
||||
const std::string::size_type size = result_json.size() + 1;
|
||||
*json_resp = new char[size];
|
||||
snprintf(*json_resp, size, "%s", result_json.c_str());
|
||||
} catch (std::exception &e) {
|
||||
err->id = -1;
|
||||
snprintf(err->msg, err->msg_len, "exception %s", e.what());
|
||||
} catch (...) {
|
||||
err->id = -1;
|
||||
snprintf(err->msg, err->msg_len, "Unknown exception during detokenize");
|
||||
}
|
||||
}
|
||||
|
||||
void llama_server_embedding(const char *json_req, char **json_resp,
|
||||
ext_server_resp_t *err) {
|
||||
assert(llama != NULL && json_req != NULL && json_resp != NULL && err != NULL);
|
||||
*json_resp = NULL;
|
||||
err->id = 0;
|
||||
err->msg[0] = '\0';
|
||||
try {
|
||||
if (shutting_down) {
|
||||
throw std::runtime_error("server shutting down");
|
||||
}
|
||||
const json body = json::parse(json_req);
|
||||
json prompt;
|
||||
if (body.count("content") != 0) {
|
||||
prompt = body["content"];
|
||||
} else {
|
||||
prompt = "";
|
||||
}
|
||||
const int task_id = llama->queue_tasks.get_new_id();
|
||||
llama->queue_results.add_waiting_task_id(task_id);
|
||||
llama->request_completion(task_id, {{"prompt", prompt}, {"n_predict", 0}}, false, true, -1);
|
||||
atomicRecv ar(recv_counter);
|
||||
task_result result = llama->queue_results.recv(task_id);
|
||||
std::string result_json = result.result_json.dump();
|
||||
const std::string::size_type size = result_json.size() + 1;
|
||||
*json_resp = new char[size];
|
||||
snprintf(*json_resp, size, "%s", result_json.c_str());
|
||||
llama->queue_results.remove_waiting_task_id(task_id);
|
||||
} catch (std::exception &e) {
|
||||
err->id = -1;
|
||||
snprintf(err->msg, err->msg_len, "exception %s", e.what());
|
||||
} catch (...) {
|
||||
err->id = -1;
|
||||
snprintf(err->msg, err->msg_len, "Unknown exception during embedding");
|
||||
}
|
||||
}
|
||||
95
llm/ext_server/ext_server.h
vendored
95
llm/ext_server/ext_server.h
vendored
@@ -1,95 +0,0 @@
|
||||
#if defined(LLAMA_SERVER_LIBRARY)
|
||||
#ifndef LLAMA_SERVER_H
|
||||
#define LLAMA_SERVER_H
|
||||
#include <stdbool.h>
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
|
||||
int __main(int argc, char **argv);
|
||||
|
||||
// This exposes extern C entrypoints into the llama_server
|
||||
// To enable the server compile with LLAMA_SERVER_LIBRARY
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
typedef struct ext_server_resp {
|
||||
int id; // < 0 on error
|
||||
size_t msg_len; // caller must allocate msg and set msg_len
|
||||
char *msg;
|
||||
} ext_server_resp_t;
|
||||
|
||||
// Allocated and freed by caller
|
||||
typedef struct ext_server_lora_adapter {
|
||||
char *adapter;
|
||||
float scale;
|
||||
struct ext_server_lora_adapter *next;
|
||||
} ext_server_lora_adapter_t;
|
||||
|
||||
// Allocated and freed by caller
|
||||
typedef struct ext_server_params {
|
||||
char *model;
|
||||
uint32_t n_ctx; // token context window, 0 = from model
|
||||
uint32_t n_batch; // prompt processing maximum batch size
|
||||
uint32_t n_threads; // number of threads to use for generation
|
||||
int32_t n_parallel; // number of parallel sequences to decodewra
|
||||
float rope_freq_base; // RoPE base frequency, 0 = from model
|
||||
float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
|
||||
bool memory_f16; // use f16 instead of f32 for memory kv
|
||||
int32_t n_gpu_layers; // number of layers to store in VRAM (-1 - use default)
|
||||
int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
||||
bool use_mlock; // force system to keep model in RAM
|
||||
bool use_mmap; // use mmap if possible
|
||||
int numa; // attempt optimizations that help on some NUMA systems
|
||||
bool embedding; // get only sentence embedding
|
||||
ext_server_lora_adapter_t *lora_adapters;
|
||||
char *mmproj;
|
||||
bool verbose_logging; // Enable verbose logging of the server
|
||||
} ext_server_params_t;
|
||||
|
||||
typedef struct ext_server_task_result {
|
||||
int id;
|
||||
bool stop;
|
||||
bool error;
|
||||
char *json_resp; // null terminated, memory managed by ext_server
|
||||
} ext_server_task_result_t;
|
||||
|
||||
// Initialize the server once per process
|
||||
// err->id = 0 for success and err->msg[0] = NULL
|
||||
// err->id != 0 for failure, and err->msg contains error message
|
||||
void llama_server_init(ext_server_params_t *sparams, ext_server_resp_t *err);
|
||||
|
||||
// Run the main loop, called once per init
|
||||
void llama_server_start();
|
||||
// Stop the main loop and free up resources allocated in init and start. Init
|
||||
// must be called again to reuse
|
||||
void llama_server_stop();
|
||||
|
||||
// json_req null terminated string, memory managed by caller
|
||||
// resp->id >= 0 on success (task ID)
|
||||
// resp->id < 0 on error, and resp->msg contains error message
|
||||
void llama_server_completion(const char *json_req, ext_server_resp_t *resp);
|
||||
|
||||
// Caller must call llama_server_release_task_result to free resp->json_resp
|
||||
void llama_server_completion_next_result(const int task_id,
|
||||
ext_server_task_result_t *result);
|
||||
void llama_server_completion_cancel(const int task_id, ext_server_resp_t *err);
|
||||
void llama_server_release_task_result(ext_server_task_result_t *result);
|
||||
|
||||
// Caller must call llama_server_releaes_json_resp to free json_resp if err.id <
|
||||
// 0
|
||||
void llama_server_tokenize(const char *json_req, char **json_resp,
|
||||
ext_server_resp_t *err);
|
||||
void llama_server_detokenize(const char *json_req, char **json_resp,
|
||||
ext_server_resp_t *err);
|
||||
void llama_server_embedding(const char *json_req, char **json_resp,
|
||||
ext_server_resp_t *err);
|
||||
void llama_server_release_json_resp(char **json_resp);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
#endif // LLAMA_SERVER_LIBRARY
|
||||
37
llm/ext_server/server.cpp
vendored
37
llm/ext_server/server.cpp
vendored
@@ -39,6 +39,10 @@
|
||||
#include "httplib.h"
|
||||
#include "json.hpp"
|
||||
|
||||
#if defined(_WIN32)
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
#include <cstddef>
|
||||
#include <thread>
|
||||
#include <chrono>
|
||||
@@ -1007,13 +1011,15 @@ struct llama_server_context
|
||||
slot.n_sent_text += result.text_to_send.size();
|
||||
// add the token to slot queue and cache
|
||||
}
|
||||
slot.add_token_string(result);
|
||||
|
||||
if (slot.params.stream)
|
||||
{
|
||||
send_partial_response(slot, result);
|
||||
}
|
||||
}
|
||||
|
||||
slot.add_token_string(result);
|
||||
|
||||
if (incomplete)
|
||||
{
|
||||
slot.has_next_token = true;
|
||||
@@ -2768,8 +2774,28 @@ inline void signal_handler(int signal) {
|
||||
shutdown_handler(signal);
|
||||
}
|
||||
|
||||
int _main(int argc, char **argv)
|
||||
{
|
||||
#if defined(_WIN32)
|
||||
char* wchar_to_char(const wchar_t* wstr) {
|
||||
if (wstr == nullptr) return nullptr;
|
||||
|
||||
// Determine the number of bytes needed for the UTF-8 string
|
||||
int bytes = WideCharToMultiByte(CP_UTF8, 0, wstr, -1, nullptr, 0, nullptr, nullptr);
|
||||
char* str = new char[bytes];
|
||||
|
||||
// Convert the wide-character string to a UTF-8 string
|
||||
WideCharToMultiByte(CP_UTF8, 0, wstr, -1, str, bytes, nullptr, nullptr);
|
||||
return str;
|
||||
}
|
||||
|
||||
int wmain(int argc, wchar_t **wargv) {
|
||||
char** argv = new char*[argc];
|
||||
for (int i = 0; i < argc; ++i) {
|
||||
argv[i] = wchar_to_char(wargv[i]);
|
||||
}
|
||||
#else
|
||||
int main(int argc, char **argv) {
|
||||
#endif
|
||||
|
||||
#if SERVER_VERBOSE != 1
|
||||
log_disable();
|
||||
#endif
|
||||
@@ -3280,6 +3306,11 @@ int _main(int argc, char **argv)
|
||||
return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
|
||||
};
|
||||
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
||||
|
||||
for (int i = 0; i < argc; ++i) {
|
||||
delete[] argv[i];
|
||||
}
|
||||
delete[] argv;
|
||||
#endif
|
||||
llama.queue_tasks.start_loop();
|
||||
svr.stop();
|
||||
|
||||
@@ -14,14 +14,14 @@ init_vars() {
|
||||
|
||||
LLAMACPP_DIR=../llama.cpp
|
||||
CMAKE_DEFS=""
|
||||
CMAKE_TARGETS="--target ext_server"
|
||||
CMAKE_TARGETS="--target ollama_llama_server"
|
||||
if echo "${CGO_CFLAGS}" | grep -- '-g' >/dev/null; then
|
||||
CMAKE_DEFS="-DCMAKE_BUILD_TYPE=RelWithDebInfo -DCMAKE_VERBOSE_MAKEFILE=on -DLLAMA_GPROF=on -DLLAMA_SERVER_VERBOSE=on ${CMAKE_DEFS}"
|
||||
else
|
||||
# TODO - add additional optimization flags...
|
||||
CMAKE_DEFS="-DCMAKE_BUILD_TYPE=Release -DLLAMA_SERVER_VERBOSE=off ${CMAKE_DEFS}"
|
||||
fi
|
||||
case $(uname -s) in
|
||||
case $(uname -s) in
|
||||
"Darwin")
|
||||
LIB_EXT="dylib"
|
||||
WHOLE_ARCHIVE="-Wl,-force_load"
|
||||
@@ -81,27 +81,24 @@ apply_patches() {
|
||||
build() {
|
||||
cmake -S ${LLAMACPP_DIR} -B ${BUILD_DIR} ${CMAKE_DEFS}
|
||||
cmake --build ${BUILD_DIR} ${CMAKE_TARGETS} -j8
|
||||
mkdir -p ${BUILD_DIR}/lib/
|
||||
ls ${BUILD_DIR}
|
||||
g++ -fPIC -g -shared -o ${BUILD_DIR}/lib/libext_server.${LIB_EXT} \
|
||||
${GCC_ARCH} \
|
||||
${WHOLE_ARCHIVE} ${BUILD_DIR}/ext_server/libext_server.a ${NO_WHOLE_ARCHIVE} \
|
||||
${BUILD_DIR}/common/libcommon.a \
|
||||
${BUILD_DIR}/libllama.a \
|
||||
-Wl,-rpath,\$ORIGIN \
|
||||
-lpthread -ldl -lm \
|
||||
${EXTRA_LIBS}
|
||||
}
|
||||
|
||||
compress_libs() {
|
||||
compress() {
|
||||
echo "Compressing payloads to reduce overall binary size..."
|
||||
pids=""
|
||||
rm -rf ${BUILD_DIR}/lib/*.${LIB_EXT}*.gz
|
||||
for lib in ${BUILD_DIR}/lib/*.${LIB_EXT}* ; do
|
||||
gzip -n --best -f ${lib} &
|
||||
rm -rf ${BUILD_DIR}/bin/*.gz
|
||||
for f in ${BUILD_DIR}/bin/* ; do
|
||||
gzip -n --best -f ${f} &
|
||||
pids+=" $!"
|
||||
done
|
||||
echo
|
||||
# check for lib directory
|
||||
if [ -d ${BUILD_DIR}/lib ]; then
|
||||
for f in ${BUILD_DIR}/lib/* ; do
|
||||
gzip -n --best -f ${f} &
|
||||
pids+=" $!"
|
||||
done
|
||||
fi
|
||||
echo
|
||||
for pid in ${pids}; do
|
||||
wait $pid
|
||||
done
|
||||
|
||||
@@ -18,21 +18,31 @@ sign() {
|
||||
fi
|
||||
}
|
||||
|
||||
COMMON_DARWIN_DEFS="-DCMAKE_OSX_DEPLOYMENT_TARGET=11.0 -DCMAKE_SYSTEM_NAME=Darwin"
|
||||
COMMON_DARWIN_DEFS="-DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DLLAMA_METAL_MACOSX_VERSION_MIN=11.3 -DCMAKE_SYSTEM_NAME=Darwin -DLLAMA_METAL_EMBED_LIBRARY=on"
|
||||
|
||||
case "${GOARCH}" in
|
||||
"amd64")
|
||||
COMMON_CPU_DEFS="${COMMON_DARWIN_DEFS} -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} -DLLAMA_METAL=off -DLLAMA_NATIVE=off"
|
||||
|
||||
# Static build for linking into the Go binary
|
||||
init_vars
|
||||
CMAKE_TARGETS="--target llama --target ggml"
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DBUILD_SHARED_LIBS=off -DLLAMA_ACCELERATE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
|
||||
BUILD_DIR="../build/darwin/${ARCH}_static"
|
||||
echo "Building static library"
|
||||
build
|
||||
|
||||
|
||||
#
|
||||
# CPU first for the default library, set up as lowest common denominator for maximum compatibility (including Rosetta)
|
||||
#
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_ACCELERATE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
|
||||
BUILD_DIR="${LLAMACPP_DIR}/build/darwin/${ARCH}/cpu"
|
||||
BUILD_DIR="../build/darwin/${ARCH}/cpu"
|
||||
echo "Building LCD CPU"
|
||||
build
|
||||
sign ${LLAMACPP_DIR}/build/darwin/${ARCH}/cpu/lib/libext_server.dylib
|
||||
compress_libs
|
||||
sign ${BUILD_DIR}/bin/ollama_llama_server
|
||||
compress
|
||||
|
||||
#
|
||||
# ~2011 CPU Dynamic library with more capabilities turned on to optimize performance
|
||||
@@ -40,11 +50,11 @@ case "${GOARCH}" in
|
||||
#
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_ACCELERATE=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
|
||||
BUILD_DIR="${LLAMACPP_DIR}/build/darwin/${ARCH}/cpu_avx"
|
||||
BUILD_DIR="../build/darwin/${ARCH}/cpu_avx"
|
||||
echo "Building AVX CPU"
|
||||
build
|
||||
sign ${LLAMACPP_DIR}/build/darwin/${ARCH}/cpu_avx/lib/libext_server.dylib
|
||||
compress_libs
|
||||
sign ${BUILD_DIR}/bin/ollama_llama_server
|
||||
compress
|
||||
|
||||
#
|
||||
# ~2013 CPU Dynamic library
|
||||
@@ -52,20 +62,30 @@ case "${GOARCH}" in
|
||||
#
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_ACCELERATE=on -DLLAMA_AVX=on -DLLAMA_AVX2=on -DLLAMA_AVX512=off -DLLAMA_FMA=on -DLLAMA_F16C=on ${CMAKE_DEFS}"
|
||||
BUILD_DIR="${LLAMACPP_DIR}/build/darwin/${ARCH}/cpu_avx2"
|
||||
BUILD_DIR="../build/darwin/${ARCH}/cpu_avx2"
|
||||
echo "Building AVX2 CPU"
|
||||
EXTRA_LIBS="${EXTRA_LIBS} -framework Accelerate -framework Foundation"
|
||||
build
|
||||
sign ${LLAMACPP_DIR}/build/darwin/${ARCH}/cpu_avx2/lib/libext_server.dylib
|
||||
compress_libs
|
||||
sign ${BUILD_DIR}/bin/ollama_llama_server
|
||||
compress
|
||||
;;
|
||||
"arm64")
|
||||
CMAKE_DEFS="${COMMON_DARWIN_DEFS} -DLLAMA_METAL_EMBED_LIBRARY=on -DLLAMA_ACCELERATE=on -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} -DLLAMA_METAL=on ${CMAKE_DEFS}"
|
||||
BUILD_DIR="${LLAMACPP_DIR}/build/darwin/${ARCH}/metal"
|
||||
|
||||
# Static build for linking into the Go binary
|
||||
init_vars
|
||||
CMAKE_TARGETS="--target llama --target ggml"
|
||||
CMAKE_DEFS="-DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DCMAKE_SYSTEM_NAME=Darwin -DBUILD_SHARED_LIBS=off -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} -DLLAMA_METAL=off -DLLAMA_ACCELERATE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
|
||||
BUILD_DIR="../build/darwin/${ARCH}_static"
|
||||
echo "Building static library"
|
||||
build
|
||||
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_DARWIN_DEFS} -DLLAMA_ACCELERATE=on -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} -DLLAMA_METAL=on ${CMAKE_DEFS}"
|
||||
BUILD_DIR="../build/darwin/${ARCH}/metal"
|
||||
EXTRA_LIBS="${EXTRA_LIBS} -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders"
|
||||
build
|
||||
sign ${LLAMACPP_DIR}/build/darwin/${ARCH}/metal/lib/libext_server.dylib
|
||||
compress_libs
|
||||
sign ${BUILD_DIR}/bin/ollama_llama_server
|
||||
compress
|
||||
;;
|
||||
*)
|
||||
echo "GOARCH must be set"
|
||||
@@ -75,3 +95,4 @@ case "${GOARCH}" in
|
||||
esac
|
||||
|
||||
cleanup
|
||||
echo "go generate completed. LLM runners: $(cd ${BUILD_DIR}/..; echo *)"
|
||||
|
||||
@@ -57,16 +57,31 @@ init_vars
|
||||
git_module_setup
|
||||
apply_patches
|
||||
|
||||
init_vars
|
||||
if [ -z "${OLLAMA_SKIP_STATIC_GENERATE}" -o "${OLLAMA_CPU_TARGET}" = "static" ]; then
|
||||
# Builds by default, allows skipping, forces build if OLLAMA_CPU_TARGET="static"
|
||||
# Enables optimized Dockerfile builds using a blanket skip and targeted overrides
|
||||
# Static build for linking into the Go binary
|
||||
init_vars
|
||||
CMAKE_TARGETS="--target llama --target ggml"
|
||||
CMAKE_DEFS="-DBUILD_SHARED_LIBS=off -DLLAMA_NATIVE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
|
||||
BUILD_DIR="../build/linux/${ARCH}_static"
|
||||
echo "Building static library"
|
||||
build
|
||||
fi
|
||||
|
||||
init_vars
|
||||
if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
|
||||
# Users building from source can tune the exact flags we pass to cmake for configuring
|
||||
# llama.cpp, and we'll build only 1 CPU variant in that case as the default.
|
||||
if [ -n "${OLLAMA_CUSTOM_CPU_DEFS}" ]; then
|
||||
init_vars
|
||||
echo "OLLAMA_CUSTOM_CPU_DEFS=\"${OLLAMA_CUSTOM_CPU_DEFS}\""
|
||||
CMAKE_DEFS="${OLLAMA_CUSTOM_CPU_DEFS} -DCMAKE_POSITION_INDEPENDENT_CODE=on ${CMAKE_DEFS}"
|
||||
BUILD_DIR="${LLAMACPP_DIR}/build/linux/${ARCH}/cpu"
|
||||
BUILD_DIR="../build/linux/${ARCH}/cpu"
|
||||
echo "Building custom CPU"
|
||||
build
|
||||
compress_libs
|
||||
compress
|
||||
else
|
||||
# Darwin Rosetta x86 emulation does NOT support AVX, AVX2, AVX512
|
||||
# -DLLAMA_AVX -- 2011 Intel Sandy Bridge & AMD Bulldozer
|
||||
@@ -83,11 +98,12 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
|
||||
#
|
||||
# CPU first for the default library, set up as lowest common denominator for maximum compatibility (including Rosetta)
|
||||
#
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
|
||||
BUILD_DIR="${LLAMACPP_DIR}/build/linux/${ARCH}/cpu"
|
||||
BUILD_DIR="../build/linux/${ARCH}/cpu"
|
||||
echo "Building LCD CPU"
|
||||
build
|
||||
compress_libs
|
||||
compress
|
||||
fi
|
||||
|
||||
if [ "${ARCH}" == "x86_64" ]; then
|
||||
@@ -101,10 +117,10 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
|
||||
#
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
|
||||
BUILD_DIR="${LLAMACPP_DIR}/build/linux/${ARCH}/cpu_avx"
|
||||
BUILD_DIR="../build/linux/${ARCH}/cpu_avx"
|
||||
echo "Building AVX CPU"
|
||||
build
|
||||
compress_libs
|
||||
compress
|
||||
fi
|
||||
|
||||
if [ -z "${OLLAMA_CPU_TARGET}" -o "${OLLAMA_CPU_TARGET}" = "cpu_avx2" ]; then
|
||||
@@ -114,10 +130,10 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
|
||||
#
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_AVX=on -DLLAMA_AVX2=on -DLLAMA_AVX512=off -DLLAMA_FMA=on -DLLAMA_F16C=on ${CMAKE_DEFS}"
|
||||
BUILD_DIR="${LLAMACPP_DIR}/build/linux/${ARCH}/cpu_avx2"
|
||||
BUILD_DIR="../build/linux/${ARCH}/cpu_avx2"
|
||||
echo "Building AVX2 CPU"
|
||||
build
|
||||
compress_libs
|
||||
compress
|
||||
fi
|
||||
fi
|
||||
fi
|
||||
@@ -149,15 +165,23 @@ if [ -d "${CUDA_LIB_DIR}" ]; then
|
||||
fi
|
||||
if [ "${ARCH}" == "arm64" ]; then
|
||||
echo "ARM CPU detected - disabling unsupported AVX instructions"
|
||||
|
||||
|
||||
# ARM-based CPUs such as M1 and Tegra do not support AVX extensions.
|
||||
#
|
||||
# CUDA compute < 6.0 lacks proper FP16 support on ARM.
|
||||
# Disabling has minimal performance effect while maintaining compatibility.
|
||||
# CUDA compute < 6.0 lacks proper FP16 support on ARM.
|
||||
# Disabling has minimal performance effect while maintaining compatibility.
|
||||
ARM64_DEFS="-DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_CUDA_F16=off"
|
||||
fi
|
||||
CMAKE_DEFS="-DLLAMA_CUBLAS=on -DLLAMA_CUDA_FORCE_MMQ=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} ${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} ${ARM64_DEFS}"
|
||||
BUILD_DIR="${LLAMACPP_DIR}/build/linux/${ARCH}/cuda${CUDA_VARIANT}"
|
||||
# Users building from source can tune the exact flags we pass to cmake for configuring llama.cpp
|
||||
if [ -n "${OLLAMA_CUSTOM_CUDA_DEFS}" ]; then
|
||||
echo "OLLAMA_CUSTOM_CUDA_DEFS=\"${OLLAMA_CUSTOM_CUDA_DEFS}\""
|
||||
CMAKE_CUDA_DEFS="-DLLAMA_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} ${OLLAMA_CUSTOM_CUDA_DEFS}"
|
||||
echo "Building custom CUDA GPU"
|
||||
else
|
||||
CMAKE_CUDA_DEFS="-DLLAMA_CUDA=on -DLLAMA_CUDA_FORCE_MMQ=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}"
|
||||
fi
|
||||
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} ${ARM64_DEFS} ${CMAKE_CUDA_DEFS}"
|
||||
BUILD_DIR="../build/linux/${ARCH}/cuda${CUDA_VARIANT}"
|
||||
EXTRA_LIBS="-L${CUDA_LIB_DIR} -lcudart -lcublas -lcublasLt -lcuda"
|
||||
build
|
||||
|
||||
@@ -165,20 +189,20 @@ if [ -d "${CUDA_LIB_DIR}" ]; then
|
||||
#
|
||||
# TODO - in the future we may shift to packaging these separately and conditionally
|
||||
# downloading them in the install script.
|
||||
DEPS="$(ldd ${BUILD_DIR}/lib/libext_server.so )"
|
||||
DEPS="$(ldd ${BUILD_DIR}/bin/ollama_llama_server )"
|
||||
for lib in libcudart.so libcublas.so libcublasLt.so ; do
|
||||
DEP=$(echo "${DEPS}" | grep ${lib} | cut -f1 -d' ' | xargs || true)
|
||||
if [ -n "${DEP}" -a -e "${CUDA_LIB_DIR}/${DEP}" ]; then
|
||||
cp "${CUDA_LIB_DIR}/${DEP}" "${BUILD_DIR}/lib/"
|
||||
cp "${CUDA_LIB_DIR}/${DEP}" "${BUILD_DIR}/bin/"
|
||||
elif [ -e "${CUDA_LIB_DIR}/${lib}.${CUDA_MAJOR}" ]; then
|
||||
cp "${CUDA_LIB_DIR}/${lib}.${CUDA_MAJOR}" "${BUILD_DIR}/lib/"
|
||||
cp "${CUDA_LIB_DIR}/${lib}.${CUDA_MAJOR}" "${BUILD_DIR}/bin/"
|
||||
elif [ -e "${CUDART_LIB_DIR}/${lib}" ]; then
|
||||
cp -d ${CUDART_LIB_DIR}/${lib}* "${BUILD_DIR}/lib/"
|
||||
cp -d ${CUDART_LIB_DIR}/${lib}* "${BUILD_DIR}/bin/"
|
||||
else
|
||||
cp -d "${CUDA_LIB_DIR}/${lib}*" "${BUILD_DIR}/lib/"
|
||||
cp -d "${CUDA_LIB_DIR}/${lib}*" "${BUILD_DIR}/bin/"
|
||||
fi
|
||||
done
|
||||
compress_libs
|
||||
compress
|
||||
|
||||
fi
|
||||
|
||||
@@ -201,23 +225,30 @@ if [ -d "${ROCM_PATH}" ]; then
|
||||
fi
|
||||
init_vars
|
||||
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DLLAMA_HIPBLAS=on -DCMAKE_C_COMPILER=$ROCM_PATH/llvm/bin/clang -DCMAKE_CXX_COMPILER=$ROCM_PATH/llvm/bin/clang++ -DAMDGPU_TARGETS=$(amdGPUs) -DGPU_TARGETS=$(amdGPUs)"
|
||||
BUILD_DIR="${LLAMACPP_DIR}/build/linux/${ARCH}/rocm${ROCM_VARIANT}"
|
||||
# Users building from source can tune the exact flags we pass to cmake for configuring llama.cpp
|
||||
if [ -n "${OLLAMA_CUSTOM_ROCM_DEFS}" ]; then
|
||||
echo "OLLAMA_CUSTOM_ROCM_DEFS=\"${OLLAMA_CUSTOM_ROCM_DEFS}\""
|
||||
CMAKE_DEFS="${CMAKE_DEFS} ${OLLAMA_CUSTOM_ROCM_DEFS}"
|
||||
echo "Building custom ROCM GPU"
|
||||
fi
|
||||
BUILD_DIR="../build/linux/${ARCH}/rocm${ROCM_VARIANT}"
|
||||
EXTRA_LIBS="-L${ROCM_PATH}/lib -L/opt/amdgpu/lib/x86_64-linux-gnu/ -Wl,-rpath,\$ORIGIN/../../rocm/ -lhipblas -lrocblas -lamdhip64 -lrocsolver -lamd_comgr -lhsa-runtime64 -lrocsparse -ldrm -ldrm_amdgpu"
|
||||
build
|
||||
|
||||
# Record the ROCM dependencies
|
||||
rm -f "${BUILD_DIR}/lib/deps.txt"
|
||||
touch "${BUILD_DIR}/lib/deps.txt"
|
||||
for dep in $(ldd "${BUILD_DIR}/lib/libext_server.so" | grep "=>" | cut -f2 -d= | cut -f2 -d' ' | grep -e rocm -e amdgpu -e libtinfo ); do
|
||||
echo "${dep}" >> "${BUILD_DIR}/lib/deps.txt"
|
||||
rm -f "${BUILD_DIR}/bin/deps.txt"
|
||||
touch "${BUILD_DIR}/bin/deps.txt"
|
||||
for dep in $(ldd "${BUILD_DIR}/bin/ollama_llama_server" | grep "=>" | cut -f2 -d= | cut -f2 -d' ' | grep -e rocm -e amdgpu -e libtinfo ); do
|
||||
echo "${dep}" >> "${BUILD_DIR}/bin/deps.txt"
|
||||
done
|
||||
# bomb out if for some reason we didn't get a few deps
|
||||
if [ $(cat "${BUILD_DIR}/lib/deps.txt" | wc -l ) -lt 8 ] ; then
|
||||
cat "${BUILD_DIR}/lib/deps.txt"
|
||||
if [ $(cat "${BUILD_DIR}/bin/deps.txt" | wc -l ) -lt 8 ] ; then
|
||||
cat "${BUILD_DIR}/bin/deps.txt"
|
||||
echo "ERROR: deps file short"
|
||||
exit 1
|
||||
fi
|
||||
compress_libs
|
||||
compress
|
||||
fi
|
||||
|
||||
cleanup
|
||||
echo "go generate completed. LLM runners: $(cd ${BUILD_DIR}/..; echo *)"
|
||||
|
||||
@@ -26,15 +26,25 @@ function amdGPUs {
|
||||
$GPU_LIST -join ';'
|
||||
}
|
||||
|
||||
|
||||
function init_vars {
|
||||
$script:SRC_DIR = $(resolve-path "..\..\")
|
||||
$script:llamacppDir = "../llama.cpp"
|
||||
if (!$script:SRC_DIR) {
|
||||
$script:SRC_DIR = $(resolve-path "..\..\")
|
||||
}
|
||||
if (!$script:llamacppDir) {
|
||||
$script:llamacppDir = "../llama.cpp"
|
||||
}
|
||||
if (!$script:cmakeTargets) {
|
||||
$script:cmakeTargets = @("ollama_llama_server")
|
||||
}
|
||||
$script:cmakeDefs = @(
|
||||
"-DBUILD_SHARED_LIBS=on",
|
||||
"-DLLAMA_NATIVE=off"
|
||||
)
|
||||
$script:cmakeTargets = @("ext_server")
|
||||
$script:commonCpuDefs = @("-DCMAKE_POSITION_INDEPENDENT_CODE=on")
|
||||
$script:ARCH = "amd64" # arm not yet supported.
|
||||
$script:DIST_BASE = "${script:SRC_DIR}\dist\windows-${script:ARCH}\ollama_runners"
|
||||
md "$script:DIST_BASE" -ea 0 > $null
|
||||
if ($env:CGO_CFLAGS -contains "-g") {
|
||||
$script:cmakeDefs += @("-DCMAKE_VERBOSE_MAKEFILE=on", "-DLLAMA_SERVER_VERBOSE=on", "-DCMAKE_BUILD_TYPE=RelWithDebInfo")
|
||||
$script:config = "RelWithDebInfo"
|
||||
@@ -55,7 +65,6 @@ function init_vars {
|
||||
} else {
|
||||
$script:CUDA_LIB_DIR=$env:CUDA_LIB_DIR
|
||||
}
|
||||
$script:GZIP=(get-command -ea 'silentlycontinue' gzip).path
|
||||
$script:DUMPBIN=(get-command -ea 'silentlycontinue' dumpbin).path
|
||||
if ($null -eq $env:CMAKE_CUDA_ARCHITECTURES) {
|
||||
$script:CMAKE_CUDA_ARCHITECTURES="50;52;61;70;75;80"
|
||||
@@ -97,16 +106,14 @@ function apply_patches {
|
||||
}
|
||||
|
||||
# Checkout each file
|
||||
Set-Location -Path ${script:llamacppDir}
|
||||
foreach ($file in $filePaths) {
|
||||
git checkout $file
|
||||
git -C "${script:llamacppDir}" checkout $file
|
||||
}
|
||||
}
|
||||
|
||||
# Apply each patch
|
||||
foreach ($patch in $patches) {
|
||||
Set-Location -Path ${script:llamacppDir}
|
||||
git apply $patch.FullName
|
||||
git -C "${script:llamacppDir}" apply $patch.FullName
|
||||
}
|
||||
}
|
||||
|
||||
@@ -115,42 +122,39 @@ function build {
|
||||
& cmake --version
|
||||
& cmake -S "${script:llamacppDir}" -B $script:buildDir $script:cmakeDefs
|
||||
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
|
||||
write-host "building with: cmake --build $script:buildDir --config $script:config ($script:cmakeTargets | ForEach-Object { "--target", $_ })"
|
||||
write-host "building with: cmake --build $script:buildDir --config $script:config $($script:cmakeTargets | ForEach-Object { `"--target`", $_ })"
|
||||
& cmake --build $script:buildDir --config $script:config ($script:cmakeTargets | ForEach-Object { "--target", $_ })
|
||||
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
|
||||
}
|
||||
|
||||
function install {
|
||||
rm -ea 0 -recurse -force -path "${script:buildDir}/lib"
|
||||
md "${script:buildDir}/lib" -ea 0 > $null
|
||||
cp "${script:buildDir}/bin/${script:config}/ext_server.dll" "${script:buildDir}/lib"
|
||||
cp "${script:buildDir}/bin/${script:config}/llama.dll" "${script:buildDir}/lib"
|
||||
# Display the dll dependencies in the build log
|
||||
if ($script:DUMPBIN -ne $null) {
|
||||
& "$script:DUMPBIN" /dependents "${script:buildDir}/bin/${script:config}/ext_server.dll" | select-string ".dll"
|
||||
# Rearrange output to be consistent between different generators
|
||||
if ($null -ne ${script:config} -And (test-path -path "${script:buildDir}/bin/${script:config}" ) ) {
|
||||
mv -force "${script:buildDir}/bin/${script:config}/*" "${script:buildDir}/bin/"
|
||||
remove-item "${script:buildDir}/bin/${script:config}"
|
||||
}
|
||||
}
|
||||
|
||||
function sign {
|
||||
if ("${env:KEY_CONTAINER}") {
|
||||
write-host "Signing ${script:buildDir}/lib/*.dll"
|
||||
foreach ($file in (get-childitem "${script:buildDir}/lib/*.dll")){
|
||||
& "${script:SignTool}" sign /v /debug /fd sha256 /t http://timestamp.digicert.com /f "${script:OLLAMA_CERT}" `
|
||||
write-host "Signing ${script:buildDir}/bin/*.exe ${script:buildDir}/bin/*.dll"
|
||||
foreach ($file in @(get-childitem "${script:buildDir}/bin/*.exe") + @(get-childitem "${script:buildDir}/bin/*.dll")){
|
||||
& "${script:SignTool}" sign /v /fd sha256 /t http://timestamp.digicert.com /f "${script:OLLAMA_CERT}" `
|
||||
/csp "Google Cloud KMS Provider" /kc "${env:KEY_CONTAINER}" $file
|
||||
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
function compress_libs {
|
||||
if ($script:GZIP -eq $null) {
|
||||
write-host "gzip not installed, not compressing files"
|
||||
return
|
||||
function install {
|
||||
write-host "Installing binaries to dist dir ${script:distDir}"
|
||||
mkdir ${script:distDir} -ErrorAction SilentlyContinue
|
||||
$binaries = dir "${script:buildDir}/bin/*.exe"
|
||||
foreach ($file in $binaries) {
|
||||
copy-item -Path $file -Destination ${script:distDir} -Force
|
||||
}
|
||||
write-host "Compressing dlls..."
|
||||
$libs = dir "${script:buildDir}/lib/*.dll"
|
||||
foreach ($file in $libs) {
|
||||
& "$script:GZIP" --best -f $file
|
||||
|
||||
write-host "Installing dlls to dist dir ${script:distDir}"
|
||||
$dlls = dir "${script:buildDir}/bin/*.dll"
|
||||
foreach ($file in $dlls) {
|
||||
copy-item -Path $file -Destination ${script:distDir} -Force
|
||||
}
|
||||
}
|
||||
|
||||
@@ -164,113 +168,198 @@ function cleanup {
|
||||
}
|
||||
|
||||
# Checkout each file
|
||||
Set-Location -Path ${script:llamacppDir}
|
||||
foreach ($file in $filePaths) {
|
||||
git checkout $file
|
||||
git -C "${script:llamacppDir}" checkout $file
|
||||
}
|
||||
git -C "${script:llamacppDir}" checkout CMakeLists.txt
|
||||
}
|
||||
Set-Location "${script:llamacppDir}/"
|
||||
git checkout CMakeLists.txt
|
||||
|
||||
}
|
||||
|
||||
init_vars
|
||||
git_module_setup
|
||||
apply_patches
|
||||
|
||||
# -DLLAMA_AVX -- 2011 Intel Sandy Bridge & AMD Bulldozer
|
||||
# -DLLAMA_F16C -- 2012 Intel Ivy Bridge & AMD 2011 Bulldozer (No significant improvement over just AVX)
|
||||
# -DLLAMA_AVX2 -- 2013 Intel Haswell & 2015 AMD Excavator / 2017 AMD Zen
|
||||
# -DLLAMA_FMA (FMA3) -- 2013 Intel Haswell & 2012 AMD Piledriver
|
||||
|
||||
$script:commonCpuDefs = @("-DCMAKE_POSITION_INDEPENDENT_CODE=on")
|
||||
|
||||
if ($null -eq ${env:OLLAMA_SKIP_CPU_GENERATE}) {
|
||||
function build_static() {
|
||||
if ((-not "${env:OLLAMA_SKIP_STATIC_GENERATE}") -and ((-not "${env:OLLAMA_CPU_TARGET}") -or ("${env:OLLAMA_CPU_TARGET}" -eq "static"))) {
|
||||
# GCC build for direct linking into the Go binary
|
||||
init_vars
|
||||
# cmake will silently fallback to msvc compilers if mingw isn't in the path, so detect and fail fast
|
||||
# as we need this to be compiled by gcc for golang to be able to link with itx
|
||||
write-host "Checking for MinGW..."
|
||||
# error action ensures we exit on failure
|
||||
get-command gcc
|
||||
get-command mingw32-make
|
||||
$oldTargets = $script:cmakeTargets
|
||||
$script:cmakeTargets = @("llama", "ggml")
|
||||
$script:cmakeDefs = @(
|
||||
"-G", "MinGW Makefiles"
|
||||
"-DCMAKE_C_COMPILER=gcc.exe",
|
||||
"-DCMAKE_CXX_COMPILER=g++.exe",
|
||||
"-DBUILD_SHARED_LIBS=off",
|
||||
"-DLLAMA_NATIVE=off",
|
||||
"-DLLAMA_AVX=off",
|
||||
"-DLLAMA_AVX2=off",
|
||||
"-DLLAMA_AVX512=off",
|
||||
"-DLLAMA_F16C=off",
|
||||
"-DLLAMA_FMA=off")
|
||||
$script:buildDir="../build/windows/${script:ARCH}_static"
|
||||
write-host "Building static library"
|
||||
build
|
||||
$script:cmakeTargets = $oldTargets
|
||||
} else {
|
||||
write-host "Skipping CPU generation step as requested"
|
||||
}
|
||||
}
|
||||
|
||||
init_vars
|
||||
$script:cmakeDefs = $script:commonCpuDefs + @("-A", "x64", "-DLLAMA_AVX=off", "-DLLAMA_AVX2=off", "-DLLAMA_AVX512=off", "-DLLAMA_FMA=off", "-DLLAMA_F16C=off") + $script:cmakeDefs
|
||||
$script:buildDir="${script:llamacppDir}/build/windows/${script:ARCH}/cpu"
|
||||
write-host "Building LCD CPU"
|
||||
build
|
||||
install
|
||||
sign
|
||||
compress_libs
|
||||
function build_cpu() {
|
||||
if ((-not "${env:OLLAMA_SKIP_CPU_GENERATE}" ) -and ((-not "${env:OLLAMA_CPU_TARGET}") -or ("${env:OLLAMA_CPU_TARGET}" -eq "cpu"))) {
|
||||
# remaining llama.cpp builds use MSVC
|
||||
init_vars
|
||||
$script:cmakeDefs = $script:commonCpuDefs + @("-A", "x64", "-DLLAMA_AVX=off", "-DLLAMA_AVX2=off", "-DLLAMA_AVX512=off", "-DLLAMA_FMA=off", "-DLLAMA_F16C=off") + $script:cmakeDefs
|
||||
$script:buildDir="../build/windows/${script:ARCH}/cpu"
|
||||
$script:distDir="$script:DIST_BASE\cpu"
|
||||
write-host "Building LCD CPU"
|
||||
build
|
||||
sign
|
||||
install
|
||||
} else {
|
||||
write-host "Skipping CPU generation step as requested"
|
||||
}
|
||||
}
|
||||
|
||||
init_vars
|
||||
$script:cmakeDefs = $script:commonCpuDefs + @("-A", "x64", "-DLLAMA_AVX=on", "-DLLAMA_AVX2=off", "-DLLAMA_AVX512=off", "-DLLAMA_FMA=off", "-DLLAMA_F16C=off") + $script:cmakeDefs
|
||||
$script:buildDir="${script:llamacppDir}/build/windows/${script:ARCH}/cpu_avx"
|
||||
write-host "Building AVX CPU"
|
||||
build
|
||||
install
|
||||
sign
|
||||
compress_libs
|
||||
function build_cpu_avx() {
|
||||
if ((-not "${env:OLLAMA_SKIP_CPU_GENERATE}" ) -and ((-not "${env:OLLAMA_CPU_TARGET}") -or ("${env:OLLAMA_CPU_TARGET}" -eq "cpu_avx"))) {
|
||||
init_vars
|
||||
$script:cmakeDefs = $script:commonCpuDefs + @("-A", "x64", "-DLLAMA_AVX=on", "-DLLAMA_AVX2=off", "-DLLAMA_AVX512=off", "-DLLAMA_FMA=off", "-DLLAMA_F16C=off") + $script:cmakeDefs
|
||||
$script:buildDir="../build/windows/${script:ARCH}/cpu_avx"
|
||||
$script:distDir="$script:DIST_BASE\cpu_avx"
|
||||
write-host "Building AVX CPU"
|
||||
build
|
||||
sign
|
||||
install
|
||||
} else {
|
||||
write-host "Skipping CPU AVX generation step as requested"
|
||||
}
|
||||
}
|
||||
|
||||
init_vars
|
||||
$script:cmakeDefs = $script:commonCpuDefs + @("-A", "x64", "-DLLAMA_AVX=on", "-DLLAMA_AVX2=on", "-DLLAMA_AVX512=off", "-DLLAMA_FMA=on", "-DLLAMA_F16C=on") + $script:cmakeDefs
|
||||
$script:buildDir="${script:llamacppDir}/build/windows/${script:ARCH}/cpu_avx2"
|
||||
write-host "Building AVX2 CPU"
|
||||
build
|
||||
install
|
||||
sign
|
||||
compress_libs
|
||||
function build_cpu_avx2() {
|
||||
if ((-not "${env:OLLAMA_SKIP_CPU_GENERATE}" ) -and ((-not "${env:OLLAMA_CPU_TARGET}") -or ("${env:OLLAMA_CPU_TARGET}" -eq "cpu_avx2"))) {
|
||||
init_vars
|
||||
$script:cmakeDefs = $script:commonCpuDefs + @("-A", "x64", "-DLLAMA_AVX=on", "-DLLAMA_AVX2=on", "-DLLAMA_AVX512=off", "-DLLAMA_FMA=on", "-DLLAMA_F16C=on") + $script:cmakeDefs
|
||||
$script:buildDir="../build/windows/${script:ARCH}/cpu_avx2"
|
||||
$script:distDir="$script:DIST_BASE\cpu_avx2"
|
||||
write-host "Building AVX2 CPU"
|
||||
build
|
||||
sign
|
||||
install
|
||||
} else {
|
||||
write-host "Skipping CPU AVX2 generation step as requested"
|
||||
}
|
||||
}
|
||||
|
||||
function build_cuda() {
|
||||
if ((-not "${env:OLLAMA_SKIP_CUDA_GENERATE}") -and ("${script:CUDA_LIB_DIR}")) {
|
||||
# Then build cuda as a dynamically loaded library
|
||||
$nvcc = "$script:CUDA_LIB_DIR\nvcc.exe"
|
||||
$script:CUDA_VERSION=(get-item ($nvcc | split-path | split-path)).Basename
|
||||
if ($null -ne $script:CUDA_VERSION) {
|
||||
$script:CUDA_VARIANT="_"+$script:CUDA_VERSION
|
||||
}
|
||||
init_vars
|
||||
$script:buildDir="../build/windows/${script:ARCH}/cuda$script:CUDA_VARIANT"
|
||||
$script:distDir="$script:DIST_BASE\cuda$script:CUDA_VARIANT"
|
||||
$script:cmakeDefs += @("-A", "x64", "-DLLAMA_CUDA=ON", "-DLLAMA_AVX=on", "-DLLAMA_AVX2=off", "-DCUDAToolkit_INCLUDE_DIR=$script:CUDA_INCLUDE_DIR", "-DCMAKE_CUDA_ARCHITECTURES=${script:CMAKE_CUDA_ARCHITECTURES}")
|
||||
if ($null -ne $env:OLLAMA_CUSTOM_CUDA_DEFS) {
|
||||
write-host "OLLAMA_CUSTOM_CUDA_DEFS=`"${env:OLLAMA_CUSTOM_CUDA_DEFS}`""
|
||||
$script:cmakeDefs +=@("${env:OLLAMA_CUSTOM_CUDA_DEFS}")
|
||||
write-host "building custom CUDA GPU"
|
||||
}
|
||||
build
|
||||
sign
|
||||
install
|
||||
|
||||
write-host "copying CUDA dependencies to ${script:SRC_DIR}\dist\windows-${script:ARCH}\"
|
||||
cp "${script:CUDA_LIB_DIR}\cudart64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\"
|
||||
cp "${script:CUDA_LIB_DIR}\cublas64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\"
|
||||
cp "${script:CUDA_LIB_DIR}\cublasLt64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\"
|
||||
} else {
|
||||
write-host "Skipping CUDA generation step"
|
||||
}
|
||||
}
|
||||
|
||||
function build_rocm() {
|
||||
if ((-not "${env:OLLAMA_SKIP_ROCM_GENERATE}") -and ("${env:HIP_PATH}")) {
|
||||
$script:ROCM_VERSION=(get-item $env:HIP_PATH).Basename
|
||||
if ($null -ne $script:ROCM_VERSION) {
|
||||
$script:ROCM_VARIANT="_v"+$script:ROCM_VERSION
|
||||
}
|
||||
|
||||
init_vars
|
||||
$script:buildDir="../build/windows/${script:ARCH}/rocm$script:ROCM_VARIANT"
|
||||
$script:distDir="$script:DIST_BASE\rocm$script:ROCM_VARIANT"
|
||||
$script:cmakeDefs += @(
|
||||
"-G", "Ninja",
|
||||
"-DCMAKE_C_COMPILER=clang.exe",
|
||||
"-DCMAKE_CXX_COMPILER=clang++.exe",
|
||||
"-DLLAMA_HIPBLAS=on",
|
||||
"-DHIP_PLATFORM=amd",
|
||||
"-DLLAMA_AVX=on",
|
||||
"-DLLAMA_AVX2=off",
|
||||
"-DCMAKE_POSITION_INDEPENDENT_CODE=on",
|
||||
"-DAMDGPU_TARGETS=$(amdGPUs)",
|
||||
"-DGPU_TARGETS=$(amdGPUs)"
|
||||
)
|
||||
|
||||
# Make sure the ROCm binary dir is first in the path
|
||||
$env:PATH="$env:HIP_PATH\bin;$env:PATH"
|
||||
|
||||
# We have to clobber the LIB var from the developer shell for clang to work properly
|
||||
$env:LIB=""
|
||||
if ($null -ne $env:OLLAMA_CUSTOM_ROCM_DEFS) {
|
||||
write-host "OLLAMA_CUSTOM_ROCM_DEFS=`"${env:OLLAMA_CUSTOM_ROCM_DEFS}`""
|
||||
$script:cmakeDefs += @("${env:OLLAMA_CUSTOM_ROCM_DEFS}")
|
||||
write-host "building custom ROCM GPU"
|
||||
}
|
||||
write-host "Building ROCm"
|
||||
build
|
||||
# Ninja doesn't prefix with config name
|
||||
${script:config}=""
|
||||
if ($null -ne $script:DUMPBIN) {
|
||||
& "$script:DUMPBIN" /dependents "${script:buildDir}/bin/ollama_llama_server.exe" | select-string ".dll"
|
||||
}
|
||||
sign
|
||||
install
|
||||
|
||||
# Assumes v5.7, may need adjustments for v6
|
||||
rm -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\"
|
||||
md "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\rocblas\library\" -ea 0 > $null
|
||||
cp "${env:HIP_PATH}\bin\hipblas.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\"
|
||||
cp "${env:HIP_PATH}\bin\rocblas.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\"
|
||||
# amdhip64.dll dependency comes from the driver and must be installed on the host to use AMD GPUs
|
||||
cp "${env:HIP_PATH}\bin\rocblas\library\*" "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\rocblas\library\"
|
||||
} else {
|
||||
write-host "Skipping ROCm generation step"
|
||||
}
|
||||
}
|
||||
|
||||
init_vars
|
||||
if ($($args.count) -eq 0) {
|
||||
git_module_setup
|
||||
apply_patches
|
||||
build_static
|
||||
build_cpu
|
||||
build_cpu_avx
|
||||
build_cpu_avx2
|
||||
build_cuda
|
||||
build_rocm
|
||||
|
||||
cleanup
|
||||
write-host "`ngo generate completed. LLM runners: $(get-childitem -path $script:DIST_BASE)"
|
||||
} else {
|
||||
write-host "Skipping CPU generation step as requested"
|
||||
}
|
||||
|
||||
if ($null -ne $script:CUDA_LIB_DIR) {
|
||||
# Then build cuda as a dynamically loaded library
|
||||
$nvcc = "$script:CUDA_LIB_DIR\nvcc.exe"
|
||||
$script:CUDA_VERSION=(get-item ($nvcc | split-path | split-path)).Basename
|
||||
if ($null -ne $script:CUDA_VERSION) {
|
||||
$script:CUDA_VARIANT="_"+$script:CUDA_VERSION
|
||||
}
|
||||
init_vars
|
||||
$script:buildDir="${script:llamacppDir}/build/windows/${script:ARCH}/cuda$script:CUDA_VARIANT"
|
||||
$script:cmakeDefs += @("-A", "x64", "-DLLAMA_CUBLAS=ON", "-DLLAMA_AVX=on", "-DLLAMA_AVX2=off", "-DCUDAToolkit_INCLUDE_DIR=$script:CUDA_INCLUDE_DIR", "-DCMAKE_CUDA_ARCHITECTURES=${script:CMAKE_CUDA_ARCHITECTURES}")
|
||||
write-host "Building CUDA"
|
||||
build
|
||||
install
|
||||
sign
|
||||
compress_libs
|
||||
}
|
||||
|
||||
if ($null -ne $env:HIP_PATH) {
|
||||
$script:ROCM_VERSION=(get-item $env:HIP_PATH).Basename
|
||||
if ($null -ne $script:ROCM_VERSION) {
|
||||
$script:ROCM_VARIANT="_v"+$script:ROCM_VERSION
|
||||
}
|
||||
|
||||
init_vars
|
||||
$script:buildDir="${script:llamacppDir}/build/windows/${script:ARCH}/rocm$script:ROCM_VARIANT"
|
||||
$script:cmakeDefs += @(
|
||||
"-G", "Ninja",
|
||||
"-DCMAKE_C_COMPILER=clang.exe",
|
||||
"-DCMAKE_CXX_COMPILER=clang++.exe",
|
||||
"-DLLAMA_HIPBLAS=on",
|
||||
"-DLLAMA_AVX=on",
|
||||
"-DLLAMA_AVX2=off",
|
||||
"-DCMAKE_POSITION_INDEPENDENT_CODE=on",
|
||||
"-DAMDGPU_TARGETS=$(amdGPUs)",
|
||||
"-DGPU_TARGETS=$(amdGPUs)"
|
||||
)
|
||||
|
||||
# Make sure the ROCm binary dir is first in the path
|
||||
$env:PATH="$env:HIP_PATH\bin;$env:PATH"
|
||||
|
||||
# We have to clobber the LIB var from the developer shell for clang to work properly
|
||||
$env:LIB=""
|
||||
|
||||
write-host "Building ROCm"
|
||||
build
|
||||
# Ninja doesn't prefix with config name
|
||||
${script:config}=""
|
||||
install
|
||||
if ($null -ne $script:DUMPBIN) {
|
||||
& "$script:DUMPBIN" /dependents "${script:buildDir}/bin/${script:config}/ext_server.dll" | select-string ".dll"
|
||||
}
|
||||
sign
|
||||
compress_libs
|
||||
}
|
||||
|
||||
cleanup
|
||||
write-host "`ngo generate completed. LLM runners: $(get-childitem -path ${script:SRC_DIR}\llm\llama.cpp\build\windows\${script:ARCH})"
|
||||
for ( $i = 0; $i -lt $args.count; $i++ ) {
|
||||
write-host "performing $($args[$i])"
|
||||
& $($args[$i])
|
||||
}
|
||||
}
|
||||
@@ -1,3 +1,3 @@
|
||||
package generate
|
||||
|
||||
//go:generate sh ./gen_darwin.sh
|
||||
//go:generate bash ./gen_darwin.sh
|
||||
|
||||
86
llm/ggla.go
86
llm/ggla.go
@@ -7,16 +7,18 @@ import (
|
||||
"slices"
|
||||
)
|
||||
|
||||
type ContainerGGLA struct {
|
||||
type containerGGLA struct {
|
||||
version uint32
|
||||
}
|
||||
|
||||
func (c *ContainerGGLA) Name() string {
|
||||
func (c *containerGGLA) Name() string {
|
||||
return "ggla"
|
||||
}
|
||||
|
||||
func (c *ContainerGGLA) Decode(rs io.ReadSeeker) (model, error) {
|
||||
binary.Read(rs, binary.LittleEndian, &c.version)
|
||||
func (c *containerGGLA) Decode(rs io.ReadSeeker) (model, error) {
|
||||
if err := binary.Read(rs, binary.LittleEndian, &c.version); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
switch c.version {
|
||||
case 1:
|
||||
@@ -24,37 +26,45 @@ func (c *ContainerGGLA) Decode(rs io.ReadSeeker) (model, error) {
|
||||
return nil, errors.New("invalid version")
|
||||
}
|
||||
|
||||
model := newModelGGLA(c)
|
||||
model := newGGLA(c)
|
||||
err := model.decode(rs)
|
||||
return model, err
|
||||
}
|
||||
|
||||
type ModelGGLA struct {
|
||||
*ContainerGGLA
|
||||
type ggla struct {
|
||||
*containerGGLA
|
||||
|
||||
kv KV
|
||||
tensors []Tensor
|
||||
tensors []*Tensor
|
||||
}
|
||||
|
||||
func newModelGGLA(container *ContainerGGLA) *ModelGGLA {
|
||||
return &ModelGGLA{
|
||||
ContainerGGLA: container,
|
||||
func newGGLA(container *containerGGLA) *ggla {
|
||||
return &ggla{
|
||||
containerGGLA: container,
|
||||
kv: make(KV),
|
||||
}
|
||||
}
|
||||
|
||||
func (m *ModelGGLA) decode(rs io.ReadSeeker) error {
|
||||
func (llm *ggla) KV() KV {
|
||||
return llm.kv
|
||||
}
|
||||
|
||||
func (llm *ggla) Tensors() Tensors {
|
||||
return llm.tensors
|
||||
}
|
||||
|
||||
func (llm *ggla) decode(rs io.ReadSeeker) error {
|
||||
var r uint32
|
||||
if err := binary.Read(rs, binary.LittleEndian, &r); err != nil {
|
||||
return err
|
||||
}
|
||||
m.kv["r"] = r
|
||||
llm.kv["r"] = r
|
||||
|
||||
var alpha uint32
|
||||
if err := binary.Read(rs, binary.LittleEndian, &alpha); err != nil {
|
||||
return err
|
||||
}
|
||||
m.kv["alpha"] = alpha
|
||||
llm.kv["alpha"] = alpha
|
||||
|
||||
for {
|
||||
var dims uint32
|
||||
@@ -109,54 +119,10 @@ func (m *ModelGGLA) decode(rs io.ReadSeeker) error {
|
||||
|
||||
t.Offset = uint64(offset)
|
||||
|
||||
if _, err := rs.Seek(int64(t.Size()), io.SeekCurrent); err != nil {
|
||||
if _, err := rs.Seek(int64(t.size()), io.SeekCurrent); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
m.tensors = append(m.tensors, t)
|
||||
llm.tensors = append(llm.tensors, &t)
|
||||
}
|
||||
}
|
||||
|
||||
func (m *ModelGGLA) KV() KV {
|
||||
return m.kv
|
||||
}
|
||||
|
||||
func (m *ModelGGLA) Tensor() []Tensor {
|
||||
return m.tensors
|
||||
}
|
||||
|
||||
func (*ModelGGLA) ModelFamily() string {
|
||||
return "ggla"
|
||||
}
|
||||
|
||||
func (*ModelGGLA) ModelType() string {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (*ModelGGLA) FileType() string {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (*ModelGGLA) NumLayers() uint32 {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (*ModelGGLA) NumGQA() uint32 {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (*ModelGGLA) NumEmbed() uint32 {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (*ModelGGLA) NumHead() uint32 {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (*ModelGGLA) NumHeadKv() uint32 {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (*ModelGGLA) NumCtx() uint32 {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
282
llm/ggml.go
282
llm/ggml.go
@@ -3,14 +3,14 @@ package llm
|
||||
import (
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"strings"
|
||||
)
|
||||
|
||||
type GGML struct {
|
||||
container
|
||||
model
|
||||
|
||||
Size int64
|
||||
}
|
||||
|
||||
const (
|
||||
@@ -90,15 +90,179 @@ func fileType(fileType uint32) string {
|
||||
}
|
||||
|
||||
type model interface {
|
||||
ModelFamily() string
|
||||
ModelType() string
|
||||
FileType() string
|
||||
NumLayers() uint32
|
||||
NumGQA() uint32
|
||||
NumEmbed() uint32
|
||||
NumHead() uint32
|
||||
NumHeadKv() uint32
|
||||
NumCtx() uint32
|
||||
KV() KV
|
||||
Tensors() Tensors
|
||||
}
|
||||
|
||||
type KV map[string]any
|
||||
|
||||
func (kv KV) u64(key string) uint64 {
|
||||
switch v := kv[key].(type) {
|
||||
case uint64:
|
||||
return v
|
||||
case uint32:
|
||||
return uint64(v)
|
||||
case float64:
|
||||
return uint64(v)
|
||||
default:
|
||||
return 0
|
||||
}
|
||||
}
|
||||
|
||||
func (kv KV) Architecture() string {
|
||||
if s, ok := kv["general.architecture"].(string); ok {
|
||||
return s
|
||||
}
|
||||
|
||||
return "unknown"
|
||||
}
|
||||
|
||||
func (kv KV) ParameterCount() uint64 {
|
||||
return kv.u64("general.parameter_count")
|
||||
}
|
||||
|
||||
func (kv KV) FileType() string {
|
||||
if u64 := kv.u64("general.file_type"); u64 > 0 {
|
||||
return fileType(uint32(u64))
|
||||
}
|
||||
|
||||
return "unknown"
|
||||
}
|
||||
|
||||
func (kv KV) BlockCount() uint64 {
|
||||
return kv.u64(fmt.Sprintf("%s.block_count", kv.Architecture()))
|
||||
}
|
||||
|
||||
func (kv KV) HeadCount() uint64 {
|
||||
return kv.u64(fmt.Sprintf("%s.attention.head_count", kv.Architecture()))
|
||||
}
|
||||
|
||||
func (kv KV) HeadCountKV() uint64 {
|
||||
if headCountKV := kv.u64(fmt.Sprintf("%s.attention.head_count_kv", kv.Architecture())); headCountKV > 0 {
|
||||
return headCountKV
|
||||
}
|
||||
|
||||
return 1
|
||||
}
|
||||
|
||||
func (kv KV) GQA() uint64 {
|
||||
return kv.HeadCount() / kv.HeadCountKV()
|
||||
}
|
||||
|
||||
func (kv KV) EmbeddingLength() uint64 {
|
||||
return kv.u64(fmt.Sprintf("%s.embedding_length", kv.Architecture()))
|
||||
}
|
||||
|
||||
func (kv KV) ContextLength() uint64 {
|
||||
return kv.u64(fmt.Sprintf("%s.context_length", kv.Architecture()))
|
||||
}
|
||||
|
||||
type Tensors []*Tensor
|
||||
|
||||
func (ts Tensors) Layers() map[string]Layer {
|
||||
layers := make(map[string]Layer)
|
||||
for _, t := range ts {
|
||||
parts := strings.Split(t.Name, ".")
|
||||
if parts[0] == "blk" {
|
||||
// join first and second part, e.g. blk.%d
|
||||
parts = append([]string{fmt.Sprintf("%s.%s", parts[0], parts[1])}, parts[2:]...)
|
||||
}
|
||||
|
||||
if _, ok := layers[parts[0]]; !ok {
|
||||
layers[parts[0]] = make(Layer)
|
||||
}
|
||||
|
||||
layers[parts[0]][strings.Join(parts[1:], ".")] = t
|
||||
}
|
||||
|
||||
return layers
|
||||
}
|
||||
|
||||
type Layer map[string]*Tensor
|
||||
|
||||
func (l Layer) size() (size uint64) {
|
||||
for _, t := range l {
|
||||
size += t.size()
|
||||
}
|
||||
|
||||
return size
|
||||
}
|
||||
|
||||
type Tensor struct {
|
||||
Name string `json:"name"`
|
||||
Kind uint32 `json:"kind"`
|
||||
Offset uint64 `json:"-"`
|
||||
|
||||
// Shape is the number of elements in each dimension
|
||||
Shape []uint64 `json:"shape"`
|
||||
|
||||
io.WriterTo `json:"-"`
|
||||
}
|
||||
|
||||
func (t Tensor) blockSize() uint64 {
|
||||
switch {
|
||||
case t.Kind < 2:
|
||||
return 1
|
||||
case t.Kind < 10:
|
||||
return 32
|
||||
default:
|
||||
return 256
|
||||
}
|
||||
}
|
||||
|
||||
func (t Tensor) typeSize() uint64 {
|
||||
blockSize := t.blockSize()
|
||||
|
||||
switch t.Kind {
|
||||
case 0: // FP32
|
||||
return 4
|
||||
case 1: // FP16
|
||||
return 2
|
||||
case 2: // Q4_0
|
||||
return 2 + blockSize/2
|
||||
case 3: // Q4_1
|
||||
return 2 + 2 + blockSize/2
|
||||
case 6: // Q5_0
|
||||
return 2 + 4 + blockSize/2
|
||||
case 7: // Q5_1
|
||||
return 2 + 2 + 4 + blockSize/2
|
||||
case 8: // Q8_0
|
||||
return 2 + blockSize
|
||||
case 9: // Q8_1
|
||||
return 4 + 4 + blockSize
|
||||
case 10: // Q2_K
|
||||
return blockSize/16 + blockSize/4 + 2 + 2
|
||||
case 11: // Q3_K
|
||||
return blockSize/8 + blockSize/4 + 12 + 2
|
||||
case 12: // Q4_K
|
||||
return 2 + 2 + 12 + blockSize/2
|
||||
case 13: // Q5_K
|
||||
return 2 + 2 + 12 + blockSize/8 + blockSize/2
|
||||
case 14: // Q6_K
|
||||
return blockSize/2 + blockSize/4 + blockSize/16 + 2
|
||||
case 15: // Q8_K
|
||||
return 2 + blockSize + 2*blockSize/16
|
||||
case 16: // IQ2_XXS
|
||||
return 2 + 2*blockSize/8
|
||||
case 17: // IQ2_XS
|
||||
return 2 + 2*blockSize/8 + blockSize/32
|
||||
case 18: // IQ3_XXS
|
||||
return 2 + 3*blockSize/8
|
||||
default:
|
||||
return 0
|
||||
}
|
||||
}
|
||||
|
||||
func (t Tensor) parameters() uint64 {
|
||||
var count uint64 = 1
|
||||
for _, n := range t.Shape {
|
||||
count *= n
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
func (t Tensor) size() uint64 {
|
||||
return t.parameters() * t.typeSize() / t.blockSize()
|
||||
}
|
||||
|
||||
type container interface {
|
||||
@@ -122,42 +286,116 @@ const (
|
||||
|
||||
var ErrUnsupportedFormat = errors.New("unsupported model format")
|
||||
|
||||
func DecodeGGML(rs io.ReadSeeker) (*GGML, error) {
|
||||
func DecodeGGML(rs io.ReadSeeker) (*GGML, int64, error) {
|
||||
var magic uint32
|
||||
if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
|
||||
return nil, err
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
var c container
|
||||
switch magic {
|
||||
case FILE_MAGIC_GGML, FILE_MAGIC_GGMF, FILE_MAGIC_GGJT:
|
||||
return nil, ErrUnsupportedFormat
|
||||
return nil, 0, ErrUnsupportedFormat
|
||||
case FILE_MAGIC_GGLA:
|
||||
c = &ContainerGGLA{}
|
||||
c = &containerGGLA{}
|
||||
case FILE_MAGIC_GGUF_LE:
|
||||
c = &ContainerGGUF{ByteOrder: binary.LittleEndian}
|
||||
c = &containerGGUF{ByteOrder: binary.LittleEndian}
|
||||
case FILE_MAGIC_GGUF_BE:
|
||||
c = &ContainerGGUF{ByteOrder: binary.BigEndian}
|
||||
c = &containerGGUF{ByteOrder: binary.BigEndian}
|
||||
default:
|
||||
return nil, errors.New("invalid file magic")
|
||||
return nil, 0, errors.New("invalid file magic")
|
||||
}
|
||||
|
||||
model, err := c.Decode(rs)
|
||||
if errors.Is(err, io.EOF) {
|
||||
// noop
|
||||
} else if err != nil {
|
||||
return nil, err
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
offset, err := rs.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
// final model type
|
||||
return &GGML{
|
||||
container: c,
|
||||
model: model,
|
||||
Size: offset,
|
||||
}, nil
|
||||
}, offset, nil
|
||||
}
|
||||
|
||||
func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload uint64) {
|
||||
embedding := llm.KV().EmbeddingLength()
|
||||
heads := llm.KV().HeadCount()
|
||||
headsKV := llm.KV().HeadCountKV()
|
||||
vocab := uint64(len(llm.KV()["tokenizer.ggml.tokens"].([]any)))
|
||||
|
||||
layers := llm.Tensors().Layers()
|
||||
|
||||
switch llm.KV().Architecture() {
|
||||
case "llama":
|
||||
fullOffload = 4 * batch * (1 + 4*embedding + context*(1+heads))
|
||||
|
||||
partialOffload = 4 * batch * embedding
|
||||
partialOffload += max(
|
||||
4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embedding/heads*headsKV),
|
||||
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
||||
)
|
||||
|
||||
if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
|
||||
// mixtral 8x22b
|
||||
ff := uint64(llm.KV()["llama.feed_forward_length"].(uint32))
|
||||
partialOffload = max(
|
||||
3*ffnGateExpsWeight.size()+4*batch*(2*ff+headsKV+embedding+context+embedding/heads*headsKV),
|
||||
4*(context*batch*heads+context*embedding/heads*headsKV+batch*1024+embedding/heads*headsKV*batch),
|
||||
)
|
||||
} else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
|
||||
// mixtral 8x7b
|
||||
ffnGateWeight1 := ffnGateWeight.Shape[1]
|
||||
fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
|
||||
partialOffload = max(
|
||||
4*batch*(3+embedding/heads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
|
||||
4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
|
||||
)
|
||||
}
|
||||
case "gemma":
|
||||
fullOffload = 4 * batch * (embedding + vocab)
|
||||
partialOffload = 4*batch*(2*embedding+vocab+1) + embedding*vocab*105/128
|
||||
case "command-r":
|
||||
fullOffload = max(
|
||||
4*batch*(embedding+vocab),
|
||||
4*batch*(2+4*embedding+context*(1+heads)),
|
||||
)
|
||||
|
||||
partialOffload = max(
|
||||
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
||||
4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
|
||||
)
|
||||
case "qwen2":
|
||||
fullOffload = max(
|
||||
4*batch*(embedding+vocab),
|
||||
4*batch*(1+2*embedding+context+context*heads),
|
||||
)
|
||||
|
||||
partialOffload = max(
|
||||
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
||||
4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
|
||||
)
|
||||
case "phi2":
|
||||
fullOffload = max(
|
||||
4*batch*(embedding+vocab),
|
||||
4*batch*(1+4*embedding+context+context*heads),
|
||||
)
|
||||
|
||||
partialOffload = 4*batch*(2*embedding+vocab) + embedding*vocab*105/128
|
||||
case "stablelm":
|
||||
fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
|
||||
partialOffload = max(
|
||||
4*batch*(vocab+2*embedding),
|
||||
fullOffload,
|
||||
)
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
1302
llm/gguf.go
1302
llm/gguf.go
File diff suppressed because it is too large
Load Diff
Submodule llm/llama.cpp updated: ad3a0505e3...46e12c4692
100
llm/llama.go
100
llm/llama.go
@@ -1,100 +0,0 @@
|
||||
package llm
|
||||
|
||||
import (
|
||||
_ "embed"
|
||||
"fmt"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
const jsonGrammar = `
|
||||
root ::= object
|
||||
value ::= object | array | string | number | ("true" | "false" | "null") ws
|
||||
|
||||
object ::=
|
||||
"{" ws (
|
||||
string ":" ws value
|
||||
("," ws string ":" ws value)*
|
||||
)? "}" ws
|
||||
|
||||
array ::=
|
||||
"[" ws (
|
||||
value
|
||||
("," ws value)*
|
||||
)? "]" ws
|
||||
|
||||
string ::=
|
||||
"\"" (
|
||||
[^"\\] |
|
||||
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) # escapes
|
||||
)* "\"" ws
|
||||
|
||||
number ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws
|
||||
|
||||
# Optional space: by convention, applied in this grammar after literal chars when allowed
|
||||
ws ::= ([ \t\n] ws)?
|
||||
`
|
||||
|
||||
type ImageData struct {
|
||||
Data []byte `json:"data"`
|
||||
ID int `json:"id"`
|
||||
}
|
||||
|
||||
var payloadMissing = fmt.Errorf("expected dynamic library payloads not included in this build of ollama")
|
||||
|
||||
type prediction struct {
|
||||
Content string `json:"content"`
|
||||
Model string `json:"model"`
|
||||
Prompt string `json:"prompt"`
|
||||
Stop bool `json:"stop"`
|
||||
|
||||
Timings struct {
|
||||
PredictedN int `json:"predicted_n"`
|
||||
PredictedMS float64 `json:"predicted_ms"`
|
||||
PromptN int `json:"prompt_n"`
|
||||
PromptMS float64 `json:"prompt_ms"`
|
||||
}
|
||||
}
|
||||
|
||||
const maxRetries = 3
|
||||
|
||||
type PredictOpts struct {
|
||||
Prompt string
|
||||
Format string
|
||||
Images []ImageData
|
||||
Options api.Options
|
||||
}
|
||||
|
||||
type PredictResult struct {
|
||||
Content string
|
||||
Done bool
|
||||
PromptEvalCount int
|
||||
PromptEvalDuration time.Duration
|
||||
EvalCount int
|
||||
EvalDuration time.Duration
|
||||
}
|
||||
|
||||
type TokenizeRequest struct {
|
||||
Content string `json:"content"`
|
||||
}
|
||||
|
||||
type TokenizeResponse struct {
|
||||
Tokens []int `json:"tokens"`
|
||||
}
|
||||
|
||||
type DetokenizeRequest struct {
|
||||
Tokens []int `json:"tokens"`
|
||||
}
|
||||
|
||||
type DetokenizeResponse struct {
|
||||
Content string `json:"content"`
|
||||
}
|
||||
|
||||
type EmbeddingRequest struct {
|
||||
Content string `json:"content"`
|
||||
}
|
||||
|
||||
type EmbeddingResponse struct {
|
||||
Embedding []float64 `json:"embedding"`
|
||||
}
|
||||
231
llm/llm.go
231
llm/llm.go
@@ -1,175 +1,86 @@
|
||||
package llm
|
||||
|
||||
// #cgo CFLAGS: -Illama.cpp
|
||||
// #cgo darwin,arm64 LDFLAGS: ${SRCDIR}/build/darwin/arm64_static/libllama.a -lstdc++
|
||||
// #cgo darwin,amd64 LDFLAGS: ${SRCDIR}/build/darwin/x86_64_static/libllama.a -lstdc++
|
||||
// #cgo windows,amd64 LDFLAGS: ${SRCDIR}/build/windows/amd64_static/libllama.a -static -lstdc++
|
||||
// #cgo linux,amd64 LDFLAGS: ${SRCDIR}/build/linux/x86_64_static/libllama.a -lstdc++
|
||||
// #cgo linux,arm64 LDFLAGS: ${SRCDIR}/build/linux/arm64_static/libllama.a -lstdc++
|
||||
// #include <stdlib.h>
|
||||
// #include "llama.h"
|
||||
import "C"
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"os"
|
||||
"runtime"
|
||||
"slices"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/gpu"
|
||||
"unsafe"
|
||||
)
|
||||
|
||||
type LLM interface {
|
||||
Predict(context.Context, PredictOpts, func(PredictResult)) error
|
||||
Embedding(context.Context, string) ([]float64, error)
|
||||
Encode(context.Context, string) ([]int, error)
|
||||
Decode(context.Context, []int) (string, error)
|
||||
Close()
|
||||
// SystemInfo is an unused example of calling llama.cpp functions using CGo
|
||||
func SystemInfo() string {
|
||||
return C.GoString(C.llama_print_system_info())
|
||||
}
|
||||
|
||||
var cpuOnlyFamilies = []string{
|
||||
"mamba",
|
||||
}
|
||||
func Quantize(infile, outfile, filetype string) error {
|
||||
cinfile := C.CString(infile)
|
||||
defer C.free(unsafe.Pointer(cinfile))
|
||||
|
||||
func New(model string, adapters, projectors []string, opts api.Options) (LLM, error) {
|
||||
if _, err := os.Stat(model); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
coutfile := C.CString(outfile)
|
||||
defer C.free(unsafe.Pointer(coutfile))
|
||||
|
||||
f, err := os.Open(model)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer f.Close()
|
||||
params := C.llama_model_quantize_default_params()
|
||||
params.nthread = -1
|
||||
|
||||
ggml, err := DecodeGGML(f)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if opts.NumCtx > int(ggml.NumCtx()) {
|
||||
slog.Warn(fmt.Sprintf("requested context length is greater than model's max context length (%d > %d), using %d instead", opts.NumCtx, ggml.NumCtx(), ggml.NumCtx()))
|
||||
opts.NumCtx = int(ggml.NumCtx())
|
||||
}
|
||||
|
||||
if opts.NumCtx < 4 {
|
||||
opts.NumCtx = 4
|
||||
}
|
||||
|
||||
vram, _ := gpu.CheckVRAM()
|
||||
size := ggml.Size
|
||||
|
||||
// fp16 k,v matrices require = n_ctx * n_layer * n_embd / n_head * n_head_kv * 2 bytes each * 2 key and value
|
||||
kv := 2 * 2 * int64(opts.NumCtx) * int64(ggml.NumLayers()) * int64(ggml.NumEmbed()) * int64(ggml.NumHeadKv()) / int64(max(ggml.NumHead(), 1))
|
||||
|
||||
// this amount is the overhead + tensors in memory
|
||||
// TODO: get this from the llama.cpp's graph calculations instead of
|
||||
// estimating it's 1/6 * kv_cache_size * num_gqa
|
||||
graph := int64(ggml.NumGQA()) * kv / 6
|
||||
|
||||
// certain model architectures don't support gpu inference yet
|
||||
if slices.Contains(cpuOnlyFamilies, ggml.ModelFamily()) {
|
||||
opts.NumGPU = 0
|
||||
}
|
||||
|
||||
info := gpu.GetGPUInfo()
|
||||
switch runtime.GOOS {
|
||||
case "darwin":
|
||||
if opts.NumGPU == 0 {
|
||||
break
|
||||
}
|
||||
|
||||
if size+kv+graph > vram {
|
||||
slog.Info("not enough vram available, setting num_gpu=0")
|
||||
opts.NumGPU = 0
|
||||
break
|
||||
}
|
||||
|
||||
// TODO: implement layer splitting on macOS
|
||||
opts.NumGPU = 999
|
||||
switch filetype {
|
||||
case "F32":
|
||||
params.ftype = fileTypeF32
|
||||
case "F16":
|
||||
params.ftype = fileTypeF16
|
||||
case "Q4_0":
|
||||
params.ftype = fileTypeQ4_0
|
||||
case "Q4_1":
|
||||
params.ftype = fileTypeQ4_1
|
||||
case "Q4_1_F16":
|
||||
params.ftype = fileTypeQ4_1_F16
|
||||
case "Q8_0":
|
||||
params.ftype = fileTypeQ8_0
|
||||
case "Q5_0":
|
||||
params.ftype = fileTypeQ5_0
|
||||
case "Q5_1":
|
||||
params.ftype = fileTypeQ5_1
|
||||
case "Q2_K":
|
||||
params.ftype = fileTypeQ2_K
|
||||
case "Q3_K_S":
|
||||
params.ftype = fileTypeQ3_K_S
|
||||
case "Q3_K_M":
|
||||
params.ftype = fileTypeQ3_K_M
|
||||
case "Q3_K_L":
|
||||
params.ftype = fileTypeQ3_K_L
|
||||
case "Q4_K_S":
|
||||
params.ftype = fileTypeQ4_K_S
|
||||
case "Q4_K_M":
|
||||
params.ftype = fileTypeQ4_K_M
|
||||
case "Q5_K_S":
|
||||
params.ftype = fileTypeQ5_K_S
|
||||
case "Q5_K_M":
|
||||
params.ftype = fileTypeQ5_K_M
|
||||
case "Q6_K":
|
||||
params.ftype = fileTypeQ6_K
|
||||
case "IQ2_XXS":
|
||||
params.ftype = fileTypeIQ2_XXS
|
||||
case "IQ2_XS":
|
||||
params.ftype = fileTypeIQ2_XS
|
||||
case "Q2_K_S":
|
||||
params.ftype = fileTypeQ2_K_S
|
||||
case "Q3_K_XS":
|
||||
params.ftype = fileTypeQ3_K_XS
|
||||
case "IQ3_XXS":
|
||||
params.ftype = fileTypeIQ3_XXS
|
||||
default:
|
||||
if info.Library == "cpu" {
|
||||
slog.Info("GPU not available, falling back to CPU")
|
||||
opts.NumGPU = 0
|
||||
break
|
||||
}
|
||||
|
||||
// don't use GPU at all if no layers are loaded
|
||||
if opts.NumGPU == 0 {
|
||||
info.Library = "cpu"
|
||||
info.Variant = gpu.GetCPUVariant()
|
||||
break
|
||||
}
|
||||
|
||||
// user-defined GPU count
|
||||
if opts.NumGPU != -1 {
|
||||
break
|
||||
}
|
||||
|
||||
// the "main" GPU needs the most memory and determines the limit
|
||||
// of how many layers can be loaded. It needs to fit:
|
||||
// 1. the full compute graph allocation for all devices (graph)
|
||||
// 2. the proportional kv cache for all devices (kv * % layers)
|
||||
// 3. the proportional model (size * % layers / # devices)
|
||||
// This estimates the number of layers
|
||||
maxlayers := int64(ggml.NumLayers()) + 1
|
||||
devices := int64(info.DeviceCount)
|
||||
avg := vram / devices
|
||||
layers := maxlayers * (avg - graph) / (kv + size/devices)
|
||||
if layers > maxlayers {
|
||||
layers = maxlayers
|
||||
}
|
||||
|
||||
// 1 + 2 must fit on the main gpu
|
||||
min := graph + kv*layers/maxlayers
|
||||
if layers <= 0 || min > avg {
|
||||
slog.Info("not enough vram available, falling back to CPU only")
|
||||
info.Library = "cpu"
|
||||
info.Variant = gpu.GetCPUVariant()
|
||||
opts.NumGPU = 0
|
||||
break
|
||||
}
|
||||
|
||||
opts.NumGPU = int(layers)
|
||||
return fmt.Errorf("unknown filetype: %s", filetype)
|
||||
}
|
||||
|
||||
opts.RopeFrequencyBase = 0.0
|
||||
opts.RopeFrequencyScale = 0.0
|
||||
return newLlmServer(info, model, adapters, projectors, opts)
|
||||
}
|
||||
|
||||
// Give any native cgo implementations an opportunity to initialize
|
||||
func Init() error {
|
||||
return nativeInit()
|
||||
}
|
||||
|
||||
func newLlmServer(gpuInfo gpu.GpuInfo, model string, adapters, projectors []string, opts api.Options) (LLM, error) {
|
||||
dynLibs := getDynLibs(gpuInfo)
|
||||
|
||||
// Check to see if the user has requested a specific library instead of auto-detecting
|
||||
demandLib := os.Getenv("OLLAMA_LLM_LIBRARY")
|
||||
if demandLib != "" {
|
||||
libPath := availableDynLibs[demandLib]
|
||||
if libPath == "" {
|
||||
slog.Info(fmt.Sprintf("Invalid OLLAMA_LLM_LIBRARY %s - not found", demandLib))
|
||||
} else {
|
||||
slog.Info(fmt.Sprintf("Loading OLLAMA_LLM_LIBRARY=%s", demandLib))
|
||||
dynLibs = []string{libPath}
|
||||
}
|
||||
}
|
||||
|
||||
// We stage into a temp directory, and if we've been idle for a while, it may have been reaped
|
||||
_, err := os.Stat(dynLibs[0])
|
||||
if err != nil {
|
||||
slog.Info(fmt.Sprintf("%s has disappeared, reloading libraries", dynLibs[0]))
|
||||
err = nativeInit()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
err2 := fmt.Errorf("unable to locate suitable llm library")
|
||||
for _, dynLib := range dynLibs {
|
||||
srv, err := newDynExtServer(dynLib, model, adapters, projectors, opts)
|
||||
if err == nil {
|
||||
return srv, nil
|
||||
}
|
||||
slog.Warn(fmt.Sprintf("Failed to load dynamic library %s %s", dynLib, err))
|
||||
err2 = err
|
||||
}
|
||||
|
||||
return nil, err2
|
||||
if retval := C.llama_model_quantize(cinfile, coutfile, ¶ms); retval != 0 {
|
||||
return fmt.Errorf("llama_model_quantize: %d", retval)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
@@ -4,5 +4,5 @@ import (
|
||||
"embed"
|
||||
)
|
||||
|
||||
//go:embed llama.cpp/build/linux/*/*/lib/*
|
||||
//go:embed build/darwin/x86_64/*/bin/*
|
||||
var libEmbed embed.FS
|
||||
@@ -4,5 +4,5 @@ import (
|
||||
"embed"
|
||||
)
|
||||
|
||||
//go:embed llama.cpp/build/windows/*/*/lib/*.dll*
|
||||
//go:embed build/darwin/arm64/*/bin/*
|
||||
var libEmbed embed.FS
|
||||
6
llm/llm_linux.go
Normal file
6
llm/llm_linux.go
Normal file
@@ -0,0 +1,6 @@
|
||||
package llm
|
||||
|
||||
import "embed"
|
||||
|
||||
//go:embed build/linux/*/*/bin/*
|
||||
var libEmbed embed.FS
|
||||
6
llm/llm_windows.go
Normal file
6
llm/llm_windows.go
Normal file
@@ -0,0 +1,6 @@
|
||||
package llm
|
||||
|
||||
import "embed"
|
||||
|
||||
// unused on windows
|
||||
var libEmbed embed.FS
|
||||
188
llm/memory.go
Normal file
188
llm/memory.go
Normal file
@@ -0,0 +1,188 @@
|
||||
package llm
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"os"
|
||||
"strconv"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/gpu"
|
||||
)
|
||||
|
||||
// This algorithm looks for a complete fit to determine if we need to unload other models
|
||||
func PredictServerFit(allGpus gpu.GpuInfoList, ggml *GGML, adapters, projectors []string, opts api.Options) (bool, uint64) {
|
||||
var estimatedVRAM uint64
|
||||
if opts.NumCtx > int(ggml.KV().ContextLength()) {
|
||||
slog.Warn("requested context length is greater than model max context length", "requested", opts.NumCtx, "model", ggml.KV().ContextLength())
|
||||
opts.NumCtx = int(ggml.KV().ContextLength())
|
||||
}
|
||||
|
||||
if opts.NumCtx < 4 {
|
||||
opts.NumCtx = 4
|
||||
}
|
||||
|
||||
// Split up the GPUs by type and try them
|
||||
for _, gpus := range allGpus.ByLibrary() {
|
||||
var layerCount int
|
||||
layerCount, estimatedVRAM = EstimateGPULayers(gpus, ggml, projectors, opts)
|
||||
if opts.NumGPU < 0 {
|
||||
if layerCount > 0 && layerCount >= int(ggml.KV().BlockCount()+1) {
|
||||
return true, estimatedVRAM
|
||||
}
|
||||
} else {
|
||||
if layerCount > 0 && layerCount >= opts.NumGPU {
|
||||
return true, estimatedVRAM
|
||||
}
|
||||
}
|
||||
}
|
||||
return false, estimatedVRAM
|
||||
}
|
||||
|
||||
// Given a model and one or more GPU targets, predict how many layers and bytes we can load
|
||||
// The GPUs provided must all be the same Library
|
||||
func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts api.Options) (int, uint64) {
|
||||
if gpus[0].Library == "cpu" {
|
||||
return 0, 0
|
||||
}
|
||||
var memoryAvailable uint64
|
||||
for _, info := range gpus {
|
||||
memoryAvailable += info.FreeMemory
|
||||
}
|
||||
userLimit := os.Getenv("OLLAMA_MAX_VRAM")
|
||||
if userLimit != "" {
|
||||
avail, err := strconv.ParseUint(userLimit, 10, 64)
|
||||
if err != nil {
|
||||
slog.Error("invalid setting, ignoring", "OLLAMA_MAX_VRAM", userLimit, "error", err)
|
||||
} else {
|
||||
slog.Info("user override memory limit", "OLLAMA_MAX_VRAM", avail, "actual", memoryAvailable)
|
||||
memoryAvailable = avail
|
||||
}
|
||||
}
|
||||
|
||||
slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", format.HumanBytes2(memoryAvailable))
|
||||
|
||||
// TODO - this is probably wrong, first GPU vs secondaries will have different overheads
|
||||
memoryMinimum := gpus[0].MinimumMemory
|
||||
|
||||
for _, projector := range projectors {
|
||||
memoryMinimum += projectorMemoryRequirements(projector)
|
||||
|
||||
// multimodal models require at least 2048 context
|
||||
opts.NumCtx = max(opts.NumCtx, 2048)
|
||||
}
|
||||
|
||||
// fp16 k,v = (1 (k) + 1 (v)) * sizeof(float16) * n_ctx * n_layer * n_embd / n_head * n_head_kv
|
||||
var kv uint64 = 2 * 2 * uint64(opts.NumCtx) * ggml.KV().BlockCount() * ggml.KV().EmbeddingLength() / ggml.KV().HeadCount() * ggml.KV().HeadCountKV()
|
||||
|
||||
graphPartialOffload, graphFullOffload := ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)))
|
||||
if graphPartialOffload == 0 {
|
||||
graphPartialOffload = ggml.KV().GQA() * kv / 6
|
||||
}
|
||||
|
||||
if graphFullOffload == 0 {
|
||||
graphFullOffload = graphPartialOffload
|
||||
}
|
||||
|
||||
graphFullOffload *= uint64(len(gpus))
|
||||
graphPartialOffload *= uint64(len(gpus))
|
||||
|
||||
// memoryRequiredTotal represents the memory required for full GPU offloading (all layers)
|
||||
memoryRequiredTotal := memoryMinimum + graphFullOffload
|
||||
|
||||
// memoryRequiredPartial represents the memory required for partial GPU offloading (n > 0, n < layers)
|
||||
memoryRequiredPartial := memoryMinimum + graphPartialOffload
|
||||
|
||||
if memoryRequiredPartial > memoryAvailable {
|
||||
slog.Debug("insufficient VRAM to load any model layers")
|
||||
return 0, 0
|
||||
}
|
||||
|
||||
layers := ggml.Tensors().Layers()
|
||||
|
||||
var memoryLayerOutput uint64
|
||||
if layer, ok := layers["output_norm"]; ok {
|
||||
memoryLayerOutput += layer.size()
|
||||
}
|
||||
|
||||
if layer, ok := layers["output"]; ok {
|
||||
memoryLayerOutput += layer.size()
|
||||
} else if layer, ok := layers["token_embd"]; ok {
|
||||
memoryLayerOutput += layer.size()
|
||||
}
|
||||
|
||||
if gpus[0].Library == "metal" && opts.UseMMap {
|
||||
// memory is preallocated for output tensors
|
||||
memoryRequiredTotal += memoryLayerOutput
|
||||
memoryRequiredPartial += memoryLayerOutput
|
||||
}
|
||||
|
||||
var layerCount int
|
||||
for i := 0; i < int(ggml.KV().BlockCount()); i++ {
|
||||
memoryLayer := layers[fmt.Sprintf("blk.%d", i)].size()
|
||||
|
||||
// KV is proportional to the number of layers
|
||||
memoryLayer += kv / ggml.KV().BlockCount()
|
||||
|
||||
memoryRequiredTotal += memoryLayer
|
||||
if memoryAvailable > memoryRequiredPartial+memoryLayer {
|
||||
memoryRequiredPartial += memoryLayer
|
||||
layerCount++
|
||||
}
|
||||
}
|
||||
|
||||
if gpus[0].Library != "metal" || !opts.UseMMap {
|
||||
// memory was not preallocated for output tensors
|
||||
memoryRequiredTotal += memoryLayerOutput
|
||||
}
|
||||
|
||||
if memoryAvailable > memoryRequiredTotal {
|
||||
layerCount = int(ggml.KV().BlockCount()) + 1
|
||||
memoryRequiredPartial = memoryRequiredTotal
|
||||
}
|
||||
|
||||
memoryWeights := memoryRequiredTotal - memoryMinimum - graphFullOffload - kv
|
||||
|
||||
slog.Info(
|
||||
"offload to gpu",
|
||||
slog.Group(
|
||||
"layers",
|
||||
// actual number of layers offloaded
|
||||
"real", opts.NumGPU,
|
||||
// estimated number of layers that can be offloaded
|
||||
"estimate", layerCount,
|
||||
),
|
||||
slog.Group(
|
||||
"memory",
|
||||
// memory available for offloading
|
||||
"available", format.HumanBytes2(memoryAvailable),
|
||||
slog.Group(
|
||||
"required",
|
||||
// memory required for full offloading
|
||||
"full", format.HumanBytes2(memoryRequiredTotal),
|
||||
// memory required to offload layers.estimate layers
|
||||
"partial", format.HumanBytes2(memoryRequiredPartial),
|
||||
// memory of KV cache
|
||||
"kv", format.HumanBytes2(kv),
|
||||
),
|
||||
slog.Group(
|
||||
"weights",
|
||||
// memory of the weights
|
||||
"total", format.HumanBytes2(memoryWeights),
|
||||
// memory of repeating layers
|
||||
"repeating", format.HumanBytes2(memoryWeights-memoryLayerOutput),
|
||||
// memory of non-repeating layers
|
||||
"nonrepeating", format.HumanBytes2(memoryLayerOutput),
|
||||
),
|
||||
slog.Group(
|
||||
"graph",
|
||||
// memory of graph when fully offloaded
|
||||
"full", format.HumanBytes2(graphFullOffload),
|
||||
// memory of graph when not fully offloaded
|
||||
"partial", format.HumanBytes2(graphPartialOffload),
|
||||
),
|
||||
),
|
||||
)
|
||||
return layerCount, uint64(memoryRequiredPartial)
|
||||
}
|
||||
12
llm/patches/02-clip-log.diff
Normal file
12
llm/patches/02-clip-log.diff
Normal file
@@ -0,0 +1,12 @@
|
||||
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
|
||||
index e431c7f7..f077e688 100644
|
||||
--- a/examples/llava/clip.cpp
|
||||
+++ b/examples/llava/clip.cpp
|
||||
@@ -3,6 +3,7 @@
|
||||
// I'll gradually clean and extend it
|
||||
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
|
||||
#include "clip.h"
|
||||
+#include "common.h"
|
||||
#include "log.h"
|
||||
#include "ggml.h"
|
||||
#include "ggml-alloc.h"
|
||||
@@ -1,13 +0,0 @@
|
||||
diff --git a/llama.cpp b/llama.cpp
|
||||
index b27aa272..99372f9c 100644
|
||||
--- a/llama.cpp
|
||||
+++ b/llama.cpp
|
||||
@@ -9360,7 +9360,7 @@ struct llm_tokenizer_wpm {
|
||||
}
|
||||
|
||||
uint32_t to_lower(uint32_t code) {
|
||||
- static const std::locale locale("en_US.UTF-8");
|
||||
+ static const std::locale locale("");
|
||||
#if defined(_WIN32)
|
||||
if (code > 0xFFFF) {
|
||||
return code;
|
||||
45
llm/patches/04-metal.diff
Normal file
45
llm/patches/04-metal.diff
Normal file
@@ -0,0 +1,45 @@
|
||||
diff --git a/ggml-metal.m b/ggml-metal.m
|
||||
index 0207b787..b5e9884b 100644
|
||||
--- a/ggml-metal.m
|
||||
+++ b/ggml-metal.m
|
||||
@@ -1396,27 +1396,23 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
// to the matrix-vector kernel
|
||||
int ne11_mm_min = 1;
|
||||
|
||||
-#if 0
|
||||
// the numbers below are measured on M2 Ultra for 7B and 13B models
|
||||
// these numbers do not translate to other devices or model sizes
|
||||
// TODO: need to find a better approach
|
||||
- if ([ctx->device.name isEqualToString:@"Apple M2 Ultra"]) {
|
||||
- switch (src0t) {
|
||||
- case GGML_TYPE_F16: ne11_mm_min = 2; break;
|
||||
- case GGML_TYPE_Q8_0: ne11_mm_min = 7; break;
|
||||
- case GGML_TYPE_Q2_K: ne11_mm_min = 15; break;
|
||||
- case GGML_TYPE_Q3_K: ne11_mm_min = 7; break;
|
||||
- case GGML_TYPE_Q4_0:
|
||||
- case GGML_TYPE_Q4_1: ne11_mm_min = 15; break;
|
||||
- case GGML_TYPE_Q4_K: ne11_mm_min = 11; break;
|
||||
- case GGML_TYPE_Q5_0: // not tested yet
|
||||
- case GGML_TYPE_Q5_1: ne11_mm_min = 13; break; // not tested yet
|
||||
- case GGML_TYPE_Q5_K: ne11_mm_min = 7; break;
|
||||
- case GGML_TYPE_Q6_K: ne11_mm_min = 7; break;
|
||||
- default: ne11_mm_min = 1; break;
|
||||
- }
|
||||
+ switch (src0t) {
|
||||
+ case GGML_TYPE_F16: ne11_mm_min = 2; break;
|
||||
+ case GGML_TYPE_Q8_0: ne11_mm_min = 7; break;
|
||||
+ case GGML_TYPE_Q2_K: ne11_mm_min = 15; break;
|
||||
+ case GGML_TYPE_Q3_K: ne11_mm_min = 7; break;
|
||||
+ case GGML_TYPE_Q4_0:
|
||||
+ case GGML_TYPE_Q4_1: ne11_mm_min = 15; break;
|
||||
+ case GGML_TYPE_Q4_K: ne11_mm_min = 11; break;
|
||||
+ case GGML_TYPE_Q5_0: // not tested yet
|
||||
+ case GGML_TYPE_Q5_1: ne11_mm_min = 13; break; // not tested yet
|
||||
+ case GGML_TYPE_Q5_K: ne11_mm_min = 7; break;
|
||||
+ case GGML_TYPE_Q6_K: ne11_mm_min = 7; break;
|
||||
+ default: ne11_mm_min = 1; break;
|
||||
}
|
||||
-#endif
|
||||
|
||||
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
|
||||
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
|
||||
231
llm/payload.go
Normal file
231
llm/payload.go
Normal file
@@ -0,0 +1,231 @@
|
||||
package llm
|
||||
|
||||
import (
|
||||
"compress/gzip"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"io/fs"
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"strings"
|
||||
|
||||
"golang.org/x/exp/slices"
|
||||
"golang.org/x/sync/errgroup"
|
||||
|
||||
"github.com/ollama/ollama/gpu"
|
||||
)
|
||||
|
||||
var errPayloadMissing = errors.New("expected payloads not included in this build of ollama")
|
||||
|
||||
func Init() error {
|
||||
payloadsDir, err := gpu.PayloadsDir()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if runtime.GOOS != "windows" {
|
||||
slog.Info("extracting embedded files", "dir", payloadsDir)
|
||||
binGlob := "build/*/*/*/bin/*"
|
||||
|
||||
// extract server libraries
|
||||
err = extractFiles(payloadsDir, binGlob)
|
||||
if err != nil {
|
||||
return fmt.Errorf("extract binaries: %v", err)
|
||||
}
|
||||
}
|
||||
|
||||
var variants []string
|
||||
for v := range availableServers() {
|
||||
variants = append(variants, v)
|
||||
}
|
||||
slog.Info(fmt.Sprintf("Dynamic LLM libraries %v", variants))
|
||||
slog.Debug("Override detection logic by setting OLLAMA_LLM_LIBRARY")
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// binary names may contain an optional variant separated by '_'
|
||||
// For example, "ollama_rocm_v6" and "ollama_rocm_v5" or "ollama_cpu" and "ollama_cpu_avx2"
|
||||
// Any library without a variant is the lowest common denominator
|
||||
func availableServers() map[string]string {
|
||||
payloadsDir, err := gpu.PayloadsDir()
|
||||
if err != nil {
|
||||
slog.Error("payload lookup error", "error", err)
|
||||
return nil
|
||||
}
|
||||
|
||||
// glob payloadsDir for files that start with ollama_
|
||||
pattern := filepath.Join(payloadsDir, "*")
|
||||
|
||||
files, err := filepath.Glob(pattern)
|
||||
if err != nil {
|
||||
slog.Debug("could not glob", "pattern", pattern, "error", err)
|
||||
return nil
|
||||
}
|
||||
|
||||
servers := make(map[string]string)
|
||||
for _, file := range files {
|
||||
slog.Debug("availableServers : found", "file", file)
|
||||
servers[filepath.Base(file)] = file
|
||||
}
|
||||
|
||||
return servers
|
||||
}
|
||||
|
||||
// serversForGpu returns a list of compatible servers give the provided GPU
|
||||
// info, ordered by performance. assumes Init() has been called
|
||||
// TODO - switch to metadata based mapping
|
||||
func serversForGpu(info gpu.GpuInfo) []string {
|
||||
// glob workDir for files that start with ollama_
|
||||
availableServers := availableServers()
|
||||
requested := info.Library
|
||||
if info.Variant != "" {
|
||||
requested += "_" + info.Variant
|
||||
}
|
||||
|
||||
servers := []string{}
|
||||
|
||||
// exact match first
|
||||
for a := range availableServers {
|
||||
if a == requested {
|
||||
servers = []string{a}
|
||||
|
||||
if a == "metal" {
|
||||
return servers
|
||||
}
|
||||
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
alt := []string{}
|
||||
|
||||
// Then for GPUs load alternates and sort the list for consistent load ordering
|
||||
if info.Library != "cpu" {
|
||||
for a := range availableServers {
|
||||
if info.Library == strings.Split(a, "_")[0] && a != requested {
|
||||
alt = append(alt, a)
|
||||
}
|
||||
}
|
||||
|
||||
slices.Sort(alt)
|
||||
servers = append(servers, alt...)
|
||||
}
|
||||
|
||||
// Load up the best CPU variant if not primary requested
|
||||
if info.Library != "cpu" {
|
||||
variant := gpu.GetCPUVariant()
|
||||
// If no variant, then we fall back to default
|
||||
// If we have a variant, try that if we find an exact match
|
||||
// Attempting to run the wrong CPU instructions will panic the
|
||||
// process
|
||||
if variant != "" {
|
||||
for cmp := range availableServers {
|
||||
if cmp == "cpu_"+variant {
|
||||
servers = append(servers, cmp)
|
||||
break
|
||||
}
|
||||
}
|
||||
} else {
|
||||
servers = append(servers, "cpu")
|
||||
}
|
||||
}
|
||||
|
||||
if len(servers) == 0 {
|
||||
servers = []string{"cpu"}
|
||||
}
|
||||
|
||||
return servers
|
||||
}
|
||||
|
||||
// Return the optimal server for this CPU architecture
|
||||
func serverForCpu() string {
|
||||
if runtime.GOOS == "darwin" && runtime.GOARCH == "arm64" {
|
||||
return "metal"
|
||||
}
|
||||
variant := gpu.GetCPUVariant()
|
||||
availableServers := availableServers()
|
||||
if variant != "" {
|
||||
for cmp := range availableServers {
|
||||
if cmp == "cpu_"+variant {
|
||||
return cmp
|
||||
}
|
||||
}
|
||||
}
|
||||
return "cpu"
|
||||
}
|
||||
|
||||
// extract extracts the embedded files to the target directory
|
||||
func extractFiles(targetDir string, glob string) error {
|
||||
files, err := fs.Glob(libEmbed, glob)
|
||||
if err != nil || len(files) == 0 {
|
||||
return errPayloadMissing
|
||||
}
|
||||
|
||||
if err := os.MkdirAll(targetDir, 0o755); err != nil {
|
||||
return fmt.Errorf("extractFiles could not mkdir %s: %v", targetDir, err)
|
||||
}
|
||||
|
||||
g := new(errgroup.Group)
|
||||
|
||||
// build/$OS/$GOARCH/$VARIANT/{bin,lib}/$FILE
|
||||
for _, file := range files {
|
||||
filename := file
|
||||
|
||||
variant := filepath.Base(filepath.Dir(filepath.Dir(filename)))
|
||||
|
||||
slog.Debug("extracting", "variant", variant, "file", filename)
|
||||
|
||||
g.Go(func() error {
|
||||
srcf, err := libEmbed.Open(filename)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer srcf.Close()
|
||||
|
||||
src := io.Reader(srcf)
|
||||
if strings.HasSuffix(filename, ".gz") {
|
||||
src, err = gzip.NewReader(src)
|
||||
if err != nil {
|
||||
return fmt.Errorf("decompress payload %s: %v", filename, err)
|
||||
}
|
||||
filename = strings.TrimSuffix(filename, ".gz")
|
||||
}
|
||||
|
||||
variantDir := filepath.Join(targetDir, variant)
|
||||
if err := os.MkdirAll(variantDir, 0o755); err != nil {
|
||||
return fmt.Errorf("extractFiles could not mkdir %s: %v", variantDir, err)
|
||||
}
|
||||
|
||||
base := filepath.Base(filename)
|
||||
destFilename := filepath.Join(variantDir, base)
|
||||
|
||||
_, err = os.Stat(destFilename)
|
||||
switch {
|
||||
case errors.Is(err, os.ErrNotExist):
|
||||
destFile, err := os.OpenFile(destFilename, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0o755)
|
||||
if err != nil {
|
||||
return fmt.Errorf("write payload %s: %v", filename, err)
|
||||
}
|
||||
defer destFile.Close()
|
||||
if _, err := io.Copy(destFile, src); err != nil {
|
||||
return fmt.Errorf("copy payload %s: %v", filename, err)
|
||||
}
|
||||
case err != nil:
|
||||
return fmt.Errorf("stat payload %s: %v", filename, err)
|
||||
}
|
||||
return nil
|
||||
})
|
||||
}
|
||||
|
||||
err = g.Wait()
|
||||
if err != nil {
|
||||
// If we fail to extract, the payload dir is unusable, so cleanup whatever we extracted
|
||||
gpu.Cleanup()
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
@@ -1,233 +0,0 @@
|
||||
package llm
|
||||
|
||||
import (
|
||||
"compress/gzip"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"io/fs"
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"strings"
|
||||
"sync"
|
||||
|
||||
"golang.org/x/exp/slices"
|
||||
"golang.org/x/sync/errgroup"
|
||||
|
||||
"github.com/ollama/ollama/gpu"
|
||||
)
|
||||
|
||||
// Libraries names may contain an optional variant separated by '_'
|
||||
// For example, "rocm_v6" and "rocm_v5" or "cpu" and "cpu_avx2"
|
||||
// Any library without a variant is the lowest common denominator
|
||||
var availableDynLibs = map[string]string{}
|
||||
|
||||
const pathComponentCount = 7
|
||||
|
||||
// getDynLibs returns an ordered list of LLM libraries to try, starting with the best
|
||||
func getDynLibs(gpuInfo gpu.GpuInfo) []string {
|
||||
// Short circuit if we know we're using the default built-in (darwin only)
|
||||
if gpuInfo.Library == "default" {
|
||||
return []string{"default"}
|
||||
}
|
||||
// TODO - temporary until we have multiple CPU variations for Darwin
|
||||
// Short circuit on darwin with metal only
|
||||
if len(availableDynLibs) == 1 {
|
||||
if _, onlyMetal := availableDynLibs["metal"]; onlyMetal {
|
||||
return []string{availableDynLibs["metal"]}
|
||||
}
|
||||
}
|
||||
|
||||
exactMatch := ""
|
||||
dynLibs := []string{}
|
||||
altDynLibs := []string{}
|
||||
requested := gpuInfo.Library
|
||||
if gpuInfo.Variant != "" {
|
||||
requested += "_" + gpuInfo.Variant
|
||||
}
|
||||
// Try to find an exact match
|
||||
for cmp := range availableDynLibs {
|
||||
if requested == cmp {
|
||||
exactMatch = cmp
|
||||
dynLibs = []string{availableDynLibs[cmp]}
|
||||
break
|
||||
}
|
||||
}
|
||||
// Then for GPUs load alternates and sort the list for consistent load ordering
|
||||
if gpuInfo.Library != "cpu" {
|
||||
for cmp := range availableDynLibs {
|
||||
if gpuInfo.Library == strings.Split(cmp, "_")[0] && cmp != exactMatch {
|
||||
altDynLibs = append(altDynLibs, cmp)
|
||||
}
|
||||
}
|
||||
slices.Sort(altDynLibs)
|
||||
for _, altDynLib := range altDynLibs {
|
||||
dynLibs = append(dynLibs, availableDynLibs[altDynLib])
|
||||
}
|
||||
}
|
||||
|
||||
// Load up the best CPU variant if not primary requested
|
||||
if gpuInfo.Library != "cpu" {
|
||||
variant := gpu.GetCPUVariant()
|
||||
// If no variant, then we fall back to default
|
||||
// If we have a variant, try that if we find an exact match
|
||||
// Attempting to run the wrong CPU instructions will panic the
|
||||
// process
|
||||
if variant != "" {
|
||||
for cmp := range availableDynLibs {
|
||||
if cmp == "cpu_"+variant {
|
||||
dynLibs = append(dynLibs, availableDynLibs[cmp])
|
||||
break
|
||||
}
|
||||
}
|
||||
} else {
|
||||
dynLibs = append(dynLibs, availableDynLibs["cpu"])
|
||||
}
|
||||
}
|
||||
|
||||
// Finally, if we didn't find any matches, LCD CPU FTW
|
||||
if len(dynLibs) == 0 {
|
||||
dynLibs = []string{availableDynLibs["cpu"]}
|
||||
}
|
||||
slog.Debug(fmt.Sprintf("ordered list of LLM libraries to try %v", dynLibs))
|
||||
return dynLibs
|
||||
}
|
||||
|
||||
func rocmDynLibPresent() bool {
|
||||
for dynLibName := range availableDynLibs {
|
||||
if strings.HasPrefix(dynLibName, "rocm") {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
func nativeInit() error {
|
||||
payloadsDir, err := gpu.PayloadsDir()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
slog.Info(fmt.Sprintf("Extracting dynamic libraries to %s ...", payloadsDir))
|
||||
|
||||
libs, err := extractDynamicLibs(payloadsDir, "llama.cpp/build/*/*/*/lib/*")
|
||||
if err != nil {
|
||||
if errors.Is(err, payloadMissing) {
|
||||
slog.Info(fmt.Sprintf("%s", payloadMissing))
|
||||
return nil
|
||||
}
|
||||
return err
|
||||
}
|
||||
for _, lib := range libs {
|
||||
// The last dir component is the variant name
|
||||
variant := filepath.Base(filepath.Dir(lib))
|
||||
availableDynLibs[variant] = lib
|
||||
}
|
||||
|
||||
if err := verifyDriverAccess(); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// Report which dynamic libraries we have loaded to assist troubleshooting
|
||||
variants := make([]string, len(availableDynLibs))
|
||||
i := 0
|
||||
for variant := range availableDynLibs {
|
||||
variants[i] = variant
|
||||
i++
|
||||
}
|
||||
slog.Info(fmt.Sprintf("Dynamic LLM libraries %v", variants))
|
||||
slog.Debug("Override detection logic by setting OLLAMA_LLM_LIBRARY")
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func extractDynamicLibs(payloadsDir, glob string) ([]string, error) {
|
||||
files, err := fs.Glob(libEmbed, glob)
|
||||
if err != nil || len(files) == 0 {
|
||||
return nil, payloadMissing
|
||||
}
|
||||
|
||||
var mu sync.Mutex
|
||||
var libs []string
|
||||
var g errgroup.Group
|
||||
for _, file := range files {
|
||||
pathComps := strings.Split(file, "/")
|
||||
if len(pathComps) != pathComponentCount {
|
||||
slog.Error(fmt.Sprintf("unexpected payload components: %v", pathComps))
|
||||
continue
|
||||
}
|
||||
|
||||
file := file
|
||||
g.Go(func() error {
|
||||
// llama.cpp/build/$OS/$GOARCH/$VARIANT/lib/$LIBRARY
|
||||
// Include the variant in the path to avoid conflicts between multiple server libs
|
||||
targetDir := filepath.Join(payloadsDir, pathComps[pathComponentCount-3])
|
||||
srcFile, err := libEmbed.Open(file)
|
||||
if err != nil {
|
||||
return fmt.Errorf("read payload %s: %v", file, err)
|
||||
}
|
||||
defer srcFile.Close()
|
||||
if err := os.MkdirAll(targetDir, 0o755); err != nil {
|
||||
return fmt.Errorf("create payload lib dir %s: %v", payloadsDir, err)
|
||||
}
|
||||
src := io.Reader(srcFile)
|
||||
filename := file
|
||||
if strings.HasSuffix(file, ".gz") {
|
||||
src, err = gzip.NewReader(src)
|
||||
if err != nil {
|
||||
return fmt.Errorf("decompress payload %s: %v", file, err)
|
||||
}
|
||||
filename = strings.TrimSuffix(filename, ".gz")
|
||||
}
|
||||
|
||||
destFile := filepath.Join(targetDir, filepath.Base(filename))
|
||||
if strings.Contains(destFile, "server") {
|
||||
mu.Lock()
|
||||
libs = append(libs, destFile)
|
||||
mu.Unlock()
|
||||
}
|
||||
|
||||
destFp, err := os.OpenFile(destFile, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0o755)
|
||||
if err != nil {
|
||||
return fmt.Errorf("write payload %s: %v", file, err)
|
||||
}
|
||||
defer destFp.Close()
|
||||
if _, err := io.Copy(destFp, src); err != nil {
|
||||
return fmt.Errorf("copy payload %s: %v", file, err)
|
||||
}
|
||||
return nil
|
||||
})
|
||||
}
|
||||
err = g.Wait()
|
||||
if err != nil {
|
||||
// If we fail to extract, the payload dir is unusable, so cleanup whatever we extracted
|
||||
gpu.Cleanup()
|
||||
return nil, err
|
||||
}
|
||||
return libs, nil
|
||||
}
|
||||
|
||||
func verifyDriverAccess() error {
|
||||
if runtime.GOOS != "linux" {
|
||||
return nil
|
||||
}
|
||||
// Only check ROCm access if we have the dynamic lib loaded
|
||||
if rocmDynLibPresent() {
|
||||
// Verify we have permissions - either running as root, or we have group access to the driver
|
||||
fd, err := os.OpenFile("/dev/kfd", os.O_RDWR, 0666)
|
||||
if err != nil {
|
||||
if errors.Is(err, fs.ErrPermission) {
|
||||
return fmt.Errorf("Radeon card detected, but permissions not set up properly. Either run ollama as root, or add you user account to the render group.")
|
||||
} else if errors.Is(err, fs.ErrNotExist) {
|
||||
// expected behavior without a radeon card
|
||||
return nil
|
||||
}
|
||||
|
||||
return fmt.Errorf("failed to check permission on /dev/kfd: %w", err)
|
||||
}
|
||||
fd.Close()
|
||||
}
|
||||
return nil
|
||||
}
|
||||
@@ -1,8 +0,0 @@
|
||||
package llm
|
||||
|
||||
import (
|
||||
"embed"
|
||||
)
|
||||
|
||||
//go:embed llama.cpp/build/darwin/x86_64/*/lib/*.dylib*
|
||||
var libEmbed embed.FS
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user