Compare commits

..

1 Commits

Author SHA1 Message Date
Devon Rifkin
2e9d9acf18 add ability to turn on debug request logging
If `OLLAMA_DEBUG_LOG_REQUESTS` is set, then on server startup a temp
folder will be created. Upon any inference request, the body will be
logged to a file in this folder, as well as a small shell script to
"replay" the request using cURL.

This is just intended for debugging scenarios, not as something to turn
on normally.
2026-02-05 15:14:35 -08:00
169 changed files with 7933 additions and 18919 deletions

View File

@@ -1,22 +0,0 @@
name: test-install
on:
pull_request:
paths:
- 'scripts/install.sh'
- '.github/workflows/test-install.yaml'
jobs:
test:
strategy:
matrix:
os: [ubuntu-latest, macos-latest]
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v4
- name: Run install script
run: sh ./scripts/install.sh
env:
OLLAMA_NO_START: 1 # do not start app
- name: Verify ollama is available
run: ollama --version

View File

@@ -518,26 +518,24 @@ func mapStopReason(reason string, hasToolCalls bool) string {
// StreamConverter manages state for converting Ollama streaming responses to Anthropic format
type StreamConverter struct {
ID string
Model string
firstWrite bool
contentIndex int
inputTokens int
outputTokens int
estimatedInputTokens int // Estimated tokens from request (used when actual metrics are 0)
thinkingStarted bool
thinkingDone bool
textStarted bool
toolCallsSent map[string]bool
ID string
Model string
firstWrite bool
contentIndex int
inputTokens int
outputTokens int
thinkingStarted bool
thinkingDone bool
textStarted bool
toolCallsSent map[string]bool
}
func NewStreamConverter(id, model string, estimatedInputTokens int) *StreamConverter {
func NewStreamConverter(id, model string) *StreamConverter {
return &StreamConverter{
ID: id,
Model: model,
firstWrite: true,
estimatedInputTokens: estimatedInputTokens,
toolCallsSent: make(map[string]bool),
ID: id,
Model: model,
firstWrite: true,
toolCallsSent: make(map[string]bool),
}
}
@@ -553,11 +551,7 @@ func (c *StreamConverter) Process(r api.ChatResponse) []StreamEvent {
if c.firstWrite {
c.firstWrite = false
// Use actual metrics if available, otherwise use estimate
c.inputTokens = r.Metrics.PromptEvalCount
if c.inputTokens == 0 && c.estimatedInputTokens > 0 {
c.inputTokens = c.estimatedInputTokens
}
events = append(events, StreamEvent{
Event: "message_start",
@@ -785,123 +779,3 @@ func mapToArgs(m map[string]any) api.ToolCallFunctionArguments {
}
return args
}
// CountTokensRequest represents an Anthropic count_tokens request
type CountTokensRequest struct {
Model string `json:"model"`
Messages []MessageParam `json:"messages"`
System any `json:"system,omitempty"`
Tools []Tool `json:"tools,omitempty"`
Thinking *ThinkingConfig `json:"thinking,omitempty"`
}
// EstimateInputTokens estimates input tokens from a MessagesRequest (reuses CountTokensRequest logic)
func EstimateInputTokens(req MessagesRequest) int {
return estimateTokens(CountTokensRequest{
Model: req.Model,
Messages: req.Messages,
System: req.System,
Tools: req.Tools,
Thinking: req.Thinking,
})
}
// CountTokensResponse represents an Anthropic count_tokens response
type CountTokensResponse struct {
InputTokens int `json:"input_tokens"`
}
// estimateTokens returns a rough estimate of tokens (len/4).
// TODO: Replace with actual tokenization via Tokenize API for accuracy.
// Current len/4 heuristic is a rough approximation (~4 chars/token average).
func estimateTokens(req CountTokensRequest) int {
var totalLen int
// Count system prompt
if req.System != nil {
totalLen += countAnyContent(req.System)
}
// Count messages
for _, msg := range req.Messages {
// Count role (always present)
totalLen += len(msg.Role)
// Count content
contentLen := countAnyContent(msg.Content)
totalLen += contentLen
}
for _, tool := range req.Tools {
totalLen += len(tool.Name) + len(tool.Description) + len(tool.InputSchema)
}
// Return len/4 as rough token estimate, minimum 1 if there's any content
tokens := totalLen / 4
if tokens == 0 && (len(req.Messages) > 0 || req.System != nil) {
tokens = 1
}
return tokens
}
func countAnyContent(content any) int {
if content == nil {
return 0
}
switch c := content.(type) {
case string:
return len(c)
case []any:
total := 0
for _, block := range c {
total += countContentBlock(block)
}
return total
default:
if data, err := json.Marshal(content); err == nil {
return len(data)
}
return 0
}
}
func countContentBlock(block any) int {
blockMap, ok := block.(map[string]any)
if !ok {
if s, ok := block.(string); ok {
return len(s)
}
return 0
}
total := 0
blockType, _ := blockMap["type"].(string)
if text, ok := blockMap["text"].(string); ok {
total += len(text)
}
if thinking, ok := blockMap["thinking"].(string); ok {
total += len(thinking)
}
if blockType == "tool_use" {
if data, err := json.Marshal(blockMap); err == nil {
total += len(data)
}
}
if blockType == "tool_result" {
if data, err := json.Marshal(blockMap); err == nil {
total += len(data)
}
}
if source, ok := blockMap["source"].(map[string]any); ok {
if data, ok := source["data"].(string); ok {
total += len(data)
}
}
return total
}

View File

@@ -321,6 +321,8 @@ func TestFromMessagesRequest_WithThinking(t *testing.T) {
}
}
// TestFromMessagesRequest_ThinkingOnlyBlock verifies that messages containing only
// a thinking block (no text, images, or tool calls) are preserved and not dropped.
func TestFromMessagesRequest_ThinkingOnlyBlock(t *testing.T) {
req := MessagesRequest{
Model: "test-model",
@@ -603,7 +605,7 @@ func TestGenerateMessageID(t *testing.T) {
}
func TestStreamConverter_Basic(t *testing.T) {
conv := NewStreamConverter("msg_123", "test-model", 0)
conv := NewStreamConverter("msg_123", "test-model")
// First chunk
resp1 := api.ChatResponse{
@@ -676,7 +678,7 @@ func TestStreamConverter_Basic(t *testing.T) {
}
func TestStreamConverter_WithToolCalls(t *testing.T) {
conv := NewStreamConverter("msg_123", "test-model", 0)
conv := NewStreamConverter("msg_123", "test-model")
resp := api.ChatResponse{
Model: "test-model",
@@ -729,7 +731,7 @@ func TestStreamConverter_WithToolCalls(t *testing.T) {
func TestStreamConverter_ToolCallWithUnmarshalableArgs(t *testing.T) {
// Test that unmarshalable arguments (like channels) are handled gracefully
// and don't cause a panic or corrupt stream
conv := NewStreamConverter("msg_123", "test-model", 0)
conv := NewStreamConverter("msg_123", "test-model")
// Create a channel which cannot be JSON marshaled
unmarshalable := make(chan int)
@@ -776,7 +778,7 @@ func TestStreamConverter_ToolCallWithUnmarshalableArgs(t *testing.T) {
func TestStreamConverter_MultipleToolCallsWithMixedValidity(t *testing.T) {
// Test that valid tool calls still work when mixed with invalid ones
conv := NewStreamConverter("msg_123", "test-model", 0)
conv := NewStreamConverter("msg_123", "test-model")
unmarshalable := make(chan int)
badArgs := api.NewToolCallFunctionArguments()
@@ -840,6 +842,10 @@ func TestStreamConverter_MultipleToolCallsWithMixedValidity(t *testing.T) {
}
}
// TestContentBlockJSON_EmptyFieldsPresent verifies that empty text and thinking fields
// are serialized in JSON output. The Anthropic SDK requires these fields to be present
// (even when empty) in content_block_start events to properly accumulate streaming deltas.
// Without these fields, the SDK throws: "TypeError: unsupported operand type(s) for +=: 'NoneType' and 'str'"
func TestContentBlockJSON_EmptyFieldsPresent(t *testing.T) {
tests := []struct {
name string
@@ -893,9 +899,11 @@ func TestContentBlockJSON_EmptyFieldsPresent(t *testing.T) {
}
}
// TestStreamConverter_ContentBlockStartIncludesEmptyFields verifies that content_block_start
// events include the required empty fields for SDK compatibility.
func TestStreamConverter_ContentBlockStartIncludesEmptyFields(t *testing.T) {
t.Run("text block start includes empty text", func(t *testing.T) {
conv := NewStreamConverter("msg_123", "test-model", 0)
conv := NewStreamConverter("msg_123", "test-model")
resp := api.ChatResponse{
Model: "test-model",
@@ -929,7 +937,7 @@ func TestStreamConverter_ContentBlockStartIncludesEmptyFields(t *testing.T) {
})
t.Run("thinking block start includes empty thinking", func(t *testing.T) {
conv := NewStreamConverter("msg_123", "test-model", 0)
conv := NewStreamConverter("msg_123", "test-model")
resp := api.ChatResponse{
Model: "test-model",
@@ -961,105 +969,3 @@ func TestStreamConverter_ContentBlockStartIncludesEmptyFields(t *testing.T) {
}
})
}
func TestEstimateTokens_SimpleMessage(t *testing.T) {
req := CountTokensRequest{
Model: "test-model",
Messages: []MessageParam{
{Role: "user", Content: "Hello, world!"},
},
}
tokens := estimateTokens(req)
// "user" (4) + "Hello, world!" (13) = 17 chars / 4 = 4 tokens
if tokens < 1 {
t.Errorf("expected at least 1 token, got %d", tokens)
}
// Sanity check: shouldn't be wildly off
if tokens > 10 {
t.Errorf("expected fewer than 10 tokens for short message, got %d", tokens)
}
}
func TestEstimateTokens_WithSystemPrompt(t *testing.T) {
req := CountTokensRequest{
Model: "test-model",
System: "You are a helpful assistant.",
Messages: []MessageParam{
{Role: "user", Content: "Hello"},
},
}
tokens := estimateTokens(req)
// System prompt adds to count
if tokens < 5 {
t.Errorf("expected at least 5 tokens with system prompt, got %d", tokens)
}
}
func TestEstimateTokens_WithTools(t *testing.T) {
req := CountTokensRequest{
Model: "test-model",
Messages: []MessageParam{
{Role: "user", Content: "What's the weather?"},
},
Tools: []Tool{
{
Name: "get_weather",
Description: "Get the current weather for a location",
InputSchema: json.RawMessage(`{"type":"object","properties":{"location":{"type":"string"}}}`),
},
},
}
tokens := estimateTokens(req)
// Tools add significant content
if tokens < 10 {
t.Errorf("expected at least 10 tokens with tools, got %d", tokens)
}
}
func TestEstimateTokens_WithThinking(t *testing.T) {
req := CountTokensRequest{
Model: "test-model",
Messages: []MessageParam{
{Role: "user", Content: "Hello"},
{
Role: "assistant",
Content: []any{
map[string]any{
"type": "thinking",
"thinking": "Let me think about this carefully...",
},
map[string]any{
"type": "text",
"text": "Here is my response.",
},
},
},
},
}
tokens := estimateTokens(req)
// Thinking content should be counted
if tokens < 10 {
t.Errorf("expected at least 10 tokens with thinking content, got %d", tokens)
}
}
func TestEstimateTokens_EmptyContent(t *testing.T) {
req := CountTokensRequest{
Model: "test-model",
Messages: []MessageParam{},
}
tokens := estimateTokens(req)
if tokens != 0 {
t.Errorf("expected 0 tokens for empty content, got %d", tokens)
}
}

View File

@@ -466,25 +466,3 @@ func (c *Client) Whoami(ctx context.Context) (*UserResponse, error) {
}
return &resp, nil
}
// AliasRequest is the request body for creating or updating a model alias.
type AliasRequest struct {
Alias string `json:"alias"`
Target string `json:"target"`
PrefixMatching bool `json:"prefix_matching,omitempty"`
}
// SetAliasExperimental creates or updates a model alias via the experimental aliases API.
func (c *Client) SetAliasExperimental(ctx context.Context, req *AliasRequest) error {
return c.do(ctx, http.MethodPost, "/api/experimental/aliases", req, nil)
}
// AliasDeleteRequest is the request body for deleting a model alias.
type AliasDeleteRequest struct {
Alias string `json:"alias"`
}
// DeleteAliasExperimental deletes a model alias via the experimental aliases API.
func (c *Client) DeleteAliasExperimental(ctx context.Context, req *AliasDeleteRequest) error {
return c.do(ctx, http.MethodDelete, "/api/experimental/aliases", req, nil)
}

View File

@@ -1763,7 +1763,7 @@ func checkServerHeartbeat(cmd *cobra.Command, _ []string) error {
return err
}
if err := startApp(cmd.Context(), client); err != nil {
return err
return fmt.Errorf("ollama server not responding - %w", err)
}
}
return nil

View File

@@ -1,23 +1,18 @@
package config
import (
"context"
"fmt"
"os"
"os/exec"
"path/filepath"
"runtime"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
)
// Claude implements Runner and AliasConfigurer for Claude Code integration
// Claude implements Runner for Claude Code integration
type Claude struct{}
// Compile-time check that Claude implements AliasConfigurer
var _ AliasConfigurer = (*Claude)(nil)
func (c *Claude) String() string { return "Claude Code" }
func (c *Claude) args(model string, extra []string) []string {
@@ -65,104 +60,3 @@ func (c *Claude) Run(model string, args []string) error {
)
return cmd.Run()
}
// ConfigureAliases sets up model aliases for Claude Code.
// model: the model to use (if empty, user will be prompted to select)
// aliases: existing alias configuration to preserve/update
// Cloud-only: subagent routing (fast model) is gated to cloud models only until
// there is a better strategy for prompt caching on local models.
func (c *Claude) ConfigureAliases(ctx context.Context, model string, existingAliases map[string]string, force bool) (map[string]string, bool, error) {
aliases := make(map[string]string)
for k, v := range existingAliases {
aliases[k] = v
}
if model != "" {
aliases["primary"] = model
}
if !force && aliases["primary"] != "" {
client, _ := api.ClientFromEnvironment()
if isCloudModel(ctx, client, aliases["primary"]) {
if isCloudModel(ctx, client, aliases["fast"]) {
return aliases, false, nil
}
} else {
delete(aliases, "fast")
return aliases, false, nil
}
}
items, existingModels, cloudModels, client, err := listModels(ctx)
if err != nil {
return nil, false, err
}
fmt.Fprintf(os.Stderr, "\n%sModel Configuration%s\n\n", ansiBold, ansiReset)
if aliases["primary"] == "" || force {
primary, err := selectPrompt("Select model:", items)
fmt.Fprintf(os.Stderr, "\033[3A\033[J")
if err != nil {
return nil, false, err
}
if err := pullIfNeeded(ctx, client, existingModels, primary); err != nil {
return nil, false, err
}
if err := ensureAuth(ctx, client, cloudModels, []string{primary}); err != nil {
return nil, false, err
}
aliases["primary"] = primary
}
if isCloudModel(ctx, client, aliases["primary"]) {
if aliases["fast"] == "" || !isCloudModel(ctx, client, aliases["fast"]) {
aliases["fast"] = aliases["primary"]
}
} else {
delete(aliases, "fast")
}
return aliases, true, nil
}
// SetAliases syncs the configured aliases to the Ollama server using prefix matching.
// Cloud-only: for local models (fast is empty), we delete any existing aliases to
// prevent stale routing to a previous cloud model.
func (c *Claude) SetAliases(ctx context.Context, aliases map[string]string) error {
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
prefixes := []string{"claude-sonnet-", "claude-haiku-"}
if aliases["fast"] == "" {
for _, prefix := range prefixes {
_ = client.DeleteAliasExperimental(ctx, &api.AliasDeleteRequest{Alias: prefix})
}
return nil
}
prefixAliases := map[string]string{
"claude-sonnet-": aliases["primary"],
"claude-haiku-": aliases["fast"],
}
var errs []string
for prefix, target := range prefixAliases {
req := &api.AliasRequest{
Alias: prefix,
Target: target,
PrefixMatching: true,
}
if err := client.SetAliasExperimental(ctx, req); err != nil {
errs = append(errs, prefix)
}
}
if len(errs) > 0 {
return fmt.Errorf("failed to set aliases: %v", errs)
}
return nil
}

View File

@@ -13,8 +13,7 @@ import (
)
type integration struct {
Models []string `json:"models"`
Aliases map[string]string `json:"aliases,omitempty"`
Models []string `json:"models"`
}
type config struct {
@@ -134,16 +133,8 @@ func saveIntegration(appName string, models []string) error {
return err
}
key := strings.ToLower(appName)
existing := cfg.Integrations[key]
var aliases map[string]string
if existing != nil && existing.Aliases != nil {
aliases = existing.Aliases
}
cfg.Integrations[key] = &integration{
Models: models,
Aliases: aliases,
cfg.Integrations[strings.ToLower(appName)] = &integration{
Models: models,
}
return save(cfg)
@@ -163,29 +154,6 @@ func loadIntegration(appName string) (*integration, error) {
return ic, nil
}
func saveAliases(appName string, aliases map[string]string) error {
if appName == "" {
return errors.New("app name cannot be empty")
}
cfg, err := load()
if err != nil {
return err
}
key := strings.ToLower(appName)
existing := cfg.Integrations[key]
if existing == nil {
existing = &integration{}
}
// Replace aliases entirely (not merge) so deletions are persisted
existing.Aliases = aliases
cfg.Integrations[key] = existing
return save(cfg)
}
func listIntegrations() ([]integration, error) {
cfg, err := load()
if err != nil {

View File

@@ -1,677 +0,0 @@
package config
import (
"context"
"errors"
"os"
"path/filepath"
"testing"
)
func TestSetAliases_CloudModel(t *testing.T) {
// Test the SetAliases logic by checking the alias map behavior
aliases := map[string]string{
"primary": "kimi-k2.5:cloud",
"fast": "kimi-k2.5:cloud",
}
// Verify fast is set (cloud model behavior)
if aliases["fast"] == "" {
t.Error("cloud model should have fast alias set")
}
if aliases["fast"] != aliases["primary"] {
t.Errorf("fast should equal primary for auto-set, got fast=%q primary=%q", aliases["fast"], aliases["primary"])
}
}
func TestSetAliases_LocalModel(t *testing.T) {
aliases := map[string]string{
"primary": "llama3.2:latest",
}
// Simulate local model behavior: fast should be empty
delete(aliases, "fast")
if aliases["fast"] != "" {
t.Error("local model should have empty fast alias")
}
}
func TestSaveAliases_ReplacesNotMerges(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// First save with both primary and fast
initial := map[string]string{
"primary": "cloud-model",
"fast": "cloud-model",
}
if err := saveAliases("claude", initial); err != nil {
t.Fatalf("failed to save initial aliases: %v", err)
}
// Verify both are saved
loaded, err := loadIntegration("claude")
if err != nil {
t.Fatalf("failed to load: %v", err)
}
if loaded.Aliases["fast"] != "cloud-model" {
t.Errorf("expected fast=cloud-model, got %q", loaded.Aliases["fast"])
}
// Now save without fast (simulating switch to local model)
updated := map[string]string{
"primary": "local-model",
// fast intentionally missing
}
if err := saveAliases("claude", updated); err != nil {
t.Fatalf("failed to save updated aliases: %v", err)
}
// Verify fast is GONE (not merged/preserved)
loaded, err = loadIntegration("claude")
if err != nil {
t.Fatalf("failed to load after update: %v", err)
}
if loaded.Aliases["fast"] != "" {
t.Errorf("fast should be removed after saving without it, got %q", loaded.Aliases["fast"])
}
if loaded.Aliases["primary"] != "local-model" {
t.Errorf("primary should be updated to local-model, got %q", loaded.Aliases["primary"])
}
}
func TestSaveAliases_PreservesModels(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// First save integration with models
if err := saveIntegration("claude", []string{"model1", "model2"}); err != nil {
t.Fatalf("failed to save integration: %v", err)
}
// Then update aliases
aliases := map[string]string{"primary": "new-model"}
if err := saveAliases("claude", aliases); err != nil {
t.Fatalf("failed to save aliases: %v", err)
}
// Verify models are preserved
loaded, err := loadIntegration("claude")
if err != nil {
t.Fatalf("failed to load: %v", err)
}
if len(loaded.Models) != 2 || loaded.Models[0] != "model1" {
t.Errorf("models should be preserved, got %v", loaded.Models)
}
}
// TestSaveAliases_EmptyMap clears all aliases
func TestSaveAliases_EmptyMap(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Save with aliases
if err := saveAliases("claude", map[string]string{"primary": "model", "fast": "model"}); err != nil {
t.Fatalf("failed to save: %v", err)
}
// Save empty map
if err := saveAliases("claude", map[string]string{}); err != nil {
t.Fatalf("failed to save empty: %v", err)
}
loaded, err := loadIntegration("claude")
if err != nil {
t.Fatalf("failed to load: %v", err)
}
if len(loaded.Aliases) != 0 {
t.Errorf("aliases should be empty, got %v", loaded.Aliases)
}
}
// TestSaveAliases_NilMap handles nil gracefully
func TestSaveAliases_NilMap(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Save with aliases first
if err := saveAliases("claude", map[string]string{"primary": "model"}); err != nil {
t.Fatalf("failed to save: %v", err)
}
// Save nil map - should clear aliases
if err := saveAliases("claude", nil); err != nil {
t.Fatalf("failed to save nil: %v", err)
}
loaded, err := loadIntegration("claude")
if err != nil {
t.Fatalf("failed to load: %v", err)
}
if len(loaded.Aliases) > 0 {
t.Errorf("aliases should be nil or empty, got %v", loaded.Aliases)
}
}
// TestSaveAliases_EmptyAppName returns error
func TestSaveAliases_EmptyAppName(t *testing.T) {
err := saveAliases("", map[string]string{"primary": "model"})
if err == nil {
t.Error("expected error for empty app name")
}
}
func TestSaveAliases_CaseInsensitive(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
if err := saveAliases("Claude", map[string]string{"primary": "model1"}); err != nil {
t.Fatalf("failed to save: %v", err)
}
// Load with different case
loaded, err := loadIntegration("claude")
if err != nil {
t.Fatalf("failed to load: %v", err)
}
if loaded.Aliases["primary"] != "model1" {
t.Errorf("expected primary=model1, got %q", loaded.Aliases["primary"])
}
// Update with different case
if err := saveAliases("CLAUDE", map[string]string{"primary": "model2"}); err != nil {
t.Fatalf("failed to update: %v", err)
}
loaded, err = loadIntegration("claude")
if err != nil {
t.Fatalf("failed to load after update: %v", err)
}
if loaded.Aliases["primary"] != "model2" {
t.Errorf("expected primary=model2, got %q", loaded.Aliases["primary"])
}
}
// TestSaveAliases_CreatesIntegration creates integration if it doesn't exist
func TestSaveAliases_CreatesIntegration(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Save aliases for non-existent integration
if err := saveAliases("newintegration", map[string]string{"primary": "model"}); err != nil {
t.Fatalf("failed to save: %v", err)
}
loaded, err := loadIntegration("newintegration")
if err != nil {
t.Fatalf("failed to load: %v", err)
}
if loaded.Aliases["primary"] != "model" {
t.Errorf("expected primary=model, got %q", loaded.Aliases["primary"])
}
}
func TestConfigureAliases_AliasMap(t *testing.T) {
t.Run("cloud model auto-sets fast to primary", func(t *testing.T) {
aliases := make(map[string]string)
aliases["primary"] = "cloud-model"
// Simulate cloud model behavior
isCloud := true
if isCloud {
if aliases["fast"] == "" {
aliases["fast"] = aliases["primary"]
}
}
if aliases["fast"] != "cloud-model" {
t.Errorf("expected fast=cloud-model, got %q", aliases["fast"])
}
})
t.Run("cloud model preserves custom fast", func(t *testing.T) {
aliases := map[string]string{
"primary": "cloud-model",
"fast": "custom-fast-model",
}
// Simulate cloud model behavior - should preserve existing fast
isCloud := true
if isCloud {
if aliases["fast"] == "" {
aliases["fast"] = aliases["primary"]
}
}
if aliases["fast"] != "custom-fast-model" {
t.Errorf("expected fast=custom-fast-model (preserved), got %q", aliases["fast"])
}
})
t.Run("local model clears fast", func(t *testing.T) {
aliases := map[string]string{
"primary": "local-model",
"fast": "should-be-cleared",
}
// Simulate local model behavior
isCloud := false
if !isCloud {
delete(aliases, "fast")
}
if aliases["fast"] != "" {
t.Errorf("expected fast to be cleared, got %q", aliases["fast"])
}
})
t.Run("switching cloud to local clears fast", func(t *testing.T) {
// Start with cloud config
aliases := map[string]string{
"primary": "cloud-model",
"fast": "cloud-model",
}
// Switch to local
aliases["primary"] = "local-model"
isCloud := false
if !isCloud {
delete(aliases, "fast")
}
if aliases["fast"] != "" {
t.Errorf("fast should be cleared when switching to local, got %q", aliases["fast"])
}
if aliases["primary"] != "local-model" {
t.Errorf("primary should be updated, got %q", aliases["primary"])
}
})
t.Run("switching local to cloud sets fast", func(t *testing.T) {
// Start with local config (no fast)
aliases := map[string]string{
"primary": "local-model",
}
// Switch to cloud
aliases["primary"] = "cloud-model"
isCloud := true
if isCloud {
if aliases["fast"] == "" {
aliases["fast"] = aliases["primary"]
}
}
if aliases["fast"] != "cloud-model" {
t.Errorf("fast should be set when switching to cloud, got %q", aliases["fast"])
}
})
}
func TestSetAliases_PrefixMapping(t *testing.T) {
// This tests the expected mapping without needing a real client
aliases := map[string]string{
"primary": "my-cloud-model",
"fast": "my-fast-model",
}
expectedMappings := map[string]string{
"claude-sonnet-": aliases["primary"],
"claude-haiku-": aliases["fast"],
}
if expectedMappings["claude-sonnet-"] != "my-cloud-model" {
t.Errorf("claude-sonnet- should map to primary")
}
if expectedMappings["claude-haiku-"] != "my-fast-model" {
t.Errorf("claude-haiku- should map to fast")
}
}
func TestSetAliases_LocalDeletesPrefixes(t *testing.T) {
aliases := map[string]string{
"primary": "local-model",
// fast is empty/missing - indicates local model
}
prefixesToDelete := []string{"claude-sonnet-", "claude-haiku-"}
// Verify the logic: when fast is empty, we should delete
if aliases["fast"] != "" {
t.Error("fast should be empty for local model")
}
// Verify we have the right prefixes to delete
if len(prefixesToDelete) != 2 {
t.Errorf("expected 2 prefixes to delete, got %d", len(prefixesToDelete))
}
}
// TestAtomicUpdate_ServerFailsConfigNotSaved simulates atomic update behavior
func TestAtomicUpdate_ServerFailsConfigNotSaved(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Simulate: server fails, config should NOT be saved
serverErr := errors.New("server unavailable")
if serverErr == nil {
t.Error("config should NOT be saved when server fails")
}
}
// TestAtomicUpdate_ServerSucceedsConfigSaved simulates successful atomic update
func TestAtomicUpdate_ServerSucceedsConfigSaved(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Simulate: server succeeds, config should be saved
var serverErr error
if serverErr != nil {
t.Fatal("server should succeed")
}
if err := saveAliases("claude", map[string]string{"primary": "model"}); err != nil {
t.Fatalf("saveAliases failed: %v", err)
}
// Verify it was actually saved
loaded, err := loadIntegration("claude")
if err != nil {
t.Fatalf("failed to load: %v", err)
}
if loaded.Aliases["primary"] != "model" {
t.Errorf("expected primary=model, got %q", loaded.Aliases["primary"])
}
}
func TestConfigFile_PreservesUnknownFields(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Write config with extra fields
configPath := filepath.Join(tmpDir, ".ollama", "config.json")
os.MkdirAll(filepath.Dir(configPath), 0o755)
// Note: Our config struct only has Integrations, so top-level unknown fields
// won't be preserved by our current implementation. This test documents that.
initialConfig := `{
"integrations": {
"claude": {
"models": ["model1"],
"aliases": {"primary": "model1"},
"unknownField": "should be lost"
}
},
"topLevelUnknown": "will be lost"
}`
os.WriteFile(configPath, []byte(initialConfig), 0o644)
// Update aliases
if err := saveAliases("claude", map[string]string{"primary": "model2"}); err != nil {
t.Fatalf("failed to save: %v", err)
}
// Read raw file to check
data, _ := os.ReadFile(configPath)
content := string(data)
// models should be preserved
if !contains(content, "model1") {
t.Error("models should be preserved")
}
// primary should be updated
if !contains(content, "model2") {
t.Error("primary should be updated to model2")
}
}
func contains(s, substr string) bool {
return len(s) >= len(substr) && (s == substr || len(s) > 0 && containsHelper(s, substr))
}
func containsHelper(s, substr string) bool {
for i := 0; i <= len(s)-len(substr); i++ {
if s[i:i+len(substr)] == substr {
return true
}
}
return false
}
func TestClaudeImplementsAliasConfigurer(t *testing.T) {
c := &Claude{}
var _ AliasConfigurer = c // Compile-time check
}
func TestModelNameEdgeCases(t *testing.T) {
testCases := []struct {
name string
model string
}{
{"simple", "llama3.2"},
{"with tag", "llama3.2:latest"},
{"with cloud tag", "kimi-k2.5:cloud"},
{"with namespace", "library/llama3.2"},
{"with dots", "glm-4.7-flash"},
{"with numbers", "qwen3:8b"},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
aliases := map[string]string{"primary": tc.model}
if err := saveAliases("claude", aliases); err != nil {
t.Fatalf("failed to save model %q: %v", tc.model, err)
}
loaded, err := loadIntegration("claude")
if err != nil {
t.Fatalf("failed to load: %v", err)
}
if loaded.Aliases["primary"] != tc.model {
t.Errorf("expected primary=%q, got %q", tc.model, loaded.Aliases["primary"])
}
})
}
}
func TestSwitchingScenarios(t *testing.T) {
t.Run("cloud to local removes fast", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Initial cloud config
if err := saveAliases("claude", map[string]string{
"primary": "cloud-model",
"fast": "cloud-model",
}); err != nil {
t.Fatal(err)
}
// Switch to local (no fast)
if err := saveAliases("claude", map[string]string{
"primary": "local-model",
}); err != nil {
t.Fatal(err)
}
loaded, _ := loadIntegration("claude")
if loaded.Aliases["fast"] != "" {
t.Errorf("fast should be removed, got %q", loaded.Aliases["fast"])
}
if loaded.Aliases["primary"] != "local-model" {
t.Errorf("primary should be local-model, got %q", loaded.Aliases["primary"])
}
})
t.Run("local to cloud adds fast", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Initial local config
if err := saveAliases("claude", map[string]string{
"primary": "local-model",
}); err != nil {
t.Fatal(err)
}
// Switch to cloud (with fast)
if err := saveAliases("claude", map[string]string{
"primary": "cloud-model",
"fast": "cloud-model",
}); err != nil {
t.Fatal(err)
}
loaded, _ := loadIntegration("claude")
if loaded.Aliases["fast"] != "cloud-model" {
t.Errorf("fast should be cloud-model, got %q", loaded.Aliases["fast"])
}
})
t.Run("cloud to different cloud updates both", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Initial cloud config
if err := saveAliases("claude", map[string]string{
"primary": "cloud-model-1",
"fast": "cloud-model-1",
}); err != nil {
t.Fatal(err)
}
// Switch to different cloud
if err := saveAliases("claude", map[string]string{
"primary": "cloud-model-2",
"fast": "cloud-model-2",
}); err != nil {
t.Fatal(err)
}
loaded, _ := loadIntegration("claude")
if loaded.Aliases["primary"] != "cloud-model-2" {
t.Errorf("primary should be cloud-model-2, got %q", loaded.Aliases["primary"])
}
if loaded.Aliases["fast"] != "cloud-model-2" {
t.Errorf("fast should be cloud-model-2, got %q", loaded.Aliases["fast"])
}
})
}
func TestToolCapabilityFiltering(t *testing.T) {
t.Run("all models checked for tool capability", func(t *testing.T) {
// Both cloud and local models are checked for tool capability via Show API
// Only models with "tools" in capabilities are included
m := modelInfo{Name: "tool-model", Remote: false, ToolCapable: true}
if !m.ToolCapable {
t.Error("tool capable model should be marked as such")
}
})
t.Run("modelInfo includes ToolCapable field", func(t *testing.T) {
m := modelInfo{Name: "test", Remote: true, ToolCapable: true}
if !m.ToolCapable {
t.Error("ToolCapable field should be accessible")
}
})
}
func TestIsCloudModel_RequiresClient(t *testing.T) {
t.Run("nil client always returns false", func(t *testing.T) {
// isCloudModel now only uses Show API, no suffix detection
if isCloudModel(context.Background(), nil, "model:cloud") {
t.Error("nil client should return false regardless of suffix")
}
if isCloudModel(context.Background(), nil, "local-model") {
t.Error("nil client should return false")
}
})
}
func TestModelsAndAliasesMustStayInSync(t *testing.T) {
t.Run("saveAliases followed by saveIntegration keeps them in sync", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Save aliases with one model
if err := saveAliases("claude", map[string]string{"primary": "model-a"}); err != nil {
t.Fatal(err)
}
// Save integration with same model (this is the pattern we use)
if err := saveIntegration("claude", []string{"model-a"}); err != nil {
t.Fatal(err)
}
loaded, _ := loadIntegration("claude")
if loaded.Aliases["primary"] != loaded.Models[0] {
t.Errorf("aliases.primary (%q) != models[0] (%q)", loaded.Aliases["primary"], loaded.Models[0])
}
})
t.Run("out of sync config is detectable", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Simulate out-of-sync state (like manual edit or bug)
if err := saveIntegration("claude", []string{"old-model"}); err != nil {
t.Fatal(err)
}
if err := saveAliases("claude", map[string]string{"primary": "new-model"}); err != nil {
t.Fatal(err)
}
loaded, _ := loadIntegration("claude")
// They should be different (this is the bug state)
if loaded.Models[0] == loaded.Aliases["primary"] {
t.Error("expected out-of-sync state for this test")
}
// The fix: when updating aliases, also update models
if err := saveIntegration("claude", []string{loaded.Aliases["primary"]}); err != nil {
t.Fatal(err)
}
loaded, _ = loadIntegration("claude")
if loaded.Models[0] != loaded.Aliases["primary"] {
t.Errorf("after fix: models[0] (%q) should equal aliases.primary (%q)",
loaded.Models[0], loaded.Aliases["primary"])
}
})
t.Run("updating primary alias updates models too", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Initial state
if err := saveIntegration("claude", []string{"initial-model"}); err != nil {
t.Fatal(err)
}
if err := saveAliases("claude", map[string]string{"primary": "initial-model"}); err != nil {
t.Fatal(err)
}
// Update aliases AND models together
newAliases := map[string]string{"primary": "updated-model"}
if err := saveAliases("claude", newAliases); err != nil {
t.Fatal(err)
}
if err := saveIntegration("claude", []string{newAliases["primary"]}); err != nil {
t.Fatal(err)
}
loaded, _ := loadIntegration("claude")
if loaded.Models[0] != "updated-model" {
t.Errorf("models[0] should be updated-model, got %q", loaded.Models[0])
}
if loaded.Aliases["primary"] != "updated-model" {
t.Errorf("aliases.primary should be updated-model, got %q", loaded.Aliases["primary"])
}
})
}

View File

@@ -46,53 +46,6 @@ func TestIntegrationConfig(t *testing.T) {
}
})
t.Run("save and load aliases", func(t *testing.T) {
models := []string{"llama3.2"}
if err := saveIntegration("claude", models); err != nil {
t.Fatal(err)
}
aliases := map[string]string{
"primary": "llama3.2:70b",
"fast": "llama3.2:8b",
}
if err := saveAliases("claude", aliases); err != nil {
t.Fatal(err)
}
config, err := loadIntegration("claude")
if err != nil {
t.Fatal(err)
}
if config.Aliases == nil {
t.Fatal("expected aliases to be saved")
}
for k, v := range aliases {
if config.Aliases[k] != v {
t.Errorf("alias %s: expected %s, got %s", k, v, config.Aliases[k])
}
}
})
t.Run("saveIntegration preserves aliases", func(t *testing.T) {
if err := saveIntegration("claude", []string{"model-a"}); err != nil {
t.Fatal(err)
}
if err := saveAliases("claude", map[string]string{"primary": "model-a", "fast": "model-small"}); err != nil {
t.Fatal(err)
}
if err := saveIntegration("claude", []string{"model-b"}); err != nil {
t.Fatal(err)
}
config, err := loadIntegration("claude")
if err != nil {
t.Fatal(err)
}
if config.Aliases["primary"] != "model-a" {
t.Errorf("expected aliases to be preserved, got %v", config.Aliases)
}
})
t.Run("defaultModel returns first model", func(t *testing.T) {
saveIntegration("codex", []string{"model-a", "model-b"})

View File

@@ -39,15 +39,6 @@ type Editor interface {
Models() []string
}
// AliasConfigurer can configure model aliases (e.g., for subagent routing).
// Integrations like Claude and Codex use this to route model requests to local models.
type AliasConfigurer interface {
// ConfigureAliases prompts the user to configure aliases and returns the updated map.
ConfigureAliases(ctx context.Context, primaryModel string, existing map[string]string, force bool) (map[string]string, bool, error)
// SetAliases syncs the configured aliases to the server
SetAliases(ctx context.Context, aliases map[string]string) error
}
// integrations is the registry of available integrations.
var integrations = map[string]Runner{
"claude": &Claude{},
@@ -138,11 +129,7 @@ func selectModels(ctx context.Context, name, current string) ([]string, error) {
return nil, err
}
} else {
prompt := fmt.Sprintf("Select model for %s:", r)
if _, ok := r.(AliasConfigurer); ok {
prompt = fmt.Sprintf("Select Primary model for %s:", r)
}
model, err := selectPrompt(prompt, items)
model, err := selectPrompt(fmt.Sprintf("Select model for %s:", r), items)
if err != nil {
return nil, err
}
@@ -170,123 +157,73 @@ func selectModels(ctx context.Context, name, current string) ([]string, error) {
}
}
if err := ensureAuth(ctx, client, cloudModels, selected); err != nil {
return nil, err
}
return selected, nil
}
func pullIfNeeded(ctx context.Context, client *api.Client, existingModels map[string]bool, model string) error {
if existingModels[model] {
return nil
}
msg := fmt.Sprintf("Download %s?", model)
if ok, err := confirmPrompt(msg); err != nil {
return err
} else if !ok {
return errCancelled
}
fmt.Fprintf(os.Stderr, "\n")
if err := pullModel(ctx, client, model); err != nil {
return fmt.Errorf("failed to pull %s: %w", model, err)
}
return nil
}
func listModels(ctx context.Context) ([]selectItem, map[string]bool, map[string]bool, *api.Client, error) {
client, err := api.ClientFromEnvironment()
if err != nil {
return nil, nil, nil, nil, err
}
models, err := client.List(ctx)
if err != nil {
return nil, nil, nil, nil, err
}
var existing []modelInfo
for _, m := range models.Models {
existing = append(existing, modelInfo{
Name: m.Name,
Remote: m.RemoteModel != "",
})
}
items, _, existingModels, cloudModels := buildModelList(existing, nil, "")
if len(items) == 0 {
return nil, nil, nil, nil, fmt.Errorf("no models available, run 'ollama pull <model>' first")
}
return items, existingModels, cloudModels, client, nil
}
func ensureAuth(ctx context.Context, client *api.Client, cloudModels map[string]bool, selected []string) error {
var selectedCloudModels []string
for _, m := range selected {
if cloudModels[m] {
selectedCloudModels = append(selectedCloudModels, m)
}
}
if len(selectedCloudModels) == 0 {
return nil
}
if len(selectedCloudModels) > 0 {
// ensure user is signed in
user, err := client.Whoami(ctx)
if err == nil && user != nil && user.Name != "" {
return selected, nil
}
user, err := client.Whoami(ctx)
if err == nil && user != nil && user.Name != "" {
return nil
}
var aErr api.AuthorizationError
if !errors.As(err, &aErr) || aErr.SigninURL == "" {
return nil, err
}
var aErr api.AuthorizationError
if !errors.As(err, &aErr) || aErr.SigninURL == "" {
return err
}
modelList := strings.Join(selectedCloudModels, ", ")
yes, err := confirmPrompt(fmt.Sprintf("sign in to use %s?", modelList))
if err != nil || !yes {
return nil, fmt.Errorf("%s requires sign in", modelList)
}
modelList := strings.Join(selectedCloudModels, ", ")
yes, err := confirmPrompt(fmt.Sprintf("sign in to use %s?", modelList))
if err != nil || !yes {
return fmt.Errorf("%s requires sign in", modelList)
}
fmt.Fprintf(os.Stderr, "\nTo sign in, navigate to:\n %s\n\n", aErr.SigninURL)
fmt.Fprintf(os.Stderr, "\nTo sign in, navigate to:\n %s\n\n", aErr.SigninURL)
// TODO(parthsareen): extract into auth package for cmd
// Auto-open browser (best effort, fail silently)
switch runtime.GOOS {
case "darwin":
_ = exec.Command("open", aErr.SigninURL).Start()
case "linux":
_ = exec.Command("xdg-open", aErr.SigninURL).Start()
case "windows":
_ = exec.Command("rundll32", "url.dll,FileProtocolHandler", aErr.SigninURL).Start()
}
switch runtime.GOOS {
case "darwin":
_ = exec.Command("open", aErr.SigninURL).Start()
case "linux":
_ = exec.Command("xdg-open", aErr.SigninURL).Start()
case "windows":
_ = exec.Command("rundll32", "url.dll,FileProtocolHandler", aErr.SigninURL).Start()
}
spinnerFrames := []string{"|", "/", "-", "\\"}
frame := 0
spinnerFrames := []string{"|", "/", "-", "\\"}
frame := 0
fmt.Fprintf(os.Stderr, "\033[90mwaiting for sign in to complete... %s\033[0m", spinnerFrames[0])
fmt.Fprintf(os.Stderr, "\033[90mwaiting for sign in to complete... %s\033[0m", spinnerFrames[0])
ticker := time.NewTicker(200 * time.Millisecond)
defer ticker.Stop()
ticker := time.NewTicker(200 * time.Millisecond)
defer ticker.Stop()
for {
select {
case <-ctx.Done():
fmt.Fprintf(os.Stderr, "\r\033[K")
return nil, ctx.Err()
case <-ticker.C:
frame++
fmt.Fprintf(os.Stderr, "\r\033[90mwaiting for sign in to complete... %s\033[0m", spinnerFrames[frame%len(spinnerFrames)])
for {
select {
case <-ctx.Done():
fmt.Fprintf(os.Stderr, "\r\033[K")
return ctx.Err()
case <-ticker.C:
frame++
fmt.Fprintf(os.Stderr, "\r\033[90mwaiting for sign in to complete... %s\033[0m", spinnerFrames[frame%len(spinnerFrames)])
// poll every 10th frame (~2 seconds)
if frame%10 == 0 {
u, err := client.Whoami(ctx)
if err == nil && u != nil && u.Name != "" {
fmt.Fprintf(os.Stderr, "\r\033[K\033[A\r\033[K\033[1msigned in:\033[0m %s\n", u.Name)
return nil
// poll every 10th frame (~2 seconds)
if frame%10 == 0 {
u, err := client.Whoami(ctx)
if err == nil && u != nil && u.Name != "" {
fmt.Fprintf(os.Stderr, "\r\033[K\033[A\r\033[K\033[1msigned in:\033[0m %s\n", u.Name)
return selected, nil
}
}
}
}
}
return selected, nil
}
func runIntegration(name, modelName string, args []string) error {
@@ -294,33 +231,10 @@ func runIntegration(name, modelName string, args []string) error {
if !ok {
return fmt.Errorf("unknown integration: %s", name)
}
fmt.Fprintf(os.Stderr, "\nLaunching %s with %s...\n", r, modelName)
return r.Run(modelName, args)
}
// syncAliases syncs aliases to server and saves locally for an AliasConfigurer.
func syncAliases(ctx context.Context, client *api.Client, ac AliasConfigurer, name, model string, existing map[string]string) error {
aliases := make(map[string]string)
for k, v := range existing {
aliases[k] = v
}
aliases["primary"] = model
if isCloudModel(ctx, client, model) {
if aliases["fast"] == "" || !isCloudModel(ctx, client, aliases["fast"]) {
aliases["fast"] = model
}
} else {
delete(aliases, "fast")
}
if err := ac.SetAliases(ctx, aliases); err != nil {
return err
}
return saveAliases(name, aliases)
}
// LaunchCmd returns the cobra command for launching integrations.
func LaunchCmd(checkServerHeartbeat func(cmd *cobra.Command, args []string) error) *cobra.Command {
var modelFlag string
@@ -388,87 +302,9 @@ Examples:
return fmt.Errorf("unknown integration: %s", name)
}
// Handle AliasConfigurer integrations (claude, codex)
if ac, ok := r.(AliasConfigurer); ok {
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
// Validate --model flag if provided
if modelFlag != "" {
if _, err := client.Show(cmd.Context(), &api.ShowRequest{Name: modelFlag}); err != nil {
return fmt.Errorf("model %q not found", modelFlag)
}
}
var model string
var existingAliases map[string]string
// Load saved config
if cfg, err := loadIntegration(name); err == nil {
existingAliases = cfg.Aliases
if len(cfg.Models) > 0 {
model = cfg.Models[0]
// AliasConfigurer integrations use single model; sanitize if multiple
if len(cfg.Models) > 1 {
_ = saveIntegration(name, []string{model})
}
}
}
// --model flag overrides saved model
if modelFlag != "" {
model = modelFlag
}
// Validate saved model still exists
if model != "" && modelFlag == "" {
if _, err := client.Show(cmd.Context(), &api.ShowRequest{Name: model}); err != nil {
fmt.Fprintf(os.Stderr, "%sConfigured model %q not found%s\n\n", ansiGray, model, ansiReset)
model = ""
}
}
// If no valid model or --config flag, show picker
if model == "" || configFlag {
aliases, _, err := ac.ConfigureAliases(cmd.Context(), model, existingAliases, configFlag)
if errors.Is(err, errCancelled) {
return nil
}
if err != nil {
return err
}
model = aliases["primary"]
existingAliases = aliases
}
// Sync aliases and save
if err := syncAliases(cmd.Context(), client, ac, name, model, existingAliases); err != nil {
fmt.Fprintf(os.Stderr, "%sWarning: Could not sync aliases: %v%s\n", ansiGray, err, ansiReset)
}
if err := saveIntegration(name, []string{model}); err != nil {
return fmt.Errorf("failed to save: %w", err)
}
// Launch (unless --config without confirmation)
if configFlag {
if launch, _ := confirmPrompt(fmt.Sprintf("Launch %s now?", r)); launch {
return runIntegration(name, model, passArgs)
}
return nil
}
return runIntegration(name, model, passArgs)
}
// Validate --model flag for non-AliasConfigurer integrations
if modelFlag != "" {
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
if _, err := client.Show(cmd.Context(), &api.ShowRequest{Name: modelFlag}); err != nil {
return fmt.Errorf("model %q not found", modelFlag)
if !configFlag && modelFlag == "" {
if config, err := loadIntegration(name); err == nil && len(config.Models) > 0 {
return runIntegration(name, config.Models[0], passArgs)
}
}
@@ -482,8 +318,6 @@ Examples:
}
}
}
} else if saved, err := loadIntegration(name); err == nil && len(saved.Models) > 0 && !configFlag {
return runIntegration(name, saved.Models[0], passArgs)
} else {
var err error
models, err = selectModels(cmd.Context(), name, "")
@@ -546,9 +380,8 @@ Examples:
}
type modelInfo struct {
Name string
Remote bool
ToolCapable bool
Name string
Remote bool
}
// buildModelList merges existing models with recommendations, sorts them, and returns
@@ -585,7 +418,7 @@ func buildModelList(existing []modelInfo, preChecked []string, current string) (
continue
}
items = append(items, rec)
if strings.HasSuffix(rec.Name, ":cloud") {
if isCloudModel(rec.Name) {
cloudModels[rec.Name] = true
}
}
@@ -645,16 +478,8 @@ func buildModelList(existing []modelInfo, preChecked []string, current string) (
return items, preChecked, existingModels, cloudModels
}
// isCloudModel checks if a model is a cloud model using the Show API.
func isCloudModel(ctx context.Context, client *api.Client, name string) bool {
if client == nil {
return false
}
resp, err := client.Show(ctx, &api.ShowRequest{Name: name})
if err != nil {
return false
}
return resp.RemoteModel != ""
func isCloudModel(name string) bool {
return strings.HasSuffix(name, ":cloud")
}
func pullModel(ctx context.Context, client *api.Client, model string) error {

View File

@@ -1,7 +1,6 @@
package config
import (
"context"
"fmt"
"slices"
"strings"
@@ -298,15 +297,24 @@ func TestParseArgs(t *testing.T) {
}
func TestIsCloudModel(t *testing.T) {
// isCloudModel now only uses Show API, so nil client always returns false
t.Run("nil client returns false", func(t *testing.T) {
models := []string{"glm-4.7:cloud", "kimi-k2.5:cloud", "local-model"}
for _, model := range models {
if isCloudModel(context.Background(), nil, model) {
t.Errorf("isCloudModel(%q) with nil client should return false", model)
tests := []struct {
name string
want bool
}{
{"glm-4.7:cloud", true},
{"kimi-k2.5:cloud", true},
{"glm-4.7-flash", false},
{"glm-4.7-flash:latest", false},
{"cloud-model", false},
{"model:cloudish", false},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
if got := isCloudModel(tt.name); got != tt.want {
t.Errorf("isCloudModel(%q) = %v, want %v", tt.name, got, tt.want)
}
}
})
})
}
}
func names(items []selectItem) []string {
@@ -501,41 +509,3 @@ func TestBuildModelList_ReturnsExistingAndCloudMaps(t *testing.T) {
t.Error("llama3.2 should not be in cloudModels")
}
}
func TestEditorIntegration_SavedConfigSkipsSelection(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Save a config for opencode so it looks like a previous launch
if err := saveIntegration("opencode", []string{"llama3.2"}); err != nil {
t.Fatal(err)
}
// Verify loadIntegration returns the saved models
saved, err := loadIntegration("opencode")
if err != nil {
t.Fatal(err)
}
if len(saved.Models) == 0 {
t.Fatal("expected saved models")
}
if saved.Models[0] != "llama3.2" {
t.Errorf("expected llama3.2, got %s", saved.Models[0])
}
}
func TestAliasConfigurerInterface(t *testing.T) {
t.Run("claude implements AliasConfigurer", func(t *testing.T) {
claude := &Claude{}
if _, ok := interface{}(claude).(AliasConfigurer); !ok {
t.Error("Claude should implement AliasConfigurer")
}
})
t.Run("codex does not implement AliasConfigurer", func(t *testing.T) {
codex := &Codex{}
if _, ok := interface{}(codex).(AliasConfigurer); ok {
t.Error("Codex should not implement AliasConfigurer")
}
})
}

View File

@@ -17,6 +17,8 @@ type Openclaw struct{}
func (c *Openclaw) String() string { return "OpenClaw" }
const ansiGreen = "\033[32m"
func (c *Openclaw) Run(model string, args []string) error {
bin := "openclaw"
if _, err := exec.LookPath(bin); err != nil {

View File

@@ -1,7 +1,6 @@
package config
import (
"context"
"encoding/json"
"fmt"
"maps"
@@ -11,52 +10,12 @@ import (
"slices"
"strings"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
)
// OpenCode implements Runner and Editor for OpenCode integration
type OpenCode struct{}
// cloudModelLimit holds context and output token limits for a cloud model.
type cloudModelLimit struct {
Context int
Output int
}
// cloudModelLimits maps cloud model base names to their token limits.
// TODO(parthsareen): grab context/output limits from model info instead of hardcoding
var cloudModelLimits = map[string]cloudModelLimit{
"cogito-2.1:671b": {Context: 163_840, Output: 65_536},
"deepseek-v3.1:671b": {Context: 163_840, Output: 163_840},
"deepseek-v3.2": {Context: 163_840, Output: 65_536},
"glm-4.6": {Context: 202_752, Output: 131_072},
"glm-4.7": {Context: 202_752, Output: 131_072},
"gpt-oss:120b": {Context: 131_072, Output: 131_072},
"gpt-oss:20b": {Context: 131_072, Output: 131_072},
"kimi-k2:1t": {Context: 262_144, Output: 262_144},
"kimi-k2.5": {Context: 262_144, Output: 262_144},
"kimi-k2-thinking": {Context: 262_144, Output: 262_144},
"nemotron-3-nano:30b": {Context: 1_048_576, Output: 131_072},
"qwen3-coder:480b": {Context: 262_144, Output: 65_536},
"qwen3-next:80b": {Context: 262_144, Output: 32_768},
}
// lookupCloudModelLimit returns the token limits for a cloud model.
// It tries the exact name first, then strips the ":cloud" suffix.
func lookupCloudModelLimit(name string) (cloudModelLimit, bool) {
if l, ok := cloudModelLimits[name]; ok {
return l, true
}
base := strings.TrimSuffix(name, ":cloud")
if base != name {
if l, ok := cloudModelLimits[base]; ok {
return l, true
}
}
return cloudModelLimit{}, false
}
func (o *OpenCode) String() string { return "OpenCode" }
func (o *OpenCode) Run(model string, args []string) error {
@@ -154,8 +113,6 @@ func (o *OpenCode) Edit(modelList []string) error {
}
}
client, _ := api.ClientFromEnvironment()
for _, model := range modelList {
if existing, ok := models[model].(map[string]any); ok {
// migrate existing models without _launch marker
@@ -165,29 +122,12 @@ func (o *OpenCode) Edit(modelList []string) error {
existing["name"] = strings.TrimSuffix(name, " [Ollama]")
}
}
if isCloudModel(context.Background(), client, model) {
if l, ok := lookupCloudModelLimit(model); ok {
existing["limit"] = map[string]any{
"context": l.Context,
"output": l.Output,
}
}
}
continue
}
entry := map[string]any{
models[model] = map[string]any{
"name": model,
"_launch": true,
}
if isCloudModel(context.Background(), client, model) {
if l, ok := lookupCloudModelLimit(model); ok {
entry["limit"] = map[string]any{
"context": l.Context,
"output": l.Output,
}
}
}
models[model] = entry
}
ollama["models"] = models

View File

@@ -2,7 +2,6 @@ package config
import (
"encoding/json"
"fmt"
"os"
"path/filepath"
"testing"
@@ -496,165 +495,6 @@ func TestOpenCodeEdit_SpecialCharsInModelName(t *testing.T) {
}
}
func readOpenCodeModel(t *testing.T, configPath, model string) map[string]any {
t.Helper()
data, err := os.ReadFile(configPath)
if err != nil {
t.Fatal(err)
}
var cfg map[string]any
json.Unmarshal(data, &cfg)
provider := cfg["provider"].(map[string]any)
ollama := provider["ollama"].(map[string]any)
models := ollama["models"].(map[string]any)
entry, ok := models[model].(map[string]any)
if !ok {
t.Fatalf("model %s not found in config", model)
}
return entry
}
func TestOpenCodeEdit_LocalModelNoLimit(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configPath := filepath.Join(tmpDir, ".config", "opencode", "opencode.json")
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
entry := readOpenCodeModel(t, configPath, "llama3.2")
if entry["limit"] != nil {
t.Errorf("local model should not have limit set, got %v", entry["limit"])
}
}
func TestOpenCodeEdit_PreservesUserLimit(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".config", "opencode")
configPath := filepath.Join(configDir, "opencode.json")
// Set up a model with a user-configured limit
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{
"provider": {
"ollama": {
"models": {
"llama3.2": {
"name": "llama3.2",
"_launch": true,
"limit": {"context": 8192, "output": 4096}
}
}
}
}
}`), 0o644)
// Re-edit should preserve the user's limit (not delete it)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
entry := readOpenCodeModel(t, configPath, "llama3.2")
limit, ok := entry["limit"].(map[string]any)
if !ok {
t.Fatal("user-configured limit was removed")
}
if limit["context"] != float64(8192) {
t.Errorf("context limit changed: got %v, want 8192", limit["context"])
}
if limit["output"] != float64(4096) {
t.Errorf("output limit changed: got %v, want 4096", limit["output"])
}
}
func TestOpenCodeEdit_CloudModelLimitStructure(t *testing.T) {
// Verify that when a cloud model entry has limits set (as Edit would do),
// the structure matches what opencode expects and re-edit preserves them.
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".config", "opencode")
configPath := filepath.Join(configDir, "opencode.json")
expected := cloudModelLimits["glm-4.7"]
// Simulate a cloud model that already has the limit set by a previous Edit
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(fmt.Sprintf(`{
"provider": {
"ollama": {
"models": {
"glm-4.7:cloud": {
"name": "glm-4.7:cloud",
"_launch": true,
"limit": {"context": %d, "output": %d}
}
}
}
}
}`, expected.Context, expected.Output)), 0o644)
// Re-edit should preserve the cloud model limit
if err := o.Edit([]string{"glm-4.7:cloud"}); err != nil {
t.Fatal(err)
}
entry := readOpenCodeModel(t, configPath, "glm-4.7:cloud")
limit, ok := entry["limit"].(map[string]any)
if !ok {
t.Fatal("cloud model limit was removed on re-edit")
}
if limit["context"] != float64(expected.Context) {
t.Errorf("context = %v, want %d", limit["context"], expected.Context)
}
if limit["output"] != float64(expected.Output) {
t.Errorf("output = %v, want %d", limit["output"], expected.Output)
}
}
func TestLookupCloudModelLimit(t *testing.T) {
tests := []struct {
name string
wantOK bool
wantContext int
wantOutput int
}{
{"glm-4.7", true, 202_752, 131_072},
{"glm-4.7:cloud", true, 202_752, 131_072},
{"kimi-k2.5", true, 262_144, 262_144},
{"kimi-k2.5:cloud", true, 262_144, 262_144},
{"deepseek-v3.2", true, 163_840, 65_536},
{"deepseek-v3.2:cloud", true, 163_840, 65_536},
{"qwen3-coder:480b", true, 262_144, 65_536},
{"llama3.2", false, 0, 0},
{"unknown-model:cloud", false, 0, 0},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
l, ok := lookupCloudModelLimit(tt.name)
if ok != tt.wantOK {
t.Errorf("lookupCloudModelLimit(%q) ok = %v, want %v", tt.name, ok, tt.wantOK)
}
if ok {
if l.Context != tt.wantContext {
t.Errorf("context = %d, want %d", l.Context, tt.wantContext)
}
if l.Output != tt.wantOutput {
t.Errorf("output = %d, want %d", l.Output, tt.wantOutput)
}
}
})
}
}
func TestOpenCodeModels_NoConfig(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()

View File

@@ -17,7 +17,6 @@ const (
ansiBold = "\033[1m"
ansiReset = "\033[0m"
ansiGray = "\033[37m"
ansiGreen = "\033[32m"
ansiClearDown = "\033[J"
)

View File

@@ -96,14 +96,6 @@ func TestSelectState(t *testing.T) {
}
})
t.Run("Enter_EmptyFilteredList_EmptyFilter_DoesNothing", func(t *testing.T) {
s := newSelectState([]selectItem{})
done, result, err := s.handleInput(eventEnter, 0)
if done || result != "" || err != nil {
t.Errorf("expected (false, '', nil), got (%v, %v, %v)", done, result, err)
}
})
t.Run("Escape_ReturnsCancelledError", func(t *testing.T) {
s := newSelectState(items)
done, result, err := s.handleInput(eventEscape, 0)
@@ -582,19 +574,8 @@ func TestRenderSelect(t *testing.T) {
var buf bytes.Buffer
renderSelect(&buf, "Select:", s)
output := buf.String()
if !strings.Contains(output, "no matches") {
t.Errorf("expected 'no matches' message, got: %s", output)
}
})
t.Run("EmptyFilteredList_EmptyFilter_ShowsNoMatches", func(t *testing.T) {
s := newSelectState([]selectItem{})
var buf bytes.Buffer
renderSelect(&buf, "Select:", s)
if !strings.Contains(buf.String(), "no matches") {
t.Error("expected 'no matches' message for empty list with no filter")
t.Error("expected 'no matches' message")
}
})

View File

@@ -10,21 +10,19 @@ import (
"github.com/ollama/ollama/api"
)
var errNotRunning = errors.New("could not connect to ollama server, run 'ollama serve' to start it")
func startApp(ctx context.Context, client *api.Client) error {
exe, err := os.Executable()
if err != nil {
return errNotRunning
return err
}
link, err := os.Readlink(exe)
if err != nil {
return errNotRunning
return err
}
r := regexp.MustCompile(`^.*/Ollama\s?\d*.app`)
m := r.FindStringSubmatch(link)
if len(m) != 1 {
return errNotRunning
return errors.New("could not find ollama app")
}
if err := exec.Command("/usr/bin/open", "-j", "-a", m[0], "--args", "--fast-startup").Run(); err != nil {
return err

View File

@@ -188,6 +188,8 @@ func LogLevel() slog.Level {
var (
// FlashAttention enables the experimental flash attention feature.
FlashAttention = BoolWithDefault("OLLAMA_FLASH_ATTENTION")
// DebugLogRequests logs inference requests to disk for replay/debugging.
DebugLogRequests = Bool("OLLAMA_DEBUG_LOG_REQUESTS")
// KvCacheType is the quantization type for the K/V cache.
KvCacheType = String("OLLAMA_KV_CACHE_TYPE")
// NoHistory disables readline history.
@@ -273,26 +275,27 @@ type EnvVar struct {
func AsMap() map[string]EnvVar {
ret := map[string]EnvVar{
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", LogLevel(), "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
"OLLAMA_FLASH_ATTENTION": {"OLLAMA_FLASH_ATTENTION", FlashAttention(false), "Enabled flash attention"},
"OLLAMA_KV_CACHE_TYPE": {"OLLAMA_KV_CACHE_TYPE", KvCacheType(), "Quantization type for the K/V cache (default: f16)"},
"OLLAMA_GPU_OVERHEAD": {"OLLAMA_GPU_OVERHEAD", GpuOverhead(), "Reserve a portion of VRAM per GPU (bytes)"},
"OLLAMA_HOST": {"OLLAMA_HOST", Host(), "IP Address for the ollama server (default 127.0.0.1:11434)"},
"OLLAMA_KEEP_ALIVE": {"OLLAMA_KEEP_ALIVE", KeepAlive(), "The duration that models stay loaded in memory (default \"5m\")"},
"OLLAMA_LLM_LIBRARY": {"OLLAMA_LLM_LIBRARY", LLMLibrary(), "Set LLM library to bypass autodetection"},
"OLLAMA_LOAD_TIMEOUT": {"OLLAMA_LOAD_TIMEOUT", LoadTimeout(), "How long to allow model loads to stall before giving up (default \"5m\")"},
"OLLAMA_MAX_LOADED_MODELS": {"OLLAMA_MAX_LOADED_MODELS", MaxRunners(), "Maximum number of loaded models per GPU"},
"OLLAMA_MAX_QUEUE": {"OLLAMA_MAX_QUEUE", MaxQueue(), "Maximum number of queued requests"},
"OLLAMA_MODELS": {"OLLAMA_MODELS", Models(), "The path to the models directory"},
"OLLAMA_NOHISTORY": {"OLLAMA_NOHISTORY", NoHistory(), "Do not preserve readline history"},
"OLLAMA_NOPRUNE": {"OLLAMA_NOPRUNE", NoPrune(), "Do not prune model blobs on startup"},
"OLLAMA_NUM_PARALLEL": {"OLLAMA_NUM_PARALLEL", NumParallel(), "Maximum number of parallel requests"},
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", AllowedOrigins(), "A comma separated list of allowed origins"},
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread(), "Always schedule model across all GPUs"},
"OLLAMA_MULTIUSER_CACHE": {"OLLAMA_MULTIUSER_CACHE", MultiUserCache(), "Optimize prompt caching for multi-user scenarios"},
"OLLAMA_CONTEXT_LENGTH": {"OLLAMA_CONTEXT_LENGTH", ContextLength(), "Context length to use unless otherwise specified (default: 4k/32k/256k based on VRAM)"},
"OLLAMA_NEW_ENGINE": {"OLLAMA_NEW_ENGINE", NewEngine(), "Enable the new Ollama engine"},
"OLLAMA_REMOTES": {"OLLAMA_REMOTES", Remotes(), "Allowed hosts for remote models (default \"ollama.com\")"},
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", LogLevel(), "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
"OLLAMA_DEBUG_LOG_REQUESTS": {"OLLAMA_DEBUG_LOG_REQUESTS", DebugLogRequests(), "Log inference request bodies and replay curl commands to a temp directory"},
"OLLAMA_FLASH_ATTENTION": {"OLLAMA_FLASH_ATTENTION", FlashAttention(false), "Enabled flash attention"},
"OLLAMA_KV_CACHE_TYPE": {"OLLAMA_KV_CACHE_TYPE", KvCacheType(), "Quantization type for the K/V cache (default: f16)"},
"OLLAMA_GPU_OVERHEAD": {"OLLAMA_GPU_OVERHEAD", GpuOverhead(), "Reserve a portion of VRAM per GPU (bytes)"},
"OLLAMA_HOST": {"OLLAMA_HOST", Host(), "IP Address for the ollama server (default 127.0.0.1:11434)"},
"OLLAMA_KEEP_ALIVE": {"OLLAMA_KEEP_ALIVE", KeepAlive(), "The duration that models stay loaded in memory (default \"5m\")"},
"OLLAMA_LLM_LIBRARY": {"OLLAMA_LLM_LIBRARY", LLMLibrary(), "Set LLM library to bypass autodetection"},
"OLLAMA_LOAD_TIMEOUT": {"OLLAMA_LOAD_TIMEOUT", LoadTimeout(), "How long to allow model loads to stall before giving up (default \"5m\")"},
"OLLAMA_MAX_LOADED_MODELS": {"OLLAMA_MAX_LOADED_MODELS", MaxRunners(), "Maximum number of loaded models per GPU"},
"OLLAMA_MAX_QUEUE": {"OLLAMA_MAX_QUEUE", MaxQueue(), "Maximum number of queued requests"},
"OLLAMA_MODELS": {"OLLAMA_MODELS", Models(), "The path to the models directory"},
"OLLAMA_NOHISTORY": {"OLLAMA_NOHISTORY", NoHistory(), "Do not preserve readline history"},
"OLLAMA_NOPRUNE": {"OLLAMA_NOPRUNE", NoPrune(), "Do not prune model blobs on startup"},
"OLLAMA_NUM_PARALLEL": {"OLLAMA_NUM_PARALLEL", NumParallel(), "Maximum number of parallel requests"},
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", AllowedOrigins(), "A comma separated list of allowed origins"},
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread(), "Always schedule model across all GPUs"},
"OLLAMA_MULTIUSER_CACHE": {"OLLAMA_MULTIUSER_CACHE", MultiUserCache(), "Optimize prompt caching for multi-user scenarios"},
"OLLAMA_CONTEXT_LENGTH": {"OLLAMA_CONTEXT_LENGTH", ContextLength(), "Context length to use unless otherwise specified (default: 4k/32k/256k based on VRAM)"},
"OLLAMA_NEW_ENGINE": {"OLLAMA_NEW_ENGINE", NewEngine(), "Enable the new Ollama engine"},
"OLLAMA_REMOTES": {"OLLAMA_REMOTES", Remotes(), "Allowed hosts for remote models (default \"ollama.com\")"},
// Informational
"HTTP_PROXY": {"HTTP_PROXY", String("HTTP_PROXY")(), "HTTP proxy"},

5
go.mod
View File

@@ -13,7 +13,7 @@ require (
github.com/mattn/go-sqlite3 v1.14.24
github.com/olekukonko/tablewriter v0.0.5
github.com/spf13/cobra v1.7.0
github.com/stretchr/testify v1.10.0
github.com/stretchr/testify v1.9.0
github.com/x448/float16 v0.8.4
golang.org/x/sync v0.17.0
golang.org/x/sys v0.37.0
@@ -29,8 +29,6 @@ require (
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
github.com/pkg/browser v0.0.0-20240102092130-5ac0b6a4141c
github.com/tkrajina/typescriptify-golang-structs v0.2.0
github.com/tree-sitter/go-tree-sitter v0.25.0
github.com/tree-sitter/tree-sitter-cpp v0.23.4
github.com/wk8/go-ordered-map/v2 v2.1.8
golang.org/x/image v0.22.0
golang.org/x/mod v0.30.0
@@ -52,7 +50,6 @@ require (
github.com/google/flatbuffers v24.3.25+incompatible // indirect
github.com/kr/text v0.2.0 // indirect
github.com/mailru/easyjson v0.7.7 // indirect
github.com/mattn/go-pointer v0.0.1 // indirect
github.com/pkg/errors v0.9.1 // indirect
github.com/pmezard/go-difflib v1.0.0 // indirect
github.com/rivo/uniseg v0.2.0 // indirect

31
go.sum
View File

@@ -152,8 +152,6 @@ github.com/mailru/easyjson v0.7.7 h1:UGYAvKxe3sBsEDzO8ZeWOSlIQfWFlxbzLZe7hwFURr0
github.com/mailru/easyjson v0.7.7/go.mod h1:xzfreul335JAWq5oZzymOObrkdz5UnU4kGfJJLY9Nlc=
github.com/mattn/go-isatty v0.0.20 h1:xfD0iDuEKnDkl03q4limB+vH+GxLEtL/jb4xVJSWWEY=
github.com/mattn/go-isatty v0.0.20/go.mod h1:W+V8PltTTMOvKvAeJH7IuucS94S2C6jfK/D7dTCTo3Y=
github.com/mattn/go-pointer v0.0.1 h1:n+XhsuGeVO6MEAp7xyEukFINEa+Quek5psIR/ylA6o0=
github.com/mattn/go-pointer v0.0.1/go.mod h1:2zXcozF6qYGgmsG+SeTZz3oAbFLdD3OWqnUbNvJZAlc=
github.com/mattn/go-runewidth v0.0.9/go.mod h1:H031xJmbD/WCDINGzjvQ9THkh0rPKHF+m2gUSrubnMI=
github.com/mattn/go-runewidth v0.0.14 h1:+xnbZSEeDbOIg5/mE6JF0w6n9duR1l3/WmbinWVwUuU=
github.com/mattn/go-runewidth v0.0.14/go.mod h1:Jdepj2loyihRzMpdS35Xk/zdY8IAYHsh153qUoGf23w=
@@ -208,39 +206,12 @@ github.com/stretchr/testify v1.7.1/go.mod h1:6Fq8oRcR53rry900zMqJjRRixrwX3KX962/
github.com/stretchr/testify v1.8.0/go.mod h1:yNjHg4UonilssWZ8iaSj1OCr/vHnekPRkoO+kdMU+MU=
github.com/stretchr/testify v1.8.1/go.mod h1:w2LPCIKwWwSfY2zedu0+kehJoqGctiVI29o6fzry7u4=
github.com/stretchr/testify v1.8.4/go.mod h1:sz/lmYIOXD/1dqDmKjjqLyZ2RngseejIcXlSw2iwfAo=
github.com/stretchr/testify v1.9.0 h1:HtqpIVDClZ4nwg75+f6Lvsy/wHu+3BoSGCbBAcpTsTg=
github.com/stretchr/testify v1.9.0/go.mod h1:r2ic/lqez/lEtzL7wO/rwa5dbSLXVDPFyf8C91i36aY=
github.com/stretchr/testify v1.10.0 h1:Xv5erBjTwe/5IxqUQTdXv5kgmIvbHo3QQyRwhJsOfJA=
github.com/stretchr/testify v1.10.0/go.mod h1:r2ic/lqez/lEtzL7wO/rwa5dbSLXVDPFyf8C91i36aY=
github.com/tkrajina/go-reflector v0.5.5 h1:gwoQFNye30Kk7NrExj8zm3zFtrGPqOkzFMLuQZg1DtQ=
github.com/tkrajina/go-reflector v0.5.5/go.mod h1:ECbqLgccecY5kPmPmXg1MrHW585yMcDkVl6IvJe64T4=
github.com/tkrajina/typescriptify-golang-structs v0.2.0 h1:ZedWk82egydDspGTryAatbX0/1NZDQbdiZLoCbOk4f8=
github.com/tkrajina/typescriptify-golang-structs v0.2.0/go.mod h1:sjU00nti/PMEOZb07KljFlR+lJ+RotsC0GBQMv9EKls=
github.com/tree-sitter/go-tree-sitter v0.25.0 h1:sx6kcg8raRFCvc9BnXglke6axya12krCJF5xJ2sftRU=
github.com/tree-sitter/go-tree-sitter v0.25.0/go.mod h1:r77ig7BikoZhHrrsjAnv8RqGti5rtSyvDHPzgTPsUuU=
github.com/tree-sitter/tree-sitter-c v0.23.4 h1:nBPH3FV07DzAD7p0GfNvXM+Y7pNIoPenQWBpvM++t4c=
github.com/tree-sitter/tree-sitter-c v0.23.4/go.mod h1:MkI5dOiIpeN94LNjeCp8ljXN/953JCwAby4bClMr6bw=
github.com/tree-sitter/tree-sitter-cpp v0.23.4 h1:LaWZsiqQKvR65yHgKmnaqA+uz6tlDJTJFCyFIeZU/8w=
github.com/tree-sitter/tree-sitter-cpp v0.23.4/go.mod h1:doqNW64BriC7WBCQ1klf0KmJpdEvfxyXtoEybnBo6v8=
github.com/tree-sitter/tree-sitter-embedded-template v0.23.2 h1:nFkkH6Sbe56EXLmZBqHHcamTpmz3TId97I16EnGy4rg=
github.com/tree-sitter/tree-sitter-embedded-template v0.23.2/go.mod h1:HNPOhN0qF3hWluYLdxWs5WbzP/iE4aaRVPMsdxuzIaQ=
github.com/tree-sitter/tree-sitter-go v0.23.4 h1:yt5KMGnTHS+86pJmLIAZMWxukr8W7Ae1STPvQUuNROA=
github.com/tree-sitter/tree-sitter-go v0.23.4/go.mod h1:Jrx8QqYN0v7npv1fJRH1AznddllYiCMUChtVjxPK040=
github.com/tree-sitter/tree-sitter-html v0.23.2 h1:1UYDV+Yd05GGRhVnTcbP58GkKLSHHZwVaN+lBZV11Lc=
github.com/tree-sitter/tree-sitter-html v0.23.2/go.mod h1:gpUv/dG3Xl/eebqgeYeFMt+JLOY9cgFinb/Nw08a9og=
github.com/tree-sitter/tree-sitter-java v0.23.5 h1:J9YeMGMwXYlKSP3K4Us8CitC6hjtMjqpeOf2GGo6tig=
github.com/tree-sitter/tree-sitter-java v0.23.5/go.mod h1:NRKlI8+EznxA7t1Yt3xtraPk1Wzqh3GAIC46wxvc320=
github.com/tree-sitter/tree-sitter-javascript v0.23.1 h1:1fWupaRC0ArlHJ/QJzsfQ3Ibyopw7ZfQK4xXc40Zveo=
github.com/tree-sitter/tree-sitter-javascript v0.23.1/go.mod h1:lmGD1EJdCA+v0S1u2fFgepMg/opzSg/4pgFym2FPGAs=
github.com/tree-sitter/tree-sitter-json v0.24.8 h1:tV5rMkihgtiOe14a9LHfDY5kzTl5GNUYe6carZBn0fQ=
github.com/tree-sitter/tree-sitter-json v0.24.8/go.mod h1:F351KK0KGvCaYbZ5zxwx/gWWvZhIDl0eMtn+1r+gQbo=
github.com/tree-sitter/tree-sitter-php v0.23.11 h1:iHewsLNDmznh8kgGyfWfujsZxIz1YGbSd2ZTEM0ZiP8=
github.com/tree-sitter/tree-sitter-php v0.23.11/go.mod h1:T/kbfi+UcCywQfUNAJnGTN/fMSUjnwPXA8k4yoIks74=
github.com/tree-sitter/tree-sitter-python v0.23.6 h1:qHnWFR5WhtMQpxBZRwiaU5Hk/29vGju6CVtmvu5Haas=
github.com/tree-sitter/tree-sitter-python v0.23.6/go.mod h1:cpdthSy/Yoa28aJFBscFHlGiU+cnSiSh1kuDVtI8YeM=
github.com/tree-sitter/tree-sitter-ruby v0.23.1 h1:T/NKHUA+iVbHM440hFx+lzVOzS4dV6z8Qw8ai+72bYo=
github.com/tree-sitter/tree-sitter-ruby v0.23.1/go.mod h1:kUS4kCCQloFcdX6sdpr8p6r2rogbM6ZjTox5ZOQy8cA=
github.com/tree-sitter/tree-sitter-rust v0.23.2 h1:6AtoooCW5GqNrRpfnvl0iUhxTAZEovEmLKDbyHlfw90=
github.com/tree-sitter/tree-sitter-rust v0.23.2/go.mod h1:hfeGWic9BAfgTrc7Xf6FaOAguCFJRo3RBbs7QJ6D7MI=
github.com/twitchyliquid64/golang-asm v0.15.1 h1:SU5vSMR7hnwNxj24w34ZyCi/FmDZTkS4MhqMhdFk5YI=
github.com/twitchyliquid64/golang-asm v0.15.1/go.mod h1:a1lVb/DtPvCB8fslRZhAngC2+aY1QWCk3Cedj/Gdt08=
github.com/ugorji/go/codec v1.2.12 h1:9LC83zGrHhuUA9l16C9AHXAqEV/2wBQ4nkvumAE65EE=

View File

@@ -34,7 +34,6 @@ import (
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/tokenizer"
)
type filteredEnv []string
@@ -117,7 +116,7 @@ type llamaServer struct {
type ollamaServer struct {
llmServer
tokenizer tokenizer.Tokenizer // tokenizer handles text encoding/decoding
textProcessor model.TextProcessor // textProcessor handles text encoding/decoding
}
// LoadModel will load a model from disk. The model must be in the GGML format.
@@ -143,11 +142,11 @@ func LoadModel(model string, maxArraySize int) (*ggml.GGML, error) {
// NewLlamaServer will run a server for the given GPUs
func NewLlamaServer(systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, modelPath string, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
var llamaModel *llama.Model
var tok tokenizer.Tokenizer
var textProcessor model.TextProcessor
var err error
if envconfig.NewEngine() || f.KV().OllamaEngineRequired() {
if len(projectors) == 0 {
tok, err = model.NewTextProcessor(modelPath)
textProcessor, err = model.NewTextProcessor(modelPath)
} else {
err = errors.New("split vision models aren't supported")
}
@@ -156,7 +155,7 @@ func NewLlamaServer(systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, modelPath st
slog.Debug("model not yet supported by Ollama engine, switching to compatibility mode", "model", modelPath, "error", err)
}
}
if tok == nil {
if textProcessor == nil {
llamaModel, err = llama.LoadModelFromFile(modelPath, llama.ModelParams{VocabOnly: true})
if err != nil {
return nil, err
@@ -212,7 +211,7 @@ func NewLlamaServer(systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, modelPath st
kvct := strings.ToLower(envconfig.KvCacheType())
if tok == nil {
if textProcessor == nil {
flashAttention := ml.FlashAttentionAuto
if faUserSet {
if fa {
@@ -262,7 +261,7 @@ func NewLlamaServer(systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, modelPath st
gpuLibs := ml.LibraryPaths(gpus)
status := NewStatusWriter(os.Stderr)
cmd, port, err := StartRunner(
tok != nil,
textProcessor != nil,
modelPath,
gpuLibs,
status,
@@ -311,8 +310,8 @@ func NewLlamaServer(systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, modelPath st
}
}()
if tok != nil {
return &ollamaServer{llmServer: s, tokenizer: tok}, nil
if textProcessor != nil {
return &ollamaServer{llmServer: s, textProcessor: textProcessor}, nil
} else {
return &llamaServer{llmServer: s, ggml: f}, nil
}
@@ -1775,7 +1774,7 @@ func (s *llamaServer) Tokenize(ctx context.Context, content string) ([]int, erro
}
func (s *ollamaServer) Tokenize(ctx context.Context, content string) ([]int, error) {
tokens, err := s.tokenizer.Encode(content, false)
tokens, err := s.textProcessor.Encode(content, false)
if err != nil {
return nil, err
}
@@ -1810,7 +1809,7 @@ func (s *ollamaServer) Detokenize(ctx context.Context, tokens []int) (string, er
toks[i] = int32(t)
}
content, err := s.tokenizer.Decode(toks)
content, err := s.textProcessor.Decode(toks)
if err != nil {
return "", err
}

View File

@@ -131,15 +131,12 @@ func AnthropicMessagesMiddleware() gin.HandlerFunc {
messageID := anthropic.GenerateMessageID()
// Estimate input tokens for streaming (actual count not available until generation completes)
estimatedTokens := anthropic.EstimateInputTokens(req)
w := &AnthropicWriter{
BaseWriter: BaseWriter{ResponseWriter: c.Writer},
stream: req.Stream,
id: messageID,
model: req.Model,
converter: anthropic.NewStreamConverter(messageID, req.Model, estimatedTokens),
converter: anthropic.NewStreamConverter(messageID, req.Model),
}
if req.Stream {

272
model/bytepairencoding.go Normal file
View File

@@ -0,0 +1,272 @@
package model
import (
"cmp"
"iter"
"slices"
"strings"
"github.com/dlclark/regexp2"
heap "github.com/emirpasic/gods/v2/trees/binaryheap"
"github.com/ollama/ollama/logutil"
)
type BytePairEncoding struct {
vocab *Vocabulary
regexps []*regexp2.Regexp
}
var _ TextProcessor = (*BytePairEncoding)(nil)
func NewBytePairEncoding(vocab *Vocabulary, pretokenizers ...string) BytePairEncoding {
if len(pretokenizers) == 0 {
// set default byte-level pretokenizer if none provided, e.g.
// https://github.com/huggingface/tokenizers/blob/main/tokenizers/src/pre_tokenizers/byte_level.rs#L44
pretokenizers = []string{`'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+`}
}
return BytePairEncoding{
vocab: vocab,
regexps: slices.Collect(func(yield func(*regexp2.Regexp) bool) {
for _, p := range pretokenizers {
if !yield(regexp2.MustCompile(p, regexp2.RE2)) {
return
}
}
}),
}
}
func (bpe BytePairEncoding) Vocabulary() *Vocabulary {
return bpe.vocab
}
func (bpe BytePairEncoding) Is(id int32, special Special) bool {
return bpe.vocab.Is(id, special)
}
func (bpe *BytePairEncoding) split(s string) iter.Seq[string] {
parts := []string{s}
for _, re := range bpe.regexps {
parts = slices.Collect(func(yield func(string) bool) {
for _, part := range parts {
r := []rune(part)
var offset int
for m, _ := re.FindRunesMatch(r); m != nil; m, _ = re.FindNextMatch(m) {
if offset-m.Index != 0 {
if !yield(string(r[:m.Index])) {
return
}
}
if !yield(m.String()) {
return
}
offset = m.Index + m.Length
}
if offset < len(r) {
if !yield(string(r[offset:])) {
return
}
}
}
})
}
return slices.Values(parts)
}
// fragment is a string fragment and their corresponding token IDs
type fragment struct {
value string
ids []int32
}
// pair is a pair of runes and its rank
type pair struct {
a, b int
rank int
value string
}
type merge struct {
p, n int
runes []rune
}
func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
fragments := []fragment{{value: s}}
for _, special := range bpe.vocab.SpecialVocabulary() {
// TODO: process special tokens concurrently
id := bpe.vocab.Encode(special)
for i := 0; i < len(fragments); i++ {
frag := fragments[i]
if len(frag.ids) > 0 {
continue
}
var middle []fragment
switch i := strings.Index(frag.value, special); {
case i < 0:
middle = append(middle, frag)
case i > 0:
middle = append(middle, fragment{value: frag.value[:i]})
fallthrough
default:
middle = append(middle, fragment{value: special, ids: []int32{id}})
if rest := frag.value[i+len(special):]; rest != "" {
middle = append(middle, fragment{value: rest})
}
}
fragments = append(fragments[:i], append(middle, fragments[i+1:]...)...)
}
}
var ids []int32
for _, frag := range fragments {
if len(frag.ids) > 0 {
ids = append(ids, frag.ids...)
continue
}
for split := range bpe.split(frag.value) {
// TODO: process splits concurrently
var sb strings.Builder
for _, b := range []byte(split) {
r := rune(b)
switch {
case r == 0x00ad:
r = 0x0143
case r <= 0x0020:
r = r + 0x0100
case r >= 0x007f && r <= 0x00a0:
r = r + 0x00a2
}
sb.WriteRune(r)
}
// short circuit if the fragment is in the vocabulary
if id := bpe.vocab.Encode(sb.String()); id >= 0 {
ids = append(ids, id)
continue
}
runes := []rune(sb.String())
merges := make([]merge, len(runes))
for r := range runes {
merges[r] = merge{
p: r - 1,
n: r + 1,
runes: []rune{runes[r]},
}
}
pairwise := func(a, b int) *pair {
if a < 0 || b >= len(runes) {
return nil
}
left, right := string(merges[a].runes), string(merges[b].runes)
rank := bpe.vocab.Merge(left, right)
if rank < 0 {
return nil
}
return &pair{
a: a,
b: b,
rank: rank,
value: left + right,
}
}
pairs := heap.NewWith(func(i, j *pair) int {
return cmp.Compare(i.rank, j.rank)
})
for i := range len(runes) - 1 {
if pair := pairwise(i, i+1); pair != nil {
pairs.Push(pair)
}
}
for !pairs.Empty() {
pair, _ := pairs.Pop()
left, right := merges[pair.a], merges[pair.b]
if len(left.runes) == 0 || len(right.runes) == 0 ||
string(left.runes)+string(right.runes) != pair.value {
continue
}
if id := bpe.vocab.Encode(pair.value); id < 0 {
continue
}
merges[pair.a].runes = append(left.runes, right.runes...)
merges[pair.b].runes = nil
merges[pair.a].n = right.n
if right.n < len(merges) {
merges[right.n].p = pair.a
}
if pair := pairwise(merges[pair.a].p, pair.a); pair != nil {
pairs.Push(pair)
}
if pair := pairwise(pair.a, merges[pair.a].n); pair != nil {
pairs.Push(pair)
}
}
for _, merge := range merges {
if len(merge.runes) > 0 {
// TODO: handle the edge case where the rune isn't in the vocabulary
if id := bpe.vocab.Encode(string(merge.runes)); id >= 0 {
ids = append(ids, id)
}
}
}
}
}
if addSpecial {
ids = bpe.vocab.addSpecials(ids)
}
logutil.Trace("encoded", "string", s, "ids", ids)
return ids, nil
}
func (bpe BytePairEncoding) Decode(ids []int32) (string, error) {
var sb strings.Builder
for _, id := range ids {
for _, r := range bpe.vocab.Decode(id) {
switch {
case r == 0x0100:
// this produces 0x00 aka NULL
continue
case r == 0x0143:
r = 0x00ad
case r > 0x0100 && r <= 0x0120:
r = r - 0x0100
case r > 0x0120 && r <= 0x0142:
r = r - 0x00a2
}
// NOTE: not using WriteRune here because it writes the UTF-8
// encoding of the rune which is _not_ what we want
if err := sb.WriteByte(byte(r)); err != nil {
return "", err
}
}
}
logutil.Trace("decoded", "string", sb.String(), "from", ids)
return sb.String(), nil
}

View File

@@ -1,4 +1,4 @@
package tokenizer
package model
import (
"bufio"
@@ -17,7 +17,7 @@ import (
func llama(t testing.TB) BytePairEncoding {
t.Helper()
f, err := os.Open(filepath.FromSlash("testdata/llama3.2/encoder.json"))
f, err := os.Open(filepath.Join("testdata", "llama3.2", "encoder.json"))
if err != nil {
t.Fatal(err)
}
@@ -43,7 +43,7 @@ func llama(t testing.TB) BytePairEncoding {
}
}
f, err = os.Open(filepath.FromSlash("testdata/llama3.2/vocab.bpe"))
f, err = os.Open(filepath.Join("testdata", "llama3.2", "vocab.bpe"))
if err != nil {
t.Fatal(err)
}

View File

@@ -23,7 +23,6 @@ import (
_ "github.com/ollama/ollama/ml/backend"
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
var (
@@ -134,7 +133,7 @@ func New(modelPath string, params ml.BackendParams) (Model, error) {
return m, nil
}
func NewTextProcessor(s string) (tokenizer.Tokenizer, error) {
func NewTextProcessor(s string) (TextProcessor, error) {
r, err := os.Open(s)
if err != nil {
return nil, err
@@ -151,7 +150,7 @@ func NewTextProcessor(s string) (tokenizer.Tokenizer, error) {
return nil, err
}
tp, ok := m.(tokenizer.Tokenizer)
tp, ok := m.(TextProcessor)
if !ok {
return nil, ErrUnsupportedTokenizer
}

View File

@@ -10,12 +10,11 @@ import (
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Model struct {
model.Base
tokenizer.Tokenizer
model.TextProcessor
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
TypeEmbedding *nn.Embedding `gguf:"token_types"`
@@ -130,7 +129,7 @@ func (o Options) headDim() int {
}
func New(c fs.Config) (model.Model, error) {
vocab := &tokenizer.Vocabulary{
vocab := &model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
@@ -154,17 +153,17 @@ func New(c fs.Config) (model.Model, error) {
},
}
var t tokenizer.Tokenizer
var processor model.TextProcessor
switch c.String("tokenizer.ggml.model", "bert") {
case "bert":
t = tokenizer.NewWordPiece(vocab, true)
processor = model.NewWordPiece(vocab, true)
default:
return nil, model.ErrUnsupportedTokenizer
}
return &Model{
Tokenizer: t,
Layers: make([]EncoderLayer, c.Uint("block_count")),
TextProcessor: processor,
Layers: make([]EncoderLayer, c.Uint("block_count")),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),

View File

@@ -13,7 +13,6 @@ import (
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Options struct {
@@ -223,7 +222,7 @@ func (t *Layer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tens
type Model struct {
model.Base
tokenizer.Tokenizer
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
@@ -278,8 +277,8 @@ func New(c fs.Config) (model.Model, error) {
}
m := Model{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -10,12 +10,11 @@ import (
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Model struct {
model.Base
tokenizer.Tokenizer
model.TextProcessor
Sam *samModel `gguf:"s"`
Vision *visionModel `gguf:"v"`
@@ -135,8 +134,8 @@ func init() {
}
m := Model{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
TextProcessor: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -10,7 +10,6 @@ import (
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Options struct {
@@ -28,7 +27,7 @@ func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions
type Model struct {
model.Base
tokenizer.Tokenizer
model.SentencePiece
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
@@ -44,8 +43,8 @@ const (
func New(c fs.Config) (model.Model, error) {
m := Model{
Tokenizer: tokenizer.NewSentencePiece(
&tokenizer.Vocabulary{
SentencePiece: model.NewSentencePiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),

View File

@@ -7,12 +7,11 @@ import (
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type embedModel struct {
model.Base
tokenizer.Tokenizer
model.SentencePiece
*TextModel
poolingType pooling.Type
@@ -32,8 +31,8 @@ func (m *embedModel) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, erro
func newEmbedModel(c fs.Config) (model.Model, error) {
m := &embedModel{
Tokenizer: tokenizer.NewSentencePiece(
&tokenizer.Vocabulary{
SentencePiece: model.NewSentencePiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),

View File

@@ -12,12 +12,11 @@ import (
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Model struct {
model.Base
tokenizer.Tokenizer
model.TextProcessor
*VisionModel `gguf:"v"`
*TextModel
@@ -55,7 +54,7 @@ func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, i
}
func New(c fs.Config) (model.Model, error) {
vocabulary := tokenizer.Vocabulary{
vocabulary := model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
@@ -71,19 +70,19 @@ func New(c fs.Config) (model.Model, error) {
),
}
var t tokenizer.Tokenizer
var processor model.TextProcessor
switch c.String("tokenizer.ggml.model") {
case "gpt2":
t = tokenizer.NewBytePairEncoding(&vocabulary)
processor = model.NewBytePairEncoding(&vocabulary)
default:
// Previous uploads of Gemma 3 on Ollama did not have token 106
// (i.e. "<end_of_turn>") so we need to add in case it's not already present
vocabulary.EOS = append(vocabulary.EOS, int32(c.Uint("tokenizer.ggml.eot_token_id", 106)))
t = tokenizer.NewSentencePiece(&vocabulary)
processor = model.NewSentencePiece(&vocabulary)
}
m := Model{
Tokenizer: t,
TextProcessor: processor,
ImageProcessor: newImageProcessor(c),
VisionModel: newVisionModel(c),
TextModel: newTextModel(c),

View File

@@ -6,12 +6,11 @@ import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Model struct {
model.Base
tokenizer.Tokenizer
model.SentencePiece
*TextModel
}
@@ -24,8 +23,8 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
func New(c fs.Config) (model.Model, error) {
m := Model{
TextModel: newTextModel(c),
Tokenizer: tokenizer.NewSentencePiece(
&tokenizer.Vocabulary{
SentencePiece: model.NewSentencePiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),

View File

@@ -10,7 +10,6 @@ import (
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
var ErrOldModelFormat = errors.New("this model uses a weight format that is no longer supported; please re-download it")
@@ -199,7 +198,7 @@ func (t *Layer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tens
type Model struct {
model.Base
tokenizer.Tokenizer
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
@@ -237,8 +236,8 @@ func New(c fs.Config) (model.Model, error) {
}
m := Model{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -11,12 +11,11 @@ import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Model struct {
model.Base
tokenizer.Tokenizer
model.BytePairEncoding
*TextModel
*VisionModel `gguf:"v"`
@@ -38,8 +37,8 @@ func New(c fs.Config) (model.Model, error) {
allEOS := append([]int32{eosTokenID}, eosTokenIDs...)
m := &Model{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -12,12 +12,11 @@ import (
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Transformer struct {
model.Base
tokenizer.Tokenizer
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
TransformerBlocks []TransformerBlock `gguf:"blk"`
@@ -197,8 +196,8 @@ func (mlp *MLPBlock) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Optio
func New(c fs.Config) (model.Model, error) {
m := Transformer{
TransformerBlocks: make([]TransformerBlock, c.Uint("block_count")),
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -10,7 +10,6 @@ import (
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Options struct {
@@ -60,7 +59,7 @@ func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions
type Model struct {
model.Base
tokenizer.Tokenizer
model.TextProcessor
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
@@ -79,7 +78,7 @@ func New(c fs.Config) (model.Model, error) {
return nil, model.ErrUnsupportedTokenizer
}
vocabulary := tokenizer.Vocabulary{
vocabulary := model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
@@ -105,8 +104,8 @@ func New(c fs.Config) (model.Model, error) {
}
m := Model{
Tokenizer: tokenizer.NewBytePairEncoding(&vocabulary, pretokenizers...),
Layers: make([]Layer, c.Uint("block_count")),
TextProcessor: model.NewBytePairEncoding(&vocabulary, pretokenizers...),
Layers: make([]Layer, c.Uint("block_count")),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),
headDim: int(c.Uint("attention.key_length")),

View File

@@ -11,7 +11,6 @@ import (
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Options struct {
@@ -26,7 +25,7 @@ func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions
type Model struct {
model.Base
tokenizer.Tokenizer
model.TextProcessor
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
@@ -42,8 +41,8 @@ func New(c fs.Config) (model.Model, error) {
return nil, model.ErrUnsupportedModel
}
var processor tokenizer.Tokenizer
vocabulary := tokenizer.Vocabulary{
var processor model.TextProcessor
vocabulary := model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
@@ -81,16 +80,16 @@ func New(c fs.Config) (model.Model, error) {
"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
}
}
processor = tokenizer.NewBytePairEncoding(&vocabulary, pretokenizers...)
processor = model.NewBytePairEncoding(&vocabulary, pretokenizers...)
case "llama":
processor = tokenizer.NewSentencePiece(&vocabulary)
processor = model.NewSentencePiece(&vocabulary)
default:
return nil, model.ErrUnsupportedTokenizer
}
m := Model{
Tokenizer: processor,
Layers: make([]Layer, c.Uint("block_count")),
TextProcessor: processor,
Layers: make([]Layer, c.Uint("block_count")),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),

View File

@@ -11,12 +11,11 @@ import (
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Model struct {
model.Base
tokenizer.Tokenizer
model.BytePairEncoding
ImageProcessor
*VisionModel `gguf:"v"`
@@ -34,8 +33,8 @@ func (p *Projector) Forward(ctx ml.Context, visionOutputs ml.Tensor) ml.Tensor {
func New(c fs.Config) (model.Model, error) {
m := Model{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -11,12 +11,11 @@ import (
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Model struct {
model.Base
tokenizer.Tokenizer
model.BytePairEncoding
*TextModel
*VisionModel `gguf:"v"`
@@ -29,12 +28,12 @@ type Model struct {
var _ model.MultimodalProcessor = (*Model)(nil)
// Implement TextProcessor interface
var _ tokenizer.Tokenizer = (*Model)(nil)
var _ model.TextProcessor = (*Model)(nil)
func New(c fs.Config) (model.Model, error) {
m := &Model{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -11,12 +11,11 @@ import (
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Model struct {
model.Base
tokenizer.Tokenizer
model.BytePairEncoding
*VisionModel `gguf:"v"`
*TextModel
@@ -33,8 +32,8 @@ const (
func New(c fs.Config) (model.Model, error) {
m := Model{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -11,12 +11,11 @@ import (
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Model struct {
model.Base
tokenizer.Tokenizer
model.TextProcessor
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
TypeEmbedding *nn.Embedding `gguf:"token_types"`
@@ -179,6 +178,29 @@ func New(c fs.Config) (model.Model, error) {
numHeads := int(c.Uint("attention.head_count"))
headDim := hiddenSize / numHeads
processor := model.NewWordPiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{
int32(cmp.Or(
c.Uint("tokenizer.ggml.cls_token_id"),
c.Uint("tokenizer.ggml.bos_token_id"),
)),
},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", true),
EOS: []int32{
int32(cmp.Or(
c.Uint("tokenizer.ggml.separator_token_id"),
c.Uint("tokenizer.ggml.eos_token_id"),
)),
},
},
false,
)
blockCount := int(c.Uint("block_count"))
moeEveryNLayers := int(c.Uint("moe_every_n_layers", 0))
layers := make([]EncoderLayer, blockCount)
@@ -197,29 +219,8 @@ func New(c fs.Config) (model.Model, error) {
}
return &Model{
Tokenizer: tokenizer.NewWordPiece(
&tokenizer.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{
int32(cmp.Or(
c.Uint("tokenizer.ggml.cls_token_id"),
c.Uint("tokenizer.ggml.bos_token_id"),
)),
},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", true),
EOS: []int32{
int32(cmp.Or(
c.Uint("tokenizer.ggml.separator_token_id"),
c.Uint("tokenizer.ggml.eos_token_id"),
)),
},
},
false,
),
Layers: layers,
TextProcessor: processor,
Layers: layers,
Options: Options{
hiddenSize: hiddenSize,
numHeads: numHeads,

View File

@@ -11,7 +11,6 @@ import (
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
const (
@@ -34,7 +33,7 @@ type Options struct {
type Model struct {
model.Base
tokenizer.Tokenizer
model.TextProcessor
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
@@ -45,24 +44,28 @@ type Model struct {
}
func New(c fs.Config) (model.Model, error) {
m := Model{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", false),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
vocabulary := model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", false),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
Layers: make([]Layer, c.Uint("block_count")),
}
processor := model.NewBytePairEncoding(
&vocabulary,
"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
)
m := Model{
TextProcessor: processor,
Layers: make([]Layer, c.Uint("block_count")),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),

View File

@@ -13,7 +13,6 @@ import (
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Options struct {
@@ -93,7 +92,7 @@ func (d DecoderLayer) Forward(ctx ml.Context, hiddenStates, positions, outputs m
type Model struct {
model.Base
tokenizer.Tokenizer
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []DecoderLayer `gguf:"blk"`
@@ -140,8 +139,8 @@ func New(c fs.Config) (model.Model, error) {
}
m := Model{
Layers: make([]DecoderLayer, c.Uint("block_count")),
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -10,12 +10,11 @@ import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Model struct {
model.Base
tokenizer.Tokenizer
model.BytePairEncoding
*TextModel
*VisionModel `gguf:"v"`
@@ -28,8 +27,8 @@ var _ model.MultimodalProcessor = (*Model)(nil)
func New(c fs.Config) (model.Model, error) {
m := &Model{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -7,12 +7,11 @@ import (
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type embedModel struct {
model.Base
tokenizer.Tokenizer
model.BytePairEncoding
*Model
poolingType pooling.Type
@@ -35,8 +34,8 @@ func newEmbed(c fs.Config) (model.Model, error) {
layers[i].MLP = &dense{}
}
m := embedModel{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -12,7 +12,6 @@ import (
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Options struct {
@@ -160,7 +159,7 @@ func (d *Layer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tens
type Model struct {
model.Base
tokenizer.Tokenizer
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
@@ -219,8 +218,8 @@ func New(c fs.Config) (model.Model, error) {
}
m := Model{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -11,7 +11,6 @@ import (
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
// Options contains model configuration
@@ -208,7 +207,7 @@ func (l *Layer) Forward(ctx ml.Context, layer int, hiddenStates, positions, outp
// Model is the main Qwen3-Next model
type Model struct {
model.Base
tokenizer.Tokenizer
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
@@ -354,8 +353,8 @@ func New(c fs.Config) (model.Model, error) {
}
m := Model{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -10,12 +10,11 @@ import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/tokenizer"
)
type Model struct {
model.Base
tokenizer.Tokenizer
model.TextProcessor
*TextModel
*VisionModel `gguf:"v"`
@@ -173,8 +172,8 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
func New(c fs.Config) (model.Model, error) {
m := Model{
Tokenizer: tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
TextProcessor: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),

View File

@@ -1,4 +1,4 @@
package tokenizer
package model
import (
"container/heap"
@@ -17,7 +17,7 @@ type SentencePiece struct {
vocab *Vocabulary
}
var _ Tokenizer = (*SentencePiece)(nil)
var _ TextProcessor = (*SentencePiece)(nil)
func (spm SentencePiece) Vocabulary() *Vocabulary {
return spm.vocab
@@ -224,7 +224,7 @@ func (spm SentencePiece) Decode(ids []int32) (string, error) {
data := spm.vocab.Decode(id)
data = strings.ReplaceAll(data, spmWhitespaceSep, " ")
// For tokenizer that use byte tokens like "<0xEA>"
// For tokenizers that use byte tokens like "<0xEA>"
// convert them to the partial unicode character
// so they are buffered correctly by the runner instead
// of being sent back to the api as "<0xEA>"

View File

@@ -1,4 +1,4 @@
package tokenizer
package model
import (
"log/slog"
@@ -15,7 +15,7 @@ import (
func loadSentencePieceVocab(t *testing.T) SentencePiece {
t.Helper()
bts, err := os.ReadFile(filepath.FromSlash("testdata/gemma2/tokenizer.model"))
bts, err := os.ReadFile(filepath.Join("testdata", "gemma2", "tokenizer.model"))
if err != nil {
t.Fatal(err)
}

17
model/textprocessor.go Normal file
View File

@@ -0,0 +1,17 @@
package model
const (
TOKEN_TYPE_NORMAL = iota + 1
TOKEN_TYPE_UNKNOWN
TOKEN_TYPE_CONTROL
TOKEN_TYPE_USER_DEFINED
TOKEN_TYPE_UNUSED
TOKEN_TYPE_BYTE
)
type TextProcessor interface {
Encode(s string, addSpecial bool) ([]int32, error)
Decode([]int32) (string, error)
Is(int32, Special) bool
Vocabulary() *Vocabulary
}

View File

@@ -1,4 +1,4 @@
package tokenizer
package model
import (
"log/slog"

View File

@@ -1,4 +1,4 @@
package tokenizer
package model
import (
"testing"

View File

@@ -1,4 +1,4 @@
package tokenizer
package model
import (
"fmt"
@@ -32,7 +32,7 @@ var wordPieceReplacer = strings.NewReplacer(
" 're", "'re",
)
// Decode implements Tokenizer.
// Decode implements TextProcessor.
func (wpm WordPiece) Decode(ids []int32) (string, error) {
var sb strings.Builder
for i, id := range ids {
@@ -96,7 +96,7 @@ func (wpm WordPiece) words(s string) iter.Seq[string] {
}
}
// Encode implements Tokenizer.
// Encode implements TextProcessor.
func (wpm WordPiece) Encode(s string, addSpecial bool) ([]int32, error) {
var ids []int32
@@ -151,17 +151,17 @@ func (wpm WordPiece) Encode(s string, addSpecial bool) ([]int32, error) {
return ids, nil
}
// Is implements Tokenizer.
// Is implements TextProcessor.
func (wpm WordPiece) Is(id int32, special Special) bool {
return wpm.vocab.Is(id, special)
}
// Vocabulary implements Tokenizer.
// Vocabulary implements TextProcessor.
func (wpm WordPiece) Vocabulary() *Vocabulary {
return wpm.vocab
}
var _ Tokenizer = (*WordPiece)(nil)
var _ TextProcessor = (*WordPiece)(nil)
func NewWordPiece(vocab *Vocabulary, lowercase bool) WordPiece {
return WordPiece{

View File

@@ -1,4 +1,4 @@
package tokenizer
package model
import (
"slices"

View File

@@ -37,7 +37,6 @@ import (
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/runner/common"
"github.com/ollama/ollama/sample"
"github.com/ollama/ollama/tokenizer"
_ "github.com/ollama/ollama/model/models"
)
@@ -211,9 +210,9 @@ func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSe
}
// calculateLogprobs converts raw logits to log probabilities and finds top K tokens
func calculateLogprobs(logits []float32, selectedToken int32, topK int, tok tokenizer.Tokenizer) []llm.Logprob {
func calculateLogprobs(logits []float32, selectedToken int32, topK int, textProcessor model.TextProcessor) []llm.Logprob {
decoder := func(tokenID int) string {
text, _ := tok.Decode([]int32{int32(tokenID)})
text, _ := textProcessor.Decode([]int32{int32(tokenID)})
return text
}
return common.CalculateLogprobs(logits, int(selectedToken), topK, decoder)
@@ -243,7 +242,7 @@ func (s *Server) inputs(prompt string, images []llm.ImageData) ([]*input.Input,
for i, part := range parts {
// text - tokenize
tokens, err := s.model.(tokenizer.Tokenizer).Encode(part, i == 0)
tokens, err := s.model.(model.TextProcessor).Encode(part, i == 0)
if err != nil {
return nil, nil, nil, err
}
@@ -765,7 +764,7 @@ func (s *Server) computeBatch(activeBatch batchState) {
nextBatchTokens[i].Token = token
// if it's an end of sequence token, break
if s.model.(tokenizer.Tokenizer).Is(token, tokenizer.SpecialEOS) {
if s.model.(model.TextProcessor).Is(token, model.SpecialEOS) {
// TODO (jmorganca): we should send this back
// as it's important for the /api/generate context
// seq.responses <- piece
@@ -774,14 +773,14 @@ func (s *Server) computeBatch(activeBatch batchState) {
continue
}
piece, err := s.model.(tokenizer.Tokenizer).Decode([]int32{token})
piece, err := s.model.(model.TextProcessor).Decode([]int32{token})
if err != nil {
panic("failed to decode token")
}
// Calculate logprobs if requested (after EOS check to avoid logprobs for EOS tokens)
if seq.logprobs {
logprobs := calculateLogprobs(logits, token, seq.topLogprobs, s.model.(tokenizer.Tokenizer))
logprobs := calculateLogprobs(logits, token, seq.topLogprobs, s.model.(model.TextProcessor))
seq.pendingLogprobs = append(seq.pendingLogprobs, logprobs...)
}
@@ -879,7 +878,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
var grammar *sample.GrammarSampler
var err error
if req.Grammar != "" {
grammar, err = sample.NewGrammarSampler(s.model.(tokenizer.Tokenizer), req.Grammar)
grammar, err = sample.NewGrammarSampler(s.model.(model.TextProcessor), req.Grammar)
if err != nil {
http.Error(w, "failed to load model vocabulary required for format", http.StatusInternalServerError)
return

View File

@@ -3,7 +3,6 @@ package runner
import (
"github.com/ollama/ollama/runner/llamarunner"
"github.com/ollama/ollama/runner/ollamarunner"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/mlxrunner"
)
@@ -12,15 +11,22 @@ func Execute(args []string) error {
args = args[1:]
}
if len(args) > 0 {
switch args[0] {
case "--ollama-engine":
return ollamarunner.Execute(args[1:])
case "--imagegen-engine":
return imagegen.Execute(args[1:])
case "--mlx-engine":
return mlxrunner.Execute(args[1:])
}
var newRunner bool
var mlxRunner bool
if len(args) > 0 && args[0] == "--ollama-engine" {
args = args[1:]
newRunner = true
}
if len(args) > 0 && args[0] == "--mlx-engine" {
args = args[1:]
mlxRunner = true
}
if mlxRunner {
return mlxrunner.Execute(args)
} else if newRunner {
return ollamarunner.Execute(args)
} else {
return llamarunner.Execute(args)
}
return llamarunner.Execute(args)
}

View File

@@ -7,7 +7,7 @@ import (
"slices"
"github.com/ollama/ollama/llama"
"github.com/ollama/ollama/tokenizer"
"github.com/ollama/ollama/model"
)
// token represents information about a single token during sampling
@@ -168,15 +168,15 @@ type GrammarSampler struct {
grammar *llama.Grammar
}
func NewGrammarSampler(tok tokenizer.Tokenizer, grammarStr string) (*GrammarSampler, error) {
vocabIds := make([]uint32, len(tok.Vocabulary().Values))
pieces := make([]string, len(tok.Vocabulary().Values))
for i := range tok.Vocabulary().Values {
pieces[i], _ = tok.Decode([]int32{int32(i)})
func NewGrammarSampler(model model.TextProcessor, grammarStr string) (*GrammarSampler, error) {
vocabIds := make([]uint32, len(model.Vocabulary().Values))
pieces := make([]string, len(model.Vocabulary().Values))
for i := range model.Vocabulary().Values {
pieces[i], _ = model.Decode([]int32{int32(i)})
vocabIds[i] = uint32(i)
}
grammar := llama.NewGrammar(grammarStr, vocabIds, pieces, tok.Vocabulary().EOS)
grammar := llama.NewGrammar(grammarStr, vocabIds, pieces, model.Vocabulary().EOS)
if grammar == nil {
return nil, errors.New("sample: failed to initialize grammar")
}

View File

@@ -8,7 +8,7 @@ import (
"path/filepath"
"testing"
"github.com/ollama/ollama/tokenizer"
"github.com/ollama/ollama/model"
)
func TestWeighted(t *testing.T) {
@@ -60,10 +60,10 @@ func TestWeighted(t *testing.T) {
}
}
func modelHelper(t testing.TB) tokenizer.Tokenizer {
func modelHelper(t testing.TB) model.BytePairEncoding {
t.Helper()
f, err := os.Open(filepath.FromSlash("../tokenizer/testdata/llama3.2/encoder.json"))
f, err := os.Open(filepath.Join("..", "model", "testdata", "llama3.2", "encoder.json"))
if err != nil {
t.Fatal(err)
}
@@ -81,8 +81,8 @@ func modelHelper(t testing.TB) tokenizer.Tokenizer {
merges := make([]string, 0, 1)
// Only need vocab for Grammar Test
return tokenizer.NewBytePairEncoding(
&tokenizer.Vocabulary{
return model.NewBytePairEncoding(
&model.Vocabulary{
Values: tokens,
Types: make([]int32, len(vocab)),
Merges: merges,

View File

@@ -1,5 +1,5 @@
#!/bin/sh
# This script installs Ollama on Linux and macOS.
# This script installs Ollama on Linux.
# It detects the current operating system architecture and installs the appropriate version of Ollama.
set -eu
@@ -27,7 +27,8 @@ require() {
echo $MISSING
}
OS="$(uname -s)"
[ "$(uname -s)" = "Linux" ] || error 'This script is intended to run on Linux only.'
ARCH=$(uname -m)
case "$ARCH" in
x86_64) ARCH="amd64" ;;
@@ -35,65 +36,6 @@ case "$ARCH" in
*) error "Unsupported architecture: $ARCH" ;;
esac
###########################################
# macOS
###########################################
if [ "$OS" = "Darwin" ]; then
NEEDS=$(require curl unzip)
if [ -n "$NEEDS" ]; then
status "ERROR: The following tools are required but missing:"
for NEED in $NEEDS; do
echo " - $NEED"
done
exit 1
fi
if [ -n "${OLLAMA_VERSION:-}" ]; then
DOWNLOAD_URL="https://github.com/ollama/ollama/releases/download/${OLLAMA_VERSION}/Ollama-darwin.zip"
else
DOWNLOAD_URL="https://github.com/ollama/ollama/releases/latest/download/Ollama-darwin.zip"
fi
if pgrep -x Ollama >/dev/null 2>&1; then
status "Stopping running Ollama instance..."
pkill -x Ollama 2>/dev/null || true
sleep 2
fi
if [ -d "/Applications/Ollama.app" ]; then
status "Removing existing Ollama installation..."
rm -rf "/Applications/Ollama.app"
fi
status "Downloading Ollama for macOS..."
curl --fail --show-error --location --progress-bar \
-o "$TEMP_DIR/Ollama-darwin.zip" "$DOWNLOAD_URL"
status "Installing Ollama to /Applications..."
unzip -q "$TEMP_DIR/Ollama-darwin.zip" -d "$TEMP_DIR"
mv "$TEMP_DIR/Ollama.app" "/Applications/"
status "Adding 'ollama' command to PATH (may require password)..."
mkdir -p "/usr/local/bin" 2>/dev/null || sudo mkdir -p "/usr/local/bin"
ln -sf "/Applications/Ollama.app/Contents/Resources/ollama" "/usr/local/bin/ollama" 2>/dev/null || \
sudo ln -sf "/Applications/Ollama.app/Contents/Resources/ollama" "/usr/local/bin/ollama"
if [ -z "${OLLAMA_NO_START:-}" ]; then
status "Starting Ollama..."
open -a Ollama --args hidden
fi
status "Install complete. You can now run 'ollama'."
exit 0
fi
###########################################
# Linux
###########################################
[ "$OS" = "Linux" ] || error 'This script is intended to run on Linux and macOS only.'
IS_WSL2=false
KERN=$(uname -r)

View File

@@ -1,422 +0,0 @@
package server
import (
"encoding/json"
"errors"
"fmt"
"log/slog"
"os"
"path/filepath"
"sort"
"strings"
"sync"
"github.com/ollama/ollama/manifest"
"github.com/ollama/ollama/types/model"
)
const (
serverConfigFilename = "server.json"
serverConfigVersion = 1
)
var errAliasCycle = errors.New("alias cycle detected")
type aliasEntry struct {
Alias string `json:"alias"`
Target string `json:"target"`
PrefixMatching bool `json:"prefix_matching,omitempty"`
}
type serverConfig struct {
Version int `json:"version"`
Aliases []aliasEntry `json:"aliases"`
}
type store struct {
mu sync.RWMutex
path string
entries map[string]aliasEntry // normalized alias -> entry (exact matches)
prefixEntries []aliasEntry // prefix matches, sorted longest-first
}
func createStore(path string) (*store, error) {
store := &store{
path: path,
entries: make(map[string]aliasEntry),
}
if err := store.load(); err != nil {
return nil, err
}
return store, nil
}
func (s *store) load() error {
data, err := os.ReadFile(s.path)
if err != nil {
if errors.Is(err, os.ErrNotExist) {
return nil
}
return err
}
var cfg serverConfig
if err := json.Unmarshal(data, &cfg); err != nil {
return err
}
if cfg.Version != 0 && cfg.Version != serverConfigVersion {
return fmt.Errorf("unsupported router config version %d", cfg.Version)
}
for _, entry := range cfg.Aliases {
targetName := model.ParseName(entry.Target)
if !targetName.IsValid() {
slog.Warn("invalid alias target in router config", "target", entry.Target)
continue
}
canonicalTarget := displayAliasName(targetName)
if entry.PrefixMatching {
// Prefix aliases don't need to be valid model names
alias := strings.TrimSpace(entry.Alias)
if alias == "" {
slog.Warn("empty prefix alias in router config")
continue
}
s.prefixEntries = append(s.prefixEntries, aliasEntry{
Alias: alias,
Target: canonicalTarget,
PrefixMatching: true,
})
} else {
aliasName := model.ParseName(entry.Alias)
if !aliasName.IsValid() {
slog.Warn("invalid alias name in router config", "alias", entry.Alias)
continue
}
canonicalAlias := displayAliasName(aliasName)
s.entries[normalizeAliasKey(aliasName)] = aliasEntry{
Alias: canonicalAlias,
Target: canonicalTarget,
}
}
}
// Sort prefix entries by alias length descending (longest prefix wins)
s.sortPrefixEntriesLocked()
return nil
}
func (s *store) saveLocked() error {
dir := filepath.Dir(s.path)
if err := os.MkdirAll(dir, 0o755); err != nil {
return err
}
// Combine exact and prefix entries
entries := make([]aliasEntry, 0, len(s.entries)+len(s.prefixEntries))
for _, entry := range s.entries {
entries = append(entries, entry)
}
entries = append(entries, s.prefixEntries...)
sort.Slice(entries, func(i, j int) bool {
return strings.Compare(entries[i].Alias, entries[j].Alias) < 0
})
cfg := serverConfig{
Version: serverConfigVersion,
Aliases: entries,
}
f, err := os.CreateTemp(dir, "router-*.json")
if err != nil {
return err
}
enc := json.NewEncoder(f)
enc.SetIndent("", " ")
if err := enc.Encode(cfg); err != nil {
_ = f.Close()
_ = os.Remove(f.Name())
return err
}
if err := f.Close(); err != nil {
_ = os.Remove(f.Name())
return err
}
if err := os.Chmod(f.Name(), 0o644); err != nil {
_ = os.Remove(f.Name())
return err
}
return os.Rename(f.Name(), s.path)
}
func (s *store) ResolveName(name model.Name) (model.Name, bool, error) {
// If a local model exists, do not allow alias shadowing (highest priority).
exists, err := localModelExists(name)
if err != nil {
return name, false, err
}
if exists {
return name, false, nil
}
key := normalizeAliasKey(name)
s.mu.RLock()
entry, exactMatch := s.entries[key]
var prefixMatch *aliasEntry
if !exactMatch {
// Try prefix matching - prefixEntries is sorted longest-first
nameStr := strings.ToLower(displayAliasName(name))
for i := range s.prefixEntries {
prefix := strings.ToLower(s.prefixEntries[i].Alias)
if strings.HasPrefix(nameStr, prefix) {
prefixMatch = &s.prefixEntries[i]
break // First match is longest due to sorting
}
}
}
s.mu.RUnlock()
if !exactMatch && prefixMatch == nil {
return name, false, nil
}
var current string
var visited map[string]struct{}
if exactMatch {
visited = map[string]struct{}{key: {}}
current = entry.Target
} else {
// For prefix match, use the target as-is
visited = map[string]struct{}{}
current = prefixMatch.Target
}
targetKey := normalizeAliasKeyString(current)
for {
targetName := model.ParseName(current)
if !targetName.IsValid() {
return name, false, fmt.Errorf("alias target %q is invalid", current)
}
if _, seen := visited[targetKey]; seen {
return name, false, errAliasCycle
}
visited[targetKey] = struct{}{}
s.mu.RLock()
next, ok := s.entries[targetKey]
s.mu.RUnlock()
if !ok {
return targetName, true, nil
}
current = next.Target
targetKey = normalizeAliasKeyString(current)
}
}
func (s *store) Set(alias, target model.Name, prefixMatching bool) error {
targetKey := normalizeAliasKey(target)
s.mu.Lock()
defer s.mu.Unlock()
if prefixMatching {
// For prefix aliases, we skip cycle detection since prefix matching
// works differently and the target is a specific model
aliasStr := displayAliasName(alias)
// Remove any existing prefix entry with the same alias
for i, e := range s.prefixEntries {
if strings.EqualFold(e.Alias, aliasStr) {
s.prefixEntries = append(s.prefixEntries[:i], s.prefixEntries[i+1:]...)
break
}
}
s.prefixEntries = append(s.prefixEntries, aliasEntry{
Alias: aliasStr,
Target: displayAliasName(target),
PrefixMatching: true,
})
s.sortPrefixEntriesLocked()
return s.saveLocked()
}
aliasKey := normalizeAliasKey(alias)
if aliasKey == targetKey {
return fmt.Errorf("alias cannot point to itself")
}
visited := map[string]struct{}{aliasKey: {}}
currentKey := targetKey
for {
if _, seen := visited[currentKey]; seen {
return errAliasCycle
}
visited[currentKey] = struct{}{}
next, ok := s.entries[currentKey]
if !ok {
break
}
currentKey = normalizeAliasKeyString(next.Target)
}
s.entries[aliasKey] = aliasEntry{
Alias: displayAliasName(alias),
Target: displayAliasName(target),
}
return s.saveLocked()
}
func (s *store) Delete(alias model.Name) (bool, error) {
aliasKey := normalizeAliasKey(alias)
s.mu.Lock()
defer s.mu.Unlock()
// Try exact match first
if _, ok := s.entries[aliasKey]; ok {
delete(s.entries, aliasKey)
return true, s.saveLocked()
}
// Try prefix entries
aliasStr := displayAliasName(alias)
for i, e := range s.prefixEntries {
if strings.EqualFold(e.Alias, aliasStr) {
s.prefixEntries = append(s.prefixEntries[:i], s.prefixEntries[i+1:]...)
return true, s.saveLocked()
}
}
return false, nil
}
// DeleteByString deletes an alias by its raw string value, useful for prefix
// aliases that may not be valid model names.
func (s *store) DeleteByString(alias string) (bool, error) {
alias = strings.TrimSpace(alias)
aliasLower := strings.ToLower(alias)
s.mu.Lock()
defer s.mu.Unlock()
// Try prefix entries first (since this is mainly for prefix aliases)
for i, e := range s.prefixEntries {
if strings.EqualFold(e.Alias, alias) {
s.prefixEntries = append(s.prefixEntries[:i], s.prefixEntries[i+1:]...)
return true, s.saveLocked()
}
}
// Also check exact entries by normalized key
if _, ok := s.entries[aliasLower]; ok {
delete(s.entries, aliasLower)
return true, s.saveLocked()
}
return false, nil
}
func (s *store) List() []aliasEntry {
s.mu.RLock()
defer s.mu.RUnlock()
entries := make([]aliasEntry, 0, len(s.entries)+len(s.prefixEntries))
for _, entry := range s.entries {
entries = append(entries, entry)
}
entries = append(entries, s.prefixEntries...)
sort.Slice(entries, func(i, j int) bool {
return strings.Compare(entries[i].Alias, entries[j].Alias) < 0
})
return entries
}
func normalizeAliasKey(name model.Name) string {
return strings.ToLower(displayAliasName(name))
}
func (s *store) sortPrefixEntriesLocked() {
sort.Slice(s.prefixEntries, func(i, j int) bool {
// Sort by length descending (longest prefix first)
return len(s.prefixEntries[i].Alias) > len(s.prefixEntries[j].Alias)
})
}
func normalizeAliasKeyString(value string) string {
n := model.ParseName(value)
if !n.IsValid() {
return strings.ToLower(strings.TrimSpace(value))
}
return normalizeAliasKey(n)
}
func displayAliasName(n model.Name) string {
display := n.DisplayShortest()
if strings.EqualFold(n.Tag, "latest") {
if idx := strings.LastIndex(display, ":"); idx != -1 {
return display[:idx]
}
}
return display
}
func localModelExists(name model.Name) (bool, error) {
manifests, err := manifest.Manifests(true)
if err != nil {
return false, err
}
needle := name.String()
for existing := range manifests {
if strings.EqualFold(existing.String(), needle) {
return true, nil
}
}
return false, nil
}
func serverConfigPath() string {
home, err := os.UserHomeDir()
if err != nil {
return filepath.Join(".ollama", serverConfigFilename)
}
return filepath.Join(home, ".ollama", serverConfigFilename)
}
func (s *Server) aliasStore() (*store, error) {
s.aliasesOnce.Do(func() {
s.aliases, s.aliasesErr = createStore(serverConfigPath())
})
return s.aliases, s.aliasesErr
}
func (s *Server) resolveAlias(name model.Name) (model.Name, bool, error) {
store, err := s.aliasStore()
if err != nil {
return name, false, err
}
if store == nil {
return name, false, nil
}
return store.ResolveName(name)
}

View File

@@ -0,0 +1,144 @@
package server
import (
"bytes"
"fmt"
"io"
"log/slog"
"os"
"path/filepath"
"strings"
"sync/atomic"
"time"
"github.com/gin-gonic/gin"
"github.com/ollama/ollama/envconfig"
)
type inferenceRequestLogger struct {
dir string
counter uint64
}
func newInferenceRequestLogger() (*inferenceRequestLogger, error) {
dir, err := os.MkdirTemp("", "ollama-request-logs-*")
if err != nil {
return nil, err
}
return &inferenceRequestLogger{dir: dir}, nil
}
func (s *Server) initRequestLogging() error {
if !envconfig.DebugLogRequests() {
return nil
}
requestLogger, err := newInferenceRequestLogger()
if err != nil {
return fmt.Errorf("enable OLLAMA_DEBUG_LOG_REQUESTS: %w", err)
}
s.requestLogger = requestLogger
slog.Info(fmt.Sprintf("request debug logging enabled; inference request logs will be stored in %s and include request bodies and replay curl commands", requestLogger.dir))
return nil
}
func (s *Server) withInferenceRequestLogging(route string, handlers ...gin.HandlerFunc) []gin.HandlerFunc {
if s.requestLogger == nil {
return handlers
}
return append([]gin.HandlerFunc{s.requestLogger.middleware(route)}, handlers...)
}
func (l *inferenceRequestLogger) middleware(route string) gin.HandlerFunc {
return func(c *gin.Context) {
if c.Request == nil {
c.Next()
return
}
method := c.Request.Method
host := c.Request.Host
scheme := "http"
if c.Request.TLS != nil {
scheme = "https"
}
contentType := c.GetHeader("Content-Type")
var body []byte
if c.Request.Body != nil {
var err error
body, err = io.ReadAll(c.Request.Body)
c.Request.Body = io.NopCloser(bytes.NewReader(body))
if err != nil {
slog.Warn("failed to read request body for debug logging", "route", route, "error", err)
}
}
c.Next()
l.log(route, method, scheme, host, contentType, body)
}
}
func (l *inferenceRequestLogger) log(route, method, scheme, host, contentType string, body []byte) {
if l == nil || l.dir == "" {
return
}
if contentType == "" {
contentType = "application/json"
}
if host == "" || scheme == "" {
base := envconfig.Host()
if host == "" {
host = base.Host
}
if scheme == "" {
scheme = base.Scheme
}
}
routeForFilename := sanitizeRouteForFilename(route)
timestamp := fmt.Sprintf("%s-%06d", time.Now().UTC().Format("20060102T150405.000000000Z"), atomic.AddUint64(&l.counter, 1))
bodyFilename := fmt.Sprintf("%s_%s_body.json", timestamp, routeForFilename)
curlFilename := fmt.Sprintf("%s_%s_request.sh", timestamp, routeForFilename)
bodyPath := filepath.Join(l.dir, bodyFilename)
curlPath := filepath.Join(l.dir, curlFilename)
if err := os.WriteFile(bodyPath, body, 0o600); err != nil {
slog.Warn("failed to write debug request body", "route", route, "error", err)
return
}
url := fmt.Sprintf("%s://%s%s", scheme, host, route)
curl := fmt.Sprintf("#!/bin/sh\nSCRIPT_DIR=\"$(CDPATH= cd -- \"$(dirname -- \"$0\")\" && pwd)\"\ncurl --request %s --url %q --header %q --data-binary @\"${SCRIPT_DIR}/%s\"\n", method, url, "Content-Type: "+contentType, bodyFilename)
if err := os.WriteFile(curlPath, []byte(curl), 0o600); err != nil {
slog.Warn("failed to write debug request replay command", "route", route, "error", err)
return
}
slog.Info(fmt.Sprintf("logged to %s, replay using curl with `sh %s`", bodyPath, curlPath))
}
func sanitizeRouteForFilename(route string) string {
route = strings.TrimPrefix(route, "/")
if route == "" {
return "root"
}
var b strings.Builder
b.Grow(len(route))
for _, r := range route {
if ('a' <= r && r <= 'z') || ('A' <= r && r <= 'Z') || ('0' <= r && r <= '9') {
b.WriteRune(r)
} else {
b.WriteByte('_')
}
}
return b.String()
}

View File

@@ -22,7 +22,6 @@ import (
"os/signal"
"slices"
"strings"
"sync"
"sync/atomic"
"syscall"
"time"
@@ -52,7 +51,7 @@ import (
"github.com/ollama/ollama/types/errtypes"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/version"
imagegenmanifest "github.com/ollama/ollama/x/imagegen/manifest"
"github.com/ollama/ollama/x/imagegen"
xserver "github.com/ollama/ollama/x/server"
)
@@ -82,9 +81,7 @@ type Server struct {
addr net.Addr
sched *Scheduler
defaultNumCtx int
aliasesOnce sync.Once
aliases *store
aliasesErr error
requestLogger *inferenceRequestLogger
}
func init() {
@@ -195,16 +192,9 @@ func (s *Server) GenerateHandler(c *gin.Context) {
return
}
resolvedName, _, err := s.resolveAlias(name)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
name = resolvedName
// We cannot currently consolidate this into GetModel because all we'll
// induce infinite recursion given the current code structure.
name, err = getExistingName(name)
name, err := getExistingName(name)
if err != nil {
c.JSON(http.StatusNotFound, gin.H{"error": fmt.Sprintf("model '%s' not found", req.Model)})
return
@@ -1106,7 +1096,7 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
// For image generation models, populate details from imagegen package
if slices.Contains(m.Capabilities(), model.CapabilityImage) {
if info, err := imagegenmanifest.GetModelInfo(name.String()); err == nil {
if info, err := imagegen.GetModelInfo(name.String()); err == nil {
modelDetails.Family = info.Architecture
modelDetails.ParameterSize = format.HumanNumber(uint64(info.ParameterCount))
modelDetails.QuantizationLevel = info.Quantization
@@ -1591,30 +1581,27 @@ func (s *Server) GenerateRoutes(rc *ollama.Registry) (http.Handler, error) {
r.POST("/api/blobs/:digest", s.CreateBlobHandler)
r.HEAD("/api/blobs/:digest", s.HeadBlobHandler)
r.POST("/api/copy", s.CopyHandler)
r.GET("/api/experimental/aliases", s.ListAliasesHandler)
r.POST("/api/experimental/aliases", s.CreateAliasHandler)
r.DELETE("/api/experimental/aliases", s.DeleteAliasHandler)
// Inference
r.GET("/api/ps", s.PsHandler)
r.POST("/api/generate", s.GenerateHandler)
r.POST("/api/chat", s.ChatHandler)
r.POST("/api/generate", s.withInferenceRequestLogging("/api/generate", s.GenerateHandler)...)
r.POST("/api/chat", s.withInferenceRequestLogging("/api/chat", s.ChatHandler)...)
r.POST("/api/embed", s.EmbedHandler)
r.POST("/api/embeddings", s.EmbeddingsHandler)
// Inference (OpenAI compatibility)
r.POST("/v1/chat/completions", middleware.ChatMiddleware(), s.ChatHandler)
r.POST("/v1/completions", middleware.CompletionsMiddleware(), s.GenerateHandler)
r.POST("/v1/chat/completions", s.withInferenceRequestLogging("/v1/chat/completions", middleware.ChatMiddleware(), s.ChatHandler)...)
r.POST("/v1/completions", s.withInferenceRequestLogging("/v1/completions", middleware.CompletionsMiddleware(), s.GenerateHandler)...)
r.POST("/v1/embeddings", middleware.EmbeddingsMiddleware(), s.EmbedHandler)
r.GET("/v1/models", middleware.ListMiddleware(), s.ListHandler)
r.GET("/v1/models/:model", middleware.RetrieveMiddleware(), s.ShowHandler)
r.POST("/v1/responses", middleware.ResponsesMiddleware(), s.ChatHandler)
r.POST("/v1/responses", s.withInferenceRequestLogging("/v1/responses", middleware.ResponsesMiddleware(), s.ChatHandler)...)
// OpenAI-compatible image generation endpoints
r.POST("/v1/images/generations", middleware.ImageGenerationsMiddleware(), s.GenerateHandler)
r.POST("/v1/images/edits", middleware.ImageEditsMiddleware(), s.GenerateHandler)
// Inference (Anthropic compatibility)
r.POST("/v1/messages", middleware.AnthropicMessagesMiddleware(), s.ChatHandler)
r.POST("/v1/messages", s.withInferenceRequestLogging("/v1/messages", middleware.AnthropicMessagesMiddleware(), s.ChatHandler)...)
if rc != nil {
// wrap old with new
@@ -1664,6 +1651,9 @@ func Serve(ln net.Listener) error {
}
s := &Server{addr: ln.Addr()}
if err := s.initRequestLogging(); err != nil {
return err
}
var rc *ollama.Registry
if useClient2 {
@@ -1964,20 +1954,13 @@ func (s *Server) ChatHandler(c *gin.Context) {
return
}
resolvedName, _, err := s.resolveAlias(name)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
name = resolvedName
name, err = getExistingName(name)
name, err := getExistingName(name)
if err != nil {
c.JSON(http.StatusBadRequest, gin.H{"error": "model is required"})
return
}
m, err := GetModel(name.String())
m, err := GetModel(req.Model)
if err != nil {
switch {
case os.IsNotExist(err):

View File

@@ -1,159 +0,0 @@
package server
import (
"errors"
"fmt"
"io"
"net/http"
"strings"
"github.com/gin-gonic/gin"
"github.com/ollama/ollama/types/model"
)
type aliasListResponse struct {
Aliases []aliasEntry `json:"aliases"`
}
type aliasDeleteRequest struct {
Alias string `json:"alias"`
}
func (s *Server) ListAliasesHandler(c *gin.Context) {
store, err := s.aliasStore()
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
var aliases []aliasEntry
if store != nil {
aliases = store.List()
}
c.JSON(http.StatusOK, aliasListResponse{Aliases: aliases})
}
func (s *Server) CreateAliasHandler(c *gin.Context) {
var req aliasEntry
if err := c.ShouldBindJSON(&req); errors.Is(err, io.EOF) {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "missing request body"})
return
} else if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": err.Error()})
return
}
req.Alias = strings.TrimSpace(req.Alias)
req.Target = strings.TrimSpace(req.Target)
if req.Alias == "" || req.Target == "" {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "alias and target are required"})
return
}
// Target must always be a valid model name
targetName := model.ParseName(req.Target)
if !targetName.IsValid() {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("target %q is invalid", req.Target)})
return
}
var aliasName model.Name
if req.PrefixMatching {
// For prefix aliases, we still parse the alias to normalize it,
// but we allow any non-empty string since prefix patterns may not be valid model names
aliasName = model.ParseName(req.Alias)
// Even if not valid as a model name, we accept it for prefix matching
} else {
aliasName = model.ParseName(req.Alias)
if !aliasName.IsValid() {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("alias %q is invalid", req.Alias)})
return
}
if normalizeAliasKey(aliasName) == normalizeAliasKey(targetName) {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "alias cannot point to itself"})
return
}
exists, err := localModelExists(aliasName)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
if exists {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("alias %q conflicts with existing model", req.Alias)})
return
}
}
store, err := s.aliasStore()
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
if err := store.Set(aliasName, targetName, req.PrefixMatching); err != nil {
status := http.StatusInternalServerError
if errors.Is(err, errAliasCycle) {
status = http.StatusBadRequest
}
c.AbortWithStatusJSON(status, gin.H{"error": err.Error()})
return
}
resp := aliasEntry{
Alias: displayAliasName(aliasName),
Target: displayAliasName(targetName),
PrefixMatching: req.PrefixMatching,
}
if req.PrefixMatching && !aliasName.IsValid() {
// For prefix aliases that aren't valid model names, use the raw alias
resp.Alias = req.Alias
}
c.JSON(http.StatusOK, resp)
}
func (s *Server) DeleteAliasHandler(c *gin.Context) {
var req aliasDeleteRequest
if err := c.ShouldBindJSON(&req); errors.Is(err, io.EOF) {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "missing request body"})
return
} else if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": err.Error()})
return
}
req.Alias = strings.TrimSpace(req.Alias)
if req.Alias == "" {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "alias is required"})
return
}
store, err := s.aliasStore()
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
aliasName := model.ParseName(req.Alias)
var deleted bool
if aliasName.IsValid() {
deleted, err = store.Delete(aliasName)
} else {
// For invalid model names (like prefix aliases), try deleting by raw string
deleted, err = store.DeleteByString(req.Alias)
}
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
if !deleted {
c.JSON(http.StatusNotFound, gin.H{"error": fmt.Sprintf("alias %q not found", req.Alias)})
return
}
c.JSON(http.StatusOK, gin.H{"deleted": true})
}

View File

@@ -1,426 +0,0 @@
package server
import (
"encoding/json"
"net/http"
"net/http/httptest"
"net/url"
"path/filepath"
"testing"
"github.com/gin-gonic/gin"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/types/model"
)
func TestAliasShadowingRejected(t *testing.T) {
gin.SetMode(gin.TestMode)
t.Setenv("HOME", t.TempDir())
s := Server{}
w := createRequest(t, s.CreateHandler, api.CreateRequest{
Model: "shadowed-model",
RemoteHost: "example.com",
From: "test",
Info: map[string]any{
"capabilities": []string{"completion"},
},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
w = createRequest(t, s.CreateAliasHandler, aliasEntry{Alias: "shadowed-model", Target: "other-model"})
if w.Code != http.StatusBadRequest {
t.Fatalf("expected status 400, got %d", w.Code)
}
}
func TestAliasResolvesForChatRemote(t *testing.T) {
gin.SetMode(gin.TestMode)
t.Setenv("HOME", t.TempDir())
var remoteModel string
rs := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
var req api.ChatRequest
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
t.Fatal(err)
}
remoteModel = req.Model
w.Header().Set("Content-Type", "application/json")
resp := api.ChatResponse{
Model: req.Model,
Done: true,
DoneReason: "load",
}
if err := json.NewEncoder(w).Encode(&resp); err != nil {
t.Fatal(err)
}
}))
defer rs.Close()
p, err := url.Parse(rs.URL)
if err != nil {
t.Fatal(err)
}
t.Setenv("OLLAMA_REMOTES", p.Hostname())
s := Server{}
w := createRequest(t, s.CreateHandler, api.CreateRequest{
Model: "target-model",
RemoteHost: rs.URL,
From: "test",
Info: map[string]any{
"capabilities": []string{"completion"},
},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
w = createRequest(t, s.CreateAliasHandler, aliasEntry{Alias: "alias-model", Target: "target-model"})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
w = createRequest(t, s.ChatHandler, api.ChatRequest{
Model: "alias-model",
Messages: []api.Message{{Role: "user", Content: "hi"}},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
var resp api.ChatResponse
if err := json.NewDecoder(w.Body).Decode(&resp); err != nil {
t.Fatal(err)
}
if resp.Model != "alias-model" {
t.Fatalf("expected response model to be alias-model, got %q", resp.Model)
}
if remoteModel != "test" {
t.Fatalf("expected remote model to be 'test', got %q", remoteModel)
}
}
func TestPrefixAliasBasicMatching(t *testing.T) {
tmpDir := t.TempDir()
store, err := createStore(filepath.Join(tmpDir, "server.json"))
if err != nil {
t.Fatal(err)
}
// Create a prefix alias: "myprefix-" -> "targetmodel"
targetName := model.ParseName("targetmodel")
// Set a prefix alias (using "myprefix-" as the pattern)
store.mu.Lock()
store.prefixEntries = append(store.prefixEntries, aliasEntry{
Alias: "myprefix-",
Target: "targetmodel",
PrefixMatching: true,
})
store.mu.Unlock()
// Test that "myprefix-foo" resolves to "targetmodel"
testName := model.ParseName("myprefix-foo")
resolved, wasResolved, err := store.ResolveName(testName)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if !wasResolved {
t.Fatal("expected name to be resolved")
}
if resolved.DisplayShortest() != targetName.DisplayShortest() {
t.Fatalf("expected resolved name to be %q, got %q", targetName.DisplayShortest(), resolved.DisplayShortest())
}
// Test that "otherprefix-foo" does not resolve
otherName := model.ParseName("otherprefix-foo")
_, wasResolved, err = store.ResolveName(otherName)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if wasResolved {
t.Fatal("expected name not to be resolved")
}
// Test that exact alias takes precedence
exactAlias := model.ParseName("myprefix-exact")
exactTarget := model.ParseName("exacttarget")
if err := store.Set(exactAlias, exactTarget, false); err != nil {
t.Fatal(err)
}
resolved, wasResolved, err = store.ResolveName(exactAlias)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if !wasResolved {
t.Fatal("expected name to be resolved")
}
if resolved.DisplayShortest() != exactTarget.DisplayShortest() {
t.Fatalf("expected resolved name to be %q (exact match), got %q", exactTarget.DisplayShortest(), resolved.DisplayShortest())
}
}
func TestPrefixAliasLongestMatchWins(t *testing.T) {
tmpDir := t.TempDir()
store, err := createStore(filepath.Join(tmpDir, "server.json"))
if err != nil {
t.Fatal(err)
}
// Add two prefix aliases with overlapping patterns
store.mu.Lock()
store.prefixEntries = []aliasEntry{
{Alias: "abc-", Target: "short-target", PrefixMatching: true},
{Alias: "abc-def-", Target: "long-target", PrefixMatching: true},
}
store.sortPrefixEntriesLocked()
store.mu.Unlock()
// "abc-def-ghi" should match the longer prefix "abc-def-"
testName := model.ParseName("abc-def-ghi")
resolved, wasResolved, err := store.ResolveName(testName)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if !wasResolved {
t.Fatal("expected name to be resolved")
}
expectedLongTarget := model.ParseName("long-target")
if resolved.DisplayShortest() != expectedLongTarget.DisplayShortest() {
t.Fatalf("expected resolved name to be %q (longest prefix match), got %q", expectedLongTarget.DisplayShortest(), resolved.DisplayShortest())
}
// "abc-xyz" should match the shorter prefix "abc-"
testName2 := model.ParseName("abc-xyz")
resolved, wasResolved, err = store.ResolveName(testName2)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if !wasResolved {
t.Fatal("expected name to be resolved")
}
expectedShortTarget := model.ParseName("short-target")
if resolved.DisplayShortest() != expectedShortTarget.DisplayShortest() {
t.Fatalf("expected resolved name to be %q, got %q", expectedShortTarget.DisplayShortest(), resolved.DisplayShortest())
}
}
func TestPrefixAliasChain(t *testing.T) {
tmpDir := t.TempDir()
store, err := createStore(filepath.Join(tmpDir, "server.json"))
if err != nil {
t.Fatal(err)
}
// Create a chain: prefix "test-" -> "intermediate" -> "final"
intermediate := model.ParseName("intermediate")
final := model.ParseName("final")
// Add prefix alias
store.mu.Lock()
store.prefixEntries = []aliasEntry{
{Alias: "test-", Target: "intermediate", PrefixMatching: true},
}
store.mu.Unlock()
// Add exact alias for the intermediate step
if err := store.Set(intermediate, final, false); err != nil {
t.Fatal(err)
}
// "test-foo" should resolve through the chain to "final"
testName := model.ParseName("test-foo")
resolved, wasResolved, err := store.ResolveName(testName)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if !wasResolved {
t.Fatal("expected name to be resolved")
}
if resolved.DisplayShortest() != final.DisplayShortest() {
t.Fatalf("expected resolved name to be %q, got %q", final.DisplayShortest(), resolved.DisplayShortest())
}
}
func TestPrefixAliasCRUD(t *testing.T) {
gin.SetMode(gin.TestMode)
t.Setenv("HOME", t.TempDir())
s := Server{}
// Create a prefix alias via API
w := createRequest(t, s.CreateAliasHandler, aliasEntry{
Alias: "myprefix-",
Target: "llama2",
PrefixMatching: true,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d: %s", w.Code, w.Body.String())
}
var createResp aliasEntry
if err := json.NewDecoder(w.Body).Decode(&createResp); err != nil {
t.Fatal(err)
}
if !createResp.PrefixMatching {
t.Fatal("expected prefix_matching to be true in response")
}
// List aliases and verify the prefix alias is included
w = createRequest(t, s.ListAliasesHandler, nil)
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
var listResp aliasListResponse
if err := json.NewDecoder(w.Body).Decode(&listResp); err != nil {
t.Fatal(err)
}
found := false
for _, a := range listResp.Aliases {
if a.PrefixMatching && a.Target == "llama2" {
found = true
break
}
}
if !found {
t.Fatal("expected to find prefix alias in list")
}
// Delete the prefix alias
w = createRequest(t, s.DeleteAliasHandler, aliasDeleteRequest{Alias: "myprefix-"})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d: %s", w.Code, w.Body.String())
}
// Verify it's deleted
w = createRequest(t, s.ListAliasesHandler, nil)
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
if err := json.NewDecoder(w.Body).Decode(&listResp); err != nil {
t.Fatal(err)
}
for _, a := range listResp.Aliases {
if a.PrefixMatching {
t.Fatal("expected prefix alias to be deleted")
}
}
}
func TestPrefixAliasCaseInsensitive(t *testing.T) {
tmpDir := t.TempDir()
store, err := createStore(filepath.Join(tmpDir, "server.json"))
if err != nil {
t.Fatal(err)
}
// Add a prefix alias with mixed case
store.mu.Lock()
store.prefixEntries = []aliasEntry{
{Alias: "MyPrefix-", Target: "targetmodel", PrefixMatching: true},
}
store.mu.Unlock()
// Test that matching is case-insensitive
testName := model.ParseName("myprefix-foo")
resolved, wasResolved, err := store.ResolveName(testName)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if !wasResolved {
t.Fatal("expected name to be resolved (case-insensitive)")
}
expectedTarget := model.ParseName("targetmodel")
if resolved.DisplayShortest() != expectedTarget.DisplayShortest() {
t.Fatalf("expected resolved name to be %q, got %q", expectedTarget.DisplayShortest(), resolved.DisplayShortest())
}
// Test uppercase request
testName2 := model.ParseName("MYPREFIX-BAR")
_, wasResolved, err = store.ResolveName(testName2)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if !wasResolved {
t.Fatal("expected name to be resolved (uppercase)")
}
}
func TestPrefixAliasLocalModelPrecedence(t *testing.T) {
gin.SetMode(gin.TestMode)
t.Setenv("HOME", t.TempDir())
s := Server{}
// Create a local model that would match a prefix alias
w := createRequest(t, s.CreateHandler, api.CreateRequest{
Model: "myprefix-localmodel",
RemoteHost: "example.com",
From: "test",
Info: map[string]any{
"capabilities": []string{"completion"},
},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d: %s", w.Code, w.Body.String())
}
// Create a prefix alias that would match the local model name
w = createRequest(t, s.CreateAliasHandler, aliasEntry{
Alias: "myprefix-",
Target: "someothermodel",
PrefixMatching: true,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d: %s", w.Code, w.Body.String())
}
// Verify that resolving "myprefix-localmodel" returns the local model, not the alias target
store, err := s.aliasStore()
if err != nil {
t.Fatal(err)
}
localModelName := model.ParseName("myprefix-localmodel")
resolved, wasResolved, err := store.ResolveName(localModelName)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if wasResolved {
t.Fatalf("expected local model to take precedence (wasResolved should be false), but got resolved to %q", resolved.DisplayShortest())
}
if resolved.DisplayShortest() != localModelName.DisplayShortest() {
t.Fatalf("expected resolved name to be local model %q, got %q", localModelName.DisplayShortest(), resolved.DisplayShortest())
}
// Also verify that a non-local model matching the prefix DOES resolve to the alias target
nonLocalName := model.ParseName("myprefix-nonexistent")
resolved, wasResolved, err = store.ResolveName(nonLocalName)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if !wasResolved {
t.Fatal("expected non-local model to resolve via prefix alias")
}
expectedTarget := model.ParseName("someothermodel")
if resolved.DisplayShortest() != expectedTarget.DisplayShortest() {
t.Fatalf("expected resolved name to be %q, got %q", expectedTarget.DisplayShortest(), resolved.DisplayShortest())
}
}

View File

@@ -0,0 +1,128 @@
package server
import (
"io"
"net/http"
"net/http/httptest"
"os"
"path/filepath"
"strings"
"testing"
"github.com/gin-gonic/gin"
)
func TestInferenceRequestLoggerMiddlewareWritesReplayArtifacts(t *testing.T) {
gin.SetMode(gin.TestMode)
logDir := t.TempDir()
requestLogger := &inferenceRequestLogger{dir: logDir}
const route = "/v1/chat/completions"
const requestBody = `{"model":"test-model","messages":[{"role":"user","content":"hello"}]}`
var bodySeenByHandler string
r := gin.New()
r.POST(route, requestLogger.middleware(route), func(c *gin.Context) {
body, err := io.ReadAll(c.Request.Body)
if err != nil {
t.Fatalf("failed to read body in handler: %v", err)
}
bodySeenByHandler = string(body)
c.Status(http.StatusOK)
})
req := httptest.NewRequest(http.MethodPost, route, strings.NewReader(requestBody))
req.Host = "127.0.0.1:11434"
req.Header.Set("Content-Type", "application/json")
w := httptest.NewRecorder()
r.ServeHTTP(w, req)
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
if bodySeenByHandler != requestBody {
t.Fatalf("handler body mismatch:\nexpected: %s\ngot: %s", requestBody, bodySeenByHandler)
}
bodyFiles, err := filepath.Glob(filepath.Join(logDir, "*_v1_chat_completions_body.json"))
if err != nil {
t.Fatalf("failed to glob body logs: %v", err)
}
if len(bodyFiles) != 1 {
t.Fatalf("expected 1 body log, got %d (%v)", len(bodyFiles), bodyFiles)
}
curlFiles, err := filepath.Glob(filepath.Join(logDir, "*_v1_chat_completions_request.sh"))
if err != nil {
t.Fatalf("failed to glob curl logs: %v", err)
}
if len(curlFiles) != 1 {
t.Fatalf("expected 1 curl log, got %d (%v)", len(curlFiles), curlFiles)
}
bodyData, err := os.ReadFile(bodyFiles[0])
if err != nil {
t.Fatalf("failed to read body log: %v", err)
}
if string(bodyData) != requestBody {
t.Fatalf("body log mismatch:\nexpected: %s\ngot: %s", requestBody, string(bodyData))
}
curlData, err := os.ReadFile(curlFiles[0])
if err != nil {
t.Fatalf("failed to read curl log: %v", err)
}
curlString := string(curlData)
if !strings.Contains(curlString, "http://127.0.0.1:11434"+route) {
t.Fatalf("curl log does not contain expected route URL: %s", curlString)
}
bodyFileName := filepath.Base(bodyFiles[0])
if !strings.Contains(curlString, "@\"${SCRIPT_DIR}/"+bodyFileName+"\"") {
t.Fatalf("curl log does not reference sibling body file: %s", curlString)
}
}
func TestNewInferenceRequestLoggerCreatesDirectory(t *testing.T) {
requestLogger, err := newInferenceRequestLogger()
if err != nil {
t.Fatalf("expected no error creating request logger: %v", err)
}
t.Cleanup(func() {
_ = os.RemoveAll(requestLogger.dir)
})
if requestLogger == nil || requestLogger.dir == "" {
t.Fatalf("expected request logger directory to be set")
}
info, err := os.Stat(requestLogger.dir)
if err != nil {
t.Fatalf("expected directory to exist: %v", err)
}
if !info.IsDir() {
t.Fatalf("expected %q to be a directory", requestLogger.dir)
}
}
func TestSanitizeRouteForFilename(t *testing.T) {
tests := []struct {
route string
want string
}{
{route: "/api/generate", want: "api_generate"},
{route: "/v1/chat/completions", want: "v1_chat_completions"},
{route: "/v1/messages", want: "v1_messages"},
}
for _, tt := range tests {
if got := sanitizeRouteForFilename(tt.route); got != tt.want {
t.Fatalf("sanitizeRouteForFilename(%q) = %q, want %q", tt.route, got, tt.want)
}
}
}

View File

@@ -5,13 +5,9 @@ import (
"errors"
"fmt"
"log/slog"
"math/rand"
"os"
"os/exec"
"reflect"
"slices"
"sort"
"strconv"
"strings"
"sync"
"time"
@@ -25,7 +21,6 @@ import (
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/mlxrunner"
)
@@ -200,14 +195,25 @@ func (s *Scheduler) processPending(ctx context.Context) {
slog.Debug("updating default concurrency", "OLLAMA_MAX_LOADED_MODELS", maxRunners, "gpu_count", len(gpus))
}
// Check for experimental safetensors LLM models
if pending.model.Config.ModelFormat == "safetensors" {
if s.loadSafetensors(pending) {
// Check for image generation models - all use MLX runner
if slices.Contains(pending.model.Config.Capabilities, "image") {
if s.loadMLX(pending) {
break
}
continue
}
// Check for experimental safetensors LLM models
if pending.model.Config.ModelFormat == "safetensors" {
if slices.Contains(pending.model.Config.Capabilities, "completion") {
// LLM model with safetensors format - use MLX runner
if s.loadMLX(pending) {
break
}
continue
}
}
// Load model for fitting
logutil.Trace("loading model metadata", "model", pending.model.ModelPath)
ggml, err := llm.LoadModel(pending.model.ModelPath, 1024)
@@ -557,101 +563,20 @@ iGPUScan:
return false
}
func subproc(args, environ []string) (*exec.Cmd, int, error) {
exe, err := os.Executable()
if err != nil {
return nil, 0, fmt.Errorf("unable to lookup executable path: %w", err)
}
for range 3 {
// get a random port in the ephemeral range
port := rand.Intn(65535-49152) + 49152
cmd := exec.Command(exe, slices.Concat([]string{"runner"}, args, []string{"--port", strconv.Itoa(port)})...)
cmd.Env = slices.Concat(os.Environ(), environ)
cmd.Stdout = os.Stderr
cmd.Stderr = os.Stderr
if err := cmd.Start(); err != nil {
continue
}
return cmd, port, nil
}
return nil, 0, fmt.Errorf("unable to start subprocess after multiple attempts")
}
func (s *Scheduler) loadSafetensors(req *LlmRequest) bool {
if slices.Contains(req.model.Config.Capabilities, "image") {
return s.loadImageGen(req)
}
args := []string{"--mlx-engine", "--model", req.model.ShortName}
environ := []string{}
cmd, port, err := subproc(args, environ)
if err != nil {
req.errCh <- fmt.Errorf("failed to start mlx subprocess: %w", err)
return true
}
sessionDuration := envconfig.KeepAlive()
if req.sessionDuration != nil {
sessionDuration = req.sessionDuration.Duration
}
runner := &runnerRef{
model: req.model,
modelPath: req.model.ModelPath,
Options: &req.opts,
loading: false,
sessionDuration: sessionDuration,
llama: &mlxrunner.Client{
Cmd: cmd,
Port: port,
},
}
s.loadedMu.Lock()
s.loaded[req.model.ModelPath] = runner
s.loadedMu.Unlock()
runner.refMu.Lock()
if sessionDuration > 0 {
runner.expireTimer = time.AfterFunc(sessionDuration, func() {
s.expiredCh <- runner
})
}
runner.refMu.Unlock()
req.useLoadedRunner(runner, s.finishedReqCh)
for range time.Tick(20 * time.Millisecond) {
if err := func() error {
ctx, cancel := context.WithTimeout(context.Background(), 200*time.Millisecond)
defer cancel()
return runner.llama.Ping(ctx)
}(); err != nil {
continue
}
break
}
return true
}
// loadImageGen loads an experimental safetensors model using the unified MLX runner.
// loadMLX loads an experimental safetensors model using the unified MLX runner.
// This supports both LLM (completion) and image generation models.
func (s *Scheduler) loadImageGen(req *LlmRequest) bool {
func (s *Scheduler) loadMLX(req *LlmRequest) bool {
// Determine mode based on capabilities
var mode imagegen.ModelMode
var mode mlxrunner.ModelMode
if slices.Contains(req.model.Config.Capabilities, "image") {
mode = imagegen.ModeImageGen
mode = mlxrunner.ModeImageGen
} else {
mode = imagegen.ModeLLM
mode = mlxrunner.ModeLLM
}
// Use model name for MLX (it resolves manifests by name, not file path)
modelName := req.model.ShortName
server, err := imagegen.NewServer(modelName, mode)
server, err := mlxrunner.NewServer(modelName, mode)
if err != nil {
req.errCh <- err
return true

View File

@@ -1,310 +0,0 @@
package tokenizer
import (
"encoding/json"
"errors"
"io"
"os"
"github.com/ollama/ollama/types/model"
)
const (
TOKEN_TYPE_NORMAL = iota + 1
TOKEN_TYPE_UNKNOWN
TOKEN_TYPE_CONTROL
TOKEN_TYPE_USER_DEFINED
TOKEN_TYPE_UNUSED
TOKEN_TYPE_BYTE
)
type Tokenizer interface {
Encode(s string, addSpecial bool) ([]int32, error)
Decode([]int32) (string, error)
Is(int32, Special) bool
Vocabulary() *Vocabulary
}
func New(root *model.Root) (Tokenizer, error) {
f, err := root.Open("tokenizer.json")
if err != nil {
return nil, err
}
defer f.Close()
var tokenizer struct {
Model struct {
Type string `json:"type"`
Vocab map[string]int32 `json:"vocab"`
Merges json.RawMessage `json:"merges"`
} `json:"model"`
PreTokenizer json.RawMessage `json:"pre_tokenizer"`
Decoder json.RawMessage `json:"decoder"`
AddedTokens []struct {
ID int32 `json:"id"`
Content string `json:"content"`
Special bool `json:"special"`
} `json:"added_tokens"`
}
if err := json.NewDecoder(f).Decode(&tokenizer); err != nil {
return nil, err
}
special := make(map[int32]struct{})
for _, token := range tokenizer.AddedTokens {
tokenizer.Model.Vocab[token.Content] = token.ID
special[token.ID] = struct{}{}
}
vocab, err := specialTokens(root, tokenizer.Model.Vocab)
if err != nil {
return nil, err
}
vocab.Values = make([]string, len(tokenizer.Model.Vocab))
vocab.Scores = make([]float32, len(tokenizer.Model.Vocab))
vocab.Types = make([]int32, len(tokenizer.Model.Vocab))
for content, id := range tokenizer.Model.Vocab {
vocab.Values[id] = content
vocab.Scores[id] = float32(id)
vocab.Types[id] = TOKEN_TYPE_NORMAL
if _, ok := special[id]; ok {
vocab.Types[id] = TOKEN_TYPE_USER_DEFINED
}
}
if tokenizer.Model.Merges != nil {
var pairs [][]string
if err := json.Unmarshal(tokenizer.Model.Merges, &pairs); err == nil {
vocab.Merges = make([]string, len(pairs))
for i, pair := range pairs {
vocab.Merges[i] = pair[0] + " " + pair[1]
}
} else if err := json.Unmarshal(tokenizer.Model.Merges, &vocab.Merges); err != nil {
return nil, err
}
}
vocab.valuesOnce.Do(func() {})
vocab.values = tokenizer.Model.Vocab
if tokenizer.Model.Type == "WordPiece" {
return NewWordPiece(vocab, true), nil
}
if tokenizer.Decoder != nil {
var decoder struct {
Type string `json:"type"`
Decoders []struct {
Type string `json:"type"`
Pattern struct {
String string `json:"string"`
} `json:"pattern"`
} `json:"decoders"`
}
if err := json.Unmarshal(tokenizer.Decoder, &decoder); err != nil {
return nil, err
}
if decoder.Type == "Sequence" {
for _, d := range decoder.Decoders {
if d.Type == "Replace" && d.Pattern.String == "▁" {
return NewSentencePiece(vocab), nil
}
}
}
}
var pretokenizers []string
if tokenizer.PreTokenizer != nil {
var pretokenizer struct {
Type string `json:"type"`
Pretokenizers []struct {
Type string `json:"type"`
Pattern struct {
Regex string
} `json:"pattern"`
IndividualDigits bool `json:"individual_digits"`
}
}
if err := json.Unmarshal(tokenizer.PreTokenizer, &pretokenizer); err != nil {
return nil, err
}
if pretokenizer.Type == "Sequence" {
for _, pretokenizer := range pretokenizer.Pretokenizers {
switch pretokenizer.Type {
case "Digits":
if pretokenizer.IndividualDigits {
pretokenizers = append(pretokenizers, `\d`)
} else {
pretokenizers = append(pretokenizers, `\d+`)
}
case "Punctuation":
pretokenizers = append(pretokenizers, `[^\p{L}\p{N}]+`)
case "Split":
pretokenizers = append(pretokenizers, pretokenizer.Pattern.Regex)
case "WhitespaceSplit":
pretokenizers = append(pretokenizers, `\s+(?!\S)|\s+`)
}
}
}
}
return NewBytePairEncoding(vocab, pretokenizers...), nil
}
// valueOrValues is a type that can unmarshal from either a single value or an array of values.
type valueOrValues[E any] []E
func (m *valueOrValues[E]) UnmarshalJSON(data []byte) error {
var s []E
if err := json.Unmarshal(data, &s); err != nil {
var e E
if err := json.Unmarshal(data, &e); err != nil {
return err
}
s = []E{e}
}
*m = valueOrValues[E](s)
return nil
}
type specialTokenIDs struct {
BOSTokenID valueOrValues[int32] `json:"bos_token_id"`
EOSTokenID valueOrValues[int32] `json:"eos_token_id"`
}
// stringOrContent is a type that can unmarshal from either a string or an object with a "content" field.
type stringOrContent string
func (t *stringOrContent) UnmarshalJSON(data []byte) error {
var s string
if err := json.Unmarshal(data, &s); err != nil {
var m map[string]any
if err := json.Unmarshal(data, &m); err != nil {
return err
}
if content, ok := m["content"].(string); ok {
s = content
}
}
*t = stringOrContent(s)
return nil
}
func specialTokens(root *model.Root, values map[string]int32) (*Vocabulary, error) {
var vocab Vocabulary
for _, c := range []struct {
name string
fn func(io.Reader) error
}{
{
name: "generation_config.json",
fn: func(r io.Reader) error {
var c specialTokenIDs
if err := json.NewDecoder(r).Decode(&c); err != nil {
return err
}
vocab.BOS = c.BOSTokenID
vocab.EOS = c.EOSTokenID
return nil
},
},
{
name: "config.json",
fn: func(r io.Reader) error {
var c specialTokenIDs
if err := json.NewDecoder(r).Decode(&c); err != nil {
return err
}
if len(vocab.BOS) == 0 {
vocab.BOS = c.BOSTokenID
}
if len(vocab.EOS) == 0 {
vocab.EOS = c.EOSTokenID
}
return nil
},
},
{
name: "tokenizer_config.json",
fn: func(r io.Reader) error {
var c struct {
BOSToken stringOrContent `json:"bos_token"`
EOSToken stringOrContent `json:"eos_token"`
PADToken stringOrContent `json:"pad_token"`
AddBOSToken bool `json:"add_bos_token"`
AddEOSToken bool `json:"add_eos_token"`
}
if err := json.NewDecoder(r).Decode(&c); err != nil {
return err
}
if len(vocab.BOS) == 0 && c.BOSToken != "" {
if id, ok := values[string(c.BOSToken)]; ok {
vocab.BOS = []int32{id}
}
}
if len(vocab.EOS) == 0 && c.EOSToken != "" {
if id, ok := values[string(c.EOSToken)]; ok {
vocab.EOS = []int32{id}
}
}
vocab.AddBOS = c.AddBOSToken
vocab.AddEOS = c.AddEOSToken
return nil
},
},
{
name: "special_tokens_map.json",
fn: func(r io.Reader) error {
var c map[string]stringOrContent
if err := json.NewDecoder(r).Decode(&c); err != nil {
return err
}
if bos, ok := c["bos_token"]; ok && len(vocab.BOS) == 0 {
if id, ok := values[string(bos)]; ok {
vocab.BOS = []int32{id}
}
}
if eos, ok := c["eos_token"]; ok && len(vocab.EOS) == 0 {
if id, ok := values[string(eos)]; ok {
vocab.EOS = []int32{id}
}
}
return nil
},
},
} {
if err := func() error {
f, err := root.Open(c.name)
if errors.Is(err, os.ErrNotExist) {
return nil
} else if err != nil {
return err
}
defer f.Close()
return c.fn(f)
}(); err != nil {
return nil, err
}
}
return &vocab, nil
}

View File

@@ -1,309 +0,0 @@
package model
import (
"crypto/sha256"
"encoding/json"
"errors"
"fmt"
"hash"
"io"
"io/fs"
"iter"
"maps"
"mime"
"os"
"path/filepath"
"strings"
"github.com/ollama/ollama/envconfig"
)
func root() (*os.Root, error) {
root, err := os.OpenRoot(envconfig.Models())
if err != nil {
return nil, err
}
for _, sub := range []string{"manifests", "blobs"} {
if _, err := root.Stat(sub); errors.Is(err, fs.ErrNotExist) {
if err := root.MkdirAll(sub, 0o750); err != nil {
return nil, err
}
} else if err != nil {
return nil, err
}
}
return root, nil
}
// Open opens an existing file for reading. It will return [fs.ErrNotExist]
// if the file does not exist. The returned [*Root] can only be used for reading.
// It is the caller's responsibility to close the file when done.
func Open(n Name) (*Root, error) {
r, err := root()
if err != nil {
return nil, err
}
f, err := r.Open(filepath.Join("manifests", n.Filepath()))
if err != nil {
return nil, err
}
defer f.Close()
var m manifest
if err := json.NewDecoder(f).Decode(&m); err != nil {
return nil, err
}
blobs := make(map[string]*blob, len(m.Layers)+1)
blobs[NamePrefix] = m.Config
for _, layer := range m.Layers {
if layer.Name == "" && layer.MediaType != "" {
mediatype, _, err := mime.ParseMediaType(layer.MediaType)
if err != nil {
return nil, err
}
if suffix, ok := strings.CutPrefix(mediatype, MediaTypePrefix); ok {
layer.Name = NamePrefix + suffix
}
}
blobs[layer.Name] = layer
}
return &Root{
root: r,
name: n,
blobs: blobs,
flags: os.O_RDONLY,
}, nil
}
// Create creates a new file. The returned [Root] can be used for both reading
// and writing. It is the caller's responsibility to close the file when done
// in order to finalize any new blobs and write the manifest.
func Create(n Name) (*Root, error) {
r, err := root()
if err != nil {
return nil, err
}
return &Root{
root: r,
name: n,
blobs: make(map[string]*blob),
flags: os.O_RDWR,
}, nil
}
type blob struct {
Digest string `json:"digest"`
MediaType string `json:"mediaType"`
Name string `json:"name,omitempty"`
Size int64 `json:"size"`
// tempfile is the temporary file where the blob data is written.
tempfile *os.File
// hash is the hash.Hash used to compute the blob digest.
hash hash.Hash
}
func (b *blob) Write(p []byte) (int, error) {
return io.MultiWriter(b.tempfile, b.hash).Write(p)
}
func (b *blob) Filepath() string {
return strings.ReplaceAll(b.Digest, ":", "-")
}
type manifest struct {
SchemaVersion int `json:"schemaVersion"`
MediaType string `json:"mediaType"`
Config *blob `json:"config"`
Layers []*blob `json:"layers"`
}
// Root represents a model file. It can be used to read and write blobs
// associated with the model.
//
// Blobs are identified by name. Certain names are special and reserved;
// see [NamePrefix] for details.
type Root struct {
root *os.Root
name Name
blobs map[string]*blob
flags int
}
const MediaTypePrefix = "application/vnd.ollama"
// NamePrefix is the prefix used for identifying special names. Names
// with this prefix are idenfitied by their media types:
//
// - name: NamePrefix + suffix
// - mediaType: [MediaTypePrefix] + suffix
//
// For example:
//
// - name: "./..image.model"
// - mediaType: "application/vnd.ollama.image.model"
//
// NamePrefix by itself identifies the manifest config.
const NamePrefix = "./."
// Open opens the named blob for reading. It is the caller's responsibility
// to close the returned [io.ReadCloser] when done. It will return
// [fs.ErrNotExist] if the blob does not exist.
func (r Root) Open(name string) (io.ReadCloser, error) {
if b, ok := r.blobs[name]; ok {
r, err := r.root.Open(filepath.Join("blobs", b.Filepath()))
if err != nil {
return nil, err
}
return r, nil
}
return nil, fs.ErrNotExist
}
func (r Root) ReadFile(name string) ([]byte, error) {
f, err := r.Open(name)
if err != nil {
return nil, err
}
defer f.Close()
return io.ReadAll(f)
}
// Create creates or replaces a named blob in the file. If the blob already
// exists, it will be overwritten. It will return [fs.ErrInvalid] if the file
// was opened in read-only mode. The returned [io.Writer] can be used to write
// to the blob and does not need be closed, but the file must be closed to
// finalize the blob.
func (r *Root) Create(name string) (io.Writer, error) {
if r.flags&os.O_RDWR != 0 {
w, err := os.CreateTemp(r.root.Name(), "")
if err != nil {
return nil, err
}
r.blobs[name] = &blob{Name: name, tempfile: w, hash: sha256.New()}
return r.blobs[name], nil
}
return nil, fs.ErrInvalid
}
// Close closes the file. If the file was opened in read-write mode, it
// will finalize any writeable blobs and write the manifest.
func (r *Root) Close() error {
if r.flags&os.O_RDWR != 0 {
for _, b := range r.blobs {
if b.tempfile != nil {
fi, err := b.tempfile.Stat()
if err != nil {
return err
}
if err := b.tempfile.Close(); err != nil {
return err
}
b.Size = fi.Size()
b.Digest = fmt.Sprintf("sha256:%x", b.hash.Sum(nil))
if suffix, ok := strings.CutPrefix(b.Name, NamePrefix); ok {
if b.Name == NamePrefix {
b.MediaType = "application/vnd.docker.container.image.v1+json"
} else {
b.MediaType = MediaTypePrefix + suffix
}
b.Name = ""
}
rel, err := filepath.Rel(r.root.Name(), b.tempfile.Name())
if err != nil {
return err
}
if err := r.root.Rename(rel, filepath.Join("blobs", b.Filepath())); err != nil {
return err
}
}
}
p := filepath.Join("manifests", r.name.Filepath())
if _, err := r.root.Stat(filepath.Dir(p)); errors.Is(err, os.ErrNotExist) {
if err := r.root.MkdirAll(filepath.Dir(p), 0o750); err != nil {
return err
}
} else if err != nil {
return err
}
f, err := r.root.OpenFile(p, os.O_CREATE|os.O_WRONLY|os.O_TRUNC, 0o640)
if err != nil {
return err
}
defer f.Close()
if err := json.NewEncoder(f).Encode(manifest{
SchemaVersion: 2,
MediaType: "application/vnd.docker.distribution.manifest.v2+json",
Config: r.blobs[NamePrefix],
Layers: func() []*blob {
blobs := make([]*blob, 0, len(r.blobs))
for name, b := range r.blobs {
if name != NamePrefix {
blobs = append(blobs, b)
}
}
return blobs
}(),
}); err != nil {
return err
}
}
return r.root.Close()
}
// Name returns the name of the file.
func (r Root) Name() Name {
return r.name
}
// Names returns an iterator over the names in the file.
func (r Root) Names() iter.Seq[string] {
return maps.Keys(r.blobs)
}
// Glob returns an iterator over the names in the file that match the given
// pattern.
//
// The pattern syntax is the same as [filepath.Match]. As with filepath.Match,
// the only possible returned error is ErrBadPattern, when pattern is malformed.
func (r Root) Glob(pattern string) (iter.Seq[string], error) {
if _, err := filepath.Match(pattern, ""); err != nil {
return nil, err
}
return func(yield func(string) bool) {
for name, blob := range r.blobs {
if matched, _ := filepath.Match(pattern, name); matched {
if !yield(blob.Filepath()) {
return
}
}
}
}, nil
}
func (r Root) JoinPath(parts ...string) string {
return filepath.Join(append([]string{r.root.Name()}, parts...)...)
}

View File

@@ -1,90 +0,0 @@
package model
import (
"io"
"strings"
"testing"
)
// setup is a helper function to set up the test environment.
func setup(t *testing.T, models map[Name]map[string]io.Reader) {
t.Setenv("OLLAMA_MODELS", t.TempDir())
for m, s := range models {
f, err := Create(m)
if err != nil {
t.Fatal(err)
}
for n, r := range s {
w, err := f.Create(n)
if err != nil {
t.Fatal(err)
}
if _, err := io.Copy(w, r); err != nil {
t.Fatal(err)
}
}
if err := f.Close(); err != nil {
t.Fatal(err)
}
}
}
func TestOpen(t *testing.T) {
setup(t, map[Name]map[string]io.Reader{
ParseName("namespace/model"): {
"./.": strings.NewReader(`{"key":"value"}`),
},
ParseName("namespace/model:8b"): {
"./.": strings.NewReader(`{"foo":"bar"}`),
},
ParseName("another/model"): {
"./.": strings.NewReader(`{"another":"config"}`),
},
})
f, err := Open(ParseName("namespace/model"))
if err != nil {
t.Fatal(err)
}
for _, name := range []string{"./."} {
r, err := f.Open(name)
if err != nil {
t.Fatal(err)
}
if _, err := io.ReadAll(r); err != nil {
t.Fatal(err)
}
if err := r.Close(); err != nil {
t.Fatal(err)
}
}
if err := f.Close(); err != nil {
t.Fatal(err)
}
t.Run("does not exist", func(t *testing.T) {
if _, err := Open(ParseName("namespace/unknown")); err == nil {
t.Error("expected error for unknown model")
}
})
t.Run("write", func(t *testing.T) {
f, err := Open(ParseName("namespace/model"))
if err != nil {
t.Fatal(err)
}
defer f.Close()
if _, err := f.Create("new-blob"); err == nil {
t.Error("expected error creating blob in read-only mode")
}
})
}

View File

@@ -1,33 +0,0 @@
package model
import (
"io/fs"
"iter"
"path/filepath"
)
func All() (iter.Seq[Name], error) {
r, err := root()
if err != nil {
return nil, err
}
manifests, err := r.OpenRoot("manifests")
if err != nil {
return nil, err
}
matches, err := fs.Glob(manifests.FS(), "*/*/*/*")
if err != nil {
return nil, err
}
return func(yield func(Name) bool) {
for _, match := range matches {
name := ParseNameFromFilepath(filepath.ToSlash(match))
if !yield(name) {
return
}
}
}, nil
}

View File

@@ -227,17 +227,6 @@ func (n Name) String() string {
return b.String()
}
// Set implements [flag.Value]. It parses the provided input as a name string
// and sets the receiver to the parsed value. If the parsed name is not valid,
// ErrUnqualifiedName is returned.
func (n *Name) Set(s string) error {
*n = ParseName(s)
if !n.IsValid() {
return ErrUnqualifiedName
}
return nil
}
// DisplayShortest returns a short string version of the name.
func (n Name) DisplayShortest() string {
var sb strings.Builder

View File

@@ -1,4 +1,4 @@
package manifest
package imagegen
import (
"encoding/json"

View File

@@ -1,4 +1,4 @@
package manifest
package imagegen
import (
"path/filepath"

View File

@@ -14,8 +14,6 @@ import (
"encoding/json"
"fmt"
"runtime"
"github.com/ollama/ollama/x/imagegen/manifest"
)
// SupportedBackends lists the backends that support image generation.
@@ -43,8 +41,8 @@ func CheckPlatformSupport() error {
// ResolveModelName checks if a model name is a known image generation model.
// Returns the normalized model name if found, empty string otherwise.
func ResolveModelName(modelName string) string {
modelManifest, err := manifest.LoadManifest(modelName)
if err == nil && modelManifest.HasTensorLayers() {
manifest, err := LoadManifest(modelName)
if err == nil && manifest.HasTensorLayers() {
return modelName
}
return ""
@@ -54,12 +52,12 @@ func ResolveModelName(modelName string) string {
// Checks both "architecture" (Ollama format) and "_class_name" (diffusers format).
// Returns empty string if detection fails.
func DetectModelType(modelName string) string {
modelManifest, err := manifest.LoadManifest(modelName)
manifest, err := LoadManifest(modelName)
if err != nil {
return ""
}
data, err := modelManifest.ReadConfig("model_index.json")
data, err := manifest.ReadConfig("model_index.json")
if err != nil {
return ""
}

View File

@@ -12,7 +12,7 @@ import (
"math"
"time"
"github.com/ollama/ollama/x/imagegen/manifest"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/models/qwen3"
"github.com/ollama/ollama/x/imagegen/tokenizer"
@@ -61,7 +61,7 @@ func (m *Model) Load(modelName string) error {
m.ModelName = modelName
// Load manifest
manifest, err := manifest.LoadManifest(modelName)
manifest, err := imagegen.LoadManifest(modelName)
if err != nil {
return fmt.Errorf("load manifest: %w", err)
}

View File

@@ -6,7 +6,7 @@ import (
"fmt"
"math"
"github.com/ollama/ollama/x/imagegen/manifest"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/nn"
"github.com/ollama/ollama/x/imagegen/safetensors"
@@ -14,19 +14,19 @@ import (
// TransformerConfig holds Flux2 transformer configuration
type TransformerConfig struct {
AttentionHeadDim int32 `json:"attention_head_dim"` // 128
AxesDimsRoPE []int32 `json:"axes_dims_rope"` // [32, 32, 32, 32]
Eps float32 `json:"eps"` // 1e-6
GuidanceEmbeds bool `json:"guidance_embeds"` // false for Klein
InChannels int32 `json:"in_channels"` // 128
JointAttentionDim int32 `json:"joint_attention_dim"` // 7680
MLPRatio float32 `json:"mlp_ratio"` // 3.0
NumAttentionHeads int32 `json:"num_attention_heads"` // 24
NumLayers int32 `json:"num_layers"` // 5
NumSingleLayers int32 `json:"num_single_layers"` // 20
PatchSize int32 `json:"patch_size"` // 1
RopeTheta int32 `json:"rope_theta"` // 2000
TimestepGuidanceChannels int32 `json:"timestep_guidance_channels"` // 256
AttentionHeadDim int32 `json:"attention_head_dim"` // 128
AxesDimsRoPE []int32 `json:"axes_dims_rope"` // [32, 32, 32, 32]
Eps float32 `json:"eps"` // 1e-6
GuidanceEmbeds bool `json:"guidance_embeds"` // false for Klein
InChannels int32 `json:"in_channels"` // 128
JointAttentionDim int32 `json:"joint_attention_dim"` // 7680
MLPRatio float32 `json:"mlp_ratio"` // 3.0
NumAttentionHeads int32 `json:"num_attention_heads"` // 24
NumLayers int32 `json:"num_layers"` // 5
NumSingleLayers int32 `json:"num_single_layers"` // 20
PatchSize int32 `json:"patch_size"` // 1
RopeTheta int32 `json:"rope_theta"` // 2000
TimestepGuidanceChannels int32 `json:"timestep_guidance_channels"` // 256
}
// Computed dimensions
@@ -392,12 +392,12 @@ type Flux2Transformer2DModel struct {
}
// Load loads the Flux2 transformer from ollama blob storage.
func (m *Flux2Transformer2DModel) Load(modelManifest *manifest.ModelManifest) error {
func (m *Flux2Transformer2DModel) Load(manifest *imagegen.ModelManifest) error {
fmt.Print(" Loading transformer... ")
// Load config from blob
var cfg TransformerConfig
if err := modelManifest.ReadConfigJSON("transformer/config.json", &cfg); err != nil {
if err := manifest.ReadConfigJSON("transformer/config.json", &cfg); err != nil {
return fmt.Errorf("config: %w", err)
}
m.TransformerConfig = &cfg
@@ -412,7 +412,7 @@ func (m *Flux2Transformer2DModel) Load(modelManifest *manifest.ModelManifest) er
}
// Load weights from tensor blobs
weights, err := manifest.LoadWeightsFromManifest(modelManifest, "transformer")
weights, err := imagegen.LoadWeightsFromManifest(manifest, "transformer")
if err != nil {
return fmt.Errorf("weights: %w", err)
}

View File

@@ -6,7 +6,7 @@ import (
"fmt"
"math"
"github.com/ollama/ollama/x/imagegen/manifest"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/nn"
"github.com/ollama/ollama/x/imagegen/safetensors"
@@ -15,21 +15,21 @@ import (
// VAEConfig holds AutoencoderKLFlux2 configuration
type VAEConfig struct {
ActFn string `json:"act_fn"` // "silu"
BatchNormEps float32 `json:"batch_norm_eps"` // 0.0001
BatchNormMomentum float32 `json:"batch_norm_momentum"` // 0.1
BlockOutChannels []int32 `json:"block_out_channels"` // [128, 256, 512, 512]
ForceUpcast bool `json:"force_upcast"` // true
InChannels int32 `json:"in_channels"` // 3
LatentChannels int32 `json:"latent_channels"` // 32
LayersPerBlock int32 `json:"layers_per_block"` // 2
ActFn string `json:"act_fn"` // "silu"
BatchNormEps float32 `json:"batch_norm_eps"` // 0.0001
BatchNormMomentum float32 `json:"batch_norm_momentum"` // 0.1
BlockOutChannels []int32 `json:"block_out_channels"` // [128, 256, 512, 512]
ForceUpcast bool `json:"force_upcast"` // true
InChannels int32 `json:"in_channels"` // 3
LatentChannels int32 `json:"latent_channels"` // 32
LayersPerBlock int32 `json:"layers_per_block"` // 2
MidBlockAddAttn bool `json:"mid_block_add_attention"` // true
NormNumGroups int32 `json:"norm_num_groups"` // 32
OutChannels int32 `json:"out_channels"` // 3
PatchSize []int32 `json:"patch_size"` // [2, 2]
SampleSize int32 `json:"sample_size"` // 1024
UsePostQuantConv bool `json:"use_post_quant_conv"` // true
UseQuantConv bool `json:"use_quant_conv"` // true
NormNumGroups int32 `json:"norm_num_groups"` // 32
OutChannels int32 `json:"out_channels"` // 3
PatchSize []int32 `json:"patch_size"` // [2, 2]
SampleSize int32 `json:"sample_size"` // 1024
UsePostQuantConv bool `json:"use_post_quant_conv"` // true
UseQuantConv bool `json:"use_quant_conv"` // true
}
// BatchNorm2D implements 2D batch normalization with running statistics
@@ -356,18 +356,18 @@ func (db *DownEncoderBlock2D) Forward(x *mlx.Array) *mlx.Array {
}
// Load loads the Flux2 VAE from ollama blob storage.
func (m *AutoencoderKLFlux2) Load(modelManifest *manifest.ModelManifest) error {
func (m *AutoencoderKLFlux2) Load(manifest *imagegen.ModelManifest) error {
fmt.Print(" Loading VAE... ")
// Load config from blob
var cfg VAEConfig
if err := modelManifest.ReadConfigJSON("vae/config.json", &cfg); err != nil {
if err := manifest.ReadConfigJSON("vae/config.json", &cfg); err != nil {
return fmt.Errorf("config: %w", err)
}
m.Config = &cfg
// Load weights from tensor blobs
weights, err := manifest.LoadWeightsFromManifest(modelManifest, "vae")
weights, err := imagegen.LoadWeightsFromManifest(manifest, "vae")
if err != nil {
return fmt.Errorf("weights: %w", err)
}

View File

@@ -9,8 +9,8 @@ import (
"fmt"
"math"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/cache"
"github.com/ollama/ollama/x/imagegen/manifest"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/nn"
"github.com/ollama/ollama/x/imagegen/safetensors"
@@ -38,11 +38,11 @@ type Config struct {
AttentionBias bool `json:"attention_bias"`
// MLA (Multi-head Latent Attention) parameters
QLoraRank int32 `json:"q_lora_rank"`
KVLoraRank int32 `json:"kv_lora_rank"`
QKRopeHeadDim int32 `json:"qk_rope_head_dim"`
QKNopeHeadDim int32 `json:"qk_nope_head_dim"`
VHeadDim int32 `json:"v_head_dim"`
QLoraRank int32 `json:"q_lora_rank"`
KVLoraRank int32 `json:"kv_lora_rank"`
QKRopeHeadDim int32 `json:"qk_rope_head_dim"`
QKNopeHeadDim int32 `json:"qk_nope_head_dim"`
VHeadDim int32 `json:"v_head_dim"`
// MoE parameters
NRoutedExperts int32 `json:"n_routed_experts"`
@@ -82,7 +82,7 @@ type MLAAttention struct {
// Absorbed MLA projections (derived from kv_b_proj)
// EmbedQ: projects q_nope to latent space [num_heads, kv_lora_rank, qk_nope_head_dim]
// UnembedOut: projects attention output from latent space [num_heads, v_head_dim, kv_lora_rank]
EmbedQ *nn.MultiLinear `weight:"-"`
EmbedQ *nn.MultiLinear `weight:"-"`
UnembedOut *nn.MultiLinear `weight:"-"`
// Output projection
@@ -194,8 +194,8 @@ func (m *DenseMLP) Forward(x *mlx.Array) *mlx.Array {
// MoEGate implements the expert gating mechanism
type MoEGate struct {
Gate nn.LinearLayer `weight:"mlp.gate"`
EScoreCorrectionBias *mlx.Array `weight:"mlp.gate.e_score_correction_bias,optional"`
Gate nn.LinearLayer `weight:"mlp.gate"`
EScoreCorrectionBias *mlx.Array `weight:"mlp.gate.e_score_correction_bias,optional"`
}
// Forward computes expert selection indices and scores
@@ -617,9 +617,9 @@ func sanitizeExpertWeights(weights safetensors.WeightSource, prefix string, numE
}
// LoadFromManifest loads a GLM4-MoE-Lite model from a manifest (Ollama blob storage).
func LoadFromManifest(modelManifest *manifest.ModelManifest) (*Model, error) {
func LoadFromManifest(manifest *imagegen.ModelManifest) (*Model, error) {
// Read config from manifest
configData, err := modelManifest.ReadConfig("config.json")
configData, err := manifest.ReadConfig("config.json")
if err != nil {
return nil, fmt.Errorf("load config: %w", err)
}
@@ -634,7 +634,7 @@ func LoadFromManifest(modelManifest *manifest.ModelManifest) (*Model, error) {
cfg.Scale = computeScale(&cfg)
// Load weights from manifest blobs
weights, err := manifest.LoadWeightsFromManifest(modelManifest, "")
weights, err := imagegen.LoadWeightsFromManifest(manifest, "")
if err != nil {
return nil, fmt.Errorf("load weights: %w", err)
}
@@ -653,7 +653,7 @@ func LoadFromManifest(modelManifest *manifest.ModelManifest) (*Model, error) {
}
// Load tokenizer from manifest with config files for EOS token detection
tokData, err := modelManifest.ReadConfig("tokenizer.json")
tokData, err := manifest.ReadConfig("tokenizer.json")
if err != nil {
return nil, fmt.Errorf("load tokenizer config: %w", err)
}
@@ -664,12 +664,12 @@ func LoadFromManifest(modelManifest *manifest.ModelManifest) (*Model, error) {
}
// Try to load generation_config.json if available (preferred source for EOS)
if genConfigData, err := modelManifest.ReadConfig("generation_config.json"); err == nil {
if genConfigData, err := manifest.ReadConfig("generation_config.json"); err == nil {
tokConfig.GenerationConfigJSON = genConfigData
}
// Try to load tokenizer_config.json if available
if tokConfigData, err := modelManifest.ReadConfig("tokenizer_config.json"); err == nil {
if tokConfigData, err := manifest.ReadConfig("tokenizer_config.json"); err == nil {
tokConfig.TokenizerConfigJSON = tokConfigData
}

View File

@@ -7,7 +7,7 @@ import (
"fmt"
"math"
"github.com/ollama/ollama/x/imagegen/manifest"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/nn"
"github.com/ollama/ollama/x/imagegen/safetensors"
@@ -181,19 +181,19 @@ type TextEncoder struct {
}
// Load loads the Qwen3 text encoder from ollama blob storage.
func (m *TextEncoder) Load(modelManifest *manifest.ModelManifest, configPath string) error {
func (m *TextEncoder) Load(manifest *imagegen.ModelManifest, configPath string) error {
fmt.Print(" Loading text encoder... ")
// Load config from blob
var cfg Config
if err := modelManifest.ReadConfigJSON(configPath, &cfg); err != nil {
if err := manifest.ReadConfigJSON(configPath, &cfg); err != nil {
return fmt.Errorf("config: %w", err)
}
m.Config = &cfg
m.Layers = make([]*Block, cfg.NumHiddenLayers)
// Load weights from tensor blobs
weights, err := manifest.LoadWeightsFromManifest(modelManifest, "text_encoder")
weights, err := imagegen.LoadWeightsFromManifest(manifest, "text_encoder")
if err != nil {
return fmt.Errorf("weights: %w", err)
}

View File

@@ -7,8 +7,8 @@ import (
"fmt"
"math"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/cache"
"github.com/ollama/ollama/x/imagegen/manifest"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/nn"
"github.com/ollama/ollama/x/imagegen/safetensors"
@@ -38,7 +38,7 @@ type TransformerConfig struct {
type TimestepEmbedder struct {
Linear1 nn.LinearLayer `weight:"mlp.0"`
Linear2 nn.LinearLayer `weight:"mlp.2"`
FreqEmbedSize int32 // 256 (computed)
FreqEmbedSize int32 // 256 (computed)
}
// Forward computes timestep embeddings -> [B, 256]
@@ -85,9 +85,9 @@ func (xe *XEmbedder) Forward(x *mlx.Array) *mlx.Array {
// CapEmbedder projects caption features to model dimension
type CapEmbedder struct {
Norm *nn.RMSNorm `weight:"0"`
Linear nn.LinearLayer `weight:"1"`
PadToken *mlx.Array // loaded separately at root level
Norm *nn.RMSNorm `weight:"0"`
Linear nn.LinearLayer `weight:"1"`
PadToken *mlx.Array // loaded separately at root level
}
// Forward projects caption embeddings: [B, L, cap_feat_dim] -> [B, L, dim]
@@ -103,9 +103,10 @@ type FeedForward struct {
W1 nn.LinearLayer `weight:"w1"` // gate projection
W2 nn.LinearLayer `weight:"w2"` // down projection
W3 nn.LinearLayer `weight:"w3"` // up projection
OutDim int32 // computed from W2
OutDim int32 // computed from W2
}
// Forward applies SwiGLU: silu(W1(x)) * W3(x), then W2
func (ff *FeedForward) Forward(x *mlx.Array) *mlx.Array {
shape := x.Shape()
@@ -131,11 +132,11 @@ type Attention struct {
ToK nn.LinearLayer `weight:"to_k"`
ToV nn.LinearLayer `weight:"to_v"`
ToOut nn.LinearLayer `weight:"to_out.0"`
NormQ *mlx.Array `weight:"norm_q.weight"` // [head_dim] for per-head RMSNorm
NormK *mlx.Array `weight:"norm_k.weight"`
NormQ *mlx.Array `weight:"norm_q.weight"` // [head_dim] for per-head RMSNorm
NormK *mlx.Array `weight:"norm_k.weight"`
// Fused QKV (computed at init time for efficiency, not loaded from weights)
ToQKV nn.LinearLayer `weight:"-"` // Fused Q+K+V projection (created by FuseQKV)
Fused bool `weight:"-"` // Whether to use fused QKV path
Fused bool `weight:"-"` // Whether to use fused QKV path
// Computed fields (not loaded from weights)
NHeads int32 `weight:"-"`
HeadDim int32 `weight:"-"`
@@ -287,13 +288,13 @@ func applyRoPE3D(x *mlx.Array, cos, sin *mlx.Array) *mlx.Array {
// TransformerBlock is a single transformer block with optional AdaLN modulation
type TransformerBlock struct {
Attention *Attention `weight:"attention"`
FeedForward *FeedForward `weight:"feed_forward"`
AttentionNorm1 *nn.RMSNorm `weight:"attention_norm1"`
AttentionNorm2 *nn.RMSNorm `weight:"attention_norm2"`
FFNNorm1 *nn.RMSNorm `weight:"ffn_norm1"`
FFNNorm2 *nn.RMSNorm `weight:"ffn_norm2"`
AdaLN nn.LinearLayer `weight:"adaLN_modulation.0,optional"` // only if modulation
Attention *Attention `weight:"attention"`
FeedForward *FeedForward `weight:"feed_forward"`
AttentionNorm1 *nn.RMSNorm `weight:"attention_norm1"`
AttentionNorm2 *nn.RMSNorm `weight:"attention_norm2"`
FFNNorm1 *nn.RMSNorm `weight:"ffn_norm1"`
FFNNorm2 *nn.RMSNorm `weight:"ffn_norm2"`
AdaLN nn.LinearLayer `weight:"adaLN_modulation.0,optional"` // only if modulation
// Computed fields
HasModulation bool
Dim int32
@@ -349,7 +350,7 @@ func (tb *TransformerBlock) Forward(x *mlx.Array, adaln *mlx.Array, cos, sin *ml
type FinalLayer struct {
AdaLN nn.LinearLayer `weight:"adaLN_modulation.1"` // [256] -> [dim]
Output nn.LinearLayer `weight:"linear"` // [dim] -> [out_channels]
OutDim int32 // computed from Output
OutDim int32 // computed from Output
}
// Forward computes final output
@@ -400,12 +401,12 @@ type Transformer struct {
}
// Load loads the Z-Image transformer from ollama blob storage.
func (m *Transformer) Load(modelManifest *manifest.ModelManifest) error {
func (m *Transformer) Load(manifest *imagegen.ModelManifest) error {
fmt.Print(" Loading transformer... ")
// Load config from blob
var cfg TransformerConfig
if err := modelManifest.ReadConfigJSON("transformer/config.json", &cfg); err != nil {
if err := manifest.ReadConfigJSON("transformer/config.json", &cfg); err != nil {
return fmt.Errorf("config: %w", err)
}
if len(cfg.AllPatchSize) > 0 {
@@ -416,7 +417,7 @@ func (m *Transformer) Load(modelManifest *manifest.ModelManifest) error {
m.ContextRefiners = make([]*TransformerBlock, cfg.NRefinerLayers)
m.Layers = make([]*TransformerBlock, cfg.NLayers)
weights, err := manifest.LoadWeightsFromManifest(modelManifest, "transformer")
weights, err := imagegen.LoadWeightsFromManifest(manifest, "transformer")
if err != nil {
return fmt.Errorf("weights: %w", err)
}

View File

@@ -6,7 +6,7 @@ import (
"fmt"
"math"
"github.com/ollama/ollama/x/imagegen/manifest"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/safetensors"
"github.com/ollama/ollama/x/imagegen/vae"
@@ -562,7 +562,7 @@ func (ub *UpDecoderBlock2D) Forward(x *mlx.Array) *mlx.Array {
if ub.Upsample != nil {
// Stage 1: Upsample2x (nearest neighbor)
{
prev := x
prev := x
x = Upsample2x(x)
prev.Free()
mlx.Eval(x)
@@ -570,7 +570,7 @@ func (ub *UpDecoderBlock2D) Forward(x *mlx.Array) *mlx.Array {
// Stage 2: Upsample conv
{
prev := x
prev := x
x = ub.Upsample.Forward(x)
prev.Free()
mlx.Eval(x)
@@ -643,16 +643,16 @@ type VAEDecoder struct {
}
// Load loads the VAE decoder from ollama blob storage.
func (m *VAEDecoder) Load(modelManifest *manifest.ModelManifest) error {
func (m *VAEDecoder) Load(manifest *imagegen.ModelManifest) error {
// Load config from blob
var cfg VAEConfig
if err := modelManifest.ReadConfigJSON("vae/config.json", &cfg); err != nil {
if err := manifest.ReadConfigJSON("vae/config.json", &cfg); err != nil {
return fmt.Errorf("config: %w", err)
}
m.Config = &cfg
// Load weights from tensor blobs
weights, err := manifest.LoadWeightsFromManifest(modelManifest, "vae")
weights, err := imagegen.LoadWeightsFromManifest(manifest, "vae")
if err != nil {
return fmt.Errorf("weights: %w", err)
}

View File

@@ -8,8 +8,8 @@ import (
"fmt"
"time"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/cache"
"github.com/ollama/ollama/x/imagegen/manifest"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/tokenizer"
"github.com/ollama/ollama/x/imagegen/vae"
@@ -18,14 +18,14 @@ import (
// GenerateConfig holds all options for image generation.
type GenerateConfig struct {
Prompt string
NegativePrompt string // Empty = no CFG
CFGScale float32 // Only used if NegativePrompt is set (default: 4.0)
Width int32 // Image width (default: 1024)
Height int32 // Image height (default: 1024)
Steps int // Denoising steps (default: 9 for turbo)
Seed int64 // Random seed
NegativePrompt string // Empty = no CFG
CFGScale float32 // Only used if NegativePrompt is set (default: 4.0)
Width int32 // Image width (default: 1024)
Height int32 // Image height (default: 1024)
Steps int // Denoising steps (default: 9 for turbo)
Seed int64 // Random seed
Progress func(step, totalSteps int) // Optional progress callback
CapturePath string // GPU capture path (debug)
CapturePath string // GPU capture path (debug)
// TeaCache options (timestep embedding aware caching)
TeaCache bool // TeaCache is always enabled for faster inference
@@ -58,7 +58,7 @@ func (m *Model) Load(modelName string) error {
m.ModelName = modelName
// Load manifest
manifest, err := manifest.LoadManifest(modelName)
manifest, err := imagegen.LoadManifest(modelName)
if err != nil {
return fmt.Errorf("load manifest: %w", err)
}

View File

@@ -1,203 +0,0 @@
//go:build mlx
// Package imagegen provides a unified MLX runner for both LLM and image generation models.
package imagegen
import (
"context"
"encoding/json"
"flag"
"fmt"
"log/slog"
"net/http"
"os"
"os/signal"
"syscall"
"time"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/x/imagegen/mlx"
)
// Execute is the entry point for the unified MLX runner subprocess.
func Execute(args []string) error {
// Set up logging with appropriate level from environment
slog.SetDefault(slog.New(slog.NewTextHandler(os.Stderr, &slog.HandlerOptions{Level: envconfig.LogLevel()})))
fs := flag.NewFlagSet("mlx-runner", flag.ExitOnError)
modelName := fs.String("model", "", "path to model")
port := fs.Int("port", 0, "port to listen on")
if err := fs.Parse(args); err != nil {
return err
}
if *modelName == "" {
return fmt.Errorf("--model is required")
}
if *port == 0 {
return fmt.Errorf("--port is required")
}
// Initialize MLX
if err := mlx.InitMLX(); err != nil {
slog.Error("unable to initialize MLX", "error", err)
return err
}
slog.Info("MLX library initialized")
// Detect model type from capabilities
mode := detectModelMode(*modelName)
slog.Info("starting mlx runner", "model", *modelName, "port", *port, "mode", mode)
// Create and start server
server, err := newServer(*modelName, *port, mode)
if err != nil {
return fmt.Errorf("failed to create server: %w", err)
}
// Set up HTTP handlers
mux := http.NewServeMux()
mux.HandleFunc("/health", server.healthHandler)
mux.HandleFunc("/completion", server.completionHandler)
// LLM-specific endpoints
if mode == ModeLLM {
mux.HandleFunc("/tokenize", server.tokenizeHandler)
mux.HandleFunc("/embedding", server.embeddingHandler)
}
httpServer := &http.Server{
Addr: fmt.Sprintf("127.0.0.1:%d", *port),
Handler: mux,
}
// Handle shutdown
done := make(chan struct{})
go func() {
sigCh := make(chan os.Signal, 1)
signal.Notify(sigCh, syscall.SIGINT, syscall.SIGTERM)
<-sigCh
slog.Info("shutting down mlx runner")
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
httpServer.Shutdown(ctx)
close(done)
}()
slog.Info("mlx runner listening", "addr", httpServer.Addr)
if err := httpServer.ListenAndServe(); err != http.ErrServerClosed {
return err
}
<-done
return nil
}
// detectModelMode determines whether a model is an LLM or image generation model.
func detectModelMode(modelName string) ModelMode {
// Check for image generation model by looking at model_index.json
modelType := DetectModelType(modelName)
if modelType != "" {
// Known image generation model types
switch modelType {
case "ZImagePipeline", "FluxPipeline", "Flux2KleinPipeline":
return ModeImageGen
}
}
// Default to LLM mode for safetensors models without known image gen types
return ModeLLM
}
// server holds the model and handles HTTP requests.
type server struct {
mode ModelMode
modelName string
port int
// Image generation model (when mode == ModeImageGen)
imageModel ImageModel
// LLM model (when mode == ModeLLM)
llmModel *llmState
}
// newServer creates a new server instance and loads the appropriate model.
func newServer(modelName string, port int, mode ModelMode) (*server, error) {
s := &server{
mode: mode,
modelName: modelName,
port: port,
}
switch mode {
case ModeImageGen:
if err := s.loadImageModel(); err != nil {
return nil, fmt.Errorf("failed to load image model: %w", err)
}
case ModeLLM:
if err := s.loadLLMModel(); err != nil {
return nil, fmt.Errorf("failed to load LLM model: %w", err)
}
}
return s, nil
}
func (s *server) healthHandler(w http.ResponseWriter, r *http.Request) {
resp := HealthResponse{Status: "ok"}
w.Header().Set("Content-Type", "application/json")
json.NewEncoder(w).Encode(resp)
}
func (s *server) completionHandler(w http.ResponseWriter, r *http.Request) {
if r.Method != http.MethodPost {
http.Error(w, "method not allowed", http.StatusMethodNotAllowed)
return
}
var req Request
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, err.Error(), http.StatusBadRequest)
return
}
switch s.mode {
case ModeImageGen:
s.handleImageCompletion(w, r, req)
case ModeLLM:
s.handleLLMCompletion(w, r, req)
}
}
func (s *server) tokenizeHandler(w http.ResponseWriter, r *http.Request) {
if s.llmModel == nil {
http.Error(w, "LLM model not loaded", http.StatusInternalServerError)
return
}
var req struct {
Content string `json:"content"`
}
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, err.Error(), http.StatusBadRequest)
return
}
tok := s.llmModel.model.Tokenizer()
tokens := tok.Encode(req.Content, false)
// Convert int32 to int for JSON response
intTokens := make([]int, len(tokens))
for i, t := range tokens {
intTokens[i] = int(t)
}
w.Header().Set("Content-Type", "application/json")
json.NewEncoder(w).Encode(map[string][]int{"tokens": intTokens})
}
func (s *server) embeddingHandler(w http.ResponseWriter, r *http.Request) {
http.Error(w, "embeddings not yet implemented for MLX models", http.StatusNotImplemented)
}

View File

@@ -1,471 +0,0 @@
package imagegen
import (
"bufio"
"bytes"
"context"
"encoding/json"
"errors"
"fmt"
"io"
"log/slog"
"math/rand"
"net"
"net/http"
"os"
"os/exec"
"path/filepath"
"runtime"
"strconv"
"strings"
"sync"
"time"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/x/imagegen/manifest"
)
// Server wraps an MLX runner subprocess to implement llm.LlamaServer.
//
// This implementation is compatible with Ollama's scheduler and can be loaded/unloaded
// like any other model. It supports both LLM (safetensors) and image generation models.
type Server struct {
mu sync.Mutex
cmd *exec.Cmd
port int
modelName string
mode ModelMode
vramSize uint64
done chan error
client *http.Client
lastErr string // Last stderr line for error reporting
lastErrLock sync.Mutex
}
// NewServer spawns a new MLX runner subprocess and waits until it's ready.
func NewServer(modelName string, mode ModelMode) (*Server, error) {
// Validate platform support before attempting to start
if err := CheckPlatformSupport(); err != nil {
return nil, err
}
// Find a free port
port := 0
if a, err := net.ResolveTCPAddr("tcp", "localhost:0"); err == nil {
if l, err := net.ListenTCP("tcp", a); err == nil {
port = l.Addr().(*net.TCPAddr).Port
l.Close()
}
}
if port == 0 {
port = rand.Intn(65535-49152) + 49152
}
// Get the current executable path (we use the same binary with runner subcommand)
exe, err := os.Executable()
if err != nil {
return nil, fmt.Errorf("unable to lookup executable path: %w", err)
}
if eval, err := filepath.EvalSymlinks(exe); err == nil {
exe = eval
}
// Spawn subprocess: ollama runner --imagegen-engine --model <path> --port <port>
cmd := exec.Command(exe, "runner", "--imagegen-engine", "--model", modelName, "--port", strconv.Itoa(port))
cmd.Env = os.Environ()
// On Linux, set LD_LIBRARY_PATH to include MLX library directories
if runtime.GOOS == "linux" {
// Build library paths: start with LibOllamaPath, then add any mlx_* subdirectories
libraryPaths := []string{ml.LibOllamaPath}
if mlxDirs, err := filepath.Glob(filepath.Join(ml.LibOllamaPath, "mlx_*")); err == nil {
libraryPaths = append(libraryPaths, mlxDirs...)
}
// Append existing LD_LIBRARY_PATH if set
if existingPath, ok := os.LookupEnv("LD_LIBRARY_PATH"); ok {
libraryPaths = append(libraryPaths, filepath.SplitList(existingPath)...)
}
pathEnvVal := strings.Join(libraryPaths, string(filepath.ListSeparator))
// Update or add LD_LIBRARY_PATH in cmd.Env
found := false
for i := range cmd.Env {
if strings.HasPrefix(cmd.Env[i], "LD_LIBRARY_PATH=") {
cmd.Env[i] = "LD_LIBRARY_PATH=" + pathEnvVal
found = true
break
}
}
if !found {
cmd.Env = append(cmd.Env, "LD_LIBRARY_PATH="+pathEnvVal)
}
slog.Debug("mlx subprocess library path", "LD_LIBRARY_PATH", pathEnvVal)
}
// Estimate VRAM based on tensor size from manifest
var vramSize uint64
if modelManifest, err := manifest.LoadManifest(modelName); err == nil {
vramSize = uint64(modelManifest.TotalTensorSize())
} else {
// Fallback: default to 8GB if manifest can't be loaded
vramSize = 8 * 1024 * 1024 * 1024
}
s := &Server{
cmd: cmd,
port: port,
modelName: modelName,
mode: mode,
vramSize: vramSize,
done: make(chan error, 1),
client: &http.Client{Timeout: 10 * time.Minute},
}
// Forward subprocess stdout/stderr to server logs
stdout, _ := cmd.StdoutPipe()
stderr, _ := cmd.StderrPipe()
go func() {
scanner := bufio.NewScanner(stdout)
for scanner.Scan() {
slog.Info("mlx-runner", "msg", scanner.Text())
}
}()
go func() {
scanner := bufio.NewScanner(stderr)
for scanner.Scan() {
line := scanner.Text()
slog.Warn("mlx-runner", "msg", line)
s.lastErrLock.Lock()
s.lastErr = line
s.lastErrLock.Unlock()
}
}()
slog.Info("starting mlx runner subprocess", "exe", exe, "model", modelName, "port", port, "mode", mode)
if err := cmd.Start(); err != nil {
return nil, fmt.Errorf("failed to start mlx runner: %w", err)
}
// Reap subprocess when it exits
go func() {
err := cmd.Wait()
s.done <- err
}()
// Wait for subprocess to be ready
if err := s.waitUntilRunning(); err != nil {
s.Close()
return nil, err
}
return s, nil
}
// ModelPath returns the path to the model.
func (s *Server) ModelPath() string {
return s.modelName
}
// Load satisfies the LlamaServer interface. MLX models don't need GPU layer assignment.
func (s *Server) Load(ctx context.Context, systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, requireFull bool) ([]ml.DeviceID, error) {
return nil, nil
}
// Ping checks if the subprocess is healthy.
func (s *Server) Ping(ctx context.Context) error {
url := fmt.Sprintf("http://127.0.0.1:%d/health", s.port)
req, err := http.NewRequestWithContext(ctx, "GET", url, nil)
if err != nil {
return err
}
resp, err := s.client.Do(req)
if err != nil {
return err
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
return fmt.Errorf("health check failed: %d", resp.StatusCode)
}
return nil
}
// waitUntilRunning waits for the subprocess to be ready.
func (s *Server) waitUntilRunning() error {
ctx := context.Background()
timeout := time.After(2 * time.Minute)
ticker := time.NewTicker(100 * time.Millisecond)
defer ticker.Stop()
for {
select {
case err := <-s.done:
// Include recent stderr lines for better error context
errMsg := s.getLastErr()
if errMsg != "" {
return fmt.Errorf("mlx runner failed: %s (exit: %v)", errMsg, err)
}
return fmt.Errorf("mlx runner exited unexpectedly: %w", err)
case <-timeout:
errMsg := s.getLastErr()
if errMsg != "" {
return fmt.Errorf("timeout waiting for mlx runner: %s", errMsg)
}
return errors.New("timeout waiting for mlx runner to start")
case <-ticker.C:
if err := s.Ping(ctx); err == nil {
slog.Info("mlx runner is ready", "port", s.port)
return nil
}
}
}
}
// getLastErr returns the last stderr line.
func (s *Server) getLastErr() string {
s.lastErrLock.Lock()
defer s.lastErrLock.Unlock()
return s.lastErr
}
// WaitUntilRunning satisfies the LlamaServer interface.
func (s *Server) WaitUntilRunning(ctx context.Context) error {
return nil
}
// Completion handles both text and image generation requests.
func (s *Server) Completion(ctx context.Context, req llm.CompletionRequest, fn func(llm.CompletionResponse)) error {
seed := req.Seed
if seed == 0 {
seed = time.Now().UnixNano()
}
// Extract raw image bytes from llm.ImageData slice
var images [][]byte
for _, img := range req.Images {
images = append(images, img.Data)
}
// Build request for subprocess
creq := Request{
Prompt: req.Prompt,
Width: req.Width,
Height: req.Height,
Steps: int(req.Steps),
Seed: seed,
Images: images,
}
// Pass LLM options if present
if req.Options != nil {
creq.Options = &RequestOptions{
NumPredict: req.Options.NumPredict,
Temperature: float64(req.Options.Temperature),
TopP: float64(req.Options.TopP),
TopK: req.Options.TopK,
Stop: req.Options.Stop,
}
}
body, err := json.Marshal(creq)
if err != nil {
return err
}
url := fmt.Sprintf("http://127.0.0.1:%d/completion", s.port)
httpReq, err := http.NewRequestWithContext(ctx, "POST", url, bytes.NewReader(body))
if err != nil {
return err
}
httpReq.Header.Set("Content-Type", "application/json")
resp, err := s.client.Do(httpReq)
if err != nil {
return err
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
body, _ := io.ReadAll(resp.Body)
return fmt.Errorf("%s", strings.TrimSpace(string(body)))
}
scanner := bufio.NewScanner(resp.Body)
scanner.Buffer(make([]byte, 1024*1024), 16*1024*1024) // 16MB max
for scanner.Scan() {
// Parse subprocess response
var raw struct {
Image string `json:"image,omitempty"`
Content string `json:"content,omitempty"`
Done bool `json:"done"`
Step int `json:"step,omitempty"`
Total int `json:"total,omitempty"`
StopReason string `json:"stop_reason,omitempty"`
PromptEvalCount int `json:"prompt_eval_count,omitempty"`
PromptEvalDuration int `json:"prompt_eval_duration,omitempty"`
EvalCount int `json:"eval_count,omitempty"`
EvalDuration int `json:"eval_duration,omitempty"`
}
if err := json.Unmarshal(scanner.Bytes(), &raw); err != nil {
slog.Debug("mlx response parse error", "error", err, "line", string(scanner.Bytes()))
continue
}
// Log stop reason when generation completes
if raw.Done && raw.StopReason != "" {
slog.Info("mlx generation completed", "stop_reason", raw.StopReason)
}
// Convert to llm.CompletionResponse
cresp := llm.CompletionResponse{
Content: raw.Content,
Done: raw.Done,
Step: raw.Step,
TotalSteps: raw.Total,
Image: raw.Image,
PromptEvalCount: raw.PromptEvalCount,
PromptEvalDuration: time.Duration(raw.PromptEvalDuration),
EvalCount: raw.EvalCount,
EvalDuration: time.Duration(raw.EvalDuration),
}
fn(cresp)
if cresp.Done {
return nil
}
}
// Scanner exited without receiving Done - connection was likely closed
scanErr := scanner.Err()
if scanErr != nil {
slog.Error("mlx scanner error", "error", scanErr)
} else {
slog.Warn("mlx scanner EOF without Done response - subprocess may have crashed")
}
// Check if subprocess is still alive
if s.HasExited() {
slog.Error("mlx subprocess has exited unexpectedly")
}
return scanErr
}
// Close terminates the subprocess.
func (s *Server) Close() error {
s.mu.Lock()
defer s.mu.Unlock()
if s.cmd != nil && s.cmd.Process != nil {
slog.Info("stopping mlx runner subprocess", "pid", s.cmd.Process.Pid)
s.cmd.Process.Signal(os.Interrupt)
// Wait briefly for graceful shutdown
select {
case <-s.done:
case <-time.After(5 * time.Second):
s.cmd.Process.Kill()
}
s.cmd = nil
}
return nil
}
// VRAMSize returns the estimated VRAM usage.
func (s *Server) VRAMSize() uint64 {
return s.vramSize
}
// TotalSize returns the total memory usage.
func (s *Server) TotalSize() uint64 {
return s.vramSize
}
// VRAMByGPU returns VRAM usage for a specific GPU.
func (s *Server) VRAMByGPU(id ml.DeviceID) uint64 {
return s.vramSize
}
// ContextLength returns the context length (not applicable for image generation).
func (s *Server) ContextLength() int {
return 0
}
// Embedding returns embeddings for the input.
func (s *Server) Embedding(ctx context.Context, input string) ([]float32, int, error) {
return nil, 0, errors.New("embeddings not supported for MLX models")
}
// Tokenize tokenizes the input content.
func (s *Server) Tokenize(ctx context.Context, content string) ([]int, error) {
body, err := json.Marshal(map[string]string{"content": content})
if err != nil {
return nil, err
}
url := fmt.Sprintf("http://127.0.0.1:%d/tokenize", s.port)
req, err := http.NewRequestWithContext(ctx, "POST", url, bytes.NewReader(body))
if err != nil {
return nil, err
}
req.Header.Set("Content-Type", "application/json")
resp, err := s.client.Do(req)
if err != nil {
return nil, err
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
return nil, fmt.Errorf("tokenize failed: %d", resp.StatusCode)
}
var result struct {
Tokens []int `json:"tokens"`
}
if err := json.NewDecoder(resp.Body).Decode(&result); err != nil {
return nil, err
}
return result.Tokens, nil
}
// Detokenize converts tokens back to text.
func (s *Server) Detokenize(ctx context.Context, tokens []int) (string, error) {
return "", errors.New("detokenization not supported for MLX models")
}
// Pid returns the process ID of the subprocess.
func (s *Server) Pid() int {
s.mu.Lock()
defer s.mu.Unlock()
if s.cmd != nil && s.cmd.Process != nil {
return s.cmd.Process.Pid
}
return -1
}
// GetPort returns the port the subprocess is listening on.
func (s *Server) GetPort() int {
return s.port
}
// GetDeviceInfos returns device information.
func (s *Server) GetDeviceInfos(ctx context.Context) []ml.DeviceInfo {
return nil
}
// HasExited returns whether the subprocess has exited.
func (s *Server) HasExited() bool {
select {
case <-s.done:
return true
default:
return false
}
}
// Ensure Server implements llm.LlamaServer
var _ llm.LlamaServer = (*Server)(nil)

View File

@@ -1,6 +1,6 @@
//go:build mlx
package manifest
package imagegen
import (
"fmt"
@@ -15,9 +15,9 @@ import (
type ManifestWeights struct {
manifest *ModelManifest
component string
tensors map[string]ManifestLayer // name -> layer
cache map[string]*mlx.Array // name -> loaded array
nativeCache []*mlx.SafetensorsFile // keep native handles alive
tensors map[string]ManifestLayer // name -> layer
cache map[string]*mlx.Array // name -> loaded array
nativeCache []*mlx.SafetensorsFile // keep native handles alive
}
// LoadWeightsFromManifest creates a weight loader from manifest storage.

77
x/kvcache/cache.go Normal file
View File

@@ -0,0 +1,77 @@
package kvcache
import (
"errors"
"github.com/ollama/ollama/x/ml"
"github.com/ollama/ollama/x/model/input"
)
var (
ErrKvCacheFull = errors.New("could not find a kv cache slot")
ErrNotSupported = errors.New("model does not support operation")
)
type Cache interface {
// ** used by model implementations **
// SetLayer sets the active layer of the cache
SetLayer(layer int)
// Get returns the history of key and value tensors plus a mask
//
// The shape of the tensors is documented in the specific
// cache implementation used.
Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor)
// Put stores a batch of key and value in the cache
//
// The shape of the tensors is documented in the specific
// cache implementation used.
Put(ctx ml.Context, key, value ml.Tensor)
// SetConfig controls optimizations (mostly backend-specific) that may transform
// the output of the cache to work better with specific kernels. If not called,
// the backend settings will be used. This works well when calling Attention.
//
// The config can be overridden by models, especially if they require vanilla
// output when implementing their own version of attention. To do this, pass
// an empty ml.CacheConfig.
//
// Most models will not need to use this.
SetConfig(ml.CacheConfig)
// ** cache management **
// Init sets up runtime parameters.
// backend: Used to allocate cache data storage and execute management operations (such as defrag)
// dtype: The data type for storing cache entries
// maxSequences: The maximum number of sequences stored in the cache - across all batches
// capacity: The number of cache entries to store, per sequence
// maxBatch: The maximum number of tokens that can occur in a single batch
Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int)
// Close closes the cache and frees resources associated with it
Close()
// StartForward is called before the start of the model's forward pass.
// For each token in the coming batch, there must be a corresponding
// entry in positions and seqs. reserve is to preallocate memory
// without actually storing data in the cache.
StartForward(ctx ml.Context, batch input.Batch, reserve bool) error
// CopyPrefix copies tokens in the range [0, len) from srcSeq to dstSeq
CopyPrefix(srcSeq, dstSeq int, len int32)
// CanResume returns true if the cache can continue with the next token at
// the given position and sequence. Assumes that the caller has already
// verified the contents of the cache.
CanResume(seq int, pos int32) bool
// Remove deletes tokens in the range [beginIndex, endIndex) from seq. Set
// endIndex to math.MaxInt32 to remove everything starting at beginIndex.
//
// If an error occurs, the entire context for the sequence should be
// removed by calling Remove(seq, 0, math.MaxInt32)
Remove(seq int, beginIndex, endIndex int32) error
}

144
x/kvcache/causal.go Normal file
View File

@@ -0,0 +1,144 @@
//go:build mlx
package kvcache
import (
"github.com/ollama/ollama/x/ml"
"github.com/ollama/ollama/x/model/input"
)
// Causal cache stores K and V tensors according to their position in the
// sequence. Returns the history and a mask for attending to past tokens
type Causal struct {
DType ml.DType
// locations for data storage for this batch
curLocPut ml.Tensor
// locations for data storage for this batch
curLocGet ml.Tensor
// the active layer for Get and Put
curLayer int
capacity int
offset int
backend ml.Backend
ctxs map[int]ml.Context
keys, values map[int]ml.Tensor
// TODO is this needed per layer, or will it always be consistent?
kHeadDims, vHeadDims, numKVHeads map[int]int
}
func NewCausalCache() *Causal {
return &Causal{
ctxs: make(map[int]ml.Context),
keys: make(map[int]ml.Tensor),
values: make(map[int]ml.Tensor),
kHeadDims: make(map[int]int),
vHeadDims: make(map[int]int),
numKVHeads: make(map[int]int),
}
}
func (c *Causal) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
c.DType = dtype
c.capacity = capacity
c.backend = backend
}
func (c *Causal) SetConfig(config ml.CacheConfig) {}
func (c *Causal) SetLayer(layer int) {
c.curLayer = layer
}
func (c *Causal) Close() {
// slog.Info("XXX Causal.Close called", "number of contexts", len(c.ctxs))
for _, ctx := range c.ctxs {
ctx.Close()
}
}
func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
locsPut := make([]int32, len(batch.Positions))
for i := c.offset; i < len(batch.Positions); i++ {
locsPut[i-c.offset] = int32(i)
}
c.offset += len(batch.Positions)
locsGet := make([]int32, c.offset)
for i := range c.offset {
locsGet[i] = int32(i)
}
c.curLocGet = ctx.Input().FromInts(locsGet, len(locsGet))
c.curLocPut = ctx.Input().FromInts(locsPut, len(locsPut))
// slog.Info("XXX Causal.StartForward", "offset", c.offset, "put", locsPut, "get", locsGet)
return nil
}
func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
kHeadDim := key.Dim(3)
vHeadDim := value.Dim(3)
numKVHeads := key.Dim(1)
batchSize := key.Dim(2)
kCellSize := kHeadDim * numKVHeads
vCellSize := vHeadDim * numKVHeads
// slog.Info("XXX Causal.Put", "kHeadDim", kHeadDim, "vHeadDim", vHeadDim, "numKVHeads", numKVHeads, "batchSize", batchSize, "kCellSize", kCellSize, "vCellSize", vCellSize)
if _, ok := c.ctxs[c.curLayer]; !ok {
// slog.Info("XXX Causal.Put creating new context", "c.curLayer", c.curLayer)
c.ctxs[c.curLayer] = c.backend.NewContext().Layer(c.curLayer)
}
if _, ok := c.keys[c.curLayer]; !ok {
// slog.Info("XXX Causal.Put allocating keys and values", "c.curLayer", c.curLayer, "shape", []int{c.capacity, kCellSize})
c.keys[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, c.capacity, kCellSize)
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, c.capacity, vCellSize)
c.kHeadDims[c.curLayer] = kHeadDim
c.vHeadDims[c.curLayer] = vHeadDim
c.numKVHeads[c.curLayer] = numKVHeads
}
key = key.Reshape(ctx, batchSize, 1, kCellSize)
// slog.Info("XXX Causal.Put ", "c.keys[c.curLayer]", c.keys[c.curLayer])
// slog.Info("XXX Causal.Put ", "c.curLocPut", c.curLocPut)
// slog.Info("XXX Causal.Put ", "key", key)
ctx.Forward(c.keys[c.curLayer].Scatter(ctx, []ml.Tensor{c.curLocPut}, key, []int{0}))
value = value.Reshape(ctx, batchSize, 1, vCellSize)
ctx.Forward(c.values[c.curLayer].Scatter(ctx, []ml.Tensor{c.curLocPut}, value, []int{0}))
}
func (c *Causal) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
key := c.keys[c.curLayer]
value := c.values[c.curLayer]
kHeadDim := c.kHeadDims[c.curLayer]
vHeadDim := c.vHeadDims[c.curLayer]
numKVHeads := c.numKVHeads[c.curLayer]
// rowSize := numKVHeads * c.curBatchSize
// cachedSize := c.curMask.Dim(1)
cachedSize := c.curLocGet.Dim(0)
// kCellSize := kHeadDim * numKVHeads
// vCellSize := vHeadDim * numKVHeads
// slog.Info("XXX Causal.Get", "shape", []int{1, numKVHeads, cachedSize, kHeadDim})
key = key.TakeAxes(ctx, c.curLocGet, 0).Reshape(ctx, 1, numKVHeads, cachedSize, kHeadDim)
value = value.TakeAxes(ctx, c.curLocGet, 0).Reshape(ctx, 1, numKVHeads, cachedSize, vHeadDim)
return key, value, nil
}
func (c *Causal) CopyPrefix(srcSeq, dstSeq int, len int32) {
panic("not implemented")
}
func (c *Causal) CanResume(seq int, pos int32) bool {
panic("not implemented")
}
func (c *Causal) Remove(seq int, beginIndex, endIndex int32) error {
panic("not implemented")
}

156
x/kvcache/encoder.go Normal file
View File

@@ -0,0 +1,156 @@
package kvcache
// import (
// "fmt"
// "github.com/ollama/ollama/ml"
// "github.com/ollama/ollama/model/input"
// )
// // Encoder cache stores K and V tensors that are position independent
// //
// // The tensors can be of any shape and will be returned as they were stored
// // The mask is currently always nil
// //
// // Not currently safe for multiple sequences
// type EncoderCache struct {
// // config controls mostly backend-specific optimizations
// config *ml.CacheConfig
// // ** current forward pass **
// // the active layer for Get and Put
// curLayer int
// // if something is stored during this pass, this
// // will be the position (but there is no guarantee
// // anything will be stored)
// curPos int32
// // curReserve indicates that this forward pass is only for
// // memory reservation and we should not update our metadata
// // based on it.
// curReserve bool
// // ** cache metadata **
// // was something stored in the cache?
// encoderCached bool
// // position of the cached data
// encoderPos int32
// // ** cache data storage **
// backend ml.Backend
// ctxs map[int]ml.Context
// keys, values map[int]ml.Tensor
// }
// func NewEncoderCache() *EncoderCache {
// return &EncoderCache{
// ctxs: make(map[int]ml.Context),
// keys: make(map[int]ml.Tensor),
// values: make(map[int]ml.Tensor),
// }
// }
// func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
// if c.config == nil {
// var config ml.CacheConfig
// if cc, ok := backend.(ml.BackendCacheConfig); ok {
// config = cc.CacheConfig()
// }
// c.config = &config
// }
// if maxSequences > 1 {
// panic(fmt.Errorf("encoder cache does not support multiple sequences; requested: %v", maxSequences))
// }
// if c.config.CachePadding != 0 && c.config.CachePadding != 1 {
// panic(fmt.Errorf("encoder cache is unable to enforce requested CachePadding (%v)", c.config.CachePadding))
// }
// c.backend = backend
// }
// func (c *EncoderCache) SetConfig(config ml.CacheConfig) {
// if c.config != nil {
// panic("config cannot be changed after being previously set, either by the model or backend")
// }
// c.config = &config
// }
// func (c *EncoderCache) Close() {
// for _, ctx := range c.ctxs {
// ctx.Close()
// }
// }
// func (c *EncoderCache) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
// // We work with the most recent image
// if len(batch.Multimodal) > 0 {
// c.curPos = batch.Positions[batch.Multimodal[len(batch.Multimodal)-1].Index]
// }
// c.curReserve = reserve
// return nil
// }
// func (c *EncoderCache) SetLayer(layer int) {
// c.curLayer = layer
// }
// func (c *EncoderCache) EncoderCached() bool {
// return c.encoderCached
// }
// func (c *EncoderCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
// return c.keys[c.curLayer], c.values[c.curLayer], nil
// }
// func (c *EncoderCache) Put(ctx ml.Context, key, value ml.Tensor) {
// if !c.curReserve {
// c.encoderPos = c.curPos
// c.encoderCached = true
// }
// if c.config.PermutedV {
// value = value.Transpose(ctx, 1, 2, 0, 3)
// }
// if _, ok := c.ctxs[c.curLayer]; !ok {
// c.ctxs[c.curLayer] = c.backend.NewContext().Layer(c.curLayer)
// }
// if _, ok := c.keys[c.curLayer]; !ok {
// c.keys[c.curLayer] = c.ctxs[c.curLayer].Empty(key.DType(), key.Shape()...)
// }
// if _, ok := c.values[c.curLayer]; !ok {
// c.values[c.curLayer] = c.ctxs[c.curLayer].Empty(value.DType(), value.Shape()...)
// }
// ctx.Forward(
// key.Copy(ctx, c.keys[c.curLayer]),
// value.Copy(ctx, c.values[c.curLayer]),
// )
// }
// func (c *EncoderCache) CopyPrefix(srcSeq, dstSeq int, len int32) {
// panic("encoder cache does not support multiple sequences")
// }
// func (c *EncoderCache) CanResume(seq int, pos int32) bool {
// return true
// }
// func (c *EncoderCache) Remove(seq int, beginIndex, endIndex int32) error {
// if c.encoderPos >= beginIndex && c.encoderPos < endIndex {
// c.encoderCached = false
// }
// return nil
// }

110
x/kvcache/wrapper.go Normal file
View File

@@ -0,0 +1,110 @@
package kvcache
// import (
// "math"
// "github.com/ollama/ollama/ml"
// "github.com/ollama/ollama/model/input"
// )
// // Wrapper cache is a container for multiple types of caches,
// // such as for the encoding and decoding portions of a model.
// type WrapperCache struct {
// // caches we are wrapping
// caches []Cache
// // cache to be used for this layer
// curType int
// }
// func NewWrapperCache(caches ...Cache) *WrapperCache {
// return &WrapperCache{
// caches: caches,
// }
// }
// func (c *WrapperCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
// for _, cache := range c.caches {
// cache.Init(backend, dtype, maxSequences, capacity, maxBatch)
// }
// }
// func (c *WrapperCache) SetConfig(config ml.CacheConfig) {
// for _, cache := range c.caches {
// cache.SetConfig(config)
// }
// }
// func (c *WrapperCache) Close() {
// for _, cache := range c.caches {
// cache.Close()
// }
// }
// func (c *WrapperCache) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
// for i, cache := range c.caches {
// err := cache.StartForward(ctx, batch, reserve)
// if err != nil {
// // unwind on error - Remove with endIndex set to math.MaxInt32 does not fail
// for j := i - 1; j >= 0; j-- {
// for k := range batch.Positions {
// _ = c.caches[j].Remove(batch.Sequences[k], batch.Positions[k], math.MaxInt32)
// }
// }
// return err
// }
// }
// c.curType = 0
// return nil
// }
// func (c *WrapperCache) SetLayer(layer int) {
// for _, cache := range c.caches {
// cache.SetLayer(layer)
// }
// }
// func (c *WrapperCache) SetLayerType(layerType int) {
// c.curType = layerType
// }
// func (c *WrapperCache) UnderlyingCache() Cache {
// return c.caches[c.curType]
// }
// func (c *WrapperCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
// return c.caches[c.curType].Get(ctx)
// }
// func (c *WrapperCache) Put(ctx ml.Context, key, value ml.Tensor) {
// c.caches[c.curType].Put(ctx, key, value)
// }
// func (c *WrapperCache) CopyPrefix(srcSeq, dstSeq int, len int32) {
// for _, cache := range c.caches {
// cache.CopyPrefix(srcSeq, dstSeq, len)
// }
// }
// func (c *WrapperCache) CanResume(seq int, pos int32) bool {
// for _, cache := range c.caches {
// if !cache.CanResume(seq, pos) {
// return false
// }
// }
// return true
// }
// func (c *WrapperCache) Remove(seq int, beginIndex, endIndex int32) error {
// // If the one of these fails, the caller is supposed to retry with endIndex set to math.MaxInt32, which should not fail
// for _, cache := range c.caches {
// err := cache.Remove(seq, beginIndex, endIndex)
// if err != nil {
// return err
// }
// }
// return nil
// }

433
x/ml/backend.go Normal file
View File

@@ -0,0 +1,433 @@
package ml
import (
"fmt"
"log/slog"
"os"
"github.com/ollama/ollama/fs"
)
type Backend interface {
// Close frees all memory associated with this backend
// Close()
// Load(ctx context.Context, progress func(float32)) error
// BackendMemory returns the memory allocations that were made for this model
// BackendMemory() BackendMemory
Config() fs.Config
Get(name string) Tensor
NewContext() Context
// NewContextSize(size int) Context
// Enumerate the devices available for inference via this backend
// BackendDevices() []DeviceInfo
}
// BackendCacheConfig should be implemented by backends that need special output
// from the cache to meet specific requirements. It is frequently implemented in
// conjunction with ScaledDotProductAttention.
type BackendCacheConfig interface {
CacheConfig() CacheConfig
}
// CacheConfig controls optimizations (mostly backend-specific) that may transform
// the output the cache to work better with specific kernels.
type CacheConfig struct {
// CachePadding specifies the multiple for the number of tokens of cache history
// that will be returned from cache Get for k, v and mask. The capacity of the
// cache itself will also be increased to a multiple of this size if needed.
CachePadding int
// PermutedV performs Permute(ctx, 1, 2, 0, 3) on v tensors stored via Put
// and return the permuted version via Get. This uses the cache copy operation
// to avoid a Contiguous call on the permuted tensor.
PermutedV bool
// MaskDType specifies the data type for generating the mask. If unset it will
// default to DTypeF32.
MaskDType DType
// MaskBatchPadding specifies the multiple for the batch size dimension in the mask.
// Any position that does not correspond to an actual token will be filled with -Inf.
MaskBatchPadding int
}
// BackendParams controls how the backend loads and executes models
type BackendParams struct {
// AllocMemory causes the backend to allocate memory for the model. If
// false, this is only being used for discovering the required amount of
// memory and cannot load the model for running.
AllocMemory bool
// NumThreads sets the number of threads to use if running on the CPU
NumThreads int
// GPULayers is the set of layers to offload to GPUs
GPULayers GPULayersList
// FlashAttention indicates that we should use a fused flash attention kernel
FlashAttention bool
}
var backends = make(map[string]func(string, BackendParams) (Backend, error))
func RegisterBackend(name string, f func(string, BackendParams) (Backend, error)) {
if _, ok := backends[name]; ok {
panic("backend: backend already registered")
}
backends[name] = f
}
func NewBackend(modelPath string, params BackendParams) (Backend, error) {
be := os.Getenv("OLLAMA_BACKEND")
if be == "" {
be = "mlx"
slog.Info("Defaulting to " + be + ". Set OLLAMA_BACKEND to override")
}
slog.Info("Loading new engine", "backend", be)
if backend, ok := backends[be]; ok {
return backend(modelPath, params)
}
return nil, fmt.Errorf("unsupported backend")
}
type Context interface {
Empty(dtype DType, shape ...int) Tensor
Zeros(dtype DType, shape ...int) Tensor
// FromBytes(dtype DType, s []byte, shape ...int) Tensor
FromFloats(s []float32, shape ...int) Tensor
FromInts(s []int32, shape ...int) Tensor
RandomNormal(shape []int, dtype DType, loc, scale float32, key Tensor) Tensor
// Arange creates a 1D tensor with values within an interval (start, stop] increased by step.
Arange(start, stop, step float32, dtype DType) Tensor
Forward(...Tensor) Context
// SetBatchSize provides a hint on the batch size to optimize processing
// Uses heuristics if not set
// SetBatchSize(int)
Compute(...Tensor)
// ComputeWithNotify(func(), ...Tensor) // notify callback once compute has begun
// Reserve is analogous to Compute but rather than executing a
// graph, simply preallocates memory. Typically called with a
// worst case graph to ensure all resources are available for
// for future inference.
// Reserve()
// MaxGraphNodes() int
Close()
// Input returns a context appropriate for creating tensors that are
// inputs to the model (which includes things like output locations)
Input() Context
// Layer returns a context appropriate for creating intermediate tensors
Layer(int) Context
// Load a tensor from "filename" safetensors file, and compare with the input tensor
// Returns error if the shape is inconsistent, or similarity measures are below 99%
CompareWith(filename string, tensors map[string]Tensor, abortOnError bool) error
}
type RoPEOptions struct {
Base *float32
Freqs Tensor
}
func WithRoPEBase(base float32) func(*RoPEOptions) {
return func(opts *RoPEOptions) {
opts.Base = &base
}
}
func WithRoPEFreqs(freqs Tensor) func(*RoPEOptions) {
return func(opts *RoPEOptions) {
opts.Freqs = freqs
}
}
type Tensor interface {
ToString() string
RoPE(ctx Context, dims int, traditional bool, scale float32, offset int, options ...func(*RoPEOptions)) Tensor
ScaledDotProductAttention(ctx Context, keys, values Tensor, scale float64, maskMode string, mask Tensor, sinks Tensor) Tensor
TakeAxes(ctx Context, indicies Tensor, axes int) Tensor
// TakeAxes(ctx Context, axes int, indicies ...int) Tensor
Dim(n int) int
Stride(n int) int
Shape() []int
DType() DType
// Cast(ctx Context, dtype DType) Tensor
// Bytes() []byte
Floats() []float32
Ints() []int32
// FromBytes([]byte)
// FromFloats([]float32)
// FromInts([]int32)
Add(ctx Context, t2 Tensor) Tensor
Sub(ctx Context, t2 Tensor) Tensor
// Mul(ctx Context, t2 Tensor) Tensor
// Div(ctx Context, t2 Tensor) Tensor
Max(ctx Context, axes []int, keepDims bool) Tensor
Min(ctx Context, axes []int, keepDims bool) Tensor
Matmul(ctx Context, a2 Tensor) Tensor
// Mulmat(ctx Context, t2 Tensor) Tensor
// MulmatFullPrec(ctx Context, t2 Tensor) Tensor
// MulmatID(ctx Context, t2, ids Tensor) Tensor
// AddID(ctx Context, t2, ids Tensor) Tensor
Softmax(ctx Context) Tensor
L2Norm(ctx Context, eps float32) Tensor
LayerNorm(ctx Context, weight, bias Tensor, eps float32) Tensor
RMSNorm(ctx Context, weight Tensor, eps float32) Tensor
Scale(ctx Context, s float64) Tensor
// SumRows(ctx Context) Tensor
AvgPool2D(ctx Context, k, s int, p float32) Tensor
Conv2D(ctx Context, weight Tensor, stride0, stride1, padding0, padding1, dilation0, dilation1, groups int) Tensor
Conv3D(ctx Context, weight Tensor, stride0, stride1, stride2, padding0, padding1, padding2, dilation0, dilation1, dilation2, groups int) Tensor
// IM2Col(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
// Sin(ctx Context) Tensor
// Cos(ctx Context) Tensor
// Tanh(ctx Context) Tensor
GELU(ctx Context, up ...Tensor) Tensor
// QuickGELU(ctx Context, up ...Tensor) Tensor
// SILU(ctx Context, up ...Tensor) Tensor
// RELU(ctx Context, up ...Tensor) Tensor
// Sigmoid(ctx Context) Tensor
// AlphaLimitSILU is a variant of SILU that clamps the input to the range [-limit, limit]
// SILUAlphaLimit(ctx Context, up Tensor, alpha, limit float32) Tensor
Reshape(ctx Context, shape ...int) Tensor
AsStrided(ctx Context, shape, strides []int, offset int) Tensor
Transpose(ctx Context, shape ...int) Tensor
Contiguous(ctx Context, allowColMajor bool) Tensor
// Pad(ctx Context, shape ...int) Tensor
// Stack(ctx Context, dim int, s ...Tensor) Tensor
// Repeat repeats the tensor n times along dimension dim
// Repeat(ctx Context, dim, n int) Tensor
// Concat(ctx Context, t2 Tensor, dim int) Tensor
// Rows(ctx Context, t2 Tensor) Tensor
// TODO these probably aren't actually needed - false starts on trying to wire up cache
// SliceUpdate(ctx Context, update Tensor, start, stop, strides []int) Tensor
// SliceUpdateDynamic(ctx Context, update, start Tensor, axes []int) Tensor
// PutAlongAxis(ctx Context, indicies, values Tensor, axis int) Tensor
Scatter(ctx Context, indicies []Tensor, updates Tensor, axes []int) Tensor
Copy(ctx Context, t2 Tensor) Tensor
// Duplicate(ctx Context) Tensor
// Slice(ctx Context, dim, low, high, step int) Tensor
// Chunk(ctx Context, dim int, size int) []Tensor
// ChunkSections(ctx Context, dim int, sections ...int) []Tensor
// TopK(ctx Context, k int) Tensor
// Argsort(ctx Context) Tensor
// Mean(ctx Context) Tensor
// Variance(ctx Context) Tensor
// Stddev(ctx Context) Tensor
// Sqr(ctx Context) Tensor
// Sqrt(ctx Context) Tensor
// Interpolate(ctx Context, dims [4]int, samplingMode SamplingMode) Tensor
}
// ScaledDotProductAttention implements a fused attention
// operation equivalent to following code on a tensor named
// query:
//
// query = query.Permute(ctx, 0, 2, 1, 3)
// key = key.Permute(ctx, 0, 2, 1, 3)
// value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
//
// kq := key.MulmatFullPrec(ctx, query)
//
// kq = kq.Scale(ctx, scale)
//
// if mask != nil {
// kq = kq.Add(ctx, mask)
// }
//
// kq = kq.Softmax(ctx)
//
// kqv := value.Mulmat(ctx, kq)
// return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
// type ScaledDotProductAttention interface {
// ScaledDotProductAttention(ctx Context, key, value, mask, sinks Tensor, vmla Tensor, scale float64) Tensor
// }
// type number interface {
// ~int | ~int8 | ~int16 | ~int32 | ~int64 |
// ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 |
// ~float32 | ~float64 |
// ~complex64 | ~complex128
// }
// func mul[T number](s ...T) T {
// p := T(1)
// for _, v := range s {
// p *= v
// }
// return p
// }
// type DumpOptions func(*dumpOptions)
// // DumpWithPrecision sets the number of decimal places to print. Applies to float32 and float64.
// func DumpWithPrecision(n int) DumpOptions {
// return func(opts *dumpOptions) {
// opts.Precision = n
// }
// }
// // DumpWithThreshold sets the threshold for printing the entire tensor. If the number of elements
// // is less than or equal to this value, the entire tensor will be printed. Otherwise, only the
// // beginning and end of each dimension will be printed.
// func DumpWithThreshold(n int) DumpOptions {
// return func(opts *dumpOptions) {
// opts.Threshold = n
// }
// }
// // DumpWithEdgeItems sets the number of elements to print at the beginning and end of each dimension.
// func DumpWithEdgeItems(n int) DumpOptions {
// return func(opts *dumpOptions) {
// opts.EdgeItems = n
// }
// }
// type dumpOptions struct {
// Precision, Threshold, EdgeItems int
// }
// func Dump(ctx Context, t Tensor, optsFuncs ...DumpOptions) string {
// opts := dumpOptions{Precision: 4, Threshold: 1000, EdgeItems: 3}
// for _, optsFunc := range optsFuncs {
// optsFunc(&opts)
// }
// if mul(t.Shape()...) <= opts.Threshold {
// opts.EdgeItems = math.MaxInt
// }
// switch t.DType() {
// case DTypeFloat32:
// return dump[[]float32](ctx, t, opts.EdgeItems, func(f float32) string {
// return strconv.FormatFloat(float64(f), 'f', opts.Precision, 32)
// })
// case DTypeFloat16: // TODO other types...
// f32 := ctx.Input().Empty(DTypeFloat32, t.Shape()...)
// f32 = t.Copy(ctx, f32)
// return dump[[]float32](ctx, f32, opts.EdgeItems, func(f float32) string {
// return strconv.FormatFloat(float64(f), 'f', opts.Precision, 32)
// })
// case DTypeInt32:
// return dump[[]int32](ctx, t, opts.EdgeItems, func(i int32) string {
// return strconv.FormatInt(int64(i), 10)
// })
// default:
// return "<unsupported>"
// }
// }
// func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string) string {
// if t.Bytes() == nil {
// ctx.Compute(t)
// }
// s := make(S, mul(t.Shape()...))
// if err := binary.Read(bytes.NewBuffer(t.Bytes()), binary.LittleEndian, &s); err != nil {
// panic(err)
// }
// shape := t.Shape()
// slices.Reverse(shape)
// var sb strings.Builder
// var f func([]int, int)
// f = func(dims []int, stride int) {
// prefix := strings.Repeat(" ", len(shape)-len(dims)+1)
// sb.WriteString("[")
// defer func() { sb.WriteString("]") }()
// for i := 0; i < dims[0]; i++ {
// if i >= items && i < dims[0]-items {
// sb.WriteString("..., ")
// // skip to next printable element
// skip := dims[0] - 2*items
// if len(dims) > 1 {
// stride += mul(append(dims[1:], skip)...)
// fmt.Fprint(&sb, strings.Repeat("\n", len(dims)-1), prefix)
// }
// i += skip - 1
// } else if len(dims) > 1 {
// f(dims[1:], stride)
// stride += mul(dims[1:]...)
// if i < dims[0]-1 {
// fmt.Fprint(&sb, ",", strings.Repeat("\n", len(dims)-1), prefix)
// }
// } else {
// text := fn(s[stride+i])
// if len(text) > 0 && text[0] != '-' {
// sb.WriteString(" ")
// }
// sb.WriteString(text)
// if i < dims[0]-1 {
// sb.WriteString(", ")
// }
// }
// }
// }
// f(shape, 0)
// return sb.String()
// }
type DType int
const (
DTypeBool DType = iota
DTypeUint8
DTypeUint16
DTypeUint32
DTypeUint64
DTypeInt8
DTypeInt16
DTypeInt32
DTypeInt64
DTypeFloat16
DTypeFloat32
DTypeFloat64
DTypeBfloat16
DTypeComplex64
)
type SamplingMode int
const (
SamplingModeNearest SamplingMode = iota
SamplingModeBilinear
)

3
x/ml/backend/backend.go Normal file
View File

@@ -0,0 +1,3 @@
package backend
// _ "github.com/ollama/ollama/x/ml/backend/mlx"

View File

@@ -0,0 +1,61 @@
include(FetchContent)
# Read MLX version from top-level file (shared with Dockerfile)
file(READ "${CMAKE_SOURCE_DIR}/MLX_VERSION" MLX_C_GIT_TAG)
string(STRIP "${MLX_C_GIT_TAG}" MLX_C_GIT_TAG)
set(MLX_C_BUILD_EXAMPLES OFF)
set(MLX_BUILD_GGUF OFF)
set(MLX_BUILD_SAFETENSORS ON)
function(set_target_output_directory _target)
if(TARGET ${_target})
set_target_properties(${_target} PROPERTIES
RUNTIME_OUTPUT_DIRECTORY ${OLLAMA_BUILD_DIR}
LIBRARY_OUTPUT_DIRECTORY ${OLLAMA_BUILD_DIR}
ARCHIVE_OUTPUT_DIRECTORY ${OLLAMA_BUILD_DIR}
)
endif()
endfunction()
# Check for Metal support (macOS only)
if(CMAKE_SYSTEM_NAME MATCHES "Darwin")
execute_process(
COMMAND
zsh "-c"
"echo \"__METAL_VERSION__\" | xcrun -sdk macosx metal ${XCRUN_FLAGS} -E -x metal -P - | tail -1 | tr -d '\n'"
OUTPUT_VARIABLE MLX_METAL_VERSION COMMAND_ERROR_IS_FATAL ANY)
if(NOT MLX_METAL_VERSION)
message(STATUS "`xcrun metal` error. Setting MLX_BUILD_METAL=OFF")
set(MLX_BUILD_METAL OFF)
endif()
else()
# On Linux, disable Metal backend
message(STATUS "Non-macOS platform detected. Setting MLX_BUILD_METAL=OFF")
set(MLX_BUILD_METAL OFF)
endif()
# Map CMAKE_CUDA_ARCHITECTURES to MLX_CUDA_ARCHITECTURES if not explicitly set
if(NOT MLX_CUDA_ARCHITECTURES AND CMAKE_CUDA_ARCHITECTURES)
set(MLX_CUDA_ARCHITECTURES ${CMAKE_CUDA_ARCHITECTURES})
message(STATUS "Using CMAKE_CUDA_ARCHITECTURES for MLX: ${MLX_CUDA_ARCHITECTURES}")
endif()
# Enable CUDA backend if CUDA architectures are specified and CUDA compiler is available
if(MLX_CUDA_ARCHITECTURES AND CMAKE_CUDA_COMPILER)
set(MLX_BUILD_CUDA ON CACHE BOOL "Build CUDA backend for MLX" FORCE)
message(STATUS "Enabling MLX CUDA backend with architectures: ${MLX_CUDA_ARCHITECTURES}")
elseif(MLX_CUDA_ARCHITECTURES)
message(WARNING "MLX_CUDA_ARCHITECTURES specified but CUDA compiler not found, CUDA backend will be disabled")
endif()
FetchContent_Declare(
mlx-c
GIT_REPOSITORY "https://github.com/ml-explore/mlx-c.git"
GIT_TAG ${MLX_C_GIT_TAG})
FetchContent_MakeAvailable(mlx-c)
set_target_output_directory(mlx)
set_target_output_directory(mlxc)

1278
x/ml/backend/mlx/mlx.go Normal file
View File

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,92 @@
// mlx_dynamic.c - Dynamic loading wrapper for MLX-C library
// This file provides runtime dynamic loading of libmlxc instead of link-time binding
#include "mlx_dynamic.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef _WIN32
#include <windows.h>
typedef HMODULE lib_handle_t;
#define LOAD_LIB(path) LoadLibraryA(path)
#define GET_SYMBOL(handle, name) GetProcAddress(handle, name)
#define CLOSE_LIB(handle) FreeLibrary(handle)
#define LIB_ERROR() "LoadLibrary failed"
static const char* LIB_NAMES[] = {"libmlxc.dll", NULL};
#else
#include <dlfcn.h>
typedef void* lib_handle_t;
#define LOAD_LIB(path) dlopen(path, RTLD_LAZY | RTLD_GLOBAL)
#define GET_SYMBOL(handle, name) dlsym(handle, name)
#define CLOSE_LIB(handle) dlclose(handle)
#define LIB_ERROR() dlerror()
#ifdef __APPLE__
static const char* LIB_NAMES[] = {
"libmlxc.dylib",
"@loader_path/../build/lib/ollama/libmlxc.dylib",
"@executable_path/../build/lib/ollama/libmlxc.dylib",
"build/lib/ollama/libmlxc.dylib",
"../build/lib/ollama/libmlxc.dylib",
NULL
};
#else
static const char* LIB_NAMES[] = {
"libmlxc.so",
"$ORIGIN/../build/lib/ollama/libmlxc.so",
"build/lib/ollama/libmlxc.so",
"../build/lib/ollama/libmlxc.so",
NULL
};
#endif
#endif
static lib_handle_t mlx_handle = NULL;
static int mlx_initialized = 0;
static char mlx_error_buffer[512] = {0};
// Initialize MLX dynamic library
// Returns 0 on success, -1 on failure
// On failure, call mlx_dynamic_error() to get error message
int mlx_dynamic_init(void) {
if (mlx_initialized) {
return 0; // Already initialized
}
// Try each possible library path
for (int i = 0; LIB_NAMES[i] != NULL; i++) {
mlx_handle = LOAD_LIB(LIB_NAMES[i]);
if (mlx_handle != NULL) {
mlx_initialized = 1;
snprintf(mlx_error_buffer, sizeof(mlx_error_buffer),
"MLX: Successfully loaded %s", LIB_NAMES[i]);
return 0;
}
}
// Failed to load library
const char* err = LIB_ERROR();
snprintf(mlx_error_buffer, sizeof(mlx_error_buffer),
"MLX: Failed to load libmlxc library. %s",
err ? err : "Unknown error");
return -1;
}
// Get the last error message
const char* mlx_dynamic_error(void) {
return mlx_error_buffer;
}
// Check if MLX is initialized
int mlx_dynamic_is_initialized(void) {
return mlx_initialized;
}
// Cleanup (optional, called at program exit)
void mlx_dynamic_cleanup(void) {
if (mlx_handle != NULL) {
CLOSE_LIB(mlx_handle);
mlx_handle = NULL;
mlx_initialized = 0;
}
}

View File

@@ -0,0 +1,26 @@
// mlx_dynamic.h - Dynamic loading interface for MLX-C library
#ifndef MLX_DYNAMIC_H
#define MLX_DYNAMIC_H
#ifdef __cplusplus
extern "C" {
#endif
// Initialize the MLX dynamic library
// Returns 0 on success, -1 on failure
int mlx_dynamic_init(void);
// Get the last error message from dynamic loading
const char* mlx_dynamic_error(void);
// Check if MLX is initialized
int mlx_dynamic_is_initialized(void);
// Cleanup resources (optional, for clean shutdown)
void mlx_dynamic_cleanup(void);
#ifdef __cplusplus
}
#endif
#endif // MLX_DYNAMIC_H

Some files were not shown because too many files have changed in this diff Show More