Compare commits

...

7 Commits

Author SHA1 Message Date
Parth Sareen
771d9280ec cmd: ollama config fix droid model name configuration (#13856) 2026-01-23 11:44:22 -08:00
Jeffrey Morgan
862bc0a3bf x/imagegen: respect stream=false in /api/generate (#13853)
When stream=false is set for image generation requests, return a single
JSON response instead of streaming multiple ndjson progress updates.
2026-01-22 22:16:39 -08:00
Jeffrey Morgan
c01608b6a1 x/imagegen: add image edit capabilities (#13846) 2026-01-22 20:35:08 -08:00
Parth Sareen
199c41e16e cmd: ollama config command to help configure integrations to use Ollama (#13712) 2026-01-22 20:17:11 -08:00
Jeffrey Morgan
3b3bf6c217 x/imagegen: replace memory estimation with actual weight size (#13848)
Remove static VRAM estimation (EstimateVRAM, CheckMemoryRequirements)
which wasn't helpful. Instead, report the actual tensor weight size
from the manifest for ollama ps.

- Remove memory estimation check from runner startup
- Remove EstimateVRAM, CheckMemoryRequirements, modelVRAMEstimates
- Add TotalTensorSize() to get actual weight size from manifest
- Use weight size for Server.vramSize instead of estimates

Note: This is better than showing 0 or inaccurate estimates, but the
weight size is a drastic underestimation of actual memory usage since
it doesn't account for activations, intermediate tensors, or MLX
overhead. Future work should query real-time memory from MLX
(e.g., MetalGetActiveMemory) for accurate reporting.
2026-01-22 18:32:41 -08:00
Parth Sareen
f52c21f457 fix: handle Enter key pressed during model loading (#13839) 2026-01-22 18:32:02 -08:00
Jeffrey Morgan
b5d0f72f16 x/imagegen: remove qwen_image and qwen_image_edit models (#13827)
Remove the Qwen image generation and image editing model packages
to clean up the codebase. These models will be reintroduced later.

- Delete x/imagegen/models/qwen_image/ (10 files)
- Delete x/imagegen/models/qwen_image_edit/ (5 files)
- Remove related CLI flags and imports from cmd/engine/main.go
- Update comments in cache/step.go to remove Qwen-specific references
2026-01-21 13:37:08 -08:00
53 changed files with 6202 additions and 7641 deletions

View File

@@ -35,6 +35,7 @@ import (
"golang.org/x/term"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/cmd/config"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/parser"
@@ -2026,6 +2027,7 @@ func NewCLI() *cobra.Command {
copyCmd,
deleteCmd,
runnerCmd,
config.ConfigCmd(checkServerHeartbeat),
)
return rootCmd

36
cmd/config/claude.go Normal file
View File

@@ -0,0 +1,36 @@
package config
import (
"fmt"
"os"
"os/exec"
)
// Claude implements Runner for Claude Code integration
type Claude struct{}
func (c *Claude) String() string { return "Claude Code" }
func (c *Claude) args(model string) []string {
if model != "" {
return []string{"--model", model}
}
return nil
}
func (c *Claude) Run(model string) error {
if _, err := exec.LookPath("claude"); err != nil {
return fmt.Errorf("claude is not installed, install from https://code.claude.com/docs/en/quickstart")
}
cmd := exec.Command("claude", c.args(model)...)
cmd.Stdin = os.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
cmd.Env = append(os.Environ(),
"ANTHROPIC_BASE_URL=http://localhost:11434",
"ANTHROPIC_API_KEY=",
"ANTHROPIC_AUTH_TOKEN=ollama",
)
return cmd.Run()
}

42
cmd/config/claude_test.go Normal file
View File

@@ -0,0 +1,42 @@
package config
import (
"slices"
"testing"
)
func TestClaudeIntegration(t *testing.T) {
c := &Claude{}
t.Run("String", func(t *testing.T) {
if got := c.String(); got != "Claude Code" {
t.Errorf("String() = %q, want %q", got, "Claude Code")
}
})
t.Run("implements Runner", func(t *testing.T) {
var _ Runner = c
})
}
func TestClaudeArgs(t *testing.T) {
c := &Claude{}
tests := []struct {
name string
model string
want []string
}{
{"with model", "llama3.2", []string{"--model", "llama3.2"}},
{"empty model", "", nil},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := c.args(tt.model)
if !slices.Equal(got, tt.want) {
t.Errorf("args(%q) = %v, want %v", tt.model, got, tt.want)
}
})
}
}

61
cmd/config/codex.go Normal file
View File

@@ -0,0 +1,61 @@
package config
import (
"fmt"
"os"
"os/exec"
"strings"
"golang.org/x/mod/semver"
)
// Codex implements Runner for Codex integration
type Codex struct{}
func (c *Codex) String() string { return "Codex" }
func (c *Codex) args(model string) []string {
args := []string{"--oss"}
if model != "" {
args = append(args, "-m", model)
}
return args
}
func (c *Codex) Run(model string) error {
if err := checkCodexVersion(); err != nil {
return err
}
cmd := exec.Command("codex", c.args(model)...)
cmd.Stdin = os.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
return cmd.Run()
}
func checkCodexVersion() error {
if _, err := exec.LookPath("codex"); err != nil {
return fmt.Errorf("codex is not installed, install with: npm install -g @openai/codex")
}
out, err := exec.Command("codex", "--version").Output()
if err != nil {
return fmt.Errorf("failed to get codex version: %w", err)
}
// Parse output like "codex-cli 0.87.0"
fields := strings.Fields(strings.TrimSpace(string(out)))
if len(fields) < 2 {
return fmt.Errorf("unexpected codex version output: %s", string(out))
}
version := "v" + fields[len(fields)-1]
minVersion := "v0.81.0"
if semver.Compare(version, minVersion) < 0 {
return fmt.Errorf("codex version %s is too old, minimum required is %s, update with: npm update -g @openai/codex", fields[len(fields)-1], "0.81.0")
}
return nil
}

28
cmd/config/codex_test.go Normal file
View File

@@ -0,0 +1,28 @@
package config
import (
"slices"
"testing"
)
func TestCodexArgs(t *testing.T) {
c := &Codex{}
tests := []struct {
name string
model string
want []string
}{
{"with model", "llama3.2", []string{"--oss", "-m", "llama3.2"}},
{"empty model", "", []string{"--oss"}},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := c.args(tt.model)
if !slices.Equal(got, tt.want) {
t.Errorf("args(%q) = %v, want %v", tt.model, got, tt.want)
}
})
}
}

115
cmd/config/config.go Normal file
View File

@@ -0,0 +1,115 @@
// Package config provides integration configuration for external coding tools
// (Claude Code, Codex, Droid, OpenCode) to use Ollama models.
package config
import (
"encoding/json"
"errors"
"fmt"
"os"
"path/filepath"
"strings"
)
type integration struct {
Models []string `json:"models"`
}
type config struct {
Integrations map[string]*integration `json:"integrations"`
}
func configPath() (string, error) {
home, err := os.UserHomeDir()
if err != nil {
return "", err
}
return filepath.Join(home, ".ollama", "config", "config.json"), nil
}
func load() (*config, error) {
path, err := configPath()
if err != nil {
return nil, err
}
data, err := os.ReadFile(path)
if err != nil {
if os.IsNotExist(err) {
return &config{Integrations: make(map[string]*integration)}, nil
}
return nil, err
}
var cfg config
if err := json.Unmarshal(data, &cfg); err != nil {
return nil, fmt.Errorf("failed to parse config: %w, at: %s", err, path)
}
if cfg.Integrations == nil {
cfg.Integrations = make(map[string]*integration)
}
return &cfg, nil
}
func save(cfg *config) error {
path, err := configPath()
if err != nil {
return err
}
if err := os.MkdirAll(filepath.Dir(path), 0o755); err != nil {
return err
}
data, err := json.MarshalIndent(cfg, "", " ")
if err != nil {
return err
}
return writeWithBackup(path, data)
}
func saveIntegration(appName string, models []string) error {
if appName == "" {
return errors.New("app name cannot be empty")
}
cfg, err := load()
if err != nil {
return err
}
cfg.Integrations[strings.ToLower(appName)] = &integration{
Models: models,
}
return save(cfg)
}
func loadIntegration(appName string) (*integration, error) {
cfg, err := load()
if err != nil {
return nil, err
}
ic, ok := cfg.Integrations[strings.ToLower(appName)]
if !ok {
return nil, os.ErrNotExist
}
return ic, nil
}
func listIntegrations() ([]integration, error) {
cfg, err := load()
if err != nil {
return nil, err
}
result := make([]integration, 0, len(cfg.Integrations))
for _, ic := range cfg.Integrations {
result = append(result, *ic)
}
return result, nil
}

373
cmd/config/config_test.go Normal file
View File

@@ -0,0 +1,373 @@
package config
import (
"os"
"path/filepath"
"strings"
"testing"
)
// setTestHome sets both HOME (Unix) and USERPROFILE (Windows) for cross-platform tests
func setTestHome(t *testing.T, dir string) {
t.Setenv("HOME", dir)
t.Setenv("USERPROFILE", dir)
}
// editorPaths is a test helper that safely calls Paths if the runner implements Editor
func editorPaths(r Runner) []string {
if editor, ok := r.(Editor); ok {
return editor.Paths()
}
return nil
}
func TestIntegrationConfig(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Run("save and load round-trip", func(t *testing.T) {
models := []string{"llama3.2", "mistral", "qwen2.5"}
if err := saveIntegration("claude", models); err != nil {
t.Fatal(err)
}
config, err := loadIntegration("claude")
if err != nil {
t.Fatal(err)
}
if len(config.Models) != len(models) {
t.Errorf("expected %d models, got %d", len(models), len(config.Models))
}
for i, m := range models {
if config.Models[i] != m {
t.Errorf("model %d: expected %s, got %s", i, m, config.Models[i])
}
}
})
t.Run("defaultModel returns first model", func(t *testing.T) {
saveIntegration("codex", []string{"model-a", "model-b"})
config, _ := loadIntegration("codex")
defaultModel := ""
if len(config.Models) > 0 {
defaultModel = config.Models[0]
}
if defaultModel != "model-a" {
t.Errorf("expected model-a, got %s", defaultModel)
}
})
t.Run("defaultModel returns empty for no models", func(t *testing.T) {
config := &integration{Models: []string{}}
defaultModel := ""
if len(config.Models) > 0 {
defaultModel = config.Models[0]
}
if defaultModel != "" {
t.Errorf("expected empty string, got %s", defaultModel)
}
})
t.Run("app name is case-insensitive", func(t *testing.T) {
saveIntegration("Claude", []string{"model-x"})
config, err := loadIntegration("claude")
if err != nil {
t.Fatal(err)
}
defaultModel := ""
if len(config.Models) > 0 {
defaultModel = config.Models[0]
}
if defaultModel != "model-x" {
t.Errorf("expected model-x, got %s", defaultModel)
}
})
t.Run("multiple integrations in single file", func(t *testing.T) {
saveIntegration("app1", []string{"model-1"})
saveIntegration("app2", []string{"model-2"})
config1, _ := loadIntegration("app1")
config2, _ := loadIntegration("app2")
defaultModel1 := ""
if len(config1.Models) > 0 {
defaultModel1 = config1.Models[0]
}
defaultModel2 := ""
if len(config2.Models) > 0 {
defaultModel2 = config2.Models[0]
}
if defaultModel1 != "model-1" {
t.Errorf("expected model-1, got %s", defaultModel1)
}
if defaultModel2 != "model-2" {
t.Errorf("expected model-2, got %s", defaultModel2)
}
})
}
func TestListIntegrations(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Run("returns empty when no integrations", func(t *testing.T) {
configs, err := listIntegrations()
if err != nil {
t.Fatal(err)
}
if len(configs) != 0 {
t.Errorf("expected 0 integrations, got %d", len(configs))
}
})
t.Run("returns all saved integrations", func(t *testing.T) {
saveIntegration("claude", []string{"model-1"})
saveIntegration("droid", []string{"model-2"})
configs, err := listIntegrations()
if err != nil {
t.Fatal(err)
}
if len(configs) != 2 {
t.Errorf("expected 2 integrations, got %d", len(configs))
}
})
}
func TestEditorPaths(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Run("returns empty for claude (no Editor)", func(t *testing.T) {
r := integrations["claude"]
paths := editorPaths(r)
if len(paths) != 0 {
t.Errorf("expected no paths for claude, got %v", paths)
}
})
t.Run("returns empty for codex (no Editor)", func(t *testing.T) {
r := integrations["codex"]
paths := editorPaths(r)
if len(paths) != 0 {
t.Errorf("expected no paths for codex, got %v", paths)
}
})
t.Run("returns empty for droid when no config exists", func(t *testing.T) {
r := integrations["droid"]
paths := editorPaths(r)
if len(paths) != 0 {
t.Errorf("expected no paths, got %v", paths)
}
})
t.Run("returns path for droid when config exists", func(t *testing.T) {
settingsDir, _ := os.UserHomeDir()
settingsDir = filepath.Join(settingsDir, ".factory")
os.MkdirAll(settingsDir, 0o755)
os.WriteFile(filepath.Join(settingsDir, "settings.json"), []byte(`{}`), 0o644)
r := integrations["droid"]
paths := editorPaths(r)
if len(paths) != 1 {
t.Errorf("expected 1 path, got %d", len(paths))
}
})
t.Run("returns paths for opencode when configs exist", func(t *testing.T) {
home, _ := os.UserHomeDir()
configDir := filepath.Join(home, ".config", "opencode")
stateDir := filepath.Join(home, ".local", "state", "opencode")
os.MkdirAll(configDir, 0o755)
os.MkdirAll(stateDir, 0o755)
os.WriteFile(filepath.Join(configDir, "opencode.json"), []byte(`{}`), 0o644)
os.WriteFile(filepath.Join(stateDir, "model.json"), []byte(`{}`), 0o644)
r := integrations["opencode"]
paths := editorPaths(r)
if len(paths) != 2 {
t.Errorf("expected 2 paths, got %d: %v", len(paths), paths)
}
})
}
func TestLoadIntegration_CorruptedJSON(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Create corrupted config.json file
dir := filepath.Join(tmpDir, ".ollama", "config")
os.MkdirAll(dir, 0o755)
os.WriteFile(filepath.Join(dir, "config.json"), []byte(`{corrupted json`), 0o644)
// Corrupted file is treated as empty, so loadIntegration returns not found
_, err := loadIntegration("test")
if err == nil {
t.Error("expected error for nonexistent integration in corrupted file")
}
}
func TestSaveIntegration_NilModels(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
if err := saveIntegration("test", nil); err != nil {
t.Fatalf("saveIntegration with nil models failed: %v", err)
}
config, err := loadIntegration("test")
if err != nil {
t.Fatalf("loadIntegration failed: %v", err)
}
if config.Models == nil {
// nil is acceptable
} else if len(config.Models) != 0 {
t.Errorf("expected empty or nil models, got %v", config.Models)
}
}
func TestSaveIntegration_EmptyAppName(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
err := saveIntegration("", []string{"model"})
if err == nil {
t.Error("expected error for empty app name, got nil")
}
if err != nil && !strings.Contains(err.Error(), "app name cannot be empty") {
t.Errorf("expected 'app name cannot be empty' error, got: %v", err)
}
}
func TestLoadIntegration_NonexistentIntegration(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
_, err := loadIntegration("nonexistent")
if err == nil {
t.Error("expected error for nonexistent integration, got nil")
}
if !os.IsNotExist(err) {
t.Logf("error type is os.ErrNotExist as expected: %v", err)
}
}
func TestConfigPath(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
path, err := configPath()
if err != nil {
t.Fatal(err)
}
expected := filepath.Join(tmpDir, ".ollama", "config", "config.json")
if path != expected {
t.Errorf("expected %s, got %s", expected, path)
}
}
func TestLoad(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Run("returns empty config when file does not exist", func(t *testing.T) {
cfg, err := load()
if err != nil {
t.Fatal(err)
}
if cfg == nil {
t.Fatal("expected non-nil config")
}
if cfg.Integrations == nil {
t.Error("expected non-nil Integrations map")
}
if len(cfg.Integrations) != 0 {
t.Errorf("expected empty Integrations, got %d", len(cfg.Integrations))
}
})
t.Run("loads existing config", func(t *testing.T) {
path, _ := configPath()
os.MkdirAll(filepath.Dir(path), 0o755)
os.WriteFile(path, []byte(`{"integrations":{"test":{"models":["model-a"]}}}`), 0o644)
cfg, err := load()
if err != nil {
t.Fatal(err)
}
if cfg.Integrations["test"] == nil {
t.Fatal("expected test integration")
}
if len(cfg.Integrations["test"].Models) != 1 {
t.Errorf("expected 1 model, got %d", len(cfg.Integrations["test"].Models))
}
})
t.Run("returns error for corrupted JSON", func(t *testing.T) {
path, _ := configPath()
os.MkdirAll(filepath.Dir(path), 0o755)
os.WriteFile(path, []byte(`{corrupted`), 0o644)
_, err := load()
if err == nil {
t.Error("expected error for corrupted JSON")
}
})
}
func TestSave(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Run("creates config file", func(t *testing.T) {
cfg := &config{
Integrations: map[string]*integration{
"test": {Models: []string{"model-a", "model-b"}},
},
}
if err := save(cfg); err != nil {
t.Fatal(err)
}
path, _ := configPath()
if _, err := os.Stat(path); os.IsNotExist(err) {
t.Error("config file was not created")
}
})
t.Run("round-trip preserves data", func(t *testing.T) {
cfg := &config{
Integrations: map[string]*integration{
"claude": {Models: []string{"llama3.2", "mistral"}},
"codex": {Models: []string{"qwen2.5"}},
},
}
if err := save(cfg); err != nil {
t.Fatal(err)
}
loaded, err := load()
if err != nil {
t.Fatal(err)
}
if len(loaded.Integrations) != 2 {
t.Errorf("expected 2 integrations, got %d", len(loaded.Integrations))
}
if loaded.Integrations["claude"] == nil {
t.Error("missing claude integration")
}
if len(loaded.Integrations["claude"].Models) != 2 {
t.Errorf("expected 2 models for claude, got %d", len(loaded.Integrations["claude"].Models))
}
})
}

184
cmd/config/droid.go Normal file
View File

@@ -0,0 +1,184 @@
package config
import (
"encoding/json"
"fmt"
"os"
"os/exec"
"path/filepath"
"slices"
)
// Droid implements Runner and Editor for Droid integration
type Droid struct{}
// droidSettings represents the Droid settings.json file (only fields we use)
type droidSettings struct {
CustomModels []modelEntry `json:"customModels"`
SessionDefaultSettings sessionSettings `json:"sessionDefaultSettings"`
}
type sessionSettings struct {
Model string `json:"model"`
ReasoningEffort string `json:"reasoningEffort"`
}
type modelEntry struct {
Model string `json:"model"`
DisplayName string `json:"displayName"`
BaseURL string `json:"baseUrl"`
APIKey string `json:"apiKey"`
Provider string `json:"provider"`
MaxOutputTokens int `json:"maxOutputTokens"`
SupportsImages bool `json:"supportsImages"`
ID string `json:"id"`
Index int `json:"index"`
}
func (d *Droid) String() string { return "Droid" }
func (d *Droid) Run(model string) error {
if _, err := exec.LookPath("droid"); err != nil {
return fmt.Errorf("droid is not installed, install from https://docs.factory.ai/cli/getting-started/quickstart")
}
// Call Edit() to ensure config is up-to-date before launch
models := []string{model}
if config, err := loadIntegration("droid"); err == nil && len(config.Models) > 0 {
models = config.Models
}
if err := d.Edit(models); err != nil {
return fmt.Errorf("setup failed: %w", err)
}
cmd := exec.Command("droid")
cmd.Stdin = os.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
return cmd.Run()
}
func (d *Droid) Paths() []string {
home, err := os.UserHomeDir()
if err != nil {
return nil
}
p := filepath.Join(home, ".factory", "settings.json")
if _, err := os.Stat(p); err == nil {
return []string{p}
}
return nil
}
func (d *Droid) Edit(models []string) error {
if len(models) == 0 {
return nil
}
home, err := os.UserHomeDir()
if err != nil {
return err
}
settingsPath := filepath.Join(home, ".factory", "settings.json")
if err := os.MkdirAll(filepath.Dir(settingsPath), 0o755); err != nil {
return err
}
// Read file once, unmarshal twice:
// map preserves unknown fields for writing back (including extra fields in model entries)
settingsMap := make(map[string]any)
var settings droidSettings
if data, err := os.ReadFile(settingsPath); err == nil {
if err := json.Unmarshal(data, &settingsMap); err != nil {
return fmt.Errorf("failed to parse settings file: %w, at: %s", err, settingsPath)
}
json.Unmarshal(data, &settings) // ignore error, zero values are fine
}
// Keep only non-Ollama models from the raw map (preserves extra fields)
// Rebuild Ollama models
var nonOllamaModels []any
if rawModels, ok := settingsMap["customModels"].([]any); ok {
for _, raw := range rawModels {
if m, ok := raw.(map[string]any); ok {
if m["apiKey"] != "ollama" {
nonOllamaModels = append(nonOllamaModels, raw)
}
}
}
}
// Build new Ollama model entries with sequential indices (0, 1, 2, ...)
var newModels []any
var defaultModelID string
for i, model := range models {
modelID := fmt.Sprintf("custom:%s-%d", model, i)
newModels = append(newModels, modelEntry{
Model: model,
DisplayName: model,
BaseURL: "http://localhost:11434/v1",
APIKey: "ollama",
Provider: "generic-chat-completion-api",
MaxOutputTokens: 64000,
SupportsImages: false,
ID: modelID,
Index: i,
})
if i == 0 {
defaultModelID = modelID
}
}
settingsMap["customModels"] = append(newModels, nonOllamaModels...)
// Update session default settings (preserve unknown fields in the nested object)
sessionSettings, ok := settingsMap["sessionDefaultSettings"].(map[string]any)
if !ok {
sessionSettings = make(map[string]any)
}
sessionSettings["model"] = defaultModelID
if !isValidReasoningEffort(settings.SessionDefaultSettings.ReasoningEffort) {
sessionSettings["reasoningEffort"] = "none"
}
settingsMap["sessionDefaultSettings"] = sessionSettings
data, err := json.MarshalIndent(settingsMap, "", " ")
if err != nil {
return err
}
return writeWithBackup(settingsPath, data)
}
func (d *Droid) Models() []string {
home, err := os.UserHomeDir()
if err != nil {
return nil
}
data, err := os.ReadFile(filepath.Join(home, ".factory", "settings.json"))
if err != nil {
return nil
}
var settings droidSettings
if err := json.Unmarshal(data, &settings); err != nil {
return nil
}
var result []string
for _, m := range settings.CustomModels {
if m.APIKey == "ollama" {
result = append(result, m.Model)
}
}
return result
}
var validReasoningEfforts = []string{"high", "medium", "low", "none"}
func isValidReasoningEffort(effort string) bool {
return slices.Contains(validReasoningEfforts, effort)
}

1302
cmd/config/droid_test.go Normal file
View File

File diff suppressed because it is too large Load Diff

99
cmd/config/files.go Normal file
View File

@@ -0,0 +1,99 @@
package config
import (
"bytes"
"encoding/json"
"fmt"
"os"
"path/filepath"
"time"
)
func readJSONFile(path string) (map[string]any, error) {
data, err := os.ReadFile(path)
if err != nil {
return nil, err
}
var result map[string]any
if err := json.Unmarshal(data, &result); err != nil {
return nil, err
}
return result, nil
}
func copyFile(src, dst string) error {
info, err := os.Stat(src)
if err != nil {
return err
}
data, err := os.ReadFile(src)
if err != nil {
return err
}
return os.WriteFile(dst, data, info.Mode().Perm())
}
func backupDir() string {
return filepath.Join(os.TempDir(), "ollama-backups")
}
func backupToTmp(srcPath string) (string, error) {
dir := backupDir()
if err := os.MkdirAll(dir, 0o755); err != nil {
return "", err
}
backupPath := filepath.Join(dir, fmt.Sprintf("%s.%d", filepath.Base(srcPath), time.Now().Unix()))
if err := copyFile(srcPath, backupPath); err != nil {
return "", err
}
return backupPath, nil
}
// writeWithBackup writes data to path via temp file + rename, backing up any existing file first
func writeWithBackup(path string, data []byte) error {
var backupPath string
// backup must be created before any writes to the target file
if existingContent, err := os.ReadFile(path); err == nil {
if !bytes.Equal(existingContent, data) {
backupPath, err = backupToTmp(path)
if err != nil {
return fmt.Errorf("backup failed: %w", err)
}
}
} else if !os.IsNotExist(err) {
return fmt.Errorf("read existing file: %w", err)
}
dir := filepath.Dir(path)
tmp, err := os.CreateTemp(dir, ".tmp-*")
if err != nil {
return fmt.Errorf("create temp failed: %w", err)
}
tmpPath := tmp.Name()
if _, err := tmp.Write(data); err != nil {
_ = tmp.Close()
_ = os.Remove(tmpPath)
return fmt.Errorf("write failed: %w", err)
}
if err := tmp.Sync(); err != nil {
_ = tmp.Close()
_ = os.Remove(tmpPath)
return fmt.Errorf("sync failed: %w", err)
}
if err := tmp.Close(); err != nil {
_ = os.Remove(tmpPath)
return fmt.Errorf("close failed: %w", err)
}
if err := os.Rename(tmpPath, path); err != nil {
_ = os.Remove(tmpPath)
if backupPath != "" {
_ = copyFile(backupPath, path)
}
return fmt.Errorf("rename failed: %w", err)
}
return nil
}

502
cmd/config/files_test.go Normal file
View File

@@ -0,0 +1,502 @@
package config
import (
"encoding/json"
"fmt"
"os"
"path/filepath"
"runtime"
"testing"
)
func mustMarshal(t *testing.T, v any) []byte {
t.Helper()
data, err := json.MarshalIndent(v, "", " ")
if err != nil {
t.Fatal(err)
}
return data
}
func TestWriteWithBackup(t *testing.T) {
tmpDir := t.TempDir()
t.Run("creates file", func(t *testing.T) {
path := filepath.Join(tmpDir, "new.json")
data := mustMarshal(t, map[string]string{"key": "value"})
if err := writeWithBackup(path, data); err != nil {
t.Fatal(err)
}
content, err := os.ReadFile(path)
if err != nil {
t.Fatal(err)
}
var result map[string]string
if err := json.Unmarshal(content, &result); err != nil {
t.Fatal(err)
}
if result["key"] != "value" {
t.Errorf("expected value, got %s", result["key"])
}
})
t.Run("creates backup in /tmp/ollama-backups", func(t *testing.T) {
path := filepath.Join(tmpDir, "backup.json")
os.WriteFile(path, []byte(`{"original": true}`), 0o644)
data := mustMarshal(t, map[string]bool{"updated": true})
if err := writeWithBackup(path, data); err != nil {
t.Fatal(err)
}
entries, err := os.ReadDir(backupDir())
if err != nil {
t.Fatal("backup directory not created")
}
var foundBackup bool
for _, entry := range entries {
if filepath.Ext(entry.Name()) != ".json" {
name := entry.Name()
if len(name) > len("backup.json.") && name[:len("backup.json.")] == "backup.json." {
backupPath := filepath.Join(backupDir(), name)
backup, err := os.ReadFile(backupPath)
if err == nil {
var backupData map[string]bool
json.Unmarshal(backup, &backupData)
if backupData["original"] {
foundBackup = true
os.Remove(backupPath)
break
}
}
}
}
}
if !foundBackup {
t.Error("backup file not created in /tmp/ollama-backups")
}
current, _ := os.ReadFile(path)
var currentData map[string]bool
json.Unmarshal(current, &currentData)
if !currentData["updated"] {
t.Error("file doesn't contain updated data")
}
})
t.Run("no backup for new file", func(t *testing.T) {
path := filepath.Join(tmpDir, "nobak.json")
data := mustMarshal(t, map[string]string{"new": "file"})
if err := writeWithBackup(path, data); err != nil {
t.Fatal(err)
}
entries, _ := os.ReadDir(backupDir())
for _, entry := range entries {
if len(entry.Name()) > len("nobak.json.") && entry.Name()[:len("nobak.json.")] == "nobak.json." {
t.Error("backup should not exist for new file")
}
}
})
t.Run("no backup when content unchanged", func(t *testing.T) {
path := filepath.Join(tmpDir, "unchanged.json")
data := mustMarshal(t, map[string]string{"key": "value"})
if err := writeWithBackup(path, data); err != nil {
t.Fatal(err)
}
entries1, _ := os.ReadDir(backupDir())
countBefore := 0
for _, e := range entries1 {
if len(e.Name()) > len("unchanged.json.") && e.Name()[:len("unchanged.json.")] == "unchanged.json." {
countBefore++
}
}
if err := writeWithBackup(path, data); err != nil {
t.Fatal(err)
}
entries2, _ := os.ReadDir(backupDir())
countAfter := 0
for _, e := range entries2 {
if len(e.Name()) > len("unchanged.json.") && e.Name()[:len("unchanged.json.")] == "unchanged.json." {
countAfter++
}
}
if countAfter != countBefore {
t.Errorf("backup was created when content unchanged (before=%d, after=%d)", countBefore, countAfter)
}
})
t.Run("backup filename contains unix timestamp", func(t *testing.T) {
path := filepath.Join(tmpDir, "timestamped.json")
os.WriteFile(path, []byte(`{"v": 1}`), 0o644)
data := mustMarshal(t, map[string]int{"v": 2})
if err := writeWithBackup(path, data); err != nil {
t.Fatal(err)
}
entries, _ := os.ReadDir(backupDir())
var found bool
for _, entry := range entries {
name := entry.Name()
if len(name) > len("timestamped.json.") && name[:len("timestamped.json.")] == "timestamped.json." {
timestamp := name[len("timestamped.json."):]
for _, c := range timestamp {
if c < '0' || c > '9' {
t.Errorf("backup filename timestamp contains non-numeric character: %s", name)
}
}
found = true
os.Remove(filepath.Join(backupDir(), name))
break
}
}
if !found {
t.Error("backup file with timestamp not found")
}
})
}
// Edge case tests for files.go
// TestWriteWithBackup_FailsIfBackupFails documents critical behavior: if backup fails, we must not proceed.
// User could lose their config with no way to recover.
func TestWriteWithBackup_FailsIfBackupFails(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("permission tests unreliable on Windows")
}
tmpDir := t.TempDir()
path := filepath.Join(tmpDir, "config.json")
// Create original file
originalContent := []byte(`{"original": true}`)
os.WriteFile(path, originalContent, 0o644)
// Make backup directory read-only to force backup failure
backupDir := backupDir()
os.MkdirAll(backupDir, 0o755)
os.Chmod(backupDir, 0o444) // Read-only
defer os.Chmod(backupDir, 0o755)
newContent := []byte(`{"updated": true}`)
err := writeWithBackup(path, newContent)
// Should fail because backup couldn't be created
if err == nil {
t.Error("expected error when backup fails, got nil")
}
// Original file should be preserved
current, _ := os.ReadFile(path)
if string(current) != string(originalContent) {
t.Errorf("original file was modified despite backup failure: got %s", string(current))
}
}
// TestWriteWithBackup_PermissionDenied verifies clear error when target file has wrong permissions.
// Common issue when config owned by root or wrong perms.
func TestWriteWithBackup_PermissionDenied(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("permission tests unreliable on Windows")
}
tmpDir := t.TempDir()
// Create a read-only directory
readOnlyDir := filepath.Join(tmpDir, "readonly")
os.MkdirAll(readOnlyDir, 0o755)
os.Chmod(readOnlyDir, 0o444)
defer os.Chmod(readOnlyDir, 0o755)
path := filepath.Join(readOnlyDir, "config.json")
err := writeWithBackup(path, []byte(`{"test": true}`))
if err == nil {
t.Error("expected permission error, got nil")
}
}
// TestWriteWithBackup_DirectoryDoesNotExist verifies behavior when target directory doesn't exist.
// writeWithBackup doesn't create directories - caller is responsible.
func TestWriteWithBackup_DirectoryDoesNotExist(t *testing.T) {
tmpDir := t.TempDir()
path := filepath.Join(tmpDir, "nonexistent", "subdir", "config.json")
err := writeWithBackup(path, []byte(`{"test": true}`))
// Should fail because directory doesn't exist
if err == nil {
t.Error("expected error for nonexistent directory, got nil")
}
}
// TestWriteWithBackup_SymlinkTarget documents behavior when target is a symlink.
// Documents what happens if user symlinks their config file.
func TestWriteWithBackup_SymlinkTarget(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("symlink tests may require admin on Windows")
}
tmpDir := t.TempDir()
realFile := filepath.Join(tmpDir, "real.json")
symlink := filepath.Join(tmpDir, "link.json")
// Create real file and symlink
os.WriteFile(realFile, []byte(`{"v": 1}`), 0o644)
os.Symlink(realFile, symlink)
// Write through symlink
err := writeWithBackup(symlink, []byte(`{"v": 2}`))
if err != nil {
t.Fatalf("writeWithBackup through symlink failed: %v", err)
}
// The real file should be updated (symlink followed for temp file creation)
content, _ := os.ReadFile(symlink)
if string(content) != `{"v": 2}` {
t.Errorf("symlink target not updated correctly: got %s", string(content))
}
}
// TestBackupToTmp_SpecialCharsInFilename verifies backup works with special characters.
// User may have config files with unusual names.
func TestBackupToTmp_SpecialCharsInFilename(t *testing.T) {
tmpDir := t.TempDir()
// File with spaces and special chars
path := filepath.Join(tmpDir, "my config (backup).json")
os.WriteFile(path, []byte(`{"test": true}`), 0o644)
backupPath, err := backupToTmp(path)
if err != nil {
t.Fatalf("backupToTmp with special chars failed: %v", err)
}
// Verify backup exists and has correct content
content, err := os.ReadFile(backupPath)
if err != nil {
t.Fatalf("could not read backup: %v", err)
}
if string(content) != `{"test": true}` {
t.Errorf("backup content mismatch: got %s", string(content))
}
os.Remove(backupPath)
}
// TestCopyFile_PreservesPermissions verifies that copyFile preserves file permissions.
func TestCopyFile_PreservesPermissions(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("permission preservation tests unreliable on Windows")
}
tmpDir := t.TempDir()
src := filepath.Join(tmpDir, "src.json")
dst := filepath.Join(tmpDir, "dst.json")
// Create source with specific permissions
os.WriteFile(src, []byte(`{"test": true}`), 0o600)
err := copyFile(src, dst)
if err != nil {
t.Fatalf("copyFile failed: %v", err)
}
srcInfo, _ := os.Stat(src)
dstInfo, _ := os.Stat(dst)
if srcInfo.Mode().Perm() != dstInfo.Mode().Perm() {
t.Errorf("permissions not preserved: src=%v, dst=%v", srcInfo.Mode().Perm(), dstInfo.Mode().Perm())
}
}
// TestCopyFile_SourceNotFound verifies clear error when source doesn't exist.
func TestCopyFile_SourceNotFound(t *testing.T) {
tmpDir := t.TempDir()
src := filepath.Join(tmpDir, "nonexistent.json")
dst := filepath.Join(tmpDir, "dst.json")
err := copyFile(src, dst)
if err == nil {
t.Error("expected error for nonexistent source, got nil")
}
}
// TestWriteWithBackup_TargetIsDirectory verifies error when path points to a directory.
func TestWriteWithBackup_TargetIsDirectory(t *testing.T) {
tmpDir := t.TempDir()
dirPath := filepath.Join(tmpDir, "actualdir")
os.MkdirAll(dirPath, 0o755)
err := writeWithBackup(dirPath, []byte(`{"test": true}`))
if err == nil {
t.Error("expected error when target is a directory, got nil")
}
}
// TestWriteWithBackup_EmptyData verifies writing zero bytes works correctly.
func TestWriteWithBackup_EmptyData(t *testing.T) {
tmpDir := t.TempDir()
path := filepath.Join(tmpDir, "empty.json")
err := writeWithBackup(path, []byte{})
if err != nil {
t.Fatalf("writeWithBackup with empty data failed: %v", err)
}
content, err := os.ReadFile(path)
if err != nil {
t.Fatalf("could not read file: %v", err)
}
if len(content) != 0 {
t.Errorf("expected empty file, got %d bytes", len(content))
}
}
// TestWriteWithBackup_FileUnreadableButDirWritable verifies behavior when existing file
// cannot be read (for backup comparison) but directory is writable.
func TestWriteWithBackup_FileUnreadableButDirWritable(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("permission tests unreliable on Windows")
}
tmpDir := t.TempDir()
path := filepath.Join(tmpDir, "unreadable.json")
// Create file and make it unreadable
os.WriteFile(path, []byte(`{"original": true}`), 0o644)
os.Chmod(path, 0o000)
defer os.Chmod(path, 0o644)
// Should fail because we can't read the file to compare/backup
err := writeWithBackup(path, []byte(`{"updated": true}`))
if err == nil {
t.Error("expected error when file is unreadable, got nil")
}
}
// TestWriteWithBackup_RapidSuccessiveWrites verifies backup works with multiple writes
// within the same second (timestamp collision scenario).
func TestWriteWithBackup_RapidSuccessiveWrites(t *testing.T) {
tmpDir := t.TempDir()
path := filepath.Join(tmpDir, "rapid.json")
// Create initial file
os.WriteFile(path, []byte(`{"v": 0}`), 0o644)
// Rapid successive writes
for i := 1; i <= 3; i++ {
data := []byte(fmt.Sprintf(`{"v": %d}`, i))
if err := writeWithBackup(path, data); err != nil {
t.Fatalf("write %d failed: %v", i, err)
}
}
// Verify final content
content, _ := os.ReadFile(path)
if string(content) != `{"v": 3}` {
t.Errorf("expected final content {\"v\": 3}, got %s", string(content))
}
// Verify at least one backup exists
entries, _ := os.ReadDir(backupDir())
var backupCount int
for _, e := range entries {
if len(e.Name()) > len("rapid.json.") && e.Name()[:len("rapid.json.")] == "rapid.json." {
backupCount++
}
}
if backupCount == 0 {
t.Error("expected at least one backup file from rapid writes")
}
}
// TestWriteWithBackup_BackupDirIsFile verifies error when backup directory path is a file.
func TestWriteWithBackup_BackupDirIsFile(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("test modifies system temp directory")
}
// Create a file at the backup directory path
backupPath := backupDir()
// Clean up any existing directory first
os.RemoveAll(backupPath)
// Create a file instead of directory
os.WriteFile(backupPath, []byte("not a directory"), 0o644)
defer func() {
os.Remove(backupPath)
os.MkdirAll(backupPath, 0o755)
}()
tmpDir := t.TempDir()
path := filepath.Join(tmpDir, "test.json")
os.WriteFile(path, []byte(`{"original": true}`), 0o644)
err := writeWithBackup(path, []byte(`{"updated": true}`))
if err == nil {
t.Error("expected error when backup dir is a file, got nil")
}
}
// TestWriteWithBackup_NoOrphanTempFiles verifies temp files are cleaned up on failure.
func TestWriteWithBackup_NoOrphanTempFiles(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("permission tests unreliable on Windows")
}
tmpDir := t.TempDir()
// Count existing temp files
countTempFiles := func() int {
entries, _ := os.ReadDir(tmpDir)
count := 0
for _, e := range entries {
if len(e.Name()) > 4 && e.Name()[:4] == ".tmp" {
count++
}
}
return count
}
before := countTempFiles()
// Create a file, then make directory read-only to cause rename failure
path := filepath.Join(tmpDir, "orphan.json")
os.WriteFile(path, []byte(`{"v": 1}`), 0o644)
// Make a subdirectory and try to write there after making parent read-only
subDir := filepath.Join(tmpDir, "subdir")
os.MkdirAll(subDir, 0o755)
subPath := filepath.Join(subDir, "config.json")
os.WriteFile(subPath, []byte(`{"v": 1}`), 0o644)
// Make subdir read-only after creating temp file would succeed but rename would fail
// This is tricky to test - the temp file is created in the same dir, so if we can't
// rename, we also couldn't create. Let's just verify normal failure cleanup works.
// Force a failure by making the target a directory
badPath := filepath.Join(tmpDir, "isdir")
os.MkdirAll(badPath, 0o755)
_ = writeWithBackup(badPath, []byte(`{"test": true}`))
after := countTempFiles()
if after > before {
t.Errorf("orphan temp files left behind: before=%d, after=%d", before, after)
}
}

362
cmd/config/integrations.go Normal file
View File

@@ -0,0 +1,362 @@
package config
import (
"context"
"errors"
"fmt"
"maps"
"os"
"os/exec"
"runtime"
"slices"
"strings"
"time"
"github.com/ollama/ollama/api"
"github.com/spf13/cobra"
)
// Runners execute the launching of a model with the integration - claude, codex
// Editors can edit config files (supports multi-model selection) - opencode, droid
// They are composable interfaces where in some cases an editor is also a runner - opencode, droid
// Runner can run an integration with a model.
type Runner interface {
Run(model string) error
// String returns the human-readable name of the integration
String() string
}
// Editor can edit config files (supports multi-model selection)
type Editor interface {
// Paths returns the paths to the config files for the integration
Paths() []string
// Edit updates the config files for the integration with the given models
Edit(models []string) error
// Models returns the models currently configured for the integration
// TODO(parthsareen): add error return to Models()
Models() []string
}
// integrations is the registry of available integrations.
var integrations = map[string]Runner{
"claude": &Claude{},
"codex": &Codex{},
"droid": &Droid{},
"opencode": &OpenCode{},
}
func selectIntegration() (string, error) {
if len(integrations) == 0 {
return "", fmt.Errorf("no integrations available")
}
names := slices.Sorted(maps.Keys(integrations))
var items []selectItem
for _, name := range names {
r := integrations[name]
description := r.String()
if conn, err := loadIntegration(name); err == nil && len(conn.Models) > 0 {
description = fmt.Sprintf("%s (%s)", r.String(), conn.Models[0])
}
items = append(items, selectItem{Name: name, Description: description})
}
return selectPrompt("Select integration:", items)
}
// selectModels lets the user select models for an integration
func selectModels(ctx context.Context, name, current string) ([]string, error) {
r, ok := integrations[name]
if !ok {
return nil, fmt.Errorf("unknown integration: %s", name)
}
client, err := api.ClientFromEnvironment()
if err != nil {
return nil, err
}
models, err := client.List(ctx)
if err != nil {
return nil, err
}
if len(models.Models) == 0 {
return nil, fmt.Errorf("no models available, run 'ollama pull <model>' first")
}
var items []selectItem
cloudModels := make(map[string]bool)
for _, m := range models.Models {
if m.RemoteModel != "" {
cloudModels[m.Name] = true
}
items = append(items, selectItem{Name: m.Name})
}
if len(items) == 0 {
return nil, fmt.Errorf("no local models available, run 'ollama pull <model>' first")
}
// Get previously configured models (saved config takes precedence)
var preChecked []string
if saved, err := loadIntegration(name); err == nil {
preChecked = saved.Models
} else if editor, ok := r.(Editor); ok {
preChecked = editor.Models()
}
checked := make(map[string]bool, len(preChecked))
for _, n := range preChecked {
checked[n] = true
}
// Resolve current to full name (e.g., "llama3.2" -> "llama3.2:latest")
for _, item := range items {
if item.Name == current || strings.HasPrefix(item.Name, current+":") {
current = item.Name
break
}
}
// If current model is configured, move to front of preChecked
if checked[current] {
preChecked = append([]string{current}, slices.DeleteFunc(preChecked, func(m string) bool { return m == current })...)
}
// Sort: checked first, then alphabetical
slices.SortFunc(items, func(a, b selectItem) int {
ac, bc := checked[a.Name], checked[b.Name]
if ac != bc {
if ac {
return -1
}
return 1
}
return strings.Compare(strings.ToLower(a.Name), strings.ToLower(b.Name))
})
var selected []string
// only editors support multi-model selection
if _, ok := r.(Editor); ok {
selected, err = multiSelectPrompt(fmt.Sprintf("Select models for %s:", r), items, preChecked)
if err != nil {
return nil, err
}
} else {
model, err := selectPrompt(fmt.Sprintf("Select model for %s:", r), items)
if err != nil {
return nil, err
}
selected = []string{model}
}
// if any model in selected is a cloud model, ensure signed in
var selectedCloudModels []string
for _, m := range selected {
if cloudModels[m] {
selectedCloudModels = append(selectedCloudModels, m)
}
}
if len(selectedCloudModels) > 0 {
// ensure user is signed in
user, err := client.Whoami(ctx)
if err == nil && user != nil && user.Name != "" {
return selected, nil
}
var aErr api.AuthorizationError
if !errors.As(err, &aErr) || aErr.SigninURL == "" {
return nil, err
}
modelList := strings.Join(selectedCloudModels, ", ")
yes, err := confirmPrompt(fmt.Sprintf("sign in to use %s?", modelList))
if err != nil || !yes {
return nil, fmt.Errorf("%s requires sign in", modelList)
}
fmt.Fprintf(os.Stderr, "\nTo sign in, navigate to:\n %s\n\n", aErr.SigninURL)
// TODO(parthsareen): extract into auth package for cmd
// Auto-open browser (best effort, fail silently)
switch runtime.GOOS {
case "darwin":
_ = exec.Command("open", aErr.SigninURL).Start()
case "linux":
_ = exec.Command("xdg-open", aErr.SigninURL).Start()
case "windows":
_ = exec.Command("rundll32", "url.dll,FileProtocolHandler", aErr.SigninURL).Start()
}
spinnerFrames := []string{"|", "/", "-", "\\"}
frame := 0
fmt.Fprintf(os.Stderr, "\033[90mwaiting for sign in to complete... %s\033[0m", spinnerFrames[0])
ticker := time.NewTicker(200 * time.Millisecond)
defer ticker.Stop()
for {
select {
case <-ctx.Done():
fmt.Fprintf(os.Stderr, "\r\033[K")
return nil, ctx.Err()
case <-ticker.C:
frame++
fmt.Fprintf(os.Stderr, "\r\033[90mwaiting for sign in to complete... %s\033[0m", spinnerFrames[frame%len(spinnerFrames)])
// poll every 10th frame (~2 seconds)
if frame%10 == 0 {
u, err := client.Whoami(ctx)
if err == nil && u != nil && u.Name != "" {
fmt.Fprintf(os.Stderr, "\r\033[K\033[A\r\033[K\033[1msigned in:\033[0m %s\n", u.Name)
return selected, nil
}
}
}
}
}
return selected, nil
}
func runIntegration(name, modelName string) error {
r, ok := integrations[name]
if !ok {
return fmt.Errorf("unknown integration: %s", name)
}
fmt.Fprintf(os.Stderr, "\nLaunching %s with %s...\n", r, modelName)
return r.Run(modelName)
}
// ConfigCmd returns the cobra command for configuring integrations.
func ConfigCmd(checkServerHeartbeat func(cmd *cobra.Command, args []string) error) *cobra.Command {
var modelFlag string
var launchFlag bool
cmd := &cobra.Command{
Use: "config [INTEGRATION]",
Short: "Configure an external integration to use Ollama",
Long: `Configure an external application to use Ollama models.
Supported integrations:
claude Claude Code
codex Codex
droid Droid
opencode OpenCode
Examples:
ollama config
ollama config claude
ollama config droid --launch`,
Args: cobra.MaximumNArgs(1),
PreRunE: checkServerHeartbeat,
RunE: func(cmd *cobra.Command, args []string) error {
var name string
if len(args) > 0 {
name = args[0]
} else {
var err error
name, err = selectIntegration()
if errors.Is(err, errCancelled) {
return nil
}
if err != nil {
return err
}
}
r, ok := integrations[strings.ToLower(name)]
if !ok {
return fmt.Errorf("unknown integration: %s", name)
}
// If --launch without --model, use saved config if available
if launchFlag && modelFlag == "" {
if config, err := loadIntegration(name); err == nil && len(config.Models) > 0 {
return runIntegration(name, config.Models[0])
}
}
var models []string
if modelFlag != "" {
// When --model is specified, merge with existing models (new model becomes default)
models = []string{modelFlag}
if existing, err := loadIntegration(name); err == nil && len(existing.Models) > 0 {
for _, m := range existing.Models {
if m != modelFlag {
models = append(models, m)
}
}
}
} else {
var err error
models, err = selectModels(cmd.Context(), name, "")
if errors.Is(err, errCancelled) {
return nil
}
if err != nil {
return err
}
}
if editor, isEditor := r.(Editor); isEditor {
paths := editor.Paths()
if len(paths) > 0 {
fmt.Fprintf(os.Stderr, "This will modify your %s configuration:\n", r)
for _, p := range paths {
fmt.Fprintf(os.Stderr, " %s\n", p)
}
fmt.Fprintf(os.Stderr, "Backups will be saved to %s/\n\n", backupDir())
if ok, _ := confirmPrompt("Proceed?"); !ok {
return nil
}
}
}
if err := saveIntegration(name, models); err != nil {
return fmt.Errorf("failed to save: %w", err)
}
if editor, isEditor := r.(Editor); isEditor {
if err := editor.Edit(models); err != nil {
return fmt.Errorf("setup failed: %w", err)
}
}
if _, isEditor := r.(Editor); isEditor {
if len(models) == 1 {
fmt.Fprintf(os.Stderr, "Added %s to %s\n", models[0], r)
} else {
fmt.Fprintf(os.Stderr, "Added %d models to %s (default: %s)\n", len(models), r, models[0])
}
}
if slices.ContainsFunc(models, func(m string) bool {
return !strings.HasSuffix(m, "cloud")
}) {
fmt.Fprintln(os.Stderr)
fmt.Fprintln(os.Stderr, "Coding agents work best with at least 64k context. Either:")
fmt.Fprintln(os.Stderr, " - Set the context slider in Ollama app settings")
fmt.Fprintln(os.Stderr, " - Run: OLLAMA_CONTEXT_LENGTH=64000 ollama serve")
}
if launchFlag {
return runIntegration(name, models[0])
}
if launch, _ := confirmPrompt(fmt.Sprintf("\nLaunch %s now?", r)); launch {
return runIntegration(name, models[0])
}
fmt.Fprintf(os.Stderr, "Run 'ollama config %s --launch' to start with %s\n", strings.ToLower(name), models[0])
return nil
},
}
cmd.Flags().StringVar(&modelFlag, "model", "", "Model to use")
cmd.Flags().BoolVar(&launchFlag, "launch", false, "Launch the integration after configuring")
return cmd
}

View File

@@ -0,0 +1,188 @@
package config
import (
"slices"
"strings"
"testing"
"github.com/spf13/cobra"
)
func TestIntegrationLookup(t *testing.T) {
tests := []struct {
name string
input string
wantFound bool
wantName string
}{
{"claude lowercase", "claude", true, "Claude Code"},
{"claude uppercase", "CLAUDE", true, "Claude Code"},
{"claude mixed case", "Claude", true, "Claude Code"},
{"codex", "codex", true, "Codex"},
{"droid", "droid", true, "Droid"},
{"opencode", "opencode", true, "OpenCode"},
{"unknown integration", "unknown", false, ""},
{"empty string", "", false, ""},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
r, found := integrations[strings.ToLower(tt.input)]
if found != tt.wantFound {
t.Errorf("integrations[%q] found = %v, want %v", tt.input, found, tt.wantFound)
}
if found && r.String() != tt.wantName {
t.Errorf("integrations[%q].String() = %q, want %q", tt.input, r.String(), tt.wantName)
}
})
}
}
func TestIntegrationRegistry(t *testing.T) {
expectedIntegrations := []string{"claude", "codex", "droid", "opencode"}
for _, name := range expectedIntegrations {
t.Run(name, func(t *testing.T) {
r, ok := integrations[name]
if !ok {
t.Fatalf("integration %q not found in registry", name)
}
if r.String() == "" {
t.Error("integration.String() should not be empty")
}
})
}
}
func TestHasLocalModel(t *testing.T) {
tests := []struct {
name string
models []string
want bool
}{
{"empty list", []string{}, false},
{"single local model", []string{"llama3.2"}, true},
{"single cloud model", []string{"cloud-model"}, false},
{"mixed models", []string{"cloud-model", "llama3.2"}, true},
{"multiple local models", []string{"llama3.2", "qwen2.5"}, true},
{"multiple cloud models", []string{"cloud-a", "cloud-b"}, false},
{"local model first", []string{"llama3.2", "cloud-model"}, true},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := slices.ContainsFunc(tt.models, func(m string) bool {
return !strings.Contains(m, "cloud")
})
if got != tt.want {
t.Errorf("hasLocalModel(%v) = %v, want %v", tt.models, got, tt.want)
}
})
}
}
func TestConfigCmd(t *testing.T) {
// Mock checkServerHeartbeat that always succeeds
mockCheck := func(cmd *cobra.Command, args []string) error {
return nil
}
cmd := ConfigCmd(mockCheck)
t.Run("command structure", func(t *testing.T) {
if cmd.Use != "config [INTEGRATION]" {
t.Errorf("Use = %q, want %q", cmd.Use, "config [INTEGRATION]")
}
if cmd.Short == "" {
t.Error("Short description should not be empty")
}
if cmd.Long == "" {
t.Error("Long description should not be empty")
}
})
t.Run("flags exist", func(t *testing.T) {
modelFlag := cmd.Flags().Lookup("model")
if modelFlag == nil {
t.Error("--model flag should exist")
}
launchFlag := cmd.Flags().Lookup("launch")
if launchFlag == nil {
t.Error("--launch flag should exist")
}
})
t.Run("PreRunE is set", func(t *testing.T) {
if cmd.PreRunE == nil {
t.Error("PreRunE should be set to checkServerHeartbeat")
}
})
}
func TestRunIntegration_UnknownIntegration(t *testing.T) {
err := runIntegration("unknown-integration", "model")
if err == nil {
t.Error("expected error for unknown integration, got nil")
}
if !strings.Contains(err.Error(), "unknown integration") {
t.Errorf("error should mention 'unknown integration', got: %v", err)
}
}
func TestHasLocalModel_DocumentsHeuristic(t *testing.T) {
tests := []struct {
name string
models []string
want bool
reason string
}{
{"empty list", []string{}, false, "empty list has no local models"},
{"contains-cloud-substring", []string{"deepseek-r1:cloud"}, false, "model with 'cloud' substring is considered cloud"},
{"cloud-in-name", []string{"my-cloud-model"}, false, "'cloud' anywhere in name = cloud model"},
{"cloudless", []string{"cloudless-model"}, false, "'cloudless' still contains 'cloud'"},
{"local-model", []string{"llama3.2"}, true, "no 'cloud' = local"},
{"mixed", []string{"cloud-model", "llama3.2"}, true, "one local model = hasLocalModel true"},
{"all-cloud", []string{"cloud-a", "cloud-b"}, false, "all contain 'cloud'"},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := slices.ContainsFunc(tt.models, func(m string) bool {
return !strings.Contains(m, "cloud")
})
if got != tt.want {
t.Errorf("hasLocalModel(%v) = %v, want %v (%s)", tt.models, got, tt.want, tt.reason)
}
})
}
}
func TestConfigCmd_NilHeartbeat(t *testing.T) {
// This should not panic - cmd creation should work even with nil
cmd := ConfigCmd(nil)
if cmd == nil {
t.Fatal("ConfigCmd returned nil")
}
// PreRunE should be nil when passed nil
if cmd.PreRunE != nil {
t.Log("Note: PreRunE is set even when nil is passed (acceptable)")
}
}
func TestAllIntegrations_HaveRequiredMethods(t *testing.T) {
for name, r := range integrations {
t.Run(name, func(t *testing.T) {
// Test String() doesn't panic and returns non-empty
displayName := r.String()
if displayName == "" {
t.Error("String() should not return empty")
}
// Test Run() exists (we can't call it without actually running the command)
// Just verify the method is available
var _ func(string) error = r.Run
})
}
}

203
cmd/config/opencode.go Normal file
View File

@@ -0,0 +1,203 @@
package config
import (
"encoding/json"
"fmt"
"maps"
"os"
"os/exec"
"path/filepath"
"slices"
"strings"
)
// OpenCode implements Runner and Editor for OpenCode integration
type OpenCode struct{}
func (o *OpenCode) String() string { return "OpenCode" }
func (o *OpenCode) Run(model string) error {
if _, err := exec.LookPath("opencode"); err != nil {
return fmt.Errorf("opencode is not installed, install from https://opencode.ai")
}
// Call Edit() to ensure config is up-to-date before launch
models := []string{model}
if config, err := loadIntegration("opencode"); err == nil && len(config.Models) > 0 {
models = config.Models
}
if err := o.Edit(models); err != nil {
return fmt.Errorf("setup failed: %w", err)
}
cmd := exec.Command("opencode")
cmd.Stdin = os.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
return cmd.Run()
}
func (o *OpenCode) Paths() []string {
home, err := os.UserHomeDir()
if err != nil {
return nil
}
var paths []string
p := filepath.Join(home, ".config", "opencode", "opencode.json")
if _, err := os.Stat(p); err == nil {
paths = append(paths, p)
}
sp := filepath.Join(home, ".local", "state", "opencode", "model.json")
if _, err := os.Stat(sp); err == nil {
paths = append(paths, sp)
}
return paths
}
func (o *OpenCode) Edit(modelList []string) error {
if len(modelList) == 0 {
return nil
}
home, err := os.UserHomeDir()
if err != nil {
return err
}
configPath := filepath.Join(home, ".config", "opencode", "opencode.json")
if err := os.MkdirAll(filepath.Dir(configPath), 0o755); err != nil {
return err
}
config := make(map[string]any)
if data, err := os.ReadFile(configPath); err == nil {
_ = json.Unmarshal(data, &config) // Ignore parse errors; treat missing/corrupt files as empty
}
config["$schema"] = "https://opencode.ai/config.json"
provider, ok := config["provider"].(map[string]any)
if !ok {
provider = make(map[string]any)
}
ollama, ok := provider["ollama"].(map[string]any)
if !ok {
ollama = map[string]any{
"npm": "@ai-sdk/openai-compatible",
"name": "Ollama (local)",
"options": map[string]any{
"baseURL": "http://localhost:11434/v1",
},
}
}
models, ok := ollama["models"].(map[string]any)
if !ok {
models = make(map[string]any)
}
selectedSet := make(map[string]bool)
for _, m := range modelList {
selectedSet[m] = true
}
for name, cfg := range models {
if cfgMap, ok := cfg.(map[string]any); ok {
if displayName, ok := cfgMap["name"].(string); ok {
if strings.HasSuffix(displayName, "[Ollama]") && !selectedSet[name] {
delete(models, name)
}
}
}
}
for _, model := range modelList {
models[model] = map[string]any{
"name": fmt.Sprintf("%s [Ollama]", model),
}
}
ollama["models"] = models
provider["ollama"] = ollama
config["provider"] = provider
configData, err := json.MarshalIndent(config, "", " ")
if err != nil {
return err
}
if err := writeWithBackup(configPath, configData); err != nil {
return err
}
statePath := filepath.Join(home, ".local", "state", "opencode", "model.json")
if err := os.MkdirAll(filepath.Dir(statePath), 0o755); err != nil {
return err
}
state := map[string]any{
"recent": []any{},
"favorite": []any{},
"variant": map[string]any{},
}
if data, err := os.ReadFile(statePath); err == nil {
_ = json.Unmarshal(data, &state) // Ignore parse errors; use defaults
}
recent, _ := state["recent"].([]any)
modelSet := make(map[string]bool)
for _, m := range modelList {
modelSet[m] = true
}
// Filter out existing Ollama models we're about to re-add
newRecent := slices.DeleteFunc(slices.Clone(recent), func(entry any) bool {
e, ok := entry.(map[string]any)
if !ok || e["providerID"] != "ollama" {
return false
}
modelID, _ := e["modelID"].(string)
return modelSet[modelID]
})
// Prepend models in reverse order so first model ends up first
for _, model := range slices.Backward(modelList) {
newRecent = slices.Insert(newRecent, 0, any(map[string]any{
"providerID": "ollama",
"modelID": model,
}))
}
const maxRecentModels = 10
newRecent = newRecent[:min(len(newRecent), maxRecentModels)]
state["recent"] = newRecent
stateData, err := json.MarshalIndent(state, "", " ")
if err != nil {
return err
}
return writeWithBackup(statePath, stateData)
}
func (o *OpenCode) Models() []string {
home, err := os.UserHomeDir()
if err != nil {
return nil
}
config, err := readJSONFile(filepath.Join(home, ".config", "opencode", "opencode.json"))
if err != nil {
return nil
}
provider, _ := config["provider"].(map[string]any)
ollama, _ := provider["ollama"].(map[string]any)
models, _ := ollama["models"].(map[string]any)
if len(models) == 0 {
return nil
}
keys := slices.Collect(maps.Keys(models))
slices.Sort(keys)
return keys
}

437
cmd/config/opencode_test.go Normal file
View File

@@ -0,0 +1,437 @@
package config
import (
"encoding/json"
"os"
"path/filepath"
"testing"
)
func TestOpenCodeIntegration(t *testing.T) {
o := &OpenCode{}
t.Run("String", func(t *testing.T) {
if got := o.String(); got != "OpenCode" {
t.Errorf("String() = %q, want %q", got, "OpenCode")
}
})
t.Run("implements Runner", func(t *testing.T) {
var _ Runner = o
})
t.Run("implements Editor", func(t *testing.T) {
var _ Editor = o
})
}
func TestOpenCodeEdit(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".config", "opencode")
configPath := filepath.Join(configDir, "opencode.json")
stateDir := filepath.Join(tmpDir, ".local", "state", "opencode")
statePath := filepath.Join(stateDir, "model.json")
cleanup := func() {
os.RemoveAll(configDir)
os.RemoveAll(stateDir)
}
t.Run("fresh install", func(t *testing.T) {
cleanup()
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
assertOpenCodeModelExists(t, configPath, "llama3.2")
assertOpenCodeRecentModel(t, statePath, 0, "ollama", "llama3.2")
})
t.Run("preserve other providers", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"provider":{"anthropic":{"apiKey":"xxx"}}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
provider := cfg["provider"].(map[string]any)
if provider["anthropic"] == nil {
t.Error("anthropic provider was removed")
}
assertOpenCodeModelExists(t, configPath, "llama3.2")
})
t.Run("preserve other models", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"provider":{"ollama":{"models":{"mistral":{"name":"Mistral"}}}}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
assertOpenCodeModelExists(t, configPath, "mistral")
assertOpenCodeModelExists(t, configPath, "llama3.2")
})
t.Run("update existing model", func(t *testing.T) {
cleanup()
o.Edit([]string{"llama3.2"})
o.Edit([]string{"llama3.2"})
assertOpenCodeModelExists(t, configPath, "llama3.2")
})
t.Run("preserve top-level keys", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"theme":"dark","keybindings":{}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
if cfg["theme"] != "dark" {
t.Error("theme was removed")
}
if cfg["keybindings"] == nil {
t.Error("keybindings was removed")
}
})
t.Run("model state - insert at index 0", func(t *testing.T) {
cleanup()
os.MkdirAll(stateDir, 0o755)
os.WriteFile(statePath, []byte(`{"recent":[{"providerID":"anthropic","modelID":"claude"}],"favorite":[],"variant":{}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
assertOpenCodeRecentModel(t, statePath, 0, "ollama", "llama3.2")
assertOpenCodeRecentModel(t, statePath, 1, "anthropic", "claude")
})
t.Run("model state - preserve favorites and variants", func(t *testing.T) {
cleanup()
os.MkdirAll(stateDir, 0o755)
os.WriteFile(statePath, []byte(`{"recent":[],"favorite":[{"providerID":"x","modelID":"y"}],"variant":{"a":"b"}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(statePath)
var state map[string]any
json.Unmarshal(data, &state)
if len(state["favorite"].([]any)) != 1 {
t.Error("favorite was modified")
}
if state["variant"].(map[string]any)["a"] != "b" {
t.Error("variant was modified")
}
})
t.Run("model state - deduplicate on re-add", func(t *testing.T) {
cleanup()
os.MkdirAll(stateDir, 0o755)
os.WriteFile(statePath, []byte(`{"recent":[{"providerID":"ollama","modelID":"llama3.2"},{"providerID":"anthropic","modelID":"claude"}],"favorite":[],"variant":{}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(statePath)
var state map[string]any
json.Unmarshal(data, &state)
recent := state["recent"].([]any)
if len(recent) != 2 {
t.Errorf("expected 2 recent entries, got %d", len(recent))
}
assertOpenCodeRecentModel(t, statePath, 0, "ollama", "llama3.2")
})
t.Run("remove model", func(t *testing.T) {
cleanup()
// First add two models
o.Edit([]string{"llama3.2", "mistral"})
assertOpenCodeModelExists(t, configPath, "llama3.2")
assertOpenCodeModelExists(t, configPath, "mistral")
// Then remove one by only selecting the other
o.Edit([]string{"llama3.2"})
assertOpenCodeModelExists(t, configPath, "llama3.2")
assertOpenCodeModelNotExists(t, configPath, "mistral")
})
t.Run("remove model preserves non-ollama models", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
// Add a non-Ollama model manually
os.WriteFile(configPath, []byte(`{"provider":{"ollama":{"models":{"external":{"name":"External Model"}}}}}`), 0o644)
o.Edit([]string{"llama3.2"})
assertOpenCodeModelExists(t, configPath, "llama3.2")
assertOpenCodeModelExists(t, configPath, "external") // Should be preserved
})
}
func assertOpenCodeModelExists(t *testing.T, path, model string) {
t.Helper()
data, err := os.ReadFile(path)
if err != nil {
t.Fatal(err)
}
var cfg map[string]any
if err := json.Unmarshal(data, &cfg); err != nil {
t.Fatal(err)
}
provider, ok := cfg["provider"].(map[string]any)
if !ok {
t.Fatal("provider not found")
}
ollama, ok := provider["ollama"].(map[string]any)
if !ok {
t.Fatal("ollama provider not found")
}
models, ok := ollama["models"].(map[string]any)
if !ok {
t.Fatal("models not found")
}
if models[model] == nil {
t.Errorf("model %s not found", model)
}
}
func assertOpenCodeModelNotExists(t *testing.T, path, model string) {
t.Helper()
data, err := os.ReadFile(path)
if err != nil {
t.Fatal(err)
}
var cfg map[string]any
if err := json.Unmarshal(data, &cfg); err != nil {
t.Fatal(err)
}
provider, ok := cfg["provider"].(map[string]any)
if !ok {
return // No provider means no model
}
ollama, ok := provider["ollama"].(map[string]any)
if !ok {
return // No ollama means no model
}
models, ok := ollama["models"].(map[string]any)
if !ok {
return // No models means no model
}
if models[model] != nil {
t.Errorf("model %s should not exist but was found", model)
}
}
func assertOpenCodeRecentModel(t *testing.T, path string, index int, providerID, modelID string) {
t.Helper()
data, err := os.ReadFile(path)
if err != nil {
t.Fatal(err)
}
var state map[string]any
if err := json.Unmarshal(data, &state); err != nil {
t.Fatal(err)
}
recent, ok := state["recent"].([]any)
if !ok {
t.Fatal("recent not found")
}
if index >= len(recent) {
t.Fatalf("index %d out of range (len=%d)", index, len(recent))
}
entry, ok := recent[index].(map[string]any)
if !ok {
t.Fatal("entry is not a map")
}
if entry["providerID"] != providerID {
t.Errorf("expected providerID %s, got %s", providerID, entry["providerID"])
}
if entry["modelID"] != modelID {
t.Errorf("expected modelID %s, got %s", modelID, entry["modelID"])
}
}
// Edge case tests for opencode.go
func TestOpenCodeEdit_CorruptedConfigJSON(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".config", "opencode")
configPath := filepath.Join(configDir, "opencode.json")
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{corrupted json content`), 0o644)
// Should not panic - corrupted JSON should be treated as empty
err := o.Edit([]string{"llama3.2"})
if err != nil {
t.Fatalf("Edit failed with corrupted config: %v", err)
}
// Verify valid JSON was created
data, _ := os.ReadFile(configPath)
var cfg map[string]any
if err := json.Unmarshal(data, &cfg); err != nil {
t.Errorf("resulting config is not valid JSON: %v", err)
}
}
func TestOpenCodeEdit_CorruptedStateJSON(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
stateDir := filepath.Join(tmpDir, ".local", "state", "opencode")
statePath := filepath.Join(stateDir, "model.json")
os.MkdirAll(stateDir, 0o755)
os.WriteFile(statePath, []byte(`{corrupted state`), 0o644)
err := o.Edit([]string{"llama3.2"})
if err != nil {
t.Fatalf("Edit failed with corrupted state: %v", err)
}
// Verify valid state was created
data, _ := os.ReadFile(statePath)
var state map[string]any
if err := json.Unmarshal(data, &state); err != nil {
t.Errorf("resulting state is not valid JSON: %v", err)
}
}
func TestOpenCodeEdit_WrongTypeProvider(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".config", "opencode")
configPath := filepath.Join(configDir, "opencode.json")
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"provider": "not a map"}`), 0o644)
err := o.Edit([]string{"llama3.2"})
if err != nil {
t.Fatalf("Edit with wrong type provider failed: %v", err)
}
// Verify provider is now correct type
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
provider, ok := cfg["provider"].(map[string]any)
if !ok {
t.Fatalf("provider should be map after setup, got %T", cfg["provider"])
}
if provider["ollama"] == nil {
t.Error("ollama provider should be created")
}
}
func TestOpenCodeEdit_WrongTypeRecent(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
stateDir := filepath.Join(tmpDir, ".local", "state", "opencode")
statePath := filepath.Join(stateDir, "model.json")
os.MkdirAll(stateDir, 0o755)
os.WriteFile(statePath, []byte(`{"recent": "not an array", "favorite": [], "variant": {}}`), 0o644)
err := o.Edit([]string{"llama3.2"})
if err != nil {
t.Fatalf("Edit with wrong type recent failed: %v", err)
}
// The function should handle this gracefully
data, _ := os.ReadFile(statePath)
var state map[string]any
json.Unmarshal(data, &state)
// recent should be properly set after setup
recent, ok := state["recent"].([]any)
if !ok {
t.Logf("Note: recent type after setup is %T (documenting behavior)", state["recent"])
} else if len(recent) == 0 {
t.Logf("Note: recent is empty (documenting behavior)")
}
}
func TestOpenCodeEdit_EmptyModels(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".config", "opencode")
configPath := filepath.Join(configDir, "opencode.json")
os.MkdirAll(configDir, 0o755)
originalContent := `{"provider":{"ollama":{"models":{"existing":{}}}}}`
os.WriteFile(configPath, []byte(originalContent), 0o644)
// Empty models should be no-op
err := o.Edit([]string{})
if err != nil {
t.Fatalf("Edit with empty models failed: %v", err)
}
// Original content should be preserved (file not modified)
data, _ := os.ReadFile(configPath)
if string(data) != originalContent {
t.Errorf("empty models should not modify file, but content changed")
}
}
func TestOpenCodeEdit_SpecialCharsInModelName(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Model name with special characters (though unusual)
specialModel := `model-with-"quotes"`
err := o.Edit([]string{specialModel})
if err != nil {
t.Fatalf("Edit with special chars failed: %v", err)
}
// Verify it was stored correctly
configDir := filepath.Join(tmpDir, ".config", "opencode")
configPath := filepath.Join(configDir, "opencode.json")
data, _ := os.ReadFile(configPath)
var cfg map[string]any
if err := json.Unmarshal(data, &cfg); err != nil {
t.Fatalf("resulting config is invalid JSON: %v", err)
}
// Model should be accessible
provider, _ := cfg["provider"].(map[string]any)
ollama, _ := provider["ollama"].(map[string]any)
models, _ := ollama["models"].(map[string]any)
if models[specialModel] == nil {
t.Errorf("model with special chars not found in config")
}
}
func TestOpenCodeModels_NoConfig(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
models := o.Models()
if len(models) > 0 {
t.Errorf("expected nil/empty for missing config, got %v", models)
}
}

499
cmd/config/selector.go Normal file
View File

@@ -0,0 +1,499 @@
package config
import (
"errors"
"fmt"
"io"
"os"
"strings"
"golang.org/x/term"
)
// ANSI escape sequences for terminal formatting.
const (
ansiHideCursor = "\033[?25l"
ansiShowCursor = "\033[?25h"
ansiBold = "\033[1m"
ansiReset = "\033[0m"
ansiGray = "\033[37m"
ansiClearDown = "\033[J"
)
const maxDisplayedItems = 10
var errCancelled = errors.New("cancelled")
type selectItem struct {
Name string
Description string
}
type inputEvent int
const (
eventNone inputEvent = iota
eventEnter
eventEscape
eventUp
eventDown
eventTab
eventBackspace
eventChar
)
type selectState struct {
items []selectItem
filter string
selected int
scrollOffset int
}
func newSelectState(items []selectItem) *selectState {
return &selectState{items: items}
}
func (s *selectState) filtered() []selectItem {
return filterItems(s.items, s.filter)
}
func (s *selectState) handleInput(event inputEvent, char byte) (done bool, result string, err error) {
filtered := s.filtered()
switch event {
case eventEnter:
if len(filtered) > 0 && s.selected < len(filtered) {
return true, filtered[s.selected].Name, nil
}
case eventEscape:
return true, "", errCancelled
case eventBackspace:
if len(s.filter) > 0 {
s.filter = s.filter[:len(s.filter)-1]
s.selected = 0
s.scrollOffset = 0
}
case eventUp:
if s.selected > 0 {
s.selected--
if s.selected < s.scrollOffset {
s.scrollOffset = s.selected
}
}
case eventDown:
if s.selected < len(filtered)-1 {
s.selected++
if s.selected >= s.scrollOffset+maxDisplayedItems {
s.scrollOffset = s.selected - maxDisplayedItems + 1
}
}
case eventChar:
s.filter += string(char)
s.selected = 0
s.scrollOffset = 0
}
return false, "", nil
}
type multiSelectState struct {
items []selectItem
itemIndex map[string]int
filter string
highlighted int
scrollOffset int
checked map[int]bool
checkOrder []int
focusOnButton bool
}
func newMultiSelectState(items []selectItem, preChecked []string) *multiSelectState {
s := &multiSelectState{
items: items,
itemIndex: make(map[string]int, len(items)),
checked: make(map[int]bool),
}
for i, item := range items {
s.itemIndex[item.Name] = i
}
for _, name := range preChecked {
if idx, ok := s.itemIndex[name]; ok {
s.checked[idx] = true
s.checkOrder = append(s.checkOrder, idx)
}
}
return s
}
func (s *multiSelectState) filtered() []selectItem {
return filterItems(s.items, s.filter)
}
func (s *multiSelectState) toggleItem() {
filtered := s.filtered()
if len(filtered) == 0 || s.highlighted >= len(filtered) {
return
}
item := filtered[s.highlighted]
origIdx := s.itemIndex[item.Name]
if s.checked[origIdx] {
delete(s.checked, origIdx)
for i, idx := range s.checkOrder {
if idx == origIdx {
s.checkOrder = append(s.checkOrder[:i], s.checkOrder[i+1:]...)
break
}
}
} else {
s.checked[origIdx] = true
s.checkOrder = append(s.checkOrder, origIdx)
}
}
func (s *multiSelectState) handleInput(event inputEvent, char byte) (done bool, result []string, err error) {
filtered := s.filtered()
switch event {
case eventEnter:
if s.focusOnButton && len(s.checkOrder) > 0 {
var res []string
for _, idx := range s.checkOrder {
res = append(res, s.items[idx].Name)
}
return true, res, nil
} else if !s.focusOnButton {
s.toggleItem()
}
case eventTab:
if len(s.checkOrder) > 0 {
s.focusOnButton = !s.focusOnButton
}
case eventEscape:
return true, nil, errCancelled
case eventBackspace:
if len(s.filter) > 0 {
s.filter = s.filter[:len(s.filter)-1]
s.highlighted = 0
s.scrollOffset = 0
s.focusOnButton = false
}
case eventUp:
if s.focusOnButton {
s.focusOnButton = false
} else if s.highlighted > 0 {
s.highlighted--
if s.highlighted < s.scrollOffset {
s.scrollOffset = s.highlighted
}
}
case eventDown:
if s.focusOnButton {
s.focusOnButton = false
} else if s.highlighted < len(filtered)-1 {
s.highlighted++
if s.highlighted >= s.scrollOffset+maxDisplayedItems {
s.scrollOffset = s.highlighted - maxDisplayedItems + 1
}
}
case eventChar:
s.filter += string(char)
s.highlighted = 0
s.scrollOffset = 0
s.focusOnButton = false
}
return false, nil, nil
}
func (s *multiSelectState) selectedCount() int {
return len(s.checkOrder)
}
// Terminal I/O handling
type terminalState struct {
fd int
oldState *term.State
}
func enterRawMode() (*terminalState, error) {
fd := int(os.Stdin.Fd())
oldState, err := term.MakeRaw(fd)
if err != nil {
return nil, err
}
fmt.Fprint(os.Stderr, ansiHideCursor)
return &terminalState{fd: fd, oldState: oldState}, nil
}
func (t *terminalState) restore() {
fmt.Fprint(os.Stderr, ansiShowCursor)
term.Restore(t.fd, t.oldState)
}
func clearLines(n int) {
if n > 0 {
fmt.Fprintf(os.Stderr, "\033[%dA", n)
fmt.Fprint(os.Stderr, ansiClearDown)
}
}
func parseInput(r io.Reader) (inputEvent, byte, error) {
buf := make([]byte, 3)
n, err := r.Read(buf)
if err != nil {
return 0, 0, err
}
switch {
case n == 1 && buf[0] == 13:
return eventEnter, 0, nil
case n == 1 && (buf[0] == 3 || buf[0] == 27):
return eventEscape, 0, nil
case n == 1 && buf[0] == 9:
return eventTab, 0, nil
case n == 1 && buf[0] == 127:
return eventBackspace, 0, nil
case n == 3 && buf[0] == 27 && buf[1] == 91 && buf[2] == 65:
return eventUp, 0, nil
case n == 3 && buf[0] == 27 && buf[1] == 91 && buf[2] == 66:
return eventDown, 0, nil
case n == 1 && buf[0] >= 32 && buf[0] < 127:
return eventChar, buf[0], nil
}
return eventNone, 0, nil
}
// Rendering
func renderSelect(w io.Writer, prompt string, s *selectState) int {
filtered := s.filtered()
fmt.Fprintf(w, "%s %s\r\n", prompt, s.filter)
lineCount := 1
if len(filtered) == 0 {
fmt.Fprintf(w, " %s(no matches)%s\r\n", ansiGray, ansiReset)
lineCount++
} else {
displayCount := min(len(filtered), maxDisplayedItems)
for i := range displayCount {
idx := s.scrollOffset + i
if idx >= len(filtered) {
break
}
item := filtered[idx]
prefix := " "
if idx == s.selected {
prefix = " " + ansiBold + "> "
}
if item.Description != "" {
fmt.Fprintf(w, "%s%s%s %s- %s%s\r\n", prefix, item.Name, ansiReset, ansiGray, item.Description, ansiReset)
} else {
fmt.Fprintf(w, "%s%s%s\r\n", prefix, item.Name, ansiReset)
}
lineCount++
}
if remaining := len(filtered) - s.scrollOffset - displayCount; remaining > 0 {
fmt.Fprintf(w, " %s... and %d more%s\r\n", ansiGray, remaining, ansiReset)
lineCount++
}
}
return lineCount
}
func renderMultiSelect(w io.Writer, prompt string, s *multiSelectState) int {
filtered := s.filtered()
fmt.Fprintf(w, "%s %s\r\n", prompt, s.filter)
lineCount := 1
if len(filtered) == 0 {
fmt.Fprintf(w, " %s(no matches)%s\r\n", ansiGray, ansiReset)
lineCount++
} else {
displayCount := min(len(filtered), maxDisplayedItems)
for i := range displayCount {
idx := s.scrollOffset + i
if idx >= len(filtered) {
break
}
item := filtered[idx]
origIdx := s.itemIndex[item.Name]
checkbox := "[ ]"
if s.checked[origIdx] {
checkbox = "[x]"
}
prefix := " "
suffix := ""
if idx == s.highlighted && !s.focusOnButton {
prefix = "> "
}
if len(s.checkOrder) > 0 && s.checkOrder[0] == origIdx {
suffix = " " + ansiGray + "(default)" + ansiReset
}
if idx == s.highlighted && !s.focusOnButton {
fmt.Fprintf(w, " %s%s %s %s%s%s\r\n", ansiBold, prefix, checkbox, item.Name, ansiReset, suffix)
} else {
fmt.Fprintf(w, " %s %s %s%s\r\n", prefix, checkbox, item.Name, suffix)
}
lineCount++
}
if remaining := len(filtered) - s.scrollOffset - displayCount; remaining > 0 {
fmt.Fprintf(w, " %s... and %d more%s\r\n", ansiGray, remaining, ansiReset)
lineCount++
}
}
fmt.Fprintf(w, "\r\n")
lineCount++
count := s.selectedCount()
switch {
case count == 0:
fmt.Fprintf(w, " %sSelect at least one model.%s\r\n", ansiGray, ansiReset)
case s.focusOnButton:
fmt.Fprintf(w, " %s> [ Continue ]%s %s(%d selected)%s\r\n", ansiBold, ansiReset, ansiGray, count, ansiReset)
default:
fmt.Fprintf(w, " %s[ Continue ] (%d selected) - press Tab%s\r\n", ansiGray, count, ansiReset)
}
lineCount++
return lineCount
}
// selectPrompt prompts the user to select a single item from a list.
func selectPrompt(prompt string, items []selectItem) (string, error) {
if len(items) == 0 {
return "", fmt.Errorf("no items to select from")
}
ts, err := enterRawMode()
if err != nil {
return "", err
}
defer ts.restore()
state := newSelectState(items)
var lastLineCount int
render := func() {
clearLines(lastLineCount)
lastLineCount = renderSelect(os.Stderr, prompt, state)
}
render()
for {
event, char, err := parseInput(os.Stdin)
if err != nil {
return "", err
}
done, result, err := state.handleInput(event, char)
if done {
clearLines(lastLineCount)
if err != nil {
return "", err
}
return result, nil
}
render()
}
}
// multiSelectPrompt prompts the user to select multiple items from a list.
func multiSelectPrompt(prompt string, items []selectItem, preChecked []string) ([]string, error) {
if len(items) == 0 {
return nil, fmt.Errorf("no items to select from")
}
ts, err := enterRawMode()
if err != nil {
return nil, err
}
defer ts.restore()
state := newMultiSelectState(items, preChecked)
var lastLineCount int
render := func() {
clearLines(lastLineCount)
lastLineCount = renderMultiSelect(os.Stderr, prompt, state)
}
render()
for {
event, char, err := parseInput(os.Stdin)
if err != nil {
return nil, err
}
done, result, err := state.handleInput(event, char)
if done {
clearLines(lastLineCount)
if err != nil {
return nil, err
}
return result, nil
}
render()
}
}
func confirmPrompt(prompt string) (bool, error) {
fd := int(os.Stdin.Fd())
oldState, err := term.MakeRaw(fd)
if err != nil {
return false, err
}
defer term.Restore(fd, oldState)
fmt.Fprintf(os.Stderr, "%s [y/n] ", prompt)
buf := make([]byte, 1)
for {
if _, err := os.Stdin.Read(buf); err != nil {
return false, err
}
switch buf[0] {
case 'Y', 'y', 13:
fmt.Fprintf(os.Stderr, "yes\r\n")
return true, nil
case 'N', 'n', 27, 3:
fmt.Fprintf(os.Stderr, "no\r\n")
return false, nil
}
}
}
func filterItems(items []selectItem, filter string) []selectItem {
if filter == "" {
return items
}
var result []selectItem
filterLower := strings.ToLower(filter)
for _, item := range items {
if strings.Contains(strings.ToLower(item.Name), filterLower) {
result = append(result, item)
}
}
return result
}

913
cmd/config/selector_test.go Normal file
View File

@@ -0,0 +1,913 @@
package config
import (
"bytes"
"strings"
"testing"
)
func TestFilterItems(t *testing.T) {
items := []selectItem{
{Name: "llama3.2:latest"},
{Name: "qwen2.5:7b"},
{Name: "deepseek-v3:cloud"},
{Name: "GPT-OSS:20b"},
}
t.Run("EmptyFilter_ReturnsAllItems", func(t *testing.T) {
result := filterItems(items, "")
if len(result) != len(items) {
t.Errorf("expected %d items, got %d", len(items), len(result))
}
})
t.Run("CaseInsensitive_UppercaseFilterMatchesLowercase", func(t *testing.T) {
result := filterItems(items, "LLAMA")
if len(result) != 1 || result[0].Name != "llama3.2:latest" {
t.Errorf("expected llama3.2:latest, got %v", result)
}
})
t.Run("CaseInsensitive_LowercaseFilterMatchesUppercase", func(t *testing.T) {
result := filterItems(items, "gpt")
if len(result) != 1 || result[0].Name != "GPT-OSS:20b" {
t.Errorf("expected GPT-OSS:20b, got %v", result)
}
})
t.Run("PartialMatch", func(t *testing.T) {
result := filterItems(items, "deep")
if len(result) != 1 || result[0].Name != "deepseek-v3:cloud" {
t.Errorf("expected deepseek-v3:cloud, got %v", result)
}
})
t.Run("NoMatch_ReturnsEmpty", func(t *testing.T) {
result := filterItems(items, "nonexistent")
if len(result) != 0 {
t.Errorf("expected 0 items, got %d", len(result))
}
})
}
func TestSelectState(t *testing.T) {
items := []selectItem{
{Name: "item1"},
{Name: "item2"},
{Name: "item3"},
}
t.Run("InitialState", func(t *testing.T) {
s := newSelectState(items)
if s.selected != 0 {
t.Errorf("expected selected=0, got %d", s.selected)
}
if s.filter != "" {
t.Errorf("expected empty filter, got %q", s.filter)
}
if s.scrollOffset != 0 {
t.Errorf("expected scrollOffset=0, got %d", s.scrollOffset)
}
})
t.Run("Enter_SelectsCurrentItem", func(t *testing.T) {
s := newSelectState(items)
done, result, err := s.handleInput(eventEnter, 0)
if !done || result != "item1" || err != nil {
t.Errorf("expected (true, item1, nil), got (%v, %v, %v)", done, result, err)
}
})
t.Run("Enter_WithFilter_SelectsFilteredItem", func(t *testing.T) {
s := newSelectState(items)
s.filter = "item3"
done, result, err := s.handleInput(eventEnter, 0)
if !done || result != "item3" || err != nil {
t.Errorf("expected (true, item3, nil), got (%v, %v, %v)", done, result, err)
}
})
t.Run("Enter_EmptyFilteredList_DoesNothing", func(t *testing.T) {
s := newSelectState(items)
s.filter = "nonexistent"
done, result, err := s.handleInput(eventEnter, 0)
if done || result != "" || err != nil {
t.Errorf("expected (false, '', nil), got (%v, %v, %v)", done, result, err)
}
})
t.Run("Escape_ReturnsCancelledError", func(t *testing.T) {
s := newSelectState(items)
done, result, err := s.handleInput(eventEscape, 0)
if !done || result != "" || err != errCancelled {
t.Errorf("expected (true, '', errCancelled), got (%v, %v, %v)", done, result, err)
}
})
t.Run("Down_MovesSelection", func(t *testing.T) {
s := newSelectState(items)
s.handleInput(eventDown, 0)
if s.selected != 1 {
t.Errorf("expected selected=1, got %d", s.selected)
}
})
t.Run("Down_AtBottom_StaysAtBottom", func(t *testing.T) {
s := newSelectState(items)
s.selected = 2
s.handleInput(eventDown, 0)
if s.selected != 2 {
t.Errorf("expected selected=2 (stayed at bottom), got %d", s.selected)
}
})
t.Run("Up_MovesSelection", func(t *testing.T) {
s := newSelectState(items)
s.selected = 2
s.handleInput(eventUp, 0)
if s.selected != 1 {
t.Errorf("expected selected=1, got %d", s.selected)
}
})
t.Run("Up_AtTop_StaysAtTop", func(t *testing.T) {
s := newSelectState(items)
s.handleInput(eventUp, 0)
if s.selected != 0 {
t.Errorf("expected selected=0 (stayed at top), got %d", s.selected)
}
})
t.Run("Char_AppendsToFilter", func(t *testing.T) {
s := newSelectState(items)
s.handleInput(eventChar, 'i')
s.handleInput(eventChar, 't')
s.handleInput(eventChar, 'e')
s.handleInput(eventChar, 'm')
s.handleInput(eventChar, '2')
if s.filter != "item2" {
t.Errorf("expected filter='item2', got %q", s.filter)
}
filtered := s.filtered()
if len(filtered) != 1 || filtered[0].Name != "item2" {
t.Errorf("expected [item2], got %v", filtered)
}
})
t.Run("Char_ResetsSelectionToZero", func(t *testing.T) {
s := newSelectState(items)
s.selected = 2
s.handleInput(eventChar, 'x')
if s.selected != 0 {
t.Errorf("expected selected=0 after typing, got %d", s.selected)
}
})
t.Run("Backspace_RemovesLastFilterChar", func(t *testing.T) {
s := newSelectState(items)
s.filter = "test"
s.handleInput(eventBackspace, 0)
if s.filter != "tes" {
t.Errorf("expected filter='tes', got %q", s.filter)
}
})
t.Run("Backspace_EmptyFilter_DoesNothing", func(t *testing.T) {
s := newSelectState(items)
s.handleInput(eventBackspace, 0)
if s.filter != "" {
t.Errorf("expected filter='', got %q", s.filter)
}
})
t.Run("Backspace_ResetsSelectionToZero", func(t *testing.T) {
s := newSelectState(items)
s.filter = "test"
s.selected = 2
s.handleInput(eventBackspace, 0)
if s.selected != 0 {
t.Errorf("expected selected=0 after backspace, got %d", s.selected)
}
})
t.Run("Scroll_DownPastVisibleItems_ScrollsViewport", func(t *testing.T) {
// maxDisplayedItems is 10, so with 15 items we need to scroll
manyItems := make([]selectItem, 15)
for i := range manyItems {
manyItems[i] = selectItem{Name: string(rune('a' + i))}
}
s := newSelectState(manyItems)
// move down 12 times (past the 10-item viewport)
for range 12 {
s.handleInput(eventDown, 0)
}
if s.selected != 12 {
t.Errorf("expected selected=12, got %d", s.selected)
}
if s.scrollOffset != 3 {
t.Errorf("expected scrollOffset=3 (12-10+1), got %d", s.scrollOffset)
}
})
t.Run("Scroll_UpPastScrollOffset_ScrollsViewport", func(t *testing.T) {
manyItems := make([]selectItem, 15)
for i := range manyItems {
manyItems[i] = selectItem{Name: string(rune('a' + i))}
}
s := newSelectState(manyItems)
s.selected = 5
s.scrollOffset = 5
s.handleInput(eventUp, 0)
if s.selected != 4 {
t.Errorf("expected selected=4, got %d", s.selected)
}
if s.scrollOffset != 4 {
t.Errorf("expected scrollOffset=4, got %d", s.scrollOffset)
}
})
}
func TestMultiSelectState(t *testing.T) {
items := []selectItem{
{Name: "item1"},
{Name: "item2"},
{Name: "item3"},
}
t.Run("InitialState_NoPrechecked", func(t *testing.T) {
s := newMultiSelectState(items, nil)
if s.highlighted != 0 {
t.Errorf("expected highlighted=0, got %d", s.highlighted)
}
if s.selectedCount() != 0 {
t.Errorf("expected 0 selected, got %d", s.selectedCount())
}
if s.focusOnButton {
t.Error("expected focusOnButton=false initially")
}
})
t.Run("InitialState_WithPrechecked", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item2", "item3"})
if s.selectedCount() != 2 {
t.Errorf("expected 2 selected, got %d", s.selectedCount())
}
if !s.checked[1] || !s.checked[2] {
t.Error("expected item2 and item3 to be checked")
}
})
t.Run("Prechecked_PreservesSelectionOrder", func(t *testing.T) {
// order matters: first checked = default model
s := newMultiSelectState(items, []string{"item3", "item1"})
if len(s.checkOrder) != 2 {
t.Fatalf("expected 2 in checkOrder, got %d", len(s.checkOrder))
}
if s.checkOrder[0] != 2 || s.checkOrder[1] != 0 {
t.Errorf("expected checkOrder=[2,0] (item3 first), got %v", s.checkOrder)
}
})
t.Run("Prechecked_IgnoresInvalidNames", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1", "nonexistent"})
if s.selectedCount() != 1 {
t.Errorf("expected 1 selected (nonexistent ignored), got %d", s.selectedCount())
}
})
t.Run("Toggle_ChecksUncheckedItem", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.toggleItem()
if !s.checked[0] {
t.Error("expected item1 to be checked after toggle")
}
})
t.Run("Toggle_UnchecksCheckedItem", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
s.toggleItem()
if s.checked[0] {
t.Error("expected item1 to be unchecked after toggle")
}
})
t.Run("Toggle_RemovesFromCheckOrder", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1", "item2", "item3"})
s.highlighted = 1 // toggle item2
s.toggleItem()
if len(s.checkOrder) != 2 {
t.Fatalf("expected 2 in checkOrder, got %d", len(s.checkOrder))
}
// should be [0, 2] (item1, item3) with item2 removed
if s.checkOrder[0] != 0 || s.checkOrder[1] != 2 {
t.Errorf("expected checkOrder=[0,2], got %v", s.checkOrder)
}
})
t.Run("Enter_TogglesWhenNotOnButton", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.handleInput(eventEnter, 0)
if !s.checked[0] {
t.Error("expected item1 to be checked after enter")
}
})
t.Run("Enter_OnButton_ReturnsSelection", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item2", "item1"})
s.focusOnButton = true
done, result, err := s.handleInput(eventEnter, 0)
if !done || err != nil {
t.Errorf("expected done=true, err=nil, got done=%v, err=%v", done, err)
}
// result should preserve selection order
if len(result) != 2 || result[0] != "item2" || result[1] != "item1" {
t.Errorf("expected [item2, item1], got %v", result)
}
})
t.Run("Enter_OnButton_EmptySelection_DoesNothing", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.focusOnButton = true
done, result, err := s.handleInput(eventEnter, 0)
if done || result != nil || err != nil {
t.Errorf("expected (false, nil, nil), got (%v, %v, %v)", done, result, err)
}
})
t.Run("Tab_SwitchesToButton_WhenHasSelection", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
s.handleInput(eventTab, 0)
if !s.focusOnButton {
t.Error("expected focus on button after tab")
}
})
t.Run("Tab_DoesNothing_WhenNoSelection", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.handleInput(eventTab, 0)
if s.focusOnButton {
t.Error("tab should not focus button when nothing selected")
}
})
t.Run("Tab_TogglesButtonFocus", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
s.handleInput(eventTab, 0)
if !s.focusOnButton {
t.Error("expected focus on button after first tab")
}
s.handleInput(eventTab, 0)
if s.focusOnButton {
t.Error("expected focus back on list after second tab")
}
})
t.Run("Escape_ReturnsCancelledError", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
done, result, err := s.handleInput(eventEscape, 0)
if !done || result != nil || err != errCancelled {
t.Errorf("expected (true, nil, errCancelled), got (%v, %v, %v)", done, result, err)
}
})
t.Run("IsDefault_TrueForFirstChecked", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item2", "item1"})
if !(len(s.checkOrder) > 0 && s.checkOrder[0] == 1) {
t.Error("expected item2 (idx 1) to be default (first checked)")
}
if len(s.checkOrder) > 0 && s.checkOrder[0] == 0 {
t.Error("expected item1 (idx 0) to NOT be default")
}
})
t.Run("IsDefault_FalseWhenNothingChecked", func(t *testing.T) {
s := newMultiSelectState(items, nil)
if len(s.checkOrder) > 0 && s.checkOrder[0] == 0 {
t.Error("expected isDefault=false when nothing checked")
}
})
t.Run("Down_MovesHighlight", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.handleInput(eventDown, 0)
if s.highlighted != 1 {
t.Errorf("expected highlighted=1, got %d", s.highlighted)
}
})
t.Run("Up_MovesHighlight", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.highlighted = 1
s.handleInput(eventUp, 0)
if s.highlighted != 0 {
t.Errorf("expected highlighted=0, got %d", s.highlighted)
}
})
t.Run("Arrow_ReturnsFocusFromButton", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
s.focusOnButton = true
s.handleInput(eventDown, 0)
if s.focusOnButton {
t.Error("expected focus to return to list on arrow key")
}
})
t.Run("Char_AppendsToFilter", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.handleInput(eventChar, 'x')
if s.filter != "x" {
t.Errorf("expected filter='x', got %q", s.filter)
}
})
t.Run("Char_ResetsHighlightAndScroll", func(t *testing.T) {
manyItems := make([]selectItem, 15)
for i := range manyItems {
manyItems[i] = selectItem{Name: string(rune('a' + i))}
}
s := newMultiSelectState(manyItems, nil)
s.highlighted = 10
s.scrollOffset = 5
s.handleInput(eventChar, 'x')
if s.highlighted != 0 {
t.Errorf("expected highlighted=0, got %d", s.highlighted)
}
if s.scrollOffset != 0 {
t.Errorf("expected scrollOffset=0, got %d", s.scrollOffset)
}
})
t.Run("Backspace_RemovesLastFilterChar", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.filter = "test"
s.handleInput(eventBackspace, 0)
if s.filter != "tes" {
t.Errorf("expected filter='tes', got %q", s.filter)
}
})
t.Run("Backspace_RemovesFocusFromButton", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
s.filter = "x"
s.focusOnButton = true
s.handleInput(eventBackspace, 0)
if s.focusOnButton {
t.Error("expected focusOnButton=false after backspace")
}
})
}
func TestParseInput(t *testing.T) {
t.Run("Enter", func(t *testing.T) {
event, char, err := parseInput(bytes.NewReader([]byte{13}))
if err != nil || event != eventEnter || char != 0 {
t.Errorf("expected (eventEnter, 0, nil), got (%v, %v, %v)", event, char, err)
}
})
t.Run("Escape", func(t *testing.T) {
event, _, err := parseInput(bytes.NewReader([]byte{27}))
if err != nil || event != eventEscape {
t.Errorf("expected eventEscape, got %v", event)
}
})
t.Run("CtrlC_TreatedAsEscape", func(t *testing.T) {
event, _, err := parseInput(bytes.NewReader([]byte{3}))
if err != nil || event != eventEscape {
t.Errorf("expected eventEscape for Ctrl+C, got %v", event)
}
})
t.Run("Tab", func(t *testing.T) {
event, _, err := parseInput(bytes.NewReader([]byte{9}))
if err != nil || event != eventTab {
t.Errorf("expected eventTab, got %v", event)
}
})
t.Run("Backspace", func(t *testing.T) {
event, _, err := parseInput(bytes.NewReader([]byte{127}))
if err != nil || event != eventBackspace {
t.Errorf("expected eventBackspace, got %v", event)
}
})
t.Run("UpArrow", func(t *testing.T) {
event, _, err := parseInput(bytes.NewReader([]byte{27, 91, 65}))
if err != nil || event != eventUp {
t.Errorf("expected eventUp, got %v", event)
}
})
t.Run("DownArrow", func(t *testing.T) {
event, _, err := parseInput(bytes.NewReader([]byte{27, 91, 66}))
if err != nil || event != eventDown {
t.Errorf("expected eventDown, got %v", event)
}
})
t.Run("PrintableChars", func(t *testing.T) {
tests := []struct {
name string
char byte
}{
{"lowercase", 'a'},
{"uppercase", 'Z'},
{"digit", '5'},
{"space", ' '},
{"tilde", '~'},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
event, char, err := parseInput(bytes.NewReader([]byte{tt.char}))
if err != nil || event != eventChar || char != tt.char {
t.Errorf("expected (eventChar, %q), got (%v, %q)", tt.char, event, char)
}
})
}
})
}
func TestRenderSelect(t *testing.T) {
items := []selectItem{
{Name: "item1", Description: "first item"},
{Name: "item2"},
}
t.Run("ShowsPromptAndItems", func(t *testing.T) {
s := newSelectState(items)
var buf bytes.Buffer
lineCount := renderSelect(&buf, "Select:", s)
output := buf.String()
if !strings.Contains(output, "Select:") {
t.Error("expected prompt in output")
}
if !strings.Contains(output, "item1") {
t.Error("expected item1 in output")
}
if !strings.Contains(output, "first item") {
t.Error("expected description in output")
}
if !strings.Contains(output, "item2") {
t.Error("expected item2 in output")
}
if lineCount != 3 { // 1 prompt + 2 items
t.Errorf("expected 3 lines, got %d", lineCount)
}
})
t.Run("EmptyFilteredList_ShowsNoMatches", func(t *testing.T) {
s := newSelectState(items)
s.filter = "xyz"
var buf bytes.Buffer
renderSelect(&buf, "Select:", s)
if !strings.Contains(buf.String(), "no matches") {
t.Error("expected 'no matches' message")
}
})
t.Run("LongList_ShowsRemainingCount", func(t *testing.T) {
manyItems := make([]selectItem, 15)
for i := range manyItems {
manyItems[i] = selectItem{Name: string(rune('a' + i))}
}
s := newSelectState(manyItems)
var buf bytes.Buffer
renderSelect(&buf, "Select:", s)
// 15 items - 10 displayed = 5 more
if !strings.Contains(buf.String(), "5 more") {
t.Error("expected '5 more' indicator")
}
})
}
func TestRenderMultiSelect(t *testing.T) {
items := []selectItem{
{Name: "item1"},
{Name: "item2"},
}
t.Run("ShowsCheckboxes", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
var buf bytes.Buffer
renderMultiSelect(&buf, "Select:", s)
output := buf.String()
if !strings.Contains(output, "[x]") {
t.Error("expected checked checkbox [x]")
}
if !strings.Contains(output, "[ ]") {
t.Error("expected unchecked checkbox [ ]")
}
})
t.Run("ShowsDefaultMarker", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
var buf bytes.Buffer
renderMultiSelect(&buf, "Select:", s)
if !strings.Contains(buf.String(), "(default)") {
t.Error("expected (default) marker for first checked item")
}
})
t.Run("ShowsSelectedCount", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1", "item2"})
var buf bytes.Buffer
renderMultiSelect(&buf, "Select:", s)
if !strings.Contains(buf.String(), "2 selected") {
t.Error("expected '2 selected' in output")
}
})
t.Run("NoSelection_ShowsHelperText", func(t *testing.T) {
s := newMultiSelectState(items, nil)
var buf bytes.Buffer
renderMultiSelect(&buf, "Select:", s)
if !strings.Contains(buf.String(), "Select at least one") {
t.Error("expected 'Select at least one' helper text")
}
})
}
func TestErrCancelled(t *testing.T) {
t.Run("NotNil", func(t *testing.T) {
if errCancelled == nil {
t.Error("errCancelled should not be nil")
}
})
t.Run("Message", func(t *testing.T) {
if errCancelled.Error() != "cancelled" {
t.Errorf("expected 'cancelled', got %q", errCancelled.Error())
}
})
}
// Edge case tests for selector.go
// TestSelectState_SingleItem verifies that single item list works without crash.
// List with only one item should still work.
func TestSelectState_SingleItem(t *testing.T) {
items := []selectItem{{Name: "only-one"}}
s := newSelectState(items)
// Down should do nothing (already at bottom)
s.handleInput(eventDown, 0)
if s.selected != 0 {
t.Errorf("down on single item: expected selected=0, got %d", s.selected)
}
// Up should do nothing (already at top)
s.handleInput(eventUp, 0)
if s.selected != 0 {
t.Errorf("up on single item: expected selected=0, got %d", s.selected)
}
// Enter should select the only item
done, result, err := s.handleInput(eventEnter, 0)
if !done || result != "only-one" || err != nil {
t.Errorf("enter on single item: expected (true, 'only-one', nil), got (%v, %q, %v)", done, result, err)
}
}
// TestSelectState_ExactlyMaxItems verifies boundary condition at maxDisplayedItems.
// List with exactly maxDisplayedItems items should not scroll.
func TestSelectState_ExactlyMaxItems(t *testing.T) {
items := make([]selectItem, maxDisplayedItems)
for i := range items {
items[i] = selectItem{Name: string(rune('a' + i))}
}
s := newSelectState(items)
// Move to last item
for range maxDisplayedItems - 1 {
s.handleInput(eventDown, 0)
}
if s.selected != maxDisplayedItems-1 {
t.Errorf("expected selected=%d, got %d", maxDisplayedItems-1, s.selected)
}
// Should not scroll when exactly at max
if s.scrollOffset != 0 {
t.Errorf("expected scrollOffset=0 for exactly maxDisplayedItems, got %d", s.scrollOffset)
}
// One more down should do nothing
s.handleInput(eventDown, 0)
if s.selected != maxDisplayedItems-1 {
t.Errorf("down at max: expected selected=%d, got %d", maxDisplayedItems-1, s.selected)
}
}
// TestFilterItems_RegexSpecialChars verifies that filter is literal, not regex.
// User typing "model.v1" shouldn't match "modelsv1".
func TestFilterItems_RegexSpecialChars(t *testing.T) {
items := []selectItem{
{Name: "model.v1"},
{Name: "modelsv1"},
{Name: "model-v1"},
}
// Filter with dot should only match literal dot
result := filterItems(items, "model.v1")
if len(result) != 1 {
t.Errorf("expected 1 exact match, got %d", len(result))
}
if len(result) > 0 && result[0].Name != "model.v1" {
t.Errorf("expected 'model.v1', got %s", result[0].Name)
}
// Other regex special chars should be literal too
items2 := []selectItem{
{Name: "test[0]"},
{Name: "test0"},
{Name: "test(1)"},
}
result2 := filterItems(items2, "test[0]")
if len(result2) != 1 || result2[0].Name != "test[0]" {
t.Errorf("expected only 'test[0]', got %v", result2)
}
}
// TestMultiSelectState_DuplicateNames documents handling of duplicate item names.
// itemIndex uses name as key - duplicates cause collision. This documents
// the current behavior: the last index for a duplicate name is stored
func TestMultiSelectState_DuplicateNames(t *testing.T) {
// Duplicate names - this is an edge case that shouldn't happen in practice
items := []selectItem{
{Name: "duplicate"},
{Name: "duplicate"},
{Name: "unique"},
}
s := newMultiSelectState(items, nil)
// DOCUMENTED BEHAVIOR: itemIndex maps name to LAST index
// When there are duplicates, only the last occurrence's index is stored
if s.itemIndex["duplicate"] != 1 {
t.Errorf("itemIndex should map 'duplicate' to last index (1), got %d", s.itemIndex["duplicate"])
}
// Toggle item at highlighted=0 (first "duplicate")
// Due to name collision, toggleItem uses itemIndex["duplicate"] = 1
// So it actually toggles the SECOND duplicate item, not the first
s.toggleItem()
// This documents the potentially surprising behavior:
// We toggled at highlighted=0, but itemIndex lookup returned 1
if !s.checked[1] {
t.Error("toggle should check index 1 (due to name collision in itemIndex)")
}
if s.checked[0] {
t.Log("Note: index 0 is NOT checked, even though highlighted=0 (name collision behavior)")
}
}
// TestSelectState_FilterReducesBelowSelection verifies selection resets when filter reduces list.
// Prevents index-out-of-bounds on next keystroke
func TestSelectState_FilterReducesBelowSelection(t *testing.T) {
items := []selectItem{
{Name: "apple"},
{Name: "banana"},
{Name: "cherry"},
}
s := newSelectState(items)
s.selected = 2 // Select "cherry"
// Type a filter that removes cherry from results
s.handleInput(eventChar, 'a') // Filter to "a" - matches "apple" and "banana"
// Selection should reset to 0
if s.selected != 0 {
t.Errorf("expected selected=0 after filter, got %d", s.selected)
}
filtered := s.filtered()
if len(filtered) != 2 {
t.Errorf("expected 2 filtered items, got %d", len(filtered))
}
}
// TestFilterItems_UnicodeCharacters verifies filtering works with UTF-8.
// Model names might contain unicode characters
func TestFilterItems_UnicodeCharacters(t *testing.T) {
items := []selectItem{
{Name: "llama-日本語"},
{Name: "模型-chinese"},
{Name: "émoji-🦙"},
{Name: "regular-model"},
}
t.Run("filter japanese", func(t *testing.T) {
result := filterItems(items, "日本")
if len(result) != 1 || result[0].Name != "llama-日本語" {
t.Errorf("expected llama-日本語, got %v", result)
}
})
t.Run("filter chinese", func(t *testing.T) {
result := filterItems(items, "模型")
if len(result) != 1 || result[0].Name != "模型-chinese" {
t.Errorf("expected 模型-chinese, got %v", result)
}
})
t.Run("filter emoji", func(t *testing.T) {
result := filterItems(items, "🦙")
if len(result) != 1 || result[0].Name != "émoji-🦙" {
t.Errorf("expected émoji-🦙, got %v", result)
}
})
t.Run("filter accented char", func(t *testing.T) {
result := filterItems(items, "émoji")
if len(result) != 1 || result[0].Name != "émoji-🦙" {
t.Errorf("expected émoji-🦙, got %v", result)
}
})
}
// TestMultiSelectState_FilterReducesBelowHighlight verifies highlight resets when filter reduces list.
func TestMultiSelectState_FilterReducesBelowHighlight(t *testing.T) {
items := []selectItem{
{Name: "apple"},
{Name: "banana"},
{Name: "cherry"},
}
s := newMultiSelectState(items, nil)
s.highlighted = 2 // Highlight "cherry"
// Type a filter that removes cherry
s.handleInput(eventChar, 'a')
if s.highlighted != 0 {
t.Errorf("expected highlighted=0 after filter, got %d", s.highlighted)
}
}
// TestMultiSelectState_EmptyItems verifies handling of empty item list.
// Empty list should be handled gracefully.
func TestMultiSelectState_EmptyItems(t *testing.T) {
s := newMultiSelectState([]selectItem{}, nil)
// Toggle should not panic on empty list
s.toggleItem()
if s.selectedCount() != 0 {
t.Errorf("expected 0 selected for empty list, got %d", s.selectedCount())
}
// Render should handle empty list
var buf bytes.Buffer
lineCount := renderMultiSelect(&buf, "Select:", s)
if lineCount == 0 {
t.Error("renderMultiSelect should produce output even for empty list")
}
if !strings.Contains(buf.String(), "no matches") {
t.Error("expected 'no matches' for empty list")
}
}
// TestSelectState_RenderWithDescriptions verifies rendering items with descriptions.
func TestSelectState_RenderWithDescriptions(t *testing.T) {
items := []selectItem{
{Name: "item1", Description: "First item description"},
{Name: "item2", Description: ""},
{Name: "item3", Description: "Third item"},
}
s := newSelectState(items)
var buf bytes.Buffer
renderSelect(&buf, "Select:", s)
output := buf.String()
if !strings.Contains(output, "First item description") {
t.Error("expected description to be rendered")
}
if !strings.Contains(output, "item2") {
t.Error("expected item without description to be rendered")
}
}

View File

@@ -159,6 +159,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
sb.WriteString(before)
if !ok {
fmt.Fprintln(&sb)
scanner.Prompt.UseAlt = true
continue
}

View File

@@ -609,3 +609,49 @@ func ImageGenerationsMiddleware() gin.HandlerFunc {
c.Next()
}
}
func ImageEditsMiddleware() gin.HandlerFunc {
return func(c *gin.Context) {
var req openai.ImageEditRequest
if err := c.ShouldBindJSON(&req); err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, openai.NewError(http.StatusBadRequest, err.Error()))
return
}
if req.Prompt == "" {
c.AbortWithStatusJSON(http.StatusBadRequest, openai.NewError(http.StatusBadRequest, "prompt is required"))
return
}
if req.Model == "" {
c.AbortWithStatusJSON(http.StatusBadRequest, openai.NewError(http.StatusBadRequest, "model is required"))
return
}
if req.Image == "" {
c.AbortWithStatusJSON(http.StatusBadRequest, openai.NewError(http.StatusBadRequest, "image is required"))
return
}
genReq, err := openai.FromImageEditRequest(req)
if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, openai.NewError(http.StatusBadRequest, err.Error()))
return
}
var b bytes.Buffer
if err := json.NewEncoder(&b).Encode(genReq); err != nil {
c.AbortWithStatusJSON(http.StatusInternalServerError, openai.NewError(http.StatusInternalServerError, err.Error()))
return
}
c.Request.Body = io.NopCloser(&b)
w := &ImageWriter{
BaseWriter: BaseWriter{ResponseWriter: c.Writer},
}
c.Writer = w
c.Next()
}
}

View File

@@ -1112,3 +1112,129 @@ func TestImageWriterResponse(t *testing.T) {
t.Errorf("expected image data 'dGVzdC1pbWFnZS1kYXRh', got %s", imageResp.Data[0].B64JSON)
}
}
func TestImageEditsMiddleware(t *testing.T) {
type testCase struct {
name string
body string
req api.GenerateRequest
err openai.ErrorResponse
}
var capturedRequest *api.GenerateRequest
// Base64-encoded test image (1x1 pixel PNG)
testImage := ""
decodedImage, _ := base64.StdEncoding.DecodeString("iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNk+A8AAQUBAScY42YAAAAASUVORK5CYII=")
testCases := []testCase{
{
name: "image edit basic",
body: `{
"model": "test-model",
"prompt": "make it blue",
"image": "` + testImage + `"
}`,
req: api.GenerateRequest{
Model: "test-model",
Prompt: "make it blue",
Images: []api.ImageData{decodedImage},
},
},
{
name: "image edit with size",
body: `{
"model": "test-model",
"prompt": "make it blue",
"image": "` + testImage + `",
"size": "512x768"
}`,
req: api.GenerateRequest{
Model: "test-model",
Prompt: "make it blue",
Images: []api.ImageData{decodedImage},
Width: 512,
Height: 768,
},
},
{
name: "image edit missing prompt",
body: `{
"model": "test-model",
"image": "` + testImage + `"
}`,
err: openai.ErrorResponse{
Error: openai.Error{
Message: "prompt is required",
Type: "invalid_request_error",
},
},
},
{
name: "image edit missing model",
body: `{
"prompt": "make it blue",
"image": "` + testImage + `"
}`,
err: openai.ErrorResponse{
Error: openai.Error{
Message: "model is required",
Type: "invalid_request_error",
},
},
},
{
name: "image edit missing image",
body: `{
"model": "test-model",
"prompt": "make it blue"
}`,
err: openai.ErrorResponse{
Error: openai.Error{
Message: "image is required",
Type: "invalid_request_error",
},
},
},
}
endpoint := func(c *gin.Context) {
c.Status(http.StatusOK)
}
gin.SetMode(gin.TestMode)
router := gin.New()
router.Use(ImageEditsMiddleware(), captureRequestMiddleware(&capturedRequest))
router.Handle(http.MethodPost, "/api/generate", endpoint)
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
req, _ := http.NewRequest(http.MethodPost, "/api/generate", strings.NewReader(tc.body))
req.Header.Set("Content-Type", "application/json")
defer func() { capturedRequest = nil }()
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
if tc.err.Error.Message != "" {
var errResp openai.ErrorResponse
if err := json.Unmarshal(resp.Body.Bytes(), &errResp); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(tc.err, errResp); diff != "" {
t.Fatalf("errors did not match:\n%s", diff)
}
return
}
if resp.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d: %s", resp.Code, resp.Body.String())
}
if diff := cmp.Diff(&tc.req, capturedRequest); diff != "" {
t.Fatalf("requests did not match:\n%s", diff)
}
})
}
}

View File

@@ -794,3 +794,47 @@ func ToImageGenerationResponse(resp api.GenerateResponse) ImageGenerationRespons
Data: data,
}
}
// ImageEditRequest is an OpenAI-compatible image edit request.
type ImageEditRequest struct {
Model string `json:"model"`
Prompt string `json:"prompt"`
Image string `json:"image"` // Base64-encoded image data
Size string `json:"size,omitempty"` // e.g., "1024x1024"
Seed *int64 `json:"seed,omitempty"`
}
// FromImageEditRequest converts an OpenAI image edit request to an Ollama GenerateRequest.
func FromImageEditRequest(r ImageEditRequest) (api.GenerateRequest, error) {
req := api.GenerateRequest{
Model: r.Model,
Prompt: r.Prompt,
}
// Decode the input image
if r.Image != "" {
imgData, err := decodeImageURL(r.Image)
if err != nil {
return api.GenerateRequest{}, fmt.Errorf("invalid image: %w", err)
}
req.Images = append(req.Images, imgData)
}
// Parse size if provided (e.g., "1024x768")
if r.Size != "" {
var w, h int32
if _, err := fmt.Sscanf(r.Size, "%dx%d", &w, &h); err == nil {
req.Width = w
req.Height = h
}
}
if r.Seed != nil {
if req.Options == nil {
req.Options = map[string]any{}
}
req.Options["seed"] = *r.Seed
}
return req, nil
}

View File

@@ -448,3 +448,86 @@ func TestFromChatRequest_TopLogprobsRange(t *testing.T) {
})
}
}
func TestFromImageEditRequest_Basic(t *testing.T) {
req := ImageEditRequest{
Model: "test-model",
Prompt: "make it blue",
Image: prefix + image,
}
result, err := FromImageEditRequest(req)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if result.Model != "test-model" {
t.Errorf("expected model 'test-model', got %q", result.Model)
}
if result.Prompt != "make it blue" {
t.Errorf("expected prompt 'make it blue', got %q", result.Prompt)
}
if len(result.Images) != 1 {
t.Fatalf("expected 1 image, got %d", len(result.Images))
}
}
func TestFromImageEditRequest_WithSize(t *testing.T) {
req := ImageEditRequest{
Model: "test-model",
Prompt: "make it blue",
Image: prefix + image,
Size: "512x768",
}
result, err := FromImageEditRequest(req)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if result.Width != 512 {
t.Errorf("expected width 512, got %d", result.Width)
}
if result.Height != 768 {
t.Errorf("expected height 768, got %d", result.Height)
}
}
func TestFromImageEditRequest_WithSeed(t *testing.T) {
seed := int64(12345)
req := ImageEditRequest{
Model: "test-model",
Prompt: "make it blue",
Image: prefix + image,
Seed: &seed,
}
result, err := FromImageEditRequest(req)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if result.Options == nil {
t.Fatal("expected options to be set")
}
if result.Options["seed"] != seed {
t.Errorf("expected seed %d, got %v", seed, result.Options["seed"])
}
}
func TestFromImageEditRequest_InvalidImage(t *testing.T) {
req := ImageEditRequest{
Model: "test-model",
Prompt: "make it blue",
Image: "not-valid-base64",
}
_, err := FromImageEditRequest(req)
if err == nil {
t.Error("expected error for invalid image")
}
}

View File

@@ -95,7 +95,21 @@ func (i *Instance) Readline() (string, error) {
var currentLineBuf []rune
// draining tracks if we're processing buffered input from cooked mode.
// In cooked mode Enter sends \n, but in raw mode Ctrl+J sends \n.
// We treat \n from cooked mode as submit, not multiline.
// We check Buffered() after the first read since the bufio buffer is
// empty until then. This is compatible with """ multiline mode in
// interactive.go since each Readline() call is independent.
var draining, stopDraining bool
for {
// Apply deferred state change from previous iteration
if stopDraining {
draining = false
stopDraining = false
}
// don't show placeholder when pasting unless we're in multiline mode
showPlaceholder := !i.Pasting || i.Prompt.UseAlt
if buf.IsEmpty() && showPlaceholder {
@@ -105,6 +119,15 @@ func (i *Instance) Readline() (string, error) {
r, err := i.Terminal.Read()
// After reading, check if there's more buffered data. If so, we're
// processing cooked-mode input. Once buffer empties, the current
// char is the last buffered one (still drain it), then stop next iteration.
if i.Terminal.reader.Buffered() > 0 {
draining = true
} else if draining {
stopDraining = true
}
if buf.IsEmpty() {
fmt.Print(ClearToEOL)
}
@@ -232,15 +255,20 @@ func (i *Instance) Readline() (string, error) {
fd := os.Stdin.Fd()
return handleCharCtrlZ(fd, i.Terminal.termios)
case CharCtrlJ:
i.pastedLines = append(i.pastedLines, buf.String())
buf.Buf.Clear()
buf.Pos = 0
buf.DisplayPos = 0
buf.LineHasSpace.Clear()
fmt.Println()
fmt.Print(i.Prompt.AltPrompt)
i.Prompt.UseAlt = true
continue
// If not draining cooked-mode input, treat as multiline
if !draining {
i.pastedLines = append(i.pastedLines, buf.String())
buf.Buf.Clear()
buf.Pos = 0
buf.DisplayPos = 0
buf.LineHasSpace.Clear()
fmt.Println()
fmt.Print(i.Prompt.AltPrompt)
i.Prompt.UseAlt = true
continue
}
// Draining cooked-mode input: treat \n as submit
fallthrough
case CharEnter:
output := buf.String()
if len(i.pastedLines) > 0 {

View File

@@ -75,12 +75,6 @@ type Model struct {
func (m *Model) Capabilities() []model.Capability {
capabilities := []model.Capability{}
// Check for image generation model via config capabilities
if slices.Contains(m.Config.Capabilities, "image") {
return []model.Capability{model.CapabilityImage}
}
// Check for completion capability
if m.ModelPath != "" {
f, err := gguf.Open(m.ModelPath)
if err == nil {

View File

@@ -56,6 +56,15 @@ func TestModelCapabilities(t *testing.T) {
},
expectedCaps: []model.Capability{model.CapabilityImage},
},
{
name: "model with image and vision capability (image editing)",
model: Model{
Config: model.ConfigV2{
Capabilities: []string{"image", "vision"},
},
},
expectedCaps: []model.Capability{model.CapabilityImage, model.CapabilityVision},
},
{
name: "model with completion capability",
model: Model{

View File

@@ -1604,8 +1604,9 @@ func (s *Server) GenerateRoutes(rc *ollama.Registry) (http.Handler, error) {
r.GET("/v1/models", middleware.ListMiddleware(), s.ListHandler)
r.GET("/v1/models/:model", middleware.RetrieveMiddleware(), s.ShowHandler)
r.POST("/v1/responses", middleware.ResponsesMiddleware(), s.ChatHandler)
// OpenAI-compatible image generation endpoint
// OpenAI-compatible image generation endpoints
r.POST("/v1/images/generations", middleware.ImageGenerationsMiddleware(), s.GenerateHandler)
r.POST("/v1/images/edits", middleware.ImageEditsMiddleware(), s.GenerateHandler)
// Inference (Anthropic compatibility)
r.POST("/v1/messages", middleware.AnthropicMessagesMiddleware(), s.ChatHandler)
@@ -2507,8 +2508,14 @@ func (s *Server) handleImageGenerate(c *gin.Context, req api.GenerateRequest, mo
return
}
// Set headers for streaming response
c.Header("Content-Type", "application/x-ndjson")
// Check streaming preference
isStreaming := req.Stream == nil || *req.Stream
contentType := "application/x-ndjson"
if !isStreaming {
contentType = "application/json; charset=utf-8"
}
c.Header("Content-Type", contentType)
// Get seed from options if provided
var seed int64
@@ -2523,13 +2530,21 @@ func (s *Server) handleImageGenerate(c *gin.Context, req api.GenerateRequest, mo
}
}
var images []llm.ImageData
for i, imgData := range req.Images {
images = append(images, llm.ImageData{ID: i, Data: imgData})
}
var streamStarted bool
var finalResponse api.GenerateResponse
if err := runner.Completion(c.Request.Context(), llm.CompletionRequest{
Prompt: req.Prompt,
Width: req.Width,
Height: req.Height,
Steps: req.Steps,
Seed: seed,
Images: images,
}, func(cr llm.CompletionResponse) {
streamStarted = true
res := api.GenerateResponse{
@@ -2553,6 +2568,11 @@ func (s *Server) handleImageGenerate(c *gin.Context, req api.GenerateRequest, mo
res.Metrics.LoadDuration = checkpointLoaded.Sub(checkpointStart)
}
if !isStreaming {
finalResponse = res
return
}
data, _ := json.Marshal(res)
c.Writer.Write(append(data, '\n'))
c.Writer.Flush()
@@ -2562,5 +2582,10 @@ func (s *Server) handleImageGenerate(c *gin.Context, req api.GenerateRequest, mo
if !streamStarted {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
}
return
}
if !isStreaming {
c.JSON(http.StatusOK, finalResponse)
}
}

View File

@@ -19,7 +19,9 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/manifest"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/types/model"
)
// testPropsMap creates a ToolPropertiesMap from a map (convenience function for tests)
@@ -71,6 +73,8 @@ func (mockRunner) Tokenize(_ context.Context, s string) (tokens []int, err error
return
}
func (mockRunner) Ping(_ context.Context) error { return nil }
func newMockServer(mock *mockRunner) func(ml.SystemInfo, []ml.DeviceInfo, string, *ggml.GGML, []string, []string, api.Options, int) (llm.LlamaServer, error) {
return func(_ ml.SystemInfo, _ []ml.DeviceInfo, _ string, _ *ggml.GGML, _, _ []string, _ api.Options, _ int) (llm.LlamaServer, error) {
return mock, nil
@@ -2193,3 +2197,246 @@ func TestGenerateUnload(t *testing.T) {
}
})
}
func TestGenerateWithImages(t *testing.T) {
gin.SetMode(gin.TestMode)
mock := mockRunner{
CompletionResponse: llm.CompletionResponse{
Done: true,
DoneReason: llm.DoneReasonStop,
PromptEvalCount: 1,
PromptEvalDuration: 1,
EvalCount: 1,
EvalDuration: 1,
},
}
s := Server{
sched: &Scheduler{
pendingReqCh: make(chan *LlmRequest, 1),
finishedReqCh: make(chan *LlmRequest, 1),
expiredCh: make(chan *runnerRef, 1),
unloadedCh: make(chan any, 1),
loaded: make(map[string]*runnerRef),
newServerFn: newMockServer(&mock),
getGpuFn: getGpuFn,
getSystemInfoFn: getSystemInfoFn,
waitForRecovery: 250 * time.Millisecond,
loadFn: func(req *LlmRequest, _ *ggml.GGML, _ ml.SystemInfo, _ []ml.DeviceInfo, _ bool) bool {
time.Sleep(time.Millisecond)
req.successCh <- &runnerRef{
llama: &mock,
}
return false
},
},
}
go s.sched.Run(t.Context())
_, digest := createBinFile(t, ggml.KV{
"general.architecture": "llama",
"llama.block_count": uint32(1),
"llama.context_length": uint32(8192),
"llama.embedding_length": uint32(4096),
"llama.attention.head_count": uint32(32),
"llama.attention.head_count_kv": uint32(8),
"tokenizer.ggml.tokens": []string{""},
"tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0},
}, []*ggml.Tensor{
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_gate.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_up.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_k.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_q.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_v.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
})
w := createRequest(t, s.CreateHandler, api.CreateRequest{
Model: "test",
Files: map[string]string{"file.gguf": digest},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
t.Run("images passed to completion request", func(t *testing.T) {
testImage := []byte("test-image-data")
mock.CompletionResponse.Content = "Image processed"
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test",
Prompt: "Describe this image",
Images: []api.ImageData{testImage},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d: %s", w.Code, w.Body.String())
}
// Verify images were passed to the completion request
if len(mock.CompletionRequest.Images) != 1 {
t.Fatalf("expected 1 image in completion request, got %d", len(mock.CompletionRequest.Images))
}
if !bytes.Equal(mock.CompletionRequest.Images[0].Data, testImage) {
t.Errorf("image data mismatch in completion request")
}
if mock.CompletionRequest.Images[0].ID != 0 {
t.Errorf("expected image ID 0, got %d", mock.CompletionRequest.Images[0].ID)
}
})
t.Run("multiple images passed to completion request", func(t *testing.T) {
testImage1 := []byte("test-image-1")
testImage2 := []byte("test-image-2")
mock.CompletionResponse.Content = "Images processed"
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test",
Prompt: "Compare these images",
Images: []api.ImageData{testImage1, testImage2},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d: %s", w.Code, w.Body.String())
}
// Verify both images were passed
if len(mock.CompletionRequest.Images) != 2 {
t.Fatalf("expected 2 images in completion request, got %d", len(mock.CompletionRequest.Images))
}
if !bytes.Equal(mock.CompletionRequest.Images[0].Data, testImage1) {
t.Errorf("first image data mismatch")
}
if !bytes.Equal(mock.CompletionRequest.Images[1].Data, testImage2) {
t.Errorf("second image data mismatch")
}
if mock.CompletionRequest.Images[0].ID != 0 || mock.CompletionRequest.Images[1].ID != 1 {
t.Errorf("expected image IDs 0 and 1, got %d and %d",
mock.CompletionRequest.Images[0].ID, mock.CompletionRequest.Images[1].ID)
}
})
t.Run("no images when none provided", func(t *testing.T) {
mock.CompletionResponse.Content = "No images"
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test",
Prompt: "Hello",
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d: %s", w.Code, w.Body.String())
}
// Verify no images in completion request
if len(mock.CompletionRequest.Images) != 0 {
t.Fatalf("expected 0 images in completion request, got %d", len(mock.CompletionRequest.Images))
}
})
}
// TestImageGenerateStreamFalse tests that image generation respects stream=false
// and returns a single JSON response instead of streaming ndjson.
func TestImageGenerateStreamFalse(t *testing.T) {
gin.SetMode(gin.TestMode)
p := t.TempDir()
t.Setenv("OLLAMA_MODELS", p)
mock := mockRunner{}
mock.CompletionFn = func(ctx context.Context, r llm.CompletionRequest, fn func(r llm.CompletionResponse)) error {
fn(llm.CompletionResponse{Step: 1, TotalSteps: 3, Done: false})
fn(llm.CompletionResponse{Step: 2, TotalSteps: 3, Done: false})
fn(llm.CompletionResponse{Step: 3, TotalSteps: 3, Done: true, DoneReason: llm.DoneReasonStop, Image: "base64image"})
return nil
}
opts := api.DefaultOptions()
s := Server{
sched: &Scheduler{
pendingReqCh: make(chan *LlmRequest, 1),
finishedReqCh: make(chan *LlmRequest, 1),
expiredCh: make(chan *runnerRef, 1),
unloadedCh: make(chan any, 1),
loaded: map[string]*runnerRef{
"": {
llama: &mock,
Options: &opts,
model: &Model{Config: model.ConfigV2{Capabilities: []string{"image"}}},
numParallel: 1,
},
},
newServerFn: newMockServer(&mock),
getGpuFn: getGpuFn,
getSystemInfoFn: getSystemInfoFn,
},
}
go s.sched.Run(t.Context())
// Create model manifest with image capability
n := model.ParseName("test-image")
cfg := model.ConfigV2{Capabilities: []string{"image"}}
var b bytes.Buffer
if err := json.NewEncoder(&b).Encode(&cfg); err != nil {
t.Fatal(err)
}
configLayer, err := manifest.NewLayer(&b, "application/vnd.docker.container.image.v1+json")
if err != nil {
t.Fatal(err)
}
if err := manifest.WriteManifest(n, configLayer, nil); err != nil {
t.Fatal(err)
}
streamFalse := false
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test-image",
Prompt: "test prompt",
Stream: &streamFalse,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d: %s", w.Code, w.Body.String())
}
if ct := w.Header().Get("Content-Type"); ct != "application/json; charset=utf-8" {
t.Errorf("expected Content-Type 'application/json; charset=utf-8', got %q", ct)
}
body := w.Body.String()
lines := strings.Split(strings.TrimSpace(body), "\n")
if len(lines) != 1 {
t.Errorf("expected 1 response line, got %d:\n%s", len(lines), body)
}
var resp api.GenerateResponse
if err := json.Unmarshal([]byte(lines[0]), &resp); err != nil {
t.Fatalf("failed to parse response: %v", err)
}
if resp.Image != "base64image" {
t.Errorf("expected image 'base64image', got %q", resp.Image)
}
if !resp.Done {
t.Errorf("expected done=true")
}
}

View File

@@ -9,7 +9,7 @@ import "github.com/ollama/ollama/x/imagegen/mlx"
// shallow layers change little between consecutive steps, so we can
// cache their outputs and skip recomputation on non-refresh steps.
//
// Supports both single-stream (Z-Image) and dual-stream (Qwen-Image) architectures:
// Supports both single-stream and dual-stream architectures:
// - Single-stream: use Get/Set for the single output per layer
// - Dual-stream: use Get/Set for stream 1 (imgH), Get2/Set2 for stream 2 (txtH)
//
@@ -87,7 +87,7 @@ func (c *StepCache) Set(layer int, arr *mlx.Array) {
}
// Get2 returns the cached output for a layer (stream 2), or nil if not cached.
// Used for dual-stream architectures like Qwen-Image.
// Used for dual-stream architectures.
func (c *StepCache) Get2(layer int) *mlx.Array {
if layer < len(c.layers2) {
return c.layers2[layer]
@@ -96,7 +96,7 @@ func (c *StepCache) Get2(layer int) *mlx.Array {
}
// Set2 stores a layer output (stream 2), freeing any previous value.
// Used for dual-stream architectures like Qwen-Image.
// Used for dual-stream architectures.
func (c *StepCache) Set2(layer int, arr *mlx.Array) {
if layer < len(c.layers2) {
if c.layers2[layer] != nil {

View File

@@ -10,7 +10,10 @@ import (
"errors"
"fmt"
"io"
"net/http"
"os"
"regexp"
"slices"
"strconv"
"strings"
"time"
@@ -75,6 +78,7 @@ Image Generation Flags (experimental):
// RunCLI handles the CLI for image generation models.
// Returns true if it handled the request, false if the caller should continue with normal flow.
// Supports flags: --width, --height, --steps, --seed, --negative
// Image paths can be included in the prompt and will be extracted automatically.
func RunCLI(cmd *cobra.Command, name string, prompt string, interactive bool, keepAlive *api.Duration) error {
// Get options from flags (with env var defaults)
opts := DefaultOptions()
@@ -111,9 +115,16 @@ func generateImageWithOptions(cmd *cobra.Command, modelName, prompt string, keep
return err
}
// Extract any image paths from the prompt
prompt, images, err := extractFileData(prompt)
if err != nil {
return err
}
req := &api.GenerateRequest{
Model: modelName,
Prompt: prompt,
Images: images,
Width: int32(opts.Width),
Height: int32(opts.Height),
Steps: int32(opts.Steps),
@@ -254,14 +265,33 @@ func runInteractive(cmd *cobra.Command, modelName string, keepAlive *api.Duratio
printCurrentSettings(opts)
continue
case strings.HasPrefix(line, "/"):
fmt.Fprintf(os.Stderr, "Unknown command: %s (try /help)\n", line)
// Check if it's a file path, not a command
args := strings.Fields(line)
isFile := false
for _, f := range extractFileNames(line) {
if strings.HasPrefix(f, args[0]) {
isFile = true
break
}
}
if !isFile {
fmt.Fprintf(os.Stderr, "Unknown command: %s (try /help)\n", args[0])
continue
}
}
// Extract any image paths from the input
prompt, images, err := extractFileData(line)
if err != nil {
fmt.Fprintf(os.Stderr, "Error: %v\n", err)
continue
}
// Generate image with current options
req := &api.GenerateRequest{
Model: modelName,
Prompt: line,
Prompt: prompt,
Images: images,
Width: int32(opts.Width),
Height: int32(opts.Height),
Steps: int32(opts.Steps),
@@ -486,3 +516,59 @@ func displayImageInTerminal(imagePath string) bool {
return false
}
}
// extractFileNames finds image file paths in the input string.
func extractFileNames(input string) []string {
// Regex to match file paths with image extensions
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png|webp)\b`
re := regexp.MustCompile(regexPattern)
return re.FindAllString(input, -1)
}
// extractFileData extracts image data from file paths found in the input.
// Returns the cleaned prompt (with file paths removed) and the image data.
func extractFileData(input string) (string, []api.ImageData, error) {
filePaths := extractFileNames(input)
var imgs []api.ImageData
for _, fp := range filePaths {
// Normalize escaped spaces
nfp := strings.ReplaceAll(fp, "\\ ", " ")
nfp = strings.ReplaceAll(nfp, "%20", " ")
data, err := getImageData(nfp)
if errors.Is(err, os.ErrNotExist) {
continue
} else if err != nil {
return "", nil, err
}
fmt.Fprintf(os.Stderr, "Added image '%s'\n", nfp)
input = strings.ReplaceAll(input, fp, "")
imgs = append(imgs, data)
}
return strings.TrimSpace(input), imgs, nil
}
// getImageData reads and validates image data from a file.
func getImageData(filePath string) ([]byte, error) {
file, err := os.Open(filePath)
if err != nil {
return nil, err
}
defer file.Close()
buf := make([]byte, 512)
_, err = file.Read(buf)
if err != nil {
return nil, err
}
contentType := http.DetectContentType(buf)
allowedTypes := []string{"image/jpeg", "image/jpg", "image/png", "image/webp"}
if !slices.Contains(allowedTypes, contentType) {
return nil, fmt.Errorf("invalid image type: %s", contentType)
}
// Re-read the full file
return os.ReadFile(filePath)
}

View File

@@ -21,8 +21,6 @@ import (
"github.com/ollama/ollama/x/imagegen/models/gemma3"
"github.com/ollama/ollama/x/imagegen/models/gpt_oss"
"github.com/ollama/ollama/x/imagegen/models/llama"
"github.com/ollama/ollama/x/imagegen/models/qwen_image"
"github.com/ollama/ollama/x/imagegen/models/qwen_image_edit"
"github.com/ollama/ollama/x/imagegen/models/zimage"
"github.com/ollama/ollama/x/imagegen/safetensors"
)
@@ -61,14 +59,11 @@ func main() {
listTensors := flag.Bool("list", false, "List tensors only")
cpuProfile := flag.String("cpuprofile", "", "Write CPU profile to file")
gpuCapture := flag.String("gpu-capture", "", "Capture GPU trace to .gputrace file (run with MTL_CAPTURE_ENABLED=1)")
layerCache := flag.Bool("layer-cache", false, "Enable layer caching for faster diffusion (Z-Image, Qwen-Image). Not compatible with CFG/negative prompts.")
wiredLimitGB := flag.Int("wired-limit", 32, "Metal wired memory limit in GB")
// Legacy mode flags
zimageFlag := flag.Bool("zimage", false, "Z-Image generation")
flux2Flag := flag.Bool("flux2", false, "FLUX.2 Klein generation")
qwenImage := flag.Bool("qwen-image", false, "Qwen-Image text-to-image generation")
qwenImageEdit := flag.Bool("qwen-image-edit", false, "Qwen-Image-Edit image editing")
var inputImages stringSlice
flag.Var(&inputImages, "input-image", "Input image for image editing (can be specified multiple times)")
negativePrompt := flag.String("negative-prompt", "", "Negative prompt for CFG (empty = no CFG, matching Python)")
@@ -166,60 +161,6 @@ func main() {
if err == nil {
err = saveImageArray(img, *out)
}
case *qwenImage:
m, loadErr := qwen_image.LoadPersistent(*modelPath)
if loadErr != nil {
log.Fatal(loadErr)
}
var img *mlx.Array
img, err = m.GenerateFromConfig(&qwen_image.GenerateConfig{
Prompt: *prompt,
NegativePrompt: *negativePrompt,
CFGScale: float32(*cfgScale),
Width: int32(*width),
Height: int32(*height),
Steps: *steps,
Seed: *seed,
LayerCache: *layerCache,
})
if err == nil {
err = saveImageArray(img, *out)
}
case *qwenImageEdit:
if len(inputImages) == 0 {
log.Fatal("qwen-image-edit requires at least one -input-image")
}
m, loadErr := qwen_image_edit.LoadPersistent(*modelPath)
if loadErr != nil {
log.Fatal(loadErr)
}
// For image editing, use 0 for dimensions to auto-detect from input image
// unless explicitly overridden from defaults
editWidth := int32(0)
editHeight := int32(0)
if *width != 1024 {
editWidth = int32(*width)
}
if *height != 1024 {
editHeight = int32(*height)
}
cfg := &qwen_image_edit.GenerateConfig{
Prompt: *prompt,
NegativePrompt: *negativePrompt,
CFGScale: float32(*cfgScale),
Width: editWidth,
Height: editHeight,
Steps: *steps,
Seed: *seed,
}
var img *mlx.Array
img, err = m.EditFromConfig(inputImages, cfg)
if err == nil {
err = saveImageArray(img, *out)
}
case *listTensors:
err = listModelTensors(*modelPath)
default:

View File

@@ -161,6 +161,17 @@ func (m *ModelManifest) HasTensorLayers() bool {
return false
}
// TotalTensorSize returns the total size in bytes of all tensor layers.
func (m *ModelManifest) TotalTensorSize() int64 {
var total int64
for _, layer := range m.Manifest.Layers {
if layer.MediaType == "application/vnd.ollama.image.tensor" {
total += layer.Size
}
}
return total
}
// ModelInfo contains metadata about an image generation model.
type ModelInfo struct {
Architecture string

View File

@@ -5,6 +5,37 @@ import (
"testing"
)
func TestTotalTensorSize(t *testing.T) {
m := &ModelManifest{
Manifest: &Manifest{
Layers: []ManifestLayer{
{MediaType: "application/vnd.ollama.image.tensor", Size: 1000},
{MediaType: "application/vnd.ollama.image.tensor", Size: 2000},
{MediaType: "application/vnd.ollama.image.json", Size: 500}, // not a tensor
{MediaType: "application/vnd.ollama.image.tensor", Size: 3000},
},
},
}
got := m.TotalTensorSize()
want := int64(6000)
if got != want {
t.Errorf("TotalTensorSize() = %d, want %d", got, want)
}
}
func TestTotalTensorSizeEmpty(t *testing.T) {
m := &ModelManifest{
Manifest: &Manifest{
Layers: []ManifestLayer{},
},
}
if got := m.TotalTensorSize(); got != 0 {
t.Errorf("TotalTensorSize() = %d, want 0", got)
}
}
func TestManifestAndBlobDirsRespectOLLAMAModels(t *testing.T) {
modelsDir := filepath.Join(t.TempDir(), "models")

View File

@@ -16,18 +16,9 @@ import (
"runtime"
)
// GB is a convenience constant for gigabytes.
const GB = 1024 * 1024 * 1024
// SupportedBackends lists the backends that support image generation.
var SupportedBackends = []string{"metal", "cuda", "cpu"}
// modelVRAMEstimates maps pipeline class names to their estimated VRAM requirements.
var modelVRAMEstimates = map[string]uint64{
"ZImagePipeline": 21 * GB, // ~21GB for Z-Image (text encoder + transformer + VAE)
"FluxPipeline": 20 * GB, // ~20GB for Flux
}
// CheckPlatformSupport validates that image generation is supported on the current platform.
// Returns nil if supported, or an error describing why it's not supported.
func CheckPlatformSupport() error {
@@ -47,17 +38,6 @@ func CheckPlatformSupport() error {
}
}
// CheckMemoryRequirements validates that there's enough memory for image generation.
// Returns nil if memory is sufficient, or an error if not.
func CheckMemoryRequirements(modelName string, availableMemory uint64) error {
required := EstimateVRAM(modelName)
if availableMemory < required {
return fmt.Errorf("insufficient memory for image generation: need %d GB, have %d GB",
required/GB, availableMemory/GB)
}
return nil
}
// ResolveModelName checks if a model name is a known image generation model.
// Returns the normalized model name if found, empty string otherwise.
func ResolveModelName(modelName string) string {
@@ -68,16 +48,6 @@ func ResolveModelName(modelName string) string {
return ""
}
// EstimateVRAM returns the estimated VRAM needed for an image generation model.
// Returns a conservative default of 21GB if the model type cannot be determined.
func EstimateVRAM(modelName string) uint64 {
className := DetectModelType(modelName)
if estimate, ok := modelVRAMEstimates[className]; ok {
return estimate
}
return 21 * GB
}
// DetectModelType reads model_index.json and returns the model type.
// Checks both "architecture" (Ollama format) and "_class_name" (diffusers format).
// Returns empty string if detection fails.

View File

@@ -30,69 +30,6 @@ func TestCheckPlatformSupport(t *testing.T) {
}
}
func TestCheckMemoryRequirements(t *testing.T) {
tests := []struct {
name string
availableMemory uint64
wantErr bool
}{
{
name: "sufficient memory",
availableMemory: 32 * GB,
wantErr: false,
},
{
name: "exactly enough memory",
availableMemory: 21 * GB,
wantErr: false,
},
{
name: "insufficient memory",
availableMemory: 16 * GB,
wantErr: true,
},
{
name: "zero memory",
availableMemory: 0,
wantErr: true,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
// Use a non-existent model name which will default to 21GB estimate
err := CheckMemoryRequirements("nonexistent-model", tt.availableMemory)
if (err != nil) != tt.wantErr {
t.Errorf("CheckMemoryRequirements() error = %v, wantErr %v", err, tt.wantErr)
}
})
}
}
func TestModelVRAMEstimates(t *testing.T) {
// Verify the VRAM estimates map has expected entries
expected := map[string]uint64{
"ZImagePipeline": 21 * GB,
"FluxPipeline": 20 * GB,
}
for name, expectedVRAM := range expected {
if actual, ok := modelVRAMEstimates[name]; !ok {
t.Errorf("Missing VRAM estimate for %s", name)
} else if actual != expectedVRAM {
t.Errorf("VRAM estimate for %s = %d GB, want %d GB", name, actual/GB, expectedVRAM/GB)
}
}
}
func TestEstimateVRAMDefault(t *testing.T) {
// Non-existent model should return default 21GB
vram := EstimateVRAM("nonexistent-model-that-does-not-exist")
if vram != 21*GB {
t.Errorf("EstimateVRAM() = %d GB, want 21 GB", vram/GB)
}
}
func TestResolveModelName(t *testing.T) {
// Non-existent model should return empty string
result := ResolveModelName("nonexistent-model")

View File

@@ -177,6 +177,20 @@ func (m *Model) GenerateImage(ctx context.Context, prompt string, width, height
})
}
// GenerateImageWithInputs implements runner.ImageEditModel interface.
// It generates an image conditioned on the provided input images for image editing.
func (m *Model) GenerateImageWithInputs(ctx context.Context, prompt string, width, height int32, steps int, seed int64, inputImages []image.Image, progress func(step, total int)) (*mlx.Array, error) {
return m.GenerateFromConfig(ctx, &GenerateConfig{
Prompt: prompt,
Width: width,
Height: height,
Steps: steps,
Seed: seed,
InputImages: inputImages,
Progress: progress,
})
}
// MaxOutputPixels is the maximum output resolution (4 megapixels, ~2048x2048)
const MaxOutputPixels = 2048 * 2048

View File

@@ -1,87 +0,0 @@
//go:build mlx
package qwen_image
import (
"fmt"
"os"
"path/filepath"
"runtime"
"testing"
"github.com/ollama/ollama/x/imagegen/mlx"
)
// TestMain initializes MLX before running tests.
// If MLX libraries are not available, tests are skipped.
func TestMain(m *testing.M) {
// Change to repo root so ./build/lib/ollama/ path works
_, thisFile, _, _ := runtime.Caller(0)
repoRoot := filepath.Join(filepath.Dir(thisFile), "..", "..", "..", "..")
if err := os.Chdir(repoRoot); err != nil {
fmt.Printf("Failed to change to repo root: %v\n", err)
os.Exit(1)
}
if err := mlx.InitMLX(); err != nil {
fmt.Printf("Skipping qwen_image tests: %v\n", err)
os.Exit(0)
}
os.Exit(m.Run())
}
// TestPipelineOutput runs the full pipeline (integration test).
// Skips if model weights not found. Requires ~50GB VRAM.
func TestPipelineOutput(t *testing.T) {
modelPath := "../../../weights/Qwen-Image-2512"
if _, err := os.Stat(modelPath); os.IsNotExist(err) {
t.Skip("Skipping: model weights not found at " + modelPath)
}
// Load model
pm, err := LoadPersistent(modelPath)
if err != nil {
t.Skipf("Skipping: failed to load model: %v", err)
}
// Run 2-step pipeline (minimum for stable scheduler)
cfg := &GenerateConfig{
Prompt: "a cat",
Width: 256,
Height: 256,
Steps: 2,
Seed: 42,
}
output, err := pm.GenerateFromConfig(cfg)
if err != nil {
t.Fatalf("Pipeline failed: %v", err)
}
mlx.Eval(output)
// Verify output shape [1, C, H, W]
shape := output.Shape()
if len(shape) != 4 {
t.Errorf("Expected 4D output, got %v", shape)
}
if shape[0] != 1 || shape[1] != 3 || shape[2] != cfg.Height || shape[3] != cfg.Width {
t.Errorf("Shape mismatch: got %v, expected [1, 3, %d, %d]", shape, cfg.Height, cfg.Width)
}
// Verify values in expected range [0, 1]
data := output.Data()
minVal, maxVal := float32(1.0), float32(0.0)
for _, v := range data {
if v < minVal {
minVal = v
}
if v > maxVal {
maxVal = v
}
}
t.Logf("Output range: [%.4f, %.4f]", minVal, maxVal)
if minVal < -0.1 || maxVal > 1.1 {
t.Errorf("Output values out of range: [%.4f, %.4f]", minVal, maxVal)
}
}

View File

File diff suppressed because it is too large Load Diff

View File

@@ -1,367 +0,0 @@
//go:build mlx
// Package qwen_image implements the Qwen-Image diffusion transformer model.
package qwen_image
import (
"context"
"fmt"
"path/filepath"
"time"
"github.com/ollama/ollama/x/imagegen/cache"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/tokenizer"
)
// GenerateConfig holds all options for image generation.
type GenerateConfig struct {
Prompt string
NegativePrompt string // Empty = no CFG
CFGScale float32 // Only used if NegativePrompt is set (default: 4.0)
Width int32 // Image width (default: 1024)
Height int32 // Image height (default: 1024)
Steps int // Denoising steps (default: 30)
Seed int64 // Random seed
Progress func(step, totalSteps int) // Optional progress callback
// Layer caching (DeepCache/Learning-to-Cache speedup)
LayerCache bool // Enable layer caching (default: false)
CacheInterval int // Refresh cache every N steps (default: 3)
CacheLayers int // Number of shallow layers to cache (default: 25)
}
// Model represents a Qwen-Image diffusion model.
type Model struct {
ModelPath string
Tokenizer *tokenizer.Tokenizer
TextEncoder *Qwen25VL
Transformer *Transformer
VAEDecoder *VAEDecoder
}
// Load loads the Qwen-Image model from a directory.
func (m *Model) Load(modelPath string) error {
fmt.Println("Loading Qwen-Image model...")
start := time.Now()
if mlx.GPUIsAvailable() {
mlx.SetDefaultDeviceGPU()
mlx.EnableCompile()
}
m.ModelPath = modelPath
// Load tokenizer
fmt.Print(" Loading tokenizer... ")
tokenizerPath := filepath.Join(modelPath, "tokenizer")
tok, err := tokenizer.Load(tokenizerPath)
if err != nil {
return fmt.Errorf("tokenizer: %w", err)
}
m.Tokenizer = tok
fmt.Println("✓")
// Load text encoder (Qwen2.5-VL in text-only mode - skip vision tower for efficiency)
m.TextEncoder = &Qwen25VL{}
if err := m.TextEncoder.LoadTextOnly(filepath.Join(modelPath, "text_encoder")); err != nil {
return fmt.Errorf("text encoder: %w", err)
}
mlx.Eval(mlx.Collect(m.TextEncoder)...)
fmt.Printf(" (%.1f GB, peak %.1f GB)\n",
float64(mlx.MetalGetActiveMemory())/(1024*1024*1024),
float64(mlx.MetalGetPeakMemory())/(1024*1024*1024))
// Load transformer
m.Transformer = &Transformer{}
if err := m.Transformer.Load(filepath.Join(modelPath, "transformer")); err != nil {
return fmt.Errorf("transformer: %w", err)
}
mlx.Eval(mlx.Collect(m.Transformer)...)
fmt.Printf(" (%.1f GB, peak %.1f GB)\n",
float64(mlx.MetalGetActiveMemory())/(1024*1024*1024),
float64(mlx.MetalGetPeakMemory())/(1024*1024*1024))
// Load VAE decoder
m.VAEDecoder = &VAEDecoder{}
if err := m.VAEDecoder.Load(filepath.Join(modelPath, "vae")); err != nil {
return fmt.Errorf("VAE decoder: %w", err)
}
mlx.Eval(mlx.Collect(m.VAEDecoder)...)
fmt.Printf(" (%.1f GB, peak %.1f GB)\n",
float64(mlx.MetalGetActiveMemory())/(1024*1024*1024),
float64(mlx.MetalGetPeakMemory())/(1024*1024*1024))
mem := mlx.MetalGetActiveMemory()
peak := mlx.MetalGetPeakMemory()
fmt.Printf(" Loaded in %.2fs (%.1f GB active, %.1f GB peak)\n",
time.Since(start).Seconds(),
float64(mem)/(1024*1024*1024),
float64(peak)/(1024*1024*1024))
return nil
}
// Generate creates an image from a prompt.
func (m *Model) Generate(prompt string, width, height int32, steps int, seed int64) (*mlx.Array, error) {
return m.GenerateFromConfig(&GenerateConfig{
Prompt: prompt,
Width: width,
Height: height,
Steps: steps,
Seed: seed,
})
}
// GenerateWithProgress creates an image with progress callback.
func (m *Model) GenerateWithProgress(prompt string, width, height int32, steps int, seed int64, progress func(step, totalSteps int)) (*mlx.Array, error) {
return m.GenerateFromConfig(&GenerateConfig{
Prompt: prompt,
Width: width,
Height: height,
Steps: steps,
Seed: seed,
Progress: progress,
})
}
// GenerateWithCFG creates an image with classifier-free guidance.
func (m *Model) GenerateWithCFG(prompt, negativePrompt string, width, height int32, steps int, seed int64, cfgScale float32, progress func(step, totalSteps int)) (*mlx.Array, error) {
return m.GenerateFromConfig(&GenerateConfig{
Prompt: prompt,
NegativePrompt: negativePrompt,
CFGScale: cfgScale,
Width: width,
Height: height,
Steps: steps,
Seed: seed,
Progress: progress,
})
}
// GenerateFromConfig generates an image using the unified config struct.
func (m *Model) GenerateFromConfig(cfg *GenerateConfig) (*mlx.Array, error) {
start := time.Now()
result, err := m.generate(cfg)
if err != nil {
return nil, err
}
if cfg.NegativePrompt != "" {
fmt.Printf("Generated with CFG (scale=%.1f) in %.2fs (%d steps)\n", cfg.CFGScale, time.Since(start).Seconds(), cfg.Steps)
} else {
fmt.Printf("Generated in %.2fs (%d steps)\n", time.Since(start).Seconds(), cfg.Steps)
}
return result, nil
}
// GenerateImage implements model.ImageModel interface.
func (m *Model) GenerateImage(ctx context.Context, prompt string, width, height int32, steps int, seed int64) (*mlx.Array, error) {
return m.Generate(prompt, width, height, steps, seed)
}
// generate is the internal denoising pipeline.
func (m *Model) generate(cfg *GenerateConfig) (*mlx.Array, error) {
// Apply defaults
if cfg.Width <= 0 {
cfg.Width = 1024
}
if cfg.Height <= 0 {
cfg.Height = 1024
}
if cfg.Steps <= 0 {
cfg.Steps = 50
}
if cfg.CFGScale <= 0 {
cfg.CFGScale = 4.0
}
if cfg.CacheInterval <= 0 {
cfg.CacheInterval = 3
}
if cfg.CacheLayers <= 0 {
cfg.CacheLayers = 25 // ~42% of 60 layers (similar ratio to Z-Image's 15/38)
}
useCFG := cfg.NegativePrompt != ""
tcfg := m.Transformer.Config
latentH := cfg.Height / 8
latentW := cfg.Width / 8
pH := latentH / tcfg.PatchSize
pW := latentW / tcfg.PatchSize
imgSeqLen := pH * pW
// Text encoding
var posEmb, negEmb *mlx.Array
{
posEmb = m.TextEncoder.EncodePrompt(m.Tokenizer, cfg.Prompt)
if useCFG {
negEmb = m.TextEncoder.EncodePrompt(m.Tokenizer, cfg.NegativePrompt)
mlx.Keep(posEmb, negEmb)
mlx.Eval(posEmb, negEmb)
} else {
mlx.Keep(posEmb)
mlx.Eval(posEmb)
}
}
// Pad sequences to same length for CFG
txtLen := posEmb.Shape()[1]
if useCFG {
negLen := negEmb.Shape()[1]
if negLen > txtLen {
txtLen = negLen
}
if posEmb.Shape()[1] < txtLen {
posEmb = padSequence(posEmb, txtLen)
}
if negEmb.Shape()[1] < txtLen {
negEmb = padSequence(negEmb, txtLen)
}
mlx.Keep(posEmb, negEmb)
}
// Pre-compute batched embeddings for CFG (single forward pass optimization)
var batchedEmb *mlx.Array
if useCFG {
batchedEmb = mlx.Concatenate([]*mlx.Array{posEmb, negEmb}, 0)
mlx.Keep(batchedEmb)
mlx.Eval(batchedEmb)
}
// Scheduler
scheduler := NewFlowMatchScheduler(DefaultSchedulerConfig())
scheduler.SetTimesteps(cfg.Steps, imgSeqLen)
// Init latents [B, C, T, H, W]
var latents *mlx.Array
{
latents = scheduler.InitNoise([]int32{1, tcfg.OutChannels, 1, latentH, latentW}, cfg.Seed)
mlx.Eval(latents)
}
// RoPE cache
var ropeCache *RoPECache
{
ropeCache = PrepareRoPE(pH, pW, txtLen, tcfg.AxesDimsRope)
mlx.Keep(ropeCache.ImgFreqs, ropeCache.TxtFreqs)
mlx.Eval(ropeCache.ImgFreqs)
}
// Layer cache for DeepCache/Learning-to-Cache speedup
var stepCache *cache.StepCache
if cfg.LayerCache {
stepCache = cache.NewStepCache(cfg.CacheLayers)
fmt.Printf(" Layer caching: %d layers, refresh every %d steps\n", cfg.CacheLayers, cfg.CacheInterval)
}
// Denoising loop
for i := 0; i < cfg.Steps; i++ {
stepStart := time.Now()
if cfg.Progress != nil {
cfg.Progress(i+1, cfg.Steps)
}
t := scheduler.Timesteps[i]
timestep := mlx.ToBFloat16(mlx.NewArray([]float32{t}, []int32{1}))
// Squeeze temporal dim: [B, C, T, H, W] -> [B, C, H, W]
latents2D := mlx.Squeeze(latents, 2)
patches := PackLatents(latents2D, tcfg.PatchSize)
var output *mlx.Array
if useCFG {
// CFG Batching: single forward pass with batch=2
// Note: layer caching with CFG is not supported yet (would need 2 caches)
batchedPatches := mlx.Tile(patches, []int32{2, 1, 1})
batchedTimestep := mlx.Tile(timestep, []int32{2})
// Single batched forward pass
batchedOutput := m.Transformer.Forward(batchedPatches, batchedEmb, batchedTimestep, ropeCache.ImgFreqs, ropeCache.TxtFreqs)
// Split output: [2, L, D] -> pos [1, L, D], neg [1, L, D]
L := batchedOutput.Shape()[1]
D := batchedOutput.Shape()[2]
posOutput := mlx.Slice(batchedOutput, []int32{0, 0, 0}, []int32{1, L, D})
negOutput := mlx.Slice(batchedOutput, []int32{1, 0, 0}, []int32{2, L, D})
diff := mlx.Sub(posOutput, negOutput)
scaledDiff := mlx.MulScalar(diff, cfg.CFGScale)
combPred := mlx.Add(negOutput, scaledDiff)
// Norm rescaling: rescale combined prediction to match conditional prediction's norm
condNorm := mlx.Sqrt(mlx.Sum(mlx.Square(posOutput), -1, true))
combNorm := mlx.Sqrt(mlx.Sum(mlx.Square(combPred), -1, true))
output = mlx.Mul(combPred, mlx.Div(condNorm, combNorm))
} else if stepCache != nil {
output = m.Transformer.ForwardWithCache(patches, posEmb, timestep, ropeCache.ImgFreqs, ropeCache.TxtFreqs,
stepCache, i, cfg.CacheInterval, cfg.CacheLayers)
} else {
output = m.Transformer.Forward(patches, posEmb, timestep, ropeCache.ImgFreqs, ropeCache.TxtFreqs)
}
noisePred := UnpackLatents(output, latentH, latentW, tcfg.PatchSize)
oldLatents := latents
latents = scheduler.Step(noisePred, latents, i)
// Keep cached arrays alive across cleanup
if stepCache != nil {
mlx.Keep(stepCache.Arrays()...)
}
mlx.Eval(latents)
oldLatents.Free()
activeMem := float64(mlx.MetalGetActiveMemory()) / (1024 * 1024 * 1024)
peakMem := float64(mlx.MetalGetPeakMemory()) / (1024 * 1024 * 1024)
fmt.Printf(" Step %d/%d: t=%.4f (%.2fs) [%.1f GB active, %.1f GB peak]\n", i+1, cfg.Steps, t, time.Since(stepStart).Seconds(), activeMem, peakMem)
}
// Free denoising temporaries before VAE decode
posEmb.Free()
if negEmb != nil {
negEmb.Free()
}
if batchedEmb != nil {
batchedEmb.Free()
}
ropeCache.ImgFreqs.Free()
ropeCache.TxtFreqs.Free()
if stepCache != nil {
stepCache.Free()
}
// VAE decode (Decode manages its own pools for staged memory)
decoded := m.VAEDecoder.Decode(latents)
latents.Free()
// Post-process: squeeze temporal dim and rescale to [0, 1]
{
decoded = mlx.Squeeze(decoded, 2)
decoded = mlx.AddScalar(decoded, 1.0)
decoded = mlx.DivScalar(decoded, 2.0)
mlx.Eval(decoded)
}
fmt.Printf(" Peak memory: %.2f GB\n", float64(mlx.MetalGetPeakMemory())/(1024*1024*1024))
return decoded, nil
}
// padSequence pads a sequence tensor to the target length with zeros
func padSequence(x *mlx.Array, targetLen int32) *mlx.Array {
shape := x.Shape()
currentLen := shape[1]
if currentLen >= targetLen {
return x
}
padLen := targetLen - currentLen
// Pad on sequence dimension (axis 1)
return mlx.Pad(x, []int32{0, 0, 0, padLen, 0, 0})
}
// LoadPersistent is an alias for backward compatibility.
// Use m := &Model{}; m.Load(path) instead.
func LoadPersistent(modelPath string) (*Model, error) {
m := &Model{}
if err := m.Load(modelPath); err != nil {
return nil, err
}
return m, nil
}

View File

@@ -1,218 +0,0 @@
//go:build mlx
package qwen_image
import (
"math"
"github.com/ollama/ollama/x/imagegen/mlx"
)
// SchedulerConfig holds FlowMatchEulerDiscreteScheduler configuration
type SchedulerConfig struct {
NumTrainTimesteps int32 `json:"num_train_timesteps"` // 1000
BaseShift float32 `json:"base_shift"` // 0.5
MaxShift float32 `json:"max_shift"` // 0.9
BaseImageSeqLen int32 `json:"base_image_seq_len"` // 256
MaxImageSeqLen int32 `json:"max_image_seq_len"` // 8192
ShiftTerminal float32 `json:"shift_terminal"` // 0.02
UseDynamicShift bool `json:"use_dynamic_shifting"` // true
}
// DefaultSchedulerConfig returns config for FlowMatchEulerDiscreteScheduler
func DefaultSchedulerConfig() *SchedulerConfig {
return &SchedulerConfig{
NumTrainTimesteps: 1000,
BaseShift: 0.5,
MaxShift: 0.9, // Matches scheduler_config.json
BaseImageSeqLen: 256,
MaxImageSeqLen: 8192,
ShiftTerminal: 0.02,
UseDynamicShift: true,
}
}
// FlowMatchScheduler implements the Flow Match Euler discrete scheduler
type FlowMatchScheduler struct {
Config *SchedulerConfig
Timesteps []float32
Sigmas []float32
NumSteps int
}
// NewFlowMatchScheduler creates a new scheduler
func NewFlowMatchScheduler(cfg *SchedulerConfig) *FlowMatchScheduler {
return &FlowMatchScheduler{
Config: cfg,
}
}
// CalculateShift computes the dynamic shift based on image sequence length
// This matches Python's calculate_shift function
func CalculateShift(imageSeqLen int32, baseSeqLen int32, maxSeqLen int32, baseShift float32, maxShift float32) float32 {
m := (maxShift - baseShift) / float32(maxSeqLen-baseSeqLen)
b := baseShift - m*float32(baseSeqLen)
mu := float32(imageSeqLen)*m + b
return mu
}
// SetTimesteps sets up the scheduler for the given number of inference steps
// Matches Python diffusers FlowMatchEulerDiscreteScheduler behavior:
// 1. Create sigmas from sigma_max to sigma_min (linspace)
// 2. Apply time_shift with mu (if dynamic shifting)
// 3. Apply stretch_shift_to_terminal to make final value = shift_terminal
func (s *FlowMatchScheduler) SetTimesteps(numSteps int, imageSeqLen int32) {
s.NumSteps = numSteps
// Calculate mu for dynamic shifting
var mu float32
if s.Config.UseDynamicShift {
mu = CalculateShift(
imageSeqLen,
s.Config.BaseImageSeqLen,
s.Config.MaxImageSeqLen,
s.Config.BaseShift,
s.Config.MaxShift,
)
}
// Step 1: Create sigmas from 1.0 to 1/num_steps
// Python (pipeline_qwenimage.py:639):
// sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
// This gives sigmas from 1.0 to 1/30 = 0.033 for 30 steps
sigmas := make([]float32, numSteps)
sigmaMax := float32(1.0)
sigmaMin := 1.0 / float32(numSteps) // 1/30 = 0.033 for 30 steps
if numSteps == 1 {
sigmas[0] = sigmaMax
} else {
for i := 0; i < numSteps; i++ {
sigmas[i] = sigmaMax + float32(i)*(sigmaMin-sigmaMax)/float32(numSteps-1)
}
}
// Step 2: Apply time shift if using dynamic shifting
if s.Config.UseDynamicShift && mu != 0 {
for i := range sigmas {
sigmas[i] = s.timeShift(mu, sigmas[i])
}
}
// Step 3: Apply stretch_shift_to_terminal
if s.Config.ShiftTerminal > 0 {
sigmas = s.stretchShiftToTerminal(sigmas)
}
// Step 4: Append terminal sigma (0) and store
// Note: Python's scheduler.timesteps are sigmas*1000, but the pipeline divides by 1000
// before passing to transformer. We skip both steps and just use sigmas directly.
s.Sigmas = make([]float32, numSteps+1)
s.Timesteps = make([]float32, numSteps+1)
for i := 0; i < numSteps; i++ {
s.Sigmas[i] = sigmas[i]
s.Timesteps[i] = sigmas[i]
}
s.Sigmas[numSteps] = 0.0
s.Timesteps[numSteps] = 0.0
}
// stretchShiftToTerminal stretches and shifts the timestep schedule
// so the final value equals shift_terminal (matches Python behavior)
func (s *FlowMatchScheduler) stretchShiftToTerminal(sigmas []float32) []float32 {
if len(sigmas) == 0 {
return sigmas
}
// one_minus_z = 1 - t
// scale_factor = one_minus_z[-1] / (1 - shift_terminal)
// stretched_t = 1 - (one_minus_z / scale_factor)
lastSigma := sigmas[len(sigmas)-1]
scaleFactor := (1.0 - lastSigma) / (1.0 - s.Config.ShiftTerminal)
// Handle edge case: if scaleFactor is 0 or near 0, skip stretch
// This happens when lastSigma ≈ 1.0 (e.g., single step with timeshift)
if scaleFactor < 1e-6 {
return sigmas
}
result := make([]float32, len(sigmas))
for i, t := range sigmas {
oneMinusZ := 1.0 - t
result[i] = 1.0 - (oneMinusZ / scaleFactor)
}
return result
}
// timeShift applies the dynamic time shift (exponential)
// exp(mu) / (exp(mu) + (1/t - 1))
func (s *FlowMatchScheduler) timeShift(mu float32, t float32) float32 {
if t <= 0 {
return 0
}
expMu := float32(math.Exp(float64(mu)))
return expMu / (expMu + (1.0/t - 1.0))
}
// Step performs one denoising step
// modelOutput: predicted velocity from the transformer
// sample: current noisy sample
// timestepIdx: current timestep index
func (s *FlowMatchScheduler) Step(modelOutput, sample *mlx.Array, timestepIdx int) *mlx.Array {
// Get current and next sigma
sigma := s.Sigmas[timestepIdx]
sigmaNext := s.Sigmas[timestepIdx+1]
// Euler step: x_{t-dt} = x_t + (sigma_next - sigma) * v_t
dt := sigmaNext - sigma
// Upcast to float32 to avoid precision issues (matches Python diffusers)
sampleF32 := mlx.AsType(sample, mlx.DtypeFloat32)
modelOutputF32 := mlx.AsType(modelOutput, mlx.DtypeFloat32)
scaledOutput := mlx.MulScalar(modelOutputF32, dt)
result := mlx.Add(sampleF32, scaledOutput)
// Cast back to original dtype
return mlx.ToBFloat16(result)
}
// GetTimestep returns the timestep value at the given index
func (s *FlowMatchScheduler) GetTimestep(idx int) float32 {
if idx < len(s.Timesteps) {
return s.Timesteps[idx]
}
return 0.0
}
// InitNoise creates initial noise for sampling in unpacked format [B, C, T, H, W]
func (s *FlowMatchScheduler) InitNoise(shape []int32, seed int64) *mlx.Array {
return mlx.RandomNormal(shape, uint64(seed))
}
// InitNoisePacked creates initial noise directly in packed format [B, L, C*4]
// This matches how Python diffusers generates noise - directly in packed space.
// Generating in unpacked format and then packing produces different spatial
// correlation structure, which affects model output quality.
func (s *FlowMatchScheduler) InitNoisePacked(batchSize, seqLen, channels int32, seed int64) *mlx.Array {
shape := []int32{batchSize, seqLen, channels}
return mlx.RandomNormal(shape, uint64(seed))
}
// GetLatentShape returns the latent shape for a given image size
// For qwen_image: VAE downscale is 8x (spatial), latent has 16 channels
func GetLatentShape(batchSize, height, width int32) []int32 {
latentH := height / 8
latentW := width / 8
return []int32{batchSize, 16, 1, latentH, latentW} // [B, C, T, H, W]
}
// GetPatchedLatentShape returns the patchified latent shape
// After patchification: [B, L, C*patch_size^2] where L = H/2 * W/2
func GetPatchedLatentShape(batchSize, height, width, patchSize int32) []int32 {
latentH := height / 8
latentW := width / 8
pH := latentH / patchSize
pW := latentW / patchSize
inChannels := int32(64) // 16 * patch_size^2
return []int32{batchSize, pH * pW, inChannels}
}

View File

@@ -1,135 +0,0 @@
//go:build mlx
package qwen_image
import (
"math"
"testing"
)
// TestSchedulerSetTimesteps verifies scheduler sigmas match Python diffusers reference.
// Golden values generated via:
//
// python3 -c "
// from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
// import numpy as np
// s = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, base_shift=0.5, max_shift=0.9,
// base_image_seq_len=256, max_image_seq_len=8192, shift_terminal=0.02, use_dynamic_shifting=True)
// mu = 4096 * (0.9-0.5)/(8192-256) + 0.5 - (0.9-0.5)/(8192-256)*256
// sigmas = np.linspace(1.0, 1.0/30, 30)
// s.set_timesteps(sigmas=sigmas, mu=mu)
// print(s.sigmas.numpy())"
func TestSchedulerSetTimesteps(t *testing.T) {
cfg := DefaultSchedulerConfig()
scheduler := NewFlowMatchScheduler(cfg)
scheduler.SetTimesteps(30, 4096)
// Golden values from Python diffusers (first 3, last 3 before terminal)
wantFirst := []float32{1.000000, 0.982251, 0.963889}
wantLast := []float32{0.142924, 0.083384, 0.020000}
// Check first 3
for i, want := range wantFirst {
got := scheduler.Sigmas[i]
if abs32(got-want) > 1e-4 {
t.Errorf("sigma[%d]: got %v, want %v", i, got, want)
}
}
// Check last 3 (indices 27, 28, 29)
for i, want := range wantLast {
idx := 27 + i
got := scheduler.Sigmas[idx]
if abs32(got-want) > 1e-4 {
t.Errorf("sigma[%d]: got %v, want %v", idx, got, want)
}
}
// Check terminal is 0
if scheduler.Sigmas[30] != 0.0 {
t.Errorf("terminal sigma: got %v, want 0", scheduler.Sigmas[30])
}
// Check length
if len(scheduler.Sigmas) != 31 {
t.Errorf("sigmas length: got %d, want 31", len(scheduler.Sigmas))
}
}
// TestSchedulerProperties tests mathematical invariants of the scheduler.
func TestSchedulerProperties(t *testing.T) {
cfg := DefaultSchedulerConfig()
scheduler := NewFlowMatchScheduler(cfg)
scheduler.SetTimesteps(30, 4096)
// Property: sigmas monotonically decreasing
for i := 1; i < len(scheduler.Sigmas); i++ {
if scheduler.Sigmas[i] > scheduler.Sigmas[i-1] {
t.Errorf("sigmas not monotonically decreasing at %d: %v > %v",
i, scheduler.Sigmas[i], scheduler.Sigmas[i-1])
}
}
// Property: first sigma should be ~1.0 (with time shift)
if scheduler.Sigmas[0] < 0.9 || scheduler.Sigmas[0] > 1.01 {
t.Errorf("first sigma out of expected range [0.9, 1.01]: %v", scheduler.Sigmas[0])
}
// Property: terminal sigma should be exactly 0
if scheduler.Sigmas[len(scheduler.Sigmas)-1] != 0.0 {
t.Errorf("terminal sigma should be 0, got %v", scheduler.Sigmas[len(scheduler.Sigmas)-1])
}
// Property: last non-terminal sigma should be shift_terminal (0.02)
lastNonTerminal := scheduler.Sigmas[len(scheduler.Sigmas)-2]
if abs32(lastNonTerminal-0.02) > 1e-5 {
t.Errorf("last non-terminal sigma should be 0.02, got %v", lastNonTerminal)
}
// Property: length = steps + 1
if len(scheduler.Sigmas) != scheduler.NumSteps+1 {
t.Errorf("sigmas length should be steps+1: got %d, want %d",
len(scheduler.Sigmas), scheduler.NumSteps+1)
}
}
// TestCalculateShift verifies the mu calculation against Python reference.
// Golden values from: mu = img_seq_len * m + b where m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
func TestCalculateShift(t *testing.T) {
cases := []struct {
imgSeqLen int32
want float32
}{
{256, 0.5}, // base case
{8192, 0.9}, // max case
{4096, 0.6935}, // middle case (rounded)
}
for _, c := range cases {
got := CalculateShift(c.imgSeqLen, 256, 8192, 0.5, 0.9)
if abs32(got-c.want) > 0.001 {
t.Errorf("CalculateShift(%d): got %v, want %v", c.imgSeqLen, got, c.want)
}
}
}
// TestSchedulerStep verifies the Euler step formula.
func TestSchedulerStep(t *testing.T) {
cfg := DefaultSchedulerConfig()
scheduler := NewFlowMatchScheduler(cfg)
scheduler.SetTimesteps(30, 4096)
// Verify dt calculation for first step
sigma0 := scheduler.Sigmas[0]
sigma1 := scheduler.Sigmas[1]
expectedDt := sigma1 - sigma0
// dt should be negative (sigmas decrease)
if expectedDt >= 0 {
t.Errorf("expected negative dt, got %v (sigma0=%v, sigma1=%v)", expectedDt, sigma0, sigma1)
}
}
func abs32(x float32) float32 {
return float32(math.Abs(float64(x)))
}

View File

@@ -1,174 +0,0 @@
//go:build mlx
package qwen_image
import (
"encoding/json"
"math"
"os"
"path/filepath"
"slices"
"testing"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/safetensors"
)
// TinyTextEncoderConfig holds config for the tiny test text encoder
type TinyTextEncoderConfig struct {
HiddenSize int32 `json:"hidden_size"`
NumHiddenLayers int32 `json:"num_hidden_layers"`
IntermediateSize int32 `json:"intermediate_size"`
NumAttentionHeads int32 `json:"num_attention_heads"`
NumKeyValueHeads int32 `json:"num_key_value_heads"`
VocabSize int32 `json:"vocab_size"`
RMSNormEps float32 `json:"rms_norm_eps"`
RopeTheta float32 `json:"rope_theta"`
HeadDim int32 `json:"head_dim"`
MRoPESection []int32 `json:"mrope_section"`
}
// loadTinyTextEncoder loads the tiny text encoder from testdata
func loadTinyTextEncoder(t *testing.T) (*Qwen25VL, *TinyTextEncoderConfig) {
t.Helper()
testdataDir := filepath.Join("testdata", "tiny_text_encoder")
// Load config
configData, err := os.ReadFile(filepath.Join(testdataDir, "config.json"))
if err != nil {
t.Skipf("Skipping: tiny weights not found. Regenerate with Python (see models/CLAUDE.md)")
}
var tinyCfg TinyTextEncoderConfig
if err := json.Unmarshal(configData, &tinyCfg); err != nil {
t.Fatalf("Failed to parse config: %v", err)
}
// Create encoder config (using Qwen25VLConfig)
cfg := &Qwen25VLConfig{
HiddenSize: tinyCfg.HiddenSize,
NumHiddenLayers: tinyCfg.NumHiddenLayers,
IntermediateSize: tinyCfg.IntermediateSize,
NumAttentionHeads: tinyCfg.NumAttentionHeads,
NumKeyValueHeads: tinyCfg.NumKeyValueHeads,
VocabSize: tinyCfg.VocabSize,
RMSNormEps: tinyCfg.RMSNormEps,
RopeTheta: tinyCfg.RopeTheta,
HeadDim: tinyCfg.HeadDim,
MRoPESection: tinyCfg.MRoPESection,
}
// Load weights
weights, err := safetensors.LoadModelWeights(testdataDir)
if err != nil {
t.Fatalf("Failed to load weights: %v", err)
}
if err := weights.Load(mlx.DtypeBFloat16); err != nil {
t.Fatalf("Failed to bulk load weights: %v", err)
}
// Build encoder
embedding, err := weights.Get("model.embed_tokens.weight")
if err != nil {
t.Fatalf("Failed to get embedding: %v", err)
}
blocks := make([]*VLTextBlock, cfg.NumHiddenLayers)
for i := int32(0); i < cfg.NumHiddenLayers; i++ {
block, err := newVLTextBlock(weights, int(i), cfg)
if err != nil {
t.Fatalf("Failed to load block %d: %v", i, err)
}
blocks[i] = block
}
finalNorm, err := weights.Get("model.norm.weight")
if err != nil {
t.Fatalf("Failed to get final norm: %v", err)
}
encoder := &Qwen25VL{
Config: cfg,
Embedding: embedding,
Blocks: blocks,
FinalNorm: finalNorm,
HasVision: false, // Text-only mode
}
return encoder, &tinyCfg
}
// TestTextEncoderForward verifies the text encoder forward pass with tiny weights.
func TestTextEncoderForward(t *testing.T) {
encoder, cfg := loadTinyTextEncoder(t)
// Create test tokens (within vocab range)
tokens := []int32{1, 2, 3, 4, 5}
// Forward pass using EncodeTextOnly
out := encoder.EncodeTextOnly(tokens)
mlx.Eval(out)
// Verify output shape: [batch, seq_len, hidden_size]
wantShape := []int32{1, 5, cfg.HiddenSize}
if !slices.Equal(out.Shape(), wantShape) {
t.Errorf("output shape: got %v, want %v", out.Shape(), wantShape)
}
// Verify output is finite (not NaN or Inf)
data := out.Data()
for i, v := range data {
if math.IsNaN(float64(v)) || math.IsInf(float64(v), 0) {
t.Errorf("output[%d] is not finite: %v", i, v)
break
}
}
}
// TestTextEncoderBatch tests batch processing.
func TestTextEncoderBatch(t *testing.T) {
encoder, cfg := loadTinyTextEncoder(t)
// For batch test, we'll use EncodeTextOnly with a single sequence
// (EncodeTextOnly doesn't support batch, but we can verify single sequence works)
tokens := []int32{1, 2, 3}
out := encoder.EncodeTextOnly(tokens)
mlx.Eval(out)
wantShape := []int32{1, 3, cfg.HiddenSize}
if !slices.Equal(out.Shape(), wantShape) {
t.Errorf("shape: got %v, want %v", out.Shape(), wantShape)
}
}
// TestMRoPEComputation verifies M-RoPE frequency computation produces valid values.
func TestMRoPEComputation(t *testing.T) {
encoder, cfg := loadTinyTextEncoder(t)
cossin := encoder.computeTextRoPE(10, 1)
mlx.Eval(cossin[0], cossin[1])
// Verify shapes: [3, B, L, head_dim]
wantShape := []int32{3, 1, 10, cfg.HeadDim}
if !slices.Equal(cossin[0].Shape(), wantShape) {
t.Errorf("cos shape: got %v, want %v", cossin[0].Shape(), wantShape)
}
if !slices.Equal(cossin[1].Shape(), wantShape) {
t.Errorf("sin shape: got %v, want %v", cossin[1].Shape(), wantShape)
}
// Verify cos/sin values are in valid range [-1, 1]
cosData := cossin[0].Data()
sinData := cossin[1].Data()
for i := 0; i < min(100, len(cosData)); i++ {
if cosData[i] < -1.01 || cosData[i] > 1.01 {
t.Errorf("cos[%d] out of range: %v", i, cosData[i])
}
if sinData[i] < -1.01 || sinData[i] > 1.01 {
t.Errorf("sin[%d] out of range: %v", i, sinData[i])
}
}
}

View File

@@ -1,868 +0,0 @@
//go:build mlx
package qwen_image
import (
"fmt"
"math"
"path/filepath"
"github.com/ollama/ollama/x/imagegen/cache"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/safetensors"
)
// TransformerConfig holds Qwen-Image transformer configuration
type TransformerConfig struct {
HiddenDim int32 `json:"hidden_dim"` // 3072 (24 * 128)
NHeads int32 `json:"num_attention_heads"` // 24
HeadDim int32 `json:"attention_head_dim"` // 128
NLayers int32 `json:"num_layers"` // 60
InChannels int32 `json:"in_channels"` // 64
OutChannels int32 `json:"out_channels"` // 16
PatchSize int32 `json:"patch_size"` // 2
JointAttentionDim int32 `json:"joint_attention_dim"` // 3584 (text encoder dim)
NormEps float32 `json:"norm_eps"` // 1e-6
AxesDimsRope []int32 `json:"axes_dims_rope"` // [16, 56, 56]
GuidanceEmbeds bool `json:"guidance_embeds"` // false
}
// defaultTransformerConfig returns config for Qwen-Image transformer
func defaultTransformerConfig() *TransformerConfig {
return &TransformerConfig{
HiddenDim: 3072, // 24 * 128
NHeads: 24,
HeadDim: 128,
NLayers: 60,
InChannels: 64,
OutChannels: 16,
PatchSize: 2,
JointAttentionDim: 3584,
NormEps: 1e-6,
AxesDimsRope: []int32{16, 56, 56},
GuidanceEmbeds: false,
}
}
// TimestepEmbedder creates timestep embeddings
type TimestepEmbedder struct {
Linear1Weight *mlx.Array // [256, hidden_dim]
Linear1Bias *mlx.Array
Linear2Weight *mlx.Array // [hidden_dim, hidden_dim]
Linear2Bias *mlx.Array
}
// newTimestepEmbedder creates a timestep embedder from weights
func newTimestepEmbedder(weights *safetensors.ModelWeights) (*TimestepEmbedder, error) {
linear1Weight, err := weights.Get("time_text_embed.timestep_embedder.linear_1.weight")
if err != nil {
return nil, err
}
linear1Bias, err := weights.Get("time_text_embed.timestep_embedder.linear_1.bias")
if err != nil {
return nil, err
}
linear2Weight, err := weights.Get("time_text_embed.timestep_embedder.linear_2.weight")
if err != nil {
return nil, err
}
linear2Bias, err := weights.Get("time_text_embed.timestep_embedder.linear_2.bias")
if err != nil {
return nil, err
}
return &TimestepEmbedder{
Linear1Weight: mlx.Transpose(linear1Weight, 1, 0),
Linear1Bias: linear1Bias,
Linear2Weight: mlx.Transpose(linear2Weight, 1, 0),
Linear2Bias: linear2Bias,
}, nil
}
// Forward computes timestep embeddings
// t: [B] timesteps (normalized 0-1, will be scaled by 1000 internally)
func (te *TimestepEmbedder) Forward(t *mlx.Array) *mlx.Array {
half := int32(128) // embedding_dim / 2
// Sinusoidal embedding with flip_sin_to_cos=True, scale=1000
freqs := make([]float32, half)
for i := int32(0); i < half; i++ {
freqs[i] = float32(math.Exp(-math.Log(10000.0) * float64(i) / float64(half)))
}
freqsArr := mlx.NewArray(freqs, []int32{1, half})
tExpanded := mlx.ExpandDims(t, 1)
args := mlx.Mul(tExpanded, freqsArr)
args = mlx.MulScalar(args, 1000.0) // scale
// [cos, sin] (flip_sin_to_cos=True)
sinArgs := mlx.Sin(args)
cosArgs := mlx.Cos(args)
embedding := mlx.Concatenate([]*mlx.Array{cosArgs, sinArgs}, 1) // [B, 256]
// MLP: linear1 -> silu -> linear2
h := mlx.Linear(embedding, te.Linear1Weight)
h = mlx.Add(h, te.Linear1Bias)
h = mlx.SiLU(h)
h = mlx.Linear(h, te.Linear2Weight)
h = mlx.Add(h, te.Linear2Bias)
return h
}
// JointAttention implements dual-stream joint attention
type JointAttention struct {
// Image projections
ToQ *mlx.Array
ToQB *mlx.Array
ToK *mlx.Array
ToKB *mlx.Array
ToV *mlx.Array
ToVB *mlx.Array
ToOut *mlx.Array
ToOutB *mlx.Array
NormQ *mlx.Array
NormK *mlx.Array
// Text (added) projections
AddQProj *mlx.Array
AddQProjB *mlx.Array
AddKProj *mlx.Array
AddKProjB *mlx.Array
AddVProj *mlx.Array
AddVProjB *mlx.Array
ToAddOut *mlx.Array
ToAddOutB *mlx.Array
NormAddQ *mlx.Array
NormAddK *mlx.Array
NHeads int32
HeadDim int32
Scale float32
}
// newJointAttention creates a joint attention layer
func newJointAttention(weights *safetensors.ModelWeights, prefix string, cfg *TransformerConfig) (*JointAttention, error) {
toQ, _ := weights.Get(prefix + ".attn.to_q.weight")
toQB, _ := weights.Get(prefix + ".attn.to_q.bias")
toK, _ := weights.Get(prefix + ".attn.to_k.weight")
toKB, _ := weights.Get(prefix + ".attn.to_k.bias")
toV, _ := weights.Get(prefix + ".attn.to_v.weight")
toVB, _ := weights.Get(prefix + ".attn.to_v.bias")
toOut, _ := weights.Get(prefix + ".attn.to_out.0.weight")
toOutB, _ := weights.Get(prefix + ".attn.to_out.0.bias")
normQ, _ := weights.Get(prefix + ".attn.norm_q.weight")
normK, _ := weights.Get(prefix + ".attn.norm_k.weight")
addQProj, _ := weights.Get(prefix + ".attn.add_q_proj.weight")
addQProjB, _ := weights.Get(prefix + ".attn.add_q_proj.bias")
addKProj, _ := weights.Get(prefix + ".attn.add_k_proj.weight")
addKProjB, _ := weights.Get(prefix + ".attn.add_k_proj.bias")
addVProj, _ := weights.Get(prefix + ".attn.add_v_proj.weight")
addVProjB, _ := weights.Get(prefix + ".attn.add_v_proj.bias")
toAddOut, _ := weights.Get(prefix + ".attn.to_add_out.weight")
toAddOutB, _ := weights.Get(prefix + ".attn.to_add_out.bias")
normAddQ, _ := weights.Get(prefix + ".attn.norm_added_q.weight")
normAddK, _ := weights.Get(prefix + ".attn.norm_added_k.weight")
return &JointAttention{
ToQ: mlx.Transpose(toQ, 1, 0),
ToQB: toQB,
ToK: mlx.Transpose(toK, 1, 0),
ToKB: toKB,
ToV: mlx.Transpose(toV, 1, 0),
ToVB: toVB,
ToOut: mlx.Transpose(toOut, 1, 0),
ToOutB: toOutB,
NormQ: normQ,
NormK: normK,
AddQProj: mlx.Transpose(addQProj, 1, 0),
AddQProjB: addQProjB,
AddKProj: mlx.Transpose(addKProj, 1, 0),
AddKProjB: addKProjB,
AddVProj: mlx.Transpose(addVProj, 1, 0),
AddVProjB: addVProjB,
ToAddOut: mlx.Transpose(toAddOut, 1, 0),
ToAddOutB: toAddOutB,
NormAddQ: normAddQ,
NormAddK: normAddK,
NHeads: cfg.NHeads,
HeadDim: cfg.HeadDim,
Scale: float32(1.0 / math.Sqrt(float64(cfg.HeadDim))),
}, nil
}
// Forward computes joint attention
// img: [B, L_img, D], txt: [B, L_txt, D]
// imgFreqs, txtFreqs: complex RoPE frequencies [L, head_dim/2] as interleaved real/imag
func (attn *JointAttention) Forward(img, txt *mlx.Array, imgFreqs, txtFreqs *mlx.Array) (*mlx.Array, *mlx.Array) {
imgShape := img.Shape()
B := imgShape[0]
Limg := imgShape[1]
D := imgShape[2]
txtShape := txt.Shape()
Ltxt := txtShape[1]
// === Image Q/K/V ===
imgFlat := mlx.Reshape(img, B*Limg, D)
qImg := mlx.Add(mlx.Linear(imgFlat, attn.ToQ), attn.ToQB)
kImg := mlx.Add(mlx.Linear(imgFlat, attn.ToK), attn.ToKB)
vImg := mlx.Add(mlx.Linear(imgFlat, attn.ToV), attn.ToVB)
qImg = mlx.Reshape(qImg, B, Limg, attn.NHeads, attn.HeadDim)
kImg = mlx.Reshape(kImg, B, Limg, attn.NHeads, attn.HeadDim)
vImg = mlx.Reshape(vImg, B, Limg, attn.NHeads, attn.HeadDim)
// QK norm (RMSNorm per head)
qImg = mlx.RMSNorm(qImg, attn.NormQ, 1e-6)
kImg = mlx.RMSNorm(kImg, attn.NormK, 1e-6)
// Apply RoPE
if imgFreqs != nil {
qImg = applyRoPE(qImg, imgFreqs)
kImg = applyRoPE(kImg, imgFreqs)
}
// === Text Q/K/V ===
txtFlat := mlx.Reshape(txt, B*Ltxt, D)
qTxt := mlx.Add(mlx.Linear(txtFlat, attn.AddQProj), attn.AddQProjB)
kTxt := mlx.Add(mlx.Linear(txtFlat, attn.AddKProj), attn.AddKProjB)
vTxt := mlx.Add(mlx.Linear(txtFlat, attn.AddVProj), attn.AddVProjB)
qTxt = mlx.Reshape(qTxt, B, Ltxt, attn.NHeads, attn.HeadDim)
kTxt = mlx.Reshape(kTxt, B, Ltxt, attn.NHeads, attn.HeadDim)
vTxt = mlx.Reshape(vTxt, B, Ltxt, attn.NHeads, attn.HeadDim)
qTxt = mlx.RMSNorm(qTxt, attn.NormAddQ, 1e-6)
kTxt = mlx.RMSNorm(kTxt, attn.NormAddK, 1e-6)
if txtFreqs != nil {
qTxt = applyRoPE(qTxt, txtFreqs)
kTxt = applyRoPE(kTxt, txtFreqs)
}
// Concatenate for joint attention: [txt, img] order
qJoint := mlx.Concatenate([]*mlx.Array{qTxt, qImg}, 1)
kJoint := mlx.Concatenate([]*mlx.Array{kTxt, kImg}, 1)
vJoint := mlx.Concatenate([]*mlx.Array{vTxt, vImg}, 1)
// Transpose to [B, nheads, L, head_dim]
qJoint = mlx.Transpose(qJoint, 0, 2, 1, 3)
kJoint = mlx.Transpose(kJoint, 0, 2, 1, 3)
vJoint = mlx.Transpose(vJoint, 0, 2, 1, 3)
// SDPA
outJoint := mlx.ScaledDotProductAttention(qJoint, kJoint, vJoint, attn.Scale, false)
// Transpose back and split
outJoint = mlx.Transpose(outJoint, 0, 2, 1, 3) // [B, L, nheads, head_dim]
outJoint = mlx.Reshape(outJoint, B, Ltxt+Limg, D)
outTxt := mlx.Slice(outJoint, []int32{0, 0, 0}, []int32{B, Ltxt, D})
outImg := mlx.Slice(outJoint, []int32{0, Ltxt, 0}, []int32{B, Ltxt + Limg, D})
// Output projections
outImg = mlx.Reshape(outImg, B*Limg, D)
outImg = mlx.Add(mlx.Linear(outImg, attn.ToOut), attn.ToOutB)
outImg = mlx.Reshape(outImg, B, Limg, D)
outTxt = mlx.Reshape(outTxt, B*Ltxt, D)
outTxt = mlx.Add(mlx.Linear(outTxt, attn.ToAddOut), attn.ToAddOutB)
outTxt = mlx.Reshape(outTxt, B, Ltxt, D)
return outImg, outTxt
}
// applyRoPE applies rotary embeddings using complex multiplication
// x: [B, L, nheads, head_dim]
// freqs: [L, head_dim] as complex (interleaved real/imag pairs)
func applyRoPE(x *mlx.Array, freqs *mlx.Array) *mlx.Array {
shape := x.Shape()
B := shape[0]
L := shape[1]
nheads := shape[2]
headDim := shape[3]
halfDim := headDim / 2
// Reshape x to pairs: [B, L, nheads, half, 2]
xPairs := mlx.Reshape(x, B, L, nheads, halfDim, 2)
// freqs: [L, head_dim] -> [1, L, 1, half, 2]
freqsExp := mlx.Reshape(freqs, 1, L, 1, halfDim, 2)
// Extract real/imag parts
xReal := mlx.SliceStride(xPairs, []int32{0, 0, 0, 0, 0}, []int32{B, L, nheads, halfDim, 1}, []int32{1, 1, 1, 1, 1})
xImag := mlx.SliceStride(xPairs, []int32{0, 0, 0, 0, 1}, []int32{B, L, nheads, halfDim, 2}, []int32{1, 1, 1, 1, 1})
xReal = mlx.Squeeze(xReal, 4)
xImag = mlx.Squeeze(xImag, 4)
freqReal := mlx.SliceStride(freqsExp, []int32{0, 0, 0, 0, 0}, []int32{1, L, 1, halfDim, 1}, []int32{1, 1, 1, 1, 1})
freqImag := mlx.SliceStride(freqsExp, []int32{0, 0, 0, 0, 1}, []int32{1, L, 1, halfDim, 2}, []int32{1, 1, 1, 1, 1})
freqReal = mlx.Squeeze(freqReal, 4)
freqImag = mlx.Squeeze(freqImag, 4)
// Complex multiplication: (a + bi) * (c + di) = (ac - bd) + (ad + bc)i
outReal := mlx.Sub(mlx.Mul(xReal, freqReal), mlx.Mul(xImag, freqImag))
outImag := mlx.Add(mlx.Mul(xReal, freqImag), mlx.Mul(xImag, freqReal))
// Interleave back
outReal = mlx.ExpandDims(outReal, 4)
outImag = mlx.ExpandDims(outImag, 4)
out := mlx.Concatenate([]*mlx.Array{outReal, outImag}, 4)
return mlx.Reshape(out, B, L, nheads, headDim)
}
// MLP implements GELU MLP (not GEGLU)
type MLP struct {
ProjWeight *mlx.Array
ProjBias *mlx.Array
OutWeight *mlx.Array
OutBias *mlx.Array
}
// newMLP creates a GELU MLP
func newMLP(weights *safetensors.ModelWeights, prefix string) (*MLP, error) {
projWeight, _ := weights.Get(prefix + ".net.0.proj.weight")
projBias, _ := weights.Get(prefix + ".net.0.proj.bias")
outWeight, _ := weights.Get(prefix + ".net.2.weight")
outBias, _ := weights.Get(prefix + ".net.2.bias")
return &MLP{
ProjWeight: mlx.Transpose(projWeight, 1, 0),
ProjBias: projBias,
OutWeight: mlx.Transpose(outWeight, 1, 0),
OutBias: outBias,
}, nil
}
// Forward applies GELU MLP
func (m *MLP) Forward(x *mlx.Array) *mlx.Array {
shape := x.Shape()
B := shape[0]
L := shape[1]
D := shape[2]
xFlat := mlx.Reshape(x, B*L, D)
h := mlx.Add(mlx.Linear(xFlat, m.ProjWeight), m.ProjBias)
h = geluApprox(h)
h = mlx.Add(mlx.Linear(h, m.OutWeight), m.OutBias)
return mlx.Reshape(h, B, L, m.OutBias.Dim(0))
}
// geluApprox implements approximate GELU
func geluApprox(x *mlx.Array) *mlx.Array {
sqrt2OverPi := float32(math.Sqrt(2.0 / math.Pi))
x3 := mlx.Mul(mlx.Mul(x, x), x)
inner := mlx.Add(x, mlx.MulScalar(x3, 0.044715))
inner = mlx.MulScalar(inner, sqrt2OverPi)
return mlx.Mul(mlx.MulScalar(x, 0.5), mlx.AddScalar(mlx.Tanh(inner), 1.0))
}
// TransformerBlock is a single dual-stream transformer block
type TransformerBlock struct {
Attention *JointAttention
ImgMLP *MLP
TxtMLP *MLP
ImgModWeight *mlx.Array
ImgModBias *mlx.Array
TxtModWeight *mlx.Array
TxtModBias *mlx.Array
HiddenDim int32
NormEps float32
}
// newTransformerBlock creates a transformer block
func newTransformerBlock(weights *safetensors.ModelWeights, prefix string, cfg *TransformerConfig) (*TransformerBlock, error) {
attn, err := newJointAttention(weights, prefix, cfg)
if err != nil {
return nil, err
}
imgMLP, _ := newMLP(weights, prefix+".img_mlp")
txtMLP, _ := newMLP(weights, prefix+".txt_mlp")
imgModWeight, _ := weights.Get(prefix + ".img_mod.1.weight")
imgModBias, _ := weights.Get(prefix + ".img_mod.1.bias")
txtModWeight, _ := weights.Get(prefix + ".txt_mod.1.weight")
txtModBias, _ := weights.Get(prefix + ".txt_mod.1.bias")
return &TransformerBlock{
Attention: attn,
ImgMLP: imgMLP,
TxtMLP: txtMLP,
ImgModWeight: mlx.Transpose(imgModWeight, 1, 0),
ImgModBias: imgModBias,
TxtModWeight: mlx.Transpose(txtModWeight, 1, 0),
TxtModBias: txtModBias,
HiddenDim: cfg.HiddenDim,
NormEps: cfg.NormEps,
}, nil
}
// Forward applies the transformer block
func (tb *TransformerBlock) Forward(img, txt, temb *mlx.Array, imgFreqs, txtFreqs *mlx.Array) (*mlx.Array, *mlx.Array) {
// Compute modulation: silu(temb) -> linear -> [B, 6*D]
siluT := mlx.SiLU(temb)
imgMod := mlx.Add(mlx.Linear(siluT, tb.ImgModWeight), tb.ImgModBias)
txtMod := mlx.Add(mlx.Linear(siluT, tb.TxtModWeight), tb.TxtModBias)
// Split into 6 parts: shift1, scale1, gate1, shift2, scale2, gate2
imgModParts := splitMod6(imgMod, tb.HiddenDim)
txtModParts := splitMod6(txtMod, tb.HiddenDim)
// Pre-attention: norm + modulate
imgNorm := layerNormNoAffine(img, tb.NormEps)
imgNorm = mlx.Add(mlx.Mul(imgNorm, mlx.AddScalar(imgModParts[1], 1.0)), imgModParts[0])
txtNorm := layerNormNoAffine(txt, tb.NormEps)
txtNorm = mlx.Add(mlx.Mul(txtNorm, mlx.AddScalar(txtModParts[1], 1.0)), txtModParts[0])
// Joint attention
attnImg, attnTxt := tb.Attention.Forward(imgNorm, txtNorm, imgFreqs, txtFreqs)
// Residual with gate
img = mlx.Add(img, mlx.Mul(imgModParts[2], attnImg))
txt = mlx.Add(txt, mlx.Mul(txtModParts[2], attnTxt))
// Pre-MLP: norm + modulate
imgNorm2 := layerNormNoAffine(img, tb.NormEps)
imgNorm2 = mlx.Add(mlx.Mul(imgNorm2, mlx.AddScalar(imgModParts[4], 1.0)), imgModParts[3])
txtNorm2 := layerNormNoAffine(txt, tb.NormEps)
txtNorm2 = mlx.Add(mlx.Mul(txtNorm2, mlx.AddScalar(txtModParts[4], 1.0)), txtModParts[3])
// MLP
mlpImg := tb.ImgMLP.Forward(imgNorm2)
mlpTxt := tb.TxtMLP.Forward(txtNorm2)
// Residual with gate
img = mlx.Add(img, mlx.Mul(imgModParts[5], mlpImg))
txt = mlx.Add(txt, mlx.Mul(txtModParts[5], mlpTxt))
return img, txt
}
// splitMod6 splits modulation into 6 parts each [B, 1, D]
func splitMod6(mod *mlx.Array, hiddenDim int32) []*mlx.Array {
shape := mod.Shape()
B := shape[0]
parts := make([]*mlx.Array, 6)
for i := int32(0); i < 6; i++ {
part := mlx.Slice(mod, []int32{0, i * hiddenDim}, []int32{B, (i + 1) * hiddenDim})
parts[i] = mlx.ExpandDims(part, 1)
}
return parts
}
// layerNormNoAffine applies layer norm without learnable parameters
func layerNormNoAffine(x *mlx.Array, eps float32) *mlx.Array {
ndim := x.Ndim()
lastAxis := ndim - 1
mean := mlx.Mean(x, lastAxis, true)
xCentered := mlx.Sub(x, mean)
variance := mlx.Mean(mlx.Square(xCentered), lastAxis, true)
return mlx.Div(xCentered, mlx.Sqrt(mlx.AddScalar(variance, eps)))
}
// Transformer is the full Qwen-Image transformer model
type Transformer struct {
Config *TransformerConfig
ImgIn *mlx.Array
ImgInBias *mlx.Array
TxtIn *mlx.Array
TxtInBias *mlx.Array
TxtNorm *mlx.Array
TEmbed *TimestepEmbedder
Layers []*TransformerBlock
NormOutWeight *mlx.Array
NormOutBias *mlx.Array
ProjOut *mlx.Array
ProjOutBias *mlx.Array
}
// Load loads the transformer from a directory
func (m *Transformer) Load(path string) error {
fmt.Println("Loading Qwen-Image transformer...")
cfg := defaultTransformerConfig()
m.Config = cfg
weights, err := safetensors.LoadModelWeights(path)
if err != nil {
return fmt.Errorf("weights: %w", err)
}
// Bulk load all weights as bf16
fmt.Print(" Loading weights as bf16... ")
if err := weights.Load(mlx.DtypeBFloat16); err != nil {
return fmt.Errorf("load weights: %w", err)
}
fmt.Printf("✓ (%.1f GB)\n", float64(mlx.MetalGetActiveMemory())/(1024*1024*1024))
fmt.Print(" Loading input projections... ")
imgIn, _ := weights.Get("img_in.weight")
imgInBias, _ := weights.Get("img_in.bias")
txtIn, _ := weights.Get("txt_in.weight")
txtInBias, _ := weights.Get("txt_in.bias")
txtNorm, _ := weights.Get("txt_norm.weight")
m.ImgIn = mlx.Transpose(imgIn, 1, 0)
m.ImgInBias = imgInBias
m.TxtIn = mlx.Transpose(txtIn, 1, 0)
m.TxtInBias = txtInBias
m.TxtNorm = txtNorm
fmt.Println("✓")
fmt.Print(" Loading timestep embedder... ")
m.TEmbed, err = newTimestepEmbedder(weights)
if err != nil {
return fmt.Errorf("timestep embedder: %w", err)
}
fmt.Println("✓")
m.Layers = make([]*TransformerBlock, cfg.NLayers)
for i := int32(0); i < cfg.NLayers; i++ {
fmt.Printf("\r Loading transformer layers... %d/%d", i+1, cfg.NLayers)
prefix := fmt.Sprintf("transformer_blocks.%d", i)
m.Layers[i], err = newTransformerBlock(weights, prefix, cfg)
if err != nil {
return fmt.Errorf("layer %d: %w", i, err)
}
}
fmt.Printf("\r Loading transformer layers... ✓ [%d blocks] \n", cfg.NLayers)
fmt.Print(" Loading output layers... ")
normOutWeight, _ := weights.Get("norm_out.linear.weight")
normOutBias, _ := weights.Get("norm_out.linear.bias")
projOut, _ := weights.Get("proj_out.weight")
projOutBias, _ := weights.Get("proj_out.bias")
m.NormOutWeight = mlx.Transpose(normOutWeight, 1, 0)
m.NormOutBias = normOutBias
m.ProjOut = mlx.Transpose(projOut, 1, 0)
m.ProjOutBias = projOutBias
fmt.Println("✓")
weights.ReleaseAll()
return nil
}
// LoadFromPath is a convenience function to load transformer from path
func LoadTransformerFromPath(path string) (*Transformer, error) {
m := &Transformer{}
if err := m.Load(filepath.Join(path, "transformer")); err != nil {
return nil, err
}
return m, nil
}
// Forward runs the transformer
// img: [B, L_img, in_channels] patchified latents
// txt: [B, L_txt, joint_attention_dim] text embeddings
// t: [B] timesteps (0-1)
// imgFreqs, txtFreqs: RoPE frequencies
func (tr *Transformer) Forward(img, txt, t *mlx.Array, imgFreqs, txtFreqs *mlx.Array) *mlx.Array {
imgShape := img.Shape()
B := imgShape[0]
Limg := imgShape[1]
txtShape := txt.Shape()
Ltxt := txtShape[1]
// Timestep embedding
temb := tr.TEmbed.Forward(t)
// Project image: [B, L, in_channels] -> [B, L, hidden_dim]
imgFlat := mlx.Reshape(img, B*Limg, tr.Config.InChannels)
imgH := mlx.Add(mlx.Linear(imgFlat, tr.ImgIn), tr.ImgInBias)
imgH = mlx.Reshape(imgH, B, Limg, tr.Config.HiddenDim)
// Project text: RMSNorm then linear
txtFlat := mlx.Reshape(txt, B*Ltxt, tr.Config.JointAttentionDim)
txtNormed := mlx.RMSNorm(txtFlat, tr.TxtNorm, 1e-6)
txtH := mlx.Add(mlx.Linear(txtNormed, tr.TxtIn), tr.TxtInBias)
txtH = mlx.Reshape(txtH, B, Ltxt, tr.Config.HiddenDim)
for _, layer := range tr.Layers {
imgH, txtH = layer.Forward(imgH, txtH, temb, imgFreqs, txtFreqs)
}
// Final norm with modulation (AdaLayerNormContinuous)
// Python: scale, shift = torch.chunk(emb, 2, dim=1)
finalMod := mlx.Add(mlx.Linear(mlx.SiLU(temb), tr.NormOutWeight), tr.NormOutBias)
modShape := finalMod.Shape()
halfDim := modShape[1] / 2
scale := mlx.ExpandDims(mlx.Slice(finalMod, []int32{0, 0}, []int32{B, halfDim}), 1)
shift := mlx.ExpandDims(mlx.Slice(finalMod, []int32{0, halfDim}, []int32{B, modShape[1]}), 1)
imgH = layerNormNoAffine(imgH, tr.Config.NormEps)
imgH = mlx.Add(mlx.Mul(imgH, mlx.AddScalar(scale, 1.0)), shift)
// Final projection: [B, L, hidden_dim] -> [B, L, patch_size^2 * out_channels]
imgFlat = mlx.Reshape(imgH, B*Limg, tr.Config.HiddenDim)
out := mlx.Add(mlx.Linear(imgFlat, tr.ProjOut), tr.ProjOutBias)
outChannels := tr.Config.PatchSize * tr.Config.PatchSize * tr.Config.OutChannels
return mlx.Reshape(out, B, Limg, outChannels)
}
// ForwardWithCache runs the transformer with layer caching for speedup.
// Based on DeepCache (CVPR 2024) / Learning-to-Cache (NeurIPS 2024):
// shallow layers change little between denoising steps, so we cache their
// outputs and reuse them on non-refresh steps.
//
// stepCache: cache for layer outputs (use cache.NewStepCache(cacheLayers))
// step: current denoising step (0-indexed)
// cacheInterval: refresh cache every N steps (e.g., 3)
// cacheLayers: number of shallow layers to cache (e.g., 15)
func (tr *Transformer) ForwardWithCache(
img, txt, t *mlx.Array,
imgFreqs, txtFreqs *mlx.Array,
stepCache *cache.StepCache,
step, cacheInterval, cacheLayers int,
) *mlx.Array {
imgShape := img.Shape()
B := imgShape[0]
Limg := imgShape[1]
txtShape := txt.Shape()
Ltxt := txtShape[1]
// Timestep embedding
temb := tr.TEmbed.Forward(t)
// Project image: [B, L, in_channels] -> [B, L, hidden_dim]
imgFlat := mlx.Reshape(img, B*Limg, tr.Config.InChannels)
imgH := mlx.Add(mlx.Linear(imgFlat, tr.ImgIn), tr.ImgInBias)
imgH = mlx.Reshape(imgH, B, Limg, tr.Config.HiddenDim)
// Project text: RMSNorm then linear
txtFlat := mlx.Reshape(txt, B*Ltxt, tr.Config.JointAttentionDim)
txtNormed := mlx.RMSNorm(txtFlat, tr.TxtNorm, 1e-6)
txtH := mlx.Add(mlx.Linear(txtNormed, tr.TxtIn), tr.TxtInBias)
txtH = mlx.Reshape(txtH, B, Ltxt, tr.Config.HiddenDim)
// Check if we should refresh the cache
refreshCache := stepCache.ShouldRefresh(step, cacheInterval)
for i, layer := range tr.Layers {
if i < cacheLayers && !refreshCache && stepCache.Get(i) != nil {
// Use cached outputs for shallow layers
imgH = stepCache.Get(i)
txtH = stepCache.Get2(i)
} else {
// Compute layer
imgH, txtH = layer.Forward(imgH, txtH, temb, imgFreqs, txtFreqs)
// Cache shallow layers on refresh steps
if i < cacheLayers && refreshCache {
stepCache.Set(i, imgH)
stepCache.Set2(i, txtH)
}
}
}
// Final norm with modulation (AdaLayerNormContinuous)
finalMod := mlx.Add(mlx.Linear(mlx.SiLU(temb), tr.NormOutWeight), tr.NormOutBias)
modShape := finalMod.Shape()
halfDim := modShape[1] / 2
scale := mlx.ExpandDims(mlx.Slice(finalMod, []int32{0, 0}, []int32{B, halfDim}), 1)
shift := mlx.ExpandDims(mlx.Slice(finalMod, []int32{0, halfDim}, []int32{B, modShape[1]}), 1)
imgH = layerNormNoAffine(imgH, tr.Config.NormEps)
imgH = mlx.Add(mlx.Mul(imgH, mlx.AddScalar(scale, 1.0)), shift)
// Final projection: [B, L, hidden_dim] -> [B, L, patch_size^2 * out_channels]
imgFlat = mlx.Reshape(imgH, B*Limg, tr.Config.HiddenDim)
out := mlx.Add(mlx.Linear(imgFlat, tr.ProjOut), tr.ProjOutBias)
outChannels := tr.Config.PatchSize * tr.Config.PatchSize * tr.Config.OutChannels
return mlx.Reshape(out, B, Limg, outChannels)
}
// RoPECache holds precomputed RoPE frequencies
type RoPECache struct {
ImgFreqs *mlx.Array // [L_img, head_dim]
TxtFreqs *mlx.Array // [L_txt, head_dim]
}
// PrepareRoPE computes RoPE for image and text sequences
// This matches Python's QwenEmbedRope with scale_rope=True
func PrepareRoPE(imgH, imgW int32, txtLen int32, axesDims []int32) *RoPECache {
theta := float64(10000)
maxIdx := int32(4096)
// Compute base frequencies for each axis dimension
freqsT := ComputeAxisFreqs(axesDims[0], theta)
freqsH := ComputeAxisFreqs(axesDims[1], theta)
freqsW := ComputeAxisFreqs(axesDims[2], theta)
// Build frequency lookup tables
posFreqsT := MakeFreqTable(maxIdx, freqsT, false)
posFreqsH := MakeFreqTable(maxIdx, freqsH, false)
posFreqsW := MakeFreqTable(maxIdx, freqsW, false)
negFreqsH := MakeFreqTable(maxIdx, freqsH, true)
negFreqsW := MakeFreqTable(maxIdx, freqsW, true)
// Image frequencies with scale_rope=True
imgLen := imgH * imgW
headDim := int32(len(freqsT)+len(freqsH)+len(freqsW)) * 2
imgFreqsData := make([]float32, imgLen*headDim)
hHalf := imgH / 2
wHalf := imgW / 2
idx := int32(0)
for y := int32(0); y < imgH; y++ {
for x := int32(0); x < imgW; x++ {
// Frame = 0
for i := 0; i < len(freqsT)*2; i++ {
imgFreqsData[idx+int32(i)] = posFreqsT[0][i]
}
idx += int32(len(freqsT) * 2)
// Height: scale_rope pattern
hNegCount := imgH - hHalf
if y < hNegCount {
negTableIdx := maxIdx - hNegCount + y
for i := 0; i < len(freqsH)*2; i++ {
imgFreqsData[idx+int32(i)] = negFreqsH[negTableIdx][i]
}
} else {
posIdx := y - hNegCount
for i := 0; i < len(freqsH)*2; i++ {
imgFreqsData[idx+int32(i)] = posFreqsH[posIdx][i]
}
}
idx += int32(len(freqsH) * 2)
// Width: scale_rope pattern
wNegCount := imgW - wHalf
if x < wNegCount {
negTableIdx := maxIdx - wNegCount + x
for i := 0; i < len(freqsW)*2; i++ {
imgFreqsData[idx+int32(i)] = negFreqsW[negTableIdx][i]
}
} else {
posIdx := x - wNegCount
for i := 0; i < len(freqsW)*2; i++ {
imgFreqsData[idx+int32(i)] = posFreqsW[posIdx][i]
}
}
idx += int32(len(freqsW) * 2)
}
}
imgFreqs := mlx.NewArray(imgFreqsData, []int32{imgLen, headDim})
imgFreqs = mlx.ToBFloat16(imgFreqs)
// Text frequencies
maxVidIdx := max(hHalf, wHalf)
txtFreqsData := make([]float32, txtLen*headDim)
idx = 0
for t := int32(0); t < txtLen; t++ {
pos := maxVidIdx + t
for i := 0; i < len(freqsT)*2; i++ {
txtFreqsData[idx+int32(i)] = posFreqsT[pos][i]
}
idx += int32(len(freqsT) * 2)
for i := 0; i < len(freqsH)*2; i++ {
txtFreqsData[idx+int32(i)] = posFreqsH[pos][i]
}
idx += int32(len(freqsH) * 2)
for i := 0; i < len(freqsW)*2; i++ {
txtFreqsData[idx+int32(i)] = posFreqsW[pos][i]
}
idx += int32(len(freqsW) * 2)
}
txtFreqs := mlx.NewArray(txtFreqsData, []int32{txtLen, headDim})
txtFreqs = mlx.ToBFloat16(txtFreqs)
return &RoPECache{
ImgFreqs: imgFreqs,
TxtFreqs: txtFreqs,
}
}
// ComputeAxisFreqs computes RoPE base frequencies for a given dimension.
func ComputeAxisFreqs(dim int32, theta float64) []float64 {
halfDim := dim / 2
freqs := make([]float64, halfDim)
for i := int32(0); i < halfDim; i++ {
freqs[i] = 1.0 / math.Pow(theta, float64(i)/float64(halfDim))
}
return freqs
}
// MakeFreqTable builds a table of cos/sin values for RoPE positions.
func MakeFreqTable(maxIdx int32, baseFreqs []float64, negative bool) [][]float32 {
table := make([][]float32, maxIdx)
for idx := int32(0); idx < maxIdx; idx++ {
var pos float64
if negative {
pos = float64(-maxIdx + int32(idx))
} else {
pos = float64(idx)
}
row := make([]float32, len(baseFreqs)*2)
for i, f := range baseFreqs {
angle := pos * f
row[i*2] = float32(math.Cos(angle))
row[i*2+1] = float32(math.Sin(angle))
}
table[idx] = row
}
return table
}
func max(a, b int32) int32 {
if a > b {
return a
}
return b
}
// PackLatents converts [B, C, H, W] to [B, L, C*4] patches
func PackLatents(latents *mlx.Array, patchSize int32) *mlx.Array {
shape := latents.Shape()
B := shape[0]
C := shape[1]
H := shape[2]
W := shape[3]
pH := H / patchSize
pW := W / patchSize
// [B, C, H, W] -> [B, C, pH, 2, pW, 2]
x := mlx.Reshape(latents, B, C, pH, patchSize, pW, patchSize)
// -> [B, pH, pW, C, 2, 2]
x = mlx.Transpose(x, 0, 2, 4, 1, 3, 5)
// -> [B, pH*pW, C*4]
return mlx.Reshape(x, B, pH*pW, C*patchSize*patchSize)
}
// UnpackLatents converts [B, L, C*4] back to [B, C, 1, H, W] (5D for VAE)
func UnpackLatents(patches *mlx.Array, H, W, patchSize int32) *mlx.Array {
shape := patches.Shape()
B := shape[0]
channels := shape[2] / (patchSize * patchSize)
pH := H / patchSize
pW := W / patchSize
// [B, L, C*4] -> [B, pH, pW, C, 2, 2]
x := mlx.Reshape(patches, B, pH, pW, channels, patchSize, patchSize)
// -> [B, C, pH, 2, pW, 2]
x = mlx.Transpose(x, 0, 3, 1, 4, 2, 5)
// -> [B, C, H, W]
x = mlx.Reshape(x, B, channels, pH*patchSize, pW*patchSize)
// Add temporal dimension for VAE: [B, C, 1, H, W]
return mlx.ExpandDims(x, 2)
}

View File

@@ -1,119 +0,0 @@
//go:build mlx
package qwen_image
import (
"math"
"os"
"testing"
"github.com/ollama/ollama/x/imagegen/mlx"
)
// TestTransformerConfig tests configuration invariants.
func TestTransformerConfig(t *testing.T) {
cfg := defaultTransformerConfig()
// Property: hidden_dim = n_heads * head_dim
if cfg.HiddenDim != cfg.NHeads*cfg.HeadDim {
t.Errorf("hidden_dim != n_heads * head_dim: %d != %d * %d",
cfg.HiddenDim, cfg.NHeads, cfg.HeadDim)
}
// Property: axes_dims_rope sums to head_dim
var ropeSum int32
for _, d := range cfg.AxesDimsRope {
ropeSum += d
}
if ropeSum != cfg.HeadDim {
t.Errorf("axes_dims_rope sum != head_dim: %d != %d", ropeSum, cfg.HeadDim)
}
// Property: in_channels = out_channels * patch_size^2
expectedIn := cfg.OutChannels * cfg.PatchSize * cfg.PatchSize
if cfg.InChannels != expectedIn {
t.Errorf("in_channels != out_channels * patch_size^2: %d != %d", cfg.InChannels, expectedIn)
}
}
// TestTransformerRoPE tests RoPE frequency computation produces valid values.
func TestTransformerRoPE(t *testing.T) {
cfg := defaultTransformerConfig()
// Test with small image dimensions
imgH, imgW := int32(4), int32(4) // 4x4 latent = 16 patches
txtLen := int32(5)
ropeCache := PrepareRoPE(imgH, imgW, txtLen, cfg.AxesDimsRope)
mlx.Eval(ropeCache.ImgFreqs, ropeCache.TxtFreqs)
// Verify shapes: [seq_len, head_dim]
imgSeqLen := imgH * imgW
if ropeCache.ImgFreqs.Shape()[0] != imgSeqLen {
t.Errorf("ImgFreqs seq_len: got %d, want %d", ropeCache.ImgFreqs.Shape()[0], imgSeqLen)
}
if ropeCache.ImgFreqs.Shape()[1] != cfg.HeadDim {
t.Errorf("ImgFreqs head_dim: got %d, want %d", ropeCache.ImgFreqs.Shape()[1], cfg.HeadDim)
}
if ropeCache.TxtFreqs.Shape()[0] != txtLen {
t.Errorf("TxtFreqs seq_len: got %d, want %d", ropeCache.TxtFreqs.Shape()[0], txtLen)
}
// Verify values are finite
imgData := ropeCache.ImgFreqs.Data()
for i := 0; i < min(100, len(imgData)); i++ {
if math.IsNaN(float64(imgData[i])) || math.IsInf(float64(imgData[i]), 0) {
t.Errorf("ImgFreqs[%d] not finite: %v", i, imgData[i])
break
}
}
}
// TestTransformerForward tests full forward pass (integration test).
// Skips if model weights are not available.
func TestTransformerForward(t *testing.T) {
weightsPath := "../../../weights/Qwen-Image-2512/transformer"
if _, err := os.Stat(weightsPath); os.IsNotExist(err) {
t.Skip("Skipping: model weights not found at " + weightsPath)
}
transformer := &Transformer{}
if err := transformer.Load(weightsPath); err != nil {
t.Fatalf("Failed to load transformer: %v", err)
}
mlx.Keep(mlx.Collect(transformer)...)
cfg := transformer.Config
// Small test inputs
batchSize := int32(1)
imgH, imgW := int32(4), int32(4)
imgSeqLen := imgH * imgW
txtSeqLen := int32(5)
hiddenStates := mlx.RandomNormal([]int32{batchSize, imgSeqLen, cfg.InChannels}, 0)
encoderHiddenStates := mlx.RandomNormal([]int32{batchSize, txtSeqLen, cfg.JointAttentionDim}, 0)
timestep := mlx.NewArray([]float32{0.5}, []int32{batchSize})
ropeCache := PrepareRoPE(imgH, imgW, txtSeqLen, cfg.AxesDimsRope)
// Forward pass
out := transformer.Forward(hiddenStates, encoderHiddenStates, timestep, ropeCache.ImgFreqs, ropeCache.TxtFreqs)
mlx.Eval(out)
// Verify output shape: [batch, img_seq_len, in_channels]
wantShape := []int32{batchSize, imgSeqLen, cfg.InChannels}
gotShape := out.Shape()
if gotShape[0] != wantShape[0] || gotShape[1] != wantShape[1] || gotShape[2] != wantShape[2] {
t.Errorf("output shape: got %v, want %v", gotShape, wantShape)
}
// Verify output is finite
outData := out.Data()
for i := 0; i < min(100, len(outData)); i++ {
if math.IsNaN(float64(outData[i])) || math.IsInf(float64(outData[i]), 0) {
t.Errorf("output[%d] not finite: %v", i, outData[i])
break
}
}
}

View File

@@ -1,854 +0,0 @@
//go:build mlx
package qwen_image
import (
"fmt"
"math"
"path/filepath"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/safetensors"
)
// VAEConfig holds Qwen-Image VAE configuration
type VAEConfig struct {
ZDim int32 `json:"z_dim"` // 16
BaseDim int32 `json:"base_dim"` // 96
DimMult []int32 `json:"dim_mult"` // [1, 2, 4, 4]
NumResBlocks int32 `json:"num_res_blocks"` // 2
LatentsMean []float32 `json:"latents_mean"` // 16 values
LatentsStd []float32 `json:"latents_std"` // 16 values
TemperalDownsample []bool `json:"temperal_downsample"` // [false, true, true]
}
// defaultVAEConfig returns config for Qwen-Image VAE
func defaultVAEConfig() *VAEConfig {
return &VAEConfig{
ZDim: 16,
BaseDim: 96,
DimMult: []int32{1, 2, 4, 4},
NumResBlocks: 2,
LatentsMean: []float32{
-0.7571, -0.7089, -0.9113, 0.1075,
-0.1745, 0.9653, -0.1517, 1.5508,
0.4134, -0.0715, 0.5517, -0.3632,
-0.1922, -0.9497, 0.2503, -0.2921,
},
LatentsStd: []float32{
2.8184, 1.4541, 2.3275, 2.6558,
1.2196, 1.7708, 2.6052, 2.0743,
3.2687, 2.1526, 2.8652, 1.5579,
1.6382, 1.1253, 2.8251, 1.916,
},
TemperalDownsample: []bool{false, true, true},
}
}
// CausalConv3d is a causal 3D convolution (for temporal causality)
type CausalConv3d struct {
Weight *mlx.Array
Bias *mlx.Array
BiasReshaped *mlx.Array // [1, C, 1, 1, 1]
KernelT int32
}
// newCausalConv3d creates a 3D causal conv
func newCausalConv3d(weights *safetensors.ModelWeights, prefix string) (*CausalConv3d, error) {
weight, err := weights.Get(prefix + ".weight")
if err != nil {
return nil, fmt.Errorf("weight not found: %s", prefix)
}
bias, _ := weights.Get(prefix + ".bias")
kernelT := weight.Shape()[2]
outC := weight.Shape()[0]
var biasReshaped *mlx.Array
if bias != nil {
biasReshaped = mlx.Reshape(bias, 1, outC, 1, 1, 1)
}
return &CausalConv3d{
Weight: weight,
Bias: bias,
BiasReshaped: biasReshaped,
KernelT: kernelT,
}, nil
}
// Forward applies causal 3D convolution
// x: [B, T, H, W, C] (channels-last, MLX format)
func (c *CausalConv3d) Forward(x *mlx.Array) *mlx.Array {
shape := c.Weight.Shape() // PyTorch format: [O, I, kT, kH, kW]
kernelT := shape[2]
kernelH := shape[3]
kernelW := shape[4]
// Causal temporal padding, same spatial padding
// Input is channels-last: [B, T, H, W, C]
padT := kernelT - 1
padH := kernelH / 2
padW := kernelW / 2
// Stage 1: Pad
{
x = pad3DChannelsLast(x, padT, 0, padH, padH, padW, padW)
mlx.Eval(x)
}
// Stage 2: Conv + bias
var out *mlx.Array
{
prev := x
weight := mlx.Transpose(c.Weight, 0, 2, 3, 4, 1)
out = mlx.Conv3d(x, weight, 1, 1, 1, 0, 0, 0)
if c.Bias != nil {
bias := mlx.Reshape(c.Bias, 1, 1, 1, 1, c.Bias.Dim(0))
out = mlx.Add(out, bias)
}
prev.Free()
mlx.Eval(out)
}
return out
}
// RMSNorm3D applies RMS normalization over channels
// Works with channels-last [B, T, H, W, C] format
type RMSNorm3D struct {
Gamma *mlx.Array // [1, 1, 1, 1, C] for broadcasting
}
// newRMSNorm3D creates an RMS norm
func newRMSNorm3D(weights *safetensors.ModelWeights, prefix string, dim int32) (*RMSNorm3D, error) {
gamma, err := weights.Get(prefix + ".gamma")
if err != nil {
return nil, err
}
// Reshape for channels-last broadcasting: [1, 1, 1, 1, C]
gamma = mlx.Reshape(gamma, 1, 1, 1, 1, gamma.Dim(0))
return &RMSNorm3D{Gamma: gamma}, nil
}
// Forward applies RMS norm to channels-last input [B, T, H, W, C]
func (n *RMSNorm3D) Forward(x *mlx.Array) *mlx.Array {
// RMSNorm: x * rsqrt(mean(x^2) + eps) * gamma
normalized := mlx.RMSNormNoWeight(x, 1e-6)
return mlx.Mul(normalized, n.Gamma)
}
// ResBlock is a residual block with RMS norm and causal convs
type ResBlock struct {
Norm1 *RMSNorm3D
Conv1 *CausalConv3d
Norm2 *RMSNorm3D
Conv2 *CausalConv3d
Shortcut *CausalConv3d
}
// newResBlock creates a residual block
func newResBlock(weights *safetensors.ModelWeights, prefix string, inDim, outDim int32) (*ResBlock, error) {
norm1, err := newRMSNorm3D(weights, prefix+".norm1", inDim)
if err != nil {
return nil, err
}
conv1, err := newCausalConv3d(weights, prefix+".conv1")
if err != nil {
return nil, err
}
norm2, err := newRMSNorm3D(weights, prefix+".norm2", outDim)
if err != nil {
return nil, err
}
conv2, err := newCausalConv3d(weights, prefix+".conv2")
if err != nil {
return nil, err
}
var shortcut *CausalConv3d
if inDim != outDim {
shortcut, err = newCausalConv3d(weights, prefix+".conv_shortcut")
if err != nil {
return nil, err
}
}
return &ResBlock{
Norm1: norm1,
Conv1: conv1,
Norm2: norm2,
Conv2: conv2,
Shortcut: shortcut,
}, nil
}
// Forward applies the residual block
func (r *ResBlock) Forward(x *mlx.Array) *mlx.Array {
// Use h as working variable, keep x intact for residual (caller will free x)
// Conv handles its own pools, so we just need pools for non-conv operations
var h *mlx.Array
// Keep x so it survives Eval() cleanup - needed for residual connection
mlx.Keep(x)
// Stage 1: norm1 + silu
{
h = r.Norm1.Forward(x)
h = silu3D(h)
mlx.Eval(h)
}
// Stage 2: conv1 (handles its own pools)
{
prev := h
h = r.Conv1.Forward(h)
prev.Free()
}
// Stage 3: norm2 + silu
{
prev := h
h = r.Norm2.Forward(h)
h = silu3D(h)
prev.Free()
mlx.Eval(h)
}
// Stage 4: conv2 (handles its own pools)
{
prev := h
h = r.Conv2.Forward(h)
prev.Free()
}
// Residual connection (shortcut handles its own pools if present)
if r.Shortcut != nil {
shortcut := r.Shortcut.Forward(x)
h = mlx.Add(h, shortcut)
mlx.Eval(h)
} else {
h = mlx.Add(h, x)
mlx.Eval(h)
}
return h
}
// AttentionBlock is a 2D attention block
type AttentionBlock struct {
Norm *RMSNorm3D
ToQKV *mlx.Array
ToQKVBias *mlx.Array
Proj *mlx.Array
ProjBias *mlx.Array
Dim int32
}
// newAttentionBlock creates an attention block
func newAttentionBlock(weights *safetensors.ModelWeights, prefix string, dim int32) (*AttentionBlock, error) {
norm, err := newRMSNorm3D(weights, prefix+".norm", dim)
if err != nil {
return nil, err
}
toQKV, _ := weights.Get(prefix + ".to_qkv.weight")
toQKVBias, _ := weights.Get(prefix + ".to_qkv.bias")
proj, _ := weights.Get(prefix + ".proj.weight")
projBias, _ := weights.Get(prefix + ".proj.bias")
return &AttentionBlock{
Norm: norm,
ToQKV: toQKV,
ToQKVBias: toQKVBias,
Proj: proj,
ProjBias: projBias,
Dim: dim,
}, nil
}
// Forward applies 2D attention
// Input: [B, T, H, W, C] (channels-last)
func (a *AttentionBlock) Forward(x *mlx.Array) *mlx.Array {
shape := x.Shape()
B := shape[0]
T := shape[1]
H := shape[2]
W := shape[3]
C := shape[4]
identity := x
// Flatten to [B*T, 1, H, W, C] for norm
x = mlx.Reshape(x, B*T, 1, H, W, C)
x = a.Norm.Forward(x)
x = mlx.Reshape(x, B*T, H, W, C)
// Flatten spatial to [B*T, H*W, C]
x = mlx.Reshape(x, B*T, H*W, C)
// Linear to get Q, K, V: [B*T, H*W, 3*C]
// Weight is [outC, inC] or [outC, inC, 1, 1]
wShape := a.ToQKV.Shape()
var w *mlx.Array
if len(wShape) == 4 {
w = mlx.Reshape(a.ToQKV, wShape[0], wShape[1])
} else {
w = a.ToQKV
}
w = mlx.Transpose(w, 1, 0) // [inC, outC]
qkv := mlx.Linear(x, w) // [B*T, H*W, 3*C]
if a.ToQKVBias != nil {
qkv = mlx.Add(qkv, a.ToQKVBias)
}
qkv = mlx.Reshape(qkv, B*T, 1, H*W, 3*C)
q := mlx.Slice(qkv, []int32{0, 0, 0, 0}, []int32{B * T, 1, H * W, C})
k := mlx.Slice(qkv, []int32{0, 0, 0, C}, []int32{B * T, 1, H * W, 2 * C})
v := mlx.Slice(qkv, []int32{0, 0, 0, 2 * C}, []int32{B * T, 1, H * W, 3 * C})
scale := float32(1.0 / math.Sqrt(float64(C)))
out := mlx.ScaledDotProductAttention(q, k, v, scale, false)
// out: [B*T, 1, H*W, C]
out = mlx.Reshape(out, B*T, H*W, C)
// Project back
pShape := a.Proj.Shape()
var p *mlx.Array
if len(pShape) == 4 {
p = mlx.Reshape(a.Proj, pShape[0], pShape[1])
} else {
p = a.Proj
}
p = mlx.Transpose(p, 1, 0) // [inC, outC]
out = mlx.Linear(out, p) // [B*T, H*W, C]
if a.ProjBias != nil {
out = mlx.Add(out, a.ProjBias)
}
out = mlx.Reshape(out, B, T, H, W, C)
return mlx.Add(out, identity)
}
// UpBlock handles upsampling in decoder
type UpBlock struct {
ResBlocks []*ResBlock
Upsampler *Upsample
}
// newUpBlock creates an up block
func newUpBlock(weights *safetensors.ModelWeights, prefix string, inDim, outDim int32, numBlocks int32, upsampleMode string) (*UpBlock, error) {
resBlocks := make([]*ResBlock, numBlocks+1)
currentDim := inDim
for i := int32(0); i <= numBlocks; i++ {
resPrefix := fmt.Sprintf("%s.resnets.%d", prefix, i)
block, err := newResBlock(weights, resPrefix, currentDim, outDim)
if err != nil {
return nil, err
}
resBlocks[i] = block
currentDim = outDim
}
var upsampler *Upsample
if upsampleMode != "" {
upsampler = newUpsample(weights, prefix+".upsamplers.0", outDim, upsampleMode)
}
return &UpBlock{
ResBlocks: resBlocks,
Upsampler: upsampler,
}, nil
}
// Forward applies up block with staged memory management
func (u *UpBlock) Forward(x *mlx.Array) *mlx.Array {
// ResBlocks handle their own pools
for _, block := range u.ResBlocks {
prev := x
x = block.Forward(x)
prev.Free()
}
// Upsampler handles its own pools
if u.Upsampler != nil {
prev := x
x = u.Upsampler.Forward(x)
prev.Free()
}
return x
}
// Upsample handles spatial upsampling
type Upsample struct {
Conv *mlx.Array
Bias *mlx.Array
Mode string
}
// newUpsample creates an upsampler
func newUpsample(weights *safetensors.ModelWeights, prefix string, dim int32, mode string) *Upsample {
conv, _ := weights.Get(prefix + ".resample.1.weight")
bias, _ := weights.Get(prefix + ".resample.1.bias")
return &Upsample{
Conv: conv,
Bias: bias,
Mode: mode,
}
}
// Forward applies upsampling to channels-last input [B, T, H, W, C]
// Uses staged pools to reduce peak memory during 2x upsampling
func (u *Upsample) Forward(x *mlx.Array) *mlx.Array {
shape := x.Shape()
B := shape[0]
T := shape[1]
H := shape[2]
W := shape[3]
C := shape[4]
outC := u.Conv.Shape()[0]
// Stage 1: 2x nearest neighbor upsample
{
x = mlx.Reshape(x, B*T, H, W, C)
x = upsample2xChannelsLast(x)
mlx.Eval(x)
}
// Stage 2: Conv + bias
{
prev := x
weight := mlx.Transpose(u.Conv, 0, 2, 3, 1)
x = conv2D3x3PaddedChannelsLast(x, weight)
if u.Bias != nil {
bias := mlx.Reshape(u.Bias, 1, 1, 1, outC)
x = mlx.Add(x, bias)
}
x = mlx.Reshape(x, B, T, H*2, W*2, outC)
prev.Free()
mlx.Eval(x)
}
return x
}
// MidBlock is the middle block of decoder
type MidBlock struct {
ResBlock1 *ResBlock
Attention *AttentionBlock
ResBlock2 *ResBlock
}
// newMidBlock creates a mid block
func newMidBlock(weights *safetensors.ModelWeights, prefix string, dim int32) (*MidBlock, error) {
res1, err := newResBlock(weights, prefix+".resnets.0", dim, dim)
if err != nil {
return nil, err
}
attn, err := newAttentionBlock(weights, prefix+".attentions.0", dim)
if err != nil {
return nil, err
}
res2, err := newResBlock(weights, prefix+".resnets.1", dim, dim)
if err != nil {
return nil, err
}
return &MidBlock{
ResBlock1: res1,
Attention: attn,
ResBlock2: res2,
}, nil
}
// Forward applies mid block
func (m *MidBlock) Forward(x *mlx.Array) *mlx.Array {
// Each component handles its own pools; we just free inputs
prev := x
x = m.ResBlock1.Forward(x)
prev.Free()
prev = x
x = m.Attention.Forward(x)
prev.Free()
prev = x
x = m.ResBlock2.Forward(x)
prev.Free()
return x
}
// VAEDecoder is the full VAE decoder
type VAEDecoder struct {
Config *VAEConfig
PostQuantConv *CausalConv3d
ConvIn *CausalConv3d
MidBlock *MidBlock
UpBlocks []*UpBlock
NormOut *RMSNorm3D
ConvOut *CausalConv3d
}
// Load loads the VAE decoder from a directory
func (m *VAEDecoder) Load(path string) error {
fmt.Println("Loading Qwen-Image VAE decoder...")
cfg := defaultVAEConfig()
m.Config = cfg
weights, err := safetensors.LoadModelWeights(path)
if err != nil {
return fmt.Errorf("weights: %w", err)
}
// Bulk load all weights as bf16
fmt.Print(" Loading weights as bf16... ")
if err := weights.Load(mlx.DtypeBFloat16); err != nil {
return fmt.Errorf("failed to load weights: %w", err)
}
fmt.Printf("✓ (%.1f GB)\n", float64(mlx.MetalGetActiveMemory())/(1024*1024*1024))
fmt.Print(" Loading post_quant_conv... ")
postQuantConv, err := newCausalConv3d(weights, "post_quant_conv")
if err != nil {
return err
}
m.PostQuantConv = postQuantConv
fmt.Println("✓")
fmt.Print(" Loading conv_in... ")
convIn, err := newCausalConv3d(weights, "decoder.conv_in")
if err != nil {
return err
}
m.ConvIn = convIn
fmt.Println("✓")
// Mid block (dim = base_dim * dim_mult[-1] = 96 * 4 = 384)
fmt.Print(" Loading mid_block... ")
midDim := cfg.BaseDim * cfg.DimMult[len(cfg.DimMult)-1]
midBlock, err := newMidBlock(weights, "decoder.mid_block", midDim)
if err != nil {
return err
}
m.MidBlock = midBlock
fmt.Println("✓")
// Up blocks (reversed dim_mult)
fmt.Print(" Loading up_blocks... ")
numUpBlocks := len(cfg.DimMult)
m.UpBlocks = make([]*UpBlock, numUpBlocks)
dimsMult := make([]int32, numUpBlocks+1)
dimsMult[0] = cfg.DimMult[numUpBlocks-1]
for i := 0; i < numUpBlocks; i++ {
dimsMult[i+1] = cfg.DimMult[numUpBlocks-1-i]
}
temporalUpsample := make([]bool, len(cfg.TemperalDownsample))
for i := range cfg.TemperalDownsample {
temporalUpsample[i] = cfg.TemperalDownsample[len(cfg.TemperalDownsample)-1-i]
}
for i := 0; i < numUpBlocks; i++ {
inDim := cfg.BaseDim * dimsMult[i]
outDim := cfg.BaseDim * dimsMult[i+1]
if i > 0 {
inDim = inDim / 2
}
upsampleMode := ""
if i < numUpBlocks-1 {
if temporalUpsample[i] {
upsampleMode = "upsample3d"
} else {
upsampleMode = "upsample2d"
}
}
prefix := fmt.Sprintf("decoder.up_blocks.%d", i)
upBlock, err := newUpBlock(weights, prefix, inDim, outDim, cfg.NumResBlocks, upsampleMode)
if err != nil {
return err
}
m.UpBlocks[i] = upBlock
}
fmt.Printf("✓ [%d blocks]\n", numUpBlocks)
fmt.Print(" Loading output layers... ")
normOut, err := newRMSNorm3D(weights, "decoder.norm_out", cfg.BaseDim)
if err != nil {
return err
}
m.NormOut = normOut
convOut, err := newCausalConv3d(weights, "decoder.conv_out")
if err != nil {
return err
}
m.ConvOut = convOut
fmt.Println("✓")
weights.ReleaseAll()
return nil
}
// LoadVAEDecoderFromPath is a convenience function to load VAE from path
func LoadVAEDecoderFromPath(path string) (*VAEDecoder, error) {
m := &VAEDecoder{}
if err := m.Load(filepath.Join(path, "vae")); err != nil {
return nil, err
}
return m, nil
}
// Decode converts latents to image
// z: [B, C, T, H, W] normalized latents
// Uses staged pools to free intermediate arrays and reduce peak memory.
func (vae *VAEDecoder) Decode(z *mlx.Array) *mlx.Array {
var x *mlx.Array
// Stage 1a: Denormalize and transpose
{
z = vae.Denormalize(z)
// Convert from channels-first [N, C, T, H, W] to channels-last [N, T, H, W, C]
z = mlx.Contiguous(mlx.Transpose(z, 0, 2, 3, 4, 1))
mlx.Eval(z)
}
// Stage 1b: PostQuantConv (handles its own pools)
x = vae.PostQuantConv.Forward(z)
z.Free()
// Stage 1c: ConvIn (handles its own pools)
{
prev := x
x = vae.ConvIn.Forward(x)
prev.Free()
}
// Stage 2: Mid block (handles its own pools)
x = vae.MidBlock.Forward(x)
// Stage 3: Up blocks (each handles its own pools)
for _, upBlock := range vae.UpBlocks {
x = upBlock.Forward(x)
}
// Stage 4a: NormOut + silu
{
prev := x
x = vae.NormOut.Forward(x)
x = silu3D(x)
prev.Free()
mlx.Eval(x)
}
// Stage 4b: ConvOut (handles its own pools)
{
prev := x
x = vae.ConvOut.Forward(x)
prev.Free()
}
// Stage 4c: Post-processing
{
prev := x
// Clamp to [-1, 1]
x = mlx.ClipScalar(x, -1.0, 1.0, true, true)
// Convert back from channels-last to channels-first
x = mlx.Contiguous(mlx.Transpose(x, 0, 4, 1, 2, 3))
prev.Free()
mlx.Eval(x)
}
return x
}
// Denormalize reverses the normalization applied during encoding
func (vae *VAEDecoder) Denormalize(z *mlx.Array) *mlx.Array {
shape := z.Shape()
C := shape[1]
mean := mlx.NewArray(vae.Config.LatentsMean[:C], []int32{1, C, 1, 1, 1})
std := mlx.NewArray(vae.Config.LatentsStd[:C], []int32{1, C, 1, 1, 1})
mean = mlx.ToBFloat16(mean)
std = mlx.ToBFloat16(std)
return mlx.Add(mlx.Mul(z, std), mean)
}
// Helper functions
func silu3D(x *mlx.Array) *mlx.Array {
return mlx.Mul(x, mlx.Sigmoid(x))
}
// pad3DChannelsLast pads a channels-last [B, T, H, W, C] tensor
func pad3DChannelsLast(x *mlx.Array, tBefore, tAfter, hBefore, hAfter, wBefore, wAfter int32) *mlx.Array {
if tBefore == 0 && tAfter == 0 && hBefore == 0 && hAfter == 0 && wBefore == 0 && wAfter == 0 {
return x
}
// Pad dims: [B before, B after, T before, T after, H before, H after, W before, W after, C before, C after]
return mlx.Pad(x, []int32{0, 0, tBefore, tAfter, hBefore, hAfter, wBefore, wAfter, 0, 0})
}
func pad2D(x *mlx.Array, hBefore, hAfter, wBefore, wAfter int32) *mlx.Array {
if hBefore == 0 && hAfter == 0 && wBefore == 0 && wAfter == 0 {
return x
}
return mlx.Pad(x, []int32{0, 0, 0, 0, hBefore, hAfter, wBefore, wAfter})
}
func conv2D1x1(x, weight *mlx.Array) *mlx.Array {
shape := x.Shape()
B := shape[0]
H := shape[2]
W := shape[3]
x = mlx.Transpose(x, 0, 2, 3, 1)
x = mlx.Reshape(x, B*H*W, shape[1])
wShape := weight.Shape()
var w *mlx.Array
if len(wShape) == 4 {
w = mlx.Reshape(weight, wShape[0], wShape[1])
} else {
w = weight
}
w = mlx.Transpose(w, 1, 0)
out := mlx.Linear(x, w)
outC := w.Dim(1)
out = mlx.Reshape(out, B, H, W, outC)
return mlx.Transpose(out, 0, 3, 1, 2)
}
func conv2D3x3Padded(x, weight *mlx.Array) *mlx.Array {
x = pad2D(x, 1, 1, 1, 1)
return conv2D(x, weight, 1, 1)
}
func conv2D(x, w *mlx.Array, strideH, strideW int32) *mlx.Array {
x = mlx.Transpose(x, 0, 2, 3, 1)
w = mlx.Transpose(w, 0, 2, 3, 1)
shape := x.Shape()
B := shape[0]
H := shape[1]
W := shape[2]
wShape := w.Shape()
Cout := wShape[0]
kH := wShape[1]
kW := wShape[2]
outH := (H-kH)/strideH + 1
outW := (W-kW)/strideW + 1
patches := extractPatches2D(x, kH, kW, strideH, strideW)
wFlat := mlx.Reshape(w, Cout, -1)
patches = mlx.Reshape(patches, B*outH*outW, -1)
out := mlx.Linear(patches, mlx.Transpose(wFlat, 1, 0))
out = mlx.Reshape(out, B, outH, outW, Cout)
return mlx.Transpose(out, 0, 3, 1, 2)
}
func extractPatches2D(x *mlx.Array, kH, kW, strideH, strideW int32) *mlx.Array {
shape := x.Shape()
B := shape[0]
H := shape[1]
W := shape[2]
C := shape[3]
outH := (H-kH)/strideH + 1
outW := (W-kW)/strideW + 1
patches := make([]*mlx.Array, outH*outW)
idx := 0
for i := int32(0); i < outH; i++ {
for j := int32(0); j < outW; j++ {
startH := i * strideH
startW := j * strideW
patch := mlx.Slice(x, []int32{0, startH, startW, 0}, []int32{B, startH + kH, startW + kW, C})
patch = mlx.Reshape(patch, B, kH*kW*C)
patches[idx] = patch
idx++
}
}
for i := range patches {
patches[i] = mlx.ExpandDims(patches[i], 1)
}
stacked := mlx.Concatenate(patches, 1)
return mlx.Reshape(stacked, B, outH, outW, kH*kW*C)
}
func upsample2x(x *mlx.Array) *mlx.Array {
shape := x.Shape()
H := shape[2]
W := shape[3]
rowIdxData := make([]int32, H*2)
for i := int32(0); i < H; i++ {
rowIdxData[i*2] = i
rowIdxData[i*2+1] = i
}
rowIdx := mlx.NewArrayInt32(rowIdxData, []int32{H * 2})
colIdxData := make([]int32, W*2)
for i := int32(0); i < W; i++ {
colIdxData[i*2] = i
colIdxData[i*2+1] = i
}
colIdx := mlx.NewArrayInt32(colIdxData, []int32{W * 2})
x = mlx.Take(x, rowIdx, 2)
x = mlx.Take(x, colIdx, 3)
return x
}
// upsample2xChannelsLast upsamples channels-last input [B, H, W, C] by 2x
func upsample2xChannelsLast(x *mlx.Array) *mlx.Array {
shape := x.Shape()
H := shape[1]
W := shape[2]
// Create repeat indices for rows
rowIdxData := make([]int32, H*2)
for i := int32(0); i < H; i++ {
rowIdxData[i*2] = i
rowIdxData[i*2+1] = i
}
rowIdx := mlx.NewArrayInt32(rowIdxData, []int32{H * 2})
// Create repeat indices for columns
colIdxData := make([]int32, W*2)
for i := int32(0); i < W; i++ {
colIdxData[i*2] = i
colIdxData[i*2+1] = i
}
colIdx := mlx.NewArrayInt32(colIdxData, []int32{W * 2})
// Take along H (axis 1) then W (axis 2)
x = mlx.Take(x, rowIdx, 1)
x = mlx.Take(x, colIdx, 2)
return x
}
// conv2D3x3PaddedChannelsLast applies 3x3 conv with padding to channels-last input [B, H, W, C]
// weight: [outC, kH, kW, inC] (MLX channels-last format)
func conv2D3x3PaddedChannelsLast(x, weight *mlx.Array) *mlx.Array {
// Pad spatial dims: [B, H, W, C] -> pad H and W by 1 each side
x = mlx.Pad(x, []int32{0, 0, 1, 1, 1, 1, 0, 0})
// Conv2d expects: input [B, H, W, inC], weight [outC, kH, kW, inC]
// stride=1, padding=0 (we already padded manually)
return mlx.Conv2d(x, weight, 1, 0)
}

View File

@@ -1,114 +0,0 @@
//go:build mlx
package qwen_image
import (
"math"
"os"
"testing"
"github.com/ollama/ollama/x/imagegen/mlx"
)
// TestVAEConfig tests configuration invariants.
func TestVAEConfig(t *testing.T) {
cfg := defaultVAEConfig()
// Property: latents_mean and latents_std have z_dim elements
if int32(len(cfg.LatentsMean)) != cfg.ZDim {
t.Errorf("latents_mean length != z_dim: %d != %d", len(cfg.LatentsMean), cfg.ZDim)
}
if int32(len(cfg.LatentsStd)) != cfg.ZDim {
t.Errorf("latents_std length != z_dim: %d != %d", len(cfg.LatentsStd), cfg.ZDim)
}
// Property: dim_mult defines 4 stages
if len(cfg.DimMult) != 4 {
t.Errorf("dim_mult should have 4 stages: got %d", len(cfg.DimMult))
}
// Property: temperal_downsample has 3 elements (for 3 transitions)
if len(cfg.TemperalDownsample) != 3 {
t.Errorf("temperal_downsample should have 3 elements: got %d", len(cfg.TemperalDownsample))
}
}
// TestVAELatentsNormalization tests the latent denormalization values.
func TestVAELatentsNormalization(t *testing.T) {
cfg := defaultVAEConfig()
// Verify latents_std values are all positive
for i, std := range cfg.LatentsStd {
if std <= 0 {
t.Errorf("latents_std[%d] should be positive: %v", i, std)
}
}
// Verify values are in reasonable range (from actual model)
for i, mean := range cfg.LatentsMean {
if math.Abs(float64(mean)) > 5 {
t.Errorf("latents_mean[%d] seems too large: %v", i, mean)
}
}
for i, std := range cfg.LatentsStd {
if std > 10 {
t.Errorf("latents_std[%d] seems too large: %v", i, std)
}
}
}
// TestVAEDecoderForward tests full forward pass (integration test).
// Skips if model weights are not available.
func TestVAEDecoderForward(t *testing.T) {
weightsPath := "../../../weights/Qwen-Image-2512/vae"
if _, err := os.Stat(weightsPath); os.IsNotExist(err) {
t.Skip("Skipping: model weights not found at " + weightsPath)
}
vae := &VAEDecoder{}
if err := vae.Load(weightsPath); err != nil {
t.Fatalf("Failed to load VAE decoder: %v", err)
}
mlx.Keep(mlx.Collect(vae)...)
// Small test input: [B, C, T, H, W]
// After 4 upsampling stages (2x each), H/W multiply by 16
batchSize := int32(1)
channels := int32(16)
frames := int32(1)
latentH := int32(4)
latentW := int32(4)
latents := mlx.RandomNormal([]int32{batchSize, channels, frames, latentH, latentW}, 0)
// Decode
out := vae.Decode(latents)
mlx.Eval(out)
// Verify output shape: [B, 3, T, H*16, W*16]
outShape := out.Shape()
if outShape[0] != batchSize {
t.Errorf("batch size: got %d, want %d", outShape[0], batchSize)
}
if outShape[1] != 3 {
t.Errorf("channels: got %d, want 3", outShape[1])
}
if outShape[2] != frames {
t.Errorf("frames: got %d, want %d", outShape[2], frames)
}
expectedH := latentH * 16 // 4 stages of 2x upsampling
expectedW := latentW * 16
if outShape[3] != expectedH || outShape[4] != expectedW {
t.Errorf("spatial dims: got [%d, %d], want [%d, %d]",
outShape[3], outShape[4], expectedH, expectedW)
}
// Verify output is in valid range (should be clamped to [0, 1] by decode)
outData := out.Data()
for i := 0; i < min(100, len(outData)); i++ {
if math.IsNaN(float64(outData[i])) || math.IsInf(float64(outData[i]), 0) {
t.Errorf("output[%d] not finite: %v", i, outData[i])
break
}
}
}

View File

@@ -1,682 +0,0 @@
//go:build mlx
package qwen_image_edit
import (
"fmt"
"math"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/safetensors"
)
// CausalConv3d is a causal 3D convolution (for temporal causality)
type CausalConv3d struct {
Weight *mlx.Array
Bias *mlx.Array
BiasReshaped *mlx.Array // [1, C, 1, 1, 1]
KernelT int32
}
// newCausalConv3d creates a 3D causal conv
func newCausalConv3d(weights *safetensors.ModelWeights, prefix string) (*CausalConv3d, error) {
weight, err := weights.Get(prefix + ".weight")
if err != nil {
return nil, fmt.Errorf("weight not found: %s", prefix)
}
bias, _ := weights.Get(prefix + ".bias")
kernelT := weight.Shape()[2]
outC := weight.Shape()[0]
var biasReshaped *mlx.Array
if bias != nil {
biasReshaped = mlx.Reshape(bias, 1, outC, 1, 1, 1)
}
return &CausalConv3d{
Weight: weight,
Bias: bias,
BiasReshaped: biasReshaped,
KernelT: kernelT,
}, nil
}
// Forward applies causal 3D convolution (or 2D if weight is 4D)
// x: [B, T, H, W, C] (channels-last, MLX format)
func (c *CausalConv3d) Forward(x *mlx.Array) *mlx.Array {
shape := c.Weight.Shape()
// Handle both 5D (3D conv) and 4D (2D conv) weights
if len(shape) == 4 {
// 2D conv: [O, I, kH, kW] - need to apply per-frame
return c.forward2D(x)
}
// 3D conv: [O, I, kT, kH, kW]
kernelT := shape[2]
kernelH := shape[3]
kernelW := shape[4]
// Causal temporal padding, same spatial padding
padT := kernelT - 1
padH := kernelH / 2
padW := kernelW / 2
// Stage 1: Pad
{
x = pad3DChannelsLast(x, padT, 0, padH, padH, padW, padW)
mlx.Eval(x)
}
// Stage 2: Conv + bias
var out *mlx.Array
{
prev := x
weight := mlx.Transpose(c.Weight, 0, 2, 3, 4, 1)
out = mlx.Conv3d(x, weight, 1, 1, 1, 0, 0, 0)
if c.Bias != nil {
bias := mlx.Reshape(c.Bias, 1, 1, 1, 1, c.Bias.Dim(0))
out = mlx.Add(out, bias)
}
prev.Free()
mlx.Eval(out)
}
return out
}
// forward2D applies 2D conv per-frame for [B, T, H, W, C] input
func (c *CausalConv3d) forward2D(x *mlx.Array) *mlx.Array {
xShape := x.Shape()
B := xShape[0]
T := xShape[1]
H := xShape[2]
W := xShape[3]
C := xShape[4]
wShape := c.Weight.Shape() // [O, I, kH, kW]
kernelH := wShape[2]
kernelW := wShape[3]
outC := wShape[0]
padH := kernelH / 2
padW := kernelW / 2
// Reshape to [B*T, H, W, C] for 2D conv
x = mlx.Reshape(x, B*T, H, W, C)
// Pad spatially
x = mlx.Pad(x, []int32{0, 0, padH, padH, padW, padW, 0, 0})
// Apply 2D conv
weight := mlx.Transpose(c.Weight, 0, 2, 3, 1) // [O, I, kH, kW] -> [O, kH, kW, I]
x = mlx.Conv2d(x, weight, 1, 0)
if c.Bias != nil {
bias := mlx.Reshape(c.Bias, 1, 1, 1, outC)
x = mlx.Add(x, bias)
}
// Get output spatial dims
outH := H
outW := W
// Reshape back to [B, T, H, W, C]
x = mlx.Reshape(x, B, T, outH, outW, outC)
mlx.Eval(x)
return x
}
// RMSNorm3D applies RMS normalization over channels
type RMSNorm3D struct {
Gamma *mlx.Array // [1, 1, 1, 1, C] for broadcasting
}
// newRMSNorm3D creates an RMS norm
func newRMSNorm3D(weights *safetensors.ModelWeights, prefix string, dim int32) (*RMSNorm3D, error) {
gamma, err := weights.Get(prefix + ".gamma")
if err != nil {
return nil, err
}
gamma = mlx.Reshape(gamma, 1, 1, 1, 1, gamma.Dim(0))
return &RMSNorm3D{Gamma: gamma}, nil
}
// Forward applies RMS norm to channels-last input [B, T, H, W, C]
func (n *RMSNorm3D) Forward(x *mlx.Array) *mlx.Array {
normalized := mlx.RMSNormNoWeight(x, 1e-6)
return mlx.Mul(normalized, n.Gamma)
}
// ResBlock is a residual block with RMS norm and causal convs
type ResBlock struct {
Norm1 *RMSNorm3D
Conv1 *CausalConv3d
Norm2 *RMSNorm3D
Conv2 *CausalConv3d
Shortcut *CausalConv3d
}
// newResBlock creates a residual block
func newResBlock(weights *safetensors.ModelWeights, prefix string, inDim, outDim int32) (*ResBlock, error) {
norm1, err := newRMSNorm3D(weights, prefix+".norm1", inDim)
if err != nil {
return nil, err
}
conv1, err := newCausalConv3d(weights, prefix+".conv1")
if err != nil {
return nil, err
}
norm2, err := newRMSNorm3D(weights, prefix+".norm2", outDim)
if err != nil {
return nil, err
}
conv2, err := newCausalConv3d(weights, prefix+".conv2")
if err != nil {
return nil, err
}
var shortcut *CausalConv3d
if inDim != outDim {
shortcut, err = newCausalConv3d(weights, prefix+".conv_shortcut")
if err != nil {
return nil, err
}
}
return &ResBlock{
Norm1: norm1,
Conv1: conv1,
Norm2: norm2,
Conv2: conv2,
Shortcut: shortcut,
}, nil
}
// Forward applies the residual block
func (r *ResBlock) Forward(x *mlx.Array) *mlx.Array {
var h *mlx.Array
mlx.Keep(x)
// Stage 1: norm1 + silu
{
h = r.Norm1.Forward(x)
h = silu3D(h)
mlx.Eval(h)
}
// Stage 2: conv1
{
prev := h
h = r.Conv1.Forward(h)
prev.Free()
}
// Stage 3: norm2 + silu
{
prev := h
h = r.Norm2.Forward(h)
h = silu3D(h)
prev.Free()
mlx.Eval(h)
}
// Stage 4: conv2
{
prev := h
h = r.Conv2.Forward(h)
prev.Free()
}
// Residual connection
if r.Shortcut != nil {
shortcut := r.Shortcut.Forward(x)
h = mlx.Add(h, shortcut)
mlx.Eval(h)
} else {
h = mlx.Add(h, x)
mlx.Eval(h)
}
return h
}
// AttentionBlock is a 2D attention block
type AttentionBlock struct {
Norm *RMSNorm3D
ToQKV *mlx.Array
ToQKVBias *mlx.Array
Proj *mlx.Array
ProjBias *mlx.Array
Dim int32
}
// newAttentionBlock creates an attention block
func newAttentionBlock(weights *safetensors.ModelWeights, prefix string, dim int32) (*AttentionBlock, error) {
norm, err := newRMSNorm3D(weights, prefix+".norm", dim)
if err != nil {
return nil, err
}
toQKV, _ := weights.Get(prefix + ".to_qkv.weight")
toQKVBias, _ := weights.Get(prefix + ".to_qkv.bias")
proj, _ := weights.Get(prefix + ".proj.weight")
projBias, _ := weights.Get(prefix + ".proj.bias")
return &AttentionBlock{
Norm: norm,
ToQKV: toQKV,
ToQKVBias: toQKVBias,
Proj: proj,
ProjBias: projBias,
Dim: dim,
}, nil
}
// Forward applies 2D attention
// Input: [B, T, H, W, C] (channels-last)
func (a *AttentionBlock) Forward(x *mlx.Array) *mlx.Array {
shape := x.Shape()
B := shape[0]
T := shape[1]
H := shape[2]
W := shape[3]
C := shape[4]
identity := x
// Flatten to [B*T, 1, H, W, C] for norm
x = mlx.Reshape(x, B*T, 1, H, W, C)
x = a.Norm.Forward(x)
x = mlx.Reshape(x, B*T, H, W, C)
// Flatten spatial to [B*T, H*W, C]
x = mlx.Reshape(x, B*T, H*W, C)
// Linear to get Q, K, V
wShape := a.ToQKV.Shape()
var w *mlx.Array
if len(wShape) == 4 {
w = mlx.Reshape(a.ToQKV, wShape[0], wShape[1])
} else {
w = a.ToQKV
}
w = mlx.Transpose(w, 1, 0)
qkv := mlx.Linear(x, w)
if a.ToQKVBias != nil {
qkv = mlx.Add(qkv, a.ToQKVBias)
}
qkv = mlx.Reshape(qkv, B*T, 1, H*W, 3*C)
q := mlx.Slice(qkv, []int32{0, 0, 0, 0}, []int32{B * T, 1, H * W, C})
k := mlx.Slice(qkv, []int32{0, 0, 0, C}, []int32{B * T, 1, H * W, 2 * C})
v := mlx.Slice(qkv, []int32{0, 0, 0, 2 * C}, []int32{B * T, 1, H * W, 3 * C})
scale := float32(1.0 / math.Sqrt(float64(C)))
out := mlx.ScaledDotProductAttention(q, k, v, scale, false)
out = mlx.Reshape(out, B*T, H*W, C)
// Project back
pShape := a.Proj.Shape()
var p *mlx.Array
if len(pShape) == 4 {
p = mlx.Reshape(a.Proj, pShape[0], pShape[1])
} else {
p = a.Proj
}
p = mlx.Transpose(p, 1, 0)
out = mlx.Linear(out, p)
if a.ProjBias != nil {
out = mlx.Add(out, a.ProjBias)
}
out = mlx.Reshape(out, B, T, H, W, C)
return mlx.Add(out, identity)
}
// UpBlock handles upsampling in decoder
type UpBlock struct {
ResBlocks []*ResBlock
Upsampler *Upsample
}
// newUpBlock creates an up block
func newUpBlock(weights *safetensors.ModelWeights, prefix string, inDim, outDim int32, numBlocks int32, upsampleMode string) (*UpBlock, error) {
resBlocks := make([]*ResBlock, numBlocks+1)
currentDim := inDim
for i := int32(0); i <= numBlocks; i++ {
resPrefix := fmt.Sprintf("%s.resnets.%d", prefix, i)
block, err := newResBlock(weights, resPrefix, currentDim, outDim)
if err != nil {
return nil, err
}
resBlocks[i] = block
currentDim = outDim
}
var upsampler *Upsample
if upsampleMode != "" {
upsampler = newUpsample(weights, prefix+".upsamplers.0", outDim, upsampleMode)
}
return &UpBlock{
ResBlocks: resBlocks,
Upsampler: upsampler,
}, nil
}
// Forward applies up block
func (u *UpBlock) Forward(x *mlx.Array) *mlx.Array {
for _, block := range u.ResBlocks {
prev := x
x = block.Forward(x)
prev.Free()
}
if u.Upsampler != nil {
prev := x
x = u.Upsampler.Forward(x)
prev.Free()
}
return x
}
// Upsample handles spatial upsampling
type Upsample struct {
Conv *mlx.Array
Bias *mlx.Array
Mode string
}
// newUpsample creates an upsampler
func newUpsample(weights *safetensors.ModelWeights, prefix string, dim int32, mode string) *Upsample {
conv, _ := weights.Get(prefix + ".resample.1.weight")
bias, _ := weights.Get(prefix + ".resample.1.bias")
return &Upsample{
Conv: conv,
Bias: bias,
Mode: mode,
}
}
// Forward applies upsampling to channels-last input [B, T, H, W, C]
func (u *Upsample) Forward(x *mlx.Array) *mlx.Array {
shape := x.Shape()
B := shape[0]
T := shape[1]
H := shape[2]
W := shape[3]
C := shape[4]
outC := u.Conv.Shape()[0]
// Stage 1: 2x nearest neighbor upsample
{
x = mlx.Reshape(x, B*T, H, W, C)
x = upsample2xChannelsLast(x)
mlx.Eval(x)
}
// Stage 2: Conv + bias
{
prev := x
weight := mlx.Transpose(u.Conv, 0, 2, 3, 1)
x = conv2D3x3PaddedChannelsLast(x, weight)
if u.Bias != nil {
bias := mlx.Reshape(u.Bias, 1, 1, 1, outC)
x = mlx.Add(x, bias)
}
x = mlx.Reshape(x, B, T, H*2, W*2, outC)
prev.Free()
mlx.Eval(x)
}
return x
}
// MidBlock is the middle block
type MidBlock struct {
ResBlock1 *ResBlock
Attention *AttentionBlock
ResBlock2 *ResBlock
}
// newMidBlock creates a mid block
func newMidBlock(weights *safetensors.ModelWeights, prefix string, dim int32) (*MidBlock, error) {
res1, err := newResBlock(weights, prefix+".resnets.0", dim, dim)
if err != nil {
return nil, err
}
attn, err := newAttentionBlock(weights, prefix+".attentions.0", dim)
if err != nil {
return nil, err
}
res2, err := newResBlock(weights, prefix+".resnets.1", dim, dim)
if err != nil {
return nil, err
}
return &MidBlock{
ResBlock1: res1,
Attention: attn,
ResBlock2: res2,
}, nil
}
// Forward applies mid block
func (m *MidBlock) Forward(x *mlx.Array) *mlx.Array {
prev := x
x = m.ResBlock1.Forward(x)
prev.Free()
prev = x
x = m.Attention.Forward(x)
prev.Free()
prev = x
x = m.ResBlock2.Forward(x)
prev.Free()
return x
}
// Helper functions
func silu3D(x *mlx.Array) *mlx.Array {
return mlx.Mul(x, mlx.Sigmoid(x))
}
// pad3DChannelsLast pads a channels-last [B, T, H, W, C] tensor
func pad3DChannelsLast(x *mlx.Array, tBefore, tAfter, hBefore, hAfter, wBefore, wAfter int32) *mlx.Array {
if tBefore == 0 && tAfter == 0 && hBefore == 0 && hAfter == 0 && wBefore == 0 && wAfter == 0 {
return x
}
return mlx.Pad(x, []int32{0, 0, tBefore, tAfter, hBefore, hAfter, wBefore, wAfter, 0, 0})
}
// upsample2xChannelsLast upsamples channels-last input [B, H, W, C] by 2x
func upsample2xChannelsLast(x *mlx.Array) *mlx.Array {
shape := x.Shape()
H := shape[1]
W := shape[2]
rowIdxData := make([]int32, H*2)
for i := int32(0); i < H; i++ {
rowIdxData[i*2] = i
rowIdxData[i*2+1] = i
}
rowIdx := mlx.NewArrayInt32(rowIdxData, []int32{H * 2})
colIdxData := make([]int32, W*2)
for i := int32(0); i < W; i++ {
colIdxData[i*2] = i
colIdxData[i*2+1] = i
}
colIdx := mlx.NewArrayInt32(colIdxData, []int32{W * 2})
x = mlx.Take(x, rowIdx, 1)
x = mlx.Take(x, colIdx, 2)
return x
}
// conv2D3x3PaddedChannelsLast applies 3x3 conv with padding to channels-last input [B, H, W, C]
func conv2D3x3PaddedChannelsLast(x, weight *mlx.Array) *mlx.Array {
x = mlx.Pad(x, []int32{0, 0, 1, 1, 1, 1, 0, 0})
return mlx.Conv2d(x, weight, 1, 0)
}
// conv2DStrided applies conv with stride > 1 using manual patch extraction
// x: [B, H, W, C] (channels-last), weight: [O, kH, kW, I]
func conv2DStrided(x, weight *mlx.Array, stride int32) *mlx.Array {
shape := x.Shape()
B := shape[0]
H := shape[1]
W := shape[2]
wShape := weight.Shape()
Cout := wShape[0]
kH := wShape[1]
kW := wShape[2]
outH := (H - kH) / stride + 1
outW := (W - kW) / stride + 1
patches := extractPatches2DStrided(x, kH, kW, stride)
wFlat := mlx.Reshape(weight, Cout, -1)
patches = mlx.Reshape(patches, B*outH*outW, -1)
out := mlx.Linear(patches, mlx.Transpose(wFlat, 1, 0))
return mlx.Reshape(out, B, outH, outW, Cout)
}
// conv3DStrided applies 3D conv with strides using manual patch extraction
// x: [B, T, H, W, C] (channels-last), weight: [O, I, kT, kH, kW] (PyTorch format)
// strideT, strideH, strideW are the strides for each dimension
// Patches are extracted in [C, T, H, W] order to match Python's preprocessing
func conv3DStrided(x, weight *mlx.Array, strideT, strideH, strideW int32) *mlx.Array {
shape := x.Shape()
B := shape[0]
T := shape[1]
H := shape[2]
W := shape[3]
C := shape[4]
wShape := weight.Shape()
Cout := wShape[0]
// I := wShape[1]
kT := wShape[2]
kH := wShape[3]
kW := wShape[4]
// For temporal: if T < kT, we need to repeat frames temporally
// For single image with T=1 and kT=2, we duplicate the frame to T=kT
// Python Qwen2.5-VL duplicates the frame, not zero-pads
if T < kT {
// Tile along T dimension: [B, T, H, W, C] -> [B, kT, H, W, C]
x = mlx.Tile(x, []int32{1, kT, 1, 1, 1})
T = kT
}
outT := (T - kT) / strideT + 1
outH := (H - kH) / strideH + 1
outW := (W - kW) / strideW + 1
// Extract 3D patches in [C, T, H, W] order to match Python
patches := extractPatches3DStrided(x, kT, kH, kW, strideT, strideH, strideW)
// patches shape: [B, outT, outH, outW, C*kT*kH*kW]
// Weight is [O, I, kT, kH, kW] - flatten to [O, I*kT*kH*kW] to match patch order [C, T, H, W]
wFlat := mlx.Reshape(weight, Cout, -1) // [Cout, I*kT*kH*kW]
patches = mlx.Reshape(patches, B*outT*outH*outW, C*kT*kH*kW)
out := mlx.Linear(patches, mlx.Transpose(wFlat, 1, 0))
return mlx.Reshape(out, B, outT, outH, outW, Cout)
}
// extractPatches3DStrided extracts 3D patches with given strides
// Returns patches with values in [C, T, H, W] order to match Python's preprocessing
func extractPatches3DStrided(x *mlx.Array, kT, kH, kW, strideT, strideH, strideW int32) *mlx.Array {
shape := x.Shape()
B := shape[0]
T := shape[1]
H := shape[2]
W := shape[3]
C := shape[4]
outT := (T - kT) / strideT + 1
outH := (H - kH) / strideH + 1
outW := (W - kW) / strideW + 1
numPatches := outT * outH * outW
patches := make([]*mlx.Array, numPatches)
idx := 0
for t := int32(0); t < outT; t++ {
for i := int32(0); i < outH; i++ {
for j := int32(0); j < outW; j++ {
startT := t * strideT
startH := i * strideH
startW := j * strideW
// Extract patch: [B, kT, kH, kW, C]
patch := mlx.Slice(x,
[]int32{0, startT, startH, startW, 0},
[]int32{B, startT + kT, startH + kH, startW + kW, C})
// Transpose from [B, T, H, W, C] to [B, C, T, H, W] to match Python's order
patch = mlx.Transpose(patch, 0, 4, 1, 2, 3)
// Flatten to [B, C*T*H*W]
patch = mlx.Reshape(patch, B, C*kT*kH*kW)
patches[idx] = patch
idx++
}
}
}
for i := range patches {
patches[i] = mlx.ExpandDims(patches[i], 1)
}
stacked := mlx.Concatenate(patches, 1)
return mlx.Reshape(stacked, B, outT, outH, outW, C*kT*kH*kW)
}
// extractPatches2DStrided extracts patches with given stride
func extractPatches2DStrided(x *mlx.Array, kH, kW, stride int32) *mlx.Array {
shape := x.Shape()
B := shape[0]
H := shape[1]
W := shape[2]
C := shape[3]
outH := (H - kH) / stride + 1
outW := (W - kW) / stride + 1
patches := make([]*mlx.Array, outH*outW)
idx := 0
for i := int32(0); i < outH; i++ {
for j := int32(0); j < outW; j++ {
startH := i * stride
startW := j * stride
patch := mlx.Slice(x, []int32{0, startH, startW, 0}, []int32{B, startH + kH, startW + kW, C})
patch = mlx.Reshape(patch, B, kH*kW*C)
patches[idx] = patch
idx++
}
}
for i := range patches {
patches[i] = mlx.ExpandDims(patches[i], 1)
}
stacked := mlx.Concatenate(patches, 1)
return mlx.Reshape(stacked, B, outH, outW, kH*kW*C)
}
// layerNormNoAffine applies layer norm without learnable parameters
func layerNormNoAffine(x *mlx.Array, eps float32) *mlx.Array {
ndim := x.Ndim()
lastAxis := ndim - 1
mean := mlx.Mean(x, lastAxis, true)
xCentered := mlx.Sub(x, mean)
variance := mlx.Mean(mlx.Square(xCentered), lastAxis, true)
return mlx.Div(xCentered, mlx.Sqrt(mlx.AddScalar(variance, eps)))
}

View File

@@ -1,475 +0,0 @@
//go:build mlx
package qwen_image_edit
import (
"fmt"
"image"
"image/color"
_ "image/jpeg"
_ "image/png"
"math"
"os"
"github.com/ollama/ollama/x/imagegen/mlx"
"golang.org/x/image/draw"
_ "golang.org/x/image/webp"
)
// loadImageFile loads an image from disk
func loadImageFile(path string) (image.Image, error) {
f, err := os.Open(path)
if err != nil {
return nil, fmt.Errorf("open image: %w", err)
}
defer f.Close()
img, _, err := image.Decode(f)
if err != nil {
return nil, fmt.Errorf("decode image: %w", err)
}
return img, nil
}
// imageToFloat32Pixels converts an image to a float32 pixel array [H, W, C] in [0, 1] range
func imageToFloat32Pixels(img image.Image, width, height int) []float32 {
pixels := make([]float32, width*height*3)
idx := 0
for y := 0; y < height; y++ {
for x := 0; x < width; x++ {
r, g, b, _ := img.At(x, y).RGBA()
pixels[idx] = float32(r) / 65535.0
pixels[idx+1] = float32(g) / 65535.0
pixels[idx+2] = float32(b) / 65535.0
idx += 3
}
}
return pixels
}
// normalizeImageNet applies ImageNet normalization to an image tensor
func (p *Processor) normalizeImageNet(arr *mlx.Array) *mlx.Array {
mean := mlx.NewArray(p.Config.ImageMean, []int32{1, 1, 3})
std := mlx.NewArray(p.Config.ImageStd, []int32{1, 1, 3})
return mlx.Div(mlx.Sub(arr, mean), std)
}
// prepareImageTensor transforms [H, W, C] to [B, C, H, W] and converts to bf16
func prepareImageTensor(arr *mlx.Array) *mlx.Array {
// Transpose to [C, H, W] and make contiguous
arr = mlx.Contiguous(mlx.Transpose(arr, 2, 0, 1))
// Add batch dimension [1, C, H, W]
arr = mlx.ExpandDims(arr, 0)
// Convert to bf16
arr = mlx.ToBFloat16(arr)
mlx.Eval(arr)
return arr
}
// clampFloat clamps a value to [0, 255] and returns uint8
func clampFloat(v, weightSum float64) uint8 {
v /= weightSum
if v < 0 {
v = 0
}
if v > 255 {
v = 255
}
return uint8(math.Round(v))
}
// ImageDims holds dimensions for a preprocessed image
type ImageDims struct {
// Original image dimensions
OrigW, OrigH int32
// Condition image dimensions (for vision encoder)
CondW, CondH int32
// VAE image dimensions
VaeW, VaeH int32
// Latent dimensions (VAE dims / vae_scale_factor)
LatentW, LatentH int32
// Patch dimensions (latent dims / patch_size)
PatchW, PatchH int32
}
// ProcessorConfig holds image processor configuration
type ProcessorConfig struct {
// Condition image size (target pixel area for vision encoder input)
// Python: CONDITION_IMAGE_SIZE = 384 * 384 = 147456
// Pipeline resizes image to this area before passing to encode_prompt
ConditionImageSize int32
// VAE image size (target pixel area)
// Python: VAE_IMAGE_SIZE = 1024 * 1024 = 1048576
VAEImageSize int32
// Image normalization (ImageNet stats for vision encoder)
ImageMean []float32
ImageStd []float32
}
// defaultProcessorConfig returns default processor config
func defaultProcessorConfig() *ProcessorConfig {
return &ProcessorConfig{
ConditionImageSize: 384 * 384, // 147456 - matches Python CONDITION_IMAGE_SIZE
VAEImageSize: 1024 * 1024, // 1048576 - matches Python VAE_IMAGE_SIZE
ImageMean: []float32{0.48145466, 0.4578275, 0.40821073},
ImageStd: []float32{0.26862954, 0.26130258, 0.27577711},
}
}
// Processor handles image preprocessing for Qwen-Image-Edit
type Processor struct {
Config *ProcessorConfig
}
// Load loads the processor config
func (p *Processor) Load(path string) error {
p.Config = defaultProcessorConfig()
return nil
}
// LoadAndPreprocess loads an image and preprocesses it for both paths
// Returns: condImage (for vision encoder), vaeImage (for VAE encoding)
func (p *Processor) LoadAndPreprocess(imagePath string) (*mlx.Array, *mlx.Array, error) {
img, err := loadImageFile(imagePath)
if err != nil {
return nil, nil, err
}
bounds := img.Bounds()
origW := bounds.Dx()
origH := bounds.Dy()
ratio := float64(origW) / float64(origH)
// Calculate dimensions for condition image (vision encoder)
// Python pipeline does TWO resizes:
// 1. VaeImageProcessor.resize with Lanczos to CONDITION_IMAGE_SIZE (384x384 area)
// 2. Qwen2VLProcessor's smart_resize with Bicubic to multiple of 28
intermediateW, intermediateH := calculateDimensions(p.Config.ConditionImageSize, ratio, 32)
finalH, finalW := smartResize(intermediateH, intermediateW, 28, 56*56, 28*28*1280)
// Calculate dimensions for VAE image (1024x1024 area)
// Use multiple of 32 (vae_scale_factor * patch_size * 2 = 8 * 2 * 2 = 32)
vaeW, vaeH := calculateDimensions(p.Config.VAEImageSize, ratio, 32)
// Preprocess for condition (vision encoder) - two-step resize
condImage := p.preprocessImageTwoStep(img, intermediateW, intermediateH, finalW, finalH)
// Preprocess for VAE ([-1, 1] range, 5D tensor)
vaeImage := p.preprocessImageForVAE(img, vaeW, vaeH)
return condImage, vaeImage, nil
}
// preprocessImageLanczos does single-step Lanczos resize for vision encoder
// Matches Python VaeImageProcessor.resize with resample='lanczos' (the default)
// Used by edit_plus pipeline for multi-image input
// Returns: [B, C, H, W] normalized tensor
func (p *Processor) preprocessImageLanczos(img image.Image, width, height int32) *mlx.Array {
resized := resizeImageLanczos(img, int(width), int(height))
pixels := imageToFloat32Pixels(resized, int(width), int(height))
arr := mlx.NewArray(pixels, []int32{height, width, 3})
arr = p.normalizeImageNet(arr)
return prepareImageTensor(arr)
}
// preprocessImageTwoStep does two-step resize for vision encoder to match Python pipeline
// Step 1: Lanczos resize from original to intermediate size (VaeImageProcessor.resize)
// Step 2: Bicubic resize from intermediate to final size (Qwen2VLProcessor smart_resize)
// Returns: [B, C, H, W] normalized tensor
func (p *Processor) preprocessImageTwoStep(img image.Image, intermediateW, intermediateH, finalW, finalH int32) *mlx.Array {
intermediate := resizeImageLanczos(img, int(intermediateW), int(intermediateH))
resized := resizeImageBicubic(intermediate, int(finalW), int(finalH))
pixels := imageToFloat32Pixels(resized, int(finalW), int(finalH))
arr := mlx.NewArray(pixels, []int32{finalH, finalW, 3})
arr = p.normalizeImageNet(arr)
return prepareImageTensor(arr)
}
// preprocessImage converts image to tensor for vision encoder
// Returns: [B, C, H, W] normalized tensor
func (p *Processor) preprocessImage(img image.Image, width, height int32, normalize bool) *mlx.Array {
resized := resizeImageBicubic(img, int(width), int(height))
pixels := imageToFloat32Pixels(resized, int(width), int(height))
arr := mlx.NewArray(pixels, []int32{height, width, 3})
if normalize {
arr = p.normalizeImageNet(arr)
}
return prepareImageTensor(arr)
}
// preprocessImageForVAE converts image to tensor for VAE encoding
// Returns: [B, C, T, H, W] tensor in [-1, 1] range
func (p *Processor) preprocessImageForVAE(img image.Image, width, height int32) *mlx.Array {
resized := resizeImageLanczos(img, int(width), int(height))
pixels := imageToFloat32Pixels(resized, int(width), int(height))
arr := mlx.NewArray(pixels, []int32{height, width, 3})
// Scale to [-1, 1]: arr * 2 - 1
arr = mlx.MulScalar(arr, 2.0)
arr = mlx.AddScalar(arr, -1.0)
// Transpose to [C, H, W] and make contiguous
arr = mlx.Contiguous(mlx.Transpose(arr, 2, 0, 1))
// Add batch and temporal dimensions [1, C, 1, H, W]
arr = mlx.ExpandDims(arr, 0) // [1, C, H, W]
arr = mlx.ExpandDims(arr, 2) // [1, C, 1, H, W]
arr = mlx.ToBFloat16(arr)
mlx.Eval(arr)
return arr
}
// smartResize implements Python Qwen2VL processor's smart_resize logic
// Returns (resizedHeight, resizedWidth) that fit within min/max pixel constraints
func smartResize(height, width, factor, minPixels, maxPixels int32) (int32, int32) {
// Round to factor
hBar := int32(math.Round(float64(height)/float64(factor))) * factor
wBar := int32(math.Round(float64(width)/float64(factor))) * factor
// Ensure minimum factor size
if hBar < factor {
hBar = factor
}
if wBar < factor {
wBar = factor
}
// Check pixel constraints
total := hBar * wBar
if total > maxPixels {
// Scale down
beta := math.Sqrt(float64(maxPixels) / float64(total))
hBar = int32(math.Floor(float64(height)*beta/float64(factor))) * factor
wBar = int32(math.Floor(float64(width)*beta/float64(factor))) * factor
} else if total < minPixels {
// Scale up
beta := math.Sqrt(float64(minPixels) / float64(total))
hBar = int32(math.Ceil(float64(height)*beta/float64(factor))) * factor
wBar = int32(math.Ceil(float64(width)*beta/float64(factor))) * factor
}
return hBar, wBar
}
// calculateDimensions calculates width and height for a target area while maintaining ratio
// multiple: the value to round dimensions to (e.g., 28 for vision encoder with patch 14 and 2x2 merge)
func calculateDimensions(targetArea int32, ratio float64, multiple int32) (int32, int32) {
width := math.Sqrt(float64(targetArea) * ratio)
height := width / ratio
m := float64(multiple)
width = math.Round(width/m) * m
height = math.Round(height/m) * m
// Ensure minimum dimensions
if width < m {
width = m
}
if height < m {
height = m
}
return int32(width), int32(height)
}
// resizeImageLanczos resizes an image using Lanczos3 interpolation (matches PIL.LANCZOS)
func resizeImageLanczos(img image.Image, width, height int) image.Image {
bounds := img.Bounds()
dst := image.NewRGBA(image.Rect(0, 0, width, height))
// Lanczos3 kernel (a=3) to match PIL.LANCZOS
lanczos3 := &draw.Kernel{
Support: 3.0,
At: func(t float64) float64 {
if t == 0 {
return 1.0
}
if t < 0 {
t = -t
}
if t >= 3.0 {
return 0.0
}
// sinc(t) * sinc(t/3)
piT := math.Pi * t
return (math.Sin(piT) / piT) * (math.Sin(piT/3) / (piT / 3))
},
}
lanczos3.Scale(dst, dst.Bounds(), img, bounds, draw.Over, nil)
return dst
}
// resizeImageBicubic resizes an image using bicubic interpolation (matches PIL.BICUBIC)
// Uses separable interpolation with PIL's coordinate mapping for exact match
func resizeImageBicubic(img image.Image, width, height int) image.Image {
bounds := img.Bounds()
srcW := bounds.Dx()
srcH := bounds.Dy()
// Convert to RGBA if needed
var src *image.RGBA
if rgba, ok := img.(*image.RGBA); ok {
src = rgba
} else {
src = image.NewRGBA(bounds)
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
for x := bounds.Min.X; x < bounds.Max.X; x++ {
src.Set(x, y, img.At(x, y))
}
}
}
// Keys cubic with a=-0.5 (PIL BICUBIC)
cubic := func(x float64) float64 {
if x < 0 {
x = -x
}
if x < 1 {
return 1.5*x*x*x - 2.5*x*x + 1
}
if x < 2 {
return -0.5*x*x*x + 2.5*x*x - 4*x + 2
}
return 0
}
// Horizontal pass: srcW -> width, keep srcH rows
temp := image.NewRGBA(image.Rect(0, 0, width, srcH))
for y := 0; y < srcH; y++ {
for dstX := 0; dstX < width; dstX++ {
// PIL coordinate mapping: center-to-center
srcXf := (float64(dstX)+0.5)*(float64(srcW)/float64(width)) - 0.5
baseX := int(math.Floor(srcXf))
var sumR, sumG, sumB, sumA, weightSum float64
for i := -1; i <= 2; i++ {
sx := baseX + i
if sx < 0 {
sx = 0
}
if sx >= srcW {
sx = srcW - 1
}
w := cubic(math.Abs(srcXf - float64(baseX+i)))
c := src.RGBAAt(sx, y)
sumR += float64(c.R) * w
sumG += float64(c.G) * w
sumB += float64(c.B) * w
sumA += float64(c.A) * w
weightSum += w
}
temp.SetRGBA(dstX, y, color.RGBA{
clampFloat(sumR, weightSum),
clampFloat(sumG, weightSum),
clampFloat(sumB, weightSum),
clampFloat(sumA, weightSum),
})
}
}
// Vertical pass: srcH -> height
dst := image.NewRGBA(image.Rect(0, 0, width, height))
for x := 0; x < width; x++ {
for dstY := 0; dstY < height; dstY++ {
srcYf := (float64(dstY)+0.5)*(float64(srcH)/float64(height)) - 0.5
baseY := int(math.Floor(srcYf))
var sumR, sumG, sumB, sumA, weightSum float64
for j := -1; j <= 2; j++ {
sy := baseY + j
if sy < 0 {
sy = 0
}
if sy >= srcH {
sy = srcH - 1
}
w := cubic(math.Abs(srcYf - float64(baseY+j)))
c := temp.RGBAAt(x, sy)
sumR += float64(c.R) * w
sumG += float64(c.G) * w
sumB += float64(c.B) * w
sumA += float64(c.A) * w
weightSum += w
}
dst.SetRGBA(x, dstY, color.RGBA{
clampFloat(sumR, weightSum),
clampFloat(sumG, weightSum),
clampFloat(sumB, weightSum),
clampFloat(sumA, weightSum),
})
}
}
return dst
}
// LoadAndPreprocessMultiple loads multiple images and preprocesses them
// Returns: condImages (for vision encoder), vaeImages (for VAE encoding), dims (per-image dimensions)
func (p *Processor) LoadAndPreprocessMultiple(imagePaths []string) ([]*mlx.Array, []*mlx.Array, []ImageDims, error) {
const vaeScaleFactor int32 = 8
const patchSize int32 = 2
condImages := make([]*mlx.Array, len(imagePaths))
vaeImages := make([]*mlx.Array, len(imagePaths))
dims := make([]ImageDims, len(imagePaths))
for i, imagePath := range imagePaths {
img, err := loadImageFile(imagePath)
if err != nil {
return nil, nil, nil, fmt.Errorf("image %d: %w", i, err)
}
bounds := img.Bounds()
origW := int32(bounds.Dx())
origH := int32(bounds.Dy())
ratio := float64(origW) / float64(origH)
// Calculate dimensions for condition image (vision encoder)
// Python pipeline does TWO resizes:
// 1. VaeImageProcessor.resize with Lanczos to CONDITION_IMAGE_SIZE (384x384 area)
// 2. Qwen2VLProcessor's smart_resize with Bicubic to multiple of 28
intermediateW, intermediateH := calculateDimensions(p.Config.ConditionImageSize, ratio, 32)
condH, condW := smartResize(intermediateH, intermediateW, 28, 56*56, 28*28*1280)
// Calculate dimensions for VAE image (1024x1024 area)
vaeW, vaeH := calculateDimensions(p.Config.VAEImageSize, ratio, 32)
// Calculate derived dimensions
latentW := vaeW / vaeScaleFactor
latentH := vaeH / vaeScaleFactor
patchW := latentW / patchSize
patchH := latentH / patchSize
dims[i] = ImageDims{
OrigW: origW,
OrigH: origH,
CondW: condW,
CondH: condH,
VaeW: vaeW,
VaeH: vaeH,
LatentW: latentW,
LatentH: latentH,
PatchW: patchW,
PatchH: patchH,
}
fmt.Printf(" Image %d: orig=%dx%d, cond=%dx%d, vae=%dx%d, latent=%dx%d, patch=%dx%d\n",
i+1, origW, origH, condW, condH, vaeW, vaeH, latentW, latentH, patchW, patchH)
// Preprocess for condition (vision encoder) - two-step resize to match Python pipeline
condImages[i] = p.preprocessImageTwoStep(img, intermediateW, intermediateH, condW, condH)
// Preprocess for VAE ([-1, 1] range, 5D tensor)
vaeImages[i] = p.preprocessImageForVAE(img, vaeW, vaeH)
}
return condImages, vaeImages, dims, nil
}

View File

@@ -1,625 +0,0 @@
//go:build mlx
// Package qwen_image_edit implements the Qwen-Image-Edit diffusion model for image editing.
// It reuses components from qwen_image where possible.
package qwen_image_edit
import (
"context"
"fmt"
"path/filepath"
"time"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/models/qwen_image"
"github.com/ollama/ollama/x/imagegen/tokenizer"
)
// GenerateConfig holds all options for image editing.
type GenerateConfig struct {
Prompt string
NegativePrompt string // Unconditional prompt for CFG (empty string "" is valid)
CFGScale float32 // CFG enabled when > 1.0 (default: 4.0)
Width int32 // Output width (default: from input image)
Height int32 // Output height (default: from input image)
Steps int // Denoising steps (default: 50)
Seed int64 // Random seed
Progress func(step, totalSteps int) // Optional progress callback
}
// Model represents a Qwen-Image-Edit diffusion model.
type Model struct {
ModelPath string
Tokenizer *tokenizer.Tokenizer
Processor *Processor // Image processor for vision encoder
TextEncoder *qwen_image.Qwen25VL // Qwen2.5-VL vision-language encoder (from qwen_image)
Transformer *qwen_image.Transformer // Reuse qwen_image transformer
VAE *VAE // Combined encoder + decoder
}
// Load loads the Qwen-Image-Edit model from a directory.
func (m *Model) Load(modelPath string) error {
fmt.Println("Loading Qwen-Image-Edit model...")
start := time.Now()
if mlx.GPUIsAvailable() {
mlx.SetDefaultDeviceGPU()
mlx.EnableCompile()
}
m.ModelPath = modelPath
// Load tokenizer from processor directory
fmt.Print(" Loading tokenizer... ")
processorPath := filepath.Join(modelPath, "processor")
tok, err := tokenizer.Load(processorPath)
if err != nil {
// Fallback to tokenizer directory
tokenizerPath := filepath.Join(modelPath, "tokenizer")
tok, err = tokenizer.Load(tokenizerPath)
if err != nil {
return fmt.Errorf("tokenizer: %w", err)
}
}
m.Tokenizer = tok
fmt.Println("✓")
// Load processor (image preprocessing config)
fmt.Print(" Loading processor... ")
m.Processor = &Processor{}
if err := m.Processor.Load(processorPath); err != nil {
return fmt.Errorf("processor: %w", err)
}
fmt.Println("✓")
// Load vision-language text encoder (Qwen2.5-VL from qwen_image package)
m.TextEncoder = &qwen_image.Qwen25VL{}
if err := m.TextEncoder.Load(filepath.Join(modelPath, "text_encoder")); err != nil {
return fmt.Errorf("text encoder: %w", err)
}
mlx.Eval(mlx.Collect(m.TextEncoder)...)
fmt.Printf(" (%.1f GB, peak %.1f GB)\n",
float64(mlx.MetalGetActiveMemory())/(1024*1024*1024),
float64(mlx.MetalGetPeakMemory())/(1024*1024*1024))
// Load transformer (reuse qwen_image)
m.Transformer = &qwen_image.Transformer{}
if err := m.Transformer.Load(filepath.Join(modelPath, "transformer")); err != nil {
return fmt.Errorf("transformer: %w", err)
}
mlx.Eval(mlx.Collect(m.Transformer)...)
fmt.Printf(" (%.1f GB, peak %.1f GB)\n",
float64(mlx.MetalGetActiveMemory())/(1024*1024*1024),
float64(mlx.MetalGetPeakMemory())/(1024*1024*1024))
// Load VAE (encoder + decoder)
m.VAE = &VAE{}
if err := m.VAE.Load(filepath.Join(modelPath, "vae")); err != nil {
return fmt.Errorf("VAE: %w", err)
}
mlx.Eval(mlx.Collect(m.VAE)...)
fmt.Printf(" (%.1f GB, peak %.1f GB)\n",
float64(mlx.MetalGetActiveMemory())/(1024*1024*1024),
float64(mlx.MetalGetPeakMemory())/(1024*1024*1024))
mem := mlx.MetalGetActiveMemory()
peak := mlx.MetalGetPeakMemory()
fmt.Printf(" Loaded in %.2fs (%.1f GB active, %.1f GB peak)\n",
time.Since(start).Seconds(),
float64(mem)/(1024*1024*1024),
float64(peak)/(1024*1024*1024))
return nil
}
// Edit edits an image based on a text prompt.
// inputImagePath: path to input image
// prompt: text description of desired edit
func (m *Model) Edit(inputImagePath string, prompt string, width, height int32, steps int, seed int64) (*mlx.Array, error) {
return m.EditFromConfig([]string{inputImagePath}, &GenerateConfig{
Prompt: prompt,
Width: width,
Height: height,
Steps: steps,
Seed: seed,
})
}
// EditFromConfig edits images using the unified config struct.
// Accepts one or more input images.
func (m *Model) EditFromConfig(inputImagePaths []string, cfg *GenerateConfig) (*mlx.Array, error) {
if len(inputImagePaths) == 0 {
return nil, fmt.Errorf("no input images provided")
}
start := time.Now()
result, err := m.edit(inputImagePaths, cfg)
if err != nil {
return nil, err
}
if cfg.NegativePrompt != "" {
fmt.Printf("Edited %d image(s) with CFG (scale=%.1f) in %.2fs (%d steps)\n",
len(inputImagePaths), cfg.CFGScale, time.Since(start).Seconds(), cfg.Steps)
} else {
fmt.Printf("Edited %d image(s) in %.2fs (%d steps)\n",
len(inputImagePaths), time.Since(start).Seconds(), cfg.Steps)
}
return result, nil
}
// EditImage implements model.ImageEditModel interface.
func (m *Model) EditImage(ctx context.Context, inputImagePath, prompt string, width, height int32, steps int, seed int64) (*mlx.Array, error) {
return m.Edit(inputImagePath, prompt, width, height, steps, seed)
}
// EditMultiImage edits using multiple source images.
// This matches diffusers' QwenImageEditPlusPipeline behavior.
func (m *Model) EditMultiImage(inputImagePaths []string, cfg *GenerateConfig) (*mlx.Array, error) {
return m.EditFromConfig(inputImagePaths, cfg)
}
// edit is the internal editing pipeline that handles one or more images.
func (m *Model) edit(inputImagePaths []string, cfg *GenerateConfig) (*mlx.Array, error) {
// Apply defaults
if cfg.Steps <= 0 {
cfg.Steps = 50
}
if cfg.CFGScale <= 0 {
cfg.CFGScale = 4.0
}
// Load and preprocess all input images
fmt.Printf("Loading %d image(s)...\n", len(inputImagePaths))
condImages, vaeImages, inputDims, err := m.Processor.LoadAndPreprocessMultiple(inputImagePaths)
if err != nil {
return nil, fmt.Errorf("preprocess images: %w", err)
}
for _, img := range condImages {
mlx.Keep(img)
}
for _, img := range vaeImages {
mlx.Keep(img)
}
mlx.Eval(append(condImages, vaeImages...)...)
useCFG := cfg.NegativePrompt != ""
tcfg := m.Transformer.Config
vaeScaleFactor := int32(8)
// Output dimensions - if not specified, use first input image dimensions
if cfg.Width <= 0 {
cfg.Width = inputDims[0].VaeW
}
if cfg.Height <= 0 {
cfg.Height = inputDims[0].VaeH
}
// Output (noise) latent dimensions
outLatentH := cfg.Height / vaeScaleFactor
outLatentW := cfg.Width / vaeScaleFactor
outPH := outLatentH / tcfg.PatchSize
outPW := outLatentW / tcfg.PatchSize
noiseSeqLen := outPH * outPW
imgSeqLen := noiseSeqLen
// Encode prompt with all images for conditioning
posEmb, _, _, err := m.TextEncoder.EncodePromptWithImages(m.Tokenizer, cfg.Prompt, condImages)
if err != nil {
return nil, fmt.Errorf("encoding prompt: %w", err)
}
mlx.Keep(posEmb)
mlx.Eval(posEmb)
var negEmb *mlx.Array
if useCFG {
negEmb, _, _, err = m.TextEncoder.EncodePromptWithImages(m.Tokenizer, cfg.NegativePrompt, condImages)
if err != nil {
return nil, fmt.Errorf("encoding negative prompt: %w", err)
}
mlx.Keep(negEmb)
mlx.Eval(negEmb)
}
// Pad sequences to same length for CFG
txtLen := posEmb.Shape()[1]
if useCFG {
negLen := negEmb.Shape()[1]
if negLen > txtLen {
txtLen = negLen
}
if posEmb.Shape()[1] < txtLen {
posEmb = padSequence(posEmb, txtLen)
}
if negEmb.Shape()[1] < txtLen {
negEmb = padSequence(negEmb, txtLen)
}
mlx.Keep(posEmb, negEmb)
mlx.Eval(posEmb, negEmb)
}
// Pre-compute batched embeddings for CFG (single forward pass optimization)
var batchedEmb *mlx.Array
if useCFG {
batchedEmb = mlx.Concatenate([]*mlx.Array{posEmb, negEmb}, 0)
mlx.Keep(batchedEmb)
mlx.Eval(batchedEmb)
}
// Encode all input images to latents and concatenate
fmt.Println("Encoding images to latents...")
allImageLatentsPacked := make([]*mlx.Array, len(vaeImages))
for i, vaeImage := range vaeImages {
imageLatents := m.VAE.Encode(vaeImage)
imageLatents = m.VAE.Normalize(imageLatents)
imageLatents2D := mlx.Squeeze(imageLatents, 2)
packed := qwen_image.PackLatents(imageLatents2D, tcfg.PatchSize)
mlx.Keep(packed)
mlx.Eval(packed)
allImageLatentsPacked[i] = packed
}
imageLatentsPacked := mlx.Concatenate(allImageLatentsPacked, 1)
mlx.Keep(imageLatentsPacked)
mlx.Eval(imageLatentsPacked)
// Scheduler
scheduler := qwen_image.NewFlowMatchScheduler(qwen_image.DefaultSchedulerConfig())
scheduler.SetTimesteps(cfg.Steps, noiseSeqLen)
// Init noise latents in packed format
packedChannels := tcfg.OutChannels * tcfg.PatchSize * tcfg.PatchSize
packedNoise := scheduler.InitNoisePacked(1, noiseSeqLen, packedChannels, cfg.Seed)
latents := qwen_image.UnpackLatents(packedNoise, outLatentH, outLatentW, tcfg.PatchSize)
mlx.Eval(latents)
// RoPE cache
ropeCache := PrepareRoPEMultiImage(outPH, outPW, inputDims, txtLen, tcfg.AxesDimsRope)
mlx.Keep(ropeCache.ImgFreqs, ropeCache.TxtFreqs)
mlx.Eval(ropeCache.ImgFreqs, ropeCache.TxtFreqs)
// Denoising loop
fmt.Printf("Running denoising (%d steps)...\n", cfg.Steps)
for i := 0; i < cfg.Steps; i++ {
stepStart := time.Now()
if cfg.Progress != nil {
cfg.Progress(i+1, cfg.Steps)
}
t := scheduler.Timesteps[i]
timestep := mlx.ToBFloat16(mlx.NewArray([]float32{t}, []int32{1}))
mlx.Eval(timestep)
latents2D := mlx.Squeeze(latents, 2)
patches := qwen_image.PackLatents(latents2D, tcfg.PatchSize)
latentInput := mlx.Concatenate([]*mlx.Array{patches, imageLatentsPacked}, 1)
var output *mlx.Array
if useCFG {
// CFG Batching: single forward pass with batch=2
// Tile inputs: [1, L, D] -> [2, L, D]
batchedLatentInput := mlx.Tile(latentInput, []int32{2, 1, 1})
batchedTimestep := mlx.Tile(timestep, []int32{2})
// Single batched forward pass
batchedOutput := m.Transformer.Forward(batchedLatentInput, batchedEmb, batchedTimestep, ropeCache.ImgFreqs, ropeCache.TxtFreqs)
// Split output: [2, L, D] -> pos [1, L, D], neg [1, L, D]
D := batchedOutput.Shape()[2]
posOutput := mlx.Slice(batchedOutput, []int32{0, 0, 0}, []int32{1, imgSeqLen, D})
negOutput := mlx.Slice(batchedOutput, []int32{1, 0, 0}, []int32{2, imgSeqLen, D})
output = applyCFGWithNormRescale(posOutput, negOutput, cfg.CFGScale)
} else {
output = m.Transformer.Forward(latentInput, posEmb, timestep, ropeCache.ImgFreqs, ropeCache.TxtFreqs)
output = mlx.Slice(output, []int32{0, 0, 0}, []int32{1, imgSeqLen, output.Shape()[2]})
}
noisePred := qwen_image.UnpackLatents(output, outLatentH, outLatentW, tcfg.PatchSize)
oldLatents := latents
latents = scheduler.Step(noisePred, latents, i)
mlx.Eval(latents)
oldLatents.Free()
fmt.Printf(" Step %d/%d: t=%.4f (%.2fs)\n", i+1, cfg.Steps, t, time.Since(stepStart).Seconds())
}
// Free denoising temporaries
posEmb.Free()
if negEmb != nil {
negEmb.Free()
}
if batchedEmb != nil {
batchedEmb.Free()
}
ropeCache.ImgFreqs.Free()
ropeCache.TxtFreqs.Free()
imageLatentsPacked.Free()
// Decode latents
decoded := m.decodeAndPostprocess(latents)
latents.Free()
fmt.Printf(" Peak memory: %.2f GB\n", float64(mlx.MetalGetPeakMemory())/(1024*1024*1024))
return decoded, nil
}
// applyCFGWithNormRescale applies classifier-free guidance with norm rescaling.
// This prevents CFG from inflating magnitude too much.
func applyCFGWithNormRescale(posOutput, negOutput *mlx.Array, scale float32) *mlx.Array {
// Upcast to float32 for precision
posF32 := mlx.AsType(posOutput, mlx.DtypeFloat32)
negF32 := mlx.AsType(negOutput, mlx.DtypeFloat32)
// CFG: pred = neg + scale * (pos - neg)
diff := mlx.Sub(posF32, negF32)
scaledDiff := mlx.MulScalar(diff, scale)
combPred := mlx.Add(negF32, scaledDiff)
// Norm rescaling: rescale combined prediction to match conditional norm
condNorm := mlx.Sqrt(mlx.Sum(mlx.Square(posF32), -1, true))
combNorm := mlx.Sqrt(mlx.Sum(mlx.Square(combPred), -1, true))
output := mlx.Mul(combPred, mlx.Div(condNorm, combNorm))
mlx.Eval(output)
return mlx.ToBFloat16(output)
}
// decodeAndPostprocess denormalizes latents, decodes through VAE, and scales to [0,1].
func (m *Model) decodeAndPostprocess(latents *mlx.Array) *mlx.Array {
latents = m.VAE.Denormalize(latents)
decoded := m.VAE.Decode(latents)
// Post-process: squeeze temporal dim and rescale to [0, 1]
decoded = mlx.Squeeze(decoded, 2)
decoded = mlx.AddScalar(decoded, 1.0)
decoded = mlx.DivScalar(decoded, 2.0)
decoded = mlx.ClipScalar(decoded, 0.0, 1.0, true, true)
mlx.Eval(decoded)
return decoded
}
// padSequence pads a sequence tensor to the target length with zeros
func padSequence(x *mlx.Array, targetLen int32) *mlx.Array {
shape := x.Shape()
currentLen := shape[1]
if currentLen >= targetLen {
return x
}
padLen := targetLen - currentLen
// Pad on sequence dimension (axis 1)
return mlx.Pad(x, []int32{0, 0, 0, padLen, 0, 0})
}
// LoadPersistent is an alias for backward compatibility.
func LoadPersistent(modelPath string) (*Model, error) {
m := &Model{}
if err := m.Load(modelPath); err != nil {
return nil, err
}
return m, nil
}
// PrepareRoPEMultiImage computes RoPE with interpolation for image editing.
// Handles single or multiple input images with different resolutions.
//
// Parameters:
// - outPH, outPW: output patch dimensions (noise latent resolution)
// - inputDims: patch dimensions for each input image [(pH1, pW1), (pH2, pW2), ...]
// - txtLen: text sequence length
// - axesDims: RoPE axis dimensions [16, 56, 56]
//
// Returns RoPE cache where:
// - ImgFreqs has (outPH*outPW + sum(inPH*inPW for each image)) positions
// - First outPH*outPW positions are for noise latents (standard RoPE at output res)
// - Following positions are for each input image (interpolated from output res)
func PrepareRoPEMultiImage(outPH, outPW int32, inputDims []ImageDims, txtLen int32, axesDims []int32) *qwen_image.RoPECache {
theta := float64(10000)
maxIdx := int32(4096)
// Compute base frequencies for each axis dimension
freqsT := qwen_image.ComputeAxisFreqs(axesDims[0], theta)
freqsH := qwen_image.ComputeAxisFreqs(axesDims[1], theta)
freqsW := qwen_image.ComputeAxisFreqs(axesDims[2], theta)
// Build frequency lookup tables
posFreqsT := qwen_image.MakeFreqTable(maxIdx, freqsT, false)
posFreqsH := qwen_image.MakeFreqTable(maxIdx, freqsH, false)
posFreqsW := qwen_image.MakeFreqTable(maxIdx, freqsW, false)
negFreqsT := qwen_image.MakeFreqTable(maxIdx, freqsT, true) // For frame -1 on last condition image
negFreqsH := qwen_image.MakeFreqTable(maxIdx, freqsH, true)
negFreqsW := qwen_image.MakeFreqTable(maxIdx, freqsW, true)
headDim := int32(len(freqsT)+len(freqsH)+len(freqsW)) * 2
// Helper to compute RoPE for a single position at output resolution with scale_rope
computePosFreqs := func(framePos, y, x int32) []float32 {
row := make([]float32, headDim)
idx := 0
// Frame position
for i := 0; i < len(freqsT)*2; i++ {
row[idx+i] = posFreqsT[framePos][i]
}
idx += len(freqsT) * 2
// Height with scale_rope centering (using OUTPUT dimensions)
outHHalf := outPH / 2
hNegCount := outPH - outHHalf
if y < hNegCount {
negTableIdx := maxIdx - hNegCount + y
for i := 0; i < len(freqsH)*2; i++ {
row[idx+i] = negFreqsH[negTableIdx][i]
}
} else {
posIdx := y - hNegCount
for i := 0; i < len(freqsH)*2; i++ {
row[idx+i] = posFreqsH[posIdx][i]
}
}
idx += len(freqsH) * 2
// Width with scale_rope centering (using OUTPUT dimensions)
outWHalf := outPW / 2
wNegCount := outPW - outWHalf
if x < wNegCount {
negTableIdx := maxIdx - wNegCount + x
for i := 0; i < len(freqsW)*2; i++ {
row[idx+i] = negFreqsW[negTableIdx][i]
}
} else {
posIdx := x - wNegCount
for i := 0; i < len(freqsW)*2; i++ {
row[idx+i] = posFreqsW[posIdx][i]
}
}
return row
}
// Helper to compute RoPE for frame -1 (used for last condition image)
// This matches Python's _compute_condition_freqs which uses freqs_neg[0][-1:]
computeNegFrameFreqs := func(y, x int32) []float32 {
row := make([]float32, headDim)
idx := 0
// Frame -1: use last row of negative frame frequencies
negFrameIdx := maxIdx - 1
for i := 0; i < len(freqsT)*2; i++ {
row[idx+i] = negFreqsT[negFrameIdx][i]
}
idx += len(freqsT) * 2
// Height with scale_rope centering (using OUTPUT dimensions)
outHHalf := outPH / 2
hNegCount := outPH - outHHalf
if y < hNegCount {
negTableIdx := maxIdx - hNegCount + y
for i := 0; i < len(freqsH)*2; i++ {
row[idx+i] = negFreqsH[negTableIdx][i]
}
} else {
posIdx := y - hNegCount
for i := 0; i < len(freqsH)*2; i++ {
row[idx+i] = posFreqsH[posIdx][i]
}
}
idx += len(freqsH) * 2
// Width with scale_rope centering (using OUTPUT dimensions)
outWHalf := outPW / 2
wNegCount := outPW - outWHalf
if x < wNegCount {
negTableIdx := maxIdx - wNegCount + x
for i := 0; i < len(freqsW)*2; i++ {
row[idx+i] = negFreqsW[negTableIdx][i]
}
} else {
posIdx := x - wNegCount
for i := 0; i < len(freqsW)*2; i++ {
row[idx+i] = posFreqsW[posIdx][i]
}
}
return row
}
// Total image sequence length: noise + all input images
noiseSeqLen := outPH * outPW
totalImgLen := noiseSeqLen
for _, dims := range inputDims {
totalImgLen += dims.PatchH * dims.PatchW
}
imgFreqsData := make([]float32, totalImgLen*headDim)
idx := int32(0)
// Segment 0: Noise latents - standard RoPE at output resolution (frame 0)
for y := int32(0); y < outPH; y++ {
for x := int32(0); x < outPW; x++ {
row := computePosFreqs(0, y, x)
copy(imgFreqsData[idx:], row)
idx += headDim
}
}
// Segments 1..N: Edit image latents - INTERPOLATED RoPE
// For single image: use frame 1 (matches original PrepareRoPEInterpolated)
// For multiple images: Python uses frame -1 for the LAST condition image
// (_compute_condition_freqs), positive indices for others.
numImages := len(inputDims)
lastImgIdx := numImages - 1
for imgIdx, dims := range inputDims {
inPH := dims.PatchH
inPW := dims.PatchW
// Determine frame index for this image
// Single image case: use frame 1 (like original PrepareRoPEInterpolated)
// Multi-image case: last image uses frame -1, others use frame 1, 2, etc.
useNegFrame := numImages > 1 && imgIdx == lastImgIdx
// Map each input position to an output position using linear interpolation
for y := int32(0); y < inPH; y++ {
for x := int32(0); x < inPW; x++ {
// Interpolate: map input (y, x) to output grid position
// This is the key fix from DiffSynth's forward_sampling
var yOut, xOut int32
if inPH == 1 {
yOut = 0
} else {
// Linear interpolation: y_out = y * (outPH - 1) / (inPH - 1)
yOut = y * (outPH - 1) / (inPH - 1)
}
if inPW == 1 {
xOut = 0
} else {
xOut = x * (outPW - 1) / (inPW - 1)
}
var row []float32
if useNegFrame {
// Last image in multi-image uses frame -1
row = computeNegFrameFreqs(yOut, xOut)
} else {
// Single image uses frame 1, multi-image uses frame 1, 2, etc.
frameIdx := int32(imgIdx + 1)
row = computePosFreqs(frameIdx, yOut, xOut)
}
copy(imgFreqsData[idx:], row)
idx += headDim
}
}
}
imgFreqs := mlx.NewArray(imgFreqsData, []int32{totalImgLen, headDim})
imgFreqs = mlx.ToBFloat16(imgFreqs)
// Text frequencies - start after max video index
maxVidIdx := max(outPH/2, outPW/2)
txtFreqsData := make([]float32, txtLen*headDim)
idx = 0
for t := int32(0); t < txtLen; t++ {
pos := maxVidIdx + t
for i := 0; i < len(freqsT)*2; i++ {
txtFreqsData[idx+int32(i)] = posFreqsT[pos][i]
}
idx += int32(len(freqsT) * 2)
for i := 0; i < len(freqsH)*2; i++ {
txtFreqsData[idx+int32(i)] = posFreqsH[pos][i]
}
idx += int32(len(freqsH) * 2)
for i := 0; i < len(freqsW)*2; i++ {
txtFreqsData[idx+int32(i)] = posFreqsW[pos][i]
}
idx += int32(len(freqsW) * 2)
}
txtFreqs := mlx.NewArray(txtFreqsData, []int32{txtLen, headDim})
txtFreqs = mlx.ToBFloat16(txtFreqs)
return &qwen_image.RoPECache{
ImgFreqs: imgFreqs,
TxtFreqs: txtFreqs,
}
}

View File

@@ -1,249 +0,0 @@
//go:build mlx
package qwen_image_edit
import (
"fmt"
"math"
"os"
"path/filepath"
"runtime"
"testing"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/models/qwen_image"
)
// TestMain initializes MLX before running tests.
// If MLX libraries are not available, tests are skipped.
func TestMain(m *testing.M) {
// Change to repo root so ./build/lib/ollama/ path works
_, thisFile, _, _ := runtime.Caller(0)
repoRoot := filepath.Join(filepath.Dir(thisFile), "..", "..", "..", "..")
if err := os.Chdir(repoRoot); err != nil {
fmt.Printf("Failed to change to repo root: %v\n", err)
os.Exit(1)
}
if err := mlx.InitMLX(); err != nil {
fmt.Printf("Skipping qwen_image_edit tests: %v\n", err)
os.Exit(0)
}
os.Exit(m.Run())
}
// TestComputeAxisFreqs verifies frequency computation matches Python reference
func TestComputeAxisFreqs(t *testing.T) {
theta := float64(10000)
// Expected values from Python:
// freqs = 1.0 / (theta ** (np.arange(0, half_dim) / half_dim))
expectedFreqsT := []float64{
1.000000000000000, 0.316227766016838, 0.100000000000000, 0.031622776601684,
0.010000000000000, 0.003162277660168, 0.001000000000000, 0.000316227766017,
}
expectedFreqsH_first4 := []float64{
1.000000000000000, 0.719685673001152, 0.517947467923121, 0.372759372031494,
}
expectedFreqsH_last4 := []float64{
0.000372759372031, 0.000268269579528, 0.000193069772888, 0.000138949549437,
}
// Test temporal frequencies (dim=16)
freqsT := qwen_image.ComputeAxisFreqs(16, theta)
if len(freqsT) != 8 {
t.Fatalf("expected 8 temporal frequencies, got %d", len(freqsT))
}
for i, expected := range expectedFreqsT {
if diff := math.Abs(freqsT[i] - expected); diff > 1e-10 {
t.Errorf("freqsT[%d]: expected %.15f, got %.15f, diff %.2e", i, expected, freqsT[i], diff)
}
}
// Test height/width frequencies (dim=56)
freqsH := qwen_image.ComputeAxisFreqs(56, theta)
if len(freqsH) != 28 {
t.Fatalf("expected 28 height frequencies, got %d", len(freqsH))
}
for i, expected := range expectedFreqsH_first4 {
if diff := math.Abs(freqsH[i] - expected); diff > 1e-10 {
t.Errorf("freqsH[%d]: expected %.15f, got %.15f, diff %.2e", i, expected, freqsH[i], diff)
}
}
for i, expected := range expectedFreqsH_last4 {
idx := 24 + i // last 4 of 28
if diff := math.Abs(freqsH[idx] - expected); diff > 1e-10 {
t.Errorf("freqsH[%d]: expected %.15f, got %.15f, diff %.2e", idx, expected, freqsH[idx], diff)
}
}
}
// TestMakeFreqTable verifies the frequency lookup table for both positive and negative positions
func TestMakeFreqTable(t *testing.T) {
theta := float64(10000)
freqsT := qwen_image.ComputeAxisFreqs(16, theta)
maxIdx := int32(4096)
// Test positive table
posTable := qwen_image.MakeFreqTable(maxIdx, freqsT, false)
// Position 0 should give cos=1, sin=0 for all frequencies
for i := 0; i < len(freqsT)*2; i += 2 {
if posTable[0][i] != 1.0 {
t.Errorf("posTable[0][%d] (cos): expected 1.0, got %f", i, posTable[0][i])
}
if posTable[0][i+1] != 0.0 {
t.Errorf("posTable[0][%d] (sin): expected 0.0, got %f", i+1, posTable[0][i+1])
}
}
// Position 1, first frequency (1.0): angle = 1*1 = 1
// cos(1) = 0.5403, sin(1) = 0.8415
if diff := math.Abs(float64(posTable[1][0]) - 0.5403023058681398); diff > 1e-6 {
t.Errorf("posTable[1][0] (cos): expected 0.5403, got %f", posTable[1][0])
}
if diff := math.Abs(float64(posTable[1][1]) - 0.8414709848078965); diff > 1e-6 {
t.Errorf("posTable[1][1] (sin): expected 0.8415, got %f", posTable[1][1])
}
// Test negative table
negTable := qwen_image.MakeFreqTable(maxIdx, freqsT, true)
// negTable[4095] corresponds to position -1
// cos(-1) = cos(1), sin(-1) = -sin(1)
if diff := math.Abs(float64(negTable[4095][0]) - 0.5403023058681398); diff > 1e-6 {
t.Errorf("negTable[4095][0] (cos(-1)): expected 0.5403, got %f", negTable[4095][0])
}
if diff := math.Abs(float64(negTable[4095][1]) - (-0.8414709848078965)); diff > 1e-6 {
t.Errorf("negTable[4095][1] (sin(-1)): expected -0.8415, got %f", negTable[4095][1])
}
// negTable[4094] corresponds to position -2
// cos(-2) = cos(2), sin(-2) = -sin(2)
cos2 := math.Cos(2.0)
sin2 := math.Sin(2.0)
if diff := math.Abs(float64(negTable[4094][0]) - cos2); diff > 1e-6 {
t.Errorf("negTable[4094][0] (cos(-2)): expected %f, got %f", cos2, negTable[4094][0])
}
if diff := math.Abs(float64(negTable[4094][1]) - (-sin2)); diff > 1e-6 {
t.Errorf("negTable[4094][1] (sin(-2)): expected %f, got %f", -sin2, negTable[4094][1])
}
}
// TestPrepareRoPE_QwenImage verifies qwen_image.PrepareRoPE for single-segment case
func TestPrepareRoPE_QwenImage(t *testing.T) {
if !mlx.GPUIsAvailable() {
t.Skip("GPU not available")
}
mlx.SetDefaultDeviceCPU()
// 4x4 patch grid, single image
imgH, imgW := int32(4), int32(4)
txtLen := int32(5)
axesDims := []int32{16, 56, 56}
cache := qwen_image.PrepareRoPE(imgH, imgW, txtLen, axesDims)
mlx.Eval(cache.ImgFreqs, cache.TxtFreqs)
// Check shapes
imgShape := cache.ImgFreqs.Shape()
if imgShape[0] != 16 { // 4*4 patches
t.Errorf("ImgFreqs seq len: expected 16, got %d", imgShape[0])
}
// For single image (frame=0), all temporal values should be cos=1, sin=0
imgFreqsCPU := mlx.AsType(cache.ImgFreqs, mlx.DtypeFloat32)
mlx.Eval(imgFreqsCPU)
imgData := imgFreqsCPU.Data()
// Check first 16 values of patch 0 (temporal cos/sin pairs)
for i := 0; i < 16; i += 2 {
cosVal := imgData[i]
sinVal := imgData[i+1]
if diff := math.Abs(float64(cosVal - 1.0)); diff > 1e-5 {
t.Errorf("ImgFreqs[0][%d] (cos): expected 1.0, got %f", i, cosVal)
}
if diff := math.Abs(float64(sinVal - 0.0)); diff > 1e-5 {
t.Errorf("ImgFreqs[0][%d] (sin): expected 0.0, got %f", i+1, sinVal)
}
}
cache.ImgFreqs.Free()
cache.TxtFreqs.Free()
}
// TestScaleRopePositions verifies the centered position calculation for scale_rope=True
func TestScaleRopePositions(t *testing.T) {
// For a 4x4 grid with scale_rope=True:
// hHalf = 2, wHalf = 2
// hNegCount = 4 - 2 = 2 (positions 0,1 are negative)
// wNegCount = 4 - 2 = 2 (positions 0,1 are negative)
//
// Height positions:
// y=0: -(4-2) + 0 = -2
// y=1: -(4-2) + 1 = -1
// y=2: 2 - 2 = 0
// y=3: 3 - 2 = 1
//
// Same for width
pH, pW := int32(4), int32(4)
hHalf := pH / 2
wHalf := pW / 2
hNegCount := pH - hHalf
wNegCount := pW - wHalf
expectedH := []int32{-2, -1, 0, 1}
expectedW := []int32{-2, -1, 0, 1}
for y := int32(0); y < pH; y++ {
var hPos int32
if y < hNegCount {
hPos = -(pH - hHalf) + y
} else {
hPos = y - hNegCount
}
if hPos != expectedH[y] {
t.Errorf("y=%d: expected h_pos=%d, got %d", y, expectedH[y], hPos)
}
}
for x := int32(0); x < pW; x++ {
var wPos int32
if x < wNegCount {
wPos = -(pW - wHalf) + x
} else {
wPos = x - wNegCount
}
if wPos != expectedW[x] {
t.Errorf("x=%d: expected w_pos=%d, got %d", x, expectedW[x], wPos)
}
}
}
// TestRoPEHeadDimensions verifies the head dimension breakdown
func TestRoPEHeadDimensions(t *testing.T) {
// axes_dims_rope = [16, 56, 56]
// Each dimension uses half the values for frequencies
// So we get: 8 + 28 + 28 = 64 frequency values
// Each frequency produces cos + sin, so: 64 * 2 = 128 total values per position
axesDims := []int32{16, 56, 56}
expectedFreqs := (axesDims[0]/2 + axesDims[1]/2 + axesDims[2]/2)
expectedHeadDim := expectedFreqs * 2
if expectedFreqs != 64 {
t.Errorf("expected 64 frequency values, got %d", expectedFreqs)
}
if expectedHeadDim != 128 {
t.Errorf("expected head_dim=128, got %d", expectedHeadDim)
}
// This should match the transformer's attention head dimension
// hidden_size = 3072, num_heads = 24
// head_dim = 3072 / 24 = 128
}

View File

@@ -1,642 +0,0 @@
//go:build mlx
package qwen_image_edit
import (
"fmt"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/safetensors"
)
// VAEConfig holds Qwen-Image VAE configuration
type VAEConfig struct {
ZDim int32 `json:"z_dim"` // 16
BaseDim int32 `json:"base_dim"` // 96
DimMult []int32 `json:"dim_mult"` // [1, 2, 4, 4]
NumResBlocks int32 `json:"num_res_blocks"` // 2
LatentsMean []float32 `json:"latents_mean"` // 16 values
LatentsStd []float32 `json:"latents_std"` // 16 values
TemperalDownsample []bool `json:"temperal_downsample"` // [false, true, true]
}
// defaultVAEConfig returns config for Qwen-Image VAE
func defaultVAEConfig() *VAEConfig {
return &VAEConfig{
ZDim: 16,
BaseDim: 96,
DimMult: []int32{1, 2, 4, 4},
NumResBlocks: 2,
LatentsMean: []float32{
-0.7571, -0.7089, -0.9113, 0.1075,
-0.1745, 0.9653, -0.1517, 1.5508,
0.4134, -0.0715, 0.5517, -0.3632,
-0.1922, -0.9497, 0.2503, -0.2921,
},
LatentsStd: []float32{
2.8184, 1.4541, 2.3275, 2.6558,
1.2196, 1.7708, 2.6052, 2.0743,
3.2687, 2.1526, 2.8652, 1.5579,
1.6382, 1.1253, 2.8251, 1.916,
},
TemperalDownsample: []bool{false, true, true},
}
}
// VAE is the full VAE with encoder and decoder
type VAE struct {
Config *VAEConfig
Encoder *VAEEncoder
Decoder *VAEDecoder
}
// Load loads the VAE from a directory
func (m *VAE) Load(path string) error {
fmt.Println("Loading Qwen-Image-Edit VAE (encoder + decoder)...")
cfg := defaultVAEConfig()
m.Config = cfg
weights, err := safetensors.LoadModelWeights(path)
if err != nil {
return fmt.Errorf("weights: %w", err)
}
// Load weights as f32 for quality (matches Python default behavior)
// VAE decoder precision is critical for final image quality
fmt.Print(" Loading weights as f32... ")
if err := weights.Load(mlx.DtypeFloat32); err != nil {
return fmt.Errorf("failed to load weights: %w", err)
}
fmt.Printf("✓ (%.1f GB)\n", float64(mlx.MetalGetActiveMemory())/(1024*1024*1024))
// Load encoder
fmt.Print(" Loading encoder... ")
m.Encoder = &VAEEncoder{}
if err := m.Encoder.loadFromWeights(weights, cfg); err != nil {
return fmt.Errorf("encoder: %w", err)
}
fmt.Println("✓")
// Load decoder
fmt.Print(" Loading decoder... ")
m.Decoder = &VAEDecoder{}
if err := m.Decoder.loadFromWeights(weights, cfg); err != nil {
return fmt.Errorf("decoder: %w", err)
}
fmt.Println("✓")
weights.ReleaseAll()
return nil
}
// Encode encodes an image to latents
// x: [B, C, T, H, W] image tensor in [-1, 1] range
// Returns: [B, C, T, H/8, W/8] latents (unnormalized)
func (m *VAE) Encode(x *mlx.Array) *mlx.Array {
return m.Encoder.Encode(x)
}
// Decode decodes latents to image
// z: [B, C, T, H, W] latents (denormalized)
// Returns: [B, C, T, H*8, W*8] image in [-1, 1]
func (m *VAE) Decode(z *mlx.Array) *mlx.Array {
return m.Decoder.Decode(z)
}
// Normalize applies latent normalization
// Input z should be f32 (from VAE encoder), output is f32 for transformer
func (m *VAE) Normalize(z *mlx.Array) *mlx.Array {
shape := z.Shape()
C := shape[1]
mean := mlx.NewArray(m.Config.LatentsMean[:C], []int32{1, C, 1, 1, 1})
std := mlx.NewArray(m.Config.LatentsStd[:C], []int32{1, C, 1, 1, 1})
// Mean/std are f32, will match z dtype through broadcasting
return mlx.Div(mlx.Sub(z, mean), std)
}
// Denormalize reverses latent normalization
// Input z is bf16 (from transformer), output converted to f32 for VAE decoder
func (m *VAE) Denormalize(z *mlx.Array) *mlx.Array {
shape := z.Shape()
C := shape[1]
// Convert latents to f32 for VAE decoder quality
z = mlx.AsType(z, mlx.DtypeFloat32)
mean := mlx.NewArray(m.Config.LatentsMean[:C], []int32{1, C, 1, 1, 1})
std := mlx.NewArray(m.Config.LatentsStd[:C], []int32{1, C, 1, 1, 1})
return mlx.Add(mlx.Mul(z, std), mean)
}
// VAEEncoder is the encoder part of the VAE
// The encoder uses a flat structure where down_blocks contains a mix of ResBlocks and Downsamplers:
// - Blocks 0,1: ResBlocks (base_dim)
// - Block 2: Downsample
// - Blocks 3,4: ResBlocks (base_dim*2)
// - Block 5: Downsample + temporal
// - Blocks 6,7: ResBlocks (base_dim*4)
// - Block 8: Downsample + temporal
// - Blocks 9,10: ResBlocks (base_dim*4)
type VAEEncoder struct {
Config *VAEConfig
ConvIn *CausalConv3d
Blocks []EncoderBlock // Flat list of ResBlocks and Downsamplers
MidBlock *MidBlock
NormOut *RMSNorm3D
ConvOut *CausalConv3d
QuantConv *CausalConv3d
}
// EncoderBlock is either a ResBlock or a Downsample
type EncoderBlock interface {
Forward(x *mlx.Array) *mlx.Array
IsDownsample() bool
}
// EncoderResBlock wraps ResBlock
type EncoderResBlock struct {
*ResBlock
}
func (b *EncoderResBlock) IsDownsample() bool { return false }
// EncoderDownsample is a downsample layer
type EncoderDownsample struct {
Resample *CausalConv3d
TimeConv *CausalConv3d // Optional temporal downsample
}
func (d *EncoderDownsample) IsDownsample() bool { return true }
func (d *EncoderDownsample) Forward(x *mlx.Array) *mlx.Array {
// Spatial downsample with stride 2
// WAN VAE uses: ZeroPad2d(0,1,0,1) + Conv2d(3x3, stride=2)
x = d.forwardSpatialDownsample(x)
// NOTE: In WAN VAE, time_conv is ONLY used in streaming/chunked mode
// with feat_cache. For single-frame encoding (T=1), time_conv is skipped.
// The Python forward checks: if feat_cache is not None ... then use time_conv
// Since we don't support streaming, we skip time_conv entirely.
return x
}
// forwardSpatialDownsample applies 2D conv with stride 2 for spatial downsampling
func (d *EncoderDownsample) forwardSpatialDownsample(x *mlx.Array) *mlx.Array {
xShape := x.Shape()
B := xShape[0]
T := xShape[1]
H := xShape[2]
W := xShape[3]
C := xShape[4]
wShape := d.Resample.Weight.Shape()
outC := wShape[0]
// Reshape to [B*T, H, W, C] for 2D conv
x = mlx.Reshape(x, B*T, H, W, C)
// Asymmetric padding: pad right and bottom by 1 (WAN VAE style)
// ZeroPad2d(0, 1, 0, 1) means (left=0, right=1, top=0, bottom=1)
x = mlx.Pad(x, []int32{0, 0, 0, 1, 0, 1, 0, 0}) // [B, H, W, C] -> pad H and W
// Apply 2D conv with stride 2
weight := mlx.Transpose(d.Resample.Weight, 0, 2, 3, 1) // [O, I, kH, kW] -> [O, kH, kW, I]
x = conv2DStrided(x, weight, 2)
if d.Resample.Bias != nil {
bias := mlx.Reshape(d.Resample.Bias, 1, 1, 1, outC)
x = mlx.Add(x, bias)
}
// Output dims after stride 2: (H+1)/2, (W+1)/2
outH := (H + 1) / 2
outW := (W + 1) / 2
// Reshape back to [B, T, H', W', C]
x = mlx.Reshape(x, B, T, outH, outW, outC)
mlx.Eval(x)
return x
}
// loadFromWeights loads the encoder from pre-loaded weights
func (e *VAEEncoder) loadFromWeights(weights *safetensors.ModelWeights, cfg *VAEConfig) error {
e.Config = cfg
// Conv in
convIn, err := newCausalConv3d(weights, "encoder.conv_in")
if err != nil {
return err
}
e.ConvIn = convIn
// Encoder uses flat block structure:
// dim_mult = [1, 2, 4, 4], num_res_blocks = 2, temporal_downsample = [false, true, true]
// Block layout: res,res,down, res,res,down+t, res,res,down+t, res,res
// That's 11 blocks: 0,1=res, 2=down, 3,4=res, 5=down+t, 6,7=res, 8=down+t, 9,10=res
e.Blocks = make([]EncoderBlock, 0, 11)
// Track dimensions
dims := []int32{cfg.BaseDim, cfg.BaseDim * 2, cfg.BaseDim * 4, cfg.BaseDim * 4}
blockIdx := 0
for stage := 0; stage < len(cfg.DimMult); stage++ {
inDim := cfg.BaseDim
if stage > 0 {
inDim = dims[stage-1]
}
outDim := dims[stage]
// ResBlocks for this stage (num_res_blocks per stage)
for r := int32(0); r < cfg.NumResBlocks; r++ {
prefix := fmt.Sprintf("encoder.down_blocks.%d", blockIdx)
currentInDim := inDim
if r > 0 {
currentInDim = outDim
}
block, err := newEncoderResBlock(weights, prefix, currentInDim, outDim)
if err != nil {
return fmt.Errorf("encoder res block %d: %w", blockIdx, err)
}
e.Blocks = append(e.Blocks, block)
blockIdx++
}
// Downsample after each stage except the last
if stage < len(cfg.DimMult)-1 {
prefix := fmt.Sprintf("encoder.down_blocks.%d", blockIdx)
down, err := newEncoderDownsample(weights, prefix, cfg.TemperalDownsample[stage])
if err != nil {
return fmt.Errorf("encoder downsample %d: %w", blockIdx, err)
}
e.Blocks = append(e.Blocks, down)
blockIdx++
}
}
// Mid block
midDim := cfg.BaseDim * cfg.DimMult[len(cfg.DimMult)-1]
midBlock, err := newMidBlock(weights, "encoder.mid_block", midDim)
if err != nil {
return err
}
e.MidBlock = midBlock
// Norm out
normOut, err := newRMSNorm3D(weights, "encoder.norm_out", midDim)
if err != nil {
return err
}
e.NormOut = normOut
// Conv out
convOut, err := newCausalConv3d(weights, "encoder.conv_out")
if err != nil {
return err
}
e.ConvOut = convOut
// Quant conv
quantConv, err := newCausalConv3d(weights, "quant_conv")
if err != nil {
return err
}
e.QuantConv = quantConv
return nil
}
// newEncoderResBlock creates a ResBlock for the encoder (flat structure)
func newEncoderResBlock(weights *safetensors.ModelWeights, prefix string, inDim, outDim int32) (*EncoderResBlock, error) {
block, err := newResBlock(weights, prefix, inDim, outDim)
if err != nil {
return nil, err
}
return &EncoderResBlock{block}, nil
}
// newEncoderDownsample creates a downsample layer for the encoder
func newEncoderDownsample(weights *safetensors.ModelWeights, prefix string, temporal bool) (*EncoderDownsample, error) {
resample, err := newCausalConv3d(weights, prefix+".resample.1")
if err != nil {
return nil, err
}
var timeConv *CausalConv3d
if temporal {
timeConv, _ = newCausalConv3d(weights, prefix+".time_conv")
}
return &EncoderDownsample{
Resample: resample,
TimeConv: timeConv,
}, nil
}
// Encode encodes an image to latents
// x: [B, C, T, H, W] image tensor (channels-first)
// Returns: [B, latent_C, T, H/8, W/8] latent distribution mode
func (e *VAEEncoder) Encode(x *mlx.Array) *mlx.Array {
// Convert from channels-first [N, C, T, H, W] to channels-last [N, T, H, W, C]
x = mlx.Contiguous(mlx.Transpose(x, 0, 2, 3, 4, 1))
mlx.Eval(x)
// Conv in
x = e.ConvIn.Forward(x)
// Encoder blocks (mix of ResBlocks and Downsamplers)
for _, block := range e.Blocks {
prev := x
x = block.Forward(x)
prev.Free()
}
// Mid block
x = e.MidBlock.Forward(x)
// Norm + silu
{
prev := x
x = e.NormOut.Forward(x)
x = silu3D(x)
prev.Free()
mlx.Eval(x)
}
// Conv out
{
prev := x
x = e.ConvOut.Forward(x)
prev.Free()
}
// Quant conv
{
prev := x
x = e.QuantConv.Forward(x)
prev.Free()
}
// Get mode from distribution (first half of channels = mean)
// Output is [B, T, H, W, 2*latent_C], we take first latent_C channels
shape := x.Shape()
latentC := shape[4] / 2
x = mlx.Slice(x, []int32{0, 0, 0, 0, 0}, []int32{shape[0], shape[1], shape[2], shape[3], latentC})
// Convert back to channels-first [N, C, T, H, W]
x = mlx.Contiguous(mlx.Transpose(x, 0, 4, 1, 2, 3))
mlx.Eval(x)
return x
}
// VAEDecoder is the decoder part of the VAE
type VAEDecoder struct {
Config *VAEConfig
PostQuantConv *CausalConv3d
ConvIn *CausalConv3d
MidBlock *MidBlock
UpBlocks []*UpBlock
NormOut *RMSNorm3D
ConvOut *CausalConv3d
}
// loadFromWeights loads the decoder from pre-loaded weights
func (d *VAEDecoder) loadFromWeights(weights *safetensors.ModelWeights, cfg *VAEConfig) error {
d.Config = cfg
postQuantConv, err := newCausalConv3d(weights, "post_quant_conv")
if err != nil {
return err
}
d.PostQuantConv = postQuantConv
convIn, err := newCausalConv3d(weights, "decoder.conv_in")
if err != nil {
return err
}
d.ConvIn = convIn
// Mid block
midDim := cfg.BaseDim * cfg.DimMult[len(cfg.DimMult)-1]
midBlock, err := newMidBlock(weights, "decoder.mid_block", midDim)
if err != nil {
return err
}
d.MidBlock = midBlock
// Up blocks (reversed dim_mult)
numUpBlocks := len(cfg.DimMult)
d.UpBlocks = make([]*UpBlock, numUpBlocks)
dimsMult := make([]int32, numUpBlocks+1)
dimsMult[0] = cfg.DimMult[numUpBlocks-1]
for i := 0; i < numUpBlocks; i++ {
dimsMult[i+1] = cfg.DimMult[numUpBlocks-1-i]
}
temporalUpsample := make([]bool, len(cfg.TemperalDownsample))
for i := range cfg.TemperalDownsample {
temporalUpsample[i] = cfg.TemperalDownsample[len(cfg.TemperalDownsample)-1-i]
}
for i := 0; i < numUpBlocks; i++ {
inDim := cfg.BaseDim * dimsMult[i]
outDim := cfg.BaseDim * dimsMult[i+1]
if i > 0 {
inDim = inDim / 2
}
upsampleMode := ""
if i < numUpBlocks-1 {
if temporalUpsample[i] {
upsampleMode = "upsample3d"
} else {
upsampleMode = "upsample2d"
}
}
prefix := fmt.Sprintf("decoder.up_blocks.%d", i)
upBlock, err := newUpBlock(weights, prefix, inDim, outDim, cfg.NumResBlocks, upsampleMode)
if err != nil {
return err
}
d.UpBlocks[i] = upBlock
}
normOut, err := newRMSNorm3D(weights, "decoder.norm_out", cfg.BaseDim)
if err != nil {
return err
}
d.NormOut = normOut
convOut, err := newCausalConv3d(weights, "decoder.conv_out")
if err != nil {
return err
}
d.ConvOut = convOut
return nil
}
// Decode converts latents to image
// z: [B, C, T, H, W] denormalized latents
func (d *VAEDecoder) Decode(z *mlx.Array) *mlx.Array {
var x *mlx.Array
// Convert from channels-first to channels-last
{
z = mlx.Contiguous(mlx.Transpose(z, 0, 2, 3, 4, 1))
mlx.Eval(z)
}
// PostQuantConv
x = d.PostQuantConv.Forward(z)
z.Free()
// ConvIn
{
prev := x
x = d.ConvIn.Forward(x)
prev.Free()
}
// Mid block
x = d.MidBlock.Forward(x)
// Up blocks
for _, upBlock := range d.UpBlocks {
x = upBlock.Forward(x)
}
// NormOut + silu
{
prev := x
x = d.NormOut.Forward(x)
x = silu3D(x)
prev.Free()
mlx.Eval(x)
}
// ConvOut
{
prev := x
x = d.ConvOut.Forward(x)
prev.Free()
}
// Post-processing: clamp and convert back to channels-first
{
prev := x
x = mlx.ClipScalar(x, -1.0, 1.0, true, true)
x = mlx.Contiguous(mlx.Transpose(x, 0, 4, 1, 2, 3))
prev.Free()
mlx.Eval(x)
}
return x
}
// DownBlock handles downsampling in encoder
type DownBlock struct {
ResBlocks []*ResBlock
Downsampler *Downsample
}
// newDownBlock creates a down block
func newDownBlock(weights *safetensors.ModelWeights, prefix string, inDim, outDim int32, numBlocks int32, downsampleMode string) (*DownBlock, error) {
resBlocks := make([]*ResBlock, numBlocks+1)
currentDim := inDim
for i := int32(0); i <= numBlocks; i++ {
resPrefix := fmt.Sprintf("%s.resnets.%d", prefix, i)
block, err := newResBlock(weights, resPrefix, currentDim, outDim)
if err != nil {
return nil, err
}
resBlocks[i] = block
currentDim = outDim
}
var downsampler *Downsample
if downsampleMode != "" {
downsampler = newDownsample(weights, prefix+".downsamplers.0", outDim, downsampleMode)
}
return &DownBlock{
ResBlocks: resBlocks,
Downsampler: downsampler,
}, nil
}
// Forward applies down block
func (d *DownBlock) Forward(x *mlx.Array) *mlx.Array {
for _, block := range d.ResBlocks {
prev := x
x = block.Forward(x)
prev.Free()
}
if d.Downsampler != nil {
prev := x
x = d.Downsampler.Forward(x)
prev.Free()
}
return x
}
// Downsample handles spatial downsampling
type Downsample struct {
Conv *mlx.Array
Bias *mlx.Array
Mode string
}
// newDownsample creates a downsampler
func newDownsample(weights *safetensors.ModelWeights, prefix string, dim int32, mode string) *Downsample {
conv, _ := weights.Get(prefix + ".resample.1.weight")
bias, _ := weights.Get(prefix + ".resample.1.bias")
return &Downsample{
Conv: conv,
Bias: bias,
Mode: mode,
}
}
// Forward applies downsampling to channels-last input [B, T, H, W, C]
func (d *Downsample) Forward(x *mlx.Array) *mlx.Array {
shape := x.Shape()
B := shape[0]
T := shape[1]
H := shape[2]
W := shape[3]
C := shape[4]
outC := d.Conv.Shape()[0]
// Reshape to [B*T, H, W, C] for 2D conv
x = mlx.Reshape(x, B*T, H, W, C)
// Pad for stride-2 conv: need (3-1)/2 = 1 on each side, but for stride 2 we need specific padding
// For 3x3 stride 2: pad 1 on all sides
x = mlx.Pad(x, []int32{0, 0, 1, 1, 1, 1, 0, 0})
// Conv with stride 2 using manual strided patching
weight := mlx.Transpose(d.Conv, 0, 2, 3, 1)
x = conv2DStrided(x, weight, 2)
if d.Bias != nil {
bias := mlx.Reshape(d.Bias, 1, 1, 1, outC)
x = mlx.Add(x, bias)
}
x = mlx.Reshape(x, B, T, H/2, W/2, outC)
mlx.Eval(x)
return x
}

View File

@@ -9,6 +9,7 @@ import (
"encoding/json"
"flag"
"fmt"
"image"
"log/slog"
"net/http"
"os"
@@ -25,11 +26,12 @@ import (
// Request is the image generation request format
type Request struct {
Prompt string `json:"prompt"`
Width int32 `json:"width,omitempty"`
Height int32 `json:"height,omitempty"`
Steps int `json:"steps,omitempty"`
Seed int64 `json:"seed,omitempty"`
Prompt string `json:"prompt"`
Width int32 `json:"width,omitempty"`
Height int32 `json:"height,omitempty"`
Steps int `json:"steps,omitempty"`
Seed int64 `json:"seed,omitempty"`
Images [][]byte `json:"images,omitempty"` // Input images for image editing/conditioning
}
// Response is streamed back for each progress update
@@ -46,6 +48,13 @@ type ImageModel interface {
GenerateImage(ctx context.Context, prompt string, width, height int32, steps int, seed int64, progress func(step, total int)) (*mlx.Array, error)
}
// ImageEditModel extends ImageModel with image editing/conditioning capability.
// Models that support input images for editing should implement this interface.
type ImageEditModel interface {
ImageModel
GenerateImageWithInputs(ctx context.Context, prompt string, width, height int32, steps int, seed int64, inputImages []image.Image, progress func(step, total int)) (*mlx.Array, error)
}
// Server holds the model and handles requests
type Server struct {
mu sync.Mutex
@@ -78,14 +87,6 @@ func Execute(args []string) error {
slog.Info("MLX library initialized")
slog.Info("starting image runner", "model", *modelName, "port", *port)
// Check memory requirements before loading
requiredMemory := imagegen.EstimateVRAM(*modelName)
availableMemory := mlx.GetMemoryLimit()
if availableMemory > 0 && availableMemory < requiredMemory {
return fmt.Errorf("insufficient memory for image generation: need %d GB, have %d GB",
requiredMemory/(1024*1024*1024), availableMemory/(1024*1024*1024))
}
// Detect model type and load appropriate model
modelType := imagegen.DetectModelType(*modelName)
slog.Info("detected model type", "type", modelType)
@@ -161,6 +162,44 @@ func (s *Server) completionHandler(w http.ResponseWriter, r *http.Request) {
return
}
// Validate and decode input images
const maxInputImages = 2
if len(req.Images) > maxInputImages {
http.Error(w, fmt.Sprintf("too many input images, maximum is %d", maxInputImages), http.StatusBadRequest)
return
}
var inputImages []image.Image
if len(req.Images) > 0 {
// TODO: add memory check for input images
inputImages = make([]image.Image, len(req.Images))
for i, imgBytes := range req.Images {
img, err := imagegen.DecodeImage(imgBytes)
if err != nil {
http.Error(w, fmt.Sprintf("invalid image %d: %v", i, err), http.StatusBadRequest)
return
}
inputImages[i] = img
}
slog.Info("decoded input images", "count", len(inputImages))
// Default width/height to first input image dimensions, scaled to max 1024
bounds := inputImages[0].Bounds()
w, h := bounds.Dx(), bounds.Dy()
if w > 1024 || h > 1024 {
if w > h {
h = h * 1024 / w
w = 1024
} else {
w = w * 1024 / h
h = 1024
}
}
req.Width = int32(w)
req.Height = int32(h)
}
// Serialize generation requests - MLX model may not handle concurrent generation
s.mu.Lock()
defer s.mu.Unlock()
@@ -192,7 +231,19 @@ func (s *Server) completionHandler(w http.ResponseWriter, r *http.Request) {
flusher.Flush()
}
img, err := s.model.GenerateImage(ctx, req.Prompt, req.Width, req.Height, req.Steps, req.Seed, progress)
// Use ImageEditModel if available and images provided, otherwise use basic ImageModel
var img *mlx.Array
var err error
if len(inputImages) > 0 {
editModel, ok := s.model.(ImageEditModel)
if !ok {
http.Error(w, "model does not support image editing", http.StatusBadRequest)
return
}
img, err = editModel.GenerateImageWithInputs(ctx, req.Prompt, req.Width, req.Height, req.Steps, req.Seed, inputImages, progress)
} else {
img, err = s.model.GenerateImage(ctx, req.Prompt, req.Width, req.Height, req.Steps, req.Seed, progress)
}
if err != nil {
// Don't send error for cancellation

View File

@@ -7,6 +7,7 @@ import (
"encoding/json"
"errors"
"fmt"
"io"
"log/slog"
"math/rand"
"net"
@@ -104,11 +105,17 @@ func NewServer(modelName string) (*Server, error) {
slog.Debug("mlx subprocess library path", "LD_LIBRARY_PATH", pathEnvVal)
}
// Get total weight size from manifest
var weightSize uint64
if manifest, err := LoadManifest(modelName); err == nil {
weightSize = uint64(manifest.TotalTensorSize())
}
s := &Server{
cmd: cmd,
port: port,
modelName: modelName,
vramSize: EstimateVRAM(modelName),
vramSize: weightSize,
done: make(chan error, 1),
client: &http.Client{Timeout: 10 * time.Minute},
}
@@ -226,19 +233,27 @@ func (s *Server) Completion(ctx context.Context, req llm.CompletionRequest, fn f
seed = time.Now().UnixNano()
}
// Extract raw image bytes from llm.ImageData slice
var images [][]byte
for _, img := range req.Images {
images = append(images, img.Data)
}
// Build request for subprocess
creq := struct {
Prompt string `json:"prompt"`
Width int32 `json:"width,omitempty"`
Height int32 `json:"height,omitempty"`
Steps int32 `json:"steps,omitempty"`
Seed int64 `json:"seed,omitempty"`
Prompt string `json:"prompt"`
Width int32 `json:"width,omitempty"`
Height int32 `json:"height,omitempty"`
Steps int32 `json:"steps,omitempty"`
Seed int64 `json:"seed,omitempty"`
Images [][]byte `json:"images,omitempty"`
}{
Prompt: req.Prompt,
Width: req.Width,
Height: req.Height,
Steps: req.Steps,
Seed: seed,
Images: images,
}
body, err := json.Marshal(creq)
@@ -260,7 +275,8 @@ func (s *Server) Completion(ctx context.Context, req llm.CompletionRequest, fn f
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
return fmt.Errorf("request failed: %d", resp.StatusCode)
body, _ := io.ReadAll(resp.Body)
return fmt.Errorf("%s", strings.TrimSpace(string(body)))
}
scanner := bufio.NewScanner(resp.Body)

View File

@@ -38,40 +38,6 @@ func TestPlatformSupport(t *testing.T) {
}
}
// TestMemoryRequirementsError verifies memory check returns clear error.
func TestMemoryRequirementsError(t *testing.T) {
// Test with insufficient memory
err := CheckMemoryRequirements("test-model", 8*GB)
if err == nil {
t.Error("Expected error for insufficient memory (8GB < 21GB default)")
}
// Test with sufficient memory
err = CheckMemoryRequirements("test-model", 32*GB)
if err != nil {
t.Errorf("Expected no error for sufficient memory (32GB), got: %v", err)
}
}
// TestEstimateVRAMReturnsReasonableDefaults verifies VRAM estimates are sensible.
func TestEstimateVRAMReturnsReasonableDefaults(t *testing.T) {
// Unknown model should return default (21GB)
vram := EstimateVRAM("unknown-model")
if vram < 10*GB || vram > 100*GB {
t.Errorf("VRAM estimate %d GB is outside reasonable range (10-100 GB)", vram/GB)
}
// Verify known pipeline estimates exist and are reasonable
for name, estimate := range modelVRAMEstimates {
if estimate < 10*GB {
t.Errorf("VRAM estimate for %s (%d GB) is suspiciously low", name, estimate/GB)
}
if estimate > 200*GB {
t.Errorf("VRAM estimate for %s (%d GB) is suspiciously high", name, estimate/GB)
}
}
}
// TestServerInterfaceCompliance verifies Server implements llm.LlamaServer.
// This is a compile-time check but we document it as a test.
func TestServerInterfaceCompliance(t *testing.T) {