Compare commits

..

1 Commits

Author SHA1 Message Date
jmorganca
582d93ab22 fix: lazy init MLX for quantization and improve library discovery
- Add lazy MLX initialization in quantizeTensor to ensure the library
  is loaded when quantization is requested
- Add exe-relative build path search for dev mode on macOS, so the
  ollama binary can find libmlxc.dylib in build/lib/ollama/ when
  running from the repo root
2026-01-17 22:46:20 -08:00
122 changed files with 8626 additions and 15230 deletions

View File

@@ -749,7 +749,7 @@ type ShowResponse struct {
Messages []Message `json:"messages,omitempty"`
RemoteModel string `json:"remote_model,omitempty"`
RemoteHost string `json:"remote_host,omitempty"`
ModelInfo map[string]any `json:"model_info"`
ModelInfo map[string]any `json:"model_info,omitempty"`
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
Tensors []Tensor `json:"tensors,omitempty"`
Capabilities []model.Capability `json:"capabilities,omitempty"`

View File

@@ -35,7 +35,6 @@ import (
"golang.org/x/term"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/cmd/config"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/parser"
@@ -900,11 +899,11 @@ func DeleteHandler(cmd *cobra.Command, args []string) error {
for _, arg := range args {
// Unload the model if it's running before deletion
if err := loadOrUnloadModel(cmd, &runOptions{
Model: arg,
Model: args[0],
KeepAlive: &api.Duration{Duration: 0},
}); err != nil {
if !strings.Contains(strings.ToLower(err.Error()), "not found") {
fmt.Fprintf(os.Stderr, "Warning: unable to stop model '%s'\n", arg)
fmt.Fprintf(os.Stderr, "Warning: unable to stop model '%s'\n", args[0])
}
}
@@ -2027,7 +2026,6 @@ func NewCLI() *cobra.Command {
copyCmd,
deleteCmd,
runnerCmd,
config.ConfigCmd(checkServerHeartbeat),
)
return rootCmd

View File

@@ -1,36 +0,0 @@
package config
import (
"fmt"
"os"
"os/exec"
)
// Claude implements Runner for Claude Code integration
type Claude struct{}
func (c *Claude) String() string { return "Claude Code" }
func (c *Claude) args(model string) []string {
if model != "" {
return []string{"--model", model}
}
return nil
}
func (c *Claude) Run(model string) error {
if _, err := exec.LookPath("claude"); err != nil {
return fmt.Errorf("claude is not installed, install from https://code.claude.com/docs/en/quickstart")
}
cmd := exec.Command("claude", c.args(model)...)
cmd.Stdin = os.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
cmd.Env = append(os.Environ(),
"ANTHROPIC_BASE_URL=http://localhost:11434",
"ANTHROPIC_API_KEY=",
"ANTHROPIC_AUTH_TOKEN=ollama",
)
return cmd.Run()
}

View File

@@ -1,42 +0,0 @@
package config
import (
"slices"
"testing"
)
func TestClaudeIntegration(t *testing.T) {
c := &Claude{}
t.Run("String", func(t *testing.T) {
if got := c.String(); got != "Claude Code" {
t.Errorf("String() = %q, want %q", got, "Claude Code")
}
})
t.Run("implements Runner", func(t *testing.T) {
var _ Runner = c
})
}
func TestClaudeArgs(t *testing.T) {
c := &Claude{}
tests := []struct {
name string
model string
want []string
}{
{"with model", "llama3.2", []string{"--model", "llama3.2"}},
{"empty model", "", nil},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := c.args(tt.model)
if !slices.Equal(got, tt.want) {
t.Errorf("args(%q) = %v, want %v", tt.model, got, tt.want)
}
})
}
}

View File

@@ -1,61 +0,0 @@
package config
import (
"fmt"
"os"
"os/exec"
"strings"
"golang.org/x/mod/semver"
)
// Codex implements Runner for Codex integration
type Codex struct{}
func (c *Codex) String() string { return "Codex" }
func (c *Codex) args(model string) []string {
args := []string{"--oss"}
if model != "" {
args = append(args, "-m", model)
}
return args
}
func (c *Codex) Run(model string) error {
if err := checkCodexVersion(); err != nil {
return err
}
cmd := exec.Command("codex", c.args(model)...)
cmd.Stdin = os.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
return cmd.Run()
}
func checkCodexVersion() error {
if _, err := exec.LookPath("codex"); err != nil {
return fmt.Errorf("codex is not installed, install with: npm install -g @openai/codex")
}
out, err := exec.Command("codex", "--version").Output()
if err != nil {
return fmt.Errorf("failed to get codex version: %w", err)
}
// Parse output like "codex-cli 0.87.0"
fields := strings.Fields(strings.TrimSpace(string(out)))
if len(fields) < 2 {
return fmt.Errorf("unexpected codex version output: %s", string(out))
}
version := "v" + fields[len(fields)-1]
minVersion := "v0.81.0"
if semver.Compare(version, minVersion) < 0 {
return fmt.Errorf("codex version %s is too old, minimum required is %s, update with: npm update -g @openai/codex", fields[len(fields)-1], "0.81.0")
}
return nil
}

View File

@@ -1,28 +0,0 @@
package config
import (
"slices"
"testing"
)
func TestCodexArgs(t *testing.T) {
c := &Codex{}
tests := []struct {
name string
model string
want []string
}{
{"with model", "llama3.2", []string{"--oss", "-m", "llama3.2"}},
{"empty model", "", []string{"--oss"}},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := c.args(tt.model)
if !slices.Equal(got, tt.want) {
t.Errorf("args(%q) = %v, want %v", tt.model, got, tt.want)
}
})
}
}

View File

@@ -1,115 +0,0 @@
// Package config provides integration configuration for external coding tools
// (Claude Code, Codex, Droid, OpenCode) to use Ollama models.
package config
import (
"encoding/json"
"errors"
"fmt"
"os"
"path/filepath"
"strings"
)
type integration struct {
Models []string `json:"models"`
}
type config struct {
Integrations map[string]*integration `json:"integrations"`
}
func configPath() (string, error) {
home, err := os.UserHomeDir()
if err != nil {
return "", err
}
return filepath.Join(home, ".ollama", "config", "config.json"), nil
}
func load() (*config, error) {
path, err := configPath()
if err != nil {
return nil, err
}
data, err := os.ReadFile(path)
if err != nil {
if os.IsNotExist(err) {
return &config{Integrations: make(map[string]*integration)}, nil
}
return nil, err
}
var cfg config
if err := json.Unmarshal(data, &cfg); err != nil {
return nil, fmt.Errorf("failed to parse config: %w, at: %s", err, path)
}
if cfg.Integrations == nil {
cfg.Integrations = make(map[string]*integration)
}
return &cfg, nil
}
func save(cfg *config) error {
path, err := configPath()
if err != nil {
return err
}
if err := os.MkdirAll(filepath.Dir(path), 0o755); err != nil {
return err
}
data, err := json.MarshalIndent(cfg, "", " ")
if err != nil {
return err
}
return writeWithBackup(path, data)
}
func saveIntegration(appName string, models []string) error {
if appName == "" {
return errors.New("app name cannot be empty")
}
cfg, err := load()
if err != nil {
return err
}
cfg.Integrations[strings.ToLower(appName)] = &integration{
Models: models,
}
return save(cfg)
}
func loadIntegration(appName string) (*integration, error) {
cfg, err := load()
if err != nil {
return nil, err
}
ic, ok := cfg.Integrations[strings.ToLower(appName)]
if !ok {
return nil, os.ErrNotExist
}
return ic, nil
}
func listIntegrations() ([]integration, error) {
cfg, err := load()
if err != nil {
return nil, err
}
result := make([]integration, 0, len(cfg.Integrations))
for _, ic := range cfg.Integrations {
result = append(result, *ic)
}
return result, nil
}

View File

@@ -1,373 +0,0 @@
package config
import (
"os"
"path/filepath"
"strings"
"testing"
)
// setTestHome sets both HOME (Unix) and USERPROFILE (Windows) for cross-platform tests
func setTestHome(t *testing.T, dir string) {
t.Setenv("HOME", dir)
t.Setenv("USERPROFILE", dir)
}
// editorPaths is a test helper that safely calls Paths if the runner implements Editor
func editorPaths(r Runner) []string {
if editor, ok := r.(Editor); ok {
return editor.Paths()
}
return nil
}
func TestIntegrationConfig(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Run("save and load round-trip", func(t *testing.T) {
models := []string{"llama3.2", "mistral", "qwen2.5"}
if err := saveIntegration("claude", models); err != nil {
t.Fatal(err)
}
config, err := loadIntegration("claude")
if err != nil {
t.Fatal(err)
}
if len(config.Models) != len(models) {
t.Errorf("expected %d models, got %d", len(models), len(config.Models))
}
for i, m := range models {
if config.Models[i] != m {
t.Errorf("model %d: expected %s, got %s", i, m, config.Models[i])
}
}
})
t.Run("defaultModel returns first model", func(t *testing.T) {
saveIntegration("codex", []string{"model-a", "model-b"})
config, _ := loadIntegration("codex")
defaultModel := ""
if len(config.Models) > 0 {
defaultModel = config.Models[0]
}
if defaultModel != "model-a" {
t.Errorf("expected model-a, got %s", defaultModel)
}
})
t.Run("defaultModel returns empty for no models", func(t *testing.T) {
config := &integration{Models: []string{}}
defaultModel := ""
if len(config.Models) > 0 {
defaultModel = config.Models[0]
}
if defaultModel != "" {
t.Errorf("expected empty string, got %s", defaultModel)
}
})
t.Run("app name is case-insensitive", func(t *testing.T) {
saveIntegration("Claude", []string{"model-x"})
config, err := loadIntegration("claude")
if err != nil {
t.Fatal(err)
}
defaultModel := ""
if len(config.Models) > 0 {
defaultModel = config.Models[0]
}
if defaultModel != "model-x" {
t.Errorf("expected model-x, got %s", defaultModel)
}
})
t.Run("multiple integrations in single file", func(t *testing.T) {
saveIntegration("app1", []string{"model-1"})
saveIntegration("app2", []string{"model-2"})
config1, _ := loadIntegration("app1")
config2, _ := loadIntegration("app2")
defaultModel1 := ""
if len(config1.Models) > 0 {
defaultModel1 = config1.Models[0]
}
defaultModel2 := ""
if len(config2.Models) > 0 {
defaultModel2 = config2.Models[0]
}
if defaultModel1 != "model-1" {
t.Errorf("expected model-1, got %s", defaultModel1)
}
if defaultModel2 != "model-2" {
t.Errorf("expected model-2, got %s", defaultModel2)
}
})
}
func TestListIntegrations(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Run("returns empty when no integrations", func(t *testing.T) {
configs, err := listIntegrations()
if err != nil {
t.Fatal(err)
}
if len(configs) != 0 {
t.Errorf("expected 0 integrations, got %d", len(configs))
}
})
t.Run("returns all saved integrations", func(t *testing.T) {
saveIntegration("claude", []string{"model-1"})
saveIntegration("droid", []string{"model-2"})
configs, err := listIntegrations()
if err != nil {
t.Fatal(err)
}
if len(configs) != 2 {
t.Errorf("expected 2 integrations, got %d", len(configs))
}
})
}
func TestEditorPaths(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Run("returns empty for claude (no Editor)", func(t *testing.T) {
r := integrations["claude"]
paths := editorPaths(r)
if len(paths) != 0 {
t.Errorf("expected no paths for claude, got %v", paths)
}
})
t.Run("returns empty for codex (no Editor)", func(t *testing.T) {
r := integrations["codex"]
paths := editorPaths(r)
if len(paths) != 0 {
t.Errorf("expected no paths for codex, got %v", paths)
}
})
t.Run("returns empty for droid when no config exists", func(t *testing.T) {
r := integrations["droid"]
paths := editorPaths(r)
if len(paths) != 0 {
t.Errorf("expected no paths, got %v", paths)
}
})
t.Run("returns path for droid when config exists", func(t *testing.T) {
settingsDir, _ := os.UserHomeDir()
settingsDir = filepath.Join(settingsDir, ".factory")
os.MkdirAll(settingsDir, 0o755)
os.WriteFile(filepath.Join(settingsDir, "settings.json"), []byte(`{}`), 0o644)
r := integrations["droid"]
paths := editorPaths(r)
if len(paths) != 1 {
t.Errorf("expected 1 path, got %d", len(paths))
}
})
t.Run("returns paths for opencode when configs exist", func(t *testing.T) {
home, _ := os.UserHomeDir()
configDir := filepath.Join(home, ".config", "opencode")
stateDir := filepath.Join(home, ".local", "state", "opencode")
os.MkdirAll(configDir, 0o755)
os.MkdirAll(stateDir, 0o755)
os.WriteFile(filepath.Join(configDir, "opencode.json"), []byte(`{}`), 0o644)
os.WriteFile(filepath.Join(stateDir, "model.json"), []byte(`{}`), 0o644)
r := integrations["opencode"]
paths := editorPaths(r)
if len(paths) != 2 {
t.Errorf("expected 2 paths, got %d: %v", len(paths), paths)
}
})
}
func TestLoadIntegration_CorruptedJSON(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Create corrupted config.json file
dir := filepath.Join(tmpDir, ".ollama", "config")
os.MkdirAll(dir, 0o755)
os.WriteFile(filepath.Join(dir, "config.json"), []byte(`{corrupted json`), 0o644)
// Corrupted file is treated as empty, so loadIntegration returns not found
_, err := loadIntegration("test")
if err == nil {
t.Error("expected error for nonexistent integration in corrupted file")
}
}
func TestSaveIntegration_NilModels(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
if err := saveIntegration("test", nil); err != nil {
t.Fatalf("saveIntegration with nil models failed: %v", err)
}
config, err := loadIntegration("test")
if err != nil {
t.Fatalf("loadIntegration failed: %v", err)
}
if config.Models == nil {
// nil is acceptable
} else if len(config.Models) != 0 {
t.Errorf("expected empty or nil models, got %v", config.Models)
}
}
func TestSaveIntegration_EmptyAppName(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
err := saveIntegration("", []string{"model"})
if err == nil {
t.Error("expected error for empty app name, got nil")
}
if err != nil && !strings.Contains(err.Error(), "app name cannot be empty") {
t.Errorf("expected 'app name cannot be empty' error, got: %v", err)
}
}
func TestLoadIntegration_NonexistentIntegration(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
_, err := loadIntegration("nonexistent")
if err == nil {
t.Error("expected error for nonexistent integration, got nil")
}
if !os.IsNotExist(err) {
t.Logf("error type is os.ErrNotExist as expected: %v", err)
}
}
func TestConfigPath(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
path, err := configPath()
if err != nil {
t.Fatal(err)
}
expected := filepath.Join(tmpDir, ".ollama", "config", "config.json")
if path != expected {
t.Errorf("expected %s, got %s", expected, path)
}
}
func TestLoad(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Run("returns empty config when file does not exist", func(t *testing.T) {
cfg, err := load()
if err != nil {
t.Fatal(err)
}
if cfg == nil {
t.Fatal("expected non-nil config")
}
if cfg.Integrations == nil {
t.Error("expected non-nil Integrations map")
}
if len(cfg.Integrations) != 0 {
t.Errorf("expected empty Integrations, got %d", len(cfg.Integrations))
}
})
t.Run("loads existing config", func(t *testing.T) {
path, _ := configPath()
os.MkdirAll(filepath.Dir(path), 0o755)
os.WriteFile(path, []byte(`{"integrations":{"test":{"models":["model-a"]}}}`), 0o644)
cfg, err := load()
if err != nil {
t.Fatal(err)
}
if cfg.Integrations["test"] == nil {
t.Fatal("expected test integration")
}
if len(cfg.Integrations["test"].Models) != 1 {
t.Errorf("expected 1 model, got %d", len(cfg.Integrations["test"].Models))
}
})
t.Run("returns error for corrupted JSON", func(t *testing.T) {
path, _ := configPath()
os.MkdirAll(filepath.Dir(path), 0o755)
os.WriteFile(path, []byte(`{corrupted`), 0o644)
_, err := load()
if err == nil {
t.Error("expected error for corrupted JSON")
}
})
}
func TestSave(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Run("creates config file", func(t *testing.T) {
cfg := &config{
Integrations: map[string]*integration{
"test": {Models: []string{"model-a", "model-b"}},
},
}
if err := save(cfg); err != nil {
t.Fatal(err)
}
path, _ := configPath()
if _, err := os.Stat(path); os.IsNotExist(err) {
t.Error("config file was not created")
}
})
t.Run("round-trip preserves data", func(t *testing.T) {
cfg := &config{
Integrations: map[string]*integration{
"claude": {Models: []string{"llama3.2", "mistral"}},
"codex": {Models: []string{"qwen2.5"}},
},
}
if err := save(cfg); err != nil {
t.Fatal(err)
}
loaded, err := load()
if err != nil {
t.Fatal(err)
}
if len(loaded.Integrations) != 2 {
t.Errorf("expected 2 integrations, got %d", len(loaded.Integrations))
}
if loaded.Integrations["claude"] == nil {
t.Error("missing claude integration")
}
if len(loaded.Integrations["claude"].Models) != 2 {
t.Errorf("expected 2 models for claude, got %d", len(loaded.Integrations["claude"].Models))
}
})
}

View File

@@ -1,164 +0,0 @@
package config
import (
"encoding/json"
"fmt"
"os"
"os/exec"
"path/filepath"
"slices"
)
// Droid implements Runner and Editor for Droid integration
type Droid struct{}
// droidModelEntry represents a custom model entry in Droid's settings.json
type droidModelEntry struct {
Model string `json:"model"`
DisplayName string `json:"displayName"`
BaseURL string `json:"baseUrl"`
APIKey string `json:"apiKey"`
Provider string `json:"provider"`
MaxOutputTokens int `json:"maxOutputTokens"`
SupportsImages bool `json:"supportsImages"`
ID string `json:"id"`
Index int `json:"index"`
}
func (d *Droid) String() string { return "Droid" }
func (d *Droid) Run(model string) error {
if _, err := exec.LookPath("droid"); err != nil {
return fmt.Errorf("droid is not installed, install from https://docs.factory.ai/cli/getting-started/quickstart")
}
// Call Edit() to ensure config is up-to-date before launch
models := []string{model}
if config, err := loadIntegration("droid"); err == nil && len(config.Models) > 0 {
models = config.Models
}
if err := d.Edit(models); err != nil {
return fmt.Errorf("setup failed: %w", err)
}
cmd := exec.Command("droid")
cmd.Stdin = os.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
return cmd.Run()
}
func (d *Droid) Paths() []string {
home, err := os.UserHomeDir()
if err != nil {
return nil
}
p := filepath.Join(home, ".factory", "settings.json")
if _, err := os.Stat(p); err == nil {
return []string{p}
}
return nil
}
func (d *Droid) Edit(models []string) error {
if len(models) == 0 {
return nil
}
home, err := os.UserHomeDir()
if err != nil {
return err
}
settingsPath := filepath.Join(home, ".factory", "settings.json")
if err := os.MkdirAll(filepath.Dir(settingsPath), 0o755); err != nil {
return err
}
settings := make(map[string]any)
if data, err := os.ReadFile(settingsPath); err == nil {
if err := json.Unmarshal(data, &settings); err != nil {
return fmt.Errorf("failed to parse settings file: %w, at: %s", err, settingsPath)
}
}
customModels, _ := settings["customModels"].([]any)
// Keep only non-Ollama models (we'll rebuild Ollama models fresh)
nonOllamaModels := slices.DeleteFunc(slices.Clone(customModels), func(m any) bool {
entry, ok := m.(droidModelEntry)
if !ok {
return false
}
return entry.APIKey != "ollama"
})
// Build new Ollama model entries with sequential indices (0, 1, 2, ...)
var ollamaModels []any
var defaultModelID string
for i, model := range models {
modelID := fmt.Sprintf("custom:%s-%d", model, i)
ollamaModels = append(ollamaModels, droidModelEntry{
Model: model,
DisplayName: model,
BaseURL: "http://localhost:11434/v1",
APIKey: "ollama",
Provider: "generic-chat-completion-api",
MaxOutputTokens: 64000,
SupportsImages: false,
ID: modelID,
Index: i,
})
if i == 0 {
defaultModelID = modelID
}
}
settings["customModels"] = append(ollamaModels, nonOllamaModels...)
sessionSettings, ok := settings["sessionDefaultSettings"].(map[string]any)
if !ok {
sessionSettings = make(map[string]any)
}
sessionSettings["model"] = defaultModelID
if effort, ok := sessionSettings["reasoningEffort"].(string); !ok || !isValidReasoningEffort(effort) {
sessionSettings["reasoningEffort"] = "none"
}
settings["sessionDefaultSettings"] = sessionSettings
data, err := json.MarshalIndent(settings, "", " ")
if err != nil {
return err
}
return writeWithBackup(settingsPath, data)
}
func (d *Droid) Models() []string {
home, err := os.UserHomeDir()
if err != nil {
return nil
}
settings, err := readJSONFile(filepath.Join(home, ".factory", "settings.json"))
if err != nil {
return nil
}
customModels, _ := settings["customModels"].([]droidModelEntry)
var result []string
for _, m := range customModels {
if m.APIKey != "ollama" {
continue
}
result = append(result, m.Model)
}
return result
}
var validReasoningEfforts = []string{"high", "medium", "low", "none"}
func isValidReasoningEffort(effort string) bool {
return slices.Contains(validReasoningEfforts, effort)
}

View File

@@ -1,454 +0,0 @@
package config
import (
"encoding/json"
"os"
"path/filepath"
"testing"
)
func TestDroidIntegration(t *testing.T) {
d := &Droid{}
t.Run("String", func(t *testing.T) {
if got := d.String(); got != "Droid" {
t.Errorf("String() = %q, want %q", got, "Droid")
}
})
t.Run("implements Runner", func(t *testing.T) {
var _ Runner = d
})
t.Run("implements Editor", func(t *testing.T) {
var _ Editor = d
})
}
func TestDroidEdit(t *testing.T) {
d := &Droid{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
settingsDir := filepath.Join(tmpDir, ".factory")
settingsPath := filepath.Join(settingsDir, "settings.json")
cleanup := func() {
os.RemoveAll(settingsDir)
}
readSettings := func() map[string]any {
data, _ := os.ReadFile(settingsPath)
var settings map[string]any
json.Unmarshal(data, &settings)
return settings
}
getCustomModels := func(settings map[string]any) []map[string]any {
models, ok := settings["customModels"].([]any)
if !ok {
return nil
}
var result []map[string]any
for _, m := range models {
if entry, ok := m.(map[string]any); ok {
result = append(result, entry)
}
}
return result
}
t.Run("fresh install creates models with sequential indices", func(t *testing.T) {
cleanup()
if err := d.Edit([]string{"model-a", "model-b"}); err != nil {
t.Fatal(err)
}
settings := readSettings()
models := getCustomModels(settings)
if len(models) != 2 {
t.Fatalf("expected 2 models, got %d", len(models))
}
// Check first model
if models[0]["model"] != "model-a" {
t.Errorf("expected model-a, got %s", models[0]["model"])
}
if models[0]["id"] != "custom:model-a-[Ollama]-0" {
t.Errorf("expected custom:model-a-[Ollama]-0, got %s", models[0]["id"])
}
if models[0]["index"] != float64(0) {
t.Errorf("expected index 0, got %v", models[0]["index"])
}
// Check second model
if models[1]["model"] != "model-b" {
t.Errorf("expected model-b, got %s", models[1]["model"])
}
if models[1]["id"] != "custom:model-b-[Ollama]-1" {
t.Errorf("expected custom:model-b-[Ollama]-1, got %s", models[1]["id"])
}
if models[1]["index"] != float64(1) {
t.Errorf("expected index 1, got %v", models[1]["index"])
}
})
t.Run("sets sessionDefaultSettings.model to first model ID", func(t *testing.T) {
cleanup()
if err := d.Edit([]string{"model-a", "model-b"}); err != nil {
t.Fatal(err)
}
settings := readSettings()
session, ok := settings["sessionDefaultSettings"].(map[string]any)
if !ok {
t.Fatal("sessionDefaultSettings not found")
}
if session["model"] != "custom:model-a-[Ollama]-0" {
t.Errorf("expected custom:model-a-[Ollama]-0, got %s", session["model"])
}
})
t.Run("re-indexes when models removed", func(t *testing.T) {
cleanup()
// Add three models
d.Edit([]string{"model-a", "model-b", "model-c"})
// Remove middle model
d.Edit([]string{"model-a", "model-c"})
settings := readSettings()
models := getCustomModels(settings)
if len(models) != 2 {
t.Fatalf("expected 2 models, got %d", len(models))
}
// Check indices are sequential 0, 1
if models[0]["index"] != float64(0) {
t.Errorf("expected index 0, got %v", models[0]["index"])
}
if models[1]["index"] != float64(1) {
t.Errorf("expected index 1, got %v", models[1]["index"])
}
// Check IDs match new indices
if models[0]["id"] != "custom:model-a-[Ollama]-0" {
t.Errorf("expected custom:model-a-[Ollama]-0, got %s", models[0]["id"])
}
if models[1]["id"] != "custom:model-c-[Ollama]-1" {
t.Errorf("expected custom:model-c-[Ollama]-1, got %s", models[1]["id"])
}
})
t.Run("preserves non-Ollama custom models", func(t *testing.T) {
cleanup()
os.MkdirAll(settingsDir, 0o755)
// Pre-existing non-Ollama model
os.WriteFile(settingsPath, []byte(`{
"customModels": [
{"model": "gpt-4", "displayName": "GPT-4", "provider": "openai"}
]
}`), 0o644)
d.Edit([]string{"model-a"})
settings := readSettings()
models := getCustomModels(settings)
if len(models) != 2 {
t.Fatalf("expected 2 models (1 Ollama + 1 non-Ollama), got %d", len(models))
}
// Ollama model should be first
if models[0]["model"] != "model-a" {
t.Errorf("expected Ollama model first, got %s", models[0]["model"])
}
// Non-Ollama model should be preserved at end
if models[1]["model"] != "gpt-4" {
t.Errorf("expected gpt-4 preserved, got %s", models[1]["model"])
}
})
t.Run("preserves other settings", func(t *testing.T) {
cleanup()
os.MkdirAll(settingsDir, 0o755)
os.WriteFile(settingsPath, []byte(`{
"theme": "dark",
"enableHooks": true,
"sessionDefaultSettings": {"autonomyMode": "auto-high"}
}`), 0o644)
d.Edit([]string{"model-a"})
settings := readSettings()
if settings["theme"] != "dark" {
t.Error("theme was not preserved")
}
if settings["enableHooks"] != true {
t.Error("enableHooks was not preserved")
}
session := settings["sessionDefaultSettings"].(map[string]any)
if session["autonomyMode"] != "auto-high" {
t.Error("autonomyMode was not preserved")
}
})
t.Run("required fields present", func(t *testing.T) {
cleanup()
d.Edit([]string{"test-model"})
settings := readSettings()
models := getCustomModels(settings)
if len(models) != 1 {
t.Fatal("expected 1 model")
}
model := models[0]
requiredFields := []string{"model", "displayName", "baseUrl", "apiKey", "provider", "maxOutputTokens", "id", "index"}
for _, field := range requiredFields {
if model[field] == nil {
t.Errorf("missing required field: %s", field)
}
}
if model["baseUrl"] != "http://localhost:11434/v1" {
t.Errorf("unexpected baseUrl: %s", model["baseUrl"])
}
if model["apiKey"] != "ollama" {
t.Errorf("unexpected apiKey: %s", model["apiKey"])
}
if model["provider"] != "generic-chat-completion-api" {
t.Errorf("unexpected provider: %s", model["provider"])
}
})
t.Run("fixes invalid reasoningEffort", func(t *testing.T) {
cleanup()
os.MkdirAll(settingsDir, 0o755)
// Pre-existing settings with invalid reasoningEffort
os.WriteFile(settingsPath, []byte(`{
"sessionDefaultSettings": {"reasoningEffort": "off"}
}`), 0o644)
d.Edit([]string{"model-a"})
settings := readSettings()
session := settings["sessionDefaultSettings"].(map[string]any)
if session["reasoningEffort"] != "none" {
t.Errorf("expected reasoningEffort to be fixed to 'none', got %s", session["reasoningEffort"])
}
})
t.Run("preserves valid reasoningEffort", func(t *testing.T) {
cleanup()
os.MkdirAll(settingsDir, 0o755)
os.WriteFile(settingsPath, []byte(`{
"sessionDefaultSettings": {"reasoningEffort": "high"}
}`), 0o644)
d.Edit([]string{"model-a"})
settings := readSettings()
session := settings["sessionDefaultSettings"].(map[string]any)
if session["reasoningEffort"] != "high" {
t.Errorf("expected reasoningEffort to remain 'high', got %s", session["reasoningEffort"])
}
})
}
// Edge case tests for droid.go
func TestDroidEdit_CorruptedJSON(t *testing.T) {
d := &Droid{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
settingsDir := filepath.Join(tmpDir, ".factory")
settingsPath := filepath.Join(settingsDir, "settings.json")
os.MkdirAll(settingsDir, 0o755)
os.WriteFile(settingsPath, []byte(`{corrupted json content`), 0o644)
// Corrupted JSON should return an error so user knows something is wrong
err := d.Edit([]string{"model-a"})
if err == nil {
t.Fatal("expected error for corrupted JSON, got nil")
}
// Original corrupted file should be preserved (not overwritten)
data, _ := os.ReadFile(settingsPath)
if string(data) != `{corrupted json content` {
t.Errorf("corrupted file was modified: got %s", string(data))
}
}
func TestDroidEdit_WrongTypeCustomModels(t *testing.T) {
d := &Droid{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
settingsDir := filepath.Join(tmpDir, ".factory")
settingsPath := filepath.Join(settingsDir, "settings.json")
os.MkdirAll(settingsDir, 0o755)
// customModels is a string instead of array
os.WriteFile(settingsPath, []byte(`{"customModels": "not an array"}`), 0o644)
// Should not panic - wrong type should be handled gracefully
err := d.Edit([]string{"model-a"})
if err != nil {
t.Fatalf("Edit failed with wrong type customModels: %v", err)
}
// Verify models were added correctly
data, _ := os.ReadFile(settingsPath)
var settings map[string]any
json.Unmarshal(data, &settings)
customModels, ok := settings["customModels"].([]any)
if !ok {
t.Fatalf("customModels should be array after setup, got %T", settings["customModels"])
}
if len(customModels) != 1 {
t.Errorf("expected 1 model, got %d", len(customModels))
}
}
func TestDroidEdit_EmptyModels(t *testing.T) {
d := &Droid{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
settingsDir := filepath.Join(tmpDir, ".factory")
settingsPath := filepath.Join(settingsDir, "settings.json")
os.MkdirAll(settingsDir, 0o755)
originalContent := `{"customModels": [{"model": "existing"}]}`
os.WriteFile(settingsPath, []byte(originalContent), 0o644)
// Empty models should be no-op
err := d.Edit([]string{})
if err != nil {
t.Fatalf("Edit with empty models failed: %v", err)
}
// Original content should be preserved (file not modified)
data, _ := os.ReadFile(settingsPath)
if string(data) != originalContent {
t.Errorf("empty models should not modify file, but content changed")
}
}
func TestDroidEdit_DuplicateModels(t *testing.T) {
d := &Droid{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
settingsDir := filepath.Join(tmpDir, ".factory")
settingsPath := filepath.Join(settingsDir, "settings.json")
// Add same model twice
err := d.Edit([]string{"model-a", "model-a"})
if err != nil {
t.Fatalf("Edit with duplicates failed: %v", err)
}
settings, err := readJSONFile(settingsPath)
if err != nil {
t.Fatalf("readJSONFile failed: %v", err)
}
customModels, _ := settings["customModels"].([]any)
// Document current behavior: duplicates are kept as separate entries
if len(customModels) != 2 {
t.Logf("Note: duplicates result in %d entries (documenting behavior)", len(customModels))
}
}
func TestDroidEdit_MalformedModelEntry(t *testing.T) {
d := &Droid{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
settingsDir := filepath.Join(tmpDir, ".factory")
settingsPath := filepath.Join(settingsDir, "settings.json")
os.MkdirAll(settingsDir, 0o755)
// Model entry is a string instead of a map
os.WriteFile(settingsPath, []byte(`{"customModels": ["not a map", 123]}`), 0o644)
err := d.Edit([]string{"model-a"})
if err != nil {
t.Fatalf("Edit with malformed entries failed: %v", err)
}
// Malformed entries should be preserved in nonOllamaModels
settings, _ := readJSONFile(settingsPath)
customModels, _ := settings["customModels"].([]any)
// Should have: 1 new Ollama model + 2 preserved malformed entries
if len(customModels) != 3 {
t.Errorf("expected 3 entries (1 new + 2 preserved malformed), got %d", len(customModels))
}
}
func TestDroidEdit_WrongTypeSessionSettings(t *testing.T) {
d := &Droid{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
settingsDir := filepath.Join(tmpDir, ".factory")
settingsPath := filepath.Join(settingsDir, "settings.json")
os.MkdirAll(settingsDir, 0o755)
// sessionDefaultSettings is a string instead of map
os.WriteFile(settingsPath, []byte(`{"sessionDefaultSettings": "not a map"}`), 0o644)
err := d.Edit([]string{"model-a"})
if err != nil {
t.Fatalf("Edit with wrong type sessionDefaultSettings failed: %v", err)
}
// Should create proper sessionDefaultSettings
settings, _ := readJSONFile(settingsPath)
session, ok := settings["sessionDefaultSettings"].(map[string]any)
if !ok {
t.Fatalf("sessionDefaultSettings should be map after setup, got %T", settings["sessionDefaultSettings"])
}
if session["model"] == nil {
t.Error("expected model to be set in sessionDefaultSettings")
}
}
func TestIsValidReasoningEffort(t *testing.T) {
tests := []struct {
effort string
valid bool
}{
{"high", true},
{"medium", true},
{"low", true},
{"none", true},
{"off", false},
{"", false},
{"HIGH", false}, // case sensitive
{"max", false},
}
for _, tt := range tests {
t.Run(tt.effort, func(t *testing.T) {
got := isValidReasoningEffort(tt.effort)
if got != tt.valid {
t.Errorf("isValidReasoningEffort(%q) = %v, want %v", tt.effort, got, tt.valid)
}
})
}
}

View File

@@ -1,99 +0,0 @@
package config
import (
"bytes"
"encoding/json"
"fmt"
"os"
"path/filepath"
"time"
)
func readJSONFile(path string) (map[string]any, error) {
data, err := os.ReadFile(path)
if err != nil {
return nil, err
}
var result map[string]any
if err := json.Unmarshal(data, &result); err != nil {
return nil, err
}
return result, nil
}
func copyFile(src, dst string) error {
info, err := os.Stat(src)
if err != nil {
return err
}
data, err := os.ReadFile(src)
if err != nil {
return err
}
return os.WriteFile(dst, data, info.Mode().Perm())
}
func backupDir() string {
return filepath.Join(os.TempDir(), "ollama-backups")
}
func backupToTmp(srcPath string) (string, error) {
dir := backupDir()
if err := os.MkdirAll(dir, 0o755); err != nil {
return "", err
}
backupPath := filepath.Join(dir, fmt.Sprintf("%s.%d", filepath.Base(srcPath), time.Now().Unix()))
if err := copyFile(srcPath, backupPath); err != nil {
return "", err
}
return backupPath, nil
}
// writeWithBackup writes data to path via temp file + rename, backing up any existing file first
func writeWithBackup(path string, data []byte) error {
var backupPath string
// backup must be created before any writes to the target file
if existingContent, err := os.ReadFile(path); err == nil {
if !bytes.Equal(existingContent, data) {
backupPath, err = backupToTmp(path)
if err != nil {
return fmt.Errorf("backup failed: %w", err)
}
}
} else if !os.IsNotExist(err) {
return fmt.Errorf("read existing file: %w", err)
}
dir := filepath.Dir(path)
tmp, err := os.CreateTemp(dir, ".tmp-*")
if err != nil {
return fmt.Errorf("create temp failed: %w", err)
}
tmpPath := tmp.Name()
if _, err := tmp.Write(data); err != nil {
_ = tmp.Close()
_ = os.Remove(tmpPath)
return fmt.Errorf("write failed: %w", err)
}
if err := tmp.Sync(); err != nil {
_ = tmp.Close()
_ = os.Remove(tmpPath)
return fmt.Errorf("sync failed: %w", err)
}
if err := tmp.Close(); err != nil {
_ = os.Remove(tmpPath)
return fmt.Errorf("close failed: %w", err)
}
if err := os.Rename(tmpPath, path); err != nil {
_ = os.Remove(tmpPath)
if backupPath != "" {
_ = copyFile(backupPath, path)
}
return fmt.Errorf("rename failed: %w", err)
}
return nil
}

View File

@@ -1,502 +0,0 @@
package config
import (
"encoding/json"
"fmt"
"os"
"path/filepath"
"runtime"
"testing"
)
func mustMarshal(t *testing.T, v any) []byte {
t.Helper()
data, err := json.MarshalIndent(v, "", " ")
if err != nil {
t.Fatal(err)
}
return data
}
func TestWriteWithBackup(t *testing.T) {
tmpDir := t.TempDir()
t.Run("creates file", func(t *testing.T) {
path := filepath.Join(tmpDir, "new.json")
data := mustMarshal(t, map[string]string{"key": "value"})
if err := writeWithBackup(path, data); err != nil {
t.Fatal(err)
}
content, err := os.ReadFile(path)
if err != nil {
t.Fatal(err)
}
var result map[string]string
if err := json.Unmarshal(content, &result); err != nil {
t.Fatal(err)
}
if result["key"] != "value" {
t.Errorf("expected value, got %s", result["key"])
}
})
t.Run("creates backup in /tmp/ollama-backups", func(t *testing.T) {
path := filepath.Join(tmpDir, "backup.json")
os.WriteFile(path, []byte(`{"original": true}`), 0o644)
data := mustMarshal(t, map[string]bool{"updated": true})
if err := writeWithBackup(path, data); err != nil {
t.Fatal(err)
}
entries, err := os.ReadDir(backupDir())
if err != nil {
t.Fatal("backup directory not created")
}
var foundBackup bool
for _, entry := range entries {
if filepath.Ext(entry.Name()) != ".json" {
name := entry.Name()
if len(name) > len("backup.json.") && name[:len("backup.json.")] == "backup.json." {
backupPath := filepath.Join(backupDir(), name)
backup, err := os.ReadFile(backupPath)
if err == nil {
var backupData map[string]bool
json.Unmarshal(backup, &backupData)
if backupData["original"] {
foundBackup = true
os.Remove(backupPath)
break
}
}
}
}
}
if !foundBackup {
t.Error("backup file not created in /tmp/ollama-backups")
}
current, _ := os.ReadFile(path)
var currentData map[string]bool
json.Unmarshal(current, &currentData)
if !currentData["updated"] {
t.Error("file doesn't contain updated data")
}
})
t.Run("no backup for new file", func(t *testing.T) {
path := filepath.Join(tmpDir, "nobak.json")
data := mustMarshal(t, map[string]string{"new": "file"})
if err := writeWithBackup(path, data); err != nil {
t.Fatal(err)
}
entries, _ := os.ReadDir(backupDir())
for _, entry := range entries {
if len(entry.Name()) > len("nobak.json.") && entry.Name()[:len("nobak.json.")] == "nobak.json." {
t.Error("backup should not exist for new file")
}
}
})
t.Run("no backup when content unchanged", func(t *testing.T) {
path := filepath.Join(tmpDir, "unchanged.json")
data := mustMarshal(t, map[string]string{"key": "value"})
if err := writeWithBackup(path, data); err != nil {
t.Fatal(err)
}
entries1, _ := os.ReadDir(backupDir())
countBefore := 0
for _, e := range entries1 {
if len(e.Name()) > len("unchanged.json.") && e.Name()[:len("unchanged.json.")] == "unchanged.json." {
countBefore++
}
}
if err := writeWithBackup(path, data); err != nil {
t.Fatal(err)
}
entries2, _ := os.ReadDir(backupDir())
countAfter := 0
for _, e := range entries2 {
if len(e.Name()) > len("unchanged.json.") && e.Name()[:len("unchanged.json.")] == "unchanged.json." {
countAfter++
}
}
if countAfter != countBefore {
t.Errorf("backup was created when content unchanged (before=%d, after=%d)", countBefore, countAfter)
}
})
t.Run("backup filename contains unix timestamp", func(t *testing.T) {
path := filepath.Join(tmpDir, "timestamped.json")
os.WriteFile(path, []byte(`{"v": 1}`), 0o644)
data := mustMarshal(t, map[string]int{"v": 2})
if err := writeWithBackup(path, data); err != nil {
t.Fatal(err)
}
entries, _ := os.ReadDir(backupDir())
var found bool
for _, entry := range entries {
name := entry.Name()
if len(name) > len("timestamped.json.") && name[:len("timestamped.json.")] == "timestamped.json." {
timestamp := name[len("timestamped.json."):]
for _, c := range timestamp {
if c < '0' || c > '9' {
t.Errorf("backup filename timestamp contains non-numeric character: %s", name)
}
}
found = true
os.Remove(filepath.Join(backupDir(), name))
break
}
}
if !found {
t.Error("backup file with timestamp not found")
}
})
}
// Edge case tests for files.go
// TestWriteWithBackup_FailsIfBackupFails documents critical behavior: if backup fails, we must not proceed.
// User could lose their config with no way to recover.
func TestWriteWithBackup_FailsIfBackupFails(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("permission tests unreliable on Windows")
}
tmpDir := t.TempDir()
path := filepath.Join(tmpDir, "config.json")
// Create original file
originalContent := []byte(`{"original": true}`)
os.WriteFile(path, originalContent, 0o644)
// Make backup directory read-only to force backup failure
backupDir := backupDir()
os.MkdirAll(backupDir, 0o755)
os.Chmod(backupDir, 0o444) // Read-only
defer os.Chmod(backupDir, 0o755)
newContent := []byte(`{"updated": true}`)
err := writeWithBackup(path, newContent)
// Should fail because backup couldn't be created
if err == nil {
t.Error("expected error when backup fails, got nil")
}
// Original file should be preserved
current, _ := os.ReadFile(path)
if string(current) != string(originalContent) {
t.Errorf("original file was modified despite backup failure: got %s", string(current))
}
}
// TestWriteWithBackup_PermissionDenied verifies clear error when target file has wrong permissions.
// Common issue when config owned by root or wrong perms.
func TestWriteWithBackup_PermissionDenied(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("permission tests unreliable on Windows")
}
tmpDir := t.TempDir()
// Create a read-only directory
readOnlyDir := filepath.Join(tmpDir, "readonly")
os.MkdirAll(readOnlyDir, 0o755)
os.Chmod(readOnlyDir, 0o444)
defer os.Chmod(readOnlyDir, 0o755)
path := filepath.Join(readOnlyDir, "config.json")
err := writeWithBackup(path, []byte(`{"test": true}`))
if err == nil {
t.Error("expected permission error, got nil")
}
}
// TestWriteWithBackup_DirectoryDoesNotExist verifies behavior when target directory doesn't exist.
// writeWithBackup doesn't create directories - caller is responsible.
func TestWriteWithBackup_DirectoryDoesNotExist(t *testing.T) {
tmpDir := t.TempDir()
path := filepath.Join(tmpDir, "nonexistent", "subdir", "config.json")
err := writeWithBackup(path, []byte(`{"test": true}`))
// Should fail because directory doesn't exist
if err == nil {
t.Error("expected error for nonexistent directory, got nil")
}
}
// TestWriteWithBackup_SymlinkTarget documents behavior when target is a symlink.
// Documents what happens if user symlinks their config file.
func TestWriteWithBackup_SymlinkTarget(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("symlink tests may require admin on Windows")
}
tmpDir := t.TempDir()
realFile := filepath.Join(tmpDir, "real.json")
symlink := filepath.Join(tmpDir, "link.json")
// Create real file and symlink
os.WriteFile(realFile, []byte(`{"v": 1}`), 0o644)
os.Symlink(realFile, symlink)
// Write through symlink
err := writeWithBackup(symlink, []byte(`{"v": 2}`))
if err != nil {
t.Fatalf("writeWithBackup through symlink failed: %v", err)
}
// The real file should be updated (symlink followed for temp file creation)
content, _ := os.ReadFile(symlink)
if string(content) != `{"v": 2}` {
t.Errorf("symlink target not updated correctly: got %s", string(content))
}
}
// TestBackupToTmp_SpecialCharsInFilename verifies backup works with special characters.
// User may have config files with unusual names.
func TestBackupToTmp_SpecialCharsInFilename(t *testing.T) {
tmpDir := t.TempDir()
// File with spaces and special chars
path := filepath.Join(tmpDir, "my config (backup).json")
os.WriteFile(path, []byte(`{"test": true}`), 0o644)
backupPath, err := backupToTmp(path)
if err != nil {
t.Fatalf("backupToTmp with special chars failed: %v", err)
}
// Verify backup exists and has correct content
content, err := os.ReadFile(backupPath)
if err != nil {
t.Fatalf("could not read backup: %v", err)
}
if string(content) != `{"test": true}` {
t.Errorf("backup content mismatch: got %s", string(content))
}
os.Remove(backupPath)
}
// TestCopyFile_PreservesPermissions verifies that copyFile preserves file permissions.
func TestCopyFile_PreservesPermissions(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("permission preservation tests unreliable on Windows")
}
tmpDir := t.TempDir()
src := filepath.Join(tmpDir, "src.json")
dst := filepath.Join(tmpDir, "dst.json")
// Create source with specific permissions
os.WriteFile(src, []byte(`{"test": true}`), 0o600)
err := copyFile(src, dst)
if err != nil {
t.Fatalf("copyFile failed: %v", err)
}
srcInfo, _ := os.Stat(src)
dstInfo, _ := os.Stat(dst)
if srcInfo.Mode().Perm() != dstInfo.Mode().Perm() {
t.Errorf("permissions not preserved: src=%v, dst=%v", srcInfo.Mode().Perm(), dstInfo.Mode().Perm())
}
}
// TestCopyFile_SourceNotFound verifies clear error when source doesn't exist.
func TestCopyFile_SourceNotFound(t *testing.T) {
tmpDir := t.TempDir()
src := filepath.Join(tmpDir, "nonexistent.json")
dst := filepath.Join(tmpDir, "dst.json")
err := copyFile(src, dst)
if err == nil {
t.Error("expected error for nonexistent source, got nil")
}
}
// TestWriteWithBackup_TargetIsDirectory verifies error when path points to a directory.
func TestWriteWithBackup_TargetIsDirectory(t *testing.T) {
tmpDir := t.TempDir()
dirPath := filepath.Join(tmpDir, "actualdir")
os.MkdirAll(dirPath, 0o755)
err := writeWithBackup(dirPath, []byte(`{"test": true}`))
if err == nil {
t.Error("expected error when target is a directory, got nil")
}
}
// TestWriteWithBackup_EmptyData verifies writing zero bytes works correctly.
func TestWriteWithBackup_EmptyData(t *testing.T) {
tmpDir := t.TempDir()
path := filepath.Join(tmpDir, "empty.json")
err := writeWithBackup(path, []byte{})
if err != nil {
t.Fatalf("writeWithBackup with empty data failed: %v", err)
}
content, err := os.ReadFile(path)
if err != nil {
t.Fatalf("could not read file: %v", err)
}
if len(content) != 0 {
t.Errorf("expected empty file, got %d bytes", len(content))
}
}
// TestWriteWithBackup_FileUnreadableButDirWritable verifies behavior when existing file
// cannot be read (for backup comparison) but directory is writable.
func TestWriteWithBackup_FileUnreadableButDirWritable(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("permission tests unreliable on Windows")
}
tmpDir := t.TempDir()
path := filepath.Join(tmpDir, "unreadable.json")
// Create file and make it unreadable
os.WriteFile(path, []byte(`{"original": true}`), 0o644)
os.Chmod(path, 0o000)
defer os.Chmod(path, 0o644)
// Should fail because we can't read the file to compare/backup
err := writeWithBackup(path, []byte(`{"updated": true}`))
if err == nil {
t.Error("expected error when file is unreadable, got nil")
}
}
// TestWriteWithBackup_RapidSuccessiveWrites verifies backup works with multiple writes
// within the same second (timestamp collision scenario).
func TestWriteWithBackup_RapidSuccessiveWrites(t *testing.T) {
tmpDir := t.TempDir()
path := filepath.Join(tmpDir, "rapid.json")
// Create initial file
os.WriteFile(path, []byte(`{"v": 0}`), 0o644)
// Rapid successive writes
for i := 1; i <= 3; i++ {
data := []byte(fmt.Sprintf(`{"v": %d}`, i))
if err := writeWithBackup(path, data); err != nil {
t.Fatalf("write %d failed: %v", i, err)
}
}
// Verify final content
content, _ := os.ReadFile(path)
if string(content) != `{"v": 3}` {
t.Errorf("expected final content {\"v\": 3}, got %s", string(content))
}
// Verify at least one backup exists
entries, _ := os.ReadDir(backupDir())
var backupCount int
for _, e := range entries {
if len(e.Name()) > len("rapid.json.") && e.Name()[:len("rapid.json.")] == "rapid.json." {
backupCount++
}
}
if backupCount == 0 {
t.Error("expected at least one backup file from rapid writes")
}
}
// TestWriteWithBackup_BackupDirIsFile verifies error when backup directory path is a file.
func TestWriteWithBackup_BackupDirIsFile(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("test modifies system temp directory")
}
// Create a file at the backup directory path
backupPath := backupDir()
// Clean up any existing directory first
os.RemoveAll(backupPath)
// Create a file instead of directory
os.WriteFile(backupPath, []byte("not a directory"), 0o644)
defer func() {
os.Remove(backupPath)
os.MkdirAll(backupPath, 0o755)
}()
tmpDir := t.TempDir()
path := filepath.Join(tmpDir, "test.json")
os.WriteFile(path, []byte(`{"original": true}`), 0o644)
err := writeWithBackup(path, []byte(`{"updated": true}`))
if err == nil {
t.Error("expected error when backup dir is a file, got nil")
}
}
// TestWriteWithBackup_NoOrphanTempFiles verifies temp files are cleaned up on failure.
func TestWriteWithBackup_NoOrphanTempFiles(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("permission tests unreliable on Windows")
}
tmpDir := t.TempDir()
// Count existing temp files
countTempFiles := func() int {
entries, _ := os.ReadDir(tmpDir)
count := 0
for _, e := range entries {
if len(e.Name()) > 4 && e.Name()[:4] == ".tmp" {
count++
}
}
return count
}
before := countTempFiles()
// Create a file, then make directory read-only to cause rename failure
path := filepath.Join(tmpDir, "orphan.json")
os.WriteFile(path, []byte(`{"v": 1}`), 0o644)
// Make a subdirectory and try to write there after making parent read-only
subDir := filepath.Join(tmpDir, "subdir")
os.MkdirAll(subDir, 0o755)
subPath := filepath.Join(subDir, "config.json")
os.WriteFile(subPath, []byte(`{"v": 1}`), 0o644)
// Make subdir read-only after creating temp file would succeed but rename would fail
// This is tricky to test - the temp file is created in the same dir, so if we can't
// rename, we also couldn't create. Let's just verify normal failure cleanup works.
// Force a failure by making the target a directory
badPath := filepath.Join(tmpDir, "isdir")
os.MkdirAll(badPath, 0o755)
_ = writeWithBackup(badPath, []byte(`{"test": true}`))
after := countTempFiles()
if after > before {
t.Errorf("orphan temp files left behind: before=%d, after=%d", before, after)
}
}

View File

@@ -1,361 +0,0 @@
package config
import (
"context"
"errors"
"fmt"
"maps"
"os"
"os/exec"
"runtime"
"slices"
"strings"
"time"
"github.com/ollama/ollama/api"
"github.com/spf13/cobra"
)
// Runners execute the launching of a model with the integration - claude, codex
// Editors can edit config files (supports multi-model selection) - opencode, droid
// They are composable interfaces where in some cases an editor is also a runner - opencode, droid
// Runner can run an integration with a model.
type Runner interface {
Run(model string) error
// String returns the human-readable name of the integration
String() string
}
// Editor can edit config files (supports multi-model selection)
type Editor interface {
// Paths returns the paths to the config files for the integration
Paths() []string
// Edit updates the config files for the integration with the given models
Edit(models []string) error
// Models returns the models currently configured for the integration
Models() []string
}
// integrations is the registry of available integrations.
var integrations = map[string]Runner{
"claude": &Claude{},
"codex": &Codex{},
"droid": &Droid{},
"opencode": &OpenCode{},
}
func selectIntegration() (string, error) {
if len(integrations) == 0 {
return "", fmt.Errorf("no integrations available")
}
names := slices.Sorted(maps.Keys(integrations))
var items []selectItem
for _, name := range names {
r := integrations[name]
description := r.String()
if conn, err := loadIntegration(name); err == nil && len(conn.Models) > 0 {
description = fmt.Sprintf("%s (%s)", r.String(), conn.Models[0])
}
items = append(items, selectItem{Name: name, Description: description})
}
return selectPrompt("Select integration:", items)
}
// selectModels lets the user select models for an integration
func selectModels(ctx context.Context, name, current string) ([]string, error) {
r, ok := integrations[name]
if !ok {
return nil, fmt.Errorf("unknown integration: %s", name)
}
client, err := api.ClientFromEnvironment()
if err != nil {
return nil, err
}
models, err := client.List(ctx)
if err != nil {
return nil, err
}
if len(models.Models) == 0 {
return nil, fmt.Errorf("no models available, run 'ollama pull <model>' first")
}
var items []selectItem
cloudModels := make(map[string]bool)
for _, m := range models.Models {
if m.RemoteModel != "" {
cloudModels[m.Name] = true
}
items = append(items, selectItem{Name: m.Name})
}
if len(items) == 0 {
return nil, fmt.Errorf("no local models available, run 'ollama pull <model>' first")
}
// Get previously configured models (saved config takes precedence)
var preChecked []string
if saved, err := loadIntegration(name); err == nil {
preChecked = saved.Models
} else if editor, ok := r.(Editor); ok {
preChecked = editor.Models()
}
checked := make(map[string]bool, len(preChecked))
for _, n := range preChecked {
checked[n] = true
}
// Resolve current to full name (e.g., "llama3.2" -> "llama3.2:latest")
for _, item := range items {
if item.Name == current || strings.HasPrefix(item.Name, current+":") {
current = item.Name
break
}
}
// If current model is configured, move to front of preChecked
if checked[current] {
preChecked = append([]string{current}, slices.DeleteFunc(preChecked, func(m string) bool { return m == current })...)
}
// Sort: checked first, then alphabetical
slices.SortFunc(items, func(a, b selectItem) int {
ac, bc := checked[a.Name], checked[b.Name]
if ac != bc {
if ac {
return -1
}
return 1
}
return strings.Compare(strings.ToLower(a.Name), strings.ToLower(b.Name))
})
var selected []string
// only editors support multi-model selection
if _, ok := r.(Editor); ok {
selected, err = multiSelectPrompt(fmt.Sprintf("Select models for %s:", r), items, preChecked)
if err != nil {
return nil, err
}
} else {
model, err := selectPrompt(fmt.Sprintf("Select model for %s:", r), items)
if err != nil {
return nil, err
}
selected = []string{model}
}
// if any model in selected is a cloud model, ensure signed in
var selectedCloudModels []string
for _, m := range selected {
if cloudModels[m] {
selectedCloudModels = append(selectedCloudModels, m)
}
}
if len(selectedCloudModels) > 0 {
// ensure user is signed in
user, err := client.Whoami(ctx)
if err == nil && user != nil && user.Name != "" {
return selected, nil
}
var aErr api.AuthorizationError
if !errors.As(err, &aErr) || aErr.SigninURL == "" {
return nil, err
}
modelList := strings.Join(selectedCloudModels, ", ")
yes, err := confirmPrompt(fmt.Sprintf("sign in to use %s?", modelList))
if err != nil || !yes {
return nil, fmt.Errorf("%s requires sign in", modelList)
}
fmt.Fprintf(os.Stderr, "\nTo sign in, navigate to:\n %s\n\n", aErr.SigninURL)
// TODO(parthsareen): extract into auth package for cmd
// Auto-open browser (best effort, fail silently)
switch runtime.GOOS {
case "darwin":
_ = exec.Command("open", aErr.SigninURL).Start()
case "linux":
_ = exec.Command("xdg-open", aErr.SigninURL).Start()
case "windows":
_ = exec.Command("rundll32", "url.dll,FileProtocolHandler", aErr.SigninURL).Start()
}
spinnerFrames := []string{"|", "/", "-", "\\"}
frame := 0
fmt.Fprintf(os.Stderr, "\033[90mwaiting for sign in to complete... %s\033[0m", spinnerFrames[0])
ticker := time.NewTicker(200 * time.Millisecond)
defer ticker.Stop()
for {
select {
case <-ctx.Done():
fmt.Fprintf(os.Stderr, "\r\033[K")
return nil, ctx.Err()
case <-ticker.C:
frame++
fmt.Fprintf(os.Stderr, "\r\033[90mwaiting for sign in to complete... %s\033[0m", spinnerFrames[frame%len(spinnerFrames)])
// poll every 10th frame (~2 seconds)
if frame%10 == 0 {
u, err := client.Whoami(ctx)
if err == nil && u != nil && u.Name != "" {
fmt.Fprintf(os.Stderr, "\r\033[K\033[A\r\033[K\033[1msigned in:\033[0m %s\n", u.Name)
return selected, nil
}
}
}
}
}
return selected, nil
}
func runIntegration(name, modelName string) error {
r, ok := integrations[name]
if !ok {
return fmt.Errorf("unknown integration: %s", name)
}
fmt.Fprintf(os.Stderr, "\nLaunching %s with %s...\n", r, modelName)
return r.Run(modelName)
}
// ConfigCmd returns the cobra command for configuring integrations.
func ConfigCmd(checkServerHeartbeat func(cmd *cobra.Command, args []string) error) *cobra.Command {
var modelFlag string
var launchFlag bool
cmd := &cobra.Command{
Use: "config [INTEGRATION]",
Short: "Configure an external integration to use Ollama",
Long: `Configure an external application to use Ollama models.
Supported integrations:
claude Claude Code
codex Codex
droid Droid
opencode OpenCode
Examples:
ollama config
ollama config claude
ollama config droid --launch`,
Args: cobra.MaximumNArgs(1),
PreRunE: checkServerHeartbeat,
RunE: func(cmd *cobra.Command, args []string) error {
var name string
if len(args) > 0 {
name = args[0]
} else {
var err error
name, err = selectIntegration()
if errors.Is(err, errCancelled) {
return nil
}
if err != nil {
return err
}
}
r, ok := integrations[strings.ToLower(name)]
if !ok {
return fmt.Errorf("unknown integration: %s", name)
}
// If --launch without --model, use saved config if available
if launchFlag && modelFlag == "" {
if config, err := loadIntegration(name); err == nil && len(config.Models) > 0 {
return runIntegration(name, config.Models[0])
}
}
var models []string
if modelFlag != "" {
// When --model is specified, merge with existing models (new model becomes default)
models = []string{modelFlag}
if existing, err := loadIntegration(name); err == nil && len(existing.Models) > 0 {
for _, m := range existing.Models {
if m != modelFlag {
models = append(models, m)
}
}
}
} else {
var err error
models, err = selectModels(cmd.Context(), name, "")
if errors.Is(err, errCancelled) {
return nil
}
if err != nil {
return err
}
}
if editor, isEditor := r.(Editor); isEditor {
paths := editor.Paths()
if len(paths) > 0 {
fmt.Fprintf(os.Stderr, "This will modify your %s configuration:\n", r)
for _, p := range paths {
fmt.Fprintf(os.Stderr, " %s\n", p)
}
fmt.Fprintf(os.Stderr, "Backups will be saved to %s/\n\n", backupDir())
if ok, _ := confirmPrompt("Proceed?"); !ok {
return nil
}
}
}
if err := saveIntegration(name, models); err != nil {
return fmt.Errorf("failed to save: %w", err)
}
if editor, isEditor := r.(Editor); isEditor {
if err := editor.Edit(models); err != nil {
return fmt.Errorf("setup failed: %w", err)
}
}
if _, isEditor := r.(Editor); isEditor {
if len(models) == 1 {
fmt.Fprintf(os.Stderr, "Added %s to %s\n", models[0], r)
} else {
fmt.Fprintf(os.Stderr, "Added %d models to %s (default: %s)\n", len(models), r, models[0])
}
}
if slices.ContainsFunc(models, func(m string) bool {
return !strings.HasSuffix(m, "cloud")
}) {
fmt.Fprintln(os.Stderr)
fmt.Fprintln(os.Stderr, "Coding agents work best with at least 64k context. Either:")
fmt.Fprintln(os.Stderr, " - Set the context slider in Ollama app settings")
fmt.Fprintln(os.Stderr, " - Run: OLLAMA_CONTEXT_LENGTH=64000 ollama serve")
}
if launchFlag {
return runIntegration(name, models[0])
}
if launch, _ := confirmPrompt(fmt.Sprintf("\nLaunch %s now?", r)); launch {
return runIntegration(name, models[0])
}
fmt.Fprintf(os.Stderr, "Run 'ollama config %s --launch' to start with %s\n", strings.ToLower(name), models[0])
return nil
},
}
cmd.Flags().StringVar(&modelFlag, "model", "", "Model to use")
cmd.Flags().BoolVar(&launchFlag, "launch", false, "Launch the integration after configuring")
return cmd
}

View File

@@ -1,188 +0,0 @@
package config
import (
"slices"
"strings"
"testing"
"github.com/spf13/cobra"
)
func TestIntegrationLookup(t *testing.T) {
tests := []struct {
name string
input string
wantFound bool
wantName string
}{
{"claude lowercase", "claude", true, "Claude Code"},
{"claude uppercase", "CLAUDE", true, "Claude Code"},
{"claude mixed case", "Claude", true, "Claude Code"},
{"codex", "codex", true, "Codex"},
{"droid", "droid", true, "Droid"},
{"opencode", "opencode", true, "OpenCode"},
{"unknown integration", "unknown", false, ""},
{"empty string", "", false, ""},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
r, found := integrations[strings.ToLower(tt.input)]
if found != tt.wantFound {
t.Errorf("integrations[%q] found = %v, want %v", tt.input, found, tt.wantFound)
}
if found && r.String() != tt.wantName {
t.Errorf("integrations[%q].String() = %q, want %q", tt.input, r.String(), tt.wantName)
}
})
}
}
func TestIntegrationRegistry(t *testing.T) {
expectedIntegrations := []string{"claude", "codex", "droid", "opencode"}
for _, name := range expectedIntegrations {
t.Run(name, func(t *testing.T) {
r, ok := integrations[name]
if !ok {
t.Fatalf("integration %q not found in registry", name)
}
if r.String() == "" {
t.Error("integration.String() should not be empty")
}
})
}
}
func TestHasLocalModel(t *testing.T) {
tests := []struct {
name string
models []string
want bool
}{
{"empty list", []string{}, false},
{"single local model", []string{"llama3.2"}, true},
{"single cloud model", []string{"cloud-model"}, false},
{"mixed models", []string{"cloud-model", "llama3.2"}, true},
{"multiple local models", []string{"llama3.2", "qwen2.5"}, true},
{"multiple cloud models", []string{"cloud-a", "cloud-b"}, false},
{"local model first", []string{"llama3.2", "cloud-model"}, true},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := slices.ContainsFunc(tt.models, func(m string) bool {
return !strings.Contains(m, "cloud")
})
if got != tt.want {
t.Errorf("hasLocalModel(%v) = %v, want %v", tt.models, got, tt.want)
}
})
}
}
func TestConfigCmd(t *testing.T) {
// Mock checkServerHeartbeat that always succeeds
mockCheck := func(cmd *cobra.Command, args []string) error {
return nil
}
cmd := ConfigCmd(mockCheck)
t.Run("command structure", func(t *testing.T) {
if cmd.Use != "config [INTEGRATION]" {
t.Errorf("Use = %q, want %q", cmd.Use, "config [INTEGRATION]")
}
if cmd.Short == "" {
t.Error("Short description should not be empty")
}
if cmd.Long == "" {
t.Error("Long description should not be empty")
}
})
t.Run("flags exist", func(t *testing.T) {
modelFlag := cmd.Flags().Lookup("model")
if modelFlag == nil {
t.Error("--model flag should exist")
}
launchFlag := cmd.Flags().Lookup("launch")
if launchFlag == nil {
t.Error("--launch flag should exist")
}
})
t.Run("PreRunE is set", func(t *testing.T) {
if cmd.PreRunE == nil {
t.Error("PreRunE should be set to checkServerHeartbeat")
}
})
}
func TestRunIntegration_UnknownIntegration(t *testing.T) {
err := runIntegration("unknown-integration", "model")
if err == nil {
t.Error("expected error for unknown integration, got nil")
}
if !strings.Contains(err.Error(), "unknown integration") {
t.Errorf("error should mention 'unknown integration', got: %v", err)
}
}
func TestHasLocalModel_DocumentsHeuristic(t *testing.T) {
tests := []struct {
name string
models []string
want bool
reason string
}{
{"empty list", []string{}, false, "empty list has no local models"},
{"contains-cloud-substring", []string{"deepseek-r1:cloud"}, false, "model with 'cloud' substring is considered cloud"},
{"cloud-in-name", []string{"my-cloud-model"}, false, "'cloud' anywhere in name = cloud model"},
{"cloudless", []string{"cloudless-model"}, false, "'cloudless' still contains 'cloud'"},
{"local-model", []string{"llama3.2"}, true, "no 'cloud' = local"},
{"mixed", []string{"cloud-model", "llama3.2"}, true, "one local model = hasLocalModel true"},
{"all-cloud", []string{"cloud-a", "cloud-b"}, false, "all contain 'cloud'"},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := slices.ContainsFunc(tt.models, func(m string) bool {
return !strings.Contains(m, "cloud")
})
if got != tt.want {
t.Errorf("hasLocalModel(%v) = %v, want %v (%s)", tt.models, got, tt.want, tt.reason)
}
})
}
}
func TestConfigCmd_NilHeartbeat(t *testing.T) {
// This should not panic - cmd creation should work even with nil
cmd := ConfigCmd(nil)
if cmd == nil {
t.Fatal("ConfigCmd returned nil")
}
// PreRunE should be nil when passed nil
if cmd.PreRunE != nil {
t.Log("Note: PreRunE is set even when nil is passed (acceptable)")
}
}
func TestAllIntegrations_HaveRequiredMethods(t *testing.T) {
for name, r := range integrations {
t.Run(name, func(t *testing.T) {
// Test String() doesn't panic and returns non-empty
displayName := r.String()
if displayName == "" {
t.Error("String() should not return empty")
}
// Test Run() exists (we can't call it without actually running the command)
// Just verify the method is available
var _ func(string) error = r.Run
})
}
}

View File

@@ -1,203 +0,0 @@
package config
import (
"encoding/json"
"fmt"
"maps"
"os"
"os/exec"
"path/filepath"
"slices"
"strings"
)
// OpenCode implements Runner and Editor for OpenCode integration
type OpenCode struct{}
func (o *OpenCode) String() string { return "OpenCode" }
func (o *OpenCode) Run(model string) error {
if _, err := exec.LookPath("opencode"); err != nil {
return fmt.Errorf("opencode is not installed, install from https://opencode.ai")
}
// Call Edit() to ensure config is up-to-date before launch
models := []string{model}
if config, err := loadIntegration("opencode"); err == nil && len(config.Models) > 0 {
models = config.Models
}
if err := o.Edit(models); err != nil {
return fmt.Errorf("setup failed: %w", err)
}
cmd := exec.Command("opencode")
cmd.Stdin = os.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
return cmd.Run()
}
func (o *OpenCode) Paths() []string {
home, err := os.UserHomeDir()
if err != nil {
return nil
}
var paths []string
p := filepath.Join(home, ".config", "opencode", "opencode.json")
if _, err := os.Stat(p); err == nil {
paths = append(paths, p)
}
sp := filepath.Join(home, ".local", "state", "opencode", "model.json")
if _, err := os.Stat(sp); err == nil {
paths = append(paths, sp)
}
return paths
}
func (o *OpenCode) Edit(modelList []string) error {
if len(modelList) == 0 {
return nil
}
home, err := os.UserHomeDir()
if err != nil {
return err
}
configPath := filepath.Join(home, ".config", "opencode", "opencode.json")
if err := os.MkdirAll(filepath.Dir(configPath), 0o755); err != nil {
return err
}
config := make(map[string]any)
if data, err := os.ReadFile(configPath); err == nil {
_ = json.Unmarshal(data, &config) // Ignore parse errors; treat missing/corrupt files as empty
}
config["$schema"] = "https://opencode.ai/config.json"
provider, ok := config["provider"].(map[string]any)
if !ok {
provider = make(map[string]any)
}
ollama, ok := provider["ollama"].(map[string]any)
if !ok {
ollama = map[string]any{
"npm": "@ai-sdk/openai-compatible",
"name": "Ollama (local)",
"options": map[string]any{
"baseURL": "http://localhost:11434/v1",
},
}
}
models, ok := ollama["models"].(map[string]any)
if !ok {
models = make(map[string]any)
}
selectedSet := make(map[string]bool)
for _, m := range modelList {
selectedSet[m] = true
}
for name, cfg := range models {
if cfgMap, ok := cfg.(map[string]any); ok {
if displayName, ok := cfgMap["name"].(string); ok {
if strings.HasSuffix(displayName, "[Ollama]") && !selectedSet[name] {
delete(models, name)
}
}
}
}
for _, model := range modelList {
models[model] = map[string]any{
"name": fmt.Sprintf("%s [Ollama]", model),
}
}
ollama["models"] = models
provider["ollama"] = ollama
config["provider"] = provider
configData, err := json.MarshalIndent(config, "", " ")
if err != nil {
return err
}
if err := writeWithBackup(configPath, configData); err != nil {
return err
}
statePath := filepath.Join(home, ".local", "state", "opencode", "model.json")
if err := os.MkdirAll(filepath.Dir(statePath), 0o755); err != nil {
return err
}
state := map[string]any{
"recent": []any{},
"favorite": []any{},
"variant": map[string]any{},
}
if data, err := os.ReadFile(statePath); err == nil {
_ = json.Unmarshal(data, &state) // Ignore parse errors; use defaults
}
recent, _ := state["recent"].([]any)
modelSet := make(map[string]bool)
for _, m := range modelList {
modelSet[m] = true
}
// Filter out existing Ollama models we're about to re-add
newRecent := slices.DeleteFunc(slices.Clone(recent), func(entry any) bool {
e, ok := entry.(map[string]any)
if !ok || e["providerID"] != "ollama" {
return false
}
modelID, _ := e["modelID"].(string)
return modelSet[modelID]
})
// Prepend models in reverse order so first model ends up first
for _, model := range slices.Backward(modelList) {
newRecent = slices.Insert(newRecent, 0, any(map[string]any{
"providerID": "ollama",
"modelID": model,
}))
}
const maxRecentModels = 10
newRecent = newRecent[:min(len(newRecent), maxRecentModels)]
state["recent"] = newRecent
stateData, err := json.MarshalIndent(state, "", " ")
if err != nil {
return err
}
return writeWithBackup(statePath, stateData)
}
func (o *OpenCode) Models() []string {
home, err := os.UserHomeDir()
if err != nil {
return nil
}
config, err := readJSONFile(filepath.Join(home, ".config", "opencode", "opencode.json"))
if err != nil {
return nil
}
provider, _ := config["provider"].(map[string]any)
ollama, _ := provider["ollama"].(map[string]any)
models, _ := ollama["models"].(map[string]any)
if len(models) == 0 {
return nil
}
keys := slices.Collect(maps.Keys(models))
slices.Sort(keys)
return keys
}

View File

@@ -1,437 +0,0 @@
package config
import (
"encoding/json"
"os"
"path/filepath"
"testing"
)
func TestOpenCodeIntegration(t *testing.T) {
o := &OpenCode{}
t.Run("String", func(t *testing.T) {
if got := o.String(); got != "OpenCode" {
t.Errorf("String() = %q, want %q", got, "OpenCode")
}
})
t.Run("implements Runner", func(t *testing.T) {
var _ Runner = o
})
t.Run("implements Editor", func(t *testing.T) {
var _ Editor = o
})
}
func TestOpenCodeEdit(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".config", "opencode")
configPath := filepath.Join(configDir, "opencode.json")
stateDir := filepath.Join(tmpDir, ".local", "state", "opencode")
statePath := filepath.Join(stateDir, "model.json")
cleanup := func() {
os.RemoveAll(configDir)
os.RemoveAll(stateDir)
}
t.Run("fresh install", func(t *testing.T) {
cleanup()
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
assertOpenCodeModelExists(t, configPath, "llama3.2")
assertOpenCodeRecentModel(t, statePath, 0, "ollama", "llama3.2")
})
t.Run("preserve other providers", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"provider":{"anthropic":{"apiKey":"xxx"}}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
provider := cfg["provider"].(map[string]any)
if provider["anthropic"] == nil {
t.Error("anthropic provider was removed")
}
assertOpenCodeModelExists(t, configPath, "llama3.2")
})
t.Run("preserve other models", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"provider":{"ollama":{"models":{"mistral":{"name":"Mistral"}}}}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
assertOpenCodeModelExists(t, configPath, "mistral")
assertOpenCodeModelExists(t, configPath, "llama3.2")
})
t.Run("update existing model", func(t *testing.T) {
cleanup()
o.Edit([]string{"llama3.2"})
o.Edit([]string{"llama3.2"})
assertOpenCodeModelExists(t, configPath, "llama3.2")
})
t.Run("preserve top-level keys", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"theme":"dark","keybindings":{}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
if cfg["theme"] != "dark" {
t.Error("theme was removed")
}
if cfg["keybindings"] == nil {
t.Error("keybindings was removed")
}
})
t.Run("model state - insert at index 0", func(t *testing.T) {
cleanup()
os.MkdirAll(stateDir, 0o755)
os.WriteFile(statePath, []byte(`{"recent":[{"providerID":"anthropic","modelID":"claude"}],"favorite":[],"variant":{}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
assertOpenCodeRecentModel(t, statePath, 0, "ollama", "llama3.2")
assertOpenCodeRecentModel(t, statePath, 1, "anthropic", "claude")
})
t.Run("model state - preserve favorites and variants", func(t *testing.T) {
cleanup()
os.MkdirAll(stateDir, 0o755)
os.WriteFile(statePath, []byte(`{"recent":[],"favorite":[{"providerID":"x","modelID":"y"}],"variant":{"a":"b"}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(statePath)
var state map[string]any
json.Unmarshal(data, &state)
if len(state["favorite"].([]any)) != 1 {
t.Error("favorite was modified")
}
if state["variant"].(map[string]any)["a"] != "b" {
t.Error("variant was modified")
}
})
t.Run("model state - deduplicate on re-add", func(t *testing.T) {
cleanup()
os.MkdirAll(stateDir, 0o755)
os.WriteFile(statePath, []byte(`{"recent":[{"providerID":"ollama","modelID":"llama3.2"},{"providerID":"anthropic","modelID":"claude"}],"favorite":[],"variant":{}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(statePath)
var state map[string]any
json.Unmarshal(data, &state)
recent := state["recent"].([]any)
if len(recent) != 2 {
t.Errorf("expected 2 recent entries, got %d", len(recent))
}
assertOpenCodeRecentModel(t, statePath, 0, "ollama", "llama3.2")
})
t.Run("remove model", func(t *testing.T) {
cleanup()
// First add two models
o.Edit([]string{"llama3.2", "mistral"})
assertOpenCodeModelExists(t, configPath, "llama3.2")
assertOpenCodeModelExists(t, configPath, "mistral")
// Then remove one by only selecting the other
o.Edit([]string{"llama3.2"})
assertOpenCodeModelExists(t, configPath, "llama3.2")
assertOpenCodeModelNotExists(t, configPath, "mistral")
})
t.Run("remove model preserves non-ollama models", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
// Add a non-Ollama model manually
os.WriteFile(configPath, []byte(`{"provider":{"ollama":{"models":{"external":{"name":"External Model"}}}}}`), 0o644)
o.Edit([]string{"llama3.2"})
assertOpenCodeModelExists(t, configPath, "llama3.2")
assertOpenCodeModelExists(t, configPath, "external") // Should be preserved
})
}
func assertOpenCodeModelExists(t *testing.T, path, model string) {
t.Helper()
data, err := os.ReadFile(path)
if err != nil {
t.Fatal(err)
}
var cfg map[string]any
if err := json.Unmarshal(data, &cfg); err != nil {
t.Fatal(err)
}
provider, ok := cfg["provider"].(map[string]any)
if !ok {
t.Fatal("provider not found")
}
ollama, ok := provider["ollama"].(map[string]any)
if !ok {
t.Fatal("ollama provider not found")
}
models, ok := ollama["models"].(map[string]any)
if !ok {
t.Fatal("models not found")
}
if models[model] == nil {
t.Errorf("model %s not found", model)
}
}
func assertOpenCodeModelNotExists(t *testing.T, path, model string) {
t.Helper()
data, err := os.ReadFile(path)
if err != nil {
t.Fatal(err)
}
var cfg map[string]any
if err := json.Unmarshal(data, &cfg); err != nil {
t.Fatal(err)
}
provider, ok := cfg["provider"].(map[string]any)
if !ok {
return // No provider means no model
}
ollama, ok := provider["ollama"].(map[string]any)
if !ok {
return // No ollama means no model
}
models, ok := ollama["models"].(map[string]any)
if !ok {
return // No models means no model
}
if models[model] != nil {
t.Errorf("model %s should not exist but was found", model)
}
}
func assertOpenCodeRecentModel(t *testing.T, path string, index int, providerID, modelID string) {
t.Helper()
data, err := os.ReadFile(path)
if err != nil {
t.Fatal(err)
}
var state map[string]any
if err := json.Unmarshal(data, &state); err != nil {
t.Fatal(err)
}
recent, ok := state["recent"].([]any)
if !ok {
t.Fatal("recent not found")
}
if index >= len(recent) {
t.Fatalf("index %d out of range (len=%d)", index, len(recent))
}
entry, ok := recent[index].(map[string]any)
if !ok {
t.Fatal("entry is not a map")
}
if entry["providerID"] != providerID {
t.Errorf("expected providerID %s, got %s", providerID, entry["providerID"])
}
if entry["modelID"] != modelID {
t.Errorf("expected modelID %s, got %s", modelID, entry["modelID"])
}
}
// Edge case tests for opencode.go
func TestOpenCodeEdit_CorruptedConfigJSON(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".config", "opencode")
configPath := filepath.Join(configDir, "opencode.json")
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{corrupted json content`), 0o644)
// Should not panic - corrupted JSON should be treated as empty
err := o.Edit([]string{"llama3.2"})
if err != nil {
t.Fatalf("Edit failed with corrupted config: %v", err)
}
// Verify valid JSON was created
data, _ := os.ReadFile(configPath)
var cfg map[string]any
if err := json.Unmarshal(data, &cfg); err != nil {
t.Errorf("resulting config is not valid JSON: %v", err)
}
}
func TestOpenCodeEdit_CorruptedStateJSON(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
stateDir := filepath.Join(tmpDir, ".local", "state", "opencode")
statePath := filepath.Join(stateDir, "model.json")
os.MkdirAll(stateDir, 0o755)
os.WriteFile(statePath, []byte(`{corrupted state`), 0o644)
err := o.Edit([]string{"llama3.2"})
if err != nil {
t.Fatalf("Edit failed with corrupted state: %v", err)
}
// Verify valid state was created
data, _ := os.ReadFile(statePath)
var state map[string]any
if err := json.Unmarshal(data, &state); err != nil {
t.Errorf("resulting state is not valid JSON: %v", err)
}
}
func TestOpenCodeEdit_WrongTypeProvider(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".config", "opencode")
configPath := filepath.Join(configDir, "opencode.json")
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"provider": "not a map"}`), 0o644)
err := o.Edit([]string{"llama3.2"})
if err != nil {
t.Fatalf("Edit with wrong type provider failed: %v", err)
}
// Verify provider is now correct type
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
provider, ok := cfg["provider"].(map[string]any)
if !ok {
t.Fatalf("provider should be map after setup, got %T", cfg["provider"])
}
if provider["ollama"] == nil {
t.Error("ollama provider should be created")
}
}
func TestOpenCodeEdit_WrongTypeRecent(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
stateDir := filepath.Join(tmpDir, ".local", "state", "opencode")
statePath := filepath.Join(stateDir, "model.json")
os.MkdirAll(stateDir, 0o755)
os.WriteFile(statePath, []byte(`{"recent": "not an array", "favorite": [], "variant": {}}`), 0o644)
err := o.Edit([]string{"llama3.2"})
if err != nil {
t.Fatalf("Edit with wrong type recent failed: %v", err)
}
// The function should handle this gracefully
data, _ := os.ReadFile(statePath)
var state map[string]any
json.Unmarshal(data, &state)
// recent should be properly set after setup
recent, ok := state["recent"].([]any)
if !ok {
t.Logf("Note: recent type after setup is %T (documenting behavior)", state["recent"])
} else if len(recent) == 0 {
t.Logf("Note: recent is empty (documenting behavior)")
}
}
func TestOpenCodeEdit_EmptyModels(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".config", "opencode")
configPath := filepath.Join(configDir, "opencode.json")
os.MkdirAll(configDir, 0o755)
originalContent := `{"provider":{"ollama":{"models":{"existing":{}}}}}`
os.WriteFile(configPath, []byte(originalContent), 0o644)
// Empty models should be no-op
err := o.Edit([]string{})
if err != nil {
t.Fatalf("Edit with empty models failed: %v", err)
}
// Original content should be preserved (file not modified)
data, _ := os.ReadFile(configPath)
if string(data) != originalContent {
t.Errorf("empty models should not modify file, but content changed")
}
}
func TestOpenCodeEdit_SpecialCharsInModelName(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Model name with special characters (though unusual)
specialModel := `model-with-"quotes"`
err := o.Edit([]string{specialModel})
if err != nil {
t.Fatalf("Edit with special chars failed: %v", err)
}
// Verify it was stored correctly
configDir := filepath.Join(tmpDir, ".config", "opencode")
configPath := filepath.Join(configDir, "opencode.json")
data, _ := os.ReadFile(configPath)
var cfg map[string]any
if err := json.Unmarshal(data, &cfg); err != nil {
t.Fatalf("resulting config is invalid JSON: %v", err)
}
// Model should be accessible
provider, _ := cfg["provider"].(map[string]any)
ollama, _ := provider["ollama"].(map[string]any)
models, _ := ollama["models"].(map[string]any)
if models[specialModel] == nil {
t.Errorf("model with special chars not found in config")
}
}
func TestOpenCodeModels_NoConfig(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
models := o.Models()
if len(models) > 0 {
t.Errorf("expected nil/empty for missing config, got %v", models)
}
}

View File

@@ -1,499 +0,0 @@
package config
import (
"errors"
"fmt"
"io"
"os"
"strings"
"golang.org/x/term"
)
// ANSI escape sequences for terminal formatting.
const (
ansiHideCursor = "\033[?25l"
ansiShowCursor = "\033[?25h"
ansiBold = "\033[1m"
ansiReset = "\033[0m"
ansiGray = "\033[37m"
ansiClearDown = "\033[J"
)
const maxDisplayedItems = 10
var errCancelled = errors.New("cancelled")
type selectItem struct {
Name string
Description string
}
type inputEvent int
const (
eventNone inputEvent = iota
eventEnter
eventEscape
eventUp
eventDown
eventTab
eventBackspace
eventChar
)
type selectState struct {
items []selectItem
filter string
selected int
scrollOffset int
}
func newSelectState(items []selectItem) *selectState {
return &selectState{items: items}
}
func (s *selectState) filtered() []selectItem {
return filterItems(s.items, s.filter)
}
func (s *selectState) handleInput(event inputEvent, char byte) (done bool, result string, err error) {
filtered := s.filtered()
switch event {
case eventEnter:
if len(filtered) > 0 && s.selected < len(filtered) {
return true, filtered[s.selected].Name, nil
}
case eventEscape:
return true, "", errCancelled
case eventBackspace:
if len(s.filter) > 0 {
s.filter = s.filter[:len(s.filter)-1]
s.selected = 0
s.scrollOffset = 0
}
case eventUp:
if s.selected > 0 {
s.selected--
if s.selected < s.scrollOffset {
s.scrollOffset = s.selected
}
}
case eventDown:
if s.selected < len(filtered)-1 {
s.selected++
if s.selected >= s.scrollOffset+maxDisplayedItems {
s.scrollOffset = s.selected - maxDisplayedItems + 1
}
}
case eventChar:
s.filter += string(char)
s.selected = 0
s.scrollOffset = 0
}
return false, "", nil
}
type multiSelectState struct {
items []selectItem
itemIndex map[string]int
filter string
highlighted int
scrollOffset int
checked map[int]bool
checkOrder []int
focusOnButton bool
}
func newMultiSelectState(items []selectItem, preChecked []string) *multiSelectState {
s := &multiSelectState{
items: items,
itemIndex: make(map[string]int, len(items)),
checked: make(map[int]bool),
}
for i, item := range items {
s.itemIndex[item.Name] = i
}
for _, name := range preChecked {
if idx, ok := s.itemIndex[name]; ok {
s.checked[idx] = true
s.checkOrder = append(s.checkOrder, idx)
}
}
return s
}
func (s *multiSelectState) filtered() []selectItem {
return filterItems(s.items, s.filter)
}
func (s *multiSelectState) toggleItem() {
filtered := s.filtered()
if len(filtered) == 0 || s.highlighted >= len(filtered) {
return
}
item := filtered[s.highlighted]
origIdx := s.itemIndex[item.Name]
if s.checked[origIdx] {
delete(s.checked, origIdx)
for i, idx := range s.checkOrder {
if idx == origIdx {
s.checkOrder = append(s.checkOrder[:i], s.checkOrder[i+1:]...)
break
}
}
} else {
s.checked[origIdx] = true
s.checkOrder = append(s.checkOrder, origIdx)
}
}
func (s *multiSelectState) handleInput(event inputEvent, char byte) (done bool, result []string, err error) {
filtered := s.filtered()
switch event {
case eventEnter:
if s.focusOnButton && len(s.checkOrder) > 0 {
var res []string
for _, idx := range s.checkOrder {
res = append(res, s.items[idx].Name)
}
return true, res, nil
} else if !s.focusOnButton {
s.toggleItem()
}
case eventTab:
if len(s.checkOrder) > 0 {
s.focusOnButton = !s.focusOnButton
}
case eventEscape:
return true, nil, errCancelled
case eventBackspace:
if len(s.filter) > 0 {
s.filter = s.filter[:len(s.filter)-1]
s.highlighted = 0
s.scrollOffset = 0
s.focusOnButton = false
}
case eventUp:
if s.focusOnButton {
s.focusOnButton = false
} else if s.highlighted > 0 {
s.highlighted--
if s.highlighted < s.scrollOffset {
s.scrollOffset = s.highlighted
}
}
case eventDown:
if s.focusOnButton {
s.focusOnButton = false
} else if s.highlighted < len(filtered)-1 {
s.highlighted++
if s.highlighted >= s.scrollOffset+maxDisplayedItems {
s.scrollOffset = s.highlighted - maxDisplayedItems + 1
}
}
case eventChar:
s.filter += string(char)
s.highlighted = 0
s.scrollOffset = 0
s.focusOnButton = false
}
return false, nil, nil
}
func (s *multiSelectState) selectedCount() int {
return len(s.checkOrder)
}
// Terminal I/O handling
type terminalState struct {
fd int
oldState *term.State
}
func enterRawMode() (*terminalState, error) {
fd := int(os.Stdin.Fd())
oldState, err := term.MakeRaw(fd)
if err != nil {
return nil, err
}
fmt.Fprint(os.Stderr, ansiHideCursor)
return &terminalState{fd: fd, oldState: oldState}, nil
}
func (t *terminalState) restore() {
fmt.Fprint(os.Stderr, ansiShowCursor)
term.Restore(t.fd, t.oldState)
}
func clearLines(n int) {
if n > 0 {
fmt.Fprintf(os.Stderr, "\033[%dA", n)
fmt.Fprint(os.Stderr, ansiClearDown)
}
}
func parseInput(r io.Reader) (inputEvent, byte, error) {
buf := make([]byte, 3)
n, err := r.Read(buf)
if err != nil {
return 0, 0, err
}
switch {
case n == 1 && buf[0] == 13:
return eventEnter, 0, nil
case n == 1 && (buf[0] == 3 || buf[0] == 27):
return eventEscape, 0, nil
case n == 1 && buf[0] == 9:
return eventTab, 0, nil
case n == 1 && buf[0] == 127:
return eventBackspace, 0, nil
case n == 3 && buf[0] == 27 && buf[1] == 91 && buf[2] == 65:
return eventUp, 0, nil
case n == 3 && buf[0] == 27 && buf[1] == 91 && buf[2] == 66:
return eventDown, 0, nil
case n == 1 && buf[0] >= 32 && buf[0] < 127:
return eventChar, buf[0], nil
}
return eventNone, 0, nil
}
// Rendering
func renderSelect(w io.Writer, prompt string, s *selectState) int {
filtered := s.filtered()
fmt.Fprintf(w, "%s %s\r\n", prompt, s.filter)
lineCount := 1
if len(filtered) == 0 {
fmt.Fprintf(w, " %s(no matches)%s\r\n", ansiGray, ansiReset)
lineCount++
} else {
displayCount := min(len(filtered), maxDisplayedItems)
for i := range displayCount {
idx := s.scrollOffset + i
if idx >= len(filtered) {
break
}
item := filtered[idx]
prefix := " "
if idx == s.selected {
prefix = " " + ansiBold + "> "
}
if item.Description != "" {
fmt.Fprintf(w, "%s%s%s %s- %s%s\r\n", prefix, item.Name, ansiReset, ansiGray, item.Description, ansiReset)
} else {
fmt.Fprintf(w, "%s%s%s\r\n", prefix, item.Name, ansiReset)
}
lineCount++
}
if remaining := len(filtered) - s.scrollOffset - displayCount; remaining > 0 {
fmt.Fprintf(w, " %s... and %d more%s\r\n", ansiGray, remaining, ansiReset)
lineCount++
}
}
return lineCount
}
func renderMultiSelect(w io.Writer, prompt string, s *multiSelectState) int {
filtered := s.filtered()
fmt.Fprintf(w, "%s %s\r\n", prompt, s.filter)
lineCount := 1
if len(filtered) == 0 {
fmt.Fprintf(w, " %s(no matches)%s\r\n", ansiGray, ansiReset)
lineCount++
} else {
displayCount := min(len(filtered), maxDisplayedItems)
for i := range displayCount {
idx := s.scrollOffset + i
if idx >= len(filtered) {
break
}
item := filtered[idx]
origIdx := s.itemIndex[item.Name]
checkbox := "[ ]"
if s.checked[origIdx] {
checkbox = "[x]"
}
prefix := " "
suffix := ""
if idx == s.highlighted && !s.focusOnButton {
prefix = "> "
}
if len(s.checkOrder) > 0 && s.checkOrder[0] == origIdx {
suffix = " " + ansiGray + "(default)" + ansiReset
}
if idx == s.highlighted && !s.focusOnButton {
fmt.Fprintf(w, " %s%s %s %s%s%s\r\n", ansiBold, prefix, checkbox, item.Name, ansiReset, suffix)
} else {
fmt.Fprintf(w, " %s %s %s%s\r\n", prefix, checkbox, item.Name, suffix)
}
lineCount++
}
if remaining := len(filtered) - s.scrollOffset - displayCount; remaining > 0 {
fmt.Fprintf(w, " %s... and %d more%s\r\n", ansiGray, remaining, ansiReset)
lineCount++
}
}
fmt.Fprintf(w, "\r\n")
lineCount++
count := s.selectedCount()
switch {
case count == 0:
fmt.Fprintf(w, " %sSelect at least one model.%s\r\n", ansiGray, ansiReset)
case s.focusOnButton:
fmt.Fprintf(w, " %s> [ Continue ]%s %s(%d selected)%s\r\n", ansiBold, ansiReset, ansiGray, count, ansiReset)
default:
fmt.Fprintf(w, " %s[ Continue ] (%d selected) - press Tab%s\r\n", ansiGray, count, ansiReset)
}
lineCount++
return lineCount
}
// selectPrompt prompts the user to select a single item from a list.
func selectPrompt(prompt string, items []selectItem) (string, error) {
if len(items) == 0 {
return "", fmt.Errorf("no items to select from")
}
ts, err := enterRawMode()
if err != nil {
return "", err
}
defer ts.restore()
state := newSelectState(items)
var lastLineCount int
render := func() {
clearLines(lastLineCount)
lastLineCount = renderSelect(os.Stderr, prompt, state)
}
render()
for {
event, char, err := parseInput(os.Stdin)
if err != nil {
return "", err
}
done, result, err := state.handleInput(event, char)
if done {
clearLines(lastLineCount)
if err != nil {
return "", err
}
return result, nil
}
render()
}
}
// multiSelectPrompt prompts the user to select multiple items from a list.
func multiSelectPrompt(prompt string, items []selectItem, preChecked []string) ([]string, error) {
if len(items) == 0 {
return nil, fmt.Errorf("no items to select from")
}
ts, err := enterRawMode()
if err != nil {
return nil, err
}
defer ts.restore()
state := newMultiSelectState(items, preChecked)
var lastLineCount int
render := func() {
clearLines(lastLineCount)
lastLineCount = renderMultiSelect(os.Stderr, prompt, state)
}
render()
for {
event, char, err := parseInput(os.Stdin)
if err != nil {
return nil, err
}
done, result, err := state.handleInput(event, char)
if done {
clearLines(lastLineCount)
if err != nil {
return nil, err
}
return result, nil
}
render()
}
}
func confirmPrompt(prompt string) (bool, error) {
fd := int(os.Stdin.Fd())
oldState, err := term.MakeRaw(fd)
if err != nil {
return false, err
}
defer term.Restore(fd, oldState)
fmt.Fprintf(os.Stderr, "%s [y/n] ", prompt)
buf := make([]byte, 1)
for {
if _, err := os.Stdin.Read(buf); err != nil {
return false, err
}
switch buf[0] {
case 'Y', 'y', 13:
fmt.Fprintf(os.Stderr, "yes\r\n")
return true, nil
case 'N', 'n', 27, 3:
fmt.Fprintf(os.Stderr, "no\r\n")
return false, nil
}
}
}
func filterItems(items []selectItem, filter string) []selectItem {
if filter == "" {
return items
}
var result []selectItem
filterLower := strings.ToLower(filter)
for _, item := range items {
if strings.Contains(strings.ToLower(item.Name), filterLower) {
result = append(result, item)
}
}
return result
}

View File

@@ -1,913 +0,0 @@
package config
import (
"bytes"
"strings"
"testing"
)
func TestFilterItems(t *testing.T) {
items := []selectItem{
{Name: "llama3.2:latest"},
{Name: "qwen2.5:7b"},
{Name: "deepseek-v3:cloud"},
{Name: "GPT-OSS:20b"},
}
t.Run("EmptyFilter_ReturnsAllItems", func(t *testing.T) {
result := filterItems(items, "")
if len(result) != len(items) {
t.Errorf("expected %d items, got %d", len(items), len(result))
}
})
t.Run("CaseInsensitive_UppercaseFilterMatchesLowercase", func(t *testing.T) {
result := filterItems(items, "LLAMA")
if len(result) != 1 || result[0].Name != "llama3.2:latest" {
t.Errorf("expected llama3.2:latest, got %v", result)
}
})
t.Run("CaseInsensitive_LowercaseFilterMatchesUppercase", func(t *testing.T) {
result := filterItems(items, "gpt")
if len(result) != 1 || result[0].Name != "GPT-OSS:20b" {
t.Errorf("expected GPT-OSS:20b, got %v", result)
}
})
t.Run("PartialMatch", func(t *testing.T) {
result := filterItems(items, "deep")
if len(result) != 1 || result[0].Name != "deepseek-v3:cloud" {
t.Errorf("expected deepseek-v3:cloud, got %v", result)
}
})
t.Run("NoMatch_ReturnsEmpty", func(t *testing.T) {
result := filterItems(items, "nonexistent")
if len(result) != 0 {
t.Errorf("expected 0 items, got %d", len(result))
}
})
}
func TestSelectState(t *testing.T) {
items := []selectItem{
{Name: "item1"},
{Name: "item2"},
{Name: "item3"},
}
t.Run("InitialState", func(t *testing.T) {
s := newSelectState(items)
if s.selected != 0 {
t.Errorf("expected selected=0, got %d", s.selected)
}
if s.filter != "" {
t.Errorf("expected empty filter, got %q", s.filter)
}
if s.scrollOffset != 0 {
t.Errorf("expected scrollOffset=0, got %d", s.scrollOffset)
}
})
t.Run("Enter_SelectsCurrentItem", func(t *testing.T) {
s := newSelectState(items)
done, result, err := s.handleInput(eventEnter, 0)
if !done || result != "item1" || err != nil {
t.Errorf("expected (true, item1, nil), got (%v, %v, %v)", done, result, err)
}
})
t.Run("Enter_WithFilter_SelectsFilteredItem", func(t *testing.T) {
s := newSelectState(items)
s.filter = "item3"
done, result, err := s.handleInput(eventEnter, 0)
if !done || result != "item3" || err != nil {
t.Errorf("expected (true, item3, nil), got (%v, %v, %v)", done, result, err)
}
})
t.Run("Enter_EmptyFilteredList_DoesNothing", func(t *testing.T) {
s := newSelectState(items)
s.filter = "nonexistent"
done, result, err := s.handleInput(eventEnter, 0)
if done || result != "" || err != nil {
t.Errorf("expected (false, '', nil), got (%v, %v, %v)", done, result, err)
}
})
t.Run("Escape_ReturnsCancelledError", func(t *testing.T) {
s := newSelectState(items)
done, result, err := s.handleInput(eventEscape, 0)
if !done || result != "" || err != errCancelled {
t.Errorf("expected (true, '', errCancelled), got (%v, %v, %v)", done, result, err)
}
})
t.Run("Down_MovesSelection", func(t *testing.T) {
s := newSelectState(items)
s.handleInput(eventDown, 0)
if s.selected != 1 {
t.Errorf("expected selected=1, got %d", s.selected)
}
})
t.Run("Down_AtBottom_StaysAtBottom", func(t *testing.T) {
s := newSelectState(items)
s.selected = 2
s.handleInput(eventDown, 0)
if s.selected != 2 {
t.Errorf("expected selected=2 (stayed at bottom), got %d", s.selected)
}
})
t.Run("Up_MovesSelection", func(t *testing.T) {
s := newSelectState(items)
s.selected = 2
s.handleInput(eventUp, 0)
if s.selected != 1 {
t.Errorf("expected selected=1, got %d", s.selected)
}
})
t.Run("Up_AtTop_StaysAtTop", func(t *testing.T) {
s := newSelectState(items)
s.handleInput(eventUp, 0)
if s.selected != 0 {
t.Errorf("expected selected=0 (stayed at top), got %d", s.selected)
}
})
t.Run("Char_AppendsToFilter", func(t *testing.T) {
s := newSelectState(items)
s.handleInput(eventChar, 'i')
s.handleInput(eventChar, 't')
s.handleInput(eventChar, 'e')
s.handleInput(eventChar, 'm')
s.handleInput(eventChar, '2')
if s.filter != "item2" {
t.Errorf("expected filter='item2', got %q", s.filter)
}
filtered := s.filtered()
if len(filtered) != 1 || filtered[0].Name != "item2" {
t.Errorf("expected [item2], got %v", filtered)
}
})
t.Run("Char_ResetsSelectionToZero", func(t *testing.T) {
s := newSelectState(items)
s.selected = 2
s.handleInput(eventChar, 'x')
if s.selected != 0 {
t.Errorf("expected selected=0 after typing, got %d", s.selected)
}
})
t.Run("Backspace_RemovesLastFilterChar", func(t *testing.T) {
s := newSelectState(items)
s.filter = "test"
s.handleInput(eventBackspace, 0)
if s.filter != "tes" {
t.Errorf("expected filter='tes', got %q", s.filter)
}
})
t.Run("Backspace_EmptyFilter_DoesNothing", func(t *testing.T) {
s := newSelectState(items)
s.handleInput(eventBackspace, 0)
if s.filter != "" {
t.Errorf("expected filter='', got %q", s.filter)
}
})
t.Run("Backspace_ResetsSelectionToZero", func(t *testing.T) {
s := newSelectState(items)
s.filter = "test"
s.selected = 2
s.handleInput(eventBackspace, 0)
if s.selected != 0 {
t.Errorf("expected selected=0 after backspace, got %d", s.selected)
}
})
t.Run("Scroll_DownPastVisibleItems_ScrollsViewport", func(t *testing.T) {
// maxDisplayedItems is 10, so with 15 items we need to scroll
manyItems := make([]selectItem, 15)
for i := range manyItems {
manyItems[i] = selectItem{Name: string(rune('a' + i))}
}
s := newSelectState(manyItems)
// move down 12 times (past the 10-item viewport)
for range 12 {
s.handleInput(eventDown, 0)
}
if s.selected != 12 {
t.Errorf("expected selected=12, got %d", s.selected)
}
if s.scrollOffset != 3 {
t.Errorf("expected scrollOffset=3 (12-10+1), got %d", s.scrollOffset)
}
})
t.Run("Scroll_UpPastScrollOffset_ScrollsViewport", func(t *testing.T) {
manyItems := make([]selectItem, 15)
for i := range manyItems {
manyItems[i] = selectItem{Name: string(rune('a' + i))}
}
s := newSelectState(manyItems)
s.selected = 5
s.scrollOffset = 5
s.handleInput(eventUp, 0)
if s.selected != 4 {
t.Errorf("expected selected=4, got %d", s.selected)
}
if s.scrollOffset != 4 {
t.Errorf("expected scrollOffset=4, got %d", s.scrollOffset)
}
})
}
func TestMultiSelectState(t *testing.T) {
items := []selectItem{
{Name: "item1"},
{Name: "item2"},
{Name: "item3"},
}
t.Run("InitialState_NoPrechecked", func(t *testing.T) {
s := newMultiSelectState(items, nil)
if s.highlighted != 0 {
t.Errorf("expected highlighted=0, got %d", s.highlighted)
}
if s.selectedCount() != 0 {
t.Errorf("expected 0 selected, got %d", s.selectedCount())
}
if s.focusOnButton {
t.Error("expected focusOnButton=false initially")
}
})
t.Run("InitialState_WithPrechecked", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item2", "item3"})
if s.selectedCount() != 2 {
t.Errorf("expected 2 selected, got %d", s.selectedCount())
}
if !s.checked[1] || !s.checked[2] {
t.Error("expected item2 and item3 to be checked")
}
})
t.Run("Prechecked_PreservesSelectionOrder", func(t *testing.T) {
// order matters: first checked = default model
s := newMultiSelectState(items, []string{"item3", "item1"})
if len(s.checkOrder) != 2 {
t.Fatalf("expected 2 in checkOrder, got %d", len(s.checkOrder))
}
if s.checkOrder[0] != 2 || s.checkOrder[1] != 0 {
t.Errorf("expected checkOrder=[2,0] (item3 first), got %v", s.checkOrder)
}
})
t.Run("Prechecked_IgnoresInvalidNames", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1", "nonexistent"})
if s.selectedCount() != 1 {
t.Errorf("expected 1 selected (nonexistent ignored), got %d", s.selectedCount())
}
})
t.Run("Toggle_ChecksUncheckedItem", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.toggleItem()
if !s.checked[0] {
t.Error("expected item1 to be checked after toggle")
}
})
t.Run("Toggle_UnchecksCheckedItem", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
s.toggleItem()
if s.checked[0] {
t.Error("expected item1 to be unchecked after toggle")
}
})
t.Run("Toggle_RemovesFromCheckOrder", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1", "item2", "item3"})
s.highlighted = 1 // toggle item2
s.toggleItem()
if len(s.checkOrder) != 2 {
t.Fatalf("expected 2 in checkOrder, got %d", len(s.checkOrder))
}
// should be [0, 2] (item1, item3) with item2 removed
if s.checkOrder[0] != 0 || s.checkOrder[1] != 2 {
t.Errorf("expected checkOrder=[0,2], got %v", s.checkOrder)
}
})
t.Run("Enter_TogglesWhenNotOnButton", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.handleInput(eventEnter, 0)
if !s.checked[0] {
t.Error("expected item1 to be checked after enter")
}
})
t.Run("Enter_OnButton_ReturnsSelection", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item2", "item1"})
s.focusOnButton = true
done, result, err := s.handleInput(eventEnter, 0)
if !done || err != nil {
t.Errorf("expected done=true, err=nil, got done=%v, err=%v", done, err)
}
// result should preserve selection order
if len(result) != 2 || result[0] != "item2" || result[1] != "item1" {
t.Errorf("expected [item2, item1], got %v", result)
}
})
t.Run("Enter_OnButton_EmptySelection_DoesNothing", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.focusOnButton = true
done, result, err := s.handleInput(eventEnter, 0)
if done || result != nil || err != nil {
t.Errorf("expected (false, nil, nil), got (%v, %v, %v)", done, result, err)
}
})
t.Run("Tab_SwitchesToButton_WhenHasSelection", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
s.handleInput(eventTab, 0)
if !s.focusOnButton {
t.Error("expected focus on button after tab")
}
})
t.Run("Tab_DoesNothing_WhenNoSelection", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.handleInput(eventTab, 0)
if s.focusOnButton {
t.Error("tab should not focus button when nothing selected")
}
})
t.Run("Tab_TogglesButtonFocus", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
s.handleInput(eventTab, 0)
if !s.focusOnButton {
t.Error("expected focus on button after first tab")
}
s.handleInput(eventTab, 0)
if s.focusOnButton {
t.Error("expected focus back on list after second tab")
}
})
t.Run("Escape_ReturnsCancelledError", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
done, result, err := s.handleInput(eventEscape, 0)
if !done || result != nil || err != errCancelled {
t.Errorf("expected (true, nil, errCancelled), got (%v, %v, %v)", done, result, err)
}
})
t.Run("IsDefault_TrueForFirstChecked", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item2", "item1"})
if !(len(s.checkOrder) > 0 && s.checkOrder[0] == 1) {
t.Error("expected item2 (idx 1) to be default (first checked)")
}
if len(s.checkOrder) > 0 && s.checkOrder[0] == 0 {
t.Error("expected item1 (idx 0) to NOT be default")
}
})
t.Run("IsDefault_FalseWhenNothingChecked", func(t *testing.T) {
s := newMultiSelectState(items, nil)
if len(s.checkOrder) > 0 && s.checkOrder[0] == 0 {
t.Error("expected isDefault=false when nothing checked")
}
})
t.Run("Down_MovesHighlight", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.handleInput(eventDown, 0)
if s.highlighted != 1 {
t.Errorf("expected highlighted=1, got %d", s.highlighted)
}
})
t.Run("Up_MovesHighlight", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.highlighted = 1
s.handleInput(eventUp, 0)
if s.highlighted != 0 {
t.Errorf("expected highlighted=0, got %d", s.highlighted)
}
})
t.Run("Arrow_ReturnsFocusFromButton", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
s.focusOnButton = true
s.handleInput(eventDown, 0)
if s.focusOnButton {
t.Error("expected focus to return to list on arrow key")
}
})
t.Run("Char_AppendsToFilter", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.handleInput(eventChar, 'x')
if s.filter != "x" {
t.Errorf("expected filter='x', got %q", s.filter)
}
})
t.Run("Char_ResetsHighlightAndScroll", func(t *testing.T) {
manyItems := make([]selectItem, 15)
for i := range manyItems {
manyItems[i] = selectItem{Name: string(rune('a' + i))}
}
s := newMultiSelectState(manyItems, nil)
s.highlighted = 10
s.scrollOffset = 5
s.handleInput(eventChar, 'x')
if s.highlighted != 0 {
t.Errorf("expected highlighted=0, got %d", s.highlighted)
}
if s.scrollOffset != 0 {
t.Errorf("expected scrollOffset=0, got %d", s.scrollOffset)
}
})
t.Run("Backspace_RemovesLastFilterChar", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.filter = "test"
s.handleInput(eventBackspace, 0)
if s.filter != "tes" {
t.Errorf("expected filter='tes', got %q", s.filter)
}
})
t.Run("Backspace_RemovesFocusFromButton", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
s.filter = "x"
s.focusOnButton = true
s.handleInput(eventBackspace, 0)
if s.focusOnButton {
t.Error("expected focusOnButton=false after backspace")
}
})
}
func TestParseInput(t *testing.T) {
t.Run("Enter", func(t *testing.T) {
event, char, err := parseInput(bytes.NewReader([]byte{13}))
if err != nil || event != eventEnter || char != 0 {
t.Errorf("expected (eventEnter, 0, nil), got (%v, %v, %v)", event, char, err)
}
})
t.Run("Escape", func(t *testing.T) {
event, _, err := parseInput(bytes.NewReader([]byte{27}))
if err != nil || event != eventEscape {
t.Errorf("expected eventEscape, got %v", event)
}
})
t.Run("CtrlC_TreatedAsEscape", func(t *testing.T) {
event, _, err := parseInput(bytes.NewReader([]byte{3}))
if err != nil || event != eventEscape {
t.Errorf("expected eventEscape for Ctrl+C, got %v", event)
}
})
t.Run("Tab", func(t *testing.T) {
event, _, err := parseInput(bytes.NewReader([]byte{9}))
if err != nil || event != eventTab {
t.Errorf("expected eventTab, got %v", event)
}
})
t.Run("Backspace", func(t *testing.T) {
event, _, err := parseInput(bytes.NewReader([]byte{127}))
if err != nil || event != eventBackspace {
t.Errorf("expected eventBackspace, got %v", event)
}
})
t.Run("UpArrow", func(t *testing.T) {
event, _, err := parseInput(bytes.NewReader([]byte{27, 91, 65}))
if err != nil || event != eventUp {
t.Errorf("expected eventUp, got %v", event)
}
})
t.Run("DownArrow", func(t *testing.T) {
event, _, err := parseInput(bytes.NewReader([]byte{27, 91, 66}))
if err != nil || event != eventDown {
t.Errorf("expected eventDown, got %v", event)
}
})
t.Run("PrintableChars", func(t *testing.T) {
tests := []struct {
name string
char byte
}{
{"lowercase", 'a'},
{"uppercase", 'Z'},
{"digit", '5'},
{"space", ' '},
{"tilde", '~'},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
event, char, err := parseInput(bytes.NewReader([]byte{tt.char}))
if err != nil || event != eventChar || char != tt.char {
t.Errorf("expected (eventChar, %q), got (%v, %q)", tt.char, event, char)
}
})
}
})
}
func TestRenderSelect(t *testing.T) {
items := []selectItem{
{Name: "item1", Description: "first item"},
{Name: "item2"},
}
t.Run("ShowsPromptAndItems", func(t *testing.T) {
s := newSelectState(items)
var buf bytes.Buffer
lineCount := renderSelect(&buf, "Select:", s)
output := buf.String()
if !strings.Contains(output, "Select:") {
t.Error("expected prompt in output")
}
if !strings.Contains(output, "item1") {
t.Error("expected item1 in output")
}
if !strings.Contains(output, "first item") {
t.Error("expected description in output")
}
if !strings.Contains(output, "item2") {
t.Error("expected item2 in output")
}
if lineCount != 3 { // 1 prompt + 2 items
t.Errorf("expected 3 lines, got %d", lineCount)
}
})
t.Run("EmptyFilteredList_ShowsNoMatches", func(t *testing.T) {
s := newSelectState(items)
s.filter = "xyz"
var buf bytes.Buffer
renderSelect(&buf, "Select:", s)
if !strings.Contains(buf.String(), "no matches") {
t.Error("expected 'no matches' message")
}
})
t.Run("LongList_ShowsRemainingCount", func(t *testing.T) {
manyItems := make([]selectItem, 15)
for i := range manyItems {
manyItems[i] = selectItem{Name: string(rune('a' + i))}
}
s := newSelectState(manyItems)
var buf bytes.Buffer
renderSelect(&buf, "Select:", s)
// 15 items - 10 displayed = 5 more
if !strings.Contains(buf.String(), "5 more") {
t.Error("expected '5 more' indicator")
}
})
}
func TestRenderMultiSelect(t *testing.T) {
items := []selectItem{
{Name: "item1"},
{Name: "item2"},
}
t.Run("ShowsCheckboxes", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
var buf bytes.Buffer
renderMultiSelect(&buf, "Select:", s)
output := buf.String()
if !strings.Contains(output, "[x]") {
t.Error("expected checked checkbox [x]")
}
if !strings.Contains(output, "[ ]") {
t.Error("expected unchecked checkbox [ ]")
}
})
t.Run("ShowsDefaultMarker", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
var buf bytes.Buffer
renderMultiSelect(&buf, "Select:", s)
if !strings.Contains(buf.String(), "(default)") {
t.Error("expected (default) marker for first checked item")
}
})
t.Run("ShowsSelectedCount", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1", "item2"})
var buf bytes.Buffer
renderMultiSelect(&buf, "Select:", s)
if !strings.Contains(buf.String(), "2 selected") {
t.Error("expected '2 selected' in output")
}
})
t.Run("NoSelection_ShowsHelperText", func(t *testing.T) {
s := newMultiSelectState(items, nil)
var buf bytes.Buffer
renderMultiSelect(&buf, "Select:", s)
if !strings.Contains(buf.String(), "Select at least one") {
t.Error("expected 'Select at least one' helper text")
}
})
}
func TestErrCancelled(t *testing.T) {
t.Run("NotNil", func(t *testing.T) {
if errCancelled == nil {
t.Error("errCancelled should not be nil")
}
})
t.Run("Message", func(t *testing.T) {
if errCancelled.Error() != "cancelled" {
t.Errorf("expected 'cancelled', got %q", errCancelled.Error())
}
})
}
// Edge case tests for selector.go
// TestSelectState_SingleItem verifies that single item list works without crash.
// List with only one item should still work.
func TestSelectState_SingleItem(t *testing.T) {
items := []selectItem{{Name: "only-one"}}
s := newSelectState(items)
// Down should do nothing (already at bottom)
s.handleInput(eventDown, 0)
if s.selected != 0 {
t.Errorf("down on single item: expected selected=0, got %d", s.selected)
}
// Up should do nothing (already at top)
s.handleInput(eventUp, 0)
if s.selected != 0 {
t.Errorf("up on single item: expected selected=0, got %d", s.selected)
}
// Enter should select the only item
done, result, err := s.handleInput(eventEnter, 0)
if !done || result != "only-one" || err != nil {
t.Errorf("enter on single item: expected (true, 'only-one', nil), got (%v, %q, %v)", done, result, err)
}
}
// TestSelectState_ExactlyMaxItems verifies boundary condition at maxDisplayedItems.
// List with exactly maxDisplayedItems items should not scroll.
func TestSelectState_ExactlyMaxItems(t *testing.T) {
items := make([]selectItem, maxDisplayedItems)
for i := range items {
items[i] = selectItem{Name: string(rune('a' + i))}
}
s := newSelectState(items)
// Move to last item
for range maxDisplayedItems - 1 {
s.handleInput(eventDown, 0)
}
if s.selected != maxDisplayedItems-1 {
t.Errorf("expected selected=%d, got %d", maxDisplayedItems-1, s.selected)
}
// Should not scroll when exactly at max
if s.scrollOffset != 0 {
t.Errorf("expected scrollOffset=0 for exactly maxDisplayedItems, got %d", s.scrollOffset)
}
// One more down should do nothing
s.handleInput(eventDown, 0)
if s.selected != maxDisplayedItems-1 {
t.Errorf("down at max: expected selected=%d, got %d", maxDisplayedItems-1, s.selected)
}
}
// TestFilterItems_RegexSpecialChars verifies that filter is literal, not regex.
// User typing "model.v1" shouldn't match "modelsv1".
func TestFilterItems_RegexSpecialChars(t *testing.T) {
items := []selectItem{
{Name: "model.v1"},
{Name: "modelsv1"},
{Name: "model-v1"},
}
// Filter with dot should only match literal dot
result := filterItems(items, "model.v1")
if len(result) != 1 {
t.Errorf("expected 1 exact match, got %d", len(result))
}
if len(result) > 0 && result[0].Name != "model.v1" {
t.Errorf("expected 'model.v1', got %s", result[0].Name)
}
// Other regex special chars should be literal too
items2 := []selectItem{
{Name: "test[0]"},
{Name: "test0"},
{Name: "test(1)"},
}
result2 := filterItems(items2, "test[0]")
if len(result2) != 1 || result2[0].Name != "test[0]" {
t.Errorf("expected only 'test[0]', got %v", result2)
}
}
// TestMultiSelectState_DuplicateNames documents handling of duplicate item names.
// itemIndex uses name as key - duplicates cause collision. This documents
// the current behavior: the last index for a duplicate name is stored
func TestMultiSelectState_DuplicateNames(t *testing.T) {
// Duplicate names - this is an edge case that shouldn't happen in practice
items := []selectItem{
{Name: "duplicate"},
{Name: "duplicate"},
{Name: "unique"},
}
s := newMultiSelectState(items, nil)
// DOCUMENTED BEHAVIOR: itemIndex maps name to LAST index
// When there are duplicates, only the last occurrence's index is stored
if s.itemIndex["duplicate"] != 1 {
t.Errorf("itemIndex should map 'duplicate' to last index (1), got %d", s.itemIndex["duplicate"])
}
// Toggle item at highlighted=0 (first "duplicate")
// Due to name collision, toggleItem uses itemIndex["duplicate"] = 1
// So it actually toggles the SECOND duplicate item, not the first
s.toggleItem()
// This documents the potentially surprising behavior:
// We toggled at highlighted=0, but itemIndex lookup returned 1
if !s.checked[1] {
t.Error("toggle should check index 1 (due to name collision in itemIndex)")
}
if s.checked[0] {
t.Log("Note: index 0 is NOT checked, even though highlighted=0 (name collision behavior)")
}
}
// TestSelectState_FilterReducesBelowSelection verifies selection resets when filter reduces list.
// Prevents index-out-of-bounds on next keystroke
func TestSelectState_FilterReducesBelowSelection(t *testing.T) {
items := []selectItem{
{Name: "apple"},
{Name: "banana"},
{Name: "cherry"},
}
s := newSelectState(items)
s.selected = 2 // Select "cherry"
// Type a filter that removes cherry from results
s.handleInput(eventChar, 'a') // Filter to "a" - matches "apple" and "banana"
// Selection should reset to 0
if s.selected != 0 {
t.Errorf("expected selected=0 after filter, got %d", s.selected)
}
filtered := s.filtered()
if len(filtered) != 2 {
t.Errorf("expected 2 filtered items, got %d", len(filtered))
}
}
// TestFilterItems_UnicodeCharacters verifies filtering works with UTF-8.
// Model names might contain unicode characters
func TestFilterItems_UnicodeCharacters(t *testing.T) {
items := []selectItem{
{Name: "llama-日本語"},
{Name: "模型-chinese"},
{Name: "émoji-🦙"},
{Name: "regular-model"},
}
t.Run("filter japanese", func(t *testing.T) {
result := filterItems(items, "日本")
if len(result) != 1 || result[0].Name != "llama-日本語" {
t.Errorf("expected llama-日本語, got %v", result)
}
})
t.Run("filter chinese", func(t *testing.T) {
result := filterItems(items, "模型")
if len(result) != 1 || result[0].Name != "模型-chinese" {
t.Errorf("expected 模型-chinese, got %v", result)
}
})
t.Run("filter emoji", func(t *testing.T) {
result := filterItems(items, "🦙")
if len(result) != 1 || result[0].Name != "émoji-🦙" {
t.Errorf("expected émoji-🦙, got %v", result)
}
})
t.Run("filter accented char", func(t *testing.T) {
result := filterItems(items, "émoji")
if len(result) != 1 || result[0].Name != "émoji-🦙" {
t.Errorf("expected émoji-🦙, got %v", result)
}
})
}
// TestMultiSelectState_FilterReducesBelowHighlight verifies highlight resets when filter reduces list.
func TestMultiSelectState_FilterReducesBelowHighlight(t *testing.T) {
items := []selectItem{
{Name: "apple"},
{Name: "banana"},
{Name: "cherry"},
}
s := newMultiSelectState(items, nil)
s.highlighted = 2 // Highlight "cherry"
// Type a filter that removes cherry
s.handleInput(eventChar, 'a')
if s.highlighted != 0 {
t.Errorf("expected highlighted=0 after filter, got %d", s.highlighted)
}
}
// TestMultiSelectState_EmptyItems verifies handling of empty item list.
// Empty list should be handled gracefully.
func TestMultiSelectState_EmptyItems(t *testing.T) {
s := newMultiSelectState([]selectItem{}, nil)
// Toggle should not panic on empty list
s.toggleItem()
if s.selectedCount() != 0 {
t.Errorf("expected 0 selected for empty list, got %d", s.selectedCount())
}
// Render should handle empty list
var buf bytes.Buffer
lineCount := renderMultiSelect(&buf, "Select:", s)
if lineCount == 0 {
t.Error("renderMultiSelect should produce output even for empty list")
}
if !strings.Contains(buf.String(), "no matches") {
t.Error("expected 'no matches' for empty list")
}
}
// TestSelectState_RenderWithDescriptions verifies rendering items with descriptions.
func TestSelectState_RenderWithDescriptions(t *testing.T) {
items := []selectItem{
{Name: "item1", Description: "First item description"},
{Name: "item2", Description: ""},
{Name: "item3", Description: "Third item"},
}
s := newSelectState(items)
var buf bytes.Buffer
renderSelect(&buf, "Select:", s)
output := buf.String()
if !strings.Contains(output, "First item description") {
t.Error("expected description to be rendered")
}
if !strings.Contains(output, "item2") {
t.Error("expected item without description to be rendered")
}
}

View File

@@ -159,7 +159,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
sb.WriteString(before)
if !ok {
fmt.Fprintln(&sb)
scanner.Prompt.UseAlt = true
continue
}

View File

@@ -311,10 +311,6 @@ func LoadModelMetadata(fsys fs.FS) (ModelKV, *Tokenizer, error) {
conv = &deepseekocr{}
case "DeepseekV3ForCausalLM":
conv = &deepseek2Model{}
case "Glm4MoeLiteForCausalLM":
conv = &glm4MoeLiteModel{}
case "Lfm2ForCausalLM":
conv = &lfm2Model{}
default:
return nil, nil, fmt.Errorf("unsupported architecture %q", p.Architectures[0])
}

View File

@@ -1,150 +0,0 @@
package convert
import (
"cmp"
"fmt"
"log/slog"
"regexp"
"strconv"
"github.com/ollama/ollama/fs/ggml"
)
type glm4MoeLiteModel struct {
ModelParameters
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RMSNormEPS float32 `json:"rms_norm_eps"`
RopeTheta float32 `json:"rope_theta"`
QKNopeHeadDim uint32 `json:"qk_nope_head_dim"`
QKRopeHeadDim uint32 `json:"qk_rope_head_dim"`
KVLoraRank uint32 `json:"kv_lora_rank"`
QLoraRank uint32 `json:"q_lora_rank"`
VHeadDim uint32 `json:"v_head_dim"`
ExpertCount uint32 `json:"n_routed_experts"`
ExpertSharedCount uint32 `json:"n_shared_experts"`
ExpertIntermediateSize uint32 `json:"moe_intermediate_size"`
ExpertUsedCount uint32 `json:"num_experts_per_tok"`
ExpertWeightsNorm bool `json:"norm_topk_prob"`
ExpertWeightsScale float32 `json:"routed_scaling_factor"`
LeadingDenseBlockCount uint32 `json:"first_k_dense_replace"`
}
func (p *glm4MoeLiteModel) KV(t *Tokenizer) KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "glm4moelite"
kv["general.type"] = "model"
kv["glm4moelite.block_count"] = p.HiddenLayers
numHeads := p.NumAttentionHeads
numKVHeads := p.NumKeyValueHeads
kv["glm4moelite.attention.head_count"] = numHeads
kv["glm4moelite.attention.head_count_kv"] = numKVHeads
kv["glm4moelite.attention.key_length"] = p.QKNopeHeadDim + p.QKRopeHeadDim
kv["glm4moelite.attention.kv_lora_rank"] = p.KVLoraRank
kv["glm4moelite.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["glm4moelite.attention.q_lora_rank"] = p.QLoraRank
kv["glm4moelite.attention.value_length"] = p.VHeadDim
kv["glm4moelite.context_length"] = p.MaxPositionEmbeddings
kv["glm4moelite.embedding_length"] = p.HiddenSize
kv["glm4moelite.expert_count"] = p.ExpertCount
kv["glm4moelite.expert_feed_forward_length"] = p.ExpertIntermediateSize
kv["glm4moelite.expert_shared_count"] = p.ExpertSharedCount
kv["glm4moelite.expert_gating_func"] = uint32(2)
kv["glm4moelite.expert_used_count"] = p.ExpertUsedCount
kv["glm4moelite.expert_weights_norm"] = p.ExpertWeightsNorm
kv["glm4moelite.expert_weights_scale"] = p.ExpertWeightsScale
kv["glm4moelite.feed_forward_length"] = p.IntermediateSize
kv["glm4moelite.leading_dense_block_count"] = p.LeadingDenseBlockCount
kv["glm4moelite.rope.dimension_count"] = p.QKRopeHeadDim
kv["glm4moelite.rope.freq_base"] = cmp.Or(p.RopeTheta, float32(1000000.0))
kv["tokenizer.ggml.pre"] = "glm4"
return kv
}
func (p *glm4MoeLiteModel) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.kv_a_proj_with_mqa", "attn_kv_a_mqa",
"self_attn.kv_a_layernorm", "attn_kv_a_norm",
"self_attn.kv_b_proj", "attn_kv_b",
"self_attn.q_a_proj", "attn_q_a",
"self_attn.q_a_layernorm", "attn_q_a_norm",
"self_attn.q_b_proj", "attn_q_b",
"self_attn.o_proj", "attn_output",
"post_attention_layernorm", "ffn_norm",
"mlp.shared_experts.down_proj", "ffn_down_shexp",
"mlp.shared_experts.gate_proj", "ffn_gate_shexp",
"mlp.shared_experts.up_proj", "ffn_up_shexp",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"mlp.gate.e_score_correction_bias", "exp_probs_b.bias",
"mlp.gate", "ffn_gate_inp",
}
}
func (p *glm4MoeLiteModel) Tensors(s []Tensor) (out []*ggml.Tensor) {
merges := make([]merge, p.HiddenLayers*3)
for i := range p.HiddenLayers {
merges[i*3+0] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.gate_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_gate_exps.weight", i),
}
merges[i*3+1] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.up_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_up_exps.weight", i),
}
merges[i*3+2] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.down_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_down_exps.weight", i),
}
}
skipLayer := func(n string, minValue uint32) bool {
re := regexp.MustCompile(`^blk\.(\d+)`)
matches := re.FindStringSubmatch(n)
if matches == nil {
return false
}
blkNum, err := strconv.Atoi(matches[1])
if err != nil {
return false
}
return uint32(blkNum) >= minValue
}
out, s = mergeTensors(s, merges...)
for _, t := range s {
// skip any additional layers (such as the Multi-Token Prediction layer)
if skipLayer(t.Name(), p.HiddenLayers) {
slog.Debug("skipping layer", "name", t.Name())
continue
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}

View File

@@ -1,100 +0,0 @@
package convert
import (
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
)
type lfm2Model struct {
ModelParameters
HiddenSize uint32 `json:"hidden_size"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"`
NormEps float32 `json:"norm_eps"`
ConvLCache uint32 `json:"conv_L_cache"`
LayerTypes []string `json:"layer_types"`
TieEmbedding bool `json:"tie_embedding"`
}
var _ ModelConverter = (*lfm2Model)(nil)
func (p *lfm2Model) KV(t *Tokenizer) KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "lfm2"
kv["lfm2.vocab_size"] = p.VocabSize
kv["lfm2.block_count"] = p.NumHiddenLayers
kv["lfm2.embedding_length"] = p.HiddenSize
kv["lfm2.feed_forward_length"] = p.IntermediateSize
kv["lfm2.context_length"] = p.MaxPositionEmbeddings
// Build per-layer KV head count array based on layer_types
// (0 = shortconv layer, non-zero = attention layer with that many KV heads)
kvHeadCounts := make([]uint32, p.NumHiddenLayers)
for i := range p.NumHiddenLayers {
if int(i) < len(p.LayerTypes) && p.LayerTypes[i] == "full_attention" {
kvHeadCounts[i] = p.NumKeyValueHeads
}
}
kv["lfm2.attention.head_count"] = p.NumAttentionHeads
kv["lfm2.attention.head_count_kv"] = kvHeadCounts
kv["lfm2.attention.key_length"] = p.HiddenSize / p.NumAttentionHeads
kv["lfm2.attention.value_length"] = p.HiddenSize / p.NumAttentionHeads
kv["lfm2.attention.layer_norm_rms_epsilon"] = p.NormEps
kv["lfm2.rope.freq_base"] = p.RopeTheta
kv["lfm2.shortconv.l_cache"] = p.ConvLCache
return kv
}
func (p *lfm2Model) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
shape := t.Shape()
// Squeeze conv weights: [D, 1, K] -> [D, K]
if strings.HasSuffix(t.Name(), "shortconv.conv.weight") {
if len(shape) == 3 && shape[1] == 1 {
shape = []uint64{shape[0], shape[2]}
}
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: slices.Clone(shape),
WriterTo: t,
})
}
return out
}
func (p *lfm2Model) Replacements() []string {
return []string{
"model.embed_tokens", "token_embd",
"model.embedding_norm", "output_norm",
"model.layers", "blk",
"operator_norm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.out_proj", "attn_output",
"self_attn.q_layernorm", "attn_q_norm",
"self_attn.k_layernorm", "attn_k_norm",
"conv.conv", "shortconv.conv",
"conv.in_proj", "shortconv.in_proj",
"conv.out_proj", "shortconv.out_proj",
"feed_forward.w1", "ffn_gate",
"feed_forward.w2", "ffn_down",
"feed_forward.w3", "ffn_up",
"ffn_norm", "ffn_norm",
}
}

View File

@@ -40,7 +40,6 @@ const (
func (t tensorBase) Kind() uint32 {
if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") ||
strings.HasSuffix(t.name, ".bias") ||
strings.HasSuffix(t.name, ".shortconv.conv.weight") ||
t.name == "token_types.weight" ||
t.name == "v.positional_embedding_vlm" ||
t.name == "v.tile_position_embd.weight" ||

View File

@@ -269,8 +269,6 @@ func (kv KV) OllamaEngineRequired() bool {
"qwen25vl",
"qwen3", "qwen3moe",
"qwen3vl", "qwen3vlmoe",
"glm4moelite",
"lfm2",
}, kv.Architecture())
}
@@ -858,9 +856,7 @@ func (f GGML) FlashAttention() bool {
return slices.Contains([]string{
"bert",
"gemma3",
"glm4moelite",
"gptoss", "gpt-oss",
"lfm2",
"mistral3",
"olmo3",
"qwen3", "qwen3moe",

View File

@@ -1,148 +0,0 @@
//go:build integration
package integration
import (
"context"
"encoding/base64"
"fmt"
"strings"
"testing"
"time"
"github.com/ollama/ollama/api"
)
func TestImageGeneration(t *testing.T) {
skipUnderMinVRAM(t, 8)
type testCase struct {
imageGenModel string
visionModel string
prompt string
expectedWords []string
}
testCases := []testCase{
{
imageGenModel: "jmorgan/z-image-turbo",
visionModel: "llama3.2-vision",
prompt: "A cartoon style llama flying like a superhero through the air with clouds in the background",
expectedWords: []string{"llama", "flying", "cartoon", "cloud", "sky", "superhero", "air", "animal", "camelid"},
},
}
for _, tc := range testCases {
t.Run(fmt.Sprintf("%s->%s", tc.imageGenModel, tc.visionModel), func(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 10*time.Minute)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
// Pull both models
if err := PullIfMissing(ctx, client, tc.imageGenModel); err != nil {
t.Fatalf("failed to pull image gen model: %v", err)
}
if err := PullIfMissing(ctx, client, tc.visionModel); err != nil {
t.Fatalf("failed to pull vision model: %v", err)
}
// Generate the image
t.Logf("Generating image with prompt: %s", tc.prompt)
imageBase64, err := generateImage(ctx, client, tc.imageGenModel, tc.prompt)
if err != nil {
if strings.Contains(err.Error(), "image generation not available") {
t.Skip("Target system does not support image generation")
} else if strings.Contains(err.Error(), "executable file not found in") { // Windows pattern, not yet supported
t.Skip("Windows does not support image generation yet")
} else if strings.Contains(err.Error(), "CUDA driver version is insufficient") {
t.Skip("Driver is too old")
} else if strings.Contains(err.Error(), "insufficient memory for image generation") {
t.Skip("insufficient memory for image generation")
} else if strings.Contains(err.Error(), "error while loading shared libraries: libcuda.so.1") { // AMD GPU or CPU
t.Skip("CUDA GPU is not available")
} else if strings.Contains(err.Error(), "ollama-mlx: no such file or directory") {
// most likely linux arm - not supported yet
t.Skip("unsupported architecture")
}
t.Fatalf("failed to generate image: %v", err)
}
imageData, err := base64.StdEncoding.DecodeString(imageBase64)
if err != nil {
t.Fatalf("failed to decode image: %v", err)
}
t.Logf("Generated image: %d bytes", len(imageData))
// Preload vision model and check GPU loading
err = client.Generate(ctx, &api.GenerateRequest{Model: tc.visionModel}, func(response api.GenerateResponse) error { return nil })
if err != nil {
t.Fatalf("failed to load vision model: %v", err)
}
// Use vision model to describe the image
chatReq := api.ChatRequest{
Model: tc.visionModel,
Messages: []api.Message{
{
Role: "user",
Content: "Describe this image in detail. What is shown? What style is it? What is the main subject doing?",
Images: []api.ImageData{imageData},
},
},
Stream: &stream,
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
}
// Verify the vision model's response contains expected keywords
response := DoChat(ctx, t, client, chatReq, tc.expectedWords, 240*time.Second, 30*time.Second)
if response != nil {
t.Logf("Vision model response: %s", response.Content)
// Additional detailed check for keywords
content := strings.ToLower(response.Content)
foundWords := []string{}
missingWords := []string{}
for _, word := range tc.expectedWords {
if strings.Contains(content, word) {
foundWords = append(foundWords, word)
} else {
missingWords = append(missingWords, word)
}
}
t.Logf("Found keywords: %v", foundWords)
if len(missingWords) > 0 {
t.Logf("Missing keywords (at least one was found so test passed): %v", missingWords)
}
}
})
}
}
// generateImage calls the Ollama API to generate an image and returns the base64 image data
func generateImage(ctx context.Context, client *api.Client, model, prompt string) (string, error) {
var imageBase64 string
err := client.Generate(ctx, &api.GenerateRequest{
Model: model,
Prompt: prompt,
}, func(resp api.GenerateResponse) error {
if resp.Image != "" {
imageBase64 = resp.Image
}
return nil
})
if err != nil {
return "", fmt.Errorf("failed to generate image: %w", err)
}
if imageBase64 == "" {
return "", fmt.Errorf("no image data in response")
}
return imageBase64, nil
}

View File

@@ -38,7 +38,6 @@ var (
// Note: add newer models at the top of the list to test them first
ollamaEngineChatModels = []string{
"lfm2.5-thinking",
"ministral-3",
"qwen3-coder:30b",
"gpt-oss:20b",
@@ -144,7 +143,6 @@ var (
"granite3.3",
"hermes3",
"internlm2",
"lfm2.5-thinking",
"llama-guard3",
"llama-pro",
"llama2-chinese",
@@ -265,7 +263,6 @@ var (
"snowflake-arctic-embed2",
}
libraryToolsModels = []string{
"lfm2.5-thinking",
"qwen3-vl",
"gpt-oss:20b",
"gpt-oss:120b",

View File

@@ -1,95 +0,0 @@
package manifest
import (
"errors"
"fmt"
"os"
"path/filepath"
"regexp"
"strings"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/types/model"
)
var ErrInvalidDigestFormat = errors.New("invalid digest format")
func Path() (string, error) {
path := filepath.Join(envconfig.Models(), "manifests")
if err := os.MkdirAll(path, 0o755); err != nil {
return "", fmt.Errorf("%w: ensure path elements are traversable", err)
}
return path, nil
}
// PathForName returns the path to the manifest file for a specific model name.
func PathForName(n model.Name) (string, error) {
if !n.IsValid() {
return "", os.ErrNotExist
}
manifests, err := Path()
if err != nil {
return "", err
}
return filepath.Join(manifests, n.Filepath()), nil
}
func BlobsPath(digest string) (string, error) {
// only accept actual sha256 digests
pattern := "^sha256[:-][0-9a-fA-F]{64}$"
re := regexp.MustCompile(pattern)
if digest != "" && !re.MatchString(digest) {
return "", ErrInvalidDigestFormat
}
digest = strings.ReplaceAll(digest, ":", "-")
path := filepath.Join(envconfig.Models(), "blobs", digest)
dirPath := filepath.Dir(path)
if digest == "" {
dirPath = path
}
if err := os.MkdirAll(dirPath, 0o755); err != nil {
return "", fmt.Errorf("%w: ensure path elements are traversable", err)
}
return path, nil
}
// PruneDirectory removes empty directories recursively.
func PruneDirectory(path string) error {
info, err := os.Lstat(path)
if err != nil {
return err
}
if info.IsDir() && info.Mode()&os.ModeSymlink == 0 {
entries, err := os.ReadDir(path)
if err != nil {
return err
}
for _, entry := range entries {
if err := PruneDirectory(filepath.Join(path, entry.Name())); err != nil {
return err
}
}
entries, err = os.ReadDir(path)
if err != nil {
return err
}
if len(entries) > 0 {
return nil
}
return os.Remove(path)
}
return nil
}

View File

@@ -609,49 +609,3 @@ func ImageGenerationsMiddleware() gin.HandlerFunc {
c.Next()
}
}
func ImageEditsMiddleware() gin.HandlerFunc {
return func(c *gin.Context) {
var req openai.ImageEditRequest
if err := c.ShouldBindJSON(&req); err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, openai.NewError(http.StatusBadRequest, err.Error()))
return
}
if req.Prompt == "" {
c.AbortWithStatusJSON(http.StatusBadRequest, openai.NewError(http.StatusBadRequest, "prompt is required"))
return
}
if req.Model == "" {
c.AbortWithStatusJSON(http.StatusBadRequest, openai.NewError(http.StatusBadRequest, "model is required"))
return
}
if req.Image == "" {
c.AbortWithStatusJSON(http.StatusBadRequest, openai.NewError(http.StatusBadRequest, "image is required"))
return
}
genReq, err := openai.FromImageEditRequest(req)
if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, openai.NewError(http.StatusBadRequest, err.Error()))
return
}
var b bytes.Buffer
if err := json.NewEncoder(&b).Encode(genReq); err != nil {
c.AbortWithStatusJSON(http.StatusInternalServerError, openai.NewError(http.StatusInternalServerError, err.Error()))
return
}
c.Request.Body = io.NopCloser(&b)
w := &ImageWriter{
BaseWriter: BaseWriter{ResponseWriter: c.Writer},
}
c.Writer = w
c.Next()
}
}

View File

@@ -1112,129 +1112,3 @@ func TestImageWriterResponse(t *testing.T) {
t.Errorf("expected image data 'dGVzdC1pbWFnZS1kYXRh', got %s", imageResp.Data[0].B64JSON)
}
}
func TestImageEditsMiddleware(t *testing.T) {
type testCase struct {
name string
body string
req api.GenerateRequest
err openai.ErrorResponse
}
var capturedRequest *api.GenerateRequest
// Base64-encoded test image (1x1 pixel PNG)
testImage := ""
decodedImage, _ := base64.StdEncoding.DecodeString("iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNk+A8AAQUBAScY42YAAAAASUVORK5CYII=")
testCases := []testCase{
{
name: "image edit basic",
body: `{
"model": "test-model",
"prompt": "make it blue",
"image": "` + testImage + `"
}`,
req: api.GenerateRequest{
Model: "test-model",
Prompt: "make it blue",
Images: []api.ImageData{decodedImage},
},
},
{
name: "image edit with size",
body: `{
"model": "test-model",
"prompt": "make it blue",
"image": "` + testImage + `",
"size": "512x768"
}`,
req: api.GenerateRequest{
Model: "test-model",
Prompt: "make it blue",
Images: []api.ImageData{decodedImage},
Width: 512,
Height: 768,
},
},
{
name: "image edit missing prompt",
body: `{
"model": "test-model",
"image": "` + testImage + `"
}`,
err: openai.ErrorResponse{
Error: openai.Error{
Message: "prompt is required",
Type: "invalid_request_error",
},
},
},
{
name: "image edit missing model",
body: `{
"prompt": "make it blue",
"image": "` + testImage + `"
}`,
err: openai.ErrorResponse{
Error: openai.Error{
Message: "model is required",
Type: "invalid_request_error",
},
},
},
{
name: "image edit missing image",
body: `{
"model": "test-model",
"prompt": "make it blue"
}`,
err: openai.ErrorResponse{
Error: openai.Error{
Message: "image is required",
Type: "invalid_request_error",
},
},
},
}
endpoint := func(c *gin.Context) {
c.Status(http.StatusOK)
}
gin.SetMode(gin.TestMode)
router := gin.New()
router.Use(ImageEditsMiddleware(), captureRequestMiddleware(&capturedRequest))
router.Handle(http.MethodPost, "/api/generate", endpoint)
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
req, _ := http.NewRequest(http.MethodPost, "/api/generate", strings.NewReader(tc.body))
req.Header.Set("Content-Type", "application/json")
defer func() { capturedRequest = nil }()
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
if tc.err.Error.Message != "" {
var errResp openai.ErrorResponse
if err := json.Unmarshal(resp.Body.Bytes(), &errResp); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(tc.err, errResp); diff != "" {
t.Fatalf("errors did not match:\n%s", diff)
}
return
}
if resp.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d: %s", resp.Code, resp.Body.String())
}
if diff := cmp.Diff(&tc.req, capturedRequest); diff != "" {
t.Fatalf("requests did not match:\n%s", diff)
}
})
}
}

View File

@@ -162,7 +162,6 @@ type Tensor interface {
AvgPool2D(ctx Context, k, s int, p float32) Tensor
Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
Conv3D(ctx Context, weight Tensor, c, s0, s1, s2, p0, p1, p2, d0, d1, d2 int) Tensor
SSMConv(ctx Context, kernel Tensor) Tensor
IM2Col(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor

View File

@@ -1641,13 +1641,6 @@ func (t *Tensor) Conv3D(ctx ml.Context, t2 ml.Tensor, c, s0, s1, s2, p0, p1, p2,
return tt
}
func (t *Tensor) SSMConv(ctx ml.Context, kernel ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_ssm_conv(ctx.(*Context).ctx, t.t, kernel.(*Tensor).t),
}
}
func (t *Tensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
return &Tensor{
b: t.b,

View File

@@ -1,304 +0,0 @@
package glm4moelite
import (
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Options struct {
numExpertsUsed int
numExperts int
normTopKProb bool
routedScalingFactor float32
kvLoraRank,
qkNopeHeadDim,
qkRopeHeadDim,
kqNopeHeadDim,
qkHeadDim int
qLoraRank int
vHeadDim int
hiddenSize,
numHeads,
numKVHeads int
eps,
ropeBase float32
kqScale float64
}
func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, t, p ml.Tensor) ml.Tensor {
return nn.RoPE(ctx, t, p, o.qkRopeHeadDim, o.ropeBase, 1.0)
}
type Attention struct {
Q *nn.Linear `gguf:"attn_q"`
QA *nn.Linear `gguf:"attn_q_a"`
QANorm *nn.RMSNorm `gguf:"attn_q_a_norm"`
QB *nn.Linear `gguf:"attn_q_b"`
KVA *nn.Linear `gguf:"attn_kv_a_mqa"`
KVANorm *nn.RMSNorm `gguf:"attn_kv_a_norm"`
KVB *nn.Linear `gguf:"attn_kv_b"`
Output *nn.Linear `gguf:"attn_out,alt:attn_output"`
}
func (attn *Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
seqLength := hiddenStates.Dim(1)
var query ml.Tensor
if opts.qLoraRank == 0 {
query = attn.Q.Forward(ctx, hiddenStates)
} else {
query = attn.QA.Forward(ctx, hiddenStates)
query = attn.QANorm.Forward(ctx, query, opts.eps)
query = attn.QB.Forward(ctx, query)
}
query = query.Reshape(ctx, query.Dim(0)/opts.numHeads, opts.numHeads, seqLength)
queryChunks := query.ChunkSections(ctx, 0, opts.qkNopeHeadDim, opts.qkRopeHeadDim)
compressedKV := attn.KVA.Forward(ctx, hiddenStates)
kPass := compressedKV.Slice(ctx, 0, 0, opts.kvLoraRank, 1)
kRot := compressedKV.View(ctx,
opts.kvLoraRank*compressedKV.Stride(0), opts.qkRopeHeadDim,
compressedKV.Stride(1), 1,
compressedKV.Stride(1), compressedKV.Dim(1),
)
qRot := opts.applyRotaryPositionEmbeddings(ctx, queryChunks[1], positions)
kRot = opts.applyRotaryPositionEmbeddings(ctx, kRot, positions)
kPass = attn.KVANorm.Forward(ctx, kPass, opts.eps)
kPass = attn.KVB.Forward(ctx, kPass)
kv := kPass.Reshape(ctx, kPass.Dim(0)/opts.numKVHeads, opts.numKVHeads, seqLength)
kvChunks := kv.ChunkSections(ctx, 0, opts.kqNopeHeadDim, opts.vHeadDim)
kRot = kRot.Repeat(ctx, 1, queryChunks[0].Dim(1))
query = qRot.Concat(ctx, queryChunks[0], 0)
key := kRot.Concat(ctx, kvChunks[0], 0)
attention := nn.Attention(ctx, query, key, kvChunks[1], opts.kqScale, cache)
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), seqLength)
return attn.Output.Forward(ctx, attention)
}
type MLP interface {
Forward(ml.Context, ml.Tensor, *Options) ml.Tensor
}
type sparse struct {
Router *nn.Linear `gguf:"ffn_gate_inp"`
Gate *nn.Linear `gguf:"ffn_gate_exps"`
Up *nn.Linear `gguf:"ffn_up_exps"`
Down *nn.Linear `gguf:"ffn_down_exps"`
SharedExpert *dense `gguf:",suf:_shexp"`
ExpProbsBias ml.Tensor `gguf:"exp_probs_b.bias,alt:exp_probs_b"`
}
func (moe *sparse) Moe(ctx ml.Context, hiddenStates, topKIndices, topKWeights ml.Tensor, opts *Options) ml.Tensor {
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
upStates := moe.Up.Weight.MulmatID(ctx, hiddenStates, topKIndices)
hiddenStates = moe.Gate.Weight.MulmatID(ctx, hiddenStates, topKIndices)
hiddenStates = hiddenStates.SILU(ctx, upStates)
experts := moe.Down.Weight.MulmatID(ctx, hiddenStates, topKIndices)
experts = experts.Mul(ctx, topKWeights)
nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2))
for i := 1; i < opts.numExpertsUsed; i++ {
nextStates = nextStates.Add(ctx, experts.View(ctx, i*experts.Stride(1), experts.Dim(0), experts.Stride(2), experts.Dim(2)))
}
return nextStates
}
func (moe *sparse) topKIndices(ctx ml.Context, scores ml.Tensor, opts *Options) ml.Tensor {
if moe.ExpProbsBias != nil {
scores = scores.Add(ctx, moe.ExpProbsBias)
}
topKIndices := scores.TopK(ctx, opts.numExpertsUsed)
return topKIndices
}
func (moe *sparse) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
residuals := hiddenStates
routerLogits := moe.Router.Forward(ctx, hiddenStates)
scores := routerLogits.Sigmoid(ctx)
topKIndices := moe.topKIndices(ctx, scores, opts)
topKWeights := scores.Reshape(ctx, 1, opts.numExperts, hiddenStates.Dim(1)).Rows(ctx, topKIndices)
if opts.normTopKProb {
topKWeights = topKWeights.Reshape(ctx, opts.numExpertsUsed, hiddenStates.Dim(1))
topKWeights = topKWeights.Div(ctx, topKWeights.SumRows(ctx))
topKWeights = topKWeights.Reshape(ctx, 1, opts.numExpertsUsed, hiddenStates.Dim(1))
}
topKWeights = topKWeights.Scale(ctx, float64(opts.routedScalingFactor))
hiddenStates = moe.Moe(ctx, hiddenStates, topKIndices, topKWeights, opts)
sharedExpertResult := moe.SharedExpert.Forward(ctx, residuals, opts)
hiddenStates = hiddenStates.Add(ctx, sharedExpertResult)
return hiddenStates
}
type dense struct {
Gate *nn.Linear `gguf:"ffn_gate"`
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (mlp *dense) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
type Layer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
Attention *Attention
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP MLP
}
func (t *Layer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
residual := hiddenStates
hiddenStates = t.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = t.Attention.Forward(ctx, hiddenStates, positions, cache, opts)
if outputs != nil {
hiddenStates = hiddenStates.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
hiddenStates = hiddenStates.Add(ctx, residual)
residual = hiddenStates
hiddenStates = t.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = t.MLP.Forward(ctx, hiddenStates, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
return hiddenStates
}
type Model struct {
model.Base
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
*Options
}
func New(c fs.Config) (model.Model, error) {
layers := make([]Layer, c.Uint("block_count"))
firstDenseLayerIndex := int(c.Uint("leading_dense_block_count"))
for i := range layers {
if i < firstDenseLayerIndex {
layers[i].MLP = &dense{}
} else {
layers[i].MLP = &sparse{}
}
}
keyLength := int(c.Uint("attention.key_length"))
valueLength := int(c.Uint("attention.value_length"))
kqScale := 1.0 / math.Sqrt(float64(keyLength))
var pre []string
switch c.String("tokenizer.ggml.pre") {
case "glm4":
pre = []string{
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
}
default:
return nil, model.ErrUnsupportedTokenizer
}
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
pre...,
),
Layers: layers,
Options: &Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
numExperts: int(c.Uint("expert_count")),
numExpertsUsed: int(c.Uint("expert_used_count")),
normTopKProb: c.Bool("expert_weights_norm", true),
qLoraRank: int(c.Uint("attention.q_lora_rank")),
kvLoraRank: int(c.Uint("attention.kv_lora_rank")),
qkHeadDim: keyLength,
vHeadDim: valueLength,
qkRopeHeadDim: int(c.Uint("rope.dimension_count")),
qkNopeHeadDim: keyLength - int(c.Uint("rope.dimension_count")),
kqNopeHeadDim: keyLength - int(c.Uint("rope.dimension_count")),
routedScalingFactor: c.Float("expert_weights_scale"),
kqScale: kqScale,
},
}
m.Cache = kvcache.NewCausalCache(m.Shift)
return &m, nil
}
func (m Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return m.applyRotaryPositionEmbeddings(ctx, key, shift), nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
for i, layer := range m.Layers {
m.Cache.SetLayer(i)
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = batch.Outputs
}
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, m.Options)
}
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
return m.Output.Forward(ctx, hiddenStates), nil
}
func init() {
model.Register("glm4moelite", New)
}

View File

@@ -1,410 +0,0 @@
package lfm2
import (
"slices"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
var _ kvcache.Cache = (*HybridCache)(nil)
// HybridCache stores:
// - a standard causal KV cache for attention layers
// - a per-sequence recurrent conv state for shortconv layers
//
// Conv state shape (per layer, per sequence): [dConv, hiddenSize] where dConv = L_cache - 1.
// Stored internally as a tensor of shape [dConv * hiddenSize, maxSlots].
type HybridCache struct {
kv *kvcache.Causal
backend ml.Backend
dtype ml.DType
maxSequences int
hiddenSize int
dConv int
// slot mapping for recurrent state
slotForSeq map[int]int
refCount []int
freeSlots []int
// per-layer conv state buffers (allocated lazily)
convCtxs map[int]ml.Context
convStates map[int]ml.Tensor // [dConv*hiddenSize, maxSlots]
// current forward batch (derived in StartForward)
curSeqs []int
curSlots []int
curSlotsInput ml.Tensor
curSeqTokens int
// track if EnsureWritable has been called for this forward pass
writableEnsured bool
// track any error from EnsureWritable to propagate later
writableError error
}
func NewHybridCache(shift func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error), hiddenSize, dConv int) *HybridCache {
return &HybridCache{
kv: kvcache.NewCausalCache(shift),
hiddenSize: hiddenSize,
dConv: dConv,
slotForSeq: make(map[int]int),
convCtxs: make(map[int]ml.Context),
convStates: make(map[int]ml.Tensor),
}
}
func (c *HybridCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
c.backend = backend
c.dtype = dtype
c.maxSequences = maxSequences
// initialize slot allocator
c.refCount = make([]int, maxSequences)
c.freeSlots = c.freeSlots[:0]
for i := maxSequences - 1; i >= 0; i-- {
c.freeSlots = append(c.freeSlots, i)
}
c.kv.Init(backend, dtype, maxSequences, capacity, maxBatch)
}
func (c *HybridCache) Close() {
for _, ctx := range c.convCtxs {
ctx.Close()
}
c.kv.Close()
}
func (c *HybridCache) SetConfig(config ml.CacheConfig) {
c.kv.SetConfig(config)
}
func (c *HybridCache) SetLayer(layer int) {
c.kv.SetLayer(layer)
}
func (c *HybridCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
return c.kv.Get(ctx)
}
func (c *HybridCache) Put(ctx ml.Context, key, value ml.Tensor) {
c.kv.Put(ctx, key, value)
}
func (c *HybridCache) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
if err := c.kv.StartForward(ctx, batch, reserve); err != nil {
return err
}
// Derive equal-length sequence layout for shortconv.
// LFM2 shortconv assumes tokens form a [seq_tokens, seqs] grid.
seqCounts := make(map[int]int)
c.curSeqs = c.curSeqs[:0]
for _, s := range batch.Sequences {
if _, ok := seqCounts[s]; !ok {
c.curSeqs = append(c.curSeqs, s)
}
seqCounts[s]++
}
if len(c.curSeqs) == 0 {
return nil
}
nTokens := len(batch.Sequences)
nSeqs := len(c.curSeqs)
want := nTokens / nSeqs
for _, s := range c.curSeqs {
if seqCounts[s] != want {
return kvcache.ErrNotSupported
}
}
c.curSeqTokens = want
// When reserving memory for estimation, use fake slot assignments
// without modifying permanent state (slotForSeq, refCount)
if reserve {
c.curSlots = c.curSlots[:0]
slots := make([]int32, nSeqs)
for i := range nSeqs {
c.curSlots = append(c.curSlots, i)
slots[i] = int32(i)
}
c.curSlotsInput = ctx.Input().FromInts(slots, len(slots))
return nil
}
// Ensure slots exist for sequences in this batch
c.curSlots = c.curSlots[:0]
var newSlots []int // track newly allocated slots that need zeroing
for _, s := range c.curSeqs {
slot, ok := c.slotForSeq[s]
if !ok {
var err error
slot, err = c.allocSlot()
if err != nil {
return err
}
c.slotForSeq[s] = slot
c.refCount[slot] = 1
newSlots = append(newSlots, slot)
}
c.curSlots = append(c.curSlots, slot)
}
// Zero conv state for newly allocated slots to clear stale data from previous sequences
if len(newSlots) > 0 {
c.zeroConvSlots(ctx, newSlots)
}
// Create a tensor for the current slots
slots := make([]int32, len(c.curSlots))
for i, v := range c.curSlots {
slots[i] = int32(v)
}
c.curSlotsInput = ctx.Input().FromInts(slots, len(slots))
// Reset writable state for new forward pass
c.writableEnsured = false
c.writableError = nil
return nil
}
func (c *HybridCache) allocSlot() (int, error) {
if len(c.freeSlots) == 0 {
return 0, kvcache.ErrKvCacheFull
}
slot := c.freeSlots[len(c.freeSlots)-1]
c.freeSlots = c.freeSlots[:len(c.freeSlots)-1]
return slot, nil
}
func (c *HybridCache) freeSlot(slot int) {
// Bounds check before freeing
if slot >= 0 && slot < c.maxSequences {
c.freeSlots = append(c.freeSlots, slot)
}
}
// zeroConvSlots zeros the conv state for the given slots across all layers.
// This must be called when recycling slots to prevent stale state from affecting new sequences.
func (c *HybridCache) zeroConvSlots(ctx ml.Context, slots []int) {
if len(slots) == 0 || len(c.convStates) == 0 {
return
}
// Use input context for creating tensors
inputCtx := ctx.Input()
// Create slot indices tensor
slotIndices := make([]int32, len(slots))
for i, s := range slots {
slotIndices[i] = int32(s)
}
slotsTensor := inputCtx.FromInts(slotIndices, len(slotIndices))
// Create zero tensor for the slots (SetRows requires F32 source)
zeros := inputCtx.Zeros(ml.DTypeF32, c.dConv*c.hiddenSize, len(slots))
// Zero each layer's conv state for these slots
for _, buf := range c.convStates {
ctx.Forward(buf.SetRows(ctx, zeros, slotsTensor))
}
}
// EnsureWritable ensures that sequences in the current batch have private (non-shared) conv slots.
// Returns an error if slot allocation fails.
func (c *HybridCache) EnsureWritable(ctx ml.Context) error {
for i, seq := range c.curSeqs {
slot, ok := c.slotForSeq[seq]
if !ok {
continue
}
// Bounds check
if slot < 0 || slot >= len(c.refCount) {
continue
}
if c.refCount[slot] <= 1 {
continue
}
newSlot, err := c.allocSlot()
if err != nil {
return err
}
c.refCount[slot]--
c.refCount[newSlot] = 1
c.slotForSeq[seq] = newSlot
c.curSlots[i] = newSlot
// Copy existing conv state for all initialized layers
for _, buf := range c.convStates {
// buf: [dConv*hiddenSize, maxSlots]
src := buf.Rows(ctx, ctx.Input().FromInts([]int32{int32(slot)}, 1))
// SetRows requires F32 source
srcF32 := src.Cast(ctx, ml.DTypeF32)
ctx.Forward(buf.SetRows(ctx, srcF32, ctx.Input().FromInts([]int32{int32(newSlot)}, 1)))
}
}
// Rebuild current slots tensor
slots := make([]int32, len(c.curSlots))
for i, v := range c.curSlots {
slots[i] = int32(v)
}
c.curSlotsInput = ctx.Input().FromInts(slots, len(slots))
return nil
}
func (c *HybridCache) CopyPrefix(srcSeq, dstSeq int, prefixLen int32) {
// KV cache shares prefix metadata (no copy) which is correct for prefix reuse.
c.kv.CopyPrefix(srcSeq, dstSeq, prefixLen)
// For shortconv state we implement copy-on-write: dst shares the same slot as src.
// On the first write to dst, EnsureWritable will create a private slot.
if dstSlot, ok := c.slotForSeq[dstSeq]; ok {
// Bounds check before decrementing
if dstSlot >= 0 && dstSlot < len(c.refCount) {
c.refCount[dstSlot]--
if c.refCount[dstSlot] <= 0 {
c.refCount[dstSlot] = 0
c.freeSlot(dstSlot)
}
}
delete(c.slotForSeq, dstSeq)
}
srcSlot, ok := c.slotForSeq[srcSeq]
if !ok {
// src may not have a slot yet; dst will allocate on demand
return
}
// Bounds check before incrementing
if srcSlot >= 0 && srcSlot < len(c.refCount) {
c.slotForSeq[dstSeq] = srcSlot
c.refCount[srcSlot]++
}
}
func (c *HybridCache) CanResume(seq int, pos int32) bool {
return c.kv.CanResume(seq, pos)
}
func (c *HybridCache) Remove(seq int, beginIndex, endIndex int32) error {
if err := c.kv.Remove(seq, beginIndex, endIndex); err != nil {
return err
}
// For recurrent state, any removal invalidates the state because
// the state at position N depends on all previous positions.
// Drop the slot mapping so it resets on next use.
slot, ok := c.slotForSeq[seq]
if !ok {
return nil
}
// Bounds check
if slot < 0 || slot >= len(c.refCount) {
delete(c.slotForSeq, seq)
return nil
}
c.refCount[slot]--
if c.refCount[slot] <= 0 {
c.refCount[slot] = 0
c.freeSlot(slot)
}
delete(c.slotForSeq, seq)
return nil
}
func (c *HybridCache) slotsTensor() ml.Tensor {
return c.curSlotsInput
}
func (c *HybridCache) seqTokens() int {
return c.curSeqTokens
}
func (c *HybridCache) numSeqs() int {
return len(c.curSeqs)
}
func (c *HybridCache) convBuffer(ctx ml.Context, layer int) ml.Tensor {
if buf, ok := c.convStates[layer]; ok {
return buf
}
if _, ok := c.convCtxs[layer]; !ok {
c.convCtxs[layer] = c.backend.NewContextSize(1).Layer(layer)
}
buf := c.convCtxs[layer].Zeros(c.dtype, c.dConv*c.hiddenSize, c.maxSequences)
c.convStates[layer] = buf
return buf
}
// ConvState returns the conv state for current batch sequences as shape [dConv, hiddenSize, nSeqs].
// Returns an error if copy-on-write allocation fails.
func (c *HybridCache) ConvState(ctx ml.Context, layer int) (ml.Tensor, error) {
if !c.writableEnsured {
needsWritable := false
for _, seq := range c.curSeqs {
slot, ok := c.slotForSeq[seq]
if !ok {
continue
}
if slot >= 0 && slot < len(c.refCount) && c.refCount[slot] > 1 {
needsWritable = true
break
}
}
if needsWritable {
if err := c.EnsureWritable(ctx); err != nil {
c.writableError = err
}
}
c.writableEnsured = true
}
if c.writableError != nil {
return nil, c.writableError
}
buf := c.convBuffer(ctx, layer)
cur := buf.Rows(ctx, c.slotsTensor())
return cur.Reshape(ctx, c.dConv, c.hiddenSize, c.numSeqs()), nil
}
// UpdateConvState writes a new conv state for current batch sequences.
// newState must have shape [dConv, hiddenSize, nSeqs].
func (c *HybridCache) UpdateConvState(ctx ml.Context, layer int, newState ml.Tensor) {
buf := c.convBuffer(ctx, layer)
src := newState.Reshape(ctx, c.dConv*c.hiddenSize, c.numSeqs())
// SetRows requires F32 source
srcF32 := src.Cast(ctx, ml.DTypeF32)
ctx.Forward(buf.SetRows(ctx, srcF32, c.slotsTensor()))
}
// IsSupportedForBatch returns true if the current batch layout supports shortconv.
func (c *HybridCache) IsSupportedForBatch() bool {
return c.curSeqTokens > 0 && len(c.curSeqs) > 0
}
// Seqs returns the ordered unique sequences for the current forward pass.
func (c *HybridCache) Seqs() []int {
return slices.Clone(c.curSeqs)
}

View File

@@ -1,444 +0,0 @@
package lfm2
import (
"testing"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
)
// TestHybridCache tests verify the slot management logic of HybridCache.
// These tests focus on the recurrent state slot allocation, reference counting,
// and copy-on-write semantics without requiring a full ML backend.
// createSlotOnlyCache creates a HybridCache with only the slot management
// fields initialized. Used to test slot logic in isolation.
func createSlotOnlyCache(maxSequences int) *HybridCache {
return &HybridCache{
hiddenSize: 256,
dConv: 3,
maxSequences: maxSequences,
refCount: make([]int, maxSequences),
freeSlots: initFreeSlots(maxSequences),
slotForSeq: make(map[int]int),
convCtxs: make(map[int]ml.Context),
convStates: make(map[int]ml.Tensor),
}
}
func initFreeSlots(n int) []int {
slots := make([]int, 0, n)
for i := n - 1; i >= 0; i-- {
slots = append(slots, i)
}
return slots
}
func TestHybridCache_SlotAllocation(t *testing.T) {
cache := createSlotOnlyCache(4)
// Verify initial state
if len(cache.freeSlots) != 4 {
t.Errorf("expected 4 free slots, got %d", len(cache.freeSlots))
}
// Allocate all slots
for range 4 {
slot, err := cache.allocSlot()
if err != nil {
t.Fatalf("allocSlot failed: %v", err)
}
cache.refCount[slot] = 1
}
// Should be full now
if len(cache.freeSlots) != 0 {
t.Errorf("expected 0 free slots, got %d", len(cache.freeSlots))
}
// Trying to allocate another should fail
_, err := cache.allocSlot()
if err != kvcache.ErrKvCacheFull {
t.Errorf("expected ErrKvCacheFull, got %v", err)
}
}
func TestHybridCache_SlotReuse(t *testing.T) {
cache := createSlotOnlyCache(4)
// Allocate a slot
slot1, _ := cache.allocSlot()
cache.refCount[slot1] = 1
// Free it
cache.refCount[slot1] = 0
cache.freeSlot(slot1)
// Allocate again - should get the same slot back (LIFO)
slot2, _ := cache.allocSlot()
if slot2 != slot1 {
t.Errorf("expected slot %d to be reused, got %d", slot1, slot2)
}
}
func TestHybridCache_SlotRefCounting_ShareSlot(t *testing.T) {
cache := createSlotOnlyCache(4)
// Allocate slot for seq 1
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
// Simulate sharing slot with seq 2 (copy-on-write style)
cache.slotForSeq[2] = slot1
cache.refCount[slot1]++
// Should share the same slot
if cache.slotForSeq[2] != slot1 {
t.Errorf("expected seq 2 to share slot %d, got %d", slot1, cache.slotForSeq[2])
}
// Ref count should be 2
if cache.refCount[slot1] != 2 {
t.Errorf("expected refCount 2, got %d", cache.refCount[slot1])
}
}
func TestHybridCache_SlotRefCounting_DecRef(t *testing.T) {
cache := createSlotOnlyCache(4)
// Allocate slot for seq 1
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
// Share with seq 2
cache.slotForSeq[2] = slot1
cache.refCount[slot1]++
// Unshare seq 2
cache.refCount[slot1]--
delete(cache.slotForSeq, 2)
// Ref count should be back to 1
if cache.refCount[slot1] != 1 {
t.Errorf("expected refCount 1 after unshare, got %d", cache.refCount[slot1])
}
// Seq 2 should no longer have a slot
if _, ok := cache.slotForSeq[2]; ok {
t.Error("seq 2 should not have a slot after unshare")
}
}
func TestHybridCache_SlotFreeWhenUnused(t *testing.T) {
cache := createSlotOnlyCache(4)
initialFreeSlots := len(cache.freeSlots)
// Allocate slot for seq 1
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
// Free the slot when refCount drops to 0
cache.refCount[slot1]--
if cache.refCount[slot1] <= 0 {
cache.refCount[slot1] = 0
cache.freeSlot(slot1)
}
delete(cache.slotForSeq, 1)
// Slot should be freed
if len(cache.freeSlots) != initialFreeSlots {
t.Errorf("expected %d free slots, got %d", initialFreeSlots, len(cache.freeSlots))
}
// Ref count should be 0
if cache.refCount[slot1] != 0 {
t.Errorf("expected refCount 0, got %d", cache.refCount[slot1])
}
}
func TestHybridCache_SlotOverwrite(t *testing.T) {
cache := createSlotOnlyCache(4)
// Allocate slots for seq 1 and seq 2
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
slot2, _ := cache.allocSlot()
cache.slotForSeq[2] = slot2
cache.refCount[slot2] = 1
initialFreeSlots := len(cache.freeSlots)
// Simulate overwriting seq 2's slot with slot1 (sharing)
// First free the old slot
cache.refCount[slot2]--
if cache.refCount[slot2] <= 0 {
cache.refCount[slot2] = 0
cache.freeSlot(slot2)
}
// Then share slot1
cache.slotForSeq[2] = slot1
cache.refCount[slot1]++
// Seq 2 should now share slot1
if cache.slotForSeq[2] != slot1 {
t.Errorf("expected seq 2 to share slot %d, got %d", slot1, cache.slotForSeq[2])
}
// Old slot2 should be freed
if len(cache.freeSlots) != initialFreeSlots+1 {
t.Errorf("expected %d free slots, got %d", initialFreeSlots+1, len(cache.freeSlots))
}
}
func TestHybridCache_BoundsChecking(t *testing.T) {
cache := createSlotOnlyCache(4)
// Test freeing invalid slot (should not panic)
cache.freeSlot(-1)
cache.freeSlot(100) // out of bounds
// freeSlot does bounds checking, so invalid slots should be ignored
if len(cache.freeSlots) != 4 {
t.Errorf("invalid slots should not affect free list, got %d slots", len(cache.freeSlots))
}
}
func TestHybridCache_MultipleSequences_RefCounting(t *testing.T) {
cache := createSlotOnlyCache(8)
// Allocate slot for seq 1
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
// Fork to seq 2, 3, 4 (all share slot1)
for _, seq := range []int{2, 3, 4} {
cache.slotForSeq[seq] = slot1
cache.refCount[slot1]++
}
// Ref count should be 4
if cache.refCount[slot1] != 4 {
t.Errorf("expected refCount 4, got %d", cache.refCount[slot1])
}
// Remove seq 2, 3
for _, seq := range []int{2, 3} {
delete(cache.slotForSeq, seq)
cache.refCount[slot1]--
}
if cache.refCount[slot1] != 2 {
t.Errorf("expected refCount 2, got %d", cache.refCount[slot1])
}
// Slot should still be allocated (not in free list)
found := false
for _, s := range cache.freeSlots {
if s == slot1 {
found = true
break
}
}
if found {
t.Error("slot1 should not be in free list yet")
}
// Remove remaining sequences
for _, seq := range []int{1, 4} {
delete(cache.slotForSeq, seq)
cache.refCount[slot1]--
}
if cache.refCount[slot1] != 0 {
t.Errorf("expected refCount 0, got %d", cache.refCount[slot1])
}
}
func TestHybridCache_ChainedSharing(t *testing.T) {
cache := createSlotOnlyCache(8)
// Create seq 1
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
// Share 1 -> 2
cache.slotForSeq[2] = slot1
cache.refCount[slot1]++
// Share 2 -> 3 (should still share slot1)
cache.slotForSeq[3] = cache.slotForSeq[2] // which is slot1
cache.refCount[slot1]++
// All should share slot1
if cache.slotForSeq[1] != slot1 || cache.slotForSeq[2] != slot1 || cache.slotForSeq[3] != slot1 {
t.Error("all sequences should share slot1")
}
if cache.refCount[slot1] != 3 {
t.Errorf("expected refCount 3, got %d", cache.refCount[slot1])
}
}
func TestHybridCache_CacheParameters(t *testing.T) {
cache := NewHybridCache(nil, 512, 5) // hiddenSize=512, dConv=5
if cache.hiddenSize != 512 {
t.Errorf("expected hiddenSize 512, got %d", cache.hiddenSize)
}
if cache.dConv != 5 {
t.Errorf("expected dConv 5, got %d", cache.dConv)
}
}
func TestHybridCache_NumSeqs(t *testing.T) {
cache := createSlotOnlyCache(4)
// Initially no sequences
if cache.numSeqs() != 0 {
t.Errorf("expected 0 seqs, got %d", cache.numSeqs())
}
// Manually set up current batch state
cache.curSeqs = []int{1, 2, 3}
if cache.numSeqs() != 3 {
t.Errorf("expected 3 seqs, got %d", cache.numSeqs())
}
}
func TestHybridCache_SeqTokens(t *testing.T) {
cache := createSlotOnlyCache(4)
// Initially 0
if cache.seqTokens() != 0 {
t.Errorf("expected 0 seqTokens, got %d", cache.seqTokens())
}
// Manually set up current batch state
cache.curSeqTokens = 16
if cache.seqTokens() != 16 {
t.Errorf("expected 16 seqTokens, got %d", cache.seqTokens())
}
}
// Test that Seqs returns a clone of curSeqs
func TestHybridCache_Seqs_ReturnsClone(t *testing.T) {
cache := createSlotOnlyCache(4)
cache.curSeqs = []int{1, 2, 3}
seqs := cache.Seqs()
// Modify returned slice
seqs[0] = 999
// Original should be unchanged
if cache.curSeqs[0] != 1 {
t.Error("Seqs should return a clone, not the original slice")
}
}
func TestHybridCache_IsSupportedForBatch(t *testing.T) {
cache := createSlotOnlyCache(4)
// Initially not supported (no batch set up)
if cache.IsSupportedForBatch() {
t.Error("expected IsSupportedForBatch to be false initially")
}
// Set up a valid batch
cache.curSeqTokens = 1
cache.curSeqs = []int{1}
if !cache.IsSupportedForBatch() {
t.Error("expected IsSupportedForBatch to be true with valid batch")
}
}
func TestHybridCache_ZeroConvSlots_EmptyInputs(t *testing.T) {
cache := createSlotOnlyCache(4)
// zeroConvSlots should handle empty slots without panicking
cache.zeroConvSlots(nil, nil)
cache.zeroConvSlots(nil, []int{})
// zeroConvSlots should handle empty convStates without panicking
cache.zeroConvSlots(nil, []int{0, 1, 2})
}
func TestHybridCache_SlotRecycling_TracksNewSlots(t *testing.T) {
cache := createSlotOnlyCache(4)
// Allocate slot for seq 1
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
// Free the slot (simulating sequence removal)
cache.refCount[slot1]--
cache.freeSlot(slot1)
delete(cache.slotForSeq, 1)
// Verify slot is in free list
if len(cache.freeSlots) != 4 {
t.Errorf("expected 4 free slots after freeing, got %d", len(cache.freeSlots))
}
// Allocate for new seq 2 - should get recycled slot
slot2, _ := cache.allocSlot()
if slot2 != slot1 {
t.Errorf("expected recycled slot %d, got %d", slot1, slot2)
}
// This recycled slot would need zeroing in the real implementation
// The actual zeroing is tested via integration tests since it requires ML context
}
func TestHybridCache_NewSequence_GetsTrackedForZeroing(t *testing.T) {
cache := createSlotOnlyCache(4)
// Simulate the slot allocation flow from StartForward
// When a sequence doesn't have a slot, it gets allocated and tracked as "new"
newSlots := []int{}
// Seq 1 doesn't have a slot - allocate and track
seq := 1
if _, ok := cache.slotForSeq[seq]; !ok {
slot, err := cache.allocSlot()
if err != nil {
t.Fatalf("allocSlot failed: %v", err)
}
cache.slotForSeq[seq] = slot
cache.refCount[slot] = 1
newSlots = append(newSlots, slot)
}
// Verify newSlots contains the allocated slot
if len(newSlots) != 1 {
t.Errorf("expected 1 new slot, got %d", len(newSlots))
}
// Seq 1 already has a slot - should NOT be tracked as new
newSlots2 := []int{}
if _, ok := cache.slotForSeq[seq]; !ok {
slot, _ := cache.allocSlot()
cache.slotForSeq[seq] = slot
cache.refCount[slot] = 1
newSlots2 = append(newSlots2, slot)
}
// Verify no new slots for existing sequence
if len(newSlots2) != 0 {
t.Errorf("expected 0 new slots for existing sequence, got %d", len(newSlots2))
}
}

View File

@@ -1,253 +0,0 @@
package lfm2
import (
"cmp"
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Options struct {
hiddenSize int
headDim, ropeDim int
eps, ropeBase, ropeScale float32
ropeType string
originalContextLength int
// per-layer head counts (LFM2 alternates attention and recurrent layers)
numHeadsByLayer []int
numKVHeadsByLayer []int
}
func (o Options) headDimValue() int {
// Head dim is shared across layers; fall back to first attention layer head count.
for _, h := range o.numHeadsByLayer {
if h > 0 {
return cmp.Or(o.headDim, o.hiddenSize/h)
}
}
return cmp.Or(o.headDim, o.hiddenSize)
}
func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
opts := []func(*rope.Options){rope.WithTypeNeoX()}
if o.ropeType == "yarn" {
attnFactor := float32(1.0 / (1.0 + 0.1*math.Log(float64(o.ropeScale))))
opts = append(opts,
rope.WithOriginalContextLength(o.originalContextLength),
rope.WithExtrapolationFactor(1.),
rope.WithAttentionFactor(attnFactor),
)
}
headCount := 1
for _, h := range o.numHeadsByLayer {
if h > 0 {
headCount = h
break
}
}
return nn.RoPE(ctx, states, positions, cmp.Or(o.ropeDim, o.headDim, o.hiddenSize/headCount), o.ropeBase, 1./o.ropeScale, opts...)
}
type Model struct {
model.Base
model.TextProcessor
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm,alt:token_embd_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
Options
}
func New(c fs.Config) (model.Model, error) {
if c.Uint("expert_count") > 0 {
return nil, model.ErrUnsupportedModel
}
if c.String("tokenizer.ggml.model") != "gpt2" {
return nil, model.ErrUnsupportedTokenizer
}
vocabulary := model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
}
var pretokenizers []string
switch c.String("tokenizer.ggml.pre") {
case "default":
// use default BPE pretokenizer
default:
// llama-bpe style (default for LFM2)
pretokenizers = []string{
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
}
}
m := Model{
TextProcessor: model.NewBytePairEncoding(&vocabulary, pretokenizers...),
Layers: make([]Layer, c.Uint("block_count")),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),
headDim: int(c.Uint("attention.key_length")),
ropeDim: int(c.Uint("rope.dimension_count")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeType: c.String("rope.scaling.type"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1),
originalContextLength: int(c.Uint("rope.scaling.original_context_length")),
},
}
type headCounts interface {
HeadCount() []uint64
HeadCountKV() []uint64
}
hc, ok := c.(headCounts)
if !ok {
return nil, model.ErrUnsupportedModel
}
headCount := hc.HeadCount()
headCountKV := hc.HeadCountKV()
m.numHeadsByLayer = make([]int, len(m.Layers))
m.numKVHeadsByLayer = make([]int, len(m.Layers))
for i := range m.Layers {
m.numHeadsByLayer[i] = int(headCount[i])
m.numKVHeadsByLayer[i] = int(headCountKV[i])
if m.numKVHeadsByLayer[i] == 0 {
m.Layers[i].Operator = &ShortConv{}
} else {
m.Layers[i].Operator = &Attention{}
}
}
lCache := int(c.Uint("shortconv.l_cache"))
dConv := max(0, lCache-1)
m.Cache = NewHybridCache(m.Shift, m.hiddenSize, dConv)
return &m, nil
}
type Operator interface {
Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache *HybridCache, layer int, opts *Options) ml.Tensor
}
type Attention struct {
Query *nn.Linear `gguf:"attn_q"`
QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
Key *nn.Linear `gguf:"attn_k"`
KeyNorm *nn.RMSNorm `gguf:"attn_k_norm"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output,alt:attn_out"`
}
func (sa *Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache *HybridCache, layer int, opts *Options) ml.Tensor {
batchSize := hiddenStates.Dim(1)
headDim := opts.headDimValue()
numHeads := opts.numHeadsByLayer[layer]
numKVHeads := opts.numKVHeadsByLayer[layer]
query := sa.Query.Forward(ctx, hiddenStates)
key := sa.Key.Forward(ctx, hiddenStates)
value := sa.Value.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, headDim, numHeads, batchSize)
key = key.Reshape(ctx, headDim, numKVHeads, batchSize)
value = value.Reshape(ctx, headDim, numKVHeads, batchSize)
query = sa.QueryNorm.Forward(ctx, query, opts.eps)
key = sa.KeyNorm.Forward(ctx, key, opts.eps)
query = opts.applyRotaryPositionEmbeddings(ctx, query, positions)
key = opts.applyRotaryPositionEmbeddings(ctx, key, positions)
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(headDim)), cache)
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
return sa.Output.Forward(ctx, attention)
}
type MLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
Gate *nn.Linear `gguf:"ffn_gate"`
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
type Layer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
Operator Operator
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP *MLP
}
func (l *Layer) Forward(ctx ml.Context, layer int, hiddenState, positions, outputs ml.Tensor, cache *HybridCache, opts *Options) ml.Tensor {
residual := hiddenState
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.Operator.Forward(ctx, hiddenState, positions, cache, layer, opts)
if outputs != nil {
hiddenState = hiddenState.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
return hiddenState.Add(ctx, residual)
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return m.applyRotaryPositionEmbeddings(ctx, key, shift), nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
for i, layer := range m.Layers {
m.Cache.SetLayer(i)
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = batch.Outputs
}
hiddenState = layer.Forward(ctx, i, hiddenState, positions, outputs, m.Cache.(*HybridCache), &m.Options)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
return m.Output.Forward(ctx, hiddenState), nil
}
func init() {
model.Register("lfm2", New)
}

View File

@@ -1,50 +0,0 @@
package lfm2
import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
)
type shortConvKernel struct {
Weight ml.Tensor `gguf:"weight"`
}
// ShortConv implements the LFM2 short-convolution block (GGML_OP_SSM_CONV) with a recurrent
// state stored in the HybridCache.
type ShortConv struct {
Conv *shortConvKernel `gguf:"shortconv.conv"`
InProj *nn.Linear `gguf:"shortconv.in_proj"`
OutProj *nn.Linear `gguf:"shortconv.out_proj"`
}
func (sc *ShortConv) Forward(ctx ml.Context, hiddenStates ml.Tensor, _ ml.Tensor, cache *HybridCache, layer int, opts *Options) ml.Tensor {
nSeqs := cache.numSeqs()
seqTokens := cache.seqTokens()
hiddenSize := hiddenStates.Dim(0)
if nSeqs <= 0 || seqTokens <= 0 || hiddenStates.Dim(1) != nSeqs*seqTokens {
panic("lfm2: unsupported batch layout for shortconv")
}
bcx := sc.InProj.Forward(ctx, hiddenStates).Reshape(ctx, 3*hiddenSize, seqTokens, nSeqs)
elementSize := bcx.Stride(0)
b := bcx.View(ctx, 0*hiddenSize*elementSize, hiddenSize, bcx.Stride(1), seqTokens, bcx.Stride(2), nSeqs)
c := bcx.View(ctx, 1*hiddenSize*elementSize, hiddenSize, bcx.Stride(1), seqTokens, bcx.Stride(2), nSeqs)
x := bcx.View(ctx, 2*hiddenSize*elementSize, hiddenSize, bcx.Stride(1), seqTokens, bcx.Stride(2), nSeqs)
bx := b.Mul(ctx, x).Permute(ctx, 1, 0, 2, 3)
state, err := cache.ConvState(ctx, layer)
if err != nil {
panic("lfm2: failed to get conv state: " + err.Error())
}
sx := state.Concat(ctx, bx, 0)
convOut := sx.SSMConv(ctx, sc.Conv.Weight)
y := c.Mul(ctx, convOut)
dConv := sx.Dim(0) - seqTokens
cache.UpdateConvState(ctx, layer, sx.Slice(ctx, 0, sx.Dim(0)-dConv, sx.Dim(0), 1))
return sc.OutProj.Forward(ctx, y.Reshape(ctx, hiddenSize, seqTokens*nSeqs))
}

View File

@@ -7,9 +7,7 @@ import (
_ "github.com/ollama/ollama/model/models/gemma2"
_ "github.com/ollama/ollama/model/models/gemma3"
_ "github.com/ollama/ollama/model/models/gemma3n"
_ "github.com/ollama/ollama/model/models/glm4moelite"
_ "github.com/ollama/ollama/model/models/gptoss"
_ "github.com/ollama/ollama/model/models/lfm2"
_ "github.com/ollama/ollama/model/models/llama"
_ "github.com/ollama/ollama/model/models/llama4"
_ "github.com/ollama/ollama/model/models/mistral3"

View File

@@ -1,410 +0,0 @@
package parsers
import (
"context"
"encoding/xml"
"fmt"
"log/slog"
"strings"
"unicode"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/logutil"
)
type glm46ParserState int
const (
glm46ParserState_LookingForThinkingOpen glm46ParserState = iota
glm46ParserState_ThinkingStartedEatingWhitespace
glm46ParserState_CollectingThinking
glm46ParserState_ThinkingDoneEatingWhitespace
glm46ParserState_CollectingContent
glm46ParserState_ToolStartedEatingWhitespace
glm46ParserState_CollectingToolContent
)
const (
glm46ThinkingOpenTag = "<think>"
glm46ThinkingCloseTag = "</think>"
glm46ToolOpenTag = "<tool_call>"
glm46ToolCloseTag = "</tool_call>"
)
type GLM46Parser struct {
state glm46ParserState
buffer strings.Builder
tools []api.Tool
}
func (p *GLM46Parser) HasToolSupport() bool {
return true
}
func (p *GLM46Parser) HasThinkingSupport() bool {
return true
}
// func (p *GLM46Parser) Init(tools []api.Tool, lastMessage *api.Message) []api.Tool {
func (p *GLM46Parser) Init(tools []api.Tool, lastMessage *api.Message, thinkValue *api.ThinkValue) []api.Tool {
p.tools = tools
return tools
}
type glm46Event interface {
isGLM46Event()
}
type glm46EventContent struct {
content string
}
func (glm46EventContent) isGLM46Event() {}
type glm46EventRawToolCall struct {
raw string
}
func (glm46EventRawToolCall) isGLM46Event() {}
type glm46EventThinkingContent struct {
content string
}
func (glm46EventThinkingContent) isGLM46Event() {}
func (p *GLM46Parser) Add(s string, done bool) (content string, thinking string, calls []api.ToolCall, err error) {
p.buffer.WriteString(s)
events := p.parseEvents()
var toolCalls []api.ToolCall
var contentSb strings.Builder
var thinkingSb strings.Builder
for _, event := range events {
switch event := event.(type) {
case glm46EventRawToolCall:
toolCall, err := parseGLM46ToolCall(event, p.tools)
if err != nil {
slog.Warn("glm-4.6 tool call parsing failed", "error", err)
return "", "", nil, err
}
toolCalls = append(toolCalls, toolCall)
case glm46EventThinkingContent:
thinkingSb.WriteString(event.content)
case glm46EventContent:
// TODO(drifkin): if the same turn contains multiple interleaved content
// events, we naively append them together here.
contentSb.WriteString(event.content)
}
}
return contentSb.String(), thinkingSb.String(), toolCalls, nil
}
func (p *GLM46Parser) parseEvents() []glm46Event {
var all []glm46Event
keepLooping := true
for keepLooping {
var events []glm46Event
events, keepLooping = p.eat()
if len(events) > 0 {
all = append(all, events...)
}
}
if len(all) > 0 {
slog.Log(context.TODO(), logutil.LevelTrace, "glm-4.6 events parsed", "events", all, "state", p.state, "buffer", p.buffer.String())
}
return all
}
// eatLeadingWhitespaceAndTransitionTo consumes leading whitespace from the buffer
// and transitions to the next state. Returns (nil, false) if only whitespace remains
// in the buffer (needs more input), or (nil, true) if we successfully transitioned.
func (p *GLM46Parser) eatLeadingWhitespaceAndTransitionTo(nextState glm46ParserState) ([]glm46Event, bool) {
trimmed := strings.TrimLeftFunc(p.buffer.String(), unicode.IsSpace)
p.buffer.Reset()
if trimmed == "" {
return nil, false // Still only whitespace, keep waiting for more input
}
p.state = nextState
p.buffer.WriteString(trimmed)
return nil, true // Successfully transitioned
}
// glm46SplitAtTag splits the buffer at the given tag, returns the content before (trimmed of trailing whitespace),
// the content after (optionally trimmed of leading whitespace), and updates the buffer
func glm46SplitAtTag(p *GLM46Parser, tag string, trimAfter bool) (string, string) {
split := strings.SplitN(p.buffer.String(), tag, 2)
before := split[0]
before = strings.TrimRightFunc(before, unicode.IsSpace)
after := split[1]
if trimAfter {
after = strings.TrimLeftFunc(after, unicode.IsSpace)
}
p.buffer.Reset()
p.buffer.WriteString(after)
return before, after
}
func (p *GLM46Parser) eat() ([]glm46Event, bool) {
var events []glm46Event
switch p.state {
case glm46ParserState_LookingForThinkingOpen:
trimmed := strings.TrimLeftFunc(p.buffer.String(), unicode.IsSpace)
if strings.HasPrefix(trimmed, glm46ThinkingOpenTag) {
// Found <think> opening tag
after := strings.TrimPrefix(trimmed, glm46ThinkingOpenTag)
after = strings.TrimLeftFunc(after, unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(after)
if after == "" {
p.state = glm46ParserState_ThinkingStartedEatingWhitespace
} else {
p.state = glm46ParserState_CollectingThinking
}
return events, true
} else if strings.HasPrefix(glm46ThinkingOpenTag, trimmed) {
// Partial opening tag seen, keep accumulating
return events, false
} else if trimmed == "" {
// Only whitespace, keep accumulating
return events, false
} else {
// No thinking tag found, skip to content collection
p.state = glm46ParserState_CollectingContent
// Don't trim - we want to keep the original content
return events, true
}
case glm46ParserState_ThinkingStartedEatingWhitespace:
return p.eatLeadingWhitespaceAndTransitionTo(glm46ParserState_CollectingThinking)
case glm46ParserState_CollectingThinking:
acc := p.buffer.String()
if strings.Contains(acc, glm46ThinkingCloseTag) {
thinking, remaining := glm46SplitAtTag(p, glm46ThinkingCloseTag, true)
if len(thinking) > 0 {
events = append(events, glm46EventThinkingContent{content: thinking})
}
if remaining == "" {
p.state = glm46ParserState_ThinkingDoneEatingWhitespace
} else {
p.state = glm46ParserState_CollectingContent
}
return events, true
} else if overlapLen := overlap(acc, glm46ThinkingCloseTag); overlapLen > 0 {
// Partial closing tag - withhold it along with any trailing whitespace before it
beforePartialTag := acc[:len(acc)-overlapLen]
trailingWhitespaceLen := trailingWhitespaceLen(beforePartialTag)
ambiguousStart := len(beforePartialTag) - trailingWhitespaceLen
unambiguous := acc[:ambiguousStart]
ambiguous := acc[ambiguousStart:]
p.buffer.Reset()
p.buffer.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, glm46EventThinkingContent{content: unambiguous})
}
return events, false
} else {
// Pure thinking content - withhold trailing whitespace (might precede closing tag)
whitespaceLen := trailingWhitespaceLen(acc)
ambiguousStart := len(acc) - whitespaceLen
unambiguous := acc[:ambiguousStart]
ambiguous := acc[ambiguousStart:]
p.buffer.Reset()
p.buffer.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, glm46EventThinkingContent{content: unambiguous})
}
return events, false
}
case glm46ParserState_ThinkingDoneEatingWhitespace:
return p.eatLeadingWhitespaceAndTransitionTo(glm46ParserState_CollectingContent)
case glm46ParserState_CollectingContent:
if strings.Contains(p.buffer.String(), glm46ToolOpenTag) {
before, after := glm46SplitAtTag(p, glm46ToolOpenTag, true)
if len(before) > 0 {
events = append(events, glm46EventContent{content: before})
}
if after == "" {
p.state = glm46ParserState_ToolStartedEatingWhitespace
} else {
p.state = glm46ParserState_CollectingToolContent
}
return events, true
} else if overlapLen := overlap(p.buffer.String(), glm46ToolOpenTag); overlapLen > 0 {
beforePartialTag := p.buffer.String()[:len(p.buffer.String())-overlapLen]
trailingWhitespaceLen := trailingWhitespaceLen(beforePartialTag)
ambiguousStart := len(beforePartialTag) - trailingWhitespaceLen
unambiguous := p.buffer.String()[:ambiguousStart]
ambiguous := p.buffer.String()[ambiguousStart:]
p.buffer.Reset()
p.buffer.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, glm46EventContent{content: unambiguous})
}
return events, false
} else {
whitespaceLen := trailingWhitespaceLen(p.buffer.String())
ambiguousStart := len(p.buffer.String()) - whitespaceLen
unambiguous := p.buffer.String()[:ambiguousStart]
ambiguous := p.buffer.String()[ambiguousStart:]
p.buffer.Reset()
p.buffer.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, glm46EventContent{content: unambiguous})
}
return events, false
}
case glm46ParserState_ToolStartedEatingWhitespace:
return p.eatLeadingWhitespaceAndTransitionTo(glm46ParserState_CollectingToolContent)
case glm46ParserState_CollectingToolContent:
acc := p.buffer.String()
if strings.Contains(acc, glm46ToolCloseTag) {
toolContent, _ := glm46SplitAtTag(p, glm46ToolCloseTag, true)
if len(toolContent) == 0 {
slog.Warn("glm46 tool call closing tag found but no content before it")
}
events = append(events, glm46EventRawToolCall{raw: toolContent})
p.state = glm46ParserState_CollectingContent
return events, true
} else {
// Keep accumulating - tool calls are not streamed
// We just wait for the closing tag
return events, false
}
default:
panic("unreachable")
}
}
// GLMToolCallXML represents the structure of a GLM-4.6 tool call for XML parsing
type GLMToolCallXML struct {
XMLName xml.Name `xml:"tool_call"`
Content string `xml:",chardata"` // Function name (text nodes between tags)
Keys []string `xml:"arg_key"` // All arg_key elements in document order
Values []string `xml:"arg_value"` // All arg_value elements in document order
}
// escapeGLM46Content escapes XML entities in text content while preserving arg_key/arg_value tags
func escapeGLM46Content(s string) string {
var result strings.Builder
inTag := false
for i := range len(s) {
ch := s[i]
if ch == '<' {
// Check if this is a known tag
if strings.HasPrefix(s[i:], "<arg_key>") ||
strings.HasPrefix(s[i:], "</arg_key>") ||
strings.HasPrefix(s[i:], "<arg_value>") ||
strings.HasPrefix(s[i:], "</arg_value>") {
inTag = true
}
}
if inTag {
result.WriteByte(ch)
if ch == '>' {
inTag = false
}
} else {
// Escape special characters in text content
switch ch {
case '&':
result.WriteString("&amp;")
case '<':
result.WriteString("&lt;")
case '>':
result.WriteString("&gt;")
default:
result.WriteByte(ch)
}
}
}
return result.String()
}
func parseGLM46ToolCall(raw glm46EventRawToolCall, tools []api.Tool) (api.ToolCall, error) {
// Escape any unescaped entities in text content
// We need to escape text between tags, but not the tags themselves
escaped := escapeGLM46Content(raw.raw)
// Wrap the content in a root element to make it valid XML
xmlString := "<tool_call>" + escaped + "</tool_call>"
// Parse XML into struct
var parsed GLMToolCallXML
if err := xml.Unmarshal([]byte(xmlString), &parsed); err != nil {
return api.ToolCall{}, fmt.Errorf("failed to parse XML: %w", err)
}
// Extract and trim function name
functionName := strings.TrimSpace(parsed.Content)
if functionName == "" {
return api.ToolCall{}, fmt.Errorf("empty function name")
}
// Verify keys and values are paired correctly
if len(parsed.Keys) != len(parsed.Values) {
return api.ToolCall{}, fmt.Errorf("mismatched arg_key and arg_value counts: %d keys, %d values", len(parsed.Keys), len(parsed.Values))
}
// Find the matching tool to get parameter types
var matchedTool *api.Tool
for i := range tools {
if tools[i].Function.Name == functionName {
matchedTool = &tools[i]
break
}
}
// Build arguments map by pairing keys and values
toolCall := api.ToolCall{
Function: api.ToolCallFunction{
Name: functionName,
Arguments: api.NewToolCallFunctionArguments(),
},
}
for i := range parsed.Keys {
key := strings.TrimSpace(parsed.Keys[i])
value := parsed.Values[i] // Don't trim here - parseValue handles it
// Look up parameter type
var paramType api.PropertyType
if matchedTool != nil && matchedTool.Function.Parameters.Properties != nil {
if prop, ok := matchedTool.Function.Parameters.Properties.Get(key); ok {
// Handle anyOf by collecting all types from the union
if len(prop.AnyOf) > 0 {
for _, anyOfProp := range prop.AnyOf {
paramType = append(paramType, anyOfProp.Type...)
}
} else {
paramType = prop.Type
}
}
}
// Parse value with type coercion
toolCall.Function.Arguments.Set(key, parseValue(value, paramType))
}
return toolCall, nil
}

View File

@@ -1,862 +0,0 @@
package parsers
import (
"encoding/xml"
"reflect"
"testing"
"github.com/ollama/ollama/api"
)
func TestGLM46ParserStreaming(t *testing.T) {
type step struct {
input string
wantEvents []glm46Event
}
cases := []struct {
desc string
steps []step
only bool
}{
{
desc: "leading whitespace before think tag",
steps: []step{
{
input: " \n\t ",
wantEvents: []glm46Event{},
},
{
input: "<think>thinking</think>",
wantEvents: []glm46Event{glm46EventThinkingContent{content: "thinking"}},
},
},
},
{
desc: "think tag with whitespace inside",
steps: []step{
{
input: "<think> \n thinking content \n </think>regular content",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: "thinking content"},
glm46EventContent{content: "regular content"},
},
},
},
},
{
desc: "tool call with leading whitespace after opening tag",
steps: []step{
{
input: "<think></think><tool_call> \n test \n </tool_call>",
wantEvents: []glm46Event{
glm46EventRawToolCall{raw: "test"},
},
},
},
},
{
desc: "simple thinking then content",
steps: []step{
{
input: "<think>I am thinking</think>Now I respond",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: "I am thinking"},
glm46EventContent{content: "Now I respond"},
},
},
},
},
{
desc: "streamed thinking content",
steps: []step{
{
input: "<think>hello",
wantEvents: []glm46Event{glm46EventThinkingContent{content: "hello"}},
},
{
input: " world",
wantEvents: []glm46Event{glm46EventThinkingContent{content: " world"}},
},
{
input: "</think>content",
wantEvents: []glm46Event{
glm46EventContent{content: "content"},
},
},
},
},
{
desc: "content before tool call",
steps: []step{
{
input: "<think>Let me call a tool</think>here is text<tool_call>",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: "Let me call a tool"},
glm46EventContent{content: "here is text"},
},
},
{
input: "function_name\n<arg_key>param</arg_key>\n<arg_value>value</arg_value>\n</tool_call>",
wantEvents: []glm46Event{
glm46EventRawToolCall{raw: "function_name\n<arg_key>param</arg_key>\n<arg_value>value</arg_value>"},
},
},
},
},
{
desc: "tool call with content after",
steps: []step{
{
input: "<think>thinking</think><tool_call>test</tool_call>after tool",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: "thinking"},
glm46EventRawToolCall{raw: "test"},
glm46EventContent{content: "after tool"},
},
},
},
},
{
desc: "trailing whitespace between content and tool call is trimmed",
steps: []step{
{
input: "<think>thinking</think>content\n \t <tool_call>test</tool_call>",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: "thinking"},
glm46EventContent{content: "content"},
glm46EventRawToolCall{raw: "test"},
},
},
},
},
{
desc: "trailing whitespace between tool call and content is trimmed",
steps: []step{
{
input: "<think>think</think><tool_call>test</tool_call>\n\t after",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: "think"},
glm46EventRawToolCall{raw: "test"},
glm46EventContent{content: "after"},
},
},
},
},
{
desc: "split thinking close tag",
steps: []step{
{
input: "<think>thinking content</th",
wantEvents: []glm46Event{glm46EventThinkingContent{content: "thinking content"}},
},
{
input: "ink>after",
wantEvents: []glm46Event{
glm46EventContent{content: "after"},
},
},
},
},
{
desc: "split thinking open tag",
steps: []step{
{
input: " <thi",
wantEvents: []glm46Event{},
},
{
input: "nk>content</think>",
wantEvents: []glm46Event{glm46EventThinkingContent{content: "content"}},
},
},
},
{
desc: "split tool open tag",
steps: []step{
{
input: "<think>think</think>content<tool",
wantEvents: []glm46Event{glm46EventThinkingContent{content: "think"}, glm46EventContent{content: "content"}},
},
{
input: "_call>inside",
wantEvents: []glm46Event{},
},
{
input: "</tool_call>",
wantEvents: []glm46Event{
glm46EventRawToolCall{raw: "inside"},
},
},
},
},
{
desc: "partial thinking close tag fakeout",
steps: []step{
{
input: "<think>content</th",
wantEvents: []glm46Event{glm46EventThinkingContent{content: "content"}},
},
{
input: "ought more",
wantEvents: []glm46Event{glm46EventThinkingContent{content: "</thought more"}},
},
},
},
{
desc: "partial thinking open tag fakeout",
steps: []step{
{
input: " <thi",
wantEvents: []glm46Event{},
},
{
input: "nking is fun",
wantEvents: []glm46Event{
glm46EventContent{content: " <thinking is fun"},
},
},
},
},
{
desc: "partial tool open tag fakeout",
steps: []step{
{
input: "<think></think>content\n<tool",
wantEvents: []glm46Event{
glm46EventContent{content: "content"},
},
},
{
input: " fakeout",
wantEvents: []glm46Event{
glm46EventContent{content: "\n<tool fakeout"},
},
},
},
},
{
desc: "partial tool close tag fakeout",
steps: []step{
{
input: "<think></think><tool_call>content</tool",
wantEvents: []glm46Event{},
},
{
input: " fakeout",
wantEvents: []glm46Event{},
},
{
input: "</tool_call>",
wantEvents: []glm46Event{
glm46EventRawToolCall{raw: "content</tool fakeout"},
},
},
},
},
{
desc: "empty thinking tag",
steps: []step{
{
input: "<think></think>content here",
wantEvents: []glm46Event{
glm46EventContent{content: "content here"},
},
},
},
},
{
desc: "multiple tool calls in sequence",
steps: []step{
{
input: "<think>think</think><tool_call>first</tool_call>between<tool_call>second</tool_call>end",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: "think"},
glm46EventRawToolCall{raw: "first"},
glm46EventContent{content: "between"},
glm46EventRawToolCall{raw: "second"},
glm46EventContent{content: "end"},
},
},
},
},
{
desc: "no thinking tag - direct to content",
steps: []step{
{
input: "just content here",
wantEvents: []glm46Event{
glm46EventContent{content: "just content here"},
},
},
},
},
{
desc: "no thinking tag - skip to content then tool call",
steps: []step{
{
input: "Here's the answer:<tool_call>test</tool_call>done",
wantEvents: []glm46Event{
glm46EventContent{content: "Here's the answer:"},
glm46EventRawToolCall{raw: "test"},
glm46EventContent{content: "done"},
},
},
},
},
{
desc: "no thinking tag - whitespace preserved when no tags",
steps: []step{
{
input: " \n content with leading whitespace",
wantEvents: []glm46Event{
glm46EventContent{content: " \n content with leading whitespace"},
},
},
},
},
{
desc: "whitespace after think close tag gets eaten",
steps: []step{
{
input: "<think>thinking</think> \n\t content",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: "thinking"},
glm46EventContent{content: "content"},
},
},
},
},
{
desc: "whitespace after tool_call close tag gets eaten",
steps: []step{
{
input: "<think></think><tool_call>test</tool_call> \n\t content",
wantEvents: []glm46Event{
glm46EventRawToolCall{raw: "test"},
glm46EventContent{content: "content"},
},
},
},
},
{
desc: "thinking content withholds trailing whitespace (single chunk)",
steps: []step{
{
input: "<think>thinking content ",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: "thinking content"},
},
},
{
input: "</think>after",
wantEvents: []glm46Event{
glm46EventContent{content: "after"},
},
},
},
},
{
desc: "thinking content withholds trailing whitespace with newlines",
steps: []step{
{
input: "<think>thinking\n\n ",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: "thinking"},
},
},
{
input: "</think>content",
wantEvents: []glm46Event{
glm46EventContent{content: "content"},
},
},
},
},
{
desc: "thinking content trailing whitespace emitted when more content arrives",
steps: []step{
{
input: "<think>thinking ",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: "thinking"},
},
},
{
input: "more thinking",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: " more thinking"},
},
},
{
input: "</think>",
wantEvents: []glm46Event{},
},
},
},
{
desc: "thinking content withholds trailing whitespace before partial close tag",
steps: []step{
{
input: "<think>thinking </th",
wantEvents: []glm46Event{
glm46EventThinkingContent{content: "thinking"},
},
},
{
input: "ink>content",
wantEvents: []glm46Event{
glm46EventContent{content: "content"},
},
},
},
},
}
anyOnlies := false
for _, tc := range cases {
if tc.only {
anyOnlies = true
}
}
for _, tc := range cases {
if anyOnlies && !tc.only {
continue
}
t.Run(tc.desc, func(t *testing.T) {
parser := GLM46Parser{}
for i, step := range tc.steps {
parser.buffer.WriteString(step.input)
gotEvents := parser.parseEvents()
if len(gotEvents) == 0 && len(step.wantEvents) == 0 {
// avoid deep equal on empty vs. nil slices
continue
}
if !reflect.DeepEqual(gotEvents, step.wantEvents) {
t.Errorf("step %d: input %q: got events %#v, want %#v", i, step.input, gotEvents, step.wantEvents)
}
}
})
}
}
// TestGLMToolCallXMLOrderPreservation verifies that xml.Unmarshal preserves
// document order when collecting multiple elements with the same tag name into slices.
// This is a critical assumption for the GLM-4.6 parser's struct-based approach.
func TestGLMToolCallXMLOrderPreservation(t *testing.T) {
testCases := []struct {
name string
xml string
wantKeys []string
wantValues []string
}{
{
name: "alternating keys and values",
xml: `<tool_call>
function_name
<arg_key>first</arg_key>
<arg_value>A</arg_value>
<arg_key>second</arg_key>
<arg_value>B</arg_value>
<arg_key>third</arg_key>
<arg_value>C</arg_value>
</tool_call>`,
wantKeys: []string{"first", "second", "third"},
wantValues: []string{"A", "B", "C"},
},
{
name: "all keys then all values",
xml: `<tool_call>
function_name
<arg_key>key1</arg_key>
<arg_key>key2</arg_key>
<arg_key>key3</arg_key>
<arg_value>val1</arg_value>
<arg_value>val2</arg_value>
<arg_value>val3</arg_value>
</tool_call>`,
wantKeys: []string{"key1", "key2", "key3"},
wantValues: []string{"val1", "val2", "val3"},
},
{
name: "mixed grouping",
xml: `<tool_call>
function_name
<arg_key>a</arg_key>
<arg_value>1</arg_value>
<arg_key>b</arg_key>
<arg_key>c</arg_key>
<arg_value>2</arg_value>
<arg_value>3</arg_value>
</tool_call>`,
wantKeys: []string{"a", "b", "c"},
wantValues: []string{"1", "2", "3"},
},
{
name: "reverse order - all values then all keys",
xml: `<tool_call>
function_name
<arg_value>X</arg_value>
<arg_value>Y</arg_value>
<arg_value>Z</arg_value>
<arg_key>x</arg_key>
<arg_key>y</arg_key>
<arg_key>z</arg_key>
</tool_call>`,
wantKeys: []string{"x", "y", "z"},
wantValues: []string{"X", "Y", "Z"},
},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
var parsed GLMToolCallXML
err := xml.Unmarshal([]byte(tc.xml), &parsed)
if err != nil {
t.Fatalf("failed to unmarshal XML: %v", err)
}
if !reflect.DeepEqual(parsed.Keys, tc.wantKeys) {
t.Errorf("Keys order mismatch:\ngot: %v\nwant: %v", parsed.Keys, tc.wantKeys)
}
if !reflect.DeepEqual(parsed.Values, tc.wantValues) {
t.Errorf("Values order mismatch:\ngot: %v\nwant: %v", parsed.Values, tc.wantValues)
}
})
}
}
func TestGLM46ToolCallParsing(t *testing.T) {
type testCase struct {
name string
rawToolCall string
tools []api.Tool
wantToolCall api.ToolCall
}
cases := []testCase{
{
name: "simple tool call",
tools: []api.Tool{},
rawToolCall: `get-current-weather
<arg_key>location</arg_key>
<arg_value>New York, NY</arg_value>
<arg_key>unit</arg_key>
<arg_value>celsius</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "get-current-weather",
Arguments: args(`{"location": "New York, NY", "unit": "celsius"}`),
},
},
},
{
name: "tool call with typed parameters",
tools: []api.Tool{
tool("calculate", map[string]api.ToolProperty{
"x": {Type: api.PropertyType{"number"}},
"y": {Type: api.PropertyType{"integer"}},
"enabled": {Type: api.PropertyType{"boolean"}},
"items": {Type: api.PropertyType{"array"}},
}),
},
rawToolCall: `calculate
<arg_key>x</arg_key>
<arg_value>3.14</arg_value>
<arg_key>y</arg_key>
<arg_value>42</arg_value>
<arg_key>enabled</arg_key>
<arg_value>true</arg_value>
<arg_key>items</arg_key>
<arg_value>["a", "b", "c"]</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "calculate",
Arguments: args(`{"enabled": true, "items": ["a", "b", "c"], "x": 3.14, "y": 42}`),
},
},
},
{
name: "function name with whitespace",
tools: []api.Tool{},
rawToolCall: ` get-weather
<arg_key>city</arg_key>
<arg_value>Paris</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "get-weather",
Arguments: args(`{"city": "Paris"}`),
},
},
},
{
name: "values with special characters",
tools: []api.Tool{},
rawToolCall: `execute-command
<arg_key>command</arg_key>
<arg_value>ls && echo "done"</arg_value>
<arg_key>message</arg_key>
<arg_value>a < b and c > d</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "execute-command",
Arguments: args(`{"command": "ls && echo \"done\"", "message": "a < b and c > d"}`),
},
},
},
{
name: "unicode in function names and values",
tools: []api.Tool{},
rawToolCall: `获取天气
<arg_key>城市</arg_key>
<arg_value>北京</arg_value>
<arg_key>message</arg_key>
<arg_value>Hello! 你好! 🌟</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "获取天气",
Arguments: args(`{"message": "Hello! 你好! 🌟", "城市": "北京"}`),
},
},
},
{
name: "empty value",
tools: []api.Tool{},
rawToolCall: `test-function
<arg_key>param1</arg_key>
<arg_value></arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "test-function",
Arguments: args(`{"param1": ""}`),
},
},
},
{
name: "special chars in arg_key names",
tools: []api.Tool{},
rawToolCall: `test-function
<arg_key>param<1></arg_key>
<arg_value>value1</arg_value>
<arg_key>a&b</arg_key>
<arg_value>value2</arg_value>
<arg_key>x>y</arg_key>
<arg_value>value3</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "test-function",
Arguments: args(`{"a&b": "value2", "param<1>": "value1", "x>y": "value3"}`),
},
},
},
{
name: "multiple consecutive ampersands",
tools: []api.Tool{},
rawToolCall: `test-function
<arg_key>param</arg_key>
<arg_value>test &&&& more</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "test-function",
Arguments: args(`{"param": "test &&&& more"}`),
},
},
},
{
name: "mixed special chars together",
tools: []api.Tool{},
rawToolCall: `test-function
<arg_key>param</arg_key>
<arg_value><>&<>&</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "test-function",
Arguments: args(`{"param": "<>&<>&"}`),
},
},
},
{
name: "newlines and tabs in parameter values",
tools: []api.Tool{},
rawToolCall: `test-function
<arg_key>multiline</arg_key>
<arg_value>line1
indented line2
line3</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "test-function",
Arguments: args(`{"multiline": "line1\n\tindented line2\nline3"}`),
},
},
},
{
name: "single and double quotes in values",
tools: []api.Tool{},
rawToolCall: `test-function
<arg_key>quotes</arg_key>
<arg_value>She said "Hello's there!"</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "test-function",
Arguments: args(`{"quotes": "She said \"Hello's there!\""}`),
},
},
},
{
name: "CDATA-like content that should be treated as text",
tools: []api.Tool{},
rawToolCall: `test-function
<arg_key>cdata</arg_key>
<arg_value><![CDATA[not actual cdata]]></arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "test-function",
Arguments: args(`{"cdata": "<![CDATA[not actual cdata]]>"}`),
},
},
},
{
name: "all special XML entities",
tools: []api.Tool{},
rawToolCall: `test-function
<arg_key>entities</arg_key>
<arg_value>&lt;&gt;&amp;&apos;&quot;</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "test-function",
Arguments: args(`{"entities": "&lt;&gt;&amp;&apos;&quot;"}`),
},
},
},
{
name: "order preservation with multiple parameters",
tools: []api.Tool{},
rawToolCall: `test-function
<arg_key>first</arg_key>
<arg_value>value1</arg_value>
<arg_key>second</arg_key>
<arg_value>value2</arg_value>
<arg_key>third</arg_key>
<arg_value>value3</arg_value>
<arg_key>fourth</arg_key>
<arg_value>value4</arg_value>
<arg_key>fifth</arg_key>
<arg_value>value5</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "test-function",
Arguments: args(`{"fifth": "value5", "first": "value1", "fourth": "value4", "second": "value2", "third": "value3"}`),
},
},
},
{
name: "order preservation with identical key names but different positions",
tools: []api.Tool{},
rawToolCall: `test-function
<arg_key>param</arg_key>
<arg_value>first occurrence</arg_value>
<arg_key>other</arg_key>
<arg_value>middle</arg_value>
<arg_key>param</arg_key>
<arg_value>second occurrence</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "test-function",
// Later occurrence should overwrite earlier one
Arguments: args(`{"other": "middle", "param": "second occurrence"}`),
},
},
},
{
name: "array with mixed types",
tools: []api.Tool{
tool("process", map[string]api.ToolProperty{
"items": {Type: api.PropertyType{"array"}},
}),
},
rawToolCall: `process
<arg_key>items</arg_key>
<arg_value>[1, "hello", true, null]</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "process",
Arguments: args(`{"items": [1, "hello", true, null]}`),
},
},
},
{
name: "empty array",
tools: []api.Tool{
tool("test", map[string]api.ToolProperty{
"tags": {Type: api.PropertyType{"array"}},
}),
},
rawToolCall: `test
<arg_key>tags</arg_key>
<arg_value>[]</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "test",
Arguments: args(`{"tags": []}`),
},
},
},
{
name: "anyOf array or string - with array of objects",
tools: []api.Tool{
tool("TodoWrite", map[string]api.ToolProperty{
"todos": {AnyOf: []api.ToolProperty{{Type: api.PropertyType{"array"}}, {Type: api.PropertyType{"string"}}}},
}),
},
// <tool_call>TodoWrite
// <arg_key>todos</arg_key>
// <arg_value>[{"content": "Set up HTML file and basic structure", "id": "1", "priority": "high", "status": "pending"}, {"content": "Create 3D scene with Three.js", "id": "2", "priority": "high", "status": "pending"}, {"content": "Implement terrain generation with blocks", "id": "3", "priority": "high", "status": "pending"}, {"content": "Add player controls (movement, camera)", "id": "4", "priority": "high", "status": "pending"}, {"content": "Implement block placement/destruction", "id": "5", "priority": "medium", "status": "pending"}, {"content": "Add lighting and textures", "id": "6", "priority": "medium", "status": "pending"}, {"content": "Test and optimize performance", "id": "7", "priority": "low", "status": "pending"}]</arg_value>
// </tool_call>
rawToolCall: `TodoWrite
<arg_key>todos</arg_key>
<arg_value>[{"content": "task 1", "status": "pending", "priority": "high", "id": "1"}, {"content": "task 2", "status": "completed", "priority": "low", "id": "2"}]</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "TodoWrite",
Arguments: args(`{"todos": [{"content": "task 1", "id": "1", "priority": "high", "status": "pending"}, {"content": "task 2", "id": "2", "priority": "low", "status": "completed"}]}`),
},
},
},
{
name: "anyOf array or string - with plain string",
tools: []api.Tool{
tool("TodoWrite", map[string]api.ToolProperty{
"todos": {Type: api.PropertyType{"array", "string"}},
}),
},
rawToolCall: `TodoWrite
<arg_key>todos</arg_key>
<arg_value>Error: could not load todos</arg_value>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "TodoWrite",
Arguments: args(`{"todos": "Error: could not load todos"}`),
},
},
},
}
for i, tc := range cases {
t.Run(tc.name, func(t *testing.T) {
gotToolCall, err := parseGLM46ToolCall(glm46EventRawToolCall{raw: tc.rawToolCall}, tc.tools)
if err != nil {
t.Errorf("case %d (%s): %v", i, tc.name, err)
}
if !toolCallEqual(gotToolCall, tc.wantToolCall) {
t.Errorf("case %d (%s): got tool call %#v, want %#v", i, tc.name, gotToolCall, tc.wantToolCall)
}
})
}
}

View File

@@ -1,20 +0,0 @@
package parsers
import "github.com/ollama/ollama/api"
// GLM47Parser extends GLM46Parser with thinking-aware initialization.
// GLM-4.7's prompt ends with <think> when thinking is enabled, so the parser
// must start in CollectingThinking state (the model outputs thinking content directly).
type GLM47Parser struct {
GLM46Parser
}
func (p *GLM47Parser) Init(tools []api.Tool, lastMessage *api.Message, thinkValue *api.ThinkValue) []api.Tool {
p.tools = tools
// When thinking is enabled (nil or true), the prompt ends with <think>,
// so model output starts directly with thinking content (no opening tag).
if thinkValue == nil || thinkValue.Bool() {
p.state = glm46ParserState_CollectingThinking
}
return tools
}

View File

@@ -1,99 +0,0 @@
package parsers
import (
"reflect"
"testing"
"github.com/ollama/ollama/api"
)
func TestGLM47ParserAdd(t *testing.T) {
parser := GLM47Parser{}
parser.Init([]api.Tool{
tool("calculate", map[string]api.ToolProperty{
"count": {Type: api.PropertyType{"integer"}},
"enabled": {Type: api.PropertyType{"boolean"}},
}),
}, nil, nil)
// When thinking is enabled (thinkValue nil), the prompt ends with <think>,
// so the model output does NOT include the opening <think> tag.
content, thinking, calls, err := parser.Add("plan</think>Answer<tool_call>calculate<arg_key>count</arg_key><arg_value>3</arg_value><arg_key>enabled</arg_key><arg_value>true</arg_value></tool_call>", true)
if err != nil {
t.Fatalf("parse failed: %v", err)
}
if thinking != "plan" {
t.Fatalf("expected thinking 'plan', got %q", thinking)
}
if content != "Answer" {
t.Fatalf("expected content 'Answer', got %q", content)
}
if len(calls) != 1 {
t.Fatalf("expected 1 tool call, got %d", len(calls))
}
expectedArgs := args(`{"count": 3, "enabled": true}`)
if !toolCallEqual(api.ToolCall{Function: api.ToolCallFunction{Arguments: calls[0].Function.Arguments}}, api.ToolCall{Function: api.ToolCallFunction{Arguments: expectedArgs}}) {
t.Fatalf("expected args %#v, got %#v", expectedArgs.ToMap(), calls[0].Function.Arguments.ToMap())
}
}
func TestGLM47ParserNoThinkingContent(t *testing.T) {
parser := GLM47Parser{}
parser.Init(nil, nil, nil)
// When thinking is enabled but model has no thinking to output,
// it should output </think> immediately followed by content.
content, thinking, calls, err := parser.Add("</think>Plain answer", true)
if err != nil {
t.Fatalf("parse failed: %v", err)
}
if thinking != "" {
t.Fatalf("expected empty thinking, got %q", thinking)
}
if content != "Plain answer" {
t.Fatalf("expected content 'Plain answer', got %q", content)
}
if len(calls) != 0 {
t.Fatalf("expected no tool calls, got %d", len(calls))
}
}
func TestGLM47ParserThinkingDisabled(t *testing.T) {
parser := GLM47Parser{}
// When thinking is disabled, parser stays in LookingForThinkingOpen state
parser.Init(nil, nil, &api.ThinkValue{Value: false})
// Model outputs plain content (prompt ended with </think>)
content, thinking, calls, err := parser.Add("Plain answer", true)
if err != nil {
t.Fatalf("parse failed: %v", err)
}
if thinking != "" {
t.Fatalf("expected empty thinking, got %q", thinking)
}
if content != "Plain answer" {
t.Fatalf("expected content 'Plain answer', got %q", content)
}
if len(calls) != 0 {
t.Fatalf("expected no tool calls, got %d", len(calls))
}
}
func TestGLM47ParserToolCallEscaping(t *testing.T) {
toolCall, err := parseGLM46ToolCall(glm46EventRawToolCall{raw: `exec
<arg_key>expr</arg_key>
<arg_value>a < b && c > d</arg_value>`}, nil)
if err != nil {
t.Fatalf("parse failed: %v", err)
}
expected := api.ToolCall{
Function: api.ToolCallFunction{
Name: "exec",
Arguments: args(`{"expr": "a < b && c > d"}`),
},
}
if !reflect.DeepEqual(toolCall, expected) {
t.Fatalf("expected %#v, got %#v", expected, toolCall)
}
}

View File

@@ -1,498 +0,0 @@
package parsers
import (
"encoding/json"
"errors"
"log/slog"
"strconv"
"strings"
"unicode"
"github.com/ollama/ollama/api"
)
type LFM2ParserState int
const (
LFM2CollectingThinking LFM2ParserState = iota
LFM2CollectingContent
LFM2CollectingToolCalls
)
const (
lfm2ThinkingOpenTag = "<think>"
lfm2ThinkingCloseTag = "</think>"
lfm2ToolCallStartTag = "<|tool_call_start|>"
lfm2ToolCallEndTag = "<|tool_call_end|>"
)
type LFM2Parser struct {
state LFM2ParserState
buffer strings.Builder
hasThinkingSupport bool
needsThinkingLeadingTrim bool // trim leading whitespace after <think> tag
needsContentLeadingTrim bool // trim leading whitespace after </think> tag
}
func (p *LFM2Parser) HasToolSupport() bool {
return true
}
func (p *LFM2Parser) HasThinkingSupport() bool {
return p.hasThinkingSupport
}
func (p *LFM2Parser) setInitialState(lastMessage *api.Message, thinkValue *api.ThinkValue) {
prefill := lastMessage != nil && lastMessage.Role == "assistant"
// Check both model capability AND request preference
thinkingEnabled := p.HasThinkingSupport() && (thinkValue != nil && thinkValue.Bool())
if !thinkingEnabled {
p.state = LFM2CollectingContent
return
}
if prefill && lastMessage.Content != "" {
p.state = LFM2CollectingContent
return
}
p.state = LFM2CollectingThinking
p.needsThinkingLeadingTrim = true
}
func (p *LFM2Parser) Init(tools []api.Tool, lastMessage *api.Message, thinkValue *api.ThinkValue) []api.Tool {
p.setInitialState(lastMessage, thinkValue)
return tools
}
type lfm2Event interface {
isLFM2Event()
}
type lfm2EventThinkingContent struct {
content string
}
type lfm2EventContent struct {
content string
}
type lfm2EventToolCall struct {
toolCall api.ToolCall
}
func (lfm2EventThinkingContent) isLFM2Event() {}
func (lfm2EventContent) isLFM2Event() {}
func (lfm2EventToolCall) isLFM2Event() {}
func (p *LFM2Parser) Add(s string, done bool) (content string, thinking string, calls []api.ToolCall, err error) {
p.buffer.WriteString(s)
events := p.parseEvents()
var toolCalls []api.ToolCall
var contentSb strings.Builder
var thinkingSb strings.Builder
for _, event := range events {
switch event := event.(type) {
case lfm2EventToolCall:
toolCalls = append(toolCalls, event.toolCall)
case lfm2EventThinkingContent:
thinkingSb.WriteString(event.content)
case lfm2EventContent:
contentSb.WriteString(event.content)
}
}
return contentSb.String(), thinkingSb.String(), toolCalls, nil
}
func (p *LFM2Parser) parseEvents() []lfm2Event {
var all []lfm2Event
keepLooping := true
for keepLooping {
var events []lfm2Event
events, keepLooping = p.eat()
if len(events) > 0 {
all = append(all, events...)
}
}
return all
}
func (p *LFM2Parser) eat() ([]lfm2Event, bool) {
var events []lfm2Event
bufStr := p.buffer.String()
if bufStr == "" {
return events, false
}
switch p.state {
case LFM2CollectingThinking:
// Strip opening <think> tag if present
if strings.HasPrefix(bufStr, lfm2ThinkingOpenTag) {
bufStr = bufStr[len(lfm2ThinkingOpenTag):]
p.needsThinkingLeadingTrim = true
p.buffer.Reset()
p.buffer.WriteString(bufStr)
}
// Trim leading whitespace after <think> tag (may span multiple chunks)
if p.needsThinkingLeadingTrim {
if trimmed := strings.TrimLeftFunc(bufStr, unicode.IsSpace); trimmed != bufStr {
bufStr = trimmed
p.buffer.Reset()
p.buffer.WriteString(bufStr)
}
// Clear flag once we have non-whitespace content or buffer is empty
if len(bufStr) > 0 {
p.needsThinkingLeadingTrim = false
}
}
if strings.Contains(bufStr, lfm2ThinkingCloseTag) { // thinking[</think>] -> content
split := strings.SplitN(bufStr, lfm2ThinkingCloseTag, 2)
thinking := split[0]
thinking = strings.TrimRightFunc(thinking, unicode.IsSpace)
remaining := split[1]
remaining = strings.TrimLeftFunc(remaining, unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(remaining)
p.state = LFM2CollectingContent
p.needsThinkingLeadingTrim = false
// Set flag to trim any additional whitespace that may arrive in later chunks
p.needsContentLeadingTrim = len(remaining) == 0
if len(thinking) > 0 {
events = append(events, lfm2EventThinkingContent{content: thinking})
}
return events, true
} else if overlapLen := overlap(bufStr, lfm2ThinkingCloseTag); overlapLen > 0 { // partial </think>
beforePartialTag := bufStr[:len(bufStr)-overlapLen]
trailingLen := trailingWhitespaceLen(beforePartialTag)
ambiguousStart := len(beforePartialTag) - trailingLen
unambiguous := bufStr[:ambiguousStart]
ambiguous := bufStr[ambiguousStart:]
p.buffer.Reset()
p.buffer.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, lfm2EventThinkingContent{content: unambiguous})
}
return events, false
} else { // otherwise its thinking content
whitespaceLen := trailingWhitespaceLen(bufStr)
ambiguousStart := len(bufStr) - whitespaceLen
unambiguous := bufStr[:ambiguousStart]
ambiguous := bufStr[ambiguousStart:]
p.buffer.Reset()
p.buffer.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, lfm2EventThinkingContent{content: unambiguous})
}
return events, false
}
case LFM2CollectingContent:
// Trim leading whitespace after </think> tag (may span multiple chunks)
if p.needsContentLeadingTrim {
if trimmed := strings.TrimLeftFunc(bufStr, unicode.IsSpace); trimmed != bufStr {
bufStr = trimmed
p.buffer.Reset()
p.buffer.WriteString(bufStr)
}
// Clear flag once we have non-whitespace content
if len(bufStr) > 0 {
p.needsContentLeadingTrim = false
}
}
if strings.Contains(bufStr, lfm2ToolCallStartTag) { // content[<|tool_call_start|>] -> tool calls
split := strings.SplitN(bufStr, lfm2ToolCallStartTag, 2)
contentBefore := strings.TrimRightFunc(split[0], unicode.IsSpace)
remaining := split[1]
p.buffer.Reset()
p.buffer.WriteString(remaining)
p.state = LFM2CollectingToolCalls
if len(contentBefore) > 0 {
events = append(events, lfm2EventContent{content: contentBefore})
}
return events, true
} else { // otherwise its content
p.buffer.Reset()
if len(bufStr) > 0 {
events = append(events, lfm2EventContent{content: bufStr})
}
return events, false
}
case LFM2CollectingToolCalls:
// Look for complete tool call JSON between tags
if idx := strings.Index(bufStr, lfm2ToolCallEndTag); idx != -1 {
toolCallContent := bufStr[:idx]
if toolCalls, err := p.parseToolCallsContent(toolCallContent); err == nil && len(toolCalls) > 0 {
remaining := bufStr[idx+len(lfm2ToolCallEndTag):]
// Check if there's another tool call
if strings.HasPrefix(remaining, lfm2ToolCallStartTag) {
remaining = remaining[len(lfm2ToolCallStartTag):]
} else {
// No more tool calls, go back to content
remaining = strings.TrimLeftFunc(remaining, unicode.IsSpace)
p.state = LFM2CollectingContent
}
p.buffer.Reset()
p.buffer.WriteString(remaining)
for _, tc := range toolCalls {
events = append(events, lfm2EventToolCall{toolCall: tc})
}
return events, true
} else if err != nil {
slog.Warn("lfm2 tool call parsing failed", "error", err, "content", toolCallContent)
}
}
return events, false
}
return events, false
}
// parseToolCallsContent parses one or more tool calls from content
// Supports JSON format and Python-style format including multiple calls: [func1(...),func2(...)]
func (p *LFM2Parser) parseToolCallsContent(content string) ([]api.ToolCall, error) {
content = strings.TrimSpace(content)
// Try JSON format first: {"name": "func", "arguments": {...}}
var parsed struct {
Name string `json:"name"`
Arguments json.RawMessage `json:"arguments"`
}
if err := json.Unmarshal([]byte(content), &parsed); err == nil && parsed.Name != "" {
var args api.ToolCallFunctionArguments
if len(parsed.Arguments) > 0 {
if err := json.Unmarshal(parsed.Arguments, &args); err != nil {
return nil, err
}
} else {
args = api.NewToolCallFunctionArguments()
}
return []api.ToolCall{{
Function: api.ToolCallFunction{
Name: parsed.Name,
Arguments: args,
},
}}, nil
}
// Try Python-style format: [func(arg1='val1'),func2(arg2='val2')] or func(arg1='val1')
return p.parsePythonStyleToolCalls(content)
}
// parsePythonStyleToolCalls parses one or more Python-style tool calls
// Examples: [bash(command='ls'),bash(command='pwd')] or bash(command='ls')
func (p *LFM2Parser) parsePythonStyleToolCalls(content string) ([]api.ToolCall, error) {
content = strings.TrimSpace(content)
// Strip outer brackets if present: [func(...)] -> func(...)
if strings.HasPrefix(content, "[") && strings.HasSuffix(content, "]") {
content = content[1 : len(content)-1]
}
var toolCalls []api.ToolCall
// Parse multiple function calls separated by commas at the top level
for len(content) > 0 {
content = strings.TrimSpace(content)
if content == "" {
break
}
// Skip leading comma from previous iteration
if strings.HasPrefix(content, ",") {
content = strings.TrimSpace(content[1:])
if content == "" {
break
}
}
// Find function name
parenIdx := strings.Index(content, "(")
if parenIdx == -1 {
return nil, errors.New("invalid tool call: no opening parenthesis")
}
funcName := strings.TrimSpace(content[:parenIdx])
if funcName == "" {
return nil, errors.New("invalid tool call: empty function name")
}
// Find matching closing parenthesis
closeIdx := findMatchingParen(content, parenIdx)
if closeIdx == -1 {
return nil, errors.New("invalid tool call: no matching closing parenthesis")
}
argsStr := content[parenIdx+1 : closeIdx]
args := api.NewToolCallFunctionArguments()
if argsStr != "" {
if err := parsePythonArgs(argsStr, &args); err != nil {
return nil, err
}
}
toolCalls = append(toolCalls, api.ToolCall{
Function: api.ToolCallFunction{
Name: funcName,
Arguments: args,
},
})
// Move past this function call
content = content[closeIdx+1:]
}
if len(toolCalls) == 0 {
return nil, errors.New("no tool calls found")
}
return toolCalls, nil
}
// findMatchingParen finds the index of the closing parenthesis matching the one at openIdx
// Returns -1 if not found. Handles nested parentheses and quoted strings.
func findMatchingParen(s string, openIdx int) int {
depth := 1
i := openIdx + 1
for i < len(s) && depth > 0 {
switch s[i] {
case '(':
depth++
case ')':
depth--
if depth == 0 {
return i
}
case '\'', '"':
// Skip quoted string
quote := s[i]
i++
for i < len(s) && s[i] != quote {
if s[i] == '\\' && i+1 < len(s) {
i++ // skip escaped char
}
i++
}
}
i++
}
return -1
}
// parseToolCallContent parses a single tool call (for backward compatibility with tests)
func (p *LFM2Parser) parseToolCallContent(content string) (api.ToolCall, error) {
calls, err := p.parseToolCallsContent(content)
if err != nil {
return api.ToolCall{}, err
}
if len(calls) == 0 {
return api.ToolCall{}, errors.New("no tool call found")
}
return calls[0], nil
}
// parsePythonArgs parses Python-style keyword arguments: key='value', key2="value2"
func parsePythonArgs(argsStr string, args *api.ToolCallFunctionArguments) error {
// Simple state machine to parse key='value' pairs
// Handles: command='ls', flag="-la", count=42, enabled=true
var key string
i := 0
for i < len(argsStr) {
// Skip whitespace
for i < len(argsStr) && (argsStr[i] == ' ' || argsStr[i] == '\t' || argsStr[i] == '\n') {
i++
}
if i >= len(argsStr) {
break
}
// Parse key
keyStart := i
for i < len(argsStr) && argsStr[i] != '=' && argsStr[i] != ',' {
i++
}
if i >= len(argsStr) || argsStr[i] != '=' {
return errors.New("invalid argument: expected '='")
}
key = strings.TrimSpace(argsStr[keyStart:i])
i++ // skip '='
// Skip whitespace after =
for i < len(argsStr) && (argsStr[i] == ' ' || argsStr[i] == '\t') {
i++
}
// Parse value
var value string
if i < len(argsStr) && (argsStr[i] == '\'' || argsStr[i] == '"') {
// Quoted string
quote := argsStr[i]
i++
valueStart := i
for i < len(argsStr) && argsStr[i] != quote {
if argsStr[i] == '\\' && i+1 < len(argsStr) {
i += 2 // skip escaped char
} else {
i++
}
}
value = argsStr[valueStart:i]
if i < len(argsStr) {
i++ // skip closing quote
}
args.Set(key, value)
} else {
// Unquoted value (number, bool, etc)
valueStart := i
for i < len(argsStr) && argsStr[i] != ',' {
i++
}
value = strings.TrimSpace(argsStr[valueStart:i])
// Try to parse as number or bool
if v, err := strconv.ParseInt(value, 10, 64); err == nil {
args.Set(key, v)
} else if v, err := strconv.ParseFloat(value, 64); err == nil {
args.Set(key, v)
} else if value == "true" {
args.Set(key, true)
} else if value == "false" {
args.Set(key, false)
} else {
args.Set(key, value)
}
}
// Skip comma and whitespace
for i < len(argsStr) && (argsStr[i] == ',' || argsStr[i] == ' ' || argsStr[i] == '\t' || argsStr[i] == '\n') {
i++
}
}
return nil
}

View File

File diff suppressed because it is too large Load Diff

View File

@@ -68,12 +68,6 @@ func ParserForName(name string) Parser {
return &Nemotron3NanoParser{}
case "functiongemma":
return &FunctionGemmaParser{}
case "glm-4.7":
return &GLM47Parser{}
case "lfm2":
return &LFM2Parser{hasThinkingSupport: false}
case "lfm2-thinking":
return &LFM2Parser{hasThinkingSupport: true}
default:
return nil
}

View File

@@ -96,11 +96,3 @@ func testArgs(m map[string]any) api.ToolCallFunctionArguments {
}
return args
}
func args(s string) api.ToolCallFunctionArguments {
var result api.ToolCallFunctionArguments
if err := json.Unmarshal([]byte(s), &result); err != nil {
panic("invalid JSON in args(): " + err.Error())
}
return result
}

View File

@@ -1,110 +0,0 @@
package renderers
import (
"encoding/json"
"fmt"
"strings"
"github.com/ollama/ollama/api"
)
type GLM46Renderer struct{}
func (r *GLM46Renderer) Render(messages []api.Message, tools []api.Tool, thinkValue *api.ThinkValue) (string, error) {
var sb strings.Builder
sb.WriteString("[gMASK]<sop>")
var lastUserIndex int
for i, message := range messages {
if message.Role == "user" {
lastUserIndex = i
}
}
if len(tools) > 0 {
sb.WriteString("<|system|>\n")
sb.WriteString("# Tools\n\n")
sb.WriteString("You may call one or more functions to assist with the user query.\n\n")
sb.WriteString("You are provided with function signatures within <tools></tools> XML tags:\n")
sb.WriteString("<tools>\n")
for _, tool := range tools {
d, _ := json.Marshal(tool)
sb.WriteString(string(d) + "\n")
}
sb.WriteString("</tools>\n\n")
sb.WriteString("For each function call, output the function name and arguments within the following XML format:\n")
sb.WriteString("<tool_call>{function-name}\n")
sb.WriteString("<arg_key>{arg-key-1}</arg_key>\n")
sb.WriteString("<arg_value>{arg-value-1}</arg_value>\n")
sb.WriteString("<arg_key>{arg-key-2}</arg_key>\n")
sb.WriteString("<arg_value>{arg-value-2}</arg_value>\n")
sb.WriteString("...\n")
sb.WriteString("</tool_call>")
}
for i, message := range messages {
switch message.Role {
case "user":
sb.WriteString("<|user|>\n")
sb.WriteString(message.Content)
if thinkValue != nil && !thinkValue.Bool() && !strings.HasSuffix(message.Content, "/nothink") {
sb.WriteString("/nothink")
}
case "assistant":
sb.WriteString("<|assistant|>")
if i > lastUserIndex {
if message.Thinking != "" {
sb.WriteString("\n<think>" + message.Thinking + "</think>")
} else {
sb.WriteString("\n<think></think>")
}
}
if message.Content != "" {
sb.WriteString("\n" + message.Content)
}
if len(message.ToolCalls) > 0 {
for _, toolCall := range message.ToolCalls {
sb.WriteString("\n<tool_call>" + toolCall.Function.Name + "\n")
for key, value := range toolCall.Function.Arguments.All() {
sb.WriteString("<arg_key>" + key + "</arg_key>\n")
var valueStr string
if str, ok := value.(string); ok {
valueStr = str
} else {
jsonBytes, err := json.Marshal(value)
if err != nil {
valueStr = fmt.Sprintf("%v", value)
} else {
valueStr = string(jsonBytes)
}
}
sb.WriteString("<arg_value>" + valueStr + "</arg_value>\n")
}
sb.WriteString("</tool_call>")
}
}
case "tool":
if i == 0 || messages[i-1].Role != "tool" {
sb.WriteString("<|observation|>")
}
sb.WriteString("\n<tool_response>\n")
sb.WriteString(message.Content)
sb.WriteString("\n</tool_response>")
case "system":
sb.WriteString("<|system|>\n")
sb.WriteString(message.Content)
}
}
// Add generation prompt
sb.WriteString("<|assistant|>")
if thinkValue != nil && !thinkValue.Bool() {
sb.WriteString("\n<think></think>\n")
}
return sb.String(), nil
}

View File

@@ -1,223 +0,0 @@
package renderers
import (
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
)
func TestGLM46Renderer(t *testing.T) {
tests := []struct {
name string
messages []api.Message
tools []api.Tool
thinkValue *api.ThinkValue
expected string
skip string
}{
{
name: "basic",
messages: []api.Message{
{Role: "user", Content: "Hello, how are you?"},
},
expected: `[gMASK]<sop><|user|>
Hello, how are you?<|assistant|>`,
},
{
name: "basic with system message",
messages: []api.Message{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "Hello, how are you?"},
},
expected: `[gMASK]<sop><|system|>
You are a helpful assistant.<|user|>
Hello, how are you?<|assistant|>`,
},
{
name: "basic with user assistant user",
messages: []api.Message{
{Role: "user", Content: "What is the capital of France?"},
{Role: "assistant", Thinking: "Let me analyze the request...", Content: "The capital of France is Paris."},
{Role: "user", Content: "Fantastic!"},
},
expected: `[gMASK]<sop><|user|>
What is the capital of France?<|assistant|>
The capital of France is Paris.<|user|>
Fantastic!<|assistant|>`,
},
{
skip: "tool call ordering not guaranteed yet",
name: "tools",
messages: []api.Message{
{Role: "system", Content: "You are a helpful assistant with access to tools."},
{Role: "user", Content: "What is the weather like in Tokyo?"},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get the current weather in a given location",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"location"},
Properties: propsMap(`{"location": {"type": "string", "description": "The city and state, e.g. San Francisco, CA"}, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}}`),
},
},
},
},
expected: `[gMASK]<sop><|system|>
# Tools
You may call one or more functions to assist with the user query.
You are provided with function signatures within <tools></tools> XML tags:
<tools>
{"type":"function","function":{"name":"get_weather","description":"Get the current weather in a given location","parameters":{"type":"object","required":["location"],"properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"},"unit":{"type":"string","description":"","enum":["celsius","fahrenheit"]}}}}}
</tools>
For each function call, output the function name and arguments within the following XML format:
<tool_call>{function-name}
<arg_key>{arg-key-1}</arg_key>
<arg_value>{arg-value-1}</arg_value>
<arg_key>{arg-key-2}</arg_key>
<arg_value>{arg-value-2}</arg_value>
...
</tool_call><|system|>
You are a helpful assistant with access to tools.<|user|>
What is the weather like in Tokyo?<|assistant|>`,
},
{
skip: "tool call ordering not guaranteed yet",
name: "tool calls",
messages: []api.Message{
{Role: "system", Content: "You are a helpful assistant with access to tools."},
{Role: "user", Content: "What is the weather like in Tokyo?"},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: args(`{"location": "Tokyo, Japan", "unit": "celsius"}`),
},
},
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: args(`{"location": "Japan", "unit": "fahrenheit"}`),
},
},
},
},
{
Role: "tool",
Content: "{\"temperature\": 22, \"weather\": \"partly cloudy\", \"humidity\": 65}",
ToolName: "get_weather",
},
{
Role: "tool",
Content: "{\"temperature\": 68, \"weather\": \"sunny\", \"humidity\": 75}",
ToolName: "get_weather",
},
{
Role: "assistant",
Content: "The weather in Tokyo is currently partly cloudy with a temperature of 22°C and 65% humidity. It's a pleasant day with moderate temperatures.",
},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get the current weather in a given location",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"location"},
Properties: propsMap(`{"location": {"type": "string", "description": "The city and state, e.g. San Francisco, CA"}, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}}`),
},
},
},
},
expected: `[gMASK]<sop><|system|>
# Tools
You may call one or more functions to assist with the user query.
You are provided with function signatures within <tools></tools> XML tags:
<tools>
{"type":"function","function":{"name":"get_weather","description":"Get the current weather in a given location","parameters":{"type":"object","required":["location"],"properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"},"unit":{"type":"string","description":"","enum":["celsius","fahrenheit"]}}}}}
</tools>
For each function call, output the function name and arguments within the following XML format:
<tool_call>{function-name}
<arg_key>{arg-key-1}</arg_key>
<arg_value>{arg-value-1}</arg_value>
<arg_key>{arg-key-2}</arg_key>
<arg_value>{arg-value-2}</arg_value>
...
</tool_call><|system|>
You are a helpful assistant with access to tools.<|user|>
What is the weather like in Tokyo?<|assistant|>
<think></think>
<tool_call>get_weather
<arg_key>location</arg_key>
<arg_value>Tokyo, Japan</arg_value>
<arg_key>unit</arg_key>
<arg_value>celsius</arg_value>
</tool_call>
<tool_call>get_weather
<arg_key>location</arg_key>
<arg_value>Japan</arg_value>
<arg_key>unit</arg_key>
<arg_value>fahrenheit</arg_value>
</tool_call><|observation|>
<tool_response>
{"temperature": 22, "weather": "partly cloudy", "humidity": 65}
</tool_response>
<tool_response>
{"temperature": 68, "weather": "sunny", "humidity": 75}
</tool_response><|assistant|>
<think></think>
The weather in Tokyo is currently partly cloudy with a temperature of 22°C and 65% humidity. It's a pleasant day with moderate temperatures.<|assistant|>`,
},
{
name: "think true",
messages: []api.Message{
{Role: "user", Content: "Hello, how are you?"},
},
thinkValue: &api.ThinkValue{Value: true},
expected: `[gMASK]<sop><|user|>
Hello, how are you?<|assistant|>`,
},
{
name: "think false",
messages: []api.Message{
{Role: "user", Content: "Hello, how are you?"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `[gMASK]<sop><|user|>
Hello, how are you?/nothink<|assistant|>
<think></think>
`,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
if tt.skip != "" {
t.Skip(tt.skip)
}
renderer := &GLM46Renderer{}
rendered, err := renderer.Render(tt.messages, tt.tools, tt.thinkValue)
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(rendered, tt.expected); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
t.Logf("Got:\n%s", rendered)
t.Logf("Expected:\n%s", tt.expected)
}
})
}
}

View File

@@ -1,170 +0,0 @@
package renderers
import (
"encoding/json"
"fmt"
"strings"
"github.com/ollama/ollama/api"
)
// GLM47Renderer renders messages for GLM-4.7 models.
//
// GLM-4.7 Thinking Modes (ref: https://docs.z.ai/guides/capabilities/thinking-mode):
//
// 1. INTERLEAVED THINKING
// The model thinks between tool calls and after receiving tool results.
// This enables complex step-by-step reasoning: interpreting each tool output
// before deciding what to do next. Thinking blocks are preserved and returned
// with tool results to maintain reasoning continuity.
//
// 2. PRESERVED THINKING
// The model retains reasoning content from previous assistant turns in context.
// This preserves reasoning continuity across multi-turn conversations. The
// upstream API has a "clear_thinking" parameter to control this:
// - clear_thinking=true: clears reasoning from previous turns (outputs </think>)
// - clear_thinking=false: preserves <think>...</think> blocks from previous turns
//
// 3. TURN-LEVEL THINKING
// Controls whether the model should reason on each turn. The upstream API
// uses "enable_thinking" parameter:
// - enable_thinking=true: outputs <think> to start reasoning
// - enable_thinking=false: outputs </think> to skip reasoning
//
// OLLAMA DEFAULTS:
// - Thinking is ENABLED by default (thinkValue=nil or true outputs <think>)
// - Thinking is PRESERVED by default (reasoning content from previous turns is always
// included in <think>...</think> blocks, equivalent to clear_thinking=false)
// - Users can disable thinking per-turn via thinkValue=false
type GLM47Renderer struct{}
func (r *GLM47Renderer) Render(messages []api.Message, tools []api.Tool, thinkValue *api.ThinkValue) (string, error) {
var sb strings.Builder
sb.WriteString("[gMASK]<sop>")
if len(tools) > 0 {
sb.WriteString("<|system|>\n")
sb.WriteString("# Tools\n\n")
sb.WriteString("You may call one or more functions to assist with the user query.\n\n")
sb.WriteString("You are provided with function signatures within <tools></tools> XML tags:\n")
sb.WriteString("<tools>\n")
for _, tool := range tools {
d, _ := json.Marshal(tool)
sb.WriteString(formatGLM47ToolJSON(d))
sb.WriteString("\n")
}
sb.WriteString("</tools>\n\n")
sb.WriteString("For each function call, output the function name and arguments within the following XML format:\n")
sb.WriteString("<tool_call>{function-name}<arg_key>{arg-key-1}</arg_key><arg_value>{arg-value-1}</arg_value><arg_key>{arg-key-2}</arg_key><arg_value>{arg-value-2}</arg_value>...</tool_call>")
}
think := true
if thinkValue != nil && !thinkValue.Bool() {
think = false
}
for i, message := range messages {
switch message.Role {
case "user":
sb.WriteString("<|user|>")
sb.WriteString(message.Content)
case "assistant":
sb.WriteString("<|assistant|>")
if message.Thinking != "" {
sb.WriteString("<think>" + message.Thinking + "</think>")
} else {
sb.WriteString("</think>")
}
if message.Content != "" {
sb.WriteString(message.Content)
}
if len(message.ToolCalls) > 0 {
for _, toolCall := range message.ToolCalls {
sb.WriteString("<tool_call>" + toolCall.Function.Name)
sb.WriteString(renderGLM47ToolArguments(toolCall.Function.Arguments))
sb.WriteString("</tool_call>")
}
}
case "tool":
if i == 0 || messages[i-1].Role != "tool" {
sb.WriteString("<|observation|>")
}
sb.WriteString("<tool_response>")
sb.WriteString(message.Content)
sb.WriteString("</tool_response>")
case "system":
sb.WriteString("<|system|>")
sb.WriteString(message.Content)
}
}
sb.WriteString("<|assistant|>")
if think {
sb.WriteString("<think>")
} else {
sb.WriteString("</think>")
}
return sb.String(), nil
}
func renderGLM47ToolArguments(args api.ToolCallFunctionArguments) string {
var sb strings.Builder
for key, value := range args.All() {
sb.WriteString("<arg_key>" + key + "</arg_key>")
var valueStr string
if str, ok := value.(string); ok {
valueStr = str
} else {
jsonBytes, err := json.Marshal(value)
if err != nil {
valueStr = fmt.Sprintf("%v", value)
} else {
valueStr = string(jsonBytes)
}
}
sb.WriteString("<arg_value>" + valueStr + "</arg_value>")
}
return sb.String()
}
func formatGLM47ToolJSON(raw []byte) string {
var sb strings.Builder
sb.Grow(len(raw) + len(raw)/10)
inString := false
escaped := false
for i := range raw {
ch := raw[i]
sb.WriteByte(ch)
if inString {
if escaped {
escaped = false
continue
}
if ch == '\\' {
escaped = true
continue
}
if ch == '"' {
inString = false
}
continue
}
if ch == '"' {
inString = true
continue
}
if ch == ':' || ch == ',' {
sb.WriteByte(' ')
}
}
return sb.String()
}

View File

@@ -1,191 +0,0 @@
package renderers
import (
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
)
func TestGLM47Renderer(t *testing.T) {
tests := []struct {
name string
messages []api.Message
tools []api.Tool
thinkValue *api.ThinkValue
expected string
}{
{
name: "basic user message",
messages: []api.Message{
{Role: "user", Content: "Hello"},
},
expected: "[gMASK]<sop><|user|>Hello<|assistant|><think>",
},
{
name: "thinking disabled",
messages: []api.Message{
{Role: "user", Content: "Hello"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "[gMASK]<sop><|user|>Hello<|assistant|></think>",
},
{
name: "system and user",
messages: []api.Message{
{Role: "system", Content: "You are helpful."},
{Role: "user", Content: "Hello"},
},
expected: "[gMASK]<sop><|system|>You are helpful.<|user|>Hello<|assistant|><think>",
},
{
name: "multi-turn conversation",
messages: []api.Message{
{Role: "user", Content: "Hi"},
{Role: "assistant", Content: "Hello there"},
{Role: "user", Content: "How are you?"},
},
expected: "[gMASK]<sop><|user|>Hi<|assistant|></think>Hello there<|user|>How are you?<|assistant|><think>",
},
{
name: "assistant with reasoning_content",
messages: []api.Message{
{Role: "user", Content: "Answer with reasoning."},
{Role: "assistant", Thinking: "Plan.", Content: "Done."},
},
expected: "[gMASK]<sop><|user|>Answer with reasoning.<|assistant|><think>Plan.</think>Done.<|assistant|><think>",
},
{
name: "tool call with empty content",
messages: []api.Message{
{Role: "user", Content: "Weather?"},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: args(`{"location": "Tokyo", "unit": "celsius"}`),
},
},
},
},
{Role: "tool", Content: `{"temperature":22}`},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"location"},
Properties: propsMap(`{"location": {"type": "string"}}`),
},
},
},
},
expected: "[gMASK]<sop><|system|>\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>\n{\"type\": \"function\", \"function\": {\"name\": \"get_weather\", \"description\": \"Get weather\", \"parameters\": {\"type\": \"object\", \"required\": [\"location\"], \"properties\": {\"location\": {\"type\": \"string\"}}}}}\n</tools>\n\nFor each function call, output the function name and arguments within the following XML format:\n<tool_call>{function-name}<arg_key>{arg-key-1}</arg_key><arg_value>{arg-value-1}</arg_value><arg_key>{arg-key-2}</arg_key><arg_value>{arg-value-2}</arg_value>...</tool_call><|user|>Weather?<|assistant|></think><tool_call>get_weather<arg_key>location</arg_key><arg_value>Tokyo</arg_value><arg_key>unit</arg_key><arg_value>celsius</arg_value></tool_call><|observation|><tool_response>{\"temperature\":22}</tool_response><|assistant|><think>",
},
{
name: "tool call with content",
messages: []api.Message{
{Role: "user", Content: "Weather?"},
{
Role: "assistant",
Content: "Let me check",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: args(`{"location": "Tokyo"}`),
},
},
},
},
{Role: "tool", Content: `{"temperature":22}`},
{Role: "assistant", Content: "It is 22C."},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"location"},
Properties: propsMap(`{"location": {"type": "string"}}`),
},
},
},
},
expected: "[gMASK]<sop><|system|>\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>\n{\"type\": \"function\", \"function\": {\"name\": \"get_weather\", \"description\": \"Get weather\", \"parameters\": {\"type\": \"object\", \"required\": [\"location\"], \"properties\": {\"location\": {\"type\": \"string\"}}}}}\n</tools>\n\nFor each function call, output the function name and arguments within the following XML format:\n<tool_call>{function-name}<arg_key>{arg-key-1}</arg_key><arg_value>{arg-value-1}</arg_value><arg_key>{arg-key-2}</arg_key><arg_value>{arg-value-2}</arg_value>...</tool_call><|user|>Weather?<|assistant|></think>Let me check<tool_call>get_weather<arg_key>location</arg_key><arg_value>Tokyo</arg_value></tool_call><|observation|><tool_response>{\"temperature\":22}</tool_response><|assistant|></think>It is 22C.<|assistant|><think>",
},
{
name: "multiple tool calls and responses",
messages: []api.Message{
{Role: "user", Content: "Compare weather"},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: args(`{"location": "Tokyo"}`),
},
},
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: args(`{"location": "Paris"}`),
},
},
},
},
{Role: "tool", Content: `{"temperature":22}`},
{Role: "tool", Content: `{"temperature":18}`},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"location"},
Properties: propsMap(`{"location": {"type": "string"}}`),
},
},
},
},
expected: "[gMASK]<sop><|system|>\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>\n{\"type\": \"function\", \"function\": {\"name\": \"get_weather\", \"description\": \"Get weather\", \"parameters\": {\"type\": \"object\", \"required\": [\"location\"], \"properties\": {\"location\": {\"type\": \"string\"}}}}}\n</tools>\n\nFor each function call, output the function name and arguments within the following XML format:\n<tool_call>{function-name}<arg_key>{arg-key-1}</arg_key><arg_value>{arg-value-1}</arg_value><arg_key>{arg-key-2}</arg_key><arg_value>{arg-value-2}</arg_value>...</tool_call><|user|>Compare weather<|assistant|></think><tool_call>get_weather<arg_key>location</arg_key><arg_value>Tokyo</arg_value></tool_call><tool_call>get_weather<arg_key>location</arg_key><arg_value>Paris</arg_value></tool_call><|observation|><tool_response>{\"temperature\":22}</tool_response><tool_response>{\"temperature\":18}</tool_response><|assistant|><think>",
},
{
name: "preserved thinking in multi-turn",
messages: []api.Message{
{Role: "user", Content: "Think step by step"},
{Role: "assistant", Thinking: "Let me think...", Content: "Here's my answer."},
{Role: "user", Content: "Continue"},
},
expected: "[gMASK]<sop><|user|>Think step by step<|assistant|><think>Let me think...</think>Here's my answer.<|user|>Continue<|assistant|><think>",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
renderer := &GLM47Renderer{}
rendered, err := renderer.Render(tt.messages, tt.tools, tt.thinkValue)
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(rendered, tt.expected); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
t.Logf("Got:\n%s", rendered)
t.Logf("Expected:\n%s", tt.expected)
}
})
}
}

View File

@@ -1,144 +0,0 @@
package renderers
import (
"encoding/json"
"strings"
"github.com/ollama/ollama/api"
)
type LFM2Renderer struct {
IsThinking bool
}
func (r *LFM2Renderer) Render(messages []api.Message, tools []api.Tool, thinkValue *api.ThinkValue) (string, error) {
var sb strings.Builder
// Note: BOS token is added by the tokenizer (add_bos_token: true), not the renderer
// Extract first system message if present (to combine with tools)
var firstSystemContent string
startIdx := 0
if len(messages) > 0 && messages[0].Role == "system" {
firstSystemContent = messages[0].Content
startIdx = 1
}
// Append tools to first system content
if len(tools) > 0 {
if firstSystemContent != "" {
firstSystemContent += "\n"
}
firstSystemContent += "List of tools: ["
for i, tool := range tools {
toolJSON, err := json.Marshal(tool)
if err != nil {
return "", err
}
firstSystemContent += string(toolJSON)
if i < len(tools)-1 {
firstSystemContent += ", "
}
}
firstSystemContent += "]"
}
// Output first system block if it has content
if firstSystemContent != "" {
sb.WriteString("<|im_start|>system\n")
sb.WriteString(firstSystemContent)
sb.WriteString("<|im_end|>\n")
}
// Find the index of the last assistant message for thinking stripping
lastAssistantIndex := -1
for i := len(messages) - 1; i >= startIdx; i-- {
if messages[i].Role == "assistant" {
lastAssistantIndex = i
break
}
}
// Track whether we need to add generation prompt
needsGenerationPrompt := len(messages) > 0
for i := startIdx; i < len(messages); i++ {
message := messages[i]
switch message.Role {
case "system":
// Additional system messages (after the first) are rendered normally
sb.WriteString("<|im_start|>system\n")
sb.WriteString(message.Content)
sb.WriteString("<|im_end|>\n")
case "user":
sb.WriteString("<|im_start|>user\n")
sb.WriteString(message.Content)
sb.WriteString("<|im_end|>\n")
needsGenerationPrompt = true
case "assistant":
sb.WriteString("<|im_start|>assistant\n")
// Check if this is the last assistant message
isLastAssistant := i == lastAssistantIndex
// Process content (may need thinking stripped)
content := message.Content
// Handle thinking tags in assistant content
keepPastThinking := r.IsThinking && (thinkValue != nil && thinkValue.Bool())
if strings.Contains(content, "</think>") {
parts := strings.SplitN(content, "</think>", 2)
if len(parts) > 1 {
if !isLastAssistant && !keepPastThinking {
// Strip thinking entirely for past assistant messages
content = strings.TrimSpace(parts[1])
} else {
// Preserve thinking but trim whitespace after </think>
content = parts[0] + "</think>" + strings.TrimLeft(parts[1], " \t\n\r")
}
}
}
if len(message.ToolCalls) > 0 {
// Assistant with tool calls - write content first (if any after stripping)
if content != "" {
sb.WriteString(content)
}
for _, toolCall := range message.ToolCalls {
sb.WriteString("<|tool_call_start|>")
toolCallJSON := map[string]any{
"name": toolCall.Function.Name,
"arguments": toolCall.Function.Arguments,
}
callJSON, _ := json.Marshal(toolCallJSON)
sb.WriteString(string(callJSON))
sb.WriteString("<|tool_call_end|>")
}
} else {
sb.WriteString(content)
}
sb.WriteString("<|im_end|>\n")
needsGenerationPrompt = true // Always add gen prompt after assistant when add_generation_prompt=true
case "tool":
// Tool responses are rendered as plain messages per the chat template
sb.WriteString("<|im_start|>tool\n")
sb.WriteString(message.Content)
sb.WriteString("<|im_end|>\n")
needsGenerationPrompt = true
}
}
// Add generation prompt
if needsGenerationPrompt {
sb.WriteString("<|im_start|>assistant\n")
// Note: Model is a "thinking-only" model - it will output <think> itself
// We don't add <think> tag to the prompt
}
return sb.String(), nil
}

View File

@@ -1,427 +0,0 @@
package renderers
import (
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
)
func TestLFM2Renderer(t *testing.T) {
tests := []struct {
name string
messages []api.Message
tools []api.Tool
thinkValue *api.ThinkValue
expected string
}{
{
name: "basic user message",
messages: []api.Message{
{Role: "user", Content: "Hello!"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nHello!<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "basic with system message",
messages: []api.Message{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "Hello!"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\nHello!<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "multiple system messages rendered separately",
messages: []api.Message{
{Role: "system", Content: "First instruction."},
{Role: "system", Content: "Second instruction."},
{Role: "user", Content: "Hello!"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>system\nFirst instruction.<|im_end|>\n<|im_start|>system\nSecond instruction.<|im_end|>\n<|im_start|>user\nHello!<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "multi-turn conversation",
messages: []api.Message{
{Role: "user", Content: "What is 2+2?"},
{Role: "assistant", Content: "The answer is 4."},
{Role: "user", Content: "Thanks!"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nWhat is 2+2?<|im_end|>\n<|im_start|>assistant\nThe answer is 4.<|im_end|>\n<|im_start|>user\nThanks!<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "only system message",
messages: []api.Message{
{Role: "system", Content: "You are helpful."},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>system\nYou are helpful.<|im_end|>\n<|im_start|>assistant\n",
},
{
// When assistant is the LAST assistant, thinking is preserved (even with keep_past_thinking=false)
name: "user-assistant-user: last assistant preserves thinking",
messages: []api.Message{
{Role: "user", Content: "Q1"},
{Role: "assistant", Content: "<think>reasoning</think>A1"},
{Role: "user", Content: "Q2"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nQ1<|im_end|>\n<|im_start|>assistant\n<think>reasoning</think>A1<|im_end|>\n<|im_start|>user\nQ2<|im_end|>\n<|im_start|>assistant\n",
},
{
// With two assistants, first is stripped (not last), second preserved (is last)
name: "multi-turn thinking: first stripped, second preserved",
messages: []api.Message{
{Role: "user", Content: "Q1"},
{Role: "assistant", Content: "<think>reason1</think>A1"},
{Role: "user", Content: "Q2"},
{Role: "assistant", Content: "<think>reason2</think>A2"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nQ1<|im_end|>\n<|im_start|>assistant\nA1<|im_end|>\n<|im_start|>user\nQ2<|im_end|>\n<|im_start|>assistant\n<think>reason2</think>A2<|im_end|>\n<|im_start|>assistant\n",
},
{
// With thinking enabled (keep_past_thinking=true), both preserved
name: "multi-turn thinking: both preserved when thinking enabled",
messages: []api.Message{
{Role: "user", Content: "Q1"},
{Role: "assistant", Content: "<think>reason1</think>A1"},
{Role: "user", Content: "Q2"},
{Role: "assistant", Content: "<think>reason2</think>A2"},
},
thinkValue: &api.ThinkValue{Value: true},
expected: "<|im_start|>user\nQ1<|im_end|>\n<|im_start|>assistant\n<think>reason1</think>A1<|im_end|>\n<|im_start|>user\nQ2<|im_end|>\n<|im_start|>assistant\n<think>reason2</think>A2<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "assistant with tool calls",
messages: []api.Message{
{Role: "user", Content: "What's the weather?"},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<|im_start|>user` + "\n" + `What's the weather?<|im_end|>` + "\n" + `<|im_start|>assistant` + "\n" + `<|tool_call_start|>{"arguments":{"location":"Paris"},"name":"get_weather"}<|tool_call_end|><|im_end|>` + "\n" + `<|im_start|>assistant` + "\n",
},
{
name: "assistant with content and tool calls",
messages: []api.Message{
{Role: "user", Content: "What's the weather in Paris?"},
{
Role: "assistant",
Content: "Let me check.",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<|im_start|>user` + "\n" + `What's the weather in Paris?<|im_end|>` + "\n" + `<|im_start|>assistant` + "\n" + `Let me check.<|tool_call_start|>{"arguments":{"location":"Paris"},"name":"get_weather"}<|tool_call_end|><|im_end|>` + "\n" + `<|im_start|>assistant` + "\n",
},
{
name: "tool response",
messages: []api.Message{
{Role: "user", Content: "What's the weather?"},
{Role: "assistant", Content: "Let me check."},
{Role: "tool", Content: "22C, Sunny"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nWhat's the weather?<|im_end|>\n<|im_start|>assistant\nLet me check.<|im_end|>\n<|im_start|>tool\n22C, Sunny<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "multiple tool calls",
messages: []api.Message{
{Role: "user", Content: "Get weather for Paris and London"},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "London",
}),
},
},
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<|im_start|>user` + "\n" + `Get weather for Paris and London<|im_end|>` + "\n" + `<|im_start|>assistant` + "\n" + `<|tool_call_start|>{"arguments":{"location":"Paris"},"name":"get_weather"}<|tool_call_end|><|tool_call_start|>{"arguments":{"location":"London"},"name":"get_weather"}<|tool_call_end|><|im_end|>` + "\n" + `<|im_start|>assistant` + "\n",
},
{
name: "tools definitions with system message",
messages: []api.Message{
{Role: "system", Content: "You are helpful."},
{Role: "user", Content: "What's the weather?"},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get current weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Properties: testPropsMap(map[string]api.ToolProperty{
"location": {
Type: api.PropertyType{"string"},
Description: "City name",
},
}),
Required: []string{"location"},
},
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<|im_start|>system` + "\n" + `You are helpful.` + "\n" + `List of tools: [{"type":"function","function":{"name":"get_weather","description":"Get current weather","parameters":{"type":"object","required":["location"],"properties":{"location":{"type":"string","description":"City name"}}}}}]<|im_end|>` + "\n" + `<|im_start|>user` + "\n" + `What's the weather?<|im_end|>` + "\n" + `<|im_start|>assistant` + "\n",
},
{
name: "tools definitions without system message",
messages: []api.Message{
{Role: "user", Content: "What's the weather?"},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get current weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Properties: testPropsMap(map[string]api.ToolProperty{
"location": {
Type: api.PropertyType{"string"},
Description: "City name",
},
}),
Required: []string{"location"},
},
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: `<|im_start|>system` + "\n" + `List of tools: [{"type":"function","function":{"name":"get_weather","description":"Get current weather","parameters":{"type":"object","required":["location"],"properties":{"location":{"type":"string","description":"City name"}}}}}]<|im_end|>` + "\n" + `<|im_start|>user` + "\n" + `What's the weather?<|im_end|>` + "\n" + `<|im_start|>assistant` + "\n",
},
{
name: "multiple tools without system message",
messages: []api.Message{
{Role: "user", Content: "Hello"},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get weather",
},
},
{
Type: "function",
Function: api.ToolFunction{
Name: "get_time",
Description: "Get time",
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>system\nList of tools: [{\"type\":\"function\",\"function\":{\"name\":\"get_weather\",\"description\":\"Get weather\",\"parameters\":{\"type\":\"\",\"properties\":null}}}, {\"type\":\"function\",\"function\":{\"name\":\"get_time\",\"description\":\"Get time\",\"parameters\":{\"type\":\"\",\"properties\":null}}}]<|im_end|>\n<|im_start|>user\nHello<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "user-tool sequence",
messages: []api.Message{
{Role: "user", Content: "Check weather"},
{Role: "tool", Content: "22C"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nCheck weather<|im_end|>\n<|im_start|>tool\n22C<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "full tool call cycle",
messages: []api.Message{
{Role: "user", Content: "Check weather"},
{Role: "assistant", Content: "Let me check"},
{Role: "tool", Content: "22C"},
{Role: "assistant", Content: "It's 22C"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nCheck weather<|im_end|>\n<|im_start|>assistant\nLet me check<|im_end|>\n<|im_start|>tool\n22C<|im_end|>\n<|im_start|>assistant\nIt's 22C<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "unicode content",
messages: []api.Message{
{Role: "user", Content: "你好世界! مرحبا 🌍"},
{Role: "assistant", Content: "Hello! 👋"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\n你好世界! مرحبا 🌍<|im_end|>\n<|im_start|>assistant\nHello! 👋<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "newlines in content",
messages: []api.Message{
{Role: "user", Content: "Line 1\nLine 2\n\nLine 4"},
{Role: "assistant", Content: "Response with\nmultiple\nlines"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nLine 1\nLine 2\n\nLine 4<|im_end|>\n<|im_start|>assistant\nResponse with\nmultiple\nlines<|im_end|>\n<|im_start|>assistant\n",
},
{
name: "empty assistant content",
messages: []api.Message{
{Role: "user", Content: "Hello"},
{Role: "assistant", Content: ""},
{Role: "user", Content: "OK"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nHello<|im_end|>\n<|im_start|>assistant\n<|im_end|>\n<|im_start|>user\nOK<|im_end|>\n<|im_start|>assistant\n",
},
{
// Generation prompt does NOT include <think> - model outputs it
name: "generation prompt has no think tag",
messages: []api.Message{
{Role: "user", Content: "Think hard"},
},
thinkValue: &api.ThinkValue{Value: true},
expected: "<|im_start|>user\nThink hard<|im_end|>\n<|im_start|>assistant\n",
},
{
// Interleaved: thinking before tool call - last assistant preserves thinking
name: "thinking before tool call (last assistant)",
messages: []api.Message{
{Role: "user", Content: "What's the weather?"},
{
Role: "assistant",
Content: "<think>I need to check the weather</think>",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nWhat's the weather?<|im_end|>\n<|im_start|>assistant\n<think>I need to check the weather</think><|tool_call_start|>{\"arguments\":{\"location\":\"Paris\"},\"name\":\"get_weather\"}<|tool_call_end|><|im_end|>\n<|im_start|>assistant\n",
},
{
// Two assistants with tool calls - first has thinking stripped
name: "two assistants with tools: first thinking stripped",
messages: []api.Message{
{Role: "user", Content: "What's the weather?"},
{
Role: "assistant",
Content: "<think>checking</think>",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
},
},
{Role: "tool", Content: "22C"},
{Role: "assistant", Content: "<think>got result</think>It's 22C!"},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nWhat's the weather?<|im_end|>\n<|im_start|>assistant\n<|tool_call_start|>{\"arguments\":{\"location\":\"Paris\"},\"name\":\"get_weather\"}<|tool_call_end|><|im_end|>\n<|im_start|>tool\n22C<|im_end|>\n<|im_start|>assistant\n<think>got result</think>It's 22C!<|im_end|>\n<|im_start|>assistant\n",
},
{
// Two assistants with tools - both preserved when thinking enabled
name: "two assistants with tools: both preserved when thinking enabled",
messages: []api.Message{
{Role: "user", Content: "What's the weather?"},
{
Role: "assistant",
Content: "<think>checking</think>",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
},
},
{Role: "tool", Content: "22C"},
{Role: "assistant", Content: "<think>got result</think>It's 22C!"},
},
thinkValue: &api.ThinkValue{Value: true},
expected: "<|im_start|>user\nWhat's the weather?<|im_end|>\n<|im_start|>assistant\n<think>checking</think><|tool_call_start|>{\"arguments\":{\"location\":\"Paris\"},\"name\":\"get_weather\"}<|tool_call_end|><|im_end|>\n<|im_start|>tool\n22C<|im_end|>\n<|im_start|>assistant\n<think>got result</think>It's 22C!<|im_end|>\n<|im_start|>assistant\n",
},
{
// Content before thinking before tool call
name: "content then thinking then tool call",
messages: []api.Message{
{Role: "user", Content: "What's the weather?"},
{
Role: "assistant",
Content: "Let me check.<think>Using weather API</think>",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: testArgs(map[string]any{
"location": "Paris",
}),
},
},
},
},
},
thinkValue: &api.ThinkValue{Value: false},
expected: "<|im_start|>user\nWhat's the weather?<|im_end|>\n<|im_start|>assistant\nLet me check.<think>Using weather API</think><|tool_call_start|>{\"arguments\":{\"location\":\"Paris\"},\"name\":\"get_weather\"}<|tool_call_end|><|im_end|>\n<|im_start|>assistant\n",
},
}
renderer := &LFM2Renderer{IsThinking: true}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
rendered, err := renderer.Render(tt.messages, tt.tools, tt.thinkValue)
if err != nil {
t.Fatalf("Render() error = %v", err)
}
if diff := cmp.Diff(tt.expected, rendered); diff != "" {
t.Errorf("Render() mismatch (-want +got):\n%s", diff)
}
})
}
}

View File

@@ -80,12 +80,6 @@ func rendererForName(name string) Renderer {
return &Nemotron3NanoRenderer{}
case "functiongemma":
return &FunctionGemmaRenderer{}
case "glm-4.7":
return &GLM47Renderer{}
case "lfm2":
return &LFM2Renderer{IsThinking: false}
case "lfm2-thinking":
return &LFM2Renderer{IsThinking: true}
default:
return nil
}

View File

@@ -1,26 +1,6 @@
package renderers
import (
"encoding/json"
"github.com/ollama/ollama/api"
)
func args(s string) api.ToolCallFunctionArguments {
var result api.ToolCallFunctionArguments
if err := json.Unmarshal([]byte(s), &result); err != nil {
panic("invalid JSON in args(): " + err.Error())
}
return result
}
func propsMap(s string) *api.ToolPropertiesMap {
var result api.ToolPropertiesMap
if err := json.Unmarshal([]byte(s), &result); err != nil {
panic("invalid JSON in propsMap(): " + err.Error())
}
return &result
}
import "github.com/ollama/ollama/api"
// testPropsMap creates a ToolPropertiesMap from a map (convenience function for tests, order not preserved)
func testPropsMap(m map[string]api.ToolProperty) *api.ToolPropertiesMap {

View File

@@ -794,47 +794,3 @@ func ToImageGenerationResponse(resp api.GenerateResponse) ImageGenerationRespons
Data: data,
}
}
// ImageEditRequest is an OpenAI-compatible image edit request.
type ImageEditRequest struct {
Model string `json:"model"`
Prompt string `json:"prompt"`
Image string `json:"image"` // Base64-encoded image data
Size string `json:"size,omitempty"` // e.g., "1024x1024"
Seed *int64 `json:"seed,omitempty"`
}
// FromImageEditRequest converts an OpenAI image edit request to an Ollama GenerateRequest.
func FromImageEditRequest(r ImageEditRequest) (api.GenerateRequest, error) {
req := api.GenerateRequest{
Model: r.Model,
Prompt: r.Prompt,
}
// Decode the input image
if r.Image != "" {
imgData, err := decodeImageURL(r.Image)
if err != nil {
return api.GenerateRequest{}, fmt.Errorf("invalid image: %w", err)
}
req.Images = append(req.Images, imgData)
}
// Parse size if provided (e.g., "1024x768")
if r.Size != "" {
var w, h int32
if _, err := fmt.Sscanf(r.Size, "%dx%d", &w, &h); err == nil {
req.Width = w
req.Height = h
}
}
if r.Seed != nil {
if req.Options == nil {
req.Options = map[string]any{}
}
req.Options["seed"] = *r.Seed
}
return req, nil
}

View File

@@ -448,86 +448,3 @@ func TestFromChatRequest_TopLogprobsRange(t *testing.T) {
})
}
}
func TestFromImageEditRequest_Basic(t *testing.T) {
req := ImageEditRequest{
Model: "test-model",
Prompt: "make it blue",
Image: prefix + image,
}
result, err := FromImageEditRequest(req)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if result.Model != "test-model" {
t.Errorf("expected model 'test-model', got %q", result.Model)
}
if result.Prompt != "make it blue" {
t.Errorf("expected prompt 'make it blue', got %q", result.Prompt)
}
if len(result.Images) != 1 {
t.Fatalf("expected 1 image, got %d", len(result.Images))
}
}
func TestFromImageEditRequest_WithSize(t *testing.T) {
req := ImageEditRequest{
Model: "test-model",
Prompt: "make it blue",
Image: prefix + image,
Size: "512x768",
}
result, err := FromImageEditRequest(req)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if result.Width != 512 {
t.Errorf("expected width 512, got %d", result.Width)
}
if result.Height != 768 {
t.Errorf("expected height 768, got %d", result.Height)
}
}
func TestFromImageEditRequest_WithSeed(t *testing.T) {
seed := int64(12345)
req := ImageEditRequest{
Model: "test-model",
Prompt: "make it blue",
Image: prefix + image,
Seed: &seed,
}
result, err := FromImageEditRequest(req)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if result.Options == nil {
t.Fatal("expected options to be set")
}
if result.Options["seed"] != seed {
t.Errorf("expected seed %d, got %v", seed, result.Options["seed"])
}
}
func TestFromImageEditRequest_InvalidImage(t *testing.T) {
req := ImageEditRequest{
Model: "test-model",
Prompt: "make it blue",
Image: "not-valid-base64",
}
_, err := FromImageEditRequest(req)
if err == nil {
t.Error("expected error for invalid image")
}
}

View File

@@ -95,21 +95,7 @@ func (i *Instance) Readline() (string, error) {
var currentLineBuf []rune
// draining tracks if we're processing buffered input from cooked mode.
// In cooked mode Enter sends \n, but in raw mode Ctrl+J sends \n.
// We treat \n from cooked mode as submit, not multiline.
// We check Buffered() after the first read since the bufio buffer is
// empty until then. This is compatible with """ multiline mode in
// interactive.go since each Readline() call is independent.
var draining, stopDraining bool
for {
// Apply deferred state change from previous iteration
if stopDraining {
draining = false
stopDraining = false
}
// don't show placeholder when pasting unless we're in multiline mode
showPlaceholder := !i.Pasting || i.Prompt.UseAlt
if buf.IsEmpty() && showPlaceholder {
@@ -119,15 +105,6 @@ func (i *Instance) Readline() (string, error) {
r, err := i.Terminal.Read()
// After reading, check if there's more buffered data. If so, we're
// processing cooked-mode input. Once buffer empties, the current
// char is the last buffered one (still drain it), then stop next iteration.
if i.Terminal.reader.Buffered() > 0 {
draining = true
} else if draining {
stopDraining = true
}
if buf.IsEmpty() {
fmt.Print(ClearToEOL)
}
@@ -255,20 +232,15 @@ func (i *Instance) Readline() (string, error) {
fd := os.Stdin.Fd()
return handleCharCtrlZ(fd, i.Terminal.termios)
case CharCtrlJ:
// If not draining cooked-mode input, treat as multiline
if !draining {
i.pastedLines = append(i.pastedLines, buf.String())
buf.Buf.Clear()
buf.Pos = 0
buf.DisplayPos = 0
buf.LineHasSpace.Clear()
fmt.Println()
fmt.Print(i.Prompt.AltPrompt)
i.Prompt.UseAlt = true
continue
}
// Draining cooked-mode input: treat \n as submit
fallthrough
i.pastedLines = append(i.pastedLines, buf.String())
buf.Buf.Clear()
buf.Pos = 0
buf.DisplayPos = 0
buf.LineHasSpace.Clear()
fmt.Println()
fmt.Print(i.Prompt.AltPrompt)
i.Prompt.UseAlt = true
continue
case CharEnter:
output := buf.String()
if len(i.pastedLines) > 0 {

View File

@@ -28,7 +28,6 @@ import (
"github.com/ollama/ollama/format"
ofs "github.com/ollama/ollama/fs"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/manifest"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/types/errtypes"
"github.com/ollama/ollama/types/model"
@@ -91,7 +90,7 @@ func (s *Server) CreateHandler(c *gin.Context) {
ch <- resp
}
oldManifest, _ := manifest.ParseNamedManifest(name)
oldManifest, _ := ParseNamedManifest(name)
var baseLayers []*layerGGML
var err error
@@ -124,9 +123,9 @@ func (s *Server) CreateHandler(c *gin.Context) {
}
if err == nil && !remote && (config.Renderer == "" || config.Parser == "" || config.Requires == "") {
mf, mErr := manifest.ParseNamedManifest(fromName)
if mErr == nil && mf.Config.Digest != "" {
configPath, pErr := manifest.BlobsPath(mf.Config.Digest)
manifest, mErr := ParseNamedManifest(fromName)
if mErr == nil && manifest.Config.Digest != "" {
configPath, pErr := GetBlobsPath(manifest.Config.Digest)
if pErr == nil {
if cfgFile, fErr := os.Open(configPath); fErr == nil {
var baseConfig model.ConfigV2
@@ -343,7 +342,7 @@ func detectModelTypeFromFiles(files map[string]string) string {
return "gguf"
} else {
// try to see if we can find a gguf file even without the file extension
blobPath, err := manifest.BlobsPath(files[fn])
blobPath, err := GetBlobsPath(files[fn])
if err != nil {
slog.Error("error getting blobs path", "file", fn)
return ""
@@ -395,7 +394,7 @@ func convertFromSafetensors(files map[string]string, baseLayers []*layerGGML, is
return nil, fmt.Errorf("%w: %s: %s", errFilePath, err, fp)
}
blobPath, err := manifest.BlobsPath(digest)
blobPath, err := GetBlobsPath(digest)
if err != nil {
return nil, err
}
@@ -433,7 +432,7 @@ func convertFromSafetensors(files map[string]string, baseLayers []*layerGGML, is
return nil, err
}
layer, err := manifest.NewLayer(t, mediaType)
layer, err := NewLayer(t, mediaType)
if err != nil {
return nil, err
}
@@ -466,7 +465,7 @@ func kvFromLayers(baseLayers []*layerGGML) (ofs.Config, error) {
}
func createModel(r api.CreateRequest, name model.Name, baseLayers []*layerGGML, config *model.ConfigV2, fn func(resp api.ProgressResponse)) (err error) {
var layers []manifest.Layer
var layers []Layer
for _, layer := range baseLayers {
if layer.GGML != nil {
quantType := strings.ToUpper(cmp.Or(r.Quantize, r.Quantization))
@@ -551,13 +550,13 @@ func createModel(r api.CreateRequest, name model.Name, baseLayers []*layerGGML,
}
for _, layer := range layers {
if layer.Status != "" {
fn(api.ProgressResponse{Status: layer.Status})
if layer.status != "" {
fn(api.ProgressResponse{Status: layer.status})
}
}
fn(api.ProgressResponse{Status: "writing manifest"})
if err := manifest.WriteManifest(name, *configLayer, layers); err != nil {
if err := WriteManifest(name, *configLayer, layers); err != nil {
return err
}
@@ -578,7 +577,7 @@ func quantizeLayer(layer *layerGGML, quantizeType string, fn func(resp api.Progr
return nil, err
}
blob, err := manifest.BlobsPath(layer.Digest)
blob, err := GetBlobsPath(layer.Digest)
if err != nil {
return nil, err
}
@@ -600,7 +599,7 @@ func quantizeLayer(layer *layerGGML, quantizeType string, fn func(resp api.Progr
}
temp.Seek(0, io.SeekStart)
fn(api.ProgressResponse{Status: "verifying conversion"})
newLayer, err := manifest.NewLayer(temp, layer.MediaType)
newLayer, err := NewLayer(temp, layer.MediaType)
if err != nil {
return nil, err
}
@@ -620,7 +619,7 @@ func ggufLayers(digest string, fn func(resp api.ProgressResponse)) ([]*layerGGML
var layers []*layerGGML
fn(api.ProgressResponse{Status: "parsing GGUF"})
blobPath, err := manifest.BlobsPath(digest)
blobPath, err := GetBlobsPath(digest)
if err != nil {
return nil, err
}
@@ -655,7 +654,7 @@ func ggufLayers(digest string, fn func(resp api.ProgressResponse)) ([]*layerGGML
mediatype = "application/vnd.ollama.image.projector"
}
layer, err := manifest.NewLayerFromLayer(digest, mediatype, blob.Name())
layer, err := NewLayerFromLayer(digest, mediatype, blob.Name())
if err != nil {
slog.Debug("could not create new layer from layer", "error", err)
return nil, err
@@ -666,8 +665,8 @@ func ggufLayers(digest string, fn func(resp api.ProgressResponse)) ([]*layerGGML
return detectChatTemplate(layers)
}
func removeLayer(layers []manifest.Layer, mediatype string) []manifest.Layer {
return slices.DeleteFunc(layers, func(layer manifest.Layer) bool {
func removeLayer(layers []Layer, mediatype string) []Layer {
return slices.DeleteFunc(layers, func(layer Layer) bool {
if layer.MediaType != mediatype {
return false
}
@@ -681,7 +680,7 @@ func removeLayer(layers []manifest.Layer, mediatype string) []manifest.Layer {
})
}
func setTemplate(layers []manifest.Layer, t string) ([]manifest.Layer, error) {
func setTemplate(layers []Layer, t string) ([]Layer, error) {
layers = removeLayer(layers, "application/vnd.ollama.image.template")
if _, err := template.Parse(t); err != nil {
return nil, fmt.Errorf("%w: %s", errBadTemplate, err)
@@ -691,7 +690,7 @@ func setTemplate(layers []manifest.Layer, t string) ([]manifest.Layer, error) {
}
blob := strings.NewReader(t)
layer, err := manifest.NewLayer(blob, "application/vnd.ollama.image.template")
layer, err := NewLayer(blob, "application/vnd.ollama.image.template")
if err != nil {
return nil, err
}
@@ -700,11 +699,11 @@ func setTemplate(layers []manifest.Layer, t string) ([]manifest.Layer, error) {
return layers, nil
}
func setSystem(layers []manifest.Layer, s string) ([]manifest.Layer, error) {
func setSystem(layers []Layer, s string) ([]Layer, error) {
layers = removeLayer(layers, "application/vnd.ollama.image.system")
if s != "" {
blob := strings.NewReader(s)
layer, err := manifest.NewLayer(blob, "application/vnd.ollama.image.system")
layer, err := NewLayer(blob, "application/vnd.ollama.image.system")
if err != nil {
return nil, err
}
@@ -713,9 +712,9 @@ func setSystem(layers []manifest.Layer, s string) ([]manifest.Layer, error) {
return layers, nil
}
func setLicense(layers []manifest.Layer, l string) ([]manifest.Layer, error) {
func setLicense(layers []Layer, l string) ([]Layer, error) {
blob := strings.NewReader(l)
layer, err := manifest.NewLayer(blob, "application/vnd.ollama.image.license")
layer, err := NewLayer(blob, "application/vnd.ollama.image.license")
if err != nil {
return nil, err
}
@@ -723,7 +722,7 @@ func setLicense(layers []manifest.Layer, l string) ([]manifest.Layer, error) {
return layers, nil
}
func setParameters(layers []manifest.Layer, p map[string]any) ([]manifest.Layer, error) {
func setParameters(layers []Layer, p map[string]any) ([]Layer, error) {
if p == nil {
p = make(map[string]any)
}
@@ -732,7 +731,7 @@ func setParameters(layers []manifest.Layer, p map[string]any) ([]manifest.Layer,
continue
}
digestPath, err := manifest.BlobsPath(layer.Digest)
digestPath, err := GetBlobsPath(layer.Digest)
if err != nil {
return nil, err
}
@@ -766,7 +765,7 @@ func setParameters(layers []manifest.Layer, p map[string]any) ([]manifest.Layer,
if err := json.NewEncoder(&b).Encode(p); err != nil {
return nil, err
}
layer, err := manifest.NewLayer(&b, "application/vnd.ollama.image.params")
layer, err := NewLayer(&b, "application/vnd.ollama.image.params")
if err != nil {
return nil, err
}
@@ -774,7 +773,7 @@ func setParameters(layers []manifest.Layer, p map[string]any) ([]manifest.Layer,
return layers, nil
}
func setMessages(layers []manifest.Layer, m []api.Message) ([]manifest.Layer, error) {
func setMessages(layers []Layer, m []api.Message) ([]Layer, error) {
// this leaves the old messages intact if no new messages were specified
// which may not be the correct behaviour
if len(m) == 0 {
@@ -787,7 +786,7 @@ func setMessages(layers []manifest.Layer, m []api.Message) ([]manifest.Layer, er
if err := json.NewEncoder(&b).Encode(m); err != nil {
return nil, err
}
layer, err := manifest.NewLayer(&b, "application/vnd.ollama.image.messages")
layer, err := NewLayer(&b, "application/vnd.ollama.image.messages")
if err != nil {
return nil, err
}
@@ -795,7 +794,7 @@ func setMessages(layers []manifest.Layer, m []api.Message) ([]manifest.Layer, er
return layers, nil
}
func createConfigLayer(layers []manifest.Layer, config model.ConfigV2) (*manifest.Layer, error) {
func createConfigLayer(layers []Layer, config model.ConfigV2) (*Layer, error) {
digests := make([]string, len(layers))
for i, layer := range layers {
digests[i] = layer.Digest
@@ -806,7 +805,7 @@ func createConfigLayer(layers []manifest.Layer, config model.ConfigV2) (*manifes
if err := json.NewEncoder(&b).Encode(config); err != nil {
return nil, err
}
layer, err := manifest.NewLayer(&b, "application/vnd.docker.container.image.v1+json")
layer, err := NewLayer(&b, "application/vnd.docker.container.image.v1+json")
if err != nil {
return nil, err
}

View File

@@ -10,7 +10,6 @@ import (
"testing"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/manifest"
)
func TestConvertFromSafetensors(t *testing.T) {
@@ -18,7 +17,7 @@ func TestConvertFromSafetensors(t *testing.T) {
// Helper function to create a new layer and return its digest
makeTemp := func(content string) string {
l, err := manifest.NewLayer(strings.NewReader(content), "application/octet-stream")
l, err := NewLayer(strings.NewReader(content), "application/octet-stream")
if err != nil {
t.Fatalf("Failed to create layer: %v", err)
}

View File

@@ -24,8 +24,6 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/manifest"
"github.com/ollama/ollama/types/model"
)
const maxRetries = 6
@@ -458,7 +456,7 @@ func (b *blobDownload) Wait(ctx context.Context, fn func(api.ProgressResponse))
}
type downloadOpts struct {
n model.Name
mp ModelPath
digest string
regOpts *registryOptions
fn func(api.ProgressResponse)
@@ -467,10 +465,10 @@ type downloadOpts struct {
// downloadBlob downloads a blob from the registry and stores it in the blobs directory
func downloadBlob(ctx context.Context, opts downloadOpts) (cacheHit bool, _ error) {
if opts.digest == "" {
return false, fmt.Errorf(("%s: %s"), opts.n.DisplayNamespaceModel(), "digest is empty")
return false, fmt.Errorf(("%s: %s"), opts.mp.GetNamespaceRepository(), "digest is empty")
}
fp, err := manifest.BlobsPath(opts.digest)
fp, err := GetBlobsPath(opts.digest)
if err != nil {
return false, err
}
@@ -494,8 +492,8 @@ func downloadBlob(ctx context.Context, opts downloadOpts) (cacheHit bool, _ erro
data, ok := blobDownloadManager.LoadOrStore(opts.digest, &blobDownload{Name: fp, Digest: opts.digest})
download := data.(*blobDownload)
if !ok {
requestURL := opts.n.BaseURL()
requestURL = requestURL.JoinPath("v2", opts.n.DisplayNamespaceModel(), "blobs", opts.digest)
requestURL := opts.mp.BaseURL()
requestURL = requestURL.JoinPath("v2", opts.mp.GetNamespaceRepository(), "blobs", opts.digest)
if err := download.Prepare(ctx, requestURL, opts.regOpts); err != nil {
blobDownloadManager.Delete(opts.digest)
return false, err

View File

@@ -4,6 +4,7 @@ import (
"bytes"
"context"
"crypto/sha256"
"encoding/hex"
"encoding/json"
"errors"
"fmt"
@@ -23,7 +24,6 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/fs/gguf"
"github.com/ollama/ollama/manifest"
"github.com/ollama/ollama/model/parsers"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/template"
@@ -75,6 +75,12 @@ type Model struct {
func (m *Model) Capabilities() []model.Capability {
capabilities := []model.Capability{}
// Check for image generation model via config capabilities
if slices.Contains(m.Config.Capabilities, "image") {
return []model.Capability{model.CapabilityImage}
}
// Check for completion capability
if m.ModelPath != "" {
f, err := gguf.Open(m.ModelPath)
if err == nil {
@@ -268,22 +274,44 @@ func (m *Model) String() string {
return modelfile.String()
}
func GetManifest(mp ModelPath) (*Manifest, string, error) {
fp, err := mp.GetManifestPath()
if err != nil {
return nil, "", err
}
f, err := os.Open(fp)
if err != nil {
return nil, "", err
}
defer f.Close()
sha256sum := sha256.New()
var manifest Manifest
if err := json.NewDecoder(io.TeeReader(f, sha256sum)).Decode(&manifest); err != nil {
return nil, "", err
}
return &manifest, hex.EncodeToString(sha256sum.Sum(nil)), nil
}
func GetModel(name string) (*Model, error) {
n := model.ParseName(name)
mf, err := manifest.ParseNamedManifest(n)
mp := ParseModelPath(name)
manifest, digest, err := GetManifest(mp)
if err != nil {
return nil, err
}
m := &Model{
Name: n.String(),
ShortName: n.DisplayShortest(),
Digest: mf.Digest(),
model := &Model{
Name: mp.GetFullTagname(),
ShortName: mp.GetShortTagname(),
Digest: digest,
Template: template.DefaultTemplate,
}
if mf.Config.Digest != "" {
filename, err := manifest.BlobsPath(mf.Config.Digest)
if manifest.Config.Digest != "" {
filename, err := GetBlobsPath(manifest.Config.Digest)
if err != nil {
return nil, err
}
@@ -294,29 +322,29 @@ func GetModel(name string) (*Model, error) {
}
defer configFile.Close()
if err := json.NewDecoder(configFile).Decode(&m.Config); err != nil {
if err := json.NewDecoder(configFile).Decode(&model.Config); err != nil {
return nil, err
}
}
for _, layer := range mf.Layers {
filename, err := manifest.BlobsPath(layer.Digest)
for _, layer := range manifest.Layers {
filename, err := GetBlobsPath(layer.Digest)
if err != nil {
return nil, err
}
switch layer.MediaType {
case "application/vnd.ollama.image.model":
m.ModelPath = filename
m.ParentModel = layer.From
model.ModelPath = filename
model.ParentModel = layer.From
case "application/vnd.ollama.image.embed":
// Deprecated in versions > 0.1.2
// TODO: remove this warning in a future version
slog.Info("WARNING: model contains embeddings, but embeddings in modelfiles have been deprecated and will be ignored.")
case "application/vnd.ollama.image.adapter":
m.AdapterPaths = append(m.AdapterPaths, filename)
model.AdapterPaths = append(model.AdapterPaths, filename)
case "application/vnd.ollama.image.projector":
m.ProjectorPaths = append(m.ProjectorPaths, filename)
model.ProjectorPaths = append(model.ProjectorPaths, filename)
case "application/vnd.ollama.image.prompt",
"application/vnd.ollama.image.template":
bts, err := os.ReadFile(filename)
@@ -324,7 +352,7 @@ func GetModel(name string) (*Model, error) {
return nil, err
}
m.Template, err = template.Parse(string(bts))
model.Template, err = template.Parse(string(bts))
if err != nil {
return nil, err
}
@@ -334,7 +362,7 @@ func GetModel(name string) (*Model, error) {
return nil, err
}
m.System = string(bts)
model.System = string(bts)
case "application/vnd.ollama.image.params":
params, err := os.Open(filename)
if err != nil {
@@ -343,7 +371,7 @@ func GetModel(name string) (*Model, error) {
defer params.Close()
// parse model options parameters into a map so that we can see which fields have been specified explicitly
if err = json.NewDecoder(params).Decode(&m.Options); err != nil {
if err = json.NewDecoder(params).Decode(&model.Options); err != nil {
return nil, err
}
case "application/vnd.ollama.image.messages":
@@ -353,7 +381,7 @@ func GetModel(name string) (*Model, error) {
}
defer msgs.Close()
if err = json.NewDecoder(msgs).Decode(&m.Messages); err != nil {
if err = json.NewDecoder(msgs).Decode(&model.Messages); err != nil {
return nil, err
}
case "application/vnd.ollama.image.license":
@@ -361,11 +389,11 @@ func GetModel(name string) (*Model, error) {
if err != nil {
return nil, err
}
m.License = append(m.License, string(bts))
model.License = append(model.License, string(bts))
}
}
return m, nil
return model, nil
}
func CopyModel(src, dst model.Name) error {
@@ -380,7 +408,7 @@ func CopyModel(src, dst model.Name) error {
return nil
}
manifests, err := manifest.Path()
manifests, err := GetManifestPath()
if err != nil {
return err
}
@@ -409,7 +437,7 @@ func CopyModel(src, dst model.Name) error {
func deleteUnusedLayers(deleteMap map[string]struct{}) error {
// Ignore corrupt manifests to avoid blocking deletion of layers that are freshly orphaned
manifests, err := manifest.Manifests(true)
manifests, err := Manifests(true)
if err != nil {
return err
}
@@ -424,7 +452,7 @@ func deleteUnusedLayers(deleteMap map[string]struct{}) error {
// only delete the files which are still in the deleteMap
for k := range deleteMap {
fp, err := manifest.BlobsPath(k)
fp, err := GetBlobsPath(k)
if err != nil {
slog.Info(fmt.Sprintf("couldn't get file path for '%s': %v", k, err))
continue
@@ -440,7 +468,7 @@ func deleteUnusedLayers(deleteMap map[string]struct{}) error {
func PruneLayers() error {
deleteMap := make(map[string]struct{})
p, err := manifest.BlobsPath("")
p, err := GetBlobsPath("")
if err != nil {
return err
}
@@ -455,9 +483,9 @@ func PruneLayers() error {
name := blob.Name()
name = strings.ReplaceAll(name, "-", ":")
_, err := manifest.BlobsPath(name)
_, err := GetBlobsPath(name)
if err != nil {
if errors.Is(err, manifest.ErrInvalidDigestFormat) {
if errors.Is(err, ErrInvalidDigestFormat) {
// remove invalid blobs (e.g. partial downloads)
if err := os.Remove(filepath.Join(p, blob.Name())); err != nil {
slog.Error("couldn't remove blob", "blob", blob.Name(), "error", err)
@@ -482,30 +510,63 @@ func PruneLayers() error {
return nil
}
func PruneDirectory(path string) error {
info, err := os.Lstat(path)
if err != nil {
return err
}
if info.IsDir() && info.Mode()&os.ModeSymlink == 0 {
entries, err := os.ReadDir(path)
if err != nil {
return err
}
for _, entry := range entries {
if err := PruneDirectory(filepath.Join(path, entry.Name())); err != nil {
return err
}
}
entries, err = os.ReadDir(path)
if err != nil {
return err
}
if len(entries) > 0 {
return nil
}
return os.Remove(path)
}
return nil
}
func PushModel(ctx context.Context, name string, regOpts *registryOptions, fn func(api.ProgressResponse)) error {
n := model.ParseName(name)
mp := ParseModelPath(name)
fn(api.ProgressResponse{Status: "retrieving manifest"})
if n.ProtocolScheme == "http" && !regOpts.Insecure {
if mp.ProtocolScheme == "http" && !regOpts.Insecure {
return errInsecureProtocol
}
mf, err := manifest.ParseNamedManifest(n)
manifest, _, err := GetManifest(mp)
if err != nil {
fn(api.ProgressResponse{Status: "couldn't retrieve manifest"})
return err
}
var layers []manifest.Layer
layers = append(layers, mf.Layers...)
if mf.Config.Digest != "" {
layers = append(layers, mf.Config)
var layers []Layer
layers = append(layers, manifest.Layers...)
if manifest.Config.Digest != "" {
layers = append(layers, manifest.Config)
}
// Use fast transfer for models with tensor layers (many small blobs)
if hasTensorLayers(layers) {
// Read raw manifest JSON to preserve tensor metadata fields
manifestPath, err := manifest.PathForName(n)
manifestPath, err := mp.GetManifestPath()
if err != nil {
return err
}
@@ -513,7 +574,7 @@ func PushModel(ctx context.Context, name string, regOpts *registryOptions, fn fu
if err != nil {
return err
}
if err := pushWithTransfer(ctx, n, layers, manifestJSON, regOpts, fn); err != nil {
if err := pushWithTransfer(ctx, mp, layers, manifestJSON, regOpts, fn); err != nil {
return err
}
fn(api.ProgressResponse{Status: "success"})
@@ -521,17 +582,17 @@ func PushModel(ctx context.Context, name string, regOpts *registryOptions, fn fu
}
for _, layer := range layers {
if err := uploadBlob(ctx, n, layer, regOpts, fn); err != nil {
if err := uploadBlob(ctx, mp, layer, regOpts, fn); err != nil {
slog.Info(fmt.Sprintf("error uploading blob: %v", err))
return err
}
}
fn(api.ProgressResponse{Status: "pushing manifest"})
requestURL := n.BaseURL()
requestURL = requestURL.JoinPath("v2", n.DisplayNamespaceModel(), "manifests", n.Tag)
requestURL := mp.BaseURL()
requestURL = requestURL.JoinPath("v2", mp.GetNamespaceRepository(), "manifests", mp.Tag)
manifestJSON, err := json.Marshal(mf)
manifestJSON, err := json.Marshal(manifest)
if err != nil {
return err
}
@@ -550,44 +611,44 @@ func PushModel(ctx context.Context, name string, regOpts *registryOptions, fn fu
}
func PullModel(ctx context.Context, name string, regOpts *registryOptions, fn func(api.ProgressResponse)) error {
n := model.ParseName(name)
mp := ParseModelPath(name)
// build deleteMap to prune unused layers
deleteMap := make(map[string]struct{})
existingMf, err := manifest.ParseNamedManifest(n)
manifest, _, err := GetManifest(mp)
if errors.Is(err, os.ErrNotExist) {
// noop
} else if err != nil {
slog.Warn("pulling model with bad existing manifest", "name", name, "error", err)
} else {
for _, l := range existingMf.Layers {
for _, l := range manifest.Layers {
deleteMap[l.Digest] = struct{}{}
}
if existingMf.Config.Digest != "" {
deleteMap[existingMf.Config.Digest] = struct{}{}
if manifest.Config.Digest != "" {
deleteMap[manifest.Config.Digest] = struct{}{}
}
}
if n.ProtocolScheme == "http" && !regOpts.Insecure {
if mp.ProtocolScheme == "http" && !regOpts.Insecure {
return errInsecureProtocol
}
fn(api.ProgressResponse{Status: "pulling manifest"})
mf, err := pullModelManifest(ctx, n, regOpts)
manifest, err = pullModelManifest(ctx, mp, regOpts)
if err != nil {
return fmt.Errorf("pull model manifest: %s", err)
}
var layers []manifest.Layer
layers = append(layers, mf.Layers...)
if mf.Config.Digest != "" {
layers = append(layers, mf.Config)
var layers []Layer
layers = append(layers, manifest.Layers...)
if manifest.Config.Digest != "" {
layers = append(layers, manifest.Config)
}
// Use fast transfer for models with tensor layers (many small blobs)
if hasTensorLayers(layers) {
if err := pullWithTransfer(ctx, n, layers, mf, regOpts, fn); err != nil {
if err := pullWithTransfer(ctx, mp, layers, manifest, regOpts, fn); err != nil {
return err
}
fn(api.ProgressResponse{Status: "success"})
@@ -597,7 +658,7 @@ func PullModel(ctx context.Context, name string, regOpts *registryOptions, fn fu
skipVerify := make(map[string]bool)
for _, layer := range layers {
cacheHit, err := downloadBlob(ctx, downloadOpts{
n: n,
mp: mp,
digest: layer.Digest,
regOpts: regOpts,
fn: fn,
@@ -616,7 +677,7 @@ func PullModel(ctx context.Context, name string, regOpts *registryOptions, fn fu
}
if err := verifyBlob(layer.Digest); err != nil {
if errors.Is(err, errDigestMismatch) {
fp, err := manifest.BlobsPath(layer.Digest)
fp, err := GetBlobsPath(layer.Digest)
if err != nil {
return err
}
@@ -631,16 +692,16 @@ func PullModel(ctx context.Context, name string, regOpts *registryOptions, fn fu
for _, layer := range layers {
delete(deleteMap, layer.Digest)
}
delete(deleteMap, mf.Config.Digest)
delete(deleteMap, manifest.Config.Digest)
fn(api.ProgressResponse{Status: "writing manifest"})
manifestJSON, err := json.Marshal(mf)
manifestJSON, err := json.Marshal(manifest)
if err != nil {
return err
}
fp, err := manifest.PathForName(n)
fp, err := mp.GetManifestPath()
if err != nil {
return err
}
@@ -667,9 +728,9 @@ func PullModel(ctx context.Context, name string, regOpts *registryOptions, fn fu
}
// hasTensorLayers checks if any layer has tensor media type.
func hasTensorLayers(layers []manifest.Layer) bool {
func hasTensorLayers(layers []Layer) bool {
for _, layer := range layers {
if layer.MediaType == manifest.MediaTypeImageTensor {
if layer.MediaType == MediaTypeImageTensor {
return true
}
}
@@ -677,7 +738,7 @@ func hasTensorLayers(layers []manifest.Layer) bool {
}
// pullWithTransfer uses the simplified x/transfer package for downloading blobs.
func pullWithTransfer(ctx context.Context, n model.Name, layers []manifest.Layer, mf *manifest.Manifest, regOpts *registryOptions, fn func(api.ProgressResponse)) error {
func pullWithTransfer(ctx context.Context, mp ModelPath, layers []Layer, manifest *Manifest, regOpts *registryOptions, fn func(api.ProgressResponse)) error {
blobs := make([]transfer.Blob, len(layers))
for i, layer := range layers {
blobs[i] = transfer.Blob{
@@ -686,12 +747,12 @@ func pullWithTransfer(ctx context.Context, n model.Name, layers []manifest.Layer
}
}
destDir, err := manifest.BlobsPath("")
destDir, err := GetBlobsPath("")
if err != nil {
return err
}
base := n.BaseURL()
base := mp.BaseURL()
if base.Scheme != "http" && regOpts != nil && regOpts.Insecure {
base.Scheme = "http"
}
@@ -723,7 +784,7 @@ func pullWithTransfer(ctx context.Context, n model.Name, layers []manifest.Layer
Blobs: blobs,
BaseURL: baseURL,
DestDir: destDir,
Repository: n.DisplayNamespaceModel(),
Repository: mp.GetNamespaceRepository(),
Progress: progress,
Token: regOpts.Token,
GetToken: getToken,
@@ -734,12 +795,12 @@ func pullWithTransfer(ctx context.Context, n model.Name, layers []manifest.Layer
// Write manifest
fn(api.ProgressResponse{Status: "writing manifest"})
manifestJSON, err := json.Marshal(mf)
manifestJSON, err := json.Marshal(manifest)
if err != nil {
return err
}
fp, err := manifest.PathForName(n)
fp, err := mp.GetManifestPath()
if err != nil {
return err
}
@@ -751,7 +812,7 @@ func pullWithTransfer(ctx context.Context, n model.Name, layers []manifest.Layer
}
// pushWithTransfer uses the simplified x/transfer package for uploading blobs and manifest.
func pushWithTransfer(ctx context.Context, n model.Name, layers []manifest.Layer, manifestJSON []byte, regOpts *registryOptions, fn func(api.ProgressResponse)) error {
func pushWithTransfer(ctx context.Context, mp ModelPath, layers []Layer, manifestJSON []byte, regOpts *registryOptions, fn func(api.ProgressResponse)) error {
blobs := make([]transfer.Blob, len(layers))
for i, layer := range layers {
blobs[i] = transfer.Blob{
@@ -761,12 +822,12 @@ func pushWithTransfer(ctx context.Context, n model.Name, layers []manifest.Layer
}
}
srcDir, err := manifest.BlobsPath("")
srcDir, err := GetBlobsPath("")
if err != nil {
return err
}
base := n.BaseURL()
base := mp.BaseURL()
if base.Scheme != "http" && regOpts != nil && regOpts.Insecure {
base.Scheme = "http"
}
@@ -803,13 +864,13 @@ func pushWithTransfer(ctx context.Context, n model.Name, layers []manifest.Layer
GetToken: getToken,
Logger: slog.Default(),
Manifest: manifestJSON,
ManifestRef: n.Tag,
Repository: n.DisplayNamespaceModel(),
ManifestRef: mp.Tag,
Repository: mp.GetNamespaceRepository(),
})
}
func pullModelManifest(ctx context.Context, n model.Name, regOpts *registryOptions) (*manifest.Manifest, error) {
requestURL := n.BaseURL().JoinPath("v2", n.DisplayNamespaceModel(), "manifests", n.Tag)
func pullModelManifest(ctx context.Context, mp ModelPath, regOpts *registryOptions) (*Manifest, error) {
requestURL := mp.BaseURL().JoinPath("v2", mp.GetNamespaceRepository(), "manifests", mp.Tag)
headers := make(http.Header)
headers.Set("Accept", "application/vnd.docker.distribution.manifest.v2+json")
@@ -819,7 +880,7 @@ func pullModelManifest(ctx context.Context, n model.Name, regOpts *registryOptio
}
defer resp.Body.Close()
var m manifest.Manifest
var m Manifest
if err := json.NewDecoder(resp.Body).Decode(&m); err != nil {
return nil, err
}
@@ -981,7 +1042,7 @@ func parseRegistryChallenge(authStr string) registryChallenge {
var errDigestMismatch = errors.New("digest mismatch, file must be downloaded again")
func verifyBlob(digest string) error {
fp, err := manifest.BlobsPath(digest)
fp, err := GetBlobsPath(digest)
if err != nil {
return err
}

View File

@@ -56,15 +56,6 @@ func TestModelCapabilities(t *testing.T) {
},
expectedCaps: []model.Capability{model.CapabilityImage},
},
{
name: "model with image and vision capability (image editing)",
model: Model{
Config: model.ConfigV2{
Capabilities: []string{"image", "vision"},
},
},
expectedCaps: []model.Capability{model.CapabilityImage, model.CapabilityVision},
},
{
name: "model with completion capability",
model: Model{

View File

@@ -1,4 +1,4 @@
package manifest
package server
import (
"crypto/sha256"
@@ -14,7 +14,7 @@ type Layer struct {
Size int64 `json:"size"`
From string `json:"from,omitempty"`
Name string `json:"name,omitempty"` // tensor name, e.g., "text_encoder/model.embed_tokens.weight"
Status string `json:"-"`
status string
}
const (
@@ -22,7 +22,7 @@ const (
)
func NewLayer(r io.Reader, mediatype string) (Layer, error) {
blobs, err := BlobsPath("")
blobs, err := GetBlobsPath("")
if err != nil {
return Layer{}, err
}
@@ -45,7 +45,7 @@ func NewLayer(r io.Reader, mediatype string) (Layer, error) {
}
digest := fmt.Sprintf("sha256:%x", sha256sum.Sum(nil))
blob, err := BlobsPath(digest)
blob, err := GetBlobsPath(digest)
if err != nil {
return Layer{}, err
}
@@ -65,7 +65,7 @@ func NewLayer(r io.Reader, mediatype string) (Layer, error) {
MediaType: mediatype,
Digest: digest,
Size: n,
Status: fmt.Sprintf("%s %s", status, digest),
status: fmt.Sprintf("%s %s", status, digest),
}, nil
}
@@ -74,7 +74,7 @@ func NewLayerFromLayer(digest, mediatype, from string) (Layer, error) {
return Layer{}, errors.New("creating new layer from layer with empty digest")
}
blob, err := BlobsPath(digest)
blob, err := GetBlobsPath(digest)
if err != nil {
return Layer{}, err
}
@@ -89,7 +89,7 @@ func NewLayerFromLayer(digest, mediatype, from string) (Layer, error) {
Digest: digest,
Size: fi.Size(),
From: from,
Status: fmt.Sprintf("using existing layer %s", digest),
status: fmt.Sprintf("using existing layer %s", digest),
}, nil
}
@@ -98,7 +98,7 @@ func (l *Layer) Open() (io.ReadSeekCloser, error) {
return nil, errors.New("opening layer with empty digest")
}
blob, err := BlobsPath(l.Digest)
blob, err := GetBlobsPath(l.Digest)
if err != nil {
return nil, err
}
@@ -126,7 +126,7 @@ func (l *Layer) Remove() error {
}
}
blob, err := BlobsPath(l.Digest)
blob, err := GetBlobsPath(l.Digest)
if err != nil {
return err
}

View File

@@ -1,9 +1,10 @@
package manifest
package server
import (
"crypto/sha256"
"encoding/hex"
"encoding/json"
"errors"
"fmt"
"io"
"log/slog"
@@ -32,38 +33,12 @@ func (m *Manifest) Size() (size int64) {
return
}
func (m *Manifest) Digest() string {
return m.digest
}
func (m *Manifest) FileInfo() os.FileInfo {
return m.fi
}
// ReadConfigJSON reads and unmarshals a config layer as JSON.
func (m *Manifest) ReadConfigJSON(configPath string, v any) error {
for _, layer := range m.Layers {
if layer.MediaType == "application/vnd.ollama.image.json" && layer.Name == configPath {
blobPath, err := BlobsPath(layer.Digest)
if err != nil {
return err
}
data, err := os.ReadFile(blobPath)
if err != nil {
return err
}
return json.Unmarshal(data, v)
}
}
return fmt.Errorf("config %q not found in manifest", configPath)
}
func (m *Manifest) Remove() error {
if err := os.Remove(m.filepath); err != nil {
return err
}
manifests, err := Path()
manifests, err := GetManifestPath()
if err != nil {
return err
}
@@ -95,11 +70,11 @@ func (m *Manifest) RemoveLayers() error {
if _, used := inUse[layer.Digest]; used {
continue
}
blob, err := BlobsPath(layer.Digest)
blob, err := GetBlobsPath(layer.Digest)
if err != nil {
return err
}
if err := os.Remove(blob); os.IsNotExist(err) {
if err := os.Remove(blob); errors.Is(err, os.ErrNotExist) {
slog.Debug("layer does not exist", "digest", layer.Digest)
} else if err != nil {
return err
@@ -114,7 +89,7 @@ func ParseNamedManifest(n model.Name) (*Manifest, error) {
return nil, model.Unqualified(n)
}
manifests, err := Path()
manifests, err := GetManifestPath()
if err != nil {
return nil, err
}
@@ -146,7 +121,7 @@ func ParseNamedManifest(n model.Name) (*Manifest, error) {
}
func WriteManifest(name model.Name, config Layer, layers []Layer) error {
manifests, err := Path()
manifests, err := GetManifestPath()
if err != nil {
return err
}
@@ -173,7 +148,7 @@ func WriteManifest(name model.Name, config Layer, layers []Layer) error {
}
func Manifests(continueOnError bool) (map[model.Name]*Manifest, error) {
manifests, err := Path()
manifests, err := GetManifestPath()
if err != nil {
return nil, err
}

View File

@@ -1,4 +1,4 @@
package manifest
package server
import (
"encoding/json"

View File

@@ -13,7 +13,6 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/manifest"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/types/model"
)
@@ -21,19 +20,19 @@ import (
var intermediateBlobs map[string]string = make(map[string]string)
type layerGGML struct {
manifest.Layer
Layer
*ggml.GGML
}
func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
m, err := manifest.ParseNamedManifest(name)
m, err := ParseNamedManifest(name)
switch {
case errors.Is(err, os.ErrNotExist):
if err := PullModel(ctx, name.String(), &registryOptions{}, fn); err != nil {
return nil, err
}
m, err = manifest.ParseNamedManifest(name)
m, err = ParseNamedManifest(name)
if err != nil {
return nil, err
}
@@ -42,7 +41,7 @@ func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressRe
}
for _, layer := range m.Layers {
layer, err := manifest.NewLayerFromLayer(layer.Digest, layer.MediaType, name.DisplayShortest())
layer, err := NewLayerFromLayer(layer.Digest, layer.MediaType, name.DisplayShortest())
if err != nil {
return nil, err
}
@@ -51,7 +50,7 @@ func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressRe
case "application/vnd.ollama.image.model",
"application/vnd.ollama.image.projector",
"application/vnd.ollama.image.adapter":
blobpath, err := manifest.BlobsPath(layer.Digest)
blobpath, err := GetBlobsPath(layer.Digest)
if err != nil {
return nil, err
}
@@ -82,12 +81,12 @@ func detectChatTemplate(layers []*layerGGML) ([]*layerGGML, error) {
if t, err := template.Named(s); err != nil {
slog.Debug("template detection", "error", err, "template", s)
} else {
layer, err := manifest.NewLayer(t.Reader(), "application/vnd.ollama.image.template")
layer, err := NewLayer(t.Reader(), "application/vnd.ollama.image.template")
if err != nil {
return nil, err
}
layer.Status = fmt.Sprintf("using autodetected template %s", t.Name)
layer.status = fmt.Sprintf("using autodetected template %s", t.Name)
layers = append(layers, &layerGGML{layer, nil})
if t.Parameters != nil {
@@ -96,7 +95,7 @@ func detectChatTemplate(layers []*layerGGML) ([]*layerGGML, error) {
return nil, err
}
layer, err := manifest.NewLayer(&b, "application/vnd.ollama.image.params")
layer, err := NewLayer(&b, "application/vnd.ollama.image.params")
if err != nil {
return nil, err
}

146
server/modelpath.go Normal file
View File

@@ -0,0 +1,146 @@
package server
import (
"errors"
"fmt"
"io/fs"
"net/url"
"os"
"path/filepath"
"regexp"
"strings"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/types/model"
)
type ModelPath struct {
ProtocolScheme string
Registry string
Namespace string
Repository string
Tag string
}
const (
DefaultRegistry = "registry.ollama.ai"
DefaultNamespace = "library"
DefaultTag = "latest"
DefaultProtocolScheme = "https"
)
var (
ErrInvalidImageFormat = errors.New("invalid image format")
ErrInvalidDigestFormat = errors.New("invalid digest format")
ErrInvalidProtocol = errors.New("invalid protocol scheme")
ErrInsecureProtocol = errors.New("insecure protocol http")
ErrModelPathInvalid = errors.New("invalid model path")
)
func ParseModelPath(name string) ModelPath {
mp := ModelPath{
ProtocolScheme: DefaultProtocolScheme,
Registry: DefaultRegistry,
Namespace: DefaultNamespace,
Repository: "",
Tag: DefaultTag,
}
before, after, found := strings.Cut(name, "://")
if found {
mp.ProtocolScheme = before
name = after
}
name = strings.ReplaceAll(name, string(os.PathSeparator), "/")
parts := strings.Split(name, "/")
switch len(parts) {
case 3:
mp.Registry = parts[0]
mp.Namespace = parts[1]
mp.Repository = parts[2]
case 2:
mp.Namespace = parts[0]
mp.Repository = parts[1]
case 1:
mp.Repository = parts[0]
}
if repo, tag, found := strings.Cut(mp.Repository, ":"); found {
mp.Repository = repo
mp.Tag = tag
}
return mp
}
func (mp ModelPath) GetNamespaceRepository() string {
return fmt.Sprintf("%s/%s", mp.Namespace, mp.Repository)
}
func (mp ModelPath) GetFullTagname() string {
return fmt.Sprintf("%s/%s/%s:%s", mp.Registry, mp.Namespace, mp.Repository, mp.Tag)
}
func (mp ModelPath) GetShortTagname() string {
if mp.Registry == DefaultRegistry {
if mp.Namespace == DefaultNamespace {
return fmt.Sprintf("%s:%s", mp.Repository, mp.Tag)
}
return fmt.Sprintf("%s/%s:%s", mp.Namespace, mp.Repository, mp.Tag)
}
return fmt.Sprintf("%s/%s/%s:%s", mp.Registry, mp.Namespace, mp.Repository, mp.Tag)
}
// GetManifestPath returns the path to the manifest file for the given model path, it is up to the caller to create the directory if it does not exist.
func (mp ModelPath) GetManifestPath() (string, error) {
name := model.Name{
Host: mp.Registry,
Namespace: mp.Namespace,
Model: mp.Repository,
Tag: mp.Tag,
}
if !name.IsValid() {
return "", fs.ErrNotExist
}
return filepath.Join(envconfig.Models(), "manifests", name.Filepath()), nil
}
func (mp ModelPath) BaseURL() *url.URL {
return &url.URL{
Scheme: mp.ProtocolScheme,
Host: mp.Registry,
}
}
func GetManifestPath() (string, error) {
path := filepath.Join(envconfig.Models(), "manifests")
if err := os.MkdirAll(path, 0o755); err != nil {
return "", fmt.Errorf("%w: ensure path elements are traversable", err)
}
return path, nil
}
func GetBlobsPath(digest string) (string, error) {
// only accept actual sha256 digests
pattern := "^sha256[:-][0-9a-fA-F]{64}$"
re := regexp.MustCompile(pattern)
if digest != "" && !re.MatchString(digest) {
return "", ErrInvalidDigestFormat
}
digest = strings.ReplaceAll(digest, ":", "-")
path := filepath.Join(envconfig.Models(), "blobs", digest)
dirPath := filepath.Dir(path)
if digest == "" {
dirPath = path
}
if err := os.MkdirAll(dirPath, 0o755); err != nil {
return "", fmt.Errorf("%w: ensure path elements are traversable", err)
}
return path, nil
}

153
server/modelpath_test.go Normal file
View File

@@ -0,0 +1,153 @@
package server
import (
"path/filepath"
"testing"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
func TestGetBlobsPath(t *testing.T) {
// GetBlobsPath expects an actual directory to exist
tempDir := t.TempDir()
tests := []struct {
name string
digest string
expected string
err error
}{
{
"empty digest",
"",
filepath.Join(tempDir, "blobs"),
nil,
},
{
"valid with colon",
"sha256:456402914e838a953e0cf80caa6adbe75383d9e63584a964f504a7bbb8f7aad9",
filepath.Join(tempDir, "blobs", "sha256-456402914e838a953e0cf80caa6adbe75383d9e63584a964f504a7bbb8f7aad9"),
nil,
},
{
"valid with dash",
"sha256-456402914e838a953e0cf80caa6adbe75383d9e63584a964f504a7bbb8f7aad9",
filepath.Join(tempDir, "blobs", "sha256-456402914e838a953e0cf80caa6adbe75383d9e63584a964f504a7bbb8f7aad9"),
nil,
},
{
"digest too short",
"sha256-45640291",
"",
ErrInvalidDigestFormat,
},
{
"digest too long",
"sha256-456402914e838a953e0cf80caa6adbe75383d9e63584a964f504a7bbb8f7aad9aaaaaaaaaa",
"",
ErrInvalidDigestFormat,
},
{
"digest invalid chars",
"../sha256-456402914e838a953e0cf80caa6adbe75383d9e63584a964f504a7bbb8f7a",
"",
ErrInvalidDigestFormat,
},
}
for _, tc := range tests {
t.Run(tc.name, func(t *testing.T) {
t.Setenv("OLLAMA_MODELS", tempDir)
got, err := GetBlobsPath(tc.digest)
require.ErrorIs(t, tc.err, err, tc.name)
assert.Equal(t, tc.expected, got, tc.name)
})
}
}
func TestParseModelPath(t *testing.T) {
tests := []struct {
name string
arg string
want ModelPath
}{
{
"full path https",
"https://example.com/ns/repo:tag",
ModelPath{
ProtocolScheme: "https",
Registry: "example.com",
Namespace: "ns",
Repository: "repo",
Tag: "tag",
},
},
{
"full path http",
"http://example.com/ns/repo:tag",
ModelPath{
ProtocolScheme: "http",
Registry: "example.com",
Namespace: "ns",
Repository: "repo",
Tag: "tag",
},
},
{
"no protocol",
"example.com/ns/repo:tag",
ModelPath{
ProtocolScheme: "https",
Registry: "example.com",
Namespace: "ns",
Repository: "repo",
Tag: "tag",
},
},
{
"no registry",
"ns/repo:tag",
ModelPath{
ProtocolScheme: "https",
Registry: DefaultRegistry,
Namespace: "ns",
Repository: "repo",
Tag: "tag",
},
},
{
"no namespace",
"repo:tag",
ModelPath{
ProtocolScheme: "https",
Registry: DefaultRegistry,
Namespace: DefaultNamespace,
Repository: "repo",
Tag: "tag",
},
},
{
"no tag",
"repo",
ModelPath{
ProtocolScheme: "https",
Registry: DefaultRegistry,
Namespace: DefaultNamespace,
Repository: "repo",
Tag: DefaultTag,
},
},
}
for _, tc := range tests {
t.Run(tc.name, func(t *testing.T) {
got := ParseModelPath(tc.arg)
if got != tc.want {
t.Errorf("got: %q want: %q", got, tc.want)
}
})
}
}

View File

@@ -198,8 +198,8 @@ func newType(t *fsggml.Tensor, kv fsggml.KV, qs *quantizeState, ftype fsggml.Fil
name := t.Name
quantize := strings.HasSuffix(name, "weight")
// don't quantize vision encoder tensors (named with "v." prefix)
quantize = quantize && !strings.HasPrefix(name, "v.")
// don't quantize vision stuff
quantize = quantize && (!strings.Contains(name, "v.") || strings.Contains(name, "_v."))
quantize = quantize && !strings.Contains(name, "mm.")
// quantize only 2D and 3D tensors (experts)
@@ -219,9 +219,6 @@ func newType(t *fsggml.Tensor, kv fsggml.KV, qs *quantizeState, ftype fsggml.Fil
// NOTE: can't use LLM_TN here because the layer number is not known
quantize = quantize && !strings.Contains(name, "ssm_conv1d.weight")
// do not quantize LFM2's shortconv kernel weights
quantize = quantize && !strings.Contains(name, "shortconv.conv.weight")
// do not quantize RWKV's time_mix_first tensors
quantize = quantize && !strings.Contains(name, "time_mix_first.weight")
quantize = quantize && !strings.Contains(name, "time_mix_w1.weight")

View File

@@ -39,7 +39,6 @@ import (
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/manifest"
"github.com/ollama/ollama/middleware"
"github.com/ollama/ollama/model/parsers"
"github.com/ollama/ollama/model/renderers"
@@ -221,6 +220,12 @@ func (s *Server) GenerateHandler(c *gin.Context) {
return
}
// Handle image generation models
if slices.Contains(m.Capabilities(), model.CapabilityImage) {
s.handleImageGenerate(c, req, name.String(), checkpointStart)
return
}
if req.TopLogprobs < 0 || req.TopLogprobs > 20 {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "top_logprobs must be between 0 and 20"})
return
@@ -316,7 +321,7 @@ func (s *Server) GenerateHandler(c *gin.Context) {
return
}
// expire the runner if unload is requested (empty prompt, keep alive is 0)
// expire the runner
if req.Prompt == "" && req.KeepAlive != nil && req.KeepAlive.Duration == 0 {
s.sched.expireRunner(m)
@@ -330,12 +335,6 @@ func (s *Server) GenerateHandler(c *gin.Context) {
return
}
// Handle image generation models
if slices.Contains(m.Capabilities(), model.CapabilityImage) {
s.handleImageGenerate(c, req, name.String(), checkpointStart)
return
}
if req.Raw && (req.Template != "" || req.System != "" || len(req.Context) > 0) {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "raw mode does not support template, system, or context"})
return
@@ -975,7 +974,7 @@ func (s *Server) PushHandler(c *gin.Context) {
// is.
func getExistingName(n model.Name) (model.Name, error) {
var zero model.Name
existing, err := manifest.Manifests(true)
existing, err := Manifests(true)
if err != nil {
return zero, err
}
@@ -1019,7 +1018,7 @@ func (s *Server) DeleteHandler(c *gin.Context) {
return
}
m, err := manifest.ParseNamedManifest(n)
m, err := ParseNamedManifest(n)
if err != nil {
switch {
case os.IsNotExist(err):
@@ -1081,7 +1080,7 @@ func (s *Server) ShowHandler(c *gin.Context) {
func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
name := model.ParseName(req.Model)
if !name.IsValid() {
return nil, model.Unqualified(name)
return nil, ErrModelPathInvalid
}
name, err := getExistingName(name)
if err != nil {
@@ -1113,7 +1112,7 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
// For safetensors LLM models (experimental), populate details from config.json
if m.Config.ModelFormat == "safetensors" && slices.Contains(m.Config.Capabilities, "completion") {
if info, err := xserver.GetSafetensorsLLMInfo(name); err == nil {
if info, err := xserver.GetSafetensorsLLMInfo(name.String()); err == nil {
if arch, ok := info["general.architecture"].(string); ok && arch != "" {
modelDetails.Family = arch
}
@@ -1122,7 +1121,7 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
}
}
// Get torch_dtype directly from config.json for quantization level
if dtype, err := xserver.GetSafetensorsDtype(name); err == nil && dtype != "" {
if dtype, err := xserver.GetSafetensorsDtype(name.String()); err == nil && dtype != "" {
modelDetails.QuantizationLevel = dtype
}
}
@@ -1136,7 +1135,7 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
msgs[i] = api.Message{Role: msg.Role, Content: msg.Content}
}
mf, err := manifest.ParseNamedManifest(name)
manifest, err := ParseNamedManifest(name)
if err != nil {
return nil, err
}
@@ -1148,11 +1147,8 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
Details: modelDetails,
Messages: msgs,
Capabilities: m.Capabilities(),
ModifiedAt: mf.FileInfo().ModTime(),
ModifiedAt: manifest.fi.ModTime(),
Requires: m.Config.Requires,
// Several integrations crash on a nil/omitempty+empty ModelInfo, so by
// default we return an empty map.
ModelInfo: make(map[string]any),
}
if m.Config.RemoteHost != "" {
@@ -1215,7 +1211,7 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
if slices.Contains(m.Capabilities(), model.CapabilityImage) {
// Populate tensor info if verbose
if req.Verbose {
if tensors, err := xserver.GetSafetensorsTensorInfo(name); err == nil {
if tensors, err := xserver.GetSafetensorsTensorInfo(name.String()); err == nil {
resp.Tensors = tensors
}
}
@@ -1224,12 +1220,12 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
// For safetensors LLM models (experimental), populate ModelInfo from config.json
if m.Config.ModelFormat == "safetensors" && slices.Contains(m.Config.Capabilities, "completion") {
if info, err := xserver.GetSafetensorsLLMInfo(name); err == nil {
if info, err := xserver.GetSafetensorsLLMInfo(name.String()); err == nil {
resp.ModelInfo = info
}
// Populate tensor info if verbose
if req.Verbose {
if tensors, err := xserver.GetSafetensorsTensorInfo(name); err == nil {
if tensors, err := xserver.GetSafetensorsTensorInfo(name.String()); err == nil {
resp.Tensors = tensors
}
}
@@ -1286,7 +1282,7 @@ func getModelData(digest string, verbose bool) (ggml.KV, ggml.Tensors, error) {
}
func (s *Server) ListHandler(c *gin.Context) {
ms, err := manifest.Manifests(true)
ms, err := Manifests(true)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
@@ -1317,8 +1313,8 @@ func (s *Server) ListHandler(c *gin.Context) {
RemoteModel: cf.RemoteModel,
RemoteHost: cf.RemoteHost,
Size: m.Size(),
Digest: m.Digest(),
ModifiedAt: m.FileInfo().ModTime(),
Digest: m.digest,
ModifiedAt: m.fi.ModTime(),
Details: api.ModelDetails{
Format: cf.ModelFormat,
Family: cf.ModelFamily,
@@ -1377,7 +1373,7 @@ func (s *Server) CopyHandler(c *gin.Context) {
}
func (s *Server) HeadBlobHandler(c *gin.Context) {
path, err := manifest.BlobsPath(c.Param("digest"))
path, err := GetBlobsPath(c.Param("digest"))
if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": err.Error()})
return
@@ -1393,7 +1389,7 @@ func (s *Server) HeadBlobHandler(c *gin.Context) {
func (s *Server) CreateBlobHandler(c *gin.Context) {
if ib, ok := intermediateBlobs[c.Param("digest")]; ok {
p, err := manifest.BlobsPath(ib)
p, err := GetBlobsPath(ib)
if err != nil {
c.AbortWithStatusJSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
@@ -1411,7 +1407,7 @@ func (s *Server) CreateBlobHandler(c *gin.Context) {
}
}
path, err := manifest.BlobsPath(c.Param("digest"))
path, err := GetBlobsPath(c.Param("digest"))
if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": err.Error()})
return
@@ -1429,7 +1425,7 @@ func (s *Server) CreateBlobHandler(c *gin.Context) {
return
}
layer, err := manifest.NewLayer(c.Request.Body, "")
layer, err := NewLayer(c.Request.Body, "")
if err != nil {
c.AbortWithStatusJSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
@@ -1604,9 +1600,8 @@ func (s *Server) GenerateRoutes(rc *ollama.Registry) (http.Handler, error) {
r.GET("/v1/models", middleware.ListMiddleware(), s.ListHandler)
r.GET("/v1/models/:model", middleware.RetrieveMiddleware(), s.ShowHandler)
r.POST("/v1/responses", middleware.ResponsesMiddleware(), s.ChatHandler)
// OpenAI-compatible image generation endpoints
// OpenAI-compatible image generation endpoint
r.POST("/v1/images/generations", middleware.ImageGenerationsMiddleware(), s.GenerateHandler)
r.POST("/v1/images/edits", middleware.ImageEditsMiddleware(), s.GenerateHandler)
// Inference (Anthropic compatibility)
r.POST("/v1/messages", middleware.AnthropicMessagesMiddleware(), s.ChatHandler)
@@ -1630,7 +1625,7 @@ func Serve(ln net.Listener) error {
slog.SetDefault(logutil.NewLogger(os.Stderr, envconfig.LogLevel()))
slog.Info("server config", "env", envconfig.Values())
blobsDir, err := manifest.BlobsPath("")
blobsDir, err := GetBlobsPath("")
if err != nil {
return err
}
@@ -1639,7 +1634,7 @@ func Serve(ln net.Listener) error {
}
if !envconfig.NoPrune() {
if _, err := manifest.Manifests(false); err != nil {
if _, err := Manifests(false); err != nil {
slog.Warn("corrupt manifests detected, skipping prune operation. Re-pull or delete to clear", "error", err)
} else {
// clean up unused layers and manifests
@@ -1647,12 +1642,12 @@ func Serve(ln net.Listener) error {
return err
}
manifestsPath, err := manifest.Path()
manifestsPath, err := GetManifestPath()
if err != nil {
return err
}
if err := manifest.PruneDirectory(manifestsPath); err != nil {
if err := PruneDirectory(manifestsPath); err != nil {
return err
}
}
@@ -2524,11 +2519,6 @@ func (s *Server) handleImageGenerate(c *gin.Context, req api.GenerateRequest, mo
}
}
var images []llm.ImageData
for i, imgData := range req.Images {
images = append(images, llm.ImageData{ID: i, Data: imgData})
}
var streamStarted bool
if err := runner.Completion(c.Request.Context(), llm.CompletionRequest{
Prompt: req.Prompt,
@@ -2536,7 +2526,6 @@ func (s *Server) handleImageGenerate(c *gin.Context, req api.GenerateRequest, mo
Height: req.Height,
Steps: req.Steps,
Seed: seed,
Images: images,
}, func(cr llm.CompletionResponse) {
streamStarted = true
res := api.GenerateResponse{

View File

@@ -25,7 +25,6 @@ import (
"github.com/ollama/ollama/convert"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/manifest"
"github.com/ollama/ollama/types/model"
)
@@ -224,15 +223,15 @@ func TestCreateFromModelInheritsRendererParser(t *testing.T) {
t.Fatalf("expected status code 200, actual %d", w.Code)
}
mf, err := manifest.ParseNamedManifest(model.ParseName("child"))
manifest, err := ParseNamedManifest(model.ParseName("child"))
if err != nil {
t.Fatalf("parse manifest: %v", err)
}
if mf.Config.Digest == "" {
if manifest.Config.Digest == "" {
t.Fatalf("unexpected empty config digest for child manifest")
}
configPath, err := manifest.BlobsPath(mf.Config.Digest)
configPath, err := GetBlobsPath(manifest.Config.Digest)
if err != nil {
t.Fatalf("config blob path: %v", err)
}

View File

@@ -10,7 +10,6 @@ import (
"github.com/gin-gonic/gin"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/manifest"
"github.com/ollama/ollama/types/model"
)
@@ -94,13 +93,13 @@ func TestDeleteDuplicateLayers(t *testing.T) {
t.Fatal(err)
}
config, err := manifest.NewLayer(&b, "application/vnd.docker.container.image.v1+json")
config, err := NewLayer(&b, "application/vnd.docker.container.image.v1+json")
if err != nil {
t.Fatal(err)
}
// create a manifest with duplicate layers
if err := manifest.WriteManifest(n, config, []manifest.Layer{config}); err != nil {
if err := WriteManifest(n, config, []Layer{config}); err != nil {
t.Fatal(err)
}

View File

@@ -2101,249 +2101,3 @@ func TestChatWithPromptEndingInThinkTag(t *testing.T) {
}
})
}
func TestGenerateUnload(t *testing.T) {
gin.SetMode(gin.TestMode)
var loadFnCalled bool
s := Server{
sched: &Scheduler{
pendingReqCh: make(chan *LlmRequest, 1),
finishedReqCh: make(chan *LlmRequest, 1),
expiredCh: make(chan *runnerRef, 1),
unloadedCh: make(chan any, 1),
loaded: make(map[string]*runnerRef),
newServerFn: newMockServer(&mockRunner{}),
getGpuFn: getGpuFn,
getSystemInfoFn: getSystemInfoFn,
loadFn: func(req *LlmRequest, _ *ggml.GGML, _ ml.SystemInfo, _ []ml.DeviceInfo, _ bool) bool {
loadFnCalled = true
req.successCh <- &runnerRef{llama: &mockRunner{}}
return false
},
},
}
go s.sched.Run(t.Context())
_, digest := createBinFile(t, ggml.KV{
"general.architecture": "llama",
"llama.block_count": uint32(1),
"llama.context_length": uint32(8192),
"llama.embedding_length": uint32(4096),
"llama.attention.head_count": uint32(32),
"llama.attention.head_count_kv": uint32(8),
"tokenizer.ggml.tokens": []string{""},
"tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0},
}, []*ggml.Tensor{
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_gate.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_up.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_k.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_q.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_v.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
})
w := createRequest(t, s.CreateHandler, api.CreateRequest{
Model: "test",
Files: map[string]string{"file.gguf": digest},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
t.Run("unload with empty prompt and keepalive 0", func(t *testing.T) {
loadFnCalled = false
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test",
Prompt: "",
KeepAlive: &api.Duration{Duration: 0},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Errorf("expected status 200, got %d", w.Code)
}
var resp api.GenerateResponse
if err := json.Unmarshal(w.Body.Bytes(), &resp); err != nil {
t.Fatalf("failed to unmarshal response: %v", err)
}
if resp.DoneReason != "unload" {
t.Errorf("expected done_reason 'unload', got %q", resp.DoneReason)
}
if !resp.Done {
t.Error("expected done to be true")
}
if loadFnCalled {
t.Error("expected model NOT to be loaded for unload request, but loadFn was called")
}
})
}
func TestGenerateWithImages(t *testing.T) {
gin.SetMode(gin.TestMode)
mock := mockRunner{
CompletionResponse: llm.CompletionResponse{
Done: true,
DoneReason: llm.DoneReasonStop,
PromptEvalCount: 1,
PromptEvalDuration: 1,
EvalCount: 1,
EvalDuration: 1,
},
}
s := Server{
sched: &Scheduler{
pendingReqCh: make(chan *LlmRequest, 1),
finishedReqCh: make(chan *LlmRequest, 1),
expiredCh: make(chan *runnerRef, 1),
unloadedCh: make(chan any, 1),
loaded: make(map[string]*runnerRef),
newServerFn: newMockServer(&mock),
getGpuFn: getGpuFn,
getSystemInfoFn: getSystemInfoFn,
waitForRecovery: 250 * time.Millisecond,
loadFn: func(req *LlmRequest, _ *ggml.GGML, _ ml.SystemInfo, _ []ml.DeviceInfo, _ bool) bool {
time.Sleep(time.Millisecond)
req.successCh <- &runnerRef{
llama: &mock,
}
return false
},
},
}
go s.sched.Run(t.Context())
_, digest := createBinFile(t, ggml.KV{
"general.architecture": "llama",
"llama.block_count": uint32(1),
"llama.context_length": uint32(8192),
"llama.embedding_length": uint32(4096),
"llama.attention.head_count": uint32(32),
"llama.attention.head_count_kv": uint32(8),
"tokenizer.ggml.tokens": []string{""},
"tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0},
}, []*ggml.Tensor{
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_gate.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_up.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_k.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_q.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_v.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
})
w := createRequest(t, s.CreateHandler, api.CreateRequest{
Model: "test",
Files: map[string]string{"file.gguf": digest},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d", w.Code)
}
t.Run("images passed to completion request", func(t *testing.T) {
testImage := []byte("test-image-data")
mock.CompletionResponse.Content = "Image processed"
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test",
Prompt: "Describe this image",
Images: []api.ImageData{testImage},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d: %s", w.Code, w.Body.String())
}
// Verify images were passed to the completion request
if len(mock.CompletionRequest.Images) != 1 {
t.Fatalf("expected 1 image in completion request, got %d", len(mock.CompletionRequest.Images))
}
if !bytes.Equal(mock.CompletionRequest.Images[0].Data, testImage) {
t.Errorf("image data mismatch in completion request")
}
if mock.CompletionRequest.Images[0].ID != 0 {
t.Errorf("expected image ID 0, got %d", mock.CompletionRequest.Images[0].ID)
}
})
t.Run("multiple images passed to completion request", func(t *testing.T) {
testImage1 := []byte("test-image-1")
testImage2 := []byte("test-image-2")
mock.CompletionResponse.Content = "Images processed"
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test",
Prompt: "Compare these images",
Images: []api.ImageData{testImage1, testImage2},
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d: %s", w.Code, w.Body.String())
}
// Verify both images were passed
if len(mock.CompletionRequest.Images) != 2 {
t.Fatalf("expected 2 images in completion request, got %d", len(mock.CompletionRequest.Images))
}
if !bytes.Equal(mock.CompletionRequest.Images[0].Data, testImage1) {
t.Errorf("first image data mismatch")
}
if !bytes.Equal(mock.CompletionRequest.Images[1].Data, testImage2) {
t.Errorf("second image data mismatch")
}
if mock.CompletionRequest.Images[0].ID != 0 || mock.CompletionRequest.Images[1].ID != 1 {
t.Errorf("expected image IDs 0 and 1, got %d and %d",
mock.CompletionRequest.Images[0].ID, mock.CompletionRequest.Images[1].ID)
}
})
t.Run("no images when none provided", func(t *testing.T) {
mock.CompletionResponse.Content = "No images"
w := createRequest(t, s.GenerateHandler, api.GenerateRequest{
Model: "test",
Prompt: "Hello",
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("expected status 200, got %d: %s", w.Code, w.Body.String())
}
// Verify no images in completion request
if len(mock.CompletionRequest.Images) != 0 {
t.Fatalf("expected 0 images in completion request, got %d", len(mock.CompletionRequest.Images))
}
})
}

View File

@@ -571,7 +571,6 @@ func (s *Scheduler) loadImageGen(req *LlmRequest) bool {
model: req.model,
modelPath: req.model.ModelPath,
llama: server,
Options: &req.opts,
loading: false,
sessionDuration: sessionDuration,
totalSize: server.TotalSize(),

View File

@@ -21,14 +21,12 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/manifest"
"github.com/ollama/ollama/types/model"
)
var blobUploadManager sync.Map
type blobUpload struct {
manifest.Layer
Layer
Total int64
Completed atomic.Int64
@@ -53,7 +51,7 @@ const (
)
func (b *blobUpload) Prepare(ctx context.Context, requestURL *url.URL, opts *registryOptions) error {
p, err := manifest.BlobsPath(b.Digest)
p, err := GetBlobsPath(b.Digest)
if err != nil {
return err
}
@@ -61,7 +59,7 @@ func (b *blobUpload) Prepare(ctx context.Context, requestURL *url.URL, opts *reg
if b.From != "" {
values := requestURL.Query()
values.Add("mount", b.Digest)
values.Add("from", model.ParseName(b.From).DisplayNamespaceModel())
values.Add("from", ParseModelPath(b.From).GetNamespaceRepository())
requestURL.RawQuery = values.Encode()
}
@@ -130,7 +128,7 @@ func (b *blobUpload) Run(ctx context.Context, opts *registryOptions) {
defer blobUploadManager.Delete(b.Digest)
ctx, b.CancelFunc = context.WithCancel(ctx)
p, err := manifest.BlobsPath(b.Digest)
p, err := GetBlobsPath(b.Digest)
if err != nil {
b.err = err
return
@@ -366,9 +364,9 @@ func (p *progressWriter) Rollback() {
p.written = 0
}
func uploadBlob(ctx context.Context, n model.Name, layer manifest.Layer, opts *registryOptions, fn func(api.ProgressResponse)) error {
requestURL := n.BaseURL()
requestURL = requestURL.JoinPath("v2", n.DisplayNamespaceModel(), "blobs", layer.Digest)
func uploadBlob(ctx context.Context, mp ModelPath, layer Layer, opts *registryOptions, fn func(api.ProgressResponse)) error {
requestURL := mp.BaseURL()
requestURL = requestURL.JoinPath("v2", mp.GetNamespaceRepository(), "blobs", layer.Digest)
resp, err := makeRequestWithRetry(ctx, http.MethodHead, requestURL, nil, nil, opts)
switch {
@@ -390,8 +388,8 @@ func uploadBlob(ctx context.Context, n model.Name, layer manifest.Layer, opts *r
data, ok := blobUploadManager.LoadOrStore(layer.Digest, &blobUpload{Layer: layer})
upload := data.(*blobUpload)
if !ok {
requestURL := n.BaseURL()
requestURL = requestURL.JoinPath("v2", n.DisplayNamespaceModel(), "blobs/uploads/")
requestURL := mp.BaseURL()
requestURL = requestURL.JoinPath("v2", mp.GetNamespaceRepository(), "blobs/uploads/")
if err := upload.Prepare(ctx, requestURL, opts); err != nil {
blobUploadManager.Delete(layer.Digest)
return err

View File

@@ -7,7 +7,6 @@ import (
"errors"
"fmt"
"log/slog"
"net/url"
"path/filepath"
"strings"
)
@@ -36,25 +35,22 @@ func Unqualified(n Name) error {
const MissingPart = "!MISSING!"
const (
defaultHost = "registry.ollama.ai"
defaultNamespace = "library"
defaultTag = "latest"
defaultProtocolScheme = "https"
defaultHost = "registry.ollama.ai"
defaultNamespace = "library"
defaultTag = "latest"
)
// DefaultName returns a name with the default values for the host, namespace,
// tag, and protocol scheme parts. The model and digest parts are empty.
// and tag parts. The model and digest parts are empty.
//
// - The default host is ("registry.ollama.ai")
// - The default namespace is ("library")
// - The default tag is ("latest")
// - The default protocol scheme is ("https")
func DefaultName() Name {
return Name{
Host: defaultHost,
Namespace: defaultNamespace,
Tag: defaultTag,
ProtocolScheme: defaultProtocolScheme,
Host: defaultHost,
Namespace: defaultNamespace,
Tag: defaultTag,
}
}
@@ -91,11 +87,10 @@ func (k partKind) String() string {
// It is not guaranteed to be valid. Use [Name.IsValid] to check if the name
// is valid.
type Name struct {
Host string
Namespace string
Model string
Tag string
ProtocolScheme string
Host string
Namespace string
Model string
Tag string
}
// ParseName parses and assembles a Name from a name string. The
@@ -165,9 +160,7 @@ func ParseNameBare(s string) Name {
}
scheme, host, ok := strings.Cut(s, "://")
if ok {
n.ProtocolScheme = scheme
} else {
if !ok {
host = scheme
}
n.Host = host
@@ -196,13 +189,12 @@ func ParseNameFromFilepath(s string) (n Name) {
return n
}
// Merge merges the host, namespace, tag, and protocol scheme parts of the two names,
// Merge merges the host, namespace, and tag parts of the two names,
// preferring the non-empty parts of a.
func Merge(a, b Name) Name {
a.Host = cmp.Or(a.Host, b.Host)
a.Namespace = cmp.Or(a.Namespace, b.Namespace)
a.Tag = cmp.Or(a.Tag, b.Tag)
a.ProtocolScheme = cmp.Or(a.ProtocolScheme, b.ProtocolScheme)
return a
}
@@ -313,23 +305,6 @@ func (n Name) EqualFold(o Name) bool {
strings.EqualFold(n.Tag, o.Tag)
}
// BaseURL returns the base URL for the registry.
func (n Name) BaseURL() *url.URL {
return &url.URL{
Scheme: n.ProtocolScheme,
Host: n.Host,
}
}
// DisplayNamespaceModel returns the namespace and model joined by "/".
func (n Name) DisplayNamespaceModel() string {
var b strings.Builder
b.WriteString(n.Namespace)
b.WriteByte('/')
b.WriteString(n.Model)
return b.String()
}
func isValidLen(kind partKind, s string) bool {
switch kind {
case kindHost:

View File

@@ -32,11 +32,10 @@ func TestParseNameParts(t *testing.T) {
{
in: "scheme://host:port/namespace/model:tag",
want: Name{
Host: "host:port",
Namespace: "namespace",
Model: "model",
Tag: "tag",
ProtocolScheme: "scheme",
Host: "host:port",
Namespace: "namespace",
Model: "model",
Tag: "tag",
},
wantFilepath: filepath.Join("host:port", "namespace", "model", "tag"),
},

View File

@@ -12,8 +12,8 @@ import (
"fmt"
"io"
"github.com/ollama/ollama/manifest"
"github.com/ollama/ollama/progress"
"github.com/ollama/ollama/server"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/x/create"
)
@@ -103,7 +103,7 @@ func CreateModel(opts CreateOptions, p *progress.Progress) error {
// newLayerCreator returns a LayerCreator callback for creating config/JSON layers.
func newLayerCreator() create.LayerCreator {
return func(r io.Reader, mediaType, name string) (create.LayerInfo, error) {
layer, err := manifest.NewLayer(r, mediaType)
layer, err := server.NewLayer(r, mediaType)
if err != nil {
return create.LayerInfo{}, err
}
@@ -141,13 +141,13 @@ func createQuantizedLayers(r io.Reader, name, dtype string, shape []int32, quant
}
// Create layer for quantized weight
weightLayer, err := manifest.NewLayer(bytes.NewReader(qweightData), manifest.MediaTypeImageTensor)
weightLayer, err := server.NewLayer(bytes.NewReader(qweightData), server.MediaTypeImageTensor)
if err != nil {
return nil, err
}
// Create layer for scales
scalesLayer, err := manifest.NewLayer(bytes.NewReader(scalesData), manifest.MediaTypeImageTensor)
scalesLayer, err := server.NewLayer(bytes.NewReader(scalesData), server.MediaTypeImageTensor)
if err != nil {
return nil, err
}
@@ -169,7 +169,7 @@ func createQuantizedLayers(r io.Reader, name, dtype string, shape []int32, quant
// Add qbiases layer if present (affine mode)
if qbiasData != nil {
qbiasLayer, err := manifest.NewLayer(bytes.NewReader(qbiasData), manifest.MediaTypeImageTensor)
qbiasLayer, err := server.NewLayer(bytes.NewReader(qbiasData), server.MediaTypeImageTensor)
if err != nil {
return nil, err
}
@@ -186,7 +186,7 @@ func createQuantizedLayers(r io.Reader, name, dtype string, shape []int32, quant
// createUnquantizedLayer creates a single tensor layer without quantization.
func createUnquantizedLayer(r io.Reader, name string) ([]create.LayerInfo, error) {
layer, err := manifest.NewLayer(r, manifest.MediaTypeImageTensor)
layer, err := server.NewLayer(r, server.MediaTypeImageTensor)
if err != nil {
return nil, err
}
@@ -221,15 +221,15 @@ func newManifestWriter(opts CreateOptions, capabilities []string) create.Manifes
}
// Create config layer blob
configLayer, err := manifest.NewLayer(bytes.NewReader(configJSON), "application/vnd.docker.container.image.v1+json")
configLayer, err := server.NewLayer(bytes.NewReader(configJSON), "application/vnd.docker.container.image.v1+json")
if err != nil {
return fmt.Errorf("failed to create config layer: %w", err)
}
// Convert LayerInfo to manifest.Layer
manifestLayers := make([]manifest.Layer, 0, len(layers))
// Convert LayerInfo to server.Layer
serverLayers := make([]server.Layer, 0, len(layers))
for _, l := range layers {
manifestLayers = append(manifestLayers, manifest.Layer{
serverLayers = append(serverLayers, server.Layer{
MediaType: l.MediaType,
Digest: l.Digest,
Size: l.Size,
@@ -243,19 +243,19 @@ func newManifestWriter(opts CreateOptions, capabilities []string) create.Manifes
if err != nil {
return err
}
manifestLayers = append(manifestLayers, modelfileLayers...)
serverLayers = append(serverLayers, modelfileLayers...)
}
return manifest.WriteManifest(name, configLayer, manifestLayers)
return server.WriteManifest(name, configLayer, serverLayers)
}
}
// createModelfileLayers creates layers for template, system, and license from Modelfile config.
func createModelfileLayers(mf *ModelfileConfig) ([]manifest.Layer, error) {
var layers []manifest.Layer
func createModelfileLayers(mf *ModelfileConfig) ([]server.Layer, error) {
var layers []server.Layer
if mf.Template != "" {
layer, err := manifest.NewLayer(bytes.NewReader([]byte(mf.Template)), "application/vnd.ollama.image.template")
layer, err := server.NewLayer(bytes.NewReader([]byte(mf.Template)), "application/vnd.ollama.image.template")
if err != nil {
return nil, fmt.Errorf("failed to create template layer: %w", err)
}
@@ -263,7 +263,7 @@ func createModelfileLayers(mf *ModelfileConfig) ([]manifest.Layer, error) {
}
if mf.System != "" {
layer, err := manifest.NewLayer(bytes.NewReader([]byte(mf.System)), "application/vnd.ollama.image.system")
layer, err := server.NewLayer(bytes.NewReader([]byte(mf.System)), "application/vnd.ollama.image.system")
if err != nil {
return nil, fmt.Errorf("failed to create system layer: %w", err)
}
@@ -271,7 +271,7 @@ func createModelfileLayers(mf *ModelfileConfig) ([]manifest.Layer, error) {
}
if mf.License != "" {
layer, err := manifest.NewLayer(bytes.NewReader([]byte(mf.License)), "application/vnd.ollama.image.license")
layer, err := server.NewLayer(bytes.NewReader([]byte(mf.License)), "application/vnd.ollama.image.license")
if err != nil {
return nil, fmt.Errorf("failed to create license layer: %w", err)
}

View File

@@ -16,6 +16,11 @@ import (
// Supported quantization types: "fp8" (affine 8-bit)
// Uses MLX's native SaveSafetensors to ensure correct dtype handling (especially uint32 for quantized weights).
func quantizeTensor(r io.Reader, name, dtype string, shape []int32, quantize string) (qweightData, scalesData, qbiasData []byte, qweightShape, scalesShape, qbiasShape []int32, err error) {
// Lazy init MLX when needed for quantization
if err := mlx.InitMLX(); err != nil {
return nil, nil, nil, nil, nil, nil, fmt.Errorf("MLX initialization failed: %w", err)
}
tmpDir := ensureTempDir()
// Read safetensors data to a temp file (LoadSafetensorsNative needs a path)
@@ -54,9 +59,6 @@ func quantizeTensor(r io.Reader, name, dtype string, shape []int32, quantize str
// Quantize based on quantization type
var qweight, scales, qbiases *mlx.Array
switch quantize {
case "fp4":
// affine mode: group_size=32, bits=4
qweight, scales, qbiases = mlx.Quantize(arr, 32, 4, "affine")
case "fp8":
// affine mode: group_size=32, bits=8
qweight, scales, qbiases = mlx.Quantize(arr, 32, 8, "affine")

View File

@@ -20,10 +20,10 @@ import (
func CreateImageGenModel(modelName, modelDir, quantize string, createLayer LayerCreator, createTensorLayer QuantizingTensorLayerCreator, writeManifest ManifestWriter, fn func(status string)) error {
// Validate quantization type
switch quantize {
case "", "fp4", "fp8":
case "", "fp8":
// valid
default:
return fmt.Errorf("unsupported quantization type %q: supported types are fp4, fp8", quantize)
return fmt.Errorf("unsupported quantization type %q: supported types are fp8", quantize)
}
var layers []LayerInfo

View File

@@ -9,7 +9,7 @@ import "github.com/ollama/ollama/x/imagegen/mlx"
// shallow layers change little between consecutive steps, so we can
// cache their outputs and skip recomputation on non-refresh steps.
//
// Supports both single-stream and dual-stream architectures:
// Supports both single-stream (Z-Image) and dual-stream (Qwen-Image) architectures:
// - Single-stream: use Get/Set for the single output per layer
// - Dual-stream: use Get/Set for stream 1 (imgH), Get2/Set2 for stream 2 (txtH)
//
@@ -87,7 +87,7 @@ func (c *StepCache) Set(layer int, arr *mlx.Array) {
}
// Get2 returns the cached output for a layer (stream 2), or nil if not cached.
// Used for dual-stream architectures.
// Used for dual-stream architectures like Qwen-Image.
func (c *StepCache) Get2(layer int) *mlx.Array {
if layer < len(c.layers2) {
return c.layers2[layer]
@@ -96,7 +96,7 @@ func (c *StepCache) Get2(layer int) *mlx.Array {
}
// Set2 stores a layer output (stream 2), freeing any previous value.
// Used for dual-stream architectures.
// Used for dual-stream architectures like Qwen-Image.
func (c *StepCache) Set2(layer int, arr *mlx.Array) {
if layer < len(c.layers2) {
if c.layers2[layer] != nil {

View File

@@ -10,10 +10,7 @@ import (
"errors"
"fmt"
"io"
"net/http"
"os"
"regexp"
"slices"
"strconv"
"strings"
"time"
@@ -78,7 +75,6 @@ Image Generation Flags (experimental):
// RunCLI handles the CLI for image generation models.
// Returns true if it handled the request, false if the caller should continue with normal flow.
// Supports flags: --width, --height, --steps, --seed, --negative
// Image paths can be included in the prompt and will be extracted automatically.
func RunCLI(cmd *cobra.Command, name string, prompt string, interactive bool, keepAlive *api.Duration) error {
// Get options from flags (with env var defaults)
opts := DefaultOptions()
@@ -115,16 +111,9 @@ func generateImageWithOptions(cmd *cobra.Command, modelName, prompt string, keep
return err
}
// Extract any image paths from the prompt
prompt, images, err := extractFileData(prompt)
if err != nil {
return err
}
req := &api.GenerateRequest{
Model: modelName,
Prompt: prompt,
Images: images,
Width: int32(opts.Width),
Height: int32(opts.Height),
Steps: int32(opts.Steps),
@@ -265,33 +254,14 @@ func runInteractive(cmd *cobra.Command, modelName string, keepAlive *api.Duratio
printCurrentSettings(opts)
continue
case strings.HasPrefix(line, "/"):
// Check if it's a file path, not a command
args := strings.Fields(line)
isFile := false
for _, f := range extractFileNames(line) {
if strings.HasPrefix(f, args[0]) {
isFile = true
break
}
}
if !isFile {
fmt.Fprintf(os.Stderr, "Unknown command: %s (try /help)\n", args[0])
continue
}
}
// Extract any image paths from the input
prompt, images, err := extractFileData(line)
if err != nil {
fmt.Fprintf(os.Stderr, "Error: %v\n", err)
fmt.Fprintf(os.Stderr, "Unknown command: %s (try /help)\n", line)
continue
}
// Generate image with current options
req := &api.GenerateRequest{
Model: modelName,
Prompt: prompt,
Images: images,
Prompt: line,
Width: int32(opts.Width),
Height: int32(opts.Height),
Steps: int32(opts.Steps),
@@ -516,59 +486,3 @@ func displayImageInTerminal(imagePath string) bool {
return false
}
}
// extractFileNames finds image file paths in the input string.
func extractFileNames(input string) []string {
// Regex to match file paths with image extensions
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png|webp)\b`
re := regexp.MustCompile(regexPattern)
return re.FindAllString(input, -1)
}
// extractFileData extracts image data from file paths found in the input.
// Returns the cleaned prompt (with file paths removed) and the image data.
func extractFileData(input string) (string, []api.ImageData, error) {
filePaths := extractFileNames(input)
var imgs []api.ImageData
for _, fp := range filePaths {
// Normalize escaped spaces
nfp := strings.ReplaceAll(fp, "\\ ", " ")
nfp = strings.ReplaceAll(nfp, "%20", " ")
data, err := getImageData(nfp)
if errors.Is(err, os.ErrNotExist) {
continue
} else if err != nil {
return "", nil, err
}
fmt.Fprintf(os.Stderr, "Added image '%s'\n", nfp)
input = strings.ReplaceAll(input, fp, "")
imgs = append(imgs, data)
}
return strings.TrimSpace(input), imgs, nil
}
// getImageData reads and validates image data from a file.
func getImageData(filePath string) ([]byte, error) {
file, err := os.Open(filePath)
if err != nil {
return nil, err
}
defer file.Close()
buf := make([]byte, 512)
_, err = file.Read(buf)
if err != nil {
return nil, err
}
contentType := http.DetectContentType(buf)
allowedTypes := []string{"image/jpeg", "image/jpg", "image/png", "image/webp"}
if !slices.Contains(allowedTypes, contentType) {
return nil, fmt.Errorf("invalid image type: %s", contentType)
}
// Re-read the full file
return os.ReadFile(filePath)
}

View File

@@ -7,20 +7,17 @@ import (
"encoding/json"
"flag"
"fmt"
"image"
_ "image/jpeg"
_ "image/png"
"log"
"os"
"path/filepath"
"runtime/pprof"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/models/flux2"
"github.com/ollama/ollama/x/imagegen/models/gemma3"
"github.com/ollama/ollama/x/imagegen/models/gpt_oss"
"github.com/ollama/ollama/x/imagegen/models/llama"
"github.com/ollama/ollama/x/imagegen/models/qwen_image"
"github.com/ollama/ollama/x/imagegen/models/qwen_image_edit"
"github.com/ollama/ollama/x/imagegen/models/zimage"
"github.com/ollama/ollama/x/imagegen/safetensors"
)
@@ -49,8 +46,8 @@ func main() {
imagePath := flag.String("image", "", "Image path for multimodal models")
// Image generation params
width := flag.Int("width", 0, "Image width (0 = auto from input or 1024)")
height := flag.Int("height", 0, "Image height (0 = auto from input or 1024)")
width := flag.Int("width", 1024, "Image width")
height := flag.Int("height", 1024, "Image height")
steps := flag.Int("steps", 0, "Denoising steps (0 = model default)")
seed := flag.Int64("seed", 42, "Random seed")
out := flag.String("output", "output.png", "Output path")
@@ -59,11 +56,13 @@ func main() {
listTensors := flag.Bool("list", false, "List tensors only")
cpuProfile := flag.String("cpuprofile", "", "Write CPU profile to file")
gpuCapture := flag.String("gpu-capture", "", "Capture GPU trace to .gputrace file (run with MTL_CAPTURE_ENABLED=1)")
layerCache := flag.Bool("layer-cache", false, "Enable layer caching for faster diffusion (Z-Image, Qwen-Image). Not compatible with CFG/negative prompts.")
wiredLimitGB := flag.Int("wired-limit", 32, "Metal wired memory limit in GB")
// Legacy mode flags
zimageFlag := flag.Bool("zimage", false, "Z-Image generation")
flux2Flag := flag.Bool("flux2", false, "FLUX.2 Klein generation")
qwenImage := flag.Bool("qwen-image", false, "Qwen-Image text-to-image generation")
qwenImageEdit := flag.Bool("qwen-image-edit", false, "Qwen-Image-Edit image editing")
var inputImages stringSlice
flag.Var(&inputImages, "input-image", "Input image for image editing (can be specified multiple times)")
negativePrompt := flag.String("negative-prompt", "", "Negative prompt for CFG (empty = no CFG, matching Python)")
@@ -123,44 +122,60 @@ func main() {
if err == nil {
err = saveImageArray(img, *out)
}
case *flux2Flag:
m := &flux2.Model{}
if loadErr := m.Load(*modelPath); loadErr != nil {
case *qwenImage:
m, loadErr := qwen_image.LoadPersistent(*modelPath)
if loadErr != nil {
log.Fatal(loadErr)
}
// Load input images with EXIF orientation correction
var loadedImages []image.Image
for _, path := range inputImages {
img, loadErr := loadImageWithEXIF(path)
if loadErr != nil {
log.Fatalf("Failed to load image %s: %v", path, loadErr)
}
loadedImages = append(loadedImages, img)
}
// When input images provided and user didn't override dimensions, use 0 to match input
fluxWidth := int32(*width)
fluxHeight := int32(*height)
if len(loadedImages) > 0 && *width == 0 && *height == 0 {
// Both unset, will auto-detect from input
} else if len(loadedImages) > 0 && *width == 0 {
fluxWidth = 0 // Compute from height + aspect ratio
} else if len(loadedImages) > 0 && *height == 0 {
fluxHeight = 0 // Compute from width + aspect ratio
}
var img *mlx.Array
img, err = m.GenerateFromConfig(context.Background(), &flux2.GenerateConfig{
Prompt: *prompt,
Width: fluxWidth,
Height: fluxHeight,
Steps: *steps,
GuidanceScale: float32(*cfgScale),
Seed: *seed,
CapturePath: *gpuCapture,
InputImages: loadedImages,
img, err = m.GenerateFromConfig(&qwen_image.GenerateConfig{
Prompt: *prompt,
NegativePrompt: *negativePrompt,
CFGScale: float32(*cfgScale),
Width: int32(*width),
Height: int32(*height),
Steps: *steps,
Seed: *seed,
LayerCache: *layerCache,
})
if err == nil {
err = saveImageArray(img, *out)
}
case *qwenImageEdit:
if len(inputImages) == 0 {
log.Fatal("qwen-image-edit requires at least one -input-image")
}
m, loadErr := qwen_image_edit.LoadPersistent(*modelPath)
if loadErr != nil {
log.Fatal(loadErr)
}
// For image editing, use 0 for dimensions to auto-detect from input image
// unless explicitly overridden from defaults
editWidth := int32(0)
editHeight := int32(0)
if *width != 1024 {
editWidth = int32(*width)
}
if *height != 1024 {
editHeight = int32(*height)
}
cfg := &qwen_image_edit.GenerateConfig{
Prompt: *prompt,
NegativePrompt: *negativePrompt,
CFGScale: float32(*cfgScale),
Width: editWidth,
Height: editHeight,
Steps: *steps,
Seed: *seed,
}
var img *mlx.Array
img, err = m.EditFromConfig(inputImages, cfg)
if err == nil {
err = saveImageArray(img, *out)
}
case *listTensors:
err = listModelTensors(*modelPath)
default:
@@ -261,8 +276,6 @@ func detectModelKind(modelPath string) (string, error) {
switch index.ClassName {
case "FluxPipeline", "ZImagePipeline":
return "zimage", nil
case "Flux2KleinPipeline":
return "flux2", nil
}
}
return "zimage", nil
@@ -283,12 +296,3 @@ func detectModelKind(modelPath string) (string, error) {
return cfg.ModelType, nil
}
// loadImageWithEXIF loads an image from a file path with EXIF orientation correction.
func loadImageWithEXIF(path string) (image.Image, error) {
data, err := os.ReadFile(path)
if err != nil {
return nil, fmt.Errorf("read file: %w", err)
}
return imagegen.DecodeImage(data)
}

View File

@@ -7,7 +7,6 @@ import (
"encoding/base64"
"fmt"
"image"
_ "image/jpeg"
"image/png"
"os"
"path/filepath"
@@ -109,160 +108,3 @@ func clampF(v, min, max float32) float32 {
}
return v
}
// DecodeImage decodes image bytes with EXIF orientation applied.
func DecodeImage(data []byte) (image.Image, error) {
orientation := readJPEGOrientation(data)
img, _, err := image.Decode(bytes.NewReader(data))
if err != nil {
return nil, err
}
return applyOrientation(img, orientation), nil
}
// readJPEGOrientation extracts EXIF orientation from JPEG bytes.
// Returns 1 (normal) for non-JPEG or if orientation not found.
func readJPEGOrientation(data []byte) int {
if len(data) < 2 || data[0] != 0xFF || data[1] != 0xD8 {
return 1 // Not JPEG
}
r := bytes.NewReader(data[2:])
for {
var marker [2]byte
if _, err := r.Read(marker[:]); err != nil || marker[0] != 0xFF {
return 1
}
if marker[1] == 0xE1 { // APP1 (EXIF)
var lenBytes [2]byte
if _, err := r.Read(lenBytes[:]); err != nil {
return 1
}
segLen := int(uint16(lenBytes[0])<<8|uint16(lenBytes[1])) - 2
if segLen < 14 {
r.Seek(int64(segLen), 1)
continue
}
seg := make([]byte, segLen)
if _, err := r.Read(seg); err != nil {
return 1
}
if string(seg[:4]) == "Exif" && seg[4] == 0 && seg[5] == 0 {
return parseTIFFOrientation(seg[6:])
}
continue
}
if marker[1] == 0xD9 || marker[1] == 0xDA {
return 1 // EOI or SOS
}
if marker[1] >= 0xD0 && marker[1] <= 0xD7 {
continue // RST markers
}
var lenBytes [2]byte
if _, err := r.Read(lenBytes[:]); err != nil {
return 1
}
segLen := int(uint16(lenBytes[0])<<8|uint16(lenBytes[1])) - 2
if segLen > 0 {
r.Seek(int64(segLen), 1)
}
}
}
func parseTIFFOrientation(tiff []byte) int {
if len(tiff) < 8 {
return 1
}
var big bool
switch string(tiff[:2]) {
case "MM":
big = true
case "II":
big = false
default:
return 1
}
u16 := func(b []byte) uint16 {
if big {
return uint16(b[0])<<8 | uint16(b[1])
}
return uint16(b[1])<<8 | uint16(b[0])
}
u32 := func(b []byte) uint32 {
if big {
return uint32(b[0])<<24 | uint32(b[1])<<16 | uint32(b[2])<<8 | uint32(b[3])
}
return uint32(b[3])<<24 | uint32(b[2])<<16 | uint32(b[1])<<8 | uint32(b[0])
}
if u16(tiff[2:4]) != 42 {
return 1
}
ifdOffset := u32(tiff[4:8])
if int(ifdOffset)+2 > len(tiff) {
return 1
}
numEntries := u16(tiff[ifdOffset : ifdOffset+2])
for i := range int(numEntries) {
offset := ifdOffset + 2 + uint32(i)*12
if int(offset)+12 > len(tiff) {
break
}
if u16(tiff[offset:offset+2]) == 0x0112 { // Orientation tag
o := int(u16(tiff[offset+8 : offset+10]))
if o >= 1 && o <= 8 {
return o
}
return 1
}
}
return 1
}
func applyOrientation(img image.Image, orientation int) image.Image {
if orientation <= 1 || orientation > 8 {
return img
}
bounds := img.Bounds()
w, h := bounds.Dx(), bounds.Dy()
outW, outH := w, h
if orientation >= 5 {
outW, outH = h, w
}
out := image.NewRGBA(image.Rect(0, 0, outW, outH))
for y := range h {
for x := range w {
var dx, dy int
switch orientation {
case 2:
dx, dy = w-1-x, y
case 3:
dx, dy = w-1-x, h-1-y
case 4:
dx, dy = x, h-1-y
case 5:
dx, dy = y, x
case 6:
dx, dy = h-1-y, x
case 7:
dx, dy = h-1-y, w-1-x
case 8:
dx, dy = y, w-1-x
}
out.Set(dx, dy, img.At(x+bounds.Min.X, y+bounds.Min.Y))
}
}
return out
}

View File

@@ -6,9 +6,8 @@ import (
"io"
"os"
"path/filepath"
"runtime"
"strings"
"github.com/ollama/ollama/envconfig"
)
// ManifestLayer represents a layer in the manifest.
@@ -33,15 +32,31 @@ type ModelManifest struct {
BlobDir string
}
// DefaultBlobDir returns the default blob storage directory.
func DefaultBlobDir() string {
return filepath.Join(envconfig.Models(), "blobs")
home, err := os.UserHomeDir()
if err != nil {
home = "."
}
switch runtime.GOOS {
case "darwin":
return filepath.Join(home, ".ollama", "models", "blobs")
case "linux":
return filepath.Join(home, ".ollama", "models", "blobs")
case "windows":
return filepath.Join(home, ".ollama", "models", "blobs")
default:
return filepath.Join(home, ".ollama", "models", "blobs")
}
}
// DefaultManifestDir returns the manifest storage directory.
// Respects OLLAMA_MODELS.
// DefaultManifestDir returns the default manifest storage directory.
func DefaultManifestDir() string {
return filepath.Join(envconfig.Models(), "manifests")
home, err := os.UserHomeDir()
if err != nil {
home = "."
}
return filepath.Join(home, ".ollama", "models", "manifests")
}
// LoadManifest loads a manifest for the given model name.
@@ -161,17 +176,6 @@ func (m *ModelManifest) HasTensorLayers() bool {
return false
}
// TotalTensorSize returns the total size in bytes of all tensor layers.
func (m *ModelManifest) TotalTensorSize() int64 {
var total int64
for _, layer := range m.Manifest.Layers {
if layer.MediaType == "application/vnd.ollama.image.tensor" {
total += layer.Size
}
}
return total
}
// ModelInfo contains metadata about an image generation model.
type ModelInfo struct {
Architecture string

View File

@@ -1,57 +0,0 @@
package imagegen
import (
"path/filepath"
"testing"
)
func TestTotalTensorSize(t *testing.T) {
m := &ModelManifest{
Manifest: &Manifest{
Layers: []ManifestLayer{
{MediaType: "application/vnd.ollama.image.tensor", Size: 1000},
{MediaType: "application/vnd.ollama.image.tensor", Size: 2000},
{MediaType: "application/vnd.ollama.image.json", Size: 500}, // not a tensor
{MediaType: "application/vnd.ollama.image.tensor", Size: 3000},
},
},
}
got := m.TotalTensorSize()
want := int64(6000)
if got != want {
t.Errorf("TotalTensorSize() = %d, want %d", got, want)
}
}
func TestTotalTensorSizeEmpty(t *testing.T) {
m := &ModelManifest{
Manifest: &Manifest{
Layers: []ManifestLayer{},
},
}
if got := m.TotalTensorSize(); got != 0 {
t.Errorf("TotalTensorSize() = %d, want 0", got)
}
}
func TestManifestAndBlobDirsRespectOLLAMAModels(t *testing.T) {
modelsDir := filepath.Join(t.TempDir(), "models")
// Simulate packaged/systemd environment
t.Setenv("OLLAMA_MODELS", modelsDir)
t.Setenv("HOME", "/usr/share/ollama")
// Manifest dir must respect OLLAMA_MODELS
wantManifest := filepath.Join(modelsDir, "manifests")
if got := DefaultManifestDir(); got != wantManifest {
t.Fatalf("DefaultManifestDir() = %q, want %q", got, wantManifest)
}
// Blob dir must respect OLLAMA_MODELS
wantBlobs := filepath.Join(modelsDir, "blobs")
if got := DefaultBlobDir(); got != wantBlobs {
t.Fatalf("DefaultBlobDir() = %q, want %q", got, wantBlobs)
}
}

View File

@@ -16,9 +16,19 @@ import (
"runtime"
)
// GB is a convenience constant for gigabytes.
const GB = 1024 * 1024 * 1024
// SupportedBackends lists the backends that support image generation.
var SupportedBackends = []string{"metal", "cuda", "cpu"}
// modelVRAMEstimates maps pipeline class names to their estimated VRAM requirements.
var modelVRAMEstimates = map[string]uint64{
"ZImagePipeline": 21 * GB, // ~21GB for Z-Image (text encoder + transformer + VAE)
"FluxPipeline": 21 * GB, // ~21GB for Flux (same architecture)
"QwenImagePipeline": 80 * GB, // TODO: verify actual requirements, using conservative estimate for now
}
// CheckPlatformSupport validates that image generation is supported on the current platform.
// Returns nil if supported, or an error describing why it's not supported.
func CheckPlatformSupport() error {
@@ -38,6 +48,17 @@ func CheckPlatformSupport() error {
}
}
// CheckMemoryRequirements validates that there's enough memory for image generation.
// Returns nil if memory is sufficient, or an error if not.
func CheckMemoryRequirements(modelName string, availableMemory uint64) error {
required := EstimateVRAM(modelName)
if availableMemory < required {
return fmt.Errorf("insufficient memory for image generation: need %d GB, have %d GB",
required/GB, availableMemory/GB)
}
return nil
}
// ResolveModelName checks if a model name is a known image generation model.
// Returns the normalized model name if found, empty string otherwise.
func ResolveModelName(modelName string) string {
@@ -48,31 +69,29 @@ func ResolveModelName(modelName string) string {
return ""
}
// DetectModelType reads model_index.json and returns the model type.
// Checks both "architecture" (Ollama format) and "_class_name" (diffusers format).
// Returns empty string if detection fails.
func DetectModelType(modelName string) string {
// EstimateVRAM returns the estimated VRAM needed for an image generation model.
// Returns a conservative default of 21GB if the model type cannot be determined.
func EstimateVRAM(modelName string) uint64 {
manifest, err := LoadManifest(modelName)
if err != nil {
return ""
return 21 * GB
}
data, err := manifest.ReadConfig("model_index.json")
if err != nil {
return ""
return 21 * GB
}
// Parse just the class name
var index struct {
Architecture string `json:"architecture"`
ClassName string `json:"_class_name"`
ClassName string `json:"_class_name"`
}
if err := json.Unmarshal(data, &index); err != nil {
return ""
return 21 * GB
}
// Prefer architecture (Ollama format), fall back to _class_name (diffusers)
if index.Architecture != "" {
return index.Architecture
if estimate, ok := modelVRAMEstimates[index.ClassName]; ok {
return estimate
}
return index.ClassName
return 21 * GB
}

View File

@@ -30,6 +30,70 @@ func TestCheckPlatformSupport(t *testing.T) {
}
}
func TestCheckMemoryRequirements(t *testing.T) {
tests := []struct {
name string
availableMemory uint64
wantErr bool
}{
{
name: "sufficient memory",
availableMemory: 32 * GB,
wantErr: false,
},
{
name: "exactly enough memory",
availableMemory: 21 * GB,
wantErr: false,
},
{
name: "insufficient memory",
availableMemory: 16 * GB,
wantErr: true,
},
{
name: "zero memory",
availableMemory: 0,
wantErr: true,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
// Use a non-existent model name which will default to 21GB estimate
err := CheckMemoryRequirements("nonexistent-model", tt.availableMemory)
if (err != nil) != tt.wantErr {
t.Errorf("CheckMemoryRequirements() error = %v, wantErr %v", err, tt.wantErr)
}
})
}
}
func TestModelVRAMEstimates(t *testing.T) {
// Verify the VRAM estimates map has expected entries
expected := map[string]uint64{
"ZImagePipeline": 21 * GB,
"FluxPipeline": 21 * GB,
"QwenImagePipeline": 80 * GB,
}
for name, expectedVRAM := range expected {
if actual, ok := modelVRAMEstimates[name]; !ok {
t.Errorf("Missing VRAM estimate for %s", name)
} else if actual != expectedVRAM {
t.Errorf("VRAM estimate for %s = %d GB, want %d GB", name, actual/GB, expectedVRAM/GB)
}
}
}
func TestEstimateVRAMDefault(t *testing.T) {
// Non-existent model should return default 21GB
vram := EstimateVRAM("nonexistent-model-that-does-not-exist")
if vram != 21*GB {
t.Errorf("EstimateVRAM() = %d GB, want 21 GB", vram/GB)
}
}
func TestResolveModelName(t *testing.T) {
// Non-existent model should return empty string
result := ResolveModelName("nonexistent-model")

View File

@@ -1137,27 +1137,6 @@ func RMSNormNoWeight(x *Array, eps float32) *Array {
return RMSNorm(x, ones, eps)
}
// LayerNorm applies layer normalization without learnable params
// (x - mean) / sqrt(var + eps)
func LayerNorm(x *Array, eps float32) *Array {
return LayerNormWithWeightBias(x, nil, nil, eps)
}
// LayerNormWithWeightBias computes layer normalization using mlx.fast
// weight and bias can be nil for elementwise_affine=False
func LayerNormWithWeightBias(x, weight, bias *Array, eps float32) *Array {
res := C.mlx_array_new()
var wc, bc C.mlx_array
if weight != nil {
wc = weight.c
}
if bias != nil {
bc = bias.c
}
C.mlx_fast_layer_norm(&res, x.c, wc, bc, C.float(eps), C.default_stream())
return newArray(res)
}
// RoPE applies rotary position embeddings using mlx.fast
func RoPE(x *Array, dims int, traditional bool, base, scale float32, offset int) *Array {
res := C.mlx_array_new()

View File

@@ -1,553 +0,0 @@
//go:build mlx
// Package flux2 implements the FLUX.2 Klein diffusion transformer model.
// Klein is a 4B parameter distilled model that supports sub-second inference.
package flux2
import (
"context"
"encoding/json"
"fmt"
"image"
"math"
"time"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/models/qwen3"
"github.com/ollama/ollama/x/imagegen/tokenizer"
"golang.org/x/image/draw"
)
// GenerateConfig holds all options for image generation.
type GenerateConfig struct {
Prompt string
Width int32 // Image width (default: 1024)
Height int32 // Image height (default: 1024)
Steps int // Denoising steps (default: 4 for Klein)
GuidanceScale float32 // Guidance scale (default: 1.0, Klein doesn't need CFG)
Seed int64 // Random seed
Progress func(step, totalSteps int) // Optional progress callback
CapturePath string // GPU capture path (debug)
InputImages []image.Image // Reference images for image conditioning (already loaded)
}
// Model represents a FLUX.2 Klein model.
type Model struct {
ModelName string
Tokenizer *tokenizer.Tokenizer
TextEncoder *qwen3.TextEncoder
Transformer *Flux2Transformer2DModel
VAE *AutoencoderKLFlux2
SchedulerConfig *SchedulerConfig
}
// TextEncoderLayerIndices are the layers from which to extract text embeddings.
// Diffusers uses hidden_states[9, 18, 27]. In Python, hidden_states[0] is the embedding
// output before any layers, so hidden_states[9] = after layer 8 (0-indexed).
// Go's ForwardWithLayerOutputs captures after layer i runs, so we use [8, 17, 26].
var TextEncoderLayerIndices = []int{8, 17, 26}
// Load loads the FLUX.2 Klein model from ollama blob storage.
func (m *Model) Load(modelName string) error {
fmt.Printf("Loading FLUX.2 Klein model from manifest: %s...\n", modelName)
start := time.Now()
if mlx.GPUIsAvailable() {
mlx.SetDefaultDeviceGPU()
mlx.EnableCompile()
}
m.ModelName = modelName
// Load manifest
manifest, err := imagegen.LoadManifest(modelName)
if err != nil {
return fmt.Errorf("load manifest: %w", err)
}
// Load tokenizer
fmt.Print(" Loading tokenizer... ")
tokData, err := manifest.ReadConfig("tokenizer/tokenizer.json")
if err != nil {
return fmt.Errorf("tokenizer: %w", err)
}
tokConfig := &tokenizer.TokenizerConfig{}
if data, err := manifest.ReadConfig("tokenizer/tokenizer_config.json"); err == nil {
tokConfig.TokenizerConfigJSON = data
}
if data, err := manifest.ReadConfig("tokenizer/generation_config.json"); err == nil {
tokConfig.GenerationConfigJSON = data
}
if data, err := manifest.ReadConfig("tokenizer/special_tokens_map.json"); err == nil {
tokConfig.SpecialTokensMapJSON = data
}
tok, err := tokenizer.LoadFromBytesWithConfig(tokData, tokConfig)
if err != nil {
return fmt.Errorf("tokenizer: %w", err)
}
m.Tokenizer = tok
fmt.Println("✓")
// Load text encoder
m.TextEncoder = &qwen3.TextEncoder{}
if err := m.TextEncoder.Load(manifest, "text_encoder/config.json"); err != nil {
return fmt.Errorf("text encoder: %w", err)
}
// Load transformer
m.Transformer = &Flux2Transformer2DModel{}
if err := m.Transformer.Load(manifest); err != nil {
return fmt.Errorf("transformer: %w", err)
}
// Load VAE
m.VAE = &AutoencoderKLFlux2{}
if err := m.VAE.Load(manifest); err != nil {
return fmt.Errorf("VAE: %w", err)
}
// Evaluate all weights in a single batch (reduces GPU sync overhead)
fmt.Print(" Evaluating weights... ")
allWeights := mlx.Collect(m.TextEncoder)
allWeights = append(allWeights, mlx.Collect(m.Transformer)...)
allWeights = append(allWeights, mlx.Collect(m.VAE)...)
mlx.Eval(allWeights...)
fmt.Println("✓")
// Load scheduler config
m.SchedulerConfig = DefaultSchedulerConfig()
if schedData, err := manifest.ReadConfig("scheduler/scheduler_config.json"); err == nil {
if err := json.Unmarshal(schedData, m.SchedulerConfig); err != nil {
fmt.Printf(" Warning: failed to parse scheduler config: %v\n", err)
}
}
mem := mlx.MetalGetActiveMemory()
fmt.Printf(" Loaded in %.2fs (%.1f GB VRAM)\n", time.Since(start).Seconds(), float64(mem)/(1024*1024*1024))
return nil
}
// Generate creates an image from a prompt.
func (m *Model) Generate(prompt string, width, height int32, steps int, seed int64) (*mlx.Array, error) {
return m.GenerateFromConfig(context.Background(), &GenerateConfig{
Prompt: prompt,
Width: width,
Height: height,
Steps: steps,
Seed: seed,
})
}
// GenerateWithProgress creates an image with progress callback.
func (m *Model) GenerateWithProgress(prompt string, width, height int32, steps int, seed int64, progress func(step, totalSteps int)) (*mlx.Array, error) {
return m.GenerateFromConfig(context.Background(), &GenerateConfig{
Prompt: prompt,
Width: width,
Height: height,
Steps: steps,
Seed: seed,
Progress: progress,
})
}
// GenerateFromConfig generates an image using the unified config struct.
func (m *Model) GenerateFromConfig(ctx context.Context, cfg *GenerateConfig) (*mlx.Array, error) {
start := time.Now()
result, err := m.generate(ctx, cfg)
if err != nil {
return nil, err
}
fmt.Printf("Generated in %.2fs (%d steps)\n", time.Since(start).Seconds(), cfg.Steps)
return result, nil
}
// GenerateImage implements runner.ImageModel interface.
func (m *Model) GenerateImage(ctx context.Context, prompt string, width, height int32, steps int, seed int64, progress func(step, total int)) (*mlx.Array, error) {
return m.GenerateFromConfig(ctx, &GenerateConfig{
Prompt: prompt,
Width: width,
Height: height,
Steps: steps,
Seed: seed,
Progress: progress,
})
}
// GenerateImageWithInputs implements runner.ImageEditModel interface.
// It generates an image conditioned on the provided input images for image editing.
func (m *Model) GenerateImageWithInputs(ctx context.Context, prompt string, width, height int32, steps int, seed int64, inputImages []image.Image, progress func(step, total int)) (*mlx.Array, error) {
return m.GenerateFromConfig(ctx, &GenerateConfig{
Prompt: prompt,
Width: width,
Height: height,
Steps: steps,
Seed: seed,
InputImages: inputImages,
Progress: progress,
})
}
// MaxOutputPixels is the maximum output resolution (4 megapixels, ~2048x2048)
const MaxOutputPixels = 2048 * 2048
// MaxRefPixels is the maximum resolution for reference images (smaller to reduce attention memory)
const MaxRefPixels = 728 * 728
// generate is the internal denoising pipeline.
func (m *Model) generate(ctx context.Context, cfg *GenerateConfig) (*mlx.Array, error) {
// Enable MLX compilation for fused kernels
mlx.EnableCompile()
// Apply defaults
if cfg.Steps <= 0 {
cfg.Steps = 4 // Klein default: 4 steps for distilled model
}
if cfg.GuidanceScale <= 0 {
cfg.GuidanceScale = 1.0 // Klein doesn't need guidance
}
// Determine output dimensions
if len(cfg.InputImages) > 0 {
// With input images, compute missing dimension from aspect ratio
// Images are already EXIF-rotated by the caller
bounds := cfg.InputImages[0].Bounds()
imgW, imgH := bounds.Dx(), bounds.Dy()
aspectRatio := float64(imgH) / float64(imgW)
if cfg.Width > 0 && cfg.Height <= 0 {
// Width specified, compute height
cfg.Height = int32(math.Round(float64(cfg.Width)*aspectRatio/16) * 16)
} else if cfg.Height > 0 && cfg.Width <= 0 {
// Height specified, compute width
cfg.Width = int32(math.Round(float64(cfg.Height)/aspectRatio/16) * 16)
} else if cfg.Width <= 0 && cfg.Height <= 0 {
// Neither specified, use input dimensions
cfg.Width = int32(imgW)
cfg.Height = int32(imgH)
}
}
if cfg.Width <= 0 {
cfg.Width = 1024
}
if cfg.Height <= 0 {
cfg.Height = 1024
}
// Cap to max pixels, preserve aspect ratio, round to multiple of 16
pixels := int(cfg.Width) * int(cfg.Height)
if pixels > MaxOutputPixels {
scale := math.Sqrt(float64(MaxOutputPixels) / float64(pixels))
cfg.Width = int32(math.Round(float64(cfg.Width) * scale / 16) * 16)
cfg.Height = int32(math.Round(float64(cfg.Height) * scale / 16) * 16)
}
cfg.Height = int32((cfg.Height + 8) / 16 * 16) // round to nearest 16
cfg.Width = int32((cfg.Width + 8) / 16 * 16)
fmt.Printf(" Output: %dx%d\n", cfg.Width, cfg.Height)
tcfg := m.Transformer.TransformerConfig
patchSize := m.VAE.Config.PatchSize
// Latent dimensions: image / 8 (VAE downscale) / patch_size
latentH := cfg.Height / 8
latentW := cfg.Width / 8
patchH := latentH / patchSize[0]
patchW := latentW / patchSize[1]
imgSeqLen := patchH * patchW
// Text encoding with multi-layer extraction (no padding, use true sequence length)
fmt.Print(" Encoding prompt... ")
promptEmbeds, textLen := m.TextEncoder.EncodePromptWithLayers(m.Tokenizer, cfg.Prompt, 512, TextEncoderLayerIndices, false)
fmt.Println("✓")
// Encode reference images if provided
var refTokens *ImageCondTokens
var refHeights, refWidths []int32
if len(cfg.InputImages) > 0 {
fmt.Printf(" Encoding %d reference image(s):\n", len(cfg.InputImages))
var err error
refTokens, err = m.EncodeImageRefs(cfg.InputImages)
if err != nil {
return nil, fmt.Errorf("encode reference images: %w", err)
}
// Extract heights/widths for RoPE computation (same limits as EncodeImageRefs)
limitPixels := MaxRefPixels
if len(cfg.InputImages) > 1 {
limitPixels = MaxRefPixels / 2
}
for _, img := range cfg.InputImages {
_, w, h := PrepareImage(img, limitPixels)
refHeights = append(refHeights, int32(h/16))
refWidths = append(refWidths, int32(w/16))
}
}
// Scheduler
scheduler := NewFlowMatchScheduler(m.SchedulerConfig)
scheduler.SetTimestepsWithMu(cfg.Steps, CalculateShift(imgSeqLen, cfg.Steps))
// Init latents in packed form [B, C*4, H/2, W/2] like diffusers
// diffusers creates noise in [B, 128, 64, 64] and packs to [B, 4096, 128]
latentChannels := m.VAE.Config.LatentChannels
packedChannels := latentChannels * 4 // 32 * 4 = 128
latents := scheduler.InitNoise([]int32{1, packedChannels, patchH, patchW}, cfg.Seed)
// Pack latents (transpose): [B, C, H, W] -> [B, H*W, C]
// This matches diffusers' _pack_latents
patches := packLatents(latents)
noiseSeqLen := patches.Shape()[1]
// RoPE cache - includes reference images if present
rope := PrepareRoPECache(textLen, patchH, patchW, tcfg.AxesDimsRoPE, tcfg.RopeTheta, refHeights, refWidths, ImageRefScale)
// Cleanup setup arrays when done
defer func() {
rope.Cos.Free()
rope.Sin.Free()
promptEmbeds.Free()
if refTokens != nil {
refTokens.Tokens.Free()
}
}()
// Pre-compute all timesteps before the loop to avoid per-step tensor creation
timesteps := make([]*mlx.Array, cfg.Steps)
for i := 0; i < cfg.Steps; i++ {
tCurr := scheduler.Timesteps[i] / float32(m.SchedulerConfig.NumTrainTimesteps)
timesteps[i] = mlx.ToBFloat16(mlx.NewArray([]float32{tCurr}, []int32{1}))
}
// Evaluate setup arrays
fmt.Print(" Evaluating setup... ")
setupStart := time.Now()
toEval := []*mlx.Array{promptEmbeds, patches, rope.Cos, rope.Sin}
toEval = append(toEval, timesteps...)
if refTokens != nil {
toEval = append(toEval, refTokens.Tokens)
}
mlx.Eval(toEval...)
mlx.MetalResetPeakMemory() // Reset peak to measure generation separately
fmt.Printf("✓ (%.2fs, %.1f GB)\n", time.Since(setupStart).Seconds(),
float64(mlx.MetalGetActiveMemory())/(1024*1024*1024))
if cfg.Progress != nil {
cfg.Progress(0, cfg.Steps)
}
loopStart := time.Now()
stepStart := time.Now()
// Denoising loop
for i := 0; i < cfg.Steps; i++ {
// Check for cancellation
if ctx != nil {
select {
case <-ctx.Done():
return nil, ctx.Err()
default:
}
}
// GPU capture on step 2 if requested
if cfg.CapturePath != "" && i == 1 {
mlx.MetalStartCapture(cfg.CapturePath)
}
timestep := timesteps[i]
// Prepare input - concatenate noise patches with reference tokens if present
imgInput := patches
if refTokens != nil {
imgInput = mlx.Concatenate([]*mlx.Array{patches, refTokens.Tokens}, 1)
}
// Transformer forward pass
output := m.Transformer.Forward(imgInput, promptEmbeds, timestep, rope)
// If we concatenated reference tokens, slice to only get noise portion
if refTokens != nil {
output = mlx.Slice(output, []int32{0, 0, 0}, []int32{1, noiseSeqLen, output.Shape()[2]})
}
// Scheduler step (keep reference to old patches for the computation graph)
newPatches := scheduler.Step(output, patches, i)
if cfg.CapturePath != "" && i == 1 {
mlx.MetalStopCapture()
}
mlx.Eval(newPatches)
patches = newPatches
elapsed := time.Since(stepStart).Seconds()
peakGB := float64(mlx.MetalGetPeakMemory()) / (1024 * 1024 * 1024)
if i == 0 {
fmt.Printf(" step %d: %.2fs (JIT warmup), peak %.1f GB\n", i+1, elapsed, peakGB)
} else {
fmt.Printf(" step %d: %.2fs, peak %.1f GB\n", i+1, elapsed, peakGB)
}
stepStart = time.Now()
if cfg.Progress != nil {
cfg.Progress(i+1, cfg.Steps)
}
}
loopTime := time.Since(loopStart).Seconds()
peakMem := float64(mlx.MetalGetPeakMemory()) / (1024 * 1024 * 1024)
fmt.Printf(" Denoised %d steps in %.2fs (%.2fs/step), peak %.1f GB\n",
cfg.Steps, loopTime, loopTime/float64(cfg.Steps), peakMem)
// Free timesteps now that denoising is done
for _, ts := range timesteps {
ts.Free()
}
// VAE decode with tiling for larger images
fmt.Print(" Decoding VAE... ")
vaeStart := time.Now()
// Enable tiling for images > 512x512 (latent > 64x64)
// VAE attention is O(n²) on latent pixels, tiling reduces memory significantly
if patchH*2 > 64 || patchW*2 > 64 {
m.VAE.Tiling = DefaultTilingConfig()
}
decoded := m.VAE.Decode(patches, patchH, patchW)
mlx.Eval(decoded)
// Free patches now that decode is done
patches.Free()
fmt.Printf("✓ (%.2fs, peak %.1f GB)\n", time.Since(vaeStart).Seconds(),
float64(mlx.MetalGetPeakMemory())/(1024*1024*1024))
return decoded, nil
}
// packLatents converts [B, C, H, W] to [B, H*W, C] (matches diffusers _pack_latents)
func packLatents(x *mlx.Array) *mlx.Array {
shape := x.Shape()
B := shape[0]
C := shape[1]
H := shape[2]
W := shape[3]
// [B, C, H, W] -> [B, C, H*W] -> [B, H*W, C]
x = mlx.Reshape(x, B, C, H*W)
return mlx.Transpose(x, 0, 2, 1)
}
// LoadPersistent loads the model and keeps it in memory for repeated use.
func LoadPersistent(modelName string) (*Model, error) {
m := &Model{}
if err := m.Load(modelName); err != nil {
return nil, err
}
return m, nil
}
// ImageRefScale is the time coordinate offset between reference images (matches diffusers scale=10)
const ImageRefScale = 10
// PrepareImage resizes and crops an image to be a multiple of 16, with optional pixel limit.
// Returns the processed image and its dimensions.
func PrepareImage(img image.Image, limitPixels int) (image.Image, int, int) {
bounds := img.Bounds()
w, h := bounds.Dx(), bounds.Dy()
// Cap pixels if needed (like diffusers cap_pixels)
if limitPixels > 0 && w*h > limitPixels {
scale := math.Sqrt(float64(limitPixels) / float64(w*h))
w = int(float64(w) * scale)
h = int(float64(h) * scale)
}
// Round down to multiple of 16
w = (w / 16) * 16
h = (h / 16) * 16
if w < 16 {
w = 16
}
if h < 16 {
h = 16
}
// Resize using high-quality bicubic interpolation (matches diffusers' default lanczos)
resized := image.NewRGBA(image.Rect(0, 0, w, h))
draw.CatmullRom.Scale(resized, resized.Bounds(), img, img.Bounds(), draw.Over, nil)
return resized, w, h
}
// ImageToTensor converts an image to a tensor in [-1, 1] range with shape [1, C, H, W].
func ImageToTensor(img image.Image) *mlx.Array {
bounds := img.Bounds()
w, h := bounds.Dx(), bounds.Dy()
// Convert to float32 array in NCHW format [1, 3, H, W] with values in [-1, 1]
data := make([]float32, 3*h*w)
for y := 0; y < h; y++ {
for x := 0; x < w; x++ {
r, g, b, _ := img.At(x+bounds.Min.X, y+bounds.Min.Y).RGBA()
// RGBA returns 16-bit values, convert to [-1, 1]
data[0*h*w+y*w+x] = float32(r>>8)/127.5 - 1.0
data[1*h*w+y*w+x] = float32(g>>8)/127.5 - 1.0
data[2*h*w+y*w+x] = float32(b>>8)/127.5 - 1.0
}
}
arr := mlx.NewArrayFloat32(data, []int32{1, 3, int32(h), int32(w)})
return arr
}
// ImageCondTokens holds encoded reference image tokens.
type ImageCondTokens struct {
Tokens *mlx.Array // [1, total_tokens, C] - concatenated reference tokens
}
// EncodeImageRefs encodes reference images using the VAE.
func (m *Model) EncodeImageRefs(images []image.Image) (*ImageCondTokens, error) {
if len(images) == 0 {
return nil, nil
}
// Limit reference images to reduce attention memory
limitPixels := MaxRefPixels
if len(images) > 1 {
limitPixels = MaxRefPixels / 2
}
var allTokens []*mlx.Array
for _, img := range images {
// Prepare image (resize, crop to multiple of 16)
prepared, prepW, prepH := PrepareImage(img, limitPixels)
fmt.Printf(" Encoding %dx%d image... ", prepW, prepH)
// Convert to tensor [-1, 1]
tensor := ImageToTensor(prepared)
// Encode with VAE - returns [1, L, 128]
encoded := m.VAE.EncodeImage(tensor)
squeezed := mlx.Squeeze(encoded, 0) // [L, C]
// Defer eval - will be done with other setup arrays
allTokens = append(allTokens, squeezed)
fmt.Println("✓")
}
// For single image, just add batch dimension directly
// For multiple images, concatenate first
var tokens *mlx.Array
if len(allTokens) == 1 {
tokens = mlx.ExpandDims(allTokens[0], 0) // [1, L, C]
} else {
tokens = mlx.Concatenate(allTokens, 0) // [total_L, C]
tokens = mlx.ExpandDims(tokens, 0) // [1, total_L, C]
}
return &ImageCondTokens{Tokens: tokens}, nil
}

View File

@@ -1,224 +0,0 @@
//go:build mlx
package flux2
import (
"math"
"github.com/ollama/ollama/x/imagegen/mlx"
)
// RoPEConfig holds 4D RoPE configuration for Flux2
type RoPEConfig struct {
Theta int32 // 2000 for Klein
AxesDims []int32 // [32, 32, 32, 32] - dimensions for T, H, W, L axes
}
// RoPECache holds precomputed RoPE cos/sin values
type RoPECache struct {
Cos *mlx.Array // [1, TotalSeqLen, 1, head_dim/2]
Sin *mlx.Array // [1, TotalSeqLen, 1, head_dim/2]
TextLen int32 // Length of text sequence
ImageLen int32 // Length of image sequence
}
// PrepareTextIDs creates position IDs for text tokens.
// Text tokens use: T=0, H=0, W=0, L=0..seqLen-1
// Returns: [seqLen, 4]
func PrepareTextIDs(seqLen int32) *mlx.Array {
ids := make([]float32, seqLen*4)
for i := int32(0); i < seqLen; i++ {
idx := i * 4
ids[idx+0] = 0 // T = 0
ids[idx+1] = 0 // H = 0
ids[idx+2] = 0 // W = 0
ids[idx+3] = float32(i) // L = sequence position
}
return mlx.NewArray(ids, []int32{seqLen, 4})
}
// PrepareLatentIDs creates position IDs for image latent tokens.
// Latent tokens use: T=0, H=0..height-1, W=0..width-1, L=0
// The latents are in row-major order (H then W).
// Returns: [height*width, 4]
func PrepareLatentIDs(height, width int32) *mlx.Array {
seqLen := height * width
ids := make([]float32, seqLen*4)
idx := 0
for h := int32(0); h < height; h++ {
for w := int32(0); w < width; w++ {
ids[idx*4+0] = 0 // T = 0
ids[idx*4+1] = float32(h) // H = row
ids[idx*4+2] = float32(w) // W = column
ids[idx*4+3] = 0 // L = 0
idx++
}
}
return mlx.NewArray(ids, []int32{seqLen, 4})
}
// PrepareImageIDs creates position IDs for reference image tokens (used in editing).
// Reference images use: T=scale*(i+1), H=0..h-1, W=0..w-1, L=0
// where i is the image index (0, 1, 2, ...) and scale separates images in T dimension.
// Returns: [total_tokens, 4]
func PrepareImageIDs(imageHeights, imageWidths []int32, scale int32) *mlx.Array {
// Calculate total tokens
totalTokens := int32(0)
for i := range imageHeights {
totalTokens += imageHeights[i] * imageWidths[i]
}
ids := make([]float32, totalTokens*4)
idx := int32(0)
for imgIdx, h := range imageHeights {
w := imageWidths[imgIdx]
tValue := float32(scale * int32(imgIdx+1))
for hi := int32(0); hi < h; hi++ {
for wi := int32(0); wi < w; wi++ {
ids[idx*4+0] = tValue // T = scale * (imgIdx + 1)
ids[idx*4+1] = float32(hi) // H = row
ids[idx*4+2] = float32(wi) // W = column
ids[idx*4+3] = 0 // L = 0
idx++
}
}
}
return mlx.NewArray(ids, []int32{totalTokens, 4})
}
// ComputeRoPE computes cos and sin for 4D rotary position embeddings.
// ids: [L, 4] with (T, H, W, L) coordinates
// axesDims: [32, 32, 32, 32] - each axis has this many dimensions (total = head_dim = 128)
// theta: base frequency (2000 for Klein)
// Returns: cos, sin each [1, L, 1, head_dim] with repeat_interleave applied
func ComputeRoPE(ids *mlx.Array, axesDims []int32, theta int32) (*mlx.Array, *mlx.Array) {
shape := ids.Shape()
seqLen := shape[0]
// Compute total head dim (sum of all axes dims)
headDim := int32(0)
for _, d := range axesDims {
headDim += d
}
// Extract each coordinate dimension
// ids[:, 0] = T, ids[:, 1] = H, ids[:, 2] = W, ids[:, 3] = L
posT := mlx.Slice(ids, []int32{0, 0}, []int32{seqLen, 1}) // [L, 1]
posH := mlx.Slice(ids, []int32{0, 1}, []int32{seqLen, 2}) // [L, 1]
posW := mlx.Slice(ids, []int32{0, 2}, []int32{seqLen, 3}) // [L, 1]
posL := mlx.Slice(ids, []int32{0, 3}, []int32{seqLen, 4}) // [L, 1]
// Compute frequencies for each axis
logTheta := float32(math.Log(float64(theta)))
cosArrs := make([]*mlx.Array, 4)
sinArrs := make([]*mlx.Array, 4)
positions := []*mlx.Array{posT, posH, posW, posL}
for i, axisDim := range axesDims {
half := axisDim / 2
// Create frequency array for this axis: theta^(-2j/dim) for j=0..half-1
// This matches diffusers: 1.0 / (theta ** (torch.arange(0, dim, 2) / dim))
freqs := make([]float32, half)
for j := int32(0); j < half; j++ {
freqs[j] = float32(math.Exp(float64(-logTheta * float32(2*j) / float32(axisDim))))
}
freqArr := mlx.NewArray(freqs, []int32{1, half})
// Compute pos * freq -> [L, half]
posExpanded := positions[i] // [L, 1]
args := mlx.Mul(posExpanded, freqArr) // [L, half]
// Compute cos and sin for this axis
cosAxis := mlx.Cos(args) // [L, half]
sinAxis := mlx.Sin(args) // [L, half]
// repeat_interleave(2): [c0, c1, ...] -> [c0, c0, c1, c1, ...]
// Reshape [L, half] -> [L, half, 1], tile to [L, half, 2], reshape to [L, axisDim]
cosAxis = mlx.ExpandDims(cosAxis, 2) // [L, half, 1]
cosAxis = mlx.Tile(cosAxis, []int32{1, 1, 2}) // [L, half, 2]
cosAxis = mlx.Reshape(cosAxis, seqLen, axisDim) // [L, axisDim]
sinAxis = mlx.ExpandDims(sinAxis, 2)
sinAxis = mlx.Tile(sinAxis, []int32{1, 1, 2})
sinAxis = mlx.Reshape(sinAxis, seqLen, axisDim)
cosArrs[i] = cosAxis
sinArrs[i] = sinAxis
}
// Concatenate all axes: [L, headDim]
cos := mlx.Concatenate(cosArrs, 1)
sin := mlx.Concatenate(sinArrs, 1)
// Reshape to [1, L, 1, headDim] for broadcasting with attention
cos = mlx.Reshape(cos, 1, seqLen, 1, headDim)
sin = mlx.Reshape(sin, 1, seqLen, 1, headDim)
return cos, sin
}
// ApplyRoPE4D applies 4D rotary position embeddings to queries and keys.
// x: [B, L, nheads, head_dim]
// cos, sin: [1, L, 1, head_dim] (with repeat_interleave applied)
// Returns: x with RoPE applied
// Matches diffusers apply_rotary_emb with use_real=True, use_real_unbind_dim=-1
func ApplyRoPE4D(x *mlx.Array, cos, sin *mlx.Array) *mlx.Array {
shape := x.Shape()
B := shape[0]
L := shape[1]
nheads := shape[2]
headDim := shape[3]
half := headDim / 2
// Reshape x to [B, L, nheads, half, 2] and split into real/imag
xReshaped := mlx.Reshape(x, B, L, nheads, half, 2)
// Extract real (index 0) and imag (index 1) parts
xReal := mlx.Slice(xReshaped, []int32{0, 0, 0, 0, 0}, []int32{B, L, nheads, half, 1})
xImag := mlx.Slice(xReshaped, []int32{0, 0, 0, 0, 1}, []int32{B, L, nheads, half, 2})
xReal = mlx.Squeeze(xReal, 4) // [B, L, nheads, half]
xImag = mlx.Squeeze(xImag, 4) // [B, L, nheads, half]
// x_rotated = stack([-x_imag, x_real], dim=-1).flatten(-2)
// This creates [-x_imag[0], x_real[0], -x_imag[1], x_real[1], ...]
negXImag := mlx.Neg(xImag)
negXImag = mlx.ExpandDims(negXImag, 4) // [B, L, nheads, half, 1]
xReal = mlx.ExpandDims(xReal, 4) // [B, L, nheads, half, 1]
xRotated := mlx.Concatenate([]*mlx.Array{negXImag, xReal}, 4) // [B, L, nheads, half, 2]
xRotated = mlx.Reshape(xRotated, B, L, nheads, headDim) // [B, L, nheads, headDim]
// out = x * cos + x_rotated * sin
return mlx.Add(mlx.Mul(x, cos), mlx.Mul(xRotated, sin))
}
// PrepareRoPECache creates RoPE cache for text + noise, optionally with reference images.
// textLen: number of text tokens
// noiseH, noiseW: dimensions of the noise latent in patch tokens
// axesDims: [32, 32, 32, 32]
// theta: 2000
// refHeights, refWidths: optional reference image dimensions (pass nil/empty for no images)
// scale: time coordinate offset between reference images (e.g., 10)
func PrepareRoPECache(textLen, noiseH, noiseW int32, axesDims []int32, theta int32, refHeights, refWidths []int32, scale int32) *RoPECache {
textIDs := PrepareTextIDs(textLen)
noiseIDs := PrepareLatentIDs(noiseH, noiseW)
var allIDs *mlx.Array
imageLen := noiseH * noiseW
if len(refHeights) > 0 {
refIDs := PrepareImageIDs(refHeights, refWidths, scale)
allIDs = mlx.Concatenate([]*mlx.Array{textIDs, noiseIDs, refIDs}, 0)
for i := range refHeights {
imageLen += refHeights[i] * refWidths[i]
}
} else {
allIDs = mlx.Concatenate([]*mlx.Array{textIDs, noiseIDs}, 0)
}
cos, sin := ComputeRoPE(allIDs, axesDims, theta)
cos = mlx.ToBFloat16(cos)
sin = mlx.ToBFloat16(sin)
return &RoPECache{Cos: cos, Sin: sin, TextLen: textLen, ImageLen: imageLen}
}

View File

@@ -1,149 +0,0 @@
//go:build mlx
package flux2
import (
"math"
"github.com/ollama/ollama/x/imagegen/mlx"
)
// SchedulerConfig holds Flow-Match scheduler configuration
type SchedulerConfig struct {
NumTrainTimesteps int32 `json:"num_train_timesteps"` // 1000
Shift float32 `json:"shift"` // 3.0 for Klein
UseDynamicShifting bool `json:"use_dynamic_shifting"` // true
TimeShiftType string `json:"time_shift_type"` // "exponential" or "linear"
}
// DefaultSchedulerConfig returns default config for Klein
func DefaultSchedulerConfig() *SchedulerConfig {
return &SchedulerConfig{
NumTrainTimesteps: 1000,
Shift: 3.0, // Klein uses 3.0
UseDynamicShifting: true,
TimeShiftType: "exponential",
}
}
// FlowMatchScheduler implements the Flow-Match Euler discrete scheduler
type FlowMatchScheduler struct {
Config *SchedulerConfig
Timesteps []float32 // Discretized timesteps (t from 1 to 0)
Sigmas []float32 // Noise levels at each timestep
NumSteps int // Number of inference steps
}
// NewFlowMatchScheduler creates a new scheduler
func NewFlowMatchScheduler(cfg *SchedulerConfig) *FlowMatchScheduler {
return &FlowMatchScheduler{
Config: cfg,
}
}
// SetTimesteps sets up the scheduler for the given number of inference steps
func (s *FlowMatchScheduler) SetTimesteps(numSteps int) {
s.SetTimestepsWithMu(numSteps, 0)
}
// SetTimestepsWithMu sets up scheduler matching diffusers set_timesteps(sigmas=..., mu=...)
func (s *FlowMatchScheduler) SetTimestepsWithMu(numSteps int, mu float32) {
s.NumSteps = numSteps
// diffusers: sigmas = linspace(1, 1/num_steps, num_steps)
// Then applies time shift, appends 0.0 at end
s.Sigmas = make([]float32, numSteps+1)
for i := 0; i < numSteps; i++ {
// linspace(1, 1/num_steps, num_steps)
var sigma float32
if numSteps == 1 {
sigma = 1.0
} else {
sigma = 1.0 - float32(i)/float32(numSteps-1)*(1.0-1.0/float32(numSteps))
}
// Apply time shift if using dynamic shifting
if s.Config.UseDynamicShifting && mu != 0 {
sigma = s.timeShift(mu, sigma)
} else {
// If not dynamic shifting, apply fixed shift scaling like diffusers
shift := s.Config.Shift
sigma = shift * sigma / (1 + (shift-1)*sigma)
}
s.Sigmas[i] = sigma
}
// Append terminal zero
s.Sigmas[numSteps] = 0.0
// Timesteps scaled to training range (matches diffusers: timesteps = sigmas * num_train_timesteps)
s.Timesteps = make([]float32, numSteps+1)
for i, v := range s.Sigmas {
s.Timesteps[i] = v * float32(s.Config.NumTrainTimesteps)
}
}
// timeShift applies the dynamic time shift
func (s *FlowMatchScheduler) timeShift(mu float32, t float32) float32 {
if t <= 0 {
return 0
}
if s.Config.TimeShiftType == "linear" {
return mu / (mu + (1.0/t-1.0))
}
// Default: exponential
expMu := float32(math.Exp(float64(mu)))
return expMu / (expMu + (1.0/t - 1.0))
}
// Step performs one denoising step
func (s *FlowMatchScheduler) Step(modelOutput, sample *mlx.Array, timestepIdx int) *mlx.Array {
sigma := s.Sigmas[timestepIdx]
sigmaNext := s.Sigmas[timestepIdx+1]
// Euler step: x_{t-dt} = x_t + (sigma_next - sigma) * v_t
dt := sigmaNext - sigma
// Upcast to float32 for precision (matches diffusers)
sampleF32 := mlx.AsType(sample, mlx.DtypeFloat32)
outputF32 := mlx.AsType(modelOutput, mlx.DtypeFloat32)
scaledOutput := mlx.MulScalar(outputF32, dt)
result := mlx.Add(sampleF32, scaledOutput)
// Cast back to bfloat16
return mlx.ToBFloat16(result)
}
// GetTimestep returns the timestep value at the given index
func (s *FlowMatchScheduler) GetTimestep(idx int) float32 {
if idx < len(s.Timesteps) {
return s.Timesteps[idx]
}
return 0.0
}
// InitNoise creates initial noise for sampling
func (s *FlowMatchScheduler) InitNoise(shape []int32, seed int64) *mlx.Array {
return mlx.RandomNormalWithDtype(shape, uint64(seed), mlx.DtypeBFloat16)
}
// CalculateShift computes the mu shift value for dynamic scheduling
// Matches diffusers compute_empirical_mu function
func CalculateShift(imgSeqLen int32, numSteps int) float32 {
a1, b1 := float32(8.73809524e-05), float32(1.89833333)
a2, b2 := float32(0.00016927), float32(0.45666666)
seqLen := float32(imgSeqLen)
if imgSeqLen > 4300 {
return a2*seqLen + b2
}
m200 := a2*seqLen + b2
m10 := a1*seqLen + b1
a := (m200 - m10) / 190.0
b := m200 - 200.0*a
return a*float32(numSteps) + b
}

View File

@@ -1,562 +0,0 @@
//go:build mlx
package flux2
import (
"fmt"
"math"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/nn"
"github.com/ollama/ollama/x/imagegen/safetensors"
)
// TransformerConfig holds Flux2 transformer configuration
type TransformerConfig struct {
AttentionHeadDim int32 `json:"attention_head_dim"` // 128
AxesDimsRoPE []int32 `json:"axes_dims_rope"` // [32, 32, 32, 32]
Eps float32 `json:"eps"` // 1e-6
GuidanceEmbeds bool `json:"guidance_embeds"` // false for Klein
InChannels int32 `json:"in_channels"` // 128
JointAttentionDim int32 `json:"joint_attention_dim"` // 7680
MLPRatio float32 `json:"mlp_ratio"` // 3.0
NumAttentionHeads int32 `json:"num_attention_heads"` // 24
NumLayers int32 `json:"num_layers"` // 5
NumSingleLayers int32 `json:"num_single_layers"` // 20
PatchSize int32 `json:"patch_size"` // 1
RopeTheta int32 `json:"rope_theta"` // 2000
TimestepGuidanceChannels int32 `json:"timestep_guidance_channels"` // 256
}
// Computed dimensions
func (c *TransformerConfig) InnerDim() int32 {
return c.NumAttentionHeads * c.AttentionHeadDim // 24 * 128 = 3072
}
func (c *TransformerConfig) MLPHiddenDim() int32 {
return int32(float32(c.InnerDim()) * c.MLPRatio) // 3072 * 3.0 = 9216
}
// TimestepEmbedder creates timestep embeddings
// Weight names: time_guidance_embed.timestep_embedder.linear_1.weight, linear_2.weight
type TimestepEmbedder struct {
Linear1 nn.LinearLayer `weight:"linear_1"`
Linear2 nn.LinearLayer `weight:"linear_2"`
EmbedDim int32 // 256
}
// Forward creates sinusoidal embeddings and projects them
func (t *TimestepEmbedder) Forward(timesteps *mlx.Array) *mlx.Array {
half := t.EmbedDim / 2
freqs := make([]float32, half)
for i := int32(0); i < half; i++ {
freqs[i] = float32(math.Exp(-math.Log(10000.0) * float64(i) / float64(half)))
}
freqsArr := mlx.NewArray(freqs, []int32{1, half})
// timesteps: [B] -> [B, 1]
tExpanded := mlx.ExpandDims(timesteps, 1)
// args: [B, half]
args := mlx.Mul(tExpanded, freqsArr)
// [cos(args), sin(args)] -> [B, embed_dim]
sinEmbed := mlx.Concatenate([]*mlx.Array{mlx.Cos(args), mlx.Sin(args)}, 1)
// MLP: linear_1 -> silu -> linear_2
h := t.Linear1.Forward(sinEmbed)
h = mlx.SiLU(h)
return t.Linear2.Forward(h)
}
// TimeGuidanceEmbed wraps the timestep embedder
// Weight names: time_guidance_embed.timestep_embedder.*
type TimeGuidanceEmbed struct {
TimestepEmbedder *TimestepEmbedder `weight:"timestep_embedder"`
}
// Forward computes timestep embeddings
func (t *TimeGuidanceEmbed) Forward(timesteps *mlx.Array) *mlx.Array {
return t.TimestepEmbedder.Forward(timesteps)
}
// Modulation computes adaptive modulation parameters
// Weight names: double_stream_modulation_img.linear.weight, etc.
type Modulation struct {
Linear nn.LinearLayer `weight:"linear"`
}
// Forward computes modulation parameters
func (m *Modulation) Forward(temb *mlx.Array) *mlx.Array {
h := mlx.SiLU(temb)
return m.Linear.Forward(h)
}
// TransformerBlockAttn implements dual-stream attention
// Weight names: transformer_blocks.N.attn.*
type TransformerBlockAttn struct {
// Image stream (separate Q, K, V projections)
ToQ nn.LinearLayer `weight:"to_q"`
ToK nn.LinearLayer `weight:"to_k"`
ToV nn.LinearLayer `weight:"to_v"`
// Note: to_out has .0 suffix in weights, handled specially
ToOut0 nn.LinearLayer `weight:"to_out.0"`
// Text stream (add_ projections)
AddQProj nn.LinearLayer `weight:"add_q_proj"`
AddKProj nn.LinearLayer `weight:"add_k_proj"`
AddVProj nn.LinearLayer `weight:"add_v_proj"`
ToAddOut nn.LinearLayer `weight:"to_add_out"`
// QK norms for image stream
NormQ *mlx.Array `weight:"norm_q.weight"`
NormK *mlx.Array `weight:"norm_k.weight"`
// QK norms for text stream (added)
NormAddedQ *mlx.Array `weight:"norm_added_q.weight"`
NormAddedK *mlx.Array `weight:"norm_added_k.weight"`
}
// FeedForward implements SwiGLU MLP
// Weight names: transformer_blocks.N.ff.linear_in.weight, linear_out.weight
type FeedForward struct {
LinearIn nn.LinearLayer `weight:"linear_in"`
LinearOut nn.LinearLayer `weight:"linear_out"`
}
// Forward applies SwiGLU MLP
func (ff *FeedForward) Forward(x *mlx.Array) *mlx.Array {
// LinearIn outputs 2x hidden dim for SwiGLU
h := ff.LinearIn.Forward(x)
shape := h.Shape()
half := shape[len(shape)-1] / 2
// Split into gate and up
gate := mlx.Slice(h, []int32{0, 0, 0}, []int32{shape[0], shape[1], half})
up := mlx.Slice(h, []int32{0, 0, half}, []int32{shape[0], shape[1], shape[2]})
// SwiGLU: silu(gate) * up
h = mlx.Mul(mlx.SiLU(gate), up)
return ff.LinearOut.Forward(h)
}
// TransformerBlock implements a dual-stream transformer block
// Weight names: transformer_blocks.N.*
type TransformerBlock struct {
Attn *TransformerBlockAttn `weight:"attn"`
FF *FeedForward `weight:"ff"`
FFContext *FeedForward `weight:"ff_context"`
// Config (set after loading)
NHeads int32
HeadDim int32
Scale float32
}
// Forward applies the dual-stream block
// imgHidden: [B, imgLen, dim]
// txtHidden: [B, txtLen, dim]
// imgMod, txtMod: modulation params [B, 6*dim] each
// cos, sin: RoPE values
func (block *TransformerBlock) Forward(imgHidden, txtHidden *mlx.Array, imgMod, txtMod *mlx.Array, cos, sin *mlx.Array) (*mlx.Array, *mlx.Array) {
imgShape := imgHidden.Shape()
B := imgShape[0]
imgLen := imgShape[1]
dim := imgShape[2]
txtLen := txtHidden.Shape()[1]
// Parse modulation: 6 params each (shift1, scale1, gate1, shift2, scale2, gate2)
imgShift1, imgScale1, imgGate1 := parseModulation3(imgMod, dim, 0)
imgShift2, imgScale2, imgGate2 := parseModulation3(imgMod, dim, 3)
txtShift1, txtScale1, txtGate1 := parseModulation3(txtMod, dim, 0)
txtShift2, txtScale2, txtGate2 := parseModulation3(txtMod, dim, 3)
// === Attention branch ===
// Modulate inputs
imgNorm := modulateLayerNorm(imgHidden, imgShift1, imgScale1)
txtNorm := modulateLayerNorm(txtHidden, txtShift1, txtScale1)
// Compute Q, K, V for image stream (separate projections)
imgQ := block.Attn.ToQ.Forward(imgNorm)
imgK := block.Attn.ToK.Forward(imgNorm)
imgV := block.Attn.ToV.Forward(imgNorm)
// Compute Q, K, V for text stream (add_ projections)
txtQ := block.Attn.AddQProj.Forward(txtNorm)
txtK := block.Attn.AddKProj.Forward(txtNorm)
txtV := block.Attn.AddVProj.Forward(txtNorm)
// Reshape for attention: [B, L, dim] -> [B, L, nheads, headDim]
imgQ = mlx.Reshape(imgQ, B, imgLen, block.NHeads, block.HeadDim)
imgK = mlx.Reshape(imgK, B, imgLen, block.NHeads, block.HeadDim)
imgV = mlx.Reshape(imgV, B, imgLen, block.NHeads, block.HeadDim)
txtQ = mlx.Reshape(txtQ, B, txtLen, block.NHeads, block.HeadDim)
txtK = mlx.Reshape(txtK, B, txtLen, block.NHeads, block.HeadDim)
txtV = mlx.Reshape(txtV, B, txtLen, block.NHeads, block.HeadDim)
// Apply QK norm (RMSNorm with learned scale)
imgQ = applyQKNorm(imgQ, block.Attn.NormQ)
imgK = applyQKNorm(imgK, block.Attn.NormK)
txtQ = applyQKNorm(txtQ, block.Attn.NormAddedQ)
txtK = applyQKNorm(txtK, block.Attn.NormAddedK)
// Concatenate for joint attention: text first, then image
q := mlx.Concatenate([]*mlx.Array{txtQ, imgQ}, 1)
k := mlx.Concatenate([]*mlx.Array{txtK, imgK}, 1)
v := mlx.Concatenate([]*mlx.Array{txtV, imgV}, 1)
// Apply RoPE
q = ApplyRoPE4D(q, cos, sin)
k = ApplyRoPE4D(k, cos, sin)
// Transpose for SDPA: [B, nheads, L, headDim]
q = mlx.Transpose(q, 0, 2, 1, 3)
k = mlx.Transpose(k, 0, 2, 1, 3)
v = mlx.Transpose(v, 0, 2, 1, 3)
// Scaled dot-product attention
out := mlx.ScaledDotProductAttention(q, k, v, block.Scale, false)
// Transpose back: [B, L, nheads, headDim]
out = mlx.Transpose(out, 0, 2, 1, 3)
// Split back into txt and img
totalLen := txtLen + imgLen
txtOut := mlx.Slice(out, []int32{0, 0, 0, 0}, []int32{B, txtLen, block.NHeads, block.HeadDim})
imgOut := mlx.Slice(out, []int32{0, txtLen, 0, 0}, []int32{B, totalLen, block.NHeads, block.HeadDim})
// Reshape and project
txtOut = mlx.Reshape(txtOut, B, txtLen, dim)
imgOut = mlx.Reshape(imgOut, B, imgLen, dim)
txtOut = block.Attn.ToAddOut.Forward(txtOut)
imgOut = block.Attn.ToOut0.Forward(imgOut)
// Apply gates and residual
imgHidden = mlx.Add(imgHidden, mlx.Mul(imgGate1, imgOut))
txtHidden = mlx.Add(txtHidden, mlx.Mul(txtGate1, txtOut))
// === MLP branch ===
imgNorm = modulateLayerNorm(imgHidden, imgShift2, imgScale2)
txtNorm = modulateLayerNorm(txtHidden, txtShift2, txtScale2)
imgFFOut := block.FF.Forward(imgNorm)
txtFFOut := block.FFContext.Forward(txtNorm)
imgHidden = mlx.Add(imgHidden, mlx.Mul(imgGate2, imgFFOut))
txtHidden = mlx.Add(txtHidden, mlx.Mul(txtGate2, txtFFOut))
return imgHidden, txtHidden
}
// SingleTransformerBlockAttn implements attention for single-stream blocks
// Weight names: single_transformer_blocks.N.attn.*
type SingleTransformerBlockAttn struct {
ToQKVMlpProj nn.LinearLayer `weight:"to_qkv_mlp_proj"` // Fused QKV + MLP input
ToOut nn.LinearLayer `weight:"to_out"` // Fused attn_out + MLP out
NormQ *mlx.Array `weight:"norm_q.weight"`
NormK *mlx.Array `weight:"norm_k.weight"`
}
// SingleTransformerBlock implements a single-stream transformer block
// Weight names: single_transformer_blocks.N.*
type SingleTransformerBlock struct {
Attn *SingleTransformerBlockAttn `weight:"attn"`
// Config
NHeads int32
HeadDim int32
InnerDim int32
MLPHidDim int32
Scale float32
}
// Forward applies the single-stream block
// x: [B, L, dim] concatenated text+image
// mod: modulation [B, 3*dim]
func (block *SingleTransformerBlock) Forward(x *mlx.Array, mod *mlx.Array, cos, sin *mlx.Array) *mlx.Array {
shape := x.Shape()
B := shape[0]
L := shape[1]
dim := shape[2]
// Parse modulation: (shift, scale, gate)
shift, scale, gate := parseModulation3(mod, dim, 0)
// Modulate input
h := modulateLayerNorm(x, shift, scale)
// Fused projection: QKV + MLP gate/up
// linear1 outputs: [q, k, v, mlp_gate, mlp_up] = [dim, dim, dim, mlpHid, mlpHid]
qkvMlp := block.Attn.ToQKVMlpProj.Forward(h)
// Split: first 3*dim is QKV, rest is MLP
qkvDim := 3 * block.InnerDim
qkv := mlx.Slice(qkvMlp, []int32{0, 0, 0}, []int32{B, L, qkvDim})
mlpIn := mlx.Slice(qkvMlp, []int32{0, 0, qkvDim}, []int32{B, L, qkvMlp.Shape()[2]})
// Split QKV
q, k, v := splitQKV(qkv, B, L, block.InnerDim)
// Reshape for attention
q = mlx.Reshape(q, B, L, block.NHeads, block.HeadDim)
k = mlx.Reshape(k, B, L, block.NHeads, block.HeadDim)
v = mlx.Reshape(v, B, L, block.NHeads, block.HeadDim)
// QK norm
q = applyQKNorm(q, block.Attn.NormQ)
k = applyQKNorm(k, block.Attn.NormK)
// Apply RoPE
q = ApplyRoPE4D(q, cos, sin)
k = ApplyRoPE4D(k, cos, sin)
// Transpose for SDPA
q = mlx.Transpose(q, 0, 2, 1, 3)
k = mlx.Transpose(k, 0, 2, 1, 3)
v = mlx.Transpose(v, 0, 2, 1, 3)
// SDPA
attnOut := mlx.ScaledDotProductAttention(q, k, v, block.Scale, false)
// Transpose back and reshape
attnOut = mlx.Transpose(attnOut, 0, 2, 1, 3)
attnOut = mlx.Reshape(attnOut, B, L, block.InnerDim)
// MLP: SwiGLU
mlpShape := mlpIn.Shape()
half := mlpShape[2] / 2
mlpGate := mlx.Slice(mlpIn, []int32{0, 0, 0}, []int32{B, L, half})
mlpUp := mlx.Slice(mlpIn, []int32{0, 0, half}, []int32{B, L, mlpShape[2]})
mlpOut := mlx.Mul(mlx.SiLU(mlpGate), mlpUp)
// Concatenate attention and MLP for fused output
combined := mlx.Concatenate([]*mlx.Array{attnOut, mlpOut}, 2)
// Output projection
out := block.Attn.ToOut.Forward(combined)
// Apply gate and residual
return mlx.Add(x, mlx.Mul(gate, out))
}
// NormOut implements the output normalization with modulation
// Weight names: norm_out.linear.weight
type NormOut struct {
Linear nn.LinearLayer `weight:"linear"`
}
// Forward computes final modulated output
func (n *NormOut) Forward(x *mlx.Array, temb *mlx.Array) *mlx.Array {
shape := x.Shape()
B := shape[0]
dim := shape[2]
// Modulation: temb -> silu -> linear -> [shift, scale]
mod := mlx.SiLU(temb)
mod = n.Linear.Forward(mod)
// Split into scale and shift (diffusers order: scale first, shift second)
scale := mlx.Slice(mod, []int32{0, 0}, []int32{B, dim})
shift := mlx.Slice(mod, []int32{0, dim}, []int32{B, 2 * dim})
shift = mlx.ExpandDims(shift, 1)
scale = mlx.ExpandDims(scale, 1)
// Modulate with RMSNorm
return modulateLayerNorm(x, shift, scale)
}
// Flux2Transformer2DModel is the main Flux2 transformer
// Weight names at top level: time_guidance_embed.*, double_stream_modulation_*.*, etc.
type Flux2Transformer2DModel struct {
// Timestep embedding
TimeGuidanceEmbed *TimeGuidanceEmbed `weight:"time_guidance_embed"`
// Shared modulation
DoubleStreamModulationImg *Modulation `weight:"double_stream_modulation_img"`
DoubleStreamModulationTxt *Modulation `weight:"double_stream_modulation_txt"`
SingleStreamModulation *Modulation `weight:"single_stream_modulation"`
// Embedders
XEmbedder nn.LinearLayer `weight:"x_embedder"`
ContextEmbedder nn.LinearLayer `weight:"context_embedder"`
// Transformer blocks
TransformerBlocks []*TransformerBlock `weight:"transformer_blocks"`
SingleTransformerBlocks []*SingleTransformerBlock `weight:"single_transformer_blocks"`
// Output
NormOut *NormOut `weight:"norm_out"`
ProjOut nn.LinearLayer `weight:"proj_out"`
*TransformerConfig
}
// Load loads the Flux2 transformer from ollama blob storage.
func (m *Flux2Transformer2DModel) Load(manifest *imagegen.ModelManifest) error {
fmt.Print(" Loading transformer... ")
// Load config from blob
var cfg TransformerConfig
if err := manifest.ReadConfigJSON("transformer/config.json", &cfg); err != nil {
return fmt.Errorf("config: %w", err)
}
m.TransformerConfig = &cfg
// Initialize slices
m.TransformerBlocks = make([]*TransformerBlock, cfg.NumLayers)
m.SingleTransformerBlocks = make([]*SingleTransformerBlock, cfg.NumSingleLayers)
// Initialize TimeGuidanceEmbed with embed dim
m.TimeGuidanceEmbed = &TimeGuidanceEmbed{
TimestepEmbedder: &TimestepEmbedder{EmbedDim: cfg.TimestepGuidanceChannels},
}
// Load weights from tensor blobs
weights, err := imagegen.LoadWeightsFromManifest(manifest, "transformer")
if err != nil {
return fmt.Errorf("weights: %w", err)
}
if err := weights.Load(0); err != nil {
return fmt.Errorf("load weights: %w", err)
}
defer weights.ReleaseAll()
return m.loadWeights(weights)
}
// loadWeights loads weights from any WeightSource into the model
func (m *Flux2Transformer2DModel) loadWeights(weights safetensors.WeightSource) error {
if err := safetensors.LoadModule(m, weights, ""); err != nil {
return fmt.Errorf("load module: %w", err)
}
m.initComputedFields()
fmt.Println("✓")
return nil
}
// initComputedFields initializes computed fields after loading weights
func (m *Flux2Transformer2DModel) initComputedFields() {
cfg := m.TransformerConfig
innerDim := cfg.InnerDim()
scale := float32(1.0 / math.Sqrt(float64(cfg.AttentionHeadDim)))
// Initialize transformer blocks
for _, block := range m.TransformerBlocks {
block.NHeads = cfg.NumAttentionHeads
block.HeadDim = cfg.AttentionHeadDim
block.Scale = scale
}
// Initialize single transformer blocks
for _, block := range m.SingleTransformerBlocks {
block.NHeads = cfg.NumAttentionHeads
block.HeadDim = cfg.AttentionHeadDim
block.InnerDim = innerDim
block.MLPHidDim = cfg.MLPHiddenDim()
block.Scale = scale
}
}
// Forward runs the Flux2 transformer
func (m *Flux2Transformer2DModel) Forward(patches, txtEmbeds *mlx.Array, timesteps *mlx.Array, rope *RoPECache) *mlx.Array {
patchShape := patches.Shape()
B := patchShape[0]
imgLen := patchShape[1]
txtLen := txtEmbeds.Shape()[1]
// Scale timestep to 0-1000 range (diffusers multiplies by 1000)
scaledTimesteps := mlx.MulScalar(timesteps, 1000.0)
// Compute timestep embedding
temb := m.TimeGuidanceEmbed.Forward(scaledTimesteps)
// Embed patches and text
imgHidden := m.XEmbedder.Forward(patches)
txtHidden := m.ContextEmbedder.Forward(txtEmbeds)
// Compute shared modulation
imgMod := m.DoubleStreamModulationImg.Forward(temb)
txtMod := m.DoubleStreamModulationTxt.Forward(temb)
singleMod := m.SingleStreamModulation.Forward(temb)
// Double (dual-stream) blocks
for _, block := range m.TransformerBlocks {
imgHidden, txtHidden = block.Forward(imgHidden, txtHidden, imgMod, txtMod, rope.Cos, rope.Sin)
}
// Concatenate for single-stream: text first, then image
hidden := mlx.Concatenate([]*mlx.Array{txtHidden, imgHidden}, 1)
// Single-stream blocks
for _, block := range m.SingleTransformerBlocks {
hidden = block.Forward(hidden, singleMod, rope.Cos, rope.Sin)
}
// Extract image portion
totalLen := txtLen + imgLen
imgOut := mlx.Slice(hidden, []int32{0, txtLen, 0}, []int32{B, totalLen, hidden.Shape()[2]})
// Final norm and projection
imgOut = m.NormOut.Forward(imgOut, temb)
return m.ProjOut.Forward(imgOut)
}
// Note: QK normalization uses mlx.RMSNorm (the fast version) directly
// See applyQKNorm function below
// compiledSwiGLU fuses: silu(gate) * up
// Called 30x per step (10 in dual-stream + 20 in single-stream blocks)
var compiledSwiGLU *mlx.CompiledFunc
func getCompiledSwiGLU() *mlx.CompiledFunc {
if compiledSwiGLU == nil {
compiledSwiGLU = mlx.CompileShapeless(func(inputs []*mlx.Array) []*mlx.Array {
gate, up := inputs[0], inputs[1]
return []*mlx.Array{mlx.Mul(mlx.SiLU(gate), up)}
}, true)
}
return compiledSwiGLU
}
// Helper functions
// parseModulation3 extracts 3 modulation params (shift, scale, gate) starting at offset
func parseModulation3(mod *mlx.Array, dim int32, offset int32) (*mlx.Array, *mlx.Array, *mlx.Array) {
B := mod.Shape()[0]
start := offset * dim
shift := mlx.Slice(mod, []int32{0, start}, []int32{B, start + dim})
scale := mlx.Slice(mod, []int32{0, start + dim}, []int32{B, start + 2*dim})
gate := mlx.Slice(mod, []int32{0, start + 2*dim}, []int32{B, start + 3*dim})
// Expand for broadcasting [B, dim] -> [B, 1, dim]
shift = mlx.ExpandDims(shift, 1)
scale = mlx.ExpandDims(scale, 1)
gate = mlx.ExpandDims(gate, 1)
return shift, scale, gate
}
// modulateLayerNorm applies LayerNorm then shift/scale modulation
// Diffusers uses LayerNorm(elementwise_affine=False) which centers the data
func modulateLayerNorm(x *mlx.Array, shift, scale *mlx.Array) *mlx.Array {
// Fast LayerNorm without learnable params
x = mlx.LayerNorm(x, 1e-6)
// Modulate: x * (1 + scale) + shift
x = mlx.Mul(x, mlx.AddScalar(scale, 1.0))
return mlx.Add(x, shift)
}
// splitQKV splits a fused QKV tensor into Q, K, V
func splitQKV(qkv *mlx.Array, B, L, dim int32) (*mlx.Array, *mlx.Array, *mlx.Array) {
q := mlx.Slice(qkv, []int32{0, 0, 0}, []int32{B, L, dim})
k := mlx.Slice(qkv, []int32{0, 0, dim}, []int32{B, L, 2 * dim})
v := mlx.Slice(qkv, []int32{0, 0, 2 * dim}, []int32{B, L, 3 * dim})
return q, k, v
}
// applyQKNorm applies RMSNorm with learned scale (no bias)
// Uses the optimized mlx_fast_rms_norm
func applyQKNorm(x *mlx.Array, scale *mlx.Array) *mlx.Array {
return mlx.RMSNorm(x, scale, 1e-6)
}

View File

@@ -1,804 +0,0 @@
//go:build mlx
package flux2
import (
"fmt"
"math"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/nn"
"github.com/ollama/ollama/x/imagegen/safetensors"
"github.com/ollama/ollama/x/imagegen/vae"
)
// VAEConfig holds AutoencoderKLFlux2 configuration
type VAEConfig struct {
ActFn string `json:"act_fn"` // "silu"
BatchNormEps float32 `json:"batch_norm_eps"` // 0.0001
BatchNormMomentum float32 `json:"batch_norm_momentum"` // 0.1
BlockOutChannels []int32 `json:"block_out_channels"` // [128, 256, 512, 512]
ForceUpcast bool `json:"force_upcast"` // true
InChannels int32 `json:"in_channels"` // 3
LatentChannels int32 `json:"latent_channels"` // 32
LayersPerBlock int32 `json:"layers_per_block"` // 2
MidBlockAddAttn bool `json:"mid_block_add_attention"` // true
NormNumGroups int32 `json:"norm_num_groups"` // 32
OutChannels int32 `json:"out_channels"` // 3
PatchSize []int32 `json:"patch_size"` // [2, 2]
SampleSize int32 `json:"sample_size"` // 1024
UsePostQuantConv bool `json:"use_post_quant_conv"` // true
UseQuantConv bool `json:"use_quant_conv"` // true
}
// BatchNorm2D implements 2D batch normalization with running statistics
type BatchNorm2D struct {
RunningMean *mlx.Array // [C]
RunningVar *mlx.Array // [C]
Weight *mlx.Array // [C] gamma
Bias *mlx.Array // [C] beta
Eps float32
Momentum float32
}
// Forward applies batch normalization (inference mode - uses running stats)
// Input and output are in NHWC format [B, H, W, C]
func (bn *BatchNorm2D) Forward(x *mlx.Array) *mlx.Array {
shape := x.Shape()
C := shape[3]
// Reshape stats for broadcasting [1, 1, 1, C]
mean := mlx.Reshape(bn.RunningMean, 1, 1, 1, C)
variance := mlx.Reshape(bn.RunningVar, 1, 1, 1, C)
// Normalize: (x - mean) / sqrt(var + eps)
xNorm := mlx.Sub(x, mean)
xNorm = mlx.Div(xNorm, mlx.Sqrt(mlx.AddScalar(variance, bn.Eps)))
// Scale and shift (only if affine=True)
if bn.Weight != nil {
weight := mlx.Reshape(bn.Weight, 1, 1, 1, C)
xNorm = mlx.Mul(xNorm, weight)
}
if bn.Bias != nil {
bias := mlx.Reshape(bn.Bias, 1, 1, 1, C)
xNorm = mlx.Add(xNorm, bias)
}
return xNorm
}
// Denormalize inverts the batch normalization
// Used when decoding latents
func (bn *BatchNorm2D) Denormalize(x *mlx.Array) *mlx.Array {
shape := x.Shape()
C := shape[3]
// Reshape stats for broadcasting [1, 1, 1, C]
mean := mlx.Reshape(bn.RunningMean, 1, 1, 1, C)
variance := mlx.Reshape(bn.RunningVar, 1, 1, 1, C)
// Inverse: first undo affine, then undo normalization
// For affine=False: x_denorm = x * sqrt(var + eps) + mean
if bn.Bias != nil {
bias := mlx.Reshape(bn.Bias, 1, 1, 1, C)
x = mlx.Sub(x, bias)
}
if bn.Weight != nil {
weight := mlx.Reshape(bn.Weight, 1, 1, 1, C)
x = mlx.Div(x, weight)
}
x = mlx.Mul(x, mlx.Sqrt(mlx.AddScalar(variance, bn.Eps)))
x = mlx.Add(x, mean)
return x
}
// GroupNormLayer implements group normalization
// Reused from zimage package pattern
type GroupNormLayer struct {
Weight *mlx.Array `weight:"weight"`
Bias *mlx.Array `weight:"bias"`
NumGroups int32
Eps float32
}
// Forward applies group normalization
// Input and output are in NHWC format [B, H, W, C]
func (gn *GroupNormLayer) Forward(x *mlx.Array) *mlx.Array {
shape := x.Shape()
B := shape[0]
H := shape[1]
W := shape[2]
C := shape[3]
// Reshape to [B, H, W, groups, C/groups]
groupSize := C / gn.NumGroups
x = mlx.Reshape(x, B, H, W, gn.NumGroups, groupSize)
// Compute mean and variance per group
mean := mlx.Mean(x, 1, true)
mean = mlx.Mean(mean, 2, true)
mean = mlx.Mean(mean, 4, true)
xCentered := mlx.Sub(x, mean)
sq := mlx.Square(xCentered)
variance := mlx.Mean(sq, 1, true)
variance = mlx.Mean(variance, 2, true)
variance = mlx.Mean(variance, 4, true)
// Normalize
xNorm := mlx.Div(xCentered, mlx.Sqrt(mlx.AddScalar(variance, gn.Eps)))
// Reshape back to [B, H, W, C]
xNorm = mlx.Reshape(xNorm, B, H, W, C)
// Scale and shift
if gn.Weight != nil {
weight := mlx.Reshape(gn.Weight, 1, 1, 1, C)
xNorm = mlx.Mul(xNorm, weight)
}
if gn.Bias != nil {
bias := mlx.Reshape(gn.Bias, 1, 1, 1, C)
xNorm = mlx.Add(xNorm, bias)
}
return xNorm
}
// Conv2D represents a 2D convolution layer (reused pattern)
type Conv2D struct {
Weight *mlx.Array `weight:"weight"`
Bias *mlx.Array `weight:"bias,optional"`
Stride int32
Padding int32
}
// Transform implements safetensors.Transformer to transpose weights from PyTorch's OIHW to MLX's OHWI.
func (conv *Conv2D) Transform(field string, arr *mlx.Array) *mlx.Array {
if field == "Weight" {
return mlx.Transpose(arr, 0, 2, 3, 1)
}
return arr
}
// Forward applies convolution (NHWC format)
func (conv *Conv2D) Forward(x *mlx.Array) *mlx.Array {
out := mlx.Conv2d(x, conv.Weight, conv.Stride, conv.Padding)
if conv.Bias != nil {
bias := mlx.Reshape(conv.Bias, 1, 1, 1, conv.Bias.Dim(0))
out = mlx.Add(out, bias)
}
return out
}
// ResnetBlock2D implements a ResNet block for VAE
type ResnetBlock2D struct {
Norm1 *GroupNormLayer `weight:"norm1"`
Conv1 *Conv2D `weight:"conv1"`
Norm2 *GroupNormLayer `weight:"norm2"`
Conv2 *Conv2D `weight:"conv2"`
ConvShortcut *Conv2D `weight:"conv_shortcut,optional"`
}
// Forward applies the ResNet block
func (rb *ResnetBlock2D) Forward(x *mlx.Array) *mlx.Array {
h := rb.Norm1.Forward(x)
h = mlx.SiLU(h)
h = rb.Conv1.Forward(h)
h = rb.Norm2.Forward(h)
h = mlx.SiLU(h)
h = rb.Conv2.Forward(h)
if rb.ConvShortcut != nil {
x = rb.ConvShortcut.Forward(x)
}
return mlx.Add(h, x)
}
// VAEAttentionBlock implements self-attention for VAE
type VAEAttentionBlock struct {
GroupNorm *GroupNormLayer `weight:"group_norm"`
ToQ nn.LinearLayer `weight:"to_q"`
ToK nn.LinearLayer `weight:"to_k"`
ToV nn.LinearLayer `weight:"to_v"`
ToOut nn.LinearLayer `weight:"to_out.0"`
}
// Forward applies attention (NHWC format)
func (ab *VAEAttentionBlock) Forward(x *mlx.Array) *mlx.Array {
residual := x
shape := x.Shape()
B := shape[0]
H := shape[1]
W := shape[2]
C := shape[3]
h := ab.GroupNorm.Forward(x)
h = mlx.Reshape(h, B, H*W, C)
q := ab.ToQ.Forward(h)
k := ab.ToK.Forward(h)
v := ab.ToV.Forward(h)
q = mlx.ExpandDims(q, 1)
k = mlx.ExpandDims(k, 1)
v = mlx.ExpandDims(v, 1)
scale := float32(1.0 / math.Sqrt(float64(C)))
out := mlx.ScaledDotProductAttention(q, k, v, scale, false)
out = mlx.Squeeze(out, 1)
out = ab.ToOut.Forward(out)
out = mlx.Reshape(out, B, H, W, C)
out = mlx.Add(out, residual)
return out
}
// UpDecoderBlock2D implements an upsampling decoder block
type UpDecoderBlock2D struct {
ResnetBlocks []*ResnetBlock2D
Upsample *Conv2D
}
// Forward applies the up decoder block
func (ub *UpDecoderBlock2D) Forward(x *mlx.Array) *mlx.Array {
for _, resnet := range ub.ResnetBlocks {
x = resnet.Forward(x)
}
if ub.Upsample != nil {
x = upsample2x(x)
x = ub.Upsample.Forward(x)
}
return x
}
// upsample2x performs 2x nearest neighbor upsampling
func upsample2x(x *mlx.Array) *mlx.Array {
shape := x.Shape()
H := shape[1]
W := shape[2]
hIdx := mlx.ArangeInt(0, H, 1, mlx.DtypeInt32)
hIdx = mlx.Reshape(hIdx, H, 1)
hIdx = mlx.BroadcastTo(hIdx, []int32{H, 2})
hIdx = mlx.Reshape(hIdx, H*2)
wIdx := mlx.ArangeInt(0, W, 1, mlx.DtypeInt32)
wIdx = mlx.Reshape(wIdx, W, 1)
wIdx = mlx.BroadcastTo(wIdx, []int32{W, 2})
wIdx = mlx.Reshape(wIdx, W*2)
x = mlx.Take(x, hIdx, 1)
x = mlx.Take(x, wIdx, 2)
return x
}
// VAEMidBlock is the middle block with attention
type VAEMidBlock struct {
Resnet1 *ResnetBlock2D
Attention *VAEAttentionBlock
Resnet2 *ResnetBlock2D
}
// Forward applies the mid block
func (mb *VAEMidBlock) Forward(x *mlx.Array) *mlx.Array {
x = mb.Resnet1.Forward(x)
x = mb.Attention.Forward(x)
x = mb.Resnet2.Forward(x)
return x
}
// DefaultTilingConfig returns reasonable defaults for tiled decoding
// Matches diffusers: tile_latent_min_size=64, tile_overlap_factor=0.25
func DefaultTilingConfig() *vae.TilingConfig {
return vae.DefaultTilingConfig()
}
// AutoencoderKLFlux2 is the Flux2 VAE with BatchNorm
type AutoencoderKLFlux2 struct {
Config *VAEConfig
// Encoder components (for image editing)
EncoderConvIn *Conv2D
EncoderMid *VAEMidBlock
EncoderDown []*DownEncoderBlock2D
EncoderNormOut *GroupNormLayer
EncoderConvOut *Conv2D
// Decoder components
DecoderConvIn *Conv2D
DecoderMid *VAEMidBlock
DecoderUp []*UpDecoderBlock2D
DecoderNormOut *GroupNormLayer
DecoderConvOut *Conv2D
// Quant conv layers
QuantConv *Conv2D
PostQuantConv *Conv2D
// BatchNorm for latent normalization
LatentBN *BatchNorm2D
// Tiling configuration (nil = no tiling)
Tiling *vae.TilingConfig
}
// DownEncoderBlock2D implements a downsampling encoder block
type DownEncoderBlock2D struct {
ResnetBlocks []*ResnetBlock2D
Downsample *Conv2D
}
// Forward applies the down encoder block
func (db *DownEncoderBlock2D) Forward(x *mlx.Array) *mlx.Array {
for _, resnet := range db.ResnetBlocks {
x = resnet.Forward(x)
}
if db.Downsample != nil {
// Pad then conv with stride 2
x = mlx.Pad(x, []int32{0, 0, 0, 1, 0, 1, 0, 0})
x = db.Downsample.Forward(x)
}
return x
}
// Load loads the Flux2 VAE from ollama blob storage.
func (m *AutoencoderKLFlux2) Load(manifest *imagegen.ModelManifest) error {
fmt.Print(" Loading VAE... ")
// Load config from blob
var cfg VAEConfig
if err := manifest.ReadConfigJSON("vae/config.json", &cfg); err != nil {
return fmt.Errorf("config: %w", err)
}
m.Config = &cfg
// Load weights from tensor blobs
weights, err := imagegen.LoadWeightsFromManifest(manifest, "vae")
if err != nil {
return fmt.Errorf("weights: %w", err)
}
if err := weights.Load(0); err != nil {
return fmt.Errorf("load weights: %w", err)
}
defer weights.ReleaseAll()
return m.loadWeights(weights, &cfg)
}
// loadWeights loads VAE weights from any WeightSource
func (m *AutoencoderKLFlux2) loadWeights(weights safetensors.WeightSource, cfg *VAEConfig) error {
var err error
// Load encoder components (for image conditioning)
if err := m.loadEncoderWeights(weights, cfg); err != nil {
return fmt.Errorf("encoder: %w", err)
}
// Load decoder conv_in
m.DecoderConvIn = &Conv2D{Stride: 1, Padding: 1}
if err := safetensors.LoadModule(m.DecoderConvIn, weights, "decoder.conv_in"); err != nil {
return fmt.Errorf("decoder.conv_in: %w", err)
}
// Load mid block
m.DecoderMid, err = loadVAEMidBlock(weights, "decoder.mid_block", cfg.NormNumGroups)
if err != nil {
return fmt.Errorf("decoder.mid_block: %w", err)
}
// Load up blocks
numBlocks := len(cfg.BlockOutChannels)
m.DecoderUp = make([]*UpDecoderBlock2D, numBlocks)
for i := 0; i < numBlocks; i++ {
prefix := fmt.Sprintf("decoder.up_blocks.%d", i)
hasUpsample := i < numBlocks-1
m.DecoderUp[i], err = loadUpDecoderBlock2D(weights, prefix, cfg.LayersPerBlock+1, cfg.NormNumGroups, hasUpsample)
if err != nil {
return fmt.Errorf("%s: %w", prefix, err)
}
}
// Load decoder conv_norm_out and conv_out
m.DecoderNormOut = &GroupNormLayer{NumGroups: cfg.NormNumGroups, Eps: 1e-5}
if err := safetensors.LoadModule(m.DecoderNormOut, weights, "decoder.conv_norm_out"); err != nil {
return fmt.Errorf("decoder.conv_norm_out: %w", err)
}
m.DecoderConvOut = &Conv2D{Stride: 1, Padding: 1}
if err := safetensors.LoadModule(m.DecoderConvOut, weights, "decoder.conv_out"); err != nil {
return fmt.Errorf("decoder.conv_out: %w", err)
}
// Load post_quant_conv
if cfg.UsePostQuantConv {
m.PostQuantConv = &Conv2D{Stride: 1, Padding: 0}
if err := safetensors.LoadModule(m.PostQuantConv, weights, "post_quant_conv"); err != nil {
return fmt.Errorf("post_quant_conv: %w", err)
}
}
// Load latent BatchNorm (affine=False, so no weight/bias)
bnMean, err := weights.GetTensor("bn.running_mean")
if err != nil {
return fmt.Errorf("bn.running_mean: %w", err)
}
bnVar, err := weights.GetTensor("bn.running_var")
if err != nil {
return fmt.Errorf("bn.running_var: %w", err)
}
m.LatentBN = &BatchNorm2D{
RunningMean: bnMean,
RunningVar: bnVar,
Weight: nil, // affine=False
Bias: nil, // affine=False
Eps: cfg.BatchNormEps,
Momentum: cfg.BatchNormMomentum,
}
fmt.Println("✓")
return nil
}
// loadVAEMidBlock loads the mid block.
func loadVAEMidBlock(weights safetensors.WeightSource, prefix string, numGroups int32) (*VAEMidBlock, error) {
resnet1, err := loadResnetBlock2D(weights, prefix+".resnets.0", numGroups)
if err != nil {
return nil, err
}
attention, err := loadVAEAttentionBlock(weights, prefix+".attentions.0", numGroups)
if err != nil {
return nil, err
}
resnet2, err := loadResnetBlock2D(weights, prefix+".resnets.1", numGroups)
if err != nil {
return nil, err
}
return &VAEMidBlock{
Resnet1: resnet1,
Attention: attention,
Resnet2: resnet2,
}, nil
}
// loadResnetBlock2D loads a ResNet block.
func loadResnetBlock2D(weights safetensors.WeightSource, prefix string, numGroups int32) (*ResnetBlock2D, error) {
block := &ResnetBlock2D{
Norm1: &GroupNormLayer{NumGroups: numGroups, Eps: 1e-5},
Conv1: &Conv2D{Stride: 1, Padding: 1},
Norm2: &GroupNormLayer{NumGroups: numGroups, Eps: 1e-5},
Conv2: &Conv2D{Stride: 1, Padding: 1},
ConvShortcut: &Conv2D{Stride: 1, Padding: 0}, // Pre-allocate for optional loading
}
if err := safetensors.LoadModule(block, weights, prefix); err != nil {
return nil, err
}
// If ConvShortcut wasn't loaded (no weights found), nil it out
if block.ConvShortcut.Weight == nil {
block.ConvShortcut = nil
}
return block, nil
}
// loadVAEAttentionBlock loads an attention block using LoadModule.
func loadVAEAttentionBlock(weights safetensors.WeightSource, prefix string, numGroups int32) (*VAEAttentionBlock, error) {
ab := &VAEAttentionBlock{
GroupNorm: &GroupNormLayer{NumGroups: numGroups, Eps: 1e-5},
}
if err := safetensors.LoadModule(ab, weights, prefix); err != nil {
return nil, err
}
return ab, nil
}
// loadUpDecoderBlock2D loads an up decoder block.
func loadUpDecoderBlock2D(weights safetensors.WeightSource, prefix string, numLayers, numGroups int32, hasUpsample bool) (*UpDecoderBlock2D, error) {
resnets := make([]*ResnetBlock2D, numLayers)
for i := int32(0); i < numLayers; i++ {
resPrefix := fmt.Sprintf("%s.resnets.%d", prefix, i)
resnet, err := loadResnetBlock2D(weights, resPrefix, numGroups)
if err != nil {
return nil, err
}
resnets[i] = resnet
}
var upsample *Conv2D
if hasUpsample {
upsample = &Conv2D{Stride: 1, Padding: 1}
if err := safetensors.LoadModule(upsample, weights, prefix+".upsamplers.0.conv"); err != nil {
return nil, err
}
}
return &UpDecoderBlock2D{
ResnetBlocks: resnets,
Upsample: upsample,
}, nil
}
// Patchify converts latents [B, C, H, W] to patches [B, H*W/4, C*4] using 2x2 patches
// This is the inverse of the VAE's patchify for feeding to transformer
func (vae *AutoencoderKLFlux2) Patchify(latents *mlx.Array) *mlx.Array {
shape := latents.Shape()
B := shape[0]
C := shape[1]
H := shape[2]
W := shape[3]
patchH := vae.Config.PatchSize[0]
patchW := vae.Config.PatchSize[1]
pH := H / patchH
pW := W / patchW
// [B, C, H, W] -> [B, C, pH, patchH, pW, patchW]
x := mlx.Reshape(latents, B, C, pH, patchH, pW, patchW)
// [B, C, pH, patchH, pW, patchW] -> [B, pH, pW, C, patchH, patchW]
x = mlx.Transpose(x, 0, 2, 4, 1, 3, 5)
// [B, pH, pW, C, patchH, patchW] -> [B, pH*pW, C*patchH*patchW]
return mlx.Reshape(x, B, pH*pW, C*patchH*patchW)
}
// Unpatchify converts patches [B, L, C*4] back to [B, C, H, W]
func (vae *AutoencoderKLFlux2) Unpatchify(patches *mlx.Array, pH, pW, C int32) *mlx.Array {
shape := patches.Shape()
B := shape[0]
patchH := vae.Config.PatchSize[0]
patchW := vae.Config.PatchSize[1]
// [B, pH*pW, C*patchH*patchW] -> [B, pH, pW, C, patchH, patchW]
x := mlx.Reshape(patches, B, pH, pW, C, patchH, patchW)
// [B, pH, pW, C, patchH, patchW] -> [B, C, pH, patchH, pW, patchW]
x = mlx.Transpose(x, 0, 3, 1, 4, 2, 5)
// [B, C, pH, patchH, pW, patchW] -> [B, C, H, W]
H := pH * patchH
W := pW * patchW
return mlx.Reshape(x, B, C, H, W)
}
// denormalizePatchified applies inverse batch normalization to patchified latents.
// Input: [B, L, 128] where 128 = 32 latent channels * 4 (2x2 patch)
// Output: [B, L, 128] denormalized
func (vae *AutoencoderKLFlux2) denormalizePatchified(x *mlx.Array) *mlx.Array {
shape := x.Shape()
C := shape[2] // 128
// Reshape stats for broadcasting [1, 1, C]
mean := mlx.Reshape(vae.LatentBN.RunningMean, 1, 1, C)
variance := mlx.Reshape(vae.LatentBN.RunningVar, 1, 1, C)
// Inverse BN (affine=False): x_denorm = x * sqrt(var + eps) + mean
if vae.LatentBN.Bias != nil {
bias := mlx.Reshape(vae.LatentBN.Bias, 1, 1, C)
x = mlx.Sub(x, bias)
}
if vae.LatentBN.Weight != nil {
weight := mlx.Reshape(vae.LatentBN.Weight, 1, 1, C)
x = mlx.Div(x, weight)
}
x = mlx.Mul(x, mlx.Sqrt(mlx.AddScalar(variance, vae.LatentBN.Eps)))
x = mlx.Add(x, mean)
return x
}
// Decode decodes latent patches to images.
// If Tiling is set, uses tiled decoding to reduce memory for large images.
// latents: [B, L, C*4] patchified latents from transformer
// pH, pW: patch grid dimensions
// Returns: [B, 3, H, W] image tensor
func (v *AutoencoderKLFlux2) Decode(latents *mlx.Array, pH, pW int32) *mlx.Array {
// Denormalize patchified latents
z := v.denormalizePatchified(latents)
// Unpatchify: [B, L, C*4] -> [B, C, H, W]
z = v.Unpatchify(z, pH, pW, v.Config.LatentChannels)
// Convert NCHW -> NHWC for processing
z = mlx.Transpose(z, 0, 2, 3, 1)
// Use tiled decoding if enabled
if v.Tiling != nil {
mlx.Eval(z)
return vae.DecodeTiled(z, v.Tiling, v.decodeTile)
}
// Direct decode (no tiling)
h := v.decodeTile(z)
h = mlx.ClipScalar(h, 0.0, 1.0, true, true)
h = mlx.Transpose(h, 0, 3, 1, 2)
return h
}
// decodeTile decodes a single latent tile to pixels (internal helper)
// z: [B, H, W, C] latent tile in NHWC format
// Returns: [B, H*8, W*8, 3] pixel tile in NHWC format (before clipping)
func (vae *AutoencoderKLFlux2) decodeTile(z *mlx.Array) *mlx.Array {
// Post-quant conv
if vae.PostQuantConv != nil {
z = vae.PostQuantConv.Forward(z)
}
// Decoder
h := vae.DecoderConvIn.Forward(z)
h = vae.DecoderMid.Forward(h)
for _, upBlock := range vae.DecoderUp {
h = upBlock.Forward(h)
}
h = vae.DecoderNormOut.Forward(h)
h = mlx.SiLU(h)
h = vae.DecoderConvOut.Forward(h)
// VAE outputs [-1, 1], convert to [0, 1]
h = mlx.MulScalar(h, 0.5)
h = mlx.AddScalar(h, 0.5)
return h
}
// loadEncoderWeights loads the encoder components for image conditioning
func (m *AutoencoderKLFlux2) loadEncoderWeights(weights safetensors.WeightSource, cfg *VAEConfig) error {
var err error
// Load encoder conv_in
m.EncoderConvIn = &Conv2D{Stride: 1, Padding: 1}
if err := safetensors.LoadModule(m.EncoderConvIn, weights, "encoder.conv_in"); err != nil {
return fmt.Errorf("encoder.conv_in: %w", err)
}
// Load encoder down blocks
numBlocks := len(cfg.BlockOutChannels)
m.EncoderDown = make([]*DownEncoderBlock2D, numBlocks)
for i := 0; i < numBlocks; i++ {
prefix := fmt.Sprintf("encoder.down_blocks.%d", i)
hasDownsample := i < numBlocks-1
m.EncoderDown[i], err = loadDownEncoderBlock2D(weights, prefix, cfg.LayersPerBlock, cfg.NormNumGroups, hasDownsample)
if err != nil {
return fmt.Errorf("%s: %w", prefix, err)
}
}
// Load encoder mid block
m.EncoderMid, err = loadVAEMidBlock(weights, "encoder.mid_block", cfg.NormNumGroups)
if err != nil {
return fmt.Errorf("encoder.mid_block: %w", err)
}
// Load encoder conv_norm_out and conv_out
m.EncoderNormOut = &GroupNormLayer{NumGroups: cfg.NormNumGroups, Eps: 1e-5}
if err := safetensors.LoadModule(m.EncoderNormOut, weights, "encoder.conv_norm_out"); err != nil {
return fmt.Errorf("encoder.conv_norm_out: %w", err)
}
m.EncoderConvOut = &Conv2D{Stride: 1, Padding: 1}
if err := safetensors.LoadModule(m.EncoderConvOut, weights, "encoder.conv_out"); err != nil {
return fmt.Errorf("encoder.conv_out: %w", err)
}
// Load quant_conv (for encoding)
if cfg.UseQuantConv {
m.QuantConv = &Conv2D{Stride: 1, Padding: 0}
if err := safetensors.LoadModule(m.QuantConv, weights, "quant_conv"); err != nil {
return fmt.Errorf("quant_conv: %w", err)
}
}
return nil
}
// loadDownEncoderBlock2D loads a down encoder block.
func loadDownEncoderBlock2D(weights safetensors.WeightSource, prefix string, numLayers, numGroups int32, hasDownsample bool) (*DownEncoderBlock2D, error) {
resnets := make([]*ResnetBlock2D, numLayers)
for i := int32(0); i < numLayers; i++ {
resPrefix := fmt.Sprintf("%s.resnets.%d", prefix, i)
resnet, err := loadResnetBlock2D(weights, resPrefix, numGroups)
if err != nil {
return nil, err
}
resnets[i] = resnet
}
var downsample *Conv2D
if hasDownsample {
downsample = &Conv2D{Stride: 2, Padding: 0}
if err := safetensors.LoadModule(downsample, weights, prefix+".downsamplers.0.conv"); err != nil {
return nil, err
}
}
return &DownEncoderBlock2D{
ResnetBlocks: resnets,
Downsample: downsample,
}, nil
}
// EncodeImage encodes an image to normalized latents.
// image: [B, 3, H, W] image tensor in [-1, 1]
// Returns: [B, L, C*4] patchified normalized latents
func (vae *AutoencoderKLFlux2) EncodeImage(image *mlx.Array) *mlx.Array {
// Convert NCHW -> NHWC
x := mlx.Transpose(image, 0, 2, 3, 1)
// Encoder
h := vae.EncoderConvIn.Forward(x)
for _, downBlock := range vae.EncoderDown {
h = downBlock.Forward(h)
}
h = vae.EncoderMid.Forward(h)
h = vae.EncoderNormOut.Forward(h)
h = mlx.SiLU(h)
h = vae.EncoderConvOut.Forward(h)
// Quant conv outputs [B, H, W, 2*latent_channels] (mean + logvar)
if vae.QuantConv != nil {
h = vae.QuantConv.Forward(h)
}
// Take only the mean (first latent_channels) - deterministic encoding
// h is [B, H, W, 64] -> take first 32 channels for mean
shape := h.Shape()
latentChannels := vae.Config.LatentChannels // 32
h = mlx.Slice(h, []int32{0, 0, 0, 0}, []int32{shape[0], shape[1], shape[2], latentChannels})
// Convert NHWC -> NCHW for patchifying
h = mlx.Transpose(h, 0, 3, 1, 2)
// Patchify: [B, C, H, W] -> [B, L, C*4]
h = vae.Patchify(h)
// Apply BatchNorm on patchified latents [B, L, 128]
// The BatchNorm has 128 channels matching the patchified dimension
h = vae.normalizePatchified(h)
return h
}
// normalizePatchified applies batch normalization to patchified latents.
// Input: [B, L, 128] where 128 = 32 latent channels * 4 (2x2 patch)
// Output: [B, L, 128] normalized
func (vae *AutoencoderKLFlux2) normalizePatchified(x *mlx.Array) *mlx.Array {
shape := x.Shape()
C := shape[2] // 128
// Reshape stats for broadcasting [1, 1, C]
mean := mlx.Reshape(vae.LatentBN.RunningMean, 1, 1, C)
variance := mlx.Reshape(vae.LatentBN.RunningVar, 1, 1, C)
// Normalize: (x - mean) / sqrt(var + eps)
xNorm := mlx.Sub(x, mean)
xNorm = mlx.Div(xNorm, mlx.Sqrt(mlx.AddScalar(variance, vae.LatentBN.Eps)))
// Scale and shift (only if affine=True)
if vae.LatentBN.Weight != nil {
weight := mlx.Reshape(vae.LatentBN.Weight, 1, 1, C)
xNorm = mlx.Mul(xNorm, weight)
}
if vae.LatentBN.Bias != nil {
bias := mlx.Reshape(vae.LatentBN.Bias, 1, 1, C)
xNorm = mlx.Add(xNorm, bias)
}
return xNorm
}

View File

@@ -1,390 +0,0 @@
//go:build mlx
// Package qwen3 provides a shared Qwen3 text encoder used by multiple image generation models.
package qwen3
import (
"fmt"
"math"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/nn"
"github.com/ollama/ollama/x/imagegen/safetensors"
"github.com/ollama/ollama/x/imagegen/tokenizer"
)
// Config holds Qwen3 text encoder configuration
type Config struct {
HiddenSize int32 `json:"hidden_size"`
NumHiddenLayers int32 `json:"num_hidden_layers"`
IntermediateSize int32 `json:"intermediate_size"`
NumAttentionHeads int32 `json:"num_attention_heads"`
NumKeyValueHeads int32 `json:"num_key_value_heads"`
VocabSize int32 `json:"vocab_size"`
RMSNormEps float32 `json:"rms_norm_eps"`
RopeTheta float32 `json:"rope_theta"`
HeadDim int32 `json:"head_dim"`
}
// Attention implements Qwen3 attention with QK norms
type Attention struct {
QProj nn.LinearLayer `weight:"q_proj"`
KProj nn.LinearLayer `weight:"k_proj"`
VProj nn.LinearLayer `weight:"v_proj"`
OProj nn.LinearLayer `weight:"o_proj"`
QNorm *nn.RMSNorm `weight:"q_norm"`
KNorm *nn.RMSNorm `weight:"k_norm"`
// Computed fields
NHeads int32
NKVHeads int32
HeadDim int32
Scale float32
RopeTheta float32
}
// applyRoPEQwen3 applies the custom RoPE for Qwen3 text encoder
func applyRoPEQwen3(x *mlx.Array, seqLen int32, theta float32) *mlx.Array {
shape := x.Shape()
B := shape[0]
L := shape[1]
H := shape[2]
D := shape[3]
half := D / 2
freqsArr := make([]float32, half)
logTheta := float32(math.Log(float64(theta)))
for i := int32(0); i < half; i++ {
freqsArr[i] = float32(math.Exp(float64(-logTheta * float32(i) / float32(half))))
}
freqs := mlx.NewArray(freqsArr, []int32{half})
posArr := make([]float32, seqLen)
for i := int32(0); i < seqLen; i++ {
posArr[i] = float32(i)
}
pos := mlx.NewArray(posArr, []int32{seqLen})
posExpanded := mlx.Reshape(pos, seqLen, 1)
freqsExpanded := mlx.Reshape(freqs, 1, half)
args := mlx.Mul(posExpanded, freqsExpanded)
cosVals := mlx.Cos(args)
sinVals := mlx.Sin(args)
cosVals = mlx.Reshape(cosVals, seqLen, 1, half)
sinVals = mlx.Reshape(sinVals, seqLen, 1, half)
x1 := mlx.Slice(x, []int32{0, 0, 0, 0}, []int32{B, L, H, half})
x2 := mlx.Slice(x, []int32{0, 0, 0, half}, []int32{B, L, H, D})
part1 := mlx.Sub(mlx.Mul(x1, cosVals), mlx.Mul(x2, sinVals))
part2 := mlx.Add(mlx.Mul(x1, sinVals), mlx.Mul(x2, cosVals))
return mlx.Concatenate([]*mlx.Array{part1, part2}, 3)
}
// Forward computes attention with causal masking and optional padding mask
func (attn *Attention) Forward(x *mlx.Array, mask *mlx.Array, maskMode string) *mlx.Array {
shape := x.Shape()
B := shape[0]
L := shape[1]
q := attn.QProj.Forward(x)
k := attn.KProj.Forward(x)
v := attn.VProj.Forward(x)
q = mlx.Reshape(q, B, L, attn.NHeads, attn.HeadDim)
k = mlx.Reshape(k, B, L, attn.NKVHeads, attn.HeadDim)
v = mlx.Reshape(v, B, L, attn.NKVHeads, attn.HeadDim)
// QK norm uses 1e-6 hardcoded (Qwen3 specific)
q = attn.QNorm.Forward(q, 1e-6)
k = attn.KNorm.Forward(k, 1e-6)
q = applyRoPEQwen3(q, L, attn.RopeTheta)
k = applyRoPEQwen3(k, L, attn.RopeTheta)
q = mlx.Transpose(q, 0, 2, 1, 3)
k = mlx.Transpose(k, 0, 2, 1, 3)
v = mlx.Transpose(v, 0, 2, 1, 3)
if attn.NKVHeads < attn.NHeads {
repeats := attn.NHeads / attn.NKVHeads
k = repeatKV(k, repeats)
v = repeatKV(v, repeats)
}
out := mlx.ScaledDotProductAttentionWithSinks(q, k, v, attn.Scale, maskMode, mask, nil)
out = mlx.Transpose(out, 0, 2, 1, 3)
out = mlx.Reshape(out, B, L, attn.NHeads*attn.HeadDim)
out = attn.OProj.Forward(out)
return out
}
// repeatKV repeats key/value heads for GQA
func repeatKV(x *mlx.Array, repeats int32) *mlx.Array {
if repeats == 1 {
return x
}
shape := x.Shape()
x = mlx.ExpandDims(x, 2)
x = mlx.Tile(x, []int32{1, 1, repeats, 1, 1})
return mlx.Reshape(x, shape[0], shape[1]*repeats, shape[2], shape[3])
}
// MLP implements Qwen3 SwiGLU MLP
type MLP struct {
GateProj nn.LinearLayer `weight:"gate_proj"`
UpProj nn.LinearLayer `weight:"up_proj"`
DownProj nn.LinearLayer `weight:"down_proj"`
}
// Forward applies the MLP
func (m *MLP) Forward(x *mlx.Array) *mlx.Array {
gate := m.GateProj.Forward(x)
gate = mlx.SiLU(gate)
up := m.UpProj.Forward(x)
h := mlx.Mul(gate, up)
return m.DownProj.Forward(h)
}
// Block represents a single Qwen3 transformer block
type Block struct {
Attention *Attention `weight:"self_attn"`
MLP *MLP `weight:"mlp"`
InputLayerNorm *nn.RMSNorm `weight:"input_layernorm"`
PostAttnLayerNorm *nn.RMSNorm `weight:"post_attention_layernorm"`
}
// Forward applies the Qwen3 block
func (qb *Block) Forward(x *mlx.Array, eps float32, mask *mlx.Array, maskMode string) *mlx.Array {
h := qb.InputLayerNorm.Forward(x, eps)
attnOut := qb.Attention.Forward(h, mask, maskMode)
x = mlx.Add(x, attnOut)
h = qb.PostAttnLayerNorm.Forward(x, eps)
mlpOut := qb.MLP.Forward(h)
x = mlx.Add(x, mlpOut)
return x
}
// TextEncoder is the full Qwen3 encoder
type TextEncoder struct {
EmbedTokens *nn.Embedding `weight:"model.embed_tokens"`
Layers []*Block `weight:"model.layers"`
FinalNorm *nn.RMSNorm `weight:"model.norm"`
*Config
}
// Load loads the Qwen3 text encoder from ollama blob storage.
func (m *TextEncoder) Load(manifest *imagegen.ModelManifest, configPath string) error {
fmt.Print(" Loading text encoder... ")
// Load config from blob
var cfg Config
if err := manifest.ReadConfigJSON(configPath, &cfg); err != nil {
return fmt.Errorf("config: %w", err)
}
m.Config = &cfg
m.Layers = make([]*Block, cfg.NumHiddenLayers)
// Load weights from tensor blobs
weights, err := imagegen.LoadWeightsFromManifest(manifest, "text_encoder")
if err != nil {
return fmt.Errorf("weights: %w", err)
}
if err := weights.Load(0); err != nil {
return fmt.Errorf("load weights: %w", err)
}
defer weights.ReleaseAll()
return m.loadWeights(weights)
}
// loadWeights loads weights from any WeightSource into the model
func (m *TextEncoder) loadWeights(weights safetensors.WeightSource) error {
if err := safetensors.LoadModule(m, weights, ""); err != nil {
return fmt.Errorf("load module: %w", err)
}
m.initComputedFields()
fmt.Println("✓")
return nil
}
// initComputedFields initializes computed fields after loading weights
func (m *TextEncoder) initComputedFields() {
cfg := m.Config
m.FinalNorm.Eps = cfg.RMSNormEps
for _, block := range m.Layers {
// Attention
block.Attention.NHeads = cfg.NumAttentionHeads
block.Attention.NKVHeads = cfg.NumKeyValueHeads
block.Attention.HeadDim = cfg.HeadDim
block.Attention.Scale = float32(1.0 / math.Sqrt(float64(cfg.HeadDim)))
block.Attention.RopeTheta = cfg.RopeTheta
block.Attention.QNorm.Eps = cfg.RMSNormEps
block.Attention.KNorm.Eps = cfg.RMSNormEps
// Block norms
block.InputLayerNorm.Eps = cfg.RMSNormEps
block.PostAttnLayerNorm.Eps = cfg.RMSNormEps
}
}
// Forward encodes text tokens with provided attention mask (LxL) and mask mode.
func (te *TextEncoder) Forward(tokens *mlx.Array, attnMask *mlx.Array, maskMode string) *mlx.Array {
h := te.EmbedTokens.Forward(tokens)
eps := te.RMSNormEps
for _, layer := range te.Layers {
h = layer.Forward(h, eps, attnMask, maskMode)
}
// Apply final RMS norm
h = te.FinalNorm.Forward(h, eps)
return h
}
// ForwardWithLayerOutputs encodes text tokens and returns hidden states from specified layers.
// This is used by Flux2 which needs embeddings from specific intermediate layers.
func (te *TextEncoder) ForwardWithLayerOutputs(tokens *mlx.Array, layerIndices []int, attnMask *mlx.Array, maskMode string) []*mlx.Array {
h := te.EmbedTokens.Forward(tokens)
eps := te.RMSNormEps
outputs := make([]*mlx.Array, len(layerIndices))
layerSet := make(map[int]int)
for i, idx := range layerIndices {
layerSet[idx] = i
}
for i, layer := range te.Layers {
h = layer.Forward(h, eps, attnMask, maskMode)
if outIdx, ok := layerSet[i]; ok {
outputs[outIdx] = h
}
}
return outputs
}
// ApplyChatTemplate wraps prompt in Qwen3 chat format.
// If think is true, adds the <think></think> block after the assistant tag
// (matches tokenizer.apply_chat_template with enable_thinking=False in Python).
func ApplyChatTemplate(prompt string, think bool) string {
base := "<|im_start|>user\n" + prompt + "<|im_end|>\n<|im_start|>assistant\n"
if think {
return base + "<think>\n\n</think>\n\n"
}
return base
}
// EncodePrompt encodes a text prompt using the tokenizer and encoder.
// If think is true, includes the <think></think> block in the chat template.
func (te *TextEncoder) EncodePrompt(tok *tokenizer.Tokenizer, prompt string, maxLen int, think bool) (*mlx.Array, *mlx.Array) {
formattedPrompt := ApplyChatTemplate(prompt, think)
tokens := tok.Encode(formattedPrompt, false)
if len(tokens) > maxLen {
tokens = tokens[:maxLen]
}
maskData := make([]float32, maxLen)
for i := 0; i < len(tokens); i++ {
maskData[i] = 1.0
}
// Get PAD token (different from EOS for Qwen3)
padToken := tok.PAD()
if padToken < 0 {
padToken = tok.EOS() // fallback
}
paddedTokens := make([]int32, maxLen)
copy(paddedTokens, tokens)
for i := len(tokens); i < maxLen; i++ {
paddedTokens[i] = padToken
}
tokensArr := mlx.NewArrayInt32(paddedTokens, []int32{1, int32(maxLen)})
maskArr := mlx.NewArray(maskData, []int32{1, int32(maxLen)})
// Build combined causal + PAD mask [L, L]
// mask[i,j] = 0 if (j <= i AND valid[j]) else -inf
L := int32(maxLen)
validLen := int32(len(tokens))
combinedMaskData := make([]float32, L*L)
negInf := float32(-1e9)
for i := int32(0); i < L; i++ {
for j := int32(0); j < L; j++ {
idx := i*L + j
if j <= i && j < validLen {
combinedMaskData[idx] = 0
} else {
combinedMaskData[idx] = negInf
}
}
}
maskMat := mlx.NewArray(combinedMaskData, []int32{L, L})
embeddings := te.Forward(tokensArr, maskMat, "")
return embeddings, maskArr
}
// EncodePromptWithLayers encodes a text prompt and returns embeddings from specified layers.
// Used by Flux2 which concatenates embeddings from multiple intermediate layers.
// If think is true, includes the <think></think> block in the chat template.
// Returns embeddings and padded sequence length.
func (te *TextEncoder) EncodePromptWithLayers(tok *tokenizer.Tokenizer, prompt string, maxLen int, layerIndices []int, think bool) (*mlx.Array, int32) {
formattedPrompt := ApplyChatTemplate(prompt, think)
tokens := tok.Encode(formattedPrompt, false)
if len(tokens) > maxLen {
tokens = tokens[:maxLen]
}
// Pad to maxLen
padToken := tok.PAD()
if padToken < 0 {
padToken = tok.EOS() // fallback
}
padded := make([]int32, maxLen)
copy(padded, tokens)
for i := len(tokens); i < maxLen; i++ {
padded[i] = padToken
}
tokensArr := mlx.NewArrayInt32(padded, []int32{1, int32(maxLen)})
// Build combined causal + PAD mask [L, L]
// mask[i,j] = 0 if (j <= i AND valid[j]) else -inf
// This combines causal masking with PAD token masking
L := int32(maxLen)
validLen := int32(len(tokens))
maskData := make([]float32, L*L)
negInf := float32(-1e9)
for i := int32(0); i < L; i++ {
for j := int32(0); j < L; j++ {
idx := i*L + j
if j <= i && j < validLen {
maskData[idx] = 0 // allowed: causal OK and not PAD
} else {
maskData[idx] = negInf // blocked: future or PAD
}
}
}
maskMat := mlx.NewArray(maskData, []int32{L, L})
layerOutputs := te.ForwardWithLayerOutputs(tokensArr, layerIndices, maskMat, "")
// Concatenate layer outputs along the hidden dimension
// Each output is [B, L, hidden_dim], result is [B, L, num_layers * hidden_dim]
embeddings := mlx.Concatenate(layerOutputs, 2)
// Return embeddings and padded length
return embeddings, int32(maxLen)
}

View File

@@ -0,0 +1,87 @@
//go:build mlx
package qwen_image
import (
"fmt"
"os"
"path/filepath"
"runtime"
"testing"
"github.com/ollama/ollama/x/imagegen/mlx"
)
// TestMain initializes MLX before running tests.
// If MLX libraries are not available, tests are skipped.
func TestMain(m *testing.M) {
// Change to repo root so ./build/lib/ollama/ path works
_, thisFile, _, _ := runtime.Caller(0)
repoRoot := filepath.Join(filepath.Dir(thisFile), "..", "..", "..", "..")
if err := os.Chdir(repoRoot); err != nil {
fmt.Printf("Failed to change to repo root: %v\n", err)
os.Exit(1)
}
if err := mlx.InitMLX(); err != nil {
fmt.Printf("Skipping qwen_image tests: %v\n", err)
os.Exit(0)
}
os.Exit(m.Run())
}
// TestPipelineOutput runs the full pipeline (integration test).
// Skips if model weights not found. Requires ~50GB VRAM.
func TestPipelineOutput(t *testing.T) {
modelPath := "../../../weights/Qwen-Image-2512"
if _, err := os.Stat(modelPath); os.IsNotExist(err) {
t.Skip("Skipping: model weights not found at " + modelPath)
}
// Load model
pm, err := LoadPersistent(modelPath)
if err != nil {
t.Skipf("Skipping: failed to load model: %v", err)
}
// Run 2-step pipeline (minimum for stable scheduler)
cfg := &GenerateConfig{
Prompt: "a cat",
Width: 256,
Height: 256,
Steps: 2,
Seed: 42,
}
output, err := pm.GenerateFromConfig(cfg)
if err != nil {
t.Fatalf("Pipeline failed: %v", err)
}
mlx.Eval(output)
// Verify output shape [1, C, H, W]
shape := output.Shape()
if len(shape) != 4 {
t.Errorf("Expected 4D output, got %v", shape)
}
if shape[0] != 1 || shape[1] != 3 || shape[2] != cfg.Height || shape[3] != cfg.Width {
t.Errorf("Shape mismatch: got %v, expected [1, 3, %d, %d]", shape, cfg.Height, cfg.Width)
}
// Verify values in expected range [0, 1]
data := output.Data()
minVal, maxVal := float32(1.0), float32(0.0)
for _, v := range data {
if v < minVal {
minVal = v
}
if v > maxVal {
maxVal = v
}
}
t.Logf("Output range: [%.4f, %.4f]", minVal, maxVal)
if minVal < -0.1 || maxVal > 1.1 {
t.Errorf("Output values out of range: [%.4f, %.4f]", minVal, maxVal)
}
}

View File

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,370 @@
//go:build mlx
// Package qwen_image implements the Qwen-Image diffusion transformer model.
package qwen_image
import (
"context"
"fmt"
"path/filepath"
"time"
"github.com/ollama/ollama/x/imagegen/cache"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/tokenizer"
)
// GenerateConfig holds all options for image generation.
type GenerateConfig struct {
Prompt string
NegativePrompt string // Empty = no CFG
CFGScale float32 // Only used if NegativePrompt is set (default: 4.0)
Width int32 // Image width (default: 1024)
Height int32 // Image height (default: 1024)
Steps int // Denoising steps (default: 30)
Seed int64 // Random seed
Progress ProgressFunc // Optional progress callback
// Layer caching (DeepCache/Learning-to-Cache speedup)
LayerCache bool // Enable layer caching (default: false)
CacheInterval int // Refresh cache every N steps (default: 3)
CacheLayers int // Number of shallow layers to cache (default: 25)
}
// ProgressFunc is called during generation with step progress.
type ProgressFunc func(step, totalSteps int)
// Model represents a Qwen-Image diffusion model.
type Model struct {
ModelPath string
Tokenizer *tokenizer.Tokenizer
TextEncoder *Qwen25VL
Transformer *Transformer
VAEDecoder *VAEDecoder
}
// Load loads the Qwen-Image model from a directory.
func (m *Model) Load(modelPath string) error {
fmt.Println("Loading Qwen-Image model...")
start := time.Now()
if mlx.GPUIsAvailable() {
mlx.SetDefaultDeviceGPU()
mlx.EnableCompile()
}
m.ModelPath = modelPath
// Load tokenizer
fmt.Print(" Loading tokenizer... ")
tokenizerPath := filepath.Join(modelPath, "tokenizer")
tok, err := tokenizer.Load(tokenizerPath)
if err != nil {
return fmt.Errorf("tokenizer: %w", err)
}
m.Tokenizer = tok
fmt.Println("✓")
// Load text encoder (Qwen2.5-VL in text-only mode - skip vision tower for efficiency)
m.TextEncoder = &Qwen25VL{}
if err := m.TextEncoder.LoadTextOnly(filepath.Join(modelPath, "text_encoder")); err != nil {
return fmt.Errorf("text encoder: %w", err)
}
mlx.Eval(mlx.Collect(m.TextEncoder)...)
fmt.Printf(" (%.1f GB, peak %.1f GB)\n",
float64(mlx.MetalGetActiveMemory())/(1024*1024*1024),
float64(mlx.MetalGetPeakMemory())/(1024*1024*1024))
// Load transformer
m.Transformer = &Transformer{}
if err := m.Transformer.Load(filepath.Join(modelPath, "transformer")); err != nil {
return fmt.Errorf("transformer: %w", err)
}
mlx.Eval(mlx.Collect(m.Transformer)...)
fmt.Printf(" (%.1f GB, peak %.1f GB)\n",
float64(mlx.MetalGetActiveMemory())/(1024*1024*1024),
float64(mlx.MetalGetPeakMemory())/(1024*1024*1024))
// Load VAE decoder
m.VAEDecoder = &VAEDecoder{}
if err := m.VAEDecoder.Load(filepath.Join(modelPath, "vae")); err != nil {
return fmt.Errorf("VAE decoder: %w", err)
}
mlx.Eval(mlx.Collect(m.VAEDecoder)...)
fmt.Printf(" (%.1f GB, peak %.1f GB)\n",
float64(mlx.MetalGetActiveMemory())/(1024*1024*1024),
float64(mlx.MetalGetPeakMemory())/(1024*1024*1024))
mem := mlx.MetalGetActiveMemory()
peak := mlx.MetalGetPeakMemory()
fmt.Printf(" Loaded in %.2fs (%.1f GB active, %.1f GB peak)\n",
time.Since(start).Seconds(),
float64(mem)/(1024*1024*1024),
float64(peak)/(1024*1024*1024))
return nil
}
// Generate creates an image from a prompt.
func (m *Model) Generate(prompt string, width, height int32, steps int, seed int64) (*mlx.Array, error) {
return m.GenerateFromConfig(&GenerateConfig{
Prompt: prompt,
Width: width,
Height: height,
Steps: steps,
Seed: seed,
})
}
// GenerateWithProgress creates an image with progress callback.
func (m *Model) GenerateWithProgress(prompt string, width, height int32, steps int, seed int64, progress ProgressFunc) (*mlx.Array, error) {
return m.GenerateFromConfig(&GenerateConfig{
Prompt: prompt,
Width: width,
Height: height,
Steps: steps,
Seed: seed,
Progress: progress,
})
}
// GenerateWithCFG creates an image with classifier-free guidance.
func (m *Model) GenerateWithCFG(prompt, negativePrompt string, width, height int32, steps int, seed int64, cfgScale float32, progress ProgressFunc) (*mlx.Array, error) {
return m.GenerateFromConfig(&GenerateConfig{
Prompt: prompt,
NegativePrompt: negativePrompt,
CFGScale: cfgScale,
Width: width,
Height: height,
Steps: steps,
Seed: seed,
Progress: progress,
})
}
// GenerateFromConfig generates an image using the unified config struct.
func (m *Model) GenerateFromConfig(cfg *GenerateConfig) (*mlx.Array, error) {
start := time.Now()
result, err := m.generate(cfg)
if err != nil {
return nil, err
}
if cfg.NegativePrompt != "" {
fmt.Printf("Generated with CFG (scale=%.1f) in %.2fs (%d steps)\n", cfg.CFGScale, time.Since(start).Seconds(), cfg.Steps)
} else {
fmt.Printf("Generated in %.2fs (%d steps)\n", time.Since(start).Seconds(), cfg.Steps)
}
return result, nil
}
// GenerateImage implements model.ImageModel interface.
func (m *Model) GenerateImage(ctx context.Context, prompt string, width, height int32, steps int, seed int64) (*mlx.Array, error) {
return m.Generate(prompt, width, height, steps, seed)
}
// generate is the internal denoising pipeline.
func (m *Model) generate(cfg *GenerateConfig) (*mlx.Array, error) {
// Apply defaults
if cfg.Width <= 0 {
cfg.Width = 1024
}
if cfg.Height <= 0 {
cfg.Height = 1024
}
if cfg.Steps <= 0 {
cfg.Steps = 50
}
if cfg.CFGScale <= 0 {
cfg.CFGScale = 4.0
}
if cfg.CacheInterval <= 0 {
cfg.CacheInterval = 3
}
if cfg.CacheLayers <= 0 {
cfg.CacheLayers = 25 // ~42% of 60 layers (similar ratio to Z-Image's 15/38)
}
useCFG := cfg.NegativePrompt != ""
tcfg := m.Transformer.Config
latentH := cfg.Height / 8
latentW := cfg.Width / 8
pH := latentH / tcfg.PatchSize
pW := latentW / tcfg.PatchSize
imgSeqLen := pH * pW
// Text encoding
var posEmb, negEmb *mlx.Array
{
posEmb = m.TextEncoder.EncodePrompt(m.Tokenizer, cfg.Prompt)
if useCFG {
negEmb = m.TextEncoder.EncodePrompt(m.Tokenizer, cfg.NegativePrompt)
mlx.Keep(posEmb, negEmb)
mlx.Eval(posEmb, negEmb)
} else {
mlx.Keep(posEmb)
mlx.Eval(posEmb)
}
}
// Pad sequences to same length for CFG
txtLen := posEmb.Shape()[1]
if useCFG {
negLen := negEmb.Shape()[1]
if negLen > txtLen {
txtLen = negLen
}
if posEmb.Shape()[1] < txtLen {
posEmb = padSequence(posEmb, txtLen)
}
if negEmb.Shape()[1] < txtLen {
negEmb = padSequence(negEmb, txtLen)
}
mlx.Keep(posEmb, negEmb)
}
// Pre-compute batched embeddings for CFG (single forward pass optimization)
var batchedEmb *mlx.Array
if useCFG {
batchedEmb = mlx.Concatenate([]*mlx.Array{posEmb, negEmb}, 0)
mlx.Keep(batchedEmb)
mlx.Eval(batchedEmb)
}
// Scheduler
scheduler := NewFlowMatchScheduler(DefaultSchedulerConfig())
scheduler.SetTimesteps(cfg.Steps, imgSeqLen)
// Init latents [B, C, T, H, W]
var latents *mlx.Array
{
latents = scheduler.InitNoise([]int32{1, tcfg.OutChannels, 1, latentH, latentW}, cfg.Seed)
mlx.Eval(latents)
}
// RoPE cache
var ropeCache *RoPECache
{
ropeCache = PrepareRoPE(pH, pW, txtLen, tcfg.AxesDimsRope)
mlx.Keep(ropeCache.ImgFreqs, ropeCache.TxtFreqs)
mlx.Eval(ropeCache.ImgFreqs)
}
// Layer cache for DeepCache/Learning-to-Cache speedup
var stepCache *cache.StepCache
if cfg.LayerCache {
stepCache = cache.NewStepCache(cfg.CacheLayers)
fmt.Printf(" Layer caching: %d layers, refresh every %d steps\n", cfg.CacheLayers, cfg.CacheInterval)
}
// Denoising loop
for i := 0; i < cfg.Steps; i++ {
stepStart := time.Now()
if cfg.Progress != nil {
cfg.Progress(i+1, cfg.Steps)
}
t := scheduler.Timesteps[i]
timestep := mlx.ToBFloat16(mlx.NewArray([]float32{t}, []int32{1}))
// Squeeze temporal dim: [B, C, T, H, W] -> [B, C, H, W]
latents2D := mlx.Squeeze(latents, 2)
patches := PackLatents(latents2D, tcfg.PatchSize)
var output *mlx.Array
if useCFG {
// CFG Batching: single forward pass with batch=2
// Note: layer caching with CFG is not supported yet (would need 2 caches)
batchedPatches := mlx.Tile(patches, []int32{2, 1, 1})
batchedTimestep := mlx.Tile(timestep, []int32{2})
// Single batched forward pass
batchedOutput := m.Transformer.Forward(batchedPatches, batchedEmb, batchedTimestep, ropeCache.ImgFreqs, ropeCache.TxtFreqs)
// Split output: [2, L, D] -> pos [1, L, D], neg [1, L, D]
L := batchedOutput.Shape()[1]
D := batchedOutput.Shape()[2]
posOutput := mlx.Slice(batchedOutput, []int32{0, 0, 0}, []int32{1, L, D})
negOutput := mlx.Slice(batchedOutput, []int32{1, 0, 0}, []int32{2, L, D})
diff := mlx.Sub(posOutput, negOutput)
scaledDiff := mlx.MulScalar(diff, cfg.CFGScale)
combPred := mlx.Add(negOutput, scaledDiff)
// Norm rescaling: rescale combined prediction to match conditional prediction's norm
condNorm := mlx.Sqrt(mlx.Sum(mlx.Square(posOutput), -1, true))
combNorm := mlx.Sqrt(mlx.Sum(mlx.Square(combPred), -1, true))
output = mlx.Mul(combPred, mlx.Div(condNorm, combNorm))
} else if stepCache != nil {
output = m.Transformer.ForwardWithCache(patches, posEmb, timestep, ropeCache.ImgFreqs, ropeCache.TxtFreqs,
stepCache, i, cfg.CacheInterval, cfg.CacheLayers)
} else {
output = m.Transformer.Forward(patches, posEmb, timestep, ropeCache.ImgFreqs, ropeCache.TxtFreqs)
}
noisePred := UnpackLatents(output, latentH, latentW, tcfg.PatchSize)
oldLatents := latents
latents = scheduler.Step(noisePred, latents, i)
// Keep cached arrays alive across cleanup
if stepCache != nil {
mlx.Keep(stepCache.Arrays()...)
}
mlx.Eval(latents)
oldLatents.Free()
activeMem := float64(mlx.MetalGetActiveMemory()) / (1024 * 1024 * 1024)
peakMem := float64(mlx.MetalGetPeakMemory()) / (1024 * 1024 * 1024)
fmt.Printf(" Step %d/%d: t=%.4f (%.2fs) [%.1f GB active, %.1f GB peak]\n", i+1, cfg.Steps, t, time.Since(stepStart).Seconds(), activeMem, peakMem)
}
// Free denoising temporaries before VAE decode
posEmb.Free()
if negEmb != nil {
negEmb.Free()
}
if batchedEmb != nil {
batchedEmb.Free()
}
ropeCache.ImgFreqs.Free()
ropeCache.TxtFreqs.Free()
if stepCache != nil {
stepCache.Free()
}
// VAE decode (Decode manages its own pools for staged memory)
decoded := m.VAEDecoder.Decode(latents)
latents.Free()
// Post-process: squeeze temporal dim and rescale to [0, 1]
{
decoded = mlx.Squeeze(decoded, 2)
decoded = mlx.AddScalar(decoded, 1.0)
decoded = mlx.DivScalar(decoded, 2.0)
mlx.Eval(decoded)
}
fmt.Printf(" Peak memory: %.2f GB\n", float64(mlx.MetalGetPeakMemory())/(1024*1024*1024))
return decoded, nil
}
// padSequence pads a sequence tensor to the target length with zeros
func padSequence(x *mlx.Array, targetLen int32) *mlx.Array {
shape := x.Shape()
currentLen := shape[1]
if currentLen >= targetLen {
return x
}
padLen := targetLen - currentLen
// Pad on sequence dimension (axis 1)
return mlx.Pad(x, []int32{0, 0, 0, padLen, 0, 0})
}
// LoadPersistent is an alias for backward compatibility.
// Use m := &Model{}; m.Load(path) instead.
func LoadPersistent(modelPath string) (*Model, error) {
m := &Model{}
if err := m.Load(modelPath); err != nil {
return nil, err
}
return m, nil
}

View File

@@ -0,0 +1,218 @@
//go:build mlx
package qwen_image
import (
"math"
"github.com/ollama/ollama/x/imagegen/mlx"
)
// SchedulerConfig holds FlowMatchEulerDiscreteScheduler configuration
type SchedulerConfig struct {
NumTrainTimesteps int32 `json:"num_train_timesteps"` // 1000
BaseShift float32 `json:"base_shift"` // 0.5
MaxShift float32 `json:"max_shift"` // 0.9
BaseImageSeqLen int32 `json:"base_image_seq_len"` // 256
MaxImageSeqLen int32 `json:"max_image_seq_len"` // 8192
ShiftTerminal float32 `json:"shift_terminal"` // 0.02
UseDynamicShift bool `json:"use_dynamic_shifting"` // true
}
// DefaultSchedulerConfig returns config for FlowMatchEulerDiscreteScheduler
func DefaultSchedulerConfig() *SchedulerConfig {
return &SchedulerConfig{
NumTrainTimesteps: 1000,
BaseShift: 0.5,
MaxShift: 0.9, // Matches scheduler_config.json
BaseImageSeqLen: 256,
MaxImageSeqLen: 8192,
ShiftTerminal: 0.02,
UseDynamicShift: true,
}
}
// FlowMatchScheduler implements the Flow Match Euler discrete scheduler
type FlowMatchScheduler struct {
Config *SchedulerConfig
Timesteps []float32
Sigmas []float32
NumSteps int
}
// NewFlowMatchScheduler creates a new scheduler
func NewFlowMatchScheduler(cfg *SchedulerConfig) *FlowMatchScheduler {
return &FlowMatchScheduler{
Config: cfg,
}
}
// CalculateShift computes the dynamic shift based on image sequence length
// This matches Python's calculate_shift function
func CalculateShift(imageSeqLen int32, baseSeqLen int32, maxSeqLen int32, baseShift float32, maxShift float32) float32 {
m := (maxShift - baseShift) / float32(maxSeqLen-baseSeqLen)
b := baseShift - m*float32(baseSeqLen)
mu := float32(imageSeqLen)*m + b
return mu
}
// SetTimesteps sets up the scheduler for the given number of inference steps
// Matches Python diffusers FlowMatchEulerDiscreteScheduler behavior:
// 1. Create sigmas from sigma_max to sigma_min (linspace)
// 2. Apply time_shift with mu (if dynamic shifting)
// 3. Apply stretch_shift_to_terminal to make final value = shift_terminal
func (s *FlowMatchScheduler) SetTimesteps(numSteps int, imageSeqLen int32) {
s.NumSteps = numSteps
// Calculate mu for dynamic shifting
var mu float32
if s.Config.UseDynamicShift {
mu = CalculateShift(
imageSeqLen,
s.Config.BaseImageSeqLen,
s.Config.MaxImageSeqLen,
s.Config.BaseShift,
s.Config.MaxShift,
)
}
// Step 1: Create sigmas from 1.0 to 1/num_steps
// Python (pipeline_qwenimage.py:639):
// sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
// This gives sigmas from 1.0 to 1/30 = 0.033 for 30 steps
sigmas := make([]float32, numSteps)
sigmaMax := float32(1.0)
sigmaMin := 1.0 / float32(numSteps) // 1/30 = 0.033 for 30 steps
if numSteps == 1 {
sigmas[0] = sigmaMax
} else {
for i := 0; i < numSteps; i++ {
sigmas[i] = sigmaMax + float32(i)*(sigmaMin-sigmaMax)/float32(numSteps-1)
}
}
// Step 2: Apply time shift if using dynamic shifting
if s.Config.UseDynamicShift && mu != 0 {
for i := range sigmas {
sigmas[i] = s.timeShift(mu, sigmas[i])
}
}
// Step 3: Apply stretch_shift_to_terminal
if s.Config.ShiftTerminal > 0 {
sigmas = s.stretchShiftToTerminal(sigmas)
}
// Step 4: Append terminal sigma (0) and store
// Note: Python's scheduler.timesteps are sigmas*1000, but the pipeline divides by 1000
// before passing to transformer. We skip both steps and just use sigmas directly.
s.Sigmas = make([]float32, numSteps+1)
s.Timesteps = make([]float32, numSteps+1)
for i := 0; i < numSteps; i++ {
s.Sigmas[i] = sigmas[i]
s.Timesteps[i] = sigmas[i]
}
s.Sigmas[numSteps] = 0.0
s.Timesteps[numSteps] = 0.0
}
// stretchShiftToTerminal stretches and shifts the timestep schedule
// so the final value equals shift_terminal (matches Python behavior)
func (s *FlowMatchScheduler) stretchShiftToTerminal(sigmas []float32) []float32 {
if len(sigmas) == 0 {
return sigmas
}
// one_minus_z = 1 - t
// scale_factor = one_minus_z[-1] / (1 - shift_terminal)
// stretched_t = 1 - (one_minus_z / scale_factor)
lastSigma := sigmas[len(sigmas)-1]
scaleFactor := (1.0 - lastSigma) / (1.0 - s.Config.ShiftTerminal)
// Handle edge case: if scaleFactor is 0 or near 0, skip stretch
// This happens when lastSigma ≈ 1.0 (e.g., single step with timeshift)
if scaleFactor < 1e-6 {
return sigmas
}
result := make([]float32, len(sigmas))
for i, t := range sigmas {
oneMinusZ := 1.0 - t
result[i] = 1.0 - (oneMinusZ / scaleFactor)
}
return result
}
// timeShift applies the dynamic time shift (exponential)
// exp(mu) / (exp(mu) + (1/t - 1))
func (s *FlowMatchScheduler) timeShift(mu float32, t float32) float32 {
if t <= 0 {
return 0
}
expMu := float32(math.Exp(float64(mu)))
return expMu / (expMu + (1.0/t - 1.0))
}
// Step performs one denoising step
// modelOutput: predicted velocity from the transformer
// sample: current noisy sample
// timestepIdx: current timestep index
func (s *FlowMatchScheduler) Step(modelOutput, sample *mlx.Array, timestepIdx int) *mlx.Array {
// Get current and next sigma
sigma := s.Sigmas[timestepIdx]
sigmaNext := s.Sigmas[timestepIdx+1]
// Euler step: x_{t-dt} = x_t + (sigma_next - sigma) * v_t
dt := sigmaNext - sigma
// Upcast to float32 to avoid precision issues (matches Python diffusers)
sampleF32 := mlx.AsType(sample, mlx.DtypeFloat32)
modelOutputF32 := mlx.AsType(modelOutput, mlx.DtypeFloat32)
scaledOutput := mlx.MulScalar(modelOutputF32, dt)
result := mlx.Add(sampleF32, scaledOutput)
// Cast back to original dtype
return mlx.ToBFloat16(result)
}
// GetTimestep returns the timestep value at the given index
func (s *FlowMatchScheduler) GetTimestep(idx int) float32 {
if idx < len(s.Timesteps) {
return s.Timesteps[idx]
}
return 0.0
}
// InitNoise creates initial noise for sampling in unpacked format [B, C, T, H, W]
func (s *FlowMatchScheduler) InitNoise(shape []int32, seed int64) *mlx.Array {
return mlx.RandomNormal(shape, uint64(seed))
}
// InitNoisePacked creates initial noise directly in packed format [B, L, C*4]
// This matches how Python diffusers generates noise - directly in packed space.
// Generating in unpacked format and then packing produces different spatial
// correlation structure, which affects model output quality.
func (s *FlowMatchScheduler) InitNoisePacked(batchSize, seqLen, channels int32, seed int64) *mlx.Array {
shape := []int32{batchSize, seqLen, channels}
return mlx.RandomNormal(shape, uint64(seed))
}
// GetLatentShape returns the latent shape for a given image size
// For qwen_image: VAE downscale is 8x (spatial), latent has 16 channels
func GetLatentShape(batchSize, height, width int32) []int32 {
latentH := height / 8
latentW := width / 8
return []int32{batchSize, 16, 1, latentH, latentW} // [B, C, T, H, W]
}
// GetPatchedLatentShape returns the patchified latent shape
// After patchification: [B, L, C*patch_size^2] where L = H/2 * W/2
func GetPatchedLatentShape(batchSize, height, width, patchSize int32) []int32 {
latentH := height / 8
latentW := width / 8
pH := latentH / patchSize
pW := latentW / patchSize
inChannels := int32(64) // 16 * patch_size^2
return []int32{batchSize, pH * pW, inChannels}
}

View File

@@ -0,0 +1,135 @@
//go:build mlx
package qwen_image
import (
"math"
"testing"
)
// TestSchedulerSetTimesteps verifies scheduler sigmas match Python diffusers reference.
// Golden values generated via:
//
// python3 -c "
// from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
// import numpy as np
// s = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, base_shift=0.5, max_shift=0.9,
// base_image_seq_len=256, max_image_seq_len=8192, shift_terminal=0.02, use_dynamic_shifting=True)
// mu = 4096 * (0.9-0.5)/(8192-256) + 0.5 - (0.9-0.5)/(8192-256)*256
// sigmas = np.linspace(1.0, 1.0/30, 30)
// s.set_timesteps(sigmas=sigmas, mu=mu)
// print(s.sigmas.numpy())"
func TestSchedulerSetTimesteps(t *testing.T) {
cfg := DefaultSchedulerConfig()
scheduler := NewFlowMatchScheduler(cfg)
scheduler.SetTimesteps(30, 4096)
// Golden values from Python diffusers (first 3, last 3 before terminal)
wantFirst := []float32{1.000000, 0.982251, 0.963889}
wantLast := []float32{0.142924, 0.083384, 0.020000}
// Check first 3
for i, want := range wantFirst {
got := scheduler.Sigmas[i]
if abs32(got-want) > 1e-4 {
t.Errorf("sigma[%d]: got %v, want %v", i, got, want)
}
}
// Check last 3 (indices 27, 28, 29)
for i, want := range wantLast {
idx := 27 + i
got := scheduler.Sigmas[idx]
if abs32(got-want) > 1e-4 {
t.Errorf("sigma[%d]: got %v, want %v", idx, got, want)
}
}
// Check terminal is 0
if scheduler.Sigmas[30] != 0.0 {
t.Errorf("terminal sigma: got %v, want 0", scheduler.Sigmas[30])
}
// Check length
if len(scheduler.Sigmas) != 31 {
t.Errorf("sigmas length: got %d, want 31", len(scheduler.Sigmas))
}
}
// TestSchedulerProperties tests mathematical invariants of the scheduler.
func TestSchedulerProperties(t *testing.T) {
cfg := DefaultSchedulerConfig()
scheduler := NewFlowMatchScheduler(cfg)
scheduler.SetTimesteps(30, 4096)
// Property: sigmas monotonically decreasing
for i := 1; i < len(scheduler.Sigmas); i++ {
if scheduler.Sigmas[i] > scheduler.Sigmas[i-1] {
t.Errorf("sigmas not monotonically decreasing at %d: %v > %v",
i, scheduler.Sigmas[i], scheduler.Sigmas[i-1])
}
}
// Property: first sigma should be ~1.0 (with time shift)
if scheduler.Sigmas[0] < 0.9 || scheduler.Sigmas[0] > 1.01 {
t.Errorf("first sigma out of expected range [0.9, 1.01]: %v", scheduler.Sigmas[0])
}
// Property: terminal sigma should be exactly 0
if scheduler.Sigmas[len(scheduler.Sigmas)-1] != 0.0 {
t.Errorf("terminal sigma should be 0, got %v", scheduler.Sigmas[len(scheduler.Sigmas)-1])
}
// Property: last non-terminal sigma should be shift_terminal (0.02)
lastNonTerminal := scheduler.Sigmas[len(scheduler.Sigmas)-2]
if abs32(lastNonTerminal-0.02) > 1e-5 {
t.Errorf("last non-terminal sigma should be 0.02, got %v", lastNonTerminal)
}
// Property: length = steps + 1
if len(scheduler.Sigmas) != scheduler.NumSteps+1 {
t.Errorf("sigmas length should be steps+1: got %d, want %d",
len(scheduler.Sigmas), scheduler.NumSteps+1)
}
}
// TestCalculateShift verifies the mu calculation against Python reference.
// Golden values from: mu = img_seq_len * m + b where m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
func TestCalculateShift(t *testing.T) {
cases := []struct {
imgSeqLen int32
want float32
}{
{256, 0.5}, // base case
{8192, 0.9}, // max case
{4096, 0.6935}, // middle case (rounded)
}
for _, c := range cases {
got := CalculateShift(c.imgSeqLen, 256, 8192, 0.5, 0.9)
if abs32(got-c.want) > 0.001 {
t.Errorf("CalculateShift(%d): got %v, want %v", c.imgSeqLen, got, c.want)
}
}
}
// TestSchedulerStep verifies the Euler step formula.
func TestSchedulerStep(t *testing.T) {
cfg := DefaultSchedulerConfig()
scheduler := NewFlowMatchScheduler(cfg)
scheduler.SetTimesteps(30, 4096)
// Verify dt calculation for first step
sigma0 := scheduler.Sigmas[0]
sigma1 := scheduler.Sigmas[1]
expectedDt := sigma1 - sigma0
// dt should be negative (sigmas decrease)
if expectedDt >= 0 {
t.Errorf("expected negative dt, got %v (sigma0=%v, sigma1=%v)", expectedDt, sigma0, sigma1)
}
}
func abs32(x float32) float32 {
return float32(math.Abs(float64(x)))
}

View File

@@ -0,0 +1,174 @@
//go:build mlx
package qwen_image
import (
"encoding/json"
"math"
"os"
"path/filepath"
"slices"
"testing"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/safetensors"
)
// TinyTextEncoderConfig holds config for the tiny test text encoder
type TinyTextEncoderConfig struct {
HiddenSize int32 `json:"hidden_size"`
NumHiddenLayers int32 `json:"num_hidden_layers"`
IntermediateSize int32 `json:"intermediate_size"`
NumAttentionHeads int32 `json:"num_attention_heads"`
NumKeyValueHeads int32 `json:"num_key_value_heads"`
VocabSize int32 `json:"vocab_size"`
RMSNormEps float32 `json:"rms_norm_eps"`
RopeTheta float32 `json:"rope_theta"`
HeadDim int32 `json:"head_dim"`
MRoPESection []int32 `json:"mrope_section"`
}
// loadTinyTextEncoder loads the tiny text encoder from testdata
func loadTinyTextEncoder(t *testing.T) (*Qwen25VL, *TinyTextEncoderConfig) {
t.Helper()
testdataDir := filepath.Join("testdata", "tiny_text_encoder")
// Load config
configData, err := os.ReadFile(filepath.Join(testdataDir, "config.json"))
if err != nil {
t.Skipf("Skipping: tiny weights not found. Regenerate with Python (see models/CLAUDE.md)")
}
var tinyCfg TinyTextEncoderConfig
if err := json.Unmarshal(configData, &tinyCfg); err != nil {
t.Fatalf("Failed to parse config: %v", err)
}
// Create encoder config (using Qwen25VLConfig)
cfg := &Qwen25VLConfig{
HiddenSize: tinyCfg.HiddenSize,
NumHiddenLayers: tinyCfg.NumHiddenLayers,
IntermediateSize: tinyCfg.IntermediateSize,
NumAttentionHeads: tinyCfg.NumAttentionHeads,
NumKeyValueHeads: tinyCfg.NumKeyValueHeads,
VocabSize: tinyCfg.VocabSize,
RMSNormEps: tinyCfg.RMSNormEps,
RopeTheta: tinyCfg.RopeTheta,
HeadDim: tinyCfg.HeadDim,
MRoPESection: tinyCfg.MRoPESection,
}
// Load weights
weights, err := safetensors.LoadModelWeights(testdataDir)
if err != nil {
t.Fatalf("Failed to load weights: %v", err)
}
if err := weights.Load(mlx.DtypeBFloat16); err != nil {
t.Fatalf("Failed to bulk load weights: %v", err)
}
// Build encoder
embedding, err := weights.Get("model.embed_tokens.weight")
if err != nil {
t.Fatalf("Failed to get embedding: %v", err)
}
blocks := make([]*VLTextBlock, cfg.NumHiddenLayers)
for i := int32(0); i < cfg.NumHiddenLayers; i++ {
block, err := newVLTextBlock(weights, int(i), cfg)
if err != nil {
t.Fatalf("Failed to load block %d: %v", i, err)
}
blocks[i] = block
}
finalNorm, err := weights.Get("model.norm.weight")
if err != nil {
t.Fatalf("Failed to get final norm: %v", err)
}
encoder := &Qwen25VL{
Config: cfg,
Embedding: embedding,
Blocks: blocks,
FinalNorm: finalNorm,
HasVision: false, // Text-only mode
}
return encoder, &tinyCfg
}
// TestTextEncoderForward verifies the text encoder forward pass with tiny weights.
func TestTextEncoderForward(t *testing.T) {
encoder, cfg := loadTinyTextEncoder(t)
// Create test tokens (within vocab range)
tokens := []int32{1, 2, 3, 4, 5}
// Forward pass using EncodeTextOnly
out := encoder.EncodeTextOnly(tokens)
mlx.Eval(out)
// Verify output shape: [batch, seq_len, hidden_size]
wantShape := []int32{1, 5, cfg.HiddenSize}
if !slices.Equal(out.Shape(), wantShape) {
t.Errorf("output shape: got %v, want %v", out.Shape(), wantShape)
}
// Verify output is finite (not NaN or Inf)
data := out.Data()
for i, v := range data {
if math.IsNaN(float64(v)) || math.IsInf(float64(v), 0) {
t.Errorf("output[%d] is not finite: %v", i, v)
break
}
}
}
// TestTextEncoderBatch tests batch processing.
func TestTextEncoderBatch(t *testing.T) {
encoder, cfg := loadTinyTextEncoder(t)
// For batch test, we'll use EncodeTextOnly with a single sequence
// (EncodeTextOnly doesn't support batch, but we can verify single sequence works)
tokens := []int32{1, 2, 3}
out := encoder.EncodeTextOnly(tokens)
mlx.Eval(out)
wantShape := []int32{1, 3, cfg.HiddenSize}
if !slices.Equal(out.Shape(), wantShape) {
t.Errorf("shape: got %v, want %v", out.Shape(), wantShape)
}
}
// TestMRoPEComputation verifies M-RoPE frequency computation produces valid values.
func TestMRoPEComputation(t *testing.T) {
encoder, cfg := loadTinyTextEncoder(t)
cossin := encoder.computeTextRoPE(10, 1)
mlx.Eval(cossin[0], cossin[1])
// Verify shapes: [3, B, L, head_dim]
wantShape := []int32{3, 1, 10, cfg.HeadDim}
if !slices.Equal(cossin[0].Shape(), wantShape) {
t.Errorf("cos shape: got %v, want %v", cossin[0].Shape(), wantShape)
}
if !slices.Equal(cossin[1].Shape(), wantShape) {
t.Errorf("sin shape: got %v, want %v", cossin[1].Shape(), wantShape)
}
// Verify cos/sin values are in valid range [-1, 1]
cosData := cossin[0].Data()
sinData := cossin[1].Data()
for i := 0; i < min(100, len(cosData)); i++ {
if cosData[i] < -1.01 || cosData[i] > 1.01 {
t.Errorf("cos[%d] out of range: %v", i, cosData[i])
}
if sinData[i] < -1.01 || sinData[i] > 1.01 {
t.Errorf("sin[%d] out of range: %v", i, sinData[i])
}
}
}

Some files were not shown because too many files have changed in this diff Show More