Compare commits
10 Commits
parth/decr
...
v0.14.2-rc
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
80f3f1bc25 | ||
|
|
b1a0db547b | ||
|
|
75d7b5f926 | ||
|
|
349d814814 | ||
|
|
c8743031e0 | ||
|
|
4adb9cf4bb | ||
|
|
74f475e735 | ||
|
|
875cecba74 | ||
|
|
7d411a4686 | ||
|
|
02a2401596 |
@@ -190,7 +190,7 @@ if(MLX_ENGINE)
|
||||
install(TARGETS mlx mlxc
|
||||
RUNTIME_DEPENDENCIES
|
||||
DIRECTORIES ${CUDAToolkit_BIN_DIR} ${CUDAToolkit_BIN_DIR}/x64 ${CUDAToolkit_LIBRARY_DIR}
|
||||
PRE_INCLUDE_REGEXES cublas cublasLt cudart nvrtc cudnn nccl
|
||||
PRE_INCLUDE_REGEXES cublas cublasLt cudart nvrtc nvrtc-builtins cudnn nccl openblas gfortran
|
||||
PRE_EXCLUDE_REGEXES ".*"
|
||||
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT MLX
|
||||
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT MLX
|
||||
|
||||
43
README.md
@@ -48,7 +48,7 @@ ollama run gemma3
|
||||
|
||||
## Model library
|
||||
|
||||
Ollama supports a list of models available on [ollama.com/library](https://ollama.com/library 'ollama model library')
|
||||
Ollama supports a list of models available on [ollama.com/library](https://ollama.com/library "ollama model library")
|
||||
|
||||
Here are some example models that can be downloaded:
|
||||
|
||||
@@ -79,7 +79,7 @@ Here are some example models that can be downloaded:
|
||||
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
|
||||
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
|
||||
| LLaVA | 7B | 4.5GB | `ollama run llava` |
|
||||
| Granite-3.3 | 8B | 4.9GB | `ollama run granite3.3` |
|
||||
| Granite-3.3 | 8B | 4.9GB | `ollama run granite3.3` |
|
||||
|
||||
> [!NOTE]
|
||||
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
|
||||
@@ -260,6 +260,38 @@ Finally, in a separate shell, run a model:
|
||||
./ollama run llama3.2
|
||||
```
|
||||
|
||||
## Building with MLX (experimental)
|
||||
|
||||
First build the MLX libraries:
|
||||
|
||||
```shell
|
||||
cmake --preset MLX
|
||||
cmake --build --preset MLX --parallel
|
||||
cmake --install build --component MLX
|
||||
```
|
||||
|
||||
Next, build the `ollama-mlx` binary, which is a separate build of the Ollama runtime with MLX support enabled (needs to be in the same directory as `ollama`):
|
||||
|
||||
```shell
|
||||
go build -tags mlx -o ollama-mlx .
|
||||
```
|
||||
|
||||
Finally, start the server:
|
||||
|
||||
```
|
||||
./ollama serve
|
||||
```
|
||||
|
||||
### Building MLX with CUDA
|
||||
|
||||
When building with CUDA, use the preset "MLX CUDA 13" or "MLX CUDA 12" to enable CUDA with default architectures:
|
||||
|
||||
```shell
|
||||
cmake --preset 'MLX CUDA 13'
|
||||
cmake --build --preset 'MLX CUDA 13' --parallel
|
||||
cmake --install build --component MLX
|
||||
```
|
||||
|
||||
## REST API
|
||||
|
||||
Ollama has a REST API for running and managing models.
|
||||
@@ -290,6 +322,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
|
||||
### Web & Desktop
|
||||
|
||||
- [Onyx](https://github.com/onyx-dot-app/onyx)
|
||||
- [Open WebUI](https://github.com/open-webui/open-webui)
|
||||
- [SwiftChat (macOS with ReactNative)](https://github.com/aws-samples/swift-chat)
|
||||
- [Enchanted (macOS native)](https://github.com/AugustDev/enchanted)
|
||||
@@ -421,7 +454,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [AppFlowy](https://github.com/AppFlowy-IO/AppFlowy) (AI collaborative workspace with Ollama, cross-platform and self-hostable)
|
||||
- [Lumina](https://github.com/cushydigit/lumina.git) (A lightweight, minimal React.js frontend for interacting with Ollama servers)
|
||||
- [Tiny Notepad](https://pypi.org/project/tiny-notepad) (A lightweight, notepad-like interface to chat with ollama available on PyPI)
|
||||
- [macLlama (macOS native)](https://github.com/hellotunamayo/macLlama) (A native macOS GUI application for interacting with Ollama models, featuring a chat interface.)
|
||||
- [macLlama (macOS native)](https://github.com/hellotunamayo/macLlama) (A native macOS GUI application for interacting with Ollama models, featuring a chat interface.)
|
||||
- [GPTranslate](https://github.com/philberndt/GPTranslate) (A fast and lightweight, AI powered desktop translation application written with Rust and Tauri. Features real-time translation with OpenAI/Azure/Ollama.)
|
||||
- [ollama launcher](https://github.com/NGC13009/ollama-launcher) (A launcher for Ollama, aiming to provide users with convenient functions such as ollama server launching, management, or configuration.)
|
||||
- [ai-hub](https://github.com/Aj-Seven/ai-hub) (AI Hub supports multiple models via API keys and Chat support via Ollama API.)
|
||||
@@ -493,7 +526,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
### Database
|
||||
|
||||
- [pgai](https://github.com/timescale/pgai) - PostgreSQL as a vector database (Create and search embeddings from Ollama models using pgvector)
|
||||
- [Get started guide](https://github.com/timescale/pgai/blob/main/docs/vectorizer-quick-start.md)
|
||||
- [Get started guide](https://github.com/timescale/pgai/blob/main/docs/vectorizer-quick-start.md)
|
||||
- [MindsDB](https://github.com/mindsdb/mindsdb/blob/staging/mindsdb/integrations/handlers/ollama_handler/README.md) (Connects Ollama models with nearly 200 data platforms and apps)
|
||||
- [chromem-go](https://github.com/philippgille/chromem-go/blob/v0.5.0/embed_ollama.go) with [example](https://github.com/philippgille/chromem-go/tree/v0.5.0/examples/rag-wikipedia-ollama)
|
||||
- [Kangaroo](https://github.com/dbkangaroo/kangaroo) (AI-powered SQL client and admin tool for popular databases)
|
||||
@@ -636,6 +669,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [llama.cpp](https://github.com/ggml-org/llama.cpp) project founded by Georgi Gerganov.
|
||||
|
||||
### Observability
|
||||
|
||||
- [Opik](https://www.comet.com/docs/opik/cookbook/ollama) is an open-source platform to debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards. Opik supports native integration to Ollama.
|
||||
- [Lunary](https://lunary.ai/docs/integrations/ollama) is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
|
||||
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
|
||||
@@ -644,4 +678,5 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [MLflow Tracing](https://mlflow.org/docs/latest/llms/tracing/index.html#automatic-tracing) is an open source LLM observability tool with a convenient API to log and visualize traces, making it easy to debug and evaluate GenAI applications.
|
||||
|
||||
### Security
|
||||
|
||||
- [Ollama Fortress](https://github.com/ParisNeo/ollama_proxy_server)
|
||||
|
||||
@@ -116,7 +116,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
Prompt: ">>> ",
|
||||
AltPrompt: "... ",
|
||||
Placeholder: "Send a message (/? for help)",
|
||||
AltPlaceholder: `Use """ to end multi-line input`,
|
||||
AltPlaceholder: "Press Enter to send",
|
||||
})
|
||||
if err != nil {
|
||||
return err
|
||||
|
||||
@@ -21,6 +21,7 @@ ollama pull glm-4.7:cloud
|
||||
To use Ollama with tools that expect the Anthropic API (like Claude Code), set these environment variables:
|
||||
|
||||
```shell
|
||||
export ANTHROPIC_AUTH_TOKEN=ollama # required but ignored
|
||||
export ANTHROPIC_BASE_URL=http://localhost:11434
|
||||
export ANTHROPIC_API_KEY=ollama # required but ignored
|
||||
```
|
||||
@@ -247,12 +248,13 @@ curl -X POST http://localhost:11434/v1/messages \
|
||||
[Claude Code](https://code.claude.com/docs/en/overview) can be configured to use Ollama as its backend:
|
||||
|
||||
```shell
|
||||
ANTHROPIC_BASE_URL=http://localhost:11434 ANTHROPIC_API_KEY=ollama claude --model qwen3-coder
|
||||
ANTHROPIC_AUTH_TOKEN=ollama ANTHROPIC_BASE_URL=http://localhost:11434 ANTHROPIC_API_KEY=ollama claude --model qwen3-coder
|
||||
```
|
||||
|
||||
Or set the environment variables in your shell profile:
|
||||
|
||||
```shell
|
||||
export ANTHROPIC_AUTH_TOKEN=ollama
|
||||
export ANTHROPIC_BASE_URL=http://localhost:11434
|
||||
export ANTHROPIC_API_KEY=ollama
|
||||
```
|
||||
|
||||
@@ -110,7 +110,7 @@ More Ollama [Python example](https://github.com/ollama/ollama-python/blob/main/e
|
||||
import { Ollama } from "ollama";
|
||||
|
||||
const client = new Ollama();
|
||||
const results = await client.webSearch({ query: "what is ollama?" });
|
||||
const results = await client.webSearch("what is ollama?");
|
||||
console.log(JSON.stringify(results, null, 2));
|
||||
```
|
||||
|
||||
@@ -213,7 +213,7 @@ models](https://ollama.com/models)\n\nAvailable for macOS, Windows, and Linux',
|
||||
import { Ollama } from "ollama";
|
||||
|
||||
const client = new Ollama();
|
||||
const fetchResult = await client.webFetch({ url: "https://ollama.com" });
|
||||
const fetchResult = await client.webFetch("https://ollama.com");
|
||||
console.log(JSON.stringify(fetchResult, null, 2));
|
||||
```
|
||||
|
||||
|
||||
@@ -111,7 +111,9 @@
|
||||
"/integrations/zed",
|
||||
"/integrations/roo-code",
|
||||
"/integrations/n8n",
|
||||
"/integrations/xcode"
|
||||
"/integrations/xcode",
|
||||
"/integrations/onyx",
|
||||
"/integrations/marimo"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -22,7 +22,7 @@ Please refer to the [GPU docs](./gpu).
|
||||
|
||||
## How can I specify the context window size?
|
||||
|
||||
By default, Ollama uses a context window size of 2048 tokens.
|
||||
By default, Ollama uses a context window size of 4096 tokens.
|
||||
|
||||
This can be overridden with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context window to 8K, use:
|
||||
|
||||
|
||||
BIN
docs/images/marimo-add-model.png
Normal file
|
After Width: | Height: | Size: 174 KiB |
BIN
docs/images/marimo-chat.png
Normal file
|
After Width: | Height: | Size: 80 KiB |
BIN
docs/images/marimo-code-completion.png
Normal file
|
After Width: | Height: | Size: 230 KiB |
BIN
docs/images/marimo-models.png
Normal file
|
After Width: | Height: | Size: 178 KiB |
BIN
docs/images/marimo-settings.png
Normal file
|
After Width: | Height: | Size: 186 KiB |
BIN
docs/images/onyx-login.png
Normal file
|
After Width: | Height: | Size: 100 KiB |
BIN
docs/images/onyx-ollama-form.png
Normal file
|
After Width: | Height: | Size: 306 KiB |
BIN
docs/images/onyx-ollama-llm.png
Normal file
|
After Width: | Height: | Size: 300 KiB |
BIN
docs/images/onyx-query.png
Normal file
|
After Width: | Height: | Size: 211 KiB |
@@ -25,6 +25,7 @@ Claude Code connects to Ollama using the Anthropic-compatible API.
|
||||
1. Set the environment variables:
|
||||
|
||||
```shell
|
||||
export ANTHROPIC_AUTH_TOKEN=ollama
|
||||
export ANTHROPIC_BASE_URL=http://localhost:11434
|
||||
export ANTHROPIC_API_KEY=ollama
|
||||
```
|
||||
@@ -38,7 +39,7 @@ claude --model qwen3-coder
|
||||
Or run with environment variables inline:
|
||||
|
||||
```shell
|
||||
ANTHROPIC_BASE_URL=http://localhost:11434 ANTHROPIC_API_KEY=ollama claude --model qwen3-coder
|
||||
ANTHROPIC_AUTH_TOKEN=ollama ANTHROPIC_BASE_URL=http://localhost:11434 ANTHROPIC_API_KEY=ollama claude --model qwen3-coder
|
||||
```
|
||||
|
||||
## Connecting to ollama.com
|
||||
|
||||
73
docs/integrations/marimo.mdx
Normal file
@@ -0,0 +1,73 @@
|
||||
---
|
||||
title: marimo
|
||||
---
|
||||
|
||||
## Install
|
||||
|
||||
Install [marimo](https://marimo.io). You can use `pip` or `uv` for this. You
|
||||
can also use `uv` to create a sandboxed environment for marimo by running:
|
||||
|
||||
```
|
||||
uvx marimo edit --sandbox notebook.py
|
||||
```
|
||||
|
||||
## Usage with Ollama
|
||||
|
||||
1. In marimo, go to the user settings and go to the AI tab. From here
|
||||
you can find and configure Ollama as an AI provider. For local use you
|
||||
would typically point the base url to `http://localhost:11434/v1`.
|
||||
|
||||
<div style={{ display: 'flex', justifyContent: 'center' }}>
|
||||
<img
|
||||
src="/images/marimo-settings.png"
|
||||
alt="Ollama settings in marimo"
|
||||
width="50%"
|
||||
/>
|
||||
</div>
|
||||
|
||||
2. Once the AI provider is set up, you can turn on/off specific AI models you'd like to access.
|
||||
|
||||
<div style={{ display: 'flex', justifyContent: 'center' }}>
|
||||
<img
|
||||
src="/images/marimo-models.png"
|
||||
alt="Selecting an Ollama model"
|
||||
width="50%"
|
||||
/>
|
||||
</div>
|
||||
|
||||
3. You can also add a model to the list of available models by scrolling to the bottom and using the UI there.
|
||||
|
||||
<div style={{ display: 'flex', justifyContent: 'center' }}>
|
||||
<img
|
||||
src="/images/marimo-add-model.png"
|
||||
alt="Adding a new Ollama model"
|
||||
width="50%"
|
||||
/>
|
||||
</div>
|
||||
|
||||
4. Once configured, you can now use Ollama for AI chats in marimo.
|
||||
|
||||
<div style={{ display: 'flex', justifyContent: 'center' }}>
|
||||
<img
|
||||
src="/images/marimo-chat.png"
|
||||
alt="Configure code completion"
|
||||
width="50%"
|
||||
/>
|
||||
</div>
|
||||
|
||||
4. Alternatively, you can now use Ollama for **inline code completion** in marimo. This can be configured in the "AI Features" tab.
|
||||
|
||||
<div style={{ display: 'flex', justifyContent: 'center' }}>
|
||||
<img
|
||||
src="/images/marimo-code-completion.png"
|
||||
alt="Configure code completion"
|
||||
width="50%"
|
||||
/>
|
||||
</div>
|
||||
|
||||
|
||||
## Connecting to ollama.com
|
||||
|
||||
1. Sign in to ollama cloud via `ollama signin`
|
||||
2. In the ollama model settings add a model that ollama hosts, like `gpt-oss:120b`.
|
||||
3. You can now refer to this model in marimo!
|
||||
63
docs/integrations/onyx.mdx
Normal file
@@ -0,0 +1,63 @@
|
||||
---
|
||||
title: Onyx
|
||||
---
|
||||
|
||||
## Overview
|
||||
[Onyx](http://onyx.app/) is a self-hostable Chat UI that integrates with all Ollama models. Features include:
|
||||
- Creating custom Agents
|
||||
- Web search
|
||||
- Deep Research
|
||||
- RAG over uploaded documents and connected apps
|
||||
- Connectors to applications like Google Drive, Email, Slack, etc.
|
||||
- MCP and OpenAPI Actions support
|
||||
- Image generation
|
||||
- User/Groups management, RBAC, SSO, etc.
|
||||
|
||||
Onyx can be deployed for single users or large organizations.
|
||||
|
||||
## Install Onyx
|
||||
|
||||
Deploy Onyx with the [quickstart guide](https://docs.onyx.app/deployment/getting_started/quickstart).
|
||||
|
||||
<Info>
|
||||
Resourcing/scaling docs [here](https://docs.onyx.app/deployment/getting_started/resourcing).
|
||||
</Info>
|
||||
|
||||
## Usage with Ollama
|
||||
|
||||
1. Login to your Onyx deployment (create an account first).
|
||||
<div style={{ display: 'flex', justifyContent: 'center' }}>
|
||||
<img
|
||||
src="/images/onyx-login.png"
|
||||
alt="Onyx Login Page"
|
||||
width="75%"
|
||||
/>
|
||||
</div>
|
||||
2. In the set-up process select `Ollama` as the LLM provider.
|
||||
<div style={{ display: 'flex', justifyContent: 'center' }}>
|
||||
<img
|
||||
src="/images/onyx-ollama-llm.png"
|
||||
alt="Onyx Set Up Form"
|
||||
width="75%"
|
||||
/>
|
||||
</div>
|
||||
3. Provide your **Ollama API URL** and select your models.
|
||||
<Note>If you're running Onyx in Docker, to access your computer's local network use `http://host.docker.internal` instead of `http://127.0.0.1`.</Note>
|
||||
<div style={{ display: 'flex', justifyContent: 'center' }}>
|
||||
<img
|
||||
src="/images/onyx-ollama-form.png"
|
||||
alt="Selecting Ollama Models"
|
||||
width="75%"
|
||||
/>
|
||||
</div>
|
||||
|
||||
You can also easily connect up Onyx Cloud with the `Ollama Cloud` tab of the setup.
|
||||
|
||||
## Send your first query
|
||||
<div style={{ display: 'flex', justifyContent: 'center' }}>
|
||||
<img
|
||||
src="/images/onyx-query.png"
|
||||
alt="Onyx Query Example"
|
||||
width="75%"
|
||||
/>
|
||||
</div>
|
||||
@@ -1,5 +1,5 @@
|
||||
---
|
||||
title: "Linux"
|
||||
title: Linux
|
||||
---
|
||||
|
||||
## Install
|
||||
@@ -13,14 +13,15 @@ curl -fsSL https://ollama.com/install.sh | sh
|
||||
## Manual install
|
||||
|
||||
<Note>
|
||||
If you are upgrading from a prior version, you should remove the old libraries with `sudo rm -rf /usr/lib/ollama` first.
|
||||
If you are upgrading from a prior version, you should remove the old libraries
|
||||
with `sudo rm -rf /usr/lib/ollama` first.
|
||||
</Note>
|
||||
|
||||
Download and extract the package:
|
||||
|
||||
```shell
|
||||
curl -fsSL https://ollama.com/download/ollama-linux-amd64.tgz \
|
||||
| sudo tar zx -C /usr
|
||||
curl -fsSL https://ollama.com/download/ollama-linux-amd64.tar.zst \
|
||||
| sudo tar x -C /usr
|
||||
```
|
||||
|
||||
Start Ollama:
|
||||
@@ -40,8 +41,8 @@ ollama -v
|
||||
If you have an AMD GPU, also download and extract the additional ROCm package:
|
||||
|
||||
```shell
|
||||
curl -fsSL https://ollama.com/download/ollama-linux-amd64-rocm.tgz \
|
||||
| sudo tar zx -C /usr
|
||||
curl -fsSL https://ollama.com/download/ollama-linux-amd64-rocm.tar.zst \
|
||||
| sudo tar x -C /usr
|
||||
```
|
||||
|
||||
### ARM64 install
|
||||
@@ -49,8 +50,8 @@ curl -fsSL https://ollama.com/download/ollama-linux-amd64-rocm.tgz \
|
||||
Download and extract the ARM64-specific package:
|
||||
|
||||
```shell
|
||||
curl -fsSL https://ollama.com/download/ollama-linux-arm64.tgz \
|
||||
| sudo tar zx -C /usr
|
||||
curl -fsSL https://ollama.com/download/ollama-linux-arm64.tar.zst \
|
||||
| sudo tar x -C /usr
|
||||
```
|
||||
|
||||
### Adding Ollama as a startup service (recommended)
|
||||
@@ -112,7 +113,11 @@ sudo systemctl status ollama
|
||||
```
|
||||
|
||||
<Note>
|
||||
While AMD has contributed the `amdgpu` driver upstream to the official linux kernel source, the version is older and may not support all ROCm features. We recommend you install the latest driver from https://www.amd.com/en/support/linux-drivers for best support of your Radeon GPU.
|
||||
While AMD has contributed the `amdgpu` driver upstream to the official linux
|
||||
kernel source, the version is older and may not support all ROCm features. We
|
||||
recommend you install the latest driver from
|
||||
https://www.amd.com/en/support/linux-drivers for best support of your Radeon
|
||||
GPU.
|
||||
</Note>
|
||||
|
||||
## Customizing
|
||||
@@ -141,8 +146,8 @@ curl -fsSL https://ollama.com/install.sh | sh
|
||||
Or by re-downloading Ollama:
|
||||
|
||||
```shell
|
||||
curl -fsSL https://ollama.com/download/ollama-linux-amd64.tgz \
|
||||
| sudo tar zx -C /usr
|
||||
curl -fsSL https://ollama.com/download/ollama-linux-amd64.tar.zst \
|
||||
| sudo tar x -C /usr
|
||||
```
|
||||
|
||||
## Installing specific versions
|
||||
@@ -191,4 +196,4 @@ Remove the downloaded models and Ollama service user and group:
|
||||
sudo userdel ollama
|
||||
sudo groupdel ollama
|
||||
sudo rm -r /usr/share/ollama
|
||||
```
|
||||
```
|
||||
|
||||
@@ -5,6 +5,7 @@ import (
|
||||
"fmt"
|
||||
"io"
|
||||
"os"
|
||||
"strings"
|
||||
)
|
||||
|
||||
type Prompt struct {
|
||||
@@ -36,10 +37,11 @@ type Terminal struct {
|
||||
}
|
||||
|
||||
type Instance struct {
|
||||
Prompt *Prompt
|
||||
Terminal *Terminal
|
||||
History *History
|
||||
Pasting bool
|
||||
Prompt *Prompt
|
||||
Terminal *Terminal
|
||||
History *History
|
||||
Pasting bool
|
||||
pastedLines []string
|
||||
}
|
||||
|
||||
func New(prompt Prompt) (*Instance, error) {
|
||||
@@ -174,6 +176,8 @@ func (i *Instance) Readline() (string, error) {
|
||||
case CharEsc:
|
||||
esc = true
|
||||
case CharInterrupt:
|
||||
i.pastedLines = nil
|
||||
i.Prompt.UseAlt = false
|
||||
return "", ErrInterrupt
|
||||
case CharPrev:
|
||||
i.historyPrev(buf, ¤tLineBuf)
|
||||
@@ -188,7 +192,23 @@ func (i *Instance) Readline() (string, error) {
|
||||
case CharForward:
|
||||
buf.MoveRight()
|
||||
case CharBackspace, CharCtrlH:
|
||||
buf.Remove()
|
||||
if buf.IsEmpty() && len(i.pastedLines) > 0 {
|
||||
lastIdx := len(i.pastedLines) - 1
|
||||
prevLine := i.pastedLines[lastIdx]
|
||||
i.pastedLines = i.pastedLines[:lastIdx]
|
||||
fmt.Print(CursorBOL + ClearToEOL + CursorUp + CursorBOL + ClearToEOL)
|
||||
if len(i.pastedLines) == 0 {
|
||||
fmt.Print(i.Prompt.Prompt)
|
||||
i.Prompt.UseAlt = false
|
||||
} else {
|
||||
fmt.Print(i.Prompt.AltPrompt)
|
||||
}
|
||||
for _, r := range prevLine {
|
||||
buf.Add(r)
|
||||
}
|
||||
} else {
|
||||
buf.Remove()
|
||||
}
|
||||
case CharTab:
|
||||
// todo: convert back to real tabs
|
||||
for range 8 {
|
||||
@@ -211,13 +231,28 @@ func (i *Instance) Readline() (string, error) {
|
||||
case CharCtrlZ:
|
||||
fd := os.Stdin.Fd()
|
||||
return handleCharCtrlZ(fd, i.Terminal.termios)
|
||||
case CharEnter, CharCtrlJ:
|
||||
case CharCtrlJ:
|
||||
i.pastedLines = append(i.pastedLines, buf.String())
|
||||
buf.Buf.Clear()
|
||||
buf.Pos = 0
|
||||
buf.DisplayPos = 0
|
||||
buf.LineHasSpace.Clear()
|
||||
fmt.Println()
|
||||
fmt.Print(i.Prompt.AltPrompt)
|
||||
i.Prompt.UseAlt = true
|
||||
continue
|
||||
case CharEnter:
|
||||
output := buf.String()
|
||||
if len(i.pastedLines) > 0 {
|
||||
output = strings.Join(i.pastedLines, "\n") + "\n" + output
|
||||
i.pastedLines = nil
|
||||
}
|
||||
if output != "" {
|
||||
i.History.Add(output)
|
||||
}
|
||||
buf.MoveToEnd()
|
||||
fmt.Println()
|
||||
i.Prompt.UseAlt = false
|
||||
|
||||
return output, nil
|
||||
default:
|
||||
|
||||
@@ -179,7 +179,7 @@ _build_macapp() {
|
||||
fi
|
||||
|
||||
rm -f dist/Ollama-darwin.zip
|
||||
ditto -c -k --keepParent dist/Ollama.app dist/Ollama-darwin.zip
|
||||
ditto -c -k --norsrc --keepParent dist/Ollama.app dist/Ollama-darwin.zip
|
||||
(cd dist/Ollama.app/Contents/Resources/; tar -cf - ollama ollama-mlx *.so *.dylib *.metallib 2>/dev/null) | gzip -9vc > dist/ollama-darwin.tgz
|
||||
|
||||
# Notarize and Staple
|
||||
@@ -187,7 +187,7 @@ _build_macapp() {
|
||||
$(xcrun -f notarytool) submit dist/Ollama-darwin.zip --wait --timeout 20m --apple-id "$APPLE_ID" --password "$APPLE_PASSWORD" --team-id "$APPLE_TEAM_ID"
|
||||
rm -f dist/Ollama-darwin.zip
|
||||
$(xcrun -f stapler) staple dist/Ollama.app
|
||||
ditto -c -k --keepParent dist/Ollama.app dist/Ollama-darwin.zip
|
||||
ditto -c -k --norsrc --keepParent dist/Ollama.app dist/Ollama-darwin.zip
|
||||
|
||||
rm -f dist/Ollama.dmg
|
||||
|
||||
|
||||
50
x/README.md
@@ -1,50 +0,0 @@
|
||||
# Experimental Features
|
||||
|
||||
## MLX Backend
|
||||
|
||||
We're working on a new experimental backend based on the [MLX project](https://github.com/ml-explore/mlx)
|
||||
|
||||
Support is currently limited to MacOS and Linux with CUDA GPUs. We're looking to add support for Windows CUDA soon, and other GPU vendors.
|
||||
|
||||
### Building ollama-mlx
|
||||
|
||||
The `ollama-mlx` binary is a separate build of Ollama with MLX support enabled. This enables experimental features like image generation.
|
||||
|
||||
#### macOS (Apple Silicon and Intel)
|
||||
|
||||
```bash
|
||||
# Build MLX backend libraries
|
||||
cmake --preset MLX
|
||||
cmake --build --preset MLX --parallel
|
||||
cmake --install build --component MLX
|
||||
|
||||
# Build ollama-mlx binary
|
||||
go build -tags mlx -o ollama-mlx .
|
||||
```
|
||||
|
||||
#### Linux (CUDA)
|
||||
|
||||
On Linux, use the preset "MLX CUDA 13" or "MLX CUDA 12" to enable CUDA with the default Ollama NVIDIA GPU architectures enabled:
|
||||
|
||||
```bash
|
||||
# Build MLX backend libraries with CUDA support
|
||||
cmake --preset 'MLX CUDA 13'
|
||||
cmake --build --preset 'MLX CUDA 13' --parallel
|
||||
cmake --install build --component MLX
|
||||
|
||||
# Build ollama-mlx binary
|
||||
CGO_CFLAGS="-O3 -I$(pwd)/build/_deps/mlx-c-src" \
|
||||
CGO_LDFLAGS="-L$(pwd)/build/lib/ollama -lmlxc -lmlx" \
|
||||
go build -tags mlx -o ollama-mlx .
|
||||
```
|
||||
|
||||
#### Using build scripts
|
||||
|
||||
The build scripts automatically create the `ollama-mlx` binary:
|
||||
|
||||
- **macOS**: `./scripts/build_darwin.sh` produces `dist/darwin/ollama-mlx`
|
||||
- **Linux**: `./scripts/build_linux.sh` produces `ollama-mlx` in the output archives
|
||||
|
||||
## Image Generation
|
||||
|
||||
Image generation is built into the `ollama-mlx` binary. Run `ollama-mlx serve` to start the server with image generation support enabled.
|
||||
67
x/cmd/run.go
@@ -25,14 +25,6 @@ import (
|
||||
"github.com/ollama/ollama/x/tools"
|
||||
)
|
||||
|
||||
// MultilineState tracks the state of multiline input
|
||||
type MultilineState int
|
||||
|
||||
const (
|
||||
MultilineNone MultilineState = iota
|
||||
MultilineSystem
|
||||
)
|
||||
|
||||
// Tool output capping constants
|
||||
const (
|
||||
// localModelTokenLimit is the token limit for local models (smaller context).
|
||||
@@ -656,7 +648,7 @@ func GenerateInteractive(cmd *cobra.Command, modelName string, wordWrap bool, op
|
||||
Prompt: ">>> ",
|
||||
AltPrompt: "... ",
|
||||
Placeholder: "Send a message (/? for help)",
|
||||
AltPlaceholder: `Use """ to end multi-line input`,
|
||||
AltPlaceholder: "Press Enter to send",
|
||||
})
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -707,7 +699,6 @@ func GenerateInteractive(cmd *cobra.Command, modelName string, wordWrap bool, op
|
||||
var sb strings.Builder
|
||||
var format string
|
||||
var system string
|
||||
var multiline MultilineState = MultilineNone
|
||||
|
||||
for {
|
||||
line, err := scanner.Readline()
|
||||
@@ -721,37 +712,12 @@ func GenerateInteractive(cmd *cobra.Command, modelName string, wordWrap bool, op
|
||||
}
|
||||
scanner.Prompt.UseAlt = false
|
||||
sb.Reset()
|
||||
multiline = MultilineNone
|
||||
continue
|
||||
case err != nil:
|
||||
return err
|
||||
}
|
||||
|
||||
switch {
|
||||
case multiline != MultilineNone:
|
||||
// check if there's a multiline terminating string
|
||||
before, ok := strings.CutSuffix(line, `"""`)
|
||||
sb.WriteString(before)
|
||||
if !ok {
|
||||
fmt.Fprintln(&sb)
|
||||
continue
|
||||
}
|
||||
|
||||
switch multiline {
|
||||
case MultilineSystem:
|
||||
system = sb.String()
|
||||
newMessage := api.Message{Role: "system", Content: system}
|
||||
if len(messages) > 0 && messages[len(messages)-1].Role == "system" {
|
||||
messages[len(messages)-1] = newMessage
|
||||
} else {
|
||||
messages = append(messages, newMessage)
|
||||
}
|
||||
fmt.Println("Set system message.")
|
||||
sb.Reset()
|
||||
}
|
||||
|
||||
multiline = MultilineNone
|
||||
scanner.Prompt.UseAlt = false
|
||||
case strings.HasPrefix(line, "/exit"), strings.HasPrefix(line, "/bye"):
|
||||
return nil
|
||||
case strings.HasPrefix(line, "/clear"):
|
||||
@@ -860,41 +826,18 @@ func GenerateInteractive(cmd *cobra.Command, modelName string, wordWrap bool, op
|
||||
options[args[2]] = fp[args[2]]
|
||||
case "system":
|
||||
if len(args) < 3 {
|
||||
fmt.Println("Usage: /set system <message> or /set system \"\"\"<multi-line message>\"\"\"")
|
||||
fmt.Println("Usage: /set system <message>")
|
||||
continue
|
||||
}
|
||||
|
||||
multiline = MultilineSystem
|
||||
|
||||
line := strings.Join(args[2:], " ")
|
||||
line, ok := strings.CutPrefix(line, `"""`)
|
||||
if !ok {
|
||||
multiline = MultilineNone
|
||||
} else {
|
||||
// only cut suffix if the line is multiline
|
||||
line, ok = strings.CutSuffix(line, `"""`)
|
||||
if ok {
|
||||
multiline = MultilineNone
|
||||
}
|
||||
}
|
||||
|
||||
sb.WriteString(line)
|
||||
if multiline != MultilineNone {
|
||||
scanner.Prompt.UseAlt = true
|
||||
continue
|
||||
}
|
||||
|
||||
system = sb.String()
|
||||
newMessage := api.Message{Role: "system", Content: sb.String()}
|
||||
// Check if the slice is not empty and the last message is from 'system'
|
||||
system = strings.Join(args[2:], " ")
|
||||
newMessage := api.Message{Role: "system", Content: system}
|
||||
if len(messages) > 0 && messages[len(messages)-1].Role == "system" {
|
||||
// Replace the last message
|
||||
messages[len(messages)-1] = newMessage
|
||||
} else {
|
||||
messages = append(messages, newMessage)
|
||||
}
|
||||
fmt.Println("Set system message.")
|
||||
sb.Reset()
|
||||
continue
|
||||
default:
|
||||
fmt.Printf("Unknown command '/set %s'. Type /? for help\n", args[1])
|
||||
@@ -1081,7 +1024,7 @@ func GenerateInteractive(cmd *cobra.Command, modelName string, wordWrap bool, op
|
||||
sb.WriteString(line)
|
||||
}
|
||||
|
||||
if sb.Len() > 0 && multiline == MultilineNone {
|
||||
if sb.Len() > 0 {
|
||||
newMessage := api.Message{Role: "user", Content: sb.String()}
|
||||
messages = append(messages, newMessage)
|
||||
|
||||
|
||||