Compare commits

...

69 Commits

Author SHA1 Message Date
Michael Yang
f52671ecc6 refactor: bpe and spm tokenizer merges
- merge candidates and pairs which are essentially the same other than
  the type for rank/score
- use binaryheap in sentencepiece instead of implement custom structure
- update merging algorithm so it uses about 15% less allocations
2025-12-17 13:36:32 -08:00
Michael Yang
05711b77da re-enable new engine granite embedding 2025-12-17 13:00:51 -08:00
Parth Sareen
1c094038bc types: add nested property support for tool definitions (#13508) 2025-12-17 11:54:09 -08:00
Grace
a013693f80 DeepseekV3 Family Parser (#13484) 2025-12-16 18:56:30 -08:00
Michael Yang
f6a016f49d revert granite-embedding (#13505) 2025-12-16 15:44:52 -08:00
Bruce MacDonald
45c4739374 types: ConfigV2 and RootFS (#13504)
Refactored the ConfigV2 and RootFS types from server/images.go to a new types/model/config.go file under the model package. Updated all references to use model.ConfigV2 and model.RootFS. This allows for use in other projects without worrying about compiling the c code in the llama package.
2025-12-16 15:18:17 -08:00
Michael Yang
2dd029de12 remove unnecessary code (#13502)
slog is already lazily evaluated so this code is completely redundant
2025-12-16 15:11:26 -08:00
Michael Yang
903b1fc97f use ollama engine for bert models (#13501)
register bpe tokenizer which enables granite-embedding
2025-12-16 11:29:19 -08:00
Parth Sareen
89eb795293 parsers/renderers: use think from user for nemotron (#13492) 2025-12-15 18:55:17 -08:00
Parth Sareen
7e3ea813c1 llama/parsers/renderers: nemotron 3 nano (#13489)
---------

Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-12-15 18:00:08 -08:00
Grace
7b95087b9d Adding tool definitions to DeepseekV3 renderer (#13491) 2025-12-15 17:57:06 -08:00
Michael Yang
971d62595a fix: qwen2.5 vl rope (#13486)
* qwen25vl: bump max pixels

* qwen25vl: mrope

fix qwen2.5vl window

* qwen25vl: vision rope
2025-12-15 17:30:33 -08:00
Parth Sareen
ffbe8e076d model: add olmo3 and olmo3.1 (#13415) 2025-12-15 15:20:04 -08:00
Grace
2c639431b1 DeepseekV3 family renderer (#13180) 2025-12-15 14:50:52 -08:00
Nhan Nguyen
aacd1cb394 fix: define GGML_VERSION variables for proper SOVERSION expansion (#13469)
The ggml/src/CMakeLists.txt uses GGML_VERSION_MAJOR for the shared
library SOVERSION property, but these variables were not defined when
building from ollama's CMakeLists.txt.

This caused libggml-base.so to be named with a literal "SOVERSION"
suffix (libggml-base.so.SOVERSION) instead of the actual version
number (libggml-base.so.0).

The fix adds the required GGML_VERSION_* variables before including
the ggml subdirectory.

Fixes #13436
2025-12-15 14:42:15 -08:00
Parth Sareen
e3731fb160 renderers: add olmo3.1 and olmo3 fixes (#13447) 2025-12-15 11:26:43 -08:00
Eva H
8dbc9e7b68 app/ui: handle unspecified bind addresses and wait for server in ollama proxy (#13159) 2025-12-15 13:33:09 -05:00
Daniel Hiltgen
abe67acf8a Revert "Enable Ollama engine by default" (#13481)
This reverts commit 56f754f46b.
2025-12-15 09:55:45 -08:00
Jeffrey Morgan
4ff8a691bc model: default gemma 3 rope scale to 1.0, apply corrections based on layer counts (#13453) 2025-12-12 17:51:56 -08:00
Jeffrey Morgan
1b308e1d2a model: fix global layer rope scale values for gemma 3 (#13452) 2025-12-12 16:29:01 -08:00
Daniel Hiltgen
bd6c1d6b49 flash attn: add auto mode for llama engine (#13052)
* flash attn: add auto mode for llama engine

If the user does not specify fa in the environment, use auto-mode.

* review comments

* ensure kv cache quantized types have FA explicitly enabled

additional review comments
2025-12-12 13:27:19 -08:00
Jeffrey Morgan
3af5d3b738 model: force rope factor 1.0 for Gemma 3 (#13445) 2025-12-12 13:27:08 -08:00
Daniel Hiltgen
7730895158 Enable Ollama engine by default (#13443)
This changes the default behavior to use the Ollama engine for supported
models, while retaining the ability to disable the Ollama engine and
fall back to the Llama engine.  Models in the OllamaEngineRequired list
will always run on the Ollama engine.
2025-12-12 11:48:43 -08:00
Eva H
de9ecfd01c tidy up lint warnings on windows (#13430) 2025-12-12 11:43:35 -05:00
Eva H
95fdd8d619 fix: select and update models folder in settings (#13412) 2025-12-12 11:09:37 -05:00
Devon Rifkin
9f7822851c docs: add docs for v1/responses and rework openai compat section (#13416)
* docs: add docs for v1/responses and rework openai compat section

I reworked the examples to be separated by topic and to be fully
runnable (i.e., they now log output instead of just suggesting how a
call might be made).

We now use `<CodeGroup>`s so that each example has a dropdown on the
docs site for users to choose, which makes the examples a lot more
digestible (since you only see approx 1/3 of the code you used to).

I also added a new tool to extract code examples into files so that it's
easier to actually run them and check that they work.

## Example

```shell
go run docs/tools/extract-examples/main.go docs/api/openai-compatibility.mdx
```

Output:

```
Extracting code examples to: /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368

  - 01_basic.py
  - 01_basic.js
  - 01_basic.sh
  - 02_responses.py
  - 02_responses.js
  - 02_responses.sh
  - 03_vision.py
  - 03_vision.js
  - 03_vision.sh

Extracted 9 file(s) to /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368

To run examples:

  cd /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368
  npm install   # for JS examples

then run individual files with `node file.js`, `python file.py`, `bash file.sh`
```

In the future we should consider actually running the examples in CI and
having some sort of acceptance test so we can automatically detect when
our examples break. So this is just a start in that direction.

* Update docs/api/openai-compatibility.mdx

Co-authored-by: Parth Sareen <parth.sareen@ollama.com>

* Update docs/api/openai-compatibility.mdx

Co-authored-by: Parth Sareen <parth.sareen@ollama.com>

---------

Co-authored-by: Parth Sareen <parth.sareen@ollama.com>
2025-12-11 17:39:40 -08:00
Parth Sareen
9b2035d194 openai: add tool call appending to previous assistant message (#13434)
* openai: add tool call appending to previous asst message

* add tests for thinking appending
2025-12-11 17:30:12 -08:00
Alexander Gusak
93d45d7a04 docs: fix link to modelfile.mdx (#13220) 2025-12-11 16:14:45 -08:00
JJ
709f842457 Update README.md (#13373)
Correct Markdown syntax for Swollama GitHub and DocC documentation links
2025-12-11 16:08:57 -08:00
Jeffrey Morgan
2dfb74410d model: fix rotary embeddings for ministral 3 (#13432) 2025-12-11 16:02:05 -08:00
Devon Rifkin
1eb5e75972 openai: add v1/responses support (#13351)
Only supporting the stateless part of the API.

Doc updates to come once this is shipped.

Closes: #9659
2025-12-11 15:37:10 -08:00
nicole pardal
3475d915cb embeddings: modified batch size (#13429)
This PR detects embedding models and sets batch_size = context_size so the full input fits in a single batch.
Previously, if batch size was smaller than the input, tokens could be split across batches and cause a SIGTRAP crash.
This change ensures all tokens stay in one batch and prevents crashes.
Fixes: #12938 #13054

Co-authored-by: Jesse Gross <jesse@ollama.com>
2025-12-11 15:36:31 -08:00
Jeffrey Morgan
48e78e9be1 template: add yesterdayDate helper function (#13431) 2025-12-11 14:47:55 -08:00
Jeffrey Morgan
a838421ea3 model: conversion and hyperparameter fixes for ministral and devstral (#13424) 2025-12-11 13:04:00 -08:00
EasonLin
1c4e85b4df routes: add logprobs in tool calls (#13238) 2025-12-10 17:28:41 -08:00
Eloi Torrents
dac4f17fea cmd/bench: fix binary name in README (#13276) 2025-12-10 14:16:58 -08:00
Julia Scheaffer
56b8fb024c cmd/bench: fix options table in cmd/bench/README.md (#13216) 2025-12-10 14:07:48 -08:00
Gabe Goodhart
b95693056c feat: llama.cpp bump (17f7f4) for SSM performance improvements (#13408)
* feat: Bump llama.cpp to the latest master (17f7f4b)

This brings in significant improvements to prefill performance for all
models using the SSM_CONV and SSM_SCAN ops (granite4, jamba, falcon-h,
nemotron-h, Qwen3 Next) on Apple Metal.

See https://github.com/ggml-org/llama.cpp/pull/17876

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update patches 1-4

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Update patches 5-12

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update patches 13-18

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update patch 20

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update patches 21-31

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Sync vendored code

The two files I'm not sure about here are the swap from gemma3-iswa.cpp to
gemma3.cpp (I chose to include this because I think it's required), and the
inclusion of `ggml-zendnn.h` which I chose to omit.

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-12-10 12:59:27 -08:00
Eva H
c34fc64688 app/ui: use requestAnimationFrame to prevent bottom line cutoff in streaming thinking display (#13137) 2025-12-10 15:29:48 -05:00
Eva H
7cf6f18c1f app/ui: refactor to use Ollama endpoints for user auth and health checks (#13081) 2025-12-10 15:24:31 -05:00
Eva H
bbbb6b2a01 app/ui: fix model capabilities not updating after download completion (#13179) 2025-12-10 14:40:02 -05:00
nicole pardal
76f88caf43 nomic-embed-text:v2: model implementation (#13162) 2025-12-09 14:24:51 -08:00
Parth Sareen
2bccf8c624 renderers/parsers: olmo3 instruct (#13383) 2025-12-09 11:12:27 -08:00
Parth Sareen
0c5e5f6630 parsers/renderers: olmo3 think (#13290) 2025-12-09 10:41:47 -08:00
Michael Yang
d475d1f081 fix: qwen2.5vl metal argsort 2025-12-08 17:18:24 -08:00
Jeffrey Morgan
d2f334c1f7 model: add rnj-1 inference support (#13354) 2025-12-08 16:49:17 -08:00
Michael Yang
603ceefaa6 refactor rope
change to a flatter directory structure and group the options with the
function

update models to call rope in one place
2025-12-08 14:42:22 -08:00
nicole pardal
e082d60a24 truncation: fixed runner truncation logic + removed server truncation (#12839)
This PR consolidates all embedding prompt-length checking, truncation, and prompt token counting into the runner to ensure a single source of truth.
2025-12-08 11:20:28 -08:00
Daniel Hiltgen
5dae738067 CI: use vendor base commit in cache keys (#13348)
Prevent CGO from accidentally reusing old object files from the cache
across vendor updates
2025-12-08 09:48:49 -08:00
JJ
0c78723174 readme: fix broken Swollama link in community integrations (#13370) 2025-12-07 21:49:52 -08:00
Jeffrey Morgan
5a41d69b2a fs/ggml: write int32 and int64 values to gguf files (#13335) 2025-12-07 21:49:14 -08:00
Daniel Hiltgen
c146a138e3 ggml: handle all streams (#13350)
Follow up from #12992

Free all streams, and keep the alloc logic aligned across streams.
2025-12-05 16:10:33 -08:00
Sos Pogosyan
31b8c6a214 fix(api): correct Content-Type header for /api/chat and /api/generate when using cloud models (#13279)
---------

Co-authored-by: Pogosyan Sos <sos_pogosyan@MacBook-Pro-Sos.local>
Co-authored-by: Patrick Devine <patrick@infrahq.com>
2025-12-04 21:33:07 -08:00
Jesse Gross
9191dfaf05 llm: Enable flash attention for mistral3 by default 2025-12-04 15:19:06 -08:00
Jesse Gross
1108d8b34e ggml: Enable flash attention for vision encoders
Although the vision component of multimodal models typically already
call the optimized nn.Attention, it is converted into non-fused
operations. That is because the backend-specific fused kernels may
have requirements, such as padding, and they is performed by the
cache, which vision encoders don't use.

This implements a fallback path in the backend, softening the
requirements into optimizations. In turn, this allows flash attention
to be used for vision encoders, saving a significant amount of VRAM
and improving performance.
2025-12-04 15:19:06 -08:00
Jesse Gross
7837a5bc7e ggml: Always set cache padding to 256
We currently use cache padding of 32 when not using flash attention
and 256 with flash attention, which is based on the historic alignment
requirements of these kernels. The restrictions have since been
loosened but there are still performance benefits, such as better
CUDA graph reuse.

Since the requirement is no longer kernel-specific, set the padding
uniformly to 256, as llama.cpp has.
2025-12-04 15:19:06 -08:00
Patrick Devine
0a844f8e96 convert: add deepseek converter (#12980)
This change adds the ability for `ollama create` to convert models that use
the DeepSeek2 architecture (specifically DeepSeekV3 and DeepSeek-R1).
2025-12-04 13:49:30 -08:00
Eloi Torrents
a03223b86f cmd/bench: support writing benchmark output to file (#13263)
* cmd/bench: support writing benchmark output to file

This changes Ollama to allow the bench command to write benchmark
results to a user-specified output file instead of stdout when the
--output flag is provided.

---------

Co-authored-by: Patrick Devine <patrick@infrahq.com>
2025-12-04 13:22:41 -08:00
Daniel Hiltgen
0cf7794b16 ggml update to b7108 (#12992)
* Revert "vulkan: temporary cary of vulkan fixes (#12971)"

This reverts commit 3a9e8e9fd4.

* ggml update to b7087

* fix argsort on metal

* update to b7108

* fix bakllava regression

This model lacks the metadata for the projector type.

* update to b7209

* fix TopK perf

* only build arm code on arm
2025-12-03 19:43:29 -08:00
Jeffrey Morgan
854d40edc5 ci: restore previous linter rules (#13322) 2025-12-03 18:55:02 -08:00
Bruce MacDonald
84a2cedf18 app: relay thinking false to server (#13319)
This fixes a bug where disabling thinking on deepseek-v3.1 did not stop the model from thinking.

When thinking is not defined it should not be sent to the server since this will cause error responses in some cases where the model does not support thinking. However if it is defined as false it should still be sent.
2025-12-03 15:06:55 -08:00
Daniel Hiltgen
3f30836734 CUDA: filter devices on secondary discovery (#13317)
We now do a deeper probe of CUDA devices to verify the library version has
the correct compute capability coverage for the device.  Due to ROCm also
interpreting the CUDA env var to filter AMD devices, we try to avoid setting
it which leads to problems in mixed vendor systems.  However without setting
it for this deeper probe, each CUDA library subprocess discovers all CUDA GPUs
and on systems with lots of GPUs, this can lead to hitting timeouts.  The fix is
to turn on the CUDA visibility env var just for this deeper probe use-case.
2025-12-03 12:58:16 -08:00
Nathan Hook
cc9555aff0 Update user message format for temperature query (#13256) 2025-12-02 15:08:39 -08:00
hello_world
20aee96706 Add Vulkan GPU support instructions in development.md (#13265)
Added Vulkan SDK installation instructions and environment variable setup for building with Vulkan support.
2025-12-02 13:37:32 -08:00
Daniel Hiltgen
18b5958d46 test: avoid ministral tools test on low vram (#13302)
Avoid hitting test timeouts
2025-12-02 13:18:55 -08:00
Jesse Gross
5317202c38 llm: Don't always evict models on CPU-only systems
Model eviction happens when we have at least one other model
loaded and are unable to load all layers into VRAM. However, on
CPU-only systems we can never load layers into VRAM, so this
constantly triggered eviction.

Fixes #13227
2025-12-02 10:58:08 -08:00
Daniel Hiltgen
d771043e88 test: add ministral-3 (#13300) 2025-12-02 09:52:16 -08:00
Daniel Hiltgen
f8f1071818 CUDA: verify CC is supported by target library (#13298) 2025-12-02 09:28:41 -08:00
Patrick Devine
d3e0a0dee4 model: ministral w/ llama4 scaling (#13292)
This change:

* fixes rope scaling in the mistral converter
* updates ministral to include llama4 scaling
* includes a new ministral parser for parsing reasoning and tool calling

---------

Co-authored-by: jmorganca <jmorganca@gmail.com>
2025-12-01 23:20:14 -08:00
460 changed files with 51218 additions and 27016 deletions

View File

@@ -16,13 +16,15 @@ jobs:
outputs:
GOFLAGS: ${{ steps.goflags.outputs.GOFLAGS }}
VERSION: ${{ steps.goflags.outputs.VERSION }}
vendorsha: ${{ steps.changes.outputs.vendorsha }}
steps:
- uses: actions/checkout@v4
- name: Set environment
id: goflags
run: |
echo GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${GITHUB_REF_NAME#v}\" \"-X=github.com/ollama/ollama/server.mode=release\"'" >>$GITHUB_OUTPUT
echo VERSION="${GITHUB_REF_NAME#v}" >>$GITHUB_OUTPUT
echo GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${GITHUB_REF_NAME#v}\" \"-X=github.com/ollama/ollama/server.mode=release\"'" | tee -a $GITHUB_OUTPUT
echo VERSION="${GITHUB_REF_NAME#v}" | tee -a $GITHUB_OUTPUT
echo vendorsha=$(make -f Makefile.sync print-base) | tee -a $GITHUB_OUTPUT
darwin-build:
runs-on: macos-14-xlarge
@@ -53,6 +55,9 @@ jobs:
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
cache-dependency-path: |
go.sum
Makefile.sync
- run: |
./scripts/build_darwin.sh
- name: Log build results
@@ -185,7 +190,7 @@ jobs:
- uses: actions/cache@v4
with:
path: ${{ github.workspace }}\.ccache
key: ccache-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.preset }}
key: ccache-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.preset }}-${{ needs.setup-environment.outputs.vendorsha }}
- name: Build target "${{ matrix.preset }}"
run: |
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
@@ -249,6 +254,9 @@ jobs:
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
cache-dependency-path: |
go.sum
Makefile.sync
- name: Verify gcc is actually clang
run: |
$ErrorActionPreference='Continue'
@@ -302,6 +310,9 @@ jobs:
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
cache-dependency-path: |
go.sum
Makefile.sync
- uses: actions/download-artifact@v4
with:
pattern: depends-windows*

View File

@@ -22,6 +22,7 @@ jobs:
runs-on: ubuntu-latest
outputs:
changed: ${{ steps.changes.outputs.changed }}
vendorsha: ${{ steps.changes.outputs.vendorsha }}
steps:
- uses: actions/checkout@v4
with:
@@ -37,6 +38,7 @@ jobs:
}
echo changed=$(changed 'llama/llama.cpp/**/*' 'ml/backend/ggml/ggml/**/*') | tee -a $GITHUB_OUTPUT
echo vendorsha=$(make -f Makefile.sync print-base) | tee -a $GITHUB_OUTPUT
linux:
needs: [changes]
@@ -83,7 +85,7 @@ jobs:
- uses: actions/cache@v4
with:
path: /github/home/.cache/ccache
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}-${{ needs.changes.outputs.vendorsha }}
- run: |
cmake --preset ${{ matrix.preset }} ${{ matrix.flags }}
cmake --build --preset ${{ matrix.preset }} --parallel
@@ -178,7 +180,7 @@ jobs:
- uses: actions/cache@v4
with:
path: ${{ github.workspace }}\.ccache
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}-${{ needs.changes.outputs.vendorsha }}
- run: |
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
@@ -206,6 +208,9 @@ jobs:
- uses: actions/setup-go@v5
with:
go-version-file: 'go.mod'
cache-dependency-path: |
go.sum
Makefile.sync
- uses: actions/setup-node@v4
with:
node-version: '20'

View File

@@ -1,77 +1,51 @@
version: "2"
linters:
default: none
enable:
- asasalint
- bidichk
- bodyclose
- containedctx
- copyloopvar
- errcheck
- errorlint
- exptostd
- gocheckcompilerdirectives
- gocritic
- govet
- ineffassign
- intrange
- makezero
- misspell
- modernize
- nilerr
- nilnil
- nolintlint
- nosprintfhostport
- perfsprint
- prealloc
- sloglint
- staticcheck
- unconvert
- unused
- usestdlibvars
- usetesting
- wastedassign
- whitespace
disable:
- errcheck
- usestdlibvars
settings:
errcheck:
exclude-functions:
- fmt.Fprintf
perfsprint:
strconcat: false
concat-loop: false
govet:
disable:
- unusedresult
staticcheck:
checks:
- all
# Using a deprecated function, variable, constant or field.
# https://staticcheck.dev/docs/checks/#SA1019
- -QF* # disable quick fix suggestions
- -SA1019
# Incorrect or missing package comment.
# https://staticcheck.dev/docs/checks/#ST1000
- -ST1000
# Poorly chosen identifier.
# https://staticcheck.dev/docs/checks/#ST1003
- -ST1003
# The documentation of an exported function should start with the function's name.
# https://staticcheck.dev/docs/checks/#ST1020
- -ST1020
# The documentation of an exported type should start with type's name.
# https://staticcheck.dev/docs/checks/#ST1021
- -ST1021
# The documentation of an exported variable or constant should start with variable's name.
# https://staticcheck.dev/docs/checks/#ST1022
- -ST1022
usestdlibvars:
http-method: false
http-status-code: false
- -ST1000 # package comment format
- -ST1003 # underscores in package names
- -ST1005 # error strings should not be capitalized
- -ST1012 # error var naming (ErrFoo)
- -ST1016 # receiver name consistency
- -ST1020 # comment on exported function format
- -ST1021 # comment on exported type format
- -ST1022 # comment on exported var format
- -ST1023 # omit type from declaration
severity:
default: error
rules:
- linters:
- gofmt
- goimports
- intrange
severity: info
formatters:
enable:
- gci
- gofmt
- gofumpt
settings:
gci:
sections:
- standard
- default
- localmodule

View File

@@ -54,6 +54,13 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cp
add_compile_definitions(NDEBUG GGML_VERSION=0x0 GGML_COMMIT=0x0)
# Define GGML version variables for shared library SOVERSION
# These are required by ggml/src/CMakeLists.txt for proper library versioning
set(GGML_VERSION_MAJOR 0)
set(GGML_VERSION_MINOR 0)
set(GGML_VERSION_PATCH 0)
set(GGML_VERSION "${GGML_VERSION_MAJOR}.${GGML_VERSION_MINOR}.${GGML_VERSION_PATCH}")
set(GGML_CPU ON)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
set_property(TARGET ggml PROPERTY EXCLUDE_FROM_ALL TRUE)

View File

@@ -1,6 +1,6 @@
UPSTREAM=https://github.com/ggml-org/llama.cpp.git
WORKDIR=llama/vendor
FETCH_HEAD=3cfa9c3f125763305b4226bc032f1954f08990dc
FETCH_HEAD=17f7f4baad8b3a716ee139da7bb56ae984e8c0fa
.PHONY: help
help:
@@ -57,7 +57,7 @@ checkout: $(WORKDIR)
$(WORKDIR):
git clone $(UPSTREAM) $(WORKDIR)
.PHONE: format-patches
.PHONY: format-patches
format-patches: llama/patches
git -C $(WORKDIR) format-patch \
--no-signature \
@@ -66,7 +66,11 @@ format-patches: llama/patches
-o $(realpath $<) \
$(FETCH_HEAD)
.PHONE: clean
.PHONY: clean
clean: checkout
@git -C $(WORKDIR) am --abort || true
$(RM) llama/patches/.*.patched
.PHONY: print-base
print-base:
@echo $(FETCH_HEAD)

View File

@@ -555,7 +555,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Parakeet](https://github.com/parakeet-nest/parakeet) is a GoLang library, made to simplify the development of small generative AI applications with Ollama.
- [Haverscript](https://github.com/andygill/haverscript) with [examples](https://github.com/andygill/haverscript/tree/main/examples)
- [Ollama for Swift](https://github.com/mattt/ollama-swift)
- [Swollama for Swift](https://github.com/marcusziade/Swollama) with [DocC](https://marcusziade.github.io/Swollama/documentation/swollama/)
- [Swollama for Swift](https://github.com/guitaripod/Swollama) with [DocC](https://guitaripod.github.io/Swollama/documentation/swollama)
- [GoLamify](https://github.com/prasad89/golamify)
- [Ollama for Haskell](https://github.com/tusharad/ollama-haskell)
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in a unified API)

View File

@@ -347,7 +347,7 @@ type CreateProgressFunc func(ProgressResponse) error
// Create creates a model from a [Modelfile]. fn is a progress function that
// behaves similarly to other methods (see [Client.Pull]).
//
// [Modelfile]: https://github.com/ollama/ollama/blob/main/docs/modelfile.md
// [Modelfile]: https://github.com/ollama/ollama/blob/main/docs/modelfile.mdx
func (c *Client) Create(ctx context.Context, req *CreateRequest, fn CreateProgressFunc) error {
return c.stream(ctx, http.MethodPost, "/api/create", req, func(bts []byte) error {
var resp ProgressResponse

View File

@@ -15,19 +15,19 @@ func main() {
}
messages := []api.Message{
api.Message{
{
Role: "system",
Content: "Provide very brief, concise responses",
},
api.Message{
{
Role: "user",
Content: "Name some unusual animals",
},
api.Message{
{
Role: "assistant",
Content: "Monotreme, platypus, echidna",
},
api.Message{
{
Role: "user",
Content: "which of these is the most dangerous?",
},

View File

@@ -283,11 +283,12 @@ func (pt PropertyType) String() string {
}
type ToolProperty struct {
AnyOf []ToolProperty `json:"anyOf,omitempty"`
Type PropertyType `json:"type,omitempty"`
Items any `json:"items,omitempty"`
Description string `json:"description,omitempty"`
Enum []any `json:"enum,omitempty"`
AnyOf []ToolProperty `json:"anyOf,omitempty"`
Type PropertyType `json:"type,omitempty"`
Items any `json:"items,omitempty"`
Description string `json:"description,omitempty"`
Enum []any `json:"enum,omitempty"`
Properties map[string]ToolProperty `json:"properties,omitempty"`
}
// ToTypeScriptType converts a ToolProperty to a TypeScript type string

View File

@@ -504,6 +504,107 @@ func TestThinking_UnmarshalJSON(t *testing.T) {
}
}
func TestToolPropertyNestedProperties(t *testing.T) {
tests := []struct {
name string
input string
expected ToolProperty
}{
{
name: "nested object properties",
input: `{
"type": "object",
"description": "Location details",
"properties": {
"address": {
"type": "string",
"description": "Street address"
},
"city": {
"type": "string",
"description": "City name"
}
}
}`,
expected: ToolProperty{
Type: PropertyType{"object"},
Description: "Location details",
Properties: map[string]ToolProperty{
"address": {
Type: PropertyType{"string"},
Description: "Street address",
},
"city": {
Type: PropertyType{"string"},
Description: "City name",
},
},
},
},
{
name: "deeply nested properties",
input: `{
"type": "object",
"description": "Event",
"properties": {
"location": {
"type": "object",
"description": "Location",
"properties": {
"coordinates": {
"type": "object",
"description": "GPS coordinates",
"properties": {
"lat": {"type": "number", "description": "Latitude"},
"lng": {"type": "number", "description": "Longitude"}
}
}
}
}
}
}`,
expected: ToolProperty{
Type: PropertyType{"object"},
Description: "Event",
Properties: map[string]ToolProperty{
"location": {
Type: PropertyType{"object"},
Description: "Location",
Properties: map[string]ToolProperty{
"coordinates": {
Type: PropertyType{"object"},
Description: "GPS coordinates",
Properties: map[string]ToolProperty{
"lat": {Type: PropertyType{"number"}, Description: "Latitude"},
"lng": {Type: PropertyType{"number"}, Description: "Longitude"},
},
},
},
},
},
},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
var prop ToolProperty
err := json.Unmarshal([]byte(tt.input), &prop)
require.NoError(t, err)
assert.Equal(t, tt.expected, prop)
// Round-trip test: marshal and unmarshal again
data, err := json.Marshal(prop)
require.NoError(t, err)
var prop2 ToolProperty
err = json.Unmarshal(data, &prop2)
require.NoError(t, err)
assert.Equal(t, tt.expected, prop2)
})
}
}
func TestToolFunctionParameters_String(t *testing.T) {
tests := []struct {
name string

View File

@@ -273,10 +273,6 @@ func main() {
Handler: uiServer.Handler(),
}
if _, err := uiServer.UserData(ctx); err != nil {
slog.Warn("failed to load user data", "error", err)
}
// Start the UI server
slog.Info("starting ui server", "port", port)
go func() {
@@ -320,6 +316,17 @@ func main() {
slog.Debug("no URL scheme request to handle")
}
go func() {
slog.Debug("waiting for ollama server to be ready")
if err := ui.WaitForServer(ctx, 10*time.Second); err != nil {
slog.Warn("ollama server not ready, continuing anyway", "error", err)
}
if _, err := uiServer.UserData(ctx); err != nil {
slog.Warn("failed to load user data", "error", err)
}
}()
osRun(cancel, hasCompletedFirstRun, startHidden)
slog.Info("shutting down desktop server")
@@ -361,7 +368,7 @@ func checkUserLoggedIn(uiServerPort int) bool {
return false
}
resp, err := http.Get(fmt.Sprintf("http://127.0.0.1:%d/api/v1/me", uiServerPort))
resp, err := http.Post(fmt.Sprintf("http://127.0.0.1:%d/api/me", uiServerPort), "application/json", nil)
if err != nil {
slog.Debug("failed to call local auth endpoint", "error", err)
return false

View File

@@ -191,13 +191,6 @@ func LaunchNewApp() {
C.launchApp(appName)
}
// Send a request to the main app thread to load a UI page
func sendUIRequestMessage(path string) {
p := C.CString(path)
defer C.free(unsafe.Pointer(p))
C.uiRequest(p)
}
func registerLaunchAgent(hasCompletedFirstRun bool) {
// Remove any stale Login Item registrations
C.unregisterSelfFromLoginItem()

View File

@@ -263,11 +263,6 @@ func createLoginShortcut() error {
return nil
}
// Send a request to the main app thread to load a UI page
func sendUIRequestMessage(path string) {
wintray.SendUIRequestMessage(path)
}
func LaunchNewApp() {
}

View File

@@ -169,37 +169,47 @@ DlgResult fileDlg(FileDlgParams* params) {
}
NSArray* urls = [panel URLs];
if(self->params->allowMultiple && [urls count] >= 1) {
if([urls count] == 0) {
return DLG_CANCEL;
}
if(self->params->allowMultiple) {
// For multiple files, we need to return all paths separated by null bytes
char* bufPtr = self->params->buf;
int remainingBuf = self->params->nbuf;
// Calculate total required buffer size first
int totalSize = 0;
for(NSURL* url in urls) {
char tempBuf[PATH_MAX];
if(![url getFileSystemRepresentation:tempBuf maxLength:PATH_MAX]) {
return DLG_URLFAIL;
}
totalSize += strlen(tempBuf) + 1; // +1 for null terminator
}
totalSize += 1; // Final null terminator
// Calculate total required buffer size first
int totalSize = 0;
for(NSURL* url in urls) {
char tempBuf[PATH_MAX];
if(![url getFileSystemRepresentation:tempBuf maxLength:PATH_MAX]) {
return DLG_URLFAIL;
}
totalSize += strlen(tempBuf) + 1; // +1 for null terminator
}
totalSize += 1; // Final null terminator
if(totalSize > self->params->nbuf) {
// Not enough buffer space
return DLG_URLFAIL;
}
if(totalSize > self->params->nbuf) {
// Not enough buffer space
return DLG_URLFAIL;
}
// Now actually copy the paths (we know we have space)
bufPtr = self->params->buf;
for(NSURL* url in urls) {
char tempBuf[PATH_MAX];
[url getFileSystemRepresentation:tempBuf maxLength:PATH_MAX];
int pathLen = strlen(tempBuf);
strcpy(bufPtr, tempBuf);
bufPtr += pathLen + 1;
}
*bufPtr = '\0'; // Final null terminator
// Now actually copy the paths (we know we have space)
bufPtr = self->params->buf;
for(NSURL* url in urls) {
char tempBuf[PATH_MAX];
[url getFileSystemRepresentation:tempBuf maxLength:PATH_MAX];
int pathLen = strlen(tempBuf);
strcpy(bufPtr, tempBuf);
bufPtr += pathLen + 1;
}
*bufPtr = '\0'; // Final null terminator
} else {
// Single file/directory selection - write path to buffer
NSURL* url = [urls firstObject];
if(![url getFileSystemRepresentation:self->params->buf maxLength:self->params->nbuf]) {
return DLG_URLFAIL;
}
}
return DLG_OK;

View File

@@ -15,7 +15,7 @@ const multiFileBufferSize = w32.MAX_PATH * 10
type WinDlgError int
func (e WinDlgError) Error() string {
return fmt.Sprintf("CommDlgExtendedError: %#x", e)
return fmt.Sprintf("CommDlgExtendedError: %#x", int(e))
}
func err() error {

View File

@@ -224,9 +224,7 @@ func (s *Server) cmd(ctx context.Context) (*exec.Cmd, error) {
if _, err := os.Stat(settings.Models); err == nil {
env["OLLAMA_MODELS"] = settings.Models
} else {
slog.Warn("models path not accessible, clearing models setting", "path", settings.Models, "err", err)
settings.Models = ""
s.store.SetSettings(settings)
slog.Warn("models path not accessible, using default", "path", settings.Models, "err", err)
}
}
if settings.ContextLength > 0 {

View File

@@ -469,26 +469,24 @@ export class HealthResponse {
}
export class User {
id: string;
name: string;
email: string;
avatarURL: string;
plan: string;
bio: string;
firstName: string;
lastName: string;
overThreshold: boolean;
name: string;
bio?: string;
avatarurl?: string;
firstname?: string;
lastname?: string;
plan?: string;
constructor(source: any = {}) {
if ('string' === typeof source) source = JSON.parse(source);
this.id = source["id"];
this.name = source["name"];
this.email = source["email"];
this.avatarURL = source["avatarURL"];
this.plan = source["plan"];
this.name = source["name"];
this.bio = source["bio"];
this.firstName = source["firstName"];
this.lastName = source["lastName"];
this.overThreshold = source["overThreshold"];
this.avatarurl = source["avatarurl"];
this.firstname = source["firstname"];
this.lastname = source["lastname"];
this.plan = source["plan"];
}
}
export class Attachment {

View File

@@ -15,7 +15,7 @@ import {
import { parseJsonlFromResponse } from "./util/jsonl-parsing";
import { ollamaClient as ollama } from "./lib/ollama-client";
import type { ModelResponse } from "ollama/browser";
import { API_BASE } from "./lib/config";
import { API_BASE, OLLAMA_DOT_COM } from "./lib/config";
// Extend Model class with utility methods
declare module "@/gotypes" {
@@ -27,7 +27,6 @@ declare module "@/gotypes" {
Model.prototype.isCloud = function (): boolean {
return this.model.endsWith("cloud");
};
// Helper function to convert Uint8Array to base64
function uint8ArrayToBase64(uint8Array: Uint8Array): string {
const chunkSize = 0x8000; // 32KB chunks to avoid stack overflow
@@ -42,44 +41,50 @@ function uint8ArrayToBase64(uint8Array: Uint8Array): string {
}
export async function fetchUser(): Promise<User | null> {
try {
const response = await fetch(`${API_BASE}/api/v1/me`, {
method: "GET",
headers: {
"Content-Type": "application/json",
},
});
if (response.ok) {
const userData: User = await response.json();
return userData;
}
return null;
} catch (error) {
console.error("Error fetching user:", error);
return null;
}
}
export async function fetchConnectUrl(): Promise<string> {
const response = await fetch(`${API_BASE}/api/v1/connect`, {
method: "GET",
const response = await fetch(`${API_BASE}/api/me`, {
method: "POST",
headers: {
"Content-Type": "application/json",
},
});
if (!response.ok) {
throw new Error("Failed to fetch connect URL");
if (response.ok) {
const userData: User = await response.json();
if (userData.avatarurl && !userData.avatarurl.startsWith("http")) {
userData.avatarurl = `${OLLAMA_DOT_COM}${userData.avatarurl}`;
}
return userData;
}
const data = await response.json();
return data.connect_url;
if (response.status === 401 || response.status === 403) {
return null;
}
throw new Error(`Failed to fetch user: ${response.status}`);
}
export async function fetchConnectUrl(): Promise<string> {
const response = await fetch(`${API_BASE}/api/me`, {
method: "POST",
headers: {
"Content-Type": "application/json",
},
});
if (response.status === 401) {
const data = await response.json();
if (data.signin_url) {
return data.signin_url;
}
}
throw new Error("Failed to fetch connect URL");
}
export async function disconnectUser(): Promise<void> {
const response = await fetch(`${API_BASE}/api/v1/disconnect`, {
const response = await fetch(`${API_BASE}/api/signout`, {
method: "POST",
headers: {
"Content-Type": "application/json",
@@ -204,12 +209,10 @@ export async function* sendMessage(
data: uint8ArrayToBase64(att.data),
}));
// Only send think parameter when actually requesting thinking
// Don't send false as it causes issues with some providers
// Send think parameter when it's explicitly set (true, false, or a non-empty string).
const shouldSendThink =
think !== undefined &&
((typeof think === "boolean" && think) ||
(typeof think === "string" && think !== ""));
(typeof think === "boolean" || (typeof think === "string" && think !== ""));
const response = await fetch(`${API_BASE}/api/v1/chat/${chatId}`, {
method: "POST",
@@ -391,7 +394,8 @@ export async function getInferenceCompute(): Promise<InferenceCompute[]> {
export async function fetchHealth(): Promise<boolean> {
try {
const response = await fetch(`${API_BASE}/api/v1/health`, {
// Use the /api/version endpoint as a health check
const response = await fetch(`${API_BASE}/api/version`, {
method: "GET",
headers: {
"Content-Type": "application/json",
@@ -400,7 +404,8 @@ export async function fetchHealth(): Promise<boolean> {
if (response.ok) {
const data = await response.json();
return data.healthy || false;
// If we get a version back, the server is healthy
return !!data.version;
}
return false;

View File

@@ -299,9 +299,9 @@ export default function Settings() {
</Button>
</div>
</div>
{user?.avatarURL && (
{user?.avatarurl && (
<img
src={user.avatarURL}
src={user.avatarurl}
alt={user?.name}
className="h-10 w-10 rounded-full bg-neutral-200 dark:bg-neutral-700 flex-shrink-0"
onError={(e) => {

View File

@@ -50,21 +50,33 @@ export default function Thinking({
// Position content to show bottom when collapsed
useEffect(() => {
if (isCollapsed && contentRef.current && wrapperRef.current) {
const contentHeight = contentRef.current.scrollHeight;
const wrapperHeight = wrapperRef.current.clientHeight;
if (contentHeight > wrapperHeight) {
const translateY = -(contentHeight - wrapperHeight);
contentRef.current.style.transform = `translateY(${translateY}px)`;
setHasOverflow(true);
} else {
setHasOverflow(false);
}
requestAnimationFrame(() => {
if (!contentRef.current || !wrapperRef.current) return;
const contentHeight = contentRef.current.scrollHeight;
const wrapperHeight = wrapperRef.current.clientHeight;
if (contentHeight > wrapperHeight) {
const translateY = -(contentHeight - wrapperHeight);
contentRef.current.style.transform = `translateY(${translateY}px)`;
setHasOverflow(true);
} else {
contentRef.current.style.transform = "translateY(0)";
setHasOverflow(false);
}
});
} else if (contentRef.current) {
contentRef.current.style.transform = "translateY(0)";
setHasOverflow(false);
}
}, [thinking, isCollapsed]);
useEffect(() => {
if (activelyThinking && wrapperRef.current && !isCollapsed) {
// When expanded and actively thinking, scroll to bottom
wrapperRef.current.scrollTop = wrapperRef.current.scrollHeight;
}
}, [thinking, activelyThinking, isCollapsed]);
const handleToggle = () => {
setIsCollapsed(!isCollapsed);
setHasUserInteracted(true);

View File

@@ -7,6 +7,7 @@ import { createQueryBatcher } from "./useQueryBatcher";
import { useRefetchModels } from "./useModels";
import { useStreamingContext } from "@/contexts/StreamingContext";
import { useSettings } from "./useSettings";
import { getModelCapabilities } from "@/api";
export const useChats = () => {
return useQuery({
@@ -606,6 +607,24 @@ export const useSendMessage = (chatId: string) => {
queryClient.setQueryData(["staleModels"], newStaleMap);
queryClient.invalidateQueries({ queryKey: ["models"] });
// Fetch fresh capabilities for the downloaded model
getModelCapabilities(selectedModel.model)
.then((capabilities) => {
queryClient.setQueryData(
["modelCapabilities", selectedModel.model],
capabilities,
);
})
.catch((error) => {
console.error(
"Failed to fetch capabilities after download:",
error,
);
queryClient.invalidateQueries({
queryKey: ["modelCapabilities", selectedModel.model],
});
});
}
break;
}

View File

@@ -1,114 +0,0 @@
import { useMutation, useQueryClient } from "@tanstack/react-query";
import { useState } from "react";
import { pullModel } from "@/api";
import { useSelectedModel } from "./useSelectedModel";
import { useSettings } from "./useSettings";
interface DownloadProgress {
status: string;
digest?: string;
total?: number;
completed?: number;
done?: boolean;
}
export function useDownloadModel(chatId?: string) {
const queryClient = useQueryClient();
const { selectedModel } = useSelectedModel(chatId);
const { setSettings } = useSettings();
const [downloadProgress, setDownloadProgress] =
useState<DownloadProgress | null>(null);
const [abortController, setAbortController] =
useState<AbortController | null>(null);
const [downloadingChatIds, setDownloadingChatIds] = useState<Set<string>>(
new Set(),
);
const mutation = useMutation({
mutationFn: async (modelName: string) => {
const controller = new AbortController();
setAbortController(controller);
setDownloadProgress({ status: "Starting download..." });
if (chatId) {
setDownloadingChatIds((prev) => new Set(prev).add(chatId));
}
try {
for await (const progress of pullModel(modelName, controller.signal)) {
setDownloadProgress(progress);
if (progress.status === "success") {
// Update selected model to indicate it's now available locally
if (selectedModel && selectedModel.model === modelName) {
setSettings({ SelectedModel: modelName });
}
// Invalidate models query to refresh the list
await queryClient.invalidateQueries({ queryKey: ["models"] });
break;
}
}
} finally {
setAbortController(null);
if (chatId) {
setDownloadingChatIds((prev) => {
const newSet = new Set(prev);
newSet.delete(chatId);
return newSet;
});
}
}
},
onSuccess: () => {
setDownloadProgress(null);
if (chatId) {
setDownloadingChatIds((prev) => {
const newSet = new Set(prev);
newSet.delete(chatId);
return newSet;
});
}
},
onError: (error: Error) => {
const status =
error.name === "AbortError" ? "Download cancelled" : "Download failed";
setDownloadProgress({ status, done: true });
// Clear error message after delay
const delay = error.name === "AbortError" ? 1500 : 3000;
setTimeout(() => {
setDownloadProgress(null);
if (chatId) {
setDownloadingChatIds((prev) => {
const newSet = new Set(prev);
newSet.delete(chatId);
return newSet;
});
}
}, delay);
},
});
const cancelDownload = () => {
if (abortController) {
abortController.abort();
setAbortController(null);
if (chatId) {
setDownloadingChatIds((prev) => {
const newSet = new Set(prev);
newSet.delete(chatId);
return newSet;
});
}
}
};
return {
downloadModel: mutation.mutate,
isDownloading:
mutation.isPending && chatId ? downloadingChatIds.has(chatId) : false,
downloadProgress:
chatId && downloadingChatIds.has(chatId) ? downloadProgress : null,
error: mutation.error,
cancelDownload,
};
}

View File

@@ -1,29 +1,20 @@
import { useQuery, useMutation, useQueryClient } from "@tanstack/react-query";
import { useEffect, useState } from "react";
import { fetchUser, fetchConnectUrl, disconnectUser } from "@/api";
export function useUser() {
const queryClient = useQueryClient();
const [initialDataLoaded, setInitialDataLoaded] = useState(false);
// Wait for initial data to be loaded
useEffect(() => {
const initialPromise = window.__initialUserDataPromise;
if (initialPromise) {
initialPromise.finally(() => {
setInitialDataLoaded(true);
});
} else {
setInitialDataLoaded(true);
}
}, []);
const userQuery = useQuery({
queryKey: ["user"],
queryFn: () => fetchUser(),
queryFn: async () => {
const result = await fetchUser();
return result;
},
staleTime: 5 * 60 * 1000, // Consider data stale after 5 minutes
gcTime: 10 * 60 * 1000, // Keep in cache for 10 minutes
initialData: null, // Start with null to prevent flashing
retry: 10,
retryDelay: (attemptIndex) => Math.min(500 * attemptIndex, 2000),
refetchOnMount: true, // Always fetch when component mounts
});
// Mutation to refresh user data
@@ -49,14 +40,15 @@ export function useUser() {
},
});
const isLoading = userQuery.isLoading || userQuery.isFetching;
const isAuthenticated = Boolean(userQuery.data?.name);
return {
user: userQuery.data,
isLoading:
!initialDataLoaded ||
(userQuery.isLoading && userQuery.data === undefined), // Show loading until initial data is loaded
isLoading,
isError: userQuery.isError,
error: userQuery.error,
isAuthenticated: Boolean(userQuery.data?.name),
isAuthenticated,
refreshUser: refreshUser.mutate,
isRefreshing: refreshUser.isPending,
refetchUser: userQuery.refetch,

View File

@@ -8,3 +8,6 @@ export const API_BASE = import.meta.env.DEV ? DEV_API_URL : "";
export const OLLAMA_HOST = import.meta.env.DEV
? DEV_API_URL
: window.location.origin;
export const OLLAMA_DOT_COM =
import.meta.env.VITE_OLLAMA_DOT_COM_URL || "https://ollama.com";

View File

@@ -5,13 +5,6 @@ import { QueryClient, QueryClientProvider } from "@tanstack/react-query";
import { routeTree } from "./routeTree.gen";
import { fetchUser } from "./api";
import { StreamingProvider } from "./contexts/StreamingContext";
import { User } from "@/gotypes";
declare global {
interface Window {
__initialUserDataPromise?: Promise<User | null>;
}
}
const queryClient = new QueryClient({
defaultOptions: {
@@ -24,27 +17,11 @@ const queryClient = new QueryClient({
},
});
// Track initial user data fetch
let initialUserDataPromise: Promise<User | null> | null = null;
// Initialize user data on app startup
const initializeUserData = async () => {
try {
const userData = await fetchUser();
fetchUser().then((userData) => {
if (userData) {
queryClient.setQueryData(["user"], userData);
return userData;
} catch (error) {
console.error("Error initializing user data:", error);
queryClient.setQueryData(["user"], null);
return null;
}
};
// Start initialization immediately and track the promise
initialUserDataPromise = initializeUserData();
// Export the promise so hooks can await it
window.__initialUserDataPromise = initialUserDataPromise;
});
const router = createRouter({
routeTree,

View File

@@ -101,15 +101,14 @@ type HealthResponse struct {
}
type User struct {
ID string `json:"id"`
Name string `json:"name"`
Email string `json:"email"`
AvatarURL string `json:"avatarURL"`
Plan string `json:"plan"`
Bio string `json:"bio"`
FirstName string `json:"firstName"`
LastName string `json:"lastName"`
OverThreshold bool `json:"overThreshold"`
ID string `json:"id"`
Email string `json:"email"`
Name string `json:"name"`
Bio string `json:"bio,omitempty"`
AvatarURL string `json:"avatarurl,omitempty"`
FirstName string `json:"firstname,omitempty"`
LastName string `json:"lastname,omitempty"`
Plan string `json:"plan,omitempty"`
}
type Attachment struct {

View File

@@ -12,18 +12,17 @@ import (
"log/slog"
"net/http"
"net/http/httputil"
"net/url"
"os"
"runtime"
"runtime/debug"
"slices"
"strconv"
"strings"
"sync"
"time"
"github.com/google/uuid"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/app/auth"
"github.com/ollama/ollama/app/server"
"github.com/ollama/ollama/app/store"
"github.com/ollama/ollama/app/tools"
@@ -118,40 +117,66 @@ func (s *Server) log() *slog.Logger {
// ollamaProxy creates a reverse proxy handler to the Ollama server
func (s *Server) ollamaProxy() http.Handler {
ollamaHost := os.Getenv("OLLAMA_HOST")
if ollamaHost == "" {
ollamaHost = "http://127.0.0.1:11434"
}
var (
proxy http.Handler
proxyMu sync.Mutex
)
if !strings.HasPrefix(ollamaHost, "http://") && !strings.HasPrefix(ollamaHost, "https://") {
ollamaHost = "http://" + ollamaHost
}
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
proxyMu.Lock()
p := proxy
proxyMu.Unlock()
target, err := url.Parse(ollamaHost)
if err != nil {
s.log().Error("failed to parse OLLAMA_HOST", "error", err, "host", ollamaHost)
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
http.Error(w, "failed to configure proxy", http.StatusInternalServerError)
})
}
if p == nil {
proxyMu.Lock()
if proxy == nil {
var err error
for i := range 2 {
if i > 0 {
s.log().Warn("ollama server not ready, retrying", "attempt", i+1)
time.Sleep(1 * time.Second)
}
s.log().Info("configuring ollama proxy", "target", target.String())
err = WaitForServer(context.Background(), 10*time.Second)
if err == nil {
break
}
}
proxy := httputil.NewSingleHostReverseProxy(target)
if err != nil {
proxyMu.Unlock()
s.log().Error("ollama server not ready after retries", "error", err)
http.Error(w, "Ollama server is not ready", http.StatusServiceUnavailable)
return
}
originalDirector := proxy.Director
proxy.Director = func(req *http.Request) {
originalDirector(req)
req.Host = target.Host
s.log().Debug("proxying request", "method", req.Method, "path", req.URL.Path, "target", target.Host)
}
target := envconfig.Host()
s.log().Info("configuring ollama proxy", "target", target.String())
proxy.ErrorHandler = func(w http.ResponseWriter, r *http.Request, err error) {
s.log().Error("proxy error", "error", err, "path", r.URL.Path, "target", target.String())
http.Error(w, "proxy error: "+err.Error(), http.StatusBadGateway)
}
newProxy := httputil.NewSingleHostReverseProxy(target)
return proxy
originalDirector := newProxy.Director
newProxy.Director = func(req *http.Request) {
originalDirector(req)
req.Host = target.Host
s.log().Debug("proxying request", "method", req.Method, "path", req.URL.Path, "target", target.Host)
}
newProxy.ErrorHandler = func(w http.ResponseWriter, r *http.Request, err error) {
s.log().Error("proxy error", "error", err, "path", r.URL.Path, "target", target.String())
http.Error(w, "proxy error: "+err.Error(), http.StatusBadGateway)
}
proxy = newProxy
p = newProxy
} else {
p = proxy
}
proxyMu.Unlock()
}
p.ServeHTTP(w, r)
})
}
type errHandlerFunc func(http.ResponseWriter, *http.Request) error
@@ -264,11 +289,10 @@ func (s *Server) Handler() http.Handler {
ollamaProxy := s.ollamaProxy()
mux.Handle("GET /api/tags", ollamaProxy)
mux.Handle("POST /api/show", ollamaProxy)
mux.Handle("GET /api/v1/me", handle(s.me))
mux.Handle("POST /api/v1/disconnect", handle(s.disconnect))
mux.Handle("GET /api/v1/connect", handle(s.connectURL))
mux.Handle("GET /api/v1/health", handle(s.health))
mux.Handle("GET /api/version", ollamaProxy)
mux.Handle("HEAD /api/version", ollamaProxy)
mux.Handle("POST /api/me", ollamaProxy)
mux.Handle("POST /api/signout", ollamaProxy)
// React app - catch all non-API routes and serve the React app
mux.Handle("GET /", s.appHandler())
@@ -338,7 +362,7 @@ func (s *Server) doSelfSigned(ctx context.Context, method, path string) (*http.R
}
// UserData fetches user data from ollama.com API for the current ollama key
func (s *Server) UserData(ctx context.Context) (*responses.User, error) {
func (s *Server) UserData(ctx context.Context) (*api.UserResponse, error) {
resp, err := s.doSelfSigned(ctx, http.MethodPost, "/api/me")
if err != nil {
return nil, fmt.Errorf("failed to call ollama.com/api/me: %w", err)
@@ -349,7 +373,7 @@ func (s *Server) UserData(ctx context.Context) (*responses.User, error) {
return nil, fmt.Errorf("unexpected status code: %d", resp.StatusCode)
}
var user responses.User
var user api.UserResponse
if err := json.NewDecoder(resp.Body).Decode(&user); err != nil {
return nil, fmt.Errorf("failed to parse user response: %w", err)
}
@@ -368,29 +392,27 @@ func (s *Server) UserData(ctx context.Context) (*responses.User, error) {
return &user, nil
}
func waitForServer(ctx context.Context) error {
timeout := time.Now().Add(10 * time.Second)
// TODO: this avoids an error on first load of the app
// however we should either show a loading state or
// wait for the Ollama server to be ready before redirecting
for {
// WaitForServer waits for the Ollama server to be ready
func WaitForServer(ctx context.Context, timeout time.Duration) error {
deadline := time.Now().Add(timeout)
for time.Now().Before(deadline) {
c, err := api.ClientFromEnvironment()
if err != nil {
return err
}
if _, err := c.Version(ctx); err == nil {
break
}
if time.Now().After(timeout) {
return fmt.Errorf("timeout waiting for Ollama server to be ready")
slog.Debug("ollama server is ready")
return nil
}
time.Sleep(10 * time.Millisecond)
}
return nil
return errors.New("timeout waiting for Ollama server to be ready")
}
func (s *Server) createChat(w http.ResponseWriter, r *http.Request) error {
waitForServer(r.Context())
if err := WaitForServer(r.Context(), 10*time.Second); err != nil {
return err
}
id, err := uuid.NewV7()
if err != nil {
@@ -1438,129 +1460,6 @@ func (s *Server) settings(w http.ResponseWriter, r *http.Request) error {
})
}
func (s *Server) me(w http.ResponseWriter, r *http.Request) error {
if r.Method != http.MethodGet {
http.Error(w, "Method Not Allowed", http.StatusMethodNotAllowed)
return nil
}
user, err := s.UserData(r.Context())
if err != nil {
// If fetching from API fails, try to return cached user data if available
if cachedUser, cacheErr := s.Store.User(); cacheErr == nil && cachedUser != nil {
s.log().Info("API request failed, returning cached user data", "error", err)
responseUser := &responses.User{
Name: cachedUser.Name,
Email: cachedUser.Email,
Plan: cachedUser.Plan,
}
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusOK)
return json.NewEncoder(w).Encode(responseUser)
}
s.log().Error("failed to get user data", "error", err)
w.WriteHeader(http.StatusInternalServerError)
return json.NewEncoder(w).Encode(responses.Error{
Error: "failed to get user data",
})
}
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusOK)
return json.NewEncoder(w).Encode(user)
}
func (s *Server) disconnect(w http.ResponseWriter, r *http.Request) error {
if r.Method != http.MethodPost {
http.Error(w, "Method Not Allowed", http.StatusMethodNotAllowed)
return nil
}
if err := s.Store.ClearUser(); err != nil {
s.log().Warn("failed to clear cached user data", "error", err)
}
// Get the SSH public key to encode for the delete request
pubKey, err := ollamaAuth.GetPublicKey()
if err != nil {
s.log().Error("failed to get public key", "error", err)
w.WriteHeader(http.StatusInternalServerError)
return json.NewEncoder(w).Encode(responses.Error{
Error: "failed to get public key",
})
}
// Encode the key using base64 URL encoding
encodedKey := base64.RawURLEncoding.EncodeToString([]byte(pubKey))
// Call the /api/user/keys/{encodedKey} endpoint with DELETE
resp, err := s.doSelfSigned(r.Context(), http.MethodDelete, fmt.Sprintf("/api/user/keys/%s", encodedKey))
if err != nil {
s.log().Error("failed to call ollama.com/api/user/keys", "error", err)
w.WriteHeader(http.StatusInternalServerError)
return json.NewEncoder(w).Encode(responses.Error{
Error: "failed to disconnect from ollama.com",
})
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
s.log().Error("disconnect request failed", "status", resp.StatusCode)
w.WriteHeader(http.StatusInternalServerError)
return json.NewEncoder(w).Encode(responses.Error{
Error: "failed to disconnect from ollama.com",
})
}
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusOK)
return json.NewEncoder(w).Encode(map[string]string{"status": "disconnected"})
}
func (s *Server) connectURL(w http.ResponseWriter, r *http.Request) error {
if r.Method != http.MethodGet {
http.Error(w, "Method Not Allowed", http.StatusMethodNotAllowed)
return nil
}
connectURL, err := auth.BuildConnectURL(OllamaDotCom)
if err != nil {
s.log().Error("failed to build connect URL", "error", err)
w.WriteHeader(http.StatusInternalServerError)
return json.NewEncoder(w).Encode(responses.Error{
Error: "failed to build connect URL",
})
}
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusOK)
return json.NewEncoder(w).Encode(map[string]string{
"connect_url": connectURL,
})
}
func (s *Server) health(w http.ResponseWriter, r *http.Request) error {
if r.Method != http.MethodGet {
http.Error(w, "Method Not Allowed", http.StatusMethodNotAllowed)
return nil
}
healthy := false
c, err := api.ClientFromEnvironment()
if err == nil {
if _, err := c.Version(r.Context()); err == nil {
healthy = true
}
}
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusOK)
return json.NewEncoder(w).Encode(responses.HealthResponse{
Healthy: healthy,
})
}
func (s *Server) getInferenceCompute(w http.ResponseWriter, r *http.Request) error {
ctx, cancel := context.WithTimeout(r.Context(), 500*time.Millisecond)
defer cancel()

View File

@@ -158,16 +158,16 @@ func (t *winTray) wndProc(hWnd windows.Handle, message uint32, wParam, lParam ui
case uint32(UI_REQUEST_MSG_ID):
// Requests for the UI must always come from the main event thread
l := int(wParam)
path := unsafe.String((*byte)(unsafe.Pointer(lParam)), l)
path := unsafe.String((*byte)(unsafe.Pointer(lParam)), l) //nolint:govet,gosec
t.app.UIRun(path)
case WM_COPYDATA:
// Handle URL scheme requests from other instances
if lParam != 0 {
cds := (*COPYDATASTRUCT)(unsafe.Pointer(lParam))
if cds.DwData == 1 { // Our identifier for URL scheme messages
cds := (*COPYDATASTRUCT)(unsafe.Pointer(lParam)) //nolint:govet,gosec
if cds.DwData == 1 { // Our identifier for URL scheme messages
// Convert the data back to string
data := make([]byte, cds.CbData)
copy(data, (*[1 << 30]byte)(unsafe.Pointer(cds.LpData))[:cds.CbData:cds.CbData])
copy(data, (*[1 << 30]byte)(unsafe.Pointer(cds.LpData))[:cds.CbData:cds.CbData]) //nolint:govet,gosec
urlScheme := string(data)
handleURLSchemeRequest(urlScheme)
lResult = 1 // Return non-zero to indicate success

View File

@@ -15,7 +15,7 @@ A Go-based command-line tool for benchmarking Ollama models with configurable pa
```
go build -o ollama-bench bench.go
./bench -model gpt-oss:20b -epochs 6 -format csv
./ollama-bench -model gpt-oss:20b -epochs 6 -format csv
```
Using Go Run (without building)
@@ -29,31 +29,32 @@ go run bench.go -model gpt-oss:20b -epochs 3
### Basic Example
```
./bench -model gemma3 -epochs 6
./ollama-bench -model gemma3 -epochs 6
```
### Benchmark Multiple Models
```
./bench -model gemma3,gemma3n -epochs 6 -max-tokens 100 -p "Write me a short story" | tee gemma.bench
./ollama-bench -model gemma3,gemma3n -epochs 6 -max-tokens 100 -p "Write me a short story" | tee gemma.bench
benchstat -col /name gemma.bench
```
### With Image Prompt
```
./bench -model qwen3-vl -image photo.jpg -epochs 6 -max-tokens 100 -p "Describe this image"
./ollama-bench -model qwen3-vl -image photo.jpg -epochs 6 -max-tokens 100 -p "Describe this image"
```
### Advanced Example
```
./bench -model llama3 -epochs 10 -temperature 0.7 -max-tokens 500 -seed 42 -format csv -output results.csv
./ollama-bench -model llama3 -epochs 10 -temperature 0.7 -max-tokens 500 -seed 42 -format csv -output results.csv
```
## Command Line Options
| Option | Description | Default |
|----------|-------------|---------|
| -model | Comma-separated list of models to benchmark | (required) |
| -epochs | Number of iterations per model | 1 |
| -max-tokens | Maximum tokens for model response | 0 (unlimited) |

View File

@@ -48,8 +48,8 @@ func OutputMetrics(w io.Writer, format string, metrics []Metrics, verbose bool)
case "benchstat":
if verbose {
printHeader := func() {
fmt.Printf("sysname: %s\n", runtime.GOOS)
fmt.Printf("machine: %s\n", runtime.GOARCH)
fmt.Fprintf(w, "sysname: %s\n", runtime.GOOS)
fmt.Fprintf(w, "machine: %s\n", runtime.GOARCH)
}
once.Do(printHeader)
}
@@ -147,6 +147,17 @@ func BenchmarkChat(fOpt flagOptions) error {
return err
}
var out io.Writer = os.Stdout
if fOpt.outputFile != nil && *fOpt.outputFile != "" {
f, err := os.OpenFile(*fOpt.outputFile, os.O_CREATE|os.O_WRONLY, 0o644)
if err != nil {
fmt.Fprintf(os.Stderr, "ERROR: cannot open output file %s: %v\n", *fOpt.outputFile, err)
return err
}
defer f.Close()
out = f
}
for _, model := range models {
for range *fOpt.epochs {
options := make(map[string]interface{})
@@ -241,13 +252,14 @@ func BenchmarkChat(fOpt flagOptions) error {
},
}
OutputMetrics(os.Stdout, *fOpt.format, metrics, *fOpt.verbose)
OutputMetrics(out, *fOpt.format, metrics, *fOpt.verbose)
if *fOpt.keepAlive > 0 {
time.Sleep(time.Duration(*fOpt.keepAlive*float64(time.Second)) + 200*time.Millisecond)
}
}
}
return nil
}

View File

@@ -1430,7 +1430,7 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
latest.Summary()
}
return &api.Message{Role: role, Content: fullResponse.String()}, nil
return &api.Message{Role: role, Thinking: thinkingContent.String(), Content: fullResponse.String()}, nil
}
func generate(cmd *cobra.Command, opts runOptions) error {

View File

@@ -182,6 +182,8 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
conv = &llama4Model{}
case "Mistral3ForConditionalGeneration":
conv = &mistral3Model{}
case "Ministral3ForCausalLM":
conv = &mistral3CausalModel{}
case "MixtralForCausalLM":
conv = &mixtralModel{}
case "GemmaForCausalLM":
@@ -200,14 +202,20 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
conv = &qwen25VLModel{}
case "Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration":
conv = &qwen3VLModel{}
case "Olmo3ForCausalLM":
conv = &olmoModel{}
case "BertModel":
conv = &bertModel{}
case "NomicBertModel", "NomicBertMoEModel":
conv = &nomicbertModel{}
case "CohereForCausalLM":
conv = &commandrModel{}
case "GptOssForCausalLM":
conv = &gptossModel{}
case "DeepseekOCRForCausalLM":
conv = &deepseekocr{}
case "DeepseekV3ForCausalLM":
conv = &deepseek2Model{}
default:
return fmt.Errorf("unsupported architecture %q", p.Architectures[0])
}

View File

@@ -0,0 +1,173 @@
package convert
import (
"cmp"
"fmt"
"log/slog"
"regexp"
"strconv"
"github.com/ollama/ollama/fs/ggml"
)
type deepseek2Model struct {
ModelParameters // architectures, vocab_size
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RMSNormEPS float32 `json:"rms_norm_eps"`
RopeTheta float32 `json:"rope_theta"`
QKNopeHeadDim uint32 `json:"qk_nope_head_dim"`
QKRopeHeadDim uint32 `json:"qk_rope_head_dim"`
KVLoraRank uint32 `json:"kv_lora_rank"`
QLoraRank uint32 `json:"q_lora_rank"`
VHeadDim uint32 `json:"v_head_dim"`
ExpertCount uint32 `json:"n_routed_experts"`
ExpertSharedCount uint32 `json:"n_shared_experts"`
ExpertIntermediateSize uint32 `json:"moe_intermediate_size"`
ExpertUsedCount uint32 `json:"num_experts_per_tok"`
ExpertWeightsNorm bool `json:"norm_topk_prob"`
ExpertWeightsScale float32 `json:"routed_scaling_factor"`
ScoringFunc string `json:"scoring_func"`
LeadingDenseBlockCount uint32 `json:"first_k_dense_replace"`
RopeScaling struct {
Factor float32 `json:"factor"`
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
Type string `json:"type"`
MScaleAllDim float32 `json:"mscale_all_dim"`
} `json:"rope_scaling"`
Architecture string
}
func (p *deepseek2Model) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "deepseek2"
kv["general.type"] = "model"
kv["deepseek2.block_count"] = p.HiddenLayers
numHeads := p.NumAttentionHeads
numKVHeads := p.NumKeyValueHeads
kv["deepseek2.attention.head_count"] = numHeads
kv["deepseek2.attention.head_count_kv"] = numKVHeads
kv["deepseek2.attention.key_length"] = p.QKNopeHeadDim + p.QKRopeHeadDim
kv["deepseek2.attention.kv_lora_rank"] = p.KVLoraRank
kv["deepseek2.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["deepseek2.attention.q_lora_rank"] = p.QLoraRank
kv["deepseek2.attention.value_length"] = p.VHeadDim
kv["deepseek2.context_length"] = p.MaxPositionEmbeddings
kv["deepseek2.embedding_length"] = p.HiddenSize
kv["deepseek2.expert_count"] = p.ExpertCount
kv["deepseek2.expert_feed_forward_length"] = p.ExpertIntermediateSize
kv["deepseek2.expert_shared_count"] = p.ExpertSharedCount
var scoringFunc uint32
switch p.ScoringFunc {
case "softmax":
// not currently supported in the model, but needed for Deepseek-OCR
scoringFunc = 1
case "sigmoid":
scoringFunc = 2
}
kv["deepseek2.expert_gating_func"] = scoringFunc
kv["deepseek2.expert_used_count"] = p.ExpertUsedCount
kv["deepseek2.expert_weights_norm"] = p.ExpertWeightsNorm
kv["deepseek2.expert_weights_scale"] = p.ExpertWeightsScale
kv["deepseek2.feed_forward_length"] = p.IntermediateSize
kv["deepseek2.leading_dense_block_count"] = p.LeadingDenseBlockCount
kv["deepseek2.rope.dimension_count"] = p.QKRopeHeadDim
kv["deepseek2.rope.freq_base"] = cmp.Or(p.RopeTheta, 10000.0)
kv["deepseek2.rope.scaling.factor"] = p.RopeScaling.Factor
kv["deepseek2.rope.scaling.original_context_length"] = p.RopeScaling.OriginalMaxPositionEmbeddings
kv["deepseek2.rope.scaling.type"] = p.RopeScaling.Type
kv["deepseek2.rope.scaling.yarn_log_multiplier"] = 0.1 * p.RopeScaling.MScaleAllDim
kv["tokenizer.ggml.pre"] = "deepseek-v3"
return kv
}
func (p *deepseek2Model) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"language_model.", "",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.kv_a_proj_with_mqa", "attn_kv_a_mqa",
"self_attn.kv_a_layernorm", "attn_kv_a_norm",
"self_attn.kv_b_proj", "attn_kv_b",
"self_attn.q_a_proj", "attn_q_a",
"self_attn.q_a_layernorm", "attn_q_a_norm",
"self_attn.q_b_proj", "attn_q_b",
"self_attn.o_proj", "attn_output",
"post_attention_layernorm", "ffn_norm",
"mlp.shared_experts.down_proj", "ffn_down_shexp",
"mlp.shared_experts.gate_proj", "ffn_gate_shexp",
"mlp.shared_experts.up_proj", "ffn_up_shexp",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"mlp.gate.e_score_correction_bias", "exp_probs_b.bias",
"mlp.gate", "ffn_gate_inp",
}
}
func (p *deepseek2Model) Tensors(s []Tensor) (out []*ggml.Tensor) {
merges := make([]merge, p.HiddenLayers*3)
for i := range p.HiddenLayers {
merges[i*3+0] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.gate_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_gate_exps.weight", i),
}
merges[i*3+1] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.up_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_up_exps.weight", i),
}
merges[i*3+2] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.down_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_down_exps.weight", i),
}
}
skipLayer := func(n string, minValue uint32) bool {
re := regexp.MustCompile(`^blk\.(\d+)`)
matches := re.FindStringSubmatch(n)
if matches == nil {
return false
}
blkNum, err := strconv.Atoi(matches[1])
if err != nil {
return false
}
return uint32(blkNum) >= minValue
}
out, s = mergeTensors(s, merges...)
for _, t := range s {
// skip any additional layers (such as the Multi-Token Prediction layer)
if skipLayer(t.Name(), p.HiddenLayers) {
slog.Debug("skipping layer", "name", t.Name())
continue
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}

View File

@@ -2,6 +2,7 @@ package convert
import (
"cmp"
"slices"
"github.com/ollama/ollama/fs/ggml"
)
@@ -26,16 +27,26 @@ type gemma3Model struct {
NumChannels uint32 `json:"num_channels"` // num_channels 3
PatchSize uint32 `json:"patch_size"` // patch_size 14
} `json:"vision_config"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
RopeLocalTheta float32 `json:"rope_local_base_freq"`
RopeGlobalTheta float32 `json:"rope_global_base_freq"`
SlidingWindow uint32 `json:"sliding_window"`
MultiModalTokensPerImage uint32 `json:"mm_tokens_per_image"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
RopeLocalTheta float32 `json:"rope_local_base_freq"`
RopeTheta float32 `json:"rope_theta"`
SlidingWindow uint32 `json:"sliding_window"`
SlidingWindowPattern *uint32 `json:"sliding_window_pattern"`
LayerTypes []string `json:"layer_types"`
MultiModalTokensPerImage uint32 `json:"mm_tokens_per_image"`
RopeScaling *struct {
Type string `json:"rope_type"`
Factor float32 `json:"factor"`
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
ExtrapolationFactor float32 `json:"extrapolation_factor"`
BetaFast float32 `json:"beta_fast"`
BetaSlow float32 `json:"beta_slow"`
} `json:"rope_scaling"`
}
const (
@@ -81,9 +92,38 @@ func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
kv["gemma3.attention.key_length"] = p.HeadDim
kv["gemma3.attention.value_length"] = p.HeadDim
kv["gemma3.attention.sliding_window"] = p.SlidingWindow
kv["gemma3.final_logit_softcapping"] = cmp.Or(p.FinalLogitSoftcap, 30)
// The sliding window pattern is either provided as the sliding_window_pattern
// key (an int) or as the layer_types key (a list of strings).
if p.SlidingWindowPattern != nil || len(p.LayerTypes) > 0 {
kv["gemma3.attention.sliding_window_pattern"] = slices.Collect(func(yield func(bool) bool) {
for i := range numBlocks {
var isLocal bool
if len(p.LayerTypes) > 0 && int(i) < len(p.LayerTypes) {
isLocal = p.LayerTypes[i] == "sliding_attention"
} else if p.SlidingWindowPattern != nil && *p.SlidingWindowPattern > 0 {
isLocal = (i+1)%*p.SlidingWindowPattern != 0
}
if !yield(isLocal) {
break
}
}
})
}
if p.FinalLogitSoftcap > 0 {
kv["gemma3.final_logit_softcapping"] = p.FinalLogitSoftcap
}
kv["gemma3.rope.local.freq_base"] = cmp.Or(p.RopeLocalTheta, 10000.0)
kv["gemma3.rope.global.freq_base"] = cmp.Or(p.RopeGlobalTheta, 1000000.0)
kv["gemma3.rope.freq_base"] = cmp.Or(p.RopeTheta, 1000000.0)
if p.RopeScaling != nil && p.RopeScaling.Type == "yarn" && p.RopeScaling.Factor > 0 {
kv["gemma3.rope.scaling.type"] = "yarn"
kv["gemma3.rope.scaling.factor"] = p.RopeScaling.Factor
kv["gemma3.rope.scaling.original_context_length"] = p.RopeScaling.OriginalMaxPositionEmbeddings
kv["gemma3.rope.scaling.extrapolation_factor"] = cmp.Or(p.RopeScaling.ExtrapolationFactor, float32(1.0))
kv["gemma3.rope.scaling.beta_fast"] = cmp.Or(p.RopeScaling.BetaFast, float32(64.0))
kv["gemma3.rope.scaling.beta_slow"] = cmp.Or(p.RopeScaling.BetaSlow, float32(1.0))
}
kv["gemma3.embedding_length"] = p.HiddenSize
kv["gemma3.feed_forward_length"] = p.IntermediateSize
default:

View File

@@ -29,6 +29,17 @@ type mistral3Model struct {
SlidingWindow *uint32 `json:"sliding_window"`
HiddenAct string `json:"hidden_act"`
VocabSize uint32 `json:"vocab_size"`
RopeParameters struct {
BetaFast float32 `json:"beta_fast"`
BetaSlow float32 `json:"beta_slow"`
Factor float32 `json:"factor"`
Llama4ScalingBeta *float32 `json:"llama_4_scaling_beta"`
OrigMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
RopeType string `json:"rope_type"`
RopeTheta float32 `json:"rope_theta"`
Mscale *float32 `json:"mscale"`
MscaleAllDim *float32 `json:"mscale_all_dim"`
} `json:"rope_parameters"`
} `json:"text_config"`
VisionModel struct {
NumAttentionHeads uint32 `json:"num_attention_heads"`
@@ -41,6 +52,9 @@ type mistral3Model struct {
HeadDim uint32 `json:"head_dim"`
HiddenAct string `json:"hidden_act"`
RopeTheta float32 `json:"rope_theta"`
RopeParameters struct {
RopeTheta float32 `json:"rope_theta"`
} `json:"rope_parameters"`
} `json:"vision_config"`
MultiModalProjectorBias bool `json:"multimodal_projector_bias"`
ProjectorHiddenAct string `json:"projector_hidden_act"`
@@ -61,8 +75,25 @@ func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
kv["mistral3.attention.layer_norm_rms_epsilon"] = p.TextModel.RMSNormEPS
kv["mistral3.attention.key_length"] = p.TextModel.HeadDim
kv["mistral3.attention.value_length"] = p.TextModel.HeadDim
kv["mistral3.rope.dimension_count"] = p.TextModel.HiddenSize / p.TextModel.NumHiddenLayers
kv["mistral3.rope.freq_base"] = p.TextModel.RopeTheta
kv["mistral3.rope.dimension_count"] = cmp.Or(p.TextModel.HeadDim, p.TextModel.HiddenSize/p.TextModel.NumAttentionHeads)
kv["mistral3.rope.freq_base"] = cmp.Or(p.TextModel.RopeTheta, p.TextModel.RopeParameters.RopeTheta)
kv["mistral3.rope.scaling.factor"] = p.TextModel.RopeParameters.Factor
kv["mistral3.rope.scaling.type"] = p.TextModel.RopeParameters.RopeType
kv["mistral3.rope.scaling.beta_fast"] = p.TextModel.RopeParameters.BetaFast
kv["mistral3.rope.scaling.beta_slow"] = p.TextModel.RopeParameters.BetaSlow
if p.TextModel.RopeParameters.Mscale != nil {
kv["mistral3.rope.scaling.mscale"] = *p.TextModel.RopeParameters.Mscale
}
if p.TextModel.RopeParameters.MscaleAllDim != nil {
kv["mistral3.rope.scaling.mscale_all_dim"] = *p.TextModel.RopeParameters.MscaleAllDim
}
if p.TextModel.RopeParameters.OrigMaxPositionEmbeddings > 0 {
kv["mistral3.rope.scaling.original_context_length"] = p.TextModel.RopeParameters.OrigMaxPositionEmbeddings
}
if p.TextModel.RopeParameters.Llama4ScalingBeta != nil {
kv["mistral3.rope.scaling_beta"] = *p.TextModel.RopeParameters.Llama4ScalingBeta
}
// Vision configuration
kv["mistral3.vision.block_count"] = p.VisionModel.NumHiddenLayers
@@ -74,7 +105,7 @@ func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
kv["mistral3.vision.patch_size"] = p.VisionModel.PatchSize
kv["mistral3.vision.num_channels"] = p.VisionModel.NumChannels
// kv["mistral3.vision.attention.layer_norm_epsilon"] = 1e-05 // Default value
kv["mistral3.vision.rope.freq_base"] = p.VisionModel.RopeTheta
kv["mistral3.vision.rope.freq_base"] = cmp.Or(p.VisionModel.RopeTheta, p.VisionModel.RopeParameters.RopeTheta)
// Multimodal configuration
kv["mistral3.image_token_index"] = p.ImageTokenIndex

View File

@@ -0,0 +1,181 @@
package convert
import (
"cmp"
"fmt"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
)
type mistral3CausalModel struct {
ModelParameters
NumHiddenLayers uint32 `json:"num_hidden_layers"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
SlidingWindow *uint32 `json:"sliding_window"`
HiddenAct string `json:"hidden_act"`
VocabSize uint32 `json:"vocab_size"`
RopeParameters struct {
BetaFast float32 `json:"beta_fast"`
BetaSlow float32 `json:"beta_slow"`
Factor float32 `json:"factor"`
Llama4ScalingBeta *float32 `json:"llama_4_scaling_beta"`
OrigMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
RopeType string `json:"rope_type"`
RopeTheta float32 `json:"rope_theta"`
Mscale *float32 `json:"mscale"`
MscaleAllDim *float32 `json:"mscale_all_dim"`
} `json:"rope_parameters"`
}
func (p *mistral3CausalModel) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "mistral3"
kv["mistral3.vocab_size"] = p.VocabSize
// Text configuration
kv["mistral3.block_count"] = p.NumHiddenLayers
kv["mistral3.context_length"] = p.MaxPositionEmbeddings
kv["mistral3.embedding_length"] = p.HiddenSize
kv["mistral3.feed_forward_length"] = p.IntermediateSize
kv["mistral3.attention.head_count"] = p.NumAttentionHeads
kv["mistral3.attention.head_count_kv"] = p.NumKeyValueHeads
kv["mistral3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["mistral3.attention.key_length"] = p.HeadDim
kv["mistral3.attention.value_length"] = p.HeadDim
kv["mistral3.rope.dimension_count"] = cmp.Or(p.HeadDim, p.HiddenSize/p.NumAttentionHeads)
kv["mistral3.rope.freq_base"] = cmp.Or(p.RopeTheta, p.RopeParameters.RopeTheta)
kv["mistral3.rope.scaling.factor"] = p.RopeParameters.Factor
kv["mistral3.rope.scaling.type"] = p.RopeParameters.RopeType
kv["mistral3.rope.scaling.beta_fast"] = p.RopeParameters.BetaFast
kv["mistral3.rope.scaling.beta_slow"] = p.RopeParameters.BetaSlow
if p.RopeParameters.Mscale != nil {
kv["mistral3.rope.scaling.mscale"] = *p.RopeParameters.Mscale
}
if p.RopeParameters.MscaleAllDim != nil {
kv["mistral3.rope.scaling.mscale_all_dim"] = *p.RopeParameters.MscaleAllDim
}
if p.RopeParameters.OrigMaxPositionEmbeddings > 0 {
kv["mistral3.rope.scaling.original_context_length"] = p.RopeParameters.OrigMaxPositionEmbeddings
kv["mistral3.rope.scaling_beta"] = *p.RopeParameters.Llama4ScalingBeta
}
if p.RopeParameters.Llama4ScalingBeta != nil {
kv["mistral3.rope.scaling_beta"] = *p.RopeParameters.Llama4ScalingBeta
}
return kv
}
func (p *mistral3CausalModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
if !strings.HasPrefix(t.Name(), "v.") {
if strings.HasSuffix(t.Name(), ".attn_q.weight") ||
strings.HasSuffix(t.Name(), ".attn_k.weight") {
t.SetRepacker(p.repack)
}
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *mistral3CausalModel) Replacements() []string {
return []string{
"model.norm", "output_norm",
"model.", "",
"layers", "blk",
"transformer.layers", "blk",
"vision_tower", "v",
"ln_pre", "encoder_norm",
"input_layernorm", "attn_norm",
"post_attention_layernorm", "ffn_norm",
"embed_tokens", "token_embd",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.down_proj", "ffn_down",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"attention.q_proj", "attn_q",
"attention.k_proj", "attn_k",
"attention.v_proj", "attn_v",
"attention.o_proj", "attn_output",
"attention_norm", "attn_norm",
"feed_forward.gate_proj", "ffn_gate",
"feed_forward.down_proj", "ffn_down",
"feed_forward.up_proj", "ffn_up",
"multi_modal_projector", "mm",
"ffn_norm", "ffn_norm",
"lm_head", "output",
}
}
func (p *mistral3CausalModel) repack(name string, data []float32, shape []uint64) ([]float32, error) {
var dims []int
for _, dim := range shape {
dims = append(dims, int(dim))
}
var heads uint32
if strings.HasSuffix(name, ".attn_q.weight") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, ".attn_k.weight") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
} else {
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@@ -0,0 +1,213 @@
package convert
import (
"cmp"
"encoding/json"
"io/fs"
"path/filepath"
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
)
type nomicbertModel struct {
ModelParameters
NLayers uint32 `json:"n_layers"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
LayerNormEPS float32 `json:"layer_norm_eps"`
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
RopeFreqBase float32 `json:"rope_theta"`
normalizeEmbeddings bool
PoolingType uint32
// MoE parameters (only present in v2 models)
NumExperts uint32 `json:"num_local_experts"`
NumExpertsUsed uint32 `json:"num_experts_per_tok"`
MoEEveryNLayers uint32 `json:"moe_every_n_layers"`
}
var (
_ ModelConverter = (*nomicbertModel)(nil)
_ moreParser = (*nomicbertModel)(nil)
)
func (p *nomicbertModel) parseMore(fsys fs.FS) error {
bts, err := fs.ReadFile(fsys, "modules.json")
if err != nil {
return err
}
var modules []struct {
Type string `json:"type"`
Path string `json:"path"`
}
if err := json.Unmarshal(bts, &modules); err != nil {
return err
}
var pooling string
for _, m := range modules {
switch m.Type {
case "sentence_transformers.models.Pooling":
pooling = m.Path
case "sentence_transformers.models.Normalize":
p.normalizeEmbeddings = true
}
}
if pooling != "" {
bts, err := fs.ReadFile(fsys, filepath.Join(pooling, "config.json"))
if err != nil {
return err
}
var pc struct {
PoolingModeCLSToken bool `json:"pooling_mode_cls_token"`
PoolingModeMeanTokens bool `json:"pooling_mode_mean_tokens"`
}
if err := json.Unmarshal(bts, &pc); err != nil {
return err
}
if pc.PoolingModeMeanTokens {
p.PoolingType = 1
} else if pc.PoolingModeCLSToken {
p.PoolingType = 2
}
}
return nil
}
func (p *nomicbertModel) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
// Determine architecture based on MoE parameters (following qwen3 pattern)
arch := "nomic-bert"
if p.MoEEveryNLayers > 0 {
arch += "-moe"
}
kv["general.architecture"] = arch
kv["attention.causal"] = false
kv["pooling_type"] = p.PoolingType
kv["normalize_embeddings"] = p.normalizeEmbeddings
kv["block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers)
if contextLength := p.MaxPositionEmbeddings; contextLength > 0 {
kv["context_length"] = contextLength
}
if embeddingLength := p.HiddenSize; embeddingLength > 0 {
kv["embedding_length"] = p.HiddenSize
}
if feedForwardLength := p.IntermediateSize; feedForwardLength > 0 {
kv["feed_forward_length"] = p.IntermediateSize
}
if headCount := p.NumAttentionHeads; headCount > 0 {
kv["attention.head_count"] = p.NumAttentionHeads
}
if kvHeadCount := p.NumKeyValueHeads; kvHeadCount > 0 {
kv["attention.head_count_kv"] = p.NumKeyValueHeads
}
if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon); layerNormEpsilon > 0 {
kv["attention.layer_norm_epsilon"] = layerNormEpsilon
}
if p.RopeFreqBase > 0 {
kv["rope.freq_base"] = p.RopeFreqBase
}
// MoE specific parameters (only if MoE is enabled)
if p.NumExperts > 0 {
kv["expert_count"] = p.NumExperts
}
if p.NumExpertsUsed > 0 {
kv["expert_used_count"] = p.NumExpertsUsed
}
if p.MoEEveryNLayers > 0 {
kv["moe_every_n_layers"] = p.MoEEveryNLayers
}
kv["tokenizer.ggml.model"] = "bert"
kv["tokenizer.ggml.token_type_count"] = uint32(2)
// convert to phantom space tokens
for i, e := range t.Tokens {
switch {
case strings.HasPrefix(e, "[") && strings.HasSuffix(e, "]"):
// noop - keep special tokens as-is
case strings.HasPrefix(e, "##"):
t.Tokens[i] = e[2:]
default:
t.Tokens[i] = "\u2581" + e
}
}
kv["tokenizer.ggml.tokens"] = t.Tokens
return kv
}
func (p *nomicbertModel) Tensors(ts []Tensor) []*ggml.Tensor {
out := make([]*ggml.Tensor, 0, len(ts))
for _, t := range ts {
if slices.Contains([]string{
"embeddings.position_ids",
"pooler.dense.weight",
"pooler.dense.bias",
}, t.Name()) {
continue
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (nomicbertModel) Replacements() []string {
return []string{
"encoder.layer", "blk",
"encoder.layers", "blk",
"embeddings.word_embeddings", "token_embd",
"embeddings.token_type_embeddings", "token_types",
"embeddings.LayerNorm", "token_embd_norm",
"attention.self.qkv", "attn_qkv",
"attention.output.dense", "attn_output",
"attention.output.LayerNorm", "attn_output_norm",
"mlp.up", "ffn_up",
"mlp.down", "ffn_down",
"mlp.router", "ffn_gate_inp",
"mlp.experts.up", "ffn_up_exps",
"mlp.experts.down", "ffn_down_exps",
"intermediate.dense", "ffn_up",
"output.dense", "ffn_down",
"output.LayerNorm", "layer_output_norm",
}
}

117
convert/convert_olmo.go Normal file
View File

@@ -0,0 +1,117 @@
package convert
import (
"cmp"
"github.com/ollama/ollama/fs/ggml"
)
type ropeScaling struct {
Factor float32 `json:"factor"`
OriginalMaxPositionEmbeds uint32 `json:"original_max_position_embeddings"`
AttentionFactor float32 `json:"attention_factor"`
BetaFast float32 `json:"beta_fast"`
BetaSlow float32 `json:"beta_slow"`
RopeType string `json:"rope_type"`
ExtrapolationFactor float32 `json:"extrapolation_factor"`
}
type olmoModel struct {
ModelParameters
HiddenSize uint32 `json:"hidden_size"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
RMSNormEPS float32 `json:"rms_norm_eps"`
RopeTheta float32 `json:"rope_theta"`
RopeScaling *ropeScaling `json:"rope_scaling"`
SlidingWindow uint32 `json:"sliding_window"`
LayerTypes []string `json:"layer_types"`
}
var _ ModelConverter = (*olmoModel)(nil)
func (p *olmoModel) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "olmo3"
kv["olmo3.block_count"] = p.NumHiddenLayers
kv["olmo3.context_length"] = p.MaxPositionEmbeddings
kv["olmo3.embedding_length"] = p.HiddenSize
kv["olmo3.feed_forward_length"] = p.IntermediateSize
kv["olmo3.attention.head_count"] = p.NumAttentionHeads
kv["olmo3.attention.head_count_kv"] = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
if p.RopeTheta > 0 {
kv["olmo3.rope.freq_base"] = p.RopeTheta
}
if p.RopeScaling != nil {
if p.RopeScaling.Factor > 0 {
kv["olmo3.rope.scaling.factor"] = p.RopeScaling.Factor
}
if p.RopeScaling.OriginalMaxPositionEmbeds > 0 {
kv["olmo3.rope.scaling.original_context_length"] = p.RopeScaling.OriginalMaxPositionEmbeds
}
if p.RopeScaling.AttentionFactor > 0 {
kv["olmo3.rope.scaling.attn_factor"] = p.RopeScaling.AttentionFactor
}
if p.RopeScaling.RopeType != "" {
kv["olmo3.rope.scaling.type"] = p.RopeScaling.RopeType
}
}
if p.RMSNormEPS > 0 {
kv["olmo3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
}
if p.SlidingWindow > 0 {
kv["olmo3.attention.sliding_window"] = p.SlidingWindow
}
if len(p.LayerTypes) > 0 {
slidingPattern := make([]bool, len(p.LayerTypes))
for i, layerType := range p.LayerTypes {
slidingPattern[i] = (layerType == "sliding_attention")
}
kv["olmo3.attention.sliding_window_pattern"] = slidingPattern
}
return kv
}
func (p *olmoModel) Tensors(ts []Tensor) []*ggml.Tensor {
out := make([]*ggml.Tensor, 0, len(ts))
for _, t := range ts {
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *olmoModel) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.layers", "blk",
"model.norm", "output_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"self_attn.q_norm", "attn_q_norm",
"self_attn.k_norm", "attn_k_norm",
"post_attention_layernorm", "post_attention_norm",
"post_feedforward_layernorm", "post_ffw_norm",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
}
}

View File

@@ -147,7 +147,7 @@ func GPUDevices(ctx context.Context, runners []ml.FilteredRunnerDiscovery) []ml.
wg.Add(1)
go func(i int) {
defer wg.Done()
extraEnvs := ml.GetVisibleDevicesEnv(devices[i : i+1])
extraEnvs := ml.GetVisibleDevicesEnv(devices[i:i+1], true)
devices[i].AddInitValidation(extraEnvs)
if len(bootstrapDevices(ctx2ndPass, devices[i].LibraryPath, extraEnvs)) == 0 {
slog.Debug("filtering device which didn't fully initialize",
@@ -333,7 +333,8 @@ func GPUDevices(ctx context.Context, runners []ml.FilteredRunnerDiscovery) []ml.
defer cancel()
// Apply any dev filters to avoid re-discovering unsupported devices, and get IDs correct
devFilter := ml.GetVisibleDevicesEnv(devices)
// We avoid CUDA filters here to keep ROCm from failing to discover GPUs in a mixed environment
devFilter := ml.GetVisibleDevicesEnv(devices, false)
for dir := range libDirs {
updatedDevices := bootstrapDevices(ctx, []string{ml.LibOllamaPath, dir}, devFilter)

View File

@@ -50,7 +50,7 @@ Generate a response for a given prompt with a provided model. This is a streamin
Advanced parameters (optional):
- `format`: the format to return a response in. Format can be `json` or a JSON schema
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.mdx#valid-parameters-and-values) such as `temperature`
- `system`: system message to (overrides what is defined in the `Modelfile`)
- `template`: the prompt template to use (overrides what is defined in the `Modelfile`)
- `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects
@@ -507,7 +507,7 @@ The `message` object has the following fields:
Advanced parameters (optional):
- `format`: the format to return a response in. Format can be `json` or a JSON schema.
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.mdx#valid-parameters-and-values) such as `temperature`
- `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
@@ -1189,7 +1189,7 @@ If you are creating a model from a safetensors directory or from a GGUF file, yo
- `template`: (optional) the prompt template for the model
- `license`: (optional) a string or list of strings containing the license or licenses for the model
- `system`: (optional) a string containing the system prompt for the model
- `parameters`: (optional) a dictionary of parameters for the model (see [Modelfile](./modelfile.md#valid-parameters-and-values) for a list of parameters)
- `parameters`: (optional) a dictionary of parameters for the model (see [Modelfile](./modelfile.mdx#valid-parameters-and-values) for a list of parameters)
- `messages`: (optional) a list of message objects used to create a conversation
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
- `quantize` (optional): quantize a non-quantized (e.g. float16) model
@@ -1698,7 +1698,7 @@ Generate embeddings from a model
Advanced parameters:
- `truncate`: truncates the end of each input to fit within context length. Returns error if `false` and context length is exceeded. Defaults to `true`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.mdx#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
- `dimensions`: number of dimensions for the embedding
@@ -1817,7 +1817,7 @@ Generate embeddings from a model
Advanced parameters:
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.mdx#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
### Examples

View File

File diff suppressed because one or more lines are too long

View File

@@ -15,7 +15,7 @@ Also known as "single-shot" tool calling.
```shell
curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "qwen3",
"messages": [{"role": "user", "content": "What's the temperature in New York?"}],
"messages": [{"role": "user", "content": "What is the temperature in New York?"}],
"stream": false,
"tools": [
{
@@ -41,7 +41,7 @@ Also known as "single-shot" tool calling.
curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "qwen3",
"messages": [
{"role": "user", "content": "What's the temperature in New York?"},
{"role": "user", "content": "What is the temperature in New York?"},
{
"role": "assistant",
"tool_calls": [
@@ -90,7 +90,7 @@ Also known as "single-shot" tool calling.
}
return temperatures.get(city, "Unknown")
messages = [{"role": "user", "content": "What's the temperature in New York?"}]
messages = [{"role": "user", "content": "What is the temperature in New York?"}]
# pass functions directly as tools in the tools list or as a JSON schema
response = chat(model="qwen3", messages=messages, tools=[get_temperature], think=True)
@@ -146,7 +146,7 @@ Also known as "single-shot" tool calling.
},
]
const messages = [{ role: 'user', content: "What's the temperature in New York?" }]
const messages = [{ role: 'user', content: "What is the temperature in New York?" }]
const response = await ollama.chat({
model: 'qwen3',
@@ -609,7 +609,7 @@ def get_temperature(city: str) -> str:
return temperatures.get(city, 'Unknown')
messages = [{'role': 'user', 'content': "What's the temperature in New York?"}]
messages = [{'role': 'user', 'content': "What is the temperature in New York?"}]
while True:
stream = chat(
@@ -684,7 +684,7 @@ const getTemperatureTool = {
}
async function agentLoop() {
const messages = [{ role: 'user', content: "What's the temperature in New York?" }]
const messages = [{ role: 'user', content: "What is the temperature in New York?" }]
while (true) {
const stream = await ollama.chat({

View File

@@ -49,6 +49,8 @@ Install prerequisites:
- [Ninja](https://github.com/ninja-build/ninja/releases)
- (Optional) NVIDIA GPU support
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network)
- (Optional) VULKAN GPU support
- [VULKAN SDK](https://vulkan.lunarg.com/sdk/home) - useful for AMD/Intel GPUs
Then, configure and build the project:
@@ -57,6 +59,17 @@ cmake -B build
cmake --build build --config Release
```
> Building for Vulkan requires VULKAN_SDK environment variable:
>
> PowerShell
> ```powershell
> $env:VULKAN_SDK="C:\VulkanSDK\<version>"
> ```
> CMD
> ```cmd
> set VULKAN_SDK=C:\VulkanSDK\<version>
> ```
> [!IMPORTANT]
> Building for ROCm requires additional flags:
> ```
@@ -65,6 +78,7 @@ cmake --build build --config Release
> ```
Lastly, run Ollama:
```shell
@@ -84,7 +98,9 @@ Install prerequisites:
- [ROCm](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/quick-start.html)
- (Optional) NVIDIA GPU support
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads)
- (Optional) VULKAN GPU support
- [VULKAN SDK](https://vulkan.lunarg.com/sdk/home) - useful for AMD/Intel GPUs
- Or install via package manager: `sudo apt install vulkan-sdk` (Ubuntu/Debian) or `sudo dnf install vulkan-sdk` (Fedora/CentOS)
> [!IMPORTANT]
> Ensure prerequisites are in `PATH` before running CMake.

View File

@@ -0,0 +1,46 @@
# extract-examples
Extracts code examples from MDX files to a temp directory so you can run them.
## Usage
```shell
go run docs/tools/extract-examples/main.go <mdx-file>
```
## Example
```shell
go run docs/tools/extract-examples/main.go docs/api/openai-compatibility.mdx
```
Output:
```
Extracting code examples to: /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368
- 01_basic.py
- 01_basic.js
- 01_basic.sh
- 02_responses.py
- 02_responses.js
- 02_responses.sh
- 03_vision.py
- 03_vision.js
- 03_vision.sh
Extracted 9 file(s) to /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368
To run examples:
cd /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368
npm install # for JS examples
then run individual files with `node file.js`, `python file.py`, `bash file.sh`
```
## How it works
- Parses MDX files looking for fenced code blocks with filenames (e.g., ` ```python basic.py `)
- Groups examples by their `<CodeGroup>` and prefixes filenames with `01_`, `02_`, etc.
- Writes all extracted files to a temp directory

View File

@@ -0,0 +1,137 @@
package main
import (
"bufio"
"fmt"
"os"
"path/filepath"
"regexp"
"strings"
)
func main() {
if len(os.Args) < 2 {
fmt.Fprintln(os.Stderr, "Usage: go run extract-examples.go <mdx-file>")
os.Exit(1)
}
mdxFile := os.Args[1]
f, err := os.Open(mdxFile)
if err != nil {
fmt.Fprintf(os.Stderr, "Error: %v\n", err)
os.Exit(1)
}
defer f.Close()
// Create temp directory
tempDir, err := os.MkdirTemp("", "mdx-examples-*")
if err != nil {
fmt.Fprintf(os.Stderr, "Error creating temp dir: %v\n", err)
os.Exit(1)
}
fmt.Printf("Extracting code examples to: %s\n\n", tempDir)
// Patterns
codeBlockStart := regexp.MustCompile("^```([a-zA-Z0-9_-]+)\\s+([^\\s]+)$")
codeGroupStart := regexp.MustCompile("^<CodeGroup")
codeGroupEnd := regexp.MustCompile("^</CodeGroup>")
scanner := bufio.NewScanner(f)
inCodeBlock := false
inCodeGroup := false
var currentFile string
var content strings.Builder
count := 0
codeGroupNum := 0
for scanner.Scan() {
line := scanner.Text()
// Track CodeGroup boundaries
if codeGroupStart.MatchString(line) {
inCodeGroup = true
codeGroupNum++
continue
}
if codeGroupEnd.MatchString(line) {
inCodeGroup = false
continue
}
if inCodeBlock {
if line == "```" {
// End of code block - write file
if currentFile != "" {
outPath := filepath.Join(tempDir, currentFile)
if err := os.WriteFile(outPath, []byte(content.String()), 0o644); err != nil {
fmt.Fprintf(os.Stderr, "Error writing %s: %v\n", currentFile, err)
} else {
fmt.Printf(" - %s\n", currentFile)
count++
}
}
inCodeBlock = false
currentFile = ""
content.Reset()
} else {
content.WriteString(line)
content.WriteString("\n")
}
} else {
if matches := codeBlockStart.FindStringSubmatch(line); matches != nil {
inCodeBlock = true
filename := matches[2]
// Prefix with CodeGroup number if inside a CodeGroup
if inCodeGroup {
currentFile = fmt.Sprintf("%02d_%s", codeGroupNum, filename)
} else {
currentFile = filename
}
content.Reset()
}
}
}
if err := scanner.Err(); err != nil {
fmt.Fprintf(os.Stderr, "Error reading file: %v\n", err)
os.Exit(1)
}
// Write package.json for JavaScript dependencies
packageJSON := `{
"name": "mdx-examples",
"type": "module",
"dependencies": {
"openai": "^4",
"ollama": "^0.5"
}
}
`
if err := os.WriteFile(filepath.Join(tempDir, "package.json"), []byte(packageJSON), 0o644); err != nil {
fmt.Fprintf(os.Stderr, "Error writing package.json: %v\n", err)
}
// Write pyproject.toml for Python dependencies
pyprojectTOML := `[project]
name = "mdx-examples"
version = "0.0.0"
dependencies = [
"openai",
"ollama",
]
`
if err := os.WriteFile(filepath.Join(tempDir, "pyproject.toml"), []byte(pyprojectTOML), 0o644); err != nil {
fmt.Fprintf(os.Stderr, "Error writing pyproject.toml: %v\n", err)
}
fmt.Printf("\n")
fmt.Printf("Extracted %d file(s) to %s\n", count, tempDir)
fmt.Printf("\n")
fmt.Printf("To run examples:\n")
fmt.Printf("\n")
fmt.Printf(" cd %s\n npm install # for JS examples\n", tempDir)
fmt.Printf("\n")
fmt.Printf("then run individual files with `node file.js`, `python file.py`, `bash file.sh`\n")
}

View File

@@ -13,6 +13,7 @@ import (
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/util/bufioutil"
"github.com/ollama/ollama/ml"
)
type GGML struct {
@@ -240,18 +241,20 @@ func (kv KV) Bools(key string, defaultValue ...[]bool) []bool {
func (kv KV) OllamaEngineRequired() bool {
return slices.Contains([]string{
"bert",
"deepseek2",
"deepseekocr",
"gemma3",
"gemma3n",
"gptoss", "gpt-oss",
"llama4",
"mistral3",
"mllama",
"nomic-bert",
"olmo3",
"qwen25vl",
"qwen3", "qwen3moe",
"qwen3vl", "qwen3vlmoe",
"deepseekocr",
"deepseek2",
"nomic-bert",
}, kv.Architecture())
}
@@ -550,7 +553,7 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, error) {
}, nil
}
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string, useFlashAttention bool) (kv []uint64, partialOffload, fullOffload uint64) {
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string, useFlashAttention ml.FlashAttentionType) (kv []uint64, partialOffload, fullOffload uint64) {
context *= uint64(numParallel)
embedding := f.KV().EmbeddingLength()
@@ -791,7 +794,7 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
}
partialOffload = 2 * f.KV().HeadCountMax() / cmp.Or(f.KV().HeadCountKVMin(), 1) * kvTotal / 6
if useFlashAttention {
if useFlashAttention == ml.FlashAttentionEnabled {
// rough estimate of graph size with flash attention on
partialOffload = (4*uint64(numParallel) + context>>10 + 110) * format.MebiByte
}
@@ -809,6 +812,14 @@ func (f GGML) SupportsKVCacheType(cacheType string) bool {
return slices.Contains([]string{"q8_0", "q4_0"}, cacheType)
}
// KVCacheTypeIsQuantized checks if the requested cache type is a quantized type
func (f GGML) KVCacheTypeIsQuantized(cacheType string) bool {
if cacheType == "" || cacheType == "f16" || cacheType == "f32" || cacheType == "bf16" {
return false
}
return true
}
// SupportsFlashAttention checks if the model supports flash attention
func (f GGML) SupportsFlashAttention() bool {
_, isEmbedding := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]
@@ -829,8 +840,11 @@ func (f GGML) SupportsFlashAttention() bool {
// FlashAttention checks if the model should enable flash attention
func (f GGML) FlashAttention() bool {
return slices.Contains([]string{
"bert",
"gemma3",
"gptoss", "gpt-oss",
"mistral3",
"olmo3",
"qwen3", "qwen3moe",
"qwen3vl", "qwen3vlmoe",
}, f.KV().String("general.architecture"))

View File

@@ -597,6 +597,10 @@ func ggufWriteKV(ws io.WriteSeeker, arch, k string, v any) error {
var err error
switch v := v.(type) {
case int32:
err = writeGGUF(ws, ggufTypeInt32, v)
case int64:
err = writeGGUF(ws, ggufTypeInt64, v)
case uint32, FileType:
err = writeGGUF(ws, ggufTypeUint32, v)
case uint64:
@@ -611,6 +615,10 @@ func ggufWriteKV(ws io.WriteSeeker, arch, k string, v any) error {
err = writeGGUFArray(ws, ggufTypeInt32, v)
case *array[int32]:
err = writeGGUFArray(ws, ggufTypeInt32, v.values)
case []int64:
err = writeGGUFArray(ws, ggufTypeInt64, v)
case *array[int64]:
err = writeGGUFArray(ws, ggufTypeInt64, v.values)
case []uint32:
err = writeGGUFArray(ws, ggufTypeUint32, v)
case *array[uint32]:

View File

@@ -42,6 +42,10 @@ func TestWriteGGUF(t *testing.T) {
"general.architecture": "test",
"general.alignment": uint32(16),
"test.key": "value",
"test.int32_key": int32(-42),
"test.int64_key": int64(-9223372036854775808),
"test.int32_array": []int32{-1, 0, 1, 2147483647, -2147483648},
"test.int64_array": []int64{-1, 0, 1, 9223372036854775807, -9223372036854775808},
"attention.key": "value2",
"tokenizer.key": "value3",
"adapter.key": "value4",
@@ -55,7 +59,7 @@ func TestWriteGGUF(t *testing.T) {
}
defer r.Close()
ff, err := Decode(r, 0)
ff, err := Decode(r, -1)
if err != nil {
t.Fatal(err)
}
@@ -65,15 +69,19 @@ func TestWriteGGUF(t *testing.T) {
"general.alignment": uint32(16),
"general.parameter_count": uint64(54),
"test.key": "value",
"test.int32_key": int32(-42),
"test.int64_key": int64(-9223372036854775808),
"test.int32_array": &array[int32]{size: 5, values: []int32{-1, 0, 1, 2147483647, -2147483648}},
"test.int64_array": &array[int64]{size: 5, values: []int64{-1, 0, 1, 9223372036854775807, -9223372036854775808}},
"test.attention.key": "value2",
"tokenizer.key": "value3",
"adapter.key": "value4",
}, ff.KV()); diff != "" {
}, ff.KV(), cmp.AllowUnexported(array[int32]{}, array[int64]{})); diff != "" {
t.Errorf("Mismatch (-want +got):\n%s", diff)
}
if diff := cmp.Diff(Tensors{
Offset: 800,
Offset: 992,
items: []*Tensor{
{Name: "blk.0.attn_k.weight", Offset: 0, Shape: []uint64{2, 3}},
{Name: "blk.0.attn_norm.weight", Offset: 32, Shape: []uint64{2, 3}},

View File

@@ -4,7 +4,9 @@ package integration
import (
"context"
"errors"
"math"
"strings"
"testing"
"time"
@@ -204,8 +206,8 @@ func TestAllMiniLMEmbed(t *testing.T) {
t.Fatalf("expected %v, got %v (similarity: %f)", expected[0:5], res.Embeddings[0][0:5], sim)
}
if res.PromptEvalCount != 6 {
t.Fatalf("expected 6 prompt tokens, got %d", res.PromptEvalCount)
if res.PromptEvalCount != 8 {
t.Fatalf("expected 8 prompt tokens, got %d", res.PromptEvalCount)
}
}
@@ -251,8 +253,8 @@ func TestAllMiniLMBatchEmbed(t *testing.T) {
t.Fatalf("expected %v, got %v (similarity: %f)", expected[1][0:5], res.Embeddings[1][0:5], sim)
}
if res.PromptEvalCount != 12 {
t.Fatalf("expected 12 prompt tokens, got %d", res.PromptEvalCount)
if res.PromptEvalCount != 16 {
t.Fatalf("expected 16 prompt tokens, got %d", res.PromptEvalCount)
}
}
@@ -275,7 +277,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
cases := []struct {
name string
request api.EmbedRequest
check func(*api.EmbedResponse, error)
check func(*testing.T, *api.EmbedResponse, error)
}{
{
name: "target truncation",
@@ -283,7 +285,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
Model: "all-minilm",
Input: "why",
},
check: func(got *api.EmbedResponse, err error) {
check: func(t *testing.T, got *api.EmbedResponse, err error) {
if err != nil {
t.Fatal(err)
}
@@ -300,10 +302,11 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
Input: "why is the sky blue?",
Options: map[string]any{"num_ctx": 3},
},
check: func(got *api.EmbedResponse, err error) {
check: func(t *testing.T, got *api.EmbedResponse, err error) {
if err != nil {
t.Fatal(err)
}
t.Logf("PromptEvalCount: want=%d got=%d", want.PromptEvalCount, got.PromptEvalCount)
if diff := cmp.Diff(want.Embeddings[0], got.Embeddings[0]); diff != "" {
t.Errorf("embedding mismatch (-want +got):\n%s", diff)
}
@@ -317,10 +320,11 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 3},
},
check: func(got *api.EmbedResponse, err error) {
check: func(t *testing.T, got *api.EmbedResponse, err error) {
if err != nil {
t.Fatal(err)
}
t.Logf("PromptEvalCount: want=%d got=%d", want.PromptEvalCount, got.PromptEvalCount)
if diff := cmp.Diff(want.Embeddings[0], got.Embeddings[0]); diff != "" {
t.Errorf("embedding mismatch (-want +got):\n%s", diff)
}
@@ -334,21 +338,21 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
Truncate: &truncFalse,
Options: map[string]any{"num_ctx": 3},
},
check: func(res *api.EmbedResponse, err error) {
if err.Error() != "input exceeds maximum context length" {
check: func(t *testing.T, res *api.EmbedResponse, err error) {
if err.Error() != "the input length exceeds the context length" {
t.Fatalf("expected truncation error, got: %v", err)
}
},
},
{
name: "input after truncate error",
name: "input after truncate error with context length of 1",
request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 1},
},
check: func(res *api.EmbedResponse, err error) {
check: func(t *testing.T, res *api.EmbedResponse, err error) {
if err.Error() != "input after truncation exceeds maximum context length" {
t.Fatalf("expected truncation error, got: %v", err)
}
@@ -362,7 +366,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 0},
},
check: func(res *api.EmbedResponse, err error) {
check: func(t *testing.T, res *api.EmbedResponse, err error) {
if err.Error() != "input after truncation exceeds maximum context length" {
t.Fatalf("expected truncation error, got: %v", err)
}
@@ -375,7 +379,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
Input: "why is the sky blue? Why is the sky blue? hi there my",
Options: map[string]any{"num_ctx": 16},
},
check: func(res *api.EmbedResponse, err error) {
check: func(t *testing.T, res *api.EmbedResponse, err error) {
if err != nil {
t.Fatal(err)
}
@@ -385,7 +389,8 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
for _, req := range cases {
t.Run(req.name, func(t *testing.T) {
req.check(embedTestHelper(ctx, client, t, req.request))
resp, err := embedTestHelper(ctx, client, t, req.request)
req.check(t, resp, err)
})
}
}
@@ -409,3 +414,230 @@ func embedTestHelper(ctx context.Context, client *api.Client, t *testing.T, req
return client.Embed(ctx, &req)
}
func TestEmbedTruncation(t *testing.T) {
// Use test deadline if set, otherwise default to 2 minutes
timeout := 2 * time.Minute
if deadline, ok := t.Deadline(); ok {
timeout = time.Until(deadline) - 10*time.Second // Reserve 10s buffer
}
ctx, cancel := context.WithTimeout(context.Background(), timeout)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
for _, model := range libraryEmbedModels {
model := model
t.Run(model, func(t *testing.T) {
// Check if we're running out of time (reserve 20s for current model)
if deadline, ok := t.Deadline(); ok && time.Until(deadline) < 20*time.Second {
t.Skip("skipping remaining tests to avoid timeout")
}
// Give each model its own budget to account for first-time pulls/loads
mctx, mcancel := context.WithTimeout(ctx, 3*time.Minute)
defer mcancel()
t.Run("truncation batch", func(t *testing.T) {
truncTrue := true
req := api.EmbedRequest{
Model: model,
Input: []string{"short", strings.Repeat("long ", 100), "medium text"},
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 30},
}
res, err := embedTestHelper(mctx, client, t, req)
if err != nil {
t.Fatal(err)
}
if len(res.Embeddings) != 3 {
t.Fatalf("expected 3 embeddings, got %d", len(res.Embeddings))
}
if res.PromptEvalCount > 90 {
t.Fatalf("expected tokens <= 90 (3 × 30 max), got %d", res.PromptEvalCount)
}
})
t.Run("runner token count accuracy", func(t *testing.T) {
baseline := api.EmbedRequest{Model: model, Input: "test"}
baseRes, err := embedTestHelper(mctx, client, t, baseline)
if err != nil {
t.Fatal(err)
}
batch := api.EmbedRequest{
Model: model,
Input: []string{"test", "test", "test"},
}
batchRes, err := embedTestHelper(mctx, client, t, batch)
if err != nil {
t.Fatal(err)
}
expectedCount := baseRes.PromptEvalCount * 3
if batchRes.PromptEvalCount < expectedCount-2 || batchRes.PromptEvalCount > expectedCount+2 {
t.Fatalf("expected ~%d tokens (3 × %d), got %d",
expectedCount, baseRes.PromptEvalCount, batchRes.PromptEvalCount)
}
})
})
}
}
// TestEmbedLargeInput tests that embedding models can handle large inputs that would exceed typical batch sizes.
func TestEmbedLargeInput(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Minute)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
for _, model := range libraryEmbedModels {
model := model
t.Run(model, func(t *testing.T) {
mctx, mcancel := context.WithTimeout(ctx, 2*time.Minute)
defer mcancel()
// Test with progressively larger inputs
testCases := []struct {
name string
inputWords int
}{
{"medium_input_256_words", 256},
{"large_input_512_words", 512},
{"very_large_input_800_words", 800},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
words := make([]string, tc.inputWords)
for i := range words {
words[i] = "word"
}
input := strings.Join(words, " ")
req := api.EmbedRequest{
Model: model,
Input: input,
KeepAlive: &api.Duration{Duration: 30 * time.Second},
}
res, err := embedTestHelper(mctx, client, t, req)
if err != nil {
t.Fatalf("embedding failed for %d words: %v", tc.inputWords, err)
}
if len(res.Embeddings) != 1 {
t.Fatalf("expected 1 embedding, got %d", len(res.Embeddings))
}
if len(res.Embeddings[0]) == 0 {
t.Fatal("expected non-empty embedding")
}
t.Logf("Successfully embedded %d words (%d tokens)", tc.inputWords, res.PromptEvalCount)
})
}
})
}
}
// TestEmbedStatusCode tests that errors from the embedding endpoint
// properly preserve their HTTP status codes when returned to the client.
// This test specifically checks the error handling path in EmbedHandler
// where api.StatusError errors should maintain their original status code.
func TestEmbedStatusCode(t *testing.T) {
// Use test deadline if set, otherwise default to 2 minutes
timeout := 2 * time.Minute
if deadline, ok := t.Deadline(); ok {
timeout = time.Until(deadline) - 10*time.Second // Reserve 10s buffer
}
ctx, cancel := context.WithTimeout(context.Background(), timeout)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
for _, model := range libraryEmbedModels {
model := model
t.Run(model, func(t *testing.T) {
// Check if we're running out of time (reserve 20s for current model)
if deadline, ok := t.Deadline(); ok && time.Until(deadline) < 20*time.Second {
t.Skip("skipping remaining tests to avoid timeout")
}
mctx, mcancel := context.WithTimeout(ctx, 3*time.Minute)
defer mcancel()
// Pull the model if needed
if err := PullIfMissing(mctx, client, model); err != nil {
t.Fatal(err)
}
t.Run("truncation error status code", func(t *testing.T) {
truncFalse := false
longInput := strings.Repeat("word ", 100)
req := api.EmbedRequest{
Model: model,
Input: longInput,
Truncate: &truncFalse,
Options: map[string]any{"num_ctx": 10},
}
_, err := embedTestHelper(mctx, client, t, req)
if err == nil {
t.Fatal("expected error when truncate=false with long input")
}
// Check that it's a StatusError with the correct status code
var statusErr api.StatusError
if !errors.As(err, &statusErr) {
t.Fatalf("expected api.StatusError, got %T: %v", err, err)
}
// The error should be a 4xx client error (likely 400 Bad Request)
// not a 500 Internal Server Error
if statusErr.StatusCode < 400 || statusErr.StatusCode >= 500 {
t.Errorf("expected 4xx status code, got %d", statusErr.StatusCode)
}
// Verify the error message is meaningful
if !strings.Contains(err.Error(), "context length") {
t.Errorf("expected error message to mention context length, got: %v", err)
}
})
t.Run("batch truncation error status code", func(t *testing.T) {
truncFalse := false
req := api.EmbedRequest{
Model: model,
Input: []string{
"short input",
strings.Repeat("very long input ", 100),
"another short input",
},
Truncate: &truncFalse,
Options: map[string]any{"num_ctx": 10},
}
_, err := embedTestHelper(mctx, client, t, req)
if err == nil {
t.Fatal("expected error when one input exceeds context with truncate=false")
}
// Check that it's a StatusError with the correct status code
var statusErr api.StatusError
if !errors.As(err, &statusErr) {
t.Fatalf("expected api.StatusError, got %T: %v", err, err)
}
// The error should be a 4xx client error, not a 500 Internal Server Error
if statusErr.StatusCode < 400 || statusErr.StatusCode >= 500 {
t.Errorf("expected 4xx status code, got %d", statusErr.StatusCode)
}
})
})
}
}

View File

@@ -33,6 +33,9 @@ func TestVisionModels(t *testing.T) {
// Qwen 3 VL mixture of experts
model: "qwen3-vl:30b",
},
{
model: "ministral-3",
},
}
for _, v := range testCases {

View File

@@ -30,6 +30,7 @@ func TestAPIToolCalling(t *testing.T) {
"mistral": 6,
"qwen2.5": 6,
"qwen2": 6,
"ministral-3": 20,
"mistral-nemo": 9,
"mistral-small": 16,
"mixtral:8x22b": 80,

View File

@@ -38,6 +38,7 @@ var (
// Note: add newer models at the top of the list to test them first
ollamaEngineChatModels = []string{
"ministral-3",
"qwen3-coder:30b",
"gpt-oss:20b",
"gemma3n:e2b",
@@ -167,6 +168,7 @@ var (
"medllama2",
"megadolphin",
"minicpm-v",
"ministral-3",
"mistral-large",
"mistral-nemo",
"mistral-openorca",
@@ -270,6 +272,7 @@ var (
"mistral",
"qwen2.5",
"qwen2",
"ministral-3",
"mistral-nemo",
"mistral-small",
"mixtral:8x22b",

2
llama/build-info.cpp generated vendored
View File

@@ -1,4 +1,4 @@
int LLAMA_BUILD_NUMBER = 0;
char const *LLAMA_COMMIT = "3cfa9c3f125763305b4226bc032f1954f08990dc";
char const *LLAMA_COMMIT = "17f7f4baad8b3a716ee139da7bb56ae984e8c0fa";
char const *LLAMA_COMPILER = "";
char const *LLAMA_BUILD_TARGET = "";

View File

@@ -22,6 +22,9 @@ include /src/llama.*
include /src/llama-*.*
include /src/unicode-data.*
include /src/unicode.*
include /src/models/
include /src/models/*.h
include /src/models/*.cpp
include /vendor/
include /vendor/miniaudio/
include /vendor/miniaudio/*.h

View File

@@ -8,6 +8,7 @@
#include "common.h"
#include "log.h"
#include "llama.h"
#include "sampling.h"
#include <algorithm>
#include <cinttypes>
@@ -26,7 +27,6 @@
#include <sstream>
#include <string>
#include <thread>
#include <unordered_map>
#include <unordered_set>
#include <vector>
@@ -60,6 +60,14 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
common_time_meas::common_time_meas(int64_t & t_acc, bool disable) : t_start_us(disable ? -1 : ggml_time_us()), t_acc(t_acc) {}
common_time_meas::~common_time_meas() {
if (t_start_us >= 0) {
t_acc += ggml_time_us() - t_start_us;
}
}
//
// CPU utils
//
@@ -355,11 +363,7 @@ bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREAD
}
void common_init() {
llama_log_set([](ggml_log_level level, const char * text, void * /*user_data*/) {
if (LOG_DEFAULT_LLAMA <= common_log_verbosity_thold) {
common_log_add(common_log_main(), level, "%s", text);
}
}, NULL);
llama_log_set(common_log_default_callback, NULL);
#ifdef NDEBUG
const char * build_type = "";
@@ -690,7 +694,7 @@ bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_over
// Validate if a filename is safe to use
// To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
bool fs_validate_filename(const std::string & filename) {
bool fs_validate_filename(const std::string & filename, bool allow_subdirs) {
if (!filename.length()) {
// Empty filename invalid
return false;
@@ -750,10 +754,14 @@ bool fs_validate_filename(const std::string & filename) {
|| (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
|| c == 0xFFFD // Replacement Character (UTF-8)
|| c == 0xFEFF // Byte Order Mark (BOM)
|| c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
|| c == ':' || c == '*' // Illegal characters
|| c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
return false;
}
if (!allow_subdirs && (c == '/' || c == '\\')) {
// Subdirectories not allowed, reject path separators
return false;
}
}
// Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
@@ -778,11 +786,29 @@ bool fs_validate_filename(const std::string & filename) {
#include <iostream>
#ifdef _WIN32
static std::wstring utf8_to_wstring(const std::string & str) {
if (str.empty()) {
return std::wstring();
}
int size = MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), NULL, 0);
if (size <= 0) {
return std::wstring();
}
std::wstring wstr(size, 0);
MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), &wstr[0], size);
return wstr;
}
#endif
// returns true if successful, false otherwise
bool fs_create_directory_with_parents(const std::string & path) {
#ifdef _WIN32
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
std::wstring wpath = converter.from_bytes(path);
std::wstring wpath = utf8_to_wstring(path);
// if the path already exists, check whether it's a directory
const DWORD attributes = GetFileAttributesW(wpath.c_str());
@@ -855,6 +881,11 @@ bool fs_create_directory_with_parents(const std::string & path) {
#endif // _WIN32
}
bool fs_is_directory(const std::string & path) {
std::filesystem::path dir(path);
return std::filesystem::exists(dir) && std::filesystem::is_directory(dir);
}
std::string fs_get_cache_directory() {
std::string cache_directory = "";
auto ensure_trailing_slash = [](std::string p) {
@@ -889,6 +920,8 @@ std::string fs_get_cache_directory() {
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
#elif defined(_WIN32)
cache_directory = std::getenv("LOCALAPPDATA");
#elif defined(__EMSCRIPTEN__)
GGML_ABORT("not implemented on this platform");
#else
# error Unknown architecture
#endif
@@ -908,11 +941,130 @@ std::string fs_get_cache_file(const std::string & filename) {
return cache_directory + filename;
}
std::vector<common_file_info> fs_list(const std::string & path, bool include_directories) {
std::vector<common_file_info> files;
if (path.empty()) return files;
std::filesystem::path dir(path);
if (!std::filesystem::exists(dir) || !std::filesystem::is_directory(dir)) {
return files;
}
for (const auto & entry : std::filesystem::directory_iterator(dir)) {
try {
// Only include regular files (skip directories)
const auto & p = entry.path();
if (std::filesystem::is_regular_file(p)) {
common_file_info info;
info.path = p.string();
info.name = p.filename().string();
info.is_dir = false;
try {
info.size = static_cast<size_t>(std::filesystem::file_size(p));
} catch (const std::filesystem::filesystem_error &) {
info.size = 0;
}
files.push_back(std::move(info));
} else if (include_directories && std::filesystem::is_directory(p)) {
common_file_info info;
info.path = p.string();
info.name = p.filename().string();
info.size = 0; // Directories have no size
info.is_dir = true;
files.push_back(std::move(info));
}
} catch (const std::filesystem::filesystem_error &) {
// skip entries we cannot inspect
continue;
}
}
return files;
}
//
// TTY utils
//
bool tty_can_use_colors() {
// Check NO_COLOR environment variable (https://no-color.org/)
if (const char * no_color = std::getenv("NO_COLOR")) {
if (no_color[0] != '\0') {
return false;
}
}
// Check TERM environment variable
if (const char * term = std::getenv("TERM")) {
if (std::strcmp(term, "dumb") == 0) {
return false;
}
}
// Check if stdout and stderr are connected to a terminal
// We check both because log messages can go to either
bool stdout_is_tty = isatty(fileno(stdout));
bool stderr_is_tty = isatty(fileno(stderr));
return stdout_is_tty || stderr_is_tty;
}
//
// Model utils
//
static inline void common_init_sampler_from_model(
const llama_model * model,
common_params_sampling & sparams) {
const uint64_t config = sparams.user_sampling_config;
auto get_int32 = [&](const char * key, int32_t & dst, uint64_t user_config) {
if (config & user_config) return;
char buf[64] = {0};
if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
char * end = nullptr;
int32_t v = strtol(buf, &end, 10);
if (end && end != buf) dst = v;
}
};
auto get_float = [&](const char * key, float & dst, uint64_t user_config) {
if (config & user_config) return;
char buf[128] = {0};
if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
char * end = nullptr;
float v = strtof(buf, &end);
if (end && end != buf) dst = v;
}
};
// Sampling sequence
if (!(config & common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS)) {
char buf[512] = {0};
if (llama_model_meta_val_str(model, llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE), buf, sizeof(buf)) > 0) {
const std::vector<std::string> sampler_names = string_split<std::string>(std::string(buf), ';');
if (!sampler_names.empty()) {
sparams.samplers = common_sampler_types_from_names(sampler_names, true);
}
}
}
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_K), sparams.top_k, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_K);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_P), sparams.top_p, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_P);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIN_P), sparams.min_p, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIN_P);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY), sparams.xtc_probability, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD), sparams.xtc_threshold, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TEMP), sparams.temp, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TEMP);
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N), sparams.penalty_last_n, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT), sparams.penalty_repeat, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT);
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT), sparams.mirostat, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU), sparams.mirostat_tau, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA), sparams.mirostat_eta, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA);
}
struct common_init_result common_init_from_params(common_params & params) {
common_init_result iparams;
auto mparams = common_model_params_to_llama(params);
@@ -924,6 +1076,8 @@ struct common_init_result common_init_from_params(common_params & params) {
return iparams;
}
common_init_sampler_from_model(model, params.sampling);
const llama_vocab * vocab = llama_model_get_vocab(model);
auto cparams = common_context_params_to_llama(params);

View File

@@ -2,17 +2,19 @@
#pragma once
#include "ggml-opt.h"
#include "llama-cpp.h"
#include <set>
#include <sstream>
#include <string>
#include <string_view>
#include <vector>
#include <map>
#include <sstream>
#include <cmath>
#include "ggml-opt.h"
#include "llama-cpp.h"
#if defined(_WIN32) && !defined(_WIN32_WINNT)
#define _WIN32_WINNT 0x0A00
#endif
#ifdef _WIN32
#define DIRECTORY_SEPARATOR '\\'
@@ -28,7 +30,14 @@
fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
} while(0)
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
struct common_time_meas {
common_time_meas(int64_t & t_acc, bool disable = false);
~common_time_meas();
const int64_t t_start_us;
int64_t & t_acc;
};
struct common_adapter_lora_info {
std::string path;
@@ -133,6 +142,22 @@ struct common_grammar_trigger {
llama_token token = LLAMA_TOKEN_NULL;
};
enum common_params_sampling_config : uint64_t {
COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS = 1 << 0,
COMMON_PARAMS_SAMPLING_CONFIG_TOP_K = 1 << 1,
COMMON_PARAMS_SAMPLING_CONFIG_TOP_P = 1 << 2,
COMMON_PARAMS_SAMPLING_CONFIG_MIN_P = 1 << 3,
COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY = 1 << 4,
COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD = 1 << 5,
COMMON_PARAMS_SAMPLING_CONFIG_TEMP = 1 << 6,
COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N = 1 << 7,
COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT = 1 << 8,
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT = 1 << 9,
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU = 1 << 10,
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA = 1 << 11,
};
// sampling parameters
struct common_params_sampling {
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
@@ -165,6 +190,8 @@ struct common_params_sampling {
bool no_perf = false; // disable performance metrics
bool timing_per_token = false;
uint64_t user_sampling_config = 0; // bitfield to track user-specified samplers
std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
@@ -198,6 +225,7 @@ struct common_params_model {
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string docker_repo = ""; // Docker repo // NOLINT
std::string name = ""; // in format <user>/<model>[:<tag>] (tag is optional) // NOLINT
};
struct common_params_speculative {
@@ -344,7 +372,7 @@ struct common_params {
std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
int32_t verbosity = 0;
int32_t verbosity = 3; // LOG_LEVEL_INFO
int32_t control_vector_layer_start = -1; // layer range for control vector
int32_t control_vector_layer_end = -1; // layer range for control vector
bool offline = false;
@@ -406,6 +434,8 @@ struct common_params {
bool mmproj_use_gpu = true; // use GPU for multimodal model
bool no_mmproj = false; // explicitly disable multimodal model
std::vector<std::string> image; // path to image file(s)
int image_min_tokens = -1;
int image_max_tokens = -1;
// finetune
struct lr_opt lr;
@@ -451,14 +481,21 @@ struct common_params {
bool endpoint_props = false; // only control POST requests, not GET
bool endpoint_metrics = false;
// router server configs
std::string models_dir = ""; // directory containing models for the router server
int models_max = 4; // maximum number of models to load simultaneously
bool models_autoload = true; // automatically load models when requested via the router server
bool log_json = false;
std::string slot_save_path;
std::string media_path; // path to directory for loading media files
float slot_prompt_similarity = 0.1f;
// batched-bench params
bool is_pp_shared = false;
bool is_pp_shared = false;
bool is_tg_separate = false;
std::vector<int32_t> n_pp;
std::vector<int32_t> n_tg;
@@ -505,6 +542,10 @@ struct common_params {
// return false from callback to abort model loading or true to continue
llama_progress_callback load_progress_callback = NULL;
void * load_progress_callback_user_data = NULL;
bool has_speculative() const {
return !speculative.model.path.empty() || !speculative.model.hf_repo.empty();
}
};
// call once at the start of a program if it uses libcommon
@@ -599,12 +640,28 @@ std::string string_from(const struct llama_context * ctx, const struct llama_bat
// Filesystem utils
//
bool fs_validate_filename(const std::string & filename);
bool fs_validate_filename(const std::string & filename, bool allow_subdirs = false);
bool fs_create_directory_with_parents(const std::string & path);
bool fs_is_directory(const std::string & path);
std::string fs_get_cache_directory();
std::string fs_get_cache_file(const std::string & filename);
struct common_file_info {
std::string path;
std::string name;
size_t size = 0; // in bytes
bool is_dir = false;
};
std::vector<common_file_info> fs_list(const std::string & path, bool include_directories);
//
// TTY utils
//
// Auto-detect if colors can be enabled based on terminal and environment
bool tty_can_use_colors();
//
// Model utils
//

View File

@@ -268,10 +268,10 @@ static bool is_reserved_name(const std::string & name) {
}
std::regex INVALID_RULE_CHARS_RE("[^a-zA-Z0-9-]+");
std::regex GRAMMAR_LITERAL_ESCAPE_RE("[\r\n\"]");
std::regex GRAMMAR_LITERAL_ESCAPE_RE("[\r\n\"\\\\]");
std::regex GRAMMAR_RANGE_LITERAL_ESCAPE_RE("[\r\n\"\\]\\-\\\\]");
std::unordered_map<char, std::string> GRAMMAR_LITERAL_ESCAPES = {
{'\r', "\\r"}, {'\n', "\\n"}, {'"', "\\\""}, {'-', "\\-"}, {']', "\\]"}
{'\r', "\\r"}, {'\n', "\\n"}, {'"', "\\\""}, {'-', "\\-"}, {']', "\\]"}, {'\\', "\\\\"}
};
std::unordered_set<char> NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'};
@@ -303,6 +303,8 @@ static std::string format_literal(const std::string & literal) {
return "\"" + escaped + "\"";
}
std::string gbnf_format_literal(const std::string & literal) { return format_literal(literal); }
class SchemaConverter {
private:
friend std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options);
@@ -601,7 +603,10 @@ private:
}
std::string _resolve_ref(const std::string & ref) {
std::string ref_name = ref.substr(ref.find_last_of('/') + 1);
auto it = ref.find('#');
std::string ref_fragment = it != std::string::npos ? ref.substr(it + 1) : ref;
static const std::regex nonalphanumeric_regex(R"([^a-zA-Z0-9-]+)");
std::string ref_name = "ref" + std::regex_replace(ref_fragment, nonalphanumeric_regex, "-");
if (_rules.find(ref_name) == _rules.end() && _refs_being_resolved.find(ref) == _refs_being_resolved.end()) {
_refs_being_resolved.insert(ref);
json resolved = _refs[ref];
@@ -774,11 +779,24 @@ public:
std::vector<std::string> tokens = string_split(pointer, "/");
for (size_t i = 1; i < tokens.size(); ++i) {
std::string sel = tokens[i];
if (target.is_null() || !target.contains(sel)) {
if (target.is_object() && target.contains(sel)) {
target = target[sel];
} else if (target.is_array()) {
size_t sel_index;
try {
sel_index = std::stoul(sel);
} catch (const std::invalid_argument & e) {
sel_index = target.size();
}
if (sel_index >= target.size()) {
_errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump());
return;
}
target = target[sel_index];
} else {
_errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump());
return;
}
target = target[sel];
}
_refs[ref] = target;
}
@@ -956,7 +974,7 @@ public:
void check_errors() {
if (!_errors.empty()) {
throw std::runtime_error("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
throw std::invalid_argument("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
}
if (!_warnings.empty()) {
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", string_join(_warnings, "; ").c_str());

View File

@@ -18,4 +18,6 @@ struct common_grammar_options {
bool dotall = false;
};
std::string gbnf_format_literal(const std::string & literal);
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options = {});

View File

@@ -1,3 +1,4 @@
#include "common.h"
#include "log.h"
#include <chrono>
@@ -26,30 +27,6 @@ void common_log_set_verbosity_thold(int verbosity) {
common_log_verbosity_thold = verbosity;
}
// Auto-detect if colors should be enabled based on terminal and environment
static bool common_log_should_use_colors_auto() {
// Check NO_COLOR environment variable (https://no-color.org/)
if (const char * no_color = std::getenv("NO_COLOR")) {
if (no_color[0] != '\0') {
return false;
}
}
// Check TERM environment variable
if (const char * term = std::getenv("TERM")) {
if (std::strcmp(term, "dumb") == 0) {
return false;
}
}
// Check if stdout and stderr are connected to a terminal
// We check both because log messages can go to either
bool stdout_is_tty = isatty(fileno(stdout));
bool stderr_is_tty = isatty(fileno(stderr));
return stdout_is_tty || stderr_is_tty;
}
static int64_t t_us() {
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now().time_since_epoch()).count();
}
@@ -391,7 +368,7 @@ struct common_log * common_log_main() {
static std::once_flag init_flag;
std::call_once(init_flag, [&]() {
// Set default to auto-detect colors
log.set_colors(common_log_should_use_colors_auto());
log.set_colors(tty_can_use_colors());
});
return &log;
@@ -422,7 +399,7 @@ void common_log_set_file(struct common_log * log, const char * file) {
void common_log_set_colors(struct common_log * log, log_colors colors) {
if (colors == LOG_COLORS_AUTO) {
log->set_colors(common_log_should_use_colors_auto());
log->set_colors(tty_can_use_colors());
return;
}
@@ -442,3 +419,23 @@ void common_log_set_prefix(struct common_log * log, bool prefix) {
void common_log_set_timestamps(struct common_log * log, bool timestamps) {
log->set_timestamps(timestamps);
}
static int common_get_verbosity(enum ggml_log_level level) {
switch (level) {
case GGML_LOG_LEVEL_DEBUG: return LOG_LEVEL_DEBUG;
case GGML_LOG_LEVEL_INFO: return LOG_LEVEL_INFO;
case GGML_LOG_LEVEL_WARN: return LOG_LEVEL_WARN;
case GGML_LOG_LEVEL_ERROR: return LOG_LEVEL_ERROR;
case GGML_LOG_LEVEL_CONT: return LOG_LEVEL_INFO; // same as INFO
case GGML_LOG_LEVEL_NONE:
default:
return LOG_LEVEL_OUTPUT;
}
}
void common_log_default_callback(enum ggml_log_level level, const char * text, void * /*user_data*/) {
auto verbosity = common_get_verbosity(level);
if (verbosity <= common_log_verbosity_thold) {
common_log_add(common_log_main(), level, "%s", text);
}
}

View File

@@ -21,8 +21,14 @@
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
#endif
#define LOG_DEFAULT_DEBUG 1
#define LOG_DEFAULT_LLAMA 0
#define LOG_LEVEL_DEBUG 4
#define LOG_LEVEL_INFO 3
#define LOG_LEVEL_WARN 2
#define LOG_LEVEL_ERROR 1
#define LOG_LEVEL_OUTPUT 0 // output data from tools
#define LOG_DEFAULT_DEBUG LOG_LEVEL_DEBUG
#define LOG_DEFAULT_LLAMA LOG_LEVEL_INFO
enum log_colors {
LOG_COLORS_AUTO = -1,
@@ -36,6 +42,8 @@ extern int common_log_verbosity_thold;
void common_log_set_verbosity_thold(int verbosity); // not thread-safe
void common_log_default_callback(enum ggml_log_level level, const char * text, void * user_data);
// the common_log uses an internal worker thread to print/write log messages
// when the worker thread is paused, incoming log messages are discarded
struct common_log;
@@ -65,10 +73,11 @@ void common_log_add(struct common_log * log, enum ggml_log_level level, const ch
// 0.00.090.578 I llm_load_tensors: offloading 32 repeating layers to GPU
// 0.00.090.579 I llm_load_tensors: offloading non-repeating layers to GPU
//
// I - info (stdout, V = 0)
// W - warning (stderr, V = 0)
// E - error (stderr, V = 0)
// D - debug (stderr, V = LOG_DEFAULT_DEBUG)
// I - info (stdout, V = LOG_DEFAULT_INFO)
// W - warning (stderr, V = LOG_DEFAULT_WARN)
// E - error (stderr, V = LOG_DEFAULT_ERROR)
// O - output (stdout, V = LOG_DEFAULT_OUTPUT)
//
void common_log_set_file (struct common_log * log, const char * file); // not thread-safe
@@ -93,14 +102,14 @@ void common_log_set_timestamps(struct common_log * log, bool timestamps); // w
} \
} while (0)
#define LOG(...) LOG_TMPL(GGML_LOG_LEVEL_NONE, 0, __VA_ARGS__)
#define LOGV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_NONE, verbosity, __VA_ARGS__)
#define LOG(...) LOG_TMPL(GGML_LOG_LEVEL_NONE, LOG_LEVEL_OUTPUT, __VA_ARGS__)
#define LOGV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_NONE, verbosity, __VA_ARGS__)
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, 0, __VA_ARGS__)
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, 0, __VA_ARGS__)
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, 0, __VA_ARGS__)
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, LOG_DEFAULT_DEBUG, __VA_ARGS__)
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, 0, __VA_ARGS__)
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, LOG_LEVEL_DEBUG, __VA_ARGS__)
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, LOG_LEVEL_INFO, __VA_ARGS__)
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, LOG_LEVEL_WARN, __VA_ARGS__)
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, LOG_LEVEL_ERROR, __VA_ARGS__)
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, LOG_LEVEL_INFO, __VA_ARGS__) // same as INFO
#define LOG_INFV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_INFO, verbosity, __VA_ARGS__)
#define LOG_WRNV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_WARN, verbosity, __VA_ARGS__)

View File

@@ -3,9 +3,10 @@
#include "common.h"
#include "log.h"
#include <cmath>
#include <unordered_map>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <unordered_map>
// the ring buffer works similarly to std::deque, but with a fixed capacity
// TODO: deduplicate with llama-impl.h
@@ -112,6 +113,13 @@ struct common_sampler {
llama_token_data_array cur_p;
void reset() {
prev.clear();
llama_sampler_reset(grmr);
llama_sampler_reset(chain);
}
void set_logits(struct llama_context * ctx, int idx) {
const auto * logits = llama_get_logits_ith(ctx, idx);
@@ -128,6 +136,12 @@ struct common_sampler {
cur_p = { cur.data(), cur.size(), -1, false };
}
common_time_meas tm() {
return common_time_meas(t_total_us, params.no_perf);
}
mutable int64_t t_total_us = 0;
};
std::string common_params_sampling::print() const {
@@ -298,6 +312,8 @@ void common_sampler_free(struct common_sampler * gsmpl) {
}
void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) {
const auto tm = gsmpl->tm();
if (accept_grammar) {
llama_sampler_accept(gsmpl->grmr, token);
}
@@ -308,9 +324,7 @@ void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, boo
}
void common_sampler_reset(struct common_sampler * gsmpl) {
llama_sampler_reset(gsmpl->grmr);
llama_sampler_reset(gsmpl->chain);
gsmpl->reset();
}
struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
@@ -327,16 +341,54 @@ struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl) {
// TODO: measure grammar performance
const double t_sampling_ms = gsmpl ? 1e-3*gsmpl->t_total_us : 0;
llama_perf_sampler_data data_smpl;
llama_perf_context_data data_ctx;
memset(&data_smpl, 0, sizeof(data_smpl));
memset(&data_ctx, 0, sizeof(data_ctx));
if (gsmpl) {
llama_perf_sampler_print(gsmpl->chain);
auto & data = data_smpl;
data = llama_perf_sampler(gsmpl->chain);
// note: the sampling time includes the samplers time + extra time spent in common/sampling
LOG_INF("%s: sampling time = %10.2f ms\n", __func__, t_sampling_ms);
LOG_INF("%s: samplers time = %10.2f ms / %5d tokens\n", __func__, data.t_sample_ms, data.n_sample);
}
if (ctx) {
llama_perf_context_print(ctx);
auto & data = data_ctx;
data = llama_perf_context(ctx);
const double t_end_ms = 1e-3 * ggml_time_us();
const double t_total_ms = t_end_ms - data.t_start_ms;
const double t_unacc_ms = t_total_ms - (t_sampling_ms + data.t_p_eval_ms + data.t_eval_ms);
const double t_unacc_pc = 100.0 * t_unacc_ms / t_total_ms;
LOG_INF("%s: load time = %10.2f ms\n", __func__, data.t_load_ms);
LOG_INF("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, data.t_p_eval_ms, data.n_p_eval, data.t_p_eval_ms / data.n_p_eval, 1e3 / data.t_p_eval_ms * data.n_p_eval);
LOG_INF("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, data.t_eval_ms, data.n_eval, data.t_eval_ms / data.n_eval, 1e3 / data.t_eval_ms * data.n_eval);
LOG_INF("%s: total time = %10.2f ms / %5d tokens\n", __func__, (t_end_ms - data.t_start_ms), (data.n_p_eval + data.n_eval));
LOG_INF("%s: unaccounted time = %10.2f ms / %5.1f %% (total - sampling - prompt eval - eval) / (total)\n", __func__, t_unacc_ms, t_unacc_pc);
LOG_INF("%s: graphs reused = %10d\n", __func__, data.n_reused);
llama_memory_breakdown_print(ctx);
}
}
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
llama_synchronize(ctx);
// start measuring sampling time after the llama_context synchronization in order to not measure any ongoing async operations
const auto tm = gsmpl->tm();
gsmpl->set_logits(ctx, idx);
auto & grmr = gsmpl->grmr;
@@ -428,6 +480,8 @@ uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
// helpers
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl, bool do_sort) {
const auto tm = gsmpl->tm();
auto * res = &gsmpl->cur_p;
if (do_sort && !res->sorted) {

View File

@@ -83,6 +83,7 @@ extern "C" {
LLAMA_ROPE_TYPE_NORM = 0,
LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX,
LLAMA_ROPE_TYPE_MROPE = GGML_ROPE_TYPE_MROPE,
LLAMA_ROPE_TYPE_IMROPE = GGML_ROPE_TYPE_IMROPE,
LLAMA_ROPE_TYPE_VISION = GGML_ROPE_TYPE_VISION,
};
@@ -245,6 +246,21 @@ extern "C" {
LLAMA_KV_OVERRIDE_TYPE_STR,
};
enum llama_model_meta_key {
LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE,
LLAMA_MODEL_META_KEY_SAMPLING_TOP_K,
LLAMA_MODEL_META_KEY_SAMPLING_TOP_P,
LLAMA_MODEL_META_KEY_SAMPLING_MIN_P,
LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY,
LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD,
LLAMA_MODEL_META_KEY_SAMPLING_TEMP,
LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N,
LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT,
LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT,
LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU,
LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA,
};
struct llama_model_kv_override {
enum llama_model_kv_override_type tag;
@@ -460,7 +476,11 @@ extern "C" {
LLAMA_API bool llama_supports_gpu_offload(void);
LLAMA_API bool llama_supports_rpc (void);
// NOTE: After creating a llama_context, it is recommended to query the actual values using these functions
// In some cases the requested values via llama_context_params may differ from the actual values used by the context
// ref: https://github.com/ggml-org/llama.cpp/pull/17046#discussion_r2503085732
LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_ctx_seq (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
@@ -481,6 +501,7 @@ extern "C" {
LLAMA_API int32_t llama_model_n_ctx_train(const struct llama_model * model);
LLAMA_API int32_t llama_model_n_embd (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_embd_inp (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_layer (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_head (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_head_kv (const struct llama_model * model);
@@ -512,6 +533,9 @@ extern "C" {
// Get the number of metadata key/value pairs
LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
// Get sampling metadata key name. Returns nullptr if the key is invalid
LLAMA_API const char * llama_model_meta_key_str(enum llama_model_meta_key key);
// Get metadata key name by index
LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
@@ -584,7 +608,7 @@ extern "C" {
LLAMA_API int32_t llama_adapter_meta_val_str_by_index(const struct llama_adapter_lora * adapter, int32_t i, char * buf, size_t buf_size);
// Manually free a LoRA adapter
// Note: loaded adapters will be free when the associated model is deleted
// NOTE: loaded adapters will be free when the associated model is deleted
LLAMA_API void llama_adapter_lora_free(struct llama_adapter_lora * adapter);
// Get the invocation tokens if the current lora is an alora
@@ -1110,8 +1134,6 @@ extern "C" {
// // sample from the logits of the last token in the batch
// const llama_token id = llama_sampler_sample(smpl, ctx, -1);
//
// // accepting the token updates the internal state of certain samplers (e.g. grammar, repetition, etc.)
// llama_sampler_accept(smpl, id);
// ...
// }
//

View File

@@ -32,6 +32,9 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_QWEN2VL, "qwen2vl" },
{ LLM_ARCH_QWEN3, "qwen3" },
{ LLM_ARCH_QWEN3MOE, "qwen3moe" },
{ LLM_ARCH_QWEN3NEXT, "qwen3next" },
{ LLM_ARCH_QWEN3VL, "qwen3vl" },
{ LLM_ARCH_QWEN3VLMOE, "qwen3vlmoe" },
{ LLM_ARCH_PHI2, "phi2" },
{ LLM_ARCH_PHI3, "phi3" },
{ LLM_ARCH_PHIMOE, "phimoe" },
@@ -72,6 +75,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_JAIS, "jais" },
{ LLM_ARCH_NEMOTRON, "nemotron" },
{ LLM_ARCH_NEMOTRON_H, "nemotron_h" },
{ LLM_ARCH_NEMOTRON_H_MOE, "nemotron_h_moe" },
{ LLM_ARCH_EXAONE, "exaone" },
{ LLM_ARCH_EXAONE4, "exaone4" },
{ LLM_ARCH_RWKV6, "rwkv6" },
@@ -89,6 +93,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_BAILINGMOE2, "bailingmoe2" },
{ LLM_ARCH_DOTS1, "dots1" },
{ LLM_ARCH_ARCEE, "arcee" },
{ LLM_ARCH_AFMOE, "afmoe" },
{ LLM_ARCH_ERNIE4_5, "ernie4_5" },
{ LLM_ARCH_ERNIE4_5_MOE, "ernie4_5-moe" },
{ LLM_ARCH_HUNYUAN_MOE, "hunyuan-moe" },
@@ -104,23 +109,40 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_SEED_OSS, "seed_oss" },
{ LLM_ARCH_GROVEMOE, "grovemoe" },
{ LLM_ARCH_APERTUS, "apertus" },
{ LLM_ARCH_MINIMAX_M2, "minimax-m2" },
{ LLM_ARCH_COGVLM, "cogvlm" },
{ LLM_ARCH_RND1, "rnd1" },
{ LLM_ARCH_PANGU_EMBED, "pangu-embedded" },
{ LLM_ARCH_MISTRAL3, "mistral3" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_GENERAL_TYPE, "general.type" },
{ LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
{ LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
{ LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
{ LLM_KV_GENERAL_FILE_TYPE, "general.file_type" },
{ LLM_KV_GENERAL_NAME, "general.name" },
{ LLM_KV_GENERAL_AUTHOR, "general.author" },
{ LLM_KV_GENERAL_VERSION, "general.version" },
{ LLM_KV_GENERAL_URL, "general.url" },
{ LLM_KV_GENERAL_DESCRIPTION, "general.description" },
{ LLM_KV_GENERAL_LICENSE, "general.license" },
{ LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
{ LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
{ LLM_KV_GENERAL_TYPE, "general.type" },
{ LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
{ LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
{ LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
{ LLM_KV_GENERAL_FILE_TYPE, "general.file_type" },
{ LLM_KV_GENERAL_SAMPLING_SEQUENCE, "general.sampling.sequence" },
{ LLM_KV_GENERAL_SAMPLING_TOP_K, "general.sampling.top_k" },
{ LLM_KV_GENERAL_SAMPLING_TOP_P, "general.sampling.top_p" },
{ LLM_KV_GENERAL_SAMPLING_MIN_P, "general.sampling.min_p" },
{ LLM_KV_GENERAL_SAMPLING_XTC_PROBABILITY, "general.sampling.xtc_probability" },
{ LLM_KV_GENERAL_SAMPLING_XTC_THRESHOLD, "general.sampling.xtc_threshold" },
{ LLM_KV_GENERAL_SAMPLING_TEMP, "general.sampling.temp" },
{ LLM_KV_GENERAL_SAMPLING_PENALTY_LAST_N, "general.sampling.penalty_last_n" },
{ LLM_KV_GENERAL_SAMPLING_PENALTY_REPEAT, "general.sampling.penalty_repeat" },
{ LLM_KV_GENERAL_SAMPLING_MIROSTAT, "general.sampling.mirostat" },
{ LLM_KV_GENERAL_SAMPLING_MIROSTAT_TAU, "general.sampling.mirostat_tau" },
{ LLM_KV_GENERAL_SAMPLING_MIROSTAT_ETA, "general.sampling.mirostat_eta" },
{ LLM_KV_GENERAL_NAME, "general.name" },
{ LLM_KV_GENERAL_AUTHOR, "general.author" },
{ LLM_KV_GENERAL_VERSION, "general.version" },
{ LLM_KV_GENERAL_URL, "general.url" },
{ LLM_KV_GENERAL_DESCRIPTION, "general.description" },
{ LLM_KV_GENERAL_LICENSE, "general.license" },
{ LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
{ LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
{ LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
{ LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
@@ -146,6 +168,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_EXPERTS_PER_GROUP, "%s.experts_per_group" },
{ LLM_KV_MOE_EVERY_N_LAYERS, "%s.moe_every_n_layers" },
{ LLM_KV_NEXTN_PREDICT_LAYERS, "%s.nextn_predict_layers" },
{ LLM_KV_NUM_DEEPSTACK_LAYERS, "%s.n_deepstack_layers" },
{ LLM_KV_POOLING_TYPE, "%s.pooling_type" },
{ LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
{ LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" },
@@ -184,6 +207,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
{ LLM_KV_ATTENTION_OUTPUT_SCALE, "%s.attention.output_scale" },
{ LLM_KV_ATTENTION_TEMPERATURE_LENGTH, "%s.attention.temperature_length" },
{ LLM_KV_ATTENTION_TEMPERATURE_SCALE, "%s.attention.temperature_scale" },
{ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
@@ -329,6 +353,36 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_AFMOE,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
{ LLM_TENSOR_ATTN_GATE, "blk.%d.attn_gate" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
{ LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
{ LLM_TENSOR_FFN_EXP_PROBS_B, "blk.%d.exp_probs_b" },
},
},
{
LLM_ARCH_LLAMA4,
{
@@ -781,6 +835,77 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{
LLM_ARCH_QWEN3NEXT,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
{ LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
{ LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
{ LLM_TENSOR_SSM_A_NOSCAN, "blk.%d.ssm_a" },
{ LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
{ LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
{ LLM_TENSOR_SSM_BETA_ALPHA, "blk.%d.ssm_ba" },
{ LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
{ LLM_TENSOR_SSM_NORM, "blk.%d.ssm_norm" },
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
},
},
{
LLM_ARCH_QWEN3VL,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_QWEN3VLMOE,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{
LLM_ARCH_PHI2,
{
@@ -1641,6 +1766,39 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_NEMOTRON_H_MOE,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
// mamba(2) ssm layers
{ LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
{ LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
{ LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
{ LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
{ LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
{ LLM_TENSOR_SSM_NORM, "blk.%d.ssm_norm" },
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
// attention layers
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
// dense FFN
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
// MoE FFN (for MoE layers)
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_EXP_PROBS_B,"blk.%d.exp_probs_b" },
// MoE shared expert layer
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
},
},
{
LLM_ARCH_EXAONE,
{
@@ -2168,7 +2326,7 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_SHORTCONV_INPROJ, "blk.%d.shortconv.in_proj" },
{ LLM_TENSOR_SHORTCONV_OUTPROJ, "blk.%d.shortconv.out_proj" },
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
{ LLM_TENSOR_OUTPUT_NORM, "token_embd_norm" }, // note: wrong tensor name
{ LLM_TENSOR_OUTPUT, "output" },
}
},
@@ -2190,7 +2348,7 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_SHORTCONV_INPROJ, "blk.%d.shortconv.in_proj" },
{ LLM_TENSOR_SHORTCONV_OUTPROJ, "blk.%d.shortconv.out_proj" },
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
{ LLM_TENSOR_OUTPUT_NORM, "token_embd_norm" }, // note: wrong tensor name
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
@@ -2332,6 +2490,110 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP_CHEXPS, "blk.%d.ffn_up_chexps" },
},
},
{
LLM_ARCH_MINIMAX_M2,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
{ LLM_TENSOR_FFN_EXP_PROBS_B, "blk.%d.exp_probs_b" },
},
},
{
LLM_ARCH_PANGU_EMBED,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_COGVLM,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_VISEXP_ATTN_QKV, "blk.%d.vis_attn_qkv" },
{ LLM_TENSOR_VISEXP_ATTN_OUT, "blk.%d.vis_attn_output" },
{ LLM_TENSOR_VISEXP_FFN_GATE, "blk.%d.vis_gate" },
{ LLM_TENSOR_VISEXP_FFN_DOWN, "blk.%d.vis_down" },
{ LLM_TENSOR_VISEXP_FFN_UP, "blk.%d.vis_up" },
},
},
{
LLM_ARCH_RND1,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{
LLM_ARCH_MISTRAL3,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{
LLM_ARCH_UNKNOWN,
{
@@ -2340,11 +2602,21 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
},
};
// declare information about the model weight tensors:
// - the layer in which the tensor is going to be used. this is needed in order to assign the correct buffer type for the weight
// - the operator which is going to use the weight. this is needed to determine if the respective backend supports the operator
//
// for example, input layers are usually assigned to CPU/host buffer types
//
// a mismatch between the declared information and the actual layer/op in which the tensor is used can lead to sub-optimal
// assignment of the buffer types and extra overhead during computation
// example: https://github.com/ggml-org/llama.cpp/pull/17548
//
static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_TOKEN_EMBD, {LLM_TENSOR_LAYER_INPUT, GGML_OP_GET_ROWS}},
{LLM_TENSOR_POS_EMBD, {LLM_TENSOR_LAYER_INPUT, GGML_OP_GET_ROWS}},
{LLM_TENSOR_TOKEN_EMBD_NORM, {LLM_TENSOR_LAYER_INPUT, GGML_OP_GET_ROWS}},
{LLM_TENSOR_TOKEN_TYPES, {LLM_TENSOR_LAYER_INPUT, GGML_OP_GET_ROWS}},
{LLM_TENSOR_TOKEN_EMBD_NORM, {LLM_TENSOR_LAYER_INPUT, GGML_OP_MUL}},
{LLM_TENSOR_OUTPUT, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}},
{LLM_TENSOR_CLS, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}},
{LLM_TENSOR_CLS_OUT, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}},
@@ -2361,6 +2633,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_ATTN_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_QKV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_FFN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_FFN_DOWN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_FFN_UP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
@@ -2398,6 +2671,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_SSM_X, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_SSM_DT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_SSM_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_SSM_BETA_ALPHA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_TIME_MIX_W1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_TIME_MIX_W2, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_TIME_MIX_A1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
@@ -2419,6 +2693,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_FFN_ACT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_DIV}},
{LLM_TENSOR_SSM_CONV1D, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_SSM_CONV}},
{LLM_TENSOR_SSM_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_SSM_SCAN}},
{LLM_TENSOR_SSM_A_NOSCAN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, // a version of SSM_A used for MUL instead of SSM_SCAN
{LLM_TENSOR_SSM_DT_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_SSM_B_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_SSM_C_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
@@ -2509,6 +2784,11 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_SHORTCONV_CONV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_SSM_CONV}},
{LLM_TENSOR_SHORTCONV_INPROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_SHORTCONV_OUTPROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_VISEXP_ATTN_QKV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_VISEXP_ATTN_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_VISEXP_FFN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_VISEXP_FFN_DOWN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_VISEXP_FFN_UP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
// NextN/MTP tensors are currently ignored (reserved for future MTP support)
// These tensors only exist in the last layer(s) and are treated as output tensors
{LLM_TENSOR_NEXTN_EH_PROJ, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}},
@@ -2592,6 +2872,8 @@ bool llm_arch_is_hybrid(const llm_arch & arch) {
case LLM_ARCH_LFM2:
case LLM_ARCH_LFM2MOE:
case LLM_ARCH_NEMOTRON_H:
case LLM_ARCH_NEMOTRON_H_MOE:
case LLM_ARCH_QWEN3NEXT:
return true;
default:
return false;
@@ -2603,6 +2885,7 @@ bool llm_arch_is_diffusion(const llm_arch & arch) {
case LLM_ARCH_DREAM:
case LLM_ARCH_LLADA:
case LLM_ARCH_LLADA_MOE:
case LLM_ARCH_RND1:
return true;
default:
return false;

View File

@@ -36,6 +36,9 @@ enum llm_arch {
LLM_ARCH_QWEN2VL,
LLM_ARCH_QWEN3,
LLM_ARCH_QWEN3MOE,
LLM_ARCH_QWEN3NEXT,
LLM_ARCH_QWEN3VL,
LLM_ARCH_QWEN3VLMOE,
LLM_ARCH_PHI2,
LLM_ARCH_PHI3,
LLM_ARCH_PHIMOE,
@@ -76,6 +79,7 @@ enum llm_arch {
LLM_ARCH_JAIS,
LLM_ARCH_NEMOTRON,
LLM_ARCH_NEMOTRON_H,
LLM_ARCH_NEMOTRON_H_MOE,
LLM_ARCH_EXAONE,
LLM_ARCH_EXAONE4,
LLM_ARCH_RWKV6,
@@ -93,6 +97,7 @@ enum llm_arch {
LLM_ARCH_BAILINGMOE2,
LLM_ARCH_DOTS1,
LLM_ARCH_ARCEE,
LLM_ARCH_AFMOE,
LLM_ARCH_ERNIE4_5,
LLM_ARCH_ERNIE4_5_MOE,
LLM_ARCH_HUNYUAN_MOE,
@@ -108,6 +113,11 @@ enum llm_arch {
LLM_ARCH_SEED_OSS,
LLM_ARCH_GROVEMOE,
LLM_ARCH_APERTUS,
LLM_ARCH_MINIMAX_M2,
LLM_ARCH_COGVLM,
LLM_ARCH_RND1,
LLM_ARCH_PANGU_EMBED,
LLM_ARCH_MISTRAL3,
LLM_ARCH_UNKNOWN,
};
@@ -117,6 +127,18 @@ enum llm_kv {
LLM_KV_GENERAL_QUANTIZATION_VERSION,
LLM_KV_GENERAL_ALIGNMENT,
LLM_KV_GENERAL_FILE_TYPE,
LLM_KV_GENERAL_SAMPLING_SEQUENCE,
LLM_KV_GENERAL_SAMPLING_TOP_K,
LLM_KV_GENERAL_SAMPLING_TOP_P,
LLM_KV_GENERAL_SAMPLING_MIN_P,
LLM_KV_GENERAL_SAMPLING_XTC_PROBABILITY,
LLM_KV_GENERAL_SAMPLING_XTC_THRESHOLD,
LLM_KV_GENERAL_SAMPLING_TEMP,
LLM_KV_GENERAL_SAMPLING_PENALTY_LAST_N,
LLM_KV_GENERAL_SAMPLING_PENALTY_REPEAT,
LLM_KV_GENERAL_SAMPLING_MIROSTAT,
LLM_KV_GENERAL_SAMPLING_MIROSTAT_TAU,
LLM_KV_GENERAL_SAMPLING_MIROSTAT_ETA,
LLM_KV_GENERAL_NAME,
LLM_KV_GENERAL_AUTHOR,
LLM_KV_GENERAL_VERSION,
@@ -150,6 +172,7 @@ enum llm_kv {
LLM_KV_EXPERTS_PER_GROUP,
LLM_KV_MOE_EVERY_N_LAYERS,
LLM_KV_NEXTN_PREDICT_LAYERS,
LLM_KV_NUM_DEEPSTACK_LAYERS,
LLM_KV_POOLING_TYPE,
LLM_KV_LOGIT_SCALE,
LLM_KV_DECODER_START_TOKEN_ID,
@@ -188,6 +211,7 @@ enum llm_kv {
LLM_KV_ATTENTION_SCALE,
LLM_KV_ATTENTION_OUTPUT_SCALE,
LLM_KV_ATTENTION_TEMPERATURE_LENGTH,
LLM_KV_ATTENTION_TEMPERATURE_SCALE,
LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
@@ -308,6 +332,7 @@ enum llm_tensor {
LLM_TENSOR_ATTN_POST_NORM,
LLM_TENSOR_ATTN_ROT_EMBD,
LLM_TENSOR_ATTN_SINKS,
LLM_TENSOR_ATTN_GATE,
LLM_TENSOR_FFN_GATE_INP,
LLM_TENSOR_FFN_GATE_INP_SHEXP,
LLM_TENSOR_FFN_NORM,
@@ -357,11 +382,13 @@ enum llm_tensor {
LLM_TENSOR_SSM_DT,
LLM_TENSOR_SSM_DT_NORM,
LLM_TENSOR_SSM_A,
LLM_TENSOR_SSM_A_NOSCAN, // qwen3next special case with MUL instead of SSM_SCAN
LLM_TENSOR_SSM_B_NORM,
LLM_TENSOR_SSM_C_NORM,
LLM_TENSOR_SSM_D,
LLM_TENSOR_SSM_NORM,
LLM_TENSOR_SSM_OUT,
LLM_TENSOR_SSM_BETA_ALPHA, // qwen3next
LLM_TENSOR_TIME_MIX_W0,
LLM_TENSOR_TIME_MIX_W1,
LLM_TENSOR_TIME_MIX_W2,
@@ -458,6 +485,11 @@ enum llm_tensor {
LLM_TENSOR_SHORTCONV_CONV,
LLM_TENSOR_SHORTCONV_INPROJ,
LLM_TENSOR_SHORTCONV_OUTPROJ,
LLM_TENSOR_VISEXP_ATTN_QKV,
LLM_TENSOR_VISEXP_ATTN_OUT,
LLM_TENSOR_VISEXP_FFN_GATE,
LLM_TENSOR_VISEXP_FFN_DOWN,
LLM_TENSOR_VISEXP_FFN_UP,
LLM_TENSOR_NEXTN_EH_PROJ,
LLM_TENSOR_NEXTN_EMBED_TOKENS,
LLM_TENSOR_NEXTN_ENORM,

View File

@@ -215,6 +215,7 @@ bool llama_batch_allocr::init(
/*.n_seq_tokens =*/ (uint32_t) 1,
/*.n_seqs =*/ (uint32_t) batch.n_tokens,
/*.n_seqs_unq =*/ (uint32_t) this->seq_id_unq.size(),
/*.n_pos =*/ n_pos_per_embd,
/*.token =*/ batch.token,
/*.embd =*/ batch.embd,
/*.pos =*/ batch.pos,
@@ -251,46 +252,72 @@ bool llama_batch_allocr::init(
// consistency checks
//
for (uint32_t s = 0; s < n_seq_max; ++s) {
if (seq_pos[s].empty()) {
continue;
}
if (n_pos_per_embd > 1) {
// M-RoPE case: allow position to "jump" forward only (non-continuous positions are allowed)
for (uint32_t s = 0; s < n_seq_max; ++s) {
if (seq_pos[s].empty()) {
continue;
}
const llama_pos p0 = memory ? memory->seq_pos_max(s) : -1;
if (p0 >= 0) {
bool ok = true;
const llama_pos p0 = memory ? memory->seq_pos_max(s) : -1;
if (batch.token) {
if (p0 >= 0 && p0 >= seq_pos_min(s)) {
LLAMA_LOG_ERROR(
"%s: the tokens of sequence %d in the input batch have inconsistent sequence positions:\n"
" - the last position stored in the memory module of the context (i.e. the KV cache) for sequence %d is X = %d\n"
" - the tokens for sequence %d in the input batch have a starting position of Y = %d\n"
" for M-RoPE, it is required that the position satisfies: X < Y\n",
__func__, s, s, p0, s, seq_pos_min(s));
return false;
}
} else {
// embedding inputs can have overlapping positions
if (p0 >= 0 && p0 > seq_pos_min(s)) {
LLAMA_LOG_ERROR(
"%s: the tokens of sequence %d in the input batch have inconsistent sequence positions:\n"
" - the last position stored in the memory module of the context (i.e. the KV cache) for sequence %d is X = %d\n"
" - the tokens for sequence %d in the input batch have a starting position of Y = %d\n"
" for M-RoPE, it is required that the position satisfies: X <= Y\n",
__func__, s, s, p0, s, seq_pos_min(s));
return false;
}
}
}
} else {
for (uint32_t s = 0; s < n_seq_max; ++s) {
if (seq_pos[s].empty()) {
continue;
}
const llama_pos p0 = memory ? memory->seq_pos_max(s) : -1;
if (p0 >= 0) {
bool ok = true;
if (seq_pos_min(s) != p0 + 1) {
ok = false;
}
} else {
assert(batch.embd);
// for embeddings (typically used as vision input), we allow them to have repeating positions
// ref: https://github.com/ggml-org/llama.cpp/issues/13694#issuecomment-2983871762
if (seq_pos_min(s) != p0 && seq_pos_min(s) != p0 + 1) {
ok = false;
if (!ok) {
LLAMA_LOG_ERROR(
"%s: the tokens of sequence %d in the input batch have inconsistent sequence positions:\n"
" - the last position stored in the memory module of the context (i.e. the KV cache) for sequence %d is X = %d\n"
" - the tokens for sequence %d in the input batch have a starting position of Y = %d\n"
" it is required that the sequence positions remain consecutive: Y = X + 1\n",
__func__, s, s, p0, s, seq_pos_min(s));
return false;
}
}
if (!ok) {
LLAMA_LOG_ERROR(
"%s: the tokens of sequence %d in the input batch have inconsistent sequence positions:\n"
" - the last position stored in the memory module of the context (i.e. the KV cache) for sequence %d is X = %d\n"
" - the tokens for sequence %d in the input batch have a starting position of Y = %d\n"
" it is required that the sequence positions remain consecutive: Y = X + 1\n",
__func__, s, s, p0, s, seq_pos_min(s));
if (seq_pos_max(s) - seq_pos_min(s) + 1 > (int) seq_pos[s].size()) {
LLAMA_LOG_ERROR("%s: sequence %d positions are not continuous\n", __func__, s);
return false;
}
}
if (seq_pos_max(s) - seq_pos_min(s) + 1 > (int) seq_pos[s].size()) {
LLAMA_LOG_ERROR("%s: sequence %d positions are not continuous\n", __func__, s);
return false;
}
}
if (memory) {
@@ -389,6 +416,7 @@ llama_ubatch llama_batch_allocr::ubatch_reserve(uint32_t n_seq_tokens, uint32_t
/*.n_seq_tokens =*/ n_seq_tokens,
/*.n_seqs =*/ n_seqs,
/*.n_seqs_unq =*/ n_seqs,
/*.n_pos =*/ n_pos_per_embd,
/*.token =*/ udata->token.data(),
/*.embd =*/ nullptr,
@@ -655,10 +683,8 @@ llama_ubatch llama_batch_allocr::ubatch_add(const std::vector<int32_t> & idxs, u
auto udata = std::make_shared<llama_ubatch::data_t>();
const int32_t n_pos_cur = batch.embd ? n_pos_per_embd : 1;
const int64_t n_embd_all = batch.embd ? (int64_t) n_tokens*n_embd : 0;
const int64_t n_pos_all = (int64_t) n_tokens*n_pos_cur;
const int64_t n_pos_all = (int64_t) n_tokens*n_pos_per_embd;
udata->token .resize(n_tokens);
udata->embd .resize(n_embd_all);
@@ -680,8 +706,13 @@ llama_ubatch llama_batch_allocr::ubatch_add(const std::vector<int32_t> & idxs, u
memcpy(udata->embd.data() + i*n_embd, batch.embd + (int64_t) idxs[i]*n_embd, n_embd*sizeof(float));
}
for (int j = 0; j < n_pos_cur; ++j) {
udata->pos[j*n_tokens + i] = batch.pos[j*batch.n_tokens + idxs[i]];
for (size_t j = 0; j < (size_t)n_pos_per_embd; ++j) {
// if we are using M-RoPE
// if the current batch is text, we need to broadcast the same position across all RoPE sections
// otherwise, the input batch is image embeddings, we copy the positions as-is
// if we are not using M-RoPE, there is only one position per token (this loop runs only once)
size_t src_off = batch.token ? 0 : j*batch.n_tokens;
udata->pos[j*n_tokens + i] = batch.pos[src_off + idxs[i]];
}
udata->n_seq_id[i] = batch.n_seq_id[idxs[i]];
@@ -710,6 +741,7 @@ llama_ubatch llama_batch_allocr::ubatch_add(const std::vector<int32_t> & idxs, u
/*.n_seq_tokens =*/ n_tokens/n_seqs,
/*.n_seqs =*/ n_seqs,
/*.n_seqs_unq =*/ (uint32_t) udata->seq_id_unq.size(),
/*.n_pos =*/ n_pos_per_embd,
/*.token =*/ batch.token ? udata->token.data() : nullptr,
/*.embd =*/ batch.embd ? udata->embd.data() : nullptr,

View File

@@ -17,6 +17,16 @@ struct llama_ubatch {
return b_equal_seqs != 0;
}
// typical for M-RoPE cases:
// 0 - sequantial position of the tokens/embeddings in the sequence
// 1 - y position in the image
// 2 - x position in the image
// 3 - other
bool is_pos_2d() const {
// TODO @ngxson : we may need to check for model arch when more models use >1 positions
return n_pos >= 3;
}
uint32_t b_equal_seqs; // note: this is a boolean, but we use an int32_t for alignment
// otherwise address sanitizer complains
// TODO: whole_seqs for embeddings?
@@ -25,6 +35,7 @@ struct llama_ubatch {
uint32_t n_seq_tokens; // tokens per sequence set
uint32_t n_seqs; // sequence sets in the ubatch
uint32_t n_seqs_unq; // unique sequence ids in the ubatch
uint32_t n_pos; // number of position inputs for each token/embedding
// seq_id_unq: unique sequence ids in the ubatch
// seq_idx: indices of the unique sequence ids in the ubatch in [0, n_seqs_unq)
@@ -33,7 +44,7 @@ struct llama_ubatch {
// // size | idx | val
llama_token * token; // [n_tokens] | i | id, token
float * embd; // [n_embd, n_tokens] | i | embd
llama_pos * pos; // [n_tokens] | i | pos
llama_pos * pos; // [n_tokens*n_pos] | i | pos
int32_t * n_seq_id; // [n_tokens] | i | -
llama_seq_id ** seq_id; // [n_tokens] | s | s0, s1, seq_id
llama_seq_id * seq_id_unq; // [n_seqs_unq] | s | seq_id

View File

@@ -73,6 +73,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "kimi-k2", LLM_CHAT_TEMPLATE_KIMI_K2 },
{ "seed_oss", LLM_CHAT_TEMPLATE_SEED_OSS },
{ "grok-2", LLM_CHAT_TEMPLATE_GROK_2 },
{ "pangu-embedded", LLM_CHAT_TEMPLATE_PANGU_EMBED },
};
llm_chat_template llm_chat_template_from_str(const std::string & name) {
@@ -213,6 +214,8 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
return LLM_CHAT_TEMPLATE_SEED_OSS;
} else if (tmpl_contains("'Assistant: ' + message['content'] + '<|separator|>")) {
return LLM_CHAT_TEMPLATE_GROK_2;
} else if (tmpl_contains(LU8("[unused9]系统:[unused10]"))) {
return LLM_CHAT_TEMPLATE_PANGU_EMBED;
}
return LLM_CHAT_TEMPLATE_UNKNOWN;
}
@@ -813,6 +816,35 @@ int32_t llm_chat_apply_template(
if (add_ass) {
ss << "Assistant:";
}
}else if (tmpl == LLM_CHAT_TEMPLATE_PANGU_EMBED) {
// [unused9]系统xxx[unused10]
// [unused9]用户xxx[unused10]
// [unused9]助手xxx[unused10]
// ...
for (size_t i = 0; i < chat.size(); ++i) {
const auto & msg = chat[i];
const std::string & role = msg->role;
const std::string & content = msg->content;
if (i == 0 && role != "system") {
ss << "[unused9]系统:[unused10]";
}
if (role == "system") {
ss << "[unused9]系统:" << content << "[unused10]";
} else if (role == "user") {
ss << "[unused9]用户:" << content << "[unused10]";
} else if (role == "assistant") {
ss << "[unused9]助手:" << content << "[unused10]";
} else if (role == "tool") {
ss << "[unused9]工具:" << content << "[unused10]";
} else if (role == "function") {
ss << "[unused9]方法:" << content << "[unused10]";
}
}
if (add_ass) {
ss << "[unused9]助手:";
}
} else {
// template not supported
return -1;

View File

@@ -53,6 +53,7 @@ enum llm_chat_template {
LLM_CHAT_TEMPLATE_KIMI_K2,
LLM_CHAT_TEMPLATE_SEED_OSS,
LLM_CHAT_TEMPLATE_GROK_2,
LLM_CHAT_TEMPLATE_PANGU_EMBED,
LLM_CHAT_TEMPLATE_UNKNOWN,
};

View File

@@ -1,5 +1,6 @@
#include "llama-context.h"
#include "llama-arch.h"
#include "llama-impl.h"
#include "llama-batch.h"
#include "llama-io.h"
@@ -21,6 +22,8 @@ llama_context::llama_context(
llama_context_params params) :
model(model),
balloc(std::make_unique<llama_batch_allocr>(model.hparams.n_pos_per_embd())) {
// TODO warning when creating llama_context with awkward ctx size that is not a power of 2,
// may need to be backend-dependent
LLAMA_LOG_INFO("%s: constructing llama_context\n", __func__);
t_start_us = model.t_start_us;
@@ -112,11 +115,28 @@ llama_context::llama_context(
}
}
const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max;
// ref: https://github.com/ggml-org/llama.cpp/pull/17046#discussion_r2503085732
cparams.n_ctx = GGML_PAD(cparams.n_ctx, 256);
if (cparams.kv_unified) {
cparams.n_ctx_seq = cparams.n_ctx;
} else {
cparams.n_ctx_seq = cparams.n_ctx / cparams.n_seq_max;
cparams.n_ctx_seq = GGML_PAD(cparams.n_ctx_seq, 256);
if (cparams.n_ctx_seq == 0) {
throw std::runtime_error("n_ctx_seq == 0");
}
if (cparams.n_ctx != cparams.n_ctx_seq * cparams.n_seq_max) {
cparams.n_ctx = cparams.n_ctx_seq * cparams.n_seq_max;
LLAMA_LOG_WARN("%s: n_ctx is not divisible by n_seq_max - rounding down to %u\n", __func__, cparams.n_ctx);
}
}
LLAMA_LOG_INFO("%s: n_seq_max = %u\n", __func__, cparams.n_seq_max);
LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
LLAMA_LOG_INFO("%s: n_ctx_per_seq = %u\n", __func__, n_ctx_per_seq);
LLAMA_LOG_INFO("%s: n_ctx_seq = %u\n", __func__, cparams.n_ctx_seq);
LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
LLAMA_LOG_INFO("%s: causal_attn = %d\n", __func__, cparams.causal_attn);
@@ -125,14 +145,14 @@ llama_context::llama_context(
LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
if (n_ctx_per_seq < hparams.n_ctx_train) {
LLAMA_LOG_WARN("%s: n_ctx_per_seq (%u) < n_ctx_train (%u) -- the full capacity of the model will not be utilized\n",
__func__, n_ctx_per_seq, hparams.n_ctx_train);
if (cparams.n_ctx_seq < hparams.n_ctx_train) {
LLAMA_LOG_WARN("%s: n_ctx_seq (%u) < n_ctx_train (%u) -- the full capacity of the model will not be utilized\n",
__func__, cparams.n_ctx_seq, hparams.n_ctx_train);
}
if (n_ctx_per_seq > hparams.n_ctx_train) {
LLAMA_LOG_WARN("%s: n_ctx_per_seq (%u) > n_ctx_train (%u) -- possible training context overflow\n",
__func__, n_ctx_per_seq, hparams.n_ctx_train);
if (cparams.n_ctx_seq > hparams.n_ctx_train) {
LLAMA_LOG_WARN("%s: n_ctx_seq (%u) > n_ctx_train (%u) -- possible training context overflow\n",
__func__, cparams.n_ctx_seq, hparams.n_ctx_train);
}
if (!hparams.vocab_only) {
@@ -228,7 +248,10 @@ llama_context::llama_context(
LLAMA_LOG_DEBUG("%s: backend_ptrs.size() = %zu\n", __func__, backend_ptrs.size());
const size_t max_nodes = this->graph_max_nodes();
const uint32_t n_seqs = cparams.n_seq_max;
const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
const size_t max_nodes = this->graph_max_nodes(n_tokens);
LLAMA_LOG_DEBUG("%s: max_nodes = %zu\n", __func__, max_nodes);
@@ -268,9 +291,7 @@ llama_context::llama_context(
if (pipeline_parallel) {
LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(sched.get()));
}
}
if (!hparams.vocab_only) {
llama_memory_context_ptr mctx;
if (memory) {
LLAMA_LOG_DEBUG("%s: reserving full memory module\n", __func__);
@@ -282,9 +303,6 @@ llama_context::llama_context(
cross.v_embd.clear();
const uint32_t n_seqs = cparams.kv_unified ? 1 : cparams.n_seq_max;
const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
// avoid reserving graphs with zero outputs - assume one output per sequence
n_outputs = n_seqs;
@@ -343,7 +361,14 @@ llama_context::llama_context(
{
auto * gf = graph_reserve(n_tokens, n_seqs, n_tokens, mctx.get());
if (!gf) {
throw std::runtime_error("failed to allocate compute pp buffers");
if (pipeline_parallel) {
LLAMA_LOG_WARN("%s: compute buffer allocation failed, retrying without pipeline parallelism\n", __func__);
sched.reset(ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), max_nodes, false, cparams.op_offload));
gf = graph_reserve(n_tokens, n_seqs, n_tokens, mctx.get());
}
if (!gf) {
throw std::runtime_error("failed to allocate compute pp buffers");
}
}
n_splits_pp = ggml_backend_sched_get_n_splits(sched.get());
@@ -448,8 +473,8 @@ uint32_t llama_context::n_ctx() const {
return cparams.n_ctx;
}
uint32_t llama_context::n_ctx_per_seq() const {
return cparams.n_ctx / cparams.n_seq_max;
uint32_t llama_context::n_ctx_seq() const {
return cparams.n_ctx_seq;
}
uint32_t llama_context::n_batch() const {
@@ -518,7 +543,7 @@ bool llama_context::memory_update(bool optimize) {
throw std::runtime_error("failed to initialize memory context");
}
const uint32_t n_seqs = cparams.kv_unified ? 1 : cparams.n_seq_max;
const uint32_t n_seqs = cparams.n_seq_max;
const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
auto * gf = graph_reserve(n_tokens, n_seqs, n_tokens, mctx.get());
@@ -803,7 +828,7 @@ int llama_context::encode(const llama_batch & batch_inp) {
const auto & hparams = model.hparams;
const int64_t n_embd = hparams.n_embd;
const int64_t n_embd = hparams.n_embd_inp();
const int64_t n_vocab = model.vocab.n_tokens();
// note: during encode, we always pass the full sequence starting from pos = 0
@@ -972,7 +997,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
const auto & hparams = model.hparams;
const int64_t n_vocab = vocab.n_tokens();
const int64_t n_embd = hparams.n_embd;
const int64_t n_embd = hparams.n_embd_inp();
const bool output_all = false;
@@ -1223,7 +1248,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
// make the outputs have the same order they had in the user-provided batch
// note: this is mostly relevant for recurrent models atm
if (!sorted_output) {
if (!sorted_output && n_outputs > 1) {
GGML_ASSERT((size_t) n_outputs == out_ids.size());
// TODO: is there something more efficient which also minimizes swaps?
@@ -1360,7 +1385,10 @@ void llama_context::output_reorder() {
// graph
//
uint32_t llama_context::graph_max_nodes() const {
uint32_t llama_context::graph_max_nodes(uint32_t n_tokens) const {
if (model.arch == LLM_ARCH_QWEN3NEXT) {
return std::max<uint32_t>(n_tokens * 40, 32u * model.n_tensors());
}
return std::max<uint32_t>(1024u, 8u*model.n_tensors());
}
@@ -2129,7 +2157,7 @@ void llama_context::opt_epoch_iter(
batch.logits [pos_batch] = true;
}
if (!balloc->init(batch, model.vocab, nullptr, model.hparams.n_embd, cparams.kv_unified ? LLAMA_MAX_SEQ : cparams.n_seq_max, true)) {
if (!balloc->init(batch, model.vocab, nullptr, model.hparams.n_embd_inp(), cparams.kv_unified ? LLAMA_MAX_SEQ : cparams.n_seq_max, true)) {
LLAMA_LOG_ERROR("%s: failed to initialize batch\n", __func__);
return;
}
@@ -2377,6 +2405,10 @@ uint32_t llama_n_ctx(const llama_context * ctx) {
return ctx->n_ctx();
}
uint32_t llama_n_ctx_seq(const llama_context * ctx) {
return ctx->n_ctx_seq();
}
uint32_t llama_n_batch(const llama_context * ctx) {
return ctx->n_batch();
}

View File

@@ -43,11 +43,11 @@ struct llama_context {
ggml_backend_sched_t get_sched() const;
uint32_t n_ctx() const;
uint32_t n_ctx_per_seq() const;
uint32_t n_batch() const;
uint32_t n_ubatch() const;
uint32_t n_seq_max() const;
uint32_t n_ctx() const;
uint32_t n_ctx_seq() const;
uint32_t n_batch() const;
uint32_t n_ubatch() const;
uint32_t n_seq_max() const;
uint32_t n_threads() const;
uint32_t n_threads_batch() const;
@@ -197,7 +197,7 @@ private:
//
public:
uint32_t graph_max_nodes() const;
uint32_t graph_max_nodes(uint32_t n_tokens) const;
// can reuse the llm_graph_result instance of the context (for example to update a memory module)
llm_graph_result * get_gf_res_reserve() const;

View File

@@ -8,6 +8,7 @@
struct llama_cparams {
uint32_t n_ctx; // context size used during inference
uint32_t n_ctx_seq; // context for a single sequence
uint32_t n_batch;
uint32_t n_ubatch;
uint32_t n_seq_max;

View File

@@ -6,8 +6,10 @@
#include <cmath>
#include <algorithm>
#include <cstdint>
#include <stdexcept>
#define MAX_REPETITION_THRESHOLD 2000
//
// helpers
//
@@ -179,6 +181,52 @@ static std::pair<uint32_t, const char *> parse_char(const char * src) {
throw std::runtime_error("unexpected end of input");
}
static std::pair<uint32_t, const char *> parse_token(const llama_vocab * vocab, const char * src) {
const char * pos = src;
if (*pos != '<') {
throw std::runtime_error(std::string("expecting '<' at ") + pos);
}
pos++;
// Parse <[id]>
if (*pos == '[') {
pos++;
const char * int_end = parse_int(pos);
uint32_t token_id = std::stoul(std::string(pos, int_end - pos));
pos = int_end;
if (*pos != ']') {
throw std::runtime_error(std::string("expecting ']' at ") + pos);
}
pos++;
if (*pos != '>') {
throw std::runtime_error(std::string("expecting '>' at ") + pos);
}
pos++;
return std::make_pair(token_id, pos);
}
if (vocab == nullptr) {
throw std::runtime_error(std::string("no vocab to parse token at ") + src);
}
// Parse <token> and tokenize to obtain the token id
while (*pos != 0 && *pos != '>') {
pos++;
}
if (*pos != '>') {
throw std::runtime_error(std::string("expecting '>' at ") + pos);
}
pos++;
llama_token tokens[2];
int32_t n_tokens = vocab->tokenize(src, static_cast<int32_t>(pos - src), tokens, 2, false, true);
if (n_tokens != 1) {
// must tokenize to exactly 1 token
throw std::runtime_error("invalid token '" + std::string(src, pos - src) + "'");
}
return std::make_pair(tokens[0], pos);
}
static void print_grammar_char(FILE * file, uint32_t c) {
if (0x20 <= c && c <= 0x7f) {
fprintf(file, "%c", static_cast<char>(c));
@@ -210,6 +258,8 @@ static void print_rule_binary(FILE * file, const llama_grammar_rule & rule) {
case LLAMA_GRETYPE_CHAR_RNG_UPPER: fprintf(file, "CHAR_RNG_UPPER"); break;
case LLAMA_GRETYPE_CHAR_ALT: fprintf(file, "CHAR_ALT"); break;
case LLAMA_GRETYPE_CHAR_ANY: fprintf(file, "CHAR_ANY"); break;
case LLAMA_GRETYPE_TOKEN: fprintf(file, "TOKEN"); break;
case LLAMA_GRETYPE_TOKEN_NOT: fprintf(file, "TOKEN_NOT"); break;
}
switch (elem.type) {
case LLAMA_GRETYPE_END:
@@ -226,6 +276,17 @@ static void print_rule_binary(FILE * file, const llama_grammar_rule & rule) {
print_grammar_char(file, elem.value);
fprintf(file, "\") ");
break;
case LLAMA_GRETYPE_TOKEN:
fprintf(file, "<[");
fprintf(file, "%u", elem.value);
fprintf(file, "]> ");
break;
case LLAMA_GRETYPE_TOKEN_NOT:
fprintf(file, "!");
fprintf(file, "<[");
fprintf(file, "%u", elem.value);
fprintf(file, "]> ");
break;
}
}
fprintf(file, "\n");
@@ -282,6 +343,17 @@ static void print_rule(
case LLAMA_GRETYPE_CHAR_ANY:
fprintf(file, ".");
break;
case LLAMA_GRETYPE_TOKEN:
fprintf(file, "<[");
fprintf(file, "%u", elem.value);
fprintf(file, "]> ");
break;
case LLAMA_GRETYPE_TOKEN_NOT:
fprintf(file, "!");
fprintf(file, "<[");
fprintf(file, "%u", elem.value);
fprintf(file, "]> ");
break;
}
if (is_char_element(elem)) {
switch (rule[i + 1].type) {
@@ -345,8 +417,10 @@ const char * llama_grammar_parser::parse_sequence(
size_t last_sym_start = rule.size();
const char * pos = src;
auto handle_repetitions = [&](int min_times, int max_times) {
// use UINT64_MAX as the empty value because we aligned to the proper uint64_t type so -1 can't be used
// (though it's technically the same as -1 now)
auto handle_repetitions = [&](uint64_t min_times, uint64_t max_times) {
bool no_max = max_times == UINT64_MAX;
if (last_sym_start == rule.size()) {
throw std::runtime_error(std::string("expecting preceding item to */+/?/{ at ") + pos);
}
@@ -373,20 +447,20 @@ const char * llama_grammar_parser::parse_sequence(
rule.resize(last_sym_start);
} else {
// Repeat the previous elements (min_times - 1) times
for (int i = 1; i < min_times; i++) {
for (uint64_t i = 1; i < min_times; i++) {
rule.insert(rule.end(), prev_rule.begin(), prev_rule.end());
}
}
uint32_t last_rec_rule_id = 0;
auto n_opt = max_times < 0 ? 1 : max_times - min_times;
auto n_opt = no_max ? 1 : max_times - min_times;
llama_grammar_rule rec_rule(prev_rule);
for (int i = 0; i < n_opt; i++) {
for (uint64_t i = 0; i < n_opt; i++) {
rec_rule.resize(prev_rule.size());
uint32_t rec_rule_id = generate_symbol_id( rule_name);
if (i > 0 || max_times < 0) {
rec_rule.push_back({LLAMA_GRETYPE_RULE_REF, max_times < 0 ? rec_rule_id : last_rec_rule_id});
if (i > 0 || no_max) {
rec_rule.push_back({LLAMA_GRETYPE_RULE_REF, no_max ? rec_rule_id : last_rec_rule_id});
}
rec_rule.push_back({LLAMA_GRETYPE_ALT, 0});
rec_rule.push_back({LLAMA_GRETYPE_END, 0});
@@ -440,6 +514,17 @@ const char * llama_grammar_parser::parse_sequence(
}
}
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '<' || *pos == '!') { // token
auto type = LLAMA_GRETYPE_TOKEN;
if (*pos == '!') { // token inverse
type = LLAMA_GRETYPE_TOKEN_NOT;
pos++;
}
auto token_pair = parse_token(vocab, pos);
const char * token_end = token_pair.second;
last_sym_start = rule.size();
rule.push_back({type, token_pair.first});
pos = parse_space(token_end, is_nested);
} else if (is_word_char(*pos)) { // rule reference
const char * name_end = parse_name(pos);
uint32_t ref_rule_id = get_symbol_id(pos, name_end - pos);
@@ -478,10 +563,10 @@ const char * llama_grammar_parser::parse_sequence(
throw std::runtime_error(std::string("expecting an int at ") + pos);
}
const char * int_end = parse_int(pos);
int min_times = std::stoul(std::string(pos, int_end - pos));
uint64_t min_times = std::stoul(std::string(pos, int_end - pos));
pos = parse_space(int_end, is_nested);
int max_times = -1;
uint64_t max_times = UINT64_MAX; // default: no max limit
if (*pos == '}') {
max_times = min_times;
@@ -502,6 +587,10 @@ const char * llama_grammar_parser::parse_sequence(
} else {
throw std::runtime_error(std::string("expecting ',' at ") + pos);
}
bool has_max = max_times != UINT64_MAX;
if (min_times > MAX_REPETITION_THRESHOLD || (has_max && max_times > MAX_REPETITION_THRESHOLD)) {
throw std::runtime_error(std::string("number of repetitions exceeds sane defaults, please reduce the number of repetitions"));
}
handle_repetitions(min_times, max_times);
} else {
break;
@@ -683,6 +772,21 @@ static bool llama_grammar_match_partial_char(
return !is_positive_char;
}
// returns true iff token matches the rule at pos (regular or inverse)
// asserts that pos is pointing to a token element
static bool llama_grammar_match_token(
const llama_grammar_element * pos,
const llama_token token) {
GGML_ASSERT(pos->type == LLAMA_GRETYPE_TOKEN || pos->type == LLAMA_GRETYPE_TOKEN_NOT);
if (pos->type == LLAMA_GRETYPE_TOKEN) {
return pos->value == static_cast<uint32_t>(token);
}
if (pos->type == LLAMA_GRETYPE_TOKEN_NOT) {
return pos->value != static_cast<uint32_t>(token);
}
return false;
}
// transforms a grammar pushdown stack into N possible stacks, all ending
// at a character range (terminal element)
static void llama_grammar_advance_stack(
@@ -730,6 +834,8 @@ static void llama_grammar_advance_stack(
case LLAMA_GRETYPE_CHAR:
case LLAMA_GRETYPE_CHAR_NOT:
case LLAMA_GRETYPE_CHAR_ANY:
case LLAMA_GRETYPE_TOKEN:
case LLAMA_GRETYPE_TOKEN_NOT:
if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
// only add the stack if it's not a duplicate of one we already have
new_stacks.emplace_back(stack);
@@ -823,26 +929,38 @@ llama_grammar_stacks & llama_grammar_get_stacks(struct llama_grammar * grammar)
return grammar->stacks;
}
static void llama_grammar_accept_chr(
struct llama_grammar & grammar,
const llama_grammar_stack & stack,
uint32_t chr,
llama_grammar_stacks & new_stacks) {
if (stack.empty()) {
return;
}
const llama_grammar_element * pos = stack.back();
// ignore if this turns into a token
if (pos->type == LLAMA_GRETYPE_TOKEN || pos->type == LLAMA_GRETYPE_TOKEN_NOT) {
return;
}
auto match = llama_grammar_match_char(pos, chr);
if (match.first) {
llama_grammar_stack new_stack(stack.begin(), stack.end() - 1);
if (!llama_grammar_is_end_of_sequence(match.second)) {
new_stack.push_back(match.second);
}
llama_grammar_advance_stack(grammar.rules, new_stack, new_stacks);
}
}
void llama_grammar_accept(struct llama_grammar * grammar, uint32_t chr) {
llama_grammar_stacks stacks_new;
stacks_new.reserve(grammar->stacks.size());
for (const auto & stack : grammar->stacks) {
if (stack.empty()) {
continue;
}
auto match = llama_grammar_match_char(stack.back(), chr);
if (match.first) {
const llama_grammar_element * pos = match.second;
// update top of stack to next element, if any
llama_grammar_stack new_stack(stack.begin(), stack.end() - 1);
if (!llama_grammar_is_end_of_sequence(pos)) {
new_stack.push_back(pos);
}
llama_grammar_advance_stack(grammar->rules, new_stack, stacks_new);
}
llama_grammar_accept_chr(*grammar, stack, chr, stacks_new);
}
grammar->stacks = std::move(stacks_new);
@@ -867,6 +985,22 @@ llama_grammar_candidates llama_grammar_reject_candidates_for_stack(
const llama_grammar_element * stack_pos = stack.back();
// if the top of the stack is a token rule, then we only need to check the token id
if (stack_pos->type == LLAMA_GRETYPE_TOKEN || stack_pos->type == LLAMA_GRETYPE_TOKEN_NOT) {
for (const auto & tok : candidates) {
if (*tok.code_points == 0) {
// reached the end of a token consumed by char rules, reject iff it ended
// in a partial response
if (tok.partial_utf8.n_remain != 0) {
rejects.push_back(tok);
}
} else if (!llama_grammar_match_token(stack_pos, tok.id)) {
rejects.push_back(tok);
}
}
return rejects;
}
llama_grammar_candidates next_candidates;
next_candidates.reserve(candidates.size());
@@ -879,7 +1013,7 @@ llama_grammar_candidates llama_grammar_reject_candidates_for_stack(
rejects.push_back(tok);
}
} else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8, tok.id });
} else {
rejects.push_back(tok);
}
@@ -897,7 +1031,7 @@ llama_grammar_candidates llama_grammar_reject_candidates_for_stack(
auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
for (const auto & tok : next_rejects) {
rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8, tok.id });
}
return rejects;
@@ -966,12 +1100,13 @@ struct llama_grammar * llama_grammar_init_impl(
ollama_vocab,
std::move(vec_rules),
std::move(stacks),
/* .partial_utf8 = */ {},
/* .lazy =*/ false,
/* .awaiting_trigger = */ false,
/* .trigger_buffer = */ "",
/* .trigger_tokens = */ {},
/* .trigger_patterns = */ {},
/* .partial_utf8 = */ {},
/* .lazy = */ false,
/* .awaiting_trigger = */ false,
/* .trigger_buffer = */ "",
/* .trigger_buffer_positions = */ {},
/* .trigger_tokens = */ {},
/* .trigger_patterns = */ {},
};
}
@@ -985,7 +1120,7 @@ struct llama_grammar * llama_grammar_init_impl(
size_t num_trigger_patterns,
const llama_token * trigger_tokens,
size_t num_trigger_tokens) {
llama_grammar_parser parser;
llama_grammar_parser parser(vocab);
// if there is a grammar, parse it
// rules will be empty (default) if there are parse errors
@@ -1073,10 +1208,11 @@ struct llama_grammar * llama_grammar_init_impl(
ollama_vocab,
std::move(vec_rules),
std::move(stacks),
/* .partial_utf8 = */ {},
/* .lazy = */ lazy,
/* .awaiting_trigger = */ lazy,
/* .trigger_buffer = */ "",
/* .partial_utf8 = */ {},
/* .lazy = */ lazy,
/* .awaiting_trigger = */ lazy,
/* .trigger_buffer = */ "",
/* .trigger_buffer_positions = */ {},
std::move(vec_trigger_tokens),
std::move(vec_trigger_patterns),
};
@@ -1100,6 +1236,7 @@ struct llama_grammar * llama_grammar_clone_impl(const struct llama_grammar & gra
grammar.lazy,
grammar.awaiting_trigger,
grammar.trigger_buffer,
grammar.trigger_buffer_positions,
grammar.trigger_tokens,
grammar.trigger_patterns,
};
@@ -1156,7 +1293,7 @@ void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_
cur_p->data[i].logit = -INFINITY;
} else {
candidates_decoded.push_back(decode_utf8(piece, grammar.partial_utf8));
candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second, id });
}
}
@@ -1176,10 +1313,12 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
if (std::find(grammar.trigger_tokens.begin(), grammar.trigger_tokens.end(), token) != grammar.trigger_tokens.end()) {
grammar.awaiting_trigger = false;
grammar.trigger_buffer.clear();
llama_grammar_accept_str(grammar, piece);
llama_grammar_accept_token(grammar, token, piece);
LLAMA_LOG_DEBUG("Grammar triggered on token %u (`%s`)", token, piece.c_str());
return;
} else {
auto position = std::make_pair(grammar.trigger_buffer.size(), grammar.trigger_buffer.size() + piece.size());
grammar.trigger_buffer_positions.push_back(std::make_pair(token, position));
grammar.trigger_buffer += piece;
std::smatch match;
@@ -1197,10 +1336,23 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
if (start == std::string::npos) {
start = match.position(0);
}
// replay tokens that overlap with [start, end)
for (const auto & [tok, tok_pos] : grammar.trigger_buffer_positions) {
auto [tok_start, tok_end] = tok_pos;
if (tok_end <= start) {
continue;
}
size_t piece_start = (tok_start < start) ? start : tok_start; // allow for partial token pieces
size_t piece_len = tok_end - piece_start;
auto tok_piece = grammar.trigger_buffer.substr(piece_start, piece_len);
llama_grammar_accept_token(grammar, tok, tok_piece);
}
auto constrained_str = grammar.trigger_buffer.substr(start);
// std::string constrained_str(match[1].first, grammar.trigger_buffer.end());
grammar.trigger_buffer.clear();
llama_grammar_accept_str(grammar, constrained_str);
grammar.trigger_buffer_positions.clear();
LLAMA_LOG_DEBUG("Grammar triggered on regex: '%s'\n", constrained_str.c_str());
return;
}
@@ -1220,7 +1372,7 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
GGML_ABORT("grammar error: end of grammar token received but grammar stack is not empty");
}
llama_grammar_accept_str(grammar, piece);
llama_grammar_accept_token(grammar, token, piece);
}
void llama_grammar_accept_str(struct llama_grammar & grammar, const std::string & piece) {
@@ -1238,6 +1390,61 @@ void llama_grammar_accept_str(struct llama_grammar & grammar, const std::string
}
}
void llama_grammar_accept_token(struct llama_grammar & grammar, llama_token token, const std::string & piece) {
// Note terminating 0 in decoded string
const auto decoded = decode_utf8(piece, grammar.partial_utf8);
const auto & code_points = decoded.first;
llama_grammar_stacks stacks_new;
stacks_new.reserve(grammar.stacks.size());
for (const auto & stack : grammar.stacks) {
if (stack.empty()) {
continue;
}
const llama_grammar_element * pos = stack.back();
if (pos->type == LLAMA_GRETYPE_TOKEN || pos->type == LLAMA_GRETYPE_TOKEN_NOT) {
if (llama_grammar_match_token(pos, token)) {
llama_grammar_stack new_stack(stack.begin(), stack.end() - 1);
if (!llama_grammar_is_end_of_sequence(pos + 1)) {
new_stack.push_back(pos + 1);
}
llama_grammar_advance_stack(grammar.rules, new_stack, stacks_new);
}
} else {
llama_grammar_stacks current_stacks = {stack};
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
llama_grammar_stacks next_stacks;
for (const auto & cur_stack : current_stacks) {
llama_grammar_accept_chr(grammar, cur_stack, *it, next_stacks);
}
current_stacks = std::move(next_stacks);
if (current_stacks.empty()) {
break;
}
}
for (auto & surviving_stack : current_stacks) {
if (std::find(stacks_new.begin(), stacks_new.end(), surviving_stack) == stacks_new.end()) {
stacks_new.emplace_back(surviving_stack);
}
}
}
}
grammar.stacks = std::move(stacks_new);
grammar.partial_utf8 = decoded.second;
if (grammar.stacks.empty()) {
throw std::runtime_error("Unexpected empty grammar stack after accepting piece: " + piece + " (" + std::to_string(token) + ")");
}
}
const std::string & ollama_vocab::token_to_piece(const uint32_t token) const {
try {

View File

@@ -47,11 +47,17 @@ enum llama_gretype {
// any character (.)
LLAMA_GRETYPE_CHAR_ANY = 7,
// terminal element: token (<[token-id]>)
LLAMA_GRETYPE_TOKEN = 8,
// inverse token (!<[token-id]>)
LLAMA_GRETYPE_TOKEN_NOT = 9,
};
typedef struct llama_grammar_element {
enum llama_gretype type;
uint32_t value; // Unicode code point or rule ID
uint32_t value; // Unicode code point, rule ID, or token ID
} llama_grammar_element;
struct llama_partial_utf8 {
@@ -63,6 +69,7 @@ struct llama_grammar_candidate {
size_t index;
const uint32_t * code_points;
llama_partial_utf8 partial_utf8;
llama_token id;
};
using llama_grammar_rule = std::vector< llama_grammar_element>;
@@ -88,10 +95,13 @@ std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
const llama_grammar_candidates & candidates);
struct llama_grammar_parser {
const llama_vocab * vocab;
std::map<std::string, uint32_t> symbol_ids;
llama_grammar_rules rules;
llama_grammar_parser(const struct llama_vocab * vocab = nullptr) : vocab(vocab) {}
llama_grammar_stack c_rules() const;
uint32_t get_symbol_id(const char * src, size_t len);
@@ -123,6 +133,9 @@ struct llama_grammar_trigger_pattern {
};
struct llama_grammar {
// maintain a list of llama_tokens and their positions in the trigger_buffer
using token_pos = std::pair<llama_token, std::pair<size_t, size_t>>;
// note: allow null vocab for testing (not great)
const llama_vocab * vocab;
const ollama_vocab * o_vocab;
@@ -139,6 +152,7 @@ struct llama_grammar {
bool lazy = false;
bool awaiting_trigger = false; // Initialized to true for lazy grammars only
std::string trigger_buffer; // Output buffered by lazy grammar. Will be cleared once trigger is found.
std::vector<token_pos> trigger_buffer_positions; // Tokens buffered by lazy grammar. Used to replay when a trigger is found.
std::vector<llama_token> trigger_tokens; // Tokens that trigger a lazy grammar, or tokens to force printing of (even if special).
std::vector<llama_grammar_trigger_pattern>
trigger_patterns; // Regular expressions that trigger a lazy grammar. Must be a full match of the entire generated
@@ -185,3 +199,8 @@ void llama_grammar_accept_impl(
void llama_grammar_accept_str(
struct llama_grammar & grammar,
const std::string & piece);
void llama_grammar_accept_token(
struct llama_grammar & grammar,
llama_token token,
const std::string & piece);

View File

@@ -71,6 +71,9 @@ void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) {
if (ubatch->pos && attn_scale) {
const int64_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(f_attn_temp_scale != 0.0f);
GGML_ASSERT(n_attn_temp_floor_scale != 0);
std::vector<float> attn_scale_data(n_tokens, 0.0f);
for (int i = 0; i < n_tokens; ++i) {
const float pos = ubatch->pos[i];
@@ -958,25 +961,25 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
// organize experts into n_expert_groups
ggml_tensor * selection_groups = ggml_reshape_3d(ctx0, selection_probs, n_exp_per_group, hparams.n_expert_groups, n_tokens); // [n_exp_per_group, n_expert_groups, n_tokens]
ggml_tensor * group_scores = ggml_top_k(ctx0, selection_groups, 2); // [2, n_expert_groups, n_tokens]
ggml_tensor * group_scores = ggml_argsort_top_k(ctx0, selection_groups, 2); // [2, n_expert_groups, n_tokens]
group_scores = ggml_get_rows(ctx0, ggml_reshape_4d(ctx0, selection_groups, 1, selection_groups->ne[0], selection_groups->ne[1], selection_groups->ne[2]), group_scores); // [1, 2, n_expert_groups, n_tokens]
// get top n_group_used expert groups
group_scores = ggml_sum_rows(ctx0, ggml_reshape_3d(ctx0, group_scores, group_scores->ne[1], group_scores->ne[2], group_scores->ne[3])); // [1, n_expert_groups, n_tokens]
group_scores = ggml_reshape_2d(ctx0, group_scores, group_scores->ne[1], group_scores->ne[2]); // [n_expert_groups, n_tokens]
ggml_tensor * expert_groups = ggml_top_k(ctx0, group_scores, hparams.n_group_used); // [n_group_used, n_tokens]
ggml_tensor * expert_groups = ggml_argsort_top_k(ctx0, group_scores, hparams.n_group_used); // [n_group_used, n_tokens]
cb(expert_groups, "ffn_moe_group_topk", il);
// mask out the other groups
selection_probs = ggml_get_rows(ctx0, selection_groups, expert_groups); // [n_exp_per_group, n_group_used, n_tokens]
selection_probs = ggml_set_rows(ctx0, ggml_scale_bias(ctx0, selection_groups, 0.0f, -INFINITY), selection_probs, expert_groups); // [n_exp_per_group, n_expert_groups, n_tokens]
selection_probs = ggml_set_rows(ctx0, ggml_fill(ctx0, selection_groups, -INFINITY), selection_probs, expert_groups); // [n_exp_per_group, n_expert_groups, n_tokens]
selection_probs = ggml_reshape_2d(ctx0, selection_probs, n_expert, n_tokens); // [n_expert, n_tokens]
cb(selection_probs, "ffn_moe_probs_masked", il);
}
// select experts
ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
ggml_tensor * selected_experts = ggml_argsort_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
cb(selected_experts->src[0], "ffn_moe_argsort", il);
cb(selected_experts, "ffn_moe_topk", il);
@@ -1006,10 +1009,9 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens]
cb(weights_sum, "ffn_moe_weights_sum", il);
if (arch == LLM_ARCH_BAILINGMOE2) {
weights_sum = ggml_scale_bias(ctx0, weights_sum, 1.0, 1e-20);
cb(weights_sum, "ffn_moe_weights_sum_biased", il);
}
// Avoid division by zero, clamp to smallest number representable by F16
weights_sum = ggml_clamp(ctx0, weights_sum, 6.103515625e-5, INFINITY);
cb(weights_sum, "ffn_moe_weights_sum_clamped", il);
weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
cb(weights, "ffn_moe_weights_norm", il);
@@ -1087,6 +1089,16 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
cur = ggml_relu(ctx0, cur);
cb(cur, "ffn_moe_relu", il);
} break;
case LLM_FFN_RELU_SQR:
if (gate_exps) {
// TODO: add support for gated squared relu
GGML_ABORT("fatal error: gated squared relu not implemented");
} else {
cur = ggml_relu(ctx0, cur);
cur = ggml_sqr(ctx0, cur);
cb(cur, "ffn_moe_relu_sqr", il);
}
break;
default:
GGML_ABORT("fatal error");
}
@@ -1137,7 +1149,7 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
// input embeddings with optional lora
ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
const int64_t n_embd = hparams.n_embd;
const int64_t n_embd = hparams.n_embd_inp();
auto inp = std::make_unique<llm_graph_input_embd>();
@@ -1274,7 +1286,7 @@ ggml_tensor * llm_graph_context::build_inp_cross_embd() const {
// return cur;
//}
const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd;
const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd_inp();
const auto n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_enc);
@@ -1587,9 +1599,10 @@ ggml_tensor * llm_graph_context::build_attn(
int il) const {
// these nodes are added to the graph together so that they are not reordered
// by doing so, the number of splits in the graph is reduced
// expand k later to enable rope fusion which directly writes into k-v cache
ggml_build_forward_expand(gf, q_cur);
ggml_build_forward_expand(gf, k_cur);
ggml_build_forward_expand(gf, v_cur);
ggml_build_forward_expand(gf, k_cur);
const auto * mctx_cur = inp->mctx;
@@ -2030,7 +2043,7 @@ int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buck
if (bidirectional) {
relative_bucket += (relative_position > 0) * n_buckets;
relative_position = abs(relative_position);
relative_position = std::abs(relative_position);
} else {
relative_position = -std::min<int32_t>(relative_position, 0);
}

View File

@@ -60,6 +60,16 @@ uint32_t llama_hparams::n_gqa(uint32_t il) const {
return n_head/n_head_kv;
}
uint32_t llama_hparams::n_embd_inp() const {
uint32_t n_embd_inp = n_embd;
if (n_deepstack_layers > 0) {
n_embd_inp += n_embd * n_deepstack_layers;
}
return n_embd_inp;
}
uint32_t llama_hparams::n_embd_k_gqa(uint32_t il) const {
const uint32_t n_head_kv = this->n_head_kv(il);
@@ -148,7 +158,7 @@ bool llama_hparams::is_recurrent(uint32_t il) const {
}
uint32_t llama_hparams::n_pos_per_embd() const {
return rope_type == LLAMA_ROPE_TYPE_MROPE ? 4 : 1;
return rope_type == LLAMA_ROPE_TYPE_MROPE || rope_type == LLAMA_ROPE_TYPE_IMROPE ? 4 : 1;
}
bool llama_hparams::n_bskcn(uint32_t n, uint32_t il) const {

View File

@@ -6,7 +6,7 @@
// bump if necessary
#define LLAMA_MAX_LAYERS 512
#define LLAMA_MAX_EXPERTS 384 // Kimi-K2
#define LLAMA_MAX_EXPERTS 512 // Qwen3 Next
enum llama_expert_gating_func_type {
LLAMA_EXPERT_GATING_FUNC_TYPE_NONE = 0,
@@ -164,8 +164,8 @@ struct llama_hparams {
// llama4 smallthinker
uint32_t n_moe_layer_step = 0;
uint32_t n_no_rope_layer_step = 4;
uint32_t n_attn_temp_floor_scale = 8192;
float f_attn_temp_scale = 0.1;
uint32_t n_attn_temp_floor_scale = 0;
float f_attn_temp_scale = 0.0f;
// gemma3n altup
uint32_t n_altup = 4; // altup_num_inputs
@@ -185,6 +185,9 @@ struct llama_hparams {
std::array<float, LLAMA_MAX_LAYERS> xielu_beta;
std::array<float, LLAMA_MAX_LAYERS> xielu_eps;
// qwen3vl deepstack
uint32_t n_deepstack_layers = 0;
// needed by encoder-decoder models (e.g. T5, FLAN-T5)
// ref: https://github.com/ggerganov/llama.cpp/pull/8141
llama_token dec_start_token_id = LLAMA_TOKEN_NULL;
@@ -226,6 +229,9 @@ struct llama_hparams {
uint32_t n_gqa(uint32_t il = 0) const;
// dimension of main + auxiliary input embeddings
uint32_t n_embd_inp() const;
// dimension of key embeddings across all k-v heads
uint32_t n_embd_k_gqa(uint32_t il = 0) const;

View File

@@ -20,10 +20,10 @@ static llama_logger_state g_logger_state;
time_meas::time_meas(int64_t & t_acc, bool disable) : t_start_us(disable ? -1 : ggml_time_us()), t_acc(t_acc) {}
time_meas::~time_meas() {
if (t_start_us >= 0) {
t_acc += ggml_time_us() - t_start_us;
}
if (t_start_us >= 0) {
t_acc += ggml_time_us() - t_start_us;
}
}
void llama_log_set(ggml_log_callback log_callback, void * user_data) {
ggml_log_set(log_callback, user_data);

View File

@@ -37,7 +37,7 @@ void llama_log_callback_default(ggml_log_level level, const char * text, void *
template <typename T>
struct no_init {
T value;
no_init() { /* do nothing */ }
no_init() = default;
};
struct time_meas {

View File

@@ -45,7 +45,9 @@ llama_kv_cache_iswa::llama_kv_cache_iswa(
const uint32_t size_base = kv_size;
uint32_t size_swa = std::min(size_base, GGML_PAD(hparams.n_swa*(unified ? n_seq_max : 1) + n_ubatch, n_pad));
// note: the SWA cache is always padded to 256 for performance
// https://github.com/ggml-org/llama.cpp/issues/17037
uint32_t size_swa = GGML_PAD(std::min(size_base, hparams.n_swa*(unified ? n_seq_max : 1) + n_ubatch), 256);
// when using full-size SWA cache, we set the SWA cache size to be equal to the base cache size
if (swa_full) {

View File

@@ -8,6 +8,7 @@
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstring>
#include <limits>
#include <map>
#include <stdexcept>
@@ -37,8 +38,15 @@ llama_kv_cache::llama_kv_cache(
const uint32_t n_layer_kv = hparams.n_layer_kv();
// define a comparator for the buft -> ctx map to ensure that the order is well-defined:
struct ggml_backend_buft_comparator {
bool operator()(const ggml_backend_buffer_type_t & lhs, const ggml_backend_buffer_type_t & rhs) const {
return strcmp(ggml_backend_buft_name(lhs), ggml_backend_buft_name(rhs)) < 0;
}
};
std::map<ggml_backend_buffer_type_t, ggml_context_ptr, ggml_backend_buft_comparator> ctx_map;
// create a context for each buffer type
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
auto it = ctx_map.find(buft);
if (it == ctx_map.end()) {
@@ -53,13 +61,12 @@ llama_kv_cache::llama_kv_cache(
return nullptr;
}
ctx_map[buft] = ctx;
ctxs.emplace_back(ctx);
ctx_map.emplace(buft, ctx);
return ctx;
}
return it->second;
return it->second.get();
};
GGML_ASSERT(n_stream == 1 || n_stream == n_seq_max);
@@ -167,11 +174,8 @@ llama_kv_cache::llama_kv_cache(
}
// allocate tensors and initialize the buffers to avoid NaNs in the padding
for (auto it : ctx_map) {
auto * buft = it.first;
auto * ctx = it.second;
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
for (auto & [buft, ctx] : ctx_map) {
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx.get(), buft);
if (!buf) {
throw std::runtime_error("failed to allocate buffer for kv cache");
}
@@ -179,7 +183,7 @@ llama_kv_cache::llama_kv_cache(
LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
ggml_backend_buffer_clear(buf, 0);
bufs.emplace_back(buf);
ctxs_bufs.emplace_back(std::move(ctx), buf);
}
{
@@ -203,7 +207,7 @@ void llama_kv_cache::clear(bool data) {
}
if (data) {
for (auto & buf : bufs) {
for (auto & [_, buf] : ctxs_bufs) {
ggml_backend_buffer_clear(buf.get(), 0);
}
}
@@ -334,6 +338,8 @@ void llama_kv_cache::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, ll
llama_pos pos = v_cells[s0].pos_get(i);
llama_pos shift = v_cells[s0].get_shift(i);
llama_kv_cell_ext ext = v_cells[s0].ext_get(i);
if (shift != 0) {
pos -= shift;
assert(pos >= 0);
@@ -345,6 +351,8 @@ void llama_kv_cache::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, ll
if (shift != 0) {
v_cells[s1].pos_add(i, shift);
}
v_cells[s1].ext_set(i, ext);
}
}
@@ -379,6 +387,7 @@ void llama_kv_cache::seq_keep(llama_seq_id seq_id) {
void llama_kv_cache::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
GGML_ASSERT(hparams.n_pos_per_embd() == 1 && "seq_add() is only supported for n_pos_per_embd() == 1");
auto & cells = v_cells[seq_to_stream[seq_id]];
auto & head = v_heads[seq_to_stream[seq_id]];
@@ -423,6 +432,7 @@ void llama_kv_cache::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, ll
void llama_kv_cache::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
GGML_ASSERT(hparams.n_pos_per_embd() == 1 && "seq_div() is only supported for n_pos_per_embd() == 1");
auto & cells = v_cells[seq_to_stream[seq_id]];
@@ -472,8 +482,8 @@ llama_pos llama_kv_cache::seq_pos_max(llama_seq_id seq_id) const {
std::map<ggml_backend_buffer_type_t, size_t> llama_kv_cache::memory_breakdown() const {
std::map<ggml_backend_buffer_type_t, size_t> ret;
for (const ggml_backend_buffer_ptr & buf_ptr : bufs) {
ret[ggml_backend_buffer_get_type(buf_ptr.get())] += ggml_backend_buffer_get_size(buf_ptr.get());
for (const auto & [_, buf] : ctxs_bufs) {
ret[ggml_backend_buffer_get_type(buf.get())] += ggml_backend_buffer_get_size(buf.get());
}
return ret;
}
@@ -896,6 +906,14 @@ void llama_kv_cache::apply_ubatch(const slot_info & sinfo, const llama_ubatch &
cells.pos_set(idx, ubatch.pos[i]);
if (ubatch.is_pos_2d()) {
llama_kv_cell_ext ext {
/*.x =*/ ubatch.pos[i + ubatch.n_tokens*2],
/*.y =*/ ubatch.pos[i + ubatch.n_tokens],
};
cells.ext_set(idx, ext);
}
for (int32_t s = 0; s < ubatch.n_seq_id[i]; s++) {
cells.seq_add(idx, ubatch.seq_id[i][s]);
}
@@ -957,10 +975,14 @@ bool llama_kv_cache::get_has_shift() const {
uint32_t llama_kv_cache::get_n_kv(const slot_info & sinfo) const {
uint32_t result = 0;
// pad the n_kv value so that the graph remains constant across batches and can be reused
// note: this also helps some backends with performance (f.ex https://github.com/ggml-org/llama.cpp/pull/16812#issuecomment-3455112220)
const uint32_t n_pad_cur = std::max(n_pad, 256u);
for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
const auto & cells = v_cells[sinfo.strm[s]];
result = std::max(std::min(cells.size(), std::max(n_pad, GGML_PAD(cells.used_max_p1(), n_pad))), result);
result = std::max(std::min(cells.size(), std::max(n_pad_cur, GGML_PAD(cells.used_max_p1(), n_pad_cur))), result);
}
return result;
@@ -1239,6 +1261,11 @@ void llama_kv_cache::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * u
const llama_pos p1 = ubatch->pos[i];
// for M-RoPE
const bool is_2d = ubatch->is_pos_2d();
const llama_pos p1_x = is_2d ? ubatch->pos[i + ubatch->n_tokens*2] : 0;
const llama_pos p1_y = is_2d ? ubatch->pos[i + ubatch->n_tokens] : 0;
const uint64_t idst = n_kv*(h*n_stream*n_tps_pad + s*n_tps_pad + ii);
for (uint32_t j = 0; j < n_kv; ++j) {
@@ -1258,6 +1285,14 @@ void llama_kv_cache::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * u
continue;
}
// M-RoPE causal mask
if (causal_attn && is_2d && p0 == p1) {
const auto & p0_ext = cells.ext_get(j);
if (p0_ext.is_2d_gt(p1_x, p1_y)) {
continue;
}
}
// apply SWA if any
if (is_masked_swa(p0, p1)) {
continue;
@@ -1298,7 +1333,7 @@ void llama_kv_cache::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch
size_t llama_kv_cache::total_size() const {
size_t size = 0;
for (const auto & buf : bufs) {
for (const auto & [_, buf] : ctxs_bufs) {
size += ggml_backend_buffer_get_size(buf.get());
}
@@ -1340,7 +1375,7 @@ ggml_tensor * llama_kv_cache::build_rope_shift(
const auto & yarn_beta_slow = cparams.yarn_beta_slow;
const auto & n_rot = hparams.n_rot;
const auto & rope_type = hparams.rope_type == LLAMA_ROPE_TYPE_MROPE
const auto & rope_type = hparams.rope_type == LLAMA_ROPE_TYPE_MROPE || hparams.rope_type == LLAMA_ROPE_TYPE_IMROPE
// @ngxson : this is a workaround
// for M-RoPE, we want to rotate the whole vector when doing KV shift
// a normal RoPE should work, we just need to use the correct ordering
@@ -1551,6 +1586,9 @@ void llama_kv_cache::state_write_meta(llama_io_write_i & io, const cell_ranges_t
io.write(&pos, sizeof(pos));
io.write(&n_seq_id, sizeof(n_seq_id));
// TODO: we also need to save llama_kv_cell_ext when apply_ubatch() support loading it
// see: https://github.com/ggml-org/llama.cpp/pull/16825#issuecomment-3460868350
for (const auto & seq_id : seq_ids) {
io.write(&seq_id, sizeof(seq_id));
}
@@ -1696,6 +1734,8 @@ bool llama_kv_cache::state_read_meta(llama_io_read_i & io, uint32_t strm, uint32
return false;
}
// TODO: we cannot yet restore llama_kv_cell_ext as the apply_ubatch() does not support it yet
// see: https://github.com/ggml-org/llama.cpp/pull/16825#issuecomment-3460868350
apply_ubatch(sinfo, ubatch);
const auto head_cur = sinfo.head();
@@ -2010,8 +2050,3 @@ void llama_kv_cache_context::set_input_kq_mask(ggml_tensor * dst, const llama_ub
void llama_kv_cache_context::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const {
kv->set_input_pos_bucket(dst, ubatch);
}
uint32_t llama_kv_cache::get_padding(const llama_cparams & cparams) {
// the FA kernels require padding to avoid extra runtime boundary checks
return cparams.flash_attn ? 256u : 32u;
}

View File

@@ -19,8 +19,6 @@ struct llama_context;
class llama_kv_cache : public llama_memory_i {
public:
static uint32_t get_padding(const llama_cparams & cparams);
struct stream_copy_info {
bool empty() const {
assert(ssrc.size() == sdst.size());
@@ -217,8 +215,8 @@ private:
// this is the SWA type of the cache - not to be confused with the model SWA type
const llama_swa_type swa_type = LLAMA_SWA_TYPE_NONE;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
// ggml contexts for the KV cache along with the allocated backend buffers:
std::vector<std::pair<ggml_context_ptr, ggml_backend_buffer_ptr>> ctxs_bufs;
// the current index from where we start searching for a free slot in the ring buffer of KV cells (see find_slot())
// note: this is not part of the KV state and it's only used to speed-up the find_slot() method

View File

@@ -5,9 +5,27 @@
#include <bitset>
#include <cassert>
#include <vector>
#include <set>
#include <cstring>
#include <map>
#include <set>
#include <vector>
struct llama_kv_cell_ext {
// 2D spatial positions, typically used for M-RoPE
llama_pos x = 0;
llama_pos y = 0;
// return true if the current 2D spatial position is greater than other
bool is_2d_gt(llama_pos ox, llama_pos oy) const {
return (y > oy) || (y == oy && x > ox);
}
void reset() {
static_assert(std::is_trivially_copyable_v<llama_kv_cell_ext>);
memset(this, 0, sizeof(*this));
}
};
// meta information about KV cells that can be part of multiple sequences at the same time
// TODO: add unit tests
@@ -16,6 +34,7 @@ public:
void reset() {
for (uint32_t i = 0; i < pos.size(); ++i) {
pos[i] = -1;
ext[i].reset();
shift[i] = 0;
seq[i].reset();
}
@@ -43,6 +62,7 @@ public:
void resize(uint32_t n) {
pos.resize(n);
ext.resize(n);
shift.resize(n);
seq.resize(n);
@@ -108,6 +128,7 @@ public:
const auto idx = i + j;
res.pos[j] = pos[idx];
res.ext[j] = ext[idx];
res.seq[j] = seq[idx];
assert(shift[idx] == 0);
@@ -126,6 +147,7 @@ public:
const auto idx = idxs[j];
res.pos[j] = pos[idx];
res.ext[j] = ext[idx];
res.seq[j] = seq[idx];
assert(shift[idx] == 0);
@@ -154,6 +176,7 @@ public:
}
pos[idx] = other.pos[j];
ext[idx] = other.ext[j];
seq[idx] = other.seq[j];
if (pos[idx] != -1) {
@@ -184,6 +207,7 @@ public:
}
pos[idx] = other.pos[j];
ext[idx] = other.ext[j];
seq[idx] = other.seq[j];
if (pos[idx] != -1) {
@@ -203,6 +227,7 @@ public:
seq[i].reset();
pos[i] = -1;
ext[i].reset();
shift[i] = 0;
used.erase(i);
@@ -221,6 +246,7 @@ public:
if (seq[i].none()) {
pos[i] = -1;
ext[i].reset();
shift[i] = 0;
used.erase(i);
@@ -250,6 +276,7 @@ public:
seq[i].reset();
pos[i] = -1;
ext[i].reset();
shift[i] = 0;
used.erase(i);
@@ -340,6 +367,13 @@ public:
return pos[i];
}
const llama_kv_cell_ext & ext_get(uint32_t i) const {
assert(i < pos.size());
assert(pos[i] != -1);
return ext[i];
}
// note: call only if the cell is not empty
llama_pos get_shift(uint32_t i) const {
assert(i < pos.size());
@@ -368,6 +402,11 @@ public:
used.insert(i);
}
void ext_set(uint32_t i, llama_kv_cell_ext p) {
assert(i < ext.size());
ext[i] = p;
}
// pos[i] = pos[i] + d
// sets "has_shift" to true
// note: call only if the cell is not empty
@@ -424,6 +463,9 @@ private:
std::vector<llama_pos> pos;
// stores extra info per cell
std::vector<llama_kv_cell_ext> ext;
// this array accumulates any applied shifts to the pos array since the last reset_shift() call
// this is used to queue multiple updates to the pos array, which in the end can be applied in one go:
//

View File

@@ -7,6 +7,7 @@
#include <algorithm>
#include <cassert>
#include <cstring>
#include <limits>
#include <map>
#include <stdexcept>
@@ -32,8 +33,15 @@ llama_memory_recurrent::llama_memory_recurrent(
cells.clear();
cells.resize(mem_size);
// define a comparator for the buft -> ctx map to ensure that the order is well-defined:
struct ggml_backend_buft_comparator {
bool operator()(const ggml_backend_buffer_type_t & lhs, const ggml_backend_buffer_type_t & rhs) const {
return strcmp(ggml_backend_buft_name(lhs), ggml_backend_buft_name(rhs)) < 0;
}
};
std::map<ggml_backend_buffer_type_t, ggml_context_ptr, ggml_backend_buft_comparator> ctx_map;
// create a context for each buffer type
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
auto it = ctx_map.find(buft);
if (it == ctx_map.end()) {
@@ -48,13 +56,12 @@ llama_memory_recurrent::llama_memory_recurrent(
return nullptr;
}
ctx_map[buft] = ctx;
ctxs.emplace_back(ctx);
ctx_map.emplace(buft, ctx);
return ctx;
}
return it->second;
return it->second.get();
};
r_l.resize(n_layer);
@@ -93,17 +100,14 @@ llama_memory_recurrent::llama_memory_recurrent(
}
// allocate tensors and initialize the buffers to avoid NaNs in the padding
for (auto it : ctx_map) {
auto * buft = it.first;
auto * ctx = it.second;
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
for (auto & [buft, ctx] : ctx_map) {
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx.get(), buft);
if (!buf) {
throw std::runtime_error("failed to allocate buffer for rs cache");
}
ggml_backend_buffer_clear(buf, 0);
LLAMA_LOG_INFO("%s: %10s RS buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
bufs.emplace_back(buf);
ctxs_bufs.emplace_back(std::move(ctx), buf);
}
{
@@ -129,7 +133,7 @@ void llama_memory_recurrent::clear(bool data) {
used = 0;
if (data) {
for (auto & buf : bufs) {
for (auto & [_, buf] : ctxs_bufs) {
ggml_backend_buffer_clear(buf.get(), 0);
}
}
@@ -147,7 +151,8 @@ bool llama_memory_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos
p1 = std::numeric_limits<llama_pos>::max();
}
// models like Mamba or RWKV can't have a state partially erased
// models like Mamba or RWKV can't have a state partially erased at the end
// of the sequence because their state isn't preserved for previous tokens
if (seq_id >= (int64_t) size) {
// could be fatal
return false;
@@ -156,8 +161,8 @@ bool llama_memory_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos
int32_t & tail_id = cells[seq_id].tail;
if (tail_id >= 0) {
const auto & cell = cells[tail_id];
// partial intersection is invalid
if ((0 < p0 && p0 < cell.pos) || (0 < p1 && p1 <= cell.pos)) {
// partial intersection is invalid if it includes the final pos
if (0 < p0 && p0 <= cell.pos && p1 > cell.pos) {
//printf("[DEBUG] inside `llama_memory_recurrent::seq_rm`: partial intersection is invalid, so returning false\n");
return false;
}
@@ -364,8 +369,8 @@ llama_pos llama_memory_recurrent::seq_pos_max(llama_seq_id seq_id) const {
std::map<ggml_backend_buffer_type_t, size_t> llama_memory_recurrent::memory_breakdown() const {
std::map<ggml_backend_buffer_type_t, size_t> ret;
for (const ggml_backend_buffer_ptr & buf_ptr : bufs) {
ret[ggml_backend_buffer_get_type(buf_ptr.get())] += ggml_backend_buffer_get_size(buf_ptr.get());
for (const auto & [_, buf] : ctxs_bufs) {
ret[ggml_backend_buffer_get_type(buf.get())] += ggml_backend_buffer_get_size(buf.get());
}
return ret;
}
@@ -662,7 +667,7 @@ bool llama_memory_recurrent::get_can_shift() const {
size_t llama_memory_recurrent::total_size() const {
size_t size = 0;
for (const auto & buf : bufs) {
for (const auto & [_, buf] : ctxs_bufs) {
size += ggml_backend_buffer_get_size(buf.get());
}

View File

@@ -109,8 +109,8 @@ private:
const uint32_t n_seq_max = 1;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
// ggml contexts for the KV cache along with the allocated backend buffers:
std::vector<std::pair<ggml_context_ptr, ggml_backend_buffer_ptr>> ctxs_bufs;
size_t total_size() const;

View File

@@ -485,7 +485,7 @@ struct llama_mlock::impl {
if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
suggest = false;
}
if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
if (suggest && ((uint64_t)lock_limit.rlim_max > (uint64_t)lock_limit.rlim_cur + size)) {
suggest = false;
}
#endif

View File

File diff suppressed because it is too large Load Diff

View File

@@ -77,6 +77,7 @@ enum llm_type {
LLM_TYPE_16B,
LLM_TYPE_20B,
LLM_TYPE_22B,
LLM_TYPE_26B,
LLM_TYPE_27B,
LLM_TYPE_30B,
LLM_TYPE_32B,
@@ -113,8 +114,11 @@ enum llm_type {
LLM_TYPE_16B_A1B,
LLM_TYPE_21B_A3B, // Ernie MoE small
LLM_TYPE_30B_A3B,
LLM_TYPE_31B_A3_5B,
LLM_TYPE_80B_A3B, // Qwen3 Next
LLM_TYPE_100B_A6B,
LLM_TYPE_106B_A12B, // GLM-4.5-Air
LLM_TYPE_230B_A10B, // Minimax M2
LLM_TYPE_235B_A22B,
LLM_TYPE_300B_A47B, // Ernie MoE big
LLM_TYPE_355B_A32B, // GLM-4.5
@@ -234,6 +238,7 @@ struct llama_layer {
struct ggml_tensor * wk_enc = nullptr;
struct ggml_tensor * wv_enc = nullptr;
struct ggml_tensor * wo_enc = nullptr;
struct ggml_tensor * wqkv_gate = nullptr;
// attention bias
struct ggml_tensor * bq = nullptr;
@@ -307,6 +312,9 @@ struct llama_layer {
struct ggml_tensor * ssm_conv1d_b = nullptr;
struct ggml_tensor * ssm_dt_b = nullptr;
// qwen3next
struct ggml_tensor * ssm_beta_alpha = nullptr;
// rwkv
struct ggml_tensor * time_mix_w1 = nullptr;
struct ggml_tensor * time_mix_w2 = nullptr;
@@ -385,6 +393,13 @@ struct llama_layer {
// openai-moe
struct ggml_tensor * attn_sinks = nullptr;
// cogvlm
struct ggml_tensor * visexp_attn_wqkv = nullptr;
struct ggml_tensor * visexp_attn_wo = nullptr;
struct ggml_tensor * visexp_ffn_gate = nullptr;
struct ggml_tensor * visexp_ffn_down = nullptr;
struct ggml_tensor * visexp_ffn_up = nullptr;
// xIELU activation parameters for Apertus
struct ggml_tensor * ffn_act_alpha_n = nullptr;
struct ggml_tensor * ffn_act_alpha_p = nullptr;
@@ -503,9 +518,8 @@ struct llama_model {
ggml_tensor * get_rope_factors(const llama_cparams & cparams, int il) const;
// note: can mutate `cparams`
// TODO: move this to new llm_arch_model_i interface
llama_memory_i * create_memory(const llama_memory_params & params, llama_cparams & cparams) const;
llama_memory_i * create_memory(const llama_memory_params & params, const llama_cparams & cparams) const;
// TODO: move this to new llm_arch_model_i interface
ggml_cgraph * build_graph(const llm_graph_params & params) const;

View File

@@ -653,7 +653,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
gguf_set_val_f32(ctx_out.get(), o.key, o.val_f64);
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
// Setting type to UINT32. See https://github.com/ggml-org/llama.cpp/pull/14182 for context
gguf_set_val_u32(ctx_out.get(), o.key, (uint32_t)abs(o.val_i64));
gguf_set_val_u32(ctx_out.get(), o.key, (uint32_t)std::abs(o.val_i64));
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
gguf_set_val_bool(ctx_out.get(), o.key, o.val_bool);
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
@@ -666,7 +666,6 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
std::map<int, std::string> mapped;
int blk_id = 0;
int pruned_attention_w = 0;
// make a list of weights
std::vector<const llama_model_loader::llama_tensor_weight *> tensors;
@@ -674,14 +673,11 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
for (const auto & it : ml.weights_map) {
const std::string remapped_name(remap_layer(it.first, prune_list, mapped, blk_id));
if (remapped_name.empty()) {
if (it.first.find("attn_v.weight") != std::string::npos ||
it.first.find("attn_qkv.weight") != std::string::npos ||
it.first.find("attn_kv_b.weight") != std::string::npos) {
pruned_attention_w++;
}
LLAMA_LOG_DEBUG("%s: pruning tensor %s\n", __func__, it.first.c_str());
continue;
} else if (remapped_name != it.first) {
}
if (remapped_name != it.first) {
ggml_set_name(it.second.tensor, remapped_name.c_str());
LLAMA_LOG_DEBUG("%s: tensor %s remapped to %s\n", __func__, it.first.c_str(), ggml_get_name(it.second.tensor));
}
@@ -701,7 +697,6 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
});
}
bool is_clip_model = false;
for (const auto * it : tensors) {
const struct ggml_tensor * tensor = it->tensor;
@@ -715,26 +710,10 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
} else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
qs.has_output = true;
}
is_clip_model |= name.rfind("mm.", 0) == 0; // check the "mm." prefix
}
qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
// sanity checks for models that have attention layers
if (qs.n_attention_wv != 0 && !is_clip_model)
{
const auto & n_head_kv_iter = model.hparams.n_head_kv_arr.begin();
// attention layers have a non-zero number of kv heads
int32_t n_attn_layer = model.hparams.n_layer - std::count(n_head_kv_iter, n_head_kv_iter + model.hparams.n_layer, 0);
if (llama_model_has_encoder(&model)) {
// now n_attn_layer is the number of attention layers in the encoder
// for each decoder block, there are 2 attention layers
n_attn_layer += 2 * model.hparams.dec_n_layer;
}
GGML_ASSERT((qs.n_attention_wv == n_attn_layer - pruned_attention_w) && "n_attention_wv is unexpected");
}
size_t total_size_org = 0;
size_t total_size_new = 0;

View File

@@ -4,6 +4,7 @@
#include "llama-vocab.h"
#include "llama-grammar.h"
#include <array>
#include <algorithm>
#include <cassert>
#include <cfloat>
@@ -471,9 +472,6 @@ static void llama_sampler_chain_reset(struct llama_sampler * smpl) {
for (auto * smpl : chain->samplers) {
llama_sampler_reset(smpl);
}
chain->t_sample_us = 0;
chain->n_sample = 0;
}
static struct llama_sampler * llama_sampler_chain_clone(const struct llama_sampler * smpl) {
@@ -1625,10 +1623,12 @@ static struct llama_sampler * llama_sampler_init_grammar_impl(
auto * ctx = new llama_sampler_grammar;
if (grammar_str != nullptr && grammar_str[0] != '\0') {
std::string trigger_pattern;
llama_grammar * grammar = nullptr;
// TODO: remove trigger_words support.
if (trigger_words != nullptr && num_trigger_words > 0) {
GGML_ASSERT(trigger_patterns == nullptr && num_trigger_patterns == 0);
std::string trigger_pattern("[\\s\\S]*?(");
trigger_pattern = "[\\s\\S]*?(";
for (size_t i = 0; i < num_trigger_words; ++i) {
static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
if (i > 0) {
@@ -1637,15 +1637,17 @@ static struct llama_sampler * llama_sampler_init_grammar_impl(
trigger_pattern += std::regex_replace(trigger_words[i], special_chars, "\\$0");
}
trigger_pattern += ")[\\s\\S]*";
const auto * trigger_pattern_c = trigger_pattern.c_str();
trigger_patterns = &trigger_pattern_c;
num_trigger_patterns = 1;
std::array<const char *, 1> tmp_trigger_patterns = { trigger_pattern.c_str() };
grammar = llama_grammar_init_impl(vocab, nullptr, grammar_str, grammar_root, lazy, tmp_trigger_patterns.data(), tmp_trigger_patterns.size(), trigger_tokens, num_trigger_tokens);
} else {
grammar = llama_grammar_init_impl(vocab, nullptr, grammar_str, grammar_root, lazy, trigger_patterns, num_trigger_patterns, trigger_tokens, num_trigger_tokens);
}
*ctx = {
/* .vocab = */ vocab,
/* .grammar_str = */ grammar_str,
/* .grammar_root = */ grammar_root,
/* .grammar = */ llama_grammar_init_impl(vocab, nullptr, grammar_str, grammar_root, lazy, trigger_patterns, num_trigger_patterns, trigger_tokens, num_trigger_tokens),
/* .grammar = */ grammar,
};
if (!ctx->grammar) {
delete ctx;
@@ -2665,8 +2667,7 @@ struct llama_perf_sampler_data llama_perf_sampler(const struct llama_sampler * c
void llama_perf_sampler_print(const struct llama_sampler * chain) {
const auto data = llama_perf_sampler(chain);
LLAMA_LOG_INFO("%s: sampling time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, data.t_sample_ms, data.n_sample, data.t_sample_ms / data.n_sample, 1e3 / data.t_sample_ms * data.n_sample);
LLAMA_LOG_INFO("%s: samplers time = %10.2f ms / %5d runs\n", __func__, data.t_sample_ms, data.n_sample);
}
void llama_perf_sampler_reset(struct llama_sampler * chain) {
@@ -2676,5 +2677,6 @@ void llama_perf_sampler_reset(struct llama_sampler * chain) {
auto * ctx = (struct llama_sampler_chain *) chain->ctx;
ctx->t_sample_us = ctx->n_sample = 0;
ctx->t_sample_us = 0;
ctx->n_sample = 0;
}

View File

@@ -401,6 +401,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
};
break;
case LLAMA_VOCAB_PRE_TYPE_GPT4O:
case LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2:
regex_exprs = {
// original regex from tokenizer.json
// "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
@@ -442,6 +443,17 @@ struct llm_tokenizer_bpe : llm_tokenizer {
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
};
break;
case LLAMA_VOCAB_PRE_TYPE_AFMOE:
regex_exprs = {
// Digit handling - uses custom implementation in unicode.cpp
// Groups digits with leading 1-2 based on total length modulo 3
"\\p{AFMoE_digits}",
// CJK and Asian scripts (using direct Unicode literals)
"[一-鿿㐀-䶿豈-﫿぀-ゟ゠-ヿ・-゚⼀-⿟เ-๿຀-໿ក-៿က-႟ꩠ-ꩿꧠ-꧿가-힯ᄀ-ᇿ]+",
// Main BPE pattern
"[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\\r\\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
};
break;
default:
// default regex for BPE tokenization pre-processing
regex_exprs = {
@@ -1012,7 +1024,7 @@ private:
}
private:
uint32_t get_node(size_t index) {
if (index > xcda_array_size) {
if (index >= xcda_array_size) {
throw std::runtime_error("Index out of array bounds in XCDA array!");
}
return xcda_array[index];
@@ -1269,6 +1281,7 @@ struct llm_tokenizer_plamo2 : llm_tokenizer {
// Build suffix list in lexicographical order of reversed strings
std::vector<std::string> suffixes;
suffixes.reserve(suffix_to_score.size() + 1);
for (const auto & pair : suffix_to_score) {
suffixes.push_back(pair.first);
}
@@ -1981,6 +1994,14 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
tokenizer_pre == "grok-2") {
pre_type = LLAMA_VOCAB_PRE_TYPE_GROK_2;
clean_spaces = false;
} else if (
tokenizer_pre == "afmoe") {
pre_type = LLAMA_VOCAB_PRE_TYPE_AFMOE;
clean_spaces = false;
} else if (
tokenizer_pre == "minimax-m2") {
pre_type = LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2;
clean_spaces = false;
} else {
LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
@@ -3222,8 +3243,7 @@ void llama_vocab::impl::print_info() const {
llama_vocab::llama_vocab() : pimpl(new impl(*this)) {
}
llama_vocab::~llama_vocab() {
}
llama_vocab::~llama_vocab() = default;
void llama_vocab::load(llama_model_loader & ml, const LLM_KV & kv) {
pimpl->load(ml, kv);

View File

@@ -49,6 +49,8 @@ enum llama_vocab_pre_type {
LLAMA_VOCAB_PRE_TYPE_HUNYUAN_DENSE = 38,
LLAMA_VOCAB_PRE_TYPE_GROK_2 = 39,
LLAMA_VOCAB_PRE_TYPE_GRANITE_DOCLING = 40,
LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2 = 41,
LLAMA_VOCAB_PRE_TYPE_AFMOE = 42,
};
struct LLM_KV;

View File

@@ -5,4 +5,8 @@ package llama
// #cgo CPPFLAGS: -I${SRCDIR}/../../../ml/backend/ggml/ggml/include
// #cgo windows CPPFLAGS: -D_WIN32_WINNT=0x0602
import "C"
import _ "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
import (
_ "github.com/ollama/ollama/llama/llama.cpp/src/models"
_ "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
)

187
llama/llama.cpp/src/models/afmoe.cpp vendored Normal file
View File

@@ -0,0 +1,187 @@
#include "models.h"
llm_build_afmoe::llm_build_afmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// MuP scaling: embeddings * sqrt(hidden_size)
// mup_enabled = true, hidden_size = 1024, scale = 32.0
inpL = ggml_scale(ctx0, inpL, sqrtf(float(n_embd)));
cb(inpL, "inp_embd_scaled", -1);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv_iswa();
ggml_tensor * inp_out_ids = build_inp_out_ids();
const float kq_scale = 1.0f/sqrtf(float(n_embd_head));
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// dual attention normalization (pre)
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
ggml_tensor * attn_inp = cur; // save input for gate computation
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
// compute gate from input
ggml_tensor * gate = build_lora_mm(model.layers[il].wqkv_gate, attn_inp);
cb(gate, "attn_gate_proj", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
// Q/K normalization
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
cb(Kcur, "Kcur_normed", il);
// RoPE only for sliding_attention layers
const bool use_rope = hparams.n_no_rope_layer_step > 0 &&
((il + 1) % hparams.n_no_rope_layer_step) != 0;
if (use_rope) {
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur_rope", il);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Kcur, "Kcur_rope", il);
}
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
cur = build_attn(inp_attn,
NULL, NULL, // wo will be applied after gating
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
// attention gating: attn_out * sigmoid(gate) BEFORE o_proj
gate = ggml_sigmoid(ctx0, gate);
cb(gate, "attn_gate_sig", il);
cur = ggml_mul(ctx0, cur, gate);
cb(cur, "attn_gated", il);
// now apply output projection
cur = build_lora_mm(model.layers[il].wo, cur);
cb(cur, "attn_o_proj", il);
}
// dual attention normalization (post)
cur = build_norm(cur,
model.layers[il].attn_post_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_post_norm", il);
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// dual ffn normalization (pre)
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// MoE or dense FFN
if ((uint32_t)il >= hparams.n_layer_dense_lead) {
// MoE layer with sigmoid routing, normalization, and scaling
ggml_tensor * moe_out = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_SILU,
hparams.expert_weights_norm, // norm_w (route_norm=True)
hparams.expert_weights_scale, // scale_w
hparams.expert_weights_scale, // w_scale (route_scale=2.826)
(llama_expert_gating_func_type) hparams.expert_gating_func,
il);
cb(moe_out, "ffn_moe_out", il);
// shared expert
if (hparams.n_expert_shared > 0) {
ggml_tensor * ffn_shexp = build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
cb(cur, "ffn_out", il);
} else {
cur = moe_out;
}
} else {
// dense layer
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
// dual ffn normalization (post)
cur = build_norm(cur,
model.layers[il].ffn_post_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_post_norm", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

125
llama/llama.cpp/src/models/apertus.cpp vendored Normal file
View File

@@ -0,0 +1,125 @@
#include "models.h"
llm_build_apertus::llm_build_apertus(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
const float kq_scale =
hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
cur = build_norm(inpL, model.layers[il].attn_norm, nullptr, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur_pos", il);
cb(Kcur, "Kcur_pos", il);
cb(Vcur, "Vcur_pos", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network with xIELU activation
{
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, nullptr, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// Up projection
ggml_tensor * up = build_lora_mm(model.layers[il].ffn_up, cur);
cb(up, "ffn_up", il);
float alpha_n_val = hparams.xielu_alpha_n[il];
float alpha_p_val = hparams.xielu_alpha_p[il];
float beta_val = hparams.xielu_beta[il];
float eps_val = hparams.xielu_eps[il];
// Apply xIELU activation
ggml_tensor * activated = ggml_xielu(ctx0, up, alpha_n_val, alpha_p_val, beta_val, eps_val);
cb(activated, "ffn_xielu", il);
// Down projection
cur = build_lora_mm(model.layers[il].ffn_down, activated);
cb(cur, "ffn_down", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, nullptr, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

135
llama/llama.cpp/src/models/arcee.cpp vendored Normal file
View File

@@ -0,0 +1,135 @@
#include "models.h"
llm_build_arcee::llm_build_arcee(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
// ARCEE uses relu^2 instead of silu
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

138
llama/llama.cpp/src/models/arctic.cpp vendored Normal file
View File

@@ -0,0 +1,138 @@
#include "models.h"
llm_build_arctic::llm_build_arctic(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
cb(ffn_out, "ffn_out", il);
// MoE
cur = build_norm(inpSA,
model.layers[il].ffn_norm_exps, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm_exps", il);
cur = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(cur, "ffn_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_out);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

86
llama/llama.cpp/src/models/arwkv7.cpp vendored Normal file
View File

@@ -0,0 +1,86 @@
#include "models.h"
llm_build_arwkv7::llm_build_arwkv7(const llama_model & model, const llm_graph_params & params) : llm_build_rwkv7_base(model, params) {
GGML_ASSERT(n_embd == hparams.n_embd_r());
ggml_tensor * cur;
ggml_tensor * inpL;
ggml_tensor * v_first = nullptr;
inpL = build_inp_embd(model.tok_embd);
auto * rs_inp = build_rs_inp();
const auto n_embd = hparams.n_embd;
const auto n_seq_tokens = ubatch.n_seq_tokens;
const auto n_seqs = ubatch.n_seqs;
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const llama_layer * layer = &model.layers[il];
inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, ubatch, il);
ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
cb(att_norm, "attn_norm", il);
ggml_tensor * x_prev = ggml_concat(
ctx0,
token_shift,
ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
1
);
cur = build_rwkv7_time_mix(rs_inp, att_norm, x_prev, v_first, ubatch, il);
token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
ffn_inp = ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens);
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
}
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

122
llama/llama.cpp/src/models/baichuan.cpp vendored Normal file
View File

@@ -0,0 +1,122 @@
#include "models.h"
llm_build_baichuan::llm_build_baichuan(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = model.type == LLM_TYPE_7B ? build_inp_pos() : nullptr;
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
switch (model.type) {
case LLM_TYPE_7B:
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
break;
case LLM_TYPE_13B:
break;
default:
GGML_ABORT("fatal error");
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
{
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@@ -0,0 +1,144 @@
#include "models.h"
llm_build_bailingmoe::llm_build_bailingmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_rot)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
ggml_tensor * moe_out =
build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, hparams.expert_weights_norm,
false, hparams.expert_weights_scale,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(moe_out, "ffn_moe_out", il);
// FFN shared expert
{
ggml_tensor * ffn_shexp = build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@@ -0,0 +1,135 @@
#include "models.h"
llm_build_bailingmoe2::llm_build_bailingmoe2(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
const int n_transformer_layers = n_layer - hparams.nextn_predict_layers;
for (int il = 0; il < n_transformer_layers; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self_attention
{
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float),
cur->nb[1], 0 * sizeof(float) * (n_embd));
ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
cur->nb[1], 1 * sizeof(float) * (n_embd));
ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa));
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_transformer_layers - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * sa_out = ggml_add(ctx0, cur, inpSA);
cb(sa_out, "sa_out", il);
// MoE branch
cur = build_norm(sa_out, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
if (static_cast<uint32_t>(il) < hparams.n_layer_dense_lead) {
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
ggml_tensor * moe_out = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_SILU, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
(llama_expert_gating_func_type) hparams.expert_gating_func,
il);
cb(moe_out, "ffn_moe_out", il);
{
ggml_tensor * ffn_shexp =
build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
cb(cur, "ffn_out", il);
}
}
cur = ggml_add(ctx0, cur, sa_out);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

Some files were not shown because too many files have changed in this diff Show More