Compare commits

...

8 Commits

Author SHA1 Message Date
ParthSareen
a5d638dfe7 extras 2025-03-12 16:12:29 -04:00
ParthSareen
4aeb67ef4c sample: do all sorting in topK 2025-03-12 11:59:17 -07:00
ParthSareen
3ba91634c1 sample: simplify top_k=0 sorting 2025-03-12 11:59:17 -07:00
ParthSareen
1b7433b71e sample: use container/heap for top_k 2025-03-12 11:59:17 -07:00
Bruce MacDonald
a70820daa0 models/gemma3: remove final logit softcap (#9692)
Softcap isn't in the whitepaper/implementation for the language model so we should remove it. There is no discernible difference in output with it removed.
2025-03-12 10:17:57 -07:00
Shane-XB-Qian
6b45b1d6b4 cli: adding support ctrl-n/p like general cli (#9136)
Signed-off-by: shane.xb.qian <shane.qian@foxmail.com>
2025-03-12 08:51:56 -07:00
frob
b3af953a55 cli: don't exit for invalid model during /load. (#9576)
Co-authored-by: Richard Lyons <frob@cloudstaff.com>
2025-03-11 23:42:53 -07:00
Michael
ad4e0bf3be Adding Gemma 3 to readme (#9671) 2025-03-12 07:39:25 +01:00
8 changed files with 307 additions and 212 deletions

View File

@@ -54,6 +54,10 @@ Here are some example models that can be downloaded:
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | -------------------------------- |
| Gemma 3 | 1B | 815MB | `ollama run gemma3:1b` |
| Gemma 3 | 4B | 3.3GB | `ollama run gemma3` |
| Gemma 3 | 12B | 8.1GB | `ollama run gemma3:12b` |
| Gemma 3 | 27B | 17GB | `ollama run gemma3:27b` |
| QwQ | 32B | 20GB | `ollama run qwq` |
| DeepSeek-R1 | 7B | 4.7GB | `ollama run deepseek-r1` |
| DeepSeek-R1 | 671B | 404GB | `ollama run deepseek-r1:671b` |
@@ -66,9 +70,6 @@ Here are some example models that can be downloaded:
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
| Phi 4 | 14B | 9.1GB | `ollama run phi4` |
| Phi 4 Mini | 3.8B | 2.5GB | `ollama run phi4-mini` |
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
| Mistral | 7B | 4.1GB | `ollama run mistral` |
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |

View File

@@ -195,6 +195,10 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
opts.Messages = []api.Message{}
fmt.Printf("Loading model '%s'\n", opts.Model)
if err := loadOrUnloadModel(cmd, &opts); err != nil {
if strings.Contains(err.Error(), "not found") {
fmt.Printf("error: %v\n", err)
continue
}
return err
}
continue

View File

@@ -15,7 +15,6 @@ type TextOptions struct {
attnKeyLen, attnValLen int
eps, ropeScale float32
ropeLocalBase, ropeGlobalBase float32
finalLogitSoftcap float32
largeModelScaling bool
}
@@ -57,16 +56,15 @@ func newTextModel(c ml.Config) *TextModel {
),
Layers: make([]TextLayer, numBlocks),
TextOptions: &TextOptions{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
attnKeyLen: int(c.Uint("attention.key_length", 256)),
attnValLen: int(c.Uint("attention.value_length", 256)),
eps: c.Float("attention.layer_norm_rms_epsilon", 1e-06),
ropeLocalBase: c.Float("rope.local.freq_base", 10000.0),
ropeGlobalBase: c.Float("rope.global.freq_base", 1000000.0),
ropeScale: c.Float("rope.freq_scale", 1.0),
finalLogitSoftcap: c.Float("final_logit_softcapping", 30.0),
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
attnKeyLen: int(c.Uint("attention.key_length", 256)),
attnValLen: int(c.Uint("attention.value_length", 256)),
eps: c.Float("attention.layer_norm_rms_epsilon", 1e-06),
ropeLocalBase: c.Float("rope.local.freq_base", 10000.0),
ropeGlobalBase: c.Float("rope.global.freq_base", 1000000.0),
ropeScale: c.Float("rope.freq_scale", 1.0),
},
}
@@ -245,10 +243,5 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
hiddenState = m.Output.Forward(ctx, hiddenState)
// final logit softcap
hiddenState = hiddenState.Scale(ctx, 1.0/float64(m.TextOptions.finalLogitSoftcap))
hiddenState = hiddenState.Tanh(ctx)
return hiddenState.Scale(ctx, float64(m.TextOptions.finalLogitSoftcap))
return m.Output.Forward(ctx, hiddenState)
}

View File

@@ -116,19 +116,9 @@ func (i *Instance) Readline() (string, error) {
switch r {
case KeyUp:
if i.History.Pos > 0 {
if i.History.Pos == i.History.Size() {
currentLineBuf = []rune(buf.String())
}
buf.Replace([]rune(i.History.Prev()))
}
i.historyPrev(buf, &currentLineBuf)
case KeyDown:
if i.History.Pos < i.History.Size() {
buf.Replace([]rune(i.History.Next()))
if i.History.Pos == i.History.Size() {
buf.Replace(currentLineBuf)
}
}
i.historyNext(buf, &currentLineBuf)
case KeyLeft:
buf.MoveLeft()
case KeyRight:
@@ -185,6 +175,10 @@ func (i *Instance) Readline() (string, error) {
esc = true
case CharInterrupt:
return "", ErrInterrupt
case CharPrev:
i.historyPrev(buf, &currentLineBuf)
case CharNext:
i.historyNext(buf, &currentLineBuf)
case CharLineStart:
buf.MoveToStart()
case CharLineEnd:
@@ -246,6 +240,24 @@ func (i *Instance) HistoryDisable() {
i.History.Enabled = false
}
func (i *Instance) historyPrev(buf *Buffer, currentLineBuf *[]rune) {
if i.History.Pos > 0 {
if i.History.Pos == i.History.Size() {
*currentLineBuf = []rune(buf.String())
}
buf.Replace([]rune(i.History.Prev()))
}
}
func (i *Instance) historyNext(buf *Buffer, currentLineBuf *[]rune) {
if i.History.Pos < i.History.Size() {
buf.Replace([]rune(i.History.Next()))
if i.History.Pos == i.History.Size() {
buf.Replace(*currentLineBuf)
}
}
}
func NewTerminal() (*Terminal, error) {
fd := os.Stdin.Fd()
termios, err := SetRawMode(fd)

View File

@@ -1,11 +1,10 @@
package sample
import (
"errors"
"math"
"math/rand/v2"
"slices"
"math/rand"
"sync"
"time"
"github.com/ollama/ollama/llama"
)
@@ -84,59 +83,56 @@ func (s *Sampler) sample(tokens []token) (token, error) {
return greedy(tokens), nil
}
if s.topK > 0 {
tokens = topK(tokens, s.topK)
} else {
sortLogits(tokens)
}
// token logit values are updated to probabilities
tokens = temperature(tokens, s.temperature)
// topK also sorts the tokens in descending order of logits
tokens = topK(tokens, s.topK)
tokens = topP(tokens, s.topP)
tokens = minP(tokens, s.minP)
// TODO: this should fall back to greedy sampling
// or topP, topK values etc should be such that
// there are always tokens to sample from
if len(tokens) == 0 {
return token{}, errors.New("no tokens to sample from")
}
// token logit values are updated to probabilities
temperature(tokens, s.temperature)
softmax(tokens)
return tokens[dist(tokens, s.rng.Int63())], nil
var r float32
if s.rng != nil {
r = s.rng.Float32()
} else {
r = rand.Float32()
}
// // TODO: this should fall back to greedy sampling
// // or topP, topK values etc should be such that
// // there are always tokens to sample from
// if len(tokens) == 0 {
// return token{}, errors.New("no tokens to sample from")
// }
// Calculate cumulative sum of probabilities
var sum float32
for i := range tokens {
sum += tokens[i].value
tokens[i].value = sum
}
r *= tokens[len(tokens)-1].value
// var r float32
// if s.rng != nil {
// r = s.rng.Float32()
// } else {
// r = rand.Float32()
// }
idx, _ := slices.BinarySearchFunc(tokens, r, func(token token, target float32) int {
if token.value < target {
return -1
}
return 1
})
// // Calculate cumulative sum of probabilities
// var sum float32
// for i := range tokens {
// sum += tokens[i].value
// tokens[i].value = sum
// }
// r *= tokens[len(tokens)-1].value
return tokens[idx], nil
// idx, _ := slices.BinarySearchFunc(tokens, r, func(token token, target float32) int {
// if token.value < target {
// return -1
// }
// return 1
// })
// return tokens[idx], nil
}
// TODO(parthsareen): update sampler interface to use json unmarshal https://github.com/ollama/ollama/issues/9278
func NewSampler(temperature float32, topK int, topP float32, minP float32, seed int, grammar *Grammar) Sampler {
var rng *rand.Rand
if seed != -1 {
// PCG requires two parameters: sequence and stream
// Use original seed for sequence
sequence := uint64(seed)
// Use golden ratio hash to generate statistically independent seeds
rng = rand.New(rand.NewPCG(sequence, sequence^0x9E3779B9))
rng = rand.New(rand.NewSource(int64(seed)))
} else {
rng = rand.New(rand.NewSource(time.Now().UnixNano()))
}
if temperature < 0.0 {
temperature = 0.0

1
sample/testdata/logits.bin vendored Normal file
View File

File diff suppressed because one or more lines are too long

View File

@@ -1,92 +1,67 @@
package sample
import (
"container/heap"
"math"
"math/rand"
"slices"
)
// temperature applies scaling and softmax to the logits
func temperature(ts []token, temp float32) []token {
// Find max logit for numerical stability
maxLogit := float32(math.Inf(-1))
for _, t := range ts {
if t.value > maxLogit {
maxLogit = t.value
}
}
// tokenHeap implements heap.Interface and holds tokens as a min-heap to track k largest elements
type tokenHeap []token
// Apply temperature and compute exp(x - max)
temp = max(temp, 1e-7)
var sum float32
for i, v := range ts {
ts[i].value = float32(math.Exp(float64((v.value - maxLogit) / temp)))
sum += ts[i].value
}
func (h tokenHeap) Len() int { return len(h) }
func (h tokenHeap) Less(i, j int) bool { return h[i].value < h[j].value }
func (h tokenHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
// Normalize
for i := range ts {
ts[i].value /= sum
}
return ts
func (h *tokenHeap) Push(x any) {
*h = append(*h, x.(token))
}
// siftDown maintains a min-heap property by recursively moving larger elements down the heap.
//
// The heap is represented as an array where for any node at index i:
// - Left child is at index 2i + 1
// - Right child is at index 2i + 2
// - Parent is at index (i-1)/2
//
// The function compares a node with its children and:
// 1. Finds the smallest value between the node and its children
// 2. If the node is not the smallest, swaps it with its smallest child
// 3. Continues this process down the affected path until the min-heap property is restored
func siftDown(data []token, start, end int) {
root := start
for {
child := 2*root + 1
if child >= end {
break
}
// Find smaller child (we want min heap)
if child+1 < end && data[child+1].value < data[child].value {
child++
}
// Exit if root is already smaller than children
if data[root].value <= data[child].value {
break
}
// Swap with smaller child and continue
data[root], data[child] = data[child], data[root]
root = child
}
func (h *tokenHeap) Pop() any {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}
// topK limits the number of tokens considered to the k highest logits
func topK(ts []token, k int) []token {
if k >= len(ts) {
if k >= len(ts) || k <= 0 {
slices.SortFunc(ts, func(a, b token) int {
switch {
case a.value < b.value:
return 1
case a.value > b.value:
return -1
default:
return 0
}
})
return ts
}
// Heapify + siftDown - O(nlog(k))
// Build min-heap of first k elements
heap := ts[:k]
for i := k/2 - 1; i >= 0; i-- {
siftDown(heap, i, k)
}
// Process remaining elements - if larger than heap root, replace root
// Initialize min-heap with first k elements
h := make(tokenHeap, k)
copy(h, ts[:k])
heap.Init(&h)
// Process remaining elements
for i := k; i < len(ts); i++ {
if ts[i].value > heap[0].value {
heap[0] = ts[i]
siftDown(heap, 0, k)
if ts[i].value > h[0].value {
heap.Pop(&h)
heap.Push(&h, ts[i])
}
}
slices.Reverse(heap)
// Convert heap to sorted slice in descending order
result := make([]token, len(h))
for i := k - 1; i >= 0; i-- {
result[i] = heap.Pop(&h).(token)
}
ts = heap
return ts
return result
}
// topP limits tokens to those with cumulative probability p
@@ -135,61 +110,58 @@ func minP(ts []token, p float32) []token {
return ts
}
// TODO(parthsareen): possibly replace with simpler implementation https://github.com/ollama/ollama/issues/9584
// sortLogits sorts implementation to sort tokens by logits using counting sort
// counting sort is faster than built-in sort for this use case
func sortLogits(tokens []token) {
if len(tokens) <= 1 {
func temperature(ts []token, temp float32) {
for i := range ts {
ts[i].value /= temp
}
}
func softmax(ts []token) {
if len(ts) == 0 {
return
}
// Find max/min in a single pass
minLogit, maxLogit := tokens[0].value, tokens[0].value
for _, t := range tokens[1:] {
if t.value < minLogit {
minLogit = t.value
} else if t.value > maxLogit {
// Find max logit for numerical stability
maxLogit := ts[0].value
for _, t := range ts {
if t.value > maxLogit {
maxLogit = t.value
}
}
// Calculate scaling to map to uint32 range
logitRange := maxLogit - minLogit
if logitRange < 1e-6 {
return // All values effectively equal
// Compute exp(logit - maxLogit) and sum them
var sumExp float32
for i, t := range ts {
expVal := float32(math.Exp(float64(t.value - maxLogit)))
ts[i].value = expVal
sumExp += expVal
}
// Count frequencies directly from tokens
const maxInt = (1 << 24) - 1 // Use 24 bits for good granularity
var counts [256]int // For first byte
// First pass: count frequencies
for _, t := range tokens {
// Map to [0, maxInt] range
score := min(uint32((t.value-minLogit)*float32(maxInt)/logitRange), maxInt)
counts[score>>16]++
// Normalize probabilities
for i := range ts {
ts[i].value /= sumExp
}
// Calculate offsets
var offset int
for i := range counts {
count := counts[i]
counts[i] = offset
offset += count
}
// Second pass: place elements in correct position
output := make([]token, len(tokens))
// Track current positions
countsCopy := counts
for i, t := range tokens {
score := min(uint32((t.value-minLogit)*float32(maxInt)/logitRange), maxInt)
pos := countsCopy[score>>16]
countsCopy[score>>16]++
output[len(tokens)-1-pos] = tokens[i]
}
copy(tokens, output)
}
// applyDist selects a token based on probabilities and seed
func dist(ts []token, seed int64) int {
rng := rand.New(rand.NewSource(seed))
cdf := make([]float32, len(ts))
var cumSum float32
for i, t := range ts {
cumSum += t.value
cdf[i] = cumSum
}
r := rng.Float32() * cumSum
// Select token based on CDF
for i, probSum := range cdf {
if r < probSum {
return i
}
}
return len(ts) - 1
}

View File

@@ -1,39 +1,44 @@
package sample
import (
"encoding/binary"
"errors"
"math"
"math/rand/v2"
"os"
"path/filepath"
"runtime"
"testing"
)
// Helper to convert float64 slice to logit slice
func toTokens(values []float64) []token {
// Helper to convert float32 slice to logit slice
func toTokens(values []float32) []token {
tokens := make([]token, len(values))
for i, v := range values {
tokens[i] = token{
id: int32(i),
value: float32(v),
value: v,
}
}
return tokens
}
// Helper to compare logit slices
func compareLogits(t *testing.T, name string, want []float64, got []token) {
func compareLogits(t *testing.T, name string, want []float32, got []token) {
t.Helper()
if len(want) != len(got) {
t.Errorf("%s: length mismatch: want %d, got %d", name, len(want), len(got))
return
}
for i := range want {
if math.Abs(float64(got[i].value)-want[i]) > 1e-6 {
if math.Abs(float64(got[i].value-want[i])) > 1e-6 {
t.Errorf("%s: index %d: want %f, got %f", name, i, want[i], got[i].value)
}
}
}
func TestTemperatureAndSoftmax(t *testing.T) {
input := []float64{1, 4, -2, 0}
input := []float32{1, 4, -2, 0}
got := temperature(toTokens(input), 0.5)
// Check probabilities sum to 1
@@ -41,7 +46,7 @@ func TestTemperatureAndSoftmax(t *testing.T) {
for _, token := range got {
sum += token.value
}
if math.Abs(float64(sum)-1.0) > 1e-6 {
if math.Abs(float64(sum-1.0)) > 1e-6 {
t.Errorf("probabilities don't sum to 1: got %f", sum)
}
@@ -51,35 +56,54 @@ func TestTemperatureAndSoftmax(t *testing.T) {
for _, token := range got {
sum += token.value
}
if math.Abs(float64(sum)-1.0) > 1e-6 {
if math.Abs(float64(sum-1.0)) > 1e-6 {
t.Errorf("probabilities don't sum to 1: got %f", sum)
}
}
func TestTopK(t *testing.T) {
input := []float64{-3, -2, -1, 0, 1, 2, 4}
input := []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
// Test k=3
got := topK(toTokens(input), 3)
if len(got) != 3 {
t.Errorf("topK(3): wrong length: want 3, got %d", len(got))
// Test k=5
got := topK(toTokens(input), 5)
if len(got) != 5 {
t.Errorf("topK(5): wrong length: want 5, got %d", len(got))
}
// Should keep highest 3 values: 4, 2, 1
want := []float64{4, 2, 1}
// Should keep highest 3 values in descending order
want := []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154}
compareLogits(t, "topK(3)", want, got)
// Test k > len
got = topK(toTokens(input), 10)
compareLogits(t, "topK(10)", input, got)
got = topK(toTokens(input), 20)
if len(got) != len(input) {
t.Errorf("topK(20): wrong length: want %d, got %d", len(input), len(got))
}
// Test k=-1
input = []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
want = []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
got = topK(toTokens(input), -1)
if len(got) != len(input) {
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(got))
}
compareLogits(t, "topK(-1)", want, got)
// Test k=0
input = []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
want = []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
got = topK(toTokens(input), 0)
if len(got) != len(input) {
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(got))
}
compareLogits(t, "topK(-1)", want, got)
}
func TestTopP(t *testing.T) {
input := []float64{-3, -2, -1, 0, 1, 2, 4}
input := []float32{-3, -2, -1, 0, 1, 2, 4}
tokens := toTokens(input)
// First apply temperature and softmax to get probabilities
tokens = temperature(tokens, 1)
sortLogits(tokens)
tokens = topK(tokens, 20)
// Then apply topP
got := topP(tokens, 0.95)
@@ -92,7 +116,7 @@ func TestTopP(t *testing.T) {
}
func TestMinP(t *testing.T) {
input := []float64{-3, -2, -1, 0, 1, 2, 4, 3}
input := []float32{-3, -2, -1, 0, 1, 2, 4, 3}
tokens := toTokens(input)
// First apply temperature and softmax
@@ -108,10 +132,10 @@ func TestMinP(t *testing.T) {
}
func TestSortLogits(t *testing.T) {
input := []float64{3, 1, 4, 2, -1, 0, -2}
input := []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
tokens := toTokens(input)
sortLogits(tokens)
tokens = topK(tokens, 20)
for i := 1; i < len(tokens); i++ {
if tokens[i].value > tokens[i-1].value {
@@ -120,10 +144,102 @@ func TestSortLogits(t *testing.T) {
}
}
want := []float64{4, 3, 2, 1, 0, -1, -2}
want := []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
compareLogits(t, "sortLogits", want, tokens)
}
// TestSortLogitsWithRealData tests sorting behavior using real model logit distributions
func TestSortLogitsWithRealData(t *testing.T) {
// This will be populated from testdata/logits.bin
// Format: 32-bit float array in binary format
logits, err := loadTestLogits(t)
if err != nil {
t.Skipf("Skipping real logit test: %v", err)
return
}
tokens := toTokens(logits)
sortLogits(tokens)
// Calculate n for verification
n := int(math.Sqrt(float64(len(tokens)))) + 1
if n > 1000 {
n = 1000
} else if n < 100 {
n = 100
}
t.Logf("Testing with %d tokens, partial sorting top %d", len(tokens), n)
// Only verify the top n elements are sorted (which is what we guarantee)
// This is much faster than checking the entire array
topN := tokens[:n]
for i := 1; i < len(topN); i++ {
if topN[i].value > topN[i-1].value {
t.Fatalf("top %d tokens not properly sorted at index %d: %.15f > %.15f",
n, i, topN[i].value, topN[i-1].value)
}
}
// Verify we didn't lose any high value tokens by checking that
// all tokens after position n are <= the nth token
// Do this in chunks to avoid timeouts on large arrays
nthValue := tokens[n-1].value
const chunkSize = 1000
for start := n; start < len(tokens); start += chunkSize {
end := min(start+chunkSize, len(tokens))
for i := start; i < end; i++ {
if tokens[i].value > nthValue {
t.Fatalf("found higher value token after position %d: tokens[%d].value = %.15f > %.15f",
n, i, tokens[i].value, nthValue)
}
}
}
}
// loadTestLogits loads logit test data from testdata/logits.bin
func loadTestLogits(t *testing.T) ([]float32, error) {
t.Helper()
_, currFile, _, ok := runtime.Caller(0)
if !ok {
return nil, errors.New("could not determine test file path")
}
testDataPath := filepath.Join(filepath.Dir(currFile), "testdata", "logits.bin")
file, err := os.Open(testDataPath)
if err != nil {
return nil, err
}
defer file.Close()
stat, err := file.Stat()
if err != nil {
return nil, err
}
numFloats := stat.Size() / 4 // each float32 is 4 bytes
if numFloats*4 != stat.Size() {
return nil, errors.New("logits.bin has invalid size: not a multiple of 4 bytes")
}
logits := make([]float32, numFloats)
for i := range logits {
var val uint32
if err := binary.Read(file, binary.LittleEndian, &val); err != nil {
return nil, err
}
logits[i] = math.Float32frombits(val)
}
if len(logits) == 0 {
return nil, errors.New("logits.bin is empty")
}
return logits, nil
}
func BenchmarkTransforms(b *testing.B) {
// Generate random logits
tokens := make([]token, 1<<16)
@@ -172,7 +288,7 @@ func BenchmarkTransforms(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
sortLogits(tokensCopy)
topK(tokensCopy, 200000)
}
})
}