mirror of
https://github.com/ollama/ollama.git
synced 2025-12-24 16:19:23 -05:00
Compare commits
48 Commits
parth/samp
...
parth/pyth
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b4cd1118ab | ||
|
|
128c90d3ac | ||
|
|
f5872a097c | ||
|
|
3ac5e0f102 | ||
|
|
ef65174df2 | ||
|
|
42ecb9f138 | ||
|
|
5c0331fd83 | ||
|
|
e7019c9455 | ||
|
|
d98bfe7e70 | ||
|
|
6747099d71 | ||
|
|
ccc8c6777b | ||
|
|
dbb149e6f7 | ||
|
|
a807985e59 | ||
|
|
8643c4d5bf | ||
|
|
b0c3aba590 | ||
|
|
19c0c25de8 | ||
|
|
2f723ac2d6 | ||
|
|
249fbbe52f | ||
|
|
c38680b8a1 | ||
|
|
16fca86c4a | ||
|
|
0f3f9e353d | ||
|
|
6bd0a983cd | ||
|
|
1861fbdeb5 | ||
|
|
3b96a93672 | ||
|
|
e53b3cbd0c | ||
|
|
b51e0f397c | ||
|
|
b42970063d | ||
|
|
493385eb3e | ||
|
|
9876c9faa4 | ||
|
|
4e415029b3 | ||
|
|
e172f095ba | ||
|
|
c001b98087 | ||
|
|
23fc8e92eb | ||
|
|
4059a297a6 | ||
|
|
66b2539238 | ||
|
|
ef27d52e79 | ||
|
|
b2a465296d | ||
|
|
5d097277ef | ||
|
|
071a9872cb | ||
|
|
0bd0454ea7 | ||
|
|
01aa788722 | ||
|
|
ead27aa9fe | ||
|
|
b816ff86c9 | ||
|
|
e5d84fb90b | ||
|
|
dd66712e31 | ||
|
|
f66216e399 | ||
|
|
f4f0992b6e | ||
|
|
1feff61977 |
@@ -86,9 +86,9 @@ if(CMAKE_CUDA_COMPILER)
|
||||
)
|
||||
endif()
|
||||
|
||||
set(WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX "^gfx(906|908|90a):xnack[+-]$"
|
||||
set(WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX "^gfx(906|908|90a|1200|1201):xnack[+-]$"
|
||||
CACHE STRING
|
||||
"Regular expression describing AMDGPU_TARGETS not supported on Windows. Override to force building these targets. Default \"^gfx(906|908|90a):xnack[+-]$\"."
|
||||
"Regular expression describing AMDGPU_TARGETS not supported on Windows. Override to force building these targets. Default \"^gfx(906|908|90a|1200|1201):xnack[+-]$\"."
|
||||
)
|
||||
|
||||
check_language(HIP)
|
||||
@@ -97,7 +97,7 @@ if(CMAKE_HIP_COMPILER)
|
||||
|
||||
find_package(hip REQUIRED)
|
||||
if(NOT AMDGPU_TARGETS)
|
||||
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(900|94[012]|101[02]|1030|110[012])$")
|
||||
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(900|94[012]|101[02]|1030|110[012]|120[01])$")
|
||||
elseif(WIN32 AND WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX)
|
||||
list(FILTER AMDGPU_TARGETS EXCLUDE REGEX ${WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX})
|
||||
endif()
|
||||
|
||||
@@ -56,7 +56,7 @@
|
||||
"name": "ROCm 6",
|
||||
"inherits": [ "ROCm" ],
|
||||
"cacheVariables": {
|
||||
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx1151;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
|
||||
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx1151;gfx1200;gfx1201;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
|
||||
}
|
||||
}
|
||||
],
|
||||
|
||||
@@ -51,7 +51,7 @@ see if the change were accepted.
|
||||
|
||||
The title should look like:
|
||||
|
||||
<package>: <short description>
|
||||
<package>: <short description>
|
||||
|
||||
The package is the most affected Go package. If the change does not affect Go
|
||||
code, then use the directory name instead. Changes to a single well-known
|
||||
|
||||
@@ -104,8 +104,8 @@ COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
|
||||
FROM --platform=linux/arm64 scratch AS arm64
|
||||
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
|
||||
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
|
||||
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 lib/ollama/cuda_jetpack5
|
||||
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 lib/ollama/cuda_jetpack6
|
||||
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_jetpack5
|
||||
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_jetpack6
|
||||
|
||||
FROM scratch AS rocm
|
||||
COPY --from=rocm-6 dist/lib/ollama/rocm /lib/ollama/rocm
|
||||
|
||||
11
README.md
11
README.md
@@ -285,12 +285,13 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Bionic GPT](https://github.com/bionic-gpt/bionic-gpt)
|
||||
- [HTML UI](https://github.com/rtcfirefly/ollama-ui)
|
||||
- [Saddle](https://github.com/jikkuatwork/saddle)
|
||||
- [TagSpaces](https://www.tagspaces.org) (A platform for file based apps, [utilizing Ollama](https://docs.tagspaces.org/ai/) for the generation of tags and descriptions)
|
||||
- [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama)
|
||||
- [Chatbot UI v2](https://github.com/mckaywrigley/chatbot-ui)
|
||||
- [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file)
|
||||
- [Minimalistic React UI for Ollama Models](https://github.com/richawo/minimal-llm-ui)
|
||||
- [Ollamac](https://github.com/kevinhermawan/Ollamac)
|
||||
- [big-AGI](https://github.com/enricoros/big-AGI/blob/main/docs/config-local-ollama.md)
|
||||
- [big-AGI](https://github.com/enricoros/big-AGI)
|
||||
- [Cheshire Cat assistant framework](https://github.com/cheshire-cat-ai/core)
|
||||
- [Amica](https://github.com/semperai/amica)
|
||||
- [chatd](https://github.com/BruceMacD/chatd)
|
||||
@@ -324,6 +325,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [RWKV-Runner](https://github.com/josStorer/RWKV-Runner) (RWKV offline LLM deployment tool, also usable as a client for ChatGPT and Ollama)
|
||||
- [Ollama Grid Search](https://github.com/dezoito/ollama-grid-search) (app to evaluate and compare models)
|
||||
- [Olpaka](https://github.com/Otacon/olpaka) (User-friendly Flutter Web App for Ollama)
|
||||
- [Casibase](https://casibase.org) (An open source AI knowledge base and dialogue system combining the latest RAG, SSO, ollama support and multiple large language models.)
|
||||
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
|
||||
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
|
||||
- [Shinkai Desktop](https://github.com/dcSpark/shinkai-apps) (Two click install Local AI using Ollama + Files + RAG)
|
||||
@@ -346,7 +348,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [PartCAD](https://github.com/openvmp/partcad/) (CAD model generation with OpenSCAD and CadQuery)
|
||||
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot and Ollama4j
|
||||
- [PyOllaMx](https://github.com/kspviswa/pyOllaMx) - macOS application capable of chatting with both Ollama and Apple MLX models.
|
||||
- [Claude Dev](https://github.com/saoudrizwan/claude-dev) - VSCode extension for multi-file/whole-repo coding
|
||||
- [Cline](https://github.com/cline/cline) - Formerly known as Claude Dev is a VSCode extension for multi-file/whole-repo coding
|
||||
- [Cherry Studio](https://github.com/kangfenmao/cherry-studio) (Desktop client with Ollama support)
|
||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
|
||||
- [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library)
|
||||
@@ -394,6 +396,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
|
||||
- [Ellama](https://github.com/zeozeozeo/ellama) (Friendly native app to chat with an Ollama instance)
|
||||
- [screenpipe](https://github.com/mediar-ai/screenpipe) Build agents powered by your screen history
|
||||
- [Ollamb](https://github.com/hengkysteen/ollamb) (Simple yet rich in features, cross-platform built with Flutter and designed for Ollama. Try the [web demo](https://hengkysteen.github.io/demo/ollamb/).)
|
||||
- [Writeopia](https://github.com/Writeopia/Writeopia) (Text editor with integration with Ollama)
|
||||
|
||||
### Cloud
|
||||
|
||||
@@ -433,7 +437,10 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [SwollamaCLI](https://github.com/marcusziade/Swollama) bundled with the Swollama Swift package. [Demo](https://github.com/marcusziade/Swollama?tab=readme-ov-file#cli-usage)
|
||||
- [aichat](https://github.com/sigoden/aichat) All-in-one LLM CLI tool featuring Shell Assistant, Chat-REPL, RAG, AI tools & agents, with access to OpenAI, Claude, Gemini, Ollama, Groq, and more.
|
||||
- [PowershAI](https://github.com/rrg92/powershai) PowerShell module that brings AI to terminal on Windows, including support for Ollama
|
||||
- [DeepShell](https://github.com/Abyss-c0re/deepshell) Your self-hosted AI assistant. Interactive Shell, Files and Folders analysis.
|
||||
- [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama.
|
||||
- [orca-cli](https://github.com/molbal/orca-cli) Ollama Registry CLI Application - Browse, pull and download models from Ollama Registry in your terminal.
|
||||
- [GGUF-to-Ollama](https://github.com/jonathanhecl/gguf-to-ollama) - Importing GGUF to Ollama made easy (multiplatform)
|
||||
|
||||
### Apple Vision Pro
|
||||
|
||||
|
||||
98
api/types.go
98
api/types.go
@@ -12,6 +12,7 @@ import (
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
)
|
||||
|
||||
// StatusError is an error with an HTTP status code and message.
|
||||
@@ -81,7 +82,7 @@ type GenerateRequest struct {
|
||||
|
||||
// Options lists model-specific options. For example, temperature can be
|
||||
// set through this field, if the model supports it.
|
||||
Options map[string]interface{} `json:"options"`
|
||||
Options map[string]any `json:"options"`
|
||||
}
|
||||
|
||||
// ChatRequest describes a request sent by [Client.Chat].
|
||||
@@ -106,7 +107,7 @@ type ChatRequest struct {
|
||||
Tools `json:"tools,omitempty"`
|
||||
|
||||
// Options lists model-specific options.
|
||||
Options map[string]interface{} `json:"options"`
|
||||
Options map[string]any `json:"options"`
|
||||
}
|
||||
|
||||
type Tools []Tool
|
||||
@@ -162,19 +163,65 @@ func (t *ToolCallFunctionArguments) String() string {
|
||||
|
||||
type Tool struct {
|
||||
Type string `json:"type"`
|
||||
Items any `json:"items,omitempty"`
|
||||
Function ToolFunction `json:"function"`
|
||||
}
|
||||
|
||||
// PropertyType can be either a string or an array of strings
|
||||
type PropertyType []string
|
||||
|
||||
// UnmarshalJSON implements the json.Unmarshaler interface
|
||||
func (pt *PropertyType) UnmarshalJSON(data []byte) error {
|
||||
// Try to unmarshal as a string first
|
||||
var s string
|
||||
if err := json.Unmarshal(data, &s); err == nil {
|
||||
*pt = []string{s}
|
||||
return nil
|
||||
}
|
||||
|
||||
// If that fails, try to unmarshal as an array of strings
|
||||
var a []string
|
||||
if err := json.Unmarshal(data, &a); err != nil {
|
||||
return err
|
||||
}
|
||||
*pt = a
|
||||
return nil
|
||||
}
|
||||
|
||||
// MarshalJSON implements the json.Marshaler interface
|
||||
func (pt PropertyType) MarshalJSON() ([]byte, error) {
|
||||
if len(pt) == 1 {
|
||||
// If there's only one type, marshal as a string
|
||||
return json.Marshal(pt[0])
|
||||
}
|
||||
// Otherwise marshal as an array
|
||||
return json.Marshal([]string(pt))
|
||||
}
|
||||
|
||||
// String returns a string representation of the PropertyType
|
||||
func (pt PropertyType) String() string {
|
||||
if len(pt) == 0 {
|
||||
return ""
|
||||
}
|
||||
if len(pt) == 1 {
|
||||
return pt[0]
|
||||
}
|
||||
return fmt.Sprintf("%v", []string(pt))
|
||||
}
|
||||
|
||||
type ToolFunction struct {
|
||||
Name string `json:"name"`
|
||||
Description string `json:"description"`
|
||||
Parameters struct {
|
||||
Type string `json:"type"`
|
||||
Defs any `json:"$defs,omitempty"`
|
||||
Items any `json:"items,omitempty"`
|
||||
Required []string `json:"required"`
|
||||
Properties map[string]struct {
|
||||
Type string `json:"type"`
|
||||
Description string `json:"description"`
|
||||
Enum []string `json:"enum,omitempty"`
|
||||
Type PropertyType `json:"type"`
|
||||
Items any `json:"items,omitempty"`
|
||||
Description string `json:"description"`
|
||||
Enum []any `json:"enum,omitempty"`
|
||||
} `json:"properties"`
|
||||
} `json:"parameters"`
|
||||
}
|
||||
@@ -260,7 +307,7 @@ type EmbedRequest struct {
|
||||
Truncate *bool `json:"truncate,omitempty"`
|
||||
|
||||
// Options lists model-specific options.
|
||||
Options map[string]interface{} `json:"options"`
|
||||
Options map[string]any `json:"options"`
|
||||
}
|
||||
|
||||
// EmbedResponse is the response from [Client.Embed].
|
||||
@@ -286,7 +333,7 @@ type EmbeddingRequest struct {
|
||||
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
||||
|
||||
// Options lists model-specific options.
|
||||
Options map[string]interface{} `json:"options"`
|
||||
Options map[string]any `json:"options"`
|
||||
}
|
||||
|
||||
// EmbeddingResponse is the response from [Client.Embeddings].
|
||||
@@ -332,7 +379,7 @@ type ShowRequest struct {
|
||||
Template string `json:"template"`
|
||||
Verbose bool `json:"verbose"`
|
||||
|
||||
Options map[string]interface{} `json:"options"`
|
||||
Options map[string]any `json:"options"`
|
||||
|
||||
// Deprecated: set the model name with Model instead
|
||||
Name string `json:"name"`
|
||||
@@ -340,17 +387,18 @@ type ShowRequest struct {
|
||||
|
||||
// ShowResponse is the response returned from [Client.Show].
|
||||
type ShowResponse struct {
|
||||
License string `json:"license,omitempty"`
|
||||
Modelfile string `json:"modelfile,omitempty"`
|
||||
Parameters string `json:"parameters,omitempty"`
|
||||
Template string `json:"template,omitempty"`
|
||||
System string `json:"system,omitempty"`
|
||||
Details ModelDetails `json:"details,omitempty"`
|
||||
Messages []Message `json:"messages,omitempty"`
|
||||
ModelInfo map[string]any `json:"model_info,omitempty"`
|
||||
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
|
||||
Tensors []Tensor `json:"tensors,omitempty"`
|
||||
ModifiedAt time.Time `json:"modified_at,omitempty"`
|
||||
License string `json:"license,omitempty"`
|
||||
Modelfile string `json:"modelfile,omitempty"`
|
||||
Parameters string `json:"parameters,omitempty"`
|
||||
Template string `json:"template,omitempty"`
|
||||
System string `json:"system,omitempty"`
|
||||
Details ModelDetails `json:"details,omitempty"`
|
||||
Messages []Message `json:"messages,omitempty"`
|
||||
ModelInfo map[string]any `json:"model_info,omitempty"`
|
||||
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
|
||||
Tensors []Tensor `json:"tensors,omitempty"`
|
||||
Capabilities []model.Capability `json:"capabilities,omitempty"`
|
||||
ModifiedAt time.Time `json:"modified_at,omitempty"`
|
||||
}
|
||||
|
||||
// CopyRequest is the request passed to [Client.Copy].
|
||||
@@ -503,7 +551,7 @@ func (m *Metrics) Summary() {
|
||||
}
|
||||
}
|
||||
|
||||
func (opts *Options) FromMap(m map[string]interface{}) error {
|
||||
func (opts *Options) FromMap(m map[string]any) error {
|
||||
valueOpts := reflect.ValueOf(opts).Elem() // names of the fields in the options struct
|
||||
typeOpts := reflect.TypeOf(opts).Elem() // types of the fields in the options struct
|
||||
|
||||
@@ -560,12 +608,12 @@ func (opts *Options) FromMap(m map[string]interface{}) error {
|
||||
}
|
||||
field.SetString(val)
|
||||
case reflect.Slice:
|
||||
// JSON unmarshals to []interface{}, not []string
|
||||
val, ok := val.([]interface{})
|
||||
// JSON unmarshals to []any, not []string
|
||||
val, ok := val.([]any)
|
||||
if !ok {
|
||||
return fmt.Errorf("option %q must be of type array", key)
|
||||
}
|
||||
// convert []interface{} to []string
|
||||
// convert []any to []string
|
||||
slice := make([]string, len(val))
|
||||
for i, item := range val {
|
||||
str, ok := item.(string)
|
||||
@@ -672,7 +720,7 @@ func (d *Duration) UnmarshalJSON(b []byte) (err error) {
|
||||
}
|
||||
|
||||
// FormatParams converts specified parameter options to their correct types
|
||||
func FormatParams(params map[string][]string) (map[string]interface{}, error) {
|
||||
func FormatParams(params map[string][]string) (map[string]any, error) {
|
||||
opts := Options{}
|
||||
valueOpts := reflect.ValueOf(&opts).Elem() // names of the fields in the options struct
|
||||
typeOpts := reflect.TypeOf(opts) // types of the fields in the options struct
|
||||
@@ -686,7 +734,7 @@ func FormatParams(params map[string][]string) (map[string]interface{}, error) {
|
||||
}
|
||||
}
|
||||
|
||||
out := make(map[string]interface{})
|
||||
out := make(map[string]any)
|
||||
// iterate params and set values based on json struct tags
|
||||
for key, vals := range params {
|
||||
if opt, ok := jsonOpts[key]; !ok {
|
||||
|
||||
@@ -134,7 +134,7 @@ func TestUseMmapParsingFromJSON(t *testing.T) {
|
||||
|
||||
for _, test := range tests {
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
var oMap map[string]interface{}
|
||||
var oMap map[string]any
|
||||
err := json.Unmarshal([]byte(test.req), &oMap)
|
||||
require.NoError(t, err)
|
||||
opts := DefaultOptions()
|
||||
@@ -231,3 +231,144 @@ func TestMessage_UnmarshalJSON(t *testing.T) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestToolFunction_UnmarshalJSON(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
input string
|
||||
wantErr string
|
||||
}{
|
||||
{
|
||||
name: "valid enum with same types",
|
||||
input: `{
|
||||
"name": "test",
|
||||
"description": "test function",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"required": ["test"],
|
||||
"properties": {
|
||||
"test": {
|
||||
"type": "string",
|
||||
"description": "test prop",
|
||||
"enum": ["a", "b", "c"]
|
||||
}
|
||||
}
|
||||
}
|
||||
}`,
|
||||
wantErr: "",
|
||||
},
|
||||
{
|
||||
name: "empty enum array",
|
||||
input: `{
|
||||
"name": "test",
|
||||
"description": "test function",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"required": ["test"],
|
||||
"properties": {
|
||||
"test": {
|
||||
"type": "string",
|
||||
"description": "test prop",
|
||||
"enum": []
|
||||
}
|
||||
}
|
||||
}
|
||||
}`,
|
||||
wantErr: "",
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
var tf ToolFunction
|
||||
err := json.Unmarshal([]byte(tt.input), &tf)
|
||||
|
||||
if tt.wantErr != "" {
|
||||
require.Error(t, err)
|
||||
assert.Contains(t, err.Error(), tt.wantErr)
|
||||
} else {
|
||||
require.NoError(t, err)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestPropertyType_UnmarshalJSON(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
input string
|
||||
expected PropertyType
|
||||
}{
|
||||
{
|
||||
name: "string type",
|
||||
input: `"string"`,
|
||||
expected: PropertyType{"string"},
|
||||
},
|
||||
{
|
||||
name: "array of types",
|
||||
input: `["string", "number"]`,
|
||||
expected: PropertyType{"string", "number"},
|
||||
},
|
||||
{
|
||||
name: "array with single type",
|
||||
input: `["string"]`,
|
||||
expected: PropertyType{"string"},
|
||||
},
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
var pt PropertyType
|
||||
if err := json.Unmarshal([]byte(test.input), &pt); err != nil {
|
||||
t.Errorf("Unexpected error: %v", err)
|
||||
}
|
||||
|
||||
if len(pt) != len(test.expected) {
|
||||
t.Errorf("Length mismatch: got %v, expected %v", len(pt), len(test.expected))
|
||||
}
|
||||
|
||||
for i, v := range pt {
|
||||
if v != test.expected[i] {
|
||||
t.Errorf("Value mismatch at index %d: got %v, expected %v", i, v, test.expected[i])
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestPropertyType_MarshalJSON(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
input PropertyType
|
||||
expected string
|
||||
}{
|
||||
{
|
||||
name: "single type",
|
||||
input: PropertyType{"string"},
|
||||
expected: `"string"`,
|
||||
},
|
||||
{
|
||||
name: "multiple types",
|
||||
input: PropertyType{"string", "number"},
|
||||
expected: `["string","number"]`,
|
||||
},
|
||||
{
|
||||
name: "empty type",
|
||||
input: PropertyType{},
|
||||
expected: `[]`,
|
||||
},
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
data, err := json.Marshal(test.input)
|
||||
if err != nil {
|
||||
t.Errorf("Unexpected error: %v", err)
|
||||
}
|
||||
|
||||
if string(data) != test.expected {
|
||||
t.Errorf("Marshaled data mismatch: got %v, expected %v", string(data), test.expected)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
@@ -92,7 +92,7 @@ func BenchmarkColdStart(b *testing.B) {
|
||||
req := &api.GenerateRequest{
|
||||
Model: m,
|
||||
Prompt: tt.prompt,
|
||||
Options: map[string]interface{}{"num_predict": tt.maxTokens, "temperature": 0.1},
|
||||
Options: map[string]any{"num_predict": tt.maxTokens, "temperature": 0.1},
|
||||
}
|
||||
|
||||
runGenerateBenchmark(b, ctx, client, req)
|
||||
@@ -155,7 +155,7 @@ func warmup(client *api.Client, model string, prompt string, b *testing.B) {
|
||||
&api.GenerateRequest{
|
||||
Model: model,
|
||||
Prompt: prompt,
|
||||
Options: map[string]interface{}{"num_predict": 50, "temperature": 0.1},
|
||||
Options: map[string]any{"num_predict": 50, "temperature": 0.1},
|
||||
},
|
||||
func(api.GenerateResponse) error { return nil },
|
||||
)
|
||||
|
||||
20
cmd/cmd.go
20
cmd/cmd.go
@@ -18,6 +18,7 @@ import (
|
||||
"os/signal"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"slices"
|
||||
"sort"
|
||||
"strconv"
|
||||
"strings"
|
||||
@@ -267,7 +268,7 @@ func RunHandler(cmd *cobra.Command, args []string) error {
|
||||
opts := runOptions{
|
||||
Model: args[0],
|
||||
WordWrap: os.Getenv("TERM") == "xterm-256color",
|
||||
Options: map[string]interface{}{},
|
||||
Options: map[string]any{},
|
||||
}
|
||||
|
||||
format, err := cmd.Flags().GetString("format")
|
||||
@@ -339,6 +340,11 @@ func RunHandler(cmd *cobra.Command, args []string) error {
|
||||
return err
|
||||
}
|
||||
|
||||
opts.MultiModal = slices.Contains(info.Capabilities, model.CapabilityVision)
|
||||
|
||||
// TODO: remove the projector info and vision info checks below,
|
||||
// these are left in for backwards compatibility with older servers
|
||||
// that don't have the capabilities field in the model info
|
||||
if len(info.ProjectorInfo) != 0 {
|
||||
opts.MultiModal = true
|
||||
}
|
||||
@@ -669,6 +675,15 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
|
||||
return
|
||||
})
|
||||
|
||||
if len(resp.Capabilities) > 0 {
|
||||
tableRender("Capabilities", func() (rows [][]string) {
|
||||
for _, capability := range resp.Capabilities {
|
||||
rows = append(rows, []string{"", capability.String()})
|
||||
}
|
||||
return
|
||||
})
|
||||
}
|
||||
|
||||
if resp.ProjectorInfo != nil {
|
||||
tableRender("Projector", func() (rows [][]string) {
|
||||
arch := resp.ProjectorInfo["general.architecture"].(string)
|
||||
@@ -837,7 +852,7 @@ type runOptions struct {
|
||||
Format string
|
||||
System string
|
||||
Images []api.ImageData
|
||||
Options map[string]interface{}
|
||||
Options map[string]any
|
||||
MultiModal bool
|
||||
KeepAlive *api.Duration
|
||||
}
|
||||
@@ -1366,7 +1381,6 @@ func NewCLI() *cobra.Command {
|
||||
envVars["OLLAMA_NOPRUNE"],
|
||||
envVars["OLLAMA_ORIGINS"],
|
||||
envVars["OLLAMA_SCHED_SPREAD"],
|
||||
envVars["OLLAMA_TMPDIR"],
|
||||
envVars["OLLAMA_FLASH_ATTENTION"],
|
||||
envVars["OLLAMA_KV_CACHE_TYPE"],
|
||||
envVars["OLLAMA_LLM_LIBRARY"],
|
||||
|
||||
@@ -16,6 +16,7 @@ import (
|
||||
"github.com/spf13/cobra"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
)
|
||||
|
||||
func TestShowInfo(t *testing.T) {
|
||||
@@ -260,6 +261,34 @@ Weigh anchor!
|
||||
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("capabilities", func(t *testing.T) {
|
||||
var b bytes.Buffer
|
||||
if err := showInfo(&api.ShowResponse{
|
||||
Details: api.ModelDetails{
|
||||
Family: "test",
|
||||
ParameterSize: "7B",
|
||||
QuantizationLevel: "FP16",
|
||||
},
|
||||
Capabilities: []model.Capability{model.CapabilityVision, model.CapabilityTools},
|
||||
}, false, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
expect := " Model\n" +
|
||||
" architecture test \n" +
|
||||
" parameters 7B \n" +
|
||||
" quantization FP16 \n" +
|
||||
"\n" +
|
||||
" Capabilities\n" +
|
||||
" vision \n" +
|
||||
" tools \n" +
|
||||
"\n"
|
||||
|
||||
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
func TestDeleteHandler(t *testing.T) {
|
||||
|
||||
@@ -182,8 +182,10 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
|
||||
var conv ModelConverter
|
||||
switch p.Architectures[0] {
|
||||
case "LlamaForCausalLM", "MistralForCausalLM":
|
||||
case "LlamaForCausalLM":
|
||||
conv = &llamaModel{}
|
||||
case "Mistral3ForConditionalGeneration":
|
||||
conv = &mistral3Model{}
|
||||
case "MixtralForCausalLM":
|
||||
conv = &mixtralModel{}
|
||||
case "GemmaForCausalLM":
|
||||
|
||||
190
convert/convert_mistral.go
Normal file
190
convert/convert_mistral.go
Normal file
@@ -0,0 +1,190 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"fmt"
|
||||
"strings"
|
||||
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type mistral3Model struct {
|
||||
ModelParameters
|
||||
ImageTokenIndex uint32 `json:"image_token_index"`
|
||||
SpatialMergeSize uint32 `json:"spatial_merge_size"`
|
||||
VisionFeatureLayer int32 `json:"vision_feature_layer"`
|
||||
TextModel struct {
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
SlidingWindow *uint32 `json:"sliding_window"`
|
||||
HiddenAct string `json:"hidden_act"`
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
} `json:"text_config"`
|
||||
VisionModel struct {
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
ImageSize uint32 `json:"image_size"`
|
||||
NumChannels uint32 `json:"num_channels"`
|
||||
PatchSize uint32 `json:"patch_size"`
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
HiddenAct string `json:"hidden_act"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
} `json:"vision_config"`
|
||||
MultiModalProjectorBias bool `json:"multimodal_projector_bias"`
|
||||
ProjectorHiddenAct string `json:"projector_hidden_act"`
|
||||
}
|
||||
|
||||
func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "mistral3"
|
||||
kv["mistral3.vocab_size"] = p.TextModel.VocabSize
|
||||
|
||||
// Text configuration
|
||||
kv["mistral3.block_count"] = p.TextModel.NumHiddenLayers
|
||||
kv["mistral3.context_length"] = p.TextModel.MaxPositionEmbeddings
|
||||
kv["mistral3.embedding_length"] = p.TextModel.HiddenSize
|
||||
kv["mistral3.feed_forward_length"] = p.TextModel.IntermediateSize
|
||||
kv["mistral3.attention.head_count"] = p.TextModel.NumAttentionHeads
|
||||
kv["mistral3.attention.head_count_kv"] = p.TextModel.NumKeyValueHeads
|
||||
kv["mistral3.attention.layer_norm_rms_epsilon"] = p.TextModel.RMSNormEPS
|
||||
kv["mistral3.attention.key_length"] = p.TextModel.HeadDim
|
||||
kv["mistral3.attention.value_length"] = p.TextModel.HeadDim
|
||||
kv["mistral3.rope.dimension_count"] = p.TextModel.HiddenSize / p.TextModel.NumHiddenLayers
|
||||
kv["mistral3.rope.freq_base"] = p.TextModel.RopeTheta
|
||||
|
||||
// Vision configuration
|
||||
kv["mistral3.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
||||
kv["mistral3.vision.embedding_length"] = p.VisionModel.HiddenSize
|
||||
kv["mistral3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
|
||||
kv["mistral3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
||||
kv["mistral3.vision.attention.key_length"] = p.VisionModel.HeadDim
|
||||
kv["mistral3.vision.image_size"] = p.VisionModel.ImageSize
|
||||
kv["mistral3.vision.patch_size"] = p.VisionModel.PatchSize
|
||||
kv["mistral3.vision.num_channels"] = p.VisionModel.NumChannels
|
||||
// kv["mistral3.vision.attention.layer_norm_epsilon"] = 1e-05 // Default value
|
||||
kv["mistral3.vision.rope.freq_base"] = p.VisionModel.RopeTheta
|
||||
|
||||
// Multimodal configuration
|
||||
kv["mistral3.image_token_index"] = p.ImageTokenIndex
|
||||
kv["mistral3.spatial_merge_size"] = p.SpatialMergeSize
|
||||
|
||||
kv["mistral3.mm.projector_bias"] = p.MultiModalProjectorBias
|
||||
|
||||
if p.ProjectorHiddenAct != "" {
|
||||
kv["mistral3.mm.projector_hidden_act"] = p.ProjectorHiddenAct
|
||||
}
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *mistral3Model) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
|
||||
for _, t := range ts {
|
||||
if !strings.HasPrefix(t.Name(), "v.") {
|
||||
if strings.HasSuffix(t.Name(), ".attn_q.weight") ||
|
||||
strings.HasSuffix(t.Name(), ".attn_k.weight") {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
}
|
||||
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *mistral3Model) Replacements() []string {
|
||||
return []string{
|
||||
"language_model.model.norm", "output_norm",
|
||||
"language_model.model.", "",
|
||||
"language_model.", "",
|
||||
"layers", "blk",
|
||||
"transformer.layers", "blk",
|
||||
"vision_tower", "v",
|
||||
"ln_pre", "encoder_norm",
|
||||
"input_layernorm", "attn_norm",
|
||||
"post_attention_layernorm", "ffn_norm",
|
||||
"embed_tokens", "token_embd",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"attention.q_proj", "attn_q",
|
||||
"attention.k_proj", "attn_k",
|
||||
"attention.v_proj", "attn_v",
|
||||
"attention.o_proj", "attn_output",
|
||||
"attention_norm", "attn_norm",
|
||||
"feed_forward.gate_proj", "ffn_gate",
|
||||
"feed_forward.down_proj", "ffn_down",
|
||||
"feed_forward.up_proj", "ffn_up",
|
||||
"multi_modal_projector", "mm",
|
||||
"ffn_norm", "ffn_norm",
|
||||
"lm_head", "output",
|
||||
}
|
||||
}
|
||||
|
||||
func (p *mistral3Model) repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||
var dims []int
|
||||
for _, dim := range shape {
|
||||
dims = append(dims, int(dim))
|
||||
}
|
||||
|
||||
var heads uint32
|
||||
if strings.HasSuffix(name, ".attn_q.weight") {
|
||||
heads = p.TextModel.NumAttentionHeads
|
||||
} else if strings.HasSuffix(name, ".attn_k.weight") {
|
||||
heads = cmp.Or(p.TextModel.NumKeyValueHeads, p.TextModel.NumAttentionHeads)
|
||||
} else {
|
||||
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
|
||||
}
|
||||
|
||||
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.T(0, 2, 1, 3); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Reshape(dims...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Transpose(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ts, err := native.SelectF32(n, 1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var f32s []float32
|
||||
for _, t := range ts {
|
||||
f32s = append(f32s, t...)
|
||||
}
|
||||
|
||||
return f32s, nil
|
||||
}
|
||||
@@ -62,10 +62,7 @@ func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) {
|
||||
Pattern string
|
||||
Func func(fs.FS, *strings.Replacer, ...string) ([]Tensor, error)
|
||||
}{
|
||||
{"model-*-of-*.safetensors", parseSafetensors},
|
||||
{"model.safetensors", parseSafetensors},
|
||||
{"adapters.safetensors", parseSafetensors},
|
||||
{"adapter_model.safetensors", parseSafetensors},
|
||||
{"*.safetensors", parseSafetensors},
|
||||
{"pytorch_model-*-of-*.bin", parseTorch},
|
||||
{"pytorch_model.bin", parseTorch},
|
||||
{"consolidated.*.pth", parseTorch},
|
||||
|
||||
@@ -1360,7 +1360,7 @@ func file_sentencepiece_model_proto_rawDescGZIP() []byte {
|
||||
|
||||
var file_sentencepiece_model_proto_enumTypes = make([]protoimpl.EnumInfo, 2)
|
||||
var file_sentencepiece_model_proto_msgTypes = make([]protoimpl.MessageInfo, 6)
|
||||
var file_sentencepiece_model_proto_goTypes = []interface{}{
|
||||
var file_sentencepiece_model_proto_goTypes = []any{
|
||||
(TrainerSpec_ModelType)(0), // 0: sentencepiece.TrainerSpec.ModelType
|
||||
(ModelProto_SentencePiece_Type)(0), // 1: sentencepiece.ModelProto.SentencePiece.Type
|
||||
(*TrainerSpec)(nil), // 2: sentencepiece.TrainerSpec
|
||||
@@ -1392,7 +1392,7 @@ func file_sentencepiece_model_proto_init() {
|
||||
return
|
||||
}
|
||||
if !protoimpl.UnsafeEnabled {
|
||||
file_sentencepiece_model_proto_msgTypes[0].Exporter = func(v interface{}, i int) interface{} {
|
||||
file_sentencepiece_model_proto_msgTypes[0].Exporter = func(v any, i int) any {
|
||||
switch v := v.(*TrainerSpec); i {
|
||||
case 0:
|
||||
return &v.state
|
||||
@@ -1406,7 +1406,7 @@ func file_sentencepiece_model_proto_init() {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
file_sentencepiece_model_proto_msgTypes[1].Exporter = func(v interface{}, i int) interface{} {
|
||||
file_sentencepiece_model_proto_msgTypes[1].Exporter = func(v any, i int) any {
|
||||
switch v := v.(*NormalizerSpec); i {
|
||||
case 0:
|
||||
return &v.state
|
||||
@@ -1420,7 +1420,7 @@ func file_sentencepiece_model_proto_init() {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
file_sentencepiece_model_proto_msgTypes[2].Exporter = func(v interface{}, i int) interface{} {
|
||||
file_sentencepiece_model_proto_msgTypes[2].Exporter = func(v any, i int) any {
|
||||
switch v := v.(*SelfTestData); i {
|
||||
case 0:
|
||||
return &v.state
|
||||
@@ -1434,7 +1434,7 @@ func file_sentencepiece_model_proto_init() {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
file_sentencepiece_model_proto_msgTypes[3].Exporter = func(v interface{}, i int) interface{} {
|
||||
file_sentencepiece_model_proto_msgTypes[3].Exporter = func(v any, i int) any {
|
||||
switch v := v.(*ModelProto); i {
|
||||
case 0:
|
||||
return &v.state
|
||||
@@ -1448,7 +1448,7 @@ func file_sentencepiece_model_proto_init() {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
file_sentencepiece_model_proto_msgTypes[4].Exporter = func(v interface{}, i int) interface{} {
|
||||
file_sentencepiece_model_proto_msgTypes[4].Exporter = func(v any, i int) any {
|
||||
switch v := v.(*SelfTestData_Sample); i {
|
||||
case 0:
|
||||
return &v.state
|
||||
@@ -1460,7 +1460,7 @@ func file_sentencepiece_model_proto_init() {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
file_sentencepiece_model_proto_msgTypes[5].Exporter = func(v interface{}, i int) interface{} {
|
||||
file_sentencepiece_model_proto_msgTypes[5].Exporter = func(v any, i int) any {
|
||||
switch v := v.(*ModelProto_SentencePiece); i {
|
||||
case 0:
|
||||
return &v.state
|
||||
|
||||
@@ -12,7 +12,7 @@ func IsNUMA() bool {
|
||||
// numa support in llama.cpp is linux only
|
||||
return false
|
||||
}
|
||||
ids := map[string]interface{}{}
|
||||
ids := map[string]any{}
|
||||
packageIds, _ := filepath.Glob("/sys/devices/system/cpu/cpu*/topology/physical_package_id")
|
||||
for _, packageId := range packageIds {
|
||||
id, err := os.ReadFile(packageId)
|
||||
|
||||
@@ -111,6 +111,7 @@ func GetCPUDetails() ([]CPU, error) {
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer file.Close()
|
||||
return linuxCPUDetails(file)
|
||||
}
|
||||
|
||||
@@ -168,13 +169,11 @@ func linuxCPUDetails(file io.Reader) ([]CPU, error) {
|
||||
for id, s := range socketByID {
|
||||
s.CoreCount = len(coreBySocket[id])
|
||||
s.ThreadCount = 0
|
||||
for _, tc := range threadsByCoreBySocket[id] {
|
||||
s.ThreadCount += tc
|
||||
}
|
||||
|
||||
// This only works if HT is enabled, consider a more reliable model, maybe cache size comparisons?
|
||||
efficiencyCoreCount := 0
|
||||
for _, threads := range threadsByCoreBySocket[id] {
|
||||
s.ThreadCount += threads
|
||||
if threads == 1 {
|
||||
efficiencyCoreCount++
|
||||
}
|
||||
|
||||
@@ -1217,7 +1217,7 @@ Show information about a model including details, modelfile, template, parameter
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/show -d '{
|
||||
"model": "llama3.2"
|
||||
"model": "llava"
|
||||
}'
|
||||
```
|
||||
|
||||
@@ -1260,7 +1260,11 @@ curl http://localhost:11434/api/show -d '{
|
||||
"tokenizer.ggml.pre": "llama-bpe",
|
||||
"tokenizer.ggml.token_type": [], // populates if `verbose=true`
|
||||
"tokenizer.ggml.tokens": [] // populates if `verbose=true`
|
||||
}
|
||||
},
|
||||
"capabilities": [
|
||||
"completion",
|
||||
"vision"
|
||||
],
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
@@ -20,7 +20,13 @@ Please refer to the [GPU docs](./gpu.md).
|
||||
|
||||
## How can I specify the context window size?
|
||||
|
||||
By default, Ollama uses a context window size of 2048 tokens. This can be overridden with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context length to 8K, use: `OLLAMA_CONTEXT_LENGTH=8192 ollama serve`.
|
||||
By default, Ollama uses a context window size of 2048 tokens.
|
||||
|
||||
This can be overridden with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context window to 8K, use:
|
||||
|
||||
```shell
|
||||
OLLAMA_CONTEXT_LENGTH=8192 ollama serve
|
||||
```
|
||||
|
||||
To change this when using `ollama run`, use `/set parameter`:
|
||||
|
||||
|
||||
@@ -26,7 +26,6 @@ When you run Ollama on **Windows**, there are a few different locations. You can
|
||||
- `explorer %LOCALAPPDATA%\Ollama` to view logs. The most recent server logs will be in `server.log` and older logs will be in `server-#.log`
|
||||
- `explorer %LOCALAPPDATA%\Programs\Ollama` to browse the binaries (The installer adds this to your user PATH)
|
||||
- `explorer %HOMEPATH%\.ollama` to browse where models and configuration is stored
|
||||
- `explorer %TEMP%` where temporary executable files are stored in one or more `ollama*` directories
|
||||
|
||||
To enable additional debug logging to help troubleshoot problems, first **Quit the running app from the tray menu** then in a powershell terminal
|
||||
|
||||
@@ -69,10 +68,6 @@ If you run into problems on Linux and want to install an older version, or you'd
|
||||
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.5.7 sh
|
||||
```
|
||||
|
||||
## Linux tmp noexec
|
||||
|
||||
If your system is configured with the "noexec" flag where Ollama stores its temporary executable files, you can specify an alternate location by setting OLLAMA_TMPDIR to a location writable by the user ollama runs as. For example OLLAMA_TMPDIR=/usr/share/ollama/
|
||||
|
||||
## Linux docker
|
||||
|
||||
If Ollama initially works on the GPU in a docker container, but then switches to running on CPU after some period of time with errors in the server log reporting GPU discovery failures, this can be resolved by disabling systemd cgroup management in Docker. Edit `/etc/docker/daemon.json` on the host and add `"exec-opts": ["native.cgroupdriver=cgroupfs"]` to the docker configuration.
|
||||
|
||||
@@ -62,7 +62,6 @@ the explorer window by hitting `<Ctrl>+R` and type in:
|
||||
- *upgrade.log* contains log output for upgrades
|
||||
- `explorer %LOCALAPPDATA%\Programs\Ollama` contains the binaries (The installer adds this to your user PATH)
|
||||
- `explorer %HOMEPATH%\.ollama` contains models and configuration
|
||||
- `explorer %TEMP%` contains temporary executable files in one or more `ollama*` directories
|
||||
|
||||
## Uninstall
|
||||
|
||||
|
||||
@@ -5,7 +5,7 @@ import (
|
||||
"time"
|
||||
)
|
||||
|
||||
func assertEqual(t *testing.T, a interface{}, b interface{}) {
|
||||
func assertEqual(t *testing.T, a any, b any) {
|
||||
if a != b {
|
||||
t.Errorf("Assert failed, expected %v, got %v", b, a)
|
||||
}
|
||||
|
||||
13
fs/config.go
Normal file
13
fs/config.go
Normal file
@@ -0,0 +1,13 @@
|
||||
package fs
|
||||
|
||||
type Config interface {
|
||||
Architecture() string
|
||||
String(string, ...string) string
|
||||
Uint(string, ...uint32) uint32
|
||||
Float(string, ...float32) float32
|
||||
Bool(string, ...bool) bool
|
||||
|
||||
Strings(string, ...[]string) []string
|
||||
Uints(string, ...[]uint32) []uint32
|
||||
Floats(string, ...[]float32) []float32
|
||||
}
|
||||
@@ -134,7 +134,10 @@ func (kv KV) Floats(key string, defaultValue ...[]float32) []float32 {
|
||||
}
|
||||
|
||||
func (kv KV) OllamaEngineRequired() bool {
|
||||
return kv.Architecture() == "gemma3"
|
||||
return slices.Contains([]string{
|
||||
"gemma3",
|
||||
"mistral3",
|
||||
}, kv.Architecture())
|
||||
}
|
||||
|
||||
func keyValue[T string | uint32 | uint64 | float32 | *array | bool](kv KV, key string, defaultValue ...T) T {
|
||||
@@ -413,7 +416,7 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
|
||||
}, offset, nil
|
||||
}
|
||||
|
||||
func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialOffload, fullOffload uint64) {
|
||||
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string) (kv []uint64, partialOffload, fullOffload uint64) {
|
||||
embedding := f.KV().EmbeddingLength()
|
||||
heads := f.KV().HeadCount()
|
||||
headsKV := f.KV().HeadCountKV()
|
||||
@@ -426,7 +429,10 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
|
||||
layers := f.Tensors().GroupLayers()
|
||||
|
||||
bytesPerElement := kvCacheBytesPerElement(kvCacheType)
|
||||
kv = uint64(float64(context*f.KV().BlockCount()*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
|
||||
kv = make([]uint64, f.KV().BlockCount())
|
||||
for i := range kv {
|
||||
kv[i] = uint64(float64(context*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
|
||||
}
|
||||
|
||||
switch f.KV().Architecture() {
|
||||
case "llama":
|
||||
@@ -460,16 +466,14 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
|
||||
case "mllama":
|
||||
var visionTokens, tiles uint64 = 1601, 4
|
||||
|
||||
if crossAttentionLayers, ok := f.KV()["mllama.attention.cross_attention_layers"].(*array); ok {
|
||||
kv = headsKV *
|
||||
(embeddingHeadsK + embeddingHeadsV) * // one for K, one for V
|
||||
(2* // sizeof(float16)
|
||||
(f.KV().BlockCount()-uint64(crossAttentionLayers.size))* // num non-cross attention layers
|
||||
context +
|
||||
4* // sizeof(float32)
|
||||
uint64(crossAttentionLayers.size)* // num cross attention layers
|
||||
visionTokens*
|
||||
tiles)
|
||||
crossAttentionLayers := f.KV().Uints("attention.cross_attention_layers")
|
||||
for i := range kv {
|
||||
if slices.Contains(crossAttentionLayers, uint32(i)) {
|
||||
kv[i] = headsKV * (embeddingHeadsK + embeddingHeadsV) *
|
||||
4 * // sizeof(float32)
|
||||
visionTokens *
|
||||
tiles
|
||||
}
|
||||
}
|
||||
|
||||
fullOffload = max(
|
||||
@@ -505,6 +509,20 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
|
||||
4*embeddingHeadsK*context*8+
|
||||
embedding*embeddingHeadsK*heads*9/16,
|
||||
)
|
||||
|
||||
// Gemma2 also has sliding window attention but we only have an optimized implementation in the Ollama
|
||||
// engine. Gemma3 always uses the Ollama engine.
|
||||
if f.KV().Architecture() == "gemma3" {
|
||||
const gemma3GlobalCacheCount = 6
|
||||
slidingWindow := (uint64(numParallel) * uint64(f.KV().Uint("attention.sliding_window"))) + batch
|
||||
for i := range kv {
|
||||
// Every 6th layer is a global layer, which is the full context size that has already been set. The other
|
||||
// layers are the smaller local (sliding) layers.
|
||||
if (i+1)%gemma3GlobalCacheCount != 0 {
|
||||
kv[i] = uint64(float64(slidingWindow*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
|
||||
}
|
||||
}
|
||||
}
|
||||
case "command-r":
|
||||
fullOffload = max(
|
||||
4*batch*(embedding+vocab),
|
||||
@@ -623,7 +641,7 @@ func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
|
||||
embeddingLength*numPatches*maxNumTiles +
|
||||
9*embeddingLength*numPaddedPatches*maxNumTiles +
|
||||
numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount)
|
||||
case "gemma3":
|
||||
case "gemma3", "mistral3":
|
||||
graphSize = 4 * (imageSize*imageSize*numChannels +
|
||||
embeddingLength*patchSize +
|
||||
numPatches*numPatches*headCount)
|
||||
|
||||
@@ -1,22 +0,0 @@
|
||||
//go:build go1.24
|
||||
|
||||
package grammar
|
||||
|
||||
import "testing"
|
||||
|
||||
func BenchmarkFromSchema(b *testing.B) {
|
||||
for tt := range testCases(b) {
|
||||
b.Run("", func(b *testing.B) {
|
||||
s := []byte(tt.schema)
|
||||
|
||||
b.ReportAllocs()
|
||||
for b.Loop() {
|
||||
_, err := FromSchema(nil, s)
|
||||
if err != nil {
|
||||
b.Fatalf("GrammarFromSchema: %v", err)
|
||||
}
|
||||
}
|
||||
})
|
||||
return
|
||||
}
|
||||
}
|
||||
@@ -1,227 +0,0 @@
|
||||
package grammar
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"iter"
|
||||
"strconv"
|
||||
|
||||
"github.com/ollama/ollama/grammar/jsonschema"
|
||||
)
|
||||
|
||||
const jsonTerms = `
|
||||
# Unicode
|
||||
#
|
||||
# Unicode characters can be specified directly in the grammar, for example
|
||||
# hiragana ::= [ぁ-ゟ], or with escapes: 8-bit (\xXX), 16-bit (\uXXXX) or 32-bit
|
||||
# (\UXXXXXXXX).
|
||||
unicode ::= \x{hex}{2} | \u{hex}{4} | \U{hex}{8}
|
||||
|
||||
# JSON grammar from RFC 7159
|
||||
null ::= "null"
|
||||
object ::= "{" (kv ("," kv)*)? "}"
|
||||
array ::= "[" (value ("," value)*)? "]"
|
||||
kv ::= string ":" value
|
||||
integer ::= "0" | [1-9] [0-9]*
|
||||
number ::= "-"? integer frac? exp?
|
||||
frac ::= "." [0-9]+
|
||||
exp ::= ("e" | "E") ("+" | "-") [0-9]+
|
||||
string ::= "\"" char* "\""
|
||||
escape ::= ["/" | "b" | "f" | "n" | "r" | "t" | unicode]
|
||||
char ::= [^"\\] | escape
|
||||
space ::= (" " | "\t" | "\n" | "\r")*
|
||||
hex ::= [0-9] | [a-f] | [A-F]
|
||||
boolean ::= "true" | "false"
|
||||
value ::= object | array | string | number | boolean | "null"
|
||||
|
||||
# User-defined
|
||||
`
|
||||
|
||||
// FromSchema generates a grammar from a JSON schema.
|
||||
func FromSchema(buf []byte, jsonSchema []byte) ([]byte, error) {
|
||||
var s *jsonschema.Schema
|
||||
if err := json.Unmarshal(jsonSchema, &s); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var g builder
|
||||
|
||||
// "root" is the only rule that is guaranteed to exist, so we start
|
||||
// with its length for padding, and then adjust it as we go.
|
||||
g.pad = len("root")
|
||||
for id := range dependencies("root", s) {
|
||||
g.pad = max(g.pad, len(id))
|
||||
}
|
||||
|
||||
g.b.WriteString(jsonTerms)
|
||||
|
||||
ids := make(map[*jsonschema.Schema]string)
|
||||
for id, s := range dependencies("root", s) {
|
||||
ids[s] = id
|
||||
g.define(id)
|
||||
if err := fromSchema(&g, ids, s); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
g.define("root")
|
||||
if err := fromSchema(&g, ids, s); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
g.define("") // finalize the last rule
|
||||
return g.b.Bytes(), nil
|
||||
}
|
||||
|
||||
func fromSchema(g *builder, ids map[*jsonschema.Schema]string, s *jsonschema.Schema) error {
|
||||
switch typ := s.EffectiveType(); typ {
|
||||
case "array":
|
||||
if len(s.PrefixItems) == 0 && s.Items == nil {
|
||||
g.u("array")
|
||||
} else {
|
||||
g.q("[")
|
||||
for i, s := range s.PrefixItems {
|
||||
if i > 0 {
|
||||
g.q(",")
|
||||
}
|
||||
g.u(ids[s])
|
||||
}
|
||||
if s.Items != nil {
|
||||
g.u("(")
|
||||
if len(s.PrefixItems) > 0 {
|
||||
g.q(",")
|
||||
}
|
||||
g.u(ids[s.Items])
|
||||
g.u(")*")
|
||||
}
|
||||
g.q("]")
|
||||
}
|
||||
case "object":
|
||||
if len(s.Properties) == 0 {
|
||||
g.u("object")
|
||||
} else {
|
||||
g.q("{")
|
||||
for i, p := range s.Properties {
|
||||
name := ids[p]
|
||||
if i > 0 {
|
||||
g.q(",")
|
||||
}
|
||||
g.q(p.Name)
|
||||
g.q(":")
|
||||
g.u(name)
|
||||
}
|
||||
g.q("}")
|
||||
}
|
||||
case "number":
|
||||
buildConstrainedNumber(g, s)
|
||||
case "string":
|
||||
if len(s.Enum) == 0 {
|
||||
g.u("string")
|
||||
} else {
|
||||
g.u("(")
|
||||
for i, e := range s.Enum {
|
||||
if i > 0 {
|
||||
g.q("|")
|
||||
}
|
||||
g.q(string(e))
|
||||
}
|
||||
g.u(")")
|
||||
}
|
||||
case "boolean", "value", "null", "integer":
|
||||
g.u(typ)
|
||||
default:
|
||||
return fmt.Errorf("%s: unsupported type %q", s.Name, typ)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// dependencies returns a sequence of all child dependencies of the schema in
|
||||
// post-order.
|
||||
//
|
||||
// The first value is the id/pointer to the dependency, and the second value
|
||||
// is the schema.
|
||||
func dependencies(id string, s *jsonschema.Schema) iter.Seq2[string, *jsonschema.Schema] {
|
||||
return func(yield func(string, *jsonschema.Schema) bool) {
|
||||
for i, p := range s.Properties {
|
||||
id := fmt.Sprintf("%s_%d", id, i)
|
||||
for did, d := range dependencies(id, p) {
|
||||
if !yield(did, d) {
|
||||
return
|
||||
}
|
||||
}
|
||||
if !yield(id, p) {
|
||||
return
|
||||
}
|
||||
}
|
||||
for i, p := range s.PrefixItems {
|
||||
id := fmt.Sprintf("tuple_%d", i)
|
||||
for did, d := range dependencies(id, p) {
|
||||
id := fmt.Sprintf("%s_%s", id, did)
|
||||
if !yield(id, d) {
|
||||
return
|
||||
}
|
||||
}
|
||||
if !yield(id, p) {
|
||||
return
|
||||
}
|
||||
}
|
||||
if s.Items != nil {
|
||||
id := fmt.Sprintf("%s_tuple_%d", id, len(s.PrefixItems))
|
||||
for did, d := range dependencies(id, s.Items) {
|
||||
if !yield(did, d) {
|
||||
return
|
||||
}
|
||||
}
|
||||
if !yield(id, s.Items) {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
type builder struct {
|
||||
b bytes.Buffer
|
||||
pad int
|
||||
rules int
|
||||
items int
|
||||
}
|
||||
|
||||
// define terminates the current rule, if any, and then either starts a new
|
||||
// rule or does nothing else if the name is empty.
|
||||
func (b *builder) define(name string) {
|
||||
if b.rules > 0 {
|
||||
b.b.WriteString(";\n")
|
||||
}
|
||||
if name == "" {
|
||||
return
|
||||
}
|
||||
fmt.Fprintf(&b.b, "% -*s", b.pad, name)
|
||||
b.b.WriteString(" ::=")
|
||||
b.rules++
|
||||
b.items = 0
|
||||
}
|
||||
|
||||
// quote appends a terminal to the current rule.
|
||||
func (b *builder) q(s string) {
|
||||
if b.items > 0 {
|
||||
b.b.WriteString(" ")
|
||||
}
|
||||
b.b.WriteString(" ")
|
||||
b.b.WriteString(strconv.Quote(s))
|
||||
}
|
||||
|
||||
// u appends a non-terminal to the current rule.
|
||||
func (b *builder) u(s string) {
|
||||
if b.items > 0 {
|
||||
b.b.WriteString(" ")
|
||||
}
|
||||
b.b.WriteString(" ")
|
||||
b.b.WriteString(s)
|
||||
}
|
||||
|
||||
func buildConstrainedNumber(b *builder, s *jsonschema.Schema) {
|
||||
if s.Minimum == 0 && s.Maximum == 0 {
|
||||
b.u("TODO")
|
||||
} else {
|
||||
b.u("number")
|
||||
}
|
||||
}
|
||||
@@ -1,75 +0,0 @@
|
||||
package grammar
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"cmp"
|
||||
"iter"
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
_ "embed"
|
||||
|
||||
"github.com/ollama/ollama/grammar/internal/diff"
|
||||
)
|
||||
|
||||
func TestFromSchema(t *testing.T) {
|
||||
for tt := range testCases(t) {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
g, err := FromSchema(nil, []byte(tt.schema))
|
||||
if err != nil {
|
||||
t.Fatalf("FromSchema: %v", err)
|
||||
}
|
||||
got := string(g)
|
||||
got = strings.TrimPrefix(got, jsonTerms)
|
||||
if got != tt.want {
|
||||
t.Logf("schema:\n%s", tt.schema)
|
||||
t.Fatal(string(diff.Diff("got", []byte(got), "want", []byte(tt.want))))
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
type testCase struct {
|
||||
name string
|
||||
schema string
|
||||
want string
|
||||
}
|
||||
|
||||
//go:embed testdata/schemas.txt
|
||||
var tests string
|
||||
|
||||
func testCases(t testing.TB) iter.Seq[testCase] {
|
||||
t.Helper()
|
||||
return func(yield func(testCase) bool) {
|
||||
t.Helper()
|
||||
sc := bufio.NewScanner(strings.NewReader(tests))
|
||||
name := ""
|
||||
for sc.Scan() {
|
||||
line := strings.TrimSpace(sc.Text())
|
||||
if line == "" {
|
||||
name = ""
|
||||
continue
|
||||
}
|
||||
if line[0] == '#' {
|
||||
name = cmp.Or(name, strings.TrimSpace(line[1:]))
|
||||
continue
|
||||
}
|
||||
s := sc.Text()
|
||||
g := ""
|
||||
for sc.Scan() {
|
||||
line = strings.TrimSpace(sc.Text())
|
||||
if line == "" || line[0] == '#' {
|
||||
break
|
||||
}
|
||||
g += sc.Text() + "\n"
|
||||
}
|
||||
if !yield(testCase{name, s, g}) {
|
||||
return
|
||||
}
|
||||
name = strings.TrimSpace(strings.TrimPrefix(line, "#"))
|
||||
}
|
||||
if err := sc.Err(); err != nil {
|
||||
t.Fatalf("error reading tests: %v", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,261 +0,0 @@
|
||||
// Copyright 2022 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package diff
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
"sort"
|
||||
"strings"
|
||||
)
|
||||
|
||||
// A pair is a pair of values tracked for both the x and y side of a diff.
|
||||
// It is typically a pair of line indexes.
|
||||
type pair struct{ x, y int }
|
||||
|
||||
// Diff returns an anchored diff of the two texts old and new
|
||||
// in the “unified diff” format. If old and new are identical,
|
||||
// Diff returns a nil slice (no output).
|
||||
//
|
||||
// Unix diff implementations typically look for a diff with
|
||||
// the smallest number of lines inserted and removed,
|
||||
// which can in the worst case take time quadratic in the
|
||||
// number of lines in the texts. As a result, many implementations
|
||||
// either can be made to run for a long time or cut off the search
|
||||
// after a predetermined amount of work.
|
||||
//
|
||||
// In contrast, this implementation looks for a diff with the
|
||||
// smallest number of “unique” lines inserted and removed,
|
||||
// where unique means a line that appears just once in both old and new.
|
||||
// We call this an “anchored diff” because the unique lines anchor
|
||||
// the chosen matching regions. An anchored diff is usually clearer
|
||||
// than a standard diff, because the algorithm does not try to
|
||||
// reuse unrelated blank lines or closing braces.
|
||||
// The algorithm also guarantees to run in O(n log n) time
|
||||
// instead of the standard O(n²) time.
|
||||
//
|
||||
// Some systems call this approach a “patience diff,” named for
|
||||
// the “patience sorting” algorithm, itself named for a solitaire card game.
|
||||
// We avoid that name for two reasons. First, the name has been used
|
||||
// for a few different variants of the algorithm, so it is imprecise.
|
||||
// Second, the name is frequently interpreted as meaning that you have
|
||||
// to wait longer (to be patient) for the diff, meaning that it is a slower algorithm,
|
||||
// when in fact the algorithm is faster than the standard one.
|
||||
func Diff(oldName string, old []byte, newName string, new []byte) []byte {
|
||||
if bytes.Equal(old, new) {
|
||||
return nil
|
||||
}
|
||||
x := lines(old)
|
||||
y := lines(new)
|
||||
|
||||
// Print diff header.
|
||||
var out bytes.Buffer
|
||||
fmt.Fprintf(&out, "diff %s %s\n", oldName, newName)
|
||||
fmt.Fprintf(&out, "--- %s\n", oldName)
|
||||
fmt.Fprintf(&out, "+++ %s\n", newName)
|
||||
|
||||
// Loop over matches to consider,
|
||||
// expanding each match to include surrounding lines,
|
||||
// and then printing diff chunks.
|
||||
// To avoid setup/teardown cases outside the loop,
|
||||
// tgs returns a leading {0,0} and trailing {len(x), len(y)} pair
|
||||
// in the sequence of matches.
|
||||
var (
|
||||
done pair // printed up to x[:done.x] and y[:done.y]
|
||||
chunk pair // start lines of current chunk
|
||||
count pair // number of lines from each side in current chunk
|
||||
ctext []string // lines for current chunk
|
||||
)
|
||||
for _, m := range tgs(x, y) {
|
||||
if m.x < done.x {
|
||||
// Already handled scanning forward from earlier match.
|
||||
continue
|
||||
}
|
||||
|
||||
// Expand matching lines as far as possible,
|
||||
// establishing that x[start.x:end.x] == y[start.y:end.y].
|
||||
// Note that on the first (or last) iteration we may (or definitely do)
|
||||
// have an empty match: start.x==end.x and start.y==end.y.
|
||||
start := m
|
||||
for start.x > done.x && start.y > done.y && x[start.x-1] == y[start.y-1] {
|
||||
start.x--
|
||||
start.y--
|
||||
}
|
||||
end := m
|
||||
for end.x < len(x) && end.y < len(y) && x[end.x] == y[end.y] {
|
||||
end.x++
|
||||
end.y++
|
||||
}
|
||||
|
||||
// Emit the mismatched lines before start into this chunk.
|
||||
// (No effect on first sentinel iteration, when start = {0,0}.)
|
||||
for _, s := range x[done.x:start.x] {
|
||||
ctext = append(ctext, "-"+s)
|
||||
count.x++
|
||||
}
|
||||
for _, s := range y[done.y:start.y] {
|
||||
ctext = append(ctext, "+"+s)
|
||||
count.y++
|
||||
}
|
||||
|
||||
// If we're not at EOF and have too few common lines,
|
||||
// the chunk includes all the common lines and continues.
|
||||
const C = 3 // number of context lines
|
||||
if (end.x < len(x) || end.y < len(y)) &&
|
||||
(end.x-start.x < C || (len(ctext) > 0 && end.x-start.x < 2*C)) {
|
||||
for _, s := range x[start.x:end.x] {
|
||||
ctext = append(ctext, " "+s)
|
||||
count.x++
|
||||
count.y++
|
||||
}
|
||||
done = end
|
||||
continue
|
||||
}
|
||||
|
||||
// End chunk with common lines for context.
|
||||
if len(ctext) > 0 {
|
||||
n := end.x - start.x
|
||||
if n > C {
|
||||
n = C
|
||||
}
|
||||
for _, s := range x[start.x : start.x+n] {
|
||||
ctext = append(ctext, " "+s)
|
||||
count.x++
|
||||
count.y++
|
||||
}
|
||||
done = pair{start.x + n, start.y + n}
|
||||
|
||||
// Format and emit chunk.
|
||||
// Convert line numbers to 1-indexed.
|
||||
// Special case: empty file shows up as 0,0 not 1,0.
|
||||
if count.x > 0 {
|
||||
chunk.x++
|
||||
}
|
||||
if count.y > 0 {
|
||||
chunk.y++
|
||||
}
|
||||
fmt.Fprintf(&out, "@@ -%d,%d +%d,%d @@\n", chunk.x, count.x, chunk.y, count.y)
|
||||
for _, s := range ctext {
|
||||
out.WriteString(s)
|
||||
}
|
||||
count.x = 0
|
||||
count.y = 0
|
||||
ctext = ctext[:0]
|
||||
}
|
||||
|
||||
// If we reached EOF, we're done.
|
||||
if end.x >= len(x) && end.y >= len(y) {
|
||||
break
|
||||
}
|
||||
|
||||
// Otherwise start a new chunk.
|
||||
chunk = pair{end.x - C, end.y - C}
|
||||
for _, s := range x[chunk.x:end.x] {
|
||||
ctext = append(ctext, " "+s)
|
||||
count.x++
|
||||
count.y++
|
||||
}
|
||||
done = end
|
||||
}
|
||||
|
||||
return out.Bytes()
|
||||
}
|
||||
|
||||
// lines returns the lines in the file x, including newlines.
|
||||
// If the file does not end in a newline, one is supplied
|
||||
// along with a warning about the missing newline.
|
||||
func lines(x []byte) []string {
|
||||
l := strings.SplitAfter(string(x), "\n")
|
||||
if l[len(l)-1] == "" {
|
||||
l = l[:len(l)-1]
|
||||
} else {
|
||||
// Treat last line as having a message about the missing newline attached,
|
||||
// using the same text as BSD/GNU diff (including the leading backslash).
|
||||
l[len(l)-1] += "\n\\ No newline at end of file\n"
|
||||
}
|
||||
return l
|
||||
}
|
||||
|
||||
// tgs returns the pairs of indexes of the longest common subsequence
|
||||
// of unique lines in x and y, where a unique line is one that appears
|
||||
// once in x and once in y.
|
||||
//
|
||||
// The longest common subsequence algorithm is as described in
|
||||
// Thomas G. Szymanski, “A Special Case of the Maximal Common
|
||||
// Subsequence Problem,” Princeton TR #170 (January 1975),
|
||||
// available at https://research.swtch.com/tgs170.pdf.
|
||||
func tgs(x, y []string) []pair {
|
||||
// Count the number of times each string appears in a and b.
|
||||
// We only care about 0, 1, many, counted as 0, -1, -2
|
||||
// for the x side and 0, -4, -8 for the y side.
|
||||
// Using negative numbers now lets us distinguish positive line numbers later.
|
||||
m := make(map[string]int)
|
||||
for _, s := range x {
|
||||
if c := m[s]; c > -2 {
|
||||
m[s] = c - 1
|
||||
}
|
||||
}
|
||||
for _, s := range y {
|
||||
if c := m[s]; c > -8 {
|
||||
m[s] = c - 4
|
||||
}
|
||||
}
|
||||
|
||||
// Now unique strings can be identified by m[s] = -1+-4.
|
||||
//
|
||||
// Gather the indexes of those strings in x and y, building:
|
||||
// xi[i] = increasing indexes of unique strings in x.
|
||||
// yi[i] = increasing indexes of unique strings in y.
|
||||
// inv[i] = index j such that x[xi[i]] = y[yi[j]].
|
||||
var xi, yi, inv []int
|
||||
for i, s := range y {
|
||||
if m[s] == -1+-4 {
|
||||
m[s] = len(yi)
|
||||
yi = append(yi, i)
|
||||
}
|
||||
}
|
||||
for i, s := range x {
|
||||
if j, ok := m[s]; ok && j >= 0 {
|
||||
xi = append(xi, i)
|
||||
inv = append(inv, j)
|
||||
}
|
||||
}
|
||||
|
||||
// Apply Algorithm A from Szymanski's paper.
|
||||
// In those terms, A = J = inv and B = [0, n).
|
||||
// We add sentinel pairs {0,0}, and {len(x),len(y)}
|
||||
// to the returned sequence, to help the processing loop.
|
||||
J := inv
|
||||
n := len(xi)
|
||||
T := make([]int, n)
|
||||
L := make([]int, n)
|
||||
for i := range T {
|
||||
T[i] = n + 1
|
||||
}
|
||||
for i := range n {
|
||||
k := sort.Search(n, func(k int) bool {
|
||||
return T[k] >= J[i]
|
||||
})
|
||||
T[k] = J[i]
|
||||
L[i] = k + 1
|
||||
}
|
||||
k := 0
|
||||
for _, v := range L {
|
||||
if k < v {
|
||||
k = v
|
||||
}
|
||||
}
|
||||
seq := make([]pair, 2+k)
|
||||
seq[1+k] = pair{len(x), len(y)} // sentinel at end
|
||||
lastj := n
|
||||
for i := n - 1; i >= 0; i-- {
|
||||
if L[i] == k && J[i] < lastj {
|
||||
seq[k] = pair{xi[i], yi[J[i]]}
|
||||
k--
|
||||
}
|
||||
}
|
||||
seq[0] = pair{0, 0} // sentinel at start
|
||||
return seq
|
||||
}
|
||||
@@ -1,44 +0,0 @@
|
||||
// Copyright 2022 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package diff
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"path/filepath"
|
||||
"testing"
|
||||
|
||||
"golang.org/x/tools/txtar"
|
||||
)
|
||||
|
||||
func clean(text []byte) []byte {
|
||||
text = bytes.ReplaceAll(text, []byte("$\n"), []byte("\n"))
|
||||
text = bytes.TrimSuffix(text, []byte("^D\n"))
|
||||
return text
|
||||
}
|
||||
|
||||
func Test(t *testing.T) {
|
||||
files, _ := filepath.Glob("testdata/*.txt")
|
||||
if len(files) == 0 {
|
||||
t.Fatalf("no testdata")
|
||||
}
|
||||
|
||||
for _, file := range files {
|
||||
t.Run(filepath.Base(file), func(t *testing.T) {
|
||||
a, err := txtar.ParseFile(file)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
if len(a.Files) != 3 || a.Files[2].Name != "diff" {
|
||||
t.Fatalf("%s: want three files, third named \"diff\"", file)
|
||||
}
|
||||
diffs := Diff(a.Files[0].Name, clean(a.Files[0].Data), a.Files[1].Name, clean(a.Files[1].Data))
|
||||
want := clean(a.Files[2].Data)
|
||||
if !bytes.Equal(diffs, want) {
|
||||
t.Fatalf("%s: have:\n%s\nwant:\n%s\n%s", file,
|
||||
diffs, want, Diff("have", diffs, "want", want))
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
13
grammar/internal/diff/testdata/allnew.txt
vendored
13
grammar/internal/diff/testdata/allnew.txt
vendored
@@ -1,13 +0,0 @@
|
||||
-- old --
|
||||
-- new --
|
||||
a
|
||||
b
|
||||
c
|
||||
-- diff --
|
||||
diff old new
|
||||
--- old
|
||||
+++ new
|
||||
@@ -0,0 +1,3 @@
|
||||
+a
|
||||
+b
|
||||
+c
|
||||
13
grammar/internal/diff/testdata/allold.txt
vendored
13
grammar/internal/diff/testdata/allold.txt
vendored
@@ -1,13 +0,0 @@
|
||||
-- old --
|
||||
a
|
||||
b
|
||||
c
|
||||
-- new --
|
||||
-- diff --
|
||||
diff old new
|
||||
--- old
|
||||
+++ new
|
||||
@@ -1,3 +0,0 @@
|
||||
-a
|
||||
-b
|
||||
-c
|
||||
35
grammar/internal/diff/testdata/basic.txt
vendored
35
grammar/internal/diff/testdata/basic.txt
vendored
@@ -1,35 +0,0 @@
|
||||
Example from Hunt and McIlroy, “An Algorithm for Differential File Comparison.”
|
||||
https://www.cs.dartmouth.edu/~doug/diff.pdf
|
||||
|
||||
-- old --
|
||||
a
|
||||
b
|
||||
c
|
||||
d
|
||||
e
|
||||
f
|
||||
g
|
||||
-- new --
|
||||
w
|
||||
a
|
||||
b
|
||||
x
|
||||
y
|
||||
z
|
||||
e
|
||||
-- diff --
|
||||
diff old new
|
||||
--- old
|
||||
+++ new
|
||||
@@ -1,7 +1,7 @@
|
||||
+w
|
||||
a
|
||||
b
|
||||
-c
|
||||
-d
|
||||
+x
|
||||
+y
|
||||
+z
|
||||
e
|
||||
-f
|
||||
-g
|
||||
40
grammar/internal/diff/testdata/dups.txt
vendored
40
grammar/internal/diff/testdata/dups.txt
vendored
@@ -1,40 +0,0 @@
|
||||
-- old --
|
||||
a
|
||||
|
||||
b
|
||||
|
||||
c
|
||||
|
||||
d
|
||||
|
||||
e
|
||||
|
||||
f
|
||||
-- new --
|
||||
a
|
||||
|
||||
B
|
||||
|
||||
C
|
||||
|
||||
d
|
||||
|
||||
e
|
||||
|
||||
f
|
||||
-- diff --
|
||||
diff old new
|
||||
--- old
|
||||
+++ new
|
||||
@@ -1,8 +1,8 @@
|
||||
a
|
||||
$
|
||||
-b
|
||||
-
|
||||
-c
|
||||
+B
|
||||
+
|
||||
+C
|
||||
$
|
||||
d
|
||||
$
|
||||
38
grammar/internal/diff/testdata/end.txt
vendored
38
grammar/internal/diff/testdata/end.txt
vendored
@@ -1,38 +0,0 @@
|
||||
-- old --
|
||||
1
|
||||
2
|
||||
3
|
||||
4
|
||||
5
|
||||
6
|
||||
7
|
||||
eight
|
||||
nine
|
||||
ten
|
||||
eleven
|
||||
-- new --
|
||||
1
|
||||
2
|
||||
3
|
||||
4
|
||||
5
|
||||
6
|
||||
7
|
||||
8
|
||||
9
|
||||
10
|
||||
-- diff --
|
||||
diff old new
|
||||
--- old
|
||||
+++ new
|
||||
@@ -5,7 +5,6 @@
|
||||
5
|
||||
6
|
||||
7
|
||||
-eight
|
||||
-nine
|
||||
-ten
|
||||
-eleven
|
||||
+8
|
||||
+9
|
||||
+10
|
||||
9
grammar/internal/diff/testdata/eof.txt
vendored
9
grammar/internal/diff/testdata/eof.txt
vendored
@@ -1,9 +0,0 @@
|
||||
-- old --
|
||||
a
|
||||
b
|
||||
c^D
|
||||
-- new --
|
||||
a
|
||||
b
|
||||
c^D
|
||||
-- diff --
|
||||
18
grammar/internal/diff/testdata/eof1.txt
vendored
18
grammar/internal/diff/testdata/eof1.txt
vendored
@@ -1,18 +0,0 @@
|
||||
-- old --
|
||||
a
|
||||
b
|
||||
c
|
||||
-- new --
|
||||
a
|
||||
b
|
||||
c^D
|
||||
-- diff --
|
||||
diff old new
|
||||
--- old
|
||||
+++ new
|
||||
@@ -1,3 +1,3 @@
|
||||
a
|
||||
b
|
||||
-c
|
||||
+c
|
||||
\ No newline at end of file
|
||||
18
grammar/internal/diff/testdata/eof2.txt
vendored
18
grammar/internal/diff/testdata/eof2.txt
vendored
@@ -1,18 +0,0 @@
|
||||
-- old --
|
||||
a
|
||||
b
|
||||
c^D
|
||||
-- new --
|
||||
a
|
||||
b
|
||||
c
|
||||
-- diff --
|
||||
diff old new
|
||||
--- old
|
||||
+++ new
|
||||
@@ -1,3 +1,3 @@
|
||||
a
|
||||
b
|
||||
-c
|
||||
\ No newline at end of file
|
||||
+c
|
||||
62
grammar/internal/diff/testdata/long.txt
vendored
62
grammar/internal/diff/testdata/long.txt
vendored
@@ -1,62 +0,0 @@
|
||||
-- old --
|
||||
1
|
||||
2
|
||||
3
|
||||
4
|
||||
5
|
||||
6
|
||||
7
|
||||
8
|
||||
9
|
||||
10
|
||||
11
|
||||
12
|
||||
13
|
||||
14
|
||||
14½
|
||||
15
|
||||
16
|
||||
17
|
||||
18
|
||||
19
|
||||
20
|
||||
-- new --
|
||||
1
|
||||
2
|
||||
3
|
||||
4
|
||||
5
|
||||
6
|
||||
8
|
||||
9
|
||||
10
|
||||
11
|
||||
12
|
||||
13
|
||||
14
|
||||
17
|
||||
18
|
||||
19
|
||||
20
|
||||
-- diff --
|
||||
diff old new
|
||||
--- old
|
||||
+++ new
|
||||
@@ -4,7 +4,6 @@
|
||||
4
|
||||
5
|
||||
6
|
||||
-7
|
||||
8
|
||||
9
|
||||
10
|
||||
@@ -12,9 +11,6 @@
|
||||
12
|
||||
13
|
||||
14
|
||||
-14½
|
||||
-15
|
||||
-16
|
||||
17
|
||||
18
|
||||
19
|
||||
5
grammar/internal/diff/testdata/same.txt
vendored
5
grammar/internal/diff/testdata/same.txt
vendored
@@ -1,5 +0,0 @@
|
||||
-- old --
|
||||
hello world
|
||||
-- new --
|
||||
hello world
|
||||
-- diff --
|
||||
34
grammar/internal/diff/testdata/start.txt
vendored
34
grammar/internal/diff/testdata/start.txt
vendored
@@ -1,34 +0,0 @@
|
||||
-- old --
|
||||
e
|
||||
pi
|
||||
4
|
||||
5
|
||||
6
|
||||
7
|
||||
8
|
||||
9
|
||||
10
|
||||
-- new --
|
||||
1
|
||||
2
|
||||
3
|
||||
4
|
||||
5
|
||||
6
|
||||
7
|
||||
8
|
||||
9
|
||||
10
|
||||
-- diff --
|
||||
diff old new
|
||||
--- old
|
||||
+++ new
|
||||
@@ -1,5 +1,6 @@
|
||||
-e
|
||||
-pi
|
||||
+1
|
||||
+2
|
||||
+3
|
||||
4
|
||||
5
|
||||
6
|
||||
40
grammar/internal/diff/testdata/triv.txt
vendored
40
grammar/internal/diff/testdata/triv.txt
vendored
@@ -1,40 +0,0 @@
|
||||
Another example from Hunt and McIlroy,
|
||||
“An Algorithm for Differential File Comparison.”
|
||||
https://www.cs.dartmouth.edu/~doug/diff.pdf
|
||||
|
||||
Anchored diff gives up on finding anything,
|
||||
since there are no unique lines.
|
||||
|
||||
-- old --
|
||||
a
|
||||
b
|
||||
c
|
||||
a
|
||||
b
|
||||
b
|
||||
a
|
||||
-- new --
|
||||
c
|
||||
a
|
||||
b
|
||||
a
|
||||
b
|
||||
c
|
||||
-- diff --
|
||||
diff old new
|
||||
--- old
|
||||
+++ new
|
||||
@@ -1,7 +1,6 @@
|
||||
-a
|
||||
-b
|
||||
-c
|
||||
-a
|
||||
-b
|
||||
-b
|
||||
-a
|
||||
+c
|
||||
+a
|
||||
+b
|
||||
+a
|
||||
+b
|
||||
+c
|
||||
@@ -1,171 +0,0 @@
|
||||
package jsonschema
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
)
|
||||
|
||||
// Schema holds a JSON schema.
|
||||
type Schema struct {
|
||||
// Name is the name of the property. For the parent/root property, this
|
||||
// is "root". For child properties, this is the name of the property.
|
||||
Name string `json:"-"`
|
||||
|
||||
// Type is the type of the property.
|
||||
//
|
||||
// TODO: Union types (e.g. make this a []string).
|
||||
Type string
|
||||
|
||||
// PrefixItems is a list of schemas for each item in a tuple. By
|
||||
// default, the tuple is "closed." unless Items is set to true or a
|
||||
// valid Schema.
|
||||
PrefixItems []*Schema
|
||||
|
||||
// Items is the schema for each item in a list.
|
||||
//
|
||||
// If it is missing, or its JSON value is "null" or "false", it is nil.
|
||||
// If the JSON value is "true", it is set to the empty Schema. If the
|
||||
// JSON value is an object, it will be decoded as a Schema.
|
||||
Items *Schema
|
||||
|
||||
// MinItems specifies the minimum number of items allowed in a list.
|
||||
MinItems int
|
||||
|
||||
// MaxItems specifies the maximum number of items allowed in a list.
|
||||
MaxItems int
|
||||
|
||||
// Properties is the schema for each property of an object.
|
||||
Properties []*Schema
|
||||
|
||||
// Format is the format of the property. This is used to validate the
|
||||
// property against a specific format.
|
||||
//
|
||||
// It is the callers responsibility to validate the property against
|
||||
// the format.
|
||||
Format string
|
||||
|
||||
// Minimum specifies the minimum value for numeric properties.
|
||||
Minimum float64
|
||||
|
||||
// Maximum specifies the maximum value for numeric properties.
|
||||
Maximum float64
|
||||
|
||||
// Enum is a list of valid values for the property.
|
||||
Enum []json.RawMessage
|
||||
}
|
||||
|
||||
func (s *Schema) UnmarshalJSON(data []byte) error {
|
||||
type S Schema
|
||||
w := struct {
|
||||
Properties props
|
||||
Items items
|
||||
*S
|
||||
}{
|
||||
S: (*S)(s),
|
||||
}
|
||||
if err := json.Unmarshal(data, &w); err != nil {
|
||||
return err
|
||||
}
|
||||
if w.Items.set {
|
||||
s.Items = &w.Items.Schema
|
||||
}
|
||||
s.Properties = w.Properties
|
||||
return nil
|
||||
}
|
||||
|
||||
type items struct {
|
||||
Schema
|
||||
set bool
|
||||
}
|
||||
|
||||
func (s *items) UnmarshalJSON(data []byte) error {
|
||||
switch b := data[0]; b {
|
||||
case 't':
|
||||
*s = items{set: true}
|
||||
case '{':
|
||||
type I items
|
||||
if err := json.Unmarshal(data, (*I)(s)); err != nil {
|
||||
return err
|
||||
}
|
||||
s.set = true
|
||||
case 'n', 'f':
|
||||
default:
|
||||
return errors.New("invalid Items")
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// EffectiveType returns the effective type of the schema. If the Type field is
|
||||
// not empty, it is returned; otherwise:
|
||||
//
|
||||
// - If the schema has both Properties and Items, it returns an empty string.
|
||||
// - If the schema has Properties, it returns "object".
|
||||
// - If the schema has Items, it returns "array".
|
||||
// - If the schema has neither Properties nor Items, it returns "value".
|
||||
//
|
||||
// The returned string is never empty.
|
||||
func (d *Schema) EffectiveType() string {
|
||||
if d.Type == "" {
|
||||
if len(d.Properties) > 0 {
|
||||
return "object"
|
||||
}
|
||||
if len(d.PrefixItems) > 0 || d.Items != nil {
|
||||
return "array"
|
||||
}
|
||||
return "value"
|
||||
}
|
||||
return d.Type
|
||||
}
|
||||
|
||||
// props is an ordered list of properties. The order of the properties
|
||||
// is the order in which they were defined in the schema.
|
||||
type props []*Schema
|
||||
|
||||
var _ json.Unmarshaler = (*props)(nil)
|
||||
|
||||
func (v *props) UnmarshalJSON(data []byte) error {
|
||||
if len(data) == 0 {
|
||||
return nil
|
||||
}
|
||||
if data[0] != '{' {
|
||||
return errors.New("expected object")
|
||||
}
|
||||
|
||||
d := json.NewDecoder(bytes.NewReader(data))
|
||||
|
||||
// TODO(bmizerany): Consider DisallowUnknownFields. Currently, we, like
|
||||
// llama.cpp, ignore unknown fields, which could be lead to unexpected
|
||||
// behavior for clients of this package, since they may not be aware
|
||||
// that "additionalFields", "itemsPrefix", etc, are being ignored.
|
||||
//
|
||||
// For now, just do what llama.cpp does.
|
||||
|
||||
t, err := d.Token()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if t != json.Delim('{') {
|
||||
return errors.New("expected object")
|
||||
}
|
||||
for d.More() {
|
||||
// Use the first token (map key) as the property name, then
|
||||
// decode the rest of the object fields into a Schema and
|
||||
// append.
|
||||
t, err := d.Token()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if t == json.Delim('}') {
|
||||
return nil
|
||||
}
|
||||
s := &Schema{
|
||||
Name: t.(string),
|
||||
}
|
||||
if err := d.Decode(s); err != nil {
|
||||
return err
|
||||
}
|
||||
*v = append(*v, s)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
@@ -1,104 +0,0 @@
|
||||
package jsonschema
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"reflect"
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
)
|
||||
|
||||
const testSchemaBasic = `
|
||||
{
|
||||
"properties": {
|
||||
"tupleClosedEmpty": { "prefixItems": [] },
|
||||
"tupleClosedMissing": { "prefixItems": [{}] },
|
||||
"tupleClosedNull": { "prefixItems": [{}], "items": null },
|
||||
"tupleClosedFalse": { "prefixItems": [{}], "items": false },
|
||||
"tupleOpenTrue": { "prefixItems": [{}], "items": true },
|
||||
"tupleOpenEmpty": { "prefixItems": [{}], "items": {} },
|
||||
"tupleOpenTyped": { "prefixItems": [{}], "items": {"type": "boolean"} },
|
||||
"tupleOpenMax": { "prefixItems": [{}], "items": true, "maxItems": 3},
|
||||
|
||||
"array": { "items": {"type": "number"} },
|
||||
|
||||
"null": { "type": "null" },
|
||||
"string": { "type": "string" },
|
||||
"boolean": { "type": "boolean" }
|
||||
}
|
||||
}
|
||||
`
|
||||
|
||||
func TestSchemaUnmarshal(t *testing.T) {
|
||||
var got *Schema
|
||||
if err := json.Unmarshal([]byte(testSchemaBasic), &got); err != nil {
|
||||
t.Fatalf("Unmarshal: %v", err)
|
||||
}
|
||||
want := &Schema{
|
||||
Properties: []*Schema{
|
||||
{Name: "tupleClosedEmpty", PrefixItems: []*Schema{}, Items: nil},
|
||||
{Name: "tupleClosedMissing", PrefixItems: []*Schema{{}}, Items: nil},
|
||||
{Name: "tupleClosedNull", PrefixItems: []*Schema{{}}, Items: nil},
|
||||
{Name: "tupleClosedFalse", PrefixItems: []*Schema{{}}, Items: nil},
|
||||
|
||||
{Name: "tupleOpenTrue", PrefixItems: []*Schema{{}}, Items: &Schema{}},
|
||||
{Name: "tupleOpenEmpty", PrefixItems: []*Schema{{}}, Items: &Schema{}},
|
||||
{Name: "tupleOpenTyped", PrefixItems: []*Schema{{}}, Items: &Schema{Type: "boolean"}},
|
||||
{Name: "tupleOpenMax", PrefixItems: []*Schema{{}}, Items: &Schema{}, MaxItems: 3},
|
||||
|
||||
{Name: "array", Items: &Schema{Type: "number"}},
|
||||
|
||||
{Name: "null", Type: "null"},
|
||||
{Name: "string", Type: "string"},
|
||||
{Name: "boolean", Type: "boolean"},
|
||||
},
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(want, got); diff != "" {
|
||||
t.Errorf("(-want, +got)\n%s", diff)
|
||||
}
|
||||
}
|
||||
|
||||
func TestEffectiveType(t *testing.T) {
|
||||
const schema = `
|
||||
{"properties": {
|
||||
"o": {"type": "object"},
|
||||
"a": {"type": "array"},
|
||||
"n": {"type": "number"},
|
||||
"s": {"type": "string"},
|
||||
"z": {"type": "null"},
|
||||
"b": {"type": "boolean"},
|
||||
|
||||
"t0": {"prefixItems": [{}], "items": {"type": "number"}},
|
||||
"t1": {"items": {"type": "number"}, "maxItems": 3},
|
||||
|
||||
"v": {"maxItems": 3}
|
||||
}}
|
||||
`
|
||||
|
||||
var s *Schema
|
||||
if err := json.Unmarshal([]byte(schema), &s); err != nil {
|
||||
t.Fatalf("json.Unmarshal: %v", err)
|
||||
}
|
||||
|
||||
var got []string
|
||||
for _, p := range s.Properties {
|
||||
got = append(got, p.EffectiveType())
|
||||
}
|
||||
|
||||
want := strings.Fields(`
|
||||
object
|
||||
array
|
||||
number
|
||||
string
|
||||
null
|
||||
boolean
|
||||
array
|
||||
array
|
||||
value
|
||||
`)
|
||||
if !reflect.DeepEqual(want, got) {
|
||||
t.Errorf("\ngot:\n\t%v\nwant:\n\t%v", got, want)
|
||||
}
|
||||
}
|
||||
76
grammar/testdata/schemas.txt
vendored
76
grammar/testdata/schemas.txt
vendored
@@ -1,76 +0,0 @@
|
||||
# This file holds tests for JSON schema to EBNF grammar conversions.
|
||||
#
|
||||
# The format is a JSON schema, followed by the expected EBNF grammar. Each test
|
||||
# MAY be preceded by a comment that describes the test (e.g. the test name), followed by
|
||||
# the JSON schema and the expected EBNF grammar. If no comment is present, the test
|
||||
# name the tests number in the file (e.g. "#0", "#1", etc.)
|
||||
#
|
||||
# Blank lines signify the end or start of a new test. Comments can be added
|
||||
# anywhere in the file, but they must be preceded by a '#' character and start at
|
||||
# the beginning of the line.
|
||||
|
||||
# default
|
||||
{}
|
||||
root ::= value;
|
||||
|
||||
{"properties": {}}
|
||||
root ::= value;
|
||||
|
||||
# array
|
||||
{"properties": {"a": {"type": "array", "items": {"type": "string"}}}}
|
||||
root_0_tuple_0 ::= string;
|
||||
root_0 ::= "[" ( root_0_tuple_0 )* "]";
|
||||
root ::= "{" "a" ":" root_0 "}";
|
||||
|
||||
# array with nested array
|
||||
{"type": "array", "items": {"type": "array", "items": {"type": "string"}}}
|
||||
root_tuple_0_tuple_0 ::= string;
|
||||
root_tuple_0 ::= "[" ( root_tuple_0_tuple_0 )* "]";
|
||||
root ::= "[" ( root_tuple_0 )* "]";
|
||||
|
||||
# object
|
||||
{"properties": {"e": {}}}
|
||||
root_0 ::= value;
|
||||
root ::= "{" "e" ":" root_0 "}";
|
||||
|
||||
# object with nested object
|
||||
{"properties": {"o": {"type": "object", "properties": {"e": {}}}}}
|
||||
root_0_0 ::= value;
|
||||
root_0 ::= "{" "e" ":" root_0_0 "}";
|
||||
root ::= "{" "o" ":" root_0 "}";
|
||||
|
||||
# boolean
|
||||
{"type": "boolean"}
|
||||
root ::= boolean;
|
||||
|
||||
# number
|
||||
{"properties": {"n": {"type": "number", "minimum": 123, "maximum": 4567}}}
|
||||
root_0 ::= number;
|
||||
root ::= "{" "n" ":" root_0 "}";
|
||||
|
||||
# string
|
||||
{"type": "string"}
|
||||
root ::= string;
|
||||
|
||||
# string with enum
|
||||
{"type": "string", "enum": ["a", "b", "c"]}
|
||||
root ::= ( "\"a\"" "|" "\"b\"" "|" "\"c\"" );
|
||||
|
||||
# spaces in key
|
||||
{"properties": {"a b": {}}}
|
||||
root_0 ::= value;
|
||||
root ::= "{" "a b" ":" root_0 "}";
|
||||
|
||||
# issue7978
|
||||
{ "type": "object", "properties": { "steps": { "type": "array", "items": { "type": "object", "properties": { "explanation": { "type": "string" }, "output": { "type": "string" } }, "required": [ "explanation", "output" ], "additionalProperties": false } }, "final_answer": { "type": "string" } }, "required": [ "steps", "final_answer" ], "additionalProperties": false }
|
||||
root_0_tuple_0_0 ::= string;
|
||||
root_0_tuple_0_1 ::= string;
|
||||
root_0_tuple_0 ::= "{" "explanation" ":" root_0_tuple_0_0 "," "output" ":" root_0_tuple_0_1 "}";
|
||||
root_0 ::= "[" ( root_0_tuple_0 )* "]";
|
||||
root_1 ::= string;
|
||||
root ::= "{" "steps" ":" root_0 "," "final_answer" ":" root_1 "}";
|
||||
|
||||
# !! # special characters in key
|
||||
# !! {"properties": {"a!b": {}}}
|
||||
# !! !invalid character '!' in key
|
||||
# !!
|
||||
@@ -22,7 +22,7 @@ func TestOrcaMiniBlueSky(t *testing.T) {
|
||||
Model: "orca-mini",
|
||||
Prompt: "why is the sky blue?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
},
|
||||
@@ -39,7 +39,7 @@ func TestUnicode(t *testing.T) {
|
||||
Model: "deepseek-coder-v2:16b-lite-instruct-q2_K",
|
||||
Prompt: "天空为什么是蓝色的?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
// Workaround deepseek context shifting bug
|
||||
@@ -61,7 +61,7 @@ func TestExtendedUnicodeOutput(t *testing.T) {
|
||||
Model: "gemma2:2b",
|
||||
Prompt: "Output some smily face emoji",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
},
|
||||
@@ -96,7 +96,7 @@ func TestUnicodeModelDir(t *testing.T) {
|
||||
Model: "orca-mini",
|
||||
Prompt: "why is the sky blue?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
},
|
||||
|
||||
@@ -25,7 +25,7 @@ func TestMultiModelConcurrency(t *testing.T) {
|
||||
Prompt: "why is the ocean blue?",
|
||||
Stream: &stream,
|
||||
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
@@ -34,7 +34,7 @@ func TestMultiModelConcurrency(t *testing.T) {
|
||||
Prompt: "what is the origin of the us thanksgiving holiday?",
|
||||
Stream: &stream,
|
||||
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
|
||||
@@ -23,7 +23,7 @@ func TestLongInputContext(t *testing.T) {
|
||||
Model: "llama2",
|
||||
Prompt: "Oh, don’t speak to me of Austria. Perhaps I don’t understand things, but Austria never has wished, and does not wish, for war. She is betraying us! Russia alone must save Europe. Our gracious sovereign recognizes his high vocation and will be true to it. That is the one thing I have faith in! Our good and wonderful sovereign has to perform the noblest role on earth, and he is so virtuous and noble that God will not forsake him. He will fulfill his vocation and crush the hydra of revolution, which has become more terrible than ever in the person of this murderer and villain! We alone must avenge the blood of the just one.... Whom, I ask you, can we rely on?... England with her commercial spirit will not and cannot understand the Emperor Alexander’s loftiness of soul. She has refused to evacuate Malta. She wanted to find, and still seeks, some secret motive in our actions. What answer did Novosíltsev get? None. The English have not understood and cannot understand the self-abnegation of our Emperor who wants nothing for himself, but only desires the good of mankind. And what have they promised? Nothing! And what little they have promised they will not perform! Prussia has always declared that Buonaparte is invincible, and that all Europe is powerless before him.... And I don’t believe a word that Hardenburg says, or Haugwitz either. This famous Prussian neutrality is just a trap. I have faith only in God and the lofty destiny of our adored monarch. He will save Europe! What country is this referring to?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
"num_ctx": 128,
|
||||
@@ -50,7 +50,7 @@ func TestContextExhaustion(t *testing.T) {
|
||||
Model: "llama2",
|
||||
Prompt: "Write me a story with a ton of emojis?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
"num_ctx": 128,
|
||||
|
||||
@@ -19,7 +19,7 @@ func TestIntegrationLlava(t *testing.T) {
|
||||
Model: "llava:7b",
|
||||
Prompt: "what does the text in this image say?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
@@ -47,7 +47,7 @@ func TestIntegrationMllama(t *testing.T) {
|
||||
Model: "x/llama3.2-vision",
|
||||
Prompt: "what does the text in this image say?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
@@ -75,7 +75,7 @@ func TestIntegrationSplitBatch(t *testing.T) {
|
||||
System: "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed aliquet, justo in malesuada lobortis, odio ligula volutpat quam, quis faucibus ipsum magna quis sapien. Aliquam in venenatis diam, eu viverra magna. Phasellus imperdiet hendrerit volutpat. Vivamus sem ex, facilisis placerat felis non, dictum elementum est. Phasellus aliquam imperdiet lacus, eget placerat ligula sodales vel. Pellentesque nec auctor mi. Curabitur arcu nisi, faucibus eget nunc id, viverra interdum mi. Curabitur ornare ipsum ex, ac euismod ex aliquam in. Vestibulum id magna at purus accumsan fermentum. Proin scelerisque posuere nunc quis interdum. Maecenas sed mollis nisl. Etiam vitae ipsum interdum, placerat est quis, tincidunt velit. Nullam tempor nibh non lorem volutpat efficitur. Cras laoreet diam imperdiet ipsum auctor bibendum. Suspendisse ultrices urna sed metus sagittis suscipit. Quisque ullamcorper aliquam nibh ut mollis. Aenean dapibus mauris pharetra, venenatis elit ac, hendrerit odio. Cras vestibulum erat tempor, lobortis justo eu, lobortis ipsum. Nam laoreet dapibus sem. Proin vel diam ultrices, elementum ante et, ornare lectus. Proin eu accumsan nisl. Praesent ac ex vitae ipsum vulputate tristique facilisis sit amet lacus. Nullam faucibus magna a pellentesque pretium. Nunc lacinia ullamcorper sollicitudin. Donec vitae accumsan turpis, sed porttitor est. Donec porttitor mi vitae augue faucibus, vel mollis diam tincidunt.",
|
||||
Prompt: "what does the text in this image say?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
|
||||
@@ -20,7 +20,7 @@ var (
|
||||
Model: "orca-mini",
|
||||
Prompt: "why is the ocean blue?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
@@ -28,7 +28,7 @@ var (
|
||||
Model: "orca-mini",
|
||||
Prompt: "what is the origin of the us thanksgiving holiday?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
|
||||
@@ -32,7 +32,7 @@ func TestMaxQueue(t *testing.T) {
|
||||
req := api.GenerateRequest{
|
||||
Model: "orca-mini",
|
||||
Prompt: "write a long historical fiction story about christopher columbus. use at least 10 facts from his actual journey",
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
@@ -52,8 +52,8 @@ func TestMaxQueue(t *testing.T) {
|
||||
embedCtx := ctx
|
||||
|
||||
var genwg sync.WaitGroup
|
||||
genwg.Add(1)
|
||||
go func() {
|
||||
genwg.Add(1)
|
||||
defer genwg.Done()
|
||||
slog.Info("Starting generate request")
|
||||
DoGenerate(ctx, t, client, req, resp, 45*time.Second, 5*time.Second)
|
||||
@@ -71,8 +71,8 @@ func TestMaxQueue(t *testing.T) {
|
||||
counterMu := sync.Mutex{}
|
||||
var embedwg sync.WaitGroup
|
||||
for i := 0; i < threadCount; i++ {
|
||||
embedwg.Add(1)
|
||||
go func(i int) {
|
||||
embedwg.Add(1)
|
||||
defer embedwg.Done()
|
||||
slog.Info("embed started", "id", i)
|
||||
embedReq := api.EmbeddingRequest{
|
||||
|
||||
@@ -291,7 +291,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
|
||||
Prompt: "why is the ocean blue?",
|
||||
Stream: &stream,
|
||||
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
@@ -300,7 +300,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
|
||||
Prompt: "why is the color of dirt brown?",
|
||||
Stream: &stream,
|
||||
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
@@ -309,7 +309,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
|
||||
Prompt: "what is the origin of the us thanksgiving holiday?",
|
||||
Stream: &stream,
|
||||
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
@@ -318,7 +318,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
|
||||
Prompt: "what is the origin of independence day?",
|
||||
Stream: &stream,
|
||||
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
@@ -327,7 +327,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
|
||||
Prompt: "what is the composition of air?",
|
||||
Stream: &stream,
|
||||
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
|
||||
@@ -56,12 +56,18 @@ type Cache interface {
|
||||
|
||||
// StartForward is called before the start of the model's forward pass.
|
||||
// For each token in the coming batch, there must be a corresponding
|
||||
// entry in positions and seqs.
|
||||
StartForward(ctx ml.Context, batch input.Batch) error
|
||||
// entry in positions and seqs. reserve is to preallocate memory
|
||||
// without actually storing data in the cache.
|
||||
StartForward(ctx ml.Context, batch input.Batch, reserve bool) error
|
||||
|
||||
// CopyPrefix copies tokens in the range [0, len) from srcSeq to dstSeq
|
||||
CopyPrefix(srcSeq, dstSeq int, len int32)
|
||||
|
||||
// CanResume returns true if the cache can continue with the next token at
|
||||
// the given position and sequence. Assumes that the caller has already
|
||||
// verified the contents of the cache.
|
||||
CanResume(seq int, pos int32) bool
|
||||
|
||||
// Remove deletes tokens in the range [beginIndex, endIndex) from seq. Set
|
||||
// endIndex to math.MaxInt32 to remove everything starting at beginIndex.
|
||||
//
|
||||
|
||||
@@ -119,10 +119,10 @@ func (c *Causal) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity
|
||||
}
|
||||
|
||||
var cacheSize int
|
||||
if c.windowSize == math.MaxInt32 || capacity < int(c.windowSize)+maxBatch {
|
||||
if c.windowSize == math.MaxInt32 || capacity < int(c.windowSize) {
|
||||
cacheSize = maxSequences * capacity
|
||||
} else {
|
||||
cacheSize = maxSequences * (int(c.windowSize) + maxBatch)
|
||||
cacheSize = (maxSequences * int(c.windowSize)) + maxBatch
|
||||
}
|
||||
cacheSize = roundUp(cacheSize, c.config.CachePadding)
|
||||
c.cells = make([]cacheCell, cacheSize)
|
||||
@@ -146,51 +146,60 @@ func (c *Causal) Close() {
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Causal) StartForward(ctx ml.Context, batch input.Batch) error {
|
||||
func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
|
||||
c.curBatchSize = len(batch.Positions)
|
||||
c.curSequences = batch.Sequences
|
||||
c.curPositions = batch.Positions
|
||||
c.opts.Except = nil
|
||||
|
||||
c.updateSlidingWindow()
|
||||
if !reserve {
|
||||
c.updateSlidingWindow()
|
||||
|
||||
var err error
|
||||
c.curLoc, err = c.findStartLoc()
|
||||
if errors.Is(err, ErrKvCacheFull) {
|
||||
c.defrag()
|
||||
c.curLoc, err = c.findStartLoc()
|
||||
}
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
c.curCellRange = newRange()
|
||||
for i, pos := range batch.Positions {
|
||||
seq := batch.Sequences[i]
|
||||
|
||||
c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}
|
||||
|
||||
seqRange, ok := c.cellRanges[seq]
|
||||
if !ok {
|
||||
seqRange = newRange()
|
||||
}
|
||||
|
||||
if c.curLoc+i > seqRange.max {
|
||||
seqRange.max = c.curLoc + i
|
||||
}
|
||||
if seqRange.max > c.curCellRange.max {
|
||||
c.curCellRange.max = seqRange.max
|
||||
}
|
||||
|
||||
if c.curLoc+i < seqRange.min {
|
||||
seqRange.min = c.curLoc + i
|
||||
}
|
||||
if seqRange.min < c.curCellRange.min {
|
||||
c.curCellRange.min = seqRange.min
|
||||
}
|
||||
c.cellRanges[seq] = seqRange
|
||||
}
|
||||
} else {
|
||||
// If we are reserving memory, don't update any of the cache metadata but set the size
|
||||
// to the worst case.
|
||||
c.curLoc = 0
|
||||
c.curCellRange.min = 0
|
||||
c.curCellRange.max = len(c.cells) - 1
|
||||
}
|
||||
|
||||
var err error
|
||||
c.curLoc, err = c.findStartLoc()
|
||||
if errors.Is(err, ErrKvCacheFull) {
|
||||
c.defrag()
|
||||
c.curLoc, err = c.findStartLoc()
|
||||
}
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
c.curCellRange = newRange()
|
||||
for i, pos := range batch.Positions {
|
||||
seq := batch.Sequences[i]
|
||||
|
||||
c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}
|
||||
|
||||
seqRange, ok := c.cellRanges[seq]
|
||||
if !ok {
|
||||
seqRange = newRange()
|
||||
}
|
||||
|
||||
if c.curLoc+i > seqRange.max {
|
||||
seqRange.max = c.curLoc + i
|
||||
}
|
||||
if seqRange.max > c.curCellRange.max {
|
||||
c.curCellRange.max = seqRange.max
|
||||
}
|
||||
|
||||
if c.curLoc+i < seqRange.min {
|
||||
seqRange.min = c.curLoc + i
|
||||
}
|
||||
if seqRange.min < c.curCellRange.min {
|
||||
c.curCellRange.min = seqRange.min
|
||||
}
|
||||
c.cellRanges[seq] = seqRange
|
||||
}
|
||||
|
||||
c.curMask, err = c.buildMask(ctx)
|
||||
|
||||
return err
|
||||
@@ -581,6 +590,35 @@ func (c *Causal) CopyPrefix(srcSeq, dstSeq int, len int32) {
|
||||
c.cellRanges[dstSeq] = seqRange
|
||||
}
|
||||
|
||||
func (c *Causal) CanResume(seq int, pos int32) bool {
|
||||
if c.windowSize == math.MaxInt32 {
|
||||
return true
|
||||
}
|
||||
|
||||
seqRange, ok := c.cellRanges[seq]
|
||||
if !ok {
|
||||
return false
|
||||
}
|
||||
|
||||
// for sliding window, check that the window of the new sequence is contained in
|
||||
// the window of what we are storing
|
||||
var last int32 = -1
|
||||
for i := seqRange.min; i <= seqRange.max; i++ {
|
||||
if slices.Contains(c.cells[i].sequences, seq) {
|
||||
last = max(last, c.cells[i].pos)
|
||||
}
|
||||
}
|
||||
|
||||
if last == -1 {
|
||||
return false
|
||||
}
|
||||
|
||||
lastWindowStart := max(0, last-c.windowSize)
|
||||
posWindowStart := max(0, pos-c.windowSize)
|
||||
|
||||
return posWindowStart >= lastWindowStart
|
||||
}
|
||||
|
||||
func (c *Causal) shift(seq int, beginIndex, offset int32) error {
|
||||
if c.shiftFn == nil {
|
||||
return ErrNotSupported
|
||||
@@ -635,6 +673,12 @@ func (c *Causal) shift(seq int, beginIndex, offset int32) error {
|
||||
}
|
||||
|
||||
func (c *Causal) Remove(seq int, beginIndex, endIndex int32) error {
|
||||
// TODO(jessegross): We should check to see if removing the middle of the sequence will
|
||||
// cause the sliding window to encompass tokens that we no longer have. If so, then we
|
||||
// should return an error, which will trigger the runner to evaluate the full history and
|
||||
// rebuild the window. However, if we have multimodal inputs in our history, this reuse
|
||||
// results in use after free, so we don't do it for now.
|
||||
|
||||
var offset int32
|
||||
if endIndex != math.MaxInt32 {
|
||||
offset = beginIndex - endIndex
|
||||
@@ -649,8 +693,7 @@ func (c *Causal) Remove(seq int, beginIndex, endIndex int32) error {
|
||||
} else {
|
||||
if c.cells[i].pos >= endIndex {
|
||||
if slices.ContainsFunc(c.cells[i].sequences, func(s int) bool { return s != seq }) {
|
||||
// TODO(jessegross): Need to be careful about data shared between sequences
|
||||
return errors.New("shifting on cells shared by multiple sequences not yet implemented")
|
||||
return errors.New("shifting cells shared by multiple sequences not supported")
|
||||
}
|
||||
|
||||
c.cells[i].pos += offset
|
||||
|
||||
@@ -280,7 +280,7 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
|
||||
context := backend.NewContext()
|
||||
defer context.Close()
|
||||
|
||||
err := cache.StartForward(context, input.Batch{Positions: test.pos, Sequences: test.seqs})
|
||||
err := cache.StartForward(context, input.Batch{Positions: test.pos, Sequences: test.seqs}, false)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
@@ -300,14 +300,79 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
|
||||
}
|
||||
}
|
||||
|
||||
type testBackend struct{}
|
||||
func TestCanResume(t *testing.T) {
|
||||
backend := &testBackend{}
|
||||
windowSize := int32(4)
|
||||
cache := NewSWACache(windowSize, nil)
|
||||
defer cache.Close()
|
||||
|
||||
func (b *testBackend) Config() ml.Config {
|
||||
panic("not implemented")
|
||||
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
||||
|
||||
context := backend.NewContext()
|
||||
defer context.Close()
|
||||
|
||||
err := cache.StartForward(context, input.Batch{
|
||||
Positions: []int32{0, 1, 2, 3},
|
||||
Sequences: []int{0, 0, 0, 0},
|
||||
}, false)
|
||||
if err != nil {
|
||||
t.Fatalf("StartForward failed: %v", err)
|
||||
}
|
||||
|
||||
cache.SetLayer(0)
|
||||
tensor, _ := context.FromFloatSlice([]float32{1, 2, 3, 4}, 1, 1, 4)
|
||||
cache.Put(context, tensor, tensor)
|
||||
|
||||
// with window size 4, nothing has slid out of the window yet
|
||||
if !cache.CanResume(0, 0) {
|
||||
t.Errorf("CanResume(0, 0) = false, want true (within window)")
|
||||
}
|
||||
if !cache.CanResume(0, 1) {
|
||||
t.Errorf("CanResume(0, 1) = false, want true (within window)")
|
||||
}
|
||||
if !cache.CanResume(0, 2) {
|
||||
t.Errorf("CanResume(0, 2) = false, want true (within window)")
|
||||
}
|
||||
if !cache.CanResume(0, 3) {
|
||||
t.Errorf("CanResume(0, 3) = false, want true (latest position)")
|
||||
}
|
||||
|
||||
// shift window by adding position 4
|
||||
err = cache.StartForward(context, input.Batch{
|
||||
Positions: []int32{4, 5},
|
||||
Sequences: []int{0, 0},
|
||||
}, false)
|
||||
if err != nil {
|
||||
t.Fatalf("StartForward failed: %v", err)
|
||||
}
|
||||
|
||||
cache.SetLayer(0)
|
||||
tensor, _ = context.FromFloatSlice([]float32{5, 6}, 1, 1, 2)
|
||||
cache.Put(context, tensor, tensor)
|
||||
|
||||
// only the latest position has overlapping windows
|
||||
if cache.CanResume(0, 0) {
|
||||
t.Errorf("after shift: CanResume(0, 0) = true, want false (outside window)")
|
||||
}
|
||||
if cache.CanResume(0, 1) {
|
||||
t.Errorf("after shift: CanResume(0, 1) = true, want false (outside window)")
|
||||
}
|
||||
if cache.CanResume(0, 2) {
|
||||
t.Errorf("after shift: CanResume(0, 2) = true, want false (outside window)")
|
||||
}
|
||||
if cache.CanResume(0, 3) {
|
||||
t.Errorf("after shift: CanResume(0, 3) = true, want false (outside window)")
|
||||
}
|
||||
if cache.CanResume(0, 4) {
|
||||
t.Errorf("after shift: CanResume(0, 4) = true, want false (outside window)")
|
||||
}
|
||||
if !cache.CanResume(0, 5) {
|
||||
t.Errorf("after shift: CanResume(0, 5) = false, want true (latest position)")
|
||||
}
|
||||
}
|
||||
|
||||
func (b *testBackend) Get(name string) ml.Tensor {
|
||||
panic("not implemented")
|
||||
type testBackend struct {
|
||||
ml.Backend
|
||||
}
|
||||
|
||||
func (b *testBackend) NewContext() ml.Context {
|
||||
@@ -318,12 +383,10 @@ func (b *testBackend) NewContextSize(int) ml.Context {
|
||||
return &testContext{}
|
||||
}
|
||||
|
||||
func (b *testBackend) SystemInfo() string {
|
||||
return "not implemented"
|
||||
type testContext struct {
|
||||
ml.Context
|
||||
}
|
||||
|
||||
type testContext struct{}
|
||||
|
||||
func (c *testContext) Empty(dtype ml.DType, shape ...int) ml.Tensor {
|
||||
total := 0
|
||||
|
||||
@@ -362,13 +425,14 @@ func (c *testContext) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
|
||||
}
|
||||
|
||||
func (c *testContext) Input() ml.Context { return c }
|
||||
func (c *testContext) Output() ml.Context { return c }
|
||||
func (c *testContext) Layer(int) ml.Context { return c }
|
||||
|
||||
func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }
|
||||
|
||||
func (c *testContext) Compute(...ml.Tensor) {}
|
||||
|
||||
func (c *testContext) Reserve() error { return nil }
|
||||
|
||||
func (c *testContext) MaxGraphNodes() int {
|
||||
return 10
|
||||
}
|
||||
@@ -376,6 +440,8 @@ func (c *testContext) MaxGraphNodes() int {
|
||||
func (c *testContext) Close() {}
|
||||
|
||||
type testTensor struct {
|
||||
ml.Tensor
|
||||
|
||||
dtype ml.DType
|
||||
elementSize int
|
||||
data []float32
|
||||
@@ -403,16 +469,20 @@ func (t *testTensor) DType() ml.DType {
|
||||
return t.dtype
|
||||
}
|
||||
|
||||
func (t *testTensor) Bytes() []byte {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Floats() []float32 {
|
||||
out := make([]float32, len(t.data))
|
||||
copy(out, t.data)
|
||||
return out
|
||||
}
|
||||
|
||||
func (t *testTensor) Neg(ctx ml.Context) ml.Tensor {
|
||||
out := ctx.Empty(t.DType(), t.Shape()...).(*testTensor)
|
||||
for i := range out.data {
|
||||
out.data[i] = -t.data[i]
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
func (t *testTensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
||||
out := ctx.Empty(t.DType(), t.Shape()...).(*testTensor)
|
||||
|
||||
@@ -423,66 +493,6 @@ func (t *testTensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
||||
return out
|
||||
}
|
||||
|
||||
func (t *testTensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Softmax(ctx ml.Context) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) LayerNorm(ctx ml.Context, weight, bias ml.Tensor, eps float32) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) RMSNorm(ctx ml.Context, weight ml.Tensor, eps float32) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Scale(ctx ml.Context, s float64) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) AvgPool1D(ctx ml.Context, k, s, p int) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Conv2D(ctx ml.Context, weight ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, dim, ropeType uint32, base, scale float32) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Tanh(ctx ml.Context) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) GELU(ctx ml.Context) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) SILU(ctx ml.Context) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
|
||||
offset /= t.elementSize
|
||||
|
||||
@@ -505,38 +515,6 @@ func (t *testTensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
|
||||
return view
|
||||
}
|
||||
|
||||
func (t *testTensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Contiguous(ctx ml.Context) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Set(ctx ml.Context, t2 ml.Tensor, offset int, strides ...int) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
||||
copy(t2.(*testTensor).data, t.data)
|
||||
return nil
|
||||
|
||||
@@ -27,6 +27,11 @@ type EncoderCache struct {
|
||||
// anything will be stored)
|
||||
curPos int32
|
||||
|
||||
// curReserve indicates that this forward pass is only for
|
||||
// memory reservation and we should not update our metadata
|
||||
// based on it.
|
||||
curReserve bool
|
||||
|
||||
// ** cache metadata **
|
||||
|
||||
// was something stored in the cache?
|
||||
@@ -83,12 +88,14 @@ func (c *EncoderCache) Close() {
|
||||
}
|
||||
}
|
||||
|
||||
func (c *EncoderCache) StartForward(ctx ml.Context, batch input.Batch) error {
|
||||
func (c *EncoderCache) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
|
||||
// We work with the most recent image
|
||||
if len(batch.Multimodal) > 0 {
|
||||
c.curPos = batch.Positions[batch.Multimodal[len(batch.Multimodal)-1].Index]
|
||||
}
|
||||
|
||||
c.curReserve = reserve
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
@@ -105,8 +112,10 @@ func (c *EncoderCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
|
||||
}
|
||||
|
||||
func (c *EncoderCache) Put(ctx ml.Context, key, value ml.Tensor) {
|
||||
c.encoderPos = c.curPos
|
||||
c.encoderCached = true
|
||||
if !c.curReserve {
|
||||
c.encoderPos = c.curPos
|
||||
c.encoderCached = true
|
||||
}
|
||||
|
||||
if c.config.PermutedV {
|
||||
value = value.Permute(ctx, 1, 2, 0, 3)
|
||||
@@ -134,6 +143,10 @@ func (c *EncoderCache) CopyPrefix(srcSeq, dstSeq int, len int32) {
|
||||
panic("encoder cache does not support multiple sequences")
|
||||
}
|
||||
|
||||
func (c *EncoderCache) CanResume(seq int, pos int32) bool {
|
||||
return true
|
||||
}
|
||||
|
||||
func (c *EncoderCache) Remove(seq int, beginIndex, endIndex int32) error {
|
||||
if c.encoderPos >= beginIndex && c.encoderPos < endIndex {
|
||||
c.encoderCached = false
|
||||
|
||||
@@ -41,9 +41,9 @@ func (c *WrapperCache) Close() {
|
||||
}
|
||||
}
|
||||
|
||||
func (c *WrapperCache) StartForward(ctx ml.Context, batch input.Batch) error {
|
||||
func (c *WrapperCache) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
|
||||
for i, cache := range c.caches {
|
||||
err := cache.StartForward(ctx, batch)
|
||||
err := cache.StartForward(ctx, batch, reserve)
|
||||
if err != nil {
|
||||
// unwind on error - Remove with endIndex set to math.MaxInt32 does not fail
|
||||
for j := i - 1; j >= 0; j-- {
|
||||
@@ -87,6 +87,16 @@ func (c *WrapperCache) CopyPrefix(srcSeq, dstSeq int, len int32) {
|
||||
}
|
||||
}
|
||||
|
||||
func (c *WrapperCache) CanResume(seq int, pos int32) bool {
|
||||
for _, cache := range c.caches {
|
||||
if !cache.CanResume(seq, pos) {
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
return true
|
||||
}
|
||||
|
||||
func (c *WrapperCache) Remove(seq int, beginIndex, endIndex int32) error {
|
||||
// If the one of these fails, the caller is supposed to retry with endIndex set to math.MaxInt32, which should not fail
|
||||
for _, cache := range c.caches {
|
||||
|
||||
17
llama/llama.cpp/src/llama-arch.cpp
vendored
17
llama/llama.cpp/src/llama-arch.cpp
vendored
@@ -65,6 +65,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_CHAMELEON, "chameleon" },
|
||||
{ LLM_ARCH_SOLAR, "solar" },
|
||||
{ LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
|
||||
{ LLM_ARCH_MISTRAL3, "mistral3" },
|
||||
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
||||
};
|
||||
|
||||
@@ -1371,6 +1372,22 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_POS_NET_ATTN_OUT, "posnet.%d.attn_output" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_MISTRAL3,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
}
|
||||
},
|
||||
{
|
||||
LLM_ARCH_UNKNOWN,
|
||||
{
|
||||
|
||||
1
llama/llama.cpp/src/llama-arch.h
vendored
1
llama/llama.cpp/src/llama-arch.h
vendored
@@ -69,6 +69,7 @@ enum llm_arch {
|
||||
LLM_ARCH_CHAMELEON,
|
||||
LLM_ARCH_SOLAR,
|
||||
LLM_ARCH_WAVTOKENIZER_DEC,
|
||||
LLM_ARCH_MISTRAL3,
|
||||
LLM_ARCH_UNKNOWN,
|
||||
};
|
||||
|
||||
|
||||
3
llama/llama.cpp/src/llama-model.cpp
vendored
3
llama/llama.cpp/src/llama-model.cpp
vendored
@@ -1277,6 +1277,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
|
||||
ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
|
||||
} break;
|
||||
case LLM_ARCH_MISTRAL3: break;
|
||||
default: throw std::runtime_error("unsupported model architecture");
|
||||
}
|
||||
|
||||
@@ -3537,6 +3538,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
|
||||
output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
|
||||
} break;
|
||||
case LLM_ARCH_MISTRAL3: break;
|
||||
default:
|
||||
throw std::runtime_error("unknown architecture");
|
||||
}
|
||||
@@ -4015,6 +4017,7 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
|
||||
case LLM_ARCH_GRANITE_MOE:
|
||||
case LLM_ARCH_CHAMELEON:
|
||||
case LLM_ARCH_SOLAR:
|
||||
case LLM_ARCH_MISTRAL3:
|
||||
return LLAMA_ROPE_TYPE_NORM;
|
||||
|
||||
// the pairs of head values are offset by n_rot/2
|
||||
|
||||
9
llama/llama.cpp/src/llama-quant.cpp
vendored
9
llama/llama.cpp/src/llama-quant.cpp
vendored
@@ -738,13 +738,8 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
||||
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
|
||||
|
||||
// don't quantize vision stuff
|
||||
quantize &= name.find("v.blk.") == std::string::npos;
|
||||
|
||||
quantize &= name.find("mm.mm_input_projection.weight") == std::string::npos;
|
||||
quantize &= name.find("mm.mm_soft_emb_norm.weight") == std::string::npos;
|
||||
quantize &= name.find("v.patch_embedding.weight") == std::string::npos;
|
||||
quantize &= name.find("v.position_embedding.weight") == std::string::npos;
|
||||
quantize &= name.find("v.post_layernorm.weight") == std::string::npos;
|
||||
quantize &= name.find("v.") == std::string::npos;
|
||||
quantize &= name.find("mm.") == std::string::npos;
|
||||
|
||||
// quantize only 2D and 3D tensors (experts)
|
||||
quantize &= (ggml_n_dims(tensor) >= 2);
|
||||
|
||||
@@ -166,6 +166,10 @@ func (c *Context) KvCacheDefrag() {
|
||||
C.llama_kv_cache_defrag(c.c)
|
||||
}
|
||||
|
||||
func (c *Context) KvCacheCanShift() bool {
|
||||
return bool(C.llama_kv_cache_can_shift(c.c))
|
||||
}
|
||||
|
||||
// Get the embeddings for a sequence id
|
||||
func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
|
||||
e := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
|
||||
|
||||
@@ -1,17 +1,19 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: Patrick Devine <patrick@infrahq.com>
|
||||
Date: Fri, 14 Mar 2025 16:33:23 -0700
|
||||
Subject: [PATCH] gemma3 quantization
|
||||
Subject: [PATCH] add model quantizations
|
||||
|
||||
- gemma3
|
||||
- mistral3
|
||||
---
|
||||
src/llama-arch.cpp | 19 +++++++++++++++++++
|
||||
src/llama-arch.h | 1 +
|
||||
src/llama-model.cpp | 7 +++++++
|
||||
src/llama-quant.cpp | 9 +++++++++
|
||||
4 files changed, 36 insertions(+)
|
||||
src/llama-arch.cpp | 36 ++++++++++++++++++++++++++++++++++++
|
||||
src/llama-arch.h | 2 ++
|
||||
src/llama-model.cpp | 10 ++++++++++
|
||||
src/llama-quant.cpp | 4 ++++
|
||||
4 files changed, 52 insertions(+)
|
||||
|
||||
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
|
||||
index b6f20286..b443fcd3 100644
|
||||
index b6f20286..13a0a988 100644
|
||||
--- a/src/llama-arch.cpp
|
||||
+++ b/src/llama-arch.cpp
|
||||
@@ -37,6 +37,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
@@ -22,7 +24,15 @@ index b6f20286..b443fcd3 100644
|
||||
{ LLM_ARCH_STARCODER2, "starcoder2" },
|
||||
{ LLM_ARCH_MAMBA, "mamba" },
|
||||
{ LLM_ARCH_XVERSE, "xverse" },
|
||||
@@ -804,6 +805,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
@@ -64,6 +65,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_CHAMELEON, "chameleon" },
|
||||
{ LLM_ARCH_SOLAR, "solar" },
|
||||
{ LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
|
||||
+ { LLM_ARCH_MISTRAL3, "mistral3" },
|
||||
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
||||
};
|
||||
|
||||
@@ -804,6 +806,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
|
||||
},
|
||||
},
|
||||
@@ -47,8 +57,31 @@ index b6f20286..b443fcd3 100644
|
||||
{
|
||||
LLM_ARCH_STARCODER2,
|
||||
{
|
||||
@@ -1352,6 +1372,22 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_POS_NET_ATTN_OUT, "posnet.%d.attn_output" },
|
||||
},
|
||||
},
|
||||
+ {
|
||||
+ LLM_ARCH_MISTRAL3,
|
||||
+ {
|
||||
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
+ }
|
||||
+ },
|
||||
{
|
||||
LLM_ARCH_UNKNOWN,
|
||||
{
|
||||
diff --git a/src/llama-arch.h b/src/llama-arch.h
|
||||
index ec742224..aad92a5d 100644
|
||||
index ec742224..8476ae0a 100644
|
||||
--- a/src/llama-arch.h
|
||||
+++ b/src/llama-arch.h
|
||||
@@ -41,6 +41,7 @@ enum llm_arch {
|
||||
@@ -59,8 +92,16 @@ index ec742224..aad92a5d 100644
|
||||
LLM_ARCH_STARCODER2,
|
||||
LLM_ARCH_MAMBA,
|
||||
LLM_ARCH_XVERSE,
|
||||
@@ -68,6 +69,7 @@ enum llm_arch {
|
||||
LLM_ARCH_CHAMELEON,
|
||||
LLM_ARCH_SOLAR,
|
||||
LLM_ARCH_WAVTOKENIZER_DEC,
|
||||
+ LLM_ARCH_MISTRAL3,
|
||||
LLM_ARCH_UNKNOWN,
|
||||
};
|
||||
|
||||
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
|
||||
index ab1a07d1..70183041 100644
|
||||
index ab1a07d1..db4f2685 100644
|
||||
--- a/src/llama-model.cpp
|
||||
+++ b/src/llama-model.cpp
|
||||
@@ -878,6 +878,9 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
@@ -73,7 +114,15 @@ index ab1a07d1..70183041 100644
|
||||
case LLM_ARCH_STARCODER2:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||||
@@ -2537,6 +2540,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
@@ -1274,6 +1277,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
|
||||
ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
|
||||
} break;
|
||||
+ case LLM_ARCH_MISTRAL3: break;
|
||||
default: throw std::runtime_error("unsupported model architecture");
|
||||
}
|
||||
|
||||
@@ -2537,6 +2541,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
|
||||
}
|
||||
} break;
|
||||
@@ -83,7 +132,23 @@ index ab1a07d1..70183041 100644
|
||||
case LLM_ARCH_STARCODER2:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
@@ -4029,6 +4035,7 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
|
||||
@@ -3531,6 +3538,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
|
||||
output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
|
||||
} break;
|
||||
+ case LLM_ARCH_MISTRAL3: break;
|
||||
default:
|
||||
throw std::runtime_error("unknown architecture");
|
||||
}
|
||||
@@ -4009,6 +4017,7 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
|
||||
case LLM_ARCH_GRANITE_MOE:
|
||||
case LLM_ARCH_CHAMELEON:
|
||||
case LLM_ARCH_SOLAR:
|
||||
+ case LLM_ARCH_MISTRAL3:
|
||||
return LLAMA_ROPE_TYPE_NORM;
|
||||
|
||||
// the pairs of head values are offset by n_rot/2
|
||||
@@ -4029,6 +4038,7 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
|
||||
case LLM_ARCH_PHIMOE:
|
||||
case LLM_ARCH_GEMMA:
|
||||
case LLM_ARCH_GEMMA2:
|
||||
@@ -92,21 +157,16 @@ index ab1a07d1..70183041 100644
|
||||
case LLM_ARCH_OPENELM:
|
||||
case LLM_ARCH_GPTNEOX:
|
||||
diff --git a/src/llama-quant.cpp b/src/llama-quant.cpp
|
||||
index 6eb1da08..d2f3a510 100644
|
||||
index 6eb1da08..ebcbafa1 100644
|
||||
--- a/src/llama-quant.cpp
|
||||
+++ b/src/llama-quant.cpp
|
||||
@@ -737,6 +737,15 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
||||
@@ -737,6 +737,10 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
||||
// This used to be a regex, but <regex> has an extreme cost to compile times.
|
||||
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
|
||||
|
||||
+ // don't quantize vision stuff
|
||||
+ quantize &= name.find("v.blk.") == std::string::npos;
|
||||
+
|
||||
+ quantize &= name.find("mm.mm_input_projection.weight") == std::string::npos;
|
||||
+ quantize &= name.find("mm.mm_soft_emb_norm.weight") == std::string::npos;
|
||||
+ quantize &= name.find("v.patch_embedding.weight") == std::string::npos;
|
||||
+ quantize &= name.find("v.position_embedding.weight") == std::string::npos;
|
||||
+ quantize &= name.find("v.post_layernorm.weight") == std::string::npos;
|
||||
+ quantize &= name.find("v.") == std::string::npos;
|
||||
+ quantize &= name.find("mm.") == std::string::npos;
|
||||
+
|
||||
// quantize only 2D and 3D tensors (experts)
|
||||
quantize &= (ggml_n_dims(tensor) >= 2);
|
||||
103
llama/patches/0022-add-rdna4-support.patch
Normal file
103
llama/patches/0022-add-rdna4-support.patch
Normal file
@@ -0,0 +1,103 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: Saman <saman.khatir@amd.com>
|
||||
Date: Wed, 19 Mar 2025 14:02:26 -0700
|
||||
Subject: [PATCH] add rdna4 support
|
||||
|
||||
---
|
||||
ggml/src/ggml-cuda/common.cuh | 6 ++++--
|
||||
ggml/src/ggml-cuda/mmq.cu | 2 +-
|
||||
ggml/src/ggml-cuda/mmq.cuh | 4 ++--
|
||||
ggml/src/ggml-cuda/mmvq.cu | 4 ++--
|
||||
ggml/src/ggml-cuda/vendors/hip.h | 4 ++++
|
||||
5 files changed, 13 insertions(+), 7 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/ggml-cuda/common.cuh b/ggml/src/ggml-cuda/common.cuh
|
||||
index adf0d3ec..b24593fc 100644
|
||||
--- a/ggml/src/ggml-cuda/common.cuh
|
||||
+++ b/ggml/src/ggml-cuda/common.cuh
|
||||
@@ -61,11 +61,13 @@
|
||||
#define GGML_CUDA_CC_RDNA1 (GGML_CUDA_CC_OFFSET_AMD + 0x1010) // RX 5000
|
||||
#define GGML_CUDA_CC_RDNA2 (GGML_CUDA_CC_OFFSET_AMD + 0x1030) // RX 6000, minimum for dp4a
|
||||
#define GGML_CUDA_CC_RDNA3 (GGML_CUDA_CC_OFFSET_AMD + 0x1100) // RX 7000, minimum for WMMA
|
||||
+#define GGML_CUDA_CC_RDNA4 (GGML_CUDA_CC_OFFSET_AMD + 0x1200) // RX 9000
|
||||
|
||||
#define GGML_CUDA_CC_IS_RDNA(cc) (cc >= GGML_CUDA_CC_RDNA1)
|
||||
#define GGML_CUDA_CC_IS_RDNA1(cc) (cc >= GGML_CUDA_CC_RDNA1 && cc < GGML_CUDA_CC_RDNA2)
|
||||
#define GGML_CUDA_CC_IS_RDNA2(cc) (cc >= GGML_CUDA_CC_RDNA2 && cc < GGML_CUDA_CC_RDNA3)
|
||||
-#define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3)
|
||||
+#define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3 && cc < GGML_CUDA_CC_RDNA4)
|
||||
+#define GGML_CUDA_CC_IS_RDNA4(cc) (cc >= GGML_CUDA_CC_RDNA4)
|
||||
#define GGML_CUDA_CC_IS_GCN(cc) (cc > GGML_CUDA_CC_OFFSET_AMD && cc < GGML_CUDA_CC_CDNA)
|
||||
#define GGML_CUDA_CC_IS_CDNA(cc) (cc >= GGML_CUDA_CC_CDNA && cc < GGML_CUDA_CC_RDNA1)
|
||||
|
||||
@@ -386,7 +388,7 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(RDNA2)
|
||||
c = __builtin_amdgcn_sdot4(a, b, c, false);
|
||||
-#elif defined(RDNA3)
|
||||
+#elif defined(RDNA3) || defined(RDNA4)
|
||||
c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
|
||||
#elif defined(__gfx1010__) || defined(__gfx900__)
|
||||
int tmp1;
|
||||
diff --git a/ggml/src/ggml-cuda/mmq.cu b/ggml/src/ggml-cuda/mmq.cu
|
||||
index 10f2ebb1..933d945c 100644
|
||||
--- a/ggml/src/ggml-cuda/mmq.cu
|
||||
+++ b/ggml/src/ggml-cuda/mmq.cu
|
||||
@@ -149,5 +149,5 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
|
||||
return !fp16_mma_hardware_available(cc) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
}
|
||||
|
||||
- return (!GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
+ return (!GGML_CUDA_CC_IS_RDNA4(cc) && !GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
}
|
||||
diff --git a/ggml/src/ggml-cuda/mmq.cuh b/ggml/src/ggml-cuda/mmq.cuh
|
||||
index 0451c65f..66ce2bc9 100644
|
||||
--- a/ggml/src/ggml-cuda/mmq.cuh
|
||||
+++ b/ggml/src/ggml-cuda/mmq.cuh
|
||||
@@ -2577,9 +2577,9 @@ static __device__ void mul_mat_q_process_tile(
|
||||
|
||||
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
-#if defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
|
||||
+#if defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
|
||||
__launch_bounds__(WARP_SIZE*nwarps, 2)
|
||||
-#endif // defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
|
||||
+#endif // defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
|
||||
#else
|
||||
#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
|
||||
__launch_bounds__(WARP_SIZE*nwarps, 1)
|
||||
diff --git a/ggml/src/ggml-cuda/mmvq.cu b/ggml/src/ggml-cuda/mmvq.cu
|
||||
index 4fb466ca..23ae7abc 100644
|
||||
--- a/ggml/src/ggml-cuda/mmvq.cu
|
||||
+++ b/ggml/src/ggml-cuda/mmvq.cu
|
||||
@@ -62,13 +62,13 @@ static __global__ void mul_mat_vec_q(
|
||||
|
||||
constexpr vec_dot_q_cuda_t vec_dot_q_cuda = get_vec_dot_q_cuda(type);
|
||||
|
||||
-#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
|
||||
+#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4))
|
||||
constexpr int nwarps = 1;
|
||||
constexpr int rows_per_cuda_block = 1;
|
||||
#else
|
||||
constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
|
||||
constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
|
||||
-#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
|
||||
+#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3) && !defined(RDNA4)
|
||||
|
||||
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
||||
const int row0 = rows_per_cuda_block*blockIdx.x;
|
||||
diff --git a/ggml/src/ggml-cuda/vendors/hip.h b/ggml/src/ggml-cuda/vendors/hip.h
|
||||
index 81964611..a62544b5 100644
|
||||
--- a/ggml/src/ggml-cuda/vendors/hip.h
|
||||
+++ b/ggml/src/ggml-cuda/vendors/hip.h
|
||||
@@ -150,6 +150,10 @@
|
||||
#define CDNA
|
||||
#endif
|
||||
|
||||
+#if defined(__gfx1200__) || defined(__gfx1201__)
|
||||
+#define RDNA4
|
||||
+#endif
|
||||
+
|
||||
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
|
||||
defined(__gfx1150__) || defined(__gfx1151__)
|
||||
#define RDNA3
|
||||
75
llama/patches/0022-metal-add-op_neg.patch
Normal file
75
llama/patches/0022-metal-add-op_neg.patch
Normal file
@@ -0,0 +1,75 @@
|
||||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: Michael Yang <git@mxy.ng>
|
||||
Date: Wed, 2 Apr 2025 15:26:15 -0700
|
||||
Subject: [PATCH] metal: add op_neg
|
||||
|
||||
---
|
||||
ggml/src/ggml-metal/ggml-metal.m | 15 +++++++++++++++
|
||||
ggml/src/ggml-metal/ggml-metal.metal | 7 +++++++
|
||||
2 files changed, 22 insertions(+)
|
||||
|
||||
diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m
|
||||
index e4c093f9..d8422f1b 100644
|
||||
--- a/ggml/src/ggml-metal/ggml-metal.m
|
||||
+++ b/ggml/src/ggml-metal/ggml-metal.m
|
||||
@@ -423,6 +423,7 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_SQRT,
|
||||
GGML_METAL_KERNEL_TYPE_SIN,
|
||||
GGML_METAL_KERNEL_TYPE_COS,
|
||||
+ GGML_METAL_KERNEL_TYPE_NEG,
|
||||
GGML_METAL_KERNEL_TYPE_SUM_ROWS,
|
||||
GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32,
|
||||
GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32,
|
||||
@@ -1039,6 +1040,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQRT, sqrt, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIN, sin, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_COS, cos, true);
|
||||
+ GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NEG, neg, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGMAX, argmax, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32, pool_2d_avg_f32, true);
|
||||
@@ -1202,6 +1204,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
|
||||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
case GGML_UNARY_OP_SILU:
|
||||
case GGML_UNARY_OP_ELU:
|
||||
+ case GGML_UNARY_OP_NEG:
|
||||
return ggml_is_contiguous(op->src[0]);
|
||||
default:
|
||||
return false;
|
||||
@@ -1873,6 +1876,18 @@ static void ggml_metal_encode_node(
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
+ case GGML_UNARY_OP_NEG:
|
||||
+ {
|
||||
+ id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_NEG].pipeline;
|
||||
+
|
||||
+ [encoder setComputePipelineState:pipeline];
|
||||
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
+
|
||||
+ const int64_t n = ggml_nelements(dst);
|
||||
+
|
||||
+ [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
+ } break;
|
||||
default:
|
||||
{
|
||||
GGML_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, idx, ggml_op_name(dst->op));
|
||||
diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal
|
||||
index f38909d0..bb0ff668 100644
|
||||
--- a/ggml/src/ggml-metal/ggml-metal.metal
|
||||
+++ b/ggml/src/ggml-metal/ggml-metal.metal
|
||||
@@ -945,6 +945,13 @@ kernel void kernel_cos(
|
||||
dst[tpig] = cos(src0[tpig]);
|
||||
}
|
||||
|
||||
+kernel void kernel_neg(
|
||||
+ device const float * src0,
|
||||
+ device float * dst,
|
||||
+ uint tpig[[thread_position_in_grid]]) {
|
||||
+ dst[tpig] = -src0[tpig];
|
||||
+}
|
||||
+
|
||||
kernel void kernel_sum_rows(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
@@ -15,12 +15,12 @@ import (
|
||||
)
|
||||
|
||||
// This algorithm looks for a complete fit to determine if we need to unload other models
|
||||
func PredictServerFit(allGpus discover.GpuInfoList, f *ggml.GGML, adapters, projectors []string, opts api.Options) (bool, uint64) {
|
||||
func PredictServerFit(allGpus discover.GpuInfoList, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (bool, uint64) {
|
||||
// Split up the GPUs by type and try them
|
||||
var estimatedVRAM uint64
|
||||
for _, gpus := range allGpus.ByLibrary() {
|
||||
var layerCount int
|
||||
estimate := EstimateGPULayers(gpus, f, projectors, opts)
|
||||
estimate := EstimateGPULayers(gpus, f, projectors, opts, numParallel)
|
||||
layerCount, estimatedVRAM = estimate.Layers, estimate.VRAMSize
|
||||
if opts.NumGPU < 0 {
|
||||
if layerCount > 0 && layerCount >= int(f.KV().BlockCount()+1) {
|
||||
@@ -71,7 +71,7 @@ type MemoryEstimate struct {
|
||||
|
||||
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
|
||||
// The GPUs provided must all be the same Library
|
||||
func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []string, opts api.Options) MemoryEstimate {
|
||||
func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []string, opts api.Options, numParallel int) MemoryEstimate {
|
||||
// Graph size for a partial offload, applies to all GPUs
|
||||
var graphPartialOffload uint64
|
||||
|
||||
@@ -137,13 +137,19 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
|
||||
}
|
||||
}
|
||||
|
||||
kv, graphPartialOffload, graphFullOffload := f.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), kvct)
|
||||
kv, graphPartialOffload, graphFullOffload := f.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), numParallel, kvct)
|
||||
|
||||
// KV is proportional to the number of layers
|
||||
layerSize += kv / f.KV().BlockCount()
|
||||
if len(kv) > 0 {
|
||||
layerSize += kv[0]
|
||||
}
|
||||
|
||||
var kvTotal uint64
|
||||
for _, kvLayer := range kv {
|
||||
kvTotal += kvLayer
|
||||
}
|
||||
|
||||
if graphPartialOffload == 0 {
|
||||
graphPartialOffload = f.KV().GQA() * kv / 6
|
||||
graphPartialOffload = f.KV().GQA() * kvTotal / 6
|
||||
}
|
||||
if graphFullOffload == 0 {
|
||||
graphFullOffload = graphPartialOffload
|
||||
@@ -217,7 +223,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
|
||||
// Some models have inconsistent layer sizes
|
||||
if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
|
||||
layerSize = blk.Size()
|
||||
layerSize += kv / f.KV().BlockCount()
|
||||
layerSize += kv[i]
|
||||
memoryWeights += blk.Size()
|
||||
}
|
||||
|
||||
@@ -315,7 +321,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
|
||||
layersRequested: opts.NumGPU,
|
||||
layersModel: int(f.KV().BlockCount()) + 1,
|
||||
availableList: availableList,
|
||||
kv: kv,
|
||||
kv: kvTotal,
|
||||
allocationsList: allocationsList,
|
||||
memoryWeights: memoryWeights,
|
||||
memoryLayerOutput: memoryLayerOutput,
|
||||
@@ -374,7 +380,7 @@ func (m MemoryEstimate) LogValue() slog.Value {
|
||||
slog.Group(
|
||||
"weights",
|
||||
// memory of the weights
|
||||
"total", format.HumanBytes2(m.memoryWeights),
|
||||
"total", format.HumanBytes2(m.memoryWeights+m.memoryLayerOutput),
|
||||
// memory of repeating layers
|
||||
"repeating", format.HumanBytes2(m.memoryWeights),
|
||||
// memory of non-repeating layers
|
||||
|
||||
@@ -61,7 +61,7 @@ func TestEstimateGPULayers(t *testing.T) {
|
||||
projectors := []string{}
|
||||
opts := api.DefaultOptions()
|
||||
t.Run("cpu", func(t *testing.T) {
|
||||
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
|
||||
estimate := EstimateGPULayers(gpus, ggml, projectors, opts, 1)
|
||||
assert.Equal(t, 0, estimate.Layers)
|
||||
assert.Equal(t, uint64(0), estimate.Graph)
|
||||
})
|
||||
@@ -112,7 +112,7 @@ func TestEstimateGPULayers(t *testing.T) {
|
||||
gpus[1].FreeMemory += gpuMinimumMemory + layerSize + s.layer1*layerSize + 1
|
||||
gpus[0].FreeMemory += max(graphFullOffload, graphPartialOffload)
|
||||
gpus[1].FreeMemory += max(graphFullOffload, graphPartialOffload)
|
||||
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
|
||||
estimate := EstimateGPULayers(gpus, ggml, projectors, opts, 1)
|
||||
assert.Equal(t, int(s.expect0+s.expect1), estimate.Layers, "scenario %d: %v", i, s)
|
||||
assert.Equal(t, fmt.Sprintf("%d,%d", s.expect0, s.expect1), estimate.TensorSplit, "scenario %d: %v", i, s)
|
||||
var layerSums uint64
|
||||
|
||||
@@ -29,7 +29,6 @@ import (
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/grammar"
|
||||
"github.com/ollama/ollama/llama"
|
||||
"github.com/ollama/ollama/model"
|
||||
)
|
||||
@@ -110,7 +109,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
|
||||
gpus = discover.GetCPUInfo()
|
||||
}
|
||||
|
||||
estimate := EstimateGPULayers(gpus, f, projectors, opts)
|
||||
estimate := EstimateGPULayers(gpus, f, projectors, opts, numParallel)
|
||||
if len(gpus) > 1 || gpus[0].Library != "cpu" {
|
||||
switch {
|
||||
case gpus[0].Library == "metal" && estimate.VRAMSize > systemTotalMemory:
|
||||
@@ -676,9 +675,32 @@ type CompletionRequest struct {
|
||||
Grammar string // set before sending the request to the subprocess
|
||||
}
|
||||
|
||||
// DoneReason represents the reason why a completion response is done
|
||||
type DoneReason int
|
||||
|
||||
const (
|
||||
// DoneReasonStop indicates the completion stopped naturally
|
||||
DoneReasonStop DoneReason = iota
|
||||
// DoneReasonLength indicates the completion stopped due to length limits
|
||||
DoneReasonLength
|
||||
// DoneReasonConnectionClosed indicates the completion stopped due to the connection being closed
|
||||
DoneReasonConnectionClosed
|
||||
)
|
||||
|
||||
func (d DoneReason) String() string {
|
||||
switch d {
|
||||
case DoneReasonLength:
|
||||
return "length"
|
||||
case DoneReasonStop:
|
||||
return "stop"
|
||||
default:
|
||||
return "" // closed
|
||||
}
|
||||
}
|
||||
|
||||
type CompletionResponse struct {
|
||||
Content string `json:"content"`
|
||||
DoneReason string `json:"done_reason"`
|
||||
DoneReason DoneReason `json:"done_reason"`
|
||||
Done bool `json:"done"`
|
||||
PromptEvalCount int `json:"prompt_eval_count"`
|
||||
PromptEvalDuration time.Duration `json:"prompt_eval_duration"`
|
||||
@@ -701,9 +723,9 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
|
||||
}
|
||||
|
||||
// User provided a JSON schema
|
||||
g, err := grammar.FromSchema(nil, req.Format)
|
||||
if err != nil {
|
||||
return fmt.Errorf("invalid JSON schema in format: %w", err)
|
||||
g := llama.SchemaToGrammar(req.Format)
|
||||
if g == nil {
|
||||
return fmt.Errorf("invalid JSON schema in format")
|
||||
}
|
||||
req.Grammar = string(g)
|
||||
}
|
||||
@@ -714,11 +736,6 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
|
||||
req.Options = &opts
|
||||
}
|
||||
|
||||
if req.Options == nil {
|
||||
opts := api.DefaultOptions()
|
||||
req.Options = &opts
|
||||
}
|
||||
|
||||
if err := s.sem.Acquire(ctx, 1); err != nil {
|
||||
if errors.Is(err, context.Canceled) {
|
||||
slog.Info("aborting completion request due to client closing the connection")
|
||||
@@ -733,6 +750,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
|
||||
if req.Options.NumPredict < 0 || req.Options.NumPredict > 10*s.options.NumCtx {
|
||||
req.Options.NumPredict = 10 * s.options.NumCtx
|
||||
}
|
||||
|
||||
// Make sure the server is ready
|
||||
status, err := s.getServerStatusRetry(ctx)
|
||||
if err != nil {
|
||||
@@ -791,7 +809,6 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
|
||||
continue
|
||||
}
|
||||
|
||||
// slog.Debug("got line", "line", string(line))
|
||||
evt, ok := bytes.CutPrefix(line, []byte("data: "))
|
||||
if !ok {
|
||||
evt = line
|
||||
|
||||
@@ -9,22 +9,12 @@ import (
|
||||
"slices"
|
||||
"strconv"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
)
|
||||
|
||||
type Config interface {
|
||||
Architecture() string
|
||||
String(string, ...string) string
|
||||
Uint(string, ...uint32) uint32
|
||||
Float(string, ...float32) float32
|
||||
Bool(string, ...bool) bool
|
||||
|
||||
Strings(string, ...[]string) []string
|
||||
Uints(string, ...[]uint32) []uint32
|
||||
Floats(string, ...[]float32) []float32
|
||||
}
|
||||
|
||||
type Backend interface {
|
||||
Config() Config
|
||||
Config() fs.Config
|
||||
Get(name string) Tensor
|
||||
NewContext() Context
|
||||
NewContextSize(size int) Context
|
||||
@@ -107,15 +97,20 @@ type Context interface {
|
||||
|
||||
Forward(...Tensor) Context
|
||||
Compute(...Tensor)
|
||||
|
||||
// Reserve is analogous to Compute but rather than executing a
|
||||
// graph, simply preallocates memory. Typically called with a
|
||||
// worst case graph to ensure all resources are available for
|
||||
// for future inference.
|
||||
Reserve() error
|
||||
|
||||
MaxGraphNodes() int
|
||||
Close()
|
||||
|
||||
// Input returns a context appropriate for creating input tensors
|
||||
// Input returns a context appropriate for creating tensors that are
|
||||
// inputs to the model (which includes things like output locations)
|
||||
Input() Context
|
||||
|
||||
// Output returns a context appropriate for creating output tensors
|
||||
Output() Context
|
||||
|
||||
// Layer returns a context appropriate for creating intermediate tensors
|
||||
Layer(int) Context
|
||||
}
|
||||
@@ -130,6 +125,7 @@ type Tensor interface {
|
||||
Bytes() []byte
|
||||
Floats() []float32
|
||||
|
||||
Neg(ctx Context) Tensor
|
||||
Add(ctx Context, t2 Tensor) Tensor
|
||||
Mul(ctx Context, t2 Tensor) Tensor
|
||||
Mulmat(ctx Context, t2 Tensor) Tensor
|
||||
@@ -144,7 +140,10 @@ type Tensor interface {
|
||||
Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
|
||||
|
||||
RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim, ropeType uint32, base, scale float32) Tensor
|
||||
IM2Col(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
|
||||
|
||||
Sin(ctx Context) Tensor
|
||||
Cos(ctx Context) Tensor
|
||||
Tanh(ctx Context) Tensor
|
||||
GELU(ctx Context) Tensor
|
||||
SILU(ctx Context) Tensor
|
||||
@@ -159,9 +158,13 @@ type Tensor interface {
|
||||
Unpad(ctx Context, shape ...int) Tensor
|
||||
|
||||
Stack(ctx Context, dim int, s ...Tensor) Tensor
|
||||
|
||||
// Repeat repeats the tensor n times along dimension dim
|
||||
Repeat(ctx Context, dim, n int) Tensor
|
||||
Concat(ctx Context, t2 Tensor, dim int) Tensor
|
||||
Rows(ctx Context, t2 Tensor) Tensor
|
||||
Copy(ctx Context, t2 Tensor) Tensor
|
||||
Duplicate(ctx Context) Tensor
|
||||
}
|
||||
|
||||
// ScaledDotProductAttention implements a fused attention
|
||||
@@ -226,7 +229,7 @@ func Dump(ctx Context, t Tensor, opts ...DumpOptions) string {
|
||||
return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32)
|
||||
})
|
||||
case DTypeF16, DTypeQ80, DTypeQ40:
|
||||
f32 := ctx.Empty(DTypeF32, t.Shape()...)
|
||||
f32 := ctx.Input().Empty(DTypeF32, t.Shape()...)
|
||||
f32 = t.Copy(ctx, f32)
|
||||
return dump[[]float32](ctx, f32, opts[0].Items, func(f float32) string {
|
||||
return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32)
|
||||
|
||||
@@ -10,6 +10,7 @@ import "C"
|
||||
|
||||
import (
|
||||
"context"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
@@ -24,7 +25,8 @@ import (
|
||||
"unsafe"
|
||||
|
||||
"github.com/ollama/ollama/format"
|
||||
fs "github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/fs"
|
||||
fsggml "github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/ml"
|
||||
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
|
||||
"golang.org/x/sync/errgroup"
|
||||
@@ -41,16 +43,17 @@ func devices() []*C.struct_ggml_backend_device {
|
||||
}
|
||||
|
||||
type Backend struct {
|
||||
meta *fs.GGML
|
||||
sched *C.struct_ggml_backend_sched
|
||||
meta *fsggml.GGML
|
||||
|
||||
sched *C.struct_ggml_backend_sched
|
||||
schedBackends []*C.struct_ggml_backend
|
||||
schedBufts []*C.struct_ggml_backend_buffer_type
|
||||
|
||||
tensors map[string]*C.struct_ggml_tensor
|
||||
|
||||
// input is the backend used for inputs
|
||||
input *C.struct_ggml_backend_buffer_type
|
||||
|
||||
// output is the backend used for outputs
|
||||
output *C.struct_ggml_backend_buffer_type
|
||||
|
||||
// layers is the backend used for repeating layers
|
||||
layers map[int]*C.struct_ggml_backend_buffer_type
|
||||
|
||||
@@ -61,7 +64,7 @@ type Backend struct {
|
||||
}
|
||||
|
||||
func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
meta, n, err := fs.Decode(r, -1)
|
||||
meta, n, err := fsggml.Decode(r, -1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@@ -185,7 +188,7 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
|
||||
maxTensors += blocks * 2
|
||||
|
||||
type tensor struct {
|
||||
source *fs.Tensor
|
||||
source *fsggml.Tensor
|
||||
target string
|
||||
}
|
||||
|
||||
@@ -283,6 +286,10 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
|
||||
}
|
||||
|
||||
b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
|
||||
if b == nil {
|
||||
return nil, fmt.Errorf("unable to allocate memory from device %v for model weights", C.GoString(C.ggml_backend_buft_name(bt)))
|
||||
}
|
||||
|
||||
C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
|
||||
bbs[c] = b
|
||||
}
|
||||
@@ -321,7 +328,14 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
|
||||
tts[i] = tt
|
||||
}
|
||||
|
||||
sr := io.NewSectionReader(r, int64(meta.Tensors().Offset+t.Offset), int64(t.Size()))
|
||||
// Create a new FD for each goroutine so that each FD is read sequentially, rather than
|
||||
// seeking around within an FD shared between all goroutines.
|
||||
file, err := os.Open(r.Name())
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer file.Close()
|
||||
sr := io.NewSectionReader(file, int64(meta.Tensors().Offset+t.Offset), int64(t.Size()))
|
||||
bts := make([]byte, 128*format.KibiByte)
|
||||
|
||||
var s uint64
|
||||
@@ -380,8 +394,6 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
|
||||
schedBackends = append(schedBackends, b)
|
||||
schedBufts = append(schedBufts, bt)
|
||||
|
||||
slog.Info("compute graph", "backend", C.GoString(C.ggml_backend_name(b)), "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
|
||||
|
||||
if C.ggml_backend_is_cpu(b) {
|
||||
// set number of threads for cpu backend
|
||||
C.ggml_backend_cpu_set_n_threads(b, C.int(Threads(params.NumThreads)))
|
||||
@@ -400,8 +412,9 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
|
||||
C.size_t(maxGraphNodes),
|
||||
C._Bool(len(gpus) > 1 && slices.Contains(gpus, output.d)),
|
||||
),
|
||||
input: deviceBufferTypes[input.d],
|
||||
output: deviceBufferTypes[output.d],
|
||||
schedBackends: schedBackends,
|
||||
schedBufts: schedBufts,
|
||||
input: deviceBufferTypes[input.d],
|
||||
layers: func() map[int]*C.struct_ggml_backend_buffer_type {
|
||||
m := make(map[int]*C.struct_ggml_backend_buffer_type)
|
||||
for i, layer := range layers {
|
||||
@@ -417,7 +430,7 @@ func init() {
|
||||
ml.RegisterBackend("ggml", New)
|
||||
}
|
||||
|
||||
func (b *Backend) Config() ml.Config {
|
||||
func (b *Backend) Config() fs.Config {
|
||||
return b.meta.KV()
|
||||
}
|
||||
|
||||
@@ -482,19 +495,6 @@ func (c Context) Input() ml.Context {
|
||||
return &c
|
||||
}
|
||||
|
||||
func (c Context) Output() ml.Context {
|
||||
if c.b.output != nil {
|
||||
return &Context{
|
||||
b: c.b,
|
||||
ctx: c.ctx,
|
||||
buft: c.b.output,
|
||||
maxGraphNodes: c.maxGraphNodes,
|
||||
}
|
||||
}
|
||||
|
||||
return &c
|
||||
}
|
||||
|
||||
func (c Context) Layer(i int) ml.Context {
|
||||
if buft, ok := c.b.layers[i]; ok {
|
||||
return &Context{
|
||||
@@ -539,6 +539,24 @@ func (c Context) Compute(tensors ...ml.Tensor) {
|
||||
}
|
||||
}
|
||||
|
||||
func (c Context) Reserve() error {
|
||||
if !C.ggml_backend_sched_reserve(c.b.sched, c.graph) {
|
||||
C.ggml_backend_sched_reset(c.b.sched)
|
||||
return errors.New("failed to reserve graph")
|
||||
}
|
||||
|
||||
slog.Debug("compute graph", "nodes", C.ggml_graph_n_nodes(c.graph), "splits", C.ggml_backend_sched_get_n_splits(c.b.sched))
|
||||
for i := range c.b.schedBackends {
|
||||
size := C.ggml_backend_sched_get_buffer_size(c.b.sched, c.b.schedBackends[i])
|
||||
slog.Info("compute graph", "backend", C.GoString(C.ggml_backend_name(c.b.schedBackends[i])), "buffer_type", C.GoString(C.ggml_backend_buft_name(c.b.schedBufts[i])),
|
||||
"size", format.HumanBytes2(uint64(size)))
|
||||
}
|
||||
|
||||
C.ggml_backend_sched_reset(c.b.sched)
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (c Context) MaxGraphNodes() int {
|
||||
return c.maxGraphNodes
|
||||
}
|
||||
@@ -556,9 +574,9 @@ func pad(length, pad C.size_t) C.size_t {
|
||||
return ((length + pad - 1) / pad) * pad
|
||||
}
|
||||
|
||||
func (c Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
|
||||
func (c Context) newTensor(dtype ml.DType, shape []int) (ml.Tensor, error) {
|
||||
if c.buft == nil {
|
||||
panic("set Input, Output, or Layer before creating tensors")
|
||||
panic("set Input or Layer before creating tensors")
|
||||
}
|
||||
|
||||
var cdtype uint32
|
||||
@@ -579,7 +597,7 @@ func (c Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
|
||||
|
||||
if len(shape) < 1 || shape[0] == 0 {
|
||||
var shape C.int64_t = 0
|
||||
return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}
|
||||
return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}, nil
|
||||
} else if len(shape) > 4 {
|
||||
panic("unsupported number of dimensions")
|
||||
}
|
||||
@@ -593,16 +611,29 @@ func (c Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
|
||||
t := C.ggml_new_tensor(c.ctx, cdtype, C.int(len(shape)), shapeToGGML(shape))
|
||||
size := pad(C.ggml_backend_buft_get_alloc_size(c.buft, t), C.ggml_backend_buft_get_alignment(c.buft))
|
||||
b := C.ggml_backend_buft_alloc_buffer(c.buft, size)
|
||||
if b == nil {
|
||||
return nil, fmt.Errorf("unable to allocate %v from device %v for new tensor", format.HumanBytes2(uint64(size)), C.GoString(C.ggml_backend_buft_name(c.buft)))
|
||||
}
|
||||
|
||||
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
|
||||
return &Tensor{b: c.b, t: t}
|
||||
return &Tensor{b: c.b, t: t}, nil
|
||||
}
|
||||
|
||||
func (c Context) Empty(dtype ml.DType, shape ...int) ml.Tensor {
|
||||
return c.newTensor(dtype, shape)
|
||||
t, err := c.newTensor(dtype, shape)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
return t
|
||||
}
|
||||
|
||||
func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
|
||||
t := c.newTensor(dtype, shape)
|
||||
t, err := c.newTensor(dtype, shape)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
C.ggml_set_zero(t.(*Tensor).t)
|
||||
return t
|
||||
}
|
||||
@@ -630,7 +661,11 @@ func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
t := c.newTensor(ml.DTypeF32, shape)
|
||||
t, err := c.newTensor(ml.DTypeF32, shape)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if len(s) > 0 {
|
||||
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
|
||||
}
|
||||
@@ -643,7 +678,11 @@ func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
t := c.newTensor(ml.DTypeI32, shape)
|
||||
t, err := c.newTensor(ml.DTypeI32, shape)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if len(s) > 0 {
|
||||
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
|
||||
}
|
||||
@@ -727,6 +766,13 @@ func (t *Tensor) DType() ml.DType {
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) Neg(ctx ml.Context) ml.Tensor {
|
||||
return &Tensor{
|
||||
b: t.b,
|
||||
t: C.ggml_neg(ctx.(*Context).ctx, t.t),
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
||||
return &Tensor{
|
||||
b: t.b,
|
||||
@@ -734,6 +780,27 @@ func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) Repeat(ctx ml.Context, dim, n int) ml.Tensor {
|
||||
if dim < 0 || dim >= C.GGML_MAX_DIMS {
|
||||
panic("invalid dimension")
|
||||
}
|
||||
|
||||
shape := make([]C.int64_t, C.GGML_MAX_DIMS)
|
||||
for i := range C.GGML_MAX_DIMS {
|
||||
if i == dim {
|
||||
shape[i] = C.int64_t(t.Dim(i) * n)
|
||||
} else {
|
||||
shape[i] = C.int64_t(t.Dim(i))
|
||||
}
|
||||
}
|
||||
|
||||
tmpl := C.ggml_new_tensor(ctx.(*Context).ctx, t.t._type, C.int(len(shape)), unsafe.SliceData(shape))
|
||||
return &Tensor{
|
||||
b: t.b,
|
||||
t: C.ggml_repeat(ctx.(*Context).ctx, t.t, tmpl),
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
|
||||
if len(s) > 0 {
|
||||
return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
|
||||
@@ -870,6 +937,20 @@ func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) Sin(ctx ml.Context) ml.Tensor {
|
||||
return &Tensor{
|
||||
b: t.b,
|
||||
t: C.ggml_sin(ctx.(*Context).ctx, t.t),
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) Cos(ctx ml.Context) ml.Tensor {
|
||||
return &Tensor{
|
||||
b: t.b,
|
||||
t: C.ggml_cos(ctx.(*Context).ctx, t.t),
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
|
||||
return &Tensor{
|
||||
b: t.b,
|
||||
@@ -958,6 +1039,13 @@ func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDi
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) IM2Col(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
|
||||
return &Tensor{
|
||||
b: t.b,
|
||||
t: C.ggml_im2col(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1), true, C.GGML_TYPE_F32),
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
|
||||
return &Tensor{
|
||||
b: t.b,
|
||||
@@ -1026,3 +1114,10 @@ func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask ml.T
|
||||
return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) Duplicate(ctx ml.Context) ml.Tensor {
|
||||
return &Tensor{
|
||||
b: t.b,
|
||||
t: C.ggml_dup(ctx.(*Context).ctx, t.t),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -61,11 +61,13 @@
|
||||
#define GGML_CUDA_CC_RDNA1 (GGML_CUDA_CC_OFFSET_AMD + 0x1010) // RX 5000
|
||||
#define GGML_CUDA_CC_RDNA2 (GGML_CUDA_CC_OFFSET_AMD + 0x1030) // RX 6000, minimum for dp4a
|
||||
#define GGML_CUDA_CC_RDNA3 (GGML_CUDA_CC_OFFSET_AMD + 0x1100) // RX 7000, minimum for WMMA
|
||||
#define GGML_CUDA_CC_RDNA4 (GGML_CUDA_CC_OFFSET_AMD + 0x1200) // RX 9000
|
||||
|
||||
#define GGML_CUDA_CC_IS_RDNA(cc) (cc >= GGML_CUDA_CC_RDNA1)
|
||||
#define GGML_CUDA_CC_IS_RDNA1(cc) (cc >= GGML_CUDA_CC_RDNA1 && cc < GGML_CUDA_CC_RDNA2)
|
||||
#define GGML_CUDA_CC_IS_RDNA2(cc) (cc >= GGML_CUDA_CC_RDNA2 && cc < GGML_CUDA_CC_RDNA3)
|
||||
#define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3)
|
||||
#define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3 && cc < GGML_CUDA_CC_RDNA4)
|
||||
#define GGML_CUDA_CC_IS_RDNA4(cc) (cc >= GGML_CUDA_CC_RDNA4)
|
||||
#define GGML_CUDA_CC_IS_GCN(cc) (cc > GGML_CUDA_CC_OFFSET_AMD && cc < GGML_CUDA_CC_CDNA)
|
||||
#define GGML_CUDA_CC_IS_CDNA(cc) (cc >= GGML_CUDA_CC_CDNA && cc < GGML_CUDA_CC_RDNA1)
|
||||
|
||||
@@ -386,7 +388,7 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(RDNA2)
|
||||
c = __builtin_amdgcn_sdot4(a, b, c, false);
|
||||
#elif defined(RDNA3)
|
||||
#elif defined(RDNA3) || defined(RDNA4)
|
||||
c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
|
||||
#elif defined(__gfx1010__) || defined(__gfx900__)
|
||||
int tmp1;
|
||||
|
||||
2
ml/backend/ggml/ggml/src/ggml-cuda/mmq.cu
vendored
2
ml/backend/ggml/ggml/src/ggml-cuda/mmq.cu
vendored
@@ -149,5 +149,5 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
|
||||
return !fp16_mma_hardware_available(cc) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
}
|
||||
|
||||
return (!GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
return (!GGML_CUDA_CC_IS_RDNA4(cc) && !GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
}
|
||||
|
||||
4
ml/backend/ggml/ggml/src/ggml-cuda/mmq.cuh
vendored
4
ml/backend/ggml/ggml/src/ggml-cuda/mmq.cuh
vendored
@@ -2577,9 +2577,9 @@ static __device__ void mul_mat_q_process_tile(
|
||||
|
||||
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
|
||||
#if defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
|
||||
__launch_bounds__(WARP_SIZE*nwarps, 2)
|
||||
#endif // defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
|
||||
#endif // defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
|
||||
#else
|
||||
#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
|
||||
__launch_bounds__(WARP_SIZE*nwarps, 1)
|
||||
|
||||
4
ml/backend/ggml/ggml/src/ggml-cuda/mmvq.cu
vendored
4
ml/backend/ggml/ggml/src/ggml-cuda/mmvq.cu
vendored
@@ -62,13 +62,13 @@ static __global__ void mul_mat_vec_q(
|
||||
|
||||
constexpr vec_dot_q_cuda_t vec_dot_q_cuda = get_vec_dot_q_cuda(type);
|
||||
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4))
|
||||
constexpr int nwarps = 1;
|
||||
constexpr int rows_per_cuda_block = 1;
|
||||
#else
|
||||
constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
|
||||
constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3) && !defined(RDNA4)
|
||||
|
||||
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
||||
const int row0 = rows_per_cuda_block*blockIdx.x;
|
||||
|
||||
@@ -150,6 +150,10 @@
|
||||
#define CDNA
|
||||
#endif
|
||||
|
||||
#if defined(__gfx1200__) || defined(__gfx1201__)
|
||||
#define RDNA4
|
||||
#endif
|
||||
|
||||
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
|
||||
defined(__gfx1150__) || defined(__gfx1151__)
|
||||
#define RDNA3
|
||||
|
||||
@@ -3083,6 +3083,13 @@ kernel void kernel_cos(
|
||||
dst[tpig] = cos(src0[tpig]);
|
||||
}
|
||||
|
||||
kernel void kernel_neg(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
dst[tpig] = -src0[tpig];
|
||||
}
|
||||
|
||||
kernel void kernel_sum_rows(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
|
||||
15
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal.m
vendored
15
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal.m
vendored
@@ -423,6 +423,7 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_SQRT,
|
||||
GGML_METAL_KERNEL_TYPE_SIN,
|
||||
GGML_METAL_KERNEL_TYPE_COS,
|
||||
GGML_METAL_KERNEL_TYPE_NEG,
|
||||
GGML_METAL_KERNEL_TYPE_SUM_ROWS,
|
||||
GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32,
|
||||
GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32,
|
||||
@@ -1039,6 +1040,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQRT, sqrt, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIN, sin, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_COS, cos, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NEG, neg, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGMAX, argmax, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32, pool_2d_avg_f32, true);
|
||||
@@ -1202,6 +1204,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
|
||||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
case GGML_UNARY_OP_SILU:
|
||||
case GGML_UNARY_OP_ELU:
|
||||
case GGML_UNARY_OP_NEG:
|
||||
return ggml_is_contiguous(op->src[0]);
|
||||
default:
|
||||
return false;
|
||||
@@ -1873,6 +1876,18 @@ static void ggml_metal_encode_node(
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
case GGML_UNARY_OP_NEG:
|
||||
{
|
||||
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_NEG].pipeline;
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
|
||||
const int64_t n = ggml_nelements(dst);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, idx, ggml_op_name(dst->op));
|
||||
|
||||
@@ -945,6 +945,13 @@ kernel void kernel_cos(
|
||||
dst[tpig] = cos(src0[tpig]);
|
||||
}
|
||||
|
||||
kernel void kernel_neg(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
dst[tpig] = -src0[tpig];
|
||||
}
|
||||
|
||||
kernel void kernel_sum_rows(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
|
||||
@@ -16,7 +16,8 @@ import (
|
||||
_ "golang.org/x/image/tiff"
|
||||
_ "golang.org/x/image/webp"
|
||||
|
||||
fs "github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/fs"
|
||||
fsggml "github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
_ "github.com/ollama/ollama/ml/backend"
|
||||
@@ -83,10 +84,10 @@ func (m *Base) Config() config {
|
||||
return m.config
|
||||
}
|
||||
|
||||
var models = make(map[string]func(ml.Config) (Model, error))
|
||||
var models = make(map[string]func(fs.Config) (Model, error))
|
||||
|
||||
// Register registers a model constructor for the given architecture
|
||||
func Register(name string, f func(ml.Config) (Model, error)) {
|
||||
func Register(name string, f func(fs.Config) (Model, error)) {
|
||||
if _, ok := models[name]; ok {
|
||||
panic("model: model already registered")
|
||||
}
|
||||
@@ -131,14 +132,14 @@ func NewTextProcessor(s string) (TextProcessor, error) {
|
||||
return nil, err
|
||||
}
|
||||
defer r.Close()
|
||||
meta, _, err := fs.Decode(r, -1)
|
||||
meta, _, err := fsggml.Decode(r, -1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return getTextProcessor(meta.KV())
|
||||
}
|
||||
|
||||
func getTextProcessor(kv fs.KV) (TextProcessor, error) {
|
||||
func getTextProcessor(kv fsggml.KV) (TextProcessor, error) {
|
||||
arch := kv.Architecture()
|
||||
f, ok := models[arch]
|
||||
if !ok {
|
||||
@@ -298,7 +299,7 @@ func Forward(ctx ml.Context, m Model, inputs []int32, batch input.Batch) (ml.Ten
|
||||
|
||||
cache := m.Config().Cache
|
||||
if cache != nil {
|
||||
err := cache.StartForward(ctx, batch)
|
||||
err := cache.StartForward(ctx, batch, false)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
@@ -7,7 +7,8 @@ import (
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
fs "github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/fs"
|
||||
fsggml "github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/backend/ggml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
@@ -139,7 +140,7 @@ func TestPopulateFieldsAlternateName(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestGetTextProcessor(t *testing.T) {
|
||||
tp, err := getTextProcessor(fs.KV{})
|
||||
tp, err := getTextProcessor(fsggml.KV{})
|
||||
if err == nil {
|
||||
t.Error("expected error")
|
||||
} else if !strings.Contains(err.Error(), "unsupported model architecture") {
|
||||
@@ -148,10 +149,10 @@ func TestGetTextProcessor(t *testing.T) {
|
||||
t.Error("expected nil tp")
|
||||
}
|
||||
|
||||
models["dummy"] = func(ml.Config) (Model, error) {
|
||||
models["dummy"] = func(fs.Config) (Model, error) {
|
||||
return notTextProcessorModel{}, nil
|
||||
}
|
||||
tp, err = getTextProcessor(fs.KV{"general.architecture": "dummy"})
|
||||
tp, err = getTextProcessor(fsggml.KV{"general.architecture": "dummy"})
|
||||
if err == nil {
|
||||
t.Error("expected error")
|
||||
} else if !strings.Contains(err.Error(), "not a TextProcessor") {
|
||||
|
||||
@@ -3,6 +3,7 @@ package gemma2
|
||||
import (
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
@@ -35,10 +36,9 @@ const (
|
||||
gemma27BLayerCount = 46
|
||||
)
|
||||
|
||||
func New(c ml.Config) (model.Model, error) {
|
||||
func New(c fs.Config) (model.Model, error) {
|
||||
m := Model{
|
||||
SentencePieceModel: model.NewSentencePieceModel(
|
||||
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
||||
&model.Vocabulary{
|
||||
Values: c.Strings("tokenizer.ggml.tokens"),
|
||||
Scores: c.Floats("tokenizer.ggml.scores"),
|
||||
|
||||
@@ -6,6 +6,7 @@ import (
|
||||
"math"
|
||||
"slices"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
@@ -52,10 +53,9 @@ func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, i
|
||||
return visionOutputs
|
||||
}
|
||||
|
||||
func New(c ml.Config) (model.Model, error) {
|
||||
func New(c fs.Config) (model.Model, error) {
|
||||
m := Model{
|
||||
SentencePieceModel: model.NewSentencePieceModel(
|
||||
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
||||
&model.Vocabulary{
|
||||
Values: c.Strings("tokenizer.ggml.tokens"),
|
||||
Scores: c.Floats("tokenizer.ggml.scores"),
|
||||
|
||||
@@ -3,6 +3,7 @@ package gemma3
|
||||
import (
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
@@ -10,7 +11,7 @@ import (
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type TextOptions struct {
|
||||
type TextConfig struct {
|
||||
hiddenSize, numHeads, numKVHeads int
|
||||
attnKeyLen, attnValLen int
|
||||
eps, ropeScale float32
|
||||
@@ -27,7 +28,7 @@ type TextModel struct {
|
||||
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
||||
Output *nn.Linear `gguf:"output,alt:token_embd"`
|
||||
|
||||
*TextOptions
|
||||
*TextConfig
|
||||
}
|
||||
|
||||
const (
|
||||
@@ -40,12 +41,11 @@ const (
|
||||
cacheTypeCausal
|
||||
)
|
||||
|
||||
func newTextModel(c ml.Config) *TextModel {
|
||||
func newTextModel(c fs.Config) *TextModel {
|
||||
numBlocks := int(c.Uint("block_count"))
|
||||
|
||||
m := TextModel{
|
||||
SentencePieceModel: model.NewSentencePieceModel(
|
||||
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
||||
&model.Vocabulary{
|
||||
Values: c.Strings("tokenizer.ggml.tokens"),
|
||||
Scores: c.Floats("tokenizer.ggml.scores"),
|
||||
@@ -55,7 +55,7 @@ func newTextModel(c ml.Config) *TextModel {
|
||||
},
|
||||
),
|
||||
Layers: make([]TextLayer, numBlocks),
|
||||
TextOptions: &TextOptions{
|
||||
TextConfig: &TextConfig{
|
||||
hiddenSize: int(c.Uint("embedding_length")),
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
@@ -84,7 +84,7 @@ type TextSelfAttention struct {
|
||||
Output *nn.Linear `gguf:"attn_output"`
|
||||
}
|
||||
|
||||
func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
|
||||
func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextConfig) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
ropeType := uint32(2)
|
||||
|
||||
@@ -120,12 +120,12 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
|
||||
}
|
||||
|
||||
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
ropeBase := m.TextOptions.ropeLocalBase
|
||||
ropeBase := m.TextConfig.ropeLocalBase
|
||||
if (layer+1)%gemmaGlobalCacheCount == 0 {
|
||||
ropeBase = m.TextOptions.ropeGlobalBase
|
||||
ropeBase = m.TextConfig.ropeGlobalBase
|
||||
}
|
||||
|
||||
return key.RoPE(ctx, shift, nil, uint32(m.TextOptions.attnKeyLen), uint32(2), ropeBase, m.TextOptions.ropeScale), nil
|
||||
return key.RoPE(ctx, shift, nil, uint32(m.TextConfig.attnKeyLen), uint32(2), ropeBase, m.TextConfig.ropeScale), nil
|
||||
}
|
||||
|
||||
type TextMLP struct {
|
||||
@@ -134,7 +134,7 @@ type TextMLP struct {
|
||||
Gate *nn.Linear `gguf:"ffn_gate"`
|
||||
}
|
||||
|
||||
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
|
||||
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextConfig) ml.Tensor {
|
||||
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
|
||||
return mlp.Down.Forward(ctx, hiddenState)
|
||||
}
|
||||
@@ -148,7 +148,7 @@ type TextLayer struct {
|
||||
PostMLPNorm *nn.RMSNorm `gguf:"post_ffw_norm"`
|
||||
}
|
||||
|
||||
func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
|
||||
func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *TextConfig) ml.Tensor {
|
||||
residual := hiddenState
|
||||
|
||||
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
@@ -173,7 +173,7 @@ func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs,
|
||||
|
||||
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) ml.Tensor {
|
||||
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
|
||||
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextOptions.hiddenSize)))
|
||||
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextConfig.hiddenSize)))
|
||||
|
||||
// set image embeddings
|
||||
var except []int
|
||||
@@ -206,7 +206,7 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
|
||||
lastLayerOutputs = outputs
|
||||
}
|
||||
|
||||
hiddenState = layer.Forward(ctx, i, hiddenState, positions, lastLayerOutputs, cache, m.TextOptions)
|
||||
hiddenState = layer.Forward(ctx, i, hiddenState, positions, lastLayerOutputs, cache, m.TextConfig)
|
||||
}
|
||||
|
||||
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
|
||||
|
||||
@@ -3,6 +3,7 @@ package gemma3
|
||||
import (
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
)
|
||||
@@ -111,7 +112,7 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor) ml.Tensor {
|
||||
return hiddenState
|
||||
}
|
||||
|
||||
func newVisionModel(c ml.Config) *VisionModel {
|
||||
func newVisionModel(c fs.Config) *VisionModel {
|
||||
return &VisionModel{
|
||||
Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count")),
|
||||
VisionModelOptions: &VisionModelOptions{
|
||||
|
||||
@@ -3,7 +3,7 @@ package gemma3
|
||||
import (
|
||||
"image"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/model/imageproc"
|
||||
)
|
||||
|
||||
@@ -11,7 +11,7 @@ type ImageProcessor struct {
|
||||
imageSize, patchSize, numChannels int
|
||||
}
|
||||
|
||||
func newImageProcessor(c ml.Config) ImageProcessor {
|
||||
func newImageProcessor(c fs.Config) ImageProcessor {
|
||||
return ImageProcessor{
|
||||
imageSize: int(c.Uint("vision.image_size")),
|
||||
patchSize: int(c.Uint("vision.patch_size")),
|
||||
|
||||
@@ -5,6 +5,7 @@ import (
|
||||
"math"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
@@ -30,7 +31,7 @@ type Model struct {
|
||||
*Options
|
||||
}
|
||||
|
||||
func New(c ml.Config) (model.Model, error) {
|
||||
func New(c fs.Config) (model.Model, error) {
|
||||
if !strings.EqualFold(c.String("tokenizer.ggml.model"), "gpt2") {
|
||||
return nil, fmt.Errorf("tokenizer %s not yet supported", c.String("tokenizer.ggml.model"))
|
||||
}
|
||||
|
||||
56
model/models/mistral3/imageproc.go
Normal file
56
model/models/mistral3/imageproc.go
Normal file
@@ -0,0 +1,56 @@
|
||||
package mistral3
|
||||
|
||||
import (
|
||||
"image"
|
||||
_ "image/jpeg"
|
||||
_ "image/png"
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/model/imageproc"
|
||||
)
|
||||
|
||||
type ImageProcessor struct {
|
||||
imageSize int
|
||||
patchSize int
|
||||
numChannels int
|
||||
longestEdge int
|
||||
}
|
||||
|
||||
func newImageProcessor(c fs.Config) ImageProcessor {
|
||||
return ImageProcessor{
|
||||
imageSize: int(c.Uint("vision.image_size", 1540)),
|
||||
patchSize: int(c.Uint("vision.patch_size", 14)),
|
||||
numChannels: int(c.Uint("vision.num_channels", 3)),
|
||||
longestEdge: int(c.Uint("vision.longest_edge", 1540)),
|
||||
}
|
||||
}
|
||||
|
||||
// ProcessImage prepares an image for the vision model by:
|
||||
// 1. Compositing transparent images
|
||||
// 2. Resizing to fit model constraints while preserving aspect ratio
|
||||
// 3. Normalizing pixel values
|
||||
// Returns normalized image data and the final size in pixels
|
||||
func (p *ImageProcessor) ProcessImage(img image.Image) ([]float32, image.Point, error) {
|
||||
img = imageproc.Composite(img)
|
||||
|
||||
size := img.Bounds().Size()
|
||||
ratio := max(float64(size.Y)/float64(p.longestEdge), float64(size.X)/float64(p.longestEdge))
|
||||
if ratio > 1.0 {
|
||||
size = image.Point{
|
||||
int(math.Floor(float64(size.X) / ratio)),
|
||||
int(math.Floor(float64(size.Y) / ratio)),
|
||||
}
|
||||
}
|
||||
|
||||
patchesX := (size.X-1)/p.patchSize + 1
|
||||
patchesY := (size.Y-1)/p.patchSize + 1
|
||||
size = image.Point{
|
||||
patchesX * p.patchSize,
|
||||
patchesY * p.patchSize,
|
||||
}
|
||||
|
||||
img = imageproc.Resize(img, size, imageproc.ResizeBilinear)
|
||||
data := imageproc.Normalize(img, imageproc.ClipDefaultMean, imageproc.ClipDefaultSTD, true, true)
|
||||
return data, size, nil
|
||||
}
|
||||
189
model/models/mistral3/model.go
Normal file
189
model/models/mistral3/model.go
Normal file
@@ -0,0 +1,189 @@
|
||||
package mistral3
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"image"
|
||||
"slices"
|
||||
"sync"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type Model struct {
|
||||
model.Base
|
||||
*TextModel
|
||||
*VisionModel `gguf:"v,vision"`
|
||||
*MultiModalProjector `gguf:"mm"`
|
||||
|
||||
ImageProcessor
|
||||
}
|
||||
|
||||
// Implement MultimodalProcessor interface
|
||||
var _ model.MultimodalProcessor = (*Model)(nil)
|
||||
|
||||
func New(c fs.Config) (model.Model, error) {
|
||||
textModel, err := NewTextModel(c)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
m := &Model{
|
||||
TextModel: textModel,
|
||||
VisionModel: newVisionModel(c),
|
||||
ImageProcessor: newImageProcessor(c),
|
||||
MultiModalProjector: newMultiModalProjector(c),
|
||||
}
|
||||
|
||||
m.Cache = kvcache.NewCausalCache(m.TextModel.Shift)
|
||||
|
||||
return m, nil
|
||||
}
|
||||
|
||||
type PatchMerger struct {
|
||||
MergingLayer *nn.Linear `gguf:"merging_layer"`
|
||||
}
|
||||
|
||||
func (pm *PatchMerger) Forward(ctx ml.Context, visionOutputs ml.Tensor, size image.Point, spatialMergeSize int) ml.Tensor {
|
||||
d := visionOutputs.Dim(0)
|
||||
imageGrid := visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Reshape(ctx, size.X, size.Y, d)
|
||||
kernel := ctx.Input().Empty(ml.DTypeF32, spatialMergeSize, spatialMergeSize, d)
|
||||
patches := kernel.IM2Col(ctx, imageGrid, spatialMergeSize, spatialMergeSize, 0, 0, 1, 1)
|
||||
reshaped := patches.Reshape(ctx, d*spatialMergeSize*spatialMergeSize, patches.Dim(1)*patches.Dim(2))
|
||||
return pm.MergingLayer.Forward(ctx, reshaped)
|
||||
}
|
||||
|
||||
type MultiModalProjector struct {
|
||||
Norm *nn.RMSNorm `gguf:"norm"`
|
||||
Linear1 *nn.Linear `gguf:"linear_1"`
|
||||
Linear2 *nn.Linear `gguf:"linear_2"`
|
||||
PatchMerger *PatchMerger `gguf:"patch_merger"`
|
||||
|
||||
spatialMergeSize int
|
||||
eps float32
|
||||
patchSize int
|
||||
}
|
||||
|
||||
func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, size image.Point) (ml.Tensor, image.Point) {
|
||||
visionOutputs = p.Norm.Forward(ctx, visionOutputs, p.eps)
|
||||
patchSizes := image.Point{size.X / p.patchSize, size.Y / p.patchSize}
|
||||
visionOutputs = p.PatchMerger.Forward(ctx, visionOutputs, patchSizes, p.spatialMergeSize)
|
||||
visionOutputs = p.Linear1.Forward(ctx, visionOutputs)
|
||||
visionOutputs = visionOutputs.GELU(ctx)
|
||||
return p.Linear2.Forward(ctx, visionOutputs), image.Point{patchSizes.X / p.spatialMergeSize, patchSizes.Y / p.spatialMergeSize}
|
||||
}
|
||||
|
||||
func newMultiModalProjector(c fs.Config) *MultiModalProjector {
|
||||
return &MultiModalProjector{
|
||||
spatialMergeSize: int(c.Uint("spatial_merge_size", 2)),
|
||||
eps: c.Float("text_config.rms_norm_eps", 1e-5),
|
||||
patchSize: int(c.Uint("vision.patch_size", 14)),
|
||||
}
|
||||
}
|
||||
|
||||
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
|
||||
if len(m.VisionModel.Layers) == 0 {
|
||||
return nil, model.ErrNoVisionModel
|
||||
}
|
||||
|
||||
image, _, err := image.Decode(bytes.NewReader(multimodalData))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
f32s, size, err := m.ImageProcessor.ProcessImage(image)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
pixelValues, err := ctx.Input().FromFloatSlice(f32s, size.X, size.Y, m.ImageProcessor.numChannels)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
|
||||
features, size := m.MultiModalProjector.Forward(ctx, visionOutputs, size)
|
||||
|
||||
// split into patches to be sent to the text transformer
|
||||
parent := imageFeatures{tensor: features}
|
||||
rows := make([]*imageRow, size.Y)
|
||||
for i := range rows {
|
||||
rows[i] = &imageRow{parent: &parent, s: i, shape: []int{features.Dim(0), size.X}}
|
||||
}
|
||||
|
||||
return rows, nil
|
||||
}
|
||||
|
||||
type imageFeatures struct {
|
||||
tensor ml.Tensor
|
||||
|
||||
dataOnce sync.Once
|
||||
data []float32
|
||||
}
|
||||
|
||||
type imageRow struct {
|
||||
parent *imageFeatures
|
||||
s int
|
||||
shape []int
|
||||
}
|
||||
|
||||
func (r *imageRow) data() []float32 {
|
||||
n := 1
|
||||
for _, s := range r.shape {
|
||||
n *= s
|
||||
}
|
||||
|
||||
return r.parent.data[r.s*n : (r.s+1)*n]
|
||||
}
|
||||
|
||||
// PostTokenize arranges Mistral 3's inputs for the forward pass
|
||||
// In Mistral 3 and Pixtral, the input patches are arranged as follows:
|
||||
// [IMG]...[IMG][IMG_BREAK][IMG]...[IMG][IMG_BREAK][IMG]...[IMG][IMG_END]
|
||||
// Each sequence of [IMG]...[IMG] is a set of patches of vision embeddings
|
||||
// that can be processed together.
|
||||
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
|
||||
var result []input.Input
|
||||
for _, inp := range inputs {
|
||||
if inp.Multimodal == nil {
|
||||
result = append(result, inp)
|
||||
} else {
|
||||
inputMultimodal := inp.Multimodal.([]*imageRow)
|
||||
for i, row := range inputMultimodal {
|
||||
// [IMG]
|
||||
result = append(result, input.Input{Token: 10, Multimodal: row, MultimodalHash: inp.MultimodalHash, SameBatch: row.shape[1]})
|
||||
result = append(result, slices.Repeat([]input.Input{{Token: 10}}, row.shape[1]-1)...)
|
||||
if i == len(inputMultimodal)-1 {
|
||||
// [IMG_END]
|
||||
result = append(result, input.Input{Token: 13})
|
||||
} else {
|
||||
// [IMG_BREAK]
|
||||
result = append(result, input.Input{Token: 12})
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return result, nil
|
||||
}
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
|
||||
}
|
||||
|
||||
func init() {
|
||||
model.Register("mistral3", New)
|
||||
}
|
||||
177
model/models/mistral3/model_text.go
Normal file
177
model/models/mistral3/model_text.go
Normal file
@@ -0,0 +1,177 @@
|
||||
package mistral3
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"math"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type TextOptions struct {
|
||||
hiddenSize, numHeads, numKVHeads, headDim int
|
||||
eps, ropeBase, ropeScale float32
|
||||
ropeDim uint32
|
||||
}
|
||||
|
||||
type TextModel struct {
|
||||
model.Base
|
||||
model.BytePairEncoding
|
||||
|
||||
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
||||
Layers []Layer `gguf:"blk"`
|
||||
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
||||
Output *nn.Linear `gguf:"output,alt:token_embd"`
|
||||
|
||||
*TextOptions
|
||||
}
|
||||
|
||||
type SelfAttention struct {
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
Output *nn.Linear `gguf:"attn_output"`
|
||||
}
|
||||
|
||||
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
ropeType := uint32(0)
|
||||
headDim := opts.headDim
|
||||
if headDim == 0 {
|
||||
headDim = opts.hiddenSize / opts.numHeads
|
||||
}
|
||||
|
||||
q := sa.Query.Forward(ctx, hiddenState)
|
||||
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
q = q.RoPE(ctx, positionIDs, nil, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
|
||||
k := sa.Key.Forward(ctx, hiddenState)
|
||||
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
k = k.RoPE(ctx, positionIDs, nil, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
|
||||
v := sa.Value.Forward(ctx, hiddenState)
|
||||
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
|
||||
kqv := nn.Attention(ctx, q, k, v, 1.0/math.Sqrt(float64(headDim)), cache)
|
||||
kqv = kqv.Reshape(ctx, headDim*opts.numHeads, batchSize)
|
||||
return sa.Output.Forward(ctx, kqv)
|
||||
}
|
||||
|
||||
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return key.RoPE(ctx, shift, nil, uint32(0), m.ropeDim, m.ropeBase, m.ropeScale), nil
|
||||
}
|
||||
|
||||
type MLP struct {
|
||||
Up *nn.Linear `gguf:"ffn_up"`
|
||||
Down *nn.Linear `gguf:"ffn_down"`
|
||||
Gate *nn.Linear `gguf:"ffn_gate"`
|
||||
}
|
||||
|
||||
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
|
||||
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
|
||||
return mlp.Down.Forward(ctx, hiddenState)
|
||||
}
|
||||
|
||||
type Layer struct {
|
||||
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
|
||||
SelfAttention *SelfAttention
|
||||
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
|
||||
MLP *MLP
|
||||
}
|
||||
|
||||
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
|
||||
residual := hiddenState
|
||||
|
||||
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
|
||||
|
||||
// In the final layer (outputs != nil), optimize by pruning to just the token positions
|
||||
// we need logits for.
|
||||
if outputs != nil {
|
||||
hiddenState = hiddenState.Rows(ctx, outputs)
|
||||
residual = residual.Rows(ctx, outputs)
|
||||
}
|
||||
|
||||
hiddenState = hiddenState.Add(ctx, residual)
|
||||
residual = hiddenState
|
||||
|
||||
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
|
||||
return hiddenState.Add(ctx, residual)
|
||||
}
|
||||
|
||||
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) ml.Tensor {
|
||||
hiddenState := m.TokenEmbedding.Forward(ctx, inputs).Duplicate(ctx)
|
||||
|
||||
// image embeddings
|
||||
for _, image := range batch.Multimodal {
|
||||
row := image.Multimodal.(*imageRow)
|
||||
row.parent.dataOnce.Do(func() {
|
||||
// use a new, throwaway context so the image tensor is not added to the graph
|
||||
temp := m.Backend().NewContext()
|
||||
temp.Forward(row.parent.tensor).Compute(row.parent.tensor)
|
||||
row.parent.data = row.parent.tensor.Floats()
|
||||
temp.Close()
|
||||
})
|
||||
|
||||
imageFeature, err := ctx.Input().FromFloatSlice(row.data(), row.shape...)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
ctx.Forward(imageFeature.Copy(ctx, hiddenState.View(ctx, image.Index*hiddenState.Stride(1), imageFeature.Dim(0)*imageFeature.Dim(1))))
|
||||
}
|
||||
|
||||
for i, layer := range m.Layers {
|
||||
cache.SetLayer(i)
|
||||
|
||||
var lastLayerOutputs ml.Tensor
|
||||
if i == len(m.Layers)-1 {
|
||||
lastLayerOutputs = outputs
|
||||
}
|
||||
|
||||
hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, cache, m.TextOptions)
|
||||
}
|
||||
|
||||
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
|
||||
return m.Output.Forward(ctx, hiddenState)
|
||||
}
|
||||
|
||||
func NewTextModel(c fs.Config) (*TextModel, error) {
|
||||
if !strings.EqualFold(c.String("tokenizer.ggml.model"), "gpt2") {
|
||||
return nil, fmt.Errorf("tokenizer %s not yet supported", c.String("tokenizer.ggml.model"))
|
||||
}
|
||||
|
||||
textModel := &TextModel{
|
||||
BytePairEncoding: model.NewBytePairEncoding(
|
||||
c.String("tokenizer.ggml.pretokenizer", `[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
||||
&model.Vocabulary{
|
||||
Values: c.Strings("tokenizer.ggml.tokens"),
|
||||
Types: c.Uints("tokenizer.ggml.token_type"),
|
||||
Merges: c.Strings("tokenizer.ggml.merges"),
|
||||
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id", 1)),
|
||||
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
||||
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id", 2)),
|
||||
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
||||
},
|
||||
),
|
||||
Layers: make([]Layer, c.Uint("block_count")),
|
||||
TextOptions: &TextOptions{
|
||||
hiddenSize: int(c.Uint("embedding_length")),
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
headDim: int(c.Uint("attention.key_length")),
|
||||
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
||||
ropeBase: c.Float("rope.freq_base"),
|
||||
ropeScale: c.Float("rope.freq_scale", 1),
|
||||
ropeDim: c.Uint("rope.dimension_count"),
|
||||
},
|
||||
}
|
||||
|
||||
return textModel, nil
|
||||
}
|
||||
186
model/models/mistral3/model_vision.go
Normal file
186
model/models/mistral3/model_vision.go
Normal file
@@ -0,0 +1,186 @@
|
||||
package mistral3
|
||||
|
||||
import (
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
)
|
||||
|
||||
var batchSize int = 1
|
||||
|
||||
func rotateHalf(ctx ml.Context, t ml.Tensor) ml.Tensor {
|
||||
x1 := t.View(ctx, 0, t.Dim(0)/2, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2), t.Stride(3), t.Dim(3))
|
||||
x2 := t.View(ctx, t.Stride(0)*t.Dim(0)/2, t.Dim(0)/2, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2), t.Stride(3), t.Dim(3)).Contiguous(ctx)
|
||||
return x2.Neg(ctx).Concat(ctx, x1, 0)
|
||||
}
|
||||
|
||||
func applyRotaryPositionalEmbedding(ctx ml.Context, t, cos, sin ml.Tensor) ml.Tensor {
|
||||
return t.Mul(ctx, cos).Add(ctx, rotateHalf(ctx, t).Mul(ctx, sin))
|
||||
}
|
||||
|
||||
type VisionSelfAttention struct {
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
Output *nn.Linear `gguf:"attn_output"`
|
||||
}
|
||||
|
||||
func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenStates, cos, sin ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
query := sa.Query.Forward(ctx, hiddenStates)
|
||||
key := sa.Key.Forward(ctx, hiddenStates)
|
||||
value := sa.Value.Forward(ctx, hiddenStates)
|
||||
|
||||
query = query.Reshape(ctx, opts.headDim, opts.numHeads, query.Dim(1), batchSize)
|
||||
key = key.Reshape(ctx, opts.headDim, opts.numHeads, key.Dim(1), batchSize)
|
||||
value = value.Reshape(ctx, opts.headDim, opts.numHeads, value.Dim(1), batchSize)
|
||||
|
||||
query = applyRotaryPositionalEmbedding(ctx, query, cos, sin)
|
||||
key = applyRotaryPositionalEmbedding(ctx, key, cos, sin)
|
||||
|
||||
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(opts.headDim)), nil)
|
||||
attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), batchSize)
|
||||
return sa.Output.Forward(ctx, attention)
|
||||
}
|
||||
|
||||
type VisionMLP struct {
|
||||
Gate *nn.Linear `gguf:"ffn_gate"`
|
||||
Up *nn.Linear `gguf:"ffn_up"`
|
||||
Down *nn.Linear `gguf:"ffn_down"`
|
||||
}
|
||||
|
||||
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
|
||||
return mlp.Down.Forward(ctx, hiddenStates)
|
||||
}
|
||||
|
||||
type VisionEncoderLayer struct {
|
||||
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
|
||||
SelfAttention *VisionSelfAttention
|
||||
FFNNorm *nn.RMSNorm `gguf:"ffn_norm"`
|
||||
MLP *VisionMLP
|
||||
}
|
||||
|
||||
func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenStates, cos, sin ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
residual := hiddenStates
|
||||
hiddenStates = e.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
|
||||
hiddenStates = e.SelfAttention.Forward(ctx, hiddenStates, cos, sin, opts)
|
||||
hiddenStates = hiddenStates.Add(ctx, residual)
|
||||
|
||||
residual = hiddenStates
|
||||
hiddenStates = e.FFNNorm.Forward(ctx, hiddenStates, opts.eps)
|
||||
hiddenStates = e.MLP.Forward(ctx, hiddenStates, opts)
|
||||
return hiddenStates.Add(ctx, residual)
|
||||
}
|
||||
|
||||
type VisionModelOptions struct {
|
||||
hiddenSize int
|
||||
numHeads int
|
||||
headDim int
|
||||
intermediateSize int
|
||||
imageSize int
|
||||
patchSize int
|
||||
numChannels int
|
||||
eps float32
|
||||
ropeBase float32
|
||||
}
|
||||
|
||||
type VisionModel struct {
|
||||
PatchEmbedding *nn.Conv2D `gguf:"patch_conv"`
|
||||
EncoderNorm *nn.RMSNorm `gguf:"encoder_norm"`
|
||||
Layers []VisionEncoderLayer `gguf:"blk"`
|
||||
|
||||
*VisionModelOptions
|
||||
}
|
||||
|
||||
func (m *VisionModel) positionalEmbedding(ctx ml.Context, positionIDs ml.Tensor) ml.Tensor {
|
||||
maxPatchesPerSide := m.imageSize / m.patchSize
|
||||
frequencies := m.headDim / 2
|
||||
frequenciesHeight := make([]float32, frequencies/2*maxPatchesPerSide)
|
||||
frequenciesWidth := make([]float32, frequencies/2*maxPatchesPerSide)
|
||||
for i := range frequencies {
|
||||
for j := range maxPatchesPerSide {
|
||||
frequency := float32(j) / float32(math.Pow(float64(m.ropeBase), float64(i)*2/float64(m.headDim)))
|
||||
if i%2 == 0 {
|
||||
frequenciesHeight[i/2*maxPatchesPerSide+j] = frequency
|
||||
} else {
|
||||
frequenciesWidth[i/2*maxPatchesPerSide+j] = frequency
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
h, err := ctx.Input().FromFloatSlice(frequenciesHeight, maxPatchesPerSide, frequencies/2)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
w, err := ctx.Input().FromFloatSlice(frequenciesWidth, maxPatchesPerSide, frequencies/2)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
h = h.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
||||
w = w.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
||||
|
||||
h = h.Repeat(ctx, 1, maxPatchesPerSide)
|
||||
h = h.Reshape(ctx, frequencies/2, maxPatchesPerSide, maxPatchesPerSide).Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
w = w.Repeat(ctx, 2, maxPatchesPerSide)
|
||||
|
||||
inverseFrequencies := h.Concat(ctx, w, 0).Reshape(ctx, frequencies, maxPatchesPerSide*maxPatchesPerSide)
|
||||
inverseFrequencies = inverseFrequencies.Concat(ctx, inverseFrequencies, 0)
|
||||
return inverseFrequencies.Rows(ctx, positionIDs)
|
||||
}
|
||||
|
||||
func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor) ml.Tensor {
|
||||
numPatchesW := pixelValues.Dim(0) / m.patchSize
|
||||
numPatchesH := pixelValues.Dim(1) / m.patchSize
|
||||
numPatches := numPatchesW * numPatchesH
|
||||
|
||||
hiddenStates := m.PatchEmbedding.Forward(ctx, pixelValues, m.patchSize, m.patchSize, 0, 0, 1, 1)
|
||||
hiddenStates = hiddenStates.Reshape(ctx, numPatches, m.hiddenSize)
|
||||
hiddenStates = hiddenStates.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
||||
hiddenStates = m.EncoderNorm.Forward(ctx, hiddenStates, m.VisionModelOptions.eps)
|
||||
|
||||
// Prepare position IDs for 2D rope
|
||||
positions := make([]int32, numPatches)
|
||||
for h := range numPatchesH {
|
||||
for w := range numPatchesW {
|
||||
idx := h*numPatchesW + w
|
||||
positions[idx] = int32(h*m.imageSize/m.patchSize + w)
|
||||
}
|
||||
}
|
||||
|
||||
positionIDs, err := ctx.Input().FromIntSlice(positions, len(positions))
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
positionEmbedding := m.positionalEmbedding(ctx, positionIDs)
|
||||
cos, sin := positionEmbedding.Cos(ctx), positionEmbedding.Sin(ctx)
|
||||
cos = cos.Reshape(ctx, cos.Dim(0), 1, cos.Dim(1))
|
||||
sin = sin.Reshape(ctx, sin.Dim(0), 1, sin.Dim(1))
|
||||
|
||||
for _, layer := range m.Layers {
|
||||
hiddenStates = layer.Forward(ctx, hiddenStates, cos, sin, m.VisionModelOptions)
|
||||
}
|
||||
|
||||
return hiddenStates
|
||||
}
|
||||
|
||||
func newVisionModel(c fs.Config) *VisionModel {
|
||||
return &VisionModel{
|
||||
Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count", 24)),
|
||||
VisionModelOptions: &VisionModelOptions{
|
||||
hiddenSize: int(c.Uint("vision.embedding_length", 1024)),
|
||||
numHeads: int(c.Uint("vision.attention.head_count", 16)),
|
||||
headDim: int(c.Uint("vision.attention.key_length", 64)),
|
||||
intermediateSize: int(c.Uint("vision.feed_forward_length", 4096)),
|
||||
imageSize: int(c.Uint("vision.image_size", 1540)),
|
||||
patchSize: int(c.Uint("vision.patch_size", 14)),
|
||||
numChannels: int(c.Uint("vision.num_channels", 3)),
|
||||
eps: c.Float("vision.attention.layer_norm_epsilon", 1e-5),
|
||||
ropeBase: c.Float("vision.rope.freq_base", 10000.0),
|
||||
},
|
||||
}
|
||||
}
|
||||
@@ -8,6 +8,7 @@ import (
|
||||
"image"
|
||||
"slices"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
@@ -32,7 +33,7 @@ const (
|
||||
selfAttentionLayer
|
||||
)
|
||||
|
||||
func New(c ml.Config) (model.Model, error) {
|
||||
func New(c fs.Config) (model.Model, error) {
|
||||
// Verify unified config
|
||||
if c.Uint("vision.block_count") == 0 {
|
||||
return nil, fmt.Errorf("non-unified vision model not supported")
|
||||
|
||||
@@ -4,6 +4,7 @@ import (
|
||||
"math"
|
||||
"slices"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
@@ -220,7 +221,7 @@ func (m *TextModel) Forward(ctx ml.Context, inputIDs, positionIDs, outputs, mask
|
||||
return m.Output.Forward(ctx, hiddenState)
|
||||
}
|
||||
|
||||
func newTextModel(c ml.Config) *TextModel {
|
||||
func newTextModel(c fs.Config) *TextModel {
|
||||
var decoderLayers []TextDecoderLayer
|
||||
for i := range c.Uint("block_count") {
|
||||
var textDecoderLayer TextDecoderLayer
|
||||
|
||||
@@ -4,6 +4,7 @@ import (
|
||||
"math"
|
||||
"slices"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
)
|
||||
@@ -185,7 +186,7 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues, positionIDs, aspectRa
|
||||
hiddenState = hiddenState.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
||||
|
||||
hiddenState = m.PreTilePositionEmbedding.Forward(ctx, hiddenState, aspectRatioIDs, m.VisionModelOptions)
|
||||
hiddenState = m.ClassEmbedding.Stack(ctx, 2, slices.Repeat([]ml.Tensor{m.ClassEmbedding}, m.numTiles-1)...).Concat(ctx, hiddenState, 1)
|
||||
hiddenState = m.ClassEmbedding.Repeat(ctx, 2, m.numTiles).Concat(ctx, hiddenState, 1)
|
||||
|
||||
hiddenState = m.PositionEmbedding.Forward(ctx, hiddenState, positionIDs, aspectRatioIDs, numPositions, m.VisionModelOptions)
|
||||
hiddenState = m.PreLayerNorm.Forward(ctx, hiddenState, m.eps)
|
||||
@@ -213,7 +214,7 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues, positionIDs, aspectRa
|
||||
return hiddenState.Concat(ctx, hiddenStates, 0)
|
||||
}
|
||||
|
||||
func newVisionModel(c ml.Config) *VisionModel {
|
||||
func newVisionModel(c fs.Config) *VisionModel {
|
||||
return &VisionModel{
|
||||
Transformer: &VisionEncoder{Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count"))},
|
||||
GlobalTransformer: &VisionEncoder{Layers: make([]VisionEncoderLayer, c.Uint("vision.global.block_count"))},
|
||||
|
||||
@@ -8,14 +8,14 @@ import (
|
||||
|
||||
"golang.org/x/image/draw"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/fs"
|
||||
)
|
||||
|
||||
type ImageProcessor struct {
|
||||
imageSize, numChannels, maxNumTiles int
|
||||
}
|
||||
|
||||
func newImageProcessor(c ml.Config) ImageProcessor {
|
||||
func newImageProcessor(c fs.Config) ImageProcessor {
|
||||
return ImageProcessor{
|
||||
imageSize: int(c.Uint("vision.image_size")),
|
||||
numChannels: int(c.Uint("vision.num_channels")),
|
||||
|
||||
@@ -4,5 +4,6 @@ import (
|
||||
_ "github.com/ollama/ollama/model/models/gemma2"
|
||||
_ "github.com/ollama/ollama/model/models/gemma3"
|
||||
_ "github.com/ollama/ollama/model/models/llama"
|
||||
_ "github.com/ollama/ollama/model/models/mistral3"
|
||||
_ "github.com/ollama/ollama/model/models/mllama"
|
||||
)
|
||||
|
||||
@@ -1,68 +0,0 @@
|
||||
package pixtral
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"image"
|
||||
_ "image/jpeg"
|
||||
_ "image/png"
|
||||
"io"
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/model/imageproc"
|
||||
)
|
||||
|
||||
func getNumImageTokens(imageSize, patchSize image.Point) image.Point {
|
||||
return image.Point{
|
||||
(imageSize.X-1)/patchSize.X + 1,
|
||||
(imageSize.Y-1)/patchSize.Y + 1,
|
||||
}
|
||||
}
|
||||
|
||||
func getResizeOutputImageSize(img image.Image, longestEdge int, patchSize image.Point) image.Point {
|
||||
b := img.Bounds()
|
||||
le := float64(longestEdge)
|
||||
ratio := math.Max(float64(b.Max.Y)/le, float64(b.Max.X)/le)
|
||||
|
||||
newSize := img.Bounds().Max
|
||||
|
||||
if ratio > 1.0 {
|
||||
newSize = image.Point{
|
||||
int(math.Ceil(float64(b.Max.X) / ratio)),
|
||||
int(math.Ceil(float64(b.Max.Y) / ratio)),
|
||||
}
|
||||
}
|
||||
|
||||
tokens := getNumImageTokens(newSize, patchSize)
|
||||
return image.Point{
|
||||
tokens.X * patchSize.X,
|
||||
tokens.Y * patchSize.Y,
|
||||
}
|
||||
}
|
||||
|
||||
func resizeImage(img image.Image, format string, longestEdge int, patchSize image.Point) image.Image {
|
||||
if format == "png" {
|
||||
img = imageproc.Composite(img)
|
||||
}
|
||||
|
||||
newSize := getResizeOutputImageSize(img, longestEdge, patchSize)
|
||||
|
||||
// todo should be ResizeBicubic, but it doesn't exist
|
||||
return imageproc.Resize(img, newSize, imageproc.ResizeBilinear)
|
||||
}
|
||||
|
||||
func Preprocess(imageData io.Reader) ([]float32, map[string]any, error) {
|
||||
img, format, err := image.Decode(imageData)
|
||||
if err != nil {
|
||||
return nil, nil, fmt.Errorf("failed to decode image: %w", err)
|
||||
}
|
||||
|
||||
longestEdge := 1024
|
||||
patchSize := image.Point{16, 16}
|
||||
|
||||
img = resizeImage(img, format, longestEdge, patchSize)
|
||||
|
||||
data := imageproc.Normalize(img, imageproc.ClipDefaultMean, imageproc.ClipDefaultSTD, true, true)
|
||||
|
||||
opts := map[string]any{}
|
||||
return data, opts, nil
|
||||
}
|
||||
@@ -1,219 +0,0 @@
|
||||
package pixtral
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"image"
|
||||
"image/png"
|
||||
"math"
|
||||
"os"
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
)
|
||||
|
||||
func TestGetNumImageTokens(t *testing.T) {
|
||||
type numImageTokensCase struct {
|
||||
ImageSize image.Point
|
||||
PatchSize image.Point
|
||||
Expected image.Point
|
||||
}
|
||||
|
||||
cases := []numImageTokensCase{
|
||||
{
|
||||
ImageSize: image.Point{1024, 764},
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{64, 48},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{800, 600},
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{50, 38},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{640, 480},
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{40, 30},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{320, 200},
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{20, 13},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{1320, 200},
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{83, 13},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{2000, 200},
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{125, 13},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{10000, 200},
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{625, 13},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{1131, 577},
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{71, 37},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{16, 16},
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{1, 1},
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
actual := getNumImageTokens(c.ImageSize, c.PatchSize)
|
||||
|
||||
if diff := cmp.Diff(actual, c.Expected); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestGetResizeOutputImageSize(t *testing.T) {
|
||||
type resizeCase struct {
|
||||
Image image.Image
|
||||
LongestEdge int
|
||||
PatchSize image.Point
|
||||
Expected image.Point
|
||||
}
|
||||
|
||||
cases := []resizeCase{
|
||||
{
|
||||
Image: image.NewRGBA(image.Rect(0, 0, 1024, 768)),
|
||||
LongestEdge: 1024,
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{1024, 768},
|
||||
},
|
||||
{
|
||||
Image: image.NewRGBA(image.Rect(0, 0, 1162, 690)),
|
||||
LongestEdge: 1024,
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{1024, 624},
|
||||
},
|
||||
{
|
||||
Image: image.NewRGBA(image.Rect(0, 0, 300, 200)),
|
||||
LongestEdge: 1024,
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{304, 208},
|
||||
},
|
||||
{
|
||||
Image: image.NewRGBA(image.Rect(0, 0, 1862, 522)),
|
||||
LongestEdge: 1024,
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{1024, 288},
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
actual := getResizeOutputImageSize(c.Image, c.LongestEdge, c.PatchSize)
|
||||
|
||||
if diff := cmp.Diff(actual, c.Expected); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestResize(t *testing.T) {
|
||||
type resizeCase struct {
|
||||
Image image.Image
|
||||
LongestEdge int
|
||||
PatchSize image.Point
|
||||
Expected image.Image
|
||||
}
|
||||
|
||||
cases := []resizeCase{
|
||||
{
|
||||
Image: image.NewRGBA(image.Rect(0, 0, 1862, 522)),
|
||||
LongestEdge: 1024,
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.NewRGBA(image.Rect(0, 0, 1024, 288)),
|
||||
},
|
||||
{
|
||||
Image: image.NewRGBA(image.Rect(0, 0, 10, 10)),
|
||||
LongestEdge: 1024,
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.NewRGBA(image.Rect(0, 0, 16, 16)),
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
actual := resizeImage(c.Image, "png", c.LongestEdge, c.PatchSize)
|
||||
|
||||
if actual.Bounds() != c.Expected.Bounds() {
|
||||
t.Errorf("image size incorrect: '%#v': expected: '%#v'", actual.Bounds(), c.Expected.Bounds())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestPreprocess(t *testing.T) {
|
||||
type preprocessCase struct {
|
||||
TestImage image.Image
|
||||
ExpectedLen int
|
||||
}
|
||||
|
||||
cases := []preprocessCase{
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 10, 10)),
|
||||
ExpectedLen: 16 * 16 * 3 * 1,
|
||||
},
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 2000, 2000)),
|
||||
ExpectedLen: 1024 * 1024 * 3 * 1,
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
var buf bytes.Buffer
|
||||
err := png.Encode(&buf, c.TestImage)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
imgData, _, err := Preprocess(&buf)
|
||||
if err != nil {
|
||||
t.Fatalf("error processing: %q", err)
|
||||
}
|
||||
|
||||
switch len(imgData) {
|
||||
case 0:
|
||||
t.Errorf("no image data returned")
|
||||
case c.ExpectedLen:
|
||||
// ok
|
||||
default:
|
||||
t.Errorf("unexpected image data length: %d, expected: %d", len(imgData), c.ExpectedLen)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestPreprocessImages(t *testing.T) {
|
||||
for _, testFile := range []string{"flight.png", "sportsball.png"} {
|
||||
f, err := os.Open(testFile)
|
||||
if err != nil {
|
||||
t.Skipf("skipping test, no test image found at %s", testFile)
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
imgData, _, err := Preprocess(f)
|
||||
if err != nil {
|
||||
t.Fatalf("error processing: %q", err)
|
||||
}
|
||||
|
||||
byteData := make([]byte, len(imgData)*4) // float32 is 4 bytes
|
||||
for i, f := range imgData {
|
||||
binary.LittleEndian.PutUint32(byteData[i*4:], math.Float32bits(f))
|
||||
}
|
||||
|
||||
outputPath := "processed_" + testFile + ".bin"
|
||||
err = os.WriteFile(outputPath, byteData, 0o644)
|
||||
if err != nil {
|
||||
t.Fatalf("error writing processed image: %q", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -32,8 +32,6 @@ type TextProcessor interface {
|
||||
Encode(s string, addSpecial bool) ([]int32, error)
|
||||
Decode([]int32) (string, error)
|
||||
Is(int32, Special) bool
|
||||
|
||||
Vocab() *Vocabulary
|
||||
}
|
||||
|
||||
type Vocabulary struct {
|
||||
@@ -265,6 +263,10 @@ func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
|
||||
continue
|
||||
}
|
||||
|
||||
if id := bpe.vocab.Encode(pair.value); id < 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
merges[pair.a].runes = append(left.runes, right.runes...)
|
||||
merges[pair.b].runes = nil
|
||||
|
||||
|
||||
@@ -1,29 +1,23 @@
|
||||
package model
|
||||
|
||||
import (
|
||||
"iter"
|
||||
"container/heap"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"strconv"
|
||||
"strings"
|
||||
|
||||
"github.com/dlclark/regexp2"
|
||||
queue "github.com/emirpasic/gods/v2/queues/priorityqueue"
|
||||
)
|
||||
|
||||
const spmWhitespaceSep = "▁"
|
||||
|
||||
func replaceWhitespaceBySeperator(s string) string {
|
||||
return strings.ReplaceAll(s, " ", spmWhitespaceSep)
|
||||
}
|
||||
|
||||
type SentencePieceModel struct {
|
||||
maxTokenLen int
|
||||
pre *regexp2.Regexp
|
||||
vocab *Vocabulary
|
||||
}
|
||||
|
||||
var _ TextProcessor = (*SentencePieceModel)(nil)
|
||||
|
||||
func NewSentencePieceModel(pre string, vocab *Vocabulary) SentencePieceModel {
|
||||
func NewSentencePieceModel(vocab *Vocabulary) SentencePieceModel {
|
||||
slog.Debug("Tokens", "num tokens", len(vocab.Values), "vals", vocab.Values[:5], "scores", vocab.Scores[:5], "types", vocab.Types[:5])
|
||||
|
||||
counter := map[int]int{}
|
||||
@@ -44,33 +38,17 @@ func NewSentencePieceModel(pre string, vocab *Vocabulary) SentencePieceModel {
|
||||
|
||||
return SentencePieceModel{
|
||||
maxTokenLen: maxTokenLen,
|
||||
pre: regexp2.MustCompile(pre, regexp2.Unicode|regexp2.RE2),
|
||||
vocab: vocab,
|
||||
}
|
||||
}
|
||||
|
||||
func (spm SentencePieceModel) Vocab() *Vocabulary {
|
||||
return spm.vocab
|
||||
}
|
||||
|
||||
func (spm SentencePieceModel) Is(id int32, special Special) bool {
|
||||
return spm.vocab.Is(id, special)
|
||||
}
|
||||
|
||||
func (spm *SentencePieceModel) split(s string) iter.Seq[string] {
|
||||
return func(yield func(string) bool) {
|
||||
for m, _ := spm.pre.FindStringMatch(s); m != nil; m, _ = spm.pre.FindNextMatch(m) {
|
||||
if !yield(m.String()) {
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error) {
|
||||
fragments := []fragment{{value: s}}
|
||||
for _, special := range spm.vocab.SpecialVocabulary() {
|
||||
// TODO: process special tokens concurrently
|
||||
id := spm.vocab.Encode(special)
|
||||
for i := 0; i < len(fragments); i++ {
|
||||
frag := fragments[i]
|
||||
@@ -95,7 +73,6 @@ func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error)
|
||||
fragments = append(fragments[:i], append(middle, fragments[i+1:]...)...)
|
||||
}
|
||||
}
|
||||
slog.Debug("fragments", "frags", fragments)
|
||||
|
||||
var ids []int32
|
||||
for _, frag := range fragments {
|
||||
@@ -104,105 +81,96 @@ func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error)
|
||||
continue
|
||||
}
|
||||
|
||||
for split := range spm.split(frag.value) {
|
||||
split = replaceWhitespaceBySeperator(split)
|
||||
text := strings.ReplaceAll(frag.value, " ", spmWhitespaceSep)
|
||||
|
||||
var sb strings.Builder
|
||||
sb.Write([]byte(split))
|
||||
if id := spm.vocab.Encode(sb.String()); id >= 0 {
|
||||
ids = append(ids, id)
|
||||
continue
|
||||
if id := spm.vocab.Encode(text); id >= 0 {
|
||||
ids = append(ids, id)
|
||||
continue
|
||||
}
|
||||
|
||||
q := &queue{}
|
||||
heap.Init(q)
|
||||
|
||||
runes := []rune(text)
|
||||
merges := make([]merge, len(runes))
|
||||
for r := range runes {
|
||||
merges[r] = merge{
|
||||
p: r - 1,
|
||||
n: r + 1,
|
||||
runes: []rune{runes[r]},
|
||||
}
|
||||
}
|
||||
|
||||
runes := []rune(sb.String())
|
||||
pq := queue.NewWith(func(a, b any) int {
|
||||
priA := a.(*candidate)
|
||||
priB := b.(*candidate)
|
||||
if priA.score > priB.score || (priA.score == priB.score && priA.a < priB.a) {
|
||||
return -1
|
||||
}
|
||||
return 1
|
||||
})
|
||||
|
||||
merges := make([]merge, len(runes))
|
||||
for r := range runes {
|
||||
merges[r] = merge{
|
||||
p: r - 1,
|
||||
n: r + 1,
|
||||
runes: []rune{runes[r]},
|
||||
}
|
||||
}
|
||||
|
||||
slog.Debug("tokenizer", "merges", merges)
|
||||
|
||||
pairwise := func(a, b int) *candidate {
|
||||
if a < 0 || b >= len(runes) {
|
||||
return nil
|
||||
}
|
||||
|
||||
left, right := string(merges[a].runes), string(merges[b].runes)
|
||||
if id := spm.vocab.Encode(left + right); id >= 0 {
|
||||
return &candidate{
|
||||
a: a,
|
||||
b: b,
|
||||
score: spm.vocab.Scores[id],
|
||||
}
|
||||
}
|
||||
pairwise := func(a, b int) *candidate {
|
||||
if a < 0 || b >= len(runes) {
|
||||
return nil
|
||||
}
|
||||
|
||||
for i := range len(runes) - 1 {
|
||||
if pair := pairwise(i, i+1); pair != nil {
|
||||
pq.Enqueue(pair)
|
||||
left, right := string(merges[a].runes), string(merges[b].runes)
|
||||
if id := spm.vocab.Encode(left + right); id >= 0 {
|
||||
return &candidate{
|
||||
a: a,
|
||||
b: b,
|
||||
score: spm.vocab.Scores[id],
|
||||
size: len(left) + len(right),
|
||||
}
|
||||
}
|
||||
|
||||
pqv := pq.Values()
|
||||
for _, v := range pqv {
|
||||
e := v.(*candidate)
|
||||
slog.Debug("candidate", "candidate", e)
|
||||
return nil
|
||||
}
|
||||
|
||||
for i := range len(runes) - 1 {
|
||||
if pair := pairwise(i, i+1); pair != nil {
|
||||
heap.Push(q, pair)
|
||||
}
|
||||
}
|
||||
|
||||
for q.Len() > 0 {
|
||||
pair := heap.Pop(q).(*candidate)
|
||||
left, right := merges[pair.a], merges[pair.b]
|
||||
|
||||
if string(left.runes) == "" || string(right.runes) == "" || len(string(left.runes))+len(string(right.runes)) != pair.size {
|
||||
continue
|
||||
}
|
||||
|
||||
for !pq.Empty() {
|
||||
v, _ := pq.Dequeue()
|
||||
pair := v.(*candidate)
|
||||
left, right := merges[pair.a], merges[pair.b]
|
||||
merges[pair.a].runes = append(left.runes, right.runes...)
|
||||
merges[pair.b].runes = nil
|
||||
merges[pair.a].n = right.n
|
||||
if right.n < len(merges) {
|
||||
merges[right.n].p = pair.a
|
||||
}
|
||||
|
||||
slog.Debug("pair", "left", left, "right", right)
|
||||
if len(left.runes) == 0 || len(right.runes) == 0 {
|
||||
if pair := pairwise(merges[pair.a].p, pair.a); pair != nil {
|
||||
heap.Push(q, pair)
|
||||
}
|
||||
|
||||
if pair := pairwise(pair.a, merges[pair.a].n); pair != nil {
|
||||
heap.Push(q, pair)
|
||||
}
|
||||
}
|
||||
|
||||
for _, merge := range merges {
|
||||
if token := string(merge.runes); token != "" {
|
||||
id := spm.vocab.Encode(token)
|
||||
|
||||
if id >= 0 {
|
||||
ids = append(ids, id)
|
||||
continue
|
||||
}
|
||||
|
||||
if id := spm.vocab.Encode(string(left.runes) + string(right.runes)); id < 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
merges[pair.a].runes = append(left.runes, right.runes...)
|
||||
merges[pair.b].runes = nil
|
||||
merges[pair.a].n = right.n
|
||||
if right.n < len(merges) {
|
||||
merges[right.n].p = pair.a
|
||||
}
|
||||
|
||||
if pair := pairwise(merges[pair.a].p, pair.a); pair != nil {
|
||||
pq.Enqueue(pair)
|
||||
}
|
||||
|
||||
if pair := pairwise(pair.a, merges[pair.a].n); pair != nil {
|
||||
pq.Enqueue(pair)
|
||||
}
|
||||
}
|
||||
|
||||
slog.Debug("merges", "merges", merges)
|
||||
|
||||
for _, merge := range merges {
|
||||
if len(merge.runes) > 0 {
|
||||
if id := spm.vocab.Encode(string(merge.runes)); id >= 0 {
|
||||
ids = append(ids, id)
|
||||
// Fallback to byte tokenization
|
||||
var result []int32
|
||||
for _, b := range []byte(token) {
|
||||
byteToken := fmt.Sprintf("<0x%02X>", b)
|
||||
unknownID := spm.vocab.Encode(byteToken)
|
||||
if unknownID >= 0 {
|
||||
result = append(result, unknownID)
|
||||
} else {
|
||||
slog.Debug("missing token", "token", string(merge.runes))
|
||||
slog.Debug("unknown byte token", "byte", b, "token", byteToken)
|
||||
}
|
||||
}
|
||||
|
||||
ids = append(ids, result...)
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -233,6 +201,30 @@ func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error)
|
||||
type candidate struct {
|
||||
a, b int
|
||||
score float32
|
||||
size int
|
||||
}
|
||||
|
||||
type queue []*candidate
|
||||
|
||||
func (q queue) Len() int { return len(q) }
|
||||
|
||||
func (q queue) Less(i, j int) bool {
|
||||
return (q[i].score > q[j].score) || (q[i].score == q[j].score && q[i].a < q[j].a)
|
||||
}
|
||||
|
||||
func (q queue) Swap(i, j int) { q[i], q[j] = q[j], q[i] }
|
||||
|
||||
func (q *queue) Push(x interface{}) {
|
||||
item := x.(*candidate)
|
||||
*q = append(*q, item)
|
||||
}
|
||||
|
||||
func (q *queue) Pop() interface{} {
|
||||
old := *q
|
||||
n := len(old)
|
||||
item := old[n-1]
|
||||
*q = old[0 : n-1]
|
||||
return item
|
||||
}
|
||||
|
||||
func (spm SentencePieceModel) Decode(ids []int32) (string, error) {
|
||||
@@ -240,11 +232,26 @@ func (spm SentencePieceModel) Decode(ids []int32) (string, error) {
|
||||
for _, id := range ids {
|
||||
data := spm.vocab.Decode(id)
|
||||
data = strings.ReplaceAll(data, spmWhitespaceSep, " ")
|
||||
if _, err := sb.WriteString(data); err != nil {
|
||||
return "", err
|
||||
|
||||
// For tokenizers that use byte tokens like "<0xEA>"
|
||||
// convert them to the partial unicode character
|
||||
// so they are buffered correctly by the runner instead
|
||||
// of being sent back to the api as "<0xEA>"
|
||||
if len(data) == 6 && strings.HasPrefix(data, "<0x") && strings.HasSuffix(data, ">") {
|
||||
byteVal, err := strconv.ParseUint(data[1:5], 0, 8)
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("failed to parse hex byte: %v", err)
|
||||
}
|
||||
|
||||
if err := sb.WriteByte(byte(byteVal)); err != nil {
|
||||
return "", err
|
||||
}
|
||||
} else {
|
||||
if _, err := sb.WriteString(data); err != nil {
|
||||
return "", err
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
slog.Debug("decoded", "ids", ids, "text", sb.String())
|
||||
return sb.String(), nil
|
||||
}
|
||||
|
||||
@@ -25,8 +25,6 @@ func loadSentencePieceVocab(t *testing.T) SentencePieceModel {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
preTokenizer := `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`
|
||||
|
||||
var v Vocabulary
|
||||
|
||||
for _, piece := range spm.GetPieces() {
|
||||
@@ -47,7 +45,7 @@ func loadSentencePieceVocab(t *testing.T) SentencePieceModel {
|
||||
}
|
||||
}
|
||||
|
||||
return NewSentencePieceModel(preTokenizer, &v)
|
||||
return NewSentencePieceModel(&v)
|
||||
}
|
||||
|
||||
func TestSentencePieceEncode(t *testing.T) {
|
||||
@@ -116,3 +114,59 @@ func TestSentencePieceEncode(t *testing.T) {
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
func TestSentencePieceModelDecodeByteTokens(t *testing.T) {
|
||||
vocab := &Vocabulary{
|
||||
Values: []string{
|
||||
"normal",
|
||||
"<0xEA>",
|
||||
"<0x41>",
|
||||
"<0xC3>",
|
||||
"<0xA3>",
|
||||
},
|
||||
Types: []uint32{
|
||||
TOKEN_TYPE_NORMAL,
|
||||
TOKEN_TYPE_BYTE,
|
||||
TOKEN_TYPE_BYTE,
|
||||
TOKEN_TYPE_BYTE,
|
||||
TOKEN_TYPE_BYTE,
|
||||
},
|
||||
Scores: []float32{0, 0, 0, 0, 0},
|
||||
}
|
||||
|
||||
spm := NewSentencePieceModel(vocab)
|
||||
|
||||
tests := []struct {
|
||||
name string
|
||||
ids []int32
|
||||
expected string
|
||||
}{
|
||||
{
|
||||
name: "single byte token",
|
||||
ids: []int32{1},
|
||||
expected: "\xea",
|
||||
},
|
||||
{
|
||||
name: "ASCII byte token",
|
||||
ids: []int32{2},
|
||||
expected: "A",
|
||||
},
|
||||
{
|
||||
name: "multiple byte tokens forming UTF-8 character",
|
||||
ids: []int32{3, 4},
|
||||
expected: "ã",
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
result, err := spm.Decode(tt.ids)
|
||||
if err != nil {
|
||||
t.Errorf("failed to decode token IDs %v: %v", tt.ids, err)
|
||||
}
|
||||
if result != tt.expected {
|
||||
t.Errorf("got %q, want %q", result, tt.expected)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
@@ -23,10 +23,10 @@ import (
|
||||
var finishReasonToolCalls = "tool_calls"
|
||||
|
||||
type Error struct {
|
||||
Message string `json:"message"`
|
||||
Type string `json:"type"`
|
||||
Param interface{} `json:"param"`
|
||||
Code *string `json:"code"`
|
||||
Message string `json:"message"`
|
||||
Type string `json:"type"`
|
||||
Param any `json:"param"`
|
||||
Code *string `json:"code"`
|
||||
}
|
||||
|
||||
type ErrorResponse struct {
|
||||
@@ -465,7 +465,7 @@ func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
|
||||
}
|
||||
}
|
||||
|
||||
options := make(map[string]interface{})
|
||||
options := make(map[string]any)
|
||||
|
||||
switch stop := r.Stop.(type) {
|
||||
case string:
|
||||
|
||||
@@ -219,7 +219,7 @@ func TestChatMiddleware(t *testing.T) {
|
||||
{
|
||||
Function: api.ToolCallFunction{
|
||||
Name: "get_current_weather",
|
||||
Arguments: map[string]interface{}{
|
||||
Arguments: map[string]any{
|
||||
"location": "Paris, France",
|
||||
"format": "celsius",
|
||||
},
|
||||
@@ -281,27 +281,31 @@ func TestChatMiddleware(t *testing.T) {
|
||||
Description: "Get the current weather",
|
||||
Parameters: struct {
|
||||
Type string `json:"type"`
|
||||
Defs any `json:"$defs,omitempty"`
|
||||
Items any `json:"items,omitempty"`
|
||||
Required []string `json:"required"`
|
||||
Properties map[string]struct {
|
||||
Type string `json:"type"`
|
||||
Description string `json:"description"`
|
||||
Enum []string `json:"enum,omitempty"`
|
||||
Type api.PropertyType `json:"type"`
|
||||
Items any `json:"items,omitempty"`
|
||||
Description string `json:"description"`
|
||||
Enum []any `json:"enum,omitempty"`
|
||||
} `json:"properties"`
|
||||
}{
|
||||
Type: "object",
|
||||
Required: []string{"location"},
|
||||
Properties: map[string]struct {
|
||||
Type string `json:"type"`
|
||||
Description string `json:"description"`
|
||||
Enum []string `json:"enum,omitempty"`
|
||||
Type api.PropertyType `json:"type"`
|
||||
Items any `json:"items,omitempty"`
|
||||
Description string `json:"description"`
|
||||
Enum []any `json:"enum,omitempty"`
|
||||
}{
|
||||
"location": {
|
||||
Type: "string",
|
||||
Type: api.PropertyType{"string"},
|
||||
Description: "The city and state",
|
||||
},
|
||||
"unit": {
|
||||
Type: "string",
|
||||
Enum: []string{"celsius", "fahrenheit"},
|
||||
Type: api.PropertyType{"string"},
|
||||
Enum: []any{"celsius", "fahrenheit"},
|
||||
},
|
||||
},
|
||||
},
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user