Compare commits

..

72 Commits

Author SHA1 Message Date
Bruce MacDonald
d5eae8248d runner: enable returning more info from runner processing
Currently we return only the text predicted from the LLM. This was nice in
that it was simple, but there may be other info we want to know from the
processing. This change adds the ability to return more information from the
runner than just the text predicted.
2025-06-13 16:26:57 -07:00
Jeffrey Morgan
9f8a18ec05 tools: loosen tool parsing to allow for more formats (#11030) 2025-06-12 14:18:54 -07:00
Michael Yang
6b04cad7e8 feat: incremental gguf parser (#10822)
* incremental gguf parser
* gguf: update test to not rely on gguf on disc
* re-use existing create gguf
* read capabilities from gguf kv
* kv exists
* update tests
* s/doneFunc/successFunc/g
* new buffered reader

---------

Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
2025-06-12 11:04:11 -07:00
Michael Yang
45f56355d5 feat: uneven splits (#11048)
The current splitDim function only operates on tensors that are split evenly which isn't always the case, e.g. a QKV tensor. This change allows the function to be used for arbitrary splits
2025-06-11 12:10:54 -07:00
Michael Yang
0dabb4ef6a skip tokenizer.model if possible (#11050)
if tokenizer.json is already copied, skip tokenizer.model
2025-06-11 12:10:35 -07:00
Michael Yang
2e77aa1ae7 use nn.Linear in place of ml.Tensor (#11049)
while nn.Linear.Forward isn't applicable for sparse MLP, it's still
a nice container for the tensors
2025-06-11 12:10:15 -07:00
Attogram Project
deaabe292d readme: add ollama-multirun to community integrations (#11038) 2025-06-10 14:14:51 -07:00
Jeffrey Morgan
af21a5ac39 readme: update quickstart link text to Gemma 3 2025-06-10 09:34:23 -07:00
Jeffrey Morgan
f63d7f68eb readme: update quickstart example to Gemma 3 2025-06-10 09:33:54 -07:00
Daniel Hiltgen
82ad1dbc07 mac: handle "keep" named apps (#11031)
When a user elects to keep the existing app, the
new Ollama is named `Ollama 2.app`
This fixes the app startup flow to handle this naming pattern.
2025-06-09 16:29:57 -07:00
Daniel Hiltgen
feeabdadd2 spawn desktop quickly (#11011)
Give the desktop app a hint to start fast.
2025-06-08 09:34:52 -07:00
Krzysztof Jeziorny
fc0309615e docs: update link to AMD drivers in linux.md (#10973) 2025-06-06 23:30:04 -04:00
Jeffrey Morgan
09d308d6b6 Revert "server: add model capabilities to the list endpoint (#10174)" (#11004)
This reverts commit 0943001193.
2025-06-06 23:29:14 -04:00
Daniel Hiltgen
a8ed68bd93 launch app hidden (#10962)
When starting the app in the background, start it hidden.
2025-06-06 14:06:29 -07:00
Daniel Hiltgen
2ae65ae471 win: handle more than 2048 processes (#10997)
Fix an array out of bounds crash
2025-06-06 14:06:09 -07:00
Devon Rifkin
a3b6886b7d move thinking logic into its own package (#10990)
move thinking logic into its own package
2025-06-06 12:02:20 -07:00
Hunter Wittenborn
c6a6d7294d docs: fix typo in development.md (#10998) 2025-06-06 12:07:29 -04:00
Devon Rifkin
2cf007c9d1 Merge pull request #10987 from ollama/drifkin/export-thinking-parser
export ThinkingParser
2025-06-05 12:19:14 -07:00
Devon Rifkin
0683efa637 export ThinkingParser 2025-06-05 10:22:32 -07:00
JasonHonKL
0943001193 server: add model capabilities to the list endpoint (#10174) 2025-06-04 11:39:48 -07:00
HardCodeDev
5c42800fca readme: add SimpleOllamaUnity to community integrations (#10817) 2025-05-30 19:50:16 -07:00
Parth Sareen
65f10c2823 tools: resiliency upgrade to name and arg extraction from template (#10917) 2025-05-30 15:18:09 -07:00
Jesse Gross
aaa7818000 ggml: Export GPU UUIDs
This enables matching up devices and information reported by the backend
with system management libraries such as nvml to get accurate free
memory reporting.
2025-05-29 14:01:26 -07:00
Jesse Gross
f15ffc4320 llm: Make "POST predict" error message more informative
"POST predict" basically means that the runner has crashed, which
can have many reasons. However, many people think this is a specific
error and either report only this message or group together unrelated
bugs. This replaces it with a more friendly and helpful message.
2025-05-29 09:41:19 -07:00
Devon Rifkin
5f57b0ef42 add thinking support to the api and cli (#10584)
- Both `/api/generate` and `/api/chat` now accept a `"think"`
  option that allows specifying whether thinking mode should be on or
  not
- Templates get passed this new option so, e.g., qwen3's template can
  put `/think` or `/no_think` in the system prompt depending on the
  value of the setting
- Models' thinking support is inferred by inspecting model templates.
  The prefix and suffix the parser uses to identify thinking support is
  also automatically inferred from templates
- Thinking control & parsing is opt-in via the API to prevent breaking
  existing API consumers. If the `"think"` option is not specified, the
  behavior is unchanged from previous versions of ollama
- Add parsing for thinking blocks in both streaming/non-streaming mode
  in both `/generate` and `/chat`
- Update the CLI to make use of these changes. Users can pass `--think`
  or `--think=false` to control thinking, or during an interactive
  session they can use the commands `/set think` or `/set nothink`
- A `--hidethinking` option has also been added to the CLI. This makes
  it easy to use thinking in scripting scenarios like
  `ollama run qwen3 --think --hidethinking "my question here"` where you
  just want to see the answer but still want the benefits of thinking
  models
2025-05-28 19:38:52 -07:00
Patrick Devine
aa25aff10d client: add request signing to the client (#10881)
If OLLAMA_AUTH is set, sign each request w/ a timestamp and pass the signature in the token header
2025-05-27 16:50:57 -07:00
Jesse Gross
ea79003180 kvcache: Skip computing causal mask for worst case graph reservation
Computing an attention mask for a large context and max batch is
expensive - over 100ms. Models like Gemma3 that have multiple types
of caches and custom attention masks need to do this 4 times, so this
adds approximately 500ms to startup time when using 128k context

When we are reserving the worst case graph, we don't need the mask,
only its shape, so we can skip this.
2025-05-27 14:25:15 -07:00
Kyle Steere
9239a254e0 server: abort download on empty digest
Signed-off-by: Kyle Steere <kyle.steere@chainguard.dev>
2025-05-27 11:28:48 -07:00
Parth Sareen
066d0f4746 tools: relax JSON parse constraints for tool calling (#10872) 2025-05-26 18:59:06 -07:00
Parth Sareen
aea6fb9b58 tools: remove newline stripping (#10869) 2025-05-26 17:16:00 -07:00
RAPID ARCHITECT
012cf65340 readme: add AWS Strands Agents SDK example to community integrations (#10865) 2025-05-26 12:05:03 -07:00
Min Yoo
a45231af47 readme: Add macLlama to community integrations (#10790)
This commit updates the README to include macLlama within the community integrations section.

macLlama is a native macOS application built for lightweight and efficient LLM interaction.  Key features include:

*   **Lightweight & Native:** Designed to be resource-friendly and perform optimally on macOS.
*   **Chat-like Interface:** Provides a user-friendly, conversational interface.
*   **Multiple Window Support:** Allows users to manage multiple conversations simultaneously.

The primary goal of macLlama is to offer a simple and easy-to-run LLM experience on macOS.
2025-05-24 13:18:32 -07:00
Daniel Hiltgen
2307fc2bcd tests: drop llama3.2-vision embedding tests (#10837) 2025-05-24 13:17:53 -07:00
frob
6623898198 docs: remove unsupported quantizations (#10842) 2025-05-24 13:17:26 -07:00
frob
eda472df1b server: add hint to the error message when model path access fails (#10843) 2025-05-24 13:17:04 -07:00
Jesse Gross
f18e0cb550 ml: Improve slog formatting for BackendMemory 2025-05-23 20:08:23 -07:00
Parth Sareen
e8b981fa5d tools: refactor tool call parsing and enable streaming (#10415) 2025-05-23 14:19:31 -07:00
Parth Sareen
884d26093c llama: add minimum memory for grammar (#10820) 2025-05-22 18:53:31 -07:00
Jesse Gross
1f371ea92f ml: Panic rather than return error on tensor allocation failure
FromFloatSlice and FromIntSlice return an error if the shape doesn't
match the passed data or if memory can't be allocated. Since these
are inputs, the memory being allocated is system memory rather than VRAM.

In many cases, the caller can't really handle the error and panics.

Empty and Zeros directly panic if they can't allocate memory.

This makes things consistent by panicing for the first two cases,
removing a fair amount of error handling code. This is also consistent
with how Go typically handles these situations.
2025-05-22 14:38:09 -07:00
Jesse Gross
73d6a82cce ollamarunner: Memory usage reporting
This provides granular information about the backend memory allocations
required by the runner:
 - Per backend
 - Per layer
 - Weights, cache and graph
 - Allocation status

This can be used for debugging and validating memory estimates.
2025-05-22 14:38:09 -07:00
Jesse Gross
6db8a3771c ggml: Report graph memory for failed allocations
GGML has a function to report the allocated size of a backend buffer.
However, this returns 0 if we tried to allocate a buffer and it failed.
For memory management purposes, it's important to know how much we were
trying to allocate. This extends the API to report attempted sizes for
all buffers and whether it succeeeded.
2025-05-22 14:38:09 -07:00
Daniel Hiltgen
d950ff12c0 sched: fix runner leak during reloading unload (#10819)
When the same model is being reloaded rapidly with client connections
being canceled before the model finishes loading, the queued unload
event could cause a leak of runners by deleting a different runner from
the loaded list.
2025-05-22 14:31:36 -07:00
Michael Yang
adff143bcd fix: mllama quality (#10807)
* fix mllama convert

- transform attn_gate and ffn_gate
- swap attention heads for vision models

* fix mllama

the mlp gate which was applied in the wrong place
2025-05-22 11:30:49 -07:00
Bruce MacDonald
fbe6ae285a server: improve tensor quantization fallback logic (#10806)
Fall back to alternative quantization types when a tensor's dimensions aren't divisible by the block size required for the original desired quantization type. If retried quantization types fail, the system ultimately falls back to F16 (half-precision floating point) which has a block size of 1 and can handle any tensor dimension.
2025-05-22 10:48:08 -07:00
Daniel Hiltgen
fdd4d479a3 integration: add qwen2.5-vl (#10815)
Replace the older llava model with qwen2.5 for vision tests
Skip split-batch test on small VRAM systems to avoid excessive test time
2025-05-22 09:12:32 -07:00
Michael Yang
61aeaf7e81 remove support for multiple ggufs in a single file (#10722)
* remove support for multiple ggufs in a single file

this was an attempt to make it easier to import multimodal models into
ollama. this was rarely used and error prone so remove it

* fix: create fused model from blob
2025-05-21 13:55:31 -07:00
Daniel Hiltgen
7359b02707 win: detect background upgrade in progress (#10785)
Give the user a helpful error instead of showing
connection refused errors.
2025-05-21 10:46:56 -07:00
Michael Yang
c890011322 feat: port qwen2 model (#10782) 2025-05-21 10:21:24 -07:00
Michael Yang
e0ed984cde feat: qwen3 dense and sparse models (#10708)
* feat: qwen3 dense
* feat: qwen3moe
* fix llama4 moe
2025-05-21 10:21:07 -07:00
Michael Yang
139f84cf21 fix cmakelists (#10804)
this fixes an issue introduced in #10788
2025-05-21 09:52:52 -07:00
Michael Yang
375839ea2d chore: disable debug in binary libraries (#10788) 2025-05-21 09:39:38 -07:00
Michael Yang
69b2fe9282 fix: qwen25vl assign samebatch in multimodal input (#10789)
setting samebatch on the vision start token is problematic because it
will be shared with other inputs that also use images. this will cause
the input to be cached and the runner will not see SameBatch. SameBatch
will also be incorrect since it may be for a different image.

assigning samebatch to the input tokens resolves this by ensure it's
assigned correctly to inputs corresponding to the image.

not setting same batch correctly may cause panics during inference since
images are no longer guaranteed to be in the same batch.
2025-05-21 09:39:20 -07:00
Michael Yang
9ed8bf14cb ml: add more rope options (#10775) 2025-05-20 15:51:08 -07:00
DarkCaster
e6a800ca11 llama: fix incorrect initialization of C.struct_common_sampler_cparams.penalty_present (#10779) 2025-05-20 10:41:15 -07:00
Michael Yang
ff180c3466 fix llama and mistral3 models (#10774)
* fix llama model

* fix mistral3.1 model

do not set default vision layers
2025-05-19 15:06:35 -07:00
Jesse Gross
3fe74fba42 llm: Use first layer as memory buffer in estimation
This is a partial revert of 0478d44 "Fixed over vram allcation dure to
small initial layer sizes."

Previously we used the size of the first layer as an extra reserved
amount of space to buffer our memory estimates. The above commit
changed this to use the largest layer. However, this had performance
impacts on more models than the original commit was trying to fix.

There is just a heuristic without an ideal solution so this goes back
to the historic behavior.

Fixes: #10765, #10756, #10752, #10726
2025-05-19 14:03:34 -07:00
Daniel Hiltgen
1a0cfd080a avoid kv truncation during create (#10761) 2025-05-19 13:54:54 -07:00
Jesse Gross
94ab428e3f ggml: Seperate tensor load from backend creation
Currently, when the backend is created, the tensors are loaded at the
same time, which is a slow operation. This separates them to be two
steps:
 - Create backend, including enumerating tensors and memory allocation
 - Loading tensor data

This allows more flexibility in managing model loading.
2025-05-19 09:54:22 -07:00
Jesse Gross
d755577473 llm: Estimate projector memory correctly for Ollama engine
The Llama engine always places vision projectors on the first GPU
if one exists. However, the Ollama engine groups it with the output
layer, which means the projector is only offloaded if all other layers
are offloaded. The memory estimation code always assumes the former
layout - this changes it to use the correct layout based on the engine.

This addresses two impacts of the current behavior:
 - In multi-GPU setups, we can crash with OOM errors when we try to
   allocate memory on a full GPU while another still has space.
 - If the vision projector is large, it may prevent us from offloading
   anything when we could have fit some of the text layers.
2025-05-19 09:52:48 -07:00
Jesse Gross
a2cc8571c5 llm: Consistently track unassigned model data
In some cases, if we fail to assign a piece of the model to a GPU then
we lose track of this data. Although it doesn't change the memory
allocation, it does affect the total size of the model reported by
tools such as ollama ps (and also the percent offloaded).

This makes it look like setting num_gpu isn't reflected in ollama ps,
which isn't true but the offloading percent may appear to not change.

Spreading the model across more GPUs will continue to impact the
reported total size of the model.
2025-05-19 09:52:48 -07:00
Ronald Wilson
7edfdd2f5f readme: add TinyNotepad to community integrations (#10763)
This PR adds Tiny Notepad, a lightweight, notepad-like interface to chat with local LLMs via Ollama. 

- It’s designed as a simple, distraction-free alternative. 
- The app supports basic note-taking, timestamped logs, and model parameter controls. 
- Built with Tkinter, it runs entirely offline and available via PyPI.

Aims to provide a lightweight easy to run and install interface for ollama.
2025-05-18 12:43:22 -07:00
Michael Yang
333e360422 model: handle multiple eos tokens (#10577)
* get eos_token_id from generation_config.json

* refactor

* include both ids and strings in trace

* comments

* remove special case for gemma3 special vocab (#10743)
2025-05-16 13:40:23 -07:00
Daniel Hiltgen
27da2cddc5 Fix lingering Q4_0 help reference (#10720) 2025-05-15 16:33:23 -07:00
Bruce MacDonald
feb8923ada cmd: add ellipses to truncated show metadata (#10717)
When a piece of information has been truncated in the show output an ellipses to indicate that more data has not been displayed
2025-05-15 15:45:52 -07:00
Jesse Gross
fe623c2cf4 ollamarunner: Multi-modal worst case graph
We currently preallocate compute graph memory for the worst case
batch of text tokens. This adds support for doing the same for
images.

Note that image models are more complicated than text models in
how they process their inputs so there may be cases where this
approach isn't completely generic for all models. It covers all
currently supported models though.
2025-05-15 13:46:20 -07:00
Jesse Gross
3c14461d5d ollamarunner: Separate text and multimodal graphs
For some multimodal models (such as gemma3), we create a single
graph that generates the image embedding and then use this in the
text model. The embedding tensor is completely opaque to the runner.

However, this doesn't work if we need to use the embedding in multiple
batches. This can arise if the embedding is larger than the batch size.
In these cases (as with llama4), we would like to create views that
are more appropriately sized. However, if we do this then the original
source tensor is used in multiple graphs, which isn't allowed. To
avoid that problem, models with this pattern compute the embedding
tensor on first use and recreate the individual views. There is no
longer a single vision and text graph.

This codifies the pattern of separating vision and text graphs. The
logic of computing tensors on demand is moved to the runner, so models
no longer have to worry about this. It also gives the runner visibility
into the multimodal tensors, which is important for memory management.
2025-05-15 13:46:20 -07:00
Jesse Gross
499ae7311f ollamarunner: Base cached tokens on current prompt
When we restore a sequence from the cache, we split the prompt into
the already used tokens (stored in the cache) and new tokens that
need to be processed. Currently, the references to the used tokens
are coming from the stored previous sequence.

However, even though we know that the used tokens are semantically
equivalent to the prefix of the prompt, tokens can contain pointers
which are no longer valid. As a result, it is better to get the
used tokens from the prompt, which has currently valid pointers.

This doesn't currently have any impact because it isn't possible
to reuse the pointers (which are tensors) anyways. However, it
becomes an issue once we can.
2025-05-15 13:46:20 -07:00
Michael Yang
ef202789fa fix pixel values padding (#10718)
* panic if trying to pad 4d

* fix pixel values padding
2025-05-15 13:44:44 -07:00
Michael Yang
55760195e6 fix mllama conversion (#10716)
cross attention Q and K projections needs to have their heads swapped, similar to non-cross attention Q and K tensors
2025-05-15 12:15:01 -07:00
Bruce MacDonald
bd68d3ae50 ggml: update qwen25vl vision size estimate (#10711) 2025-05-14 16:42:30 -07:00
Daniel Hiltgen
ff80718e9c fix crash in old clients with quantization progress (#10710)
Older clients assumed the digest was at least 19 characters long so increase the size
of the dummy digest to avoid array out of bounds crashes.
2025-05-14 14:54:18 -07:00
Bruce MacDonald
0aa8b371dd model: add Qwen2.5-VL support (#10385) 2025-05-13 20:58:02 -07:00
148 changed files with 8390 additions and 3435 deletions

View File

@@ -51,6 +51,8 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/include
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu)
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu/amx)
add_compile_definitions(NDEBUG)
set(GGML_CPU ON)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
set_property(TARGET ggml PROPERTY EXCLUDE_FROM_ALL TRUE)

View File

@@ -40,10 +40,10 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
## Quickstart
To run and chat with [Llama 3.2](https://ollama.com/library/llama3.2):
To run and chat with [Gemma 3](https://ollama.com/library/gemma3):
```shell
ollama run llama3.2
ollama run gemma3
```
## Model library
@@ -405,6 +405,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Writeopia](https://github.com/Writeopia/Writeopia) (Text editor with integration with Ollama)
- [AppFlowy](https://github.com/AppFlowy-IO/AppFlowy) (AI collaborative workspace with Ollama, cross-platform and self-hostable)
- [Lumina](https://github.com/cushydigit/lumina.git) (A lightweight, minimal React.js frontend for interacting with Ollama servers)
- [Tiny Notepad](https://pypi.org/project/tiny-notepad) (A lightweight, notepad-like interface to chat with ollama available on PyPI)
- [macLlama (macOS native)](https://github.com/hellotunamayo/macLlama) (A native macOS GUI application for interacting with Ollama models, featuring a chat interface.)
### Cloud
@@ -448,6 +450,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama.
- [orca-cli](https://github.com/molbal/orca-cli) Ollama Registry CLI Application - Browse, pull, and download models from Ollama Registry in your terminal.
- [GGUF-to-Ollama](https://github.com/jonathanhecl/gguf-to-ollama) - Importing GGUF to Ollama made easy (multiplatform)
- [AWS-Strands-With-Ollama](https://github.com/rapidarchitect/ollama_strands) - AWS Strands Agents with Ollama Examples
- [ollama-multirun](https://github.com/attogram/ollama-multirun) - A bash shell script to run a single prompt against any or all of your locally installed ollama models, saving the output and performance statistics as easily navigable web pages. ([Demo](https://attogram.github.io/ai_test_zone/))
### Apple Vision Pro
@@ -584,6 +588,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai)
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
- [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs)
- [SimpleOllamaUnity](https://github.com/HardCodeDev777/SimpleOllamaUnity) (Unity Engine extension for communicating with Ollama in a few lines of code. Also works at runtime)
- [UnityCodeLama](https://github.com/HardCodeDev777/UnityCodeLama) (Unity Edtior tool to analyze scripts via Ollama)
### Supported backends

View File

@@ -24,7 +24,10 @@ import (
"net/http"
"net/url"
"runtime"
"strconv"
"time"
"github.com/ollama/ollama/auth"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/version"
@@ -76,6 +79,14 @@ func NewClient(base *url.URL, http *http.Client) *Client {
}
}
func getAuthorizationToken(ctx context.Context, challenge string) (string, error) {
token, err := auth.Sign(ctx, []byte(challenge))
if err != nil {
return "", err
}
return token, nil
}
func (c *Client) do(ctx context.Context, method, path string, reqData, respData any) error {
var reqBody io.Reader
var data []byte
@@ -97,6 +108,21 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
}
requestURL := c.base.JoinPath(path)
var token string
if envconfig.UseAuth() || c.base.Hostname() == "ollama.com" {
now := strconv.FormatInt(time.Now().Unix(), 10)
chal := fmt.Sprintf("%s,%s?ts=%s", method, path, now)
token, err = getAuthorizationToken(ctx, chal)
if err != nil {
return err
}
q := requestURL.Query()
q.Set("ts", now)
requestURL.RawQuery = q.Encode()
}
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), reqBody)
if err != nil {
return err
@@ -106,6 +132,10 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
request.Header.Set("Accept", "application/json")
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
if token != "" {
request.Header.Set("Authorization", token)
}
respObj, err := c.http.Do(request)
if err != nil {
return err
@@ -143,6 +173,22 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
}
requestURL := c.base.JoinPath(path)
var token string
if envconfig.UseAuth() || c.base.Hostname() == "ollama.com" {
var err error
now := strconv.FormatInt(time.Now().Unix(), 10)
chal := fmt.Sprintf("%s,%s?ts=%s", method, path, now)
token, err = getAuthorizationToken(ctx, chal)
if err != nil {
return err
}
q := requestURL.Query()
q.Set("ts", now)
requestURL.RawQuery = q.Encode()
}
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), buf)
if err != nil {
return err
@@ -152,6 +198,10 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
request.Header.Set("Accept", "application/x-ndjson")
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
if token != "" {
request.Header.Set("Authorization", token)
}
response, err := c.http.Do(request)
if err != nil {
return err

View File

@@ -83,6 +83,12 @@ type GenerateRequest struct {
// Options lists model-specific options. For example, temperature can be
// set through this field, if the model supports it.
Options map[string]any `json:"options"`
// Think controls whether thinking/reasoning models will think before
// responding. Needs to be a pointer so we can distinguish between false
// (request that thinking _not_ be used) and unset (use the old behavior
// before this option was introduced)
Think *bool `json:"think,omitempty"`
}
// ChatRequest describes a request sent by [Client.Chat].
@@ -108,6 +114,10 @@ type ChatRequest struct {
// Options lists model-specific options.
Options map[string]any `json:"options"`
// Think controls whether thinking/reasoning models will think before
// responding
Think *bool `json:"think,omitempty"`
}
type Tools []Tool
@@ -126,8 +136,11 @@ func (t Tool) String() string {
// role ("system", "user", or "assistant"), the content and an optional list
// of images.
type Message struct {
Role string `json:"role"`
Content string `json:"content"`
Role string `json:"role"`
Content string `json:"content"`
// Thinking contains the text that was inside thinking tags in the
// original model output when ChatRequest.Think is enabled.
Thinking string `json:"thinking,omitempty"`
Images []ImageData `json:"images,omitempty"`
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
}
@@ -478,6 +491,10 @@ type GenerateResponse struct {
// Response is the textual response itself.
Response string `json:"response"`
// Thinking contains the text that was inside thinking tags in the
// original model output when ChatRequest.Think is enabled.
Thinking string `json:"thinking,omitempty"`
// Done specifies if the response is complete.
Done bool `json:"done"`

View File

@@ -372,3 +372,50 @@ func TestPropertyType_MarshalJSON(t *testing.T) {
})
}
}
func TestThinking_UnmarshalJSON(t *testing.T) {
trueVal := true
falseVal := false
tests := []struct {
name string
input string
expectedThinking *bool
expectedError bool
}{
{
name: "true",
input: `{ "think": true }`,
expectedThinking: &trueVal,
},
{
name: "false",
input: `{ "think": false }`,
expectedThinking: &falseVal,
},
{
name: "unset",
input: `{ }`,
expectedThinking: nil,
},
{
name: "invalid",
input: `{ "think": "true" }`,
expectedThinking: nil,
expectedError: true,
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
var req GenerateRequest
err := json.Unmarshal([]byte(test.input), &req)
if test.expectedError {
require.Error(t, err)
} else {
require.NoError(t, err)
assert.Equal(t, test.expectedThinking, req.Think)
}
})
}
}

View File

@@ -39,6 +39,7 @@ import (
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/progress"
"github.com/ollama/ollama/readline"
"github.com/ollama/ollama/runner"
"github.com/ollama/ollama/server"
"github.com/ollama/ollama/types/model"
@@ -46,6 +47,23 @@ import (
"github.com/ollama/ollama/version"
)
// ensureThinkingSupport emits a warning if the model does not advertise thinking support
func ensureThinkingSupport(ctx context.Context, client *api.Client, name string) {
if name == "" {
return
}
resp, err := client.Show(ctx, &api.ShowRequest{Model: name})
if err != nil {
return
}
for _, cap := range resp.Capabilities {
if cap == model.CapabilityThinking {
return
}
}
fmt.Fprintf(os.Stderr, "warning: model %q does not support thinking output\n", name)
}
var errModelfileNotFound = errors.New("specified Modelfile wasn't found")
func getModelfileName(cmd *cobra.Command) (string, error) {
@@ -265,6 +283,9 @@ func loadOrUnloadModel(cmd *cobra.Command, opts *runOptions) error {
req := &api.GenerateRequest{
Model: opts.Model,
KeepAlive: opts.KeepAlive,
// pass Think here so we fail before getting to the chat prompt if the model doesn't support it
Think: opts.Think,
}
return client.Generate(cmd.Context(), req, func(api.GenerateResponse) error { return nil })
@@ -299,6 +320,22 @@ func RunHandler(cmd *cobra.Command, args []string) error {
}
opts.Format = format
thinkFlag := cmd.Flags().Lookup("think")
if thinkFlag.Changed {
think, err := cmd.Flags().GetBool("think")
if err != nil {
return err
}
opts.Think = &think
} else {
opts.Think = nil
}
hidethinking, err := cmd.Flags().GetBool("hidethinking")
if err != nil {
return err
}
opts.HideThinking = hidethinking
keepAlive, err := cmd.Flags().GetString("keepalive")
if err != nil {
return err
@@ -362,6 +399,11 @@ func RunHandler(cmd *cobra.Command, args []string) error {
return err
}
opts.Think, err = inferThinkingOption(&info.Capabilities, &opts, thinkFlag.Changed)
if err != nil {
return err
}
opts.MultiModal = slices.Contains(info.Capabilities, model.CapabilityVision)
// TODO: remove the projector info and vision info checks below,
@@ -747,11 +789,38 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
case float64:
v = fmt.Sprintf("%g", vData)
case []any:
n := 3
if len(vData) < n {
n = len(vData)
targetWidth := 10 // Small width where we are displaying the data in a column
var itemsToShow int
totalWidth := 1 // Start with 1 for opening bracket
// Find how many we can fit
for i := range vData {
itemStr := fmt.Sprintf("%v", vData[i])
width := runewidth.StringWidth(itemStr)
// Add separator width (", ") for all items except the first
if i > 0 {
width += 2
}
// Check if adding this item would exceed our width limit
if totalWidth+width > targetWidth && i > 0 {
break
}
totalWidth += width
itemsToShow++
}
// Format the output
if itemsToShow < len(vData) {
v = fmt.Sprintf("%v", vData[:itemsToShow])
v = strings.TrimSuffix(v, "]")
v += fmt.Sprintf(" ...+%d more]", len(vData)-itemsToShow)
} else {
v = fmt.Sprintf("%v", vData)
}
v = fmt.Sprintf("%v", vData[:n])
default:
v = fmt.Sprintf("%T", vData)
}
@@ -772,10 +841,19 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
head := func(s string, n int) (rows [][]string) {
scanner := bufio.NewScanner(strings.NewReader(s))
for scanner.Scan() && (len(rows) < n || n < 0) {
if text := scanner.Text(); text != "" {
rows = append(rows, []string{"", strings.TrimSpace(text)})
count := 0
for scanner.Scan() {
text := strings.TrimSpace(scanner.Text())
if text == "" {
continue
}
count++
if n < 0 || count <= n {
rows = append(rows, []string{"", text})
}
}
if n >= 0 && count > n {
rows = append(rows, []string{"", "..."})
}
return
}
@@ -887,17 +965,19 @@ func PullHandler(cmd *cobra.Command, args []string) error {
type generateContextKey string
type runOptions struct {
Model string
ParentModel string
Prompt string
Messages []api.Message
WordWrap bool
Format string
System string
Images []api.ImageData
Options map[string]any
MultiModal bool
KeepAlive *api.Duration
Model string
ParentModel string
Prompt string
Messages []api.Message
WordWrap bool
Format string
System string
Images []api.ImageData
Options map[string]any
MultiModal bool
KeepAlive *api.Duration
Think *bool
HideThinking bool
}
type displayResponseState struct {
@@ -953,6 +1033,26 @@ func displayResponse(content string, wordWrap bool, state *displayResponseState)
}
}
func thinkingOutputOpeningText(plainText bool) string {
text := "Thinking...\n"
if plainText {
return text
}
return readline.ColorGrey + readline.ColorBold + text + readline.ColorDefault + readline.ColorGrey
}
func thinkingOutputClosingText(plainText bool) string {
text := "...done thinking.\n\n"
if plainText {
return text
}
return readline.ColorGrey + readline.ColorBold + text + readline.ColorDefault
}
func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
client, err := api.ClientFromEnvironment()
if err != nil {
@@ -980,14 +1080,34 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
var latest api.ChatResponse
var fullResponse strings.Builder
var role string
var thinkTagOpened bool = false
var thinkTagClosed bool = false
fn := func(response api.ChatResponse) error {
p.StopAndClear()
if response.Message.Content != "" || !opts.HideThinking {
p.StopAndClear()
}
latest = response
role = response.Message.Role
if response.Message.Thinking != "" && !opts.HideThinking {
if !thinkTagOpened {
fmt.Print(thinkingOutputOpeningText(false))
thinkTagOpened = true
}
displayResponse(response.Message.Thinking, opts.WordWrap, state)
}
content := response.Message.Content
if thinkTagOpened && !thinkTagClosed && content != "" {
fmt.Print(thinkingOutputClosingText(false))
thinkTagClosed = true
}
// purposefully not putting thinking blocks in the response, which would
// only be needed if we later added tool calling to the cli (they get
// filtered out anyway since current models don't expect them unless you're
// about to finish some tool calls)
fullResponse.WriteString(content)
displayResponse(content, opts.WordWrap, state)
@@ -1004,6 +1124,7 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
Messages: opts.Messages,
Format: json.RawMessage(opts.Format),
Options: opts.Options,
Think: opts.Think,
}
if opts.KeepAlive != nil {
@@ -1065,13 +1186,32 @@ func generate(cmd *cobra.Command, opts runOptions) error {
}()
var state *displayResponseState = &displayResponseState{}
var thinkTagOpened bool = false
var thinkTagClosed bool = false
plainText := !term.IsTerminal(int(os.Stdout.Fd()))
fn := func(response api.GenerateResponse) error {
p.StopAndClear()
latest = response
content := response.Response
if response.Response != "" || !opts.HideThinking {
p.StopAndClear()
}
if response.Thinking != "" && !opts.HideThinking {
if !thinkTagOpened {
fmt.Print(thinkingOutputOpeningText(plainText))
thinkTagOpened = true
}
displayResponse(response.Thinking, opts.WordWrap, state)
}
if thinkTagOpened && !thinkTagClosed && content != "" {
fmt.Print(thinkingOutputClosingText(plainText))
thinkTagClosed = true
}
displayResponse(content, opts.WordWrap, state)
return nil
@@ -1097,6 +1237,7 @@ func generate(cmd *cobra.Command, opts runOptions) error {
System: opts.System,
Options: opts.Options,
KeepAlive: opts.KeepAlive,
Think: opts.Think,
}
if err := client.Generate(ctx, &request, fn); err != nil {
@@ -1200,11 +1341,11 @@ func checkServerHeartbeat(cmd *cobra.Command, _ []string) error {
return err
}
if err := client.Heartbeat(cmd.Context()); err != nil {
if !strings.Contains(err.Error(), " refused") {
if !(strings.Contains(err.Error(), " refused") || strings.Contains(err.Error(), "could not connect")) {
return err
}
if err := startApp(cmd.Context(), client); err != nil {
return errors.New("could not connect to ollama app, is it running?")
return fmt.Errorf("ollama server not responding - %w", err)
}
}
return nil
@@ -1282,7 +1423,7 @@ func NewCLI() *cobra.Command {
}
createCmd.Flags().StringP("file", "f", "", "Name of the Modelfile (default \"Modelfile\"")
createCmd.Flags().StringP("quantize", "q", "", "Quantize model to this level (e.g. q4_0)")
createCmd.Flags().StringP("quantize", "q", "", "Quantize model to this level (e.g. q4_K_M)")
showCmd := &cobra.Command{
Use: "show MODEL",
@@ -1312,6 +1453,8 @@ func NewCLI() *cobra.Command {
runCmd.Flags().Bool("insecure", false, "Use an insecure registry")
runCmd.Flags().Bool("nowordwrap", false, "Don't wrap words to the next line automatically")
runCmd.Flags().String("format", "", "Response format (e.g. json)")
runCmd.Flags().Bool("think", false, "Whether to use thinking mode for supported models")
runCmd.Flags().Bool("hidethinking", false, "Hide thinking output (if provided)")
stopCmd := &cobra.Command{
Use: "stop MODEL",
@@ -1363,7 +1506,6 @@ func NewCLI() *cobra.Command {
PreRunE: checkServerHeartbeat,
RunE: ListRunningHandler,
}
copyCmd := &cobra.Command{
Use: "cp SOURCE DESTINATION",
Short: "Copy a model",
@@ -1452,3 +1594,45 @@ func NewCLI() *cobra.Command {
return rootCmd
}
// If the user has explicitly set thinking options, either through the CLI or
// through the `/set think` or `set nothink` interactive options, then we
// respect them. Otherwise, we check model capabilities to see if the model
// supports thinking. If the model does support thinking, we enable it.
// Otherwise, we unset the thinking option (which is different than setting it
// to false).
//
// If capabilities are not provided, we fetch them from the server.
func inferThinkingOption(caps *[]model.Capability, runOpts *runOptions, explicitlySetByUser bool) (*bool, error) {
if explicitlySetByUser {
return runOpts.Think, nil
}
if caps == nil {
client, err := api.ClientFromEnvironment()
if err != nil {
return nil, err
}
ret, err := client.Show(context.Background(), &api.ShowRequest{
Model: runOpts.Model,
})
if err != nil {
return nil, err
}
caps = &ret.Capabilities
}
thinkingSupported := false
for _, cap := range *caps {
if cap == model.CapabilityThinking {
thinkingSupported = true
}
}
if thinkingSupported {
thinking := true
return &thinking, nil
}
return nil, nil
}

View File

@@ -225,6 +225,7 @@ Weigh anchor!
System
You are a pirate!
Ahoy, matey!
...
`
if diff := cmp.Diff(expect, b.String()); diff != "" {

View File

@@ -62,6 +62,8 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Fprintln(os.Stderr, " /set noformat Disable formatting")
fmt.Fprintln(os.Stderr, " /set verbose Show LLM stats")
fmt.Fprintln(os.Stderr, " /set quiet Disable LLM stats")
fmt.Fprintln(os.Stderr, " /set think Enable thinking")
fmt.Fprintln(os.Stderr, " /set nothink Disable thinking")
fmt.Fprintln(os.Stderr, "")
}
@@ -128,6 +130,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
var sb strings.Builder
var multiline MultilineState
var thinkExplicitlySet bool = opts.Think != nil
for {
line, err := scanner.Readline()
@@ -195,11 +198,19 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
opts.Model = args[1]
opts.Messages = []api.Message{}
fmt.Printf("Loading model '%s'\n", opts.Model)
opts.Think, err = inferThinkingOption(nil, &opts, thinkExplicitlySet)
if err != nil {
return err
}
if err := loadOrUnloadModel(cmd, &opts); err != nil {
if strings.Contains(err.Error(), "not found") {
fmt.Printf("error: %v\n", err)
continue
}
if strings.Contains(err.Error(), "does not support thinking") {
fmt.Printf("error: %v\n", err)
continue
}
return err
}
continue
@@ -260,6 +271,22 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
return err
}
fmt.Println("Set 'quiet' mode.")
case "think":
think := true
opts.Think = &think
thinkExplicitlySet = true
if client, err := api.ClientFromEnvironment(); err == nil {
ensureThinkingSupport(cmd.Context(), client, opts.Model)
}
fmt.Println("Set 'think' mode.")
case "nothink":
think := false
opts.Think = &think
thinkExplicitlySet = true
if client, err := api.ClientFromEnvironment(); err == nil {
ensureThinkingSupport(cmd.Context(), client, opts.Model)
}
fmt.Println("Set 'nothink' mode.")
case "format":
if len(args) < 3 || args[2] != "json" {
fmt.Println("Invalid or missing format. For 'json' mode use '/set format json'")
@@ -448,6 +475,11 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
assistant, err := chat(cmd, opts)
if err != nil {
if strings.Contains(err.Error(), "does not support thinking") {
fmt.Printf("error: %v\n", err)
sb.Reset()
continue
}
return err
}
if assistant != nil {

View File

@@ -5,7 +5,7 @@ import (
"errors"
"os"
"os/exec"
"strings"
"regexp"
"github.com/ollama/ollama/api"
)
@@ -19,11 +19,12 @@ func startApp(ctx context.Context, client *api.Client) error {
if err != nil {
return err
}
if !strings.Contains(link, "Ollama.app") {
r := regexp.MustCompile(`^.*/Ollama\s?\d*.app`)
m := r.FindStringSubmatch(link)
if len(m) != 1 {
return errors.New("could not find ollama app")
}
path := strings.Split(link, "Ollama.app")
if err := exec.Command("/usr/bin/open", "-a", path[0]+"Ollama.app").Run(); err != nil {
if err := exec.Command("/usr/bin/open", "-j", "-a", m[0], "--args", "--fast-startup").Run(); err != nil {
return err
}
return waitForServer(ctx, client)

View File

@@ -4,17 +4,27 @@ import (
"context"
"errors"
"fmt"
"log/slog"
"os"
"os/exec"
"path"
"path/filepath"
"strings"
"syscall"
"unsafe"
"github.com/ollama/ollama/api"
"golang.org/x/sys/windows"
)
const (
Installer = "OllamaSetup.exe"
)
func startApp(ctx context.Context, client *api.Client) error {
// log.Printf("XXX Attempting to find and start ollama app")
if len(isProcRunning(Installer)) > 0 {
return fmt.Errorf("upgrade in progress...")
}
AppName := "ollama app.exe"
exe, err := os.Executable()
if err != nil {
@@ -35,14 +45,11 @@ func startApp(ctx context.Context, client *api.Client) error {
}
}
}
// log.Printf("XXX attempting to start app %s", appExe)
cmd_path := "c:\\Windows\\system32\\cmd.exe"
cmd := exec.Command(cmd_path, "/c", appExe)
// TODO - these hide flags aren't working - still pops up a command window for some reason
cmd := exec.Command(cmd_path, "/c", appExe, "--hide", "--fast-startup")
cmd.SysProcAttr = &syscall.SysProcAttr{CreationFlags: 0x08000000, HideWindow: true}
// TODO this didn't help either...
cmd.Stdin = strings.NewReader("")
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
@@ -56,3 +63,50 @@ func startApp(ctx context.Context, client *api.Client) error {
}
return waitForServer(ctx, client)
}
func isProcRunning(procName string) []uint32 {
pids := make([]uint32, 2048)
var ret uint32
if err := windows.EnumProcesses(pids, &ret); err != nil || ret == 0 {
slog.Debug("failed to check for running installers", "error", err)
return nil
}
if ret > uint32(len(pids)) {
pids = make([]uint32, ret+10)
if err := windows.EnumProcesses(pids, &ret); err != nil || ret == 0 {
slog.Debug("failed to check for running installers", "error", err)
return nil
}
}
if ret < uint32(len(pids)) {
pids = pids[:ret]
}
var matches []uint32
for _, pid := range pids {
if pid == 0 {
continue
}
hProcess, err := windows.OpenProcess(windows.PROCESS_QUERY_INFORMATION|windows.PROCESS_VM_READ, false, pid)
if err != nil {
continue
}
defer windows.CloseHandle(hProcess)
var module windows.Handle
var cbNeeded uint32
cb := (uint32)(unsafe.Sizeof(module))
if err := windows.EnumProcessModules(hProcess, &module, cb, &cbNeeded); err != nil {
continue
}
var sz uint32 = 1024 * 8
moduleName := make([]uint16, sz)
cb = uint32(len(moduleName)) * (uint32)(unsafe.Sizeof(uint16(0)))
if err := windows.GetModuleBaseName(hProcess, module, &moduleName[0], cb); err != nil && err != syscall.ERROR_INSUFFICIENT_BUFFER {
continue
}
exeFile := path.Base(strings.ToLower(syscall.UTF16ToString(moduleName)))
if strings.EqualFold(exeFile, procName) {
matches = append(matches, pid)
}
}
return matches
}

63
cmd/warn_thinking_test.go Normal file
View File

@@ -0,0 +1,63 @@
package cmd
import (
"encoding/json"
"io"
"net/http"
"net/http/httptest"
"os"
"strings"
"testing"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/types/model"
)
// Test that a warning is printed when thinking is requested but not supported.
func TestWarnMissingThinking(t *testing.T) {
cases := []struct {
capabilities []model.Capability
expectWarn bool
}{
{capabilities: []model.Capability{model.CapabilityThinking}, expectWarn: false},
{capabilities: []model.Capability{}, expectWarn: true},
}
for _, tc := range cases {
srv := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if r.URL.Path != "/api/show" || r.Method != http.MethodPost {
t.Fatalf("unexpected request to %s %s", r.URL.Path, r.Method)
}
var req api.ShowRequest
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
t.Fatalf("decode request: %v", err)
}
resp := api.ShowResponse{Capabilities: tc.capabilities}
if err := json.NewEncoder(w).Encode(resp); err != nil {
t.Fatalf("encode response: %v", err)
}
}))
defer srv.Close()
t.Setenv("OLLAMA_HOST", srv.URL)
client, err := api.ClientFromEnvironment()
if err != nil {
t.Fatal(err)
}
oldStderr := os.Stderr
r, w, _ := os.Pipe()
os.Stderr = w
ensureThinkingSupport(t.Context(), client, "m")
w.Close()
os.Stderr = oldStderr
out, _ := io.ReadAll(r)
warned := strings.Contains(string(out), "warning:")
if tc.expectWarn && !warned {
t.Errorf("expected warning, got none")
}
if !tc.expectWarn && warned {
t.Errorf("did not expect warning, got: %s", string(out))
}
}
}

View File

@@ -53,8 +53,11 @@ func (ModelParameters) KV(t *Tokenizer) ggml.KV {
}
for _, sv := range t.SpecialVocabulary {
kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID)
kv[fmt.Sprintf("tokenizer.ggml.add_%s_token", sv.Key())] = sv.AddToken
kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID)
if len(sv.IDs) > 0 {
kv[fmt.Sprintf("tokenizer.ggml.%s_token_ids", sv.Key())] = sv.IDs
}
}
return kv
@@ -191,6 +194,8 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
conv = &phi3Model{}
case "Qwen2ForCausalLM":
conv = &qwen2Model{}
case "Qwen2_5_VLForConditionalGeneration":
conv = &qwen25VLModel{}
case "BertModel":
conv = &bertModel{}
case "CohereForCausalLM":

View File

@@ -139,7 +139,8 @@ func (p *llamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
}
for _, t := range ts {
if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") {
if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") ||
strings.HasSuffix(t.Name(), "attn_q_proj.weight") || strings.HasSuffix(t.Name(), "attn_k_proj.weight") {
if !p.skipRepack {
t.SetRepacker(p.repack)
}
@@ -181,9 +182,9 @@ func (p *llamaModel) repack(name string, data []float32, shape []uint64) ([]floa
}
var heads uint32
if strings.HasSuffix(name, "attn_q.weight") {
if strings.HasSuffix(name, "attn_q.weight") || strings.HasSuffix(name, "attn_q_proj.weight") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, "attn_k.weight") {
} else if strings.HasSuffix(name, "attn_k.weight") || strings.HasSuffix(name, "attn_k_proj.weight") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
} else {
return nil, fmt.Errorf("unknown tensor for repack: %s", name)

View File

@@ -94,7 +94,9 @@ func (m *mllamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
var text []Tensor
for _, t := range ts {
if t.Name() == "v.position_embd.gate" {
if !strings.HasPrefix(t.Name(), "v.") && !strings.HasPrefix(t.Name(), "mm.") {
text = append(text, t)
} else if t.Name() == "v.position_embd.gate" {
for _, name := range []string{"v.position_embd.gate", "v.tile_position_embd.gate"} {
tt := t.Clone()
tt.SetRepacker(m.repack(name))
@@ -105,23 +107,21 @@ func (m *mllamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
WriterTo: tt,
})
}
} else if t.Name() == "v.pre_tile_position_embd.gate" || t.Name() == "v.post_tile_position_embd.gate" {
t.SetRepacker(m.repack(t.Name()))
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
} else if strings.HasPrefix(t.Name(), "v.") || strings.HasPrefix(t.Name(), "mm.") {
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
} else {
text = append(text, t)
if t.Name() == "v.pre_tile_position_embd.gate" || t.Name() == "v.post_tile_position_embd.gate" {
t.SetRepacker(m.repack(t.Name()))
} else if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") {
t.SetRepacker(m.repack(t.Name()))
} else if strings.HasSuffix(t.Name(), "attn_gate") || strings.HasSuffix(t.Name(), "ffn_gate") {
t.SetRepacker(m.repack(t.Name()))
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
}
@@ -137,16 +137,35 @@ func (m *mllamaModel) repack(name string) Repacker {
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
t, err = tensor.Tanh(t)
if err != nil {
return nil, err
}
if strings.HasSuffix(name, "attn_q.weight") || strings.HasSuffix(name, "attn_k.weight") {
heads := m.VisionModel.AttentionHeads
if err := t.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if name == "v.position_embd.gate" {
t, err = tensor.Sub(float32(1), t)
if err := t.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := t.Reshape(dims...); err != nil {
return nil, err
}
if err := t.Transpose(); err != nil {
return nil, err
}
} else {
t, err = tensor.Tanh(t)
if err != nil {
return nil, err
}
if name == "v.position_embd.gate" {
t, err = tensor.Sub(float32(1), t)
if err != nil {
return nil, err
}
}
}
t = tensor.Materialize(t)

View File

@@ -15,6 +15,7 @@ type qwen2Model struct {
Type string `json:"type"`
Factor ropeFactor `json:"factor"`
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
MropeSection []int32 `json:"mrope_section"`
} `json:"rope_scaling"`
RMSNormEPS float32 `json:"rms_norm_eps"`
}
@@ -39,6 +40,8 @@ func (q *qwen2Model) KV(t *Tokenizer) ggml.KV {
case "yarn":
kv["qwen2.rope.scaling.type"] = q.RopeScaling.Type
kv["qwen2.rope.scaling.factor"] = q.RopeScaling.Factor
case "mrope", "default":
kv["qwen2.rope.mrope_section"] = q.RopeScaling.MropeSection
default:
panic("unknown rope scaling type")
}

102
convert/convert_qwen25vl.go Normal file
View File

@@ -0,0 +1,102 @@
package convert
import (
"cmp"
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
)
type qwen25VLModel struct {
qwen2Model
VisionModel struct {
Depth uint32 `json:"depth"`
HiddenSize uint32 `json:"hidden_size"`
NumHeads uint32 `json:"num_heads"`
InChannels uint32 `json:"in_chans"`
PatchSize uint32 `json:"patch_size"`
SpatialMergeSize uint32 `json:"spatial_merge_size"`
SpatialPatchSize uint32 `json:"spatial_patch_size"`
WindowSize uint32 `json:"window_size"`
RMSNormEps float32 `json:"layer_norm_epsilon"`
RopeTheta float32 `json:"rope_theta"`
FullAttentionBlocks []int32 `json:"fullatt_block_indexes"`
TemporalPatchSize uint32 `json:"temporal_patch_size"`
} `json:"vision_config"`
}
var _ ModelConverter = (*qwen25VLModel)(nil)
func (q *qwen25VLModel) KV(t *Tokenizer) ggml.KV {
kv := q.ModelParameters.KV(t)
kv["general.architecture"] = "qwen25vl"
for k, v := range q.qwen2Model.KV(t) {
if strings.HasPrefix(k, "qwen2.") {
kv[strings.Replace(k, "qwen2.", "qwen25vl.", 1)] = v
}
}
if q.VisionModel.FullAttentionBlocks == nil {
kv["qwen25vl.vision.fullatt_block_indexes"] = []int32{7, 15, 23, 31}
}
kv["qwen25vl.vision.block_count"] = cmp.Or(q.VisionModel.Depth, 32)
kv["qwen25vl.vision.embedding_length"] = q.VisionModel.HiddenSize
kv["qwen25vl.vision.attention.head_count"] = cmp.Or(q.VisionModel.NumHeads, 16)
kv["qwen25vl.vision.num_channels"] = q.VisionModel.InChannels
kv["qwen25vl.vision.patch_size"] = cmp.Or(q.VisionModel.PatchSize, 14)
kv["qwen25vl.vision.spatial_merge_size"] = cmp.Or(q.VisionModel.SpatialMergeSize, 2)
kv["qwen25vl.vision.spatial_patch_size"] = q.VisionModel.SpatialPatchSize
kv["qwen25vl.vision.window_size"] = cmp.Or(q.VisionModel.WindowSize, 112)
kv["qwen25vl.vision.attention.layer_norm_epsilon"] = cmp.Or(q.VisionModel.RMSNormEps, 1e-6)
kv["qwen25vl.vision.rope.freq_base"] = cmp.Or(q.VisionModel.RopeTheta, 1e4)
kv["qwen25vl.vision.fullatt_block_indexes"] = q.VisionModel.FullAttentionBlocks
kv["qwen25vl.vision.temporal_patch_size"] = cmp.Or(q.VisionModel.TemporalPatchSize, 2)
return kv
}
func (q *qwen25VLModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
if strings.Contains(t.Name(), "patch_embed.proj") {
for t := range splitDim(t, 2,
split{Replacer: strings.NewReplacer("patch_embed.proj", "patch_embd_0")},
split{Replacer: strings.NewReplacer("patch_embed.proj", "patch_embd_1")},
) {
t.Shape = slices.DeleteFunc(t.Shape, func(i uint64) bool { return i == 1 })
out = append(out, t)
}
} else if strings.Contains(t.Name(), "attn.qkv") {
out = append(out, slices.Collect(splitDim(t, 0,
split{Replacer: strings.NewReplacer("attn.qkv", "attn_q")},
split{Replacer: strings.NewReplacer("attn.qkv", "attn_k")},
split{Replacer: strings.NewReplacer("attn.qkv", "attn_v")},
))...)
} else {
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
}
return out
}
func (p *qwen25VLModel) Replacements() []string {
return append(
p.qwen2Model.Replacements(),
"visual", "v",
"blocks", "blk",
"attn.proj", "attn_out",
"norm1", "ln1",
"norm2", "ln2",
)
}

View File

@@ -47,7 +47,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
}
t.Cleanup(func() { r.Close() })
m, _, err := ggml.Decode(r, -1)
m, err := ggml.Decode(r, -1)
if err != nil {
t.Fatal(err)
}
@@ -332,7 +332,7 @@ func TestConvertAdapter(t *testing.T) {
}
defer r.Close()
m, _, err := ggml.Decode(r, -1)
m, err := ggml.Decode(r, -1)
if err != nil {
t.Fatal(err)
}

76
convert/tensor.go Normal file
View File

@@ -0,0 +1,76 @@
package convert
import (
"cmp"
"iter"
"slices"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
)
type split struct {
*strings.Replacer
dim int
// fn is an optional function to apply to the tensor after slicing
fn func(tensor.Tensor) (tensor.Tensor, error)
}
// splitDim splits a tensor along a specified dimension into multiple tensors. The dimension
// is split evenly based on the number of replacers provided unless a specific count is given.
func splitDim(t Tensor, dim int, splits ...split) iter.Seq[*ggml.Tensor] {
return func(yield func(*ggml.Tensor) bool) {
var offset int
for _, split := range splits {
t := t.Clone()
shape := slices.Clone(t.Shape())
shape[dim] = cmp.Or(uint64(split.dim), shape[dim]/uint64(len(splits)))
slice := slices.Repeat([]tensor.Slice{nil}, len(shape))
slice[dim] = tensor.S(offset, offset+int(shape[dim]))
offset += int(shape[dim])
t.SetRepacker(func(_ string, data []float32, shape []uint64) ([]float32, error) {
dims := make([]int, len(shape))
for i := range shape {
dims[i] = int(shape[i])
}
var tt tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
tt, err := tt.Slice(slice...)
if err != nil {
return nil, err
}
tt = tensor.Materialize(tt)
if split.fn != nil {
tt, err = split.fn(tt)
if err != nil {
return nil, err
}
}
// flatten tensor so it can be written as a vector
if err := tt.Reshape(tt.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(tt.(*tensor.Dense))
})
if !yield(&ggml.Tensor{
Name: split.Replace(t.Name()),
Kind: t.Kind(),
Shape: shape,
WriterTo: t,
}) {
break
}
}
}
}

304
convert/tensor_test.go Normal file
View File

@@ -0,0 +1,304 @@
package convert
import (
"bytes"
"encoding/binary"
"io"
"iter"
"slices"
"strings"
"testing"
"github.com/pdevine/tensor"
)
type fakeTensor struct {
name string
shape []uint64
data []float32
repacker Repacker
}
func (f fakeTensor) Name() string {
return f.name
}
func (f fakeTensor) Shape() []uint64 {
return f.shape
}
func (f fakeTensor) Kind() uint32 {
return 0
}
func (f *fakeTensor) SetRepacker(fn Repacker) {
f.repacker = fn
}
func (f fakeTensor) Clone() Tensor {
return &fakeTensor{
name: f.name,
shape: slices.Clone(f.shape),
data: slices.Clone(f.data),
repacker: f.repacker,
}
}
func (f fakeTensor) WriteTo(w io.Writer) (n int64, err error) {
data := f.data
if f.repacker != nil {
data, err = f.repacker(f.name, data, f.shape)
if err != nil {
return 0, err
}
}
if err := binary.Write(w, binary.LittleEndian, data); err != nil {
return 0, err
}
return int64(len(data) * 4), nil
}
func mul(shape []uint64) int {
n := 1
for _, dim := range shape {
n *= int(dim)
}
return n
}
func TestSplitDim(t *testing.T) {
r := fakeTensor{
name: "a.b",
shape: []uint64{3, 4},
data: []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},
}
t.Run("no split", func(t *testing.T) {
for tt := range splitDim(&r, 0, split{Replacer: strings.NewReplacer("a", "x")}) {
if tt.Name != "x.b" {
t.Fatalf("expected name 'x', got '%s'", tt.Name)
}
if !slices.Equal(tt.Shape, []uint64{3, 4}) {
t.Fatalf("expected shape [3, 4], got %v", tt.Shape)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if !slices.Equal(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}) {
t.Fatalf("expected data [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], got %v", f32s)
}
}
})
t.Run("even split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 1,
split{Replacer: strings.NewReplacer("a", "x")},
split{Replacer: strings.NewReplacer("b", "y")},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if !slices.Equal(tt.Shape, []uint64{3, 2}) {
t.Fatal("expected shape [3, 2], got", tt.Shape)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if !slices.Equal(f32s, []float32{0, 1, 4, 5, 8, 9}) {
t.Fatal("expected data [0, 1, 4, 5, 8, 9], got", f32s)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'a.y', got", tt.Name)
}
if !slices.Equal(tt.Shape, []uint64{3, 2}) {
t.Fatal("expected shape [3, 2], got", tt.Shape)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if !slices.Equal(f32s, []float32{2, 3, 6, 7, 10, 11}) {
t.Fatal("expected data [2, 3, 6, 7, 10, 11], got", f32s)
}
}
})
t.Run("uneven split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 0,
split{Replacer: strings.NewReplacer("a", "x"), dim: 2},
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if !slices.Equal(tt.Shape, []uint64{2, 4}) {
t.Fatal("expected shape [2, 4], got", tt.Shape)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if !slices.Equal(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7}) {
t.Fatal("expected data [0, 1, 2, 3, 4, 5, 6, 7], got", f32s)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'a.y', got", tt.Name)
}
if !slices.Equal(tt.Shape, []uint64{1, 4}) {
t.Fatal("expected shape [1, 4], got", tt.Shape)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if !slices.Equal(f32s, []float32{8, 9, 10, 11}) {
t.Fatal("expected data [8, 9, 10, 11], got", f32s)
}
}
})
t.Run("split with transpose", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 1,
split{Replacer: strings.NewReplacer("a", "x")},
split{Replacer: strings.NewReplacer("b", "y"), fn: func(tt tensor.Tensor) (tensor.Tensor, error) {
return tensor.Transpose(tt, 1, 0)
}},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if !slices.Equal(tt.Shape, []uint64{3, 2}) {
t.Fatal("expected shape [3, 2], got", tt.Shape)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if !slices.Equal(f32s, []float32{0, 1, 4, 5, 8, 9}) {
t.Fatal("expected data [0, 1, 4, 5, 8, 9], got", f32s)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'a.y', got", tt.Name)
}
if !slices.Equal(tt.Shape, []uint64{3, 2}) {
t.Fatal("expected shape [3, 2], got", tt.Shape)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if !slices.Equal(f32s, []float32{2, 6, 10, 3, 7, 11}) {
t.Fatal("expected data [2, 6, 10, 3, 7, 11], got", f32s)
}
}
})
}

View File

@@ -110,6 +110,7 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
}
if f, err := fsys.Open("tokenizer_config.json"); errors.Is(err, os.ErrNotExist) {
// noop
} else if err != nil {
return nil, err
} else {
@@ -171,6 +172,34 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
}
}
if f, err := fsys.Open("generation_config.json"); errors.Is(err, os.ErrNotExist) {
} else if err != nil {
return nil, err
} else {
defer f.Close()
var p map[string]json.RawMessage
if err := json.NewDecoder(f).Decode(&p); err != nil {
return nil, err
}
for _, st := range specialTokenTypes {
if bts, ok := p[fmt.Sprintf("%s_token_id", st)]; ok {
var ids []int32
if err := json.Unmarshal(bts, &ids); err != nil {
// value is not a list so the existing ID is used
continue
}
if i := slices.IndexFunc(t.SpecialVocabulary, func(sv *SpecialVocabulary) bool {
return sv.Type == st
}); i >= 0 {
t.SpecialVocabulary[i].IDs = ids
}
}
}
}
return t, nil
}
@@ -280,6 +309,9 @@ type SpecialVocabulary struct {
ID int
Content string
AddToken bool
// IDs is populated by generation_config.json
IDs []int32
}
func (sv SpecialVocabulary) Key() string {

View File

@@ -247,6 +247,67 @@ func TestParseTokenizer(t *testing.T) {
Pre: "default",
},
},
{
name: "generation config eos token ids",
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
"tokenizer.json": strings.NewReader(`{
"added_tokens": [
{
"id": 0,
"content": "<bos>",
"special": true
},
{
"id": 1,
"content": "<eos>",
"special": true
},
{
"id": 2,
"content": "<eot>",
"special": true
},
{
"id": 3,
"content": "<eom>",
"special": true
}
],
"model": {
"vocab": {
"<bos>": 0,
"<eos>": 1,
"<eot>": 2,
"<eom>": 3
}
}
}`),
"tokenizer_config.json": strings.NewReader(`{
"add_bos_token": true,
"add_eos_token": false,
"bos_token": "<bos>",
"eos_token": "<eos>"
}`),
"generation_config.json": strings.NewReader(`{
"bos_token_id": 0,
"eos_token_id": [1, 2, 3]
}`),
}),
specialTokenTypes: []string{"pad", "eos", "bos", "unk"},
want: &Tokenizer{
Vocabulary: &Vocabulary{
Model: "gpt2",
Tokens: []string{"<bos>", "<eos>", "<eot>", "<eom>"},
Scores: []float32{0, 1, 2, 3},
Types: []int32{3, 3, 3, 3},
},
SpecialVocabulary: []*SpecialVocabulary{
{Type: "eos", Content: "<eos>", ID: 1, IDs: []int32{1, 2, 3}, AddToken: false},
{Type: "bos", Content: "<bos>", ID: 0, AddToken: true},
},
Pre: "default",
},
},
}
for _, tt := range cases {

View File

@@ -43,6 +43,7 @@ Generate a response for a given prompt with a provided model. This is a streamin
- `prompt`: the prompt to generate a response for
- `suffix`: the text after the model response
- `images`: (optional) a list of base64-encoded images (for multimodal models such as `llava`)
- `think`: (for thinking models) should the model think before responding?
Advanced parameters (optional):
@@ -490,11 +491,13 @@ Generate the next message in a chat with a provided model. This is a streaming e
- `model`: (required) the [model name](#model-names)
- `messages`: the messages of the chat, this can be used to keep a chat memory
- `tools`: list of tools in JSON for the model to use if supported
- `think`: (for thinking models) should the model think before responding?
The `message` object has the following fields:
- `role`: the role of the message, either `system`, `user`, `assistant`, or `tool`
- `content`: the content of the message
- `thinking`: (for thinking models) the model's thinking process
- `images` (optional): a list of images to include in the message (for multimodal models such as `llava`)
- `tool_calls` (optional): a list of tools in JSON that the model wants to use

View File

@@ -118,7 +118,7 @@ To run tests, use `go test`:
go test ./...
```
> NOTE: In rare cirumstances, you may nedd to change a package using the new
> NOTE: In rare cirumstances, you may need to change a package using the new
> "synctest" package in go1.24.
>
> If you do not have the "synctest" package enabled, you will not see build or

View File

@@ -132,22 +132,12 @@ success
### Supported Quantizations
- `q4_0`
- `q4_1`
- `q5_0`
- `q5_1`
- `q8_0`
#### K-means Quantizations
- `q3_K_S`
- `q3_K_M`
- `q3_K_L`
- `q4_K_S`
- `q4_K_M`
- `q5_K_S`
- `q5_K_M`
- `q6_K`
## Sharing your model on ollama.com

View File

@@ -112,8 +112,8 @@ sudo systemctl status ollama
> While AMD has contributed the `amdgpu` driver upstream to the official linux
> kernel source, the version is older and may not support all ROCm features. We
> recommend you install the latest driver from
> https://www.amd.com/en/support/linux-drivers for best support of your Radeon
> GPU.
> [AMD](https://www.amd.com/en/support/download/linux-drivers.html) for best support
> of your Radeon GPU.
## Customizing

View File

@@ -183,6 +183,8 @@ var (
NewEngine = Bool("OLLAMA_NEW_ENGINE")
// ContextLength sets the default context length
ContextLength = Uint("OLLAMA_CONTEXT_LENGTH", 4096)
// Auth enables authentication between the Ollama client and server
UseAuth = Bool("OLLAMA_AUTH")
)
func String(s string) func() string {

View File

@@ -15,6 +15,7 @@ import (
type GGML struct {
container
model
Length int64
}
type model interface {
@@ -126,6 +127,7 @@ func (kv KV) OllamaEngineRequired() bool {
"mistral3",
"llama4",
"mllama",
"qwen25vl",
}, kv.Architecture())
}
@@ -385,12 +387,12 @@ func DetectContentType(b []byte) string {
//
// It collects array values for arrays with a size less than or equal to
// maxArraySize. If the maxArraySize is negative, all arrays are collected.
func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, error) {
rs = bufioutil.NewBufferedSeeker(rs, 32<<10)
var magic uint32
if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
return nil, 0, err
return nil, err
}
var c container
@@ -400,24 +402,25 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
case FILE_MAGIC_GGUF_BE:
c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
default:
return nil, 0, errors.New("invalid file magic")
return nil, errors.New("invalid file magic")
}
model, err := c.Decode(rs)
if err != nil {
return nil, 0, err
return nil, err
}
offset, err := rs.Seek(0, io.SeekCurrent)
if err != nil {
return nil, 0, err
return nil, err
}
// final model type
return &GGML{
container: c,
model: model,
}, offset, nil
Length: offset,
}, nil
}
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string) (kv []uint64, partialOffload, fullOffload uint64) {
@@ -649,6 +652,20 @@ func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
graphSize = 4 * (imageSize*imageSize*numChannels +
embeddingLength*patchSize +
numPatches*numPatches*headCount)
case "qwen25vl":
maxPixels := uint64(llm.KV().Uint("vision.max_pixels", 28*28*1280))
numPatches := maxPixels / (patchSize * patchSize)
graphSize = 4 * (maxPixels*numChannels + // Original image storage
// Normalized pixels
maxPixels*numChannels +
// Patches storage (numPatches * channels * patchSize^2)
numPatches*numChannels*patchSize*patchSize +
// Self-attention calculations
numPatches*numPatches*headCount +
// Additional buffer for processing
embeddingLength*numPatches)
case "llama4":
// vision graph is computed independently in the same schedule
// and is negligible compared to the worst case text graph

View File

@@ -35,7 +35,7 @@ func TestWriteGGUF(t *testing.T) {
}
defer r.Close()
ff, _, err := Decode(r, 0)
ff, err := Decode(r, 0)
if err != nil {
t.Fatal(err)
}

347
fs/gguf/gguf.go Normal file
View File

@@ -0,0 +1,347 @@
package gguf
import (
"bytes"
"cmp"
"encoding/binary"
"errors"
"fmt"
"io"
"iter"
"os"
"slices"
"strings"
)
const (
typeUint8 uint32 = iota
typeInt8
typeUint16
typeInt16
typeUint32
typeInt32
typeFloat32
typeBool
typeString
typeArray
typeUint64
typeInt64
typeFloat64
)
var ErrUnsupported = errors.New("unsupported")
type File struct {
Magic [4]byte
Version uint32
keyValues *lazy[KeyValue]
tensors *lazy[TensorInfo]
offset int64
file *os.File
reader *bufferedReader
bts []byte
}
func Open(path string) (f *File, err error) {
f = &File{bts: make([]byte, 4096)}
f.file, err = os.Open(path)
if err != nil {
return nil, err
}
f.reader = newBufferedReader(f.file, 32<<10)
if err := binary.Read(f.reader, binary.LittleEndian, &f.Magic); err != nil {
return nil, err
}
if bytes.Equal(f.Magic[:], []byte("gguf")) {
return nil, fmt.Errorf("%w file type %v", ErrUnsupported, f.Magic)
}
if err := binary.Read(f.reader, binary.LittleEndian, &f.Version); err != nil {
return nil, err
}
if f.Version != 3 {
return nil, fmt.Errorf("%w version %v", ErrUnsupported, f.Version)
}
f.tensors, err = newLazy(f, f.readTensor)
if err != nil {
return nil, err
}
f.tensors.successFunc = func() error {
offset := f.reader.offset
alignment := cmp.Or(f.KeyValue("general.alignment").Int(), 32)
f.offset = offset + (alignment-offset%alignment)%alignment
return nil
}
f.keyValues, err = newLazy(f, f.readKeyValue)
if err != nil {
return nil, err
}
return f, nil
}
func (f *File) readTensor() (TensorInfo, error) {
name, err := readString(f)
if err != nil {
return TensorInfo{}, err
}
dims, err := read[uint32](f)
if err != nil {
return TensorInfo{}, err
}
shape := make([]uint64, dims)
for i := range dims {
shape[i], err = read[uint64](f)
if err != nil {
return TensorInfo{}, err
}
}
type_, err := read[uint32](f)
if err != nil {
return TensorInfo{}, err
}
offset, err := read[uint64](f)
if err != nil {
return TensorInfo{}, err
}
return TensorInfo{
Name: name,
Offset: offset,
Shape: shape,
Type: TensorType(type_),
}, nil
}
func (f *File) readKeyValue() (KeyValue, error) {
key, err := readString(f)
if err != nil {
return KeyValue{}, err
}
t, err := read[uint32](f)
if err != nil {
return KeyValue{}, err
}
value, err := func() (any, error) {
switch t {
case typeUint8:
return read[uint8](f)
case typeInt8:
return read[int8](f)
case typeUint16:
return read[uint16](f)
case typeInt16:
return read[int16](f)
case typeUint32:
return read[uint32](f)
case typeInt32:
return read[int32](f)
case typeUint64:
return read[uint64](f)
case typeInt64:
return read[int64](f)
case typeFloat32:
return read[float32](f)
case typeFloat64:
return read[float64](f)
case typeBool:
return read[bool](f)
case typeString:
return readString(f)
case typeArray:
return readArray(f)
default:
return nil, fmt.Errorf("%w type %d", ErrUnsupported, t)
}
}()
if err != nil {
return KeyValue{}, err
}
return KeyValue{
Key: key,
Value: Value{value},
}, nil
}
func read[T any](f *File) (t T, err error) {
err = binary.Read(f.reader, binary.LittleEndian, &t)
return t, err
}
func readString(f *File) (string, error) {
n, err := read[uint64](f)
if err != nil {
return "", err
}
if int(n) > len(f.bts) {
f.bts = make([]byte, n)
}
bts := f.bts[:n]
if _, err := io.ReadFull(f.reader, bts); err != nil {
return "", err
}
defer clear(bts)
return string(bts), nil
}
func readArray(f *File) (any, error) {
t, err := read[uint32](f)
if err != nil {
return nil, err
}
n, err := read[uint64](f)
if err != nil {
return nil, err
}
switch t {
case typeUint8:
return readArrayData[uint8](f, n)
case typeInt8:
return readArrayData[int8](f, n)
case typeUint16:
return readArrayData[uint16](f, n)
case typeInt16:
return readArrayData[int16](f, n)
case typeUint32:
return readArrayData[uint32](f, n)
case typeInt32:
return readArrayData[int32](f, n)
case typeUint64:
return readArrayData[uint64](f, n)
case typeInt64:
return readArrayData[int64](f, n)
case typeFloat32:
return readArrayData[float32](f, n)
case typeFloat64:
return readArrayData[float64](f, n)
case typeBool:
return readArrayData[bool](f, n)
case typeString:
return readArrayString(f, n)
default:
return nil, fmt.Errorf("%w type %d", ErrUnsupported, t)
}
}
func readArrayData[T any](f *File, n uint64) (s []T, err error) {
s = make([]T, n)
for i := range n {
e, err := read[T](f)
if err != nil {
return nil, err
}
s[i] = e
}
return s, nil
}
func readArrayString(f *File, n uint64) (s []string, err error) {
s = make([]string, n)
for i := range n {
e, err := readString(f)
if err != nil {
return nil, err
}
s[i] = e
}
return s, nil
}
func (f *File) Close() error {
f.keyValues.stop()
f.tensors.stop()
return f.file.Close()
}
func (f *File) KeyValue(key string) KeyValue {
if !strings.HasPrefix(key, "general.") && !strings.HasPrefix(key, "tokenizer.") {
key = f.KeyValue("general.architecture").String() + "." + key
}
if index := slices.IndexFunc(f.keyValues.values, func(kv KeyValue) bool {
return kv.Key == key
}); index >= 0 {
return f.keyValues.values[index]
}
for keyValue, ok := f.keyValues.next(); ok; keyValue, ok = f.keyValues.next() {
if keyValue.Key == key {
return keyValue
}
}
return KeyValue{}
}
func (f *File) NumKeyValues() int {
return int(f.keyValues.count)
}
func (f *File) KeyValues() iter.Seq2[int, KeyValue] {
return f.keyValues.All()
}
func (f *File) TensorInfo(name string) TensorInfo {
if index := slices.IndexFunc(f.tensors.values, func(t TensorInfo) bool {
return t.Name == name
}); index >= 0 {
return f.tensors.values[index]
}
// fast-forward through key values if we haven't already
_ = f.keyValues.rest()
for tensor, ok := f.tensors.next(); ok; tensor, ok = f.tensors.next() {
if tensor.Name == name {
return tensor
}
}
return TensorInfo{}
}
func (f *File) NumTensors() int {
return int(f.tensors.count)
}
func (f *File) TensorInfos() iter.Seq2[int, TensorInfo] {
// fast forward through key values if we haven't already
f.keyValues.rest()
return f.tensors.All()
}
func (f *File) TensorReader(name string) (TensorInfo, io.Reader, error) {
t := f.TensorInfo(name)
if t.NumBytes() == 0 {
return TensorInfo{}, nil, fmt.Errorf("tensor %s not found", name)
}
// fast forward through tensor info if we haven't already
_ = f.tensors.rest()
return t, io.NewSectionReader(f.file, f.offset+int64(t.Offset), t.NumBytes()), nil
}

249
fs/gguf/gguf_test.go Normal file
View File

@@ -0,0 +1,249 @@
package gguf_test
import (
"bytes"
"os"
"strconv"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/google/go-cmp/cmp/cmpopts"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/fs/gguf"
)
func createBinFile(tb testing.TB) string {
tb.Helper()
f, err := os.CreateTemp(tb.TempDir(), "")
if err != nil {
tb.Fatal(err)
}
defer f.Close()
kv := ggml.KV{
"general.architecture": "llama",
"llama.block_count": uint32(8),
"llama.embedding_length": uint32(3),
"llama.attention.head_count": uint32(2),
"llama.attention.head_count_kv": uint32(2),
"llama.attention.key_length": uint32(3),
"llama.rope.dimension_count": uint32(4),
"llama.rope.freq_base": float32(10000.0),
"llama.rope.freq_scale": float32(1.0),
"llama.attention.layer_norm_rms_epsilon": float32(1e-6),
"tokenizer.ggml.eos_token_id": uint32(0),
"tokenizer.ggml.eos_token_ids": []int32{1, 2, 3},
"tokenizer.ggml.tokens": []string{"hello", "world"},
"tokenizer.ggml.scores": []float32{0, 1},
}
tensors := []*ggml.Tensor{
{
Name: "token_embd.weight",
Kind: 0,
Shape: []uint64{2, 3},
WriterTo: bytes.NewBuffer(make([]byte, 4*2*3)),
},
{
Name: "output.weight",
Kind: 0,
Shape: []uint64{3, 2},
WriterTo: bytes.NewBuffer(make([]byte, 4*3*2)),
},
}
for i := range 8 {
tensors = append(tensors, &ggml.Tensor{
Name: "blk." + strconv.Itoa(i) + ".attn_q.weight",
Kind: 0,
Shape: []uint64{3, 3},
WriterTo: bytes.NewBuffer(make([]byte, 4*3*3)),
}, &ggml.Tensor{
Name: "blk." + strconv.Itoa(i) + ".attn_k.weight",
Kind: 0,
Shape: []uint64{3, 3},
WriterTo: bytes.NewBuffer(make([]byte, 4*3*3)),
}, &ggml.Tensor{
Name: "blk." + strconv.Itoa(i) + ".attn_v.weight",
Kind: 0,
Shape: []uint64{3, 3},
WriterTo: bytes.NewBuffer(make([]byte, 4*3*3)),
}, &ggml.Tensor{
Name: "blk." + strconv.Itoa(i) + ".attn_output.weight",
Kind: 0,
Shape: []uint64{3, 3},
WriterTo: bytes.NewBuffer(make([]byte, 4*3*3)),
})
}
if err := ggml.WriteGGUF(f, kv, tensors); err != nil {
tb.Fatal(err)
}
return f.Name()
}
func TestRead(t *testing.T) {
f, err := gguf.Open(createBinFile(t))
if err != nil {
t.Fatal(err)
}
defer f.Close()
if got := f.KeyValue("does.not.exist").Valid(); got {
t.Errorf(`KeyValue("does.not.exist").Exists() = %v, want false`, got)
}
if got := f.KeyValue("general.architecture").String(); got != "llama" {
t.Errorf(`KeyValue("general.architecture").String() = %q, want %q`, got, "llama")
}
if got := f.TensorInfo("token_embd.weight"); got.Name != "token_embd.weight" {
t.Errorf(`TensorInfo("token_embd.weight").Name = %q, want %q`, got.Name, "token_embd.weight")
} else if diff := cmp.Diff(got.Shape, []uint64{2, 3}); diff != "" {
t.Errorf(`TensorInfo("token_embd.weight").Shape mismatch (-got +want):\n%s`, diff)
} else if got.Type != gguf.TensorTypeF32 {
t.Errorf(`TensorInfo("token_embd.weight").Type = %d, want %d`, got.Type, gguf.TensorTypeF32)
}
if got := f.KeyValue("block_count").Uint(); got != 8 {
t.Errorf(`KeyValue("block_count").Uint() = %d, want %d`, got, 8)
}
if diff := cmp.Diff(f.KeyValue("tokenizer.ggml.tokens").Strings(), []string{"hello", "world"}); diff != "" {
t.Errorf("KeyValue(\"tokenizer.ggml.tokens\").Strings() mismatch (-got +want):\n%s", diff)
}
if diff := cmp.Diff(f.KeyValue("tokenizer.ggml.scores").Floats(), []float64{0, 1}); diff != "" {
t.Errorf("KeyValue(\"tokenizer.ggml.scores\").Ints() mismatch (-got +want):\n%s", diff)
}
var kvs []string
for _, kv := range f.KeyValues() {
if !kv.Valid() {
t.Error("found invalid key-value pair:", kv)
}
kvs = append(kvs, kv.Key)
}
if len(kvs) != f.NumKeyValues() {
t.Errorf("iterated key count = %d, want %d", len(kvs), f.NumKeyValues())
}
if diff := cmp.Diff(kvs, []string{
"general.architecture",
"llama.block_count",
"llama.embedding_length",
"llama.attention.head_count",
"llama.attention.head_count_kv",
"llama.attention.key_length",
"llama.rope.dimension_count",
"llama.rope.freq_base",
"llama.rope.freq_scale",
"llama.attention.layer_norm_rms_epsilon",
"tokenizer.ggml.eos_token_id",
"tokenizer.ggml.eos_token_ids",
"tokenizer.ggml.tokens",
"tokenizer.ggml.scores",
}, cmpopts.SortSlices(strings.Compare)); diff != "" {
t.Errorf("KeyValues() mismatch (-got +want):\n%s", diff)
}
var tis []string
for _, ti := range f.TensorInfos() {
if !ti.Valid() {
t.Error("found invalid tensor info:", ti)
}
tis = append(tis, ti.Name)
}
if len(tis) != f.NumTensors() {
t.Errorf("iterated tensor count = %d, want %d", len(tis), f.NumTensors())
}
if diff := cmp.Diff(tis, []string{
"token_embd.weight",
"output.weight",
"blk.0.attn_q.weight",
"blk.0.attn_k.weight",
"blk.0.attn_v.weight",
"blk.0.attn_output.weight",
"blk.1.attn_q.weight",
"blk.1.attn_k.weight",
"blk.1.attn_v.weight",
"blk.1.attn_output.weight",
"blk.2.attn_q.weight",
"blk.2.attn_k.weight",
"blk.2.attn_v.weight",
"blk.2.attn_output.weight",
"blk.3.attn_q.weight",
"blk.3.attn_k.weight",
"blk.3.attn_v.weight",
"blk.3.attn_output.weight",
"blk.4.attn_q.weight",
"blk.4.attn_k.weight",
"blk.4.attn_v.weight",
"blk.4.attn_output.weight",
"blk.5.attn_q.weight",
"blk.5.attn_k.weight",
"blk.5.attn_v.weight",
"blk.5.attn_output.weight",
"blk.6.attn_q.weight",
"blk.6.attn_k.weight",
"blk.6.attn_v.weight",
"blk.6.attn_output.weight",
"blk.7.attn_q.weight",
"blk.7.attn_k.weight",
"blk.7.attn_v.weight",
"blk.7.attn_output.weight",
}, cmpopts.SortSlices(strings.Compare)); diff != "" {
t.Errorf("TensorInfos() mismatch (-got +want):\n%s", diff)
}
ti, r, err := f.TensorReader("output.weight")
if err != nil {
t.Fatalf(`TensorReader("output.weight") error: %v`, err)
}
if ti.Name != "output.weight" {
t.Errorf(`TensorReader("output.weight").Name = %q, want %q`, ti.Name, "output.weight")
} else if diff := cmp.Diff(ti.Shape, []uint64{3, 2}); diff != "" {
t.Errorf(`TensorReader("output.weight").Shape mismatch (-got +want):\n%s`, diff)
} else if ti.Type != gguf.TensorTypeF32 {
t.Errorf(`TensorReader("output.weight").Type = %d, want %d`, ti.Type, gguf.TensorTypeF32)
}
var b bytes.Buffer
if _, err := b.ReadFrom(r); err != nil {
t.Fatalf(`ReadFrom TensorReader("output.weight") error: %v`, err)
}
if b.Len() != int(ti.NumBytes()) {
t.Errorf(`ReadFrom TensorReader("output.weight") length = %d, want %d`, b.Len(), ti.NumBytes())
}
}
func BenchmarkRead(b *testing.B) {
b.ReportAllocs()
p := createBinFile(b)
for b.Loop() {
f, err := gguf.Open(p)
if err != nil {
b.Fatal(err)
}
if got := f.KeyValue("general.architecture").String(); got != "llama" {
b.Errorf("got = %q, want %q", got, "llama")
}
// Iterate through some tensors
for range f.TensorInfos() {
}
f.Close()
}
}

90
fs/gguf/keyvalue.go Normal file
View File

@@ -0,0 +1,90 @@
package gguf
import (
"reflect"
"slices"
)
type KeyValue struct {
Key string
Value
}
func (kv KeyValue) Valid() bool {
return kv.Key != "" && kv.Value.value != nil
}
type Value struct {
value any
}
func value[T any](v Value, kinds ...reflect.Kind) (t T) {
vv := reflect.ValueOf(v.value)
if slices.Contains(kinds, vv.Kind()) {
t = vv.Convert(reflect.TypeOf(t)).Interface().(T)
}
return
}
func values[T any](v Value, kinds ...reflect.Kind) (ts []T) {
switch vv := reflect.ValueOf(v.value); vv.Kind() {
case reflect.Slice:
if slices.Contains(kinds, vv.Type().Elem().Kind()) {
ts = make([]T, vv.Len())
for i := range vv.Len() {
ts[i] = vv.Index(i).Convert(reflect.TypeOf(ts[i])).Interface().(T)
}
}
}
return
}
// Int returns Value as a signed integer. If it is not a signed integer, it returns 0.
func (v Value) Int() int64 {
return value[int64](v, reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64)
}
// Ints returns Value as a signed integer slice. If it is not a signed integer slice, it returns nil.
func (v Value) Ints() (i64s []int64) {
return values[int64](v, reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64)
}
// Uint converts an unsigned integer value to uint64. If the value is not a unsigned integer, it returns 0.
func (v Value) Uint() uint64 {
return value[uint64](v, reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64)
}
// Uints returns Value as a unsigned integer slice. If it is not a unsigned integer slice, it returns nil.
func (v Value) Uints() (u64s []uint64) {
return values[uint64](v, reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64)
}
// Float returns Value as a float. If it is not a float, it returns 0.
func (v Value) Float() float64 {
return value[float64](v, reflect.Float32, reflect.Float64)
}
// Floats returns Value as a float slice. If it is not a float slice, it returns nil.
func (v Value) Floats() (f64s []float64) {
return values[float64](v, reflect.Float32, reflect.Float64)
}
// Bool returns Value as a boolean. If it is not a boolean, it returns false.
func (v Value) Bool() bool {
return value[bool](v, reflect.Bool)
}
// Bools returns Value as a boolean slice. If it is not a boolean slice, it returns nil.
func (v Value) Bools() (bools []bool) {
return values[bool](v, reflect.Bool)
}
// String returns Value as a string. If it is not a string, it returns an empty string.
func (v Value) String() string {
return value[string](v, reflect.String)
}
// Strings returns Value as a string slice. If it is not a string slice, it returns nil.
func (v Value) Strings() (strings []string) {
return values[string](v, reflect.String)
}

208
fs/gguf/keyvalue_test.go Normal file
View File

@@ -0,0 +1,208 @@
package gguf
import (
"testing"
"github.com/google/go-cmp/cmp"
)
func split(name string, values map[string][]any) (matched []any, unmatched []any) {
for key, value := range values {
if key == name {
matched = value
} else {
unmatched = append(unmatched, value...)
}
}
return
}
func TestValue(t *testing.T) {
values := map[string][]any{
"int64": {int(42), int8(42), int16(42), int32(42), int64(42)},
"uint64": {uint(42), uint8(42), uint16(42), uint32(42), uint64(42)},
"float64": {float32(42), float64(42)},
"string": {"42", "hello"},
"bool": {true, false},
}
t.Run("int64", func(t *testing.T) {
matched, unmatched := split("int64", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if i64 := kv.Int(); i64 != 42 {
t.Errorf("expected 42, got %d", i64)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if i64 := kv.Int(); i64 != 0 {
t.Errorf("expected 42, got %d", i64)
}
}
})
t.Run("uint64", func(t *testing.T) {
matched, unmatched := split("uint64", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if u64 := kv.Uint(); u64 != 42 {
t.Errorf("expected 42, got %d", u64)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if u64 := kv.Uint(); u64 != 0 {
t.Errorf("expected 42, got %d", u64)
}
}
})
t.Run("float64", func(t *testing.T) {
matched, unmatched := split("float64", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if f64 := kv.Float(); f64 != 42 {
t.Errorf("expected 42, got %f", f64)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if f64 := kv.Float(); f64 != 0 {
t.Errorf("expected 42, got %f", f64)
}
}
})
t.Run("string", func(t *testing.T) {
matched, unmatched := split("string", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if s := kv.String(); s != v {
t.Errorf("expected 42, got %s", s)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if s := kv.String(); s != "" {
t.Errorf("expected 42, got %s", s)
}
}
})
t.Run("bool", func(t *testing.T) {
matched, unmatched := split("bool", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if b := kv.Bool(); b != v {
t.Errorf("expected true, got %v", b)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if b := kv.Bool(); b != false {
t.Errorf("expected false, got %v", b)
}
}
})
}
func TestValues(t *testing.T) {
values := map[string][]any{
"int64s": {[]int{42}, []int8{42}, []int16{42}, []int32{42}, []int64{42}},
"uint64s": {[]uint{42}, []uint8{42}, []uint16{42}, []uint32{42}, []uint64{42}},
"float64s": {[]float32{42}, []float64{42}},
"strings": {[]string{"42"}, []string{"hello"}},
"bools": {[]bool{true}, []bool{false}},
}
t.Run("int64s", func(t *testing.T) {
matched, unmatched := split("int64s", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if diff := cmp.Diff(kv.Ints(), []int64{42}); diff != "" {
t.Errorf("diff: %s", diff)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if i64s := kv.Ints(); i64s != nil {
t.Errorf("expected nil, got %v", i64s)
}
}
})
t.Run("uint64s", func(t *testing.T) {
matched, unmatched := split("uint64s", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if diff := cmp.Diff(kv.Uints(), []uint64{42}); diff != "" {
t.Errorf("diff: %s", diff)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if u64s := kv.Uints(); u64s != nil {
t.Errorf("expected nil, got %v", u64s)
}
}
})
t.Run("float64s", func(t *testing.T) {
matched, unmatched := split("float64s", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if diff := cmp.Diff(kv.Floats(), []float64{42}); diff != "" {
t.Errorf("diff: %s", diff)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if f64s := kv.Floats(); f64s != nil {
t.Errorf("expected nil, got %v", f64s)
}
}
})
t.Run("strings", func(t *testing.T) {
matched, unmatched := split("strings", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if diff := cmp.Diff(kv.Strings(), v); diff != "" {
t.Errorf("diff: %s", diff)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if s := kv.Strings(); s != nil {
t.Errorf("expected nil, got %v", s)
}
}
})
t.Run("bools", func(t *testing.T) {
matched, unmatched := split("bools", values)
for _, v := range matched {
kv := KeyValue{"key", Value{v}}
if diff := cmp.Diff(kv.Bools(), v); diff != "" {
t.Errorf("diff: %s", diff)
}
}
for _, v := range unmatched {
kv := KeyValue{"key", Value{v}}
if b := kv.Bools(); b != nil {
t.Errorf("expected nil, got %v", b)
}
}
})
}

89
fs/gguf/lazy.go Normal file
View File

@@ -0,0 +1,89 @@
package gguf
import (
"encoding/binary"
"iter"
"log/slog"
)
type lazy[T any] struct {
count uint64
next func() (T, bool)
stop func()
values []T
// successFunc is called when all values have been successfully read.
successFunc func() error
}
func newLazy[T any](f *File, fn func() (T, error)) (*lazy[T], error) {
it := lazy[T]{}
if err := binary.Read(f.reader, binary.LittleEndian, &it.count); err != nil {
return nil, err
}
it.values = make([]T, 0)
it.next, it.stop = iter.Pull(func(yield func(T) bool) {
for i := range it.count {
t, err := fn()
if err != nil {
slog.Error("error reading tensor", "index", i, "error", err)
return
}
it.values = append(it.values, t)
if !yield(t) {
break
}
}
if it.successFunc != nil {
it.successFunc()
}
})
return &it, nil
}
func (g *lazy[T]) Values() iter.Seq[T] {
return func(yield func(T) bool) {
for _, v := range g.All() {
if !yield(v) {
break
}
}
}
}
func (g *lazy[T]) All() iter.Seq2[int, T] {
return func(yield func(int, T) bool) {
for i := range int(g.count) {
if i < len(g.values) {
if !yield(i, g.values[i]) {
break
}
} else {
t, ok := g.next()
if !ok {
break
}
if !yield(i, t) {
break
}
}
}
}
}
func (g *lazy[T]) rest() (collected bool) {
for {
_, ok := g.next()
collected = collected || ok
if !ok {
break
}
}
return collected
}

23
fs/gguf/reader.go Normal file
View File

@@ -0,0 +1,23 @@
package gguf
import (
"bufio"
"io"
)
type bufferedReader struct {
offset int64
*bufio.Reader
}
func newBufferedReader(rs io.ReadSeeker, size int) *bufferedReader {
return &bufferedReader{
Reader: bufio.NewReaderSize(rs, size),
}
}
func (rs *bufferedReader) Read(p []byte) (n int, err error) {
n, err = rs.Reader.Read(p)
rs.offset += int64(n)
return n, err
}

288
fs/gguf/tensor.go Normal file
View File

@@ -0,0 +1,288 @@
package gguf
import (
"log/slog"
"strings"
)
type TensorInfo struct {
Name string
Offset uint64
Shape []uint64
Type TensorType
}
func (ti TensorInfo) Valid() bool {
return ti.Name != "" && ti.NumBytes() > 0
}
func (ti TensorInfo) NumValues() int64 {
var numItems int64 = 1
for _, dim := range ti.Shape {
numItems *= int64(dim)
}
return numItems
}
// NumBytes returns the number of bytes in the tensor.
func (ti TensorInfo) NumBytes() int64 {
return int64(float64(ti.NumValues()) * ti.Type.NumBytes())
}
func (ti TensorInfo) LogValue() slog.Value {
return slog.GroupValue(
slog.String("name", ti.Name),
slog.Int64("offset", int64(ti.Offset)),
slog.Any("shape", ti.Shape),
slog.Int64("num_values", ti.NumValues()),
slog.Int64("num_bytes", ti.NumBytes()),
slog.Any("type", ti.Type),
)
}
type TensorType uint32
const (
TensorTypeF32 TensorType = iota
TensorTypeF16
TensorTypeQ4_0
TensorTypeQ4_1
// unexported // unused in gguf
tensorTypeQ4_2
tensorTypeQ4_3
TensorTypeQ5_0
TensorTypeQ5_1
TensorTypeQ8_0
TensorTypeQ8_1
TensorTypeQ2_K
TensorTypeQ3_K
TensorTypeQ4_K
TensorTypeQ5_K
TensorTypeQ6_K
TensorTypeQ8_K
// unexported // unquantizable by ollama
tensorTypeIQ2_XXS
tensorTypeIQ2_XS
tensorTypeIQ3_XXS
tensorTypeIQ1_S
tensorTypeIQ4_NL
tensorTypeIQ3_S
tensorTypeIQ2_S
tensorTypeIQ4_XS
TensorTypeI8
TensorTypeI16
TensorTypeI32
TensorTypeI64
TensorTypeF64
// unexported // unquantizable by ollama
tensorTypeIQ1_M
TensorTypeBF16
// unexported // unused in gguf
tensorTypeQ4_0_4_4
tensorTypeQ4_0_4_8
tensorTypeQ4_0_8_8
// unexported // unquantizable by ollama
tensorTypeTQ1_0
tensorTypeTQ2_0
// unexported // unused in gguf
tensorTypeIQ4_NL_4_4
tensorTypeIQ4_NL_4_8
tensorTypeIQ4_NL_8_8
)
func (tt TensorType) NumBytes() float64 {
return float64(tt.typeSize()) / float64(tt.blockSize())
}
func (tt TensorType) typeSize() int64 {
switch tt {
case TensorTypeF32:
return 4
case TensorTypeF16:
return 2
case TensorTypeQ4_0:
return 2 + tt.blockSize()/2
case TensorTypeQ4_1:
return 2 + 2 + tt.blockSize()/2
case TensorTypeQ5_0:
return 2 + 4 + tt.blockSize()/2
case TensorTypeQ5_1:
return 2 + 2 + 4 + tt.blockSize()/2
case TensorTypeQ8_0:
return 2 + tt.blockSize()
case TensorTypeQ8_1:
return 2 + 2 + tt.blockSize()
case TensorTypeQ2_K:
return tt.blockSize()/16 + tt.blockSize()/4 + 2 + 2
case TensorTypeQ3_K:
return tt.blockSize()/8 + tt.blockSize()/4 + 12 + 2
case TensorTypeQ4_K:
return 2 + 2 + 12 + tt.blockSize()/2
case TensorTypeQ5_K:
return 2 + 2 + 12 + tt.blockSize()/8 + tt.blockSize()/2
case TensorTypeQ6_K:
return tt.blockSize()/2 + tt.blockSize()/4 + tt.blockSize()/16 + 2
case TensorTypeQ8_K:
return 4 + tt.blockSize() + 2*tt.blockSize()/16
case tensorTypeIQ2_XXS:
return 2 + 2*tt.blockSize()/8
case tensorTypeIQ2_XS:
return 2 + 2*tt.blockSize()/8 + tt.blockSize()/32
case tensorTypeIQ3_XXS:
return 2 + tt.blockSize()/4 + tt.blockSize()/8
case tensorTypeIQ1_S:
return 2 + tt.blockSize()/8 + tt.blockSize()/16
case tensorTypeIQ4_NL:
return 2 + tt.blockSize()/2
case tensorTypeIQ3_S:
return 2 + tt.blockSize()/4 + tt.blockSize()/8 + tt.blockSize()/32 + 4
case tensorTypeIQ2_S:
return 2 + tt.blockSize()/4 + tt.blockSize()/16
case tensorTypeIQ4_XS:
return 2 + 2 + tt.blockSize()/2 + tt.blockSize()/64
case TensorTypeI8:
return 1
case TensorTypeI16:
return 2
case TensorTypeI32:
return 4
case TensorTypeI64:
return 8
case TensorTypeF64:
return 8
case tensorTypeIQ1_M:
return tt.blockSize()/8 + tt.blockSize()/16 + tt.blockSize()/32
case TensorTypeBF16:
return 2
default:
return 0
}
}
func (tt TensorType) blockSize() int64 {
switch tt {
case TensorTypeF32,
TensorTypeF16,
TensorTypeI8,
TensorTypeI16,
TensorTypeI32,
TensorTypeI64,
TensorTypeF64,
TensorTypeBF16:
return 1
case TensorTypeQ4_0,
TensorTypeQ4_1,
TensorTypeQ5_0,
TensorTypeQ5_1,
TensorTypeQ8_0,
TensorTypeQ8_1,
tensorTypeIQ4_NL:
return 32
default:
return 256
}
}
func (tt TensorType) String() string {
switch tt {
case TensorTypeF32:
return "f32"
case TensorTypeF16:
return "f16"
case TensorTypeQ4_0:
return "q4_0"
case TensorTypeQ4_1:
return "q4_1"
case tensorTypeQ4_2:
return "q4_2"
case tensorTypeQ4_3:
return "q4_3"
case TensorTypeQ5_0:
return "q5_0"
case TensorTypeQ5_1:
return "q5_1"
case TensorTypeQ8_0:
return "q8_0"
case TensorTypeQ8_1:
return "q8_1"
case TensorTypeQ2_K:
return "q2_k"
case TensorTypeQ3_K:
return "q3_k"
case TensorTypeQ4_K:
return "q4_k"
case TensorTypeQ5_K:
return "q5_k"
case TensorTypeQ6_K:
return "q6_k"
case TensorTypeQ8_K:
return "q8_k"
case tensorTypeIQ2_XXS:
return "iq2_xxs"
case tensorTypeIQ2_XS:
return "iq2_xs"
case tensorTypeIQ3_XXS:
return "iq3_xxs"
case tensorTypeIQ1_S:
return "iq1_s"
case tensorTypeIQ4_NL:
return "iq4_nl"
case tensorTypeIQ3_S:
return "iq3_s"
case tensorTypeIQ2_S:
return "iq2_s"
case tensorTypeIQ4_XS:
return "iq4_xs"
case TensorTypeI8:
return "i8"
case TensorTypeI16:
return "i16"
case TensorTypeI32:
return "i32"
case TensorTypeI64:
return "i64"
case TensorTypeF64:
return "f64"
case tensorTypeIQ1_M:
return "iq1_m"
case TensorTypeBF16:
return "bf16"
case tensorTypeQ4_0_4_4:
return "q4_0_4_4"
case tensorTypeQ4_0_4_8:
return "q4_0_4_8"
case tensorTypeQ4_0_8_8:
return "q4_0_8_8"
case tensorTypeTQ1_0:
return "tq1_0"
case tensorTypeTQ2_0:
return "tq2_0"
case tensorTypeIQ4_NL_4_4:
return "iq4_nl_4_4"
case tensorTypeIQ4_NL_4_8:
return "iq4_nl_4_8"
case tensorTypeIQ4_NL_8_8:
return "iq4_nl_8_8"
default:
return "unknown"
}
}
func (tt TensorType) LogValue() slog.Value {
return slog.GroupValue(
slog.Uint64("value", uint64(tt)),
slog.String("name", strings.ToUpper(tt.String())),
slog.Int64("size", tt.typeSize()),
slog.Int64("block_size", tt.blockSize()),
slog.Float64("num_bytes", tt.NumBytes()),
)
}

3
go.mod
View File

@@ -19,8 +19,7 @@ require (
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1
github.com/dlclark/regexp2 v1.11.4
github.com/emirpasic/gods/v2 v2.0.0-alpha
github.com/go-json-experiment/json v0.0.0-20250417205406-170dfdcf87d1
github.com/google/go-cmp v0.6.0
github.com/google/go-cmp v0.7.0
github.com/mattn/go-runewidth v0.0.14
github.com/nlpodyssey/gopickle v0.3.0
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c

6
go.sum
View File

@@ -69,8 +69,6 @@ github.com/go-fonts/latin-modern v0.2.0/go.mod h1:rQVLdDMK+mK1xscDwsqM5J8U2jrRa3
github.com/go-fonts/liberation v0.1.1/go.mod h1:K6qoJYypsmfVjWg8KOVDQhLc8UDgIK2HYqyqAO9z7GY=
github.com/go-fonts/stix v0.1.0/go.mod h1:w/c1f0ldAUlJmLBvlbkvVXLAD+tAMqobIIQpmnUIzUY=
github.com/go-gl/glfw v0.0.0-20190409004039-e6da0acd62b1/go.mod h1:vR7hzQXu2zJy9AVAgeJqvqgH9Q5CA+iKCZ2gyEVpxRU=
github.com/go-json-experiment/json v0.0.0-20250417205406-170dfdcf87d1 h1:+VexzzkMLb1tnvpuQdGT/DicIRW7MN8ozsXqBMgp0Hk=
github.com/go-json-experiment/json v0.0.0-20250417205406-170dfdcf87d1/go.mod h1:TiCD2a1pcmjd7YnhGH0f/zKNcCD06B029pHhzV23c2M=
github.com/go-latex/latex v0.0.0-20210118124228-b3d85cf34e07/go.mod h1:CO1AlKB2CSIqUrmQPqA0gdRIlnLEY0gK5JGjh37zN5U=
github.com/go-playground/assert/v2 v2.2.0 h1:JvknZsQTYeFEAhQwI4qEt9cyV5ONwRHC+lYKSsYSR8s=
github.com/go-playground/assert/v2 v2.2.0/go.mod h1:VDjEfimB/XKnb+ZQfWdccd7VUvScMdVu0Titje2rxJ4=
@@ -114,8 +112,8 @@ github.com/google/go-cmp v0.4.0/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/
github.com/google/go-cmp v0.5.0/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
github.com/google/go-cmp v0.5.5/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
github.com/google/go-cmp v0.5.6/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
github.com/google/go-cmp v0.6.0 h1:ofyhxvXcZhMsU5ulbFiLKl/XBFqE1GSq7atu8tAmTRI=
github.com/google/go-cmp v0.6.0/go.mod h1:17dUlkBOakJ0+DkrSSNjCkIjxS6bF9zb3elmeNGIjoY=
github.com/google/go-cmp v0.7.0 h1:wk8382ETsv4JYUZwIsn6YpYiWiBsYLSJiTsyBybVuN8=
github.com/google/go-cmp v0.7.0/go.mod h1:pXiqmnSA92OHEEa9HXL2W4E7lf9JzCmGVUdgjX3N/iU=
github.com/google/gofuzz v1.0.0/go.mod h1:dBl0BpW6vV/+mYPU4Po3pmUjxk6FQPldtuIdl/M65Eg=
github.com/google/uuid v1.1.2/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo=
github.com/google/uuid v1.6.0 h1:NIvaJDMOsjHA8n1jAhLSgzrAzy1Hgr+hNrb57e+94F0=

View File

@@ -19,7 +19,7 @@ func TestVisionModels(t *testing.T) {
}
testCases := []testCase{
{
model: "llava:7b",
model: "qwen2.5vl",
},
{
model: "llama3.2-vision",
@@ -60,6 +60,7 @@ func TestVisionModels(t *testing.T) {
}
func TestIntegrationSplitBatch(t *testing.T) {
skipUnderMinVRAM(t, 6)
image, err := base64.StdEncoding.DecodeString(imageEncoding)
require.NoError(t, err)
req := api.GenerateRequest{

View File

File diff suppressed because one or more lines are too long

View File

@@ -30,6 +30,11 @@ type Causal struct {
// ** current forward pass **
// curReserve indicates that this forward pass is only for
// memory reservation and we should not update our metadata
// based on it.
curReserve bool
// the active layer for Get and Put
curLayer int
@@ -159,12 +164,13 @@ func (c *Causal) Close() {
}
func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
c.curReserve = reserve
c.curBatchSize = len(batch.Positions)
c.curSequences = batch.Sequences
c.curPositions = batch.Positions
c.opts.Except = nil
if !reserve {
if !c.curReserve {
c.updateSlidingWindow()
var err error
@@ -211,10 +217,9 @@ func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) e
c.curCellRange.max = len(c.cells) - 1
}
var err error
c.curMask, err = c.buildMask(ctx)
c.curMask = c.buildMask(ctx)
return err
return nil
}
func newRange() cellRange {
@@ -297,7 +302,7 @@ func roundUp(length, pad int) int {
// Builds a mask of history x batch indicating whether for each token in the batch the
// token in the history should apply. This is based on both the sequence and causality (the
// position of the history is not ahead of the token in the batch).
func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
// Align and pad the two dimensions as required by the backend
batchSize := roundUp(c.curBatchSize, c.config.MaskBatchPadding)
@@ -305,6 +310,11 @@ func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
c.curCellRange.max = roundUp(c.curCellRange.max+1, c.config.CachePadding) - 1
length := c.curCellRange.max - c.curCellRange.min + 1
if c.curReserve {
return ctx.Input().Empty(c.config.MaskDType, length, batchSize)
}
mask := make([]float32, batchSize*length)
for i := range c.curBatchSize {
@@ -325,10 +335,7 @@ func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
mask[i] = float32(math.Inf(-1))
}
maskTensor, err := ctx.Input().FromFloatSlice(mask, length, batchSize)
if err != nil {
return nil, err
}
maskTensor := ctx.Input().FromFloatSlice(mask, length, batchSize)
if c.config.MaskDType != ml.DTypeF32 {
out := ctx.Input().Empty(c.config.MaskDType, maskTensor.Shape()...)
@@ -336,7 +343,7 @@ func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
maskTensor = out
}
return maskTensor, nil
return maskTensor
}
func (c *Causal) moveCells(ctx ml.Context, src, dst, length int) {
@@ -491,12 +498,7 @@ func (c *Causal) SetCausal(ctx ml.Context, opts CausalOptions) {
if !slices.Equal(c.opts.Except, opts.Except) {
c.opts = opts
if ctx != nil {
var err error
c.curMask, err = c.buildMask(ctx)
if err != nil {
// This error should never occur because we have previously built a mask with the same shape
panic(fmt.Errorf("SetCausal: %w", err))
}
c.curMask = c.buildMask(ctx)
}
}
}
@@ -652,10 +654,7 @@ func (c *Causal) shift(seq int, beginIndex, offset int32) error {
}
}
kShift, err := ctx.Input().FromIntSlice(offsets, len(offsets))
if err != nil {
return err
}
kShift := ctx.Input().FromIntSlice(offsets, len(offsets))
for i, key := range c.keys {
if key == nil {

View File

@@ -344,7 +344,7 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
}
cache.SetLayer(0)
tensor, _ := context.FromFloatSlice(test.in, test.inShape...)
tensor := context.FromFloatSlice(test.in, test.inShape...)
cache.Put(context, tensor, tensor)
out, _, mask := cache.Get(context)
@@ -386,7 +386,7 @@ func TestCanResume(t *testing.T) {
}
cache.SetLayer(0)
tensor, _ := context.FromFloatSlice([]float32{1, 2, 3, 4}, 1, 1, 4)
tensor := context.FromFloatSlice([]float32{1, 2, 3, 4}, 1, 1, 4)
cache.Put(context, tensor, tensor)
// with window size 4, nothing has slid out of the window yet
@@ -413,7 +413,7 @@ func TestCanResume(t *testing.T) {
}
cache.SetLayer(0)
tensor, _ = context.FromFloatSlice([]float32{5, 6}, 1, 1, 2)
tensor = context.FromFloatSlice([]float32{5, 6}, 1, 1, 2)
cache.Put(context, tensor, tensor)
// only the latest position has overlapping windows
@@ -470,24 +470,24 @@ func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
return c.Empty(dtype, shape...)
}
func (c *testContext) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
func (c *testContext) FromFloatSlice(s []float32, shape ...int) ml.Tensor {
t := c.Empty(ml.DTypeF32, shape...).(*testTensor)
copy(t.data, s)
return t, nil
return t
}
func (c *testContext) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
func (c *testContext) FromIntSlice(s []int32, shape ...int) ml.Tensor {
f := make([]float32, len(s))
for i := range f {
f[i] = float32(s[i])
}
out, _ := c.FromFloatSlice(f, shape...)
out := c.FromFloatSlice(f, shape...)
out.(*testTensor).dtype = ml.DTypeI32
return out, nil
return out
}
func (c *testContext) Arange(start, stop, step float32, dtype ml.DType) ml.Tensor {
@@ -496,7 +496,7 @@ func (c *testContext) Arange(start, stop, step float32, dtype ml.DType) ml.Tenso
s = append(s, i)
}
out, _ := c.FromFloatSlice(s, len(s))
out := c.FromFloatSlice(s, len(s))
out.(*testTensor).dtype = dtype
return out
}
@@ -508,7 +508,7 @@ func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }
func (c *testContext) Compute(...ml.Tensor) {}
func (c *testContext) Reserve() error { return nil }
func (c *testContext) Reserve() {}
func (c *testContext) MaxGraphNodes() int {
return 10

View File

@@ -544,7 +544,7 @@ func NewSamplingContext(model *Model, params SamplingParams) (*SamplingContext,
cparams.penalty_last_n = C.int32_t(params.RepeatLastN)
cparams.penalty_repeat = C.float(params.PenaltyRepeat)
cparams.penalty_freq = C.float(params.PenaltyFreq)
cparams.penalty_present = C.float(params.PenaltyFreq)
cparams.penalty_present = C.float(params.PenaltyPresent)
cparams.seed = C.uint32_t(params.Seed)
grammar := C.CString(params.Grammar)
@@ -580,7 +580,7 @@ func SchemaToGrammar(schema []byte) []byte {
defer C.free(unsafe.Pointer(cStr))
// Allocate buffer for grammar based on schema length but with upper bound
maxLen := min(1024*1024, len(schema)*4)
maxLen := max(32768, min(1024*1024, len(schema)*4))
buf := make([]byte, maxLen)
// Call C function to convert schema to grammar
@@ -602,7 +602,7 @@ type Grammar struct {
mu sync.Mutex
}
func NewGrammar(grammar string, vocabIds []uint32, vocabValues []string, eogTokens []uint32) *Grammar {
func NewGrammar(grammar string, vocabIds []uint32, vocabValues []string, eogTokens []int32) *Grammar {
cGrammar := C.CString(grammar)
defer C.free(unsafe.Pointer(cGrammar))
@@ -622,7 +622,7 @@ func NewGrammar(grammar string, vocabIds []uint32, vocabValues []string, eogToke
cEogTokens[i] = C.uint32_t(token)
}
g := C.grammar_init(cGrammar, (*C.uint32_t)(unsafe.Pointer(&cTokens[0])), C.size_t(len(cTokens)), (**C.char)(unsafe.Pointer(&cPieces[0])), (*C.uint32_t)(unsafe.Pointer(&cEogTokens[0])), C.size_t(len(cEogTokens)))
g := C.grammar_init(cGrammar, unsafe.SliceData(cTokens), C.size_t(len(cTokens)), unsafe.SliceData(cPieces), unsafe.SliceData(cEogTokens), C.size_t(len(cEogTokens)))
if g == nil {
return nil
}

View File

@@ -0,0 +1,277 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Michael Yang <git@mxy.ng>
Date: Thu, 1 May 2025 13:45:12 -0700
Subject: [PATCH] add argsort and cuda copy for i32
---
ggml/src/ggml-cpu/ops.cpp | 43 ++++++++++++++
ggml/src/ggml-cuda/argsort.cu | 102 +++++++++++++++++++++++++++++++++-
ggml/src/ggml-cuda/cpy.cu | 49 ++++++++++++++++
3 files changed, 192 insertions(+), 2 deletions(-)
diff --git a/ggml/src/ggml-cpu/ops.cpp b/ggml/src/ggml-cpu/ops.cpp
index becdae07..7a44b6cf 100644
--- a/ggml/src/ggml-cpu/ops.cpp
+++ b/ggml/src/ggml-cpu/ops.cpp
@@ -6890,6 +6890,45 @@ static void ggml_compute_forward_argsort_f32(
}
}
+static void ggml_compute_forward_argsort_i32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ GGML_ASSERT(nb0 == sizeof(int32_t));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int64_t nr = ggml_nrows(src0);
+
+ ggml_sort_order order = (ggml_sort_order) ggml_get_op_params_i32(dst, 0);
+
+ for (int64_t i = ith; i < nr; i += nth) {
+ int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
+ const int32_t * src_data = (int32_t *)((char *) src0->data + i*nb01);
+
+ for (int64_t j = 0; j < ne0; j++) {
+ dst_data[j] = j;
+ }
+
+ // C doesn't have a functional sort, so we do a bubble sort instead
+ for (int64_t j = 0; j < ne0; j++) {
+ for (int64_t k = j + 1; k < ne0; k++) {
+ if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
+ (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
+ int32_t tmp = dst_data[j];
+ dst_data[j] = dst_data[k];
+ dst_data[k] = tmp;
+ }
+ }
+ }
+ }
+}
+
void ggml_compute_forward_argsort(
const ggml_compute_params * params,
ggml_tensor * dst) {
@@ -6901,6 +6940,10 @@ void ggml_compute_forward_argsort(
{
ggml_compute_forward_argsort_f32(params, dst);
} break;
+ case GGML_TYPE_I32:
+ {
+ ggml_compute_forward_argsort_i32(params, dst);
+ } break;
default:
{
GGML_ABORT("fatal error");
diff --git a/ggml/src/ggml-cuda/argsort.cu b/ggml/src/ggml-cuda/argsort.cu
index 607ded85..53b02634 100644
--- a/ggml/src/ggml-cuda/argsort.cu
+++ b/ggml/src/ggml-cuda/argsort.cu
@@ -85,13 +85,107 @@ static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, co
}
}
+
+template<ggml_sort_order order>
+static __global__ void k_argsort_i32_i32(const int32_t * x, int * dst, const int ncols, const int ncols_pad) {
+ extern __shared__ int shared_mem[];
+ int * indices = shared_mem;
+
+ const int tid = threadIdx.x;
+ const int row = blockIdx.y;
+
+ // Initialize all indices, handling the case where threads < ncols_pad
+ for (int i = tid; i < ncols_pad; i += blockDim.x) {
+ indices[i] = i < ncols ? i : 0; // Use 0 for padding indices
+ }
+ __syncthreads();
+
+ // Bitonic sort
+ for (int k = 2; k <= ncols_pad; k *= 2) {
+ for (int j = k/2; j > 0; j /= 2) {
+ for (int i = tid; i < ncols_pad; i += blockDim.x) {
+ const int ij = i ^ j;
+ if (ij > i) {
+ // Only compare values within the actual data range
+ if (i < ncols && ij < ncols) {
+ if ((i & k) == 0) {
+ if (order == GGML_SORT_ORDER_ASC) {
+ if (x[row * ncols + indices[i]] > x[row * ncols + indices[ij]]) {
+ int tmp = indices[i];
+ indices[i] = indices[ij];
+ indices[ij] = tmp;
+ }
+ } else {
+ if (x[row * ncols + indices[i]] < x[row * ncols + indices[ij]]) {
+ int tmp = indices[i];
+ indices[i] = indices[ij];
+ indices[ij] = tmp;
+ }
+ }
+ } else {
+ if (order == GGML_SORT_ORDER_ASC) {
+ if (x[row * ncols + indices[i]] < x[row * ncols + indices[ij]]) {
+ int tmp = indices[i];
+ indices[i] = indices[ij];
+ indices[ij] = tmp;
+ }
+ } else {
+ if (x[row * ncols + indices[i]] > x[row * ncols + indices[ij]]) {
+ int tmp = indices[i];
+ indices[i] = indices[ij];
+ indices[ij] = tmp;
+ }
+ }
+ }
+ }
+ }
+ }
+ __syncthreads();
+ }
+ }
+
+ // Write sorted indices to output, only threads handling valid data
+ for (int i = tid; i < ncols; i += blockDim.x) {
+ dst[row * ncols + i] = indices[i];
+ }
+}
+
+static void argsort_i32_i32_cuda(const int32_t * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
+ // Bitonic sort requires ncols to be power of 2
+ const int ncols_pad = next_power_of_2(ncols);
+
+ // Ensure thread count doesn't exceed maximum (typically 1024)
+ const int max_threads = 1024; // This is the typical max for most GPUs
+ const int threads_per_block = ncols_pad > max_threads ? max_threads : ncols_pad;
+
+ const dim3 block_dims(threads_per_block, 1, 1);
+ const dim3 block_nums(1, nrows, 1);
+ const size_t shared_mem = ncols_pad * sizeof(int);
+
+ // Check if shared memory size is within limits
+ const size_t max_shared_mem = ggml_cuda_info().devices[ggml_cuda_get_device()].smpb;
+
+ // Instead of logging an error, use GGML_ASSERT with a descriptive message
+ GGML_ASSERT(shared_mem <= max_shared_mem && "argsort: required shared memory exceeds device limit");
+
+ // Launch kernels with the updated thread configuration
+ if (order == GGML_SORT_ORDER_ASC) {
+ k_argsort_i32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
+ } else if (order == GGML_SORT_ORDER_DESC) {
+ k_argsort_i32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
+ } else {
+ GGML_ABORT("fatal error");
+ }
+}
+
+
void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_I32);
GGML_ASSERT( dst->type == GGML_TYPE_I32);
GGML_ASSERT(ggml_is_contiguous(src0));
@@ -100,5 +194,9 @@ void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
- argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
+ if (src0->type == GGML_TYPE_I32) {
+ argsort_i32_i32_cuda((const int32_t *)src0_d, (int *)dst_d, ncols, nrows, order, stream);
+ } else {
+ argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
+ }
}
diff --git a/ggml/src/ggml-cuda/cpy.cu b/ggml/src/ggml-cuda/cpy.cu
index 2d46176e..47383486 100644
--- a/ggml/src/ggml-cuda/cpy.cu
+++ b/ggml/src/ggml-cuda/cpy.cu
@@ -38,6 +38,13 @@ static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
*dsti = *xi;
}
+static __device__ void cpy_1_i32_i32(const char * cxi, char * cdsti) {
+ const int32_t * xi = (const int32_t *) cxi;
+ int32_t * dsti = (int32_t *) cdsti;
+
+ *dsti = *xi;
+}
+
template <cpy_kernel_t cpy_1>
static __global__ void cpy_f32_f16(const char * cx, char * cdst_direct, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
@@ -68,6 +75,44 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst_direct, const in
cpy_1(cx + x_offset, cdst + dst_offset);
}
+// First, add this template function after the other template functions
+template <cpy_kernel_t cpy_1>
+static __global__ void cpy_i32_i32(const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
+ const int nb12, const int nb13) {
+ const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (i >= ne) {
+ return;
+ }
+
+ const int64_t i03 = i/(ne00 * ne01 * ne02);
+ const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
+ const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
+ const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
+ const int64_t x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
+
+ const int64_t i13 = i/(ne10 * ne11 * ne12);
+ const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
+ const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
+ const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
+ const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
+
+ cpy_1(cx + x_offset, cdst + dst_offset);
+}
+
+// Then modify the ggml_cpy_i32_i32_cuda function to use the new template
+static void ggml_cpy_i32_i32_cuda(
+ const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int graph_cpynode_index) {
+
+ const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
+ cpy_i32_i32<cpy_1_i32_i32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
+
static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q8_0 * dsti = (block_q8_0 *) cdsti;
@@ -631,6 +676,8 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
+ } else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) {
+ ggml_cpy_i32_i32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else {
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type));
@@ -686,6 +733,8 @@ void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
return (void*) cpy_f32_f16<cpy_1_f32_f16>;
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
return (void*) cpy_f32_f16<cpy_1_f16_f32>;
+ } else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) {
+ return (void*) cpy_i32_i32<cpy_1_i32_i32>;
} else {
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type));

View File

@@ -0,0 +1,156 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Jesse Gross <jesse@ollama.com>
Date: Fri, 18 Apr 2025 15:58:19 -0700
Subject: [PATCH] graph memory reporting on failure
---
ggml/include/ggml-alloc.h | 6 ++++++
ggml/include/ggml-backend.h | 6 ++++++
ggml/src/ggml-alloc.c | 38 +++++++++++++++++++++++++++++++++----
ggml/src/ggml-backend.cpp | 10 ++++++++++
4 files changed, 56 insertions(+), 4 deletions(-)
diff --git a/ggml/include/ggml-alloc.h b/ggml/include/ggml-alloc.h
index 2cb150fd..781b1e10 100644
--- a/ggml/include/ggml-alloc.h
+++ b/ggml/include/ggml-alloc.h
@@ -66,6 +66,12 @@ GGML_API bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph
GGML_API size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id);
+struct ggml_allocr_buffer_status {
+ size_t size;
+ bool allocated;
+};
+GGML_API struct ggml_allocr_buffer_status ggml_gallocr_get_attempted_buffer_size(ggml_gallocr_t galloc, int buffer_id);
+
// Utils
// Create a buffer and allocate all the tensors in a ggml_context
GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft);
diff --git a/ggml/include/ggml-backend.h b/ggml/include/ggml-backend.h
index 778927f6..74e46716 100644
--- a/ggml/include/ggml-backend.h
+++ b/ggml/include/ggml-backend.h
@@ -304,6 +304,12 @@ extern "C" {
GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
+ struct ggml_backend_buffer_status {
+ size_t size;
+ bool allocated;
+ };
+ GGML_API struct ggml_backend_buffer_status ggml_backend_sched_get_attempted_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
+
GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
diff --git a/ggml/src/ggml-alloc.c b/ggml/src/ggml-alloc.c
index 5fd379f6..04812990 100644
--- a/ggml/src/ggml-alloc.c
+++ b/ggml/src/ggml-alloc.c
@@ -364,6 +364,7 @@ struct node_alloc {
struct ggml_gallocr {
ggml_backend_buffer_type_t * bufts; // [n_buffers]
ggml_backend_buffer_t * buffers; // [n_buffers]
+ size_t *buffer_sizes; // [n_buffers]
struct ggml_dyn_tallocr ** buf_tallocs; // [n_buffers]
int n_buffers;
@@ -387,6 +388,9 @@ ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs
galloc->buffers = calloc(n_bufs, sizeof(ggml_backend_buffer_t));
GGML_ASSERT(galloc->buffers != NULL);
+ galloc->buffer_sizes = calloc(n_bufs, sizeof(size_t));
+ GGML_ASSERT(galloc->buffer_sizes != NULL);
+
galloc->buf_tallocs = calloc(n_bufs, sizeof(struct ggml_dyn_tallocr *));
GGML_ASSERT(galloc->buf_tallocs != NULL);
@@ -453,6 +457,7 @@ void ggml_gallocr_free(ggml_gallocr_t galloc) {
ggml_hash_set_free(&galloc->hash_set);
free(galloc->hash_values);
free(galloc->bufts);
+ free(galloc->buffer_sizes);
free(galloc->buffers);
free(galloc->buf_tallocs);
free(galloc->node_allocs);
@@ -748,6 +753,8 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
}
}
+ bool success = true;
+
// reallocate buffers if needed
for (int i = 0; i < galloc->n_buffers; i++) {
// if the buffer type is used multiple times, we reuse the same buffer
@@ -769,15 +776,20 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
ggml_backend_buffer_free(galloc->buffers[i]);
galloc->buffers[i] = ggml_backend_buft_alloc_buffer(galloc->bufts[i], new_size);
- if (galloc->buffers[i] == NULL) {
+ if (galloc->buffers[i]) {
+ galloc->buffer_sizes[i] = ggml_backend_buffer_get_size(galloc->buffers[i]);
+ ggml_backend_buffer_set_usage(galloc->buffers[i], GGML_BACKEND_BUFFER_USAGE_COMPUTE);
+ } else {
GGML_LOG_ERROR("%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), new_size);
- return false;
+ galloc->buffer_sizes[i] = new_size;
+ success = false;
}
- ggml_backend_buffer_set_usage(galloc->buffers[i], GGML_BACKEND_BUFFER_USAGE_COMPUTE);
+ } else {
+ galloc->buffer_sizes[i] = ggml_backend_buffer_get_size(galloc->buffers[i]);
}
}
- return true;
+ return success;
}
bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) {
@@ -934,6 +946,24 @@ size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
return ggml_backend_buffer_get_size(galloc->buffers[buffer_id]);
}
+struct ggml_allocr_buffer_status ggml_gallocr_get_attempted_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
+ GGML_ASSERT(buffer_id >= 0 && buffer_id < galloc->n_buffers);
+
+ for (int i = 0; i < buffer_id; i++) {
+ if (galloc->buf_tallocs[i] == galloc->buf_tallocs[buffer_id]) {
+ // This buffer is the same as a previous one due to the same buffer type being used multiple times
+ // (See above.) However, we need a different check because multiple buffers might be NULL in our
+ // case and we still want to know the attempted size.
+
+ struct ggml_allocr_buffer_status status = {0, true};
+ return status;
+ }
+ }
+
+ struct ggml_allocr_buffer_status status = {galloc->buffer_sizes[buffer_id], galloc->buffers[buffer_id] != NULL};
+ return status;
+}
+
// utils
static void free_buffers(ggml_backend_buffer_t ** buffers, const size_t * n_buffers) {
diff --git a/ggml/src/ggml-backend.cpp b/ggml/src/ggml-backend.cpp
index 0ce73a99..be335e8c 100644
--- a/ggml/src/ggml-backend.cpp
+++ b/ggml/src/ggml-backend.cpp
@@ -1629,6 +1629,16 @@ size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backe
return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
}
+struct ggml_backend_buffer_status ggml_backend_sched_get_attempted_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
+ int backend_index = ggml_backend_sched_backend_id(sched, backend);
+ GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
+
+ struct ggml_allocr_buffer_status allocr_status = ggml_gallocr_get_attempted_buffer_size(sched->galloc, backend_index);
+ struct ggml_backend_buffer_status status = {allocr_status.size, allocr_status.allocated};
+
+ return status;
+}
+
void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
int backend_index = ggml_backend_sched_backend_id(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);

View File

@@ -0,0 +1,102 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Jesse Gross <jesse@ollama.com>
Date: Thu, 24 Apr 2025 14:48:51 -0700
Subject: [PATCH] ggml: Export GPU UUIDs
This enables matching up devices and information reported by the backend
with tools (e.g. nvidia-smi) and system management libraries (e.g. nvml).
---
ggml/include/ggml-backend.h | 1 +
ggml/src/ggml-cuda/ggml-cuda.cu | 33 ++++++++++++++++++++++++++++++++
ggml/src/ggml-metal/ggml-metal.m | 1 +
3 files changed, 35 insertions(+)
diff --git a/ggml/include/ggml-backend.h b/ggml/include/ggml-backend.h
index 74e46716..a880df33 100644
--- a/ggml/include/ggml-backend.h
+++ b/ggml/include/ggml-backend.h
@@ -152,6 +152,7 @@ extern "C" {
struct ggml_backend_dev_props {
const char * name;
const char * description;
+ const char * uuid;
size_t memory_free;
size_t memory_total;
enum ggml_backend_dev_type type;
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
index cb0d8528..4c829153 100644
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
@@ -2884,6 +2884,7 @@ struct ggml_backend_cuda_device_context {
int device;
std::string name;
std::string description;
+ std::string uuid;
};
static const char * ggml_backend_cuda_device_get_name(ggml_backend_dev_t dev) {
@@ -2896,6 +2897,11 @@ static const char * ggml_backend_cuda_device_get_description(ggml_backend_dev_t
return ctx->description.c_str();
}
+static const char * ggml_backend_cuda_device_get_uuid(ggml_backend_dev_t dev) {
+ ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
+ return ctx->uuid.c_str();
+}
+
static void ggml_backend_cuda_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
ggml_cuda_set_device(ctx->device);
@@ -2910,6 +2916,7 @@ static enum ggml_backend_dev_type ggml_backend_cuda_device_get_type(ggml_backend
static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
props->name = ggml_backend_cuda_device_get_name(dev);
props->description = ggml_backend_cuda_device_get_description(dev);
+ props->uuid = ggml_backend_cuda_device_get_uuid(dev);
props->type = ggml_backend_cuda_device_get_type(dev);
ggml_backend_cuda_device_get_memory(dev, &props->memory_free, &props->memory_total);
@@ -3458,6 +3465,32 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
CUDA_CHECK(cudaGetDeviceProperties(&prop, i));
dev_ctx->description = prop.name;
+ #if !defined(GGML_USE_HIP)
+ char uuid[64];
+ snprintf(uuid, sizeof(uuid),
+ "GPU-%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x",
+ (unsigned char)prop.uuid.bytes[0],
+ (unsigned char)prop.uuid.bytes[1],
+ (unsigned char)prop.uuid.bytes[2],
+ (unsigned char)prop.uuid.bytes[3],
+ (unsigned char)prop.uuid.bytes[4],
+ (unsigned char)prop.uuid.bytes[5],
+ (unsigned char)prop.uuid.bytes[6],
+ (unsigned char)prop.uuid.bytes[7],
+ (unsigned char)prop.uuid.bytes[8],
+ (unsigned char)prop.uuid.bytes[9],
+ (unsigned char)prop.uuid.bytes[10],
+ (unsigned char)prop.uuid.bytes[11],
+ (unsigned char)prop.uuid.bytes[12],
+ (unsigned char)prop.uuid.bytes[13],
+ (unsigned char)prop.uuid.bytes[14],
+ (unsigned char)prop.uuid.bytes[15]
+ );
+ dev_ctx->uuid = uuid;
+ #else
+ dev_ctx->uuid = "GPU-" + std::string(prop.uuid.bytes, 16);
+ #endif
+
ggml_backend_dev_t dev = new ggml_backend_device {
/* .iface = */ ggml_backend_cuda_device_interface,
/* .reg = */ &reg,
diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m
index 1b56f858..ee4f2dcb 100644
--- a/ggml/src/ggml-metal/ggml-metal.m
+++ b/ggml/src/ggml-metal/ggml-metal.m
@@ -5703,6 +5703,7 @@ static enum ggml_backend_dev_type ggml_backend_metal_device_get_type(ggml_backen
static void ggml_backend_metal_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
props->name = ggml_backend_metal_device_get_name(dev);
props->description = ggml_backend_metal_device_get_description(dev);
+ props->uuid = "0";
props->type = ggml_backend_metal_device_get_type(dev);
ggml_backend_metal_device_get_memory(dev, &props->memory_free, &props->memory_total);
props->caps = (struct ggml_backend_dev_caps) {

View File

@@ -1,12 +1,9 @@
package llm
import (
"cmp"
"fmt"
"log/slog"
"maps"
"os"
"slices"
"strconv"
"strings"
@@ -85,8 +82,11 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
var graphOffload uint64
// Projectors loaded into GPU0 only
var projectorWeights uint64
var projectorGraph uint64
var llamaEngineProjectorWeights uint64
// Projectors loaded with output layer
var ollamaEngineProjectorWeights uint64
var ollamaEngineProjectorGraph uint64
// Conditional output size on GPU 0
var memoryLayerOutput uint64
@@ -111,21 +111,23 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", availableList)
for _, projector := range projectors {
weight := projectorMemoryRequirements(projector)
projectorWeights += weight
llamaEngineProjectorWeights += projectorMemoryRequirements(projector)
// multimodal models require at least 2048 context
opts.NumCtx = max(opts.NumCtx, 2048)
}
if projectorWeights == 0 && projectorGraph == 0 {
projectorWeights, projectorGraph = f.VisionGraphSize()
if llamaEngineProjectorWeights == 0 {
ollamaEngineProjectorWeights, ollamaEngineProjectorGraph = f.VisionGraphSize()
opts.NumCtx = max(opts.NumCtx, 2048)
}
layers := f.Tensors().GroupLayers()
// add one layer (chosing the max layer) worth of memory as a buffer
layerSize = slices.MaxFunc(slices.Collect(maps.Values(layers)), func(a, b ggml.Layer) int {
return cmp.Compare(a.Size(), b.Size())
}).Size()
// add one layer worth of memory as a buffer
if blk0, ok := layers["blk.0"]; ok {
layerSize = blk0.Size()
} else {
slog.Warn("model missing blk.0 layer size")
}
var kvct string
if envconfig.FlashAttention() &&
@@ -163,6 +165,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
graphFullOffload = graphPartialOffload
}
// Output layer handled at the end if we have space
if layer, ok := layers["output_norm"]; ok {
memoryLayerOutput += layer.Size()
}
@@ -172,8 +175,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
memoryLayerOutput += layer.Size()
}
// Output layer handled at the end if we have space
gpuZeroOverhead := projectorWeights + projectorGraph
gpuZeroOverhead := llamaEngineProjectorWeights
// Reduce set of GPUs to only those that have sufficient space to fit overhead and at least one layer
var layerCount int
@@ -216,6 +218,8 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
if len(gpusWithSpace) > 0 {
gpuZeroID = gpusWithSpace[0].i
gpuAllocations[gpuZeroID] += gpuZeroOverhead
} else {
overflow += gpuZeroOverhead
}
// For all the layers, find where they can fit on the GPU(s)
@@ -256,21 +260,24 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
}
// Determine if we need to consider output then find where it fits
if memoryLayerOutput > 0 && (opts.NumGPU < 0 || layerCount < opts.NumGPU) {
for j := len(gpusWithSpace); j > 0; j-- {
g := gpusWithSpace[layerCount%j]
used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
if g.g.FreeMemory > overhead+used+memoryLayerOutput {
gpuAllocations[g.i] += memoryLayerOutput
layerCounts[g.i]++
layerCount++
break
memoryLastLayer := memoryLayerOutput + ollamaEngineProjectorWeights + ollamaEngineProjectorGraph
if memoryLastLayer > 0 {
if opts.NumGPU < 0 || layerCount < opts.NumGPU {
for j := len(gpusWithSpace); j > 0; j-- {
g := gpusWithSpace[layerCount%j]
used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
if g.g.FreeMemory > overhead+used+memoryLastLayer {
gpuAllocations[g.i] += memoryLastLayer
layerCounts[g.i]++
layerCount++
break
}
}
}
if layerCount < int(f.KV().BlockCount())+1 {
fullyLoaded = false
overflow += memoryLayerOutput
overflow += memoryLastLayer
}
}
@@ -328,8 +335,8 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
memoryLayerOutput: memoryLayerOutput,
graphFullOffload: graphFullOffload,
graphPartialOffload: graphPartialOffload,
projectorWeights: projectorWeights,
projectorGraph: projectorGraph,
projectorWeights: llamaEngineProjectorWeights + ollamaEngineProjectorWeights,
projectorGraph: ollamaEngineProjectorGraph,
}
if gpus[0].Library == "cpu" {
@@ -415,7 +422,7 @@ func projectorMemoryRequirements(filename string) (weights uint64) {
}
defer file.Close()
ggml, _, err := ggml.Decode(file, 1024)
ggml, err := ggml.Decode(file, 1024)
if err != nil {
return 0
}

View File

@@ -22,6 +22,7 @@ import (
"strings"
"sync"
"time"
"unicode/utf8"
"golang.org/x/sync/semaphore"
@@ -121,7 +122,7 @@ func LoadModel(model string, maxArraySize int) (*ggml.GGML, error) {
}
defer f.Close()
ggml, _, err := ggml.Decode(f, maxArraySize)
ggml, err := ggml.Decode(f, maxArraySize)
return ggml, err
}
@@ -725,10 +726,68 @@ type CompletionResponse struct {
EvalDuration time.Duration `json:"eval_duration"`
}
// unicodeBufferHandler wraps a completion response callback to handle partial UTF-8 sequences.
// This function creates a stateful closure that is NOT safe for concurrent use.
// Each completion request should create its own handler instance.
func unicodeBufferHandler(fn func(CompletionResponse)) func(CompletionResponse) {
var pendingUTF8 string
return func(resp CompletionResponse) {
if resp.Content == "" && !resp.Done {
// No content to process, just pass through
fn(resp)
return
}
// Combine any pending UTF-8 with current content
combinedContent := pendingUTF8 + resp.Content
pendingUTF8 = ""
// Check if combined content is valid UTF-8
if utf8.ValidString(combinedContent) {
// Valid UTF-8, send it
resp.Content = combinedContent
fn(resp)
} else {
// Invalid UTF-8
if resp.Done {
// This is the final response, trim incomplete UTF-8
trimmedContent := combinedContent
for !utf8.ValidString(trimmedContent) && len(trimmedContent) > 0 {
trimmedContent = trimmedContent[:len(trimmedContent)-1]
}
resp.Content = trimmedContent
fn(resp)
} else {
// Not final response, split valid and invalid parts
validPrefix := combinedContent
for !utf8.ValidString(validPrefix) && len(validPrefix) > 0 {
validPrefix = validPrefix[:len(validPrefix)-1]
}
if len(validPrefix) > 0 {
// Send valid prefix
resp.Content = validPrefix
fn(resp)
// Buffer the remainder
pendingUTF8 = combinedContent[len(validPrefix):]
} else {
// No valid prefix, buffer everything
pendingUTF8 = combinedContent
// Don't send this response
}
}
}
}
}
func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error {
slog.Debug("completion request", "images", len(req.Images), "prompt", len(req.Prompt), "format", string(req.Format))
slog.Log(ctx, logutil.LevelTrace, "completion request", "prompt", req.Prompt)
// Wrap the callback with unicode buffer handling
unicodeFn := unicodeBufferHandler(fn)
if len(req.Format) > 0 {
switch string(req.Format) {
case `null`, `""`:
@@ -797,7 +856,8 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
res, err := http.DefaultClient.Do(serverReq)
if err != nil {
return fmt.Errorf("POST predict: %v", err)
slog.Error("post predict", "error", err)
return errors.New("model runner has unexpectedly stopped, this may be due to resource limitations or an internal error, check ollama server logs for details")
}
defer res.Body.Close()
@@ -853,13 +913,13 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
}
if c.Content != "" {
fn(CompletionResponse{
unicodeFn(CompletionResponse{
Content: c.Content,
})
}
if c.Done {
fn(c)
unicodeFn(c)
return nil
}
}

View File

@@ -70,3 +70,152 @@ func TestLLMServerCompletionFormat(t *testing.T) {
}, nil)
checkValid(err)
}
func TestUnicodeBufferHandler(t *testing.T) {
tests := []struct {
name string
inputResponses []CompletionResponse
expectedResponses []CompletionResponse
description string
}{
{
name: "complete_unicode",
inputResponses: []CompletionResponse{
{Content: "Hello", Done: false},
{Content: " world", Done: false},
{Content: "!", Done: true},
},
expectedResponses: []CompletionResponse{
{Content: "Hello", Done: false},
{Content: " world", Done: false},
{Content: "!", Done: true},
},
description: "All responses with valid unicode should pass through unchanged",
},
{
name: "incomplete_unicode_at_end_with_done",
inputResponses: []CompletionResponse{
{Content: "Hello", Done: false},
{Content: string([]byte{0xF0, 0x9F}), Done: true}, // Incomplete emoji with Done=true
},
expectedResponses: []CompletionResponse{
{Content: "Hello", Done: false},
{Content: "", Done: true}, // Content is trimmed but response is still sent with Done=true
},
description: "When Done=true, incomplete Unicode at the end should be trimmed",
},
{
name: "split_unicode_across_responses",
inputResponses: []CompletionResponse{
{Content: "Hello " + string([]byte{0xF0, 0x9F}), Done: false}, // First part of 😀
{Content: string([]byte{0x98, 0x80}) + " world!", Done: true}, // Second part of 😀 and more text
},
expectedResponses: []CompletionResponse{
{Content: "Hello ", Done: false}, // Incomplete Unicode trimmed
{Content: "😀 world!", Done: true}, // Complete emoji in second response
},
description: "Unicode split across responses should be handled correctly",
},
{
name: "incomplete_unicode_buffered",
inputResponses: []CompletionResponse{
{Content: "Test " + string([]byte{0xF0, 0x9F}), Done: false}, // Incomplete emoji
{Content: string([]byte{0x98, 0x80}), Done: false}, // Complete the emoji
{Content: " done", Done: true},
},
expectedResponses: []CompletionResponse{
{Content: "Test ", Done: false}, // First part without incomplete unicode
{Content: "😀", Done: false}, // Complete emoji
{Content: " done", Done: true},
},
description: "Incomplete unicode should be buffered and combined with next response",
},
{
name: "empty_response_with_done",
inputResponses: []CompletionResponse{
{Content: "Complete response", Done: false},
{Content: "", Done: true}, // Empty response with Done=true
},
expectedResponses: []CompletionResponse{
{Content: "Complete response", Done: false},
{Content: "", Done: true}, // Should still be sent because Done=true
},
description: "Empty final response with Done=true should still be sent",
},
{
name: "done_reason_preserved",
inputResponses: []CompletionResponse{
{Content: "Response", Done: false},
{Content: " complete", Done: true, DoneReason: DoneReasonStop},
},
expectedResponses: []CompletionResponse{
{Content: "Response", Done: false},
{Content: " complete", Done: true, DoneReason: DoneReasonStop},
},
description: "DoneReason should be preserved in the final response",
},
{
name: "only_incomplete_unicode_not_done",
inputResponses: []CompletionResponse{
{Content: string([]byte{0xF0, 0x9F}), Done: false}, // Only incomplete unicode
},
expectedResponses: []CompletionResponse{
// No response expected - should be buffered
},
description: "Response with only incomplete unicode should be buffered if not done",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
var actualResponses []CompletionResponse
// Create a callback that collects responses
callback := func(resp CompletionResponse) {
actualResponses = append(actualResponses, resp)
}
// Create the unicode buffer handler
handler := unicodeBufferHandler(callback)
// Send all input responses through the handler
for _, resp := range tt.inputResponses {
handler(resp)
}
// Verify the number of responses
if len(actualResponses) != len(tt.expectedResponses) {
t.Fatalf("%s: got %d responses, want %d responses",
tt.description, len(actualResponses), len(tt.expectedResponses))
}
// Verify each response matches the expected one
for i, expected := range tt.expectedResponses {
if i >= len(actualResponses) {
t.Fatalf("%s: missing response at index %d", tt.description, i)
continue
}
actual := actualResponses[i]
// Verify content
if actual.Content != expected.Content {
t.Errorf("%s: response[%d].Content = %q, want %q",
tt.description, i, actual.Content, expected.Content)
}
// Verify Done flag
if actual.Done != expected.Done {
t.Errorf("%s: response[%d].Done = %v, want %v",
tt.description, i, actual.Done, expected.Done)
}
// Verify DoneReason if specified
if actual.DoneReason != expected.DoneReason {
t.Errorf("%s: response[%d].DoneReason = %v, want %v",
tt.description, i, actual.DoneReason, expected.DoneReason)
}
}
})
}
}

View File

@@ -5,8 +5,8 @@ import (
"context"
"encoding/binary"
"fmt"
"log/slog"
"math"
"os"
"slices"
"strconv"
"strings"
@@ -15,6 +15,11 @@ import (
)
type Backend interface {
Load(ctx context.Context, progress func(float32)) error
// BackendMemory returns the memory allocations that were made for this model
BackendMemory() BackendMemory
Config() fs.Config
Get(name string) Tensor
NewContext() Context
@@ -52,10 +57,6 @@ type CacheConfig struct {
// BackendParams controls how the backend loads and executes models
type BackendParams struct {
// Progress is a callback function that allows reporting percentage completion
// of model loading
Progress func(float32)
// NumThreads sets the number of threads to use if running on the CPU
NumThreads int
@@ -72,9 +73,130 @@ type BackendParams struct {
FlashAttention bool
}
var backends = make(map[string]func(context.Context, *os.File, BackendParams) (Backend, error))
// ErrNoMem is returned when panicing due to insufficient memory. It includes
// the attempted memory allocation.
type ErrNoMem struct {
BackendMemory
}
func RegisterBackend(name string, f func(context.Context, *os.File, BackendParams) (Backend, error)) {
func (e ErrNoMem) Error() string {
return fmt.Sprintf("insufficient memory - required allocations: %+v", e.BackendMemory)
}
type AllocationStatus int
const (
// Unallocated memory - have not yet attempted to allocate
Unallocated AllocationStatus = iota
// Failed memory - tried to allocate the memory and did not succeed
Failed
// Allocated memory = tried and succeeded to allocate memory
Allocated
)
// Memory is the size of an allocation and whether it was successful.
type Memory struct {
Size uint64
Status AllocationStatus
}
func (m Memory) String() string {
s := fmt.Sprint(m.Size)
switch m.Status {
case Unallocated:
s += "U"
case Failed:
s += "F"
case Allocated:
s += "A"
}
return s
}
// DeviceMemory provides a breakdown of the memory needed
// per device, such as a CPU or GPU.
type DeviceMemory struct {
// Name is the name of the device as labeled by the backend. It
// may not be persistent across instances of the runner.
Name string
// UUID is a unique persistent identifier for the device for matching
// with system management libraries
UUID string
// Weights is the per-layer memory needed for the model weights.
Weights []Memory
// Cache is the per-layer memory needed for the KV cache.
Cache []Memory
// Graph is the size of the compute graph. It is not per-layer.
Graph Memory
}
func memoryPresent(mem []Memory) bool {
return slices.ContainsFunc(mem, func(m Memory) bool { return m.Size != 0 })
}
func (m DeviceMemory) LogValue() slog.Value {
var attrs []slog.Attr
if memoryPresent(m.Weights) {
attrs = append(attrs, slog.Any("Weights", m.Weights))
}
if memoryPresent(m.Cache) {
attrs = append(attrs, slog.Any("Cache", m.Cache))
}
if m.Graph.Size != 0 {
attrs = append(attrs, slog.Any("Graph", m.Graph))
}
if len(attrs) > 0 && m.UUID != "" {
attrs = append([]slog.Attr{slog.String("UUID", m.UUID)}, attrs...)
}
return slog.GroupValue(attrs...)
}
// BackendMemory provides the amount of memory required to load the model
// per device based on the BackendParams. In some cases, not all required
// allocations will be known at this point. However, the size of the most recent
// allocation is guaranteed to be provided so that if it failed, the caller can
// accommodate that to make forward progress.
type BackendMemory struct {
// InputsWeights are always located on the CPU and cannot be moved
InputWeights Memory
// CPU model components are located in system memory. This does not
// include unified memory allocated through the GPU.
CPU DeviceMemory
// GPU model components are located on one or more GPUs.
GPUs []DeviceMemory
}
func (m BackendMemory) LogValue() slog.Value {
var attrs []slog.Attr
if m.InputWeights.Size != 0 {
attrs = append(attrs, slog.Any("InputWeights", m.InputWeights))
}
attrs = append(attrs, slog.Any(m.CPU.Name, m.CPU))
for _, g := range m.GPUs {
attrs = append(attrs, slog.Any(g.Name, g))
}
return slog.GroupValue(attrs...)
}
var backends = make(map[string]func(string, BackendParams) (Backend, error))
func RegisterBackend(name string, f func(string, BackendParams) (Backend, error)) {
if _, ok := backends[name]; ok {
panic("backend: backend already registered")
}
@@ -82,9 +204,9 @@ func RegisterBackend(name string, f func(context.Context, *os.File, BackendParam
backends[name] = f
}
func NewBackend(ctx context.Context, f *os.File, params BackendParams) (Backend, error) {
func NewBackend(modelPath string, params BackendParams) (Backend, error) {
if backend, ok := backends["ggml"]; ok {
return backend(ctx, f, params)
return backend(modelPath, params)
}
return nil, fmt.Errorf("unsupported backend")
@@ -93,8 +215,8 @@ func NewBackend(ctx context.Context, f *os.File, params BackendParams) (Backend,
type Context interface {
Empty(dtype DType, shape ...int) Tensor
Zeros(dtype DType, shape ...int) Tensor
FromFloatSlice(s []float32, shape ...int) (Tensor, error)
FromIntSlice(s []int32, shape ...int) (Tensor, error)
FromFloatSlice(s []float32, shape ...int) Tensor
FromIntSlice(s []int32, shape ...int) Tensor
// Arange creates a 1D tensor with values within an interval (start, stop] increased by step.
Arange(start, stop, step float32, dtype DType) Tensor
@@ -106,7 +228,7 @@ type Context interface {
// graph, simply preallocates memory. Typically called with a
// worst case graph to ensure all resources are available for
// for future inference.
Reserve() error
Reserve()
MaxGraphNodes() int
Close()
@@ -132,6 +254,8 @@ type Tensor interface {
Neg(ctx Context) Tensor
Add(ctx Context, t2 Tensor) Tensor
Mul(ctx Context, t2 Tensor) Tensor
Div(ctx Context, t2 Tensor) Tensor
Mulmat(ctx Context, t2 Tensor) Tensor
MulmatFullPrec(ctx Context, t2 Tensor) Tensor
MulmatID(ctx Context, t2, ids Tensor) Tensor
@@ -140,11 +264,11 @@ type Tensor interface {
LayerNorm(ctx Context, weight, bias Tensor, eps float32) Tensor
RMSNorm(ctx Context, weight Tensor, eps float32) Tensor
Scale(ctx Context, s float64) Tensor
SumRows(ctx Context) Tensor
AvgPool2D(ctx Context, k, s int, p float32) Tensor
Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim, ropeType uint32, base, scale float32) Tensor
IM2Col(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
Sin(ctx Context) Tensor
@@ -172,6 +296,7 @@ type Tensor interface {
Duplicate(ctx Context) Tensor
TopK(ctx Context, k int) Tensor
Argsort(ctx Context) Tensor
}
// ScaledDotProductAttention implements a fused attention

View File

@@ -10,7 +10,6 @@ import "C"
import (
"context"
"errors"
"fmt"
"io"
"log/slog"
@@ -30,6 +29,7 @@ import (
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/ml"
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
"github.com/ollama/ollama/ml/nn/rope"
"golang.org/x/sync/errgroup"
)
@@ -44,8 +44,15 @@ func devices() []*C.struct_ggml_backend_device {
}
type Backend struct {
// modelPath is the location of the model data
modelPath string
meta *fsggml.GGML
// tensorLoadTargets maps from the name of the tensor in the file
// to the name that is used by the model definition
tensorLoadTargets map[string][]string
sched *C.struct_ggml_backend_sched
schedBackends []*C.struct_ggml_backend
schedBufts []*C.struct_ggml_backend_buffer_type
@@ -58,14 +65,26 @@ type Backend struct {
// layers is the backend used for repeating layers
layers map[int]*C.struct_ggml_backend_buffer_type
// requiredMemory is the cumulative memory allocations needed by the backend
requiredMemory *ml.BackendMemory
// btDeviceMemory maps from a buffer type to the memory allocations associated with that device
btDeviceMemory map[*C.struct_ggml_backend_buffer_type]*ml.DeviceMemory
flashAttention bool
// maxGraphNodes is the maximum allowed number of graph nodes in this scheduler
maxGraphNodes int
}
func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend, error) {
meta, n, err := fsggml.Decode(r, -1)
func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
r, err := os.Open(modelPath)
if err != nil {
return nil, err
}
defer r.Close()
meta, err := fsggml.Decode(r, -1)
if err != nil {
return nil, err
}
@@ -80,6 +99,9 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
"num_key_values", len(meta.KV()),
)
var requiredMemory ml.BackendMemory
btDeviceMemory := make(map[*C.struct_ggml_backend_buffer_type]*ml.DeviceMemory)
type deviceBufferType struct {
d *C.struct_ggml_backend_device
bts []*C.struct_ggml_backend_buffer_type
@@ -100,6 +122,8 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
}
}
blocks := int(meta.KV().BlockCount())
// create list of buffer types for the cpu
cpuDeviceBufferType := deviceBufferType{d: C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU)}
for _, d := range append(accels, append(gpus, cpus...)...) {
@@ -107,17 +131,33 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
case C.GGML_BACKEND_DEVICE_TYPE_CPU,
C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
cpuDeviceBufferType.bts = append(cpuDeviceBufferType.bts, C.ggml_backend_dev_buffer_type(d))
btDeviceMemory[C.ggml_backend_dev_buffer_type(d)] = &requiredMemory.CPU
}
}
requiredMemory.CPU.Name = C.GoString(C.ggml_backend_dev_name(cpuDeviceBufferType.d))
var props C.struct_ggml_backend_dev_props
C.ggml_backend_dev_get_props(cpuDeviceBufferType.d, &props)
requiredMemory.CPU.UUID = C.GoString(props.uuid)
requiredMemory.CPU.Weights = make([]ml.Memory, blocks+1)
requiredMemory.CPU.Cache = make([]ml.Memory, blocks+1)
// create list of buffer types for each gpu
var gpuDeviceBufferTypes []deviceBufferType
for _, d := range gpus {
requiredMemory.GPUs = make([]ml.DeviceMemory, len(gpus))
for i, d := range gpus {
bt := C.ggml_backend_dev_buffer_type(d)
gpuDeviceBufferTypes = append(gpuDeviceBufferTypes, deviceBufferType{
d: d,
bts: append([]*C.struct_ggml_backend_buffer_type{bt}, cpuDeviceBufferType.bts...),
})
btDeviceMemory[bt] = &requiredMemory.GPUs[i]
requiredMemory.GPUs[i].Name = C.GoString(C.ggml_backend_dev_name(d))
var props C.struct_ggml_backend_dev_props
C.ggml_backend_dev_get_props(d, &props)
requiredMemory.GPUs[i].UUID = C.GoString(props.uuid)
requiredMemory.GPUs[i].Weights = make([]ml.Memory, blocks+1)
requiredMemory.GPUs[i].Cache = make([]ml.Memory, blocks+1)
}
useDefaultSplit := true
@@ -156,8 +196,6 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
// inputs always use cpu
input := cpuDeviceBufferType
blocks := int(meta.KV().BlockCount())
// define a range of gpu layers. anything outside of this range is assigned to the cpu
gpuRangeStart := max(0, blocks-params.NumGPULayers)
gpuRangeStop := min(gpuRangeStart+params.NumGPULayers, blocks+1)
@@ -198,7 +236,7 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
// contexts are shared by tensors of the same buffer type
ctxs := make(map[*C.struct_ggml_backend_buffer_type]*C.struct_ggml_context)
createTensor := func(t tensor, bts []*C.struct_ggml_backend_buffer_type) *C.struct_ggml_tensor {
createTensor := func(t tensor, bts []*C.struct_ggml_backend_buffer_type, layer int) *C.struct_ggml_tensor {
for _, bt := range bts {
if _, ok := ctxs[bt]; !ok {
ctxs[bt] = C.ggml_init(C.struct_ggml_init_params{
@@ -224,6 +262,16 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
C.ggml_set_name(tt, cname)
slog.Log(context.TODO(), logutil.LevelTrace, "created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
size := pad(C.ggml_backend_buft_get_alloc_size(bt, tt), C.ggml_backend_buft_get_alignment(bt))
if layer == -1 {
// Assume that InputWeights can be allocated - they're always in system memory and can't be moved in any case
requiredMemory.InputWeights.Status = ml.Allocated
requiredMemory.InputWeights.Size += uint64(size)
} else {
btDeviceMemory[bt].Weights[layer].Size += uint64(size)
}
//nolint:staticcheck // TODO: check if buffer type supports this tensor
return tt
}
@@ -245,22 +293,22 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
for _, t := range meta.Tensors().Items() {
switch {
case contains(t.Name, "position_embd", "token_embd", "token_norm_embd", "token_types"):
createTensor(tensor{source: t}, input.bts)
createTensor(tensor{source: t}, input.bts, -1)
if _, ok := meta.Tensors().GroupLayers()["output"]; !ok && t.Name == "token_embd.weight" {
createTensor(tensor{source: t, target: "output.weight"}, output.bts)
createTensor(tensor{source: t, target: "output.weight"}, output.bts, blocks)
}
case contains(t.Name, "cls", "output", "output_norm"):
createTensor(tensor{source: t}, output.bts)
createTensor(tensor{source: t}, output.bts, blocks)
case strings.HasPrefix(t.Name, "v.") || strings.HasPrefix(t.Name, "mm."):
// TODO: assign vision tensors to the gpu if possible
createTensor(tensor{source: t}, output.bts)
createTensor(tensor{source: t}, output.bts, blocks)
case contains(t.Name, "rope_freqs", "rope_factors_long", "rope_factors_short"):
// these tensors should be repeated per layer
for i, layer := range layers {
createTensor(tensor{
source: t,
target: "blk." + strconv.Itoa(i) + "." + t.Name,
}, layer.bts)
}, layer.bts, i)
}
default:
layerIndex := -1
@@ -271,10 +319,10 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
}
if layerIndex >= 0 {
createTensor(tensor{source: t}, layers[layerIndex].bts)
createTensor(tensor{source: t}, layers[layerIndex].bts, layerIndex)
} else {
// load all other tensors on the cpu
createTensor(tensor{source: t}, input.bts)
createTensor(tensor{source: t}, input.bts, -1)
}
}
}
@@ -287,8 +335,18 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
}
b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
for i := range btDeviceMemory[bt].Weights {
if btDeviceMemory[bt].Weights[i].Size != 0 {
if b != nil {
btDeviceMemory[bt].Weights[i].Status = ml.Allocated
} else {
btDeviceMemory[bt].Weights[i].Status = ml.Failed
}
}
}
if b == nil {
return nil, fmt.Errorf("unable to allocate memory from device %v for model weights", C.GoString(C.ggml_backend_buft_name(bt)))
panic(ml.ErrNoMem{BackendMemory: requiredMemory})
}
C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
@@ -307,73 +365,6 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
}
}
var doneBytes atomic.Uint64
totalBytes := uint64(n) - meta.Tensors().Offset
g, ctx := errgroup.WithContext(ctx)
g.SetLimit(runtime.GOMAXPROCS(0))
for _, t := range meta.Tensors().Items() {
t := t
g.Go(func() error {
tts := make([]*C.struct_ggml_tensor, max(1, len(targets[t.Name])))
for i := range tts {
target := targets[t.Name][i]
if target == "" {
target = t.Name
}
tt, ok := tensors[target]
if !ok {
return fmt.Errorf("unassigned tensor: %s", t.Name)
}
tts[i] = tt
}
// Create a new FD for each goroutine so that each FD is read sequentially, rather than
// seeking around within an FD shared between all goroutines.
file, err := os.Open(r.Name())
if err != nil {
slog.Warn("file open error", "file", r.Name(), "error", err)
return err
}
defer file.Close()
sr := io.NewSectionReader(file, int64(meta.Tensors().Offset+t.Offset), int64(t.Size()))
bts := make([]byte, 128*format.KibiByte)
var s uint64
for s < t.Size() {
// Stop if either the parent context has been canceled or if any of the other tensors returned an error
if err := ctx.Err(); err != nil {
return err
}
n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))])
if err != nil {
slog.Warn("file read error", "file", r.Name(), "error", err)
return err
}
for _, tt := range tts {
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), C.size_t(s), C.size_t(n))
}
s += uint64(n)
if params.Progress != nil {
done := doneBytes.Add(uint64(n))
params.Progress(float32(done) / float32(totalBytes))
}
}
return nil
})
}
if err := g.Wait(); err != nil {
return nil, err
}
// map devices to backend buffer types so new tensors can be assigned to the correct device
deviceBufferTypes := make(map[*C.struct_ggml_backend_device]*C.struct_ggml_backend_buffer_type)
@@ -397,9 +388,11 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
maxGraphNodes := max(8192, len(meta.Tensors().Items())*5)
return &Backend{
flashAttention: params.FlashAttention,
meta: meta,
tensors: tensors,
modelPath: modelPath,
flashAttention: params.FlashAttention,
meta: meta,
tensorLoadTargets: targets,
tensors: tensors,
sched: C.ggml_backend_sched_new(
(*C.ggml_backend_t)(unsafe.Pointer(&schedBackends[0])),
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])),
@@ -418,7 +411,9 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
}
return m
}(),
maxGraphNodes: maxGraphNodes,
requiredMemory: &requiredMemory,
btDeviceMemory: btDeviceMemory,
maxGraphNodes: maxGraphNodes,
}, nil
}
@@ -426,6 +421,81 @@ func init() {
ml.RegisterBackend("ggml", New)
}
func (b *Backend) Load(ctx context.Context, progress func(float32)) error {
var doneBytes atomic.Uint64
totalBytes := uint64(b.meta.Length) - b.meta.Tensors().Offset
g, ctx := errgroup.WithContext(ctx)
g.SetLimit(runtime.GOMAXPROCS(0))
for _, t := range b.meta.Tensors().Items() {
t := t
g.Go(func() error {
tts := make([]*C.struct_ggml_tensor, max(1, len(b.tensorLoadTargets[t.Name])))
for i := range tts {
target := b.tensorLoadTargets[t.Name][i]
if target == "" {
target = t.Name
}
tt, ok := b.tensors[target]
if !ok {
return fmt.Errorf("unassigned tensor: %s", t.Name)
}
tts[i] = tt
}
// Create a new FD for each goroutine so that each FD is read sequentially, rather than
// seeking around within an FD shared between all goroutines.
file, err := os.Open(b.modelPath)
if err != nil {
slog.Warn("file open error", "file", b.modelPath, "error", err)
return err
}
defer file.Close()
sr := io.NewSectionReader(file, int64(b.meta.Tensors().Offset+t.Offset), int64(t.Size()))
bts := make([]byte, 128*format.KibiByte)
var s uint64
for s < t.Size() {
// Stop if either the parent context has been canceled or if any of the other tensors returned an error
if err := ctx.Err(); err != nil {
return err
}
n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))])
if err != nil {
slog.Warn("file read error", "file", b.modelPath, "error", err)
return err
}
for _, tt := range tts {
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), C.size_t(s), C.size_t(n))
}
s += uint64(n)
if progress != nil {
done := doneBytes.Add(uint64(n))
progress(float32(done) / float32(totalBytes))
}
}
return nil
})
}
if err := g.Wait(); err != nil {
return err
}
return nil
}
func (b *Backend) BackendMemory() ml.BackendMemory {
return *b.requiredMemory
}
func (b *Backend) Config() fs.Config {
return b.meta.KV()
}
@@ -457,6 +527,7 @@ func (b *Backend) NewContextSize(n int) ml.Context {
no_alloc: true,
}),
allocatedBuffers: &allocatedBuffers,
layer: -1,
}
}
@@ -483,6 +554,9 @@ type Context struct {
// maxGraphNodes is the maximum allowed number of graph nodes in this context
maxGraphNodes int
// layer is the graph layer that this context is allocating for - assumed to be cache
layer int
}
func (c *Context) Input() ml.Context {
@@ -493,6 +567,7 @@ func (c *Context) Input() ml.Context {
buft: c.b.input,
allocatedBuffers: c.allocatedBuffers,
maxGraphNodes: c.maxGraphNodes,
layer: -1,
}
}
@@ -507,6 +582,7 @@ func (c *Context) Layer(i int) ml.Context {
buft: buft,
allocatedBuffers: c.allocatedBuffers,
maxGraphNodes: c.maxGraphNodes,
layer: i,
}
}
@@ -544,22 +620,34 @@ func (c *Context) Compute(tensors ...ml.Tensor) {
}
}
func (c *Context) Reserve() error {
if !C.ggml_backend_sched_reserve(c.b.sched, c.graph) {
C.ggml_backend_sched_reset(c.b.sched)
return errors.New("failed to reserve graph")
}
func (c *Context) Reserve() {
reserved := C.ggml_backend_sched_reserve(c.b.sched, c.graph)
slog.Debug("compute graph", "nodes", C.ggml_graph_n_nodes(c.graph), "splits", C.ggml_backend_sched_get_n_splits(c.b.sched))
for i := range c.b.schedBackends {
size := C.ggml_backend_sched_get_buffer_size(c.b.sched, c.b.schedBackends[i])
slog.Info("compute graph", "backend", C.GoString(C.ggml_backend_name(c.b.schedBackends[i])), "buffer_type", C.GoString(C.ggml_backend_buft_name(c.b.schedBufts[i])),
"size", format.HumanBytes2(uint64(size)))
// Reserve may get called multiple times for different graphs - we just want the last run, which will contain the max allocations
for _, bt := range c.b.schedBufts {
c.b.btDeviceMemory[bt].Graph = ml.Memory{}
}
C.ggml_backend_sched_reset(c.b.sched)
for i := range c.b.schedBackends {
bufferStatus := C.ggml_backend_sched_get_attempted_buffer_size(c.b.sched, c.b.schedBackends[i])
return nil
graph := &c.b.btDeviceMemory[c.b.schedBufts[i]].Graph
graph.Size += uint64(bufferStatus.size)
if bufferStatus.allocated && graph.Status != ml.Failed {
graph.Status = ml.Allocated
} else {
graph.Status = ml.Failed
}
slog.Info("compute graph", "backend", C.GoString(C.ggml_backend_name(c.b.schedBackends[i])), "buffer_type", C.GoString(C.ggml_backend_buft_name(c.b.schedBufts[i])),
"size", format.HumanBytes2(uint64(bufferStatus.size)))
}
if !reserved {
panic(ml.ErrNoMem{BackendMemory: *c.b.requiredMemory})
}
}
func (c *Context) MaxGraphNodes() int {
@@ -579,7 +667,7 @@ func pad(length, pad C.size_t) C.size_t {
return ((length + pad - 1) / pad) * pad
}
func (c *Context) newTensor(dtype ml.DType, shape []int) (ml.Tensor, error) {
func (c *Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
if c.buft == nil {
panic("set Input or Layer before creating tensors")
}
@@ -602,7 +690,7 @@ func (c *Context) newTensor(dtype ml.DType, shape []int) (ml.Tensor, error) {
if len(shape) < 1 || shape[0] == 0 {
var shape C.int64_t = 0
return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}, nil
return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}
} else if len(shape) > 4 {
panic("unsupported number of dimensions")
}
@@ -615,40 +703,43 @@ func (c *Context) newTensor(dtype ml.DType, shape []int) (ml.Tensor, error) {
t := C.ggml_new_tensor(c.ctx, cdtype, C.int(len(shape)), shapeToGGML(shape))
size := pad(C.ggml_backend_buft_get_alloc_size(c.buft, t), C.ggml_backend_buft_get_alignment(c.buft))
b := C.ggml_backend_buft_alloc_buffer(c.buft, size)
if b == nil {
return nil, fmt.Errorf("unable to allocate %v from device %v for new tensor", format.HumanBytes2(uint64(size)), C.GoString(C.ggml_backend_buft_name(c.buft)))
}
*c.allocatedBuffers = append(*c.allocatedBuffers, b)
b := C.ggml_backend_buft_alloc_buffer(c.buft, size)
if c.layer >= 0 {
cache := &c.b.btDeviceMemory[c.buft].Cache[c.layer]
cache.Size += uint64(size)
if b != nil {
cache.Status = ml.Allocated
} else {
cache.Status = ml.Failed
}
}
if b == nil {
panic(ml.ErrNoMem{BackendMemory: *c.b.requiredMemory})
}
*c.allocatedBuffers = append(*c.allocatedBuffers, b)
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
return &Tensor{b: c.b, t: t}, nil
return &Tensor{b: c.b, t: t}
}
func (c *Context) Empty(dtype ml.DType, shape ...int) ml.Tensor {
t, err := c.newTensor(dtype, shape)
if err != nil {
panic(err)
}
return t
return c.newTensor(dtype, shape)
}
func (c *Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
t, err := c.newTensor(dtype, shape)
if err != nil {
panic(err)
}
t := c.newTensor(dtype, shape)
C.ggml_set_zero(t.(*Tensor).t)
return t
}
func checkShape[S ~[]E, E any](s S, shape ...int) error {
func checkShape[S ~[]E, E any](s S, shape ...int) {
n := len(s)
if n == 0 {
return nil
return
}
for _, v := range shape {
@@ -656,44 +747,32 @@ func checkShape[S ~[]E, E any](s S, shape ...int) error {
}
if n != 1 {
return fmt.Errorf("invalid shape: %v", shape)
panic(fmt.Errorf("invalid shape: %v", shape))
}
return nil
}
func (c *Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
if err := checkShape(s, shape...); err != nil {
return nil, err
}
func (c *Context) FromFloatSlice(s []float32, shape ...int) ml.Tensor {
checkShape(s, shape...)
t, err := c.newTensor(ml.DTypeF32, shape)
if err != nil {
return nil, err
}
t := c.newTensor(ml.DTypeF32, shape)
if len(s) > 0 {
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
}
return t, nil
return t
}
func (c *Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
if err := checkShape(s, shape...); err != nil {
return nil, err
}
func (c *Context) FromIntSlice(s []int32, shape ...int) ml.Tensor {
checkShape(s, shape...)
t, err := c.newTensor(ml.DTypeI32, shape)
if err != nil {
return nil, err
}
t := c.newTensor(ml.DTypeI32, shape)
if len(s) > 0 {
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
}
return t, nil
return t
}
func (c Context) Arange(start, stop, step float32, dtype ml.DType) ml.Tensor {
@@ -711,12 +790,7 @@ func (c Context) Arange(start, stop, step float32, dtype ml.DType) ml.Tensor {
arange = append(arange, int32(i))
}
t, err := c.Input().FromIntSlice(arange, len(arange))
if err != nil {
panic(err)
}
return t
return c.Input().FromIntSlice(arange, len(arange))
default:
panic("unsupported dtype for arange")
}
@@ -867,6 +941,13 @@ func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
}
}
func (t *Tensor) Div(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_div(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
@@ -915,6 +996,8 @@ func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
if len(shape) != 4 {
panic("expected 4 dimensions")
} else if shape[3] != 0 {
panic("cuda does not support 4d tensors")
}
return &Tensor{
@@ -982,6 +1065,13 @@ func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
}
}
func (t *Tensor) SumRows(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sum_rows(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
@@ -1053,16 +1143,13 @@ func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
}
}
const (
ropeTypeNorm C.int = 0
ropeTypeNeox C.int = 2
ropeTypeMrope C.int = 8
ropeTypeVision C.int = 24
)
func (t *Tensor) RoPE(ctx ml.Context, positions ml.Tensor, ropeDim int, ropeBase, ropeScale float32, options ...func(*rope.Options)) ml.Tensor {
// Default options
opts := &rope.Options{OriginalContextLength: 131072, Factors: &Tensor{}}
func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim, ropeType uint32, ropeBase, ropeScale float32) ml.Tensor {
if ropeFactors == nil {
ropeFactors = &Tensor{b: t.b}
// Apply any provided options
for _, option := range options {
option(opts)
}
dequant := t.t
@@ -1073,16 +1160,19 @@ func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDi
return &Tensor{
b: t.b,
t: C.ggml_rope_ext(
ctx.(*Context).ctx, dequant, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
ctx.(*Context).ctx,
dequant,
positions.(*Tensor).t,
opts.Factors.(*Tensor).t,
C.int(ropeDim),
C.int(ropeType),
131072, // YaRN n_ctx_train
C.int(opts.Type),
C.int(opts.OriginalContextLength),
C.float(ropeBase),
C.float(ropeScale),
0., // YaRN ext_factor
1., // YaRN attn_factor
32., // YaRN beta_fast
1., // YaRN beta_slow
C.float(0.0),
C.float(1.0),
C.float(32.0),
C.float(1.0),
),
}
}
@@ -1176,3 +1266,10 @@ func (t *Tensor) TopK(ctx ml.Context, k int) ml.Tensor {
t: C.ggml_top_k(ctx.(*Context).ctx, t.t, C.int(k)),
}
}
func (t *Tensor) Argsort(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_argsort(ctx.(*Context).ctx, t.t, C.GGML_SORT_ORDER_ASC),
}
}

View File

@@ -66,6 +66,12 @@ GGML_API bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph
GGML_API size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id);
struct ggml_allocr_buffer_status {
size_t size;
bool allocated;
};
GGML_API struct ggml_allocr_buffer_status ggml_gallocr_get_attempted_buffer_size(ggml_gallocr_t galloc, int buffer_id);
// Utils
// Create a buffer and allocate all the tensors in a ggml_context
GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft);

View File

@@ -152,6 +152,7 @@ extern "C" {
struct ggml_backend_dev_props {
const char * name;
const char * description;
const char * uuid;
size_t memory_free;
size_t memory_total;
enum ggml_backend_dev_type type;
@@ -304,6 +305,12 @@ extern "C" {
GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
struct ggml_backend_buffer_status {
size_t size;
bool allocated;
};
GGML_API struct ggml_backend_buffer_status ggml_backend_sched_get_attempted_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);

View File

@@ -364,6 +364,7 @@ struct node_alloc {
struct ggml_gallocr {
ggml_backend_buffer_type_t * bufts; // [n_buffers]
ggml_backend_buffer_t * buffers; // [n_buffers]
size_t *buffer_sizes; // [n_buffers]
struct ggml_dyn_tallocr ** buf_tallocs; // [n_buffers]
int n_buffers;
@@ -387,6 +388,9 @@ ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs
galloc->buffers = calloc(n_bufs, sizeof(ggml_backend_buffer_t));
GGML_ASSERT(galloc->buffers != NULL);
galloc->buffer_sizes = calloc(n_bufs, sizeof(size_t));
GGML_ASSERT(galloc->buffer_sizes != NULL);
galloc->buf_tallocs = calloc(n_bufs, sizeof(struct ggml_dyn_tallocr *));
GGML_ASSERT(galloc->buf_tallocs != NULL);
@@ -453,6 +457,7 @@ void ggml_gallocr_free(ggml_gallocr_t galloc) {
ggml_hash_set_free(&galloc->hash_set);
free(galloc->hash_values);
free(galloc->bufts);
free(galloc->buffer_sizes);
free(galloc->buffers);
free(galloc->buf_tallocs);
free(galloc->node_allocs);
@@ -748,6 +753,8 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
}
}
bool success = true;
// reallocate buffers if needed
for (int i = 0; i < galloc->n_buffers; i++) {
// if the buffer type is used multiple times, we reuse the same buffer
@@ -769,15 +776,20 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
ggml_backend_buffer_free(galloc->buffers[i]);
galloc->buffers[i] = ggml_backend_buft_alloc_buffer(galloc->bufts[i], new_size);
if (galloc->buffers[i] == NULL) {
if (galloc->buffers[i]) {
galloc->buffer_sizes[i] = ggml_backend_buffer_get_size(galloc->buffers[i]);
ggml_backend_buffer_set_usage(galloc->buffers[i], GGML_BACKEND_BUFFER_USAGE_COMPUTE);
} else {
GGML_LOG_ERROR("%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), new_size);
return false;
galloc->buffer_sizes[i] = new_size;
success = false;
}
ggml_backend_buffer_set_usage(galloc->buffers[i], GGML_BACKEND_BUFFER_USAGE_COMPUTE);
} else {
galloc->buffer_sizes[i] = ggml_backend_buffer_get_size(galloc->buffers[i]);
}
}
return true;
return success;
}
bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) {
@@ -934,6 +946,24 @@ size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
return ggml_backend_buffer_get_size(galloc->buffers[buffer_id]);
}
struct ggml_allocr_buffer_status ggml_gallocr_get_attempted_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
GGML_ASSERT(buffer_id >= 0 && buffer_id < galloc->n_buffers);
for (int i = 0; i < buffer_id; i++) {
if (galloc->buf_tallocs[i] == galloc->buf_tallocs[buffer_id]) {
// This buffer is the same as a previous one due to the same buffer type being used multiple times
// (See above.) However, we need a different check because multiple buffers might be NULL in our
// case and we still want to know the attempted size.
struct ggml_allocr_buffer_status status = {0, true};
return status;
}
}
struct ggml_allocr_buffer_status status = {galloc->buffer_sizes[buffer_id], galloc->buffers[buffer_id] != NULL};
return status;
}
// utils
static void free_buffers(ggml_backend_buffer_t ** buffers, const size_t * n_buffers) {

View File

@@ -1629,6 +1629,16 @@ size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backe
return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
}
struct ggml_backend_buffer_status ggml_backend_sched_get_attempted_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
int backend_index = ggml_backend_sched_backend_id(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
struct ggml_allocr_buffer_status allocr_status = ggml_gallocr_get_attempted_buffer_size(sched->galloc, backend_index);
struct ggml_backend_buffer_status status = {allocr_status.size, allocr_status.allocated};
return status;
}
void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
int backend_index = ggml_backend_sched_backend_id(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);

View File

@@ -3,7 +3,7 @@ package cpu
// #cgo CFLAGS: -O3 -Wno-implicit-function-declaration
// #cgo CXXFLAGS: -std=c++17
// #cgo CPPFLAGS: -I${SRCDIR}/amx -I${SRCDIR}/llamafile -I${SRCDIR}/.. -I${SRCDIR}/../../include
// #cgo CPPFLAGS: -DGGML_USE_LLAMAFILE
// #cgo CPPFLAGS: -DNDEBUG -DGGML_USE_LLAMAFILE
// #cgo linux CPPFLAGS: -D_GNU_SOURCE
// #cgo darwin,arm64 CPPFLAGS: -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
// #cgo darwin,arm64 LDFLAGS: -framework Accelerate

View File

@@ -6822,6 +6822,45 @@ static void ggml_compute_forward_argsort_f32(
}
}
static void ggml_compute_forward_argsort_i32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT(nb0 == sizeof(int32_t));
const int ith = params->ith;
const int nth = params->nth;
const int64_t nr = ggml_nrows(src0);
ggml_sort_order order = (ggml_sort_order) ggml_get_op_params_i32(dst, 0);
for (int64_t i = ith; i < nr; i += nth) {
int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
const int32_t * src_data = (int32_t *)((char *) src0->data + i*nb01);
for (int64_t j = 0; j < ne0; j++) {
dst_data[j] = j;
}
// C doesn't have a functional sort, so we do a bubble sort instead
for (int64_t j = 0; j < ne0; j++) {
for (int64_t k = j + 1; k < ne0; k++) {
if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
(order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
int32_t tmp = dst_data[j];
dst_data[j] = dst_data[k];
dst_data[k] = tmp;
}
}
}
}
}
void ggml_compute_forward_argsort(
const ggml_compute_params * params,
ggml_tensor * dst) {
@@ -6833,6 +6872,10 @@ void ggml_compute_forward_argsort(
{
ggml_compute_forward_argsort_f32(params, dst);
} break;
case GGML_TYPE_I32:
{
ggml_compute_forward_argsort_i32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");

View File

@@ -85,13 +85,107 @@ static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, co
}
}
template<ggml_sort_order order>
static __global__ void k_argsort_i32_i32(const int32_t * x, int * dst, const int ncols, const int ncols_pad) {
extern __shared__ int shared_mem[];
int * indices = shared_mem;
const int tid = threadIdx.x;
const int row = blockIdx.y;
// Initialize all indices, handling the case where threads < ncols_pad
for (int i = tid; i < ncols_pad; i += blockDim.x) {
indices[i] = i < ncols ? i : 0; // Use 0 for padding indices
}
__syncthreads();
// Bitonic sort
for (int k = 2; k <= ncols_pad; k *= 2) {
for (int j = k/2; j > 0; j /= 2) {
for (int i = tid; i < ncols_pad; i += blockDim.x) {
const int ij = i ^ j;
if (ij > i) {
// Only compare values within the actual data range
if (i < ncols && ij < ncols) {
if ((i & k) == 0) {
if (order == GGML_SORT_ORDER_ASC) {
if (x[row * ncols + indices[i]] > x[row * ncols + indices[ij]]) {
int tmp = indices[i];
indices[i] = indices[ij];
indices[ij] = tmp;
}
} else {
if (x[row * ncols + indices[i]] < x[row * ncols + indices[ij]]) {
int tmp = indices[i];
indices[i] = indices[ij];
indices[ij] = tmp;
}
}
} else {
if (order == GGML_SORT_ORDER_ASC) {
if (x[row * ncols + indices[i]] < x[row * ncols + indices[ij]]) {
int tmp = indices[i];
indices[i] = indices[ij];
indices[ij] = tmp;
}
} else {
if (x[row * ncols + indices[i]] > x[row * ncols + indices[ij]]) {
int tmp = indices[i];
indices[i] = indices[ij];
indices[ij] = tmp;
}
}
}
}
}
}
__syncthreads();
}
}
// Write sorted indices to output, only threads handling valid data
for (int i = tid; i < ncols; i += blockDim.x) {
dst[row * ncols + i] = indices[i];
}
}
static void argsort_i32_i32_cuda(const int32_t * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
// Bitonic sort requires ncols to be power of 2
const int ncols_pad = next_power_of_2(ncols);
// Ensure thread count doesn't exceed maximum (typically 1024)
const int max_threads = 1024; // This is the typical max for most GPUs
const int threads_per_block = ncols_pad > max_threads ? max_threads : ncols_pad;
const dim3 block_dims(threads_per_block, 1, 1);
const dim3 block_nums(1, nrows, 1);
const size_t shared_mem = ncols_pad * sizeof(int);
// Check if shared memory size is within limits
const size_t max_shared_mem = ggml_cuda_info().devices[ggml_cuda_get_device()].smpb;
// Instead of logging an error, use GGML_ASSERT with a descriptive message
GGML_ASSERT(shared_mem <= max_shared_mem && "argsort: required shared memory exceeds device limit");
// Launch kernels with the updated thread configuration
if (order == GGML_SORT_ORDER_ASC) {
k_argsort_i32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
} else if (order == GGML_SORT_ORDER_DESC) {
k_argsort_i32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
} else {
GGML_ABORT("fatal error");
}
}
void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_I32);
GGML_ASSERT( dst->type == GGML_TYPE_I32);
GGML_ASSERT(ggml_is_contiguous(src0));
@@ -100,5 +194,9 @@ void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
if (src0->type == GGML_TYPE_I32) {
argsort_i32_i32_cuda((const int32_t *)src0_d, (int *)dst_d, ncols, nrows, order, stream);
} else {
argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
}
}

View File

@@ -38,6 +38,13 @@ static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
*dsti = *xi;
}
static __device__ void cpy_1_i32_i32(const char * cxi, char * cdsti) {
const int32_t * xi = (const int32_t *) cxi;
int32_t * dsti = (int32_t *) cdsti;
*dsti = *xi;
}
template <cpy_kernel_t cpy_1>
static __global__ void cpy_f32_f16(const char * cx, char * cdst_direct, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
@@ -68,6 +75,44 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst_direct, const in
cpy_1(cx + x_offset, cdst + dst_offset);
}
// First, add this template function after the other template functions
template <cpy_kernel_t cpy_1>
static __global__ void cpy_i32_i32(const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13) {
const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= ne) {
return;
}
const int64_t i03 = i/(ne00 * ne01 * ne02);
const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
const int64_t x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
const int64_t i13 = i/(ne10 * ne11 * ne12);
const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
cpy_1(cx + x_offset, cdst + dst_offset);
}
// Then modify the ggml_cpy_i32_i32_cuda function to use the new template
static void ggml_cpy_i32_i32_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int graph_cpynode_index) {
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
cpy_i32_i32<cpy_1_i32_i32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q8_0 * dsti = (block_q8_0 *) cdsti;
@@ -633,6 +678,8 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) {
ggml_cpy_i32_i32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else {
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type));
@@ -688,6 +735,8 @@ void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
return (void*) cpy_f32_f16<cpy_1_f32_f16>;
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
return (void*) cpy_f32_f16<cpy_1_f16_f32>;
} else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) {
return (void*) cpy_i32_i32<cpy_1_i32_i32>;
} else {
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type));

View File

@@ -2884,6 +2884,7 @@ struct ggml_backend_cuda_device_context {
int device;
std::string name;
std::string description;
std::string uuid;
};
static const char * ggml_backend_cuda_device_get_name(ggml_backend_dev_t dev) {
@@ -2896,6 +2897,11 @@ static const char * ggml_backend_cuda_device_get_description(ggml_backend_dev_t
return ctx->description.c_str();
}
static const char * ggml_backend_cuda_device_get_uuid(ggml_backend_dev_t dev) {
ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
return ctx->uuid.c_str();
}
static void ggml_backend_cuda_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
ggml_cuda_set_device(ctx->device);
@@ -2910,6 +2916,7 @@ static enum ggml_backend_dev_type ggml_backend_cuda_device_get_type(ggml_backend
static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
props->name = ggml_backend_cuda_device_get_name(dev);
props->description = ggml_backend_cuda_device_get_description(dev);
props->uuid = ggml_backend_cuda_device_get_uuid(dev);
props->type = ggml_backend_cuda_device_get_type(dev);
ggml_backend_cuda_device_get_memory(dev, &props->memory_free, &props->memory_total);
@@ -3458,6 +3465,32 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
CUDA_CHECK(cudaGetDeviceProperties(&prop, i));
dev_ctx->description = prop.name;
#if !defined(GGML_USE_HIP)
char uuid[64];
snprintf(uuid, sizeof(uuid),
"GPU-%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x",
(unsigned char)prop.uuid.bytes[0],
(unsigned char)prop.uuid.bytes[1],
(unsigned char)prop.uuid.bytes[2],
(unsigned char)prop.uuid.bytes[3],
(unsigned char)prop.uuid.bytes[4],
(unsigned char)prop.uuid.bytes[5],
(unsigned char)prop.uuid.bytes[6],
(unsigned char)prop.uuid.bytes[7],
(unsigned char)prop.uuid.bytes[8],
(unsigned char)prop.uuid.bytes[9],
(unsigned char)prop.uuid.bytes[10],
(unsigned char)prop.uuid.bytes[11],
(unsigned char)prop.uuid.bytes[12],
(unsigned char)prop.uuid.bytes[13],
(unsigned char)prop.uuid.bytes[14],
(unsigned char)prop.uuid.bytes[15]
);
dev_ctx->uuid = uuid;
#else
dev_ctx->uuid = "GPU-" + std::string(prop.uuid.bytes, 16);
#endif
ggml_backend_dev_t dev = new ggml_backend_device {
/* .iface = */ ggml_backend_cuda_device_interface,
/* .reg = */ &reg,

View File

@@ -5703,6 +5703,7 @@ static enum ggml_backend_dev_type ggml_backend_metal_device_get_type(ggml_backen
static void ggml_backend_metal_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
props->name = ggml_backend_metal_device_get_name(dev);
props->description = ggml_backend_metal_device_get_description(dev);
props->uuid = "0";
props->type = ggml_backend_metal_device_get_type(dev);
ggml_backend_metal_device_get_memory(dev, &props->memory_free, &props->memory_total);
props->caps = (struct ggml_backend_dev_caps) {

View File

@@ -4,6 +4,6 @@ package metal
//go:generate sh -c "{ echo // Code generated by 'go generate'. DO NOT EDIT.; sed -e '/__embed_ggml-common.h__/r ../ggml-common.h' -e '/__embed_ggml-common.h__/d' -e '/#include \"ggml-metal-impl.h\"/r ggml-metal-impl.h' -e '/#include \"ggml-metal-impl.h\"/d' ggml-metal.metal; } >ggml-metal-embed.metal"
// #cgo CPPFLAGS: -DGGML_METAL_EMBED_LIBRARY -I.. -I../../include
// #cgo CPPFLAGS: -DGGML_METAL_NDEBUG -DGGML_METAL_EMBED_LIBRARY -I.. -I../../include
// #cgo LDFLAGS: -framework Metal -framework MetalKit
import "C"

21
ml/nn/fast/rope.go Normal file
View File

@@ -0,0 +1,21 @@
// fast provides implementations of fast (fused) operations for increased performance.
package fast
import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn/rope"
)
// fastRoPE is an interface for tensors that support fast rotary positional embedding.
type fastRoPE interface {
RoPE(ctx ml.Context, positionIDs ml.Tensor, dim int, base, scale float32, options ...func(*rope.Options)) ml.Tensor
}
// RoPE applies rotary positional embedding to tensor `t`.
func RoPE(ctx ml.Context, t, positions ml.Tensor, dim int, base, scale float32, options ...func(*rope.Options)) ml.Tensor {
if t, ok := t.(fastRoPE); ok {
return t.RoPE(ctx, positions, dim, base, scale, options...)
}
panic("RoPE not implemented for this tensor type")
}

33
ml/nn/rope/rope.go Normal file
View File

@@ -0,0 +1,33 @@
package rope
import "github.com/ollama/ollama/ml"
// Options contains optional parameters for RoPE function
type Options struct {
OriginalContextLength int
Type int
Factors ml.Tensor
}
// WithOriginalContextLength sets a custom context length
func WithOriginalContextLength(n int) func(*Options) {
return func(opts *Options) {
opts.OriginalContextLength = n
}
}
// WithType sets RoPE type to NeoX
func WithTypeNeoX() func(*Options) {
return func(opts *Options) {
opts.Type = 2
}
}
// WithFactors sets custom rope factors
func WithFactors(factors ml.Tensor) func(*Options) {
return func(opts *Options) {
if factors != nil {
opts.Factors = factors
}
}
}

View File

@@ -3,118 +3,16 @@ package model
import (
"cmp"
"context"
"fmt"
"iter"
"log/slog"
"slices"
"strings"
"sync"
"github.com/dlclark/regexp2"
heap "github.com/emirpasic/gods/v2/trees/binaryheap"
"github.com/ollama/ollama/logutil"
)
type Special int32
const (
SpecialBOS Special = iota
SpecialEOS
)
const (
TOKEN_TYPE_NORMAL = iota + 1
TOKEN_TYPE_UNKNOWN
TOKEN_TYPE_CONTROL
TOKEN_TYPE_USER_DEFINED
TOKEN_TYPE_UNUSED
TOKEN_TYPE_BYTE
)
type TextProcessor interface {
Encode(s string, addSpecial bool) ([]int32, error)
Decode([]int32) (string, error)
Is(int32, Special) bool
Vocabulary() *Vocabulary
}
type Vocabulary struct {
Values []string
Types []int32
Scores []float32
Merges []string
BOS, EOS, EOT int32
AddBOS, AddEOS, AddEOT bool
specialOnce sync.Once
special []string
valuesOnce sync.Once
values map[string]int32
mergeOnce sync.Once
merge map[string]int32
}
func (v *Vocabulary) Is(id int32, special Special) bool {
switch special {
case SpecialBOS:
return id == v.BOS
case SpecialEOS:
return id == v.EOS || id == v.EOT
default:
return false
}
}
func (v *Vocabulary) Encode(s string) int32 {
v.valuesOnce.Do(func() {
v.values = make(map[string]int32, len(v.Values))
for i, value := range v.Values {
v.values[value] = int32(i)
}
})
if id, ok := v.values[s]; ok {
return id
}
return -1
}
func (v *Vocabulary) Decode(id int32) string {
return v.Values[id]
}
func (v *Vocabulary) SpecialVocabulary() []string {
v.specialOnce.Do(func() {
for i := range v.Values {
if slices.Contains([]int{105, 106}, i) {
v.special = append(v.special, v.Values[i])
} else if v.Types[i] == TOKEN_TYPE_CONTROL {
v.special = append(v.special, v.Values[i])
}
}
})
return v.special
}
func (v *Vocabulary) Merge(left, right string) int {
v.mergeOnce.Do(func() {
v.merge = make(map[string]int32, len(v.Merges))
for i, merge := range v.Merges {
v.merge[merge] = int32(i)
}
})
if id, ok := v.merge[left+" "+right]; ok {
return int(id)
}
return -1
}
type BytePairEncoding struct {
pre *regexp2.Regexp
vocab *Vocabulary
@@ -304,30 +202,23 @@ func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
}
}
slog.Log(context.TODO(), logutil.LevelTrace, "encoded", "string", s, "ids", ids)
if addSpecial && len(ids) > 0 {
if bpe.vocab.AddBOS {
if ids[0] == bpe.vocab.BOS {
slog.Warn("adding bos token to prompt which already has it", "id", bpe.vocab.BOS)
}
slog.Debug("adding bos token to prompt", "id", bpe.vocab.BOS)
ids = append([]int32{bpe.vocab.BOS}, ids...)
}
if bpe.vocab.AddEOS {
if ids[len(ids)-1] == bpe.vocab.EOS {
slog.Warn("adding eos token to prompt which already has it", "id", bpe.vocab.EOS)
}
slog.Debug("adding eos token to prompt", "id", bpe.vocab.EOS)
ids = append(ids, bpe.vocab.EOS)
}
ids = bpe.vocab.addSpecials(ids)
}
slog.Log(context.TODO(), logutil.LevelTrace, "encoded", "ids", ids)
return ids, nil
}
type lazyIdsString struct {
ids []int32
}
func (l lazyIdsString) LogValue() slog.Value {
return slog.AnyValue(fmt.Sprint(l.ids))
}
func (bpe BytePairEncoding) Decode(ids []int32) (string, error) {
var sb strings.Builder
for _, id := range ids {
@@ -352,6 +243,6 @@ func (bpe BytePairEncoding) Decode(ids []int32) (string, error) {
}
}
slog.Log(context.TODO(), logutil.LevelTrace, "decoded", "string", sb.String())
slog.Log(context.TODO(), logutil.LevelTrace, "decoded", "string", sb.String(), "from", lazyIdsString{ids: ids})
return sb.String(), nil
}

View File

@@ -2,16 +2,30 @@ package input
import "github.com/ollama/ollama/ml"
// Multimodal is a multimodal embedding or a component of one.
// For example, it could be a row of an image that can be processed
// independently.
type Multimodal struct {
// Tensor is the embedding data. Implementations may chose what to
// store here or it may be nil if not needed. However, any ml.Tensor
// objects must be stored here and not in Data.
Tensor ml.Tensor
// Data is implementation-specific opaque data, such as metadata on how
// to layout Tensor. It may be nil if not needed. It may also store larger
// objects such as complete images if they are to be processed later.
Data any
}
// Input represents one token in the input stream
type Input struct {
// Token is a single element of text.
Token int32
// Multimodal is opaque data representing a non-text
// element such as an image (or part of one if the image
// can be processed in pieces). It may be either together
// with Token or on its own.
Multimodal any
// Multimodal is represents a non-text element such as an
// image (or part of one if the image can be processed in pieces).
// It may be used either together with Token or on its own.
Multimodal []Multimodal
// MultimodalHash is a unique representation of the data
// stored in Multimodal, used for caching and comparing
@@ -32,7 +46,7 @@ type Input struct {
// Positions slice.
type MultimodalIndex struct {
Index int
Multimodal any
Multimodal []Multimodal
}
// Batch contains the inputs for a model forward pass

View File

@@ -40,12 +40,13 @@ type MultimodalProcessor interface {
// EncodeMultimodal processes a single input (such as an image) and
// generates an output (typically an embedding) that can be used by the model.
//
// The return value is most typically an ml.Tensor, however, different
// type are possible, such as an object containing a tensor plus
// additional metadata, a slice of tensors or even just the original input.
// The return value is one or more tensors, each with optional model-specific
// opaque metadata. Typically, the tensors might be views into an embedding
// with each view representing a chunk of data that can be processed independently
// in different batches.
//
// The result may be cached by the runner.
EncodeMultimodal(ml.Context, []byte) (any, error)
EncodeMultimodal(ml.Context, []byte) ([]input.Multimodal, error)
// PostTokenize is called after tokenization to allow the model to edit the
// input stream to correctly arrange multimodal elements.
@@ -97,14 +98,8 @@ func Register(name string, f func(fs.Config) (Model, error)) {
}
// New initializes a new model instance with the provided configuration based on the metadata in the model file
func New(ctx context.Context, modelPath string, params ml.BackendParams) (Model, error) {
r, err := os.Open(modelPath)
if err != nil {
return nil, err
}
defer r.Close()
b, err := ml.NewBackend(ctx, r, params)
func New(modelPath string, params ml.BackendParams) (Model, error) {
b, err := ml.NewBackend(modelPath, params)
if err != nil {
return nil, err
}
@@ -133,7 +128,7 @@ func NewTextProcessor(s string) (TextProcessor, error) {
return nil, err
}
defer r.Close()
meta, _, err := fsggml.Decode(r, -1)
meta, err := fsggml.Decode(r, -1)
if err != nil {
return nil, err
}
@@ -292,11 +287,7 @@ func Forward(ctx ml.Context, m Model, inputs []int32, batch input.Batch) (ml.Ten
return nil, errors.New("batch size cannot be less than 1")
}
var err error
batch.Inputs, err = ctx.Input().FromIntSlice(inputs, len(inputs))
if err != nil {
return nil, err
}
batch.Inputs = ctx.Input().FromIntSlice(inputs, len(inputs))
cache := m.Config().Cache
if cache != nil {

View File

@@ -7,6 +7,8 @@ import (
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
@@ -43,10 +45,13 @@ func New(c fs.Config) (model.Model, error) {
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
// TODO: set EOT to EOS otherwise 0 will stop generation
EOT: int32(c.Uint("tokenizer.ggml.eos_token_id")),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
Layers: make([]Layer, c.Uint("block_count")),
@@ -80,11 +85,10 @@ type SelfAttention struct {
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
batchSize := hiddenState.Dim(1)
ropeType := uint32(2)
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)
q = fast.RoPE(ctx, q, positionIDs, opts.attnKeyLen, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
if opts.largeModelScaling {
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
@@ -94,7 +98,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)
k = fast.RoPE(ctx, k, positionIDs, opts.attnKeyLen, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
@@ -124,7 +128,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.RoPE(ctx, shift, nil, uint32(m.Options.attnKeyLen), uint32(2), m.Options.ropeBase, m.Options.ropeScale), nil
return fast.RoPE(ctx, key, shift, m.Options.attnKeyLen, m.Options.ropeBase, m.Options.ropeScale, rope.WithTypeNeoX()), nil
}
type MLP struct {
@@ -171,15 +175,8 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Ten
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if err != nil {
return nil, err
}
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize)))

View File

@@ -60,12 +60,16 @@ func New(c fs.Config) (model.Model, error) {
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
EOS: int32(1),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOT: int32(106),
AddEOT: c.Bool("tokenizer.ggml.add_eot_token", false),
EOS: append(
[]int32{
int32(c.Uint("tokenizer.ggml.eos_token_id")),
int32(c.Uint("tokenizer.ggml.eot_token_id", 106)),
},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
ImageProcessor: newImageProcessor(c),
@@ -82,7 +86,7 @@ func New(c fs.Config) (model.Model, error) {
return &m, nil
}
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input.Multimodal, error) {
if len(m.VisionModel.Layers) == 0 {
return nil, model.ErrNoVisionModel
}
@@ -97,33 +101,30 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
return nil, err
}
pixelValues, err := ctx.Input().FromFloatSlice(f32s,
pixelValues := ctx.Input().FromFloatSlice(f32s,
m.ImageProcessor.imageSize,
m.ImageProcessor.imageSize,
m.ImageProcessor.numChannels,
)
if err != nil {
return nil, err
}
visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
visionOutputs = m.MultiModalProjector.Forward(ctx, visionOutputs, m.imageSize, m.patchSize, m.VisionModel.eps)
return visionOutputs, nil
return []input.Multimodal{{Tensor: visionOutputs}}, nil
}
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var result []input.Input
for _, inp := range inputs {
if inp.Multimodal == nil {
if len(inp.Multimodal) == 0 {
result = append(result, inp)
} else {
inputMultimodal := inp.Multimodal.(ml.Tensor)
inputMultimodal := inp.Multimodal[0].Tensor
result = append(result,
input.Input{Token: 108, SameBatch: inputMultimodal.Dim(1) + 3}, // "\n\n"
input.Input{Token: 255999}, // "<start_of_image>""
input.Input{Multimodal: inputMultimodal, MultimodalHash: inp.MultimodalHash}, // image data is on the first placeholder
input.Input{Token: 108, SameBatch: inputMultimodal.Dim(1) + 3}, // "\n\n"
input.Input{Token: 255999}, // "<start_of_image>""
input.Input{Multimodal: []input.Multimodal{{Tensor: inputMultimodal}}, MultimodalHash: inp.MultimodalHash}, // image data is on the first placeholder
)
// add image token placeholders
@@ -140,15 +141,8 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if err != nil {
return nil, err
}
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
}

View File

@@ -7,6 +7,8 @@ import (
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model/input"
)
@@ -73,7 +75,6 @@ type TextSelfAttention struct {
func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextConfig) ml.Tensor {
batchSize := hiddenState.Dim(1)
ropeType := uint32(2)
ropeBase := opts.ropeLocalBase
if (layer+1)%gemmaGlobalCacheCount == 0 {
@@ -83,7 +84,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
q = sa.QueryNorm.Forward(ctx, q, opts.eps)
q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, ropeBase, opts.ropeScale)
q = fast.RoPE(ctx, q, positionIDs, opts.attnKeyLen, ropeBase, opts.ropeScale, rope.WithTypeNeoX())
if opts.largeModelScaling {
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
@@ -94,7 +95,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
k = sa.KeyNorm.Forward(ctx, k, opts.eps)
k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, ropeBase, opts.ropeScale)
k = fast.RoPE(ctx, k, positionIDs, opts.attnKeyLen, ropeBase, opts.ropeScale, rope.WithTypeNeoX())
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
@@ -112,7 +113,7 @@ func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.T
ropeBase = m.TextConfig.ropeGlobalBase
}
return key.RoPE(ctx, shift, nil, uint32(m.TextConfig.attnKeyLen), uint32(2), ropeBase, m.TextConfig.ropeScale), nil
return fast.RoPE(ctx, key, shift, m.TextConfig.attnKeyLen, ropeBase, m.TextConfig.ropeScale, rope.WithTypeNeoX()), nil
}
type TextMLP struct {
@@ -165,7 +166,7 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
// set image embeddings
var except []int
for _, image := range batch.Multimodal {
visionOutputs := image.Multimodal.(ml.Tensor)
visionOutputs := image.Multimodal[0].Tensor
ctx.Forward(visionOutputs.Copy(ctx, hiddenState.View(ctx, image.Index*hiddenState.Stride(1), visionOutputs.Dim(0)*visionOutputs.Dim(1))))
for i := range visionOutputs.Dim(1) {

View File

@@ -1,22 +1,23 @@
package llama
import (
"fmt"
"cmp"
"math"
"strings"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Options struct {
hiddenSize, numHeads, numKVHeads int
headDim, ropeDim int
eps, ropeBase, ropeScale float32
ropeDim uint32
}
type Model struct {
@@ -32,10 +33,6 @@ type Model struct {
}
func New(c fs.Config) (model.Model, error) {
if !strings.EqualFold(c.String("tokenizer.ggml.model"), "gpt2") {
return nil, fmt.Errorf("tokenizer %s not yet supported", c.String("tokenizer.ggml.model"))
}
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
@@ -43,13 +40,13 @@ func New(c fs.Config) (model.Model, error) {
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
// TODO: set EOT to EOS otherwise 0 will stop generation
EOT: int32(c.Uint("tokenizer.ggml.eos_token_id")),
AddEOT: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
Layers: make([]Layer, c.Uint("block_count")),
@@ -57,10 +54,11 @@ func New(c fs.Config) (model.Model, error) {
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
headDim: int(c.Uint("attention.key_length")),
ropeDim: int(c.Uint("rope.dimension_count")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
ropeDim: c.Uint("rope.dimension_count"),
},
}
@@ -77,31 +75,31 @@ type SelfAttention struct {
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
}
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := opts.hiddenSize / opts.numHeads
ropeType := uint32(0)
headDim := cmp.Or(opts.headDim, opts.hiddenSize/opts.numHeads)
ropeDim := cmp.Or(opts.ropeDim, headDim)
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
q = q.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
query := sa.Query.Forward(ctx, hiddenState)
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
k = k.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
key := sa.Key.Forward(ctx, hiddenState)
key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
value := sa.Value.Forward(ctx, hiddenState)
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
scaleFactor := 1.0 / math.Sqrt(float64(headDim))
kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize)
query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
return sa.Output.Forward(ctx, kqv)
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), cache)
attention = attention.Reshape(ctx, headDim*opts.numHeads, batchSize)
return sa.Output.Forward(ctx, attention)
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.RoPE(ctx, shift, m.Layers[layer].SelfAttention.RopeFactors, uint32(0), m.ropeDim, m.ropeBase, m.ropeScale), nil
ropeDim := cmp.Or(m.ropeDim, m.hiddenSize/m.numHeads)
return fast.RoPE(ctx, key, shift, ropeDim, m.ropeBase, m.ropeScale, rope.WithFactors(m.Layers[layer].SelfAttention.RopeFactors)), nil
}
type MLP struct {
@@ -122,11 +120,11 @@ type Layer struct {
MLP *MLP
}
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
func (l *Layer) Forward(ctx ml.Context, hiddenState, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
residual := hiddenState
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positions, cache, opts)
// In the final layer (outputs != nil), optimize by pruning to just the token positions
// we need logits for.
@@ -144,27 +142,19 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Ten
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if err != nil {
return nil, err
}
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
for i, layer := range m.Layers {
m.Cache.SetLayer(i)
var lastLayerOutputs ml.Tensor
var outputs ml.Tensor
if i == len(m.Layers)-1 {
lastLayerOutputs = outputs
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
}
hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)
hiddenState = layer.Forward(ctx, hiddenState, positions, outputs, m.Cache, m.Options)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)

View File

@@ -4,7 +4,6 @@ import (
"bytes"
"image"
"slices"
"sync"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
@@ -41,13 +40,13 @@ func New(c fs.Config) (model.Model, error) {
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
// TODO: set EOT to EOS otherwise 0 will stop generation
EOT: int32(c.Uint("tokenizer.ggml.eos_token_id")),
AddEOT: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
ImageProcessor: newImageProcessor(c),
@@ -63,7 +62,7 @@ func New(c fs.Config) (model.Model, error) {
return &m, nil
}
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input.Multimodal, error) {
if len(m.VisionModel.Layers) < 1 {
return nil, model.ErrNoVisionModel
}
@@ -78,10 +77,7 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
return nil, err
}
tilesLocal, err := ctx.Input().FromFloatSlice(pixelsLocal, size.X, size.Y, m.numChannels)
if err != nil {
return nil, err
}
tilesLocal := ctx.Input().FromFloatSlice(pixelsLocal, size.X, size.Y, m.numChannels)
ratioW, ratioH := size.X/m.imageSize, size.Y/m.imageSize
@@ -92,81 +88,86 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
pixelValues := tilesLocal
if len(pixelsGlobal) > 0 {
tilesGlobal, err := ctx.Input().FromFloatSlice(pixelsGlobal, m.imageSize, m.imageSize, m.numChannels)
if err != nil {
return nil, err
}
tilesGlobal := ctx.Input().FromFloatSlice(pixelsGlobal, m.imageSize, m.imageSize, m.numChannels)
pixelValues = pixelValues.Concat(ctx, tilesGlobal, 3)
}
visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
visionOutputs = visionOutputs.Reshape(ctx, visionOutputs.Dim(0), visionOutputs.Dim(1)*visionOutputs.Dim(2)*visionOutputs.Dim(3))
projectedOutputs := m.Projector.Forward(ctx, visionOutputs)
return &chunks{Model: m, Tensor: projectedOutputs, aspectRatio: image.Point{ratioW, ratioH}}, nil
var multimodal []input.Multimodal
aspectRatio := image.Point{ratioW, ratioH}
var offset int
patchesPerChunk := projectedOutputs.Dim(1)
if aspectRatio.Y*aspectRatio.X > 1 {
patchesPerChunk = projectedOutputs.Dim(1) / (aspectRatio.X*aspectRatio.Y + 1)
for range aspectRatio.Y {
for x := range aspectRatio.X {
view := projectedOutputs.View(ctx, projectedOutputs.Stride(1)*offset,
projectedOutputs.Dim(0), projectedOutputs.Stride(1),
patchesPerChunk)
var separator separator
if x < aspectRatio.X-1 {
separator.x = true // <|tile_x_separator|>
} else {
separator.y = true // <|tile_y_separator|>
}
multimodal = append(multimodal, input.Multimodal{Tensor: view, Data: &separator})
offset += patchesPerChunk
}
}
}
view := projectedOutputs.View(ctx, projectedOutputs.Stride(1)*offset,
projectedOutputs.Dim(0), projectedOutputs.Stride(1),
patchesPerChunk)
multimodal = append(multimodal, input.Multimodal{Tensor: view, Data: &separator{}})
return multimodal, nil
}
type chunks struct {
*Model
ml.Tensor
aspectRatio image.Point
dataOnce sync.Once
data []float32
}
type chunk struct {
*chunks
s, n int
}
func (r *chunk) floats() []float32 {
r.dataOnce.Do(func() {
temp := r.Backend().NewContext()
defer temp.Close()
temp.Forward(r.Tensor).Compute(r.Tensor)
r.data = r.Floats()
})
return r.data[r.s*r.Dim(0) : (r.s+r.n)*r.Dim(0)]
type separator struct {
x bool
y bool
}
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var result []input.Input
for _, inp := range inputs {
if inp.Multimodal == nil {
if len(inp.Multimodal) == 0 {
result = append(result, inp)
continue
}
t := inp.Multimodal.(*chunks)
var imageInputs []input.Input
imageInputs = append(imageInputs, input.Input{Token: 200080}) // <|image_start|>
var offset int
patchesPerChunk := t.Dim(1)
if t.aspectRatio.Y*t.aspectRatio.X > 1 {
patchesPerChunk = t.Dim(1) / (t.aspectRatio.X*t.aspectRatio.Y + 1)
for i, mm := range inp.Multimodal {
patchesPerChunk := mm.Tensor.Dim(1)
for range t.aspectRatio.Y {
for x := range t.aspectRatio.X {
imageInputs = append(imageInputs, input.Input{Token: 200092, Multimodal: &chunk{t, offset, patchesPerChunk}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|>
imageInputs = append(imageInputs, slices.Repeat([]input.Input{{Token: 200092}}, patchesPerChunk-1)...)
if x < t.aspectRatio.X-1 {
imageInputs = append(imageInputs, input.Input{Token: 200084}) // <|tile_x_separator|>
}
offset += patchesPerChunk
if i < len(inp.Multimodal)-1 {
separator := mm.Data.(*separator)
imageInputs = append(imageInputs, input.Input{Token: 200092, Multimodal: []input.Multimodal{{Tensor: mm.Tensor}}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|>
imageInputs = append(imageInputs, slices.Repeat([]input.Input{{Token: 200092}}, patchesPerChunk-1)...)
if separator.x {
imageInputs = append(imageInputs, input.Input{Token: 200084}) // <|tile_x_separator|>
}
imageInputs = append(imageInputs, input.Input{Token: 200085}) // <|tile_y_separator|>
if separator.y {
imageInputs = append(imageInputs, input.Input{Token: 200085}) // <|tile_y_separator|>
}
} else {
imageInputs = append(imageInputs, input.Input{Token: 200090}) // <|image|>
imageInputs = append(imageInputs, input.Input{Token: 200092, Multimodal: []input.Multimodal{{Tensor: mm.Tensor}}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|>
imageInputs = append(imageInputs, slices.Repeat([]input.Input{{Token: 200092}}, patchesPerChunk-1)...)
imageInputs = append(imageInputs, input.Input{Token: 200080}) // <|image_end|>
}
}
imageInputs = append(imageInputs, input.Input{Token: 200090}) // <|image|>
imageInputs = append(imageInputs, input.Input{Token: 200092, Multimodal: &chunk{t, offset, patchesPerChunk}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|>
imageInputs = append(imageInputs, slices.Repeat([]input.Input{{Token: 200092}}, patchesPerChunk-1)...)
imageInputs = append(imageInputs, input.Input{Token: 200080}) // <|image_end|>
result = append(result, imageInputs...)
}
@@ -174,15 +175,8 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if err != nil {
return nil, err
}
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
}

View File

@@ -8,6 +8,8 @@ import (
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model/input"
)
@@ -31,8 +33,8 @@ func (sa *TextAttention) Forward(ctx ml.Context, hiddenStates, positions, attent
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
if useRope {
query = query.RoPE(ctx, positions, sa.RopeFactors, uint32(opts.ropeDim), uint32(0), opts.ropeBase, opts.ropeScale)
key = key.RoPE(ctx, positions, sa.RopeFactors, uint32(opts.ropeDim), uint32(0), opts.ropeBase, opts.ropeScale)
query = fast.RoPE(ctx, query, positions, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
key = fast.RoPE(ctx, key, positions, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
}
if opts.useQKNorm {
@@ -61,9 +63,9 @@ func (mlp *TextMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOp
}
type TextExperts struct {
Gate ml.Tensor `gguf:"ffn_gate_exps.weight"`
Up ml.Tensor `gguf:"ffn_up_exps.weight"`
Down ml.Tensor `gguf:"ffn_down_exps.weight"`
Gate *nn.Linear `gguf:"ffn_gate_exps"`
Up *nn.Linear `gguf:"ffn_up_exps"`
Down *nn.Linear `gguf:"ffn_down_exps"`
}
func (e *TextExperts) Forward(ctx ml.Context, hiddenStates, routerLogits ml.Tensor, opts *TextOptions) ml.Tensor {
@@ -74,13 +76,13 @@ func (e *TextExperts) Forward(ctx ml.Context, hiddenStates, routerLogits ml.Tens
hiddenStates = hiddenStates.Repeat(ctx, 1, opts.numExpertsUsed)
hiddenStates = hiddenStates.Mul(ctx, scores)
upStates := e.Up.MulmatID(ctx, hiddenStates, experts)
gateStates := e.Gate.MulmatID(ctx, hiddenStates, experts)
downStates := e.Down.MulmatID(ctx, upStates.Mul(ctx, gateStates.SILU(ctx)), experts)
upStates := e.Up.Weight.MulmatID(ctx, hiddenStates, experts)
gateStates := e.Gate.Weight.MulmatID(ctx, hiddenStates, experts)
downStates := e.Down.Weight.MulmatID(ctx, upStates.Mul(ctx, gateStates.SILU(ctx)), experts)
nextStates := downStates.View(ctx, 0, hiddenStates.Dim(0), downStates.Stride(2), hiddenStates.Dim(2))
for i := 1; i < opts.numExpertsUsed; i++ {
nextStates.Add(ctx, downStates.View(ctx, i*downStates.Stride(1), hiddenStates.Dim(0), downStates.Stride(2), hiddenStates.Dim(2)))
nextStates = nextStates.Add(ctx, downStates.View(ctx, i*downStates.Stride(1), hiddenStates.Dim(0), downStates.Stride(2), hiddenStates.Dim(2)))
}
return nextStates
@@ -210,12 +212,7 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
hiddenStates := m.TokenEmbedding.Forward(ctx, inputs).Duplicate(ctx)
for _, mi := range batch.Multimodal {
f32s := mi.Multimodal.(*chunk).floats()
img, err := ctx.Input().FromFloatSlice(f32s, len(f32s)/m.hiddenSize, m.hiddenSize)
if err != nil {
panic(err)
}
img := mi.Multimodal[0].Tensor
ctx.Forward(img.Copy(ctx, hiddenStates.View(ctx, mi.Index*hiddenStates.Stride(1), img.Dim(0)*img.Dim(1))))
}
@@ -226,11 +223,7 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
scales[i] = float32(math.Log(math.Floor(((float64(p)+1.0)/float64(m.attentionFloorScale))+1.0))*m.attentionScale + 1.0)
}
var err error
attentionScales, err = ctx.Input().FromFloatSlice(scales, 1, 1, len(scales))
if err != nil {
panic(err)
}
attentionScales = ctx.Input().FromFloatSlice(scales, 1, 1, len(scales))
}
for i, layer := range m.Layers {
@@ -255,5 +248,5 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
}
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.RoPE(ctx, shift, m.Layers[layer].Attention.RopeFactors, uint32(0), uint32(m.ropeDim), m.ropeBase, m.ropeScale), nil
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale, rope.WithFactors(m.Layers[layer].Attention.RopeFactors)), nil
}

View File

@@ -245,10 +245,7 @@ func (m *VisionModel) rotaryEmbedding(ctx ml.Context) (ml.Tensor, ml.Tensor) {
}
}
ropeFreqs, err := ctx.Input().FromFloatSlice(freqs, freqDim/2, numPatches, 2)
if err != nil {
panic(err)
}
ropeFreqs := ctx.Input().FromFloatSlice(freqs, freqDim/2, numPatches, 2)
ropeFreqs = ropeFreqs.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
ropeFreqs = ropeFreqs.Reshape(ctx, freqDim, 1, numPatches)

View File

@@ -4,7 +4,6 @@ import (
"bytes"
"image"
"slices"
"sync"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
@@ -32,31 +31,26 @@ var _ model.MultimodalProcessor = (*Model)(nil)
var _ model.TextProcessor = (*Model)(nil)
func New(c fs.Config) (model.Model, error) {
textModel, err := NewTextModel(c)
if err != nil {
return nil, err
}
m := &Model{
TextModel: textModel,
VisionModel: newVisionModel(c),
ImageProcessor: newImageProcessor(c),
MultiModalProjector: newMultiModalProjector(c),
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id", 1)),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id", 2)),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
// TODO: set EOT to EOS otherwise 0 will stop generation
EOT: int32(c.Uint("tokenizer.ggml.eos_token_id")),
AddEOT: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
TextModel: newTextModel(c),
VisionModel: newVisionModel(c),
ImageProcessor: newImageProcessor(c),
MultiModalProjector: newMultiModalProjector(c),
}
m.Cache = kvcache.NewCausalCache(m.TextModel.Shift)
@@ -105,7 +99,7 @@ func newMultiModalProjector(c fs.Config) *MultiModalProjector {
}
}
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input.Multimodal, error) {
if len(m.VisionModel.Layers) == 0 {
return nil, model.ErrNoVisionModel
}
@@ -120,46 +114,20 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
return nil, err
}
pixelValues, err := ctx.Input().FromFloatSlice(f32s, size.X, size.Y, m.ImageProcessor.numChannels)
if err != nil {
return nil, err
}
pixelValues := ctx.Input().FromFloatSlice(f32s, size.X, size.Y, m.ImageProcessor.numChannels)
visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
features, size := m.MultiModalProjector.Forward(ctx, visionOutputs, size)
// split into patches to be sent to the text transformer
parent := imageFeatures{tensor: features}
rows := make([]*imageRow, size.Y)
rows := make([]input.Multimodal, size.Y)
for i := range rows {
rows[i] = &imageRow{parent: &parent, s: i, shape: []int{features.Dim(0), size.X}}
rows[i].Tensor = features.View(ctx, features.Stride(1)*size.X*i, features.Dim(0), features.Stride(1), size.X)
}
return rows, nil
}
type imageFeatures struct {
tensor ml.Tensor
dataOnce sync.Once
data []float32
}
type imageRow struct {
parent *imageFeatures
s int
shape []int
}
func (r *imageRow) data() []float32 {
n := 1
for _, s := range r.shape {
n *= s
}
return r.parent.data[r.s*n : (r.s+1)*n]
}
// PostTokenize arranges Mistral 3's inputs for the forward pass
// In Mistral 3 and Pixtral, the input patches are arranged as follows:
// [IMG]...[IMG][IMG_BREAK][IMG]...[IMG][IMG_BREAK][IMG]...[IMG][IMG_END]
@@ -168,15 +136,14 @@ func (r *imageRow) data() []float32 {
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var result []input.Input
for _, inp := range inputs {
if inp.Multimodal == nil {
if len(inp.Multimodal) == 0 {
result = append(result, inp)
} else {
inputMultimodal := inp.Multimodal.([]*imageRow)
for i, row := range inputMultimodal {
for i, row := range inp.Multimodal {
// [IMG]
result = append(result, input.Input{Token: 10, Multimodal: row, MultimodalHash: inp.MultimodalHash, SameBatch: row.shape[1]})
result = append(result, slices.Repeat([]input.Input{{Token: 10}}, row.shape[1]-1)...)
if i == len(inputMultimodal)-1 {
result = append(result, input.Input{Token: 10, Multimodal: []input.Multimodal{{Tensor: row.Tensor}}, MultimodalHash: inp.MultimodalHash, SameBatch: row.Tensor.Dim(1)})
result = append(result, slices.Repeat([]input.Input{{Token: 10}}, row.Tensor.Dim(1)-1)...)
if i == len(inp.Multimodal)-1 {
// [IMG_END]
result = append(result, input.Input{Token: 13})
} else {
@@ -191,15 +158,8 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if err != nil {
return nil, err
}
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
}

View File

@@ -1,27 +1,24 @@
package mistral3
import (
"fmt"
"cmp"
"math"
"strings"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/model/input"
)
type TextOptions struct {
hiddenSize, numHeads, numKVHeads, headDim int
eps, ropeBase, ropeScale float32
ropeDim uint32
hiddenSize, numHeads, numKVHeads int
headDim, ropeDim int
eps, ropeBase, ropeScale float32
}
type TextModel struct {
model.Base
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
@@ -39,19 +36,15 @@ type SelfAttention struct {
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
batchSize := hiddenState.Dim(1)
ropeType := uint32(0)
headDim := opts.headDim
if headDim == 0 {
headDim = opts.hiddenSize / opts.numHeads
}
headDim := cmp.Or(opts.headDim, opts.hiddenSize/opts.numHeads)
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
q = q.RoPE(ctx, positionIDs, nil, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
q = fast.RoPE(ctx, q, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale)
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
k = k.RoPE(ctx, positionIDs, nil, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
k = fast.RoPE(ctx, k, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale)
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
@@ -62,7 +55,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
}
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.RoPE(ctx, shift, nil, uint32(0), m.ropeDim, m.ropeBase, m.ropeScale), nil
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale), nil
}
type MLP struct {
@@ -109,20 +102,7 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
// image embeddings
for _, image := range batch.Multimodal {
row := image.Multimodal.(*imageRow)
row.parent.dataOnce.Do(func() {
// use a new, throwaway context so the image tensor is not added to the graph
temp := m.Backend().NewContext()
temp.Forward(row.parent.tensor).Compute(row.parent.tensor)
row.parent.data = row.parent.tensor.Floats()
temp.Close()
})
imageFeature, err := ctx.Input().FromFloatSlice(row.data(), row.shape...)
if err != nil {
panic(err)
}
imageFeature := image.Multimodal[0].Tensor
ctx.Forward(imageFeature.Copy(ctx, hiddenState.View(ctx, image.Index*hiddenState.Stride(1), imageFeature.Dim(0)*imageFeature.Dim(1))))
}
@@ -141,24 +121,18 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
return m.Output.Forward(ctx, hiddenState)
}
func NewTextModel(c fs.Config) (*TextModel, error) {
if !strings.EqualFold(c.String("tokenizer.ggml.model"), "gpt2") {
return nil, fmt.Errorf("tokenizer %s not yet supported", c.String("tokenizer.ggml.model"))
}
textModel := &TextModel{
func newTextModel(c fs.Config) *TextModel {
return &TextModel{
Layers: make([]Layer, c.Uint("block_count")),
TextOptions: &TextOptions{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
headDim: int(c.Uint("attention.key_length")),
ropeDim: int(c.Uint("rope.dimension_count")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
ropeDim: c.Uint("rope.dimension_count"),
},
}
return textModel, nil
}

View File

@@ -110,15 +110,8 @@ func (m *VisionModel) positionalEmbedding(ctx ml.Context, positionIDs ml.Tensor)
}
}
h, err := ctx.Input().FromFloatSlice(frequenciesHeight, maxPatchesPerSide, frequencies/2)
if err != nil {
panic(err)
}
w, err := ctx.Input().FromFloatSlice(frequenciesWidth, maxPatchesPerSide, frequencies/2)
if err != nil {
panic(err)
}
h := ctx.Input().FromFloatSlice(frequenciesHeight, maxPatchesPerSide, frequencies/2)
w := ctx.Input().FromFloatSlice(frequenciesWidth, maxPatchesPerSide, frequencies/2)
h = h.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
w = w.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
@@ -151,10 +144,7 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor) ml.Tensor {
}
}
positionIDs, err := ctx.Input().FromIntSlice(positions, len(positions))
if err != nil {
panic(err)
}
positionIDs := ctx.Input().FromIntSlice(positions, len(positions))
positionEmbedding := m.positionalEmbedding(ctx, positionIDs)
cos, sin := positionEmbedding.Cos(ctx), positionEmbedding.Sin(ctx)
@@ -170,7 +160,7 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor) ml.Tensor {
func newVisionModel(c fs.Config) *VisionModel {
return &VisionModel{
Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count", 24)),
Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count")),
VisionModelOptions: &VisionModelOptions{
hiddenSize: int(c.Uint("vision.embedding_length", 1024)),
numHeads: int(c.Uint("vision.attention.head_count", 16)),

View File

@@ -3,6 +3,7 @@ package mllama
import (
"bytes"
"image"
"slices"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
@@ -37,13 +38,13 @@ func New(c fs.Config) (model.Model, error) {
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
// TODO: set EOT to EOS otherwise 0 will stop generation
EOT: int32(c.Uint("tokenizer.ggml.eos_token_id")),
AddEOT: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
ImageProcessor: newImageProcessor(c),
@@ -58,7 +59,7 @@ func New(c fs.Config) (model.Model, error) {
return &m, nil
}
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input.Multimodal, error) {
if len(m.VisionModel.Transformer.Layers) == 0 || len(m.GlobalTransformer.Layers) == 0 {
return nil, model.ErrNoVisionModel
}
@@ -73,21 +74,20 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
return nil, err
}
pixelValues, err := ctx.Input().FromFloatSlice(f32s, m.imageSize, m.imageSize, m.numChannels, ratio.numTiles())
if err != nil {
return nil, err
if ratio.numTiles() < m.maxNumTiles {
// Pad tiles to maxNumTiles
f32s = slices.Grow(f32s, m.imageSize*m.imageSize*m.numChannels*m.maxNumTiles)
f32s = f32s[:m.imageSize*m.imageSize*m.numChannels*m.maxNumTiles]
}
pixelValues = pixelValues.Pad(ctx, 0, 0, 0, m.ImageProcessor.maxNumTiles-ratio.numTiles())
aspectRatio, err := ctx.Input().FromIntSlice([]int32{int32(ratio.rank)}, 1)
if err != nil {
return nil, err
}
pixelValues := ctx.Input().FromFloatSlice(f32s, m.imageSize, m.imageSize, m.numChannels, m.maxNumTiles)
aspectRatio := ctx.Input().FromIntSlice([]int32{int32(ratio.rank)}, 1)
positionIDs := ctx.Arange(0, 1601, 1, ml.DTypeI32)
crossAttentionStates := m.VisionModel.Forward(ctx, pixelValues, positionIDs, aspectRatio)
return m.Projector.Forward(ctx, crossAttentionStates), nil
projectedOutputs := m.Projector.Forward(ctx, crossAttentionStates)
return []input.Multimodal{{Tensor: projectedOutputs}}, nil
}
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
@@ -103,18 +103,11 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
var crossAttentionStates ml.Tensor
if len(batch.Multimodal) > 0 {
crossAttentionStates = batch.Multimodal[len(batch.Multimodal)-1].Multimodal.(ml.Tensor)
crossAttentionStates = batch.Multimodal[len(batch.Multimodal)-1].Multimodal[0].Tensor
}
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if err != nil {
return nil, err
}
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
// TODO: attention mask, cross attention mask
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil

View File

@@ -8,6 +8,8 @@ import (
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/rope"
)
type TextSelfAttention struct {
@@ -21,15 +23,14 @@ type TextSelfAttention struct {
func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := opts.hiddenSize / opts.numHeads
ropeType := uint32(0)
query := sa.Query.Forward(ctx, hiddenState)
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
query = query.RoPE(ctx, positions, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
query = fast.RoPE(ctx, query, positions, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
key := sa.Key.Forward(ctx, hiddenState)
key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
key = key.RoPE(ctx, positions, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
key = fast.RoPE(ctx, key, positions, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
value := sa.Value.Forward(ctx, hiddenState)
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
@@ -44,7 +45,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.T
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
// This will only get called for layers in the cache, which are just the self attention layers
if sa, ok := m.Transformer.Layers[layer].(*TextSelfAttentionDecoderLayer); ok {
return key.RoPE(ctx, shift, sa.SelfAttention.RopeFactors, m.ropeDim, uint32(0), m.ropeBase, m.ropeScale), nil
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale, rope.WithFactors(sa.SelfAttention.RopeFactors)), nil
}
return key, nil
@@ -199,8 +200,8 @@ func (d *TextDecoder) Forward(ctx ml.Context, hiddenState, positionIDs, outputs,
type TextModelOptions struct {
hiddenSize, numHeads, numKVHeads int
ropeDim int
eps, ropeBase, ropeScale float32
ropeDim uint32
crossAttentionLayers []int32
}
@@ -240,10 +241,10 @@ func newTextModel(c fs.Config) *TextModel {
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
ropeDim: int(c.Uint("rope.dimension_count")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
ropeDim: c.Uint("rope.dimension_count"),
crossAttentionLayers: c.Ints("attention.cross_attention_layers"),
},
}

View File

@@ -16,8 +16,6 @@ type VisionSelfAttention struct {
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
Gate ml.Tensor `gguf:"attn_gate"`
}
func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
@@ -25,27 +23,16 @@ func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenState ml.Tensor, op
query := sa.Query.Forward(ctx, hiddenState)
query = query.Reshape(ctx, headDim, opts.numHeads, query.Dim(1), batchSize)
query = query.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
key := sa.Key.Forward(ctx, hiddenState)
key = key.Reshape(ctx, headDim, opts.numHeads, key.Dim(1), batchSize)
key = key.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
value := sa.Value.Forward(ctx, hiddenState)
value = value.Reshape(ctx, headDim, opts.numHeads, value.Dim(1), batchSize)
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
scores := key.Mulmat(ctx, query)
scores = scores.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
scores = scores.Softmax(ctx)
attention := value.Mulmat(ctx, scores)
attention = attention.Reshape(ctx, headDim, attention.Dim(1), opts.numHeads, batchSize)
attention = attention.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(headDim)), nil)
attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), batchSize)
hiddenState = sa.Output.Forward(ctx, attention)
return hiddenState
return sa.Output.Forward(ctx, attention)
}
type VisionMLP struct {
@@ -76,21 +63,18 @@ func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenState ml.Tensor, opts
// self attention
hiddenState = e.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = e.SelfAttention.Forward(ctx, hiddenState, opts)
if e.AttentionGate != nil {
hiddenState = hiddenState.Mul(ctx, e.AttentionGate)
}
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
// feed forward
hiddenState = e.MLPNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = e.MLP.Forward(ctx, hiddenState, opts)
hiddenState = hiddenState.Add(ctx, residual)
if e.MLPGate != nil {
hiddenState = hiddenState.Mul(ctx, e.MLPGate)
}
hiddenState = hiddenState.Add(ctx, residual)
return hiddenState
}

View File

@@ -7,4 +7,7 @@ import (
_ "github.com/ollama/ollama/model/models/llama4"
_ "github.com/ollama/ollama/model/models/mistral3"
_ "github.com/ollama/ollama/model/models/mllama"
_ "github.com/ollama/ollama/model/models/qwen2"
_ "github.com/ollama/ollama/model/models/qwen25vl"
_ "github.com/ollama/ollama/model/models/qwen3"
)

164
model/models/qwen2/model.go Normal file
View File

@@ -0,0 +1,164 @@
package qwen2
import (
"cmp"
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Options struct {
hiddenSize, numHeads, numKVHeads int
headDim, ropeDim int
eps, ropeBase, ropeScale float32
}
type Attention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (attn Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
batchSize := hiddenStates.Dim(1)
headDim := cmp.Or(opts.headDim, opts.hiddenSize/opts.numHeads)
ropeDim := cmp.Or(opts.ropeDim, headDim)
query := attn.Query.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
key := attn.Key.Forward(ctx, hiddenStates)
key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
value := attn.Value.Forward(ctx, hiddenStates)
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), cache)
attention = attention.Reshape(ctx, headDim*opts.numHeads, batchSize)
return attn.Output.Forward(ctx, attention)
}
type MLP struct {
Gate *nn.Linear `gguf:"ffn_gate"`
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (mlp MLP) Forward(ctx ml.Context, hiddenStates ml.Tensor) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
type DecoderLayer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
Attention *Attention
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP *MLP
}
func (d DecoderLayer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
residual := hiddenStates
hiddenStates = d.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = d.Attention.Forward(ctx, hiddenStates, positions, cache, opts)
if outputs != nil {
hiddenStates = hiddenStates.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
hiddenStates = hiddenStates.Add(ctx, residual)
residual = hiddenStates
hiddenStates = d.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = d.MLP.Forward(ctx, hiddenStates)
return hiddenStates.Add(ctx, residual)
}
type Model struct {
model.Base
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []DecoderLayer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
Options
}
// Forward implements model.Model.
func (m Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
for i, layer := range m.Layers {
m.Cache.SetLayer(i)
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
}
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, &m.Options)
}
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
hiddenStates = m.Output.Forward(ctx, hiddenStates)
return hiddenStates, nil
}
func (m Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
ropeDim := cmp.Or(m.ropeDim, m.hiddenSize/m.numHeads)
return fast.RoPE(ctx, key, shift, ropeDim, m.ropeBase, m.ropeScale, rope.WithTypeNeoX()), nil
}
func New(c fs.Config) (model.Model, error) {
m := Model{
Layers: make([]DecoderLayer, c.Uint("block_count")),
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
headDim: int(c.Uint("attention.key_length")),
ropeDim: int(c.Uint("rope.dimension_count")),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
eps: c.Float("attention.layer_norm_rms_epsilon"),
},
}
m.Cache = kvcache.NewCausalCache(m.Shift)
return &m, nil
}
func init() {
model.Register("qwen2", New)
}

View File

@@ -0,0 +1,150 @@
package qwen25vl
import (
"bytes"
"fmt"
"image"
"slices"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
model.Base
model.BytePairEncoding
*TextModel
*VisionModel `gguf:"v,vision"`
ImageProcessor
}
// Implement MultimodalProcessor interface
var _ model.MultimodalProcessor = (*Model)(nil)
func New(c fs.Config) (model.Model, error) {
m := &Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
TextModel: NewTextModel(c),
VisionModel: newVisionModel(c),
ImageProcessor: newImageProcessor(c),
}
m.Cache = kvcache.NewCausalCache(m.TextModel.Shift)
return m, nil
}
func (m *Model) PixelValues(ctx ml.Context, multimodalData []byte) (ml.Tensor, *Grid, error) {
image, _, err := image.Decode(bytes.NewReader(multimodalData))
if err != nil {
return nil, nil, err
}
f32s, grid, err := m.ImageProcessor.ProcessImage(image)
if err != nil {
return nil, nil, err
}
// Calculate tensor dimensions
patchDim := m.ImageProcessor.numChannels * m.ImageProcessor.temporalPatchSize *
m.ImageProcessor.patchSize * m.ImageProcessor.patchSize
numPatches := grid.Temporal * grid.Height * grid.Width
pixelValues := ctx.Input().FromFloatSlice(f32s, patchDim, numPatches)
return pixelValues, grid, nil
}
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input.Multimodal, error) {
if len(m.VisionModel.Layers) == 0 {
return nil, model.ErrNoVisionModel
}
pixels, grid, err := m.PixelValues(ctx, multimodalData)
if err != nil {
return nil, err
}
visionOutputs := m.VisionModel.Forward(ctx, pixels, grid)
return []input.Multimodal{{Tensor: visionOutputs}}, nil
}
// PostTokenize arranges Qwen-2.5-VL's inputs for the forward pass
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var result []input.Input
var (
imageToken int32 = 151655
visionStartToken int32 = 151652
visionEndToken int32 = 151653
)
nImg := 0
for _, inp := range inputs {
if inp.Multimodal == nil {
// If not a multimodal input, add it to the result unchanged
result = append(result, inp)
} else {
// Adding the 'Picture' prefix is a hack, at the time of writing there is no way to prefix
// the image tokens with a prompt, so we add a prefix here
nImg++
pre, err := m.Encode(fmt.Sprintf(" Picture %d: ", nImg), true)
if err != nil {
return nil, fmt.Errorf("failed to encode image prompt: %w", err)
}
for i := range pre {
result = append(result, input.Input{Token: pre[i]})
}
patchesPerChunk := inp.Multimodal[0].Tensor.Dim(1)
// First add the vision start token
result = append(result, input.Input{Token: visionStartToken})
// Add the image token with the multimodal tensor data at the first position
result = append(result, input.Input{
Token: imageToken,
Multimodal: inp.Multimodal,
MultimodalHash: inp.MultimodalHash,
SameBatch: patchesPerChunk,
})
// Add the placeholder tokens for the remaining positions (tokensPerGrid-1)
result = append(result, slices.Repeat([]input.Input{{Token: imageToken}}, patchesPerChunk-1)...)
result = append(result, input.Input{Token: visionEndToken})
}
}
return result, nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache)
}
func init() {
model.Register("qwen25vl", New)
}

View File

@@ -0,0 +1,151 @@
package qwen25vl
import (
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model/input"
)
type TextOptions struct {
hiddenSize, numHeads, numKVHeads int
ropeDim, originalContextLength int
eps, ropeBase, ropeScale float32
}
type TextModel struct {
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
*TextOptions
}
func NewTextModel(c fs.Config) *TextModel {
m := TextModel{
Layers: make([]Layer, c.Uint("block_count")),
TextOptions: &TextOptions{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
ropeDim: int(c.Uint("rope.dimension_count", 128)),
originalContextLength: int(c.Uint("context_length", 128000)),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
},
}
return &m
}
// SelfAttention implements the multi-head self-attention mechanism
// with separate projections for query, key, value and output transformations
type SelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := opts.hiddenSize / opts.numHeads
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
q = fast.RoPE(ctx, q, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithOriginalContextLength(opts.originalContextLength), rope.WithTypeNeoX())
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
k = fast.RoPE(ctx, k, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithOriginalContextLength(opts.originalContextLength), rope.WithTypeNeoX())
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
scaleFactor := 1.0 / math.Sqrt(float64(headDim))
kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize)
return sa.Output.Forward(ctx, kqv)
}
// Shift applies rotary position embeddings to the key tensor for causal attention caching
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale, rope.WithOriginalContextLength(m.originalContextLength), rope.WithTypeNeoX()), nil
}
// MLP implements the feed-forward network component with SwiGLU activation
type MLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
Gate *nn.Linear `gguf:"ffn_gate"`
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
// Apply SwiGLU activation gating
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
// Project back to hidden dimension
return mlp.Down.Forward(ctx, hiddenState)
}
// Layer represents a single transformer layer combining self-attention and feed-forward components
type Layer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
SelfAttention *SelfAttention
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP *MLP
}
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
// Self-attention branch with residual connection
residual := hiddenState
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
// In the final layer (outputs != nil), optimize by pruning to just the token positions
// we need logits for.
if outputs != nil {
hiddenState = hiddenState.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
hiddenState = hiddenState.Add(ctx, residual)
// Feed-forward branch with residual connection
residual = hiddenState
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
return hiddenState.Add(ctx, residual)
}
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) (ml.Tensor, error) {
// Initial token embedding
hiddenStates := m.TokenEmbedding.Forward(ctx, inputs).Duplicate(ctx)
for _, mi := range batch.Multimodal {
img := mi.Multimodal[0].Tensor
ctx.Forward(img.Copy(ctx, hiddenStates.View(ctx, mi.Index*hiddenStates.Stride(1), img.Dim(0)*img.Dim(1))))
}
// Process through transformer layers
for i, layer := range m.Layers {
cache.SetLayer(i)
var lastLayerOutputs ml.Tensor
if i == len(m.Layers)-1 {
lastLayerOutputs = outputs
}
hiddenStates = layer.Forward(ctx, hiddenStates, positions, lastLayerOutputs, cache, m.TextOptions)
}
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
return m.Output.Forward(ctx, hiddenStates), nil
}

View File

@@ -0,0 +1,379 @@
package qwen25vl
import (
"math"
"slices"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
)
// We only support batch size of 1
var batchSize int = 1
func rotateHalf(ctx ml.Context, t ml.Tensor) ml.Tensor {
x1 := t.View(ctx, 0, t.Dim(0)/2, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2), t.Stride(3), t.Dim(3))
x2 := t.View(ctx, t.Stride(0)*t.Dim(0)/2, t.Dim(0)/2, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2), t.Stride(3), t.Dim(3)).Contiguous(ctx)
return x2.Neg(ctx).Concat(ctx, x1, 0)
}
func applyRotaryPositionalEmbedding(ctx ml.Context, t, cos, sin ml.Tensor) ml.Tensor {
return t.Mul(ctx, cos).Add(ctx, rotateHalf(ctx, t).Mul(ctx, sin))
}
func blockDiagonalMask(ctx ml.Context, seqLength int, bounds []int, numHeads int) ml.Tensor {
// Create a flat slice for the mask (all -inf initially to block all attention)
flat := make([]float32, seqLength*seqLength)
for i := range flat {
flat[i] = float32(math.Inf(-1)) // Negative infinity to block attention
}
// Fill in the mask with zeros for tokens that CAN attend to each other
for i := 1; i < len(bounds); i++ {
start := bounds[i-1]
end := bounds[i]
// Enable attention within this sequence block by setting values to 0
for row := start; row < end; row++ {
for col := start; col < end; col++ {
idx := row*seqLength + col
flat[idx] = 0.0 // 0 allows attention, -inf blocks it
}
}
}
mask := ctx.Input().FromFloatSlice(flat, seqLength, seqLength)
// Reshape to match [seqLength, seqLength, 1] for broadcasting
mask = mask.Reshape(ctx, seqLength, seqLength, 1)
return mask
}
type VisionSelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_out"`
}
func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenStates, cos, sin, mask ml.Tensor, opts *VisionModelOptions) ml.Tensor {
query := sa.Query.Forward(ctx, hiddenStates)
key := sa.Key.Forward(ctx, hiddenStates)
value := sa.Value.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, opts.headDim, opts.numHeads, query.Dim(1), batchSize)
key = key.Reshape(ctx, opts.headDim, opts.numHeads, key.Dim(1), batchSize)
value = value.Reshape(ctx, opts.headDim, opts.numHeads, value.Dim(1), batchSize)
query = applyRotaryPositionalEmbedding(ctx, query, cos, sin)
key = applyRotaryPositionalEmbedding(ctx, key, cos, sin)
// Scale factor for scaled dot-product attention
scale := 1.0 / math.Sqrt(float64(opts.headDim))
// Scaled dot-product attention
query = query.Permute(ctx, 0, 2, 1, 3)
key = key.Permute(ctx, 0, 2, 1, 3)
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
kq := key.MulmatFullPrec(ctx, query)
kq = kq.Scale(ctx, scale)
if mask != nil {
kq = kq.Add(ctx, mask)
}
kq = kq.Softmax(ctx)
kqv := value.Mulmat(ctx, kq)
attention := kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), batchSize)
return sa.Output.Forward(ctx, attention)
}
// VisionMLP implements the multi-layer perceptron
type VisionMLP struct {
Gate *nn.Linear `gguf:"ffn_gate"`
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionModelOptions) ml.Tensor {
// Using activation as specified in config (likely GELU or SiLU/Swish)
gateOutput := mlp.Gate.Forward(ctx, hiddenStates)
upOutput := mlp.Up.Forward(ctx, hiddenStates)
hiddenStates = gateOutput.SILU(ctx).Mul(ctx, upOutput)
return mlp.Down.Forward(ctx, hiddenStates)
}
type VisionEncoderLayer struct {
Norm1 *nn.RMSNorm `gguf:"ln1"`
SelfAttention *VisionSelfAttention
Norm2 *nn.RMSNorm `gguf:"ln2"`
MLP *VisionMLP
}
func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenStates, cos, sin, mask ml.Tensor, opts *VisionModelOptions) ml.Tensor {
residual := hiddenStates
hiddenStates = e.Norm1.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = e.SelfAttention.Forward(ctx, hiddenStates, cos, sin, mask, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
residual = hiddenStates
hiddenStates = e.Norm2.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = e.MLP.Forward(ctx, hiddenStates, opts)
return hiddenStates.Add(ctx, residual)
}
// VisionModelOptions contains configuration options
type VisionModelOptions struct {
hiddenSize int
numHeads int
headDim int
patchSize int
numChannels int
eps float32
ropeTheta float32
spatialMergeSize int
windowSize int
fullAttnBlocks []int32
temporalPatchSize int
}
type PatchEmbedding struct {
PatchConv0 *nn.Conv2D `gguf:"patch_embd_0"`
PatchConv1 *nn.Conv2D `gguf:"patch_embd_1"`
}
func (pe *PatchEmbedding) Forward(ctx ml.Context, pixelValues ml.Tensor, opts *VisionModelOptions) ml.Tensor {
numPatches := pixelValues.Shape()[1]
// Reshape the input tensor to match the expected dimensions
pixelValues = pixelValues.Reshape(ctx, opts.patchSize*opts.patchSize, opts.temporalPatchSize, opts.numChannels, numPatches)
// Permute the tensor to bring the temporal dimension to the front
pixelValues = pixelValues.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
// Split the tensor into parts for the temporal convolutions
in0 := pixelValues.View(ctx, 0, 1, pixelValues.Stride(1), pixelValues.Dim(1), pixelValues.Stride(2), pixelValues.Dim(2), pixelValues.Stride(3), pixelValues.Dim(3)).Contiguous(ctx)
in0 = in0.Reshape(ctx, opts.patchSize, opts.patchSize, opts.numChannels, numPatches)
in1 := pixelValues.View(ctx, pixelValues.Stride(0), 1, pixelValues.Stride(1), pixelValues.Dim(1), pixelValues.Stride(2), pixelValues.Dim(2), pixelValues.Stride(3), pixelValues.Dim(3)).Contiguous(ctx)
in1 = in1.Reshape(ctx, opts.patchSize, opts.patchSize, opts.numChannels, numPatches)
s0, s1 := opts.patchSize, opts.patchSize // Use full stride
p0, p1 := 0, 0 // padding
d0, d1 := 1, 1 // dilation
out0 := pe.PatchConv0.Forward(ctx, in0, s0, s1, p0, p1, d0, d1)
out1 := pe.PatchConv1.Forward(ctx, in1, s0, s1, p0, p1, d0, d1)
// Add the outputs from the two temporal convolutions
out := out0.Add(ctx, out1)
// Reshape the output tensor to match the expected dimensions
return out.Reshape(ctx, opts.hiddenSize, numPatches)
}
// VisionPatchMerger implements patch merging for the Qwen vision model
type VisionPatchMerger struct {
LNQ *nn.RMSNorm `gguf:"ln_q"`
MLP0 *nn.Linear `gguf:"mlp.0"`
MLP2 *nn.Linear `gguf:"mlp.2"`
}
// Forward computes patch merging for the vision model
func (pm *VisionPatchMerger) Forward(ctx ml.Context, visionOutputs ml.Tensor, opts *VisionModelOptions) ml.Tensor {
normalized := pm.LNQ.Forward(ctx, visionOutputs, opts.eps)
hiddenSize := visionOutputs.Dim(0) * (opts.spatialMergeSize * opts.spatialMergeSize)
// Reshape the normalized output to view the hidden size dimension
reshaped := normalized.Reshape(ctx, hiddenSize, normalized.Dim(1)/(opts.spatialMergeSize*opts.spatialMergeSize), batchSize)
hidden := pm.MLP0.Forward(ctx, reshaped)
activated := hidden.GELU(ctx)
output := pm.MLP2.Forward(ctx, activated)
return output
}
// VisionModel implements the Qwen vision model
type VisionModel struct {
PatchEmbedding *PatchEmbedding
Layers []VisionEncoderLayer `gguf:"blk"`
PatchMerger *VisionPatchMerger `gguf:"merger"`
*VisionModelOptions
}
// Forward computes the vision model for an input tensor
func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor, grid *Grid) ml.Tensor {
// Extract patch embeddings
hiddenStates := m.PatchEmbedding.Forward(ctx, pixelValues, m.VisionModelOptions)
positionEmbedding := m.PositionalEmbedding(ctx, grid)
windowIndex, bounds := m.WindowIndex(ctx, grid)
spatialMergeUnit := m.spatialMergeSize * m.spatialMergeSize
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0)*spatialMergeUnit, hiddenStates.Dim(1)/spatialMergeUnit)
hiddenStates = hiddenStates.Rows(ctx, windowIndex)
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0)/spatialMergeUnit, hiddenStates.Dim(1)*spatialMergeUnit)
positionEmbedding = positionEmbedding.Reshape(ctx, positionEmbedding.Dim(0)*spatialMergeUnit, positionEmbedding.Dim(1)/spatialMergeUnit)
positionEmbedding = positionEmbedding.Rows(ctx, windowIndex)
positionEmbedding = positionEmbedding.Reshape(ctx, positionEmbedding.Dim(0)/spatialMergeUnit, positionEmbedding.Dim(1)*spatialMergeUnit)
positionEmbedding = positionEmbedding.Concat(ctx, positionEmbedding, 0)
cos, sin := positionEmbedding.Cos(ctx), positionEmbedding.Sin(ctx)
cos = cos.Reshape(ctx, cos.Dim(0), 1, cos.Dim(1))
sin = sin.Reshape(ctx, sin.Dim(0), 1, sin.Dim(1))
mask := blockDiagonalMask(ctx, hiddenStates.Dim(1), bounds, m.VisionModelOptions.numHeads)
// Apply encoder layers
for i, layer := range m.Layers {
if slices.Contains(m.fullAttnBlocks, int32(i)) {
hiddenStates = layer.Forward(ctx, hiddenStates, cos, sin, nil, m.VisionModelOptions)
} else {
hiddenStates = layer.Forward(
ctx,
hiddenStates,
cos,
sin,
mask,
m.VisionModelOptions,
)
}
}
hiddenStates = m.PatchMerger.Forward(ctx, hiddenStates, m.VisionModelOptions)
reverseWindowIndex := windowIndex.Argsort(ctx)
return hiddenStates.Rows(ctx, reverseWindowIndex)
}
// WindowIndex divides the grid into windows and returns:
// 1. A tensor containing flattened indices of all grid points organized by windows
// 2. A slice of boundaries that mark where each window's data begins and ends
// in the flattened representation, scaled by spatialMergeSize squared
//
// The boundaries slice always starts with 0 and contains cumulative ending
// positions for each window, allowing downstream processing to identify
// window boundaries in the tensor data.
func (m *VisionModel) WindowIndex(ctx ml.Context, grid *Grid) (ml.Tensor, []int) {
vitMergerWindowSize := m.windowSize / m.spatialMergeSize / m.patchSize
llmGridH := grid.Height / m.spatialMergeSize
llmGridW := grid.Width / m.spatialMergeSize
// Calculate window parameters
numWindowsH := int(math.Ceil(float64(llmGridH) / float64(vitMergerWindowSize)))
numWindowsW := int(math.Ceil(float64(llmGridW) / float64(vitMergerWindowSize)))
// Initialize index_new slice
var index []int32
// Initialize bounds with the first element as 0
bounds := []int{0}
totalSeqLen := 0
// Process each window without padding
for wh := range numWindowsH {
for ww := range numWindowsW {
// Calculate window boundaries
hStart := wh * vitMergerWindowSize
wStart := ww * vitMergerWindowSize
hEnd := min(hStart+vitMergerWindowSize, llmGridH)
wEnd := min(wStart+vitMergerWindowSize, llmGridW)
// Calculate sequence length for this window
seqLen := (hEnd - hStart) * (wEnd - wStart)
// Collect indices for this window
for h := hStart; h < hEnd; h++ {
for w := wStart; w < wEnd; w++ {
index = append(index, int32(h*llmGridW+w))
}
}
totalSeqLen += seqLen
bounds = append(bounds, totalSeqLen*(m.spatialMergeSize*m.spatialMergeSize)+bounds[0])
}
}
t := ctx.Input().FromIntSlice(index, len(index))
return t, bounds
}
// PositionalEmbedding generates rotary position embeddings for attention mechanisms
func (m *VisionModel) PositionalEmbedding(ctx ml.Context, grid *Grid) ml.Tensor {
dim := m.headDim / 2
freq := dim / 2
theta := float64(m.ropeTheta)
merge := m.spatialMergeSize
// Create frequency patterns for position encoding
maxGridSize := max(grid.Height, grid.Width)
freqVals := make([]float32, freq*maxGridSize)
for i := range maxGridSize {
for j := range freq {
freqVals[i*freq+j] = float32(i) / float32(math.Pow(theta, float64(j*2)/float64(dim)))
}
}
freqs := ctx.Input().FromFloatSlice(freqVals, freq, maxGridSize)
// Create position coordinates (y,x pairs) for the grid
// In PyTorch: Equivalent to generating position ids with torch.arange()
coords := make([]int32, 0, grid.Height*grid.Width*2)
for y := range grid.Height {
for x := range grid.Width {
coords = append(coords, int32(y), int32(x))
}
}
pos := ctx.Input().FromIntSlice(coords, 2, grid.Width, grid.Height)
// Reshape and permute positions to match spatial merging pattern
pos = pos.Reshape(ctx, 2, grid.Width, merge, grid.Height/merge)
pos = pos.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
pos = pos.Reshape(ctx, 2, merge, merge, grid.Width/merge*grid.Height/merge)
pos = pos.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
pos = pos.Reshape(ctx, 2*merge*merge*grid.Width/merge*grid.Height/merge)
// Use position indices to look up corresponding frequency values
positionalEmbedding := freqs.Rows(ctx, pos)
positionalEmbedding = positionalEmbedding.Reshape(ctx, positionalEmbedding.Dim(0)*2, positionalEmbedding.Dim(1)/2)
return positionalEmbedding
}
// newVisionModel creates a new instance of the Qwen vision model
func newVisionModel(c fs.Config) *VisionModel {
patchSize := int(c.Uint("vision.patch_size", 14))
hiddenSize := int(c.Uint("vision.embedding_length", 1280))
numHeads := int(c.Uint("vision.attention.head_count", 16))
numChannels := int(c.Uint("vision.num_channels", 3))
eps := c.Float("vision.attention.layer_norm_epsilon", 1e-6)
ropeTheta := c.Float("vision.rope.freq_base", 10000.0)
spatialMergeSize := int(c.Uint("vision.spatial_merge_size", 2))
windowSize := int(c.Uint("vision.window_size", 112))
fullAttnBlocks := c.Ints("qwen25vl.vision.fullatt_block_indexes", []int32{7, 15, 23, 31})
temporalPatchSize := int(c.Uint("vision.temporal_patch_size", 2))
model := &VisionModel{
Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count", 32)),
VisionModelOptions: &VisionModelOptions{
hiddenSize: hiddenSize,
numHeads: numHeads,
headDim: hiddenSize / numHeads,
patchSize: patchSize,
numChannels: numChannels,
eps: eps,
ropeTheta: ropeTheta,
spatialMergeSize: spatialMergeSize,
windowSize: windowSize,
temporalPatchSize: temporalPatchSize,
fullAttnBlocks: fullAttnBlocks,
},
}
return model
}

View File

@@ -0,0 +1,184 @@
package qwen25vl
import (
"fmt"
"image"
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/model/imageproc"
)
// ImageProcessor contains configuration for the Qwen 2.5 VL image processing
type ImageProcessor struct {
numChannels int
patchSize int
temporalPatchSize int
mergeSize int
minPixels int
maxPixels int
factor int
rescaleFactor float32
imageMean []float32
imageStd []float32
}
// newImageProcessor creates a new image processor with default values
func newImageProcessor(c fs.Config) ImageProcessor {
patchSize := int(c.Uint("vision.patch_size", 14))
mergeSize := int(c.Uint("vision.spatial_merge_size", 2))
return ImageProcessor{
numChannels: int(c.Uint("vision.num_channels", 3)), // not set
patchSize: patchSize,
temporalPatchSize: 2,
mergeSize: mergeSize,
minPixels: 56 * 56,
maxPixels: int(c.Uint("vision.max_pixels", 28*28*1280)), // 1MP limit
factor: patchSize * mergeSize,
rescaleFactor: 1.0 / 255.0,
imageMean: imageproc.ClipDefaultMean[:],
imageStd: imageproc.ClipDefaultSTD[:],
}
}
// SmartResize implements the smart resize algorithm
func (p *ImageProcessor) SmartResize(height, width int) (int, int) {
factor := p.factor
if height < factor || width < factor {
panic(fmt.Sprintf("height:%d or width:%d must be larger than factor:%d", height, width, factor))
} else if aspectRatio := max(height, width) / min(height, width); aspectRatio > 200 {
panic(fmt.Sprintf("absolute aspect ratio must be smaller than 200, got %v", aspectRatio))
}
round := func(x float64) int { return int(math.RoundToEven(x)) }
hBar := round(float64(height)/float64(factor)) * factor
wBar := round(float64(width)/float64(factor)) * factor
if hBar*wBar > p.maxPixels {
beta := math.Sqrt(float64(height*width) / float64(p.maxPixels))
hBar = int(math.Floor(float64(height)/beta/float64(factor))) * factor
wBar = int(math.Floor(float64(width)/beta/float64(factor))) * factor
} else if hBar*wBar < p.minPixels {
beta := math.Sqrt(float64(p.minPixels) / float64(height*width))
hBar = int(math.Ceil(float64(height)*beta/float64(factor))) * factor
wBar = int(math.Ceil(float64(width)*beta/float64(factor))) * factor
}
return hBar, wBar
}
type Grid struct {
Height int
Width int
Temporal int
}
func (p *ImageProcessor) ProcessImage(img image.Image) ([]float32, *Grid, error) {
origWidth := img.Bounds().Dx()
origHeight := img.Bounds().Dy()
// Calculate smart resize dimensions
resizedHeight, resizedWidth := p.SmartResize(origHeight, origWidth)
// Resize image using existing functions
resizedImg := imageproc.Resize(img, image.Point{X: resizedWidth, Y: resizedHeight}, imageproc.ResizeBilinear)
normalizedPixels := imageproc.Normalize(
resizedImg,
[3]float32{p.imageMean[0], p.imageMean[1], p.imageMean[2]},
[3]float32{p.imageStd[0], p.imageStd[1], p.imageStd[2]},
true, // rescale
true, // channelFirst
)
// Calculate grid dimensions
grid := &Grid{
Height: resizedHeight / p.patchSize,
Width: resizedWidth / p.patchSize,
Temporal: 1, // For single images, temporal dimension is 1
}
patches, err := p.createPatches(normalizedPixels, resizedHeight, resizedWidth, grid)
if err != nil {
return nil, nil, fmt.Errorf("failed to create patches: %v", err)
}
// Return patches and grid dimensions
return patches, grid, nil
}
func (p *ImageProcessor) createPatches(pixels []float32, height, width int, grid *Grid) ([]float32, error) {
channels := p.numChannels
patchSize := p.patchSize
mergeSize := p.mergeSize
temporalPatchSize := p.temporalPatchSize
// Calculate output dimensions
numPatches := grid.Temporal * grid.Height * grid.Width
patchDim := channels * temporalPatchSize * patchSize * patchSize
result := make([]float32, numPatches*patchDim)
patchIndex := 0
// Single temporal frame handling (copies to all frames)
for range grid.Temporal {
for h := 0; h < grid.Height; h += mergeSize {
for w := 0; w < grid.Width; w += mergeSize {
// Handle the 2x2 merged patches
for mh := range mergeSize {
for mw := range mergeSize {
baseOffset := patchIndex * patchDim
// Extract patch data for first temporal frame
for c := range channels {
channelOffset := baseOffset + (c * temporalPatchSize * patchSize * patchSize)
for py := range patchSize {
for px := range patchSize {
// Calculate source pixel coordinates
y := (h+mh)*patchSize + py
x := (w+mw)*patchSize + px
// Source index in input tensor (CHW format)
srcIdx := c*height*width + y*width + x
// Destination index in first temporal frame
dstIdx := channelOffset + (py * patchSize) + px
if srcIdx < len(pixels) && dstIdx < len(result) {
result[dstIdx] = pixels[srcIdx]
}
}
}
}
// Copy first temporal frame to all other frames
if temporalPatchSize > 1 {
for c := range channels {
channelOffset := baseOffset + (c * temporalPatchSize * patchSize * patchSize)
firstFrameOffset := channelOffset
frameSize := patchSize * patchSize
// Copy first frame to all other frames
for tp := 1; tp < temporalPatchSize; tp++ {
currentFrameOffset := channelOffset + (tp * frameSize)
copy(result[currentFrameOffset:currentFrameOffset+frameSize],
result[firstFrameOffset:firstFrameOffset+frameSize])
}
}
}
patchIndex++
}
}
}
}
}
return result, nil
}

233
model/models/qwen3/model.go Normal file
View File

@@ -0,0 +1,233 @@
package qwen3
import (
"cmp"
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Options struct {
hiddenSize, numHeads, numKVHeads int
eps float32
ropeBase, ropeScale float32
keyLength, valueLength int
numExperts, numExpertsUsed int
normTopKProb bool
}
func (o Options) headDim() int {
return cmp.Or(o.keyLength, o.valueLength, o.hiddenSize/o.numHeads)
}
type Attention struct {
QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
Query *nn.Linear `gguf:"attn_q"`
KeyNorm *nn.RMSNorm `gguf:"attn_k_norm"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
batchSize := hiddenStates.Dim(1)
query := sa.Query.Forward(ctx, hiddenStates)
key := sa.Key.Forward(ctx, hiddenStates)
value := sa.Value.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
key = key.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
query = sa.QueryNorm.Forward(ctx, query, opts.eps)
key = sa.KeyNorm.Forward(ctx, key, opts.eps)
query = fast.RoPE(ctx, query, positions, opts.headDim(), opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
key = fast.RoPE(ctx, key, positions, opts.headDim(), opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(opts.headDim())), cache)
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
return sa.Output.Forward(ctx, attention)
}
type MLP interface {
Forward(ml.Context, ml.Tensor, *Options) ml.Tensor
}
type sparse struct {
Router *nn.Linear `gguf:"ffn_gate_inp"`
Gate *nn.Linear `gguf:"ffn_gate_exps"`
Up *nn.Linear `gguf:"ffn_up_exps"`
Down *nn.Linear `gguf:"ffn_down_exps"`
}
func (mlp *sparse) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
hiddenDim, sequenceLength, batchSize := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2)
hiddenStates = hiddenStates.Reshape(ctx, hiddenDim, sequenceLength*batchSize)
routerLogits := mlp.Router.Forward(ctx, hiddenStates)
routingWeights := routerLogits.Softmax(ctx)
selectedExperts := routingWeights.TopK(ctx, opts.numExpertsUsed)
routingWeights = routingWeights.Reshape(ctx, 1, opts.numExperts, hiddenStates.Dim(1)).Rows(ctx, selectedExperts)
if opts.normTopKProb {
routingWeights = routingWeights.Reshape(ctx, opts.numExpertsUsed, hiddenStates.Dim(1))
routingWeights = routingWeights.Div(ctx, routingWeights.SumRows(ctx))
routingWeights = routingWeights.Reshape(ctx, 1, opts.numExpertsUsed, hiddenStates.Dim(1))
}
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
upStates := mlp.Up.Weight.MulmatID(ctx, hiddenStates, selectedExperts)
hiddenStates = mlp.Gate.Weight.MulmatID(ctx, hiddenStates, selectedExperts)
hiddenStates = hiddenStates.SILU(ctx)
hiddenStates = hiddenStates.Mul(ctx, upStates)
experts := mlp.Down.Weight.MulmatID(ctx, hiddenStates, selectedExperts)
experts = experts.Mul(ctx, routingWeights)
nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2))
for i := 1; i < opts.numExpertsUsed; i++ {
nextStates = nextStates.Add(ctx, experts.View(ctx, i*experts.Stride(1), experts.Dim(0), experts.Stride(2), experts.Dim(2)))
}
return nextStates
}
type dense struct {
Gate *nn.Linear `gguf:"ffn_gate"`
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (mlp *dense) Forward(ctx ml.Context, hiddenStates ml.Tensor, _ *Options) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
type Layer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
*Attention
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP
}
func (d *Layer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
residual := hiddenStates
hiddenStates = d.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = d.Attention.Forward(ctx, hiddenStates, positions, cache, opts)
if outputs != nil {
hiddenStates = hiddenStates.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
hiddenStates = hiddenStates.Add(ctx, residual)
residual = hiddenStates
hiddenStates = d.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = d.MLP.Forward(ctx, hiddenStates, opts)
return hiddenStates.Add(ctx, residual)
}
type Model struct {
model.Base
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
Layers []Layer `gguf:"blk"`
*Options
}
// Forward implements model.Model.
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
for i, layer := range m.Layers {
m.Cache.SetLayer(i)
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
}
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, m.Options)
}
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
return m.Output.Forward(ctx, hiddenStates), nil
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.headDim(), m.ropeBase, m.ropeScale, rope.WithTypeNeoX()), nil
}
var _ model.Model = (*Model)(nil)
func New(c fs.Config) (model.Model, error) {
layers := make([]Layer, c.Uint("block_count"))
for i := range layers {
if c.String("general.architecture") == "qwen3moe" {
layers[i].MLP = &sparse{}
} else {
layers[i].MLP = &dense{}
}
}
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
Layers: layers,
Options: &Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
keyLength: int(c.Uint("attention.key_length")),
valueLength: int(c.Uint("attention.value_length")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
numExperts: int(c.Uint("expert_count")),
numExpertsUsed: int(c.Uint("expert_used_count")),
normTopKProb: c.Bool("norm_top_k_prob", true),
},
}
m.Cache = kvcache.NewCausalCache(m.Shift)
return &m, nil
}
func init() {
model.Register("qwen3", New)
model.Register("qwen3moe", New)
}

View File

@@ -182,27 +182,12 @@ func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error)
}
}
slog.Log(context.TODO(), logutil.LevelTrace, "encoded", "string", s, "ids", ids)
if addSpecial && len(ids) > 0 {
if spm.vocab.AddBOS {
if ids[0] == spm.vocab.BOS {
slog.Warn("adding bos token to prompt which already has it", "id", spm.vocab.BOS)
}
slog.Debug("adding bos token to prompt", "id", spm.vocab.BOS)
ids = append([]int32{spm.vocab.BOS}, ids...)
}
if spm.vocab.AddEOS {
if ids[len(ids)-1] == spm.vocab.EOS {
slog.Warn("adding eos token to prompt which already has it", "id", spm.vocab.EOS)
}
slog.Debug("adding eos token to prompt", "id", spm.vocab.EOS)
ids = append(ids, spm.vocab.EOS)
}
ids = spm.vocab.addSpecials(ids)
}
slog.Log(context.TODO(), logutil.LevelTrace, "encoded", "ids", ids)
return ids, nil
}
@@ -261,6 +246,6 @@ func (spm SentencePieceModel) Decode(ids []int32) (string, error) {
}
}
slog.Log(context.TODO(), logutil.LevelTrace, "decoded", "string", sb.String())
slog.Log(context.TODO(), logutil.LevelTrace, "decoded", "ids", ids, "string", sb.String())
return sb.String(), nil
}

17
model/textprocessor.go Normal file
View File

@@ -0,0 +1,17 @@
package model
const (
TOKEN_TYPE_NORMAL = iota + 1
TOKEN_TYPE_UNKNOWN
TOKEN_TYPE_CONTROL
TOKEN_TYPE_USER_DEFINED
TOKEN_TYPE_UNUSED
TOKEN_TYPE_BYTE
)
type TextProcessor interface {
Encode(s string, addSpecial bool) ([]int32, error)
Decode([]int32) (string, error)
Is(int32, Special) bool
Vocabulary() *Vocabulary
}

112
model/vocabulary.go Normal file
View File

@@ -0,0 +1,112 @@
package model
import (
"log/slog"
"slices"
"sync"
)
type Special int32
const (
SpecialBOS Special = iota
SpecialEOS
)
type Vocabulary struct {
Values []string
Types []int32
Scores []float32
Merges []string
BOS, EOS []int32
AddBOS, AddEOS bool
specialOnce sync.Once
special []string
valuesOnce sync.Once
values map[string]int32
mergeOnce sync.Once
merge map[string]int32
}
func (v *Vocabulary) Is(id int32, special Special) bool {
switch special {
case SpecialBOS:
return slices.Contains(v.BOS, id)
case SpecialEOS:
return slices.Contains(v.EOS, id)
default:
return false
}
}
func (v *Vocabulary) addSpecials(ids []int32) []int32 {
if v.AddBOS && len(v.BOS) > 0 {
if slices.Contains(v.BOS, ids[0]) {
slog.Warn("adding bos token to prompt which already has it", "id", v.BOS)
}
slog.Debug("adding bos token to prompt", "id", v.BOS)
ids = append([]int32{v.BOS[0]}, ids...)
}
if v.AddEOS && len(v.EOS) > 0 {
if slices.Contains(v.BOS, ids[len(ids)-1]) {
slog.Warn("adding eos token to prompt which already has it", "id", v.EOS)
}
slog.Debug("adding eos token to prompt", "id", v.EOS)
ids = append(ids, v.EOS[0])
}
return ids
}
func (v *Vocabulary) Encode(s string) int32 {
v.valuesOnce.Do(func() {
v.values = make(map[string]int32, len(v.Values))
for i, value := range v.Values {
v.values[value] = int32(i)
}
})
if id, ok := v.values[s]; ok {
return id
}
return -1
}
func (v *Vocabulary) Decode(id int32) string {
return v.Values[id]
}
func (v *Vocabulary) SpecialVocabulary() []string {
v.specialOnce.Do(func() {
for i := range v.Values {
if v.Types[i] == TOKEN_TYPE_CONTROL {
v.special = append(v.special, v.Values[i])
}
}
})
return v.special
}
func (v *Vocabulary) Merge(left, right string) int {
v.mergeOnce.Do(func() {
v.merge = make(map[string]int32, len(v.Merges))
for i, merge := range v.Merges {
v.merge[merge] = int32(i)
}
})
if id, ok := v.merge[left+" "+right]; ok {
return int(id)
}
return -1
}

View File

@@ -292,13 +292,18 @@ func filesForModel(path string) ([]string, error) {
}
files = append(files, js...)
if tks, _ := glob(filepath.Join(path, "tokenizer.model"), "application/octet-stream"); len(tks) > 0 {
// add tokenizer.model if it exists, tokenizer.json is automatically picked up by the previous glob
// tokenizer.model might be a unresolved git lfs reference; error if it is
files = append(files, tks...)
} else if tks, _ := glob(filepath.Join(path, "**/tokenizer.model"), "text/plain"); len(tks) > 0 {
// some times tokenizer.model is in a subdirectory (e.g. meta-llama/Meta-Llama-3-8B)
files = append(files, tks...)
// only include tokenizer.model is tokenizer.json is not present
if !slices.ContainsFunc(files, func(s string) bool {
return slices.Contains(strings.Split(s, string(os.PathSeparator)), "tokenizer.json")
}) {
if tks, _ := glob(filepath.Join(path, "tokenizer.model"), "application/octet-stream"); len(tks) > 0 {
// add tokenizer.model if it exists, tokenizer.json is automatically picked up by the previous glob
// tokenizer.model might be a unresolved git lfs reference; error if it is
files = append(files, tks...)
} else if tks, _ := glob(filepath.Join(path, "**/tokenizer.model"), "text/plain"); len(tks) > 0 {
// some times tokenizer.model is in a subdirectory (e.g. meta-llama/Meta-Llama-3-8B)
files = append(files, tks...)
}
}
return files, nil

View File

@@ -61,6 +61,8 @@ const (
ColorGrey = Esc + "[38;5;245m"
ColorDefault = Esc + "[0m"
ColorBold = Esc + "[1m"
StartBracketedPaste = Esc + "[?2004h"
EndBracketedPaste = Esc + "[?2004l"
)

View File

@@ -2,6 +2,8 @@ package common
import (
"strings"
"github.com/ollama/ollama/llm"
)
func FindStop(sequence string, stops []string) (bool, string) {
@@ -29,68 +31,41 @@ func ContainsStopSuffix(sequence string, stops []string) bool {
// truncateStop removes the provided stop string from pieces,
// returning the partial pieces with stop removed, including truncating
// the last piece if required (and signalling if this was the case)
func TruncateStop(pieces []string, stop string) ([]string, bool) {
joined := strings.Join(pieces, "")
index := strings.Index(joined, stop)
if index == -1 {
return pieces, false
func TruncateStop(resps []llm.CompletionResponse, stop string) ([]llm.CompletionResponse, bool) {
var sequence string
for _, resp := range resps {
sequence += resp.Content
}
joined = joined[:index]
// Split truncated string back into pieces of original lengths
lengths := make([]int, len(pieces))
for i, piece := range pieces {
lengths[i] = len(piece)
idx := strings.Index(sequence, stop)
if idx < 0 {
return resps, false
}
var result []string
tokenTruncated := false
start := 0
for _, length := range lengths {
if start >= len(joined) {
truncated := sequence[:idx]
if len(truncated) == 0 {
return nil, true
}
result := make([]llm.CompletionResponse, 0, len(resps))
// Track position in truncated sequence
pos := 0
truncationHappened := false
for _, resp := range resps {
if pos >= len(truncated) {
break
}
end := start + length
if end > len(joined) {
end = len(joined)
tokenTruncated = true
chunk := truncated[pos:min(pos+len(resp.Content), len(truncated))]
if len(chunk) < len(resp.Content) {
truncationHappened = true
}
result = append(result, joined[start:end])
start = end
if len(chunk) > 0 {
result = append(result, llm.CompletionResponse{Content: chunk})
}
pos += len(resp.Content)
}
return result, tokenTruncated
}
func IncompleteUnicode(token string) bool {
incomplete := false
// check if there is incomplete UTF-8 character at the end
for i := 1; i < 5 && i <= len(token); i++ {
c := token[len(token)-i]
if (c & 0xc0) == 0x80 {
// continuation byte: 10xxxxxx
continue
}
if (c & 0xe0) == 0xc0 {
// 2-byte character: 110xxxxx ...
incomplete = i < 2
} else if (c & 0xf0) == 0xe0 {
// 3-byte character: 1110xxxx ...
incomplete = i < 3
} else if (c & 0xf8) == 0xf0 {
// 4-byte character: 11110xxx ...
incomplete = i < 4
}
// else 1-byte character or invalid byte
break
}
return incomplete
return result, truncationHappened
}

View File

@@ -1,51 +1,84 @@
package common
import (
"fmt"
"reflect"
"testing"
"github.com/ollama/ollama/llm"
)
func TestTruncateStop(t *testing.T) {
tests := []struct {
name string
pieces []string
pieces []llm.CompletionResponse
stop string
expected []string
expected []llm.CompletionResponse
expectedTrunc bool
}{
{
name: "Single word",
pieces: []string{"hello", "world"},
stop: "world",
expected: []string{"hello"},
name: "Single word",
pieces: []llm.CompletionResponse{
{Content: "Hello"},
{Content: "world"},
},
stop: "world",
expected: []llm.CompletionResponse{
{Content: "Hello"},
},
expectedTrunc: false,
},
{
name: "Partial",
pieces: []string{"hello", "wor"},
stop: "or",
expected: []string{"hello", "w"},
name: "Partial",
pieces: []llm.CompletionResponse{
{Content: "Hello"},
{Content: " wor"},
},
stop: "or",
expected: []llm.CompletionResponse{
{Content: "Hello"},
{Content: " w"},
},
expectedTrunc: true,
},
{
name: "Suffix",
pieces: []string{"Hello", " there", "!"},
stop: "!",
expected: []string{"Hello", " there"},
name: "Suffix",
pieces: []llm.CompletionResponse{
{Content: "Hello"},
{Content: " there"},
{Content: "!"},
},
stop: "!",
expected: []llm.CompletionResponse{
{Content: "Hello"},
{Content: " there"},
},
expectedTrunc: false,
},
{
name: "Suffix partial",
pieces: []string{"Hello", " the", "re!"},
stop: "there!",
expected: []string{"Hello", " "},
name: "Suffix partial",
pieces: []llm.CompletionResponse{
{Content: "Hello"},
{Content: " the"},
{Content: "re!"},
},
stop: "there!",
expected: []llm.CompletionResponse{
{Content: "Hello"},
{Content: " "},
},
expectedTrunc: true,
},
{
name: "Middle",
pieces: []string{"hello", " wor"},
stop: "llo w",
expected: []string{"he"},
name: "Middle",
pieces: []llm.CompletionResponse{
{Content: "Hello"},
{Content: " wo"},
},
stop: "llo w",
expected: []llm.CompletionResponse{
{Content: "He"},
},
expectedTrunc: true,
},
}
@@ -54,76 +87,23 @@ func TestTruncateStop(t *testing.T) {
t.Run(tt.name, func(t *testing.T) {
result, resultTrunc := TruncateStop(tt.pieces, tt.stop)
if !reflect.DeepEqual(result, tt.expected) || resultTrunc != tt.expectedTrunc {
t.Errorf("truncateStop(%v, %s): have %v (%v); want %v (%v)", tt.pieces, tt.stop, result, resultTrunc, tt.expected, tt.expectedTrunc)
t.Errorf("truncateStop(%v, %v):\n%shave truncated %v\nwant truncated %v",
tt.pieces, tt.stop, formatContentDiff(result, tt.expected), resultTrunc, tt.expectedTrunc)
}
})
}
}
func TestIncompleteUnicode(t *testing.T) {
tests := []struct {
name string
input string
expected bool
}{
{
name: "Basic",
input: "hi",
expected: false,
},
{
name: "Two byte",
input: "hi" + string([]byte{0xc2, 0xa3}),
expected: false,
},
{
name: "Two byte - missing last",
input: "hi" + string([]byte{0xc2}),
expected: true,
},
{
name: "Three byte",
input: "hi" + string([]byte{0xe0, 0xA0, 0x80}),
expected: false,
},
{
name: "Three byte - missing last",
input: "hi" + string([]byte{0xe0, 0xA0}),
expected: true,
},
{
name: "Three byte - missing last 2",
input: "hi" + string([]byte{0xe0}),
expected: true,
},
{
name: "Four byte",
input: "hi" + string([]byte{0xf0, 0x92, 0x8a, 0xb7}),
expected: false,
},
{
name: "Four byte - missing last",
input: "hi" + string([]byte{0xf0, 0x92, 0x8a}),
expected: true,
},
{
name: "Four byte - missing last 2",
input: "hi" + string([]byte{0xf0, 0x92}),
expected: true,
},
{
name: "Four byte - missing last 3",
input: "hi" + string([]byte{0xf0}),
expected: true,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
result := IncompleteUnicode(tt.input)
if result != tt.expected {
t.Errorf("incompleteUnicode(%s): have %v; want %v", tt.input, result, tt.expected)
}
})
func formatContentDiff(result, expected []llm.CompletionResponse) string {
var s string
for i := 0; i < len(result) || i < len(expected); i++ {
if i < len(result) && i < len(expected) && result[i].Content != expected[i].Content {
s += fmt.Sprintf("[%d] %q vs %q\n", i, result[i].Content, expected[i].Content)
} else if i < len(result) && i >= len(expected) {
s += fmt.Sprintf("[%d] extra %q\n", i, result[i].Content)
} else if i >= len(result) && i < len(expected) {
s += fmt.Sprintf("[%d] missing %q\n", i, expected[i].Content)
}
}
return s
}

View File

@@ -104,8 +104,8 @@ func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCach
slog.Debug("loading cache slot", "id", slot.Id, "cache", len(slot.Inputs), "prompt", len(prompt),
"used", numPast, "remaining", len(prompt)-numPast)
slot.Inputs = prompt[:numPast]
prompt = prompt[numPast:]
slot.Inputs = slot.Inputs[:numPast]
return slot, prompt, nil
}

View File

@@ -17,7 +17,6 @@ import (
"strings"
"sync"
"time"
"unicode/utf8"
"golang.org/x/sync/semaphore"
@@ -52,13 +51,13 @@ type Sequence struct {
pendingInputs []input
// tokens that have been generated but not returned yet (e.g. for stop sequences)
pendingResponses []string
pendingResponses []llm.CompletionResponse
// input cache being used by this sequence
cache *InputCacheSlot
// channel to send responses over
responses chan string
responses chan llm.CompletionResponse
// channel to stop decoding (such as if the remote connection is closed)
quit chan bool
@@ -89,6 +88,19 @@ type Sequence struct {
numPromptInputs int
}
func (seq *Sequence) send(resp llm.CompletionResponse) bool {
if len(resp.Content) > 0 || resp.Done {
select {
case seq.responses <- resp:
// Successfully sent
return true
case <-seq.quit:
return false
}
}
return true
}
type NewSequenceParams struct {
numPredict int
stop []string
@@ -147,8 +159,8 @@ func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSe
numPromptInputs: len(inputs),
startProcessingTime: startTime,
numPredict: params.numPredict,
pendingResponses: make([]string, 0),
responses: make(chan string, 100),
pendingResponses: make([]llm.CompletionResponse, 0),
responses: make(chan llm.CompletionResponse, 100),
quit: make(chan bool, 1),
embedding: make(chan []float32, 1),
samplingCtx: sc,
@@ -272,36 +284,15 @@ func (s *Server) allNil() bool {
return true
}
func flushPending(seq *Sequence) bool {
joined := strings.Join(seq.pendingResponses, "")
seq.pendingResponses = []string{}
// Check if there are any partial UTF-8 characters remaining.
// We already check and queue as we are generating but some may
// still make it here:
// - Sequence is ending, e.g. generation limit has been hit
// - Invalid characters in the middle of a string
// This is a stricter check to ensure we never output invalid Unicode.
for !utf8.ValidString(joined) {
joined = joined[:len(joined)-1]
}
if len(joined) == 0 {
return true
}
select {
case seq.responses <- joined:
return true
case <-seq.quit:
return false
}
}
func (s *Server) removeSequence(seqIndex int, reason llm.DoneReason) {
seq := s.seqs[seqIndex]
flushPending(seq)
// Send any remaining pending responses
for _, resp := range seq.pendingResponses {
seq.send(resp)
}
seq.pendingResponses = []llm.CompletionResponse{}
seq.doneReason = reason
close(seq.responses)
close(seq.embedding)
@@ -490,8 +481,11 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
seq.inputs = []input{{token: token}}
seq.pendingResponses = append(seq.pendingResponses, piece)
sequence := strings.Join(seq.pendingResponses, "")
seq.pendingResponses = append(seq.pendingResponses, llm.CompletionResponse{Content: piece})
sequence := ""
for _, r := range seq.pendingResponses {
sequence += r.Content
}
if ok, stop := common.FindStop(sequence, seq.stop); ok {
slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)
@@ -523,13 +517,13 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
continue
}
if common.IncompleteUnicode(sequence) {
continue
}
if !flushPending(seq) {
s.removeSequence(i, llm.DoneReasonConnectionClosed)
for _, resp := range seq.pendingResponses {
if !seq.send(resp) {
s.removeSequence(i, llm.DoneReasonConnectionClosed)
break
}
}
seq.pendingResponses = []llm.CompletionResponse{}
}
return nil
@@ -627,9 +621,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
return
case content, ok := <-seq.responses:
if ok {
if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
Content: content,
}); err != nil {
if err := json.NewEncoder(w).Encode(&content); err != nil {
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
close(seq.quit)
return

View File

@@ -136,8 +136,8 @@ func (c *InputCache) LoadCacheSlot(prompt []input.Input) (*InputCacheSlot, []inp
slog.Debug("loading cache slot", "id", slot.Id, "cache", len(slot.Inputs), "prompt", len(prompt),
"used", numPast, "remaining", int32(len(prompt))-numPast)
slot.Inputs = prompt[:numPast]
prompt = prompt[numPast:]
slot.Inputs = slot.Inputs[:numPast]
return slot, prompt, nil
}

View File

@@ -3,7 +3,6 @@ package ollamarunner
import (
"errors"
"fmt"
"image"
"testing"
"time"
@@ -12,10 +11,6 @@ import (
)
func TestCountCommon(t *testing.T) {
imgA := image.NewRGBA(image.Rect(0, 0, 100, 100))
imgB := image.NewRGBA(image.Rect(0, 0, 50, 50))
imgC := image.NewRGBA(image.Rect(50, 50, 100, 100))
tests := []struct {
name string
t1 []input.Input
@@ -36,20 +31,20 @@ func TestCountCommon(t *testing.T) {
},
{
name: "Image Prefix",
t1: []input.Input{{Multimodal: imgA, MultimodalHash: 1}},
t2: []input.Input{{Multimodal: imgA, MultimodalHash: 1}, {Multimodal: imgB, MultimodalHash: 2}, {Multimodal: imgC, MultimodalHash: 3}},
t1: []input.Input{{MultimodalHash: 1}},
t2: []input.Input{{MultimodalHash: 1}, {MultimodalHash: 2}, {MultimodalHash: 3}},
expected: 1,
},
{
name: "Mixed",
t1: []input.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}},
t2: []input.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}, {Token: 5}},
t1: []input.Input{{Token: 1}, {MultimodalHash: 1}},
t2: []input.Input{{Token: 1}, {MultimodalHash: 1}, {Token: 5}},
expected: 2,
},
{
name: "Mixed, Same Length",
t1: []input.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}},
t2: []input.Input{{Token: 1}, {Multimodal: imgB, MultimodalHash: 2}},
t1: []input.Input{{Token: 1}, {MultimodalHash: 1}},
t2: []input.Input{{Token: 1}, {MultimodalHash: 2}},
expected: 1,
},
{

View File

@@ -0,0 +1,113 @@
package ollamarunner
import (
"errors"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
// Tensors can't be used across multiple compute graphs. This is a problem
// if a single embedding is split across batches using views since all of
// the views will have the same source tensor. We also don't want to
// recompute the entire embedding for each batch.
//
// To avoid this, we compute all of the tensors for the embedding on the
// first use and then store the result in system memory. When we need
// additional tensors, we recreate them from the stored data.
// multimodalEntry represents the embeddings of a single object (such
// as an image).
type multimodalEntry struct {
// mm is the original set of tensors created by EncodeMultimodal
mm []input.Multimodal
// data is the computed result of mm. Nil if not yet computed
data [][]float32
}
// multimodalStore maps from an individual tensor (of which there
// may be many in a single multimodal object) to its parent embedding
type multimodalStore map[ml.Tensor]*multimodalEntry
func newMultimodalStore() multimodalStore {
return make(multimodalStore)
}
// addMultimodal stores an embedding for later use in a compute graph
func (m multimodalStore) addMultimodal(embedding []input.Multimodal) {
entry := &multimodalEntry{mm: embedding}
for _, e := range embedding {
if e.Tensor != nil {
m[e.Tensor] = entry
}
}
}
// getMultimodal takes a source set of tensors (which may contain a whole or
// parts of one or more images) and returns the equivalent that can be used in
// the current context
func (m multimodalStore) getMultimodal(backend ml.Backend, ctx ml.Context, in []input.Multimodal, reserve bool) ([]input.Multimodal, error) {
out := make([]input.Multimodal, len(in))
for i := range out {
if in[i].Tensor != nil {
var err error
out[i].Tensor, err = m.getTensor(backend, ctx, in[i].Tensor, reserve)
if err != nil {
return nil, err
}
}
out[i].Data = in[i].Data
}
return out, nil
}
func (m multimodalStore) getTensor(backend ml.Backend, ctx ml.Context, in ml.Tensor, reserve bool) (ml.Tensor, error) {
entry := m[in]
if entry.data == nil {
computeCtx := backend.NewContext()
defer computeCtx.Close()
var tensors []ml.Tensor
for _, t := range entry.mm {
if t.Tensor != nil {
tensors = append(tensors, t.Tensor)
}
}
if len(tensors) == 0 {
return nil, nil
}
computeCtx.Forward(tensors...)
entry.data = make([][]float32, len(entry.mm))
if !reserve {
computeCtx.Compute(tensors...)
for i, t := range entry.mm {
if t.Tensor != nil {
entry.data[i] = t.Tensor.Floats()
}
}
} else {
computeCtx.Reserve()
}
}
for i, t := range entry.mm {
if in == t.Tensor {
if !reserve {
return ctx.Input().FromFloatSlice(entry.data[i], t.Tensor.Shape()...), nil
} else {
return ctx.Input().Empty(t.Tensor.DType(), t.Tensor.Shape()...), nil
}
}
}
return nil, errors.New("multimodal tensor not found")
}

Some files were not shown because too many files have changed in this diff Show More